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Preface

Superconductivity is now a considerable focus of attention as one of the tech-
nologies which can prevent environmental destruction by allowing energy to
be used with high efficiency. The possibility of practical applications of super-
conductivity depends on the maximum current density which superconductors
can carry, the value of losses which superconductors consume, the maximum
magnetic field strength in which superconductors can be used, etc. These fac-
tors are directly related to the flux pinning of quantized magnetic flux lines in
superconductors. This book extensively describes related subjects, from the
fundamental physics of flux pinning to electromagnetic phenomena caused by
flux pinning events, which will be useful for anyone who wants to understand
applied superconductivity.

The Japanese edition was published for this purpose in 1994. Since then,
there has been significant progress in the research and development of high-
temperature superconductors. In particular, the new superconductor MgB2

was discovered in 2001, followed by steady improvements in the supercon-
ducting properties necessary for applications. On the other hand, there are
no essential differences in the flux pinning phenomena between these new
superconductors and metallic superconductors. Hence, the framework of the
previous Japanese edition was kept unchanged, while new description was
added on these new superconductors in the English edition.

In the following the content of each chapter is briefly introduced.
In Chapter 1 various fundamental superconducting properties which de-

termine the flux pinning and electromagnetic phenomena in type II supercon-
ductors are described, based on the Ginzburg-Landau theory. In particular,
it is shown that the center of a quantized flux line must be in the normal
state so that the Josephson current does not diverge due to the singularity in
the gradient of the phase of the superconducting order parameter there. This
causes a loss due to the motion of normal electrons in the core that is driven
by the electric field, which is induced when flux lines are forced to move by
the Lorentz force. At the same time such a structure of the core contributes
to the flux pinning event. The role of the kinetic energy in determination of



VI Preface

the upper critical field is also shown. This will help the readers to understand
the kinetic energy pinning mechanism for the artificial Nb pinning centers
introduced into Nb-Ti, which is discussed in Chapter 6.

In Chapter 2 the critical state model, which is needed to understand the
irreversible electromagnetic phenomena in superconductors, is described. The
mechanism of the irreversibility is introduced on the basis of the ohmic electric
resistivity, which is induced when a flux line is driven by the Lorentz force.
On the other hand, the losses in superconductors are non-ohmic ones with
a hysteretic nature. The reason for this will also be discussed. The critical
state model provides the relationship between the current density and the
electric field strength, and the electromagnetic phenomena in superconductors
are described by the Maxwell equations coupled with this relationship. It is
shown that the critical state model can describe irreversible magnetizations
and AC losses in superconductors. The effect of superconductor diamagnetism
will also be an important topic.

Various electromagnetic phenomena are introduced in Chapter 3. These
include geometrical effects and dynamic phenomena which were not treated
in Chapter 2. The rectifying effect in the DC current-voltage characteristics
in a superposed AC magnetic field, flux jumps, surface irreversibility, and
DC susceptibility in a varying temperature are also included. In addition,
it is shown that an abnormal reduction in losses occurs, deviating from the
prediction of the critical state model when an AC magnetic field is applied to a
superconductor smaller than the pinning correlation length called Campbell’s
AC penetration depth. This is attributed to the reversible motion of flux lines
limited within pinning potential wells, being in contrast with the hysteresis
loss which results from the flux motion involved in dropping into and jumping
out of the pinning potential wells. In high-temperature superconductors the
superconducting current sustained by flux pinning appreciably decays with
time due to the thermal agitation of flux lines. This phenomenon, which is
called flux creep, is also discussed. In extreme cases the critical current density
is reduced to zero at some magnetic field called the irreversibility field. The
principles used to determine the irreversibility field are described, and the
result is applied to high-temperature superconductors in Chapter 8.

In Chapter 4 various phenomena which are observed when the transport
current is applied to a long superconducting cylinder or tape in a longitudi-
nal magnetic field are introduced, and the force-free model, which assumes
a current flow parallel to the flux lines, is explained. Although this model
insists that the force-free state is intrinsically stable, the observed critical
current density in a longitudinal magnetic field depends on the flux pinning
strength, similarly to the case in a transverse magnetic field, indicating that
the force-free state is unstable without the pinning effect. From the energy
increase caused by introducing a distortion due to the parallel current to the
flux line lattice the restoring torque is derived, and the critical current den-
sity is predicted to be determined by the balance between this torque and
the moment of pinning forces. The resultant rotational motion of flux lines
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explains the observed break in Josephson’s formula on the induced electric
field. A peculiar helical structure of the electric field with a negative region
in the resistive state can also be explained by the flux motion induced by the
restoring torque.

The critical current density is a key parameter which determines the ap-
plicability of superconductors to various fields, and hence the measurement of
this parameter is very important. In Chapter 5 various measurement methods
are reviewed, including transport and magnetic ones. Among them, it is shown
that distributions of magnetic flux and current inside the superconductor can
be measured by using Campbell’s method, which is also useful for analyz-
ing the reversible motion of flux lines discussed in Chapter 3. However, if AC
magnetic methods including Campbell’s method are used for superconductors
smaller than the pinning correlation length, the critical current densities are
seriously overestimated. The reason for the overestimation is discussed, and a
method of correction is proposed.

Mechanisms of pinning interactions between various defects and individ-
ual flux lines are reviewed, and the elementary pinning force, the maximum
strength of each defect, is theoretically estimated in Chapter 6. These include
the condensation energy interaction, the elastic interaction, the magnetic in-
teraction and the kinetic energy interaction. In particular, the reason why the
flux pinning strength of thin normal α-Ti layers in Nb-Ti is not weak in spite
of a remarkable proximity effect, is discussed. The kinetic energy interaction
is proposed as the pinning mechanism responsible for the very high critical
current density achieved by Nb layers introduced artificially into Nb-Ti. The
shape of pinning centers, which contributes to the enhancement of the pinning
efficiency, is also discussed.

In Chapter 7 the summation problems which relate the global pinning
force density to the elementary pinning forces and number densities of pin-
ning centers are discussed. The summation theories are reviewed historically
according to their development, since the fundamental issue of threshold value
of the elementary force, which is deeply associated with the nature of hystere-
sis loss by the pinning interaction, was proposed first by the statistical theory.
Then, the consistency of this theory with the dynamic theory is shown. The
fundamental threshold problem was resolved by Larkin and Ovchinnikov, who
showed that a long-range order does not exist in the flux line lattice. However,
quantitative disagreements are sometimes found between their theory and ex-
periments, and the instability of flux motion related to the hysteresis loss is
not clearly described in this theory. In the coherent potential approximation
theory the statistical method is used, taking into account the lack of long range
order, and the compatibility of the threshold problem and the instability of
flux motion is obtained. A detailed comparison is made between the theories
and experiments. The saturation phenomenon observed for commercial metal-
lic superconductors at high fields is explained, and experimental results are
compared with Kramer’s model, etc. The theoretical pinning potential energy,
which is important for the analysis of flux creep, is also derived.
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In Chapter 8 the various properties of high-temperature superconductors
are discussed. These superconductors show significant anisotropy due to the
two-dimensional crystal structure composed of superconducting CuO2 lay-
ers and insulating block layers. This makes the states of flux lines extremely
complicated. Various phase transitions of the flux line system to be pinned
and the mechanisms responsible are reviewed. In particular, the transitions in
which the pinning plays an important role, i.e., the order-disorder transition
associated with the peak effect of critical current density and the glass-liquid
transition associated with the irreversibility field, are discussed in detail. The
influences on these transitions, not only of the flux pinning strength and the
anisotropy of the superconductor, but also of the electric field and the speci-
men size are discussed. Y-123, Bi-2212, and Bi-2223, which have been devel-
oped for applications, are at the focus of the discussion, and their pinning
properties and recent progress are introduced.

Superconducting MgB2 was discovered in 2001. Since this superconductor
has a critical temperature considerably higher than those of metallic super-
conductors and is not seriously influenced by weak links and flux creep as
in high-temperature superconductors, applications of this superconductor are
expected in the future. In fact, the critical current density was improved sig-
nificantly within a very short period after the discovery. In Chapter 9 the
pinning property introduced by grain boundaries in MgB2 is reviewed, and
the mechanism which determines the present critical current density is dis-
cussed. Then, the matters to overcome are summarized as topics for further
improvements. Finally the potential for realization of the improvement is dis-
cussed by comparing the condensation energy of this material with the values
of Nb-Ti and Nb3Sn.

Thus, this book deals with the flux pinning mechanisms, the fundamental
physics needed for understanding the flux pinning, and various electromag-
netic phenomena caused by the flux pinning.

On the other hand, it is effective to focus on one matter which is described
in many chapters to give a comprehensive understanding. The size of super-
conductors is a focus of attention, for example. When the superconductor is
smaller than the pinning correlation length, pinning at a lower dimension with
a higher efficiency occurs, resulting in the disappearance of the peak effect of
the critical current density. In this case the irreversibility field is smaller than
the bulk value due to a smaller pinning potential. At the same time the flux
motion becomes reversible in the electromagnetic phenomena, resulting in a
significant reduction in AC losses. This also causes a serious overestimation of
the critical current density from AC magnetic measurements. It is also worth
noting that the concept of irreversible thermodynamics on minimization of en-
ergy dissipation appears in various pinning phenomena discussed in this book.
Another example may be found in a contrast between the flux motion driven
by the Lorentz force and the rotational flux motion driven by the force-free
torque treated in Chapter 4. The former shows an analogy with mechanical
systems, but the latter does not, and the flux motion is perpendicular to the
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energy flow. This contrast is associated with the fact that the force-free torque
is not the moment of forces.

In this book appendices are included to assist the understanding of readers.
Many exercises and detailed answers will also be useful for better understand-
ing.

Finally the author would like to thank Ms. T. Beppu for drawing all elec-
tronic figures and for assistance in making electronic files. The author acknowl-
edges also Dr. T.M. Silver at Wollongong University, Prof. E.W. Collings of
Ohio State University, and Dr. L. Cooley of Brookhaven National Laboratory
for correction of the English in the book.
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Introduction

1.1 Superconducting Phenomena

The superconductivity is a phenomenon that was discovered first for mer-
cury by Kamerlingh-Onnes in 1911 and has been found for various elements,
alloys and compounds. One of the features of superconductivity is that the
electrical resistance of a material suddenly drops to zero as the temperature
decreases through a transition point; such a material is called superconductor.
Advantage is taken of this property in the application of the superconduct-
ing phenomenon to technology. Later it was found that the origin of the zero
electrical resistivity is not the perfect conductivity as such but the perfect
diamagnetism, i.e., the ability of the superconductor to completely exclude
a weak applied magnetic field. A related phenomenon is the complete expul-
sion of a weak applied magnetic field as the temperature decreases through
the transition point. These diamagnetic phenomena are called the Meissner
effect. As will be mentioned later, the perfect diamagnetism is broken at suffi-
ciently high magnetic fields. There are two alternative ways in which this break
down can take place depending on whether the superconductor is “type-1” or
“type-2.” In type-2 materials the superconductivity can be maintained up to
very high fields even after the break down. Such superconductors are therefore
suitable for use in high-field devices such as magnets, motors, and generators.

Another characteristic of superconductivity is the existence of a gap, just
below the Fermi energy, of the energy of the conduction electrons. It turns
out that the electron energy in the superconducting state is lower than that in
the ground state of the normal state; the difference in the energy per electron
between the two states is the energy gap. The size of the energy gap in the
superconductor can be measured using the absorption of microwave radiation
in the far infrared range, or the tunneling effect of a junction composed of a
superconductor and a normal metal separated by a thin insulating layer. In
the case of a sufficiently small excitation, the energy gap provides a barrier
against the transition of electrons from the superconducting state to the nor-
mal state. That is, even when the electrons are scattered by lattice defects,
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impurities, or thermally oscillating ions, the energy may not be dissipated
and hence, electrical resistance may not appear. It was theoretically proved
by Bardeen, Cooper and Schrieffer in 1957 that the electrons in the vicinity of
the Fermi level exist in so-called Cooper pairs whose condensation yields the
superconducting state. This is essentially the BCS theory of superconductiv-
ity.

Another essential property of type-2 superconductors is embodied in the
so-called Josephson effect. In a junction composed of two superconductors sep-
arated by a thin insulating layer, the local property of type-2 superconductor
can be directly observed without being averaged. The DC Josephson effect
that predicts the superconducting tunneling current is not the tunneling of
normal electrons but the tunneling of the Cooper pairs described by a macro-
scopic wave function. The effect demonstrates that the superconducting state
is a coherent state in which the phase of a macroscopic wave function, which is
introduced later as the order parameter of the Ginzburg-Landau (G-L) theory,
is uniform in the superconductor. In this state the quantum mechanical prop-
erty is maintained up to a macroscopic scale and the gauge-invariant relation
is kept between the macroscopic wave function and the vector potential. This
leads to the macroscopic quantization of magnetic flux through the quanti-
zation of the total angular momentum, and this phenomenon can be directly
seen from the interference of the superconducting tunneling current due to the
magnetic field. Another important result, the AC Josephson effect, describes
the relation between the time variation rate of the phase of macroscopic wave
function and the voltage which in this case appears across the junction. This
voltage comes from the motion of the quantized magnetic flux and is identical
to the voltage observed in a type-2 superconductor in the flux flow state as
will be shown later.

The superconducting state transforms into the normal state at temper-
atures above the critical temperature and magnetic fields above the critical
field. Transitions from the superconducting state to the normal state and
vice versa are phase transitions comparable, for example, to the transition
between ferromagnetism and paramagnetism. From a microscopic viewpoint,
the Cooper-pair condensation of electrons (which can be compared to a Bose-
Einstein condensation of Bose particles) results in the superconducting state
and the electron energy gap that exists between the superconducting and
normal states. From a macroscopic viewpoint, on the other hand, the super-
conducting state is a thermodynamic phase and thermodynamics is useful in
the description of the phenomenon. Finally, since the electron state is coherent
in the superconducting state, the G-L theory, in which the order parameter
defined as a superposed wave function of coherent superconducting electrons
is used. Among its many applications it is suitable for describing the magnetic
properties of type-2 superconductors.

In 1986 a La-based copper-oxide superconductor with a higher criti-
cal temperature than metallic superconductors was discovered by Bednortz
and Müller. Taking advantage of this break through, numerous so-called
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“high-temperature” superconductors with even higher critical temperatures
but containing Y, Bi, Tl and Hg instead of La were discovered. The exact
mechanism of superconductivity in these materials is not yet understood. We
have yet to wait for a suitable microscopic explanation. However, the macro-
scopic electromagnetic properties of high-temperature superconductors have
been found to be describable phenomenologically in a manner comparable
to those previously applied to metallic superconductors. In this description,
the characteristic features of high-temperature superconductors are a large
two-dimensional anisotropy originating in the crystal structure and a strong
fluctuation effect. The latter feature results from a short coherence length in
associating with the high critical temperature, the quasi-two-dimensionality
itself, and the condition of high temperature. It was shown theoretically that,
as a result of the fluctuation effect, the phase boundary between the super-
conducting and normal states derived using G-L theory within a mean field
approximation is not clear. It follows that a G-L description would be correct
only in the region far from the phase boundary. However, because these ma-
terials have such high upper critical fields G-L theory is still valid over a wide
practical range of temperature and magnetic field.

This book is based on the G-L theory that describes the superconductivity
phenomenologically and the Maxwell theory that is the foundation of the
electromagnetism. The SI units and the E-B analogy are used.

1.2 Kinds of Superconductors

There are two kinds of superconductor – type-1 and type-2. These are classified
with respect to their magnetic properties.

The magnetization of a type-1 superconductor is shown in Fig. 1.1(a).
When the external magnetic field He is lower than some critical field Hc, the
magnetization is given by

M = −He (1.1)

and the superconductor shows a perfect diamagnetism (B = 0). It is in the
Meissner state. The transition from the superconducting state to the normal
state occurs at He = Hc with a discontinuous variation in the magnetization
to M = 0 (i.e. B = µ0He with µ0 denoting the permeability of vacuum).
For a type-2 superconductor, on the other hand, the perfect diamagnetism
given by Eq. (1.1) is maintained only up to the lower critical field, Hc1, and
then the magnetization varies continuously with the penetration of magnetic
flux as shown in Fig. 1.1(b) until the diamagnetism disappears at the upper
critical field, Hc2, where the normal state starts. The partially diamagnetic
state between Hc1 and Hc2 is called the mixed state. Since the magnetic flux
in the superconductor is quantized in the form of “vortices” in this state, it
is also called the vortex state.

It is empirically known that the critical field of type-1 superconductors
varies with temperature according to
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Fig. 1.1. Magnetic field dependence of magnetization for (a) type-1 superconductor
and (b) type-2 superconductor

Hc(T ) = Hc(0)

[
1 −

(
T

Tc

)2
]

. (1.2)

The lower and upper critical fields of type-2 superconductors show similar
temperature dependences. Obviously they reduce to zero at the critical tem-
perature, Tc. Strictly speaking for type-2 superconductors, whereas the ther-
modynamic critical field, Hc, shows the temperature dependence of Eq. (1.2),
that of Hc2 deviates from this relationship for some superconductors. Espe-
cially in high-temperature superconductors and MgB2 these critical fields have
almost linear temperature dependences even in the low temperature region.
The phase diagrams of type-1 and type-2 superconductors on the temperature-
magnetic field plane are shown in Fig. 1.2(a) and 1.2(b). The superconducting
parameters of various superconductors are listed in Table 1.1. Here Hc in type-
2 superconductors is the thermodynamic critical field. Since Hc1 and Hc2 in
high-temperature superconductors and MgB2 are significantly different de-
pending on the direction of magnetic field with respect to the crystal axes,
the doping state of carriers and the electron mean free path, only the value
of Hc in the optimally doped state is given in the table. The details of the
anisotropy and the dependence on such factors for the critical fields in these
superconductors will be described in Sects. 8.1 and 9.1.

The practical superconducting materials, Nb-Ti and Nb3Sn, belong to the
type-2 class. Their upper critical fields are very high and hence, their super-
conducting state can be maintained up to high fields. In high-temperature
superconductors the upper critical fields are extremely high and it is consid-
ered that a clear phase transition to the normal state does not occur due to
the effect of significant fluctuation at the phase boundary, Hc2(T ), derived
from the G-L theory.
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Fig. 1.2. Phase diagram on the magnetic field vs temperature plane for (a) type-1
superconductor and (b) type-2 superconductor

Table 1.1. Critical parameters of various superconductors

Superconductor Tc µ0Hc(0) µ0Hc1(0) µ0Hc2(0)

(K) (mT) (mT) (T)

Hg(α) 4.15 41 – –
type-1 In 3.41 28 – –

Pb 7.20 80 – –
Ta 4.47 83 – –

Nb 9.25 199 174 0.404
Nb37Ti63 9.08 253 15
Nb3Sn 18.3 530 29
Nb3Al 18.6 33
Nb3Ge 23.2 38
V3Ga 16.5 630 27

type-2 V3Si 16.9 610 25
PbMo6S8 15.3 60
MgB2 39 660
YBa2Cu3O7 93 1270
(Bi,Pb)2Sr2Ca2Cu3Ox 110
Tl2Ba2Ca2Cu3Ox 127
HgBa2CaCu2Ox 128 700
HgBa2Ca2Cu3Ox 138 820
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1.3 London Theory

The fundamental electromagnetic properties of superconductors, such as the
Meissner effect, can be described by a phenomenological theory first pro-
pounded by the London brothers in 1935, even before the discovery of type-2
superconductors. Fortunately this theory turned out to be a good approxima-
tion for type-2 superconductors with high upper critical fields, or with large
values of G-L parameter; several important characteristics of such supercon-
ductors can be derived from this theory. So, we shall here briefly introduce
the classic London theory.

A steady persistent current can flow through superconductors. Hence, the
classical equation of motion of superconducting electrons should be one that
can describe this state. In other words, the deviation from the steady motion,
i.e., the acceleration of superconducting electrons is done only by the force
due to the electric field. Hence, the equation of motion is given by

m∗ dvs

dt
= −e∗e , (1.3)

where m∗, vs and −e∗ are the mass, the velocity and the electric charge (e∗ >
0) of the superconducting electron, and e is the electric field. If the number
density of superconducting electrons is represented by ns, the superconducting
current density is written as

j = −nse
∗vs . (1.4)

Substitution of this into Eq. (1.3) leads to

e =
m∗

nse∗2
· dj

dt
. (1.5)

If the magnetic field and the magnetic flux density are denoted by h and b,
respectively, the Maxwell equations are

∇× e = −∂b

∂t
(1.6)

and
∇× h = j , (1.7)

where the displacement current is neglected in Eq. (1.7). From these equations
and with

b = µ0h , (1.8)

the rotation (curl) of Eq. (1.5) is written as

∂

∂t

(
b +

m∗

µ0nse∗2
∇×∇× b

)
= 0 . (1.9)
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Thus, the quantity in the parenthesis on the left hand side of Eq. (1.9) is a
constant. The London brothers showed that, when this constant is zero, the
Meissner effect can be explained. That is,

b +
m∗

µ0nse∗2
∇×∇× b = 0 . (1.10)

Equations (1.5) and (1.10) are called the London equations. Replacing ∇ ×
∇× b by −∇2b (since ∇ · b = 0), Eq. (1.10) may be written

∇2b − 1
λ2

b = 0 , (1.11)

where λ is a quantity with the dimension of length defined by

λ =
(

m∗

µ0nse∗2

)1/2

. (1.12)

Let us assume a semi-infinite superconductor of thickness x ≥ 0. When an
external magnetic field He is applied along the z-axis parallel to the surface
(x = 0), it is reasonable to assume that the magnetic flux density has only a
z-component which varies only along the x-axis. Then, Eq. (1.11) reduces to

d2b

dx2
− b

λ2
= 0 . (1.13)

This can be easily solved; and under the conditions that b = µ0He at x = 0
and is finite at infinity, we have

b(x) = µ0He exp
(
−x

λ

)
. (1.14)

This result shows that the magnetic flux penetrates the superconductor only
a distance of the order of λ from the surface (see Fig. 1.3). The character-
istic distance λ is called the penetration depth. Since the “superconducting
electron” is by now well known to be an electron pair, we assign a double
electronic charge to e∗, i.e., e∗ = 2e = 3.2 × 10−19 C. As for the mass of
the superconducting electron, m∗, we assume also a double electron mass in
spite of an ambiguity in the mass. Thus m∗ = 2m = 1.8 × 10−30 kg. If we
substitute a typical free-electron number density for ns viz. 1028 m−3, then
λ � 37 nm from Eq. (1.12) and the above quantities. Observed values of λ are
of the same order of magnitude as this estimation. Thus, the magnetic flux
dose not penetrate much below the surface of the superconductor, thereby
explaining the Meissner effect. From Eqs. (1.7), (1.8) and (1.14) it is found
that the current is also localized and flows along the y-axis according to

j(x) =
He

λ
exp

(
−x

λ

)
. (1.15)
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Fig. 1.3. Magnetic flux distribution near the surface of superconductor in the
Meissner state

This so-called Meissner current shields the external magnetic field thereby
supporting the Meissner effect.

We note that the London equations, (1.5) and (1.10), may be derived just
from

j = −nse
∗2

m∗ A , (1.16)

where A is the magnetic vector potential. That is, Eqs. (1.5) and (1.10) re-
spectively can be obtained by differentiation with respect to time and taking
the rotation of Eq. (1.16). Equation (1.16) means that the current density of
an arbitrary point is determined by the local vector potential at that point.
On the other hand, superconductivity is a nonlocal phenomenon and the wave
function of electrons is spatially extended. The electrons that contribute to the
superconductivity are those within an energy range of the order of kBT at the
Fermi level with kB denoting the Boltzmann constant. Hence, the uncertainty
of the momentum of electrons is ∆p ∼ kBT/vF where vF is the Fermi velocity.
Hence, the spatial extent of the wave function of electrons is estimated from
the uncertainty principle as

ξ0 ∼ �

∆p
∼ �vF

kBTc
, (1.17)

where � = hP/2π with hP denoting Planck’s constant. The characteristic
length ξ0 is called the coherence length.

The London theory predicts that physical quantities such as the magnetic
flux density and the current density vary within a characteristic distance λ.
Hence, λ is required to be sufficiently long with respect to ξ0 that the local
approximation remains valid. That is, the London theory is a good approxima-
tion for superconductors in which λ � ξ0. Such superconductors are typical
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type-2 superconductors. In this book the London theory will be used to dis-
cuss the structure of quantized magnetic flux in type-2 superconductors (Sect.
1.5) and to derive the induced electric field due to the motion of quantized
magnetic flux (Sect. 2.2).

1.4 Ginzburg-Landau Theory

Although the London theory explains the Meissner effect, it is unable to deal
with the coexistence of magnetic field and superconductivity such as in the
intermediate state of type-1 superconductors or the mixed state of type-2. The
theory of Ginzburg and Landau (G-L theory) [1] was proposed for the purpose
of treating the intermediate state. This theory is based on the deep insight of
Ginzburg and Landau on the essence of superconductivity, namely that the
superconducting state is such that the phase of the electrons is coherent on a
macroscopic scale. The order parameter defined in the theory is, originally a
thermodynamic quantity, which now has the property of a mean wave function
describing the coherent motion of the center of a group of electrons. This wave
function is comparable to the electron wave function of quantum mechanics.

We define the order parameter, Ψ, as a complex number and assume that
the square of its magnitude |Ψ|2 gives the number density of superconducting
electrons. The free energy of a superconductor depends on this density of
superconducting electrons, and hence, is a function of |Ψ|2. In the vicinity of
the transition point |Ψ|2 is expected to be sufficiently small and it is expected
that the free energy can be expanded as a power series of |Ψ|2:

const. + α|Ψ|2 +
β

2
|Ψ|4 + . . . . (1.18)

For the purpose of describing the phase transition between the superconduct-
ing and normal states, the expansion up to the |Ψ|4 term is sufficient, as will
be shown later.

It is speculated that the order parameter varies spatially due to existence
of the magnetic field. By analogy with quantum mechanics, this should lead
to a kinetic energy. The expected value of the kinetic energy density is written
in terms of the momentum operator known in the quantum mechanics as

1
2m∗Ψ∗(−i�∇ + 2eA)2Ψ , (1.19)

where Ψ∗ is the complex conjugate of Ψ and m∗ is the mass of the super-
conducting electron, the Cooper pair, and we used the fact that the electric
charge of the Cooper pair is −2e. The operator of the momentum takes the
well known form containing the vector potential, A, so that the Lorentz force
on a moving charge is automatically derived. From the Hermitian property of
the operator the kinetic energy density in Eq. (1.19) is rewritten as
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1
2m∗ |(−i�∇ + 2eA)Ψ|2 . (1.20)

Thus, the free energy density in the superconducting state including the en-
ergy of magnetic field is given by

Fs = Fn(0) + α|Ψ|2 +
β

2
|Ψ|4 +

1
2µ0

(∇× A)2

+
1

2m∗ |(−i�∇ + 2eA)Ψ|2 , (1.21)

where Fn(0) is the free energy density in the normal state in the absence of
the magnetic field.

For simplicity we will first treat the case where the magnetic field is not
applied. We may put A = 0 without losing generality. Then, since the order
parameter does not vary spatially, Eq. (1.21) reduces to

Fs(0) = Fn(0) + α|Ψ|2 +
β

2
|Ψ|4 . (1.22)

It is necessary for a nonzero equilibrium value of |Ψ|2 to be obtained when
the temperature T is lower than the critical value, Tc. This leads to α < 0
and β > 0. From the condition that the derivative of Fs(0) with respect to
|Ψ|2 is zero, we find as the equilibrium value of |Ψ|2

|Ψ|2 = −α

β
≡ |Ψ∞|2 . (1.23)

Substitution of this into Eq. (1.22) leads to the free energy density in the
equilibrium state:

Fs(0) = Fn(0) − α2

2β
. (1.24)

At T = Tc the transition from the superconducting state to the normal
one takes place and |Ψ∞|2 becomes zero. Thus α is zero at that temperature.
The variation of α with temperature in the vicinity of Tc is assumed to be
proportional to (T − Tc). α takes a positive value at T > Tc and the free
energy density given by Eq. (1.22) is minimum at |Ψ|2 = 0. Such variations
in the free energy density and the equilibrium value of |Ψ|2 near Tc are shown
in Figs. 1.4 and 1.5, respectively. As shown in the above the phase transition
can be explained by the expansion of the free energy density up to the term
of the order of |Ψ|4.

Now the phase transition in a magnetic field is treated. We assume that the
superconductor is type-1 of a sufficient size. Hence, the superconductor shows
the Meissner effect, and a magnetic field does not exist inside it except in a
region of about λ from the surface when it is in the superconducting state.
Such a surface region can be neglected in a large superconductor, and the
spatial variation in the order parameter can be disregarded. The equilibrium
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Fig. 1.4. Variation in the free energy density vs. |Ψ|2 at various temperatures

Fig. 1.5. Variation in the equilibrium value of the order parameter, |Ψ∞|2, with
temperature
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state of the superconductor in the magnetic field is determined by minimizing
the Gibbs free energy density. If the external magnetic field and the magnetic
flux density inside the superconductor are denoted by He and B, respectively,
the Gibbs free energy density is given by Gs(He) = Fs −BHe. If we note that
B = 0 and |Ψ|2 is given by Eq. (1.23) in the superconducting state, we have

Gs(He) = Fn(0) − α2

2β
. (1.25)

On the other hand, in the normal state, |Ψ|2 = 0 and B = µ0He lead to

Gn(He) = Fn(0) +
B2

2µ0
− BHe = Fn(0) − 1

2
µ0H

2
e . (1.26)

Since Gs and Gn are the same at the transition point, He = Hc, we have

α2

β
= µ0H

2
c . (1.27)

In the vicinity of Tc, β does not appreciably change with temperature
and α is approximately proportional to Hc. That is, we have
α � 2(µ0β)1/2Hc(0)(T − Tc)/Tc. Thus, it is found that the above assump-
tion on the temperature dependence of α is satisfied. From Eqs. (1.25)–(1.27)
we obtain

Gs(He) = Gn(He) −
1
2
µ0(H2

c − H2
e ) . (1.28)

This result shows that Gs(He) < Gn(He) and the superconducting state occurs
for He < Hc and the normal state occurs for He > Hc. That is, the transition
in the magnetic field is explained by this equation. Especially when He = 0,
the above equation leads to

Gs(0) = Gn(0) − 1
2
µ0H

2
c . (1.29)

The maximum difference of the free energy density between the superconduct-
ing and normal states, (1/2)µ0H

2
c , is called the condensation energy density.

When the superconductor coexists with the magnetic field, Ψ(r) and A(r)
are determined so that the free energy,

∫
FsdV , is minimized. Hence, the

variations of
∫

FsdV with respect to Ψ∗(r) and A(r) are required to be zero
and the following two equations are derived:

1
2m∗ (−i�∇ + 2eA)2Ψ + αΨ + β|Ψ|2Ψ = 0 , (1.30)

j =
i�e

m∗ (Ψ∗∇Ψ − Ψ∇Ψ∗) − 4e2

m∗ |Ψ|2A , (1.31)

with
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j =
1
µ0

∇×∇× A . (1.32)

The above Eqs. (1.30) and (1.31) are called the Ginzburg-Landau equations,
or the G-L equations. In the derivation, the Coulomb gauge, ∇·A = 0, and
the condition,

n · (−i�∇ + 2eA)Ψ = 0 , (1.33)

on the surface were used. In the above, n is a unit vector normal to the surface
and the condition of Eq. (1.33) implies that current does not flow across the
surface. This is fulfilled for the case where the superconductor is facing a
vacuum or an insulating material. On the other hand, if the superconductor
is facing a metal, the right hand side in Eq. (1.33) is replaced by iaΨ with a
being a real number [2].

The electromagnetic properties in the superconductor are determined by
two characteristic lengths, i.e. λ, the penetration depth of magnetic field and
ξ, the coherence length. These are related to the spatial variations in the
magnetic flux density B and the order parameter Ψ. Here we shall derive
these quantities from the G-L theory.

We assume that a weak magnetic field is applied to the superconductor.
In this case the variation in the order parameter is expected to be small, and
hence, the approximation, Ψ = Ψ∞, may be allowed. Then, Eq. (1.31) reduces
to

j = −4e2

m∗ |Ψ∞|2A . (1.34)

This is similar to Eq. (1.16) of the London theory. If we recognize that e∗ = 2e,
it follows that |Ψ∞|2 corresponds to ns. Thus, the G-L theory is a more general
theory that reduces to the London theory when the order parameter does not
vary in space. Hence, the Meissner effect can be derived in the same manner
as in Sect. 1.3 and the penetration depth is given by

λ =
(

m∗

4µ0e2|Ψ∞|2
)1/2

. (1.35)

Near Tc, |Ψ∞|2 is proportional to (Tc − T ) and λ varies proportionally to
(Tc − T )−1/2 and diverges at T = Tc. In terms of λ, the coefficients of α and
β are expressed as

α = − (2eµ0Hcλ)2

m∗ , (1.36)

β =
16e4µ3

0H
2
c λ4

m∗2 . (1.37)

Next we shall discuss the spatial variation in the order parameter, Ψ. We
treat the case where the magnetic field is not applied and hence that A = 0.
For simplicity we assume that Ψ varies only along the x-axis. If we normalize
the order parameter according to
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ψ =
Ψ

|Ψ∞| , (1.38)

Eq. (1.30) reduces to

ξ2 d2ψ

dx2
+ ψ − |ψ|2ψ = 0 , (1.39)

where ξ is a characteristic length called the coherence length and is given by

ξ =
�

(2m∗|α|)1/2
. (1.40)

We can choose a real function for ψ in Eq. (1.39). Suppose that the order
parameter varies slightly from its equilibrium value such that ψ = 1 − f ,
where f � 1. Within this range, Eq. (1.39) reduces to

ξ2 d2f

dx2
− 2f = 0 (1.41)

and hence

f ∼ exp

(
−
√

2|x|
ξ

)
. (1.42)

This shows that the order parameter varies in space within a distance com-
parable to ξ. From Eqs. (1.36) and (1.40) the coherence length can also be
expressed as

ξ =
�

2
√

2eµ0Hcλ
. (1.43)

It turns out from Eq. (1.40) or (1.43) that ξ also increases in proportion
to (Tc −T )−1/2 in the vicinity of Tc. On the other hand, the coherence length
in the BCS theory [3] is given by

ξ0 =
�vF

π∆(0)
= 0.18

�vF

kBTc
(1.44)

and does not depend on temperature. ∆(0) is the energy gap at T = 0. In
spite of such a difference, the two coherence lengths are related to each other.
Since the superconductivity is nonlocal, this relation changes with the electron
mean free path, l. In the vicinity of Tc, the coherence length in the G-L theory
becomes [4]

ξ(T ) = 0.74
ξ0

(1 − t)1/2
; l � ξ0 , (1.45a)

= 0.85
(ξ0l)1/2

(1 − t)1/2
; l � ξ0 , (1.45b)

where t = T/Tc. Equations (1.45a) and (1.45b) correspond to the cases of
“clean” and “dirty” superconductors, respectively. It is seen that ξ(T ) is com-
parable to ξ0 in a clean superconductor and is much smaller than ξ0 in a dirty
one.
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The penetration depth is also influenced by the electron mean free path l
owing to the nonlocal nature of the superconductivity. We call the penetration
depth given by Eq. (1.35) the London penetration depth and denote it by
λL. If λL is sufficiently longer than ξ0 and l, we have λ = λL in a clean
superconductor (l � ξ0) and λ � λL(ξ0/l)1/2 in a dirty superconductor (l �
ξ0). In a superconductor where ξ0 � λL, i.e. in a “Pippard superconductor,”
we have λ � 0.85(λ2

Lξ0)1/3.
The ratio of the two characteristic lengths in G-L theory defined by

κ =
λ

ξ
(1.46)

is called the G-L parameter. According to the G-L theory, λ and ξ have the
same temperature dependences, and hence κ is independent of temperature.
As a matter of fact, κ decreases slightly with increasing temperature. The G-L
parameter is important in describing the magnetic properties of superconduc-
tors. In particular the classification into type-1 and type-2 superconductors is
determined by the value of this parameter. Also the upper critical field of the
type-2 superconductor depends on this parameter.

We next go on to discuss the occurrence of superconductivity in a bulk
superconductor in a magnetic field sufficiently high that the higher order
term, β|Ψ|2Ψ, in Eq. (1.30) can be neglected. We assume that the external
magnetic field He is applied along the z-axis. The magnetic flux density in
the superconductor is taken to be uniform in space, b � µ0He, and hence the
vector potential is given by

A = µ0Hexiy , (1.47)

where iy is a unit vector directed along the y-axis. In the above the choice of x-
axis direction is not important in a bulk superconductor and hence generality
is still maintained even under Eq. (1.47). Since A depends only on x, it is
reasonable to assume that Ψ also depends only on x. Hence, Eq. (1.30) reduces
to

− �
2

2m∗ · d2Ψ
dx2

+
2e2µ2

0

m∗ (H2
e x2 − 2H2

c λ2)Ψ = 0 . (1.48)

This equation has the same form as the well-known Schrödinger equation for a
one-dimensional harmonic oscillator. It has solutions only when the condition(

n +
1
2

)
�He = 2eµ0H

2
c λ2 (1.49)

is satisfied with n being nonnegative integers. The maximum value of He is
obtained for n = 0, corresponding to the maximum field within which the
superconductivity can exist, i.e., the upper critical field, Hc2. Thus, we have

Hc2 =
4eµ0H

2
c λ2

�
. (1.50)
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Using Eqs. (1.43) and (1.46), the upper critical field may also be written as

Hc2 =
√

2κHc . (1.51)

Hence, the superconducting state may exist in a magnetic field higher than
the critical field Hc for a superconductor with κ larger than 1/

√
2. Such is

the type-2 superconductor. In this case, the superconductor is in the mixed
state and no special characteristic phenomena take place at He = Hc. That
is, Hc cannot be directly measured experimentally. Since it is related to the
condensation energy density, Hc is called the thermodynamic critical field in
type-2 superconductors. If we now introduce the flux quantum, φ0 = hP/2e,
to be considered in the next section, the upper critical field may be rewritten
in the form

Hc2 =
φ0

2πµ0ξ2
. (1.52)

This relationship is used in estimating the coherence length from an observed
value of Hc2.

1.5 Magnetic Properties

A characteristic feature of type-2 superconductors in a magnetic field is that
the magnetic flux is quantized on a macroscopic scale. In this book we refer to
the quantized magnetic flux as a flux line. The flux lines are isolated from each
other at sufficiently low magnetic fields. On the other hand, at high magnetic
fields these overlap and interact to form a flux line lattice. In this section such
quantization of magnetic flux is discussed in terms of the G-L theory. The
superconductor’s magnetic properties are discussed in terms of the internal
structure of the flux line at low fields and the structure of the flux line lattice
at high fields.

1.5.1 Quantization of Magnetic Flux

We suppose a superconductor in a sufficiently weak magnetic field. For sim-
plicity we assume the magnetic flux to be localized at an certain region inside
the superconductor. This assumption pre-supposes the quantization of the
magnetic flux. It will be shown later that the assumption is actually fulfilled
and hence the treatment is self-consistent. Consider a closed loop, C, enclosing
the region in which the magnetic flux is localized. The distance between the
localized magnetic flux and C is assumed to be sufficiently long to enable the
magnetic flux density and the current density to be zero on C. If we write

Ψ = |Ψ| exp(iφ) (1.53)

with φ denoting the phase of the order parameter, Eq. (1.31) reduces to
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j = −2�e

m∗ |Ψ|2∇φ − 4e2

m∗ |Ψ|2A . (1.54)

In the above the first term represents the current caused by the gradient of
the phase of the order parameter, i.e., the Josephson current. On the loop C,
j = 0 and hence

A = − �

2e
∇φ . (1.55)

Integration of this over C leads to∮
C

A · ds =
∫

b · dS = Φ , (1.56)

where Φ is the magnetic flux that interlinks with C. If we substitute the right
hand side of Eq. (1.55) for A in Eq. (1.56) the latter becomes

Φ = − �

2e

∮
C

∇φ · ds = − �

2e
∆φ , (1.57)

where ∆φ is a variation in the phase after one circulation on C. From the
mathematical requirement that the order parameter should be a single-valued
function, ∆φ must be integral multiple of 2π. That is,

Φ = nφ0 , (1.58)

where n is an integer and

φ0 =
hP

2e
= 2.0678 × 10−15 Wb , (1.59)

where φ0 is the unit of the magnetic flux and called the flux quantum. Thus
we have shown that the magnetic flux in superconductors is quantized. In the
above the curvilinear integral of ∇φ on the closed loop C is not zero, since
∇φ has a singular point at the center of the flux line. This will be discussed
in Subsect. 1.5.2.

In the beginning of the above proof we assumed that the magnetic flux
was localized in a certain region of a superconductor. This condition is fulfilled
at low fields wherein the magnetic flux density decreases as exp(−r/λ) with
increasing distance r from the center of the isolated flux line, as will be shown
later in Eq. (1.62b). At high fields, on the other hand, the flux lines are not
localized and there exists a pronounced overlap of the magnetic flux. Under
this condition a flux line lattice is formed. But even in this case the magnetic
flux is quantized in each unit cell. The proof of this quantization is Exercise
1.3.

1.5.2 Vicinity of Lower Critical Field

Near the lower critical field, the density of magnetic flux penetrating the
superconductor is low and the spacing between the flux lines is large. In this
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subsection we shall discuss the structure of isolated flux line for the case of
typical type-2 superconductor with the large G-L parameter, κ. In this case
the London theory can be used. It should be noted that Eq. (1.10) holds
correct only in the region greater than a distance ξ from the center of the
flux line in which |Ψ| is approximately constant. As will be shown later, |Ψ|
is zero at the center and varies spatially within a region of radius ξ, known
as the core. Equation (1.10) cannot be used in the core region. In fact, if we
assume that this equation is valid within the entire region, an incorrect result
is obtained. This can be seen by integrating Eq. (1.10) within a sufficiently
wide area including the isolated flux line. From Stokes’ theorem the surface
integral of the second term in Eq. (1.10) is transformed into the integral of
the current on the closed loop that surrounds the area. This integral is zero,
since the current density is zero at the position sufficiently far from the flux
line. This implies that the total magnetic flux in this area is zero. Hence, some
modifications are necessary to enable the contribution from the core to the
magnetic flux to be equal to φ0. In the case of superconductor with κ � 1, the
area of the core is very narrow in comparison with the total area of the flux
line. Hence, we assume most simply that the magnetic structure is described
by

b + λ2∇×∇× b = izφ0δ(r) (1.60)

in the region outside the core that occupies most of the area. In the above
it is assumed that the magnetic field is applied along the z-axis and iz is a
unit vector in that direction. r is a vector in the x-y plane and the center of
the flux line exists at r = 0. δ(r) is a two-dimensional delta function. The
coefficient, φ0, on the right hand side comes from the requirement that the
total amount of the magnetic flux of one flux line is φ0. Equation (1.60) is
called the modified London equation.

The solution of this equation is given by

b(r) =
φ0

2πλ2
K0

( r

λ

)
, (1.61)

where K0 is the modified Bessel function of the zeroth order. This function
diverges at r → 0. Since the magnetic flux density should have a finite value,
the modified London equation still does not hold correct in the region of r < ξ.
Outside the core, Eq. (1.61) is approximated by

b(r) � φ0

2πλ2

(
log

λ

r
+ 0.116

)
; ξ � r � λ (1.62a)

� φ0

2πλ2

(
πλ

2r

)1/2

exp
(
− r

λ

)
; r � λ , (1.62b)

in terms of elementary functions. The current density flowing around the flux
line has only the azimuthal component:

j(r) = − 1
µ0

· ∂b

∂r
=

φ0

2πµ0λ3
K1

( r

λ

)
, (1.63)
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where K1 is the modified Bessel function of the first order. In particular, the
above equation reduces to

j(r) =
φ0

2πµ0λ2r
(1.64)

in the region of ξ � r � λ.
In the region of r < ξ, the order parameter varies in space. We shall dis-

cuss the structures of the order parameter and the magnetic flux density in
this region by solving the G-L equations. From symmetry it is reasonable to
assume that |Ψ| is a function only of r, the distance from the center of the
flux line. Hence we write Ψ/|Ψ∞| = f(r) exp(iφ) such that when r becomes
sufficiently large, f(r) approaches 1. It can be shown according to the argu-
ment of Subsect. 1.5.1 that the variation of the phase when circulating once
around a circle with radius of r should be 2π (recognizing that the number of
flux lines inside the circle is 1). Hence, φ is a function of the azimuthal angle,
θ; the simplest function satisfying this condition is

φ = −θ . (1.65)

In this case, we easily obtain

∇φ = −1
r
iθ . (1.66)

This shows that the center of the flux line is a singular point at which this
function is not differentiable. The relation of ∇ ×∇φ = 0 is satisfied except
at the singular point, and it can be expressed as

∇×∇φ = −2πizδ(r) (1.67)

over all space.
From Eq. (1.65) we have

Ψ
|Ψ∞| = f(r) exp(−iθ) . (1.68)

It is assumed that the vector potential A is also a function only of r. Then,
it turns out that A has only the θ-component, Aθ. That is, the relation of
b(r) = (1/r)(∂/∂r)(rAθ) results in

Aθ =
1
r

∫ r

0

r′b(r′)dr′ . (1.69)

In the case of high-κ superconductors, since b cannot vary in space in the
region of r < ξ, we have

Aθ � b(0)
2

r . (1.70)

Substitution of Eqs. (1.68) and (1.70) into Eq. (1.30) leads to
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f − f3 − ξ2

[(
1
r
− πb(0)r

φ0

)2

f − 1
r
· d
dr

(
r
df

dr

)]
= 0 . (1.71)

In the normal core f is considered to be sufficiently small. In fact, it is seen
that a nearly constant solution for f does not exist. Hence, we shall assume
that f = crn with n > 0. The dominant terms of the lowest order are those
of the order of rn−2. If we take notice of these terms, Eq. (1.71) leads to

rn−2(1 − n2) = 0 . (1.72)

We obtain n = 1 from this equation. In the next place we assume as f =
cr(1 + drm). If the next dominant terms are picked up, we have

1 +
b(0)

µ0Hc2
− dξ2[1 − (m + 1)2]rm−2 = 0 , (1.73)

where Eq. (1.52) is used. From this equation we obtain m = 2 and the value
of d. Finally we obtain [5]

f � cr

[
1 − r2

8ξ2

(
1 +

b(0)
µ0Hc2

)]
. (1.74)

It is seen that the order parameter is zero at the center of the core. This is
the important feature which proves the current density at the flux line center
dose not diverge (see Eqs. (1.54) and (1.66)). Hence, the region of r <∼ ξ is
sometimes called the normal core. At low fields b(0)/µ0Hc2 is small and may be
disregarded, in which case f takes on a maximum value at r = (8/3)1/2ξ = a0.
This maximum value should be comparable to 1 at a position sufficiently far
from the center, hence c ∼ 1/ξ. If we approximate as

f � tanh
(

r

rn

)
(1.75)

with c � 1/rn, numerical calculation [6] allows the length to be derived:

rn =
4.16ξ

κ−1 + 2.25
, (1.76)

which reduces to 1.8ξ in high-κ superconductors. Therefore, in a strict sense
the solutions of the London equation, Eqs. (1.61) and (1.63), are correct only
for r >∼ 4ξ. The structures of the magnetic flux density and the order para-
meter in the flux line are schematically shown in Fig. 1.6. Since the magnetic
flux density in the central part of the core cannot vary steeply in space, its
value is approximately given by (φ0/2πλ2) log κ. It will be shown later that
this is close to 2µ0Hc1.

We go on to calculate the energy per unit length of the isolated flux line
in a bulk high-κ superconductor. From Eq. (1.74) we write approximately
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Fig. 1.6. Spatial variations of the order parameter and the magnetic flux density
in an isolated flux line

f � (3r/2a0)− (r3/2a3
0) at low fields. This implies that the core occupies the

region r < a0. Outside the core, the important terms in the G-L free energy
in Eq. (1.21) are the magnetic field energy and the kinetic energy. The kinetic
energy density is found to be written as the energy density of the current,
(µ0/2)λ2j2, with the replacement of Ψ by Ψ∞ and the use of Eq. (1.34), the
London theory. Hence, the contribution from the outside of the core to the
energy of a unit length of the flux line is given by

ε′ =
∫ (

b2

2µ0
+

µ0

2
λ2j2

)
dV ′ =

1
2µ0

∫
[b2 + λ2(∇× b)2]dV ′ . (1.77)

In the above
∫

dV ′ is a volume integral per unit length of the flux line except
the area |r| ≤ a0. From the condition that the variation of the kernel of the
integral of Eq. (1.77) with respect to b is zero, the London equation is derived.
Integrating the second term partially, Eq. (1.77) becomes

ε′ =
1

2µ0

∫
(b + λ2∇×∇× b) · b dV′ +

λ2

2µ0

∫
[b × (∇× b)] · dS . (1.78)

It is found from Eq. (1.60) that the first integral is zero. The second integral
is carried out on the surfaces of |r| = a0 and |r| = R(R → ∞). It is easily
shown that the latter surface integral at infinity is zero. The former integral
on the core surface can be approximately calculated using Eqs. (1.62a) and
(1.64). As a result we have
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ε′ � λ2

2µ0
· φ0

2πλ2

(
log

λ

a0
+ 0.116

)
φ0

2πλ2a0
· 2πa0

=
φ2

0

4πµ0λ2
(log κ − 0.374) = 2πµ0ξ

2H2
c (log κ − 0.374) . (1.79)

The contributions from inside the core to the energy are: 0.995πµ0H
2
c ξ2 from

the variation in the order parameter and (8/3)πµ0H
2
c ξ2(log κ/κ)2 from the

magnetic field. These are about (2 log κ)−1 and 4 log κ/3κ2 times as large as
the energy given by Eq. (1.79). Hence, the second term is found to be very
small especially in high-κ superconductors. If this term is disregarded, the
energy of a unit length of the flux line becomes

ε = 2πµ0H
2
c ξ2(log κ + 0.124) . (1.80)

According to the rigorous calculation of Abrikosov [7] the number in the sec-
ond term in the above equation is 0.081.

We shall estimate the lower critical field, Hc1, from the above result. The
Gibbs free energy is continuous during the transition at He = Hc1. The volume
of the superconductor is denoted by V . The Gibbs free energy before and after
the penetration of a flux line is given by

V Gs = V Fs (1.81)

and

V Gs = V Fs + εL − Hc1

∫
bdV = V Fs + εL − Hc1φ0L , (1.82)

respectively. In the above Fs is the Helmholtz free energy density before the
penetration of the flux line and L is the length of the flux line in the super-
conductor. The second term in Eq. (1.82) is a variation in the energy due to
the formation of the flux line and the third term is for the Legendre transfor-
mation. Comparing Eqs. (1.81) and (1.82), we have

Hc1 =
ε

φ0
=

Hc√
2κ

(log κ + 0.081) , (1.83)

where the correct expression by Abrikosov was used for ε. This equation can
be used for superconductors with high κ values to which the London theory
is applicable.

Here we shall calculate the magnetization in the vicinity of Hc1. In this
case the spacing between the flux lines is so large that the magnetic flux
density b(r) is approximately given by a superposition of the magnetic flux
density of the isolated flux lines, bi(r):

b(r) =
∑

n

bi(r − rn) , (1.84)
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where rn denotes the position of n-th flux line. The free energy density in this
state is again given by Eq. (1.78) and we have

F =
φ0

2µ0

∑∑
m�=n

bi(rm − rn) +
B

φ0
ε

=
B

2µ0

∑
n�=0

bi(r0 − rn) +
B

φ0
ε , (1.85)

where the summation with respect to m is taken within a unit area and the
summation with respect to n is taken in the entire region of the supercon-
ductor. The first term in Eq. (1.85) is the interaction energy among the flux
lines and the second term is the self energy of the flux lines, and B is the
mean magnetic flux density. In the surface integral around the n-th core in
the derivation of the self energy, the contributions from other flux lines are
neglected, since these are sufficiently small in the vicinity of Hc1. Substituting
for bi using Eq. (1.61) results in

F =
φ0B

4πµ0λ2

∑
n�=0

K0

(
|r0 − rn|

λ

)
+ BHc1 . (1.86)

We treat the case of triangular flux line lattice and assume the spacing of flux
lines given by

af =
(

2φ0√
3B

)1/2

(1.87)

to be sufficiently large. If we take account only the interactions from the six
nearest neighbors, the Gibbs free energy density is given by

G = F − BHe =
3φ0B

2πµ0λ2

(
πλ

2af

)1/2

exp
(
−af

λ

)
− B(He − Hc1) , (1.88)

where He is the external magnetic field. The magnetic flux density B at which
G is minimum is obtained from the relation:

B−1/4


1 +

5
2

(√
3λ2

2φ0

)1/2

B1/2


 exp

[
−
(

2φ0√
3λ2B

)1/2
]

= 3.2µ0(He − Hc1)
(

λ2

φ0

)5/4

. (1.89)

The exact solution of this equation can be obtained only by numerical cal-
culation. However, if we notice that the variation in B is mostly within the
exponential function, the B in the prefactor can be approximately replaced
by φ0/λ2, and we have

B ∼ 2φ0√
3λ2

{
log
[

φ0

µ0(He − Hc1)λ2

]}−2

. (1.90)

It is seen from this equation that B increases rapidly from zero at He = Hc1.
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1.5.3 Vicinity of Upper Critical Field

An overlap of the magnetic flux is pronounced and the spacing between the
cores is small near the upper critical field. Hence, the London theory cannot
be used and an analysis using the G-L theory is necessary. In such a high
field the order parameter Ψ is sufficiently small and the higher order term
β|Ψ|2Ψ in Eq. (1.30) can be neglected. Due to the pronounced flux overlap
the magnetic flux density can be regarded as approximately uniform in the
superconductor. We assume that the magnetic field is directed along the z-
axis. Then to a first approximation the vector potential can be expressed as
in Eq. (1.47). If we write

Ψ(x, y) = e−ikyΨ′(x) , (1.91)

Ψ′ obeys Eq. (1.48) with x replaced by x − x0 where

x0 =
�k

2µ0eHe
. (1.92)

The maximum field at which this equation has a solution is Hc2. In this case
Eq. (1.92) reduces to x0 = kξ2. We are interested in the phenomenon at the
external magnetic field slightly smaller than Hc2, and then, we approximate
as h = Hc2 in the beginning. The equation for Ψ′ reduces to

−ξ2 d2Ψ′

dx2
+

[(
x

ξ
− kξ

)2

− 1

]
Ψ′ = 0 . (1.93)

It can be shown easily that Ψ′ has a solution of the form:

Ψ′ ∼ exp

[
−1

2

(
x

ξ
− kξ

)2
]

. (1.94)

Since the number k is arbitrary, Ψ becomes

Ψ =
∑

n

Cne−inky exp

[
−1

2

(
x

ξ
− nkξ

)2
]

. (1.95)

This corresponds to the assumption of a periodic order parameter, i.e., a
periodic arrangement of flux lines. This is because such a periodic structure
is expected to be favorable with respect to the energy. One of the lattices
with the high periodicity is the triangular lattice. This lattice is obtained by
putting C2m = C0 and C2m+1 = iC0. It is rather difficult to see that Eq. (1.95)
represents a triangular lattice. Let us make the transformation

x =
√

3
2

X , y =
X

2
+ Y (1.96)
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and expand |Ψ|2 into a double Fourier series. After a calculation we obtain

|Ψ|2 = |C0|23−1/4
∑
m,n

(−1)mn exp
[
− π√

3
(m2 − mn + n2)

]

× exp
[
2πi
af

(mX + nY )
]

. (1.97)

In the above we used k = 2π/af and a2
f = 4πξ2/

√
3, where the latter relation is

correct at h = Hc2. The derivation of Eq. (1.97) is Exercise 1.5. The structure
of |Ψ|2 for the triangular lattice was derived by Kleiner et al. [8] Their result
is shown in Fig. 1.7. If we pick up only the main terms satisfying m2 −mn +
n2 ≤ 1 and rewrite in terms of the original coordinates, Eq. (1.97) reduces to

|Ψ|2 = |C0|23−1/4

{
1 + 2 exp

(
− π√

3

)[
cos

2π

af

(
2√
3
x

)

+ cos
2π

af

(
x√
3
− y

)
− cos

2π

af

(
x√
3

+ y

)]}
. (1.98)

If we replace the factor, 2 exp(−π/
√

3) � 0.326, in the above equation by 1/3,
it is found that |Ψ|2 is zero at (x, y) = (

√
3(p±1/4)af , (q∓1/4)af) with p and

q denoting integers.
The set of the order parameter given by Eq. (1.95), which is denoted by

Ψ0, and A = µ0Hc2xiy = A0 satisfy the linearized G-L equation at He = Hc2.
The corrections to these quantities are written as

Ψ1 = Ψ − Ψ0 , A1 = A − A0 . (1.99)

Here we shall estimate the deviation of the magnetic flux density from the
uniform distribution, b = µ0Hc2, that was assumed at the beginning. Substi-
tuting Eq. (1.95) into Eq. (1.31), we find

Fig. 1.7. Contour diagram of normalized |Ψ|2 of the triangular flux line lattice
(from Kleiner et al. [8])



26 1 Introduction

∂2Ay

∂x∂y
= −µ0�e

m∗ · ∂

∂y
|Ψ0|2 (1.100)

for the x-component of the magnetic flux density. Hence, we have

b = µ0H0 −
µ0Hc2|Ψ0|2
2κ2|Ψ∞|2 (1.101)

and

A =
(

µ0H0x − µ0Hc2

2κ2|Ψ∞|2
∫

|Ψ0|2dx

)
iy , (1.102)

where H0 is an integral constant. It will be shown later that H0 is equal to the
external magnetic field, He. Equation (1.101) shows that the local magnetic
flux density also varies periodically in the superconductor and becomes max-
imum where Ψ is zero. Such spatial structures of the magnetic flux density
and the density of superconducting electrons, |Ψ|2, are represented in Fig. 1.8.
Figure 1.9 is a photograph of the flux line lattice in a superconducting Pb-Tl
specimen obtained by the decoration technique.

Since A1 is already obtained from Eq. (1.102) and A0 = µ0Hc2xiy, we
shall derive the equation for Ψ1, a small quantity. The term, |Ψ|2Ψ, is also a
small quantity. Substituting Eq. (1.99) into Eq. (1.30), we have

1
2m∗ (−i�∇ + 2eA0)2Ψ1 + αΨ1

=
i�e

m∗ [∇ · (A1Ψ0) + A1 · ∇Ψ0] −
4e2

m∗ A0 · A1Ψ0 − β|Ψ0|2Ψ0 . (1.103)

This inhomogeneous equation for Ψ1 has a solution only if the inhomogeneous
term on the right hand side is orthogonal to the solution of the corresponding

Fig. 1.8. |Ψ|2 and magnetic flux density in the flux line lattice. af represents the
flux line lattice spacing
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Fig. 1.9. Flux line lattice in Pb-1.6wt%Tl observed by decoration technique after
field cooled to 1.2 K at 35 mT and then field is removed. A grain boundary of flux
line lattice can be seen. (Courtesy of Dr. B. Obst in Research Center in Karlsruhe)

homogeneous equation, i.e., Ψ0. It means that the integral of the product of
the right hand side and Ψ∗

0 is zero. This leads to

〈A1 · j〉 − β〈|Ψ0|4〉 = 0 , (1.104)

where 〈 〉 denotes a spatial average. In the derivation of the above equation
a partial integral was carried out and the surface integral of less importance
was neglected. j in Eq. (1.104) is the current density that we obtain when Ψ0

and A0 are substituted into Eq. (1.31). From Eq. (1.101) it is given by

j = − Hc2

2κ2|Ψ∞|2∇× (|Ψ0|2iz) . (1.105)

A partial integration of Eq. (1.104) leads to

Hc2

2κ2|Ψ∞|2 〈|Ψ0|2(∇× A1)z〉 + β〈|Ψ0|4〉 = 0 . (1.106)

From Eqs. (1.99) and (1.102) we have

(∇× A1)z = −µ0(Hc2 − H0) −
µ0Hc2|Ψ0|2
2κ2|Ψ∞|2 . (1.107)

Hence, Eq. (1.106) reduces to(
1 − H0

Hc2

)
|Ψ∞|2〈|Ψ0|2〉 −

(
1 − 1

2κ2

)
〈|Ψ0|4〉 = 0 . (1.108)
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Using this relation, the mean magnetic flux density is obtained from Eq. (1.101)
in the form

B = 〈b〉 = µ0H0 −
µ0(Hc2 − H0)
(2κ2 − 1)βA

, (1.109)

where

βA =
〈|Ψ0|4〉
〈|Ψ0|2〉2

(1.110)

is a quantity independent of H0.
Now we shall calculate the free energy density. If we take zero for Fn(0),

the mean value of the free energy density given by Eq. (1.21) is calculated as

〈Fs〉 =
〈

b2

2µ0
− µ0H

2
c |Ψ|4

2|Ψ∞|4
〉

, (1.111)

where Eq. (1.30) was used. If we approximately substitute Ψ0 into Ψ and
eliminate H0 by the use of Eqs. (1.101), (1.108) and (1.109), Eq. (1.111)
becomes

〈Fs〉 =
B2

2µ0
− (µ0Hc2 − B)2

2µ0[(2κ2 − 1)βA + 1]
. (1.112)

It is found from this equation that βA should take on a minimum value in
order to minimize the free energy. Initially Abrikosov [7] thought that the
square lattice was most stable and obtained βA = 1.18 for this. Later Kleiner
et al. [8] showed that the triangular lattice was most stable with βA = 1.16.
However, the difference between the two lattices is small.

When Eq. (1.112) is differentiated with respect to B, we have

∂〈Fs〉
∂B

=
(2κ2 − 1)βAB + µ0Hc2

µ0[(2κ2 − 1)βA + 1]
= H0 , (1.113)

where Eq. (1.109) is used. Since the derivative of the free energy with respect
to the internal variable B gives the corresponding external variable, i.e., the
external magnetic field He, it follows that H0 is the external magnetic field
as earlier stated. The magnetization then becomes

M =
B

µ0
− He = − Hc2 − He

(2κ2 − 1)βA
. (1.114)

This result suggests that the diamagnetism decreases linearly with increasing
magnetic field and reduces to zero at He = Hc2 with the transition to the
normal state. The magnetic susceptibility, dM/dHe, is of the order of 1/2κ2βA

and takes a very small value for a type-2 superconductor with a high κ value.
According to Eq. (1.101), the deviation of the local magnetic flux density from
its mean value is given by

δB =
µ0Hc2〈|Ψ0|2〉

2κ2|Ψ∞|2 = −µ0M (1.115)
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(see Fig. 1.8: note that b = µ0He at the point where |Ψ0|2 = 0 and that b is
minimum at the point where |Ψ0|2 in Eq. (1.98) takes on a maximum value,
2〈|Ψ0|2〉). Hence, the magnetic flux density is almost uniform and the spatial
variation is very small in a high-κ superconductor. For example, the relative
fluctuation of the magnetic flux density at He = Hc2/2 is δB/B ∼ 1/2κ2βA

and takes a value as small as 10−4 in Nb-Ti with κ � 70.
Here we shall argue the transition at Hc2 from another viewpoint. Since

the transition in a magnetic field is treated, the Gibbs free energy density,
Gs = Fs − HeB is suitable. The local magnetic flux density b is given by
Eq. (1.101) and a part of the energy reduces to

1
2µ0

〈b2〉 − HeB = −1
2
µ0H

2
e , (1.116)

where the equation, He = H0, was used and the small term proportional to
(b− µ0He)2 was neglected. Hence, using the expression on the kinetic energy
density shown in Exercise 1.1, the Gibbs free energy density is rewritten as

Gs = α|Ψ|2 +
�

2

2m∗ (∇|Ψ|)2 +
µ0

2
λ2

(
|Ψ∞|
|Ψ|

)2

j2 − 1
2
µ0H

2
e (1.117)

in the vicinity of the transition point. The first term is the condensation energy
density and has a constant negative value. Thus, it can be understood that the
transition to the normal state at Hc2 occurs, since the kinetic energy given by
the second and third terms consumes the gain of condensation energy. We shall
ascertain that this speculation is correct. For this purpose the approximate
solution of |Ψ|2 of Eq. (1.98) in the vicinity of Hc2 is used: the quantity in
{· · · } is represented by g, for simplicity. Hence, we have |Ψ|2/|Ψ∞|2 = g〈|ψ|2〉
with Ψ/|Ψ∞| = ψ. Since the error around the zero points of Ψ in this expres-
sion is large, the factor of 2 exp(−π/

√
3) in front of [· · · ] is replaced by 1/3 so

that the zero points are reproduced. Rewriting as (∇|Ψ|)2 = (∇|Ψ|2)2/4|Ψ|2,
the second term of Eq. (1.117) leads to

�
2

2m∗ (∇|Ψ|)2 =
1
4
µ0H

2
c ξ2〈|ψ|2〉 (∇g)2

g
. (1.118)

After a calculation using Eq. (1.101), the third term of Eq. (1.117) leads to
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Thus, it is found that the second and third terms are the same. Hence,
Eq. (1.117) can be written as

Gs = µ0H
2
c [−|ψ|2 + 2ξ2(∇|ψ|)2] − 1

2
µ0H

2
e . (1.120)

Since B = µ0He in the normal state, the third term of Eq. (1.120) is the same
as the Gibbs free energy density in the normal state, Gn. Hence, the transition
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point, Hc2, is given by the magnetic field at which the sum of the first and
second terms reduces to zero. This condition is given by

〈−|ψ|2 + 2ξ2(∇|ψ|)2〉 = 〈|ψ|2〉
[
−1 +

ξ2

2

〈
(∇g)2

g

〉]
= 0 . (1.121)

A numerical calculation leads to 〈(∇g)2/g〉 = 14.84/a2
f , and the flux line

lattice spacing at Hc2 is obtained: a2
f = 7.42ξ2. Thus, from Eq. (1.52) and

the relationship of af = (2φ0/
√

3B)1/2, we have [9]

He =
B

µ0
= 0.98Hc2 . (1.122)

Thus, it is found that the transition point can also be obtained fairly correctly
even by such a simple approximation.

In the above the magnetic properties of type-2 superconductors are de-
scribed using the G-L theory. Especially the fundamental properties are de-
termined by the two physical quantities, Hc and κ. That is, the critical fields,
Hc1(Eq. (1.83)) and Hc2(Eq. (1.51)), and the magnetization in their vicinities
given by Eqs. (1.90) and (1.114) are described only by the two quantities (note
that φ0/λ2 = 2

√
2πµ0Hc/κ in Eq. (1.90)). In addition, from the argument on

thermodynamics we have the general relation

−
∫ Hc2

0

µ0M(He)dHe =
1
2
µ0H

2
c . (1.123)

In the above we assumed that κ is a general parameter decreasing slightly with
increasing temperature. Strictly speaking, the κ values defined by
Eqs. (1.51)(κ1), (1.114)(κ2) and (1.83)(κ3) are slightly different.

1.6 Surface Superconductivity

In the previous section the magnetic properties and the related superconduct-
ing order parameter in a bulk superconductor were investigated. In practice,
the superconductor has a finite size and the surface. A special surface prop-
erty different from that of the bulk is expected. Here we assume a semi-infinite
type-2 superconductor occupying x ≥ 0 with the magnetic field applied par-
allel to the surface along the z-axis for simplicity. On the surface where the
superconductor is facing vacuum or an insulating material, the boundary con-
dition on the order parameter is given by Eq. (1.33). Under this condition the
vector potential A can be chosen so that it contains only the y-component.
Hence, the above boundary condition may be written

∂Ψ
∂x

∣∣∣∣
x=0

= 0 . (1.124)
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We shall solve again the linearized G-L equation (by ignoring the small term
to the third power of Ψ). We assume the order parameter of the form [10]

Ψ = e−ikye−ax2
(1.125)

referring to Eqs. (1.91) and (1.94). This order parameter satisfies the condition
(1.124). In the following we shall obtain approximate values of the parameters,
k and a, by the variation method. Under the present condition in which the
external variable is given, the quantity to be minimized is the Gibbs free
energy density; this is given by the free energy density in Eq. (1.21) minus
BHe. If the small term proportional to the fourth power of Ψ is neglected,
the Gibbs free energy per unit length in the directions of the y- and z-axes
measured from the value in the normal state is given by

G =
1
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∫ ∞

0

[
|(−i�∇ + 2eA)Ψ|2 − �

2

ξ2
|Ψ|2

]
dx (1.126)

under the approximation Ay = µ0Hex. After substitution of Eq. (1.125) into
this equation and a simple calculation we have
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(
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When minimizing this with respect to k, we obtain

k =
(

2
πa

)1/2
eµ0He

�
, (1.128)

after which, G becomes

Ge =
�

2

4m∗

(π

2

)1/2
[
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ξ2
a−1/2 +

e2µ2
0H

2
e
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π
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]
. (1.129)

From the requirements that Ge is minimum with respect to a and that Ge = 0
at the transition point, we obtain a and the critical value of He denoted by
Hc3 as [10]

a =
1

2ξ2
, (1.130)

Hc3 =
�

2ξ2eµ0

(
1 − 2

π

)−1/2

� 1.66Hc2 . (1.131)

The exact calculation was carried out by Saint-James and de Gennes [11] who
obtained

Hc3 = 1.695Hc2 . (1.132)

The surface critical field Hc3 depends on the angle between the surface
and the magnetic field. Hc3 decreases from the value given by Eq. (1.132)
with increasing angle and reduces to the bulk upper critical field Hc2 at the
angle normal to the surface.
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1.7 Josephson Effect

It was predicted by Josephson [12] that a DC superconducting tunneling cur-
rent can flow between superconductors separated by a thin insulating layer.
This is the DC Josephson effect. The intuitive picture of this effect was given
by Eq. (1.54), based on phenomenological theory. That is, it was expected
from the first term in this equation that, if a phase difference occurs be-
tween the order parameters of superconductors separated by an insulating
layer, a superconducting tunneling current proportional to that phase differ-
ence flows across the insulating barrier. Here we suppose a Josephson junction
as schematically shown in Fig. 1.10 and assume that the physical quantities
vary only along the x-axis along which the current flows. If we assume that
the order parameter is constant and that the gradient of the phase is uniform
in the insulating region, Eq. (1.54) leads to

j = jcθ , (1.133)

where jc is given by

jc =
2�e

m∗d
|Ψ|2 (1.134)

with d denoting the thickness of the insulating layer. In Eq. (1.133) θ, which
is the difference of the gauge-invariant phase of the two superconductors, is
given by

θ = φ1 − φ2 −
2π

φ0

∫ 2

1

Axdx (1.135)

Fig. 1.10. Structure of Josephson junction
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with φ1 and φ2 denoting the phases of superconductors 1 and 2, respectively.
Equation (1.133) is correct when the phase difference θ is small. When θ be-
comes large, the relationship between the current density and θ starts to devi-
ate from this equation. This can be understood from the physical requirement
that the current should vary periodically with θ the period of the variation
being 2π. Hence, a relationship of the form

j = jc sin θ (1.136)

is expected instead of Eq. (1.133). In fact, this relationship was derived by
Josephson using BCS theory. Equation (1.136) can also be derived using G-L
theory, if Eqs. (1.30) and (1.54) are solved simultaneously [13].

Since the phase difference θ contains the effect of the magnetic field in a
gauge-invariant form, the critical current density, i.e., the maximum value of
Eq. (1.136) averaged in the junction, varies with the magnetic field as

Jc = jc

∣∣∣∣ sin(πΦ/φ0)
πΦ/φ0

∣∣∣∣ (1.137)

due to interference (see Fig. 1.11), where Φ is the magnetic flux inside the
junction. This form is similar to the interference pattern due to Fraunhofer
diffraction by a single slit. For example, when the magnetic flux just equal
to one flux quantum penetrates the junction, the critical current density of
the junction is zero. In this situation the phase inside the junction varies
over 2π and the zero critical current density results from the interference
of the positive and negative currents of the same magnitude. This influence
of the magnetic field gives a direct proof of the DC Josephson effect. The
SQUID (Superconducting Quantum Interference Device) in which a very small
magnetic flux density can be measured is a device that relies on this property.

Fig. 1.11. Relation between the critical current density in a Josephson junction
and the magnetic flux inside the junction
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Another effect predicted by Josephson is the AC Josephson effect. In this
phenomenon, when a voltage with V is applied to the junction, an AC super-
conducting current flows with angular frequency, ω, given by

�ω = 2eV . (1.138)

In the voltage state the magnetic flux flows through the junction region and
the phase of the order parameter varies in time. As will be shown in Sect. 2.2,
the angular frequency given by Eq. (1.138) is the same as the rate of vari-
ation of the phase. When the junction is irradiated by microwave energy of
this frequency, resonant absorption occurs and a DC step of the supercon-
ducting current, i.e., a “Shapiro step,” appears. The AC Josephson effect was
demonstrated by this kind of measurement. The present voltage standard is
established by the AC Josephson effect expressed by Eq. (1.138) in association
with an extremely exact frequency measuring technique.

1.8 Critical Current Density

The maximum superconducting current density that the superconductor can
carry is a very important factor from an engineering standpoint. Some aspects
of this property are mentioned in this section. According to the G-L theory,
the superconducting current density may be transcribed from Eq. (1.54) into
the form

j = −2e|Ψ|2vs , (1.139)

where
vs =

1
m∗ (�∇φ + 2eA) (1.140)

is the velocity of the superconducting electrons. If the size of superconductor
is sufficiently small compared to the coherence length ξ, |Ψ| can be probably
regarded as approximately constant over the cross section of the superconduc-
tor. If we note that ∇Ψ � iΨ∇φ, the free energy density in Eq. (1.21) reduces
to

Fs = Fn(0) + α|Ψ|2 +
β

2
|Ψ|4 +

1
2
m∗|Ψ|2v2

s +
B2

2µ0
. (1.141)

Minimizing the free energy density with respect to |Ψ|, we have

|Ψ|2 = |Ψ∞|2
(

1 − m∗v2
s

2|α|

)
. (1.142)

From Eq. (1.139) the corresponding current density is given by

j = 2e|Ψ∞|2
(

1 − m∗v2
s

2|α|

)
vs . (1.143)

This becomes maximum when m∗v2
s = (2/3)|α|, the maximum value being
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jc =
(

2
3

)3/2
Hc

λ
. (1.144)

Under the condition that j is maximum, |Ψ| takes a finite value, (2/3)1/2|Ψ∞|,
and the depairing of the superconducting electron pairs has not yet occurred.
In fact, the velocity at which the depairing takes place resulting in zero |Ψ| is√

3 times as large as the velocity corresponding to jc. However, according to
the BCS theory the current density almost attains its maximum value when
vs is such that the energy gap diminishes to zero in the limit of T = 0. Thus
there is a clear relationship between the depairing velocity and the maximum
current density. For this reason the current density given by Eq. (1.144) is
sometimes called the depairing current density.

The Meissner current is another current associated with the superconduct-
ing phenomena. This current, which is localized near the surface according to
Eq. (1.15), brings about the perfect diamagnetism. In type-2 superconductors
its maximum value is

jc1 =
Hc1

λ
. (1.145)

Here we shall investigate the above two critical current densities quantita-
tively. Take the practical superconducting material Nb3Sn for example. From
µ0Hc � 0.5 T, µ0Hc1 � 20 mT and λ � 0.2 µm, we have jc � 1.1×1012 Am−2

and jc1 � 8.0×1010 Am−2 at 4.2 K. It is seen that these values are very high.
However, the size of superconductor should be smaller than ξ to attain the
depairing current density jc over its entire cross section. Since ξ in Nb3Sn is
approximately 3.9 nm, the fabrication of superconducting wires sufficiently
thinner than ξ is difficult. Furthermore, suppose that multifilamentary subdi-
vision is adopted for keeping the current capacity at a sufficient level; i.e., sup-
pose that a large number of fine superconducting filaments are embedded in a
normal metal. In this case we have to confront an essential problem; viz. the
proximity effect in which the superconducting electrons in the superconduct-
ing region soak into the surrounding normal metal matrix. Two consequences
follow: (1) the superconducting property in the superconducting region be-
comes degraded. (2) Since superconductivity is induced in the normal metal,
the superconducting filaments become coupled and the whole wire behaves as
a single superconductor. This is contradictory to the premise that the size of
superconductor is sufficiently smaller than the coherence length. Hence, it is
necessary to embed the superconducting filaments in an insulating material
to avoid the proximity effect. However, such a wire is hopelessly unstable.
Application of the Meissner current jc1 is strongly restricted by the condition
that the surface field should be lower than Hc1. In Nb3Sn µ0Hc1 is as low as
20 mT. Hence jc1 cannot be practically used except some special uses.

Since the magnetic energy density is proportional to the second power of
the magnetic field, superconducting materials are sometimes used as high-
field magnets to store large amounts of energy. Therefore, the superconduc-
tivity is required to persist up to high magnetic fields. For such applications
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Fig. 1.12. Situation of a current-carrying superconductor in the magnetic field. The
Lorentz force acts on the flux lines in the direction shown by the arrow

a type-2 superconductor with the short coherence length is required; the su-
perconductor is then in the mixed state and is penetrated by flux lines. If the
superconductor carries a transport current under this condition (suppose a
superconducting wire composing a superconducting magnet under an operat-
ing condition), the relative direction of the magnetic field and the current is
like the one shown in Fig. 1.12 and the flux lines in the superconductor expe-
rience a Lorentz force. The driving force on the flux lines will be described in
more detail in Sect. 2.1. If the flux lines are driven by this Lorentz force with
velocity v, the electromotive force induced is:

E = B × v , (1.146)

where B is the macroscopic magnetic flux density. When this state is main-
tained steadily, an energy dissipation, and hence an electrical resistance,
should appear as in a normal metal. Microscopically, the central region of
each flux line is almost in the normal state as shown in Fig. 1.6, and the nor-
mal electrons in this region are driven by the electromotive force, resulting in
an ohmic loss. This phenomenon is inevitable as long as an electromotive force
exists. Hence, it is necessary to stop the motion of flux lines (v = 0) in order
to prevent the electromotive force. This so-called flux pinning is provided by
inhomogeneities and various defects such as dislocations, normal precipitates,
voids and grain boundaries. These inhomogeneities and defects are therefore
called pinning centers. Flux pinning is like a frictional force in that it prevents
the motion of flux lines until the Lorentz force exceeds some critical value.
In this state only the superconducting electrons are able to flow and energy
dissipation does not occur. For the Lorentz force larger than the critical value
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Fig. 1.13. Current-voltage characteristics in the presence of flux pinning interac-
tions. The broken line shows the characteristics in the absence of pinning interactions

the motion of flux lines sets in and the electromotive force reappears, result-
ing in the current-voltage characteristics shown in Fig. 1.13. The total pinning
force that all the elementary pinning centers in a unit volume can exert on
the flux lines is called the pinning force density; it is denoted by Fp. At the
critical current density Jc, at which the electromotive force starts to appear,
the Lorentz force of JcB acting on the flux lines in a unit volume is balanced
by the pinning force density. Hence, we have the relation:

Jc =
Fp

B
. (1.147)

The practical critical current density in commercial superconducting materi-
als is determined by this flux pinning mechanism. This implies that this Jc

is not an intrinsic property like the two critical current densities previously
mentioned but is an acquired property determined by the macroscopic struc-
ture of introduced defects. That is, the critical current density depends on
the density, type of, and arrangement of pinning centers. It is necessary to
increase the flux pinning strength in order to increase the critical current den-
sity. In the above-mentioned Nb3Sn, a critical current density of the order of
Jc � 1 × 1010 Am−2 is obtained at B = 5 T.

As a matter of fact, the current-voltage characteristics are not the ideal
ones shown in Fig. 1.13 and the electric field is not completely zero for J ≤ Jc.
This comes from the motion of flux lines that have been depinned due to the
thermal agitation. This phenomenon called the flux creep will be considered in
detail in Sect. 3.8. However, in most cases at sufficiently low temperatures the
critical current density Jc can be defined as in Fig. 1.13. Henceforth we will
assume that the E-J relation depicted in Fig. 1.13 is approximately correct
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and Jc can be well defined in most cases. Some practical definitions of Jc are
considered in Sect. 5.1.

1.9 Flux Pinning Effect

The practical critical current density in superconductors originates from the
flux pinning interactions between the flux lines and defects. The flux line has
spatially varying structures of order parameter Ψ and magnetic flux density
b as shown in Fig. 1.6. The materials parameters such as Tc, Hc, ξ, etc., in
the pinning center are different from those in the surrounding region. Hence,
when the flux line is virtually displaced near the pinning center, the free energy
given by Eq. (1.21) varies due to the interference between the spatial variation
in Ψ or b and that of α or β. The rate of variation in the free energy, i.e., the
gradient of the free energy gives the interaction force.

Each such individual pinning interaction is vectored in various directions
depending on the relative location of the flux line and the pinning center. On
the other hand, the resultant macroscopic pinning interaction force density
is a force directed opposite to the motion of flux lines in the manner of a
macroscopic frictional force. While the individual pinning force comes from
the potential and is reversible, the macroscopic pinning force is irreversible.
Furthermere, the macroscopic pinning force density is not generally equal to
the sum all the elementary pinning forces, the maximum forces of individual
interactions, in a unit volume; and the relationship between the macroscopic
pinning force density and the elementary pinning force is not simple. The
so-called pinning force summation problem will be considered in Chap. 7.

At first glance it might seem that the superconductor can carry some
current of the density smaller than Jc without energy dissipation. However,
this is correct only in the case of steady direct current. For an AC current or a
varying current, loss occurs even when the current is smaller than the critical
value. The loss is caused by the electromotive force given by Eq. (1.146) due
to the motion of flux lines in the superconductor under the AC or varying
condition. That is, the mechanism of the loss is the same as that of ohmic
loss in normal metals. Hence, the resultant loss seems to be of the nature
that the loss energy per cycle is proportional to the frequency, similarly to
the eddy current loss in copper. However, it is the hysteresis loss independent
of the frequency. What is the origin for such an apparent contradiction? This
originates also from the fact that the flux pinning interaction comes from the
potential. This will be mentioned in Chap. 2.

Exercises

1.1. Compare the energy treated in the London theory and that in the G-L
theory.
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1.2. With the use of the G-L equation (1.30), prove that the free energy
density given by Eq. (1.21) is written as

Fs = Fn(0) +
1

2µ0
(∇× A)2 − β

2
|Ψ|4 +

�
2

4m∗∇
2|Ψ|2.

1.3. Prove that the magnetic flux is quantized in a unit cell of the flux line
lattice.

1.4. Calculate the contributions from the following matter to the energy of
the flux line in the low field region:
(1) the spatial variation in the order parameter inside the core and
(2) the magnetic field inside the core.
Use Eq. (1.74).

1.5. Derive Eq. (1.97). We can write as Cn = C0 exp(iπn2/2) so as to satisfy
C2m = C0 and C2m+1 = iC0.

1.6. It was shown by the approximate solution of Eq. (1.98) that (x, y) =
((
√

3/4)af ,−af/4) is one of the zero points of Ψ. Prove that Ψ given by
Eq. (1.95) is exactly zero at this point.

1.7. Derive Eq. (1.111).
1.8. We calculate the magnetic flux of one flux line in the area shown in

Fig. 1.14. The surface integral is given by the curvilinear integral of the
vector potential A. Since the current density j is perpendicular to the
straight line L, the curvilinear integral of A is equal to the curvilinear
integral of −(�/2e)∇φ on L with φ denoting the phase of the order para-
meter. Equation (1.55) is valid also on the half circle R at sufficiently long
distance. As a result the magnetic flux in the region shown in the figure
should be an integral multiple of the flux quantum φ0. This is clearly
incorrect. Examine the reason why such an incorrect result was derived.

Fig. 1.14. Closed loop consisting of the straight line L passing through the center
of the quantized magnetic flux and the half circle R at sufficiently long distance
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1.9. Discuss the reason why the center of quantized flux line is in the normal
state.
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2

Fundamental Electromagnetic Phenomena
in Superconductors

2.1 Equations of Electromagnetism

Here we assume a sufficiently large superconductor. When a magnetic field is
applied to the superconductor, flux lines penetrate it from the surface. Since
the flux lines are expected to be pinned by pinning centers in the supercon-
ductor, those cannot penetrate deeply from the surface and the density of the
flux lines will be higher near the surface and lower in the inner region, result-
ing in a nonuniform distribution in a macroscopic scale. When the external
magnetic field is decreased, on the other hand, the flux lines go out of the
superconductor and their density becomes lower near the surface. It is impor-
tant to know correctly the magnetic flux distribution in the superconductor in
such cases in order to understand or foresee its electromagnetic phenomenon
exactly.

We assume a semi-macroscopic region which is sufficiently larger in size
than the flux line spacing but sufficiently smaller than the superconductor.
We designate rn as the central position of this region; the mean magnetic
flux density within it, given by the product of the density of flux lines and
the flux quantum φ0, is designated by Bn. The superconductor is imagined
to be divided into such small segments (see Fig. 2.1). If the differences in the
magnetic flux density between adjacent segments are sufficiently small, the set
{Bn(rn)} can be approximated by a continuous function of B(r), where r
denotes the macroscopic coordinate in the superconductor. The macroscopic
magnetic field H(r), current density J(r), and electric field E(r) can be
defined in a similar manner.

The quantities B, H, J and E defined above, which are the semi-
macroscopic averages of the local b, h, j and e (the word “macroscopic”
is not used hereafter except special cases), satisfy the well-known Maxwell
equations:

J = ∇× H , (2.1)

∇× E = −∂B

∂t
, (2.2)
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Fig. 2.1. Magnetic flux density averaged in a semi-macroscopic scale

∇ · B = 0 , (2.3)

∇ · E = 0 . (2.4)

Although the above equations are formally the same as the equations on
the local quantities discussed in Chap. 1, these are the relationships for the
macroscopic quantities. Equation (2.4) is based on the fact that the electric
charge does not exist in the superconductor under the usual conditions and the
displacement current is neglected in Eq. (2.1). In order to solve the Maxwell
equations, two other equations for the superconductor are needed. One of
them is the relationship between B and H, which is simply given by

B = µ0H (2.5)

except for strongly paramagnetic superconductors, which can be confirmed by
measurement in the normal state in a magnetic field greater than the upper
critical field Hc2. The other is the relationship between E and J , that gives the
outstanding characteristic of the superconductor. These last two relationships
together with Eqs. (2.1) and (2.2) yield the four quantities, B, H, J and E.

The relationship between E and J describes the fundamental properties
of the superconductor, such as the ability of DC steady transport current
to flow within it without appearance of the electrical resistance or its ir-
reversible magnetic behavior in a varying magnetic field. For example, the
electrical properties of a material can be obtained by solving the equation of
motion of its electrons. Since the most electromagnetic phenomena in the su-
perconductor are concerned with the magnetic flux distribution within it, the
motion of flux lines must be dealt with. Consider the case mentioned in the
beginning of this section, where the flux lines penetrate the superconductor
in an applied magnetic field. On one hand, an equilibrium may be attained
under the balance between the driving force and the restraining force due to
flux pinning on the flux lines. On the other hand where the equilibrium is not
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attained due to the driving force which exceeds the pinning force, the situa-
tion can be described by an equation of motion that contains a new term, the
viscous force, as in the usual equation of mechanical motion. In what follows
the various forces that appear in this equation are discussed.

If, as mentioned above, B is the mean magnetic flux density within a
small region and F (B) is the corresponding free energy density, the intensive
variable, H, corresponding to B is given by

H =
∂F (B)

∂B
. (2.6)

This quantity, which has the dimension of magnetic field, is called the ther-
modynamic magnetic field. If the H that is in equilibrium with B is uniform
in space, a driving force does not act on the flux lines. If, however, there is
a distortion or an eddy in H, a driving force does act on the flux lines. It
should be noted that the driving force does not necessarily originate from a
nonuniformity in B. In Sect. 2.6 it will be shown that a driving force may not
appear even when B varies spatially, provided that H is uniform.

In many cases, especially in superconductors with large G-L parameters
κ, such as commercial superconductors, magnetic energy dominates the G-L
energy given by Eq. (1.21). The other components are the condensation energy
and the kinetic energy, that are of the order of µ0H

2
c /2 at most. Hence, the

ratio of this energy to the magnetic energy is of the order of (Hc/H)2 and
amounts only to 8/κ2 even at magnetic fields as high as a quarter of the
upper critical field. In Nb-Ti which has a κ of approximately 70 this ratio is
negligible. In such cases Eq. (2.6) reduces to

H � ∂

∂B
· B2

2µ0
=

B

µ0
. (2.7)

This result is reasonable, since the energy associated with the diamagnetism
is neglected in the above treatment. When H varies in space, the driving force
on the flux lines in a unit volume is generally given by

F d = (∇× H) × B . (2.8)

From Eq. (2.7) which disregards the effect of diamagnetism, only an electro-
magnetic contribution to the force appears and we have

F d �
(
∇× B

µ0

)
× B = J × B ≡ F L . (2.9)

In the above, Eqs. (2.1) and (2.5) were used. The driving force F L is known
as the Lorentz force. This is the force felt by moving electrons, and hence the
current, in the magnetic field. In the present case, the vortex current which
forms the flux line experiences this force. The distortion of flux lines, such as
a gradient of their density or a bending deformation, results in a transport
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current as shown in Eq. (2.1). That is, the transport current originates from
superposition of vortex currents. Hence the Lorentz force may be regarded as
acting on the flux lines themselves. In fact, the force acting on two flux lines
is derived from their magnetic energy, and the expression of the Lorentz force
is deduced for the general case from this result in [1]. A force of this type
works not only on the quantized flux lines in superconductors but generally
on magnetic flux lines. The Lorentz force can also be generally expressed in
the form of the restoring force on the distorted magnetic structure. This will
be discussed in Sect. 7.2. The driving force on an isolated flux line in a thin
film by a transport current is discussed in [2]. The effect of the diamagnetism
on the driving force is larger for the case of superconductor with a small G-
L parameter. This effect is also pronounced for superconductors with weak
pinning forces or small superconductors. This will be discussed in Sect. 2.6.

When flux lines are under the influence of a driving force, hereafter called
the Lorentz force for simplicity, they are acted on by restraining forces. These
are the pinning force and the viscous force. The pinning force comes from
the potential energy that the flux line feels depending on its position and
the viscous force originates from the mechanism of ohmic energy dissipation
inside and outside of the normal core of the flux line due to its motion. The
balance of these forces is described by

F L + F p + F v = 0 , (2.10)

where F p and F v are the pinning force density and the viscous force density,
respectively. The mass of the flux line can usually be neglected [3] and the in-
ertial force does not need to be introduced. Under the condition of Eq. (2.10)
the superconductor is said to be in its “critical state” and the model in which
this state is assumed is called the critical state model. Following Josephson
[4] who treated the quasistatic case in which the viscous force can be ne-
glected (see Appendix A.1), it is also possible to derive Eq. (2.10) from the
requirement that the work done by the external source should be equal to the
variation in the free energy in the superconductor. In Eq. (2.10) F p does not
depend on the velocity of flux lines v, while F v does. These force densities
are written

F p = −δFp(|B|, T ) , (2.11)

F v = −η
|B|
φ0

v , (2.12)

where δ = v/|v| is a unit vector in the direction of flux line motion and
Fp represents the magnitude of the pinning force density which depends on
the magnetic flux density |B| and the temperature T . The quantity, η, is
the viscous coefficient. As will be mentioned in the next section η is related
to the flux flow resistivity; it is also a function of |B| and T . Sometimes
electromagnetic phenomena are treated in an isothermal condition. In such a
case the T is dropped in relationships deriving from Eq. (2.11). Substitution
of Eqs. (2.9), (2.11) and (2.12) into Eq. (2.10) leads to
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1
µ0

(∇× B) × B − δFp(|B|) − η
|B|
φ0

v = 0 . (2.13)

To solve this equation using the Maxwell equations, a relationship between
the electromagnetic quantities and the velocity v is needed. This is the subject
of the next section.

2.2 Flux Flow

We assume that the superconductor is stationary in space and that the flux
line lattice of flux density B moves with a velocity v. We define two coordi-
nate systems, or frames; a stationary one for the superconductor and another
moving with the velocity v of the flux line lattice. If the electric fields mea-
sured in the stationary frame and the moving frame are represented by E and
E0, respectively, Farady’s law of induction becomes

∇× (E0 − v × B) = −∂B

∂t
(2.14)

as well known in the theory of electromagnetism [5]. Since the magnetic struc-
ture does not change at all with time from the view of the moving frame, we
have E0 = 0. Thus, Eq. (2.14) reduces to

∇× (B × v) = −∂B

∂t
. (2.15)

This is called the continuity equation for flux lines [6]. This equation can also
be derived directly by equating the magnetic flux coming in a small loop in
unit time with the rate of variation of the magnetic flux in the loop. This
derivation is offered as an exercise at the end of this chapter. Comparing
Eq. (2.15) with one of the Maxwell equations, Eq. (2.2), we have generally

E = B × v −∇Ψ . (2.16)

In the above, the scalar function, Ψ, represents the electrostatic potential for
the usual geometry in which the magnetic field and the current are perpen-
dicular to each other. It is zero in superconductors [7, 8] in which case

E = B × v . (2.17)

With the so-called longitudinal magnetic field geometry in which the magnetic
field and the current are parallel to each other, the additional term, −∇Ψ,
is needed. This condition will be discussed in detail in Chap. 4. In this case
Ψ is not the electrostatic potential, since all the electric field comes from the
electromagnetic induction due to the motion of flux lines.

One more word is added here in order to avoid confusion. It might be con-
sidered that the electric field given by Eq. (2.17) is not the induced one in the
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steady flux flow state, since the macroscopic flux distribution does not change
with time. In fact, the substitution of ∂B/∂t = 0 into Eq. (2.15) leaves B×v
as the gradient of a scalar function. As mentioned above, energy is dissipated
in the flux flow state, leading to the appearance of electrical resistance as in
normal conductors. In this sense, if we confine ourselves within the framework
of pure macroscopic electromagnetism, it is possible to interpret this scalar
function as an electrostatic potential, as for a normal conductor, without any
contradiction. It is not possible, however, to go on and explain from such a
theoretical background why an electric field does not appear when the motion
of flux lines is stopped. As is emphasized in [9], the motion of flux lines is the
essence. That is, the observed electric field is in fact an induced one.

The electric field given by Eq. (2.17) is equivalent to Eq. (1.138) which
describes the AC Josephson effect. To prove this we begin by assuming for
simplicity that the flux line lattice is a square lattice and that two points,
A and B, are separated by L along the direction of the current, as shown
in Fig. 2.2. If the flux line spacing is represented by af , L/af rows of flux
lines are moving with the velocity v in the direction perpendicular to the
current between these two points. The flux lines move a distance af during
a time interval of ∆t = af/v. The amount of magnetic flux that crosses the
line AB during the interval ∆t is given by (L/af)φ0. Since the change in the
phase of the order parameter when circulating around one quantum φ0 of
magnetic flux is 2π, the variation in the phase difference between A and B is
∆Θ = 2π(L/af). With the aid of B = φ0/a2

f , Eq. (2.17) reduces to

V = EL =
φ0

2π
· ∆Θ

∆t
=

�ω

2e
(2.18)

and agrees with Eq. (1.138). In the above we replace ∆Θ/∆t by an angular
frequency, ω.

Fig. 2.2. Motion of flux line lattice
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Fig. 2.3. Spatial variation in the order parameter in the vicinity of the center of
normal core. The broken line represents the approximation of the local model

As a variation in the magnetic flux density is related to the velocity of
flux lines through Eq. (2.15), the solution to B can be obtained in principle
from this equation and Eq. (2.13). Before we proceed to solve these equations,
some important phenomena related to flux motion will be described in this
section. First we describe the various energy loss mechanisms such as a pin-
ning energy loss in superconductors, and second we derive the flow resistivity
corresponding to the energy loss and go on to clarify the relationship between
the flow resistivity and the viscous coefficient η given by Eq. (2.12).

A description of the structure of the flux line is needed in order to explain
the phenomenon plainly. For this we adopt the local model of Bardeen and
Stephen [10]. Commentary on the rigorousness of this model is provided in
detail in [9], and so is not repeated here. It is known that the results of this
theoretical model are generally correct in spite of various assumptions for
simplicity. We assume that the G-L parameter κ of the superconductor is
sufficiently large. Bardeen and Stephen assumed the structure of the order
parameter around the center of flux line to be as shown in Fig. 2.3 where the
region inside a circle of radius ξ is in the normal state. In the original paper
this radius was initially treated as an unknown quantity and then shown to
coincide with ξ from its relationship to the upper critical field Hc2. In this
section, we begin with this result. Outside the normal core of radius ξ the order
parameter is approximately constant and the London equation can be used.
In this region the superconducting current flows circularly around the normal
core. Cylindrical coordinates are introduced with the z-axis along the flux line
and with r denoting the distance from this axis. From Eqs. (1.4) and (1.64)
the momentum of the superconducting electron in the circulating current in
the region ξ < r < λ is given by
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ps = m∗vsθiθ � −�

r
iθ ≡ ps0 , (2.19)

where iθ is a unit vector in the azimuthal direction.
Cartesian coordinates are also introduced with the x- and y-axes in the

plane normal to the flux line to express the flux motion. We assume that the
current flows along the y-axis. If the Hall effect is disregarded for simplicity,
the flux motion occurs along the x-axis and the mean macroscopic electric
field is directed to the y-axis. The equation of motion of the superconducting
electron is described as [10]

dvs

dt
=

f e

m∗ , (2.20)

where f e is the force on the electron. When the Lorentz force acts on the
charge −2e, the relationship

m∗vs = ps + 2eA (2.21)

is known to hold with the vector potential A. If we assume that the flux lines
move uniformly along the x-axis with a small velocity v, the secondary effects
due to this motion can be expected to be sufficiently small and the variation
with time in Eq. (2.20) can be approximated as d/dt � −(v · ∇). Thus, we
have

f e = −(v · ∇)(ps + 2eA) = −v
∂

∂x
(ps + 2eA) . (2.22)

Within an accuracy of the order in v, we can approximately use ps0 given by
Eq. (2.19) for ps. At the same time A is approximately given by (Br/2)iθ

assuming that the magnetic field is nearly constant in the vicinity of the
normal core. Substitution of these into Eq. (2.22) leads to

f e = v
∂

∂x

(
�

r
− eBr

)
iθ

=
v�

r2
(−iθ cos θ + ir sin θ) − eBviy . (2.23)

This force originates from the local electric field e, expressed as

e = −f e

2e
=

φ0v

2πr2
(iθ cos θ − ir sin θ) +

Bv

2
iy

= e1 +
1
2
(B × v) , (2.24)

where e1 represents the nonuniform component of the electric field.
The electric field inside the normal core can be obtained from the boundary

condition at r = ξ that its tangential component is continuous to the outside.
Since this component of the nonuniform component e1 given by Eq. (2.24) is
(φ0v/2πξ2)cosθ, the electric field inside the core is given by

e =
φ0v

2πξ2
iy +

1
2
(B × v) (2.25)
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Fig. 2.4. Lines of electric force due to nonuniform component of the electric field
inside and outside the normal core

and is found to be uniform and directed along the y-axis. The nonuniform
component of the electric field around the normal core is schematically de-
picted in Fig. 2.4. It can be seen from the above result and the figure that
the normal component of the electric field is discontinuous at the boundary,
indicating that electric charge is distributed around the boundary according
to σ = −(φ0vε/πξ2)sinθ with ε denoting the dielectric constant. This seems to
contradict Eq. (2.4). However, this comes about through the use of the local
model; the result does not contradict Eq. (2.4) on a macroscopic scale, since
the total electric charge inside the core is zero.

Let us investigate the relationship between the local and macroscopic elec-
tric fields. We assume that the distance between the nearest flux lines is suffi-
ciently large. If the unit cell of the flux line lattice is approximated by a circle
of the radius R0, then B = φ0/πR2

0. It is easily shown that the average of
the nonuniform electric field e1 given by Eq. (2.24) in the region ξ < r < R0

is zero. Thus, the second term of Eq. (2.24) and Eq. (2.25) contribute to the
macroscopic electric field:

E =
iy

πR2
0

∫ ξ

0

φ0v

2πξ2
2πrdr +

1
2
(B × v) = B × v . (2.26)

This result agrees with Eq. (2.17).
The electric field shown above causes the flow of normal electrons inside

and outside the core, resulting in ohmic energy dissipation. This is the origin
of the energy loss in superconductors and a corresponding electrical resistance
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is observed. Here we shall derive an expression for the flow resistivity from the
energy loss due to the above electric field. The power loss inside the normal
core per unit length of the flux line is given by

W1 = πξ2 µ2
0H

2
c2v

2

ρn

(
1 +

B

2µ0Hc2

)2

, (2.27)

where ρn is the normal resistivity and Eq. (1.52) is used. We assume that the
resistivity outside the normal core is also approximately given by ρn. Thus,
the power loss in this region per unit length of flux line is calculated as [10]

W2 = 2π
∫ R0

ξ

rdr

ρn

[(
φ0v

2π

)2 1
r4

+
(

Bv

2

)2
]

=
πR2

0µ0Hc2B

2ρn

(
1 − B2

4µ2
0H

2
c2

)
v2 . (2.28)

Hence, if the total power loss W1 + W2 is equated to the power loss,
πR2

0B
2v2/ρf , in an equivalent uniform material with an effective resistivity,

i.e., the flow resistivity ρf , we obtain

ρf =
B

µ0Hc2

(
1 +

B

2µ0Hc2

)−1

ρn . (2.29)

In the limit B � µ0Hc2 where the flux line spacing is sufficiently large, the
above result reduces to

ρf =
B

µ0Hc2
ρn . (2.30)

This agrees with the experimental result [11].
We go on to treat the case in which the magnetic field is applied in the

direction of the z-axis and the current is applied along the y-axis. The veloc-
ity vector v lies along the x-axis. When Eq. (2.13) is rewritten in terms of
Eqs. (1.147) and (2.17), we have

E = ρf(J − Jc) (2.31)

for J ≥ Jc. This relationship between E and J gives the current-voltage char-
acteristic in the flux flow state as shown in Fig. 1.13 and represents the char-
acteristic feature of the superconductor. Thus, the flow resistivity is expressed
as

ρf =
φ0B

η
(2.32)

in terms of the viscous coefficient η.
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2.3 Mechanism of Hysteresis Loss

It was shown in the last section that the energy loss in a superconductor is
ohmic in nature due to the motion of normal electrons driven by an electric
field induced by the motion of flux lines. It is well known that ohmic loss under
AC conditions is proportional to the square of the frequency. Corresponding
to this the power losses given by Eqs. (2.27) and (2.28) are proportional to
the square of the flux line velocity v. The total power loss density is written
as

P =
1

πR2
0

(W1 + W2) =
B2v2

ρf
= −F v · v (2.33)

and is the viscous power loss density. On the other hand, the pinning power
loss density is given by −F p · v, thus is proportional to the first power of
flux line velocity, i.e., proportional to the frequency (here we note that Fp is
independent of v). Thus, this loss is not of the ohmic type, a feature which
is associated with the fact that the current-voltage characteristic shown in
Fig. 1.13 is not ohmic. The above result seems to be in conflict with the notion
that any kind of loss originates from the ohmic loss of normal electrons. It is
necessary to understand the motion of flux lines in the pinning potential in
order to resolve this contradiction.

The macroscopic electromagnetic phenomena in superconductors due to
the motion of flux lines can be theoretically treated in an analogous way to the
motion of a mechanical system. An example can be seen in Eq. (2.33). In terms
of Eqs. (2.9) and (2.17) the input power density J · E to the superconductor
may also be expressed as

J · E = J · (B × v) = F L · v , (2.34)

which can be regarded as the power given by the Lorentz force. At a more
microscopic level such a correspondence to the mechanical system can also
be expected to hold for the motion of individual flux lines. In that case,
however, it should be noted that the pinning interaction does not give rise
to an irreversible frictional force in a macroscopic sense but a reversible force
originated from a pinning potential.

Here we look at one flux line in the lattice moving in the field of a pinning
potential. We assume that the center of the lattice is moving with a constant
velocity v. Because of the pinning interaction, the position u of a given flux line
deviates from the equilibrium position u0 determined by the elastic interaction
between it and the surrounding flux lines. Consequently its velocity, u̇ =
∂u/∂t, differs from the mean velocity v. As a result, the flux line experiences
an elastic restoring force proportional to the displacement, u− u0. According
to Yamafuji and Irie [12] the equation describing such flux line motion is given
by

η∗v − kf(u − u0) + f(u) − η∗u̇ = 0 , (2.35)

in which
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η∗ =
Bη

φ0Np
. (2.36)

Here η∗ is the effective viscous coefficient per pinning center of number density
Np, kf is the spring constant of the elastic restoring force of the flux line
lattice and f(u) is the force due to the pinning potential. The fourth term
in Eq. (2.35) is the viscous force and the first and the second terms give the
driving force on the flux line. That is, the first term is the component for
the case where the velocity is not disturbed by the pinning potential and
the second term is the additional component due to the disturbance of the
velocity. From the condition of continuity of the steady flow of flux lines, we
have

〈u̇〉t = u̇0 = v , (2.37)

where 〈 〉t represents the average with respect to time.
The input power in this case is given by

〈[η∗v − kf(u − u0)]u̇〉t . (2.38)

From the mechanism of the energy dissipation, this should be equal to the
viscous power loss, 〈η∗u̇2〉t. The proof of this equality is Exercise 2.2. On the
other hand, the apparent viscous power loss is η∗v2. Hence, the difference
between these two quantities is the loss due to the pinning interaction. Thus,
the pinning power loss density Pp is given by this difference multiplied by Np;
i.e.

Pp =
Bη

φ0
(〈u̇2〉t − v2) . (2.39)

The pinning power loss is the additional power loss due to the fluctuation
of the flow velocity of flux lines caused by the pinning potential. It should
be noted that the pinning potential itself does not apparently influence this
power loss. The question is whether or not this pinning power loss density is
proportional to the mean velocity v.

Yamafuji and Irie [12] showed that the velocity of a flux line becomes very
large when it drops into the pinning potential well and then jumps out again
under the elastic interaction with the surrounding flux lines. Strictly speaking,
in order to realize this feature, the pinning potential must be sufficiently steep
to fulfill the condition |∂f/∂u| ≡ kp > kf , as will be shown later in Sect. 7.3.
We assume that this condition is fulfilled. If the flux line reaches the edge
of the pinning potential, u = 0, at t = 0, and if the pinning force varies as
f(u) � kpu, from Eq. (2.35) we have

u(t) � − kfvt

kp − kf
+

kpη∗v

(kp − kf)2

[
exp

(
t

τ

)
− 1
]

; t > 0 , (2.40)

where
τ =

η∗

kp − kf
(2.41)
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is a time constant. The details of this analysis are given in [13]. In the above we
assumed that u0 = vt, since u = u0 for t < 0. It may be seen from the above
result that the flux line motion becomes unstable and its velocity becomes very
large when it drops into the pinning potential well. For simplicity, we assume
that the mean velocity v is sufficiently small. If the instability continues from
t = 0(u = 0) to t = ∆t(u = d) when the flux line reaches the center of
the pinning potential well (with 2d denoting the size of the pinning potential
well), the contribution of this term to the integral of u̇2 with respect to time
is given by ∫ ∆t

0

u̇2dt =
d2(kp − kf)

2η∗ + O(v) , (2.42)

where the second term on the right-hand side is a small quantity of the order
in v. Strictly speaking, the period during which the flux line motion becomes
unstable in the limit v → 0 is from t = 0(u = 0) to t = ∆t′(u = d′) as shown
in Fig. 2.5. The contribution from the instability when the flux line jumps out
of the pinning potential well is also approximately given by d2(kp − kf)/2η∗.
Thus, we have

〈u̇2〉t =
d2(kp − kf)

T0η∗ + O(v2) , (2.43)

Fig. 2.5. Motion of the flux line in the pinning potential. Upper and lower figures
show the pinning potential and the pinning force, respectively
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where 1/T0 is the frequency at which one flux line meets the pinning potential
wells in a second. If we represent the mean separation of the pinning potential
wells by Dp, we have T0 = Dp/v, and the pinning power loss density is
approximately given by

Pp =
Np

Dp
(kp − kf)d2v . (2.44)

This result also implicitly requires that kp > kf . Although the above theo-
retical treatment gives only a rough estimate (the detailed calculation will
be given in Sect. 7.3), it tells us that, if the motion of the flux line is un-
stable inside the pinning potential well, the pinning power loss density is of
the hysteretic type which is proportional to v (hence to frequency under AC
conditions) as shown in Eq. (2.44). A nonzero critical current density can ex-
ist only under the condition kp > kf (see Sect. 7.3). Therefore, the fact that
the pinning loss is of the hysteretic type is identical with the fact that the
current-voltage characteristic is non-ohmic.

The above result can be simply explained as follows. When the mo-
tion of a flux line is unstable, its velocity is approximately given by [kpv/
(kp − kf)]exp(∆t/τ) � d/τ and takes a large value independent of the mean
velocity v. Hence, the energy loss of the flux line during its interaction with
one pinning center is a constant and the power loss is proportional to the
number of pinning centers which the flux line meets in a second, i.e., to v.

2.4 Characteristic of the Critical State Model
and its Applicable Range

It is possible to obtain the solutions of the magnetic flux density B and the
velocity of flux lines v from the critical state model, i.e., Eqs. (2.13) and (2.15)
describing the force balance and the continuity of flux lines, respectively. It
is also possible to obtain B and E from Eqs. (2.2), (2.13) and (2.17). In the
both cases the equation to be solved contains a second spatial derivative term
and a first time derivative term. This equation is difficult to solve because of
the existence of the coefficient, δ, that indicates the direction of the pinning
force. A simple example of an approximate solution of this equation will be
shown in Sect. 3.2.

In this section the characteristics of the critical state model are briefly
mentioned and some phenomena which cannot be described by this model are
discussed. One of the characteristics of this model is that the local current
density does not take on smaller values than the critical current density as
shown in Eq. (2.31). It means that the pinning interaction is expected to exert
its effect as much as possible like the maximum static friction. Especially in
the static case E = 0, we have |J | = Jc and the current density in the
superconductor is equal to the critical value. This is called the critical state in
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a narrow sense. This corresponds to the case where the static magnetic flux
distribution is determined by the balance between the Lorentz force and the
pinning force.

The second characteristic is that the phenomena associated with a vari-
ation in the magnetic flux distribution are assumed to be completely irre-
versible. That is, the restraining forces always work in the opposite direction
to the flux motion as given in Eqs. (2.11) and (2.12). The power from the
external source such as −F p · v is always positive. Therefore, stored energy
is not included at all and energy is always dissipated. It means that E · J is
just the power loss density. In this case, the local power loss density can be
obtained if we know the local E and J . It should be noted that complete irre-
versibility is assumed even for the pinning force which comes originally from
the potential. The pinning potential is reversible in nature at a microscopic
level. It was shown in the last section that the irreversibility originates from
the unstable flux motion associated with flux lines dropping into and jumping
out of the pinning potential wells. Therefore, if the variation in the external
magnetic field etc. is so small that the motion of flux lines is restricted mostly
to the region inside the pinning potential wells, the phenomenon is regarded
as almost reversible without appreciable energy dissipation. In this case the
critical state model cannot be applied. The input power, E · J , includes the
stored power and sometimes takes on a negative value. In general, therefore,
it is not possible to estimate the instantaneous power loss. Only in the case of
periodically varying conditions can the energy loss per cycle be estimated from
the integral of E ·J with respect to time or from the area of closed hysteresis
curve. Such a reversible phenomenon will be considered in Sect. 3.7.

2.5 Irreversible Phenomena

As mentioned in the last section, the dynamic force balance equation can be
solved only approximately because of the direction coefficient δ. In addition,
the force balance equation itself is sometimes a nonlinear differential equa-
tion. In presenting an example of the approximate solution, in this section we
focus on the magnetic flux distribution and the magnetization in a quasistatic
condition. The use of the term “quasistatic process” in this book is different
from that used in thermodynamics and refers merely to processes in which the
external magnetic field is varied slowly. That is, the quasistatic state is that
obtained by a linear extrapolation of sweep rate of the external field to zero.
Hence, such a state is in most cases a nonequilibrium state in the thermody-
namic sense. In the context of this book the velocity of flux lines v has only to
be so small to enable the viscous force to be neglected. We should note that
this condition differs largely from material to material. In commercial Nb3Sn
wires, for example, the quasistatic state is attained over a wide range of sweep
rates, since the pinning force is very large. We assume Jc = 5× 109 Am−2 at
B = 5 T as a typical case. The flux flow resistivity estimated from Eq. (2.30)
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is ρf � 8 × 10−8 Ωm, where we have used µ0Hc2 = 20 T and ρn = 3 × 10−7

Ωm. Hence, the condition that the viscous force is as large as 1 percent of
the pinning force is given by E = ρfJc × 10−2 � 0.4 Vm−1. Superconduc-
tors do not generally experience such high levels of electric field, hence they
usually operate in a range where the viscous force can be neglected. We shall
here clarify the corresponding sweep rate of the external magnetic field. We
assume for simplicity that the external magnetic field completely penetrates
the superconductor. The induced electric field is E � d∂B/∂t, where d is a
half-radius of a superconducting wire or a half-thickness of a superconducting
slab. Hence, we find that the sweep rate of the field at which E = 0.4 Vm−1

is reached is 8 × 103 Ts−1 for d = 50 µm. Clearly the maximum sweep rate
depends on the size of superconductor. Furthermore, the range within which
the process can be regarded as quasistatic becomes narrower as the pinning
force (hence Jc) becomes weaker.

Here we treat the case where the magnetic field is applied parallel to a
sufficiently large superconducting slab. We assume that the slab occupies 0 ≤
x ≤ 2d and the magnetic field He is applied along the z-axis. From symmetry
we have to consider only the half-slab, 0 ≤ x ≤ d. All the electromagnetic
quantities are uniform in the y-z plane and expected to vary only along the
x-axis. The flux lines move along the x-axis, hence Eq. (2.13) reduces to

− B̂

µ0
· ∂B̂

∂x
= δFp(B̂) , (2.45)

where B̂ = |B| and δ = ±1 is the sign factor representing the direction of flux
motion. That is, δ = δix, where ix is a unit vector along the x-axis. In this
case the current flows along the y-axis. Equation (2.45) can be solved, if the
functional form of Fp(B̂) is given.

Many models have been proposed for the functional form of Fp(B̂). Here
we use the Irie-Yamafuji model [6] which can be applied over a relatively wide
magnetic field range except in the high field region near the upper critical
field:

Fp(B̂) = αcB̂
γ , (2.46)

where αc and γ are the pinning parameters; usually 0 ≤ γ ≤ 1. If we assume
γ = 1, the above model reduces to the Bean-London model [14, 15]. This
model is applicable to the case where Jc can be regarded as approximately
field independent. Equation (2.46) reduces to the Yasukochi model [16] when
γ = 1/2. This model is useful for practical superconductors in which grain
boundaries or large normal precipitates are effective as pinning centers. The
Silcox-Rollins model [17] is obtained when γ = 0 is used. As for other pin-
ning models, the Kim model [18] is also known to express well the magnetic
field dependence of the pinning force density within a certain range of mag-
netic field, although its functional form is different from that in Eq. (2.46). A
correction is needed for these models at high fields so that the pinning force
density Fp(B̂) decreases with increasing B̂ (see Sect. 7.1).
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When Eq. (2.46) is substituted into Eq. (2.45) and it is integrated, we have

δB̂2−γ = δ0B̂
2−γ
0 − (2 − γ)µ0αcx , (2.47)

where δ0 and B̂0 are the values of δ and B̂ at the surface (x = 0), respectively.
B̂0 is sometimes different from the magnetic flux density |µ0He| correspond-
ing to the external magnetic field He. This is attributed to the diamagnetic
surface current or the surface irreversibility which will be discussed later in
Sects. 2.6 and 3.5, respectively. In superconductors with large G-L parame-
ters κ, however, the diamagnetic surface current is small. Hence, if the flux
pinning strength or the size of the superconductor, i.e., the thickness 2d, in
this case, is sufficiently large, the effect of diamagnetism can be disregarded.
On the other hand, the effect of surface irreversibility does not appear for a
uniform superconductor. Thus, we assume

B̂0 = µ0Ĥe , (2.48)

where Ĥe = |He|. Equation (2.47) expresses the magnetic flux distribution
in the region from the surface to a certain depth, i.e., the point at which B̂
reduces to zero or the breaking point of the magnetic flux distribution, as will
be shown later. The magnetic flux distribution is linear in case γ = 1 and is
parabolic in case γ = 0.

The magnetic flux distribution in response to an increase in the external
magnetic field from zero as the initial state is given by Eq. (2.47) with δ =
δ0 = 1 and is schematically shown in Fig. 2.6. Figures 2.6(a) and (b) represent
cases in which the magnetic flux does not and does, respectively, penetrate
to the center of the superconductor. We call the external magnetic field at
which the flux front reaches the center of the superconducting slab as the
“penetration field,” Hp. It is given by

Hp =
1
µ0

[(2 − γ)µ0αcd]1/(2−γ) . (2.49)

We assume that B is in the positive z-axis direction (B > 0) such that B̂ = B.
The current distribution is given by

Jy = − 1
µ0

· ∂B̂

∂x
= αc[B̂

2−γ
0 − (2 − γ)µ0αcx](γ−1)/(2−γ) . (2.50)

This result is also directly obtained from J = Jc = Fp(B̂)/B̂ = αcB̂
γ−1.

That is, as was already mentioned, the local current density is always equal
to the critical current density, ±Jc, at the magnetic field strength at this point
according to the critical state model. In a more exact expression, the local cur-
rent density never takes on a smaller value than Jc including the contribution
from the viscous force. The current distributions inside the superconducting
slab corresponding to the magnetic flux distributions in the initial magnetiza-
tion process are shown in the lower figures in Fig. 2.6. Although it is possible
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Fig. 2.6. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the superconductor in an initial increasing field (a) in case where the external
field He is smaller than the penetration field Hp and (b) in case where He is larger
than Hp. The arrows show the direction of flux motion

to generally describe the current density Jy including δ, δ0 and the sign of
B, it is complicated. According to Eq. (2.50) the current density J diverges
at the point B̂ = 0 in case γ �= 1. This divergence, which results from the
approximation of the magnetic field dependence of Jc over a relatively wide
range of magnetic fields by a relatively simple function, does not represent
the real situation. In spite of such unphysical limit, there is no anomaly in the
averaged quantities such as the magnetization or the energy loss. Hence, it is
not necessary to consider this problem.

We next consider the case where the external magnetic field is decreased
after being increased up to Hm. The flux lines go out of the superconductor.
In this case flux lines near the surface leave first and hence the variation in
the magnetic flux distribution starts at the surface. In this region the pinning
force prevents the flux lines from going out and the direction of the current is
opposite to the direction in the initial state. Near the surface in the half-region
of the slab, 0 ≤ x ≤ d, we have δ = δ0 = −1. Substituting these values into
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Eq. (2.47), we have the magnetic flux distribution near the surface:

B̂2−γ = (µ0Ĥe)2−γ + (2 − γ)µ0αcx . (2.51)

On the other hand, the former flux distribution

B̂2−γ = (µ0Hm)2−γ − (2 − γ)µ0αcx (2.52)

remains unchanged in the inner region of the superconductor. The breaking
point, x = xb, at which the crossover of the two distribution equations occurs
is given by

xb =
−(µ0Ĥe)2−γ + (µ0Hm)2−γ

2(2 − γ)µ0αc
=

d

2


−

(
Ĥe

Hp

)2−γ

+
(

Hm

Hp

)2−γ

 . (2.53)

The magnetic flux and current distributions associated with this process are
depicted in Fig. 2.7. There are three cases depending on the value of Hm;

Fig. 2.7. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the superconductor in a decreasing field. The arrows show the direction of
flux motion
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Fig. 2.8. Distributions of the magnetic flux (upper figure) and the current (lower
one) when the external magnetic field is reversed

i.e., depending on whether Hm < Hp, Hp < Hm < 21/(2−γ)Hp or Hm >
21/(2−γ)Hp. In case Hm > 21/(2−γ)Hp, the breaking point of the magnetic
flux distribution disappears before Ĥe reaches zero (see Fig. 2.7(b)) and the
magnetization at Ĥe = 0 is on the major magnetization curve as will be shown
later.

When the external magnetic field is further decreased to a negative value,
the distributions of magnetic flux and current vary as shown in Fig. 2.8. In
this case B̂ = −B for 0 < x < x0, i.e., in the region from the surface to the
point at which B̂ = 0.

We shall calculate the magnetization of the superconducting slab. The
magnetization of a superconductor is defined by

M =
1

µ0d

∫ d

0

B(x)dx − He . (2.54)

The first term corresponds to the magnetic flux density averaged inside the su-
perconductor. Hence, Eq. (2.54) is neither equivalent to the local relationship,
m = b/µ0−h, for magnetic substances nor its spatial average. It is in fact the
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average of b/µ0−He over the superconductor. For the case Hm > 21/(2−γ)Hp,
after a simple calculation we have

M

Hp
=

2 − γ

3 − γ
h3−γ

e − he; 0 < He < Hp , (2.55a)

=
2 − γ

3 − γ
[h3−γ

e − (h2−γ
e − 1)(3−γ)/(2−γ)] − he ; Hp < He < Hm , (2.55b)

=
2 − γ

3 − γ
[2−1/(2−γ)(h2−γ

m + h2−γ
e )(3−γ)/(2−γ)

−(h2−γ
m − 1)(3−γ)/(2−γ) − h3−γ

e ] − he; Hm > He > Ha , (2.55c)

=
2 − γ

3 − γ
[(h2−γ

e + 1)(3−γ)/(2−γ) − h3−γ
e ] − he; Ha > He > 0 , (2.55d)

=
2 − γ

3 − γ
{[1 − (−he)2−γ ](3−γ)/(2−γ) − (−he)3−γ} − he;

0 > He > −Hp , (2.55e)

where he and hm are defined by

he =
He

Hp
, hm =

Hm

Hp
, (2.56)

respectively, and
H2−γ

a = H2−γ
m − 2H2−γ

p . (2.57)

Each magnetic flux distribution in Fig. 2.9 has a corresponding description
in Eq. (2.55). That is, in both cases ‘a’ and ‘b’ describe the increasing field
processes, ‘c’ and ‘d’ are those in a decreasing field and ‘e’ corresponds to
that when the magnetic field is reversed. The point ‘e′’ in the magnetization
curve is just opposite to the point ‘e’. The points b, d and e are on the
major magnetization curve and correspond to the full critical state. The initial
magnetization given by Eq. (2.55a) reaches the major curve at He = Hp.
Magnetization curves for various values of γ are given in Fig. 2.10.

We have argued the case where only a magnetic field is applied. Now we
consider the case where the transport current is also applied. It is assumed that
the current with a mean density Jt is applied along the y-axis of the above
superconducting slab and a magnetic field He is applied along the z-axis.
Then, a self field according to Ampère’s law leads to the boundary conditions
at the surfaces of the slab:

B(x = 0) = µ0He + µ0Jtd ,

B(x = 2d) = µ0He − µ0Jtd . (2.58)

Hence, the magnetic flux distribution is not symmetric with respect to the
center, x = d, and we have to consider both halves of the slab. In addition, it
should be noted that the magnetic flux distribution is different depending on
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Fig. 2.9. (a) Magnetization and (b) magnetic flux distribution at each point. The
letter at each point corresponds to the letter in equation number in Eq. (2.55)

Fig. 2.10. Reduced magnetization curves for various values of γ
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the history of application of magnetic field and current even for the same final
boundary condition. For example, the upper part of Fig. 2.11(a) represents
the magnetic flux distribution for the case where the magnetic field is applied
(broken line) and then the current is applied (solid line). The upper part of
Fig. 2.11(b) shows the distribution when the order of application is reversed.
The corresponding current distributions are given in the lower figures. Thus,
the magnetic flux distribution changes generally depending on the order of
application of the magnetic field and the current. In any case the resultant
magnetic flux distribution can be easily obtained from the critical state model
with taking into account the history dependent boundary condition.

In the full critical state where the current flows in the same direction
throughout the superconductor, the magnetic flux distribution is schemati-
cally shown in Fig. 2.12 and does not depend on the order of application of
the magnetic field and the current. In this case from the boundary condition

Fig. 2.11. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the superconductor when the magnetic field and the current are applied
simultaneously: (a) in case where the current is applied after the magnetic field and
(b) in the opposite case
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Fig. 2.12. Distributions of the magnetic flux (upper figure) and the current (lower
one) in the complete critical state where the critical current flows. The broken lines
show the distributions when the mean critical current density 〈Jc〉 flows

we have
B2−γ(2d) = B2−γ(0) − 2(µ0Hp)2−γ . (2.59)

Hence, the average critical current density obtained from measurements, which
corresponds to the slope of the broken line in the upper part of Fig. 2.12, is
calculated from

(He + 〈Jc〉d)2−γ − (He − 〈Jc〉d)2−γ = 2H2−γ
p . (2.60)

In general He is replaced by Ĥe and if the self field, 〈Jc〉d, is sufficiently smaller
than Ĥe, Eq. (2.60) can be expanded in a series. Then, from an iteration
approximation we have

〈Jc〉 =
αc

(µ0Ĥe)1−γ

[
1 +

(1 − γ)γ
6(2 − γ)2

(
Hp

Ĥe

)4−2γ
]

. (2.61)

In the above equation the first term is equal to the local critical current
density at which the local magnetic field is equal to the external field He. The
iteration approximation is correct when the ratio, Hp/Ĥe = ε, is sufficiently
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smaller than 1. The correction by the second term is relatively on the order
of ε4−2γ .

For the transport current over this density, there is no solution of stable
magnetic flux distribution. That is, the flux flow state sets in and we have to
solve Eq. (2.13) including the viscous force.

In the above we have treated only the case where the magnetic field is
applied parallel to the superconducting slab. Now we consider the case where
the magnetic field is applied normal to the superconducting slab. It is as-
sumed that the magnetic field and the current are applied along the z- and
y-axes, respectively, of a wide superconducting slab parallel to the x-y plane.
In this case the magnetic flux density inside the superconductor contains a
uniform z-component µ0He and an x-component due to the current varying
in the direction of the thickness, i.e., the z-axis. The distributions of cur-
rent and magnetic flux due to the self field are shown in Fig. 2.13(a) and
(b), respectively, in case of a total current smaller than the critical value. We
have assumed the Bean-London model for simplicity. Figure 2.13(c) shows the
magnetic flux structure and the direction of the Lorentz force as indicated by
the arrows. The Lorentz force in this configuration can be regarded as the
restoring force against the curvature of the flux lines and is called the “line
tension.” On the other hand, the Lorentz force which appears in the case
shown in Fig. 2.6 originates from the gradient of the density of flux lines and
is called the “magnetic pressure.”

Fig. 2.13. Distributions of (a) the current and (b) the magnetic flux component
parallel to the surface of the superconducting slab when the magnetic field normal
to the slab and the current smaller than the critical value are applied. (c) represents
the magnetic structure and the arrows show the direction of the Lorentz force
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2.6 Effect of Diamagnetism

The magnetization described by the above critical state model is diamag-
netic in an increasing field and paramagnetic in decreasing one, as shown
in Fig. 2.9. Especially at high fields, the increasing and decreasing branches
of the magnetization curve are almost symmetrical about the field axis. On
the other hand, the magnetization curves shown in Fig. 2.14(a) and (b) are
asymmetric and biased to the diamagnetic side. This comes from the essen-
tial diamagnetism of the superconductor. The magnetization curve of Fig. 2.9
corresponds to the case where the diamagnetic magnetization is much smaller
than the magnetization due to the pinning effect.

The magnetic flux distribution inside the superconductor in an increasing
field is schematically shown in Fig. 2.15. In the figure B0 is the magnetic
flux density in equilibrium with the external magnetic field He. That is, the
difference between B0/µ0 and He gives the diamagnetic magnetization. The
observed magnetization is proportional to the area of the hatched regions in
the figure: region ‘a’ represents the contribution from the diamagnetism and
region ‘b’ represents that from the flux pinning effect. The magnetization
due to the pinning is relatively large in the case where the diamagnetism is
small, the critical current density is large, and the superconductor is large in
size. The last point is due to the fact that the pinning current is distributed
throughout the whole region of the superconductor, while the diamagnetic
shielding current is localized in the surface region. The magnitude of magne-
tization is proportional to Hp, and hence, is proportional to the sample size.
Therefore, with reference to Fig. 2.14, the effect of diamagnetism cannot be
neglected in the following cases:

(1) Superconductors in which the diamagnetism is strong, and hence, the
lower critical field Hc1 is large. These are mostly superconductors with
small G-L parameters κ as shown in Fig. 2.14(a).

(2) Superconductors in which the pinning force is weak. In Bi-based oxide
superconductors especially at high temperatures, for example, although
the diamagnetism is small as characterized by low Hc1, the contribution
of pinning is smaller, resulting in a conspicuous diamagnetism.

(3) Superconductors that are small in size. Figure 2.14(b) shows the magne-
tization of fine particles of V3Ga. Although V3Ga is used as a commercial
superconductor and its pinning is strong, the magnetization due to the
pinning is small because of small sample size. Similar results are observed
in sintered Y-based oxide superconductors in which the coupling between
fine grains is very weak.

The diamagnetic effect on the magnetic flux distribution in a superconduc-
tor is most simply treated by taking into account only the difference between
µ0He and B0 as a boundary condition and proceeding the manner of Sect. 2.5
to solve B(x). However, this method is not correct in a strict sense, since
the driving force on the flux lines is slightly different from the Lorentz force
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Fig. 2.14. Magnetization of (a) Ta with low κ-value at 3.72 K [19] and (b) V3Ga
powders at 4.2 K [20]. In (b) the effect of diamagnetism is relatively large because
of the small grain size in spite of strong pinning

for superconductors in which the diamagnetic effect cannot be disregarded as
mentioned in Sect. 2.1.

The thermodynamic magnetic field H, which is the external variable cor-
responding to the internal variable B, is defined by Eq. (2.6) and the flux lines
are driven by the distortion of the thermodynamic magnetic field. We assume
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Fig. 2.15. Magnetic flux distribution in increasing field. ‘a’ and ‘b’ correspond to
the contributions from the diamagnetism and the pinning to the magnetization,
respectively

for example that there are no pinning centers in a region near the surface of
the superconductor. The free energy in this region is given by Eq. (1.112) and
it can be seen from Eqs. (2.6) and (1.113) that the thermodynamic magnetic
field is equal to the external magnetic field. That is, if the thermodynamic
magnetic field is different from the external magnetic field, a force propor-
tional to the difference acts on the flux lines near the surface. The same also
occurs inside the superconductor. If there exists a distortion in H, a driving
force acts so as to reduce the distortion. As mentioned above, the driving
force comes from the gradient of H (the rotation of H in a strict sense) but
not from the gradient of B which gives rise to the Lorentz force. Here we
assume the case where two pin-free superconductors with different diamag-
netism are in contact with each other as shown in Fig. 2.16 and in equilibrium
with the external magnetic field. Since each superconductor is in equilibrium
with the external field, an equilibrium state is also attained between the two
superconductors. Hence, the flux lines do not move. In this case, a net current
flows near the boundary of the two superconductors because of the difference
in the magnetic flux density B due to the difference in the diamagnetism. The
Lorentz force due to this current drives the flux lines from superconductor I
to superconductor II. On the other hand, since the diamagnetism is stronger
in superconductor II, the diamagnetic force pushes the flux lines to supercon-
ductor I. These forces cancel out and a net driving force does not act on the
flux lines. The situation is the same also in the case where B and H vary
continuously.
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Fig. 2.16. Magnetic flux distribution in two pin-free superconductors, which are in
contact with each other and in equilibrium with external magnetic field

It can be seen from the above argument that the relationship between H
and B is the same as the one between the external magnetic field He and
B in the case where the pinning energy is not contained in the free energy,
i.e., F = Fs. Hence, this result in the ideal case seems to be approximately
applicable to weakly pinned superconductors. When the variation with time
is not too fast, the magnetic flux distribution can be obtained from the force
balance equation

(∇× H) × B − δFp(B̂) = 0 (2.62)

and
H = f(B) or B = f−1(H), (2.63)

where f is a function derived from Eq. (2.6).
In practical cases it is not easy to derive Eq. (2.63) theoretically from

Eq. (2.6). Especially it is not possible to express the feature over a wide range
of magnetic field strengths by a single expression. However, an approximate
expression which fits well with experimental results throughout the entire field
range can be easily found for low κ superconductors. For example, Kes et al.
[21] proposed the relationship

B = µ0H− µ0Hc1

[
1 −

(
H− Hc1

Hc2 − Hc1

)n]
; Hc1 ≤ H ≤ Hc2 (2.64)

with
n =

Hc2 − Hc1

1.16(2κ2 − 1)Hc1
. (2.65)
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The expression for the pinning force density, Eq. (2.46), should also be mod-
ified so that it reduces to zero at the upper critical field in order to analyze
the magnetization over the entire field range. We use the expression

Fp(B̂) = αcB̂
γ

(
1 − B̂

µ0Hc2

)β

. (2.66)

Here, as in the last section, we consider an external magnetic field He applied
parallel to the superconducting slab occupying 0 ≤ x ≤ 2d. We treat the
half-slab, 0 ≤ x ≤ d, in an increasing magnetic field, for which δ = 1. In this
one-dimensional case, Eq. (2.62) leads to

αcµ
γ−1
0 (x − xc) = −

∫ Ĥ−Hc1

0

(Θ + cΘn)1−γ

(
1 − Θ + cΘn

Hc2

)−β

dΘ (2.67)

with
c =

Hc1

(Hc2 − Hc1)n
. (2.68)

In the above Ĥ = |H| and x = xc represents the position where Ĥ = Hc1.
Equation (2.67) can be solved only numerically. The relationship between Ĥ
and x is obtained from this solution and the magnetic flux distribution, the
relationship between B̂ and x, is obtained from Eq. (2.64). The distributions
of B̂ and µ0Ĥ inside the superconducting slab are schematically shown in
Fig. 2.17.

The magnetic flux distributions obtained from Eq. (2.67) are only those in
the region where B̂ > 0, i.e., Ĥ > Hc1. Here we shall discuss the distributions
in the other region. For example, during the initial magnetization, i.e. during
0 ≤ He < Hc1, flux lines do not exist within the superconductor and B = 0.
In this case, H cannot be defined by Eq. (2.6) and the definition itself is
meaningless. As the external field continues to increase and He slightly exceeds
Hc1, the point, x = xc, exists inside the superconductor and the distributions
of B and H are as shown in Fig. 2.18. In the region xc ≤ x ≤ d, flux lines
do not exist and the definition of H is again meaningless. When He is further
increased, the distributions again change as shown in Fig. 2.17.

Now we consider the case of decreasing field. For He > Hc1 distributions
like the inverse of those given in Fig. 2.17 are expected. A question arises
when He is reduced below Hc1. Since the magnetic flux density B reduces to
zero at the surface, x = 0, when He = Hc1, how do the distributions change
when the external field is further decreased? Walmsley [22] speculated that
the inner flux distribution remained unchanged as shown by the solid line
in Fig. 2.19 when He is decreased below Hc1, since B = 0 is in equilibrium
with He for 0 ≤ He ≤ Hc1. This is identical with the assumption that only the
diamagnetic shielding current at the surface, i.e., the Meissner current changes
with decreasing magnetic field. According to this model the magnetization
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Fig. 2.17. Distributions of B and µ0H in the superconductor in an increasing field
when the magnetic flux penetrates the entire region of the superconductor

Fig. 2.18. Distributions of B and µ0H when the external magnetic field slightly
exceeds Hc1
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Fig. 2.19. Distributions of B and µ0H assumed by Walmsley [22] when the external
field is decreased below Hc1. These distributions were assumed to remain unchanged
even when the external magnetic field reduces to zero

varies, with a slope of −1, parallel to the initial magnetization curve with
decreasing field from Hc1. However, as shown in Fig. 2.14, the slope of the
magnetization is actually much gentler than this, suggesting a continuous
discharge of flux lines. Frequently less than a half of the trapped flux at
He = Hc1 remains inside the superconductor at He = 0. According to the
expression of Campbell and Evetts, [23] the magnetization varies in this field
range as if the boundary condition is given by B(0) = µ0He. Practically the
more flux lines than this speculation are discharged from the superconductor
by the diamagnetism.

Why are the flux lines discharged from the superconductor? If the magnetic
flux distribution shown in Fig. 2.19 is realized, the corresponding distribution
of thermodynamic field H is speculated to be that indicated by the broken line
in the figure, which is very different from the external field He at the surface.
As a result of this difference the flux lines near the surface are expected to be
driven to outside the superconductor. Experiments suggest that the magnetic
flux distribution is as shown by the solid line in Fig. 2.20. Here it is necessary
to define the thermodynamic magnetic field in the region below Hc1. If we
remember the fact that the relationship therein between B and H is the same
as that between B and He, it seems to be reasonable to assume

B = 0 ; 0 ≤ H ≤ Hc1 (2.69)
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Fig. 2.20. Distributions of B and µ0H speculated from experimental results when
the external field is decreased below Hc1

independently of the definition in Eq. (2.6). However, we should be careful
about such an oversimplified treatment. Even if H can be defined, why is it
possible for H to possess a gradient in the region where the flux lines do not
exist? In such a region the magnetic property should be just the same as that
in pin-free superconductors.

In practice it seems that some flux lines are trapped by “pinning layers”
even in the region where B is macroscopically regarded as zero. This is a
fundamental phenomenon that cannot be described by the macroscopic critical
state model; hence a more microscopic discussion is necessary. For simplicity,
we assume that the flux lines move across a multilayered structure composed
of ideal superconducting layers and pinning layers [24] as shown in Fig. 2.21. In

Fig. 2.21. Idealized one-dimensional multilayer structure composed of supercon-
ducting and pinning layers
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each superconducting layer B and H are considered to be uniform. Because
of the interaction between the flux lines and the pinning layer, differences
appear in B and H, respectively, in the pair of superconducting layers on
either side of the pinning layer. The continuous distributions given in Fig. 2.17
are macroscopic representations of this step-wise variation of B and H.

Consider the region near the surface and assume the situation where the
external magnetic field has been reduced to Hc1 and that B = 0 and H =
Hc1 are attained in the superconducting layer just inside the surface. The flux
lines still remain in the next superconducting layer as shown in Fig. 2.22(a).
When the external field is further decreased, the difference in H between the
first and second superconducting layers exceeds the value determined by the
flux pinning strength and the flux lines in the second superconducting layer
cross the pinning layer and go out of the superconductor. Thus, B and H in
the second superconducting layer decrease with decreasing external field. We
denote the value of the external field by He = Hc1−∆Hp at which B = 0 and
H = Hc1 are attained in the second superconducting layer. It should be noted
that the magnetic flux density B is zero in the both superconducting layers,
while the thermodynamic field H differs by ∆Hp. This can be explained by
the fact that the flux lines are trapped in the pinning layer. In this situation
a net current does not flow because B = 0 in the two superconducting layers.
The diamagnetic force proportional to the difference in H on the trapped flux
lines in the pinning layer is balanced by the pinning force. When the external
magnetic field is further decreased, the diamagnetic force is enhanced and the
flux lines leave the superconductor. Thus, the variation in H penetrates the su-
perconductor and other flux lines come from the inner region and are trapped
in the pinning layer. It is considered that flux lines always exist in the pinning

Fig. 2.22. Magnetic flux density and thermodynamic magnetic field in the supercon-
ducting layer just inside the surface (left-hand side) and the next superconducting
layer (right-hand side); (a) when He is reduced to Hc1 and (b) when He is slightly
reduced from Hc1 so that B becomes zero in the next superconducting layer. For
simplicity µ0 is omitted for H
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layer and that the difference in H across the pinning layer does not disappear.
If the thickness of each superconducting layer is not very much larger than λ,
such a penetration of B and H variation into the superconductor is expected
to occur. As a result, it is proved that a gradient of H exists in the region
where B = 0 macroscopically as drawn in Fig. 2.20.

Here we assume that H is described by∣∣∣∣dHdx

∣∣∣∣ = a − bH ; 0 ≤ H ≤ Hc1 , (2.70)

where a and b are positive parameters. In a decreasing field, dH/dx is positive
and from the boundary condition that H = He at x = 0, we have

H =
a

b
−
(a

b
− He

)
exp(−bx). (2.71)

The position at which H = Hc1 is given by

xc =
1
b

log
(

a − bHe

a − bHc1

)
. (2.72)

The distributions of H and B in the region x > xc are given by Eq. (2.67)
(with a change of the sign of the right-hand side) and Eq. (2.64), respectively.
The magnetization is calculated by inserting this result for B into Eq. (2.54).
The result of numerical calculation [24] based on the above model is compared
with an experimental result for Nb foil by Kes et al. [21] in Fig. 2.23. The
good agreement indicates that the above model describes the phenomenon
correctly.

Fig. 2.23. Observed magnetization (solid line) on a Nb foil at 3.51 K [21] and cor-
responding theoretical result (open circles). The chained line shows the speculation
from Walmsley’s model
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Derivation of the flux distributions in reversed external magnetic field is
left as Exercise 2.5 at the end of this chapter.

2.7 AC Losses

When the magnetic field or the current applied to the superconductor changes,
the magnetic flux distribution in it also changes. This change induces an
electromotive force and results in the energy loss. The input power density
under the motion of flux lines driven by the Lorentz force is given by Eq. (2.34).
According to the critical state model in which the phenomenon is assumed to
be completely irreversible, the power loss density is written as

J · E = v̂Fp(B̂) + η
B̂

φ0
v̂2 > 0 (2.73)

with the aid of Eq. (2.13), where v̂ = |v|. The first and second terms on
the right-hand side in Eq. (2.73) are the pinning power loss density and the
viscous power loss density, respectively, and both quantities are positive. Since
the viscous force is generally much smaller than the pinning force, the viscous
loss is not treated in this section. In what follows we consider an AC magnetic
field to be applied parallel to a wide superconducting slab of thickness 2d as
in Sect. 2.5.

If we again use the Irie-Yamafuji model [6] given by Eq. (2.46) for the
pinning force density Fp(B̂), the pinning power loss density is given by

P (x, t) = αcB̂
γ v̂ . (2.74)

Equation (2.15) is used for eliminating v̂. From the fact that v̂ = 0 at the
breaking point of the distribution, x = xb, Eq. (2.74) can be written as

P (x, t) = −αcB̂
γ−1

∫ x

xb

δ
∂B̂

∂t
dx . (2.75)

The variation in magnetic flux distribution penetrates always from the surface
of the superconductor and ends at the breaking point of the distribution. In
the region beyond this breaking point the magnetic flux distribution does not
vary and v̂ and E are zero. When the viscous force can be neglected, the time
variation of the magnetic flux density B̂ in the superconductor comes only
from that of its value at the surface, B̂0. If the diamagnetic surface current
and the surface irreversibility are neglected as assumed in Sect. 2.5, B̂0 is
approximately given by µ0Ĥe as in Eq. (2.48), and the kernel in the integral
in Eq. (2.75) may be written as

δ
∂B̂

∂t
= δ

∂B̂

∂Ĥe

· ∂Ĥe

∂t
= δ0µ

2−γ
0

(
Ĥe

B̂

)1−γ
∂Ĥe

∂t
. (2.76)
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Hence, Eq. (2.75) reduces to

P (x, t) =
∂Ĥe

∂t
δ0

(
µ0Ĥe

B̂

)1−γ

(δB̂ − δbB̂b) , (2.77)

where δb and B̂b are the values of δ and B̂ at the breaking point, x = xb.
Equation (2.77) gives the instantaneous pinning power loss density P (x) at
an arbitrary point in the superconductor. Examples of P (x) distributions are
shown in Fig. 2.24. The value of P (x) diverges at the annihilation point of
flux lines, i.e. at B̂ = 0 in case γ �= 1. This divergence in P (x) originates from
the divergence of the critical current density Jc at B̂ = 0 which in turn is the
inevitable result of the use of Eq. (2.46) as a simple approximation for the
magnetic field dependence of Jc. However, even if the local power loss density
diverges, the average value is finite as will be shown later. This is similar to
the fact that the average critical current density is finite, even if the local
value diverges. Hence, such a divergence in the power loss density is not a

Fig. 2.24. Distributions of magnetic flux (upper figure) and pinning power loss
density (lower figure) in a decreasing field for (a) He > 0 and (b) He < 0. The
pinning power loss density diverges at the point B = 0 according to Irie-Yamafuji
model [6]
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serious problem. This result approximates rather well the tendency for the
power loss density to be large when B̂ ∼ 0 and Jc is also large.

After averaging Eq. (2.77) in space and integrating it with time during a
period of one cycle of the AC magnetic field, the pinning energy loss density
is obtained:

W =
1
d

∫
dt

∫ xb

0

P (x, t)dx

=
µ1−γ

0

d

∫
dĤeδ0Ĥ

1−γ
e

∫ xb

0

B̂γ−1(δB̂ − δbB̂b)dx . (2.78)

In the above we used the fact that the loss occurs only in the region from
the surface (x = 0) to the breaking point of the distribution (x = xb). The
integral with respect to Ĥe is taken for a period of one cycle of the AC field.
After integrating with respect to space we have

W =
1

2αcµ
γ
0d

∫
δ0Ĥ

1−γ
e (δ0µ0Ĥe − δbB̂b)2dĤe . (2.79)

In determining W from Eq. (2.79) there are three cases depending on the
magnitude of AC field amplitude, Hm, for the same reason that the calculation
of magnetization in Sect. 2.5 must be subdivided into three regions, i.e. for
which: Hm < Hp, Hp < Hm < 21/(2−γ)Hp and Hm > 21/(2−γ)Hp. In this
section we treat the simplest case, Hm < Hp. Calculation of the pinning
energy loss density in the other cases is given as an exercise. We divide the
integral in Eq. (2.79) into (i) the region where He = Ĥe varies from Hm to
zero (δ0 = δb = −1) and (ii) the region where He varies from zero to −Hm

(Ĥe varies from zero to Hm, δ = 1 and δb = −1). By symmetry the pinning
energy loss density is double the sum of the two contributions. Thus

W =
2(2 − γ)

3
K(γ)

µ0H
4−γ
m

H2−γ
p

, (2.80)

where K(γ) is a function of γ defined by

K(γ) = 3
{

2
4 − γ

− 2−1/(2−γ)

∫ 1

0

ζ2−γ [(1 + ζ2−γ)1/(2−γ)

− (1 − ζ2−γ)1/(2−γ)]dζ

}
. (2.81)

As shown in Fig. 2.25, K(γ) depends only weakly on γ and is 1.02±0.02. It is
seen from the above result that the energy loss density is finite even for γ �= 1,
although the local pinning power loss density diverges at the point where
B̂ = 0. Equation (2.80) shows that the pinning energy loss density increases
with the AC field amplitude Hm in proportion to its (4 − γ)-th power for
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Fig. 2.25. Function K(γ) defined by Eq. (2.81)

Hm < Hp. It is inversely proportional to αc and hence assumes smaller values
for more strongly pinned specimens.

On the other hand, the pinning energy loss density W increases more
weakly than linearly with increasing Hm for Hm � Hp. In case γ = 1, W is
approximately proportional to Hm. Its value is larger for more strongly pinned
specimens. The AC field amplitude dependence of the energy loss density is
shown in Fig. 2.26 for various values of γ.

Here we shall demonstrate an approximate method for calculating the
pinning energy loss density. The pinning energy loss density is given by a
product of the pinning force per unit length of the flux line, the distance of
motion of flux lines and the density of moving flux lines. The pinning force on
each flux line per unit length is φ0Jc, the mean distance by which the flux lines
move during a half cycle is of the order of the maximum penetration depth,
Hm/Jc, and the flux lines move twice in one cycle. The density of the moving
flux lines is approximately given by the mean density of flux lines, µ0Hm/2φ0,
multiplied by the fraction of the region where the flux distribution changes,
viz. Hm/Jcd. Thus, we have
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Fig. 2.26. AC field amplitude dependence of the pinning energy loss density for
various values of γ

W ∼ φ0Jc ·
Hm

Jc
· 2 · µ0H

2
m

2φ0Jcd
=

µ0H
3
m

Jcd
. (2.82)

This result is 3/2 times as large as the result in Eq. (2.80) in case γ = 1
(the Bean-London model) and agrees fairly well the exact calculation. The
reason why the stronger pinning brings about the smaller energy loss is that
the stronger pinning causes the density of moving flux lines and the distance
of their motion to be smaller, although it makes the force larger. On the other
hand, for Hm � Hp, the mean distance of the flux motion in a quarter cycle
is approximately d/2 and the density of moving flux lines is about µ0Hm/φ0.
Hence, a calculation similar to the above yields

W ∼ 2µ0HmJcd = 2µ0HmHp. (2.83)

This result agrees approximately with the theoretical result in case γ = 1,

W = 2µ0HmHp

(
1 − 2Hp

3Hm

)
. (2.84)

As is seen in the above, the energy loss density can be estimated rather cor-
rectly even by a rough calculation. This result comes from the fact that the
energy loss density is a quantity that is averaged with respect to space and
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time. The result that the energy loss density does not largely depend on the
pinning property represented by γ also stems from the same reason.

In this section the pinning energy loss density is derived from Eq. (2.74)
based on the critical state model. The merit of this method is that the in-
stantaneous power loss density at an arbitrary point can be obtained. On the
other hand, the areas of the hysteretic M -H loops or B-H loops are some-
times used to obtain the total energy loss in the specimen or its mean density.
Although the latter method is much simpler than the former one, it can be
used only in the steady repetitional case. For example, the energy loss in a
superconducting magnet in the initial energizing process cannot be obtained
by the simple method and we have to use the former method starting from
Eq. (2.74). At the same time only the energy loss averaged over space and
time can be obtained from the method using the area of hysteresis curves.
But only for calculating the pinning energy loss density as in Eq. (2.80), the
simpler method seems to be more useful.

It should be noted that Eq. (2.74) is correct only when the pinning is com-
pletely irreversible. As briefly mentioned in Sect. 2.4, when the flux motion
is more or less confined within the pinning potential, the phenomenon is al-
most reversible and the critical state model cannot be used. In this case the
magnetic energy stored in the superconductor is contained in J·E. Therefore,
the energy loss is generally obtainable only from the area of hysteresis curves
and only in the steady repetitional, e.g. AC, case. However, if the irreversible
component can be separated from the pinning force density as will be shown
in Sect. 3.7, the energy loss can be calculated in terms of the work done by
this component in the same manner as in Eq. (2.74).

Exercises

2.1. Derive the continuity equation (2.15) for flux lines by obtaining directly
the magnetic flux which penetrates a loop C. (Hint : Express the mag-
netic flux coming in the loop by a curvilinear integral on the loop and
transform it into the surface integral using Stokes’ theorem.)

2.2. Prove that the input power given by Eq. (2.38) is equal to the viscous
power loss, 〈η∗u̇2〉t.

2.3. Yamafuji and Irie used the expression

〈η∗v − kf(u − u0)〉tv

for the input power on the flux line. Discuss the condition in which this
coincides with the general expression in Eq. (2.38).

2.4. Discuss the motion of flux lines in the resistive state in a superconduct-
ing cylinder when the transport current only is applied without external
magnetic field.

2.5. Discuss the distributions of B and H when the external magnetic field
is reversed, following the discussion in Sect. 2.6.
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2.6. Derive the pinning energy loss density in case where the AC magnetic
field of amplitude Hm is applied parallel to a wide superconducting
slab of thickness 2d. Assume the Irie-Yamafuji model for the pinning
force density and calculate in cases of Hp < Hm < 21/(2−γ)Hp and
Hm > 21/(2−γ)Hp.

2.7. Calculate the magnetization of a wide superconducting slab of thickness
2d in a parallel magnetic field. Use the model of Kim et al. [18]

Jc =
α0

|B| + β

for the critical current density, where α0 and β are constants.
2.8. Calculate the pinning energy loss density from the area of a loop of

the magnetization curve using the Bean–London model (γ = 1) for
Hm < Hp.

2.9. The pinning energy loss density in the case where the AC magnetic
field of amplitude Hm is superposed to a sufficiently large DC field H0

is given by Eq. (2.80) with γ = 1. Derive this result approximately from
a similar estimate as in Eq. (2.82). (Hint : Estimate the displacement of
flux lines using the continuity equation (2.15).)

2.10. Calculate the AC energy loss density when the AC magnetic field is
applied parallel to a wide superconducting slab of thickness 2d in which
the diamagnetism cannot be disregarded. Use the Bean–London model
(γ = 1). It is assumed that the AC field amplitude is smaller than the
penetration field and the magnetic flux density just inside the surface is
given by

B0 = µ0(He − Hc1); He > Hc1,
= 0; Hc1 > He > −Hc1,
= µ0(He + Hc1); −Hc1 > He.
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3

Various Electromagnetic Phenomena

3.1 Geometrical Effect

In the last chapter the magnetization and AC loss in a wide superconducting
slab were calculated. In this section we discuss the electromagnetic phenomena
in a superconductor with other geometries. The cases are treated where the
current, the transverse AC field or the transverse rotating field is applied to
a cylindrical superconductor.

3.1.1 Loss in Superconducting Wire due to AC Current

We assume that AC current is applied to a straight superconducting cylinder
of radius R without external magnetic field. In this case only the self field in
the azimuthal direction exists. If the magnitude of the AC current is denoted
by I(t), the value of the self field at the surface, r = R, is given by

HI =
I

2πR
. (3.1)

The penetration of the azimuthal flux lines due to the self field is also described
by the critical state model as in Sect. 2.5. We assume again the Irie-Yamafuji
model [1] given by Eq. (2.46) for the magnetic field dependence of the pin-
ning force density. The azimuthal magnetic flux density and its magnitude
are represented by B and B̂, respectively. The force balance equation in the
quasistatic process is described as

− B̂

µ0r
· d
dr

(rB̂) = δαcB̂
γ , (3.2)

where δ is a sign factor indicating the direction of the flux motion, e.g. δ = 1
indicates that flux lines move in the radial direction. Equation (3.2) can be
easily solved yielding for the magnetic flux distribution:
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δ(rB̂)2−γ = δR(Rµ0ĤI)2−γ +
2 − γ

3 − γ
αcµ0(R3−γ − r3−γ) , (3.3)

where ĤI = |HI|, and δR is the value of δ at the surface (r = R), and the
boundary condition

B(r = R) = µ0HI (3.4)

was used.
The energy loss can be calculated from Eq. (2.74) as was done previously.

But we calculate it more easily in terms of Poynting’s vector. Since the induced
electric field E and the magnetic flux density B are expressed as (0, 0, E) and
(0, B, 0) from symmetry, Poynting’s vector, (E × B)/µ0, at the surface is di-
rected negative radially, and hence, towards the inside of the superconductor.
Then, the energy loss density per cycle of the AC current is written as

W =
2

Rµ0

∫
dtE(R, t)B(R, t)

=
2

Rµ0

∫
dtB(R, t)

∫ R

0

∂

∂t
B(r, t)dr , (3.5)

where the integral with respect to time is carried out for the period of one
cycle. From symmetry we have only to double the contribution from the period
in which the current varies from the maximum value, Im, to −Im. If the
maximum self field is denoted by Hm = Im/2πR, this half cycle is divided
into the periods (i) and (ii) in which HI changes from Hm to 0 and from 0
to −Hm as shown in Fig. 3.1(a) and 3.1(b), respectively. In period (i), B > 0
and δ = 1(δR = 1) in the entire area, rb1 ≤ r ≤ R, in which the magnetic flux
distribution changes. On the other hand, in period (ii), we have δR = −1 and
B > 0 and δ = 1 for rb2 ≤ r ≤ r0, while B < 0 and δ = −1 for r0 < r ≤ R.
From Eq. (3.3) the critical current is given by

Ic = 2π
(

2 − γ

3 − γ
αcµ

γ−1
0 R3−γ

)1/(2−γ)

. (3.6)

If the corresponding self field is denoted by

HIp =
Ic

2πR
, (3.7)

rb1, rb2 and r0 are respectively given by

1 −
(rb1

R

)3−γ

=
1

2H2−γ
Ip

(H2−γ
m − Ĥ2−γ

I ) , (3.8a)

1 −
(rb2

R

)3−γ

=
1

2H2−γ
Ip

(H2−γ
m + Ĥ2−γ

I ) , (3.8b)
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Fig. 3.1. Distribution of azimuthal magnetic flux in a superconducting cylinder
while the self field due to the AC current changes from Hm to −Hm. (a) and (b)
correspond to cases where the current flows in the positive and negative z-axis
directions, respectively

1 −
(r0

R

)3−γ

=

(
ĤI

HIp

)2−γ

. (3.8c)

Since the variation in the magnetic flux distribution with respect to time
comes only from the variation in HI, Eq. (3.5) reduces to

W = 4µ0H
2
Ip

∫ hm

0

dhIh
2−γ
I

[
−
∫ 1

x1

dx

x
(1 + h2−γ

I − x3−γ)(γ−1)/(2−γ)

+
∫ x0

x2

dx

x
(1 − h2−γ

I − x3−γ)(γ−1)/(2−γ)

+
∫ 1

x0

dx

x
(x3−γ − 1 + h2−γ

I )(γ−1)/(2−γ)

]
, (3.9)

where

hm =
Hm

HIp
, hI =

ĤI

HIp
, (3.10)

x0 =
r0

R
, x1 =

rb1

R
, x2 =

rb2

R
. (3.11)

An analytic calculation can be carried out only for γ = 1, yielding [2]

W = 4µ0H
2
Ip

[
hm

(
1 − hm

2

)
+ (1 − hm) log(1 − hm)

]
. (3.12)

This value reduces to W � 4µ0H
3
m/αcR for hm � 1 and amounts to double

that value for the superconducting slab, i.e., the value given by Eq. (2.80)
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Fig. 3.2. Function g(hm, γ)

with γ = 1, where d is approximately replaced by R. This comes from the fact
that the surface region where the energy dissipation occurs is relatively wider
for the case of superconducting cylinder. The energy loss density is expressed
as [3]

W =
4
3
(2 − γ)µ0g(hm, γ)

H4−γ
m

H2−γ
Ip

(3.13)

analogously to Eq. (2.80), where g is given by a double integral and is a
function of hm and γ as shown in Fig. 3.2. When γ is a rational number, g
can be expressed in the form of a single integral.
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3.1.2 Loss in Superconducting Wire of Ellipsoidal Cross Section
and Thin Strip due to AC Current

Norris [4] calculated the loss in a superconducting wire with an ellipsoidal
cross section and a thin superconducting strip due to AC current using the
Bean-London model (γ = 1) [5]. According to the calculated result, the loss
in the ellipsoidal wire of the cross sectional area S is essentially the same as
that in a cylindrical wire given by Eq. (3.12). In terms of the current, it leads
to

W =
µ0I

2
c

πS

[
im

(
1 − im

2

)
+ (1 − im) log(1 − im)

]
(3.14)

with the normalized current amplitude:

im =
Im

Ic
. (3.15)

In the case of a thin superconducting strip of the cross sectional area S, the
loss is given by

W =
µ0I

2
c

πS
[(1 − im) log(1 − im) + (1 + im) log(1 + im) − i2m] . (3.16)

The AC losses in the superconducting ellipsoidal wire and the thin strip
are shown in Fig. 3.3. The loss in the ellipsoidal wire approaches that of
the equivalent slab at small current amplitudes, while the current amplitude

Fig. 3.3. Calculated AC current loss in superconducting ellipsoidal wire and thin
strip [4] for the case of γ = 1. The broken line shows the loss in a superconducting
slab
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dependence is significantly different for the thin strip with a small loss at
small current amplitudes.

3.1.3 Transverse Magnetic Field

We have treated the cases where the physical quantities depend only on one
coordinate axis without being influenced by the geometrical factor such as a
demagnetization coefficient of superconductor. In this subsection we treat the
case where a transverse magnetic field is applied to a cylindrical superconduc-
tor. Because of the break in symmetry the physical quantities depend on two
coordinate axes and we have to solve a two-dimensional problem.

A very small transverse magnetic field is supposed to be applied to a cylin-
drical superconductor. The initial state is assumed and the diamagnetism at
the surface is disregarded for simplicity. The inner part of the superconductor
is completely shielded and the magnetic flux density there is zero. The shield-
ing current flows only in the vicinity of the surface. If the thickness of the
region in which the shielding current flows is sufficiently small, an approxi-
mate solution can be obtained. We define the coordinates as shown in Fig. 3.4,
where He is the uniform external magnetic field and R is the radius of the
superconductor. After applying a method well known in electromagnetism we
obtain the solution:

Br = µ0He

(
1 − R2

r2

)
cos θ

Bθ = −µ0He

(
1 +

R2

r2

)
sin θ




; r > R (3.17)

and
Br = Bθ = 0; 0 < r < R . (3.18)

Fig. 3.4. Surface layer of shielding current in a superconducting cylinder in a small
transverse magnetic field



3.1 Geometrical Effect 91

The azimuthal magnetic flux density Bθ is not continuous at r = R and the
current corresponding to the difference flows along the z-axis on the surface of
the superconductor. If we represent this surface current density by J̃ (Am−1),
we have

J̃(θ) = −2He sin θ . (3.19)

In practice the critical current density originating from flux pinning is finite
and the thickness of the shielding-current region is also finite. If we use the
Bean-London model [5] in which the critical current density is independent of
the magnetic field, the thickness is (2He/Jc) | sinθ |.

When the magnetic field becomes much larger, the shielding-current region
becomes wider and the completely shielded region becomes narrower as shown
in Fig. 3.5. According to the critical state concept the distribution of the
shielding current shown in Fig. 3.5(a) is determined so as to minimize the
variation in the magnetic flux distribution inside the superconductor, i.e.,
to minimize the invasion of the magnetic flux. However, the analytic exact
solution has not yet been obtained even for the simple Bean-London model.
The detailed discussion on the magnetic flux distribution is given in [6–8]. Now
the approximate schemes are used in which the region of shielding current is
assumed to be of simple shape and determined by the condition that B = 0
is satisfied at some special points within the shielded region. In the simplest
case a shielding-current region of a circular shape is assumed as shown by the
broken line in Fig. 3.5(b) and its radius is determined by the condition that
B = 0 at the center of the cylindrical superconductor. Even such a simplified
approximation [9] with the Bean-London model leads to magnetization and
loss due to the transverse AC magnetic field which are rather close to the
results [8] of numerical analysis. In [10] the magnetization and the loss are
analyzed using the Irie-Yamafuji model [1] for the magnetic field dependence

Fig. 3.5. (a) Magnetic structure and (b) shielding current distribution in a su-
perconducting cylinder in large AC transverse magnetic field. Circular current layer
shown by the broken line is sometimes assumed simply. M denotes the magnetization
due to the shielding current
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of the pinning force density, and the magnetic flux distribution is determined
on the assumption that the magnitude of the shielding current density is a
function only of the distance from the center of the cylinder. These calculated
results are compared with experimental results in detail. According to the
calculated result the AC loss in the range of small field amplitude is four
times as large as Eq. (2.80) for a superconducting slab in a parallel field. This
is caused by the fact that the amount of shielding current is enhanced due
to the effect of demagnetization. That is, from an approximate estimate as in
Eq. (2.82) the enhancement factor is calculated as the average of (2sinθ)3 in
the angular region 0 ≤ θ ≤ π, which is equal to 32/3π � 3.4. This is close to
the analytical result, 4

When the transverse AC magnetic field becomes larger than the penetra-
tion field given by

Hp⊥ =
1
µ0

[
2
π

(2 − γ)µ0αcR

]1/(2−γ)

, (3.20)

the shielding current extends to the entire region of the cylinder and currents
of the opposite directions flow in the upper and lower halves. In this case the
exact solution has not yet been obtained except for γ = 1 where the magnetic
flux distribution is uniquely determined. In case γ �= 1 an approximate solu-
tion is obtained assuming that the magnitude of the shielding current depends
only on the distance from the center of cylinder. The error in the hysteresis
loss obtained from this result in comparison with the numerically calculated
loss is within 10% [10] even in the vicinity of the penetration field where the
error is largest. The losses obtained for various γ values are shown in Fig. 3.6.

3.1.4 Rotating Magnetic Field

We shall next consider the case where a transverse magnetic field is applied
to a cylindrical superconductor and then rotated. Provided that the rotating
angle is small, the rotation is almost identical to a superposition of a small
magnetic field in the direction normal to the initial field. Hence, a new shield-
ing current is induced by the superposed field. The net current distribution is
obtained by superposition of the newly induced distribution upon the initial
one. When the rotating angle becomes much larger, the current distribution
must be obtained in a different way. Extrapolating from the distribution under
the small rotating angle, the current distribution inside the superconductor
in the steady state is deduced to be that shown in Fig. 3.7. Although this
distribution is to be determined under the condition that B = 0 is satis-
fied throughout the entire shielded region, it cannot be generally determined
correctly. In case γ = 1 where the magnitude of shielding current density is
constant, a solution which satisfies B = 0 approximately in the shielded re-
gion can be obtained [11] only when the magnetic field is so small that the
thickness of the shielding current layer is small. In case γ �= 1 an approximate
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Fig. 3.6. Energy loss density in a superconducting cylinder due to AC transverse
magnetic field [10]

Fig. 3.7. Steady distribution of shielding current in a superconducting cylinder in
a small rotating transverse magnetic field
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Fig. 3.8. Steady distribution of shielding current in a superconducting cylinder in
a rotating transverse magnetic field of magnitude larger than the penetration field

solution is obtained [11] from the requirement that B = 0 at the center of
cylinder with the assumption that the shielding current density depends only
on the distance from the center. From the shielding current distribution the
magnetic flux distribution is obtained. The induced electric field E can be
calculated from the variation in the magnetic flux distribution and the loss is
estimated from J · E. The energy loss density [11] so obtained is 8/π times
as large as the loss due to the transverse AC magnetic field with the same
amplitude discussed in Subsect. 3.1.3, and hence, 32/π times as large as the
value given by Eq. (2.80).

On the other hand, the current distribution in the steady state is shown
in Fig. 3.8 where the magnetic flux penetrates up to the center in a transverse
field greater than the penetration field Hp⊥. In this case there is no region
where the magnetic flux is completely shielded and the current distribution
is determined using the condition that the electric field E is zero on the
boundary of the two regions where the current flows are opposite to each
other. This condition is based on the irreversibility in the critical state model
which requires that the current and the electric field are in the same direction,
i.e., J · E > 0. The current distribution and the loss are calculated using the
above-mentioned assumption that the current density depends only on the
distance from the center.

In the intermediate region where the magnetic field is comparable to the
penetration field, the approximate expression of the energy loss density is
derived by interpolating the result in each region [11]. Agreement between
this expression and the numerically calculated result [8] is obtained for case
γ = 1.
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3.2 Dynamic Phenomena

We have treated only the quasistatic process in which the variation in the
magnetic flux distribution is very slow. This process is not the one used in
thermodynamics but the one in which the variation in the inner magnetic
flux distribution with time depends only on the time variation of the exter-
nal sources such as the magnetic field. In this case the viscous force can be
neglected and the magnetic flux distribution is determined from the balance
between the Lorentz force and the pinning force. In this section we shall dis-
cuss the case where the external variable varies so quickly that the viscous
force cannot be neglected.

For simplicity the one-dimensional problem is again treated where the
external magnetic field is applied along the z-axis of a semi-infinite super-
conductor occupying x ≥ 0. Since the force balance equation obtained by
substitution of Eq. (2.46) into Eq. (2.13) is nonlinear, an analytic solution
is not easily obtained [1]. We suppose that a small varying field, h(t), is su-
perposed on a large external magnetic field, He. The internal magnetic flux
density is expressed as

B(x, t) = µ0He + b(x, t) . (3.21)

In the above b(x, t) is considered to be much smaller than µ0He. If we assume
that He is positive, B is also positive. The continuity equation for flux lines
(2.15) is approximately rewritten as

∂b

∂t
= −µ0He

∂v

∂x
. (3.22)

The force balance equation (2.13) approximately reduces to

He
∂b

∂x
+ δFp(µ0He) + η

µ0He

φ0
v = 0 , (3.23)

where v = δv̂ is used. Derivation of this equation with respect to x and elimi-
nation of v lead to a diffusion equation for b. The breaking point, xb, is used as
one of the boundary conditions to determine the magnetic flux distribution.
However, this equation cannot be easily solved, since this boundary inside the
superconductor varies with time.

In this section we treat the case where the viscous force is sufficiently small
that the magnetic flux distribution can be approximately obtained by an iter-
ative calculation from a quasistatic one. For example we assume that a slowly
varying sinusoidal AC magnetic field of amplitude h0 and frequency ω/2π is
superposed on the DC field He. The condition required for the frequency will
be discussed later. The boundary condition at the surface is given by

b(0, t) = µ0h0 cos ωt . (3.24)

When the viscous force can be neglected, the magnetic flux distribution is
obtained from Eq. (3.23) as



96 3 Various Electromagnetic Phenomena

b(x, t) = µ0(h0 cos ωt − δJcx)
≡ b0(x, t); 0 < x < xb0 , (3.25)

where Fp(µ0He) = µ0HeJc with Jc denoting the constant critical current
density, δ = −sign(sinωt) and

xb0 =
h0

2Jc
(1 + δ cos ωt) . (3.26)

From Eqs. (3.22) and (3.25) we have

v = − 1
µ0He

∫ x

xb0

∂b0

∂t
dx =

h0

He
ω sinωt(x − xb0) . (3.27)

Substitution of Eq. (3.27) into the third term in Eq. (3.23) leads to

b(x, t) = b0(x, t) − ηµ0h0ω

2φ0He
sinωt(x2 − 2xb0x) . (3.28)

This solution holds in the region from the surface to the breaking point of the
magnetic flux distribution xb, which is slightly different from xb0 in Eq. (3.26).
The new breaking point is obtained as a crossing point between the distribu-
tion given by Eq. (3.28) and the “previous” distribution. Since the distribution
given by Eq. (3.28) agrees with the quasistatic distribution at ωt = nπ, with
n denoting an integer at which the sign factor δ changes, the “previous” dis-
tribution is the quasistatic one. Hence, after a simple calculation we have
approximately

xb = xb0 −
ηh0ω

4φ0HeJc
| sin ωt|x2

b0 (3.29)

up to the first order in ω. The second term in Eq. (3.29) should be smaller than
the first so that the iterative approximation holds true. Since xb0 becomes as
large as h0/Jc, the condition for the frequency is written as

ω � 4φ0HeJ
2
c

ηh2
0

≡ ω0 . (3.30)

The AC component of the magnetic flux density averaged over the super-
conductor in the period 0 ≤ ωt ≤ π is to first order in ω given by

〈b〉 =
µ0h

2
0

4Jcd

[
sin2 ωt + 2 cos ωt +

2ω

3ω0
sin ωt(1 − cos ωt)3

]
. (3.31)

From symmetry the energy loss density per cycle of the AC field is

W = 2
∫ h0

−h0

〈b〉d(h0 cos ωt) =
2µ0h

3
0

3Jcd

(
1 +

7πω

16ω0

)
. (3.32)

The first term is the pinning energy loss density in the quasistatic process; it
agrees with the result of Eq. (2.80) after substituting γ = 1. The second term
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is the viscous energy loss density. The reason why the pinning energy loss
density is not different from that in the quasistatic case is that the magnetic
flux distributions at ωt = 0 and π are the same as those in the quasistatic
case, i.e., the amount of magnetic flux which contributes to the pinning loss
during one cycle is unchanged. The second term in Eq. (3.32) can also be
calculated directly from the second term in Eq. (2.73) as the viscous energy
loss density (see Exercise 3.2).

When the frequency of the AC magnetic field becomes higher, it is neces-
sary to take into account terms to higher order in ω. In this case the “previous”
distribution in the region where xb < x varies with time, and hence, the calcu-
lation becomes extremely complicated. According to the theoretical analysis
of Kawashima et al. [12] the energy loss density in this case is predicted to be

W =
2µ0h

3
0

3Jcd

[
1 +

7πω

16ω0
− 512

105

(
ω

ω0

)2
]

. (3.33)

The decrease in the energy loss density at high frequencies is caused by the
fact that the amount of moving flux decreases due to the stronger shielding
action of the viscous force.

3.3 Superposition of AC Magnetic Field

3.3.1 Rectifying Effect

When a small AC magnetic field is applied to a current-carrying supercon-
ducting wire or tape in a transverse DC field, the current-voltage character-
istics vary with a decrease in the critical current density [13, 14] as shown in
Fig. 3.9. Sometimes the critical current density reduces to zero. This is com-
monly observed independently of whether the AC field is parallel or normal
to the DC field. Here we shall first argue the case of parallel AC field. The
current-voltage characteristics in this case can also be analyzed in terms of
a magnetic flux distribution in the superconductor as predicted by the criti-
cal state model. The magnetic flux distribution is predicted to vary with the
surface field during one cycle of AC field as shown in Fig. 3.10. The arrows
in the figure represent the direction of flux motion. It is seen that the flux
motion is not symmetric. That is, the amount of flux that moves from the left
to the right is larger than that in the opposite direction and a DC component
of electric field appears due to the rectifying effect of flux flow [13]. Strictly
speaking, Eq. (2.13) should be used, since a resistive state is being treated.
But here, for simplicity the viscous force is disregarded. When the pinning
force is strong as in a commercial superconductor, this approximation is valid
within the practical range of the electric field.

We assume a superconducting slab of width 2d carrying a transport current
of density Jt. The Bean-London model (γ = 1 and Jc = const.) is used for
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Fig. 3.9. Current-voltage characteristics in a superconducting Pb-Bi foil with (solid
line) and without (broken line) superposed small AC magnetic field perpendicular
to both the normal DC magnetic field and the current [14]

Fig. 3.10. Explanation of rectifying effect by the Kaiho model [13] in case where
DC and AC magnetic fields are parallel to a superconducting slab. (a) and (b) show
magnetic flux distributions in the phases of increasing and decreasing AC magnetic
field, respectively

the pinning force density. The net magnetic flux Φ that flows from the left to
the right during one cycle of the AC field of amplitude h0 corresponds to the
area of hatched region in Fig. 3.11 and can be calculated as

Φ = 4µ0j[h0 − Hp(1 − j)]d , (3.34)

where Hp = Jcd is the penetration field and j = Jt/Jc. Hence, the average
value of the electric field is given by
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Fig. 3.11. Shadowed region corresponds to the magnetic flux passing through the
superconducting slab during one cycle of AC magnetic field

E = Φf , (3.35)

where f is the frequency of the AC field. The apparent critical current density
J∗

c is obtained from the condition E = 0 as

J∗
c = Jc

(
1 − h0

Hp

)
. (3.36)

Hence, J∗
c = 0 for h0 > Hp.

Now we shall estimate the energy loss in the resistive state. One part of
the dissipated energy is supplied by the DC current source and is given by
Wc = JtE/f = JtΦ per unit volume. The other part is supplied by the AC
magnet and its value per unit volume is given by

Wf =
∫
〈B〉dH(t) , (3.37)

where 〈B〉 is the magnetic flux density averaged over the superconducting slab
and H(t) is the instantaneous value of the AC magnetic field. After a simple
calculation we have [15]

Wf = 2µ0Hph0(1 − j2) − 4
3
µ0H

2
p(1 − 3j2 + 2j3) . (3.38)

Thus, the total energy loss density is

W = Wc + Wf = 2µ0Hph0(1 + j2) − 4
3
µ0H

2
p(1 − j3) . (3.39)
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This result can also be directly obtained from the method shown in Eq. (2.74)
(verify that the two methods derive the same result, Exercise 3.3).

Secondly we shall discuss the case where the AC and DC magnetic fields
are perpendicular to each other. For example, we assume that the wide su-
perconducting slab parallel to the y-z plane carries a DC transport current
along the y-axis in a DC magnetic field along the x-axis and an AC field along
the z-axis. In this case the assumption that ∂/∂y = ∂/∂z = 0 seems to be
allowed. The magnetic flux density has only the x- and z-components, Bx and
Bz. The condition of ∇ · B = 0 leads to a Bx that is uniform and equal to
µ0He with He denoting the DC magnetic field. Hence, only the component
Bz varies along the x-axis and the current density along the y-axis is given by

J = − 1
µ0

· ∂Bz

∂x
. (3.40)

Hence, the mathematical expression is similar to the case of parallel DC and
AC fields discussed above and hence the same analysis can be repeated. Thus,
a similar rectifying effect and reduction of the apparent critical current density
can be explained. From the viewpoint of the flux motion, since the electric
field, E = B × v, is along the y-axis and the magnetic flux density B is
almost parallel to the x-axis, the velocity of flux lines is approximately directed
along the negative z-axis. That is, the flux lines flow in the negative z-axis
direction with an oscillating motion in the x-z plane. The details of this flux
motion are described in [14]. In this reference the more general theoretical
analysis of the force balance equation including the viscous force was carried
out and an approximate solution expressed in a power series in frequency was
obtained as in the last section. The obtained current-voltage characteristics
were compared with experimental results.

3.3.2 Reversible Magnetization

Even for a superconductor with a hysteretic magnetization due to flux pinning,
it is known [16] that the superposition of small parallel AC and DC magnetic
fields results in a reduction of the hysteresis of the DC magnetization or
sometimes even in reversible magnetization (see Fig. 3.12). Figure 3.13(a)
shows the variation of the magnetic flux distribution in a superconductor
during one cycle of the AC field in the presence of an increasing DC field.
For simplicity the diamagnetism is disregarded and the Bean-London model is
assumed for the pinning force density. The magnetic flux distribution averaged
over one cycle is shown in Fig. 3.13(b); it is flatter than that in the absence
of the AC field itself (represented by the broken line). Thus, the reduction in
magnetization hysteresis can be explained. The magnitude of the hysteresis is
predicted to be
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Fig. 3.12. Magnetization of a superconducting Pb-1.92at%Tl cylinder [16]. Broken
and solid lines correspond to the cases with and without the superposition of small
AC magnetic field, respectively

Fig. 3.13. (a) Maximum flux density (upper line) and minimum one (lower line)
during one period of AC magnetic field of amplitude h0 in an increasing DC magnetic
field He. (b) The solid line shows averaged magnetic flux density in one period and
the broken line corresponds to the case without the AC magnetic field

∆M = ∆M0

(
1 − h0

Hp

)2

, (3.41)

where ∆M0 is the hysteretic magnetization in the absence of the AC field.
Hence, when the AC field amplitude h0 exceeds the penetration field Hp, the
hysteresis disappears and the magnetization becomes reversible. This method
is useful for investigation of the diamagnetism in superconductors.
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3.3.3 Abnormal Transverse Magnetic Field Effect

When the AC magnetic field is superposed normal to the transverse DC field
applied to a superconducting cylinder or tape as shown in Fig. 3.14, the mag-
netization due to the transverse DC field decreases gradually. Such a phe-
nomenon is called the “abnormal transverse magnetic field effect” [17–19]. An
example is shown in Fig. 3.15 where the AC field is applied parallel to a su-
perconducting cylinder: (a) and (c) correspond to the processes of increasing
and decreasing DC field, respectively. (b) depicts field cooled process wherein
the DC field is applied at a temperature higher than the critical value Tc,
and then the temperature is decreased below Tc. The initial magnetic flux
distribution due to the application of the DC field in each case is shown in
the right side of the figure. The magnetization decreases with application of
the AC field and reduces approximately to zero in the steady state.

When the AC field is superposed in a different direction from the DC field
as above-mentioned, it is necessary to obtain the distribution of the shielding
current. If we assume that the current flows so as to shield the penetration
of AC field as much as possible, the current that has shielded the DC field
now has to change completely to shield the AC field, resulting in a complete
penetration of the DC field. In this case the total amount of penetrating flux
seems to be very large. Hence, the shielding current is predicted to flow in such
a way that the total amount of penetrating DC and AC flux is minimum. Then,
a part of the current that has shielded only the DC field changes so as to shield

Fig. 3.14. Application of transverse magnetic field Ht and normal small AC mag-
netic field h0 to a superconducting cylinder



3.4 Flux Jump 103

Fig. 3.15. Relaxation of longitudinal magnetization [17] due to superposition of
AC magnetic field shown in Fig. 3.14(a) in the processes of (a) increasing field,
(b) field cooling and (c) decreasing field. Right figures show the initial distributions
of DC magnetic flux in each process

the AC field. In other words, a flowing pattern of the current changes gradually
from one that shields the DC field to one that shields the AC field during each
successive half-cycle of the AC field. Figure 3.16 represents the varying states
of distribution of the shielding current when the AC field is applied normal
to the superconducting cylinder. Therefore, the DC field penetrates gradually
one cycle after another until complete penetration is finally reached. In this
final state the current shields only the AC field. The abnormal transverse
magnetic field effect is a kind of relaxation process in which the direction of
the magnetic moment due to the shielding current changes gradually. In the
field cooled process shown in Fig. 3.15(b) the DC field has already penetrated
hence the current flows so as to fully shield the AC field.

3.4 Flux Jump

The magnetization in a superconductor sometimes varies discontinuously dur-
ing the sweeping of a magnetic field as shown in Fig. 3.17. This phenomenon
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Fig. 3.16. Variation of the distribution of shielding current in the order from (a)
to (d) due to the superposition of AC magnetic field shown in Fig. 3.14(b)

Fig. 3.17. Discontinuous variation of the magnetization due to flux jumping

is called the flux jump. An example of the observed magnetic flux distribution
inside a flux-jumping superconductor [20] is shown in Fig. 3.18. It is seen from
this observation that the disappearance of shielding current in the supercon-
ductor at the moment of the flux jump is accompanied by a sudden invasion of
the magnetic flux. Such an instability originates from the irreversible nature
of flux pinning. For instance, we assume that a local flux motion occurs for
some reason. This will lead to some energy dissipation and a slight temper-
ature rise. This temperature rise will reduce the pinning force that prevents
the flux motion and more flux lines than the initial group will move. This will
cause a further energy dissipation and temperature rise. The phenomenon will
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Fig. 3.18. Variation of the magnetic flux distribution in a Nb-Ti measured by
scanning a Hall probe in a gap between two pieces of specimen [20]

continue until such positive feedback destroys the superconductivity and the
flux motion is completely stopped. This is an outline of the mechanism of flux
jumping.

In metallic superconductors the diffusion velocity of the heat is usually
much faster than that of the flux lines. Hence, the isothermal approximation
is adequate for a superconductor. Thus we assume that the temperature T is
uniform throughout the superconductor. The heat produced in the supercon-
ductor by the flux motion is absorbed into a coolant such as liquid helium;
the equation of heat flow is

P = C
dT

dt
+ Φh , (3.42)

where P is the power loss density in the superconductor, C is the heat capacity
of a unit volume of the superconductor and Φh is the heat flux absorbed by
the coolant. When the temperature of the superconductor is not much higher
than the temperature of the coolant T0, the heat flux to the coolant is given
by Φh = K(T − T0), where K is the heat transfer coefficient per unit volume
of the superconductor. Viscous loss and related quantities are disregarded. P
contains not only the pinning power loss density P0 at constant temperature
but also an additional component, Cp(dT/dt), due to the temperature rise.
The temperature rise causes a variation in the parameter αc, the flux pinning
strength. The resultant variation in the magnetic flux distribution is obtained
from Eq. (2.47) as
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Fig. 3.19. Variation of the magnetic flux distribution in a superconducting slab
when the temperature is changed by ∆T

δB̂1−γ ∂B̂

∂T
= −µ0

dαc

dT
x . (3.43)

From Eq. (2.75) the additional power loss density is

P1 = −αcB̂
γ−1 dT

dt

∫ x

xb

δ
∂B̂

∂T
dx . (3.44)

Equations (2.47) and (3.43) are substituted into Eq. (3.44) and after some
calculation we obtain the mean power loss density:

〈P1〉 =
1
d

∫ xb

0

P1dx ≡ Cp
dT

dt
. (3.45)

Here we assume the Bean-London model (γ = 1). In case the magnetic
flux penetrates to the center of a superconducting slab of thickness 2d as
in Fig. 3.19, we have δ0 = δb = 1 in the region 0 ≤ x ≤ d and xb = d, and Cp

is given by

Cp =
1
3
µ0Hp

(
−dHp

dT

)
. (3.46)

Because of this term Eq. (3.42) is rewritten as

(C − Cp)
dT

dt
= P0 − Φh . (3.47)

According to this equation the rate of temperature rise, dT/dt, diverges when
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C − Cp = 0 (3.48)

is satisfied. This is the condition of the rapid temperature rise, i.e., the flux
jump.

Yamafuji et al. [21] discussed the temperature rise in detail, taking account
a higher order term (dT/dt)2 which originated from the viscous loss. Accord-
ing to their argument the condition that dT/dt becomes indefinite must be
satisfied for a flux jump to occur. This means that the condition

P0 − Φh = 0 (3.49)

must be satisfied simultaneously with the heat-capacity condition of Eq. (3.48).
However, the validity of Eq. (3.49) has not yet been clarified. Anyhow
Eq. (3.48) is the condition for the flux jump.

Since flux jumping reduces the critical current density to zero, it must be
avoided in practical superconducting wires. Hence, the inequality that C >
Cp is required so that Eq. (3.48) cannot be satisfied. Since Hp = Jcd, this
inequality is equivalent to

d <

[
µ0

3C

(
−dJc

dT

)
Jc

]−1/2

≡ dc . (3.50)

This implies that the thickness of superconductor 2d should be less than 2dc.
This is the principle of stabilization of superconducting wire by reduction of
the superconducting filament diameter. In practical superconducting wires,
many fine superconducting filaments are embedded in matrix materials such
as copper and are stabilized by the above principle. At the same time the
high thermal conductivity of the matrix material ensures rapid dissipation of
generated heat. In the case of Nb3Sn for example, if we assume that Jc =
1×1010 Am−2, −dJc/dT = 7×108 Am−2K−1 and C = 6×103 Jm−3K−1, we
have 2d < 90 µm from Eq. (3.50). In practical multifilamentary Nb3Sn wires
the diameter of superconducting filaments is smaller than several 10 µm. The
filament diameter in multifilamentary wires for AC use is sometimes reduced
below 1 µm to reduce the hysteresis loss drastically.

The condition of stabilization (3.50) can also be derived from the follow-
ing simple argument. Again consider the magnetic flux distribution shown in
Fig. 3.19 and assume that the temperature in the superconductor rises from T
to T + ∆T within a short period of time, ∆t. The resultant change in critical
current density is then ∆Jc = (dJc/dT )∆T , where of course ∆Jc < 0. Hence,
the magnetic flux distribution changes as shown in Fig. 3.19 and the induced
electric field due to this change is

E(x) =
∫ x

d

µ0
∆Jc

∆t
xdx =

µ0

2

(
−∆Jc

∆t

)
(d2 − x2) . (3.51)

The resultant energy loss density is given by
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W =
1
d

∫ ∆t

0

dt

∫ d

0

JcE(x)dx =
µ0

3

(
−dJc

dT

)
Jcd

2∆T . (3.52)

If ∆t is sufficiently small, the above variation is supposed to occur adiabat-
ically. In this case the additional temperature rise in the superconductor is
estimated to be ∆T ′ = W/C. Provided that this temperature rise ∆T ′ is
smaller than the initial temperature rise ∆T , the initial disturbance will not
develop into a flux jump by positive feedback. This condition agrees with
Eq. (3.50).

3.5 Surface Irreversibility

During measurement of the DC magnetization of a superconductor, when the
sweep of the external magnetic field changes from increasing to decreasing, the
magnetization curve is sometimes linear with slope −1 over a certain range of
field variation denoted by ∆H, as shown in Fig. 3.20. This is similar to the
variation of magnetization in the Meissner state. That is, the magnetic flux
distribution is macroscopically unchanged during the variation of the exter-
nal field. If the external field is increased again within this range, the mag-
netization reverses. It should be noted, however, that, although in the usual
magnetization measurement the magnetization seems to behave reversible as
in Fig. 3.20, sensitive B-He measurements in fact reveal it to be irreversible.
Such behavior is also observed when the sweep of external field changes from
decreasing to increasing. This phenomenon insists that an irreversible current
with a very high density flows in the surface region and shields the variation of
the external field. The magnitude of the magnetization ∆H due to the surface
current is sample dependent and varies with the magnetic field; ∆H usually
decreases with increasing field.

Fig. 3.20. Macroscopic magnetization due to the surface irreversibility
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Three mechanisms, viz. surface sheath, surface barrier, and surface pinning
have been proposed to explain the irreversible surface current.

The surface superconductivity treated in Sect. 1.6 is associated with a
special property of the surface which permits the superconducting order pa-
rameter to take on a nonzero value even when the applied magnetic field is
above Hc2. Fink [22] speculated that a similar two-dimensional surface super-
conductivity exists even below Hc2 independently of the three-dimensional
flux line structure inside the superconductor. This surface superconductivity
is called the surface sheath and considered to cause an irreversible surface
current.

The idea of a “surface barrier” was proposed by Bean and Livingston
[23] who suggested that the surface itself provided a barrier against the inva-
sion and elimination of flux lines. The surface barrier was originally proposed
during investigations of the first entry field of flux lines into a practical su-
perconductor in comparison with Hc1, the theoretical result of Abrikosov for
an infinitely large superconductor. We begin by assuming that a flux line has
entered the superconductor from the surface. In addition to the external field
that decays within a characteristic distance of λ from the surface we consider
the flux line, and a postulated image flux line directed opposite to it as in
Fig. 3.21. The image is necessary to fulfill the boundary condition that the
current around the flux line should not flow across to the surface. The total

Fig. 3.21. Surface barrier model by Bean and Livingston [23]. ‘a’ represents the
penetrating magnetic flux from the surface given by Eq. (1.14) and ‘b’ is the sum
of the penetrating flux line and its image
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magnetic flux of the flux line (the component of b in Fig. 3.21) is smaller
than the flux quantum φ0 and hence, flux quantization is not fulfilled. This
is because the current is not zero on the surface, which is a part of the loop
enclosing the magnetic flux.

Bean and Livingston treated the case where the G-L parameter κ is large,
in which case the modified London equation is valid and the magnetic flux
density of the flux line penetrating sufficiently deeply from the surface is given
by Eq. (1.61). We assume that the superconductor occupies x ≥ 0 and the
external magnetic field He is applied parallel to the z-axis. The position of the
flux line in the x-y plane is represented as (x0, 0), where x0 > 0. Its image is
located at (−x0, 0) and the total magnetic flux density in the superconductor
is given by

b = µ0He exp
(
−x

λ

)
+

φ0

2πλ2

[
K0

(√
(x − x0)2 + y2

λ

)

− K0

(√
(x + x0)2 + y2

λ

)]
(3.53)

except the region of the normal core. The Gibbs free energy is given by

G =
∫ {

1
2µ0

[b2 + λ2(∇× b)2] − He · b
}

dV , (3.54)

where the volume integral is over the superconductor (x ≥ 0). The first term in
Eq. (3.53) may be symbolized by b0 and the sum of the second and third terms
which represent the penetrating flux line and its image may be symbolized
by b1. After substituting these into Eq. (3.54), partially integrating and using
the modified London equation, the Gibbs free energy becomes

G = λ2

∫
S

(∇× b1) × He · dS

+
λ2

2µ0

∫
Sc

[b1 × (∇× b1) + 2b1 × (∇× b0) + 2µ0(∇× b1) × He] · dS

+
1

2µ0

∫
∆V

[b2
1 + λ2(∇× b1)2 + 2b0 · b1 + 2λ2(∇× b0) · (∇× b1)

−2µ0b1 · He]dV . (3.55)

In the above the first integral is carried out on the surface of superconductor,
S(x = 0), the second one on the surface of normal core of the flux line, Sc (dS
is directed inward the surface), and the third one inside the normal core. The
constant terms which are functions only of b0 are omitted. In the first integral
in Eq. (3.55), since He is equal to b0/µ0 on the surface, it can be replaced
by b0/µ0. If we replace the integral on S to an integral on S and Sc minus an
integral on Sc, we have
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λ2

µ0

∫
S+Sc

(∇× b1) × b0 · dS =
λ2

µ0

∫
S+Sc

(∇× b0) × b1 · dS

=
λ2

µ0

∫
Sc

(∇× b0) × b1 · dS , (3.56)

where partial integration is done and the modified London equation and the
boundary condition of b1 = 0 on the superconductor surface are used. Thus,
Eq. (3.55) reduces to

G =
λ2

2µ0

∫
Sc

[b1 × (∇× b1) − 2µ0He × (∇× b1) + 2b0 × (∇× b1)] · dS

+
1

2µ0

∫
∆V

[b2
1 + λ2(∇× b1)2 + 2b0 · b1 + 2λ2(∇× b0) · (∇× b1)

−2µ0b1 · He]dV . (3.57)

Now we write b1 = bf + bi to indicate the sum of the flux line and its
image, where the full expressions for these components are just the second
and third terms in Eq. (3.53). After a simple calculation we have

G =
λ2

2µ0

∫
Sc

[bf × (∇× bf) + bi × (∇× bf) − bf × (∇× bi)

−2µ0He × (∇× bf) + 2b0 × (∇× bf) − 2bf × (∇× b0)] · dS

+
1

2µ0

∫
∆V

[b2
f + λ2(∇× bf)2 − 2µ0bf · He]dV . (3.58)

With the aid of Eq. (1.78) it turns out that the sum of the first term in the
first integral and the first and second terms in the second integral gives the
self energy of the flux line, ε = φ0Hc1, and the sum of the fourth term in
the first integral and the third term in the second integral gives a constant
term, −φ0He. The fifth and second terms in the first integral represent the
interactions of the flux line with the Lorentz force due to the surface current
and with the image, respectively. It can be easily shown that the third and
sixth terms in the first integral are sufficiently small and can be disregarded.
Thus, we have

G = φ0

[
He exp

(
−x0

λ

)
− φ0

4πµ0λ2
K0

(
2x0

λ

)
+ Hc1 − He

]
(3.59)

(per unit length of the flux line), which is identical with the result obtained
by Bean and Livingston [23] and by de Gennes [24]. This equation is valid
for the case where the normal core completely penetrates the superconductor,
i.e., x0 > ξ. Since the constant term that depends only on b0 is omitted, we
have G = 0 when the flux line does not penetrate the superconductor, i.e.,
x0 = 0. When He = Hc1, G goes to zero in the limit x0 → ∞. That is, the
condition of a bulk superconductor is naturally satisfied.
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Fig. 3.22. Variation of the energy G vs the position, x0, of the flux line in case
κ = 10 [23]. The ordinate is normalized by the self energy, ε, of flux line per unit
length

Figure 3.22 shows the variation in the free energy G with the position
of the flux line x0. It means that the energy barrier exists even when He

exceeds Hc1 and the flux line cannot penetrate the superconductor. Hence,
the magnetization remains perfectly diamagnetic until the external magnetic
field reaches Hs sufficiently greater than Hc1, and then the flux line first pen-
etrates. Conversely, the surface barrier prevents the flux lines from exiting
the superconductor as the field decreases. The flux lines are predicted to be
trapped in the superconductor until the external field is reduced to zero. Also
in this case the magnetization curve is a line parallel to the Meissner line,
suggesting that the internal magnetic flux distribution remains unchanged
even under variation of the external field. Such feature agrees qualitatively
with the surface irreversibility phenomenon observed experimentally. For this
reason the surface barrier model seems to be applicable not only to the esti-
mation of the first penetration field, its initial purpose, but also to the general
phenomena of surface irreversibility.
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Here, we shall estimate the first penetration field Hs of the flux line from
the above result of the Bean-Livingston model. We treat the case in which the
flux line exists near the surface (x0 ∼ ξ). The corresponding magnetic flux
density is approximately given by Eq. (1.62a). Thus, the Gibbs free energy
reduces to

G = φ0

[
He exp

(
−x0

λ

)
+

φ0

4πµ0λ2
log 2x0

]
+ const . (3.60)

Since the penetration of flux line occurs when ∂G/∂x0 = 0 is attained at
x0 ∼ ξ, we have

Hs �
φ0

4πµ0λξ
=

Hc√
2

. (3.61)

The calculation in terms of the modified London equation in the above is
not exact when x0 is close to ξ. Then, de Gennes [25] argued the first penetra-
tion field Hs using the G-L equations. We assume again that the superconduc-
tor occupies x ≥ 0. de Gennes treated this problem as an extrapolation of the
Meissner state above Hc1, i.e., the superheated state and assumed that the
order parameter and the vector potential vary one-dimensionally only along
the x-axis. In this case, the order parameter can be chosen as a real number
as known well. If we normalize Ψ by |Ψ∞| as in Eq. (1.38) and the vector
potential A and the coordinate x as

a =
A√

2µ0Hcλ
, (3.62)

x̃ =
x

λ
, (3.63)

the G-L equations (1.30) and (1.31) reduce to

1
κ2

· d2ψ

dx̃2
= ψ(−1 + ψ2 + a2) , (3.64)

d2a

dx̃2
= ψ2a . (3.65)

In the above, a is the y-axis component, if the magnetic field is applied along
the z-axis. As will be shown later, ψ and a vary gradually with the distance
of the order of 1 in the x̃-coordinate (λ in real space). Hence, the left-hand
side of Eq. (3.64) can be approximately replaced by zero for a superconductor
with the large G-L parameter κ. Then, Eq. (3.64) reduces to

ψ2 = 1 − a2 . (3.66)

Substitution of this into Eq. (3.65) leads to

d2a

dx̃2
= a − a3 . (3.67)
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Multiplying both sides by da/dx̃ and integrating, we have

(
da

dx̃

)2

− a2 +
a4

2
= const . (3.68)

Since a and da/dx̃ are expected to drop to zero at deep inside the supercon-
ductor, x̃ → ∞, the constant term on the right-hand side of Eq. (3.68) must
be zero. Thus,

a = −
√

2
cosh(x̃ + c)

, (3.69)

where c is a constant determined by the boundary condition at the surface, x̃ =
0. This solution satisfies the above-mentioned requirement that the physical
quantities vary gradually with the distance of the order of λ in real space.
From Eq. (3.69) the magnetic flux density is

B =
√

2µ0Hc
da

dx̃
=

2µ0Hc sinh(x̃ + c)
cosh2(x̃ + c)

. (3.70)

From the boundary condition that the magnetic flux density is µ0He at x̃ = 0,
c can be evaluated from

He

Hc
=

2 sinh c

cosh2 c
. (3.71)

The maximum value of He, i.e., the first penetration field, Hs, corresponds to
c = sinh−11, and hence [25]

Hs = Hc . (3.72)

If we neglect the term proportional to (dψ/dx̃)2, the free energy density is
given by

F = µ0H
2
c

[
−ψ2 +

1
2
ψ4 +

(
da

dx̃

)2

+ a2ψ2

]

= µ0H
2
c

[
−1

2
+

4 sinh2(x̃ + c)
cosh4(x̃ + c)

]
(3.73)

or

F = −1
2
µ0H

2
c +

B2

µ0
= Fn − 1

2
µ0H

2
c +

B2

2µ0
, (3.74)

where Fn = B2/2µ0 is the energy density of magnetic field, i.e., the free energy
density in the normal state. Figure 3.23 shows the magnetic flux density, the
normalized order parameter and the free energy density in the critical state
at He = Hc. At the surface where the magnetic flux density reaches µ0Hc,
the order parameter ψ is zero and the free energy density F is equal to Fn,
its normal-state value.
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Fig. 3.23. (a) Magnetic flux density, (b) normalized order parameter and (c) free
energy density in the vicinity of the surface of a superconductor in the critical
superheated state (He = Hc)

As shown above the first penetration fields, as obtained by Bean and Liv-
ingston and by de Gennes, are of the order of Hc, although these differ by
a factor of

√
2. In the case of high-κ superconductors, which is the required

condition for the approximations, the predicted values are much greater than
the bulk value, Hc1. Such large penetration fields have not yet been observed.

Here the relationship between the two theories will be discussed. As men-
tioned above the superheated state has been treated by de Gennes. In this case,
the assumption that the order parameter gradually varies one-dimensionally
does not hold any more as the field decreases after the penetration of flux
lines, and hence, the superheated state cannot be re-established. It follows
that the magnetization curve is predicted to be reversible after the penetra-
tion of flux lines, as shown in Fig. 3.24. Hence, in oder to discuss the surface
irreversibility, the interaction between the flux line and the surface should be
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Fig. 3.24. Magnetization after the superheated state is destroyed

treated as it was done in the surface barrier model. It is also important to
investigate the effect of surface roughness. If the surface roughness is of the or-
der of ξ, it is accompanied by a steep spatial variation of Ψ, in which case the
assumption of a gradual one-dimensional variation is no longer valid. In high-
κ superconductors, ξ is small and it seems to be quite difficult to make the
surface roughness of bulk specimens smaller than ξ. Hence, it seems unphysi-
cal to image that the superheated state could be maintained up to high fields.
On the other hand, the penetration of flux line results in a two-dimensional
spatial variation of Ψ and the surface barrier appears. In this case the image
of flux line is considered to become dim due to the surface roughness resulting
in a weakening of the interaction between the flux line and its image. How-
ever, the surface barrier should remain. Thus, it can be seen that there is a
difference between the surface barrier mechanism and the superheating mech-
anisms proposed by de Gennes, and furthermore that the former provides a
more practical explanation of surface irreversibility.

When the surface is roughened, it is speculated that the effects of surface
sheath and surface barrier are reduced. However, the surface irreversibility is
enhanced in most cases. It has been shown that neither bulk irreversibility
nor surface irreversibility is observed in materials with few defects and clean
surfaces [26], indicating that the surface sheath and the surface barrier are
not the main causes of surface irreversibility. On the other hand, Hart and
Swartz [27] speculated that the pinning by surface roughness and defects near
the surface causes the surface irreversibility based on the correlation between
the surface roughness and the irreversibility. This mechanism is called “surface
pinning.”
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Experimentally it has been shown that surface pinning is a dominant mech-
anism. Matsushita et al. [28] showed that residual pinning centers could be
removed from several Nb-50at%Ta tape specimens by heat treatment at very
high temperatures under very high vacuum. After this heat treatment, dis-
locations with different densities were introduced to the specimens by differ-
ent rates of rolling deformation. The initial thickness of each specimen was
changed so that the final thicknesses of all the specimens were the same. Since
the superconducting properties such as Tc and Hc and the condition of the
surface were almost the same in each one, ∆H should have been approxi-
mately the same, if either the surface sheath or the surface barrier was the
origin of the surface irreversibility. Figure 3.25 shows the bulk critical cur-

Fig. 3.25. Bulk critical current density Jc and surface one Jcs vs deformation by
the cold rolling in Nb-Ta specimens [28]. These critical current densities increase
with increasing density of pinning dislocations. The deformation is defined as 1 −
(A0/A) and we have εp = log(A/A0), where A and A0 represent the surface area of
superconductor before and after the rolling, respectively
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rent density Jc and the one near the surface Jcs estimated using Campbell’s
method described in Sect. 5.3, where Jcs is approximately proportional to
∆H. This result shows that not only the bulk critical current density, Jc, but
also the surface one Jcs increases significantly with increasing density of pin-
ning dislocations and that the two critical current densities are saturated to
almost the the same value in the strong pinning limit. From the fact that the
surface irreversibility is enhanced by two orders of magnitude by introduction
of dislocations, it can be concluded that the dominant cause of the surface
irreversibility is surface pinning and that the effects of a surface barrier etc.
can be neglected. In addition, a saturation behavior of critical current density
in the strong pinning regime and its special magnetic field dependence [28]
are known to be characteristic features of the saturation phenomenon for the
bulk flux pinning, which will be described in Sect. 7.5.

It has been concluded that since with rolling deformation the defects are
nucleated with the higher density in the surface region, the surface critical
current density Jcs increases faster than the bulk value.

It follows that the surface irreversibility is not an intrinsic surface effect
as such but rather a secondary phenomenon caused by defects that are likely
to be concentrated in the surface region. It is generally known [28] that the
magnitude of surface irreversibility ∆H decreases with increasing magnetic
field and disappears at high fields. This is caused by the nonlocal nature of
the flux pinning. That is, the critical current density is a value averaged over
the range of the pinning correlation length of the flux line lattice (Campbell’s
AC penetration depth that will be described in the next section). At high
fields, this correlation length increases, and the region of the average is no
longer limited to the surface region with strong pinning forces but extends
into the inner region. Thus, the surface irreversibility is diluted quickly with
increasing magnetic field strength.

As discussed above, surface pinning rather than the surface barrier effect is
the dominant mechanism of surface irreversibility. As indicated in Fig. 3.22 the
energy barrier itself is not particularly large, and in any case its effectiveness
reduces in the presence of the usual surface roughness which by dimming the
image of flux line weakens the attraction between the flux line and the image.
In addition, the penetration of flux lines through the surface barrier can be
facilitated by flux creep, to be discussed in Sect. 3.8.

The surface pinning force itself can be reduced by various kinds of surface
treatments such as metallic coating [29] or oxidation [30] (see Fig. 3.26). In
the former case, a proximity effect between the normal metal coating and
the superconductor reduces the order parameter at the surface and hence the
strength of surface pinning.
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Fig. 3.26. Magnetization of V specimen at 4.2 K [30]. Solid and broken lines show
results on the specimen before and after the oxygenation, respectively

3.6 DC Susceptibility

Measurement of DC susceptibility in the field cooled process was carried out
for evaluating the superconducting volume fraction of a specimen just after
the discovery of high-temperature superconductors. A constant susceptibility
at sufficiently low temperatures was regarded as related to the volume frac-
tion of a superconducting phase. However, this is correct only for pin-free
superconductors. As the temperature decreases, the superconductor becomes
diamagnetic and the flux lines are expelled from the superconductor, resulting
in a negative susceptibility. If the pinning interactions in the superconductor
become effective as the temperature decreases, flux lines will be prevented
from leaving the superconductor, and the susceptibility will be influenced by
the pinning. That is, the susceptibility is proposed to be small for a strongly
pinned superconductor. Thus, the result does not reflect correctly the volume
fraction of superconducting material.

For a description by the critical state model, it is assumed that a magnetic
field He is applied parallel to a very wide superconducting slab (0 ≤ x ≤ 2d).
From symmetry we need to treat only half of the slab, 0 ≤ x ≤ d. The critical
temperature in the magnetic field He is denoted by T ′

c. When the tempera-
ture T is higher than T ′

c, the magnetic flux density in the superconductor is
uniform and given by B = µ0He. When the temperature is slightly decreased
from T ′

c to T1 = T ′
c − ∆T , the superconductor becomes diamagnetic. If T1 is

higher than the irreversibility temperature, Ti(He), the pinning does not yet
work, and the internal magnetic flux distribution is as schematically shown
in Fig. 3.27(a), where M(< 0) is the magnetization. When the temperature
is further reduced to Tn = Ti(He) − ∆T , the pinning interaction becomes
effective. If the critical current density at this stage is denoted by ∆Jc, the
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Fig. 3.27. Magnetic flux distribution in a superconductor in the field cooled process
(a) for T1 ≤ T ≤ T ′

c, (b) when the temperature is decreased slightly by ∆T from
T1, (c) when the temperature is further decreased and (d) at sufficiently low tem-
peratures

magnetic flux distribution inside the superconducting slab is expected to be
like the one shown in Fig. 3.27(b), where the slope of the magnetic flux distri-
bution near the surface is equal to µ0∆Jc. When the temperature is further
decreased, the diamagnetism of the superconductor becomes stronger and the
flux lines near the surface are driven to the outside of the superconductor.
At the same time the pinning also becomes stronger, and the flux distribu-
tion shown in Fig. 3.27(c) results. Thus, the magnetic flux distribution at a
sufficiently low temperature is expected to be like that in Fig. 3.27(d).

Here the magnetic flux distribution is calculated analytically. For simplic-
ity the diamagnetic property of the superconductor is approximated as shown
in Fig. 3.28. That is, if the temperature at which He is equal to the lower
critical field Hc1 is denoted by Tc1, the magnetization is given by

M(T ) = −ε[Hc2(T ) − He] (3.75)

for temperatures higher than Tc1 and by

M(T ) = −He (3.76)

for temperatures lower than Tc1. In the above the parameter ε is given by
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Fig. 3.28. Approximate diamagnetism of a superconductor

ε =
Hc1

Hc2 − Hc1
. (3.77)

If the temperature dependence of κ is neglected, this parameter does not de-
pend on the temperature. Correctly speaking, this parameter should be given
by ε = 1/1.16(2κ2 − 1) in the vicinity of Hc2, but the above approximation
is used to simplify the analysis. The temperature dependence of Hc2 is also
approximated by

Hc2(T ) = Hc2(0)
(

1 − T

Tc

)
. (3.78)

In addition, the critical current density is assumed to be a function only of
the temperature as

Jc(T ) = A

(
1 − T

Ti

)m′

(3.79)

for sufficiently low He. If the irreversibility temperature Ti is approximately
given by the critical temperature T ′

c, we have

Ti = (1 − δ)Tc (3.80)

with δ = He/Hc2(0).
The magnetic flux distribution near the surface of the superconductor is

determined only by M and Jc at a given temperature as

B(x) = µ0He + µ0M(T ) + µ0Jc(T )x . (3.81)

In general m′ is larger than 1. Thus, the history of magnetic flux distribution at
higher temperatures remains in the superconductor as shown in Fig. 3.27(d).
Namely, the internal flux distribution is equal to the envelope of Eq. (3.81)
at higher temperatures in the past. If the region in which the magnetic flux
distribution is expressed by Eq. (3.81) is 0 ≤ x ≤ x0, x0 is obtained from

∂B(x0)
∂T

= 0 (3.82)
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at temperatures above Tc1. Under the assumptions of Eqs. (3.75) and (3.78)–
(3.80) we have

x0 =
ε[Hc2(0) − He]

Am′

[
1 − T

(1 − δ)Tc

]1−m′

. (3.83)

This depth is x0 = ∞ at T = T1 and decreases with decreasing temperature.
The envelope of the flux distribution in the internal region can be derived by
substituting the obtained x0 into Eq. (3.81). We have only to eliminate T in
Eq. (3.81) in terms of x0(T ) in Eq. (3.83). Then, replacing x0 by x, the flux
distribution in the envelope region is given by

B(x) = µ0He−(m′−1)µ0

[
εHc2(0)(1 − δ)

m′

]m′/(m′−1)

(Ax)−1/(m′−1) . (3.84)

This holds within the region x0 ≤ x ≤ d.
If the external magnetic field He is sufficiently small, the temperature

Tc1 at which Hc1 is equal to He exists. Below this temperature M is given
by Eq. (3.76), and B just inside the surface is zero. Hence, the magnetic
flux distribution at temperatures lower than this remains unchanged. Strictly
speaking, the flux lines near the surface are continuously expelled from the
superconductor with the strengthened diamagnetism from decreasing tem-
perature as discussed in Sect. 2.6, and hence, the flux distribution does not
remain completely unchanged. However, the remaining flux distribution is the
“heritage” of distributions at higher temperatures, and hence, its gradient is
small and the resultant driving force to expel flux lines from the superconduc-
tor is relatively smaller than the pinning force at the ambient temperature.
Thus, although this effect increases the diamagnetism slightly, its influence is
considered not to be large. The effect of the reversible motion of flux lines, to
be discussed in Sect. 3.7, is rather larger than this, since it is considered that
the flux lines are likely to be nucleated in the bottom of pinning potentials
where the energy is lowest in the field cooled process.

The magnetic flux density and the DC susceptibility can be calculated
from the above results. The temperature T0, at which x0 is equal to d, is
given by

T0 = Tc(1 − δ)

{
1 −

[
εHc2(0)(1 − δ)

Am′d

]1/(m′−1)
}

. (3.85)

After a simple but long calculation we have [31]
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χ = ε − ε

δ

(
1 − T

Tc

)
+

Ad

2He

[
1 − T

(1 − δ)Tc

]m′

; Ti ≥ T > T0 , (3.86a)

= − [εHc2(0)(1 − δ)]2

2m′(2 − m′)dAHe

[
1 − T

(1 − δ)Tc

]2−m′

+
(m′ − 1)2

(2 − m′)(Ad)1/(m′−1)He

[
εHc2(0)(1 − δ)

m′

]m′/(m′−1)

;

T0 ≥ T > Tc1 , (3.86b)

= − [εHc2(0)(1 − δ)]m
′

2m′(2 − m′)dAHm′−1
e

+
(m′ − 1)2

(2 − m′)(Ad)1/(m′−1)He

[
εHc2(0)(1 − δ)

m′

]m′/(m′−1)

≡ χs;

Tc1 ≥ T , (3.86c)

where χs is the saturated susceptibility at sufficiently low temperatures. The
above results are useful for m′ �= 2. Calculate the susceptibility also for the
case of m′ = 2 (Exercise 3.5).

Calculated results [31] of DC susceptibility in the field cooled process for
various values of A are shown in Fig. 3.29. The DC susceptibility when the
temperature is increased in a fixed magnetic field is also shown for compari-
son. With increasing A, i.e., strengthening pinning force, the susceptibility in
the field cooled process takes a smaller negative value, but a larger negative
value in the process of increasing temperature in a fixed magnetic field. This
can be understood, since the motion of flux lines is more restricted by the
stronger pinning force. Figure 3.30 shows the relation between the saturated
susceptibility and the size of the superconducting specimen [31]. It turns out
that the diamagnetism becomes stronger with decreasing specimen size. This
is because the internal flux lines can more easily leave the superconductor
when the superconductor is smaller.

The above various results can be qualitatively explained from the magnetic
flux distribution in Fig. 3.27. Figure 3.31 shows the dependence of the satu-
rated susceptibility on the external magnetic field for a single crystal specimen
of La-based superconductor [31], and the experimental results agree with the
above theoretical predictions of the critical state model.

It is assumed here that the superconducting volume fraction is 100%. How-
ever, the obtained saturated susceptibility differs greatly depending on the
conditions as shown in Figs. 3.29 and 3.30. Hence, this measurement tech-
nique is not suitable for evaluation of the superconducting volume fraction.
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Fig. 3.29. Results of calculated DC susceptibilities for various values of A rep-
resenting the flux pinning strength in the field cooled process (••) and when the
temperature is increased in a constant magnetic field (��) [31]. Assumed parame-
ters are Tc = 93 K, µ0Hc2(0) = 100 T, ε = 5.13 × 10−4, m′ = 1.8, d = 1 mm and
µ0He = 1 mT

Fig. 3.30. Dependence of saturated DC susceptibility on external magnetic field for
various sizes of superconductor [31]. Assumed parameters are A = 1.0× 1010 Am−2

and the same values of Tc, µ0Hc2(0), ε and m′ as in Fig. 3.29
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Fig. 3.31. Magnetic field dependence of saturated DC susceptibility of a La-based
superconducting specimen [31]. The solid line is the theoretical result for Tc = 35
K, µ0Hc2(0) = 27.3 T, ε = 5.1 × 10−4, A = 8.0 × 1010 Am−2 and m′ = 1.8

3.7 Reversible Flux Motion

Most electromagnetic properties of superconductors are irreversible and can
be well described in terms of the critical state model. The irreversibility stems
from the interaction of flux lines and the pins, i.e., the instability of flux lines
as they drop into and jump out of the pinning potential, as discussed in
Sect. 2.3. However, if the displacement of flux lines is so small that the flux
motion is restricted to the interior of the pinning potential, the correspond-
ing electromagnetic phenomena are expected to become reversible and hence
deviate from the critical state description.

Here we assume that the flux lines in some region are in an equilibrium
state inside an averaged pinning potential. When the flux lines are displaced
by a distance u from the equilibrium position in response to a change of the
external magnetic field etc., the pinning potential felt by the flux lines within a
unit volume is of the form αLu2/2, where αL, a constant, is called the Labusch
parameter. Hence, the force on the flux lines per unit volume is

F = −αLu , (3.87)

which depends only on the position of flux lines u and is reversible. Note
the difference between this force and that based on the critical state model
according to which the force takes on only one of two values, ±JcB, depending
on the direction of the flux motion. If now b represents the variation in the
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magnetic flux density due to the movement of flux lines from their equilibrium
positions (we assume that the flux movement occurs along the x-axis), using
the continuity equation (2.15) we have

du

dx
= − b

B
, (3.88)

where B is an equilibrium value of the magnetic flux density. The Lorentz
force that arises from this variation is

FL = − B

µ0
· db

dx
. (3.89)

Solutions for u and b can be obtained from the balance between the Lorentz
force and the pinning force given by Eq. (3.87), FL + F = 0, under given
boundary conditions. That is, eliminating u from Eqs. (3.87)–(3.89), we have

d2b

dx2
=

µ0αL

B2
b (3.90)

and hence,

b(x) = b(0) exp
(
− x

λ′
0

)
. (3.91)

In the above the superconductor is assumed to occupy x ≥ 0, b(0) is a value
of b at the surface, x = 0, and

λ′
0 =

B

(µ0αL)1/2
. (3.92)

λ′
0 is a length called Campbell’s AC penetration depth [32]. A solution of the

same form can also be obtained for the displacement, u(x). The variation in the
magnetic flux density given by Eq. (3.91) is similar to Eq. (1.14) representing
the Meissner effect. This is the reason for referring to λ′

0 as a “penetration
depth.” According to the above solution, the depth to which the variation
penetrates is given by λ′

0 and is independent of the variation in the magnetic
flux density at the surface b(0), for b(0) below some value.

The reversible phenomenon appears for example when the applied field
changes from decreasing to increasing. Hence, the initial condition just before
the appearance of the reversible phenomenon is mostly the critical state. The
variation in the magnetic flux distribution after the field changes from decreas-
ing to increasing is schematically shown in Fig. 3.32(a). On the other hand,
based on the critical state model, the distribution would change according to
b(x) = b(0)−2µ0Jcx. In this case the depth to which the variation penetrates
is b(0)/2µ0Jc and increases in proportion to b(0) (see Fig. 3.32(b)). Thus, the
variation in the magnetic flux distribution is different between the reversible
and completely irreversible states.

According to experiments, the pinning force density changes from JcB to
−JcB or inversely (see Fig. 3.33), as the magnetic flux distribution changes as



3.7 Reversible Flux Motion 127

Fig. 3.32. Variations in the magnetic flux distribution in a superconductor when
the external magnetic field is increased from the critical state in a decreasing field:
(a) the case of noticeable reversible motion of flux lines and (b) the prediction of
the critical state model

Fig. 3.33. Variation of the pinning force density vs the displacement of flux lines.
Origin is the critical state and the figure shows the characteristics when the flux
lines are displaced reversely

shown in Fig. 3.32(a). That is, the pinning force density varies linearly with u
and the phenomenon is reversible as described above, while the displacement
u from the initial condition is small. As the mean displacement of the flux
lines increases, some flux lines jump out of individual pinning potentials locally
and the characteristics of pinning force density vs displacement vary gradually
from reversible to irreversible. When the displacement increases further, the
pinning force density approaches asymptotically −JcB and the phenomenon
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becomes describable by the irreversible critical state model. Measurements of
AC penetration depth λ′

0 and the characteristics of pinning force density vs
displacement shown in Fig. 3.33 may be carried out using Campbell’s method
described in Sect. 5.3.

In practice (see Figs. 3.32(a) and 3.33), the absolute value of the pinning
force density is actually given by F = −αLu + JcB rather than Eq. (3.87) in
the reversible region where u is sufficiently small. On the other hand, b is a
variation of the magnetic flux density from the initial condition, and hence
the Lorentz force is given by FL = −(B/µ0)(db/dx)− JcB. From the balance
between the two forces the solution of Eq. (3.91) is again obtained.

Here we shall estimate the AC loss in the vicinity of the reversible region.
We assume that a DC magnetic field He and an AC one of amplitude h0

are applied parallel to an infinite superconducting slab of thickness 2D (0 ≤
x ≤ 2D). From symmetry we treat only the half-region, 0 ≤ x ≤ D. If h0 is
sufficiently small, the critical current density Jc can be regarded as a constant.
We assume that the initial magnetic flux distribution at the surface field of
He − h0 is in the critical state and that the variation from this distribution
is as shown in Fig. 3.34. The variation in the magnetic flux density from the
initial state is again denoted by b(x). Campbell [32] expressed the variation
of pinning force density with displacement in Fig. 3.33 as

F = −JcB

[
1 − 2 exp

(
− u

2di

)]
(3.93)

and we go on to make the approximation as B � µ0He. di is half of the
displacement when the linear extrapolation of the pinning force density in
the reversible regime reaches JcB in the opposite critical state. That is, di

Fig. 3.34. Variation of the magnetic flux distribution in a superconductor when
the surface field is increased from He − h0 in the critical state
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represents a radius of the averaged pinning potential and for this reason is
referred as the “interaction distance.” From the relation

JcB = αLdi (3.94)

with Eq. (3.92) we have

di =
µ0Jcλ

′2
0

B
. (3.95)

Elimination of u from the force balance equation using Eq. (3.88) leads to

d2b

dx2
− b

λ′2
0

(
1 +

1
2µ0Jc

· db

dx

)
= 0 . (3.96)

From symmetry the condition u(D) = 0 should be satisfied. This is written
as F (D) = JcB or

db

dx

∣∣∣∣
x=D

= 0 . (3.97)

Equation (3.96) is only numerically solved under this condition and the bound-
ary condition of b(0) at the surface. When the external magnetic field is in-
creased to He + h0 and then decreased to He − h0, the magnetic flux distrib-
ution does not go back to the initial condition. Hence, strictly speaking, it is
necessary to obtain the distribution in the steady state after many periods of
AC field to estimate the AC loss observed usually. However, this is not easily
done and we shall approximate for simplicity that the curve of averaged mag-
netic flux density vs external field is symmetric between the increasing and
decreasing field processes. In which case, after one period, the last point of
the 〈B〉-H curve meets the initial point and the loop closes. In this way, the
AC loss can be estimated approximately. Here it should be noted that the AC
loss can be obtained not only from the area of the 〈B〉-H curve but also from
the area of the closed F -u curve as shown in Fig. 3.35. In the latter case, the
F -u curve is believed to be approximately symmetric between O → A and
A → O [32].

Figure 3.36 shows the AC losses observed for a bulk Nb-Ta specimen [33],
along with the result of theoretical analysis using the Campbell model and
with a critical state prediction based on Eq. (2.80) and the assumption γ = 1.
According to these results, the difference between the Campbell model and
the critical state model is small even when the AC field amplitude is small and
hence when the flux motion should be almost reversible; hence it is not clear
which model better explains the experimental result. It is, however, possible
to distinguish between the two models in terms of the “power factor,” which
is generally given by

ηp =

[
1 +

(
µ′

µ′′

)2
]−1/2

, (3.98)
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Fig. 3.35. Hysteresis loop of the pinning force density vs displacement of the flux
lines in one cycle of the AC magnetic field

Fig. 3.36. AC energy loss density in a bulk Nb-Ta specimen [33] in a DC bias field
µ0He = 0.357 T. The solid and broken lines represent the theoretical predictions of
the Campbell model and the critical state model, respectively
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where µ′ and µ′′ are the real and imaginary parts of the fundamental AC per-
meability, respectively. If we express the time variation of external magnetic
field as h0 cos ωt, these are written as

µ′ =
1

πh0

∫ π

−π

〈B〉 cos ωt dωt , (3.99)

µ′′ =
1

πh0

∫ π

−π

〈B〉 sin ωt dωt . (3.100)

The AC energy loss density, W , is related to the imaginary AC permeability
µ′′ through

W = πµ′′h2
0 . (3.101)

According to the critical state model with γ = 1 (the Bean-London model)
Eq. (3.98) reduces to

ηp =

[
1 +

(
3π

4

)2
]−1/2

� 0.391 , (3.102)

which is independent of h0. The observed power factor for the Nb-Ta specimen
and the predictions of the two models are compared in Fig. 3.37. It is found
from this figure that the phenomenon is well explained by the Campbell model
in which the effect of reversible flux motion is taken into account, while the
prediction of the critical state model deviates from the experiment. ηp is

Fig. 3.37. Power factor of AC energy loss density in a bulk Nb-Ta specimen [33]
shown in Fig. 3.36. The solid and broken lines represent the theoretical predictions
of the Campbell model and the critical state model, respectively
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proportional to h0 in the region of small h0. The derivation of ηp predicted
by the Campbell model is Exercise 3.8.

As is seen from Fig. 3.36, the AC loss itself in a bulk superconductor is
close to the prediction of the critical state model. This is the reason why
the reversible effect has not been noticed. Why is the AC loss close to the
prediction of the irreversible critical state model? In the regime of almost
reversible flux motion, the displacement u is sufficiently small and the pinning
force density in Eq. (3.93) can be approximately expanded in a power series
in u:

F = JcB

[
1 − u

di
+
(

u

2di

)2
]

. (3.103)

Here F increases with increasing u as in the upper curve of Fig. 3.35 and the
area of the hatched region gives a half of the energy loss density in one period
of AC field. Hence, the irreversible component in F is a deviation from the
linear line connecting the origin O and the point A. After a simple calculation
we have

Firr = −JcB

4d2
i

(umu − u2) , (3.104)

where um(x) is the maximum displacement. Here we shall estimate the dis-
placement. Since the flux motion is almost reversible, the penetration of the
AC flux can be approximated by Eq. (3.91). From Eq. (3.88) we have

u(x) =
b(0)λ′

0

B
exp

(
− x

λ′
0

)
, (3.105)

where b(0) is the variation in the magnetic flux density at the surface from
the initial condition. um(x) is given by this equation with a replacement of
b(0) by 2µ0h0. Hence, the energy loss density during the variation in b(0) by
db(0) is given by −Firrdu with du denoting the variation in u in this period
and is written as

dw =
Jcλ

′3
0

4d2
i B

2
exp

(
−3x

λ′
0

)
[2µ0h0b(0) − b2(0)]db(0) . (3.106)

Since b(0) varies from 0 to 2µ0h0 in a half period, the energy loss density is
calculated to be

W =
2
D

∫ 2µ0h0

0

db(0)
∫ D

0

dx · dw

db(0)
=

2µ0h
3
0

9JcD
. (3.107)

In the above we assumed that D � λ′
0. This value is 1/3 of the prediction of

the critical state model. The reason for the relatively small difference is that
the displacement and the region in which the loss occurs are enhanced, while
the irreversible force density |−Firr| is decreased, resulting in an approximate
offset.



3.7 Reversible Flux Motion 133

The reversible phenomenon does not affect the electromagnetic property
appreciably for a bulk superconductor sufficiently thicker than λ′

0. However,
it is considered from a comparison between (a) and (b) in Fig. 3.32 that
reversibility will become noticeable for a superconductor with the size com-
parable to or smaller than λ′

0. λ′
0 is of the order of 0.5 µm at 1 T in a super-

conductor with the flux pinning strength comparable to a commercial Nb-Ti
wire; accordingly the reversible phenomenon is really noticeable [34] in mul-
tifilamentary wires for AC use which have superconducting filaments thinner
than the above value. As a result the dependence of the AC loss on the fil-
ament diameter shows a departure from the critical state prediction. That
is, the critical state model predicts that the breaking point of the loss curve
should shift to smaller AC field amplitudes accompanied by increasing loss
in the lower amplitude region with decreasing filament diameter (see inset

Fig. 3.38. AC energy loss density in a multifilamentary Nb-Ti wires with very fine
filaments [34]. Hm is an AC magnetic field amplitude and a DC bias field is not
applied. The broken line shows the prediction of the critical state model with the
observed critical current density for filament diameter 0.51 µm. Inset represents the
prediction of the critical state model on the variation of AC energy loss density with
the filament diameter



134 3 Various Electromagnetic Phenomena

Fig. 3.39. Magnetization curve for a Nb-Ti multifilamentary wire [34] of filament
diameter 0.51 µm

of Fig. 3.38) in complete conflict with the experimental result. On the other
hand, in the region of large AC field amplitudes, the loss agrees with the
prediction of the critical state model. Another result is that the slope of the
minor magnetization curve when the sweep of magnetic field is changed from
increasing to decreasing takes on a much smaller value than theoretically pre-
dicted, i.e., it is 1 for a large slab in a parallel field and 2 for a cylinder in a
perpendicular field, as shown in Fig. 3.39 (note a difference in scales between
the ordinate and the abscissa). This slope becomes smaller with increasing
magnetic field.

Such an abnormal phenomenon originates from the reversible flux motion.
Usually the filament diameter df is not sufficiently greater than the flux line
spacing af . For instance, at B = 1 T af is 49 nm and hence only ten rows
of flux lines exist in a filament of diameter 0.5 µm. Hence, the applicability
of the semimacroscopic Campbell model to the macroscopic description of
the spatial variation of magnetic flux distribution is in doubt. However, in
the usual specimens the number of filaments is very large and the dimension
along the length of the filament is also large. The magnetic quantity usually
observed is the average within a large number of long filaments and hence the
semimacroscopic description is considered to be possible only as an averaged
flux distribution. The local flux distribution is expected to be different from
such an averaged one. This is also the case in a bulk superconductor and even
in the critical state. That is, it is not correct to postulate that the local flux
distribution is of uniform slope equal to µ0Jc in the critical state of a bulk
superconductor. In fact, the slope may take on various values locally and µ0Jc

is nothing other than the average value. The fact that the critical state model
holds for multifilamentary wires with many filaments and sufficient length
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has been validated by many experiments. This does not contradict the above
speculation that the semimacroscopic description is possible for the averaged
distribution. Hence, the Campbell model is considered to be applicable to
multifilamentary superconducting wires even with very fine filaments.

Takács and Campbell [35] calculated the AC loss in a wire with very
fine superconducting filaments in a small AC magnetic field of amplitude
h0 superposed to DC field. They assumed that the magnetic flux penetrates
uniformly the very fine superconducting filaments. The filament of diameter
df was approximated by a slab of thickness df . Here we shall calculate the
AC loss using Eq. (3.103) in a different manner from [35]. Only the half, the
region 0 ≤ x ≤ df/2 is considered. The displacement of flux lines in this region
is obtained from Eq. (3.88) as

u(x) =
b(0)
B

(
df

2
− x

)
, (3.108)

where the symmetry condition, u = 0 at the center, x = df/2, was used.
The loss in this case can also be estimated by substituting Eq. (3.108) into
Eq. (3.104) as done previously; um is again given by Eq. (3.108) with b(0)
replaced by 2µ0h0. D is replaced by df/2 in Eq. (3.107), and after some cal-
culation we have

W =
µ0h

3
0

3Jcdf

(
df

2λ′
0

)4

. (3.109)

This agrees with the result of Takács and Campbell [35] and is (df/2λ′
0)

4/4
times as large as the prediction of the Bean-London model. Thus, the loss
decreases rapidly with decreasing filament diameter. It is concluded that the
reversible effect is very large in small superconductors for the following reason.
Because of symmetry, the flux lines in the center of the filament do not move
and are restrained around the origin of the pinning force vs displacement curve
shown in Fig. 3.33. The average displacement of flux lines is approximately
proportional to the filament diameter, and hence, most of the flux lines in the
filament are in the reversible regime.

When the AC field amplitude becomes large, the loss approaches asymp-
totically 2µ0Hph0, where Hp = Jcdf/2 is the penetration field (see Eq. (2.84)).
From the intersecting point between this relationship and the extrapolation
of Eq. (3.109), the breaking point of the loss curve shown in Fig. 3.38 is

H̃p = 2
√

3
(

2λ′
0

df

)2

Hp = 4
√

3
Jcλ

′2
0

df
. (3.110)

Hence, the breaking point shifts to higher AC field amplitudes with decreasing
filament diameter. Thus, the dependence of the loss on the filament diameter
obeys the Campbell description of reversible phenomenon. In the irreversible
Bean-London model H̃p =

√
3Hp.

Suppose we extrapolate the tangent to the minor magnetization curve in
Fig. 3.39, then the magnetic field variation needed to reach the opposite major
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curve is represented by Ĥp. According to the Campbell model the slope of the
minor magnetization curve, Hp/Ĥp, is a function only of df/2λ′

0 and given by
[34]

Hp

Ĥp

= 1 − 2λ′
0

df
tanh

(
df

2λ′
0

)
, (3.111)

where the slab approximation is used. In the extreme reversible case in which
df/2λ′

0 � 1 is satisfied, we have Ĥp = (
√

3/2)H̃p = 3(2λ′
0/df)2Hp. On the

other hand, in the case where the Bean-London model holds and df/2λ′
0 � 1,

Ĥp coincides with Hp. Because of demagnetization the slope of the minor
magnetization curve takes on double the value given by Eq. (3.111) for mul-
tifilamentary wires in the transverse magnetic field. Figure 3.40 shows the
dependences of Hp and Ĥp on filament diameter df for Nb-Ti multifilamen-
tary wires and it is found that these are well described by the Campbell
model.

Numerically calculated results of the energy loss density [33] for various
filament diameters are shown in Fig. 3.41. In the case of very fine filaments in
(a) the result is close to the analytic expression of Eq. (3.109) represented by
the straight broken lines. The chained lines are the results of the irreversible

Fig. 3.40. Dependences of the characteristic fields, Hp and Ĥp, on the filament
diameter for Nb-Ti multifilamentary wires [34]. Triangular and square symbols show
the values of the characteristic fields for µ0He = 0.40 T and 0.55 T, respectively.
The solid lines are Ĥp estimated from Eq. (3.111) with Hp shown by the broken
lines and the assumptions of λ′

0 = 0.56 µm (0.40 T) and 0.54 µm (0.55 T)
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Fig. 3.41. AC energy loss density estimated using the Campbell model for various
filament diameters [33]. The broken and chained lines show the results of Eq. (3.109)
and the Bean-London model, respectively. Assumed parameters are Jc = 1.0 ×
1010Am−2 and λ′

0 = 0.63 µm

Bean-London model. The numerical result tends to approach the prediction
of this model as the filament diameter increases.

The AC energy loss density shown in Fig. 3.38 was observed in the absence
of a large DC bias field, which is different from the above condition. In this
case Eq. (3.88), the approximate formula based on the continuity equation for
flux lines does not hold. In addition, not only Jc but also λ′

0 depends on the
magnetic field strength. Therefore, a rigorous analysis is necessary. However,
Eq. (3.109) is expected to be qualitatively correct. In practice the observed
AC loss in recent multifilamentary wires with ultra fine filaments under small
AC field amplitudes is even much smaller than the prediction of Eq. (3.109).
In such wires the diameter of superconducting filaments is comparable to, or
smaller than, the London penetration depth and the first penetration field is
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significantly enhanced as discussed in Appendix A.2. For example, if df is not
much smaller than the London penetration depth λ, the effective lower critical
field is predicted to be

H∗
c1 �

[
1 − 2λ

df
tanh

(
df

2λ

)]−1

Hc1 . (3.112)

From the result of Exercise 2.10, the corresponding energy loss density is given
by

W =
µ0

3Jcdf

(
df

2λ′
0

)4

(Hm − H∗
c1)

2

(
Hm +

H∗
c1

2

)
, (3.113)

where h0 is rewritten as Hm.
The AC penetration depth λ′

0 defined by Campbell is an important quan-
tity related to the AC loss in multifilamentary wires with very fine filaments.
However, this length cannot be measured using Campbell’s method in case
the filament diameters are smaller than λ′

0 (see Exercise 5.3). There are two
methods for estimating λ′

0 in this case; one is to compare the slope of minor
magnetization curve with Eq. (3.111) and the other is to analyze the imagi-
nary part of AC susceptibility as will be mentioned in Sect. 5.4.

3.8 Flux Creep

The superconducting current originated from the flux pinning mechanism has
been assumed to be persistent in time so long as the external conditions are
unchanged. However, if the DC magnetization of a superconducting specimen
is measured for a long period, it is found to decrease slightly as shown in
Fig. 3.42. That is, the superconducting current supported by the flux pinning
is not a true persistent current but decreases with time. This results from
the fact that the state in which the flux lines are restrained by the pinning
potentials is only a quasistable one corresponding to a local minimum of the
free energy in the state space and is not an actual equilibrium state. Therefore,
a relaxation to the real equilibrium state, i.e., a decay of the shielding current
takes place; it does so logarithmically with time as indicated in Fig. 3.42. The
decay of the persistent current is accompanied by a decrease of the slope of
the magnetic flux distribution caused by the motion of flux lines. Such flux
motion is called “flux creep” which according to Anderson and Kim [36] is
caused by thermal activation. It is supposed that thermally activated flux
motion is not a macroscopic and continuous phenomenon like flux flow, but a
partial and discontinuous one. The group of flux lines that move collectively
is called the flux bundle.

We imagine one flux bundle to move under the influence of the transport
current. When the flux bundle is virtually displaced in the direction of the
Lorentz force, the variation in the energy of the flux bundle will be as shown
schematically in Fig. 3.43(a). Point A corresponds to the state in which the
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Fig. 3.42. Relaxation of magnetization due to flux creep

flux bundle is pinned, and the gradual decrease of energy that takes place when
the flux bundle moves to the right represents the work done by the Lorentz
force. It is necessary for the flux bundle to overcome the energy barrier at point
B so as to be depinned. If there is no thermal activation, the state indicated
in this figure is stable and the flux bundle does not move. In this virtual case,
it is considered that the critical state is attained when the current density is
increased until the peak and the bottom of the energy curve coincide with
each other as shown in Fig. 3.43(b). At a higher current density continuous
flux motion i.e., flux flow is expected to occur as in (c).

At a finite temperature T , thermal activation enables the flux bundle to
overcome the energy barrier even in the state represented by Fig. 3.43(a). If
the thermal energy, kBT , is sufficiently small compared to the energy barrier,
U , where kB is the Boltzmann constant, the probability for the flux bundle to
overcome the barrier for each attempt is given by the Arrhenius expression,
exp (−U/kBT ). Hence, if the attempt frequency of the flux bundle is ν0 and
the distance by which the flux bundle moves during one hopping is a, the mean
velocity of the flux lines to the right-hand side is given by aν0 exp (−U/kBT ).
The oscillation frequency ν0 is expressed in terms of the Labusch parameter
αL and the viscous coefficient η as [37]

ν0 =
φ0αL

2πBη
. (3.114)

This is the frequency of damped oscillation within the averaged pinning po-
tential. This is seen from the following argument: the relaxation time in the
pinning potential is given as τ ∼ η∗/kp from Eq. (2.41), where kp, the Labusch
parameter per unit pinning center, is given by kp = αL/Np where Np is the
pin concentration; thus, ν0 � 1/2πτ . In Sect. 2.3 the number of flux lines in
the flux bundle is assumed to be 1.
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Fig. 3.43. Energy of flux bundle vs its position: (a) the case of transport current
less than the virtual critical value. The flux bundle must overcome the barrier U so
as to be depinned from the potential. (b) the virtual critical state and (c) the flux
flow state

When the flux bundle is displaced by the flux line spacing af , its condition
is expected to be approximately the same as before the displacement. In other
words, the hopping distance a is supposed to be comparable to af . In general
flux motion towards the left-hand side is also considered, hence the induced
electric field according to Eq. (2.17) is given by

E = Bafν0

[
exp

(
− U

kBT

)
− exp

(
− U ′

kBT

)]
, (3.115)

where U ′ is the energy barrier for the flux motion opposite to the Lorentz force
(see Fig. 3.43(a)). Thus, the electrical field is generated by the motion of flux
lines due to the flux creep. The mechanism responsible for the appearance
of the electric field is essentially the same as that for flux flow in spite of
the quantitative difference, and hence, a distinction in experiments between
flux creep and flow is difficult. According to analysis of experimental results,
most of the observed electric field at which the critical current density is
determined by the usual four-terminal method comes from the mechanism of
flux creep, as will be shown in Chap. 8. Hence, it is necessary to take account
of the mechanisms of both flux creep and flow to analyze the practical E-
J characteristics. The theoretical model of flux creep and flow used for the
analysis of the E-J curves is described in Subsect. 8.5.2. The electromagnetic
phenomena in high-temperature superconductors will be analyzed using this
model, and the results will be discussed in Subsect. 8.5.3

Here we treat for simplicity the magnetic relaxation of a large supercon-
ducting slab (0 ≤ x ≤ 2d) in a magnetic field along the z-axis. From symmetry
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we need to treat only the half, 0 ≤ x ≤ d. In an increasing field, the current
flows along the positive y-axis and the motion of flux lines due to the flux creep
occurs along the positive x-axis. If the average current density is denoted by
J , the magnetic flux density is B = µ0(He−Jx). In terms of its average value
〈B〉, the electric field at the surface, x = 0, is given by the Maxwell equation
(2.1) as

E =
∂d〈B〉

∂t
= −µ0d

2

2
· ∂J

∂t
. (3.116)

The relaxation of the superconducting current density with time can be ob-
tained by substituting this equation into the left-hand side of Eq. (3.115) with
U and U ′ expressed as functions of J .

Here we shall treat the case where the relaxation of the superconducting
current is small in the vicinity of the virtual critical state. In this case U �
U ′ and the second term in Eq. (3.115) can be neglected. It is clear from
Fig. 3.43(a) that U increases with decreasing J . Hence, it is reasonable to
express U by expanding it in the form U = U∗

0 −sJ , where U∗
0 is the apparent

pinning potential energy in the limit J → 0 and s is a constant. As shown
in Fig. 3.43(b) U = 0 is attained in the virtual critical state and the current
density in this state is denoted by Jc0. Then, we have approximately s =
U∗

0 /Jc0 and

U = U∗
0

(
1 − J

Jc0

)
. (3.117)

Hence, the equation describing the time variation of the current density is
given by

∂J

∂t
= −2Bafν0

µ0d2
exp

[
− U∗

0

kBT

(
1 − J

Jc0

)]
. (3.118)

This equation is easily solved and under the initial condition that J = Jc0 at
t = 0 we obtain

J

Jc0
= 1 − kBT

U∗
0

log
(

2Bafν0U
∗
0 t

µ0d2Jc0kBT
+ 1
)

. (3.119)

After a sufficient time, the 1 in the argument of the logarithm can be ne-
glected and the time variation of the current density shown in Fig. 3.42 can
be derived. The apparent pinning potential energy U∗

0 can be estimated from
the logarithmic relaxation rate:

− d
d log t

(
J

Jc0

)
=

kBT

U∗
0

. (3.120)

The energy barrier U is not generally a linear function of J , as in
Eq. (3.117), over a wide range of J . The relaxation of the current for such a
case will be discussed below: we simply approximate the relationship between
the energy of the flux bundle and its central position, x, shown in Fig. 3.43(a)
as
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F (x) =
U0

2
sin kx − fx, (3.121)

where k = 2π/af and f = JBV with V denoting the volume of the flux
bundle. Differentiating Eq. (3.121) with respect to x, the quasiequilibrium
position of the flux bundle is obtained:

x = −x0 = −1
k

cos−1

(
2f

U0k

)
. (3.122)

On the other hand, F (x) is locally maximum at x = x0. Hence, the energy
barrier is obtained as U = F (x0) − F (−x0). That is,

U

U0
=

[
1 −

(
2f

U0k

)2
]1/2

− 2f

U0k
cos−1

(
2f

U0k

)
. (3.123)

If there is no thermal activation, the virtual critical state with U = 0 will be
attained. In this case x0 = 0 will be reached, and hence, 2f/U0k = 1 will be
satisfied. Since J in this case is equal to Jc0, the general relation

2f

U0k
=

J

Jc0
≡ j (3.124)

is derived. In terms of the normalized current density j, Eq. (3.123) can be
written as

U

U0
= (1 − j2)1/2 − j cos−1 j . (3.125)

In case j is very close to 1 so that 1 − j � 1, Eq. (3.125) reduces to U/U0 �
(2
√

2/3)(1 − j)3/2. In this case j is described by

∂j

∂t
= −c exp

[
−U(j)

kBT

]
, (3.126)

where c = 2Bafν0/µ0Jc0d
2. U(j) is strictly a nonlinear function. If we ex-

pand U(j) as in Eq. (3.117) within a narrow region, the variation of j as in
Eq. (3.119) will be obtained. However, the value of U∗

0 estimated from the
relaxation is different from the real pinning potential energy, U0. That is, U∗

0

is usually smaller than U0 as shown in Fig. 3.44. Hence, the measurement of
magnetization relaxation leads to an underestimate of the pinning potential
energy.

Here we shall show an example of the numerical analysis. We assume the
temperature dependence of the virtual critical current density to be Jc0 =
A[1 − (T/Tc)2]2. In case of strong pinning, the pinning potential energy U0

is proportional to J
1/2
c0 as will be shown in Sect. 7.7. Hence, the temperature

dependence of U0 is given by

U0 = kBβ

[
1 −

(
T

Tc

)2
]

, (3.127)
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Fig. 3.44. Relationship between the energy barrier U and the normalized current
density j. Extending the tangent at a given value of current density to j = 0, the
intercept gives the apparent pinning potential energy U∗

0

where β is a constant dependent on the flux pinning strength. Here we assume
an Y-based high-temperature superconductor with Tc = 92 K and other pa-
rameters: B = 0.1 T(af = 0.15 µm), ν0 = 1.0× 106 Hz, d = 1.0× 10−4 m and
A = 3.0×109 Am−2. The results of numerical calculation [38] on the time de-
pendence of j at various temperatures for β = 3, 000 K are shown in Fig. 3.45.
Figure 3.46(a) shows the apparent pinning potential energy U∗

0 obtained from

Fig. 3.45. Relaxation of normalized current density [38] obtained from Eq. (3.126)
in case β = 3, 000 K
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Fig. 3.46. Calculated apparent pinning potential energy U∗
0 for given values of U0

[38] for (a) β = 3, 000 K and (b) β = 10, 000 K

the average logarithmic relaxation rate in the range of 1 ≤ t ≤ 104 s according
to Eq. (3.120). In addition, (b) represents the relationship between U0 and U∗

0

for β = 10, 000 K. It turns out that the U∗
0 obtained is much smaller than the

given U0 and the difference becomes larger at lower temperatures, especially
in the limit T → 0, U∗

0 approaches 0. Furthermore U∗
0 /U0 decreases as U0

increases. In practice, according to the numerical calculation by Welch [39], if
the current dependence of the activation energy is given by U/U0 ∝ (1− j)N ,
the apparent pinning potential is expressed as (see Exercise 3.11)

U∗
0 = cN [(kBT )N−1U0]1/N . (3.128)
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Fig. 3.47. (a) Relationship between the energy of flux bundle and its position at
measurement of magnetization at low temperatures. Since the relaxation from the
virtual critical state is not large, the energy barrier U is small. (b) Condition at
measurement at high temperatures. Since the relaxation has already taken place to
a considerable extent, U is large

In the case of sinusoidal washboard potential discussed above, N = 3/2 and
c3/2 = 1.65. This result explains the above behavior exactly.

How can we understand this result? Assume that the initial state at t = 0 is
the virtual critical state shown in Fig. 3.43(b).∗ The measurement of magnetic
relaxation starts some time after the establishment of the initial state, at which
time the variation in the energy of the flux bundle vs its position is shown in
Fig. 3.47 for (a) low temperatures and (b) high temperatures. That is, at the
low temperature in (a) little relaxation has taken place, and the energy barrier
U is small; hence, the flux creep takes place easily, and the apparent pinning
potential energy U∗

0 is small. On the other hand, in (b) where the temperature
is higher, the relaxation has already taken place revealing a large U ; in this
case, the flux creep is suppressed and the resultant U∗

0 is large. This result
can also be explained from Fig. 3.44. At low temperatures j at the time of
measurement is close to 1 and U∗

0 obtained from extrapolating the tangential
line is much smaller than U0. On the other hand, at high temperatures j is
small and U∗

0 is close to U0. Furthermore the dependence of U∗
0 on U0 at a

constant temperature has a similar explanation. The cases of large and small
U0 correspond qualitatively to Fig. 3.47(a) and (b), respectively.

Figure 3.48 shows some experimental U∗
0 data for Y-Ba-Cu-O [39]: U∗

0

takes on a small value at low temperatures and its temperature dependence
∗ In practice, even if we try to instantaneously establish an ideal external condition

such as magnetic field before the flux creep starts, the relaxation due to the
viscosity shown in Sect. 3.2 is added. Hence, the condition in Fig. 3.43(b) is not
realized in a strict sense. However, the results after a sufficient long time do not
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Fig. 3.48. Temperature dependence of apparent pinning potential energy U∗
0 ob-

tained from the magnetic relaxation for a melt-processed Y-Ba-Cu-O [39]

agrees qualitatively with the theoretical prediction as in Fig. 3.46. The ob-
served flux creep phenomena can be approximately explained by the model
assuming a simple sinusoidal variation in the energy given by Eq. (3.121).
Flux creep in response to such a spatial variation in the potential was first
pointed out by Beasley et al. [40] and later investigated in detail by Welch
[39]. It should be noted that the shape of potential around the inflection point
has a significant influence on the magnetic relaxation. However, any discus-
sion has not yet been given on this problem in literature. Other mechanisms
have also been proposed to explain the temperature dependence of U∗

0 shown
in Fig. 3.48, such as; the statistical distribution of the pinning potential en-
ergy [41], the nonlinear dependence of the energy barrier U on J [42] due to
an enlargement of the pinning correlation length, that gives the flux bundle
size, with decreasing J , etc. However, the width of distributed pinning poten-
tial energy necessary to explain the temperature dependence of U∗

0 seems to
be much larger than the observed distribution width of the critical current
density. As for pinning correlation length enhancement, Campbell’s AC pen-
etration depth, as measured using Campbell’s method described in Sect. 5.3,
is not enhanced in the vicinity of J = 0. From these observations and from
the fact that the shape of the pinning potential is necessarily involved when
the flux bundle overcomes the barrier, it seems natural that the temperature

seem to depend sensitively on the initial condition as usually observed, and the
above assumption will be admitted.
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dependence of U∗
0 originates mainly from the shape of the pinning potential.

However, it is difficult to explain the temperature dependence of U∗
0 at low

temperature from only the simple effects of the pinning potential shape. This
problem will be discussed in Appendix A.8.

It should be noted that, from the measurement of magnetic relaxation,
the actual pinning potential energy that is important to the physics of flux
pinning cannot be obtained, while the relaxation rate that is concerned with
the lifetime of the persistent current and is an important engineering quantity
can be obtained. In principle it is possible to obtain a value closer to the true
pinning potential energy by inducing a current at slightly higher temperature
and then measuring the relaxation of that current at some chosen lower tem-
perature. However, if we wish to get a more exact value, an astronomically
long time will be needed for the measurements.

When flux creep becomes pronounced at high temperatures, the flux mo-
tion occurs frequently, resulting in a steady electric field even for a small
transport current. That is, the critical current density Jc is zero. In this regime
magnetic hysteresis does not appear under a quasistatic variation of the ap-
plied field; i.e., the magnetization is reversible. The boundary between the
reversible region with Jc = 0 and the irreversible one with Jc �= 0 on the tem-
perature vs magnetic field plane is called the irreversibility line (see Fig. 3.49).
Figure 3.50 is a set of magnetization curves for Pb-In [43]. It can be seen that

Fig. 3.49. Phase boundary Hc2(T ) and irreversibility line Hi(T ) on the
temperature-magnetic field plane
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Fig. 3.50. Magnetization curves for Pb-8.23wt%In specimens with various flux
pinning strengths [43]. ‘A’ is a specimen after cold working and ‘B’, ‘C’, ‘D’ and
‘E’ are specimens annealed at room temperature for 30 min., 1 day, 18 days and 46
days, respectively

the magnetization becomes reversible at high magnetic fields in specimens
with weak pinning forces, and that the reversible region shrinks with increas-
ing pinning strength. This shows that the irreversibility line depends on the
pinning strength. At higher temperatures flux creep is stronger and hence,
the above features are more noticeable in high-temperature superconductors.
The melting of flux line lattice, the vortex glass-liquid transition, etc., were
also proposed as for the origin of the irreversibility line. In this book we fol-
low the mechanism of the flux creep. The detailed discussion on this point for
high-temperature superconductors will be given in Sect. 8.2.

The irreversibility line at a given temperature T is defined as the magnetic
field, Hi(T ), at which the critical current density determined in terms of the
electric field criterion, E = Ec, for example, reduces to zero. That is, neglect-
ing the second term in Eq. (3.115) again, from the requirement that U = U0

in the limit J = Jc = 0 we have

U0(Hi) = kBT log
(

µ0Hiafν0

Ec

)
. (3.129)

As expected, U0 depends on the flux pinning strength and is a function of
magnetic field and temperature. Hence, the irreversibility line, Hi(T ), can be
obtained from Eq. (3.129). The estimation of U0 will take place in Sect. 7.9,
and examples of the irreversibility line for high-temperature superconductors
will be shown in Sect. 8.5. It was mentioned above that only the apparent
pinning potential energy U∗

0 can be obtained from the measurement of mag-
netic relaxation. On the other hand, the irreversibility line is directly related
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to the true pinning potential energy U0. Hence, U0 can be estimated from a
measured value of the irreversibility field.

At higher temperatures and/or higher magnetic fields the flux lines tend to
creep in the direction of the Lorentz force and a voltage appears. This mech-
anism is identical with that of flux flow. Based on this concept the voltage
states in Fig. 3.43(a) and (c) are the creep state and the flow state, respec-
tively. However, these are not easily discerned experimentally. In the regime
of flux creep, we make the approximation

U ′ � U + faf = U + πU0
J

Jc0
(3.130)

for use in Eq. (3.115). If the second term is sufficiently less than kBT , the
electric field may be written

E � πBafν0U0J

Jc0kBT
exp

(
− U0

kBT

)
. (3.131)

This is an ohmic current-voltage characteristic, which takes into considera-
tion the fact that U approaches U0 in the range of sufficiently small J . The
corresponding electrical resistivity is obtained as

ρ = ρ0 exp
(
− U0

kBT

)
, (3.132)

where ρ0 = πBafν0U0/Jc0kBT can be approximately regarded as a constant
within a narrow temperature range. This suggests that U0 may be estimated
from the slope of the log ρ vs 1/T . However, as pointed out by Yeshurun and
Malozemoff, [44] such an attempt would lead to error, since U0 varies with
temperature. If we write U0 = K(1 − T/Tc)p, for instance, at high tempera-
tures, it is easy to derive

∂ log ρ

∂(1/T )
= −U0

kB

(
1 +

pT

Tc − T

)
. (3.133)

This suggests that a simple plot of log ρ vs 1/T would lead to an overestimate
of U0, especially so in the vicinity of Tc. Generally the value of p is unknown
and U0 cannot be obtained. This is due to the fact that Eq. (3.132) is correct
in a fixed magnetic field only within a very narrow temperature range. It is
possible to observe an electrical resistivity similar to that of Eq. (3.132) in the
presence of a large transport current. In this case the condition of Fig. 3.47(a)
holds and what is obtained is none other than U∗

0 . The apparent pinning
potential energy obtained in this method agrees well with that obtained from
magnetic relaxation [45].

A very wide reversible region exists between the irreversibility line, Hi(T ),
and the phase boundary, Hc2(T ), as shown in Fig. 3.49 for a superconductor
with a weak pinning force; this leads to a wide resistive transition. Hence, it is
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Fig. 3.51. (a) Resistance vs magnetic field at 4.2 K for a Nb-Ta specimen with
weak pinning force [26]. (b) Theoretically calculated resistance vs magnetic field
assuming a flux flow with observed critical current density and flux flow resistivity
[46]

claimed that the width of the resistive transition is determined by the pinning
strength. When the temperature is lowered slightly below the irreversibility
line, Jc recovers suddenly. On the other hand, if the temperature is slightly
increased, a variation from the flux creep state to the flux flow state takes
place. Hence, the flux lines are considered to be in the flow state throughout
most of the wide resistive transition. Figure 3.51(a) shows the broad magnetic
field range of the resistive transition that has been measured for a Nb-Ta alloy
[26] under various current densities; (b) shows the corresponding theoretical
results [46] constructed from the observed critical current density and flux
flow resistivity. These agree well with each other in the range where a small
resistivity due to the flux creep can be disregarded. This supports the specula-
tion that the dominant component of the usually observed resistive transition
comes from flux flow. Such a broad resistive transition is also observed for
high-temperature superconductors and the same discussion can be repeated
in principle. However, the effect of flux creep is then much more noticeable
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and the region of low resistivity will be further widened. In addition the effect
of the superconducting fluctuations is considered to be large around the phase
boundary and the shape of the resistive transition itself seems to be strongly
influenced by the fluctuations.

Exercises

3.1. Derive Eqs. (3.17), (3.18) and (3.19).
3.2. Derive the viscous energy loss density given by the second term of

Eq. (3.32) directly from the second term of Eq. (2.73). (Hint : Since
the viscous energy loss density is small, Eq. (3.27), the quasistatic value
for the velocity of flux lines, can be used.)

3.3. Using the method of Eq. (2.74), derive Eq. (3.39), the energy loss density
when an AC magnetic field is applied to a current-carrying supercon-
ductor.

3.4. Derive Eq. (3.59) from Eq. (3.58).
3.5. Calculate the DC susceptibility in the field cooled process when the

parameter m′ in Eq. (3.79), representing the temperature dependence
of Jc, is equal to 2.

3.6. Calculate the DC susceptibility when a constant magnetic field is applied
and then, the temperature is elevated after cooling down at zero field.

3.7. From the area of the 〈B〉-H loop, derive Eq. (3.109), the AC energy
loss density in a superconducting slab thinner than the AC penetration
depth λ′

0, in a parallel AC magnetic field.
3.8. Derive ηp in Fig. 3.37 for a bulk superconductor for a sufficiently small

AC field amplitude h0 using the Campbell model.
3.9. Derive Eq. (3.111), where the superconductor is a slab of thickness df .

3.10. Prove that the half size of a superconductor must be smaller than the
AC penetration depth, λ′

0, for the effect of reversible flux motion to be
significant. For simplicity it is assumed that the AC magnetic field is
applied parallel to a wide superconducting slab of thickness 2d. (Hint:
Use the condition that the maximum displacement of flux lines in the
superconductor in one period is less than the diameter of the pinning
potential, 2di.)

3.11. The current density dependence of the energy barrier, U , is assumed as
U(J) = U0(1 − J/Jc0)N , where N > 1. Discuss the dependences of the
apparent pinning potential energy, U∗

0 , on the temperature, T , and U0,
using Fig. 3.44.

3.12. When the resistivity criterion, ρ = ρc, is used for the definition of the
critical current density, how is the expression of the irreversibility line
different from Eq. (3.129)? (Hint : Use Eq. (3.131)).
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4

Longitudinal Magnetic Field Effect

4.1 Outline of Longitudinal Magnetic Field Effect

When a transport current is applied to a superconducting cylinder or tape
in a longitudinal magnetic field, as shown in Fig. 4.1, various characteristic
phenomena are observed and these are generically called the longitudinal field
effect. The phenomena are as follows:

Fig. 4.1. Current and self field HI in a longitudinal magnetic field

(1) A longitudinal paramagnetic magnetization is induced by the current.
Figure 4.2 shows the variation in the longitudinal magnetization [1] when
the transport current is applied after the longitudinal magnetic field is
increased up to a certain value. It can be seen that the magnetization
changes from diamagnetic to paramagnetic. This is called the paramag-
netic effect.
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Fig. 4.2. Variation in magnetization (upper figure) and longitudinal voltage (lower
figure) when a longitudinal magnetic field of 28 mT is applied and then a transport
current is applied to a cylindrical Pb-Tl specimen [1]

(2) The critical current density is much larger than in the case in a transverse
magnetic field. Figure 4.3 shows the data for Ti-Nb [2]. The enhancement
factor sometimes exceeds 100.

Fig. 4.3. Critical current densities of a cylindrical Ti-36%Nb specimen in transverse
and longitudinal magnetic fields [2]
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Fig. 4.4. Loss energy per unit surface area of four Nb-Ti wire specimens due to
AC current vs. longitudinal magnetic field [3]. The self field amplitude of the AC
current is kept constant at 0.14 T

(3) The loss due to an AC current decreases with increasing longitudinal
magnetic field. Figure 4.4 represents the variations in the AC loss of four
Nb-Ti specimens [3] with the same amplitude of self field due to the AC
current.

(4) The fundamental equation, Eq. (1.146) derived by Josephson which relates
the motion of flux lines to the electromagnetic phenomena is not obeyed
[4]. That is,

E �= B × v . (4.1)

In the experiment by Cave et al. in [4], a small AC current was super-
imposed on a DC current as shown in Fig. 4.1, and the induced electric
field due to the variation in the flux distribution was observed. It was
found that E was almost parallel to B, so the inequality, Eq. (4.1), was
demonstrated.

(5) In the resistive state where the current density exceeds the critical value,
it was found [5] that a region with negative electric field in the longitudinal
direction existed, and the structure of the surface electric field shown in
Fig. 4.5 was observed [5].
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Fig. 4.5. Structure of surface electric field of a cylindrical superconductor in a
longitudinal magnetic field in a resistive state

In a longitudinal magnetic field it can be supposed that the current flows
parallel to the field or is close to this ideal condition. This fact has been
clarified by various experimental and theoretical investigations. The force-
free model [6] is one of the models proposed to explain the phenomena. In
this model it is assumed that the local current flow is parallel to the magnetic
field, so that a Lorentz force is not applied to flux lines. This is the origin of
the name of the model. The force-free situation is expressed as

J × B = 0 , (4.2)

where J and B are the current density and the magnetic flux density, respec-
tively. This requires that

J =
αfB

µ0
, (4.3)

where αf is a scalar quantity. If the above equation is combined with the
concept of a critical state model, αf is a parameter determining the critical
current density. Hence, αf is in general a function of B. However, it is assumed
that αf is a constant for simplicity. This is not a bad approximation in the low
field region where the critical current density increases with magnetic field as
shown in Fig. 4.3.

Assume the case of a long superconducting cylinder of radius R in a par-
allel magnetic field He. Using the Maxwell equation, Eq. (4.3) is written in
cylindrical coordinates as
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−∂Bz

∂r
= αfBφ , (4.4)

1
r
· ∂(rBφ)

∂r
= αfBz . (4.5)

In the equation above it is assumed from symmetry that the magnetic flux
distribution is uniform in the azimuthal and longitudinal directions, i.e.,
∂/∂φ = ∂/∂z = 0. Eliminating Bz, the following is obtained:

∂2Bφ

∂r2
+

1
r
· ∂Bφ

∂r
+
(

α2
f −

1
r2

)
Bφ = 0 . (4.6)

As is well known, the solution of this equation is given by

Bφ = AJ1(αfr) , (4.7)

where J1 is the Bessel function of first order and A is a constant. If the total
current flowing through the superconducting cylinder is represented by I, the
boundary condition is described as

Bφ(r = R) =
µ0I

2πR
. (4.8)

The constant A can be determined from this condition. Then,

Bφ =
µ0I

2πR
· J1(αfr)
J1(αfR)

. (4.9)

From Eqs. (4.5) and (4.9) it follows that [1]

Bz =
µ0I

2πR
· J0(αfr)
J1(αfR)

, (4.10)

where J0 is the Bessel function of zeroth order. It should be noted that another
boundary condition

Bz(r = R) = µ0He (4.11)

should also be satisfied. This means that αf is determined by the boundary
condition. However, this is contradictory to the previous statement that αf

is determined by the local critical condition. This fact clearly shows the ap-
plicable limit of the force-free model. However, this point will be ignored for
now and the results from the model will be investigated.

The magnetic flux distribution obtained above is depicted in Fig. 4.6. In
general, since J0(r′) decreases monotonically with increasing r′ up to the first
zero point, the z-component of the magnetic flux density in the supercon-
ductor is maximum at the center and takes values larger than µ0He over the
entire region. That is, the flux distribution is paramagnetic in the longitudinal
direction. Thus, the paramagnetic effect can be explained. The longitudinal
magnetization is
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Fig. 4.6. Magnetic field distribution in a cylindrical superconductor in a force-free
state

Mz =
1
µ0

〈Bz〉 − He = He
J2(αfR)
J0(αfR)

, (4.12)

where J2 is the Bessel function of second order. In the region being treated Mz

is positive. The broken line in Fig. 4.2 shows this theoretical result [1]. Hence,
it can be seen that the force-free model explains the experimental result well,
although it contains the physical problem mentioned above. The paramagnetic
effect can be easily derived for a superconducting slab also. This is Exercise
4.1. It should be noted that the force-free model holds for the distribution
of the longitudinal component of magnetic flux, although the effect of flux
pinning is present in ordinary superconductors. (Compare Eq. (4.2) and the
force balance equation in Chap. 2.)

As shown above the magnetic flux distribution in a longitudinal magnetic
field is in the force-free state described by Eq. (4.2) or in a state close to
this one. This equation was theoretically derived by Josephson [7] as the one
describing the equilibrium state in pin-free superconductors. According to
this result it is believed that the force-free state is stable, and this equation
does not constrain the upper limit of the density of transport current, i.e., the
critical current density. It may be expected that the current can flow infinitely,
since the Lorentz force does not work on flux lines. However, there exists
a certain limit in practical cases. In particular, the critical current density
depends on the flux pinning strength [8], which is approximately proportional
to the critical current density in a transverse magnetic field, as shown in
Fig. 4.7. The critical current density in a superconductor with a very weak
pinning force is very small even in a longitudinal magnetic field. This fact
suggests that the force-free state may be unstable without the influence of the
flux-pinning interactions.
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Fig. 4.7. Critical current densities of Nb3Sn thin films in longitudinal (••) and
transverse (◦◦) magnetic fields [8]. Both critical current densities increase with in-
creasing pinning strength due to neutron irradiation

4.2 Flux-Cutting Model

In Sect. 4.1 we learned that the magnetic flux distribution in a longitudinal
magnetic field is in the force-free state or a state close to this ideal one. Then,
the question arises about the motion of flux lines related to this distribution.
As is done usually in experiments, for example, it is assumed that the longi-
tudinal magnetic field is applied first so that the shielding current flows in the
azimuthal direction perpendicular to the magnetic flux density and then the
current is applied. What is the flux motion that occurs during this process, in
which the flux distribution changes from the usual one to the force-free one?
Campbell and Evetts [9] first considered that flux lines tilted by the angle
determined by the external field and the self field are nucleated at the surface
of the superconducting cylinder, and that then, these flux lines penetrate the
superconductor, keeping their angle constant. If this is correct, Josephson’s
equation (1.146) for the induced electric field is satisfied. However, the exper-
imental results of Cave et al. [4] show that this equation is not satisfied. This
means that such a motion of flux lines does not occur. In this experiment the
DC and superimposed small AC currents were applied to a superconducting
cylinder in a longitudinal magnetic field, and the observed electric field which
was induced was almost parallel to the longitudinal direction. This means
that only the azimuthal component of the magnetic flux changes, while the
longitudinal component is almost unchanged. From this experimental result
Cave et al. proposed a kind of flux-cutting model, in which it was assumed
that only the azimuthal flux caused by the AC current moves into and out of
the superconductor by crossing the longitudinal flux (see Fig. 4.8).

The flux-cutting model was originally proposed for the solution of the con-
tradiction between a constant longitudinal paramagnetic magnetization and
a steady longitudinal electric field due to a constant transport current in the



162 4 Longitudinal Magnetic Field Effect

Fig. 4.8. Model of direct cutting between a longitudinal component of magnetic
flux Bz and an azimuthal one Bφ proposed by Cave et al. [4]

resistive state [1]. That is, if the steady longitudinal electric field is attributed
to the continuous penetration of the azimuthal component of the magnetic
flux, as was treated in Exercise 2.4, and if the flux lines penetrate continu-
ously into the superconductor, the longitudinal component of the magnetic
flux should increase continuously with time. This contradicts the experimental
result shown in Fig. 4.2. Since the longitudinal magnetization does not change
with time, Walmsley [1] considered that only the azimuthal component pene-
trates the superconductor and proposed the flux-cutting model. In comparison
to this, the flux-cutting mechanism of Cave et al. [4] was proposed to explain
the phenomenon in the non-resistive state below the critical current.

The flux-cutting model is classified into the inter-cutting model, in which
flux lines with different angles cut each other, and the intra-cutting model, in
which flux lines are cut and reconnection between different flux lines occurs.
The model of Cave et al. [4] belongs to the former category, and the intersec-
tion and cross-joining model by Clem [10] and Brandt [11] to the latter one.
The process considered in the intersection and cross-joining model is shown in
Fig. 4.9. The flux lines on opposite sides have different angles to each other in
(a) and these are cut at the nearest positions to each other, and then these are
reconnected as in (b). These flux lines become straight as in (c). If we com-
pare the conditions between (a) and (c), i.e., before and after the cutting, it is
found that the transverse component of the magnetic flux is changed, while the
longitudinal component is unchanged. After this occurs, the flux lines again
cut each other with adjacent rows. If such a variation occurs continuously,
penetration only of the transverse or azimuthal component of the magnetic
flux actually occurs. Later Brandt [11] clarified that the electric field strength
in the resistive state which is derived from the mechanism of intersection and
cross-joining is several orders of magnitude smaller than experimental results.
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Fig. 4.9. Process of flux cutting in a model of intersection and cross-joining [10, 11]

To overcome this problem Clem [12] proposed a double cutting mechanism, in
which the intersection and cross-joining shown in Fig. 4.9 is assumed to occur
twice successively during the process of cutting. This is consequently a kind
of direct inter-cutting between flux lines with different angles.

All the flux-cutting models are based on the hypothesis that only the
transverse or azimuthal component of the magnetic flux penetrates the super-
conductor. Although this is acceptable for a dynamic state when the current
is below the critical current, where the longitudinal electric field is induced
by the variation in the distribution of transverse magnetic flux, it should be
noted that there is no theoretical foundation for this idea in the case of the
steady resistive state above the critical current. That is, Josephson’s relation
(1.146) which connects flux motion with the electric field is also not obeyed
in a steady resistive state, as will be described in Sect. 4.7. Hence, there is
no reason for the insistence that the longitudinal electric field in the resistive
state should be attributed to the steady penetration of transverse magnetic
flux. In other words, the flux-cutting model in the resistive state is based on
Eq. (1.146), although this equation is not satisfied. It may be considered that
the situation is also the same for the case of the non-resistive state below
the critical current. However, the penetration of the transverse component of
magnetic flux in the non-resistive state can be proved by experiments.

The flux-cutting models are based on the theoretical result of Josephson
that the force-free state is essentially stable. It is assumed that the criti-
cal state is attained when the angle between adjacent flux lines, which is
proportional to the current density, reaches the threshold value for cutting.
However, as can be seen from the fact that many flux-cutting models have
been proposed, the mechanism of the flux cutting has not yet been theoreti-
cally clarified, and no unified concept has been decided upon for the threshold
value. The only common standpoint among the theoretical treatments is the
calculation of the magnetic repulsive force between tilted flux lines. According
to the calculation by Brandt et al. [13] the repulsive force between adjacent
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flux lines with tilt angle δθ is

fc =
φ2

0

2µ0λ2
cot δθ (4.13)

per intersection. Hence, the flux cutting is believed to take place when flux
lines are pushed toward each other by a force larger than this repulsive force.
One of the methods to derive the cutting threshold is based on the assump-
tion that the Lorentz force, which originates from local deviations from the
perfect force-free state due to pinning centers, etc., contributes to the cutting,
although this force does not necessarily push the tilted flux lines together:
it can do the opposite sometimes. However, we shall admit this assumption
tentatively. If the force-free current density is denoted by J‖, the relation-
ship Bδθ = µ0J‖af holds, where af is the flux line spacing. The Lorentz force
on one intersection is about φ0afJ‖/2 cos(δθ/2). From the balance between
the Lorentz force and the repulsive force, the cutting threshold Jc‖ at which
δθ = δθc is given as

Jc‖ � φ0

2µ0afλ2
· cos δθc

sin(δθc/2)
� φ0

µ0afλ2δθc
. (4.14)

Using the relationship between δθc and Jc‖, the critical current density is

Jc‖ � (Bφ0)1/2

µ0λaf
=
(

2√
3

)1/2
B

µ0λ
. (4.15)

On the other hand, Clem and Yeh [14] treated the stability of a succes-
sive row of flux line planes as depicted in Fig. 4.10, and assumed that the
above Lorentz force works between the planes. They investigated the dynam-
ics when displacements shown by the arrows in the figure were introduced
as perturbations, and they obtained the cutting threshold using a numerical
calculation of the critical value of the tilted angle at which the displacements
were enhanced unstably. The threshold value they obtained depends only on
the normalized magnetic field B/µ0Hc2 and the G-L parameter κ, and it is
naturally independent of the flux-pinning strength. However, such a thresh-
old value is obtained only for infinite number of planes of flux lines, for which
the direction of the flux lines are rotated many turns in the superconductor.
In practice, the rotation angle of flux lines should be less than π from one
surface of the superconductor to the other. The cutting threshold in such a
finite system has not yet been reported.

According to experimental results, the practical critical current density
depends on the flux-pinning strength as shown in Fig. 4.7. Figure 4.11(a)
and (b) are the experimental results for Nb-50at%Ta with dislocations and
normal precipitates as pinning centers, respectively [15, 16]. These results
show the same tendency and suggest that, in the limit of weak pinning where
the critical current density in the transverse field Jc⊥ is very small, the critical
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Fig. 4.10. Successive planes of flux lines with continuously rotating angle in a force-
free state in a longitudinal magnetic field. Clem and Yeh [14] calculated a cutting
threshold from an analysis of stability under a perturbation shown by the arrows in
the figure

Fig. 4.11. Comparison of critical current density in a longitudinal magnetic field
and that in a transverse magnetic field for Nb-50at%Ta slab specimens with pinning
centers of (a) dislocations [15] and (b) normal precipitates [16]. b = B/µ0Hc2 is the
reduced magnetic field
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current density in the longitudinal field Jc‖ is also very small. These results
are compared with the critical current density estimated from the cutting
threshold. In the case of Nb-Ta (κ = 5.5, µ0Hc2 = 0.33 T) shown in Fig. 4.11,
δθc � 3.5◦ is obtained at B/µ0Hc2 = 0.7 from the result of Clem and Yeh,
[14] and the corresponding critical current density is Jc‖ � 1.10×1011 Am−2.
On the other hand, Eq. (4.15) gives Jc‖ � 1.14×1012 Am−2. These values are
extremely large when compared to observed results. Especially in comparison
with the result Jc‖ � 2.0× 107 Am−2 for the specimen with weak pins, these
theoretical values are larger by factors of 5×103 and 5×104, respectively. If a
specimen with even weaker pins can be prepared, its Jc‖ value would be even
smaller, and this would result in an even larger difference from the theories.
The threshold values of flux cutting above exceed the depairing current density
given by Eq. (1.144) multiplied by the correction factor of (1 − B/µ0Hc2) at
high fields, 3.16× 1010 Am−2. This means that the superconductor enters the
normal state before flux cutting can be realized.

Since the threshold value of cutting is much larger than the practical crit-
ical current density, some corrections of the theory of Brandt et al. [13] were
attempted. Wagenleithner [17] assumed that the flux lines are not straight
but curved at the intersection point and calculated the repulsive force be-
tween them. He showed that the repulsive force becomes smaller. However,
the flux-line shape was determined by considering that only the interaction
energy of the two flux lines involved in the cutting has a minimum, and this
is far from practical condition. In the usual condition, i.e. not in the vicinity
of Hc1, the spacing of flux lines is smaller than λ and the elastic interaction of
the flux-line lattice should be considered. This means that a flux line cannot
be bent freely without consideration of the surrounding flux lines. The cur-
vature by which the flux lines can be bent is determined by the tilt modulus
C44 and the shear modulus C66, and the amount of increase of the tilt angle
at the intersection is [18] on the order of (C66/C44)1/2. Since this interaction
is magnetic, the local limit should be applied to C44, as will be discussed in
Sect. 7.2. The increment of the crossing angle is about 1◦ for the case of Nb-
Ta discussed above. Since this value is much smaller than the critical value,
no remarkable effects are expected. In addition, even if the calculation by
Wagenleithner is correct, the reduction of the repulsive force is about one or-
der of magnitude, and hence the reduction of the critical current density in
Eq. (4.15) is about a factor of 3. If this result is considered in the context of
Clem and Yeh, since the repulsive force between the adjacent planes of flux
lines and the attractive force between the second-nearest planes are changed
by the same factor, no large change in the result takes place. Thus, the cor-
rection by Wagenleithner does not essentially solve the problem of the cutting
threshold value. The low value of the practical cutting threshold might be as-
cribed to deviations from the perfect force-free state due to inhomogeneities
such as pinning centers. However, experimental results show that, as the pin-
ning becomes stronger (i.e., the number density of pinning centers increases
in most cases), Jc‖ increases. Hence, this speculation is not correct.
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The flux-cutting model gave explanations of the experimental results of
Cave et al. and of Walmsley shown in Fig. 4.2. However, all the experimental
results cannot be explained by this model. For example, if flux cutting really
occurs, the electric field should be uniform on the surface of the supercon-
ductor in the resistive state, and the structure of the electric field depicted in
Fig. 4.5 cannot be explained. As for the experimental results in the resistive
state shown in Fig. 4.2, there is no theoretical basis which connects the lon-
gitudinal electric field with the penetration of the azimuthal magnetic flux as
mentioned above, and hence, it is not necessary to invoke a flux-cutting model.
In addition, the fact that the experimental values of the flux-cutting threshold
are extremely large is the most serious problem. Although the mechanism of
flux cutting is not clear, the repulsive force between the tilted flux lines is esti-
mated from a calculation based on electromagnetic principles, and the error is
not expected to be large. Thus, it seems reasonable to consider that flux cut-
ting does not occur in practicality. It is known for a plasma that reconnection
of flux lines similar to cutting occurs only in an energy-dissipative state such
as the resistive state. In the case of a superconductor with a current density
below the critical value, it is in a quasi-static state and if we suppose that the
variation of external magnetic field, etc., is stopped, the variation in the flux
distribution is stopped, and the energy dissipation does not occur. Hence,
flux cutting is not expected to occur easily. It seems to be rather natural
that flux cutting might be realized only when a current of huge density, such
that superconductivity is destroyed, is applied to the superconductor, as pre-
dicted by the theories.

Some reports have been published which claimed to prove flux cutting by
experiment. Fillion et al. [19] used the following procedure: first, azimuthal
flux was trapped in a hollow cylinder of superconducting vanadium by apply-
ing a current to a lead through the cylinder and then reducing the current
to zero. Then, an external magnetic field was applied in the direction of the
long axis of the cylinder, as represented in Fig. 4.12. When the longitudinal
magnetic field was increased, it was found that the trapped azimuthal flux did
not change while the longitudinal flux penetrated the inside of the cylinder.
From this result they argued that the longitudinal and azimuthal components
of magnetic flux cut each other.

Blamire and Evetts [20] measured the magnetic field dependence of the
critical current of a Pb-Tl thin film with thickness less than 1 µm in a lon-
gitudinal magnetic field, and found that the critical current increased in a
stepwise manner with increasing magnetic field, as shown in Fig. 4.13. From
the fact that the magnetic fields at which the steps occurred were independent
of temperature and corresponded to the entry field of rows of flux lines into
the thin film, Blamire and Evetts explained the experimental result by flux
cutting. That is, they stated that the number of cutting positions, to which
the critical current was proportional, increased with increasing magnetic field.

Other analysis of these experimental results will be described in Sects. 4.4
and 4.5.
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Fig. 4.12. Arrangement of experiment by Fillion et al. [19] Current is transported
in a wire through the center of hollow cylindrical vanadium specimen and azimuthal
flux lines are trapped in the specimen. Then, a parallel magnetic field He is applied
and the internal magnetic flux density Bi and the trapped azimuthal magnetic flux
are measured

Fig. 4.13. Magnetic field dependence of critical current density in a Pb-Tl thin film
in a longitudinal field geometry [20]. Results (from the top) are at 2.45 K, 3.1 K
and 4.2 K. At magnetic fields shown by the broken lines the film thickness is equal
to an integral multiple of the flux line spacing, and this is believed to show that
penetration of new rows of flux lines occurs at these fields

4.3 Stability of the Force-Free State

Because the cutting threshold value is much larger than indicated by exper-
iments, it is speculated that another instability occurs instead of flux cut-
ting when the current density reaches the critical value. In addition, various
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experimental results suggest that the critical condition is governed by the flux
pinning strength. Hence, Josephson’s theoretical result [7], that the force-free
state is stable without stabilization by flux-pinning interactions, seems to be
in doubt. That is, the force-free state might be unstable.

Here we shall investigate in general terms the structure of flux lines when
a current flows. The magnetic flux density is expressed as

B = BiB , (4.16)

where iB represents a unit vector in the direction of B. Then, the current
density can be written as

J =
1
µ0

∇× B = − 1
µ0

(iB ×∇)B +
1
µ0

B∇× iB . (4.17)

The current has three components. These are a component caused by the gra-
dient of B, one caused by the curvature of flux lines, and the force-free com-
ponent. The first and second components contribute to the magnetic pressure
and the line tension, respectively, and are connected to the Lorentz force. The
component of the current responsible for the magnetic pressure is expressed
by the first term, and the force-free component is expressed by the second
term of Eq. (4.17). The component connected to the line tension comes from
both terms.

In order to clarify the relationship between the magnetic structure and the
current it is assumed for simplicity that the flux lines lie in planes parallel
to the x-z plane and are uniformly distributed in each plane. Hence, the flux
lines are straight in each plane and the current component related to the line
tension is zero. If the angle of a flux line measured from the z-axis is denoted
by θ, we have

iB = ix sin θ + iz cos θ . (4.18)

From the above assumption B and θ do not depend on x and z, and hence,
Eq. (4.17) reduces to

J =
1
µ0

· ∂B

∂y
iL − B

µ0
· ∂θ

∂y
iB , (4.19)

where
iL = ix cos θ − iz sin θ (4.20)

is a unit vector perpendicular to iB and satisfies iL × iB = −iy. It is clear
that the first term in Eq. (4.19) is the current component related to the
magnetic pressure and the second term is the force-free current. Thus, the
flux-line lattice contains a rotational shear distortion, ∂θ/∂y, when the force-
free current component exists.

As shown above the structure of the magnetic flux is distorted when cur-
rent flows. Fundamental distortions are shown in Fig. 4.14: (a) is the distortion
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Fig. 4.14. Distortions of flux lines: (a) gradient of magnetic flux density and (b)
bending of flux lines. Restoring forces of magnetic pressure and line tension work
respectively corresponding to these distortions in the direction of the arrows. These
forces are expressed as the Lorentz force. A rotational shear distortion of flux lines
under a force-free current is shown in (c), and a torque is considered to work as
shown by the arrow

due to the gradient of B, (b) is the bending distortion of flux lines. These con-
tribute to the Lorentz force given by

F L = J × B = − 1
2µ0

∇B2 +
1
µ0

(B · ∇)B . (4.21)

The first term is the magnetic pressure caused by the gradient of B and
the second term is the line tension caused by the bending strain of the flux
lines. Thus, the Lorentz force can be described as the elastic restoring force
against those respective strains. Now, consider the case of rotational shear
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distortion shown in Fig. 4.14(c) for the force-free current. By analogy to an
elastic material the existence of a generalized force to reduce the distortion
is expected. In this case the generalized force is a torque which rotates the
flux lines so as to reduce the tilting angle. The existence of such a torque is
compatible with the fact that the Lorentz force is zero. The above speculation
clearly suggests that the force-free state is unstable.

In order to investigate practically the stability of the force-free state we
have only to look at the variation in the energy when such a distortion is
virtually introduced. Here we shall do this. We assume that the magnetic
field is applied parallel to a wide superconducting slab of thickness 2d (0 ≤
y ≤ 2d). From symmetry only the half, 0 ≤ y ≤ d, is treated. Assume that the
external magnetic field is initially directed along the z-axis and the internal
magnetic flux density is also directed along the z-axis and is uniform. This
initial condition can be achieved by the field cooled process. Then, a force-
free distortion is introduced. When the distortion αf = −∂θ/∂y is uniform
in space, the relationship between αf and the force-free current density J‖ is
identical with Eq. (4.3), αf = µ0J‖/B. The angle of the flux lines θ is assumed
to be

θ = αf(y0 − y) ; 0 ≤ y ≤ y0 ,

= 0 ; y0 < y ≤ d . (4.22)

This distortion can be attained by rotating the external magnetic field quasi-
statically by θ0 = αfy0 (see Fig. 4.15). Here, y0 is the depth of penetration

Fig. 4.15. Distortion of flux line structure introduced virtually by rotation of ex-
ternal magnetic field
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of the distortion and is assumed to be constant. Now we shall estimate the
increment of the energy in the superconductor during the increase of αf from 0
to ∆αf . In terms of the Poynting vector the input power to the superconductor
is given by

P = − 1
µ0

∫
S

(E × B) · dS , (4.23)

where E is the electric field induced by the variation in the flux distribution
and dS is the surface element vector on the superconductor and is directed
outward, i.e., in the negative direction of the y-axis in the present case. If the
Maxwell equation is used, the input power can be rewritten as

P =
∫ (

1
2µ0

· ∂B2

∂t
+ E · J

)
dV . (4.24)

During the process of the virtual displacement treated here B2 is constant in
time and only the second term remains. That is, the input energy is trans-
formed into the energy of a current. Now we will derive an expression of the
input energy for the displacement given by Eq. (4.22). After a simple calcu-
lation it is found that the induced electric field in the region of 0 ≤ y ≤ y0

is

E = (Ex, 0, Ez) , (4.25a)

Ex =
B

α2
f

· ∂αf

∂t
(sin θ − θ cos θ) ,

Ez =
B

α2
f

· ∂αf

∂t
(θ sin θ + cos θ − 1) . (4.25b)

Substituting this expression into Eq. (4.24), the input power density in the
region 0 ≤ y ≤ y0 is obtained:

p =
B2

µ0α2
f y0

· ∂αf

∂t
[αfy0 − sin(αfy0)] . (4.26)

Hence, the energy density which flows into the superconducting slab during
the displacement is given by

w =
∫

p dt =
B2

µ0y0

∫ ∆αf

0

1
α2

f

[αfy0 − sin(αfy0)]dαf . (4.27)

When the angle of the magnetic field at the surface θm = ∆αfy0 is sufficiently
small, Eq. (4.27) reduces to

w =
B2

12µ0
θ2
m . (4.28)

Thus, the energy is proportional to the second power of the rotation angle,
i.e., the strain in analogy to the general case. The magnitude of the resultant
restoring torque density is [21]
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Ω =
∣∣∣∣− ∂w

∂θm

∣∣∣∣ = B2

6µ0
θm =

1
6
BJ‖y0 . (4.29)

It can be seen from the above result that, when the rotational shear strain
(the torsional strain in a cylindrical superconductor) is induced in the flux-
line lattice by a force-free current, even if it is very small, the restoring torque
acts on the flux-line lattice so that the strain is eliminated. This is similar to
the fact that, when the strain associated with the gradient of the magnetic
flux density or the bending strain is induced in the flux-line lattice by a
transport current in a transverse magnetic field, the Lorentz force acts on the
flux-line lattice to eliminate the strain. Therefore, it can be concluded that
the force-free state is unstable as predicted previously. This means that the
critical current density in a longitudinal magnetic field is also determined by
the flux-pinning strength, similar to the case for a transverse magnetic field.
This result is consistent with the experimental results in Figs. 4.7 and 4.11.
The critical current density in a transverse magnetic field is determined by
the balance between the Lorentz force and the pinning force, and that in a
longitudinal magnetic field is determined by the balance between the restoring
torque density given by Eq. (4.29) and the moment of pinning forces in a unit
volume. We will later discuss y0 in Eq. (4.29).

The second term in Eq. (4.24) is not the loss power in this case. This can
be understood from the fact that, if the time is reversed in Eq. (4.25), E
changes to −E and E ·J < 0 is obtained. That is, the energy in Eq. (4.28) is
the energy stored by the inductance of the superconductor.

Although the torque on the distorted flux-line lattice in the force-free state
has been predicted by Matsushita [21], it has not been proved experimentally.
The driving force which has been verified is only the Lorentz force in a trans-
verse magnetic field, i.e., when the magnetic field and the current are perpen-
dicular to each other. Hereafter we shall call the torque mentioned above the
force-free torque. As can be seen from the derivation, this torque is in princi-
ple not restricted to superconducting materials but is a general phenomenon.
The torque on a magnetic needle in a tilted magnetic field seems to be simi-
lar. This comes from the magnetostatic interaction between the magnetic field
and the magnetic moment of the needle. However, such a torque can also be
described as the moment due to the Lorentz force on a circulating current,
since the circulating current is equivalent to a magnetic moment as is well
known in electromagnetism. There is no magnetic moment in the force-free
state. In addition, only the force-free current is involved, and it does not give
rise to a Lorentz force. That is, the force-free torque is completely different
from the usual magnetostatic one. Note that the rotation of flux lines in the
rotating transverse magnetic field treated in Subsect. 3.1.4 is caused by the
Lorentz force. The difference in the rotational motion of flux lines between
transverse and longitudinal magnetic fields will be discussed in Sect. 4.4.

Here we shall discuss why the force-free torque has not been noticed.
When a current is applied to a wire in a magnetic field, the Lorentz force can
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Fig. 4.16. Case where a magnetic field is applied to a metal disk and then rotated

easily be found. On the other hand, when a shielding current is induced, as in
a magnetization measurement, it is not possible to detect the Lorentz force,
i.e., the magnetic pressure. (Strictly speaking, this can be detected by a mea-
surement of the strain of the material, i.e., expansion or contraction, although
it seems to be difficult.) This is similar to a measurement of the pressure on a
solid body in a gas, neglecting buoyancy. That is, the hydrostatic pressure of
the gas reduces to zero after integrating on the surface. In the present case,
there is no gradient of the magnetic pressure along the length of the wire, and
hence a force analogous to buoyancy does not exist. When current is applied
to a wire in a longitudinal magnetic field, the total torque on the flux lines,
which is equal to the torque on the wire interacting with the flux lines, is
zero because of a similar symmetry. One method to break the symmetry is to
induce a shielding current by rotating the external magnetic field. Figure 4.16
shows an example. When an external magnetic field parallel to the flat surface
of a metal disk is rotated as in the figure, the flux lines inside the metal disk
lag behind the rotation angle, and a force-free torque proportional to the lag
angle acts on the flux lines. When the flux lines are driven to rotate in such
a way, the metal disk is affected by the torque because of the interaction be-
tween the flux lines and the metal. Therefore, if the torque on the disk can be
measured, the existence of the force-free torque can be ascertained. This kind
of measurement can also be done for a normal metal, where the quantized flux
lines are now the magnetic flux as usual. However, the measurement is not
easy, since the induced shielding current decays with time. Hence, the use of a
superconducting disk is better because such a difficulty is avoided. In this case
a static measurement is possible, since the current does not change with time.
In addition, different magnitudes of the force-free torque can be measured by
varying the flux-pinning strength, since the moment of the pinning force is
balanced with the force-free torque. Note that the shielding current flows in
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the direction normal to the flux lines at the edge of the disk, and the Lorentz
force acts on the flux lines there. Thus, there is some contribution from the
Lorentz force to the measured torque.

As discussed above, the force-free state contains a distortion of the flux
lines and is unstable. This result is consistent with the experimental result
that the critical current density in a longitudinal magnetic field depends on
the flux-pinning strength as it does in a transverse magnetic field. Then, a
question arises: how does this relate to the theoretical result of Josephson [7]
that the force-free state is stable? The details of this discussion are given in
Appendix A.1. From that discussion, it can be concluded that the gauge which
Josephson assumed in the derivation of Eq. (4.2) for a pin-free superconductor
is not correct in a longitudinal magnetic field [22]. The gauge on the vector
potential Josephson used is equivalent to Eq. (1.146), which, as has been
frequently pointed out in this book, is not obeyed in a longitudinal magnetic
field. Considering this point, it can be concluded that the equation describing
the equilibrium state in a pin-free superconductor is

J = 0 . (4.30)

In a transverse magnetic field Eq. (1.146) is satisfied. Hence, Eq. (4.2), which
then holds, is identical with Eq. (4.30). That is, Eq. (4.30) is the only general
equation which applies to all cases. This discussion also leads to the same
conclusion that the force-free state is unstable.

4.4 Motion of Flux Lines

The arrangement of flux lines in a longitudinal magnetic field is given by the
force-free state, where the current flows parallel to the flux lines, or by a state
close to this one, whose stabilization is provided by flux-pinning interactions.
Since Eq. (4.2) describing the force-free state is the same as the force-balance
equation describing the state in a pin-free superconductor in a transverse
magnetic field, it gives rise to the question, why is the superconductor in such
a force-free state even with flux pinning? The answer to this question will
be given in Sect. 4.6. For now it will be assumed that the force-free state
is established as observed by experiments. Consider a longitudinal magnetic
field being applied to a superconductor first, where the shielding current flows
normal to the field, and then a current is applied, such as is usually done
in experiments as shown in Fig. 4.2. How do flux lines then penetrate the
superconductor and move, and how is the force-free state established during
this process? What is the critical state in the whole superconductor? What
flux motion occurs in the resistive state? These questions will be treated in the
following sections, and here the motion of flux lines in the force-free state below
the critical current and the related electromagnetic phenomena, especially the
connection with Eq. (4.1), are discussed.
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Fig. 4.17. (a) Variation in a surface magnetic field and (b) formation of a force-free
state in internal flux lines when an external magnetic field is applied along the z-axis
of a sufficiently wide superconducting slab and then a current is applied in the same
direction. The arrow in (b) shows the direction of penetration of variation

The motion of flux lines can be investigated using the continuity equation
for flux lines (2.15). Here it is assumed for simplicity that the initial magnetic
flux distribution is uniform inside the superconductor at an external magnetic
field He along the z-axis and then a current I to a sufficiently wide super-
conducting slab (0 ≤ y ≤ 2d) as shown in Fig. 4.17. The force-free state is
assumed to be given by Eq. (4.3) with αf being a constant. From symmetry
we are allowed to assume that ∂/∂x = 0 and ∂/∂z = 0. The flux distribution
in this case is sought in Exercise 4.1. According to this result, the magnetic
flux density inside the superconductor lies in the x-z plane and is uniform:

B = µ0(H2
e + H2

I )1/2 , (4.31)

where HI is the self field of the current given by

HI =
I

2L
(4.32)

with L denoting the width of the slab along the x-axis. Hence, the magnetic
flux density is expressed as
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B = (B sin θ, 0, B cos θ) , (4.33a)

θ = θ0 − αfy ; 0 ≤ y ≤ θ0

αf
,

= 0;
θ0

αf
≤ y ≤ d . (4.33b)

In the above θ0 is the angle between the external magnetic field and the z-axis
and is given by

θ0 = tan−1

(
HI

He

)
. (4.34)

The magnetic flux distribution in the other half of the slab, d ≤ y ≤ 2d,
is symmetric with the above one. Campbell and Evetts [9] assumed uniform
flux motion along the y-axis. However, this cannot explain Eq. (4.1) and is
incorrect. In fact, Yamafuji et al. [23] showed that a contradiction was found
when such a restriction was imposed on the motion of flux lines (Exercise 4.4).
Here the velocity of flux lines takes the form:

v = (vx, vy, vz) . (4.35)

In the above only vy is associated with the penetration of flux lines into the
superconductor, i.e., the variation of B with time. Since this component is
independent of x and z, it can be assumed that ∂vy/∂x = ∂vy/∂z = 0.
In addition, since the flux motion in the x-z plane does not bring about a
variation in the magnitude of B, there is no divergence of v in this plane and
we have

∂vx

∂x
+

∂vz

∂z
= 0 . (4.36)

Usually v is defined so as to be normal to B. This is written as

vx sin θ + vz cos θ = 0 . (4.37)

Using Eqs. (4.36) and (4.37), the continuity equation (2.15) is reduced to

∂B

∂t
= −B

∂vy

∂y
, (4.38)

∂θ

∂t
= αfvy +

1
sin θ cos θ

· ∂vx

∂x
. (4.39)

In the case of quasi-static variation we have

∂B

∂t
= µ0 sin θ0

∂HI

∂t
, (4.40)

∂θ

∂t
=

∂θ0

∂t
=

µ0 cos θ0

B
· ∂HI

∂t
. (4.41)
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Then, Eqs. (4.38) and (4.39) can be solved immediately in the region of 0 ≤
y ≤ θ0/αf as [24]

vx =
∂θ0

∂t
cos θ

[
1 − HI

He
αf(d − y)

] [
x sin θ + z cos θ + gr

(
y − θ0

αf

)]
, (4.42a)

vy =
∂HI

∂t
· µ2

0HI

B2
(d − y) , (4.42b)

vz = −∂θ0

∂t
sin θ

[
1 − HI

He
αf(d − y)

] [
x sin θ + z cos θ + gr

(
y − θ0

αf

)]
, (4.42c)

where gr is a function satisfying

gr(0) = 0 . (4.43)

vx and vz are zero on the line given by

x sin θ + z cos θ + gr

(
y − θ0

αf

)
= 0 (4.44)

in a plane where y = const. Here we watch one flux line, and the position
of the intersection point of the flux line with the line given by Eq. (4.44) is
represented by x = x0 and z = z0. In terms of these coordinates, Eqs. (4.42a)
and (4.42c) can be transformed respectively to

vx = r
∂θ0

∂t
cos θ

[
1 − HI

He
αf(d − y)

]
, (4.45a)

vz = −r
∂θ0

∂t
sin θ

[
1 − HI

He
αf(d − y)

]
, (4.45b)

where
r = (x − x0) sin θ + (z − z0) cos θ (4.46)

represents the distance of the point on the flux line from the stationary point,
(x0, y, z0), i.e., the radius of rotation. Hence, this stationary point is a rotation
center, and Eq. (4.44) is the line passing through consecutive rotation centers
(see Fig. 4.18). Thus, Eqs. (4.45a) and (4.45b) describe the rotation of flux
lines. The factor [1 − (HI/He)αf(d − y)] in the equations above comes from
the variation in B.

As shown above, the solution of the continuity equation for flux lines shows
a rotation of flux lines. This can be interpreted as a result of flux motion driven
by the force-free torque derived in the last section. If we watch the flux motion
carefully, vy varies uniformly and gradually along the y-axis, so that a given
row of flux lines does not outstrip another one. At the same time the flux lines
rotate uniformly in each plane. Thus, flux-cutting does not occur.
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Fig. 4.18. Rotational motion of flux lines. The broken line shows a line connecting
rotation centers given by Eq. (4.44)

Here the electric field induced by the rotational motion of flux lines will be
calculated. For the variation in the magnetic flux distribution given by Eqs.
(4.33a) and (4.33b), the electric field is directly obtained from the Maxwell
equation (2.2) as [24]

Ex = −µ0

αf
· ∂HI

∂t
[cos(θ0 − θ) − cos θ0 + (αfd − θ0) sin θ0]; 0 ≤ y ≤ θ0

αf
,

= −µ0
∂HI

∂t
(d − y) sin θ0;

θ0

αf
< y ≤ d, (4.47a)

Ez =
µ0

αf
· ∂HI

∂t
[sin θ0 − sin(θ0 − θ)]; 0 ≤ y ≤ θ0

αf
,

= 0;
θ0

αf
< y ≤ d . (4.47b)

By comparing the above results with Eqs. (4.42a)–(4.42c), it can be seen that
Eq. (1.146) is not satisfied in the region 0 ≤ y ≤ θ0/αf , where the rotation of
flux lines occurs. From Eqs. (2.2) and (2.15) the following is obtained:

E = B × v −∇Ψ , (4.48)

where Ψ is a scalar function. When the electric field is described in this form,
Ψ is usually an electrostatic potential. However, Ψ is not the electrostatic
potential in this case, since the electric field given by Eqs. (4.47a) and (4.47b)
originates from the induction −∂A/∂t. That is, when the sweep of the current
is stopped and ∂HI/∂t = 0, v = 0 and ∇Ψ = 0 are simultaneously obtained.
Because flux lines have nonzero velocity components vx and vz, B × v has a
y-component and becomes larger at a point farther from the rotation center.
On the other hand, the induced electric field has no y-component and is
uniform in the x-z plane. Thus, the term arising from B × v is a quantity
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completely different from the practical electric field by itself and does not
satisfy the symmetry. This can also be understood from the fact that the
position of the rotation center in Eq. (4.45) is arbitrary and does not directly
influence the electric field. If −∇Ψ is added to B × v, an electric field that
has a physical meaning is obtained. In fact, the work done by the force-free
torque comes from −∇Ψ. (The proof of this is Exercise 4.5.) This is because
v is not directed along the flow of energy (the direction of the rotational
motion corresponding to vx and vz is perpendicular to the flow of energy) and
has only the meaning of the phase velocity of the variation in B. As shown
above, in the case of rotational shearing of flux lines in a longitudinal magnetic
field, the flux motion cannot be understood by analogy with the motion of a
mechanical system, as in the case of flux motion in a transverse magnetic field.
This is associated with the fact that the force-free torque is independent of
the Lorentz force. By contrast, in mechanical systems the mechanical torque
originates from the existence of the force.

Here a rotation of flux lines driven by the Lorentz force is considered for
comparison. It is assumed that a static magnetic field He is applied normal
to a sufficiently wide superconducting slab of width 2d, lying in the x-y plane
(|z| ≤ d), and then a magnetic field Ht is applied in the direction of the x-axis
as shown in Fig. 4.19. In this case the magnetic field on the surface of the
superconducting slab changes as in figure (a) and the flux lines rotate in the
x-z plane as in figure (b) (compare with Fig. 4.17). Such a motion of flux
lines is caused by the Lorentz force due to the shielding current flowing in the
direction of the y-axis. Because of the demagnetization factor it is reasonable
to assume that the field along the z-axis penetrates completely. Then, the
magnetic flux distribution inside the slab is given by

B = (Bx, 0, µ0He) , (4.49a)

Bx = 0; 0 ≤ z < d − Ht

Jc⊥
,

= µ0Ht − µ0Jc⊥(d − z); d − Ht

Jc⊥
≤ z ≤ d . (4.49b)

From symmetry we have only to treat the half 0 ≤ z ≤ d. The velocity of flux
lines that corresponds to the variation in the magnetic flux distribution is

v = (vx, 0, vz) , (4.50a)

vx = vz = 0 ; 0 ≤ z < d − Ht

Jc⊥
, (4.50b)

vx =
∂Ht

∂t
· He(z − d + Ht/Jc⊥)
H2

e + J2
c⊥(z − d + Ht/Jc⊥)2

,

vz = −∂Ht

∂t
· Jc⊥(z − d + Ht/Jc⊥)2

H2
e + J2

c⊥(z − d + Ht/Jc⊥)2
,




d − Ht

Jc⊥
≤ z ≤ d . (4.50c)
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Fig. 4.19. (a) Variation in a surface magnetic field and (b) rotational motion of
internal flux lines when a magnetic field is applied normal to a superconducting slab
and then a magnetic field parallel to the slab is superimposed

On the other hand, the induced electric field is

E = (0, Ey, 0) , (4.51a)

Ey = 0; 0 ≤ z < d − Ht

Jc⊥
,

= µ0
∂Ht

∂t

(
z − d − Ht

Jc⊥

)
; d − Ht

Jc⊥
≤ z ≤ d . (4.51b)

Hence, the relationship E = B × v is clearly satisfied in this case. In addition,
it is easily shown that the Poynting vector N = E × B/µ0 is parallel to v.
That is, v is directed along the flow of energy and the motion of flux lines
is analogous to the motion of mechanical systems. Thus, the phenomenon is
different depending on whether the flux motion is caused by the Lorentz force
or the force-free torque.

Here the features that characterize the rotation of flux lines by the force-
free torque are discussed. Assume that the transport current is applied after
the longitudinal magnetic field, which was discussed when Eq. (4.47) was
derived. From this equation we have

Ex

Ez
= − tan

θ0

2
(4.52)
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at the surface (θ = θ0). Thus, the angle of the electric field from the z-axis
is −θ0/2, while the angle of the magnetic field is θ0. Hence, E and B are
approximately parallel to each other when θ0 is small. This situation is close
to the experiment of Cave et al. [4] Their experiment can thus be interpreted
as evidence that the rotational shearing of flux lines really occurs. In fact,
when the magnetic field is tilted slightly from the z-axis toward the x-axis,
the variation in the z-component of the magnetic flux is much smaller than
that of the x-component.

Now the rotation of flux lines is compared with the flux cutting model
for the purpose of identification of the mechanism by experiments. It is pos-
tulated for simplicity that the flux lines originally directed along the z-axis
are tilted toward the x-axis. Such a rotation of flux lines can be described
by a combination of an x-component of magnetic flux that penetrates into
the superconductor and a z-component that is eliminated from the supercon-
ductor. The flux-cutting models adopt this viewpoint. They assume indepen-
dent motion of each component of magnetic flux (inter-cutting), or equiva-
lent changes in these components by an intersection and cross-joining process
(intra-cutting). Hence, flux rotation and flux cutting are equivalent descrip-
tions of the variation in the magnetic flux distribution, and these mechanisms
cannot be distinguished by measurements of the induced electric field or the
magnetization. That is, not only the pure rotation of flux lines, but any varia-
tion in the macroscopic magnetic flux density can also be described in general
either as coupled variations of the magnitude and the direction or as coupled
variations in different components of magnetic flux. The former case corre-
sponds to translational flux motion and rotation by the force-free torque, and
the latter case corresponds to flux cutting. Therefore, an explanation from
the opposite viewpoint to flux cutting is also possible.

The experiment by Fillion et al. [19] was explained from the viewpoint
of flux cutting. Here the attempt is made to explain this experimental result
from the opposite viewpoint. Kogan [25] insisted on the possibility that the
flux lines, which nucleated near the surface of the specimen when a longitu-
dinal field was applied, were not perfectly parallel to the specimen axis as
assumed by Fillion et al., but might be helical and slightly tilted toward the
inner flux lines. Even if the flux lines parallel to the axis are nucleated just in-
side the surface, the theoretical result predicts that the force-free torque acts
between these flux lines and the inner flux lines, which suggests that the nu-
cleated flux lines tilt. Hence, Kogan’s opinion seems to be natural. According
to Kogan, the fact that the azimuthal component of the magnetic flux is ap-
proximately constant with increasing external field results from a cancellation
between the elimination of flux line rings at the inner surface of the hollow
cylinder and the nucleation of helical flux lines at the outer surface. This is
an alternative explanation of the experimental result of Fillion et al. For the
reasons mentioned above, investigation of flux cutting should be based on
measurements of critical current density or electric field in the resistive state.
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However, thought experiments like a following one [26] seem to be useful
for investigation of the practical flux motion. Assume that a magnetic field is
applied parallel to a thin superconducting disk, and then is rotated within the
plane parallel to the disk as shown in Fig. 4.16. The result should be the same
between the case where the field is rotated as in the figure and the case where
the disk is rotated in the opposite direction in a fixed magnetic field. In most
experiments [27] the latter method has been chosen. When the magnetic field
is rotated, each model assumes the corresponding characteristic flux motion,
i.e., flux rotation or flux cutting.

Then, what results when the superconducting disk is rotated? Flux lines
in the superconductor are driven to rotate by interactions with the supercon-
ductor, especially by pinning interactions. From the viewpoint of flux rotation
(which hereafter shall be called the flux-rotation model), when the angle be-
tween the flux lines at the surface and the external magnetic field exceeds some
critical value δθc determined by the flux pinning, the force-free torque exceeds
the moment of pinning forces. Thus, flux lines cannot rotate with the super-
conductor any more and start to slip. When the superconductor is rotated
further, the same thing occurs between the flux lines at the surface and the
next set of flux lines. Thus, the critical state penetrates the superconductor
in this manner (see Fig. 4.20).

What is the prediction of the flux-cutting model? The intersection and
cross-joining model shown in Fig. 4.9 is assumed for an example. According
to this model, when the angle between the external field and the flux lines
at the surface reaches the cutting threshold δθc, the flux cutting occurs and
the flux lines are drawn back (see Fig. 4.21(b)). When the superconductor is

Fig. 4.20. Flux motion and process of establishment of critical state expected from
the flux-rotation model for the case where a superconductor is rotated in a fixed
magnetic field: (a) in the beginning, internal flux lines rotate with the superconduc-
tor and (b) their angle with the external magnetic field reaches a critical value for
pinning δθc, so that they cannot rotate any more and slip, resulting in a rotation of
only inner flux lines



184 4 Longitudinal Magnetic Field Effect

Fig. 4.21. Flux motion and process of establishment of the critical state expected
from the flux-cutting model for the case where a superconductor is rotated in fixed
magnetic field: (a) in the beginning internal flux lines rotate with the superconduc-
tor, (b) their angle reaches a critical value and the flux cutting occurs and (c) then,
inner flux lines rotate

further rotated, flux lines in the superconductor are driven to rotate with the
superconductor by flux pinning interactions (see Fig. 4.21(c)). For a further
rotation, flux cutting occurs again between the external field and the flux
lines at the surface, and similar flux cutting occurs between the flux lines
at the surface and the inner flux lines. As a result, flux lines slip from the
superconductor, and the critical state penetrates from the surface. Thus, flux
lines excessively rotate with the superconductor, cut each other and then
swing back, resulting in an unnatural oscillation. If we look at the flux motion
carefully, it is found that such an unnatural oscillation occurs also when the
external field is rotated. Figure 4.22(a) shows the variation in the flux-line
angle while the critical state penetrates from the fourth row of flux lines from
the surface to the fifth row. The flux lines oscillate as a → b → c. This
result shows that the angle between adjacent rows of flux lines is close to
δθc/2. That is, the angle in the critical state is a half as large as the cutting
threshold when the critical state is established over a wide area. The reason
will be easily understood. Figure 4.22(b) shows the variation in the flux-line
angle predicted by the flux-rotation model in the same condition. As discussed
above, there is no difference in the macroscopic flux motion between the cases
of rotating field and rotating superconductor for both models when the flux-
pinning interactions exist. That is, these models are self-consistent.

Now the case of a pin-free superconductor is considered. Assume that the
rotation is carried out quasi-statically so that an eddy current may not flow
inside the superconductor. Hence, flux lines are expected not to interact at
all with the superconductor. When the external field is rotated, flux lines are
expected to rotate with the external field in the flux-rotation model, since the
force-free torque acts on flux lines tilted from the external field. On the other
hand, in the flux-cutting model the same force-free state as in the case of the
superconductor with pins is derived, since the force-free state is believed to
be stable. A discussion of the different results obtained from the two models
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Fig. 4.22. Variation of the angle θ while a critical state penetrates from the fourth
row of flux lines from the surface to the fifth row. n represents the number of rows
from the surface. (a) is a prediction from the flux-cutting model, and the distribution
varies as a→ b → c. (b) is the variation predicted from the flux-rotation model

is identical with that on the critical current density, and such a discussion
is not the purpose of the present thought experiment. The purpose of this
thought experiment is a discussion of the relationship between the two cases
for each model, and hence we raise no questions about the different results
shown above from the two models. Next the case is considered where the
superconductor is rotated in the opposite direction in a fixed magnetic field.
Flux lines are considered to be fixed in the space in both models, since they
do not interact with anything, including the superconductor. Hence, flux lines
in the superconductor have the same angle as the external field. This result is
equivalent to the case of the rotating external field in the flux-rotation model,
while it is not in the flux-cutting model. That is, the flux-cutting model is not
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consistent between the cases of rotating field and rotating superconductor, and
does not satisfy the equivalence [26]. The same conclusion can be obtained
also for other flux-cutting models besides the intersection and cross-joining
model. It might be thought that some eddy current effect exists in practical
cases. Discuss the problem in this situation (Exercise 4.6)

4.5 Critical Current Density

As mentioned in Sect. 4.3, the flux pinning interaction is necessary to sustain
the distortion of flux lines so that the force-free current can flow stably, in
analogy to the case of the transverse magnetic field. The critical current den-
sity Jc‖ is determined from the balance between the force-free torque and the
moment of pinning forces in the critical state:

Ωc = Ωp , (4.53)

where Ωc is given by Eq. (4.29) with replacement of J‖ by Jc‖. The moment
of pinning forces is formally given by

Ωp =
∑

i

fpili , (4.54)

where fpi is the pinning force of the i-th pinning center, li is the effective
rotation radius of the flux line interacting with this pinning center, and the
summation is taken over a unit volume. When a local rotation of a flux line
around a strong pinning center is considered, the effective rotation radius li
will be given by the distance between the fulcrum and the point where the
force is applied, i.e., the distance between one pinning center and the next
(see Fig. 4.23). Hence, the mean value of li will be comparable to the mean
spacing of pinning centers dp. This expectation will be correct only when each
pinning center is sufficiently strong and the concentration of pinning centers
Np(= d−3

p ) is not high. In such a case the moment of pinning forces will be
proportional to the product of the pin concentration Np and the average value
of individual pinning forces fp, obeying a linear summation, in analogy to the
pinning force density in a transverse field. Hence, Eq. (4.54) will be described
as

Ωp = η‖Npfpdp , (4.55)

where η‖ is a parameter representing the pinning efficiency and takes a value
smaller than unity. When fp is small and/or Np is very large, collective pinning
occurs, where many pinning centers work collectively. In this case, li takes a
larger value than dp, and fpi is not the force of individual pinning centers but
the force of pinning centers which work collectively.
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Fig. 4.23. Local rotation of flux line around strongly interacting pinning centers

It is necessary to evaluate y0 in Eq. (4.29). Note that there is no method
to determine y0 analytically [21]. However, when individual pinning forces are
sufficiently strong, it is expected that rows of flux lines shearing against each
other behave independently. That is, when one row of flux lines is rotated, the
adjacent row will not be rotated until the tilting angle between them reaches
the critical value. In this case y0 can be replaced by the flux line spacing
af . The fact that y0 takes on the minimum value means that the critical
current density takes on a value as large as possible. The critical state model
known to describe the phenomena in a transverse magnetic field demands that
a variation in the internal magnetic flux distribution should be as small as
possible when the external field is varied. This is analogous to the principle of
minimum energy dissipation, i.e., the principle of irreversible thermodynamics
for linear dissipative systems (see Appendix A.3). Hence, the hypothesis that
y0 takes on the minimum value can be understood as an extrapolation of the
law of irreversible thermodynamics.

From the above argument, the critical current density in a longitudinal
field is formally given as

Jc‖ = 6η‖
Npfp

B
· dp

af
, (4.56)

when pinning centers are sufficiently strong and their concentration is not too
high. On the other hand, the critical current density in a transverse field is
written as

Jc⊥ = η⊥
Npfp

B
, (4.57)

where η⊥ is the corresponding pinning efficiency (see Eq. (7.81)). Hence, the
enhancement factor of the critical current density is given by

Jc‖
Jc⊥

= 6
η‖
η⊥

· dp

af
. (4.58)
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If η‖ and η⊥ are comparable to each other, the enhancement factor amounts
approximately to 6dp/af and is considerably larger than 1. Hence, the en-
hancement of the critical current density from the transverse field geometry
can be qualitatively explained. The above result shows that the enhancement
factor decreases with increasing pin concentration, i.e., with decreasing pin
spacing dp.

Figure 4.24 shows the experimental results [28] for Pb-Bi specimens in
which η⊥ in Eq. (4.57) is known to be constant in a transverse magnetic field,
so that the theoretically predicted dependence of the critical current density
on pinning parameters can be checked. It is found from the figure that the
critical current density is proportional to Npfpdp as predicted in Eq. (4.56).
Pinning centers in this series of specimens are normal precipitates several
µm in size. It may be pointed out that flux cutting occurs more easily in
normal precipitates. However, the critical current density generally increases
with increasing amounts of normal precipitates as shown in Figs. 4.24 and
4.11(b). Hence, the proposal of easier flux cutting in normal precipitates is
not correct. Flux cutting might take place in regions where flux lines are
crossing each other. Note that crossing of flux lines does not take place in
normal precipitates, since the superconducting current cannot flow there.

Here the experimental results of Blamire and Evetts [20] shown in Sect. 4.2
are discussed. Blamire and Evetts claimed that a stepwise increase in the

Fig. 4.24. Dependence of critical current density in a longitudinal magnetic field on
pinning parameters for Pb-Bi slab specimens with precipitates of normal Bi phase
[28]. The solid line represents the dependence given by Eq. (4.56)
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critical current density with increasing magnetic field, as shown in Fig. 4.13,
should be ascribed to the increase in cut portions owing to the penetration
of new flux lines. However, note that the amount of pinned portions also
increases, owing to the penetration of new flux lines as shown by Eq. (4.54).
This suggests that the variation in the critical current density in Fig. 4.13 can
also be explained by the mechanism of flux pinning. This result is obtained for
a deposited thin film specimen. It is proposed that the grain size is sufficiently
small, and hence, the density of grain boundaries that work as pinning centers
is expected to be very high. In fact the critical current density in the vicinity of
zero field, where the effect of longitudinal field is not appreciable, is very large
(about 2 × 109 Am−2 at 4.2 K) in comparison with that for bulk specimens.
Hence, flux lines that newly penetrate the superconducting film will be surely
pinned by pinning centers. In this case the number of pinning points is given
by the number of flux lines, and we have Ωp � (B/φ0)〈fp〉〈l〉, where 〈 〉
denotes an average quantity. Hence, the critical current density behaves as

Jc‖ ∝ B1/2〈fp〉 . (4.59)

Blamire and Evetts derived a similar equation Jc‖ ∝ B1/2fc, where fc is
an elementary cutting force, and explained that Jc‖ is proportional to B1/2, as
indicated by the straight lines shown in Fig. 4.13, with the assumption that
fc is a constant. This assumption is different from the theoretical result of
Brandt et al. [13] given by Eq. (4.13), which claims that fc is approximately
inversely proportional to the tilt angle δθ (so that in this case Jc‖ ∝ B is
obtained from Eq. (4.15)). This claim by Blamire and Evetts is based on the
theoretical result of Wagenleithner [17]. They estimated the cutting force fc

from the experimental result of Jc‖. Their result is shown in Fig. 4.25. In
this case the ordinate has the units of 1 × 10−13 N. Here the temperature
dependence of this force is discussed. If it is assumed that the cutting force
does not depend on the tilt angle δθ, as originally assumed by Blamire and
Evetts, this leads to

fc ∝ λ−2 ∝ 1 −
(

T

Tc

)4

, (4.60)

which gives the temperature dependence represented by the broken line in
Fig. 4.25 [18]. In the above the temperature dependence of λ from the two
fluid model is used.

Now their experimental result is discussed from the viewpoint of the flux
pinning mechanism. In this case the pin concentration is proposed to be
very high. Hence, 〈fp〉 is not an elementary pinning force of individual pin-
ning centers. It seems to be reasonable to regard it as a collective force by
plural pinning centers. However, there is no information on pinning centers,
which would be necessary to derive the dependencies of 〈fp〉 on tempera-
ture and magnetic field. Thus, these dependencies are estimated from many
experimental results in a transverse magnetic field. It is known that the
pinning force density in a transverse field is expressed in the form of the
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Fig. 4.25. Temperature dependence of the elementary cutting force fc evaluated
from the critical current density of the Pb-Tl thin film shown in Fig. 4.13 by Blamire
and Evetts [20]. The broken line represents the prediction of Wagenleithner’s theory
[17]. On the other hand, the solid line shows the temperature dependence of the
elementary pinning force fp, which is estimated with the assumption that the critical
current density comes from pinning interactions [18]

scaling law Fp ∝ Hm−γ
c2 (T )Bγ except in the vicinity of the upper critical field

(see Sect. 7.1), where m and γ are pinning parameters. As mentioned above,
the flux pinning is expected to be sufficiently strong. In such a case m = 2
and γ = 1 are expected from experimental results for Nb-Ti, etc. In the case
of strong pinning it is considered that individual flux lines are pinned almost
independently of each other. This allows Fp ∝ (B/φ0)〈fp〉 to be derived, and

〈fp〉 ∝ Hc2(T ) ∝ 1 −
(

T

Tc

)2

(4.61)

can be obtained [18]. This result is shown by the solid line in Fig. 4.25,
and the agreement with experimental results is better than with the broken
line derived from the flux-cutting mechanism. In addition, 〈fp〉 is a constant
with respect to magnetic field, and hence, the magnetic field dependence of
Jc‖ ∝ B1/2 shown in Fig. 4.13 can also be explained from Eq. (4.59). As
discussed above, although there are some uncertain factors, the experimental
results of Blamire and Evetts are not exclusively explained by the flux-cutting
mechanism, while their temperature dependence is explained better by the
flux-pinning mechanism.
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4.6 Generalized Critical State Model

A current generally has two components: a component normal to the flux
lines and one parallel to the flux lines. For example, in the process of the
usual experiments where a longitudinal magnetic field is first applied to a
superconducting cylinder or slab and then a current is applied, the current
flows normal to the flux lines in the beginning, and then turns gradually
toward a parallel direction. How does the magnetic flux distribution vary
during the process? In this section, the distribution in a wide superconducting
slab is again considered for simplicity. Assume that the slab is parallel to the
x-z plane and that the flux lines and current are parallel to this plane. Hence,
these quantities vary only along the direction of slab thickness, i.e., along
the y-axis. In this case the magnetic flux distribution is obtained when the
magnitude of the magnetic flux density B and the angle of the flux lines θ from
the z-axis are determined. As for the equations describing such a distribution,
a set of equations of the following type has been proposed:

∂B

∂y
= µ0δ⊥Jc⊥f , (4.62a)

B
∂θ

∂y
= µ0δ‖Jc‖g , (4.62b)

where δ⊥ and δ‖ are sign factors related to the current direction, and f and
g are factors which will be discussed below. Comparing these equations with
Eq. (4.19), it is found that Eq. (4.62a) corresponds to the current compo-
nent normal to the flux lines which gives rise to the Lorentz force, and that
Eq. (4.62b) corresponds to the force-free current component. LeBlanc et al.
[29] assumed that f = 1 and that g is a parameter depending on θ without
any explanation of this assumption. On the other hand, Clem et al. [30] con-
sidered that Eqs. (4.62a) and (4.62b) originated from flux pinning and flux
cutting, respectively, and that these were independent of each other. Hence,
they assumed that f = g = 1.

However, the force-free current also originates from flux pinning interac-
tions as shown above. Hence, the current components in Eqs. (4.62a) and
(4.62b) cannot be independent of each other but come from the common pin-
ning energy. Hence, the pinning energy should be shared between two com-
ponents. Here, generalized coordinates (y, θ) which describe the position of
flux lines are introduced. If the pinning potential for flux lines can be approx-
imately expanded around an equilibrium position (ye, θe) as

U =
a

2
(y − ye)2 +

b

2
(θ − θe)2 , (4.63)

and if the critical state is attained when U reaches a certain threshold value
Up,

f = sinψ , g = cos ψ . (4.64)
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are obtained [31], where ψ is a parameter representing the sharing of pinning
energy (see Appendix A.4). How is this parameter determined?

This parameter cannot be determined from the viewpoint of electromag-
netism. Thus, the principle of minimum energy dissipation mentioned in
Sect. 4.5, which is known as the principle of irreversible thermodynamics for
linear dissipative systems, seems to be useful. If P denotes the loss power
due to the variation in magnetic flux density in the superconductor, the pin-
ning energy is expected to be shared so that P can be minimized. Hence, the
parameter ψ is considered to be determined by the condition:

∂P

∂ψ
= 0 . (4.65)

The energy dissipation in the flux pinning process in a superconductor is dif-
ferent from that in the usual linear energy-dissipation processes, and there
is no formal correspondence. However, the critical state model, which de-
scribes correctly the irreversible electromagnetic phenomena in a transverse
magnetic field, satisfies the condition of minimum energy dissipation as dis-
cussed previously (see Appendix A.3). Hence, the above hypothesis seems to
be reasonable.

Here an experimental result [32], which seems to be influenced strongly
by the principle of irreversible thermodynamics, is