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Preface

Superconductivity is now a considerable focus of attention as one of the tech-
nologies which can prevent environmental destruction by allowing energy to
be used with high efficiency. The possibility of practical applications of super-
conductivity depends on the maximum current density which superconductors
can carry, the value of losses which superconductors consume, the maximum
magnetic field strength in which superconductors can be used, etc. These fac-
tors are directly related to the flux pinning of quantized magnetic flux lines in
superconductors. This book extensively describes related subjects, from the
fundamental physics of flux pinning to electromagnetic phenomena caused by
flux pinning events, which will be useful for anyone who wants to understand
applied superconductivity.

The Japanese edition was published for this purpose in 1994. Since then,
there has been significant progress in the research and development of high-
temperature superconductors. In particular, the new superconductor MgBs
was discovered in 2001, followed by steady improvements in the supercon-
ducting properties necessary for applications. On the other hand, there are
no essential differences in the flux pinning phenomena between these new
superconductors and metallic superconductors. Hence, the framework of the
previous Japanese edition was kept unchanged, while new description was
added on these new superconductors in the English edition.

In the following the content of each chapter is briefly introduced.

In Chapter 1 various fundamental superconducting properties which de-
termine the flux pinning and electromagnetic phenomena in type II supercon-
ductors are described, based on the Ginzburg-Landau theory. In particular,
it is shown that the center of a quantized flux line must be in the normal
state so that the Josephson current does not diverge due to the singularity in
the gradient of the phase of the superconducting order parameter there. This
causes a loss due to the motion of normal electrons in the core that is driven
by the electric field, which is induced when flux lines are forced to move by
the Lorentz force. At the same time such a structure of the core contributes
to the flux pinning event. The role of the kinetic energy in determination of
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the upper critical field is also shown. This will help the readers to understand
the kinetic energy pinning mechanism for the artificial Nb pinning centers
introduced into Nb-Ti, which is discussed in Chapter 6.

In Chapter 2 the critical state model, which is needed to understand the
irreversible electromagnetic phenomena in superconductors, is described. The
mechanism of the irreversibility is introduced on the basis of the ohmic electric
resistivity, which is induced when a flux line is driven by the Lorentz force.
On the other hand, the losses in superconductors are non-ohmic ones with
a hysteretic nature. The reason for this will also be discussed. The critical
state model provides the relationship between the current density and the
electric field strength, and the electromagnetic phenomena in superconductors
are described by the Maxwell equations coupled with this relationship. It is
shown that the critical state model can describe irreversible magnetizations
and AC losses in superconductors. The effect of superconductor diamagnetism
will also be an important topic.

Various electromagnetic phenomena are introduced in Chapter 3. These
include geometrical effects and dynamic phenomena which were not treated
in Chapter 2. The rectifying effect in the DC current-voltage characteristics
in a superposed AC magnetic field, flux jumps, surface irreversibility, and
DC susceptibility in a varying temperature are also included. In addition,
it is shown that an abnormal reduction in losses occurs, deviating from the
prediction of the critical state model when an AC magnetic field is applied to a
superconductor smaller than the pinning correlation length called Campbell’s
AC penetration depth. This is attributed to the reversible motion of flux lines
limited within pinning potential wells, being in contrast with the hysteresis
loss which results from the flux motion involved in dropping into and jumping
out of the pinning potential wells. In high-temperature superconductors the
superconducting current sustained by flux pinning appreciably decays with
time due to the thermal agitation of flux lines. This phenomenon, which is
called flux creep, is also discussed. In extreme cases the critical current density
is reduced to zero at some magnetic field called the irreversibility field. The
principles used to determine the irreversibility field are described, and the
result is applied to high-temperature superconductors in Chapter 8.

In Chapter 4 various phenomena which are observed when the transport
current is applied to a long superconducting cylinder or tape in a longitudi-
nal magnetic field are introduced, and the force-free model, which assumes
a current flow parallel to the flux lines, is explained. Although this model
insists that the force-free state is intrinsically stable, the observed critical
current density in a longitudinal magnetic field depends on the flux pinning
strength, similarly to the case in a transverse magnetic field, indicating that
the force-free state is unstable without the pinning effect. From the energy
increase caused by introducing a distortion due to the parallel current to the
flux line lattice the restoring torque is derived, and the critical current den-
sity is predicted to be determined by the balance between this torque and
the moment of pinning forces. The resultant rotational motion of flux lines
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explains the observed break in Josephson’s formula on the induced electric
field. A peculiar helical structure of the electric field with a negative region
in the resistive state can also be explained by the flux motion induced by the
restoring torque.

The critical current density is a key parameter which determines the ap-
plicability of superconductors to various fields, and hence the measurement of
this parameter is very important. In Chapter 5 various measurement methods
are reviewed, including transport and magnetic ones. Among them, it is shown
that distributions of magnetic flux and current inside the superconductor can
be measured by using Campbell’s method, which is also useful for analyz-
ing the reversible motion of flux lines discussed in Chapter 3. However, if AC
magnetic methods including Campbell’s method are used for superconductors
smaller than the pinning correlation length, the critical current densities are
seriously overestimated. The reason for the overestimation is discussed, and a
method of correction is proposed.

Mechanisms of pinning interactions between various defects and individ-
ual flux lines are reviewed, and the elementary pinning force, the maximum
strength of each defect, is theoretically estimated in Chapter 6. These include
the condensation energy interaction, the elastic interaction, the magnetic in-
teraction and the kinetic energy interaction. In particular, the reason why the
flux pinning strength of thin normal a-Ti layers in Nb-Ti is not weak in spite
of a remarkable proximity effect, is discussed. The kinetic energy interaction
is proposed as the pinning mechanism responsible for the very high critical
current density achieved by Nb layers introduced artificially into Nb-Ti. The
shape of pinning centers, which contributes to the enhancement of the pinning
efficiency, is also discussed.

In Chapter 7 the summation problems which relate the global pinning
force density to the elementary pinning forces and number densities of pin-
ning centers are discussed. The summation theories are reviewed historically
according to their development, since the fundamental issue of threshold value
of the elementary force, which is deeply associated with the nature of hystere-
sis loss by the pinning interaction, was proposed first by the statistical theory.
Then, the consistency of this theory with the dynamic theory is shown. The
fundamental threshold problem was resolved by Larkin and Ovchinnikov, who
showed that a long-range order does not exist in the flux line lattice. However,
quantitative disagreements are sometimes found between their theory and ex-
periments, and the instability of flux motion related to the hysteresis loss is
not clearly described in this theory. In the coherent potential approximation
theory the statistical method is used, taking into account the lack of long range
order, and the compatibility of the threshold problem and the instability of
flux motion is obtained. A detailed comparison is made between the theories
and experiments. The saturation phenomenon observed for commercial metal-
lic superconductors at high fields is explained, and experimental results are
compared with Kramer’s model, etc. The theoretical pinning potential energy,
which is important for the analysis of flux creep, is also derived.
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In Chapter 8 the various properties of high-temperature superconductors
are discussed. These superconductors show significant anisotropy due to the
two-dimensional crystal structure composed of superconducting CuOs lay-
ers and insulating block layers. This makes the states of flux lines extremely
complicated. Various phase transitions of the flux line system to be pinned
and the mechanisms responsible are reviewed. In particular, the transitions in
which the pinning plays an important role, i.e., the order-disorder transition
associated with the peak effect of critical current density and the glass-liquid
transition associated with the irreversibility field, are discussed in detail. The
influences on these transitions, not only of the flux pinning strength and the
anisotropy of the superconductor, but also of the electric field and the speci-
men size are discussed. Y-123, Bi-2212, and Bi-2223, which have been devel-
oped for applications, are at the focus of the discussion, and their pinning
properties and recent progress are introduced.

Superconducting MgBs was discovered in 2001. Since this superconductor
has a critical temperature considerably higher than those of metallic super-
conductors and is not seriously influenced by weak links and flux creep as
in high-temperature superconductors, applications of this superconductor are
expected in the future. In fact, the critical current density was improved sig-
nificantly within a very short period after the discovery. In Chapter 9 the
pinning property introduced by grain boundaries in MgB, is reviewed, and
the mechanism which determines the present critical current density is dis-
cussed. Then, the matters to overcome are summarized as topics for further
improvements. Finally the potential for realization of the improvement is dis-
cussed by comparing the condensation energy of this material with the values
of Nb-Ti and NbzSn.

Thus, this book deals with the flux pinning mechanisms, the fundamental
physics needed for understanding the flux pinning, and various electromag-
netic phenomena caused by the flux pinning.

On the other hand, it is effective to focus on one matter which is described
in many chapters to give a comprehensive understanding. The size of super-
conductors is a focus of attention, for example. When the superconductor is
smaller than the pinning correlation length, pinning at a lower dimension with
a higher efficiency occurs, resulting in the disappearance of the peak effect of
the critical current density. In this case the irreversibility field is smaller than
the bulk value due to a smaller pinning potential. At the same time the flux
motion becomes reversible in the electromagnetic phenomena, resulting in a
significant reduction in AC losses. This also causes a serious overestimation of
the critical current density from AC magnetic measurements. It is also worth
noting that the concept of irreversible thermodynamics on minimization of en-
ergy dissipation appears in various pinning phenomena discussed in this book.
Another example may be found in a contrast between the flux motion driven
by the Lorentz force and the rotational flux motion driven by the force-free
torque treated in Chapter 4. The former shows an analogy with mechanical
systems, but the latter does not, and the flux motion is perpendicular to the
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energy flow. This contrast is associated with the fact that the force-free torque
is not the moment of forces.

In this book appendices are included to assist the understanding of readers.
Many exercises and detailed answers will also be useful for better understand-
ing.

Finally the author would like to thank Ms. T. Beppu for drawing all elec-
tronic figures and for assistance in making electronic files. The author acknowl-
edges also Dr. T.M. Silver at Wollongong University, Prof. E.W. Collings of
Ohio State University, and Dr. L. Cooley of Brookhaven National Laboratory
for correction of the English in the book.
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1

Introduction

1.1 Superconducting Phenomena

The superconductivity is a phenomenon that was discovered first for mer-
cury by Kamerlingh-Onnes in 1911 and has been found for various elements,
alloys and compounds. One of the features of superconductivity is that the
electrical resistance of a material suddenly drops to zero as the temperature
decreases through a transition point; such a material is called superconductor.
Advantage is taken of this property in the application of the superconduct-
ing phenomenon to technology. Later it was found that the origin of the zero
electrical resistivity is not the perfect conductivity as such but the perfect
diamagnetism, i.e., the ability of the superconductor to completely exclude
a weak applied magnetic field. A related phenomenon is the complete expul-
sion of a weak applied magnetic field as the temperature decreases through
the transition point. These diamagnetic phenomena are called the Meissner
effect. As will be mentioned later, the perfect diamagnetism is broken at suffi-
ciently high magnetic fields. There are two alternative ways in which this break
down can take place depending on whether the superconductor is “type-1” or
“type-2.” In type-2 materials the superconductivity can be maintained up to
very high fields even after the break down. Such superconductors are therefore
suitable for use in high-field devices such as magnets, motors, and generators.

Another characteristic of superconductivity is the existence of a gap, just
below the Fermi energy, of the energy of the conduction electrons. It turns
out that the electron energy in the superconducting state is lower than that in
the ground state of the normal state; the difference in the energy per electron
between the two states is the energy gap. The size of the energy gap in the
superconductor can be measured using the absorption of microwave radiation
in the far infrared range, or the tunneling effect of a junction composed of a
superconductor and a normal metal separated by a thin insulating layer. In
the case of a sufficiently small excitation, the energy gap provides a barrier
against the transition of electrons from the superconducting state to the nor-
mal state. That is, even when the electrons are scattered by lattice defects,
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impurities, or thermally oscillating ions, the energy may not be dissipated
and hence, electrical resistance may not appear. It was theoretically proved
by Bardeen, Cooper and Schrieffer in 1957 that the electrons in the vicinity of
the Fermi level exist in so-called Cooper pairs whose condensation yields the
superconducting state. This is essentially the BCS theory of superconductiv-
ity.

Another essential property of type-2 superconductors is embodied in the
so-called Josephson effect. In a junction composed of two superconductors sep-
arated by a thin insulating layer, the local property of type-2 superconductor
can be directly observed without being averaged. The DC Josephson effect
that predicts the superconducting tunneling current is not the tunneling of
normal electrons but the tunneling of the Cooper pairs described by a macro-
scopic wave function. The effect demonstrates that the superconducting state
is a coherent state in which the phase of a macroscopic wave function, which is
introduced later as the order parameter of the Ginzburg-Landau (G-L) theory,
is uniform in the superconductor. In this state the quantum mechanical prop-
erty is maintained up to a macroscopic scale and the gauge-invariant relation
is kept between the macroscopic wave function and the vector potential. This
leads to the macroscopic quantization of magnetic flux through the quanti-
zation of the total angular momentum, and this phenomenon can be directly
seen from the interference of the superconducting tunneling current due to the
magnetic field. Another important result, the AC Josephson effect, describes
the relation between the time variation rate of the phase of macroscopic wave
function and the voltage which in this case appears across the junction. This
voltage comes from the motion of the quantized magnetic flux and is identical
to the voltage observed in a type-2 superconductor in the flux flow state as
will be shown later.

The superconducting state transforms into the normal state at temper-
atures above the critical temperature and magnetic fields above the critical
field. Transitions from the superconducting state to the normal state and
vice versa are phase transitions comparable, for example, to the transition
between ferromagnetism and paramagnetism. From a microscopic viewpoint,
the Cooper-pair condensation of electrons (which can be compared to a Bose-
Einstein condensation of Bose particles) results in the superconducting state
and the electron energy gap that exists between the superconducting and
normal states. From a macroscopic viewpoint, on the other hand, the super-
conducting state is a thermodynamic phase and thermodynamics is useful in
the description of the phenomenon. Finally, since the electron state is coherent
in the superconducting state, the G-L theory, in which the order parameter
defined as a superposed wave function of coherent superconducting electrons
is used. Among its many applications it is suitable for describing the magnetic
properties of type-2 superconductors.

In 1986 a La-based copper-oxide superconductor with a higher criti-
cal temperature than metallic superconductors was discovered by Bednortz
and Miiller. Taking advantage of this break through, numerous so-called
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“high-temperature” superconductors with even higher critical temperatures
but containing Y, Bi, Tl and Hg instead of La were discovered. The exact
mechanism of superconductivity in these materials is not yet understood. We
have yet to wait for a suitable microscopic explanation. However, the macro-
scopic electromagnetic properties of high-temperature superconductors have
been found to be describable phenomenologically in a manner comparable
to those previously applied to metallic superconductors. In this description,
the characteristic features of high-temperature superconductors are a large
two-dimensional anisotropy originating in the crystal structure and a strong
fluctuation effect. The latter feature results from a short coherence length in
associating with the high critical temperature, the quasi-two-dimensionality
itself, and the condition of high temperature. It was shown theoretically that,
as a result of the fluctuation effect, the phase boundary between the super-
conducting and normal states derived using G-L theory within a mean field
approximation is not clear. It follows that a G-L description would be correct
only in the region far from the phase boundary. However, because these ma-
terials have such high upper critical fields G-L theory is still valid over a wide
practical range of temperature and magnetic field.

This book is based on the G-L theory that describes the superconductivity
phenomenologically and the Maxwell theory that is the foundation of the
electromagnetism. The SI units and the E-B analogy are used.

1.2 Kinds of Superconductors

There are two kinds of superconductor — type-1 and type-2. These are classified
with respect to their magnetic properties.

The magnetization of a type-1 superconductor is shown in Fig. 1.1(a).
When the external magnetic field H, is lower than some critical field H., the
magnetization is given by

M =—-H, (1.1)

and the superconductor shows a perfect diamagnetism (B = 0). It is in the
Meissner state. The transition from the superconducting state to the normal
state occurs at H, = H. with a discontinuous variation in the magnetization
to M = 0 (i.e. B = poH. with pg denoting the permeability of vacuum).
For a type-2 superconductor, on the other hand, the perfect diamagnetism
given by Eq. (1.1) is maintained only up to the lower critical field, H., and
then the magnetization varies continuously with the penetration of magnetic
flux as shown in Fig. 1.1(b) until the diamagnetism disappears at the upper
critical field, H.o, where the normal state starts. The partially diamagnetic
state between H.; and H,, is called the mixed state. Since the magnetic flux
in the superconductor is quantized in the form of “vortices” in this state, it
is also called the vortex state.

It is empirically known that the critical field of type-1 superconductors
varies with temperature according to
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-M -M

0 H H 0 H, H, H

e

(a) (b)

Fig. 1.1. Magnetic field dependence of magnetization for (a) type-1 superconductor
and (b) type-2 superconductor

H(T) = H,(0) [1 - (T)

o (1.2)

The lower and upper critical fields of type-2 superconductors show similar
temperature dependences. Obviously they reduce to zero at the critical tem-
perature, T. Strictly speaking for type-2 superconductors, whereas the ther-
modynamic critical field, H., shows the temperature dependence of Eq. (1.2),
that of H., deviates from this relationship for some superconductors. Espe-
cially in high-temperature superconductors and MgBs these critical fields have
almost linear temperature dependences even in the low temperature region.
The phase diagrams of type-1 and type-2 superconductors on the temperature-
magnetic field plane are shown in Fig. 1.2(a) and 1.2(b). The superconducting
parameters of various superconductors are listed in Table 1.1. Here H. in type-
2 superconductors is the thermodynamic critical field. Since H.; and Hgo in
high-temperature superconductors and MgBs are significantly different de-
pending on the direction of magnetic field with respect to the crystal axes,
the doping state of carriers and the electron mean free path, only the value
of H. in the optimally doped state is given in the table. The details of the
anisotropy and the dependence on such factors for the critical fields in these
superconductors will be described in Sects. 8.1 and 9.1.

The practical superconducting materials, Nb-Ti and Nb3Sn, belong to the
type-2 class. Their upper critical fields are very high and hence, their super-
conducting state can be maintained up to high fields. In high-temperature
superconductors the upper critical fields are extremely high and it is consid-
ered that a clear phase transition to the normal state does not occur due to
the effect of significant fluctuation at the phase boundary, H.o(T), derived
from the G-L theory.



1.2 Kinds of Superconductors 5

H H

e e

H,(0)
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Fig. 1.2. Phase diagram on the magnetic field vs temperature plane for (a) type-1
superconductor and (b) type-2 superconductor

Table 1.1. Critical parameters of various superconductors

Superconductor T woHc(0)  poHe1(0)  poHe2(0)
(K) (mT)  (mT) (T)

Hg(a) 4.15 41 - -
type-1 | In 3.41 28 - -

Pb 7.20 80 - -

Ta 4.47 83 — -

Nb 9.25 199 174 0.404

Nbs7Tiss 9.08 253 15

NbsSn 18.3 530 29

NbsAl 18.6 33

NbsGe 23.2 38

V3Ga 16.5 630 27
type-2 | V3Si 16.9 610 25

PbMogSs 15.3 60

MgB: 39 660

YBayCuszOr 93 1270

(Bi,Pb)erzCazClmOz 110

TlgBaQCagCugoz 127

HgBasCaCuz0, 128 700

HgBayCazCuz Oy 138 820
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1.3 London Theory

The fundamental electromagnetic properties of superconductors, such as the
Meissner effect, can be described by a phenomenological theory first pro-
pounded by the London brothers in 1935, even before the discovery of type-2
superconductors. Fortunately this theory turned out to be a good approxima-
tion for type-2 superconductors with high upper critical fields, or with large
values of G-L parameter; several important characteristics of such supercon-
ductors can be derived from this theory. So, we shall here briefly introduce
the classic London theory.

A steady persistent current can flow through superconductors. Hence, the
classical equation of motion of superconducting electrons should be one that
can describe this state. In other words, the deviation from the steady motion,
i.e., the acceleration of superconducting electrons is done only by the force
due to the electric field. Hence, the equation of motion is given by

. dvsg
dt

=—¢'e, (1.3)

where m*, vs and —e* are the mass, the velocity and the electric charge (e* >
0) of the superconducting electron, and e is the electric field. If the number
density of superconducting electrons is represented by ng, the superconducting
current density is written as

J=-—nsevs. (1.4)
Substitution of this into Eq. (1.3) leads to

m* dl
nee*2 dt

(1.5)

If the magnetic field and the magnetic flux density are denoted by h and b,
respectively, the Maxwell equations are

0b
VXC——E (16)

and
Vxh=j, (1.7)

where the displacement current is neglected in Eq. (1.7). From these equations
and with
b= /J,Qh, y (18)

the rotation (curl) of Eq. (1.5) is written as

0 m*
R [ — = . 1
5 (b + uonse*zv x V x b) 0 (1.9)
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Thus, the quantity in the parenthesis on the left hand side of Eq. (1.9) is a
constant. The London brothers showed that, when this constant is zero, the
Meissner effect can be explained. That is,

m*

b+

une*QVXVXbZO' (1.10)
07ts

Equations (1.5) and (1.10) are called the London equations. Replacing V x
V x b by —V?2b (since V- b = 0), Eq. (1.10) may be written

*

2
Vb -

b=0, (1.11)

where A is a quantity with the dimension of length defined by

m* 1/2

Let us assume a semi-infinite superconductor of thickness x > 0. When an
external magnetic field H, is applied along the z-axis parallel to the surface
(x = 0), it is reasonable to assume that the magnetic flux density has only a
z-component which varies only along the z-axis. Then, Eq. (1.11) reduces to

d? b

This can be easily solved; and under the conditions that b = ugH, at x =0
and is finite at infinity, we have

b(x) = poHe exp <—§> . (1.14)

This result shows that the magnetic flux penetrates the superconductor only
a distance of the order of A from the surface (see Fig. 1.3). The character-
istic distance A is called the penetration depth. Since the “superconducting
electron” is by now well known to be an electron pair, we assign a double
electronic charge to e*, i.e., e* = 2e = 3.2 x 10719 C. As for the mass of
the superconducting electron, m*, we assume also a double electron mass in
spite of an ambiguity in the mass. Thus m* = 2m = 1.8 x 1073% kg. If we
substitute a typical free-electron number density for ng viz. 102® m—2, then
A ~ 37 nm from Eq. (1.12) and the above quantities. Observed values of A are
of the same order of magnitude as this estimation. Thus, the magnetic flux
dose not penetrate much below the surface of the superconductor, thereby
explaining the Meissner effect. From Egs. (1.7), (1.8) and (1.14) it is found
that the current is also localized and flows along the y-axis according to

Jjx) = HT exp (*%) : (1.15)
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b

poH.

0

x

Fig. 1.3. Magnetic flux distribution near the surface of superconductor in the
Meissner state

This so-called Meissner current shields the external magnetic field thereby
supporting the Meissner effect.
We note that the London equations, (1.5) and (1.10), may be derived just

from
nse*Q

Jj=-" A, (1.16)
where A is the magnetic vector potential. That is, Egs. (1.5) and (1.10) re-
spectively can be obtained by differentiation with respect to time and taking
the rotation of Eq. (1.16). Equation (1.16) means that the current density of
an arbitrary point is determined by the local vector potential at that point.
On the other hand, superconductivity is a nonlocal phenomenon and the wave
function of electrons is spatially extended. The electrons that contribute to the
superconductivity are those within an energy range of the order of kgT at the
Fermi level with kg denoting the Boltzmann constant. Hence, the uncertainty
of the momentum of electrons is Ap ~ kgT'/vp where v is the Fermi velocity.
Hence, the spatial extent of the wave function of electrons is estimated from
the uncertainty principle as

o dor
Ap kBTC ’

o ~ (1.17)

where i = hp/27 with hp denoting Planck’s constant. The characteristic
length & is called the coherence length.

The London theory predicts that physical quantities such as the magnetic
flux density and the current density vary within a characteristic distance A.
Hence, ) is required to be sufficiently long with respect to &y that the local
approximation remains valid. That is, the London theory is a good approxima-
tion for superconductors in which A > £;. Such superconductors are typical
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type-2 superconductors. In this book the London theory will be used to dis-
cuss the structure of quantized magnetic flux in type-2 superconductors (Sect.
1.5) and to derive the induced electric field due to the motion of quantized
magnetic flux (Sect. 2.2).

1.4 Ginzburg-Landau Theory

Although the London theory explains the Meissner effect, it is unable to deal
with the coexistence of magnetic field and superconductivity such as in the
intermediate state of type-1 superconductors or the mixed state of type-2. The
theory of Ginzburg and Landau (G-L theory) [1] was proposed for the purpose
of treating the intermediate state. This theory is based on the deep insight of
Ginzburg and Landau on the essence of superconductivity, namely that the
superconducting state is such that the phase of the electrons is coherent on a
macroscopic scale. The order parameter defined in the theory is, originally a
thermodynamic quantity, which now has the property of a mean wave function
describing the coherent motion of the center of a group of electrons. This wave
function is comparable to the electron wave function of quantum mechanics.

We define the order parameter, ¥, as a complex number and assume that
the square of its magnitude |¥|? gives the number density of superconducting
electrons. The free energy of a superconductor depends on this density of
superconducting electrons, and hence, is a function of |¥|?. In the vicinity of
the transition point |[¥|? is expected to be sufficiently small and it is expected
that the free energy can be expanded as a power series of |¥|?:

const.+oz|\I/|2+§|\If|4+... . (1.18)

For the purpose of describing the phase transition between the superconduct-
ing and normal states, the expansion up to the |¥|* term is sufficient, as will
be shown later.

It is speculated that the order parameter varies spatially due to existence
of the magnetic field. By analogy with quantum mechanics, this should lead
to a kinetic energy. The expected value of the kinetic energy density is written
in terms of the momentum operator known in the quantum mechanics as

U*(—ihV + 2¢A)*V | (1.19)

2m*

where U* is the complex conjugate of ¥ and m* is the mass of the super-
conducting electron, the Cooper pair, and we used the fact that the electric
charge of the Cooper pair is —2e. The operator of the momentum takes the
well known form containing the vector potential, A, so that the Lorentz force
on a moving charge is automatically derived. From the Hermitian property of
the operator the kinetic energy density in Eq. (1.19) is rewritten as
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—ihV + 2 A)¥|? . 1.20
| (~IhY + 20 A) | (1.20)
Thus, the free energy density in the superconducting state including the en-
ergy of magnetic field is given by

1
Fo = Fa(0) + al U + Zjup 4 2 (v x 42
2 2410
1 _ )

where Fy(0) is the free energy density in the normal state in the absence of
the magnetic field.

For simplicity we will first treat the case where the magnetic field is not
applied. We may put A = 0 without losing generality. Then, since the order
parameter does not vary spatially, Eq. (1.21) reduces to

FL(0) :Fn(0)+a|\ll|2+§|‘lf\4. (1.22)

It is necessary for a nonzero equilibrium value of |¥|? to be obtained when
the temperature 7T is lower than the critical value, T,. This leads to v < 0
and § > 0. From the condition that the derivative of F4(0) with respect to
|W|? is zero, we find as the equilibrium value of |¥|?

«
|U|? = 5= [T |? . (1.23)

Substitution of this into Eq. (1.22) leads to the free energy density in the

equilibrium state:
2

26
At T = T, the transition from the superconducting state to the normal
one takes place and |¥,,|? becomes zero. Thus « is zero at that temperature.
The variation of o with temperature in the vicinity of T, is assumed to be
proportional to (T' — T¢). « takes a positive value at T' > T, and the free
energy density given by Eq. (1.22) is minimum at |¥|? = 0. Such variations
in the free energy density and the equilibrium value of |¥|? near T, are shown
in Figs. 1.4 and 1.5, respectively. As shown in the above the phase transition
can be explained by the expansion of the free energy density up to the term
of the order of |¥|*.

Now the phase transition in a magnetic field is treated. We assume that the
superconductor is type-1 of a sufficient size. Hence, the superconductor shows
the Meissner effect, and a magnetic field does not exist inside it except in a
region of about A from the surface when it is in the superconducting state.
Such a surface region can be neglected in a large superconductor, and the
spatial variation in the order parameter can be disregarded. The equilibrium

F(0) = Fu(0) (1.24)
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|o|?

Fig. 1.4. Variation in the free energy density vs. |¥|? at various temperatures

1.

0
0 £

C

T

Fig. 1.5. Variation in the equilibrium value of the order parameter, |¥..|?, with
temperature
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state of the superconductor in the magnetic field is determined by minimizing
the Gibbs free energy density. If the external magnetic field and the magnetic
flux density inside the superconductor are denoted by H, and B, respectively,
the Gibbs free energy density is given by Gs(H,) = Fs — BH,. If we note that
B =0 and |V|? is given by Eq. (1.23) in the superconducting state, we have

2

s(He) = F(0) — — . 1.2
On the other hand, in the normal state, |¥|? = 0 and B = ugH, lead to
B? 1,
Ga(He) = Fu0) + 5= = BH. = Fo(0) = 5uoH (1.26)
0

Since G and G,, are the same at the transition point, H, = H., we have

a2

7= poHZ . (1.27)
In the vicinity of 7., B does not appreciably change with temperature
and « is approximately proportional to H.. That is, we have
a =~ 2(upB)/2H.(0)(T — T.)/Te. Thus, it is found that the above assump-
tion on the temperature dependence of « is satisfied. From Eqgs. (1.25)—(1.27)
we obtain

Gs(H,) = Gn(H,) — %HO(HE — HY). (1.28)

This result shows that G5(H.) < Gy(He) and the superconducting state occurs
for H, < H. and the normal state occurs for H, > H.. That is, the transition
in the magnetic field is explained by this equation. Especially when H, = 0,
the above equation leads to

Co(0) = Ga(0) — gpoH2 (1.20)

The maximum difference of the free energy density between the superconduct-
ing and normal states, (1/2)ugH2, is called the condensation energy density.

When the superconductor coexists with the magnetic field, ¥(r) and A(r)
are determined so that the free energy, [ FydV, is minimized. Hence, the
variations of [ FydV with respect to ¥*(r) and A(r) are required to be zero
and the following two equations are derived:

1

5 (FihY +2cA)°T oV + FUPY =0, (1.30)
. 4 2

j= lilf(\p*w —UVT) — i*\\WA , (1.31)
m m

with
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jziVxVxA. (1.32)
Ho
The above Egs. (1.30) and (1.31) are called the Ginzburg-Landau equations,
or the G-L equations. In the derivation, the Coulomb gauge, V-A = 0, and
the condition,
n - (—1AV +2eA)V =0, (1.33)

on the surface were used. In the above, n is a unit vector normal to the surface
and the condition of Eq. (1.33) implies that current does not flow across the
surface. This is fulfilled for the case where the superconductor is facing a
vacuum or an insulating material. On the other hand, if the superconductor
is facing a metal, the right hand side in Eq. (1.33) is replaced by ia¥ with a
being a real number [2].

The electromagnetic properties in the superconductor are determined by
two characteristic lengths, i.e. A, the penetration depth of magnetic field and
£, the coherence length. These are related to the spatial variations in the
magnetic flux density B and the order parameter V. Here we shall derive
these quantities from the G-L theory.

We assume that a weak magnetic field is applied to the superconductor.
In this case the variation in the order parameter is expected to be small, and
hence, the approximation, ¥ = ¥, may be allowed. Then, Eq. (1.31) reduces
to

42
J= WA (1.34)

m
This is similar to Eq. (1.16) of the London theory. If we recognize that e* = 2e,
it follows that | W |? corresponds to ns. Thus, the G-L theory is a more general
theory that reduces to the London theory when the order parameter does not
vary in space. Hence, the Meissner effect can be derived in the same manner
as in Sect. 1.3 and the penetration depth is given by

m* 1/2
p— _— . 1-
A <4uoe2|woo|2> (1.35)

Near T, |¥.|? is proportional to (T, — T) and \ varies proportionally to
(T. — T)~'/? and diverges at T = T,. In terms of ), the coefficients of o and
[ are expressed as

e 10 Ho\)?
_ _(6/%7*) , (1.36)
16e* 3 H2\*
=t (1.37)

Next we shall discuss the spatial variation in the order parameter, ¥. We
treat the case where the magnetic field is not applied and hence that A = 0.
For simplicity we assume that ¥ varies only along the z-axis. If we normalize
the order parameter according to
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= 1.38

V=g (139)
Eq. (1.30) reduces to

2y 2
£@+¢—\w\w=0, (1.39)
where £ is a characteristic length called the coherence length and is given by
h
= . 1.40
= @) (140

We can choose a real function for ¢ in Eq. (1.39). Suppose that the order
parameter varies slightly from its equilibrium value such that ¢ = 1 — f,
where f < 1. Within this range, Eq. (1.39) reduces to

d2f

2 _
&g -2 =0 (1.41)

f~exp <m> . (1.42)

This shows that the order parameter varies in space within a distance com-
parable to £. From Egs. (1.36) and (1.40) the coherence length can also be
expressed as

and hence

¢ = I
N QﬁeuoHc)\ '
It turns out from Eq. (1.40) or (1.43) that & also increases in proportion

to (T. —T)~ /2 in the vicinity of T.. On the other hand, the coherence length
in the BCS theory [3] is given by

(1.43)

hUF hUF
= =0.1
S0 7A(0) 0180 1

(1.44)

and does not depend on temperature. A(0) is the energy gap at 7' = 0. In
spite of such a difference, the two coherence lengths are related to each other.
Since the superconductivity is nonlocal, this relation changes with the electron
mean free path, [. In the vicinity of T, the coherence length in the G-L theory
becomes [4]

§(T) = 0-74(1&2)1/2; 1> &, (1.45a)
1/2
= 0.85%; 1< &, (1.45b)

where ¢t = T/T.. Equations (1.45a) and (1.45b) correspond to the cases of
“clean” and “dirty” superconductors, respectively. It is seen that £(T") is com-
parable to &y in a clean superconductor and is much smaller than & in a dirty
one.
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The penetration depth is also influenced by the electron mean free path [
owing to the nonlocal nature of the superconductivity. We call the penetration
depth given by Eq. (1.35) the London penetration depth and denote it by
AL. If Ay is sufficiently longer than £, and [, we have A = Ay, in a clean
superconductor (I > &) and A ~ A,(&/1)'/? in a dirty superconductor (I <
&0). In a superconductor where & > A, i.e. in a “Pippard superconductor,”
we have A ~ 0.85(\2 &0)'/3.

The ratio of the two characteristic lengths in G-L theory defined by

f=2 (1.46)

is called the G-L parameter. According to the G-L theory, A and £ have the
same temperature dependences, and hence « is independent of temperature.
As a matter of fact, k decreases slightly with increasing temperature. The G-L
parameter is important in describing the magnetic properties of superconduc-
tors. In particular the classification into type-1 and type-2 superconductors is
determined by the value of this parameter. Also the upper critical field of the
type-2 superconductor depends on this parameter.

We next go on to discuss the occurrence of superconductivity in a bulk
superconductor in a magnetic field sufficiently high that the higher order
term, B|V|?¥, in Eq. (1.30) can be neglected. We assume that the external
magnetic field H, is applied along the z-axis. The magnetic flux density in
the superconductor is taken to be uniform in space, b ~ pyH,, and hence the
vector potential is given by

A = poHeziy, | (1.47)

where 1, is a unit vector directed along the y-axis. In the above the choice of -
axis direction is not important in a bulk superconductor and hence generality
is still maintained even under Eq. (1.47). Since A depends only on z, it is
reasonable to assume that ¥ also depends only on . Hence, Eq. (1.30) reduces
to

R: A2 2e%ud
- . HZ22z? —2HZN)V =0 . 1.48

S+ R m —amNY) (1.43)
This equation has the same form as the well-known Schrédinger equation for a
one-dimensional harmonic oscillator. It has solutions only when the condition

1
(n + 2) hH, = 2epo H?\? (1.49)

is satisfied with n being nonnegative integers. The maximum value of H, is
obtained for n = 0, corresponding to the maximum field within which the
superconductivity can exist, i.e., the upper critical field, H.o. Thus, we have

 depgHZN?

Ho = —— (1.50)
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Using Egs. (1.43) and (1.46), the upper critical field may also be written as
H., = V2kH, . (1.51)

Hence, the superconducting state may exist in a magnetic field higher than
the critical field H. for a superconductor with x larger than 1/ V2. Such is
the type-2 superconductor. In this case, the superconductor is in the mixed
state and no special characteristic phenomena take place at H, = H.. That
is, H. cannot be directly measured experimentally. Since it is related to the
condensation energy density, H is called the thermodynamic critical field in
type-2 superconductors. If we now introduce the flux quantum, ¢y = hp/2e,
to be considered in the next section, the upper critical field may be rewritten
in the form
Po

T 2mpg?
This relationship is used in estimating the coherence length from an observed
value of H.o.

Hc2

(1.52)

1.5 Magnetic Properties

A characteristic feature of type-2 superconductors in a magnetic field is that
the magnetic flux is quantized on a macroscopic scale. In this book we refer to
the quantized magnetic flux as a flux line. The flux lines are isolated from each
other at sufficiently low magnetic fields. On the other hand, at high magnetic
fields these overlap and interact to form a flux line lattice. In this section such
quantization of magnetic flux is discussed in terms of the G-L theory. The
superconductor’s magnetic properties are discussed in terms of the internal
structure of the flux line at low fields and the structure of the flux line lattice
at high fields.

1.5.1 Quantization of Magnetic Flux

We suppose a superconductor in a sufficiently weak magnetic field. For sim-
plicity we assume the magnetic flux to be localized at an certain region inside
the superconductor. This assumption pre-supposes the quantization of the
magnetic flux. It will be shown later that the assumption is actually fulfilled
and hence the treatment is self-consistent. Consider a closed loop, C, enclosing
the region in which the magnetic flux is localized. The distance between the
localized magnetic flux and C is assumed to be sufficiently long to enable the
magnetic flux density and the current density to be zero on C. If we write

U = || exp(ip) (1.53)

with ¢ denoting the phase of the order parameter, Eq. (1.31) reduces to
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. 2he 4¢?

J=-""|VPVe—- —|U]PA. (1.54)
m m

In the above the first term represents the current caused by the gradient of

the phase of the order parameter, i.e., the Josephson current. On the loop C,

7 = 0 and hence

h
A=—5V5. (1.55)

Integration of this over C leads to

?{A~ds:/b~dS:<I>, (1.56)
C

where @ is the magnetic flux that interlinks with C. If we substitute the right
hand side of Eq. (1.55) for A in Eq. (1.56) the latter becomes

h h
d=—— Vo - =——A 1.
Qef(; ¢-ds % ¢, ( 57)

where A¢ is a variation in the phase after one circulation on C. From the
mathematical requirement that the order parameter should be a single-valued
function, A¢ must be integral multiple of 27. That is,

® = ngy , (1.58)

where n is an integer and

h
do = 2—1;‘ =2.0678 x 1075 Wb, (1.59)

where ¢g is the unit of the magnetic flux and called the flux quantum. Thus
we have shown that the magnetic flux in superconductors is quantized. In the
above the curvilinear integral of V¢ on the closed loop C is not zero, since
V¢ has a singular point at the center of the flux line. This will be discussed
in Subsect. 1.5.2.

In the beginning of the above proof we assumed that the magnetic flux
was localized in a certain region of a superconductor. This condition is fulfilled
at low fields wherein the magnetic flux density decreases as exp(—r/A) with
increasing distance r from the center of the isolated flux line, as will be shown
later in Eq. (1.62b). At high fields, on the other hand, the flux lines are not
localized and there exists a pronounced overlap of the magnetic flux. Under
this condition a flux line lattice is formed. But even in this case the magnetic
flux is quantized in each unit cell. The proof of this quantization is Exercise
1.3.

1.5.2 Vicinity of Lower Critical Field

Near the lower critical field, the density of magnetic flux penetrating the
superconductor is low and the spacing between the flux lines is large. In this
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subsection we shall discuss the structure of isolated flux line for the case of
typical type-2 superconductor with the large G-L parameter, . In this case
the London theory can be used. It should be noted that Eq. (1.10) holds
correct only in the region greater than a distance & from the center of the
flux line in which |¥| is approximately constant. As will be shown later, |U|
is zero at the center and varies spatially within a region of radius &, known
as the core. Equation (1.10) cannot be used in the core region. In fact, if we
assume that this equation is valid within the entire region, an incorrect result
is obtained. This can be seen by integrating Eq. (1.10) within a sufficiently
wide area including the isolated flux line. From Stokes’ theorem the surface
integral of the second term in Eq. (1.10) is transformed into the integral of
the current on the closed loop that surrounds the area. This integral is zero,
since the current density is zero at the position sufficiently far from the flux
line. This implies that the total magnetic flux in this area is zero. Hence, some
modifications are necessary to enable the contribution from the core to the
magnetic flux to be equal to ¢g. In the case of superconductor with x > 1, the
area of the core is very narrow in comparison with the total area of the flux
line. Hence, we assume most simply that the magnetic structure is described
by

b+ AV x V x b=1i,006(r) (1.60)

in the region outside the core that occupies most of the area. In the above
it is assumed that the magnetic field is applied along the z-axis and %, is a
unit vector in that direction. 7 is a vector in the x-y plane and the center of
the flux line exists at 7 = 0. §(r) is a two-dimensional delta function. The
coefficient, ¢g, on the right hand side comes from the requirement that the
total amount of the magnetic flux of one flux line is ¢y. Equation (1.60) is
called the modified London equation.
The solution of this equation is given by

b(r) = zfig Ky (g) : (1.61)

where K is the modified Bessel function of the zeroth order. This function
diverges at r — 0. Since the magnetic flux density should have a finite value,
the modified London equation still does not hold correct in the region of r < &.
Outside the core, Eq. (1.61) is approximated by

b(r) ~ 2?; <log;\ + 0.116) ; ELr<A (1.62a)
bo  [(TA\ 2 "
~ () e ( A) : r> A, (1.62b)

in terms of elementary functions. The current density flowing around the flux
line has only the azimuthal component:

X (1.63)

jr) = ——

1 ob ¢0 r
2= K
o Or  2wpoA3 ! ( ) ’
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where K is the modified Bessel function of the first order. In particular, the
above equation reduces to

bo

R 1.64
2 o A2r (1.64)

j(r)
in the region of £ < r < .

In the region of r < £, the order parameter varies in space. We shall dis-
cuss the structures of the order parameter and the magnetic flux density in
this region by solving the G-L equations. From symmetry it is reasonable to
assume that |¥| is a function only of r, the distance from the center of the
flux line. Hence we write ¥/|¥ | = f(r) exp(i¢) such that when r becomes
sufficiently large, f(r) approaches 1. It can be shown according to the argu-
ment of Subsect. 1.5.1 that the variation of the phase when circulating once
around a circle with radius of r should be 27 (recognizing that the number of
flux lines inside the circle is 1). Hence, ¢ is a function of the azimuthal angle,
0; the simplest function satisfying this condition is

o=—0. (1.65)
In this case, we easily obtain
1,
Vo = — o - (1.66)

This shows that the center of the flux line is a singular point at which this
function is not differentiable. The relation of V x V¢ = 0 is satisfied except
at the singular point, and it can be expressed as

V x Vo =—27i,(r) (1.67)

over all space.
From Eq. (1.65) we have

Y

| = f(r)exp(—if) . (1.68)

It is assumed that the vector potential A is also a function only of r. Then,
it turns out that A has only the 6-component, Ag. That is, the relation of
b(r) = (1/r)(0/0r)(rAy) results in

1 s
Ay =1 / (' )dr (1.69)
0

r

In the case of high-x superconductors, since b cannot vary in space in the
region of r < £, we have

A@ >~ @r . (170)

Substitution of Egs. (1.68) and (1.70) into Eq. (1.30) leads to
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f_fs_gzl(i_Wff_i.i(rjf)]:0. (1.71)

In the normal core f is considered to be sufficiently small. In fact, it is seen
that a nearly constant solution for f does not exist. Hence, we shall assume
that f = ¢r™ with n > 0. The dominant terms of the lowest order are those
of the order of r"~2. If we take notice of these terms, Eq. (1.71) leads to

" 2(1-n?)=0. (1.72)

We obtain n = 1 from this equation. In the next place we assume as f =
er(1 + dr™). If the next dominant terms are picked up, we have

b(0)

2 21,.m—2 _
il [1—(m+1)?r 0, (1.73)

1+
where Eq. (1.52) is used. From this equation we obtain m = 2 and the value
of d. Finally we obtain [5]

ol G0 o

It is seen that the order parameter is zero at the center of the core. This is
the important feature which proves the current density at the flux line center
dose not diverge (see Egs. (1.54) and (1.66)). Hence, the region of r < & is
sometimes called the normal core. At low fields b(0) /0 Hes is small and may be
disregarded, in which case f takes on a maximum value at r = (8/3)'/2¢ = q.
This maximum value should be comparable to 1 at a position sufficiently far
from the center, hence ¢ ~ 1/£. If we approximate as

f ~ tanh (T) (1.75)

with ¢ ~ 1/ry,, numerical calculation [6] allows the length to be derived:

4.16¢
k14225

™ = (1.76)
which reduces to 1.8 in high-x superconductors. Therefore, in a strict sense
the solutions of the London equation, Eqgs. (1.61) and (1.63), are correct only
for r > 4¢. The structures of the magnetic flux density and the order para-
meter in the flux line are schematically shown in Fig. 1.6. Since the magnetic
flux density in the central part of the core cannot vary steeply in space, its
value is approximately given by (¢g/27\?)log k. It will be shown later that
this is close to 2ugHey-

We go on to calculate the energy per unit length of the isolated flux line
in a bulk high-x superconductor. From Eq. (1.74) we write approximately
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-
normal core

Fig. 1.6. Spatial variations of the order parameter and the magnetic flux density
in an isolated flux line

f =~ (3r/2ag) — (r®/2a3) at low fields. This implies that the core occupies the
region r < ag. Outside the core, the important terms in the G-L free energy
in Eq. (1.21) are the magnetic field energy and the kinetic energy. The kinetic
energy density is found to be written as the energy demnsity of the current,
(110/2)A%42, with the replacement of ¥ by ¥, and the use of Eq. (1.34), the
London theory. Hence, the contribution from the outside of the core to the
energy of a unit length of the flux line is given by

b* o 1
6/_/(+ F0\2 2)dv' b> + \3(V x b)?|dV’ . 1.77
o o [ ( )7l (L.77)

In the above [ dV” is a volume integral per unit length of the flux line except
the area |r| < ap. From the condition that the variation of the kernel of the
integral of Eq. (1.77) with respect to b is zero, the London equation is derived.
Integrating the second term partially, Eq. (1.77) becomes

1
€ = 5 (b4 MV x V x b) - de’—i——/bx (Vxb)]-dS. (1.78)
Ho

It is found from Eq. (1.60) that the first integral is zero. The second integral
is carried out on the surfaces of |r| = ap and |r| = R(R — o0). It is easily
shown that the latter surface integral at infinity is zero. The former integral
on the core surface can be approximately calculated using Egs. (1.62a) and
(1.64). As a result we have
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A2 A
¢ ~ %o (10g+0.116> %o - 27aq
aop

% 2mA2 21X 2ag
%% 2772
= T2 (log k — 0.374) = 2mpp&H (logk — 0.374) . (1.79)

The contributions from inside the core to the energy are: 0.9957 g H2£2 from
the variation in the order parameter and (8/3)muoHZ2¢%(logk/k)? from the
magnetic field. These are about (2log)~! and 4log x/3k? times as large as
the energy given by Eq. (1.79). Hence, the second term is found to be very
small especially in high-x superconductors. If this term is disregarded, the
energy of a unit length of the flux line becomes

€ = 2npo H?E%(log k + 0.124) . (1.80)

According to the rigorous calculation of Abrikosov [7] the number in the sec-
ond term in the above equation is 0.081.

We shall estimate the lower critical field, H.1, from the above result. The
Gibbs free energy is continuous during the transition at H, = H.;. The volume
of the superconductor is denoted by V. The Gibbs free energy before and after
the penetration of a flux line is given by

VG, = VF, (1.81)

and
VGs=VF,+elL — H, /de =VF;+elL — H oL, (1.82)

respectively. In the above Fj is the Helmholtz free energy density before the
penetration of the flux line and L is the length of the flux line in the super-
conductor. The second term in Eq. (1.82) is a variation in the energy due to
the formation of the flux line and the third term is for the Legendre transfor-
mation. Comparing Egs. (1.81) and (1.82), we have

Hy=—=
T V2

where the correct expression by Abrikosov was used for e. This equation can
be used for superconductors with high s values to which the London theory
is applicable.

Here we shall calculate the magnetization in the vicinity of H.;. In this
case the spacing between the flux lines is so large that the magnetic flux
density b(r) is approximately given by a superposition of the magnetic flux
density of the isolated flux lines, b;(r):

b(r) = Z bi(r —ry) (1.84)

H.
‘ > (log s +0.081) . (1.83)
K
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where r,, denotes the position of n-th flux line. The free energy density in this
state is again given by Eq. (1.78) and we have

F_2ﬂozzb ¢o

m#n

B
= bi(r —e, (1.85)

240 n%% ¢0
where the summation with respect to m is taken within a unit area and the
summation with respect to n is taken in the entire region of the supercon-
ductor. The first term in Eq. (1.85) is the interaction energy among the flux
lines and the second term is the self energy of the flux lines, and B is the
mean magnetic flux density. In the surface integral around the n-th core in
the derivation of the self energy, the contributions from other flux lines are
neglected, since these are sufficiently small in the vicinity of H.;. Substituting

for b; using Eq. (1.61) results in

B
_ 4?,3@2 Z ('TO ’“”') + BH,, . (1.86)

We treat the case of triangular flux line lattice and assume the spacing of flux

lines given by
260 >1/2
=(—=— 1.87
(\/EB (1.87)

to be sufficiently large. If we take account only the interactions from the six
nearest neighbors, the Gibbs free energy density is given by

360B [ 7A\Y? ag
— F— BH, = iial _8Y _BH, - H 1.
¢ ¢ o <2af> eXp( A) (He = Her),  (1.88)

where H, is the external magnetic field. The magnetic flux density B at which
G is minimum is obtained from the relation:

1/2
P (2) 0 i)

)\2 5/4
=32u0(He — Hey) (%) . (1.89)

The exact solution of this equation can be obtained only by numerical cal-
culation. However, if we notice that the variation in B is mostly within the
exponential function, the B in the prefactor can be approximately replaced
by ¢o/A?, and we have

ot bl )

It is seen from this equation that B increases rapidly from zero at H, = H;.
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1.5.3 Vicinity of Upper Critical Field

An overlap of the magnetic flux is pronounced and the spacing between the
cores is small near the upper critical field. Hence, the London theory cannot
be used and an analysis using the G-L theory is necessary. In such a high
field the order parameter ¥ is sufficiently small and the higher order term
B|¥|?¥ in Eq. (1.30) can be neglected. Due to the pronounced flux overlap
the magnetic flux density can be regarded as approximately uniform in the
superconductor. We assume that the magnetic field is directed along the z-
axis. Then to a first approximation the vector potential can be expressed as
in Eq. (1.47). If we write

U(z,y) = e MU (z), (1.91)
U’ obeys Eq. (1.48) with = replaced by = — x¢ where

hk
To = .
0 2upeH,

(1.92)

The maximum field at which this equation has a solution is Ho. In this case
Eq. (1.92) reduces to zo = k2. We are interested in the phenomenon at the
external magnetic field slightly smaller than H.o, and then, we approximate
as h = Hs in the beginning. The equation for ¥’ reduces to

x 2
(§-r) -1

It can be shown easily that ¥’ has a solution of the form:

_% (Z _ kg) 21 _ (1.94)

Since the number k is arbitrary, ¥ becomes

2
U — che—inky exp [—; (g — ’I’ka) ‘| . (195)

This corresponds to the assumption of a periodic order parameter, i.e., a
periodic arrangement of flux lines. This is because such a periodic structure
is expected to be favorable with respect to the energy. One of the lattices
with the high periodicity is the triangular lattice. This lattice is obtained by
putting Cs,, = Cp and Ca,, 11 = iCy. It is rather difficult to see that Eq. (1.95)
represents a triangular lattice. Let us make the transformation

3 X
ngx, y=S+Y (1.96)

, 20
da?

—¢ + U =0. (1.93)

U’ ~ exp
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and expand |¥|? into a double Fourier series. After a calculation we obtain

W2 = [Co37/4 Y (1) exp {_

m,n

T (2 2
—(m"—mn-+n
\/3( )

2mi
X exp [(mX + nY)} . (1.97)
ar
In the above we used k = 27 /a; and a? = 47w£2 /+/3, where the latter relation is
correct at h = Hco. The derivation of Eq. (1.97) is Exercise 1.5. The structure
of |W|? for the triangular lattice was derived by Kleiner et al. [8] Their result
is shown in Fig. 1.7. If we pick up only the main terms satisfying m? — mn +

n? <1 and rewrite in terms of the original coordinates, Eq. (1.97) reduces to
2 [ 2
U2 = |C 231/4{14—2@( (—ﬂ> {cos (a:)
(W[ = [Col P~ o \ V3
27 [z 27 [z
+ cos— | —= — —cos— | —= + . 1.98
A RO RE CA B

If we replace the factor, 2 exp(—m/v/3) ~ 0.326, in the above equation by 1/3,
it is found that |¥|? is zero at (z,y) = (V3(p£1/4)as, (gF1/4)as) with p and
q denoting integers.

The set of the order parameter given by Eq. (1.95), which is denoted by
Vo, and A = poHeaxi, = Ay satisfy the linearized G-L equation at H, = Hca.
The corrections to these quantities are written as

Uy =T — 0, A =A—Ag. (1.99)

Here we shall estimate the deviation of the magnetic flux density from the
uniform distribution, b = pgH.2, that was assumed at the beginning. Substi-
tuting Eq. (1.95) into Eq. (1.31), we find

— l¥l=0.95
— 090
R 0.70
_____ 0.50
........ 0.30
,,,,,,,,,,,, 0.10

Fig. 1.7. Contour diagram of normalized |¥|? of the triangular flux line lattice
(from Kleiner et al. [8])
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9?4, _ hohe 0
dxdy  m* Oy

Tol? (1.100)

for the z-component of the magnetic flux density. Hence, we have

pioHea|Wo?
b=puHy — —=—5 1.101
Hoito 262U 2 (1.101)
and "
— Hollc2 2 .

where Hj is an integral constant. It will be shown later that Hy is equal to the
external magnetic field, H,. Equation (1.101) shows that the local magnetic
flux density also varies periodically in the superconductor and becomes max-
imum where W is zero. Such spatial structures of the magnetic flux density
and the density of superconducting electrons, |¥|?, are represented in Fig. 1.8.
Figure 1.9 is a photograph of the flux line lattice in a superconducting Pb-TI
specimen obtained by the decoration technique.

Since A; is already obtained from Eq. (1.102) and Ay = poHeoxi,, we
shall derive the equation for Wy, a small quantity. The term, |¥|?¥, is also a
small quantity. Substituting Eq. (1.99) into Eq. (1.30), we have

1
%(fihv +2¢A0)?¥; + a¥,
m*

4e?
[V-(A19g) + A - V] — EAO C ATy — BT 2T . (1.103)

This inhomogeneous equation for ¥y has a solution only if the inhomogeneous
term on the right hand side is orthogonal to the solution of the corresponding

Gy

Sl W R, o g
b

w|?

normal core

Fig. 1.8. |¥|? and magnetic flux density in the flux line lattice. ar represents the
flux line lattice spacing
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Fig. 1.9. Flux line lattice in Pb-1.6wt%TI observed by decoration technique after
field cooled to 1.2 K at 35 mT and then field is removed. A grain boundary of flux
line lattice can be seen. (Courtesy of Dr. B. Obst in Research Center in Karlsruhe)

homogeneous equation, i.e., ¥y. It means that the integral of the product of
the right hand side and W§ is zero. This leads to

(A1) = B{o|") =0, (1.104)

where () denotes a spatial average. In the derivation of the above equation
a partial integral was carried out and the surface integral of less importance
was neglected. j in Eq. (1.104) is the current density that we obtain when ¥,
and Ag are substituted into Eq. (1.31). From Eq. (1.101) it is given by

Hc2

j =
A partial integration of Eq. (1.104) leads to

H,
mﬂ%ﬂv X A1).) + B(TolH) = 0. (1.106)

From Egs. (1.99) and (1.102) we have

poHea|Yol?

(Vo Az = —po(Hez = Ho) = 55155

(1.107)

Hence, Eq. (1.106) reduces to

(1= 52 ) 1ot - (1= 55 ) (al'y =0, (1.108)
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Using this relation, the mean magnetic flux density is obtained from Eq. (1.101)

in the form
po(Hea — Ho)

B= <b> = /J/oHO - (21%2 — ]_)ﬁA 5 (1109)
where (| |4>
. 0
Oa = 7<|\IJO\2>2 (1.110)

is a quantity independent of Hy.
Now we shall calculate the free energy density. If we take zero for F},(0),
the mean value of the free energy density given by Eq. (1.21) is calculated as

b2 MOHQ\I’|4>
Ry = (2 _HoZelTl 1111
() <2/LO 2| W |t ( )

where Eq. (1.30) was used. If we approximately substitute ¥y into ¥ and
eliminate Hy by the use of Egs. (1.101), (1.108) and (1.109), Eq. (1.111)
becomes
<F>_i2— (MOHCQ_B)Q

Y 2u0 2p0[(2k%2 = 1)Ba +1]

It is found from this equation that S should take on a minimum value in
order to minimize the free energy. Initially Abrikosov [7] thought that the
square lattice was most stable and obtained Ga = 1.18 for this. Later Kleiner
et al. [8] showed that the triangular lattice was most stable with G5 = 1.16.
However, the difference between the two lattices is small.

When Eq. (1.112) is differentiated with respect to B, we have

(1.112)

OFs)  (2k* —1)BaAB+ poHeo
0B~ mol@2—0pa+1 0 (1.113)

where Eq. (1.109) is used. Since the derivative of the free energy with respect
to the internal variable B gives the corresponding external variable, i.e., the
external magnetic field He, it follows that Hj is the external magnetic field
as earlier stated. The magnetization then becomes
B Hc2 - He

M=2 g - 2T e
Ho (262 —1)fa

This result suggests that the diamagnetism decreases linearly with increasing
magnetic field and reduces to zero at H, = H.o with the transition to the
normal state. The magnetic susceptibility, dM/dH.,, is of the order of 1/2x2 34
and takes a very small value for a type-2 superconductor with a high k value.
According to Eq. (1.101), the deviation of the local magnetic flux density from
its mean value is given by

(1.114)

poHeo (|¥ol?)

5B =
22| W o |2

= —poM (1.115)
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(see Fig. 1.8: note that b = pgH, at the point where |¥g|?> = 0 and that b is
minimum at the point where |¥g|? in Eq. (1.98) takes on a maximum value,
2(|W|?)). Hence, the magnetic flux density is almost uniform and the spatial
variation is very small in a high-x superconductor. For example, the relative
fluctuation of the magnetic flux density at H, = Heo/2 is B/B ~ 1/2k23a
and takes a value as small as 10~% in Nb-Ti with x ~ 70.

Here we shall argue the transition at H.o from another viewpoint. Since
the transition in a magnetic field is treated, the Gibbs free energy density,
Gs = Fy, — H.B is suitable. The local magnetic flux density b is given by
Eq. (1.101) and a part of the energy reduces to

—(b? HB_—f H?, 1.116
7= () o (1.116)
where the equation, H, = Hy, was used and the small term proportional to
(b — poH,)? was neglected. Hence, using the expression on the kinetic energy
density shown in Exercise 1.1, the Gibbs free energy density is rewritten as

2

h Ko |lpoo|
Gs = Oé‘\I’|2 + %<V|\If|)2 + 7)\2 (

2
1
.2 2
3% — —poH; (1.117)
V] )

2

in the vicinity of the transition point. The first term is the condensation energy
density and has a constant negative value. Thus, it can be understood that the
transition to the normal state at H o occurs, since the kinetic energy given by
the second and third terms consumes the gain of condensation energy. We shall
ascertain that this speculation is correct. For this purpose the approximate
solution of |¥|? of Eq. (1.98) in the vicinity of H.y is used: the quantity in
{---} is represented by g, for simplicity. Hence, we have |¥|?/|¥.|? = g{|v|?)
with U/|W¥ | = 1. Since the error around the zero points of ¥ in this expres-
sion is large, the factor of 2 exp(—m/+/3) in front of |- -] is replaced by 1/3 so
that the zero points are reproduced. Rewriting as (V|¥])2 = (V|¥|?)2/4|¥|?,
the second term of Eq. (1.117) leads to

h2
2m*

(V12)? = Juorize? oty T2 (1118)

After a calculation using Eq. (1.101), the third term of Eq. (1.117) leads to

Ho 2 |‘I’oo| ? 2 1 242 2 (V9>2
7)\ <|‘I’|> J = ZMOHcg <|7/}| >T (1-119)

Thus, it is found that the second and third terms are the same. Hence,
Eq. (1.117) can be written as

Gs = o HZ[=[[* + 26 (V]w)*] — *uoH (1.120)

Since B = poH, in the normal state, the third term of Eq. (1.120) is the same
as the Gibbs free energy density in the normal state, G;,. Hence, the transition
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point, Hca, is given by the magnetic field at which the sum of the first and
second terms reduces to zero. This condition is given by

o+ 221 = o [-1+ 5 (TE) —0. ey

A numerical calculation leads to ((Vg)?/g) = 14.84/a?, and the flux line
lattice spacing at Hes is obtained: a? = 7.42¢%. Thus, from Eq. (1.52) and
the relationship of a; = (2¢0/v/3B)'/?, we have [9]

H, = B =0.98H . (1.122)
Ho
Thus, it is found that the transition point can also be obtained fairly correctly
even by such a simple approximation.

In the above the magnetic properties of type-2 superconductors are de-
scribed using the G-L theory. Especially the fundamental properties are de-
termined by the two physical quantities, H. and . That is, the critical fields,
H.1(Eq. (1.83)) and Hea(Eq. (1.51)), and the magnetization in their vicinities
given by Egs. (1.90) and (1.114) are described only by the two quantities (note
that ¢o/\? = 22 uoH./k in Eq. (1.90)). In addition, from the argument on
thermodynamics we have the general relation

Ho 1
- [ oM (H)AH, = Suot?. (1.123)
0

In the above we assumed that « is a general parameter decreasing slightly with
increasing temperature. Strictly speaking, the & values defined by
Egs. (1.51)(x1), (1.114)(k2) and (1.83)(k3) are slightly different.

1.6 Surface Superconductivity

In the previous section the magnetic properties and the related superconduct-
ing order parameter in a bulk superconductor were investigated. In practice,
the superconductor has a finite size and the surface. A special surface prop-
erty different from that of the bulk is expected. Here we assume a semi-infinite
type-2 superconductor occupying x > 0 with the magnetic field applied par-
allel to the surface along the z-axis for simplicity. On the surface where the
superconductor is facing vacuum or an insulating material, the boundary con-
dition on the order parameter is given by Eq. (1.33). Under this condition the
vector potential A can be chosen so that it contains only the y-component.
Hence, the above boundary condition may be written

ov

—_— =0. 1.124
ox |,_, 0 ( )
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We shall solve again the linearized G-L equation (by ignoring the small term
to the third power of ¥). We assume the order parameter of the form [10]

U = ¢ hygmar’ (1.125)

referring to Eqgs. (1.91) and (1.94). This order parameter satisfies the condition
(1.124). In the following we shall obtain approximate values of the parameters,
k and a, by the variation method. Under the present condition in which the
external variable is given, the quantity to be minimized is the Gibbs free
energy density; this is given by the free energy density in Eq. (1.21) minus
BH,. If the small term proportional to the fourth power of ¥ is neglected,
the Gibbs free energy per unit length in the directions of the y- and z-axes
measured from the value in the normal state is given by

1

2m*

[e¢) h2
G = / [|(—ihV +2¢A)U|? — |x11|2] dx (1.126)
0 &

under the approximation A, = poHez. After substitution of Eq. (1.125) into
this equation and a simple calculation we have

K2 w2/, 1 2euoHok
G= 4m* {(2@) (k B §2> B ha

T 1/2 62 2H2
+ (55) (a2 + ’“;1"2,)} . (1.127)
When minimizing this with respect to k, we obtain
2\ epoH,
k= <m> ﬂhe , (1.128)

after which, G becomes
2 sm\1/2 1 e2p2H? 2
Ge:—<7> V2 g2y CH0Te (1 2) 32 (1199
4m* \ 2 {a & “ * h? ) ( )
From the requirements that G, is minimum with respect to a and that G, =0

at the transition point, we obtain a and the critical value of H, denoted by
H.3 as [10]

1
A 2 —1/2
Hs=———(1—— ~ 1.66H.s . 1.131
T 2% < 7T> ’ ( )

The exact calculation was carried out by Saint-James and de Gennes [11] who
obtained
Hi3 =1.695H . (1.132)

The surface critical field H.3 depends on the angle between the surface
and the magnetic field. H.3 decreases from the value given by Eq. (1.132)
with increasing angle and reduces to the bulk upper critical field H.o at the
angle normal to the surface.
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1.7 Josephson Effect

It was predicted by Josephson [12] that a DC superconducting tunneling cur-
rent can flow between superconductors separated by a thin insulating layer.
This is the DC Josephson effect. The intuitive picture of this effect was given
by Eq. (1.54), based on phenomenological theory. That is, it was expected
from the first term in this equation that, if a phase difference occurs be-
tween the order parameters of superconductors separated by an insulating
layer, a superconducting tunneling current proportional to that phase differ-
ence flows across the insulating barrier. Here we suppose a Josephson junction
as schematically shown in Fig. 1.10 and assume that the physical quantities
vary only along the z-axis along which the current flows. If we assume that
the order parameter is constant and that the gradient of the phase is uniform
in the insulating region, Eq. (1.54) leads to

Jj=1jdb, (1.133)
where j. is given by
2he
o = |2 1.134
Jc m*d| | ( )

with d denoting the thickness of the insulating layer. In Eq. (1.133) 6, which
is the difference of the gauge-invariant phase of the two superconductors, is
given by

o [?
0=¢1—¢2— %/1 Aydx (1.135)

insulating layer

superconductor 1 superconductor 2

DN

=

T

Fig. 1.10. Structure of Josephson junction
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with ¢1 and ¢2 denoting the phases of superconductors 1 and 2, respectively.
Equation (1.133) is correct when the phase difference 0 is small. When 6 be-
comes large, the relationship between the current density and @ starts to devi-
ate from this equation. This can be understood from the physical requirement
that the current should vary periodically with 6 the period of the variation
being 27. Hence, a relationship of the form

j = jesin® (1.136)

is expected instead of Eq. (1.133). In fact, this relationship was derived by
Josephson using BCS theory. Equation (1.136) can also be derived using G-L
theory, if Egs. (1.30) and (1.54) are solved simultaneously [13].

Since the phase difference 6 contains the effect of the magnetic field in a
gauge-invariant form, the critical current density, i.e., the maximum value of
Eq. (1.136) averaged in the junction, varies with the magnetic field as

sin(w® /)
TP /o

due to interference (see Fig. 1.11), where ® is the magnetic flux inside the
junction. This form is similar to the interference pattern due to Fraunhofer
diffraction by a single slit. For example, when the magnetic flux just equal
to one flux quantum penetrates the junction, the critical current density of
the junction is zero. In this situation the phase inside the junction varies
over 2w and the zero critical current density results from the interference
of the positive and negative currents of the same magnitude. This influence
of the magnetic field gives a direct proof of the DC Josephson effect. The
SQUID (Superconducting Quantum Interference Device) in which a very small
magnetic flux density can be measured is a device that relies on this property.

Je = o (1.137)

1.0 T T T T T T

Je/ Je
(o=}
ot
T
1

-3 -2 -1 0 1 2 3
/¢

Fig. 1.11. Relation between the critical current density in a Josephson junction
and the magnetic flux inside the junction
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Another effect predicted by Josephson is the AC Josephson effect. In this
phenomenon, when a voltage with V' is applied to the junction, an AC super-
conducting current flows with angular frequency, w, given by

hw = 2eV . (1.138)

In the voltage state the magnetic flux flows through the junction region and
the phase of the order parameter varies in time. As will be shown in Sect. 2.2,
the angular frequency given by Eq. (1.138) is the same as the rate of vari-
ation of the phase. When the junction is irradiated by microwave energy of
this frequency, resonant absorption occurs and a DC step of the supercon-
ducting current, i.e., a “Shapiro step,” appears. The AC Josephson effect was
demonstrated by this kind of measurement. The present voltage standard is
established by the AC Josephson effect expressed by Eq. (1.138) in association
with an extremely exact frequency measuring technique.

1.8 Critical Current Density

The maximum superconducting current density that the superconductor can
carry is a very important factor from an engineering standpoint. Some aspects
of this property are mentioned in this section. According to the G-L theory,
the superconducting current density may be transcribed from Eq. (1.54) into
the form

j = —2¢|¥ v, , (1.139)

where
(AV ¢ + 2eA) (1.140)

1
Vs = —
m
is the velocity of the superconducting electrons. If the size of superconductor
is sufficiently small compared to the coherence length £, |¥| can be probably
regarded as approximately constant over the cross section of the superconduc-
tor. If we note that VU ~ i¥V ¢, the free energy density in Eq. (1.21) reduces
to

_ o Bign.l gz, B
F,=Fo(0) + o " + = |¥]* + -m™|¥|“vS + — . (1.141)
2 2 246
Minimizing the free energy density with respect to |¥|, we have
*,,2
W2 = W2 (1- 2 %) . (1.142)
2|al

From Eq. (1.139) the corresponding current density is given by

m*v?2
=2 U2 (1 - —= o, 1.143
j=ewal (1- 55 ) o (1.143)

This becomes maximum when m*v? = (2/3)|al, the maximum value being
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2\*? H,
== —— 1.144
Jc (3> b\ ( )

Under the condition that j is maximum, |¥| takes a finite value, (2/3)Y/2| W],
and the depairing of the superconducting electron pairs has not yet occurred.
In fact, the velocity at which the depairing takes place resulting in zero |¥| is
V/3 times as large as the velocity corresponding to j.. However, according to
the BCS theory the current density almost attains its maximum value when
vs 1s such that the energy gap diminishes to zero in the limit of T = 0. Thus
there is a clear relationship between the depairing velocity and the maximum
current density. For this reason the current density given by Eq. (1.144) is
sometimes called the depairing current density.

The Meissner current is another current associated with the superconduct-
ing phenomena. This current, which is localized near the surface according to
Eq. (1.15), brings about the perfect diamagnetism. In type-2 superconductors
its maximum value is

. H.
o1 = Al . (1.145)

Here we shall investigate the above two critical current densities quantita-
tively. Take the practical superconducting material NbsSn for example. From
pwoHe ~ 05T, ppHep ~ 20 mT and A ~ 0.2 um, we have j, ~ 1.1x 1012 Am—2
and jo; ~ 8.0 x 101 Am~2 at 4.2 K. It is seen that these values are very high.
However, the size of superconductor should be smaller than £ to attain the
depairing current density j. over its entire cross section. Since £ in NbsSn is
approximately 3.9 nm, the fabrication of superconducting wires sufficiently
thinner than £ is difficult. Furthermore, suppose that multifilamentary subdi-
vision is adopted for keeping the current capacity at a sufficient level; i.e., sup-
pose that a large number of fine superconducting filaments are embedded in a
normal metal. In this case we have to confront an essential problem; viz. the
proximity effect in which the superconducting electrons in the superconduct-
ing region soak into the surrounding normal metal matrix. Two consequences
follow: (1) the superconducting property in the superconducting region be-
comes degraded. (2) Since superconductivity is induced in the normal metal,
the superconducting filaments become coupled and the whole wire behaves as
a single superconductor. This is contradictory to the premise that the size of
superconductor is sufficiently smaller than the coherence length. Hence, it is
necessary to embed the superconducting filaments in an insulating material
to avoid the proximity effect. However, such a wire is hopelessly unstable.
Application of the Meissner current j.; is strongly restricted by the condition
that the surface field should be lower than H.;. In Nb3Sn ugH, is as low as
20 mT. Hence j.; cannot be practically used except some special uses.

Since the magnetic energy density is proportional to the second power of
the magnetic field, superconducting materials are sometimes used as high-
field magnets to store large amounts of energy. Therefore, the superconduc-
tivity is required to persist up to high magnetic fields. For such applications
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Fig. 1.12. Situation of a current-carrying superconductor in the magnetic field. The
Lorentz force acts on the flux lines in the direction shown by the arrow

a type-2 superconductor with the short coherence length is required; the su-
perconductor is then in the mixed state and is penetrated by flux lines. If the
superconductor carries a transport current under this condition (suppose a
superconducting wire composing a superconducting magnet under an operat-
ing condition), the relative direction of the magnetic field and the current is
like the one shown in Fig. 1.12 and the flux lines in the superconductor expe-
rience a Lorentz force. The driving force on the flux lines will be described in
more detail in Sect. 2.1. If the flux lines are driven by this Lorentz force with
velocity v, the electromotive force induced is:

E=Bxuwv, (1.146)

where B is the macroscopic magnetic flux density. When this state is main-
tained steadily, an energy dissipation, and hence an electrical resistance,
should appear as in a normal metal. Microscopically, the central region of
each flux line is almost in the normal state as shown in Fig. 1.6, and the nor-
mal electrons in this region are driven by the electromotive force, resulting in
an ohmic loss. This phenomenon is inevitable as long as an electromotive force
exists. Hence, it is necessary to stop the motion of flux lines (v = 0) in order
to prevent the electromotive force. This so-called flux pinning is provided by
inhomogeneities and various defects such as dislocations, normal precipitates,
voids and grain boundaries. These inhomogeneities and defects are therefore
called pinning centers. Flux pinning is like a frictional force in that it prevents
the motion of flux lines until the Lorentz force exceeds some critical value.
In this state only the superconducting electrons are able to flow and energy
dissipation does not occur. For the Lorentz force larger than the critical value
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J

Fig. 1.13. Current-voltage characteristics in the presence of flux pinning interac-
tions. The broken line shows the characteristics in the absence of pinning interactions

the motion of flux lines sets in and the electromotive force reappears, result-
ing in the current-voltage characteristics shown in Fig. 1.13. The total pinning
force that all the elementary pinning centers in a unit volume can exert on
the flux lines is called the pinning force density; it is denoted by Fj,. At the
critical current density J., at which the electromotive force starts to appear,
the Lorentz force of J.B acting on the flux lines in a unit volume is balanced
by the pinning force density. Hence, we have the relation:

Jo=-2. (1.147)

The practical critical current density in commercial superconducting materi-
als is determined by this flux pinning mechanism. This implies that this J.
is not an intrinsic property like the two critical current densities previously
mentioned but is an acquired property determined by the macroscopic struc-
ture of introduced defects. That is, the critical current density depends on
the density, type of, and arrangement of pinning centers. It is necessary to
increase the flux pinning strength in order to increase the critical current den-
sity. In the above-mentioned NbsSn, a critical current density of the order of
J.~1x 10 Am~2 is obtained at B =5 T.

As a matter of fact, the current-voltage characteristics are not the ideal
ones shown in Fig. 1.13 and the electric field is not completely zero for J < J..
This comes from the motion of flux lines that have been depinned due to the
thermal agitation. This phenomenon called the flux creep will be considered in
detail in Sect. 3.8. However, in most cases at sufficiently low temperatures the
critical current density J. can be defined as in Fig. 1.13. Henceforth we will
assume that the E-J relation depicted in Fig. 1.13 is approximately correct
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and J. can be well defined in most cases. Some practical definitions of .J. are
considered in Sect. 5.1.

1.9 Flux Pinning Effect

The practical critical current density in superconductors originates from the
flux pinning interactions between the flux lines and defects. The flux line has
spatially varying structures of order parameter ¥ and magnetic flux density
b as shown in Fig. 1.6. The materials parameters such as T., H., &, etc., in
the pinning center are different from those in the surrounding region. Hence,
when the flux line is virtually displaced near the pinning center, the free energy
given by Eq. (1.21) varies due to the interference between the spatial variation
in ¥ or b and that of a or 3. The rate of variation in the free energy, i.e., the
gradient of the free energy gives the interaction force.

Each such individual pinning interaction is vectored in various directions
depending on the relative location of the flux line and the pinning center. On
the other hand, the resultant macroscopic pinning interaction force density
is a force directed opposite to the motion of flux lines in the manner of a
macroscopic frictional force. While the individual pinning force comes from
the potential and is reversible, the macroscopic pinning force is irreversible.
Furthermere, the macroscopic pinning force density is not generally equal to
the sum all the elementary pinning forces, the maximum forces of individual
interactions, in a unit volume; and the relationship between the macroscopic
pinning force density and the elementary pinning force is not simple. The
so-called pinning force summation problem will be considered in Chap. 7.

At first glance it might seem that the superconductor can carry some
current of the density smaller than J. without energy dissipation. However,
this is correct only in the case of steady direct current. For an AC current or a
varying current, loss occurs even when the current is smaller than the critical
value. The loss is caused by the electromotive force given by Eq. (1.146) due
to the motion of flux lines in the superconductor under the AC or varying
condition. That is, the mechanism of the loss is the same as that of ohmic
loss in normal metals. Hence, the resultant loss seems to be of the nature
that the loss energy per cycle is proportional to the frequency, similarly to
the eddy current loss in copper. However, it is the hysteresis loss independent
of the frequency. What is the origin for such an apparent contradiction? This
originates also from the fact that the flux pinning interaction comes from the
potential. This will be mentioned in Chap. 2.

Exercises

1.1. Compare the energy treated in the London theory and that in the G-L
theory.
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1.2. With the use of the G-L equation (1.30), prove that the free energy
density given by Eq. (1.21) is written as

h2

4m*

Fy= Fa(0)+ ——(V x )2 — 2wt + w2,
2[&0 2

1.3. Prove that the magnetic flux is quantized in a unit cell of the flux line
lattice.

1.4. Calculate the contributions from the following matter to the energy of
the flux line in the low field region:

(1) the spatial variation in the order parameter inside the core and
(2) the magnetic field inside the core.
Use Eq. (1.74).

1.5. Derive Eq. (1.97). We can write as C,, = Cpexp(imn?/2) so as to satisfy
sz = C() and CQerl = iCO.

1.6. It was shown by the approximate solution of Eq. (1.98) that (z,y) =
((v/3/4)at, —ar/4) is one of the zero points of . Prove that ¥ given by
Eq. (1.95) is exactly zero at this point.

1.7. Derive Eq. (1.111).

1.8. We calculate the magnetic flux of one flux line in the area shown in
Fig. 1.14. The surface integral is given by the curvilinear integral of the
vector potential A. Since the current density j is perpendicular to the
straight line L, the curvilinear integral of A is equal to the curvilinear
integral of —(%/2e)V¢ on L with ¢ denoting the phase of the order para-
meter. Equation (1.55) is valid also on the half circle R at sufficiently long
distance. As a result the magnetic flux in the region shown in the figure
should be an integral multiple of the flux quantum ¢y. This is clearly
incorrect. Examine the reason why such an incorrect result was derived.

center of R
flux line

w®

Fig. 1.14. Closed loop consisting of the straight line L passing through the center
of the quantized magnetic flux and the half circle R at sufficiently long distance
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1.9. Discuss the reason why the center of quantized flux line is in the normal

state.
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2

Fundamental Electromagnetic Phenomena
in Superconductors

2.1 Equations of Electromagnetism

Here we assume a sufficiently large superconductor. When a magnetic field is
applied to the superconductor, flux lines penetrate it from the surface. Since
the flux lines are expected to be pinned by pinning centers in the supercon-
ductor, those cannot penetrate deeply from the surface and the density of the
flux lines will be higher near the surface and lower in the inner region, result-
ing in a nonuniform distribution in a macroscopic scale. When the external
magnetic field is decreased, on the other hand, the flux lines go out of the
superconductor and their density becomes lower near the surface. It is impor-
tant to know correctly the magnetic flux distribution in the superconductor in
such cases in order to understand or foresee its electromagnetic phenomenon
exactly.

We assume a semi-macroscopic region which is sufficiently larger in size
than the flux line spacing but sufficiently smaller than the superconductor.
We designate 7, as the central position of this region; the mean magnetic
flux density within it, given by the product of the density of flux lines and
the flux quantum ¢g, is designated by B,. The superconductor is imagined
to be divided into such small segments (see Fig. 2.1). If the differences in the
magnetic flux density between adjacent segments are sufficiently small, the set
{B.(r,)} can be approximated by a continuous function of B(r), where r
denotes the macroscopic coordinate in the superconductor. The macroscopic
magnetic field H(r), current density J(r), and electric field E(r) can be
defined in a similar manner.

The quantities B, H, J and FE defined above, which are the semi-
macroscopic averages of the local b, h, j and e (the word “macroscopic”
is not used hereafter except special cases), satisfy the well-known Maxwell
equations:

J=VxH, (2.1)

OB
VxE=-"7". (2.2)
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Fig. 2.1. Magnetic flux density averaged in a semi-macroscopic scale

V-B=0, (2.3)
V-E=0. (2.4)

Although the above equations are formally the same as the equations on
the local quantities discussed in Chap. 1, these are the relationships for the
macroscopic quantities. Equation (2.4) is based on the fact that the electric
charge does not exist in the superconductor under the usual conditions and the
displacement current is neglected in Eq. (2.1). In order to solve the Maxwell
equations, two other equations for the superconductor are needed. One of
them is the relationship between B and H, which is simply given by

except for strongly paramagnetic superconductors, which can be confirmed by
measurement in the normal state in a magnetic field greater than the upper
critical field Hco. The other is the relationship between E and J, that gives the
outstanding characteristic of the superconductor. These last two relationships
together with Egs. (2.1) and (2.2) yield the four quantities, B, H, J and E.

The relationship between E and J describes the fundamental properties
of the superconductor, such as the ability of DC steady transport current
to flow within it without appearance of the electrical resistance or its ir-
reversible magnetic behavior in a varying magnetic field. For example, the
electrical properties of a material can be obtained by solving the equation of
motion of its electrons. Since the most electromagnetic phenomena in the su-
perconductor are concerned with the magnetic flux distribution within it, the
motion of flux lines must be dealt with. Consider the case mentioned in the
beginning of this section, where the flux lines penetrate the superconductor
in an applied magnetic field. On one hand, an equilibrium may be attained
under the balance between the driving force and the restraining force due to
flux pinning on the flux lines. On the other hand where the equilibrium is not
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attained due to the driving force which exceeds the pinning force, the situa-
tion can be described by an equation of motion that contains a new term, the
viscous force, as in the usual equation of mechanical motion. In what follows
the various forces that appear in this equation are discussed.

If, as mentioned above, B is the mean magnetic flux density within a
small region and F'(B) is the corresponding free energy density, the intensive
variable, H, corresponding to B is given by

OF(B)

"="3B

(2.6)

This quantity, which has the dimension of magnetic field, is called the ther-
modynamic magnetic field. If the H that is in equilibrium with B is uniform
in space, a driving force does not act on the flux lines. If, however, there is
a distortion or an eddy in H, a driving force does act on the flux lines. It
should be noted that the driving force does not necessarily originate from a
nonuniformity in B. In Sect. 2.6 it will be shown that a driving force may not
appear even when B varies spatially, provided that H is uniform.

In many cases, especially in superconductors with large G-L parameters
K, such as commercial superconductors, magnetic energy dominates the G-L
energy given by Eq. (1.21). The other components are the condensation energy
and the kinetic energy, that are of the order of ugH?2/2 at most. Hence, the
ratio of this energy to the magnetic energy is of the order of (H./H)? and
amounts only to 8/k? even at magnetic fields as high as a quarter of the
upper critical field. In Nb-Ti which has a s of approximately 70 this ratio is
negligible. In such cases Eq. (2.6) reduces to

0 B° B

~ .= == 2.7
OB 2p0 Ho 27)

This result is reasonable, since the energy associated with the diamagnetism
is neglected in the above treatment. When H varies in space, the driving force
on the flux lines in a unit volume is generally given by

Fi=(VxH)xB. (2.8)

From Eq. (2.7) which disregards the effect of diamagnetism, only an electro-
magnetic contribution to the force appears and we have

B
Fd:(Vx>xB:J><BEFL. (2.9)
Ho

In the above, Egs. (2.1) and (2.5) were used. The driving force F'p, is known
as the Lorentz force. This is the force felt by moving electrons, and hence the
current, in the magnetic field. In the present case, the vortex current which
forms the flux line experiences this force. The distortion of flux lines, such as
a gradient of their density or a bending deformation, results in a transport
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current as shown in Eq. (2.1). That is, the transport current originates from
superposition of vortex currents. Hence the Lorentz force may be regarded as
acting on the flux lines themselves. In fact, the force acting on two flux lines
is derived from their magnetic energy, and the expression of the Lorentz force
is deduced for the general case from this result in [1]. A force of this type
works not only on the quantized flux lines in superconductors but generally
on magnetic flux lines. The Lorentz force can also be generally expressed in
the form of the restoring force on the distorted magnetic structure. This will
be discussed in Sect. 7.2. The driving force on an isolated flux line in a thin
film by a transport current is discussed in [2]. The effect of the diamagnetism
on the driving force is larger for the case of superconductor with a small G-
L parameter. This effect is also pronounced for superconductors with weak
pinning forces or small superconductors. This will be discussed in Sect. 2.6.

When flux lines are under the influence of a driving force, hereafter called
the Lorentz force for simplicity, they are acted on by restraining forces. These
are the pinning force and the viscous force. The pinning force comes from
the potential energy that the flux line feels depending on its position and
the viscous force originates from the mechanism of ohmic energy dissipation
inside and outside of the normal core of the flux line due to its motion. The
balance of these forces is described by

Fi, +F,+F,=0, (2.10)

where F, and F', are the pinning force density and the viscous force density,
respectively. The mass of the flux line can usually be neglected [3] and the in-
ertial force does not need to be introduced. Under the condition of Eq. (2.10)
the superconductor is said to be in its “critical state” and the model in which
this state is assumed is called the critical state model. Following Josephson
[4] who treated the quasistatic case in which the viscous force can be ne-
glected (see Appendix A.1), it is also possible to derive Eq. (2.10) from the
requirement that the work done by the external source should be equal to the
variation in the free energy in the superconductor. In Eq. (2.10) F', does not
depend on the velocity of flux lines v, while F',, does. These force densities
are written

F, =—-6F,(|B.T), (2.11)
F, = fn@v, (2.12)
b0

where = v/|v| is a unit vector in the direction of flux line motion and
F}, represents the magnitude of the pinning force density which depends on
the magnetic flux density |B| and the temperature T. The quantity, 7, is
the viscous coefficient. As will be mentioned in the next section 7 is related
to the flux flow resistivity; it is also a function of |B| and T. Sometimes
electromagnetic phenomena are treated in an isothermal condition. In such a
case the T is dropped in relationships deriving from Eq. (2.11). Substitution
of Egs. (2.9), (2.11) and (2.12) into Eq. (2.10) leads to
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(V x B) ><B—5Fp(|B\)—77@v:0. (2.13)
Ho %o

To solve this equation using the Maxwell equations, a relationship between
the electromagnetic quantities and the velocity v is needed. This is the subject
of the next section.

2.2 Flux Flow

We assume that the superconductor is stationary in space and that the flux
line lattice of flux density B moves with a velocity v. We define two coordi-
nate systems, or frames; a stationary one for the superconductor and another
moving with the velocity v of the flux line lattice. If the electric fields mea-
sured in the stationary frame and the moving frame are represented by E and
E, respectively, Farady’s law of induction becomes

0B

VX(E07’UXB):7E

(2.14)
as well known in the theory of electromagnetism [5]. Since the magnetic struc-
ture does not change at all with time from the view of the moving frame, we
have Eo = 0. Thus, Eq. (2.14) reduces to

0B

VX(BX/U):—E.

(2.15)
This is called the continuity equation for flux lines [6]. This equation can also
be derived directly by equating the magnetic flux coming in a small loop in
unit time with the rate of variation of the magnetic flux in the loop. This
derivation is offered as an exercise at the end of this chapter. Comparing
Eq. (2.15) with one of the Maxwell equations, Eq. (2.2), we have generally

E=Bxv-VU. (2.16)

In the above, the scalar function, W, represents the electrostatic potential for
the usual geometry in which the magnetic field and the current are perpen-
dicular to each other. It is zero in superconductors [7, 8] in which case

E=Bxuv. (2.17)

With the so-called longitudinal magnetic field geometry in which the magnetic
field and the current are parallel to each other, the additional term, —V U,
is needed. This condition will be discussed in detail in Chap. 4. In this case
U is not the electrostatic potential, since all the electric field comes from the
electromagnetic induction due to the motion of flux lines.

One more word is added here in order to avoid confusion. It might be con-
sidered that the electric field given by Eq. (2.17) is not the induced one in the
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steady flux flow state, since the macroscopic flux distribution does not change
with time. In fact, the substitution of 9B/0t = 0 into Eq. (2.15) leaves B x v
as the gradient of a scalar function. As mentioned above, energy is dissipated
in the flux flow state, leading to the appearance of electrical resistance as in
normal conductors. In this sense, if we confine ourselves within the framework
of pure macroscopic electromagnetism, it is possible to interpret this scalar
function as an electrostatic potential, as for a normal conductor, without any
contradiction. It is not possible, however, to go on and explain from such a
theoretical background why an electric field does not appear when the motion
of flux lines is stopped. As is emphasized in [9], the motion of flux lines is the
essence. That is, the observed electric field is in fact an induced one.

The electric field given by Eq. (2.17) is equivalent to Eq. (1.138) which
describes the AC Josephson effect. To prove this we begin by assuming for
simplicity that the flux line lattice is a square lattice and that two points,
A and B, are separated by L along the direction of the current, as shown
in Fig. 2.2. If the flux line spacing is represented by af, L/a¢ rows of flux
lines are moving with the velocity v in the direction perpendicular to the
current between these two points. The flux lines move a distance a; during
a time interval of At = af/v. The amount of magnetic flux that crosses the
line AB during the interval At is given by (L/at)¢o. Since the change in the
phase of the order parameter when circulating around one quantum ¢y of
magnetic flux is 27, the variation in the phase difference between A and B is
A®O = 27(L/as). With the aid of B = ¢g/a?, Eq. (2.17) reduces to

oo AO hw
v 2r At 2e (2.18)
and agrees with Eq. (1.138). In the above we replace AG/At by an angular

frequency, w.

Fig. 2.2. Motion of flux line lattice



2.2 Flux Flow 47

]

|
OU £ T

Fig. 2.3. Spatial variation in the order parameter in the vicinity of the center of
normal core. The broken line represents the approximation of the local model

As a variation in the magnetic flux density is related to the velocity of
flux lines through Eq. (2.15), the solution to B can be obtained in principle
from this equation and Eq. (2.13). Before we proceed to solve these equations,
some important phenomena related to flux motion will be described in this
section. First we describe the various energy loss mechanisms such as a pin-
ning energy loss in superconductors, and second we derive the flow resistivity
corresponding to the energy loss and go on to clarify the relationship between
the flow resistivity and the viscous coefficient 7 given by Eq. (2.12).

A description of the structure of the flux line is needed in order to explain
the phenomenon plainly. For this we adopt the local model of Bardeen and
Stephen [10]. Commentary on the rigorousness of this model is provided in
detail in [9], and so is not repeated here. It is known that the results of this
theoretical model are generally correct in spite of various assumptions for
simplicity. We assume that the G-L parameter x of the superconductor is
sufficiently large. Bardeen and Stephen assumed the structure of the order
parameter around the center of flux line to be as shown in Fig. 2.3 where the
region inside a circle of radius £ is in the normal state. In the original paper
this radius was initially treated as an unknown quantity and then shown to
coincide with & from its relationship to the upper critical field H.s. In this
section, we begin with this result. Outside the normal core of radius ¢ the order
parameter is approximately constant and the London equation can be used.
In this region the superconducting current flows circularly around the normal
core. Cylindrical coordinates are introduced with the z-axis along the flux line
and with r denoting the distance from this axis. From Egs. (1.4) and (1.64)
the momentum of the superconducting electron in the circulating current in
the region & < r < A is given by
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. h.
Py = Usglp = —dg = Py (2.19)

where %y is a unit vector in the azimuthal direction.

Cartesian coordinates are also introduced with the x- and y-axes in the
plane normal to the flux line to express the flux motion. We assume that the
current flows along the y-axis. If the Hall effect is disregarded for simplicity,
the flux motion occurs along the z-axis and the mean macroscopic electric
field is directed to the y-axis. The equation of motion of the superconducting
electron is described as [10]

dvs  f,

dt  m*’
where f, is the force on the electron. When the Lorentz force acts on the
charge —2e, the relationship

(2.20)

m*vs = p, + 2eA (2.21)

is known to hold with the vector potential A. If we assume that the flux lines
move uniformly along the z-axis with a small velocity v, the secondary effects
due to this motion can be expected to be sufficiently small and the variation
with time in Eq. (2.20) can be approximated as d/dt ~ —(v - V). Thus, we
have

fo=—(v-V)(p,+2eA) = —v%(ps +2eA) . (2.22)

Within an accuracy of the order in v, we can approximately use p,, given by
Eq. (2.19) for p,. At the same time A is approximately given by (Br/2)ig
assuming that the magnetic field is nearly constant in the vicinity of the
normal core. Substitution of these into Eq. (2.22) leads to

= %(_ia cosf + i, sinf) — eBvi,, . (2.23)

This force originates from the local electric field e, expressed as

B
e= 75—; = ;::2 (ig cos O — i, sinf) + %zy
=e + §(B X v) (2.24)

where e; represents the nonuniform component of the electric field.

The electric field inside the normal core can be obtained from the boundary
condition at r = ¢ that its tangential component is continuous to the outside.
Since this component of the nonuniform component e; given by Eq. (2.24) is
(pov/2mE?)cosh, the electric field inside the core is given by

_ $ov

e= 27r§21y

+ %(B X v) (2.25)
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Fig. 2.4. Lines of electric force due to nonuniform component of the electric field
inside and outside the normal core

and is found to be uniform and directed along the y-axis. The nonuniform
component of the electric field around the normal core is schematically de-
picted in Fig. 2.4. It can be seen from the above result and the figure that
the normal component of the electric field is discontinuous at the boundary,
indicating that electric charge is distributed around the boundary according
to 0 = —(¢ove/mE?)sing with e denoting the dielectric constant. This seems to
contradict Eq. (2.4). However, this comes about through the use of the local
model; the result does not contradict Eq. (2.4) on a macroscopic scale, since
the total electric charge inside the core is zero.

Let us investigate the relationship between the local and macroscopic elec-
tric fields. We assume that the distance between the nearest flux lines is suffi-
ciently large. If the unit cell of the flux line lattice is approximated by a circle
of the radius Ry, then B = ¢o/mR2. It is easily shown that the average of
the nonuniform electric field e; given by Eq. (2.24) in the region £ < r < Ry
is zero. Thus, the second term of Eq. (2.24) and Eq. (2.25) contribute to the
macroscopic electric field:

_ iy [* v
TR% Jo 2m&?

1
2mrdr + ﬁ(B xv)=Bxuv. (2.26)

This result agrees with Eq. (2.17).

The electric field shown above causes the flow of normal electrons inside
and outside the core, resulting in ohmic energy dissipation. This is the origin
of the energy loss in superconductors and a corresponding electrical resistance
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is observed. Here we shall derive an expression for the flow resistivity from the
energy loss due to the above electric field. The power loss inside the normal
core per unit length of the flux line is given by

2772 ,2 2
:LLOHC2U ( B )
W, = mé? 1+ , 2.27

pe Pn 2p0Heo (2:27)

where py, is the normal resistivity and Eq. (1.52) is used. We assume that the
resistivity outside the normal core is also approximately given by p,. Thus,
the power loss in this region per unit length of flux line is calculated as [10]

Ro 1.q 2 Bu\?
W2=27r/ e (W}) 4+<”>
¢ Pn 2 T 2
210Heo B B2
_ Mool (B o (2.28)
2pn 4/'LOHC2

Hence, if the total power loss W; + W5 is equated to the power loss,
7R2B?v?/p;, in an equivalent uniform material with an effective resistivity,
i.e., the flow resistivity p¢, we obtain

B B -1
— 1+ . 2.29
P oHe ( 2M0Hc2> p (2.29)

In the limit B < poH:2 where the flux line spacing is sufficiently large, the

above result reduces to B

= p .
NJOHCZ "

This agrees with the experimental result [11].

We go on to treat the case in which the magnetic field is applied in the
direction of the z-axis and the current is applied along the y-axis. The veloc-
ity vector v lies along the z-axis. When Eq. (2.13) is rewritten in terms of
Egs. (1.147) and (2.17), we have

pt (2.30)

E = pi(J — Jo) (2:31)

for J > J.. This relationship between E and J gives the current-voltage char-
acteristic in the flux flow state as shown in Fig. 1.13 and represents the char-
acteristic feature of the superconductor. Thus, the flow resistivity is expressed

as
_ $oB

; (2.32)

Pt

in terms of the viscous coefficient 7.
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2.3 Mechanism of Hysteresis Loss

It was shown in the last section that the energy loss in a superconductor is
ohmic in nature due to the motion of normal electrons driven by an electric
field induced by the motion of flux lines. It is well known that ohmic loss under
AC conditions is proportional to the square of the frequency. Corresponding
to this the power losses given by Eqs. (2.27) and (2.28) are proportional to
the square of the flux line velocity v. The total power loss density is written
as 321)2

= W—R(%(Wl +Ws) = o =—F, v (2.33)
and is the viscous power loss density. On the other hand, the pinning power
loss density is given by —F, - v, thus is proportional to the first power of
flux line velocity, i.e., proportional to the frequency (here we note that Fj, is
independent of v). Thus, this loss is not of the ohmic type, a feature which
is associated with the fact that the current-voltage characteristic shown in
Fig. 1.13 is not ohmic. The above result seems to be in conflict with the notion
that any kind of loss originates from the ohmic loss of normal electrons. It is
necessary to understand the motion of flux lines in the pinning potential in
order to resolve this contradiction.

The macroscopic electromagnetic phenomena in superconductors due to
the motion of flux lines can be theoretically treated in an analogous way to the
motion of a mechanical system. An example can be seen in Eq. (2.33). In terms
of Egs. (2.9) and (2.17) the input power density J - E to the superconductor
may also be expressed as

P

J-E=J - (Bxv)=FL v, (2.34)

which can be regarded as the power given by the Lorentz force. At a more
microscopic level such a correspondence to the mechanical system can also
be expected to hold for the motion of individual flux lines. In that case,
however, it should be noted that the pinning interaction does not give rise
to an irreversible frictional force in a macroscopic sense but a reversible force
originated from a pinning potential.

Here we look at one flux line in the lattice moving in the field of a pinning
potential. We assume that the center of the lattice is moving with a constant
velocity v. Because of the pinning interaction, the position u of a given flux line
deviates from the equilibrium position uy determined by the elastic interaction
between it and the surrounding flux lines. Consequently its velocity, o =
Ou/0t, differs from the mean velocity v. As a result, the flux line experiences
an elastic restoring force proportional to the displacement, u — ug. According
to Yamafuji and Irie [12] the equation describing such flux line motion is given
by

n'v — ke(u —uo) + f(u) —n*u=0, (2.35)

in which
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Bn

¢0Np '
Here n* is the effective viscous coefficient per pinning center of number density
Np, k¢ is the spring constant of the elastic restoring force of the flux line
lattice and f(u) is the force due to the pinning potential. The fourth term
in Eq. (2.35) is the viscous force and the first and the second terms give the
driving force on the flux line. That is, the first term is the component for
the case where the velocity is not disturbed by the pinning potential and
the second term is the additional component due to the disturbance of the
velocity. From the condition of continuity of the steady flow of flux lines, we
have

*

n

(2.36)

(W) =t =, (2.37)

where ( ); represents the average with respect to time.
The input power in this case is given by

("0 — ke (u — o))y - (2.38)

From the mechanism of the energy dissipation, this should be equal to the
viscous power loss, (n*42);. The proof of this equality is Exercise 2.2. On the
other hand, the apparent viscous power loss is n*v?. Hence, the difference
between these two quantities is the loss due to the pinning interaction. Thus,
the pinning power loss density P, is given by this difference multiplied by Ny;
ie.
P, = —((u?); —v?) . (2.39)
o
The pinning power loss is the additional power loss due to the fluctuation
of the flow velocity of flux lines caused by the pinning potential. It should
be noted that the pinning potential itself does not apparently influence this
power loss. The question is whether or not this pinning power loss density is
proportional to the mean velocity v.

Yamafuji and Irie [12] showed that the velocity of a flux line becomes very
large when it drops into the pinning potential well and then jumps out again
under the elastic interaction with the surrounding flux lines. Strictly speaking,
in order to realize this feature, the pinning potential must be sufficiently steep
to fulfill the condition |0f/0u| = k, > k¢, as will be shown later in Sect. 7.3.
We assume that this condition is fulfilled. If the flux line reaches the edge
of the pinning potential, u = 0, at ¢ = 0, and if the pinning force varies as
f(u) ~ kpu, from Eq. (2.35) we have

kevt kpn*v t
~ — -] =11 2.4
u(t) Fo— T + ey — Fr)? exp | ;o t>0, (2.40)

where

(2.41)
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is a time constant. The details of this analysis are given in [13]. In the above we
assumed that uy = vt, since u = ug for ¢ < 0. It may be seen from the above
result that the flux line motion becomes unstable and its velocity becomes very
large when it drops into the pinning potential well. For simplicity, we assume
that the mean velocity v is sufficiently small. If the instability continues from
t = 0(u = 0) tot = At(u = d) when the flux line reaches the center of
the pinning potential well (with 2d denoting the size of the pinning potential
well), the contribution of this term to the integral of 42 with respect to time
is given by N
t 2
/ azar = Lo — ko) o), (2.42)
0 2

where the second term on the right-hand side is a small quantity of the order
in v. Strictly speaking, the period during which the flux line motion becomes
unstable in the limit v — 0 is from ¢ = 0(u = 0) to t = At'(u = d’) as shown
in Fig. 2.5. The contribution from the instability when the flux line jumps out
of the pinning potential well is also approximately given by d?(k, — kr)/2n*.

Thus, we have
2k, — k
@), = T =R | o2 (2.43)
Ton

Uy t=0  t=nt’

fu)

Fig. 2.5. Motion of the flux line in the pinning potential. Upper and lower figures
show the pinning potential and the pinning force, respectively
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where 1/Tj is the frequency at which one flux line meets the pinning potential
wells in a second. If we represent the mean separation of the pinning potential
wells by D,, we have Ty = D,/v, and the pinning power loss density is
approximately given by

P, = %(/ﬂp — ke)d®v . (2.44)

P

This result also implicitly requires that k, > k¢. Although the above theo-
retical treatment gives only a rough estimate (the detailed calculation will
be given in Sect. 7.3), it tells us that, if the motion of the flux line is un-
stable inside the pinning potential well, the pinning power loss density is of
the hysteretic type which is proportional to v (hence to frequency under AC
conditions) as shown in Eq. (2.44). A nonzero critical current density can ex-
ist only under the condition k, > k¢ (see Sect. 7.3). Therefore, the fact that
the pinning loss is of the hysteretic type is identical with the fact that the
current-voltage characteristic is non-ohmic.

The above result can be simply explained as follows. When the mo-
tion of a flux line is unstable, its velocity is approximately given by [kyv/
(kp — ki)]exp(At/7T) ~ d/T and takes a large value independent of the mean
velocity v. Hence, the energy loss of the flux line during its interaction with
one pinning center is a constant and the power loss is proportional to the
number of pinning centers which the flux line meets in a second, i.e., to v.

2.4 Characteristic of the Critical State Model
and its Applicable Range

It is possible to obtain the solutions of the magnetic flux density B and the
velocity of flux lines v from the critical state model, i.e., Egs. (2.13) and (2.15)
describing the force balance and the continuity of flux lines, respectively. It
is also possible to obtain B and E from Egs. (2.2), (2.13) and (2.17). In the
both cases the equation to be solved contains a second spatial derivative term
and a first time derivative term. This equation is difficult to solve because of
the existence of the coefficient, 8, that indicates the direction of the pinning
force. A simple example of an approximate solution of this equation will be
shown in Sect. 3.2.

In this section the characteristics of the critical state model are briefly
mentioned and some phenomena which cannot be described by this model are
discussed. One of the characteristics of this model is that the local current
density does not take on smaller values than the critical current density as
shown in Eq. (2.31). It means that the pinning interaction is expected to exert
its effect as much as possible like the maximum static friction. Especially in
the static case E = 0, we have |J| = J. and the current density in the
superconductor is equal to the critical value. This is called the critical state in
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a narrow sense. This corresponds to the case where the static magnetic flux
distribution is determined by the balance between the Lorentz force and the
pinning force.

The second characteristic is that the phenomena associated with a vari-
ation in the magnetic flux distribution are assumed to be completely irre-
versible. That is, the restraining forces always work in the opposite direction
to the flux motion as given in Egs. (2.11) and (2.12). The power from the
external source such as —F, - v is always positive. Therefore, stored energy
is not included at all and energy is always dissipated. It means that E - J is
just the power loss density. In this case, the local power loss density can be
obtained if we know the local E and J. It should be noted that complete irre-
versibility is assumed even for the pinning force which comes originally from
the potential. The pinning potential is reversible in nature at a microscopic
level. It was shown in the last section that the irreversibility originates from
the unstable flux motion associated with flux lines dropping into and jumping
out of the pinning potential wells. Therefore, if the variation in the external
magnetic field etc. is so small that the motion of flux lines is restricted mostly
to the region inside the pinning potential wells, the phenomenon is regarded
as almost reversible without appreciable energy dissipation. In this case the
critical state model cannot be applied. The input power, E - J, includes the
stored power and sometimes takes on a negative value. In general, therefore,
it is not possible to estimate the instantaneous power loss. Only in the case of
periodically varying conditions can the energy loss per cycle be estimated from
the integral of E - J with respect to time or from the area of closed hysteresis
curve. Such a reversible phenomenon will be considered in Sect. 3.7.

2.5 Irreversible Phenomena

As mentioned in the last section, the dynamic force balance equation can be
solved only approximately because of the direction coefficient ¢. In addition,
the force balance equation itself is sometimes a nonlinear differential equa-
tion. In presenting an example of the approximate solution, in this section we
focus on the magnetic flux distribution and the magnetization in a quasistatic
condition. The use of the term “quasistatic process” in this book is different
from that used in thermodynamics and refers merely to processes in which the
external magnetic field is varied slowly. That is, the quasistatic state is that
obtained by a linear extrapolation of sweep rate of the external field to zero.
Hence, such a state is in most cases a nonequilibrium state in the thermody-
namic sense. In the context of this book the velocity of flux lines v has only to
be so small to enable the viscous force to be neglected. We should note that
this condition differs largely from material to material. In commercial NbgSn
wires, for example, the quasistatic state is attained over a wide range of sweep
rates, since the pinning force is very large. We assume J, = 5 x 10° Am~2 at
B =5 T as a typical case. The flux flow resistivity estimated from Eq. (2.30)
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is pr ~ 8 x 107% Qm, where we have used pgHe; = 20 T and p, = 3 x 1077
Qm. Hence, the condition that the viscous force is as large as 1 percent of
the pinning force is given by £ = pr.J. x 1072 ~ 0.4 Vm™!. Superconduc-
tors do not generally experience such high levels of electric field, hence they
usually operate in a range where the viscous force can be neglected. We shall
here clarify the corresponding sweep rate of the external magnetic field. We
assume for simplicity that the external magnetic field completely penetrates
the superconductor. The induced electric field is E ~ d0B/0t, where d is a
half-radius of a superconducting wire or a half-thickness of a superconducting
slab. Hence, we find that the sweep rate of the field at which F = 0.4 Vm™!
is reached is 8 x 10% Ts~! for d = 50 um. Clearly the maximum sweep rate
depends on the size of superconductor. Furthermore, the range within which
the process can be regarded as quasistatic becomes narrower as the pinning
force (hence J.) becomes weaker.

Here we treat the case where the magnetic field is applied parallel to a
sufficiently large superconducting slab. We assume that the slab occupies 0 <
x < 2d and the magnetic field H, is applied along the z-axis. From symmetry
we have to consider only the half-slab, 0 < z < d. All the electromagnetic
quantities are uniform in the y-z plane and expected to vary only along the
x-axis. The flux lines move along the z-axis, hence Eq. (2.13) reduces to

B 0B ~

o vl dF,(B), (2.45)
where B = |B| and § = +1 is the sign factor representing the direction of flux
motion. That is, § = d%,, where 1, is a unit vector along the x-axis. In this
case the current flows along the y-axis. Equation (2.45) can be solved, if the

~

functional form of F,,(B) is given.

~

Many models have been proposed for the functional form of F,(B). Here
we use the Irie-Yamafuji model [6] which can be applied over a relatively wide
magnetic field range except in the high field region near the upper critical
field: R R

Fy,(B) =a.B", (2.46)

where a. and 7 are the pinning parameters; usually 0 < v < 1. If we assume
v = 1, the above model reduces to the Bean-London model [14, 15]. This
model is applicable to the case where J. can be regarded as approximately
field independent. Equation (2.46) reduces to the Yasukochi model [16] when
~v = 1/2. This model is useful for practical superconductors in which grain
boundaries or large normal precipitates are effective as pinning centers. The
Silcox-Rollins model [17] is obtained when v = 0 is used. As for other pin-
ning models, the Kim model [18] is also known to express well the magnetic
field dependence of the pinning force density within a certain range of mag-
netic field, although its functional form is different from that in Eq. (2.46). A
correction is needed for these models at high fields so that the pinning force
density F},(B) decreases with increasing B (see Sect. 7.1).
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When Eq. (2.46) is substituted into Eq. (2.45) and it is integrated, we have
0B>™ = 60By" — (2 = Y)moce (2.47)

where &y and By are the values of § and B at the surface (z = 0), respectively.
By is sometimes different from the magnetic flux density |ptoHe| correspond-
ing to the external magnetic field H,. This is attributed to the diamagnetic
surface current or the surface irreversibility which will be discussed later in
Sects. 2.6 and 3.5, respectively. In superconductors with large G-L parame-
ters x, however, the diamagnetic surface current is small. Hence, if the flux
pinning strength or the size of the superconductor, i.e., the thickness 2d, in
this case, is sufficiently large, the effect of diamagnetism can be disregarded.
On the other hand, the effect of surface irreversibility does not appear for a
uniform superconductor. Thus, we assume

EO = /Loﬁe s (248)

where H, = |H,|. Equation (2.47) expresses the magnetic flux distribution
in the region from the surface to a certain depth, i.e., the point at which B
reduces to zero or the breaking point of the magnetic flux distribution, as will
be shown later. The magnetic flux distribution is linear in case v = 1 and is
parabolic in case v = 0.

The magnetic flux distribution in response to an increase in the external
magnetic field from zero as the initial state is given by Eq. (2.47) with 6 =
dp = 1 and is schematically shown in Fig. 2.6. Figures 2.6(a) and (b) represent
cases in which the magnetic flux does not and does, respectively, penetrate
to the center of the superconductor. We call the external magnetic field at
which the flux front reaches the center of the superconducting slab as the
“penetration field,” H,. It is given by

Hp = - (2 = 2)poccd /. (2.49)
We assume that B is in the positive z-axis direction (B > 0) such that B=B.
The current distribution is given by
Jy = _ 195 _ ae[BEY = (2 — y) poaex] /@) (2.50)
po Ox
This result is also directly obtained from J = J. = Fp(ﬁ)/g = a.BL.
That is, as was already mentioned, the local current density is always equal
to the critical current density, +J., at the magnetic field strength at this point
according to the critical state model. In a more exact expression, the local cur-
rent density never takes on a smaller value than J. including the contribution
from the viscous force. The current distributions inside the superconducting
slab corresponding to the magnetic flux distributions in the initial magnetiza-
tion process are shown in the lower figures in Fig. 2.6. Although it is possible
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Fig. 2.6. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the superconductor in an initial increasing field (a) in case where the external
field He is smaller than the penetration field Hy, and (b) in case where H, is larger
than Hp. The arrows show the direction of flux motion

to generally describe the current density J, including J, dp and the sign of
B, it is complicated. According to Eq. (2.50) the current density J diverges
at the point B = 0 in case ~v # 1. This divergence, which results from the
approximation of the magnetic field dependence of J. over a relatively wide
range of magnetic fields by a relatively simple function, does not represent
the real situation. In spite of such unphysical limit, there is no anomaly in the
averaged quantities such as the magnetization or the energy loss. Hence, it is
not necessary to consider this problem.

We next consider the case where the external magnetic field is decreased
after being increased up to Hy,. The flux lines go out of the superconductor.
In this case flux lines near the surface leave first and hence the variation in
the magnetic flux distribution starts at the surface. In this region the pinning
force prevents the flux lines from going out and the direction of the current is
opposite to the direction in the initial state. Near the surface in the half-region
of the slab, 0 < x < d, we have § = §g = —1. Substituting these values into
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Eq. (2.47), we have the magnetic flux distribution near the surface:
B2 = (o He)* ™ + (2 — ) o0 - (2.51)
On the other hand, the former flux distribution
B* = (poHw)* ™7 = (2= 7)pocce (2.52)

remains unchanged in the inner region of the superconductor. The breaking
point, x = xy,, at which the crossover of the two distribution equations occurs
is given by

. —~ 2—r 2

—(un H. )2 H.)?>™7  d H, Hy, ’

vy — (toHe)*™7 + (poHm) _a) [ He +<> . (2.53)
2(2 = y)pocie 21\ Hy

The magnetic flux and current distributions associated with this process are
depicted in Fig. 2.7. There are three cases depending on the value of Hy;
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Fig. 2.7. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the superconductor in a decreasing field. The arrows show the direction of
flux motion
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Fig. 2.8. Distributions of the magnetic flux (upper figure) and the current (lower
one) when the external magnetic field is reversed

i.e., depending on whether H,, < H,, H, < Hy, < 2YC"VH, or H, >
21/(2’7)Hp. In case Hy, > 21/(2*7)Hp, the breaking point of the magnetic
flux distribution disappears before H, reaches zero (see Fig. 2.7(b)) and the
magnetization at H o = 0 is on the major magnetization curve as will be shown
later.

When the external magnetic field is further decreased to a negative value,
the distributions of magnetic flux and current vary as shown in Fig. 2.8. In
this case B = —B for 0 < x < o, i.e., in the region from the surface to the
point at which B = 0.

We shall calculate the magnetization of the superconducting slab. The
magnetization of a superconductor is defined by

1 d
M:—/Bxdx—He. 2.54
i ], B@ (2:54)

The first term corresponds to the magnetic flux density averaged inside the su-
perconductor. Hence, Eq. (2.54) is neither equivalent to the local relationship,
m = b/uo— h, for magnetic substances nor its spatial average. It is in fact the



2.5 Irreversible Phenomena 61

average of b/ 1o — H, over the superconductor. For the case H,, > 2Y/C=7 [,
after a simple calculation we have

M 2—~

T =3 R L 0< H.< H,, (2.55a)
p v
2 —
== z[hli (hg—’y _ 1)(3—7)/(2—7)] —he; H,<H,<H,, (2.55b)
2—v 9—1/(2=7) (22— 2—7\(3—7)/(2—
_ 2 N(h27 + h 7)( )/ (2=7)
3 _ ’y m e
(B2 — 1)/ _ B3] Hy, > H, > H,, (2.55c)
2—
== Z[(hQ T 4 1)/ 3] H,>H,>0, (2.55d)
2—7

= 1 = (=he)?)B/C=0) _(—p )37} = he;

w
2

0> H,>—H,, (2.55¢)

where h, and h,, are defined by

H H
he = ==, [ — (2.56)
Hp HP
respectively, and
HI " =HX"—-2H} . (2.57)

Each magnetic flux distribution in Fig. 2.9 has a corresponding description
in Eq. (2.55). That is, in both cases ‘a’ and ‘b’ describe the increasing field
processes, ‘¢’ and ‘d’ are those in a decreasing field and ‘e’ corresponds to
that when the magnetic field is reversed. The point ‘e’’ in the magnetization
curve is just opposite to the point ‘e’. The points b, d and e are on the
major magnetization curve and correspond to the full critical state. The initial
magnetization given by Eq. (2.55a) reaches the major curve at He = H,,.
Magnetization curves for various values of v are given in Fig. 2.10.

We have argued the case where only a magnetic field is applied. Now we
consider the case where the transport current is also applied. It is assumed that
the current with a mean density J; is applied along the y-axis of the above
superconducting slab and a magnetic field H, is applied along the z-axis.
Then, a self field according to Ampere’s law leads to the boundary conditions
at the surfaces of the slab:

B(z = 0) = poHe + pioJsd
B(z = 2d) = poHe — poJed - (2.58)

Hence, the magnetic flux distribution is not symmetric with respect to the
center, x = d, and we have to consider both halves of the slab. In addition, it
should be noted that the magnetic flux distribution is different depending on
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Fig. 2.9. (a) Magnetization and (b) magnetic flux distribution at each point. The
letter at each point corresponds to the letter in equation number in Eq. (2.55)
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Fig. 2.10. Reduced magnetization curves for various values of
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the history of application of magnetic field and current even for the same final
boundary condition. For example, the upper part of Fig. 2.11(a) represents
the magnetic flux distribution for the case where the magnetic field is applied
(broken line) and then the current is applied (solid line). The upper part of
Fig. 2.11(b) shows the distribution when the order of application is reversed.
The corresponding current distributions are given in the lower figures. Thus,
the magnetic flux distribution changes generally depending on the order of
application of the magnetic field and the current. In any case the resultant
magnetic flux distribution can be easily obtained from the critical state model
with taking into account the history dependent boundary condition.

In the full critical state where the current flows in the same direction
throughout the superconductor, the magnetic flux distribution is schemati-
cally shown in Fig. 2.12 and does not depend on the order of application of
the magnetic field and the current. In this case from the boundary condition
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Fig. 2.11. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the superconductor when the magnetic field and the current are applied
simultaneously: (a) in case where the current is applied after the magnetic field and
(b) in the opposite case
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Fig. 2.12. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the complete critical state where the critical current flows. The broken lines
show the distributions when the mean critical current density (J.) flows

we have
B*77(2d) = B*77(0) — 2(uoHp)* ™7 . (2.59)

Hence, the average critical current density obtained from measurements, which
corresponds to the slope of the broken line in the upper part of Fig. 2.12, is
calculated from

(He + (Joyd)*™ = (He — (Jo)d)* ™7 = 2H2 77 . (2.60)

In general H, is replaced by Ig'e and if the self field, (J.)d, is sufficiently smaller
than H., Eq. (2.60) can be expanded in a series. Then, from an iteration
approximation we have

_ G M ﬂ 4—2~

In the above equation the first term is equal to the local critical current
density at which the local magnetic field is equal to the external field He. The
iteration approximation is correct when the ratio, H,/He = ¢, is sufficiently
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smaller than 1. The correction by the second term is relatively on the order
of e4727,

For the transport current over this density, there is no solution of stable
magnetic flux distribution. That is, the flux flow state sets in and we have to
solve Eq. (2.13) including the viscous force.

In the above we have treated only the case where the magnetic field is
applied parallel to the superconducting slab. Now we consider the case where
the magnetic field is applied normal to the superconducting slab. It is as-
sumed that the magnetic field and the current are applied along the z- and
y-axes, respectively, of a wide superconducting slab parallel to the z-y plane.
In this case the magnetic flux density inside the superconductor contains a
uniform z-component poH, and an x-component due to the current varying
in the direction of the thickness, i.e., the z-axis. The distributions of cur-
rent and magnetic flux due to the self field are shown in Fig. 2.13(a) and
(b), respectively, in case of a total current smaller than the critical value. We
have assumed the Bean-London model for simplicity. Figure 2.13(c) shows the
magnetic flux structure and the direction of the Lorentz force as indicated by
the arrows. The Lorentz force in this configuration can be regarded as the
restoring force against the curvature of the flux lines and is called the “line
tension.” On the other hand, the Lorentz force which appears in the case
shown in Fig. 2.6 originates from the gradient of the density of flux lines and
is called the “magnetic pressure.”

(a) (b)

Fig. 2.13. Distributions of (a) the current and (b) the magnetic flux component
parallel to the surface of the superconducting slab when the magnetic field normal
to the slab and the current smaller than the critical value are applied. (c) represents
the magnetic structure and the arrows show the direction of the Lorentz force
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2.6 Effect of Diamagnetism

The magnetization described by the above critical state model is diamag-
netic in an increasing field and paramagnetic in decreasing one, as shown
in Fig. 2.9. Especially at high fields, the increasing and decreasing branches
of the magnetization curve are almost symmetrical about the field axis. On
the other hand, the magnetization curves shown in Fig. 2.14(a) and (b) are
asymmetric and biased to the diamagnetic side. This comes from the essen-
tial diamagnetism of the superconductor. The magnetization curve of Fig. 2.9
corresponds to the case where the diamagnetic magnetization is much smaller
than the magnetization due to the pinning effect.

The magnetic flux distribution inside the superconductor in an increasing
field is schematically shown in Fig. 2.15. In the figure By is the magnetic
flux density in equilibrium with the external magnetic field H,. That is, the
difference between By/uo and H, gives the diamagnetic magnetization. The
observed magnetization is proportional to the area of the hatched regions in
the figure: region ‘a’ represents the contribution from the diamagnetism and
region ‘b’ represents that from the flux pinning effect. The magnetization
due to the pinning is relatively large in the case where the diamagnetism is
small, the critical current density is large, and the superconductor is large in
size. The last point is due to the fact that the pinning current is distributed
throughout the whole region of the superconductor, while the diamagnetic
shielding current is localized in the surface region. The magnitude of magne-
tization is proportional to H},, and hence, is proportional to the sample size.
Therefore, with reference to Fig. 2.14, the effect of diamagnetism cannot be
neglected in the following cases:

(1) Superconductors in which the diamagnetism is strong, and hence, the
lower critical field H.; is large. These are mostly superconductors with
small G-L parameters « as shown in Fig. 2.14(a).

(2) Superconductors in which the pinning force is weak. In Bi-based oxide
superconductors especially at high temperatures, for example, although
the diamagnetism is small as characterized by low H.i, the contribution
of pinning is smaller, resulting in a conspicuous diamagnetism.

(3) Superconductors that are small in size. Figure 2.14(b) shows the magne-
tization of fine particles of V3Ga. Although V3Ga is used as a commercial
superconductor and its pinning is strong, the magnetization due to the
pinning is small because of small sample size. Similar results are observed
in sintered Y-based oxide superconductors in which the coupling between
fine grains is very weak.

The diamagnetic effect on the magnetic flux distribution in a superconduc-
tor is most simply treated by taking into account only the difference between
uoHe and By as a boundary condition and proceeding the manner of Sect. 2.5
to solve B(x). However, this method is not correct in a strict sense, since
the driving force on the flux lines is slightly different from the Lorentz force
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Fig. 2.14. Magnetization of (a) Ta with low k-value at 3.72 K [19] and (b) V3Ga
powders at 4.2 K [20]. In (b) the effect of diamagnetism is relatively large because
of the small grain size in spite of strong pinning

for superconductors in which the diamagnetic effect cannot be disregarded as

mentioned in Sect. 2.1.

The thermodynamic magnetic field 7, which is the external variable cor-
responding to the internal variable B, is defined by Eq. (2.6) and the flux lines
are driven by the distortion of the thermodynamic magnetic field. We assume
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0 d x

Fig. 2.15. Magnetic flux distribution in increasing field. ‘a’ and ‘b’ correspond to
the contributions from the diamagnetism and the pinning to the magnetization,
respectively

for example that there are no pinning centers in a region near the surface of
the superconductor. The free energy in this region is given by Eq. (1.112) and
it can be seen from Egs. (2.6) and (1.113) that the thermodynamic magnetic
field is equal to the external magnetic field. That is, if the thermodynamic
magnetic field is different from the external magnetic field, a force propor-
tional to the difference acts on the flux lines near the surface. The same also
occurs inside the superconductor. If there exists a distortion in H, a driving
force acts so as to reduce the distortion. As mentioned above, the driving
force comes from the gradient of H (the rotation of H in a strict sense) but
not from the gradient of B which gives rise to the Lorentz force. Here we
assume the case where two pin-free superconductors with different diamag-
netism are in contact with each other as shown in Fig. 2.16 and in equilibrium
with the external magnetic field. Since each superconductor is in equilibrium
with the external field, an equilibrium state is also attained between the two
superconductors. Hence, the flux lines do not move. In this case, a net current
flows near the boundary of the two superconductors because of the difference
in the magnetic flux density B due to the difference in the diamagnetism. The
Lorentz force due to this current drives the flux lines from superconductor I
to superconductor II. On the other hand, since the diamagnetism is stronger
in superconductor II, the diamagnetic force pushes the flux lines to supercon-
ductor I. These forces cancel out and a net driving force does not act on the
flux lines. The situation is the same also in the case where B and H vary
continuously.
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o, poI Mo

superconductor I |superconductor II

Fig. 2.16. Magnetic flux distribution in two pin-free superconductors, which are in
contact with each other and in equilibrium with external magnetic field

It can be seen from the above argument that the relationship between H
and B is the same as the one between the external magnetic field H, and
B in the case where the pinning energy is not contained in the free energy,
i.e., ' = F;. Hence, this result in the ideal case seems to be approximately
applicable to weakly pinned superconductors. When the variation with time
is not too fast, the magnetic flux distribution can be obtained from the force

balance equation R
(VXxH)x B—-06F,(B)=0 (2.62)

and

H=f(B) or B=f"Y(H), (2.63)

where f is a function derived from Eq. (2.6).

In practical cases it is not easy to derive Eq. (2.63) theoretically from
Eq. (2.6). Especially it is not possible to express the feature over a wide range
of magnetic field strengths by a single expression. However, an approximate
expression which fits well with experimental results throughout the entire field
range can be easily found for low s superconductors. For example, Kes et al.
[21] proposed the relationship

H—Hg \"
B= —poHe |1 — | —7-—) |; He <H < H. 2.64
[L()H Hotlc [ <Hc2 — HC1> :| 1 H 2 ( 6 )
with
n Hor — Ha (2.65)

T 116(262 — 1)Hoy
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The expression for the pinning force density, Eq. (2.46), should also be mod-
ified so that it reduces to zero at the upper critical field in order to analyze
the magnetization over the entire field range. We use the expression

PN
F,(B) = a.B" (1 B ) . (2.66)

Here, as in the last section, we consider an external magnetic field H, applied
parallel to the superconducting slab occupying 0 < x < 2d. We treat the
half-slab, 0 < x < d, in an increasing magnetic field, for which 6 = 1. In this
one-dimensional case, Eq. (2.62) leads to

H—Hey n\ —B
acug—l(x — ggc) = —/ (@ + c@n)l—v <1 _ 9209> de (2.67)
0 c2
with -
cl
C= 07~ - 2.68
(HC2 - Hcl)n ( )

In the above H = |H| and x = z. represents the position where H = H..
Equation (2.67) can be solved only numerically. The relationship between H
and z is obtained from this solution and the magnetic flux distribution, the
relationship between B and z, is obtained from Eq. (2.64). The distributions
of B and Moﬁ inside the superconducting slab are schematically shown in
Fig. 2.17.

The magnetic flux distributions obtained from Eq. (2.67) are only those in
the region where B> 0, i.e., H> H_.,. Here we shall discuss the distributions
in the other region. For example, during the initial magnetization, i.e. during
0 < H, < H.y, flux lines do not exist within the superconductor and B = 0.
In this case, H cannot be defined by Eq. (2.6) and the definition itself is
meaningless. As the external field continues to increase and H, slightly exceeds
H_q, the point, x = x., exists inside the superconductor and the distributions
of B and H are as shown in Fig. 2.18. In the region z. < x < d, flux lines
do not exist and the definition of H is again meaningless. When H, is further
increased, the distributions again change as shown in Fig. 2.17.

Now we consider the case of decreasing field. For H, > H,; distributions
like the inverse of those given in Fig. 2.17 are expected. A question arises
when H, is reduced below H,;. Since the magnetic flux density B reduces to
zero at the surface, ¢ = 0, when H, = H.1, how do the distributions change
when the external field is further decreased? Walmsley [22] speculated that
the inner flux distribution remained unchanged as shown by the solid line
in Fig. 2.19 when H, is decreased below H.;, since B = 0 is in equilibrium
with H, for 0 < H, < H.;. This is identical with the assumption that only the
diamagnetic shielding current at the surface, i.e., the Meissner current changes
with decreasing magnetic field. According to this model the magnetization
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Fig. 2.17. Distributions of B and poH in the superconductor in an increasing field
when the magnetic flux penetrates the entire region of the superconductor
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Fig. 2.18. Distributions of B and po when the external magnetic field slightly
exceeds H.q
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Fig. 2.19. Distributions of B and poH assumed by Walmsley [22] when the external
field is decreased below H.i. These distributions were assumed to remain unchanged
even when the external magnetic field reduces to zero

varies, with a slope of —1, parallel to the initial magnetization curve with
decreasing field from H.,. However, as shown in Fig. 2.14, the slope of the
magnetization is actually much gentler than this, suggesting a continuous
discharge of flux lines. Frequently less than a half of the trapped flux at
H. = H. remains inside the superconductor at H, = 0. According to the
expression of Campbell and Evetts, [23] the magnetization varies in this field
range as if the boundary condition is given by B(0) = poH,. Practically the
more flux lines than this speculation are discharged from the superconductor
by the diamagnetism.

Why are the flux lines discharged from the superconductor? If the magnetic
flux distribution shown in Fig. 2.19 is realized, the corresponding distribution
of thermodynamic field H is speculated to be that indicated by the broken line
in the figure, which is very different from the external field H, at the surface.
As a result of this difference the flux lines near the surface are expected to be
driven to outside the superconductor. Experiments suggest that the magnetic
flux distribution is as shown by the solid line in Fig. 2.20. Here it is necessary
to define the thermodynamic magnetic field in the region below H.;. If we
remember the fact that the relationship therein between B and H is the same
as that between B and H,, it seems to be reasonable to assume

B=0; O0<H<H,4 (2.69)
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Fig. 2.20. Distributions of B and poH speculated from experimental results when
the external field is decreased below H.1

independently of the definition in Eq. (2.6). However, we should be careful
about such an oversimplified treatment. Even if H can be defined, why is it
possible for H to possess a gradient in the region where the flux lines do not
exist? In such a region the magnetic property should be just the same as that
in pin-free superconductors.

In practice it seems that some flux lines are trapped by “pinning layers”
even in the region where B is macroscopically regarded as zero. This is a
fundamental phenomenon that cannot be described by the macroscopic critical
state model; hence a more microscopic discussion is necessary. For simplicity,
we assume that the flux lines move across a multilayered structure composed
of ideal superconducting layers and pinning layers [24] as shown in Fig. 2.21. In

polH+ A5

ot
1 B+AB

Fig. 2.21. Idealized one-dimensional multilayer structure composed of supercon-
ducting and pinning layers
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each superconducting layer B and H are considered to be uniform. Because
of the interaction between the flux lines and the pinning layer, differences
appear in B and H, respectively, in the pair of superconducting layers on
either side of the pinning layer. The continuous distributions given in Fig. 2.17
are macroscopic representations of this step-wise variation of B and H.
Consider the region near the surface and assume the situation where the
external magnetic field has been reduced to H.; and that B = 0 and H =
H., are attained in the superconducting layer just inside the surface. The flux
lines still remain in the next superconducting layer as shown in Fig. 2.22(a).
When the external field is further decreased, the difference in H between the
first and second superconducting layers exceeds the value determined by the
flux pinning strength and the flux lines in the second superconducting layer
cross the pinning layer and go out of the superconductor. Thus, B and H in
the second superconducting layer decrease with decreasing external field. We
denote the value of the external field by H, = H¢; — AH,, at which B = 0 and
‘H = H.; are attained in the second superconducting layer. It should be noted
that the magnetic flux density B is zero in the both superconducting layers,
while the thermodynamic field ‘H differs by AH,,. This can be explained by
the fact that the flux lines are trapped in the pinning layer. In this situation
a net current does not flow because B = 0 in the two superconducting layers.
The diamagnetic force proportional to the difference in H on the trapped flux
lines in the pinning layer is balanced by the pinning force. When the external
magnetic field is further decreased, the diamagnetic force is enhanced and the
flux lines leave the superconductor. Thus, the variation in H penetrates the su-
perconductor and other flux lines come from the inner region and are trapped
in the pinning layer. It is considered that flux lines always exist in the pinning

- H -
_ HHa H=H,~AH, A T=Ha
B
B=0 B=0 B=0
(a) (b)

Fig. 2.22. Magnetic flux density and thermodynamic magnetic field in the supercon-
ducting layer just inside the surface (left-hand side) and the next superconducting
layer (right-hand side); (a) when H, is reduced to Hci and (b) when He is slightly
reduced from H.; so that B becomes zero in the next superconducting layer. For
simplicity po is omitted for H
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layer and that the difference in H across the pinning layer does not disappear.
If the thickness of each superconducting layer is not very much larger than A,
such a penetration of B and H variation into the superconductor is expected
to occur. As a result, it is proved that a gradient of H exists in the region
where B = 0 macroscopically as drawn in Fig. 2.20.

Here we assume that H is described by

dH

Y _u—bH: O0<H<H,, 2.70
o a—bH ; <H<Hqg ( )

where a and b are positive parameters. In a decreasing field, dH /dz is positive
and from the boundary condition that H = H, at x = 0, we have

H = % - (% - H) exp(—bz). (2.71)
The position at which H = H; is given by
1 a—bH,
c=-1 — . 2.72
v bog<a—bHcl) (272)

The distributions of H and B in the region x > z. are given by Eq. (2.67)
(with a change of the sign of the right-hand side) and Eq. (2.64), respectively.
The magnetization is calculated by inserting this result for B into Eq. (2.54).
The result of numerical calculation [24] based on the above model is compared
with an experimental result for Nb foil by Kes et al. [21] in Fig. 2.23. The
good agreement indicates that the above model describes the phenomenon
correctly.

0.4~
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Fig. 2.23. Observed magnetization (solid line) on a Nb foil at 3.51 K [21] and cor-
responding theoretical result (open circles). The chained line shows the speculation
from Walmsley’s model
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Derivation of the flux distributions in reversed external magnetic field is
left as Exercise 2.5 at the end of this chapter.

2.7 AC Losses

When the magnetic field or the current applied to the superconductor changes,
the magnetic flux distribution in it also changes. This change induces an
electromotive force and results in the energy loss. The input power density
under the motion of flux lines driven by the Lorentz force is given by Eq. (2.34).
According to the critical state model in which the phenomenon is assumed to
be completely irreversible, the power loss density is written as

~

J-E=7F,(B) + ng# >0 (2.73)
0

with the aid of Eq. (2.13), where ¥ = |v|. The first and second terms on

the right-hand side in Eq. (2.73) are the pinning power loss density and the

viscous power loss density, respectively, and both quantities are positive. Since

the viscous force is generally much smaller than the pinning force, the viscous

loss is not treated in this section. In what follows we consider an AC magnetic

field to be applied parallel to a wide superconducting slab of thickness 2d as
in Sect. 2.5.

If we again use the Irie-Yamafuji model [6] given by Eq. (2.46) for the

~

pinning force density Fj,(B), the pinning power loss density is given by
P(z,t) = a.B"D . (2.74)

Equation (2.15) is used for eliminating v. From the fact that ¥ = 0 at the
breaking point of the distribution, z = x,, Eq. (2.74) can be written as

x
P(z,t) = —a. B / 3284 . (2.75)

o Ot
The variation in magnetic flux distribution penetrates always from the surface
of the superconductor and ends at the breaking point of the distribution. In
the region beyond this breaking point the magnetic flux distribution does not
vary and ¥ and E are zero. When the viscous force can be neglected, the time
variation of the magnetic flux density B in the superconductor comes only
from that of its value at the surface, By. If the diamagnetic surface current
and the surface irreversibility are neglected as assumed in Sect. 2.5, By is
approximately given by ugH, as in Eq. (2.48), and the kernel in the integral
in Eq. (2.75) may be written as

~ ~ ~ ~ 11—y  ~
0B 9B oH. _ o ., (H.)\ oM.
65 = 581{1\'(3 ot - 50#0 < = ) ot . (276)
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Hence, Eq. (2.75) reduces to

~ ~ 1—v
H, H, ~ ~
P(z,t) = 88t 8o <"°§ ) (6B — 6uBy) , (2.77)

where J, and Eb are the values of § and B at the breaking point, z = xp.
Equation (2.77) gives the instantaneous pinning power loss density P(z) at
an arbitrary point in the superconductor. Examples of P(x) distributions are
shown in Fig. 2.24. The value of P(z) diverges at the annihilation point of
flux lines, i.e. at B =0 in case ~v # 1. This divergence in P(x) originates from
the divergence of the critical current density J. at B = 0 which in turn is the
inevitable result of the use of Eq. (2.46) as a simple approximation for the
magnetic field dependence of J.. However, even if the local power loss density
diverges, the average value is finite as will be shown later. This is similar to
the fact that the average critical current density is finite, even if the local
value diverges. Hence, such a divergence in the power loss density is not a

B

/‘LOHe ]

Fig. 2.24. Distributions of magnetic flux (upper figure) and pinning power loss
density (lower figure) in a decreasing field for (a) He > 0 and (b) He < 0. The
pinning power loss density diverges at the point B = 0 according to Irie-Yamafuji
model [6]
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serious problem. This result approximates rather well the tendency for the
power loss density to be large when B ~ 0 and J. is also large.

After averaging Eq. (2.77) in space and integrating it with time during a
period of one cycle of the AC magnetic field, the pinning energy loss density

is obtained:
1 b
= f/dt/ P(z,t)dx
d 0

1—v N N Tp R R
= “Od /dHeaoH;*V/ B7"Y(0B — 6,By)dx . (2.78)
0

In the above we used the fact that the loss occurs only in the region from
the surface (z =0) to the breaking point of the distribution (xr = z1,). The
integral with respect to }AIe is taken for a period of one cycle of the AC field.
After integrating with respect to space we have

H. - 6,B,)2dH. . 2.
= 2o Od/5o 7(dopo 3, By)2d (2.79)

In determining W from Eq. (2.79) there are three cases depending on the
magnitude of AC field amplitude, Hy,, for the same reason that the calculation
of magnetization in Sect. 2.5 must be subdivided into three regions, i.e. for
which: Hy,, < Hy, H, < Hy < 2V H, and H,, > 2@V H,. In this
section we treat the simplest case, Hy, < Hp. Calculation of the pinning
energy loss density in the other cases is given as an exercise. We divide the
integral in Eq. (2.79) into (i) the region where H, = H, varies from Hy, to
zero (6p = 6, = —1) and (ii) the region where H, varies from zero to —Hy,
(H, varies from zero to Hy,, § = 1 and &, = —1). By symmetry the pinning
energy loss density is double the sum of the two contributions. Thus

2(2—7) poHy "
W = K = 2.80
5 KO R (2.80)
where K () is a function of v defined by
2 1
K(y) = 3{ 2*1/(277)/ (1 4 (2-T) V@)
4—n 0
- (1- 42-7)1“2—%@“} : (2.81)

As shown in Fi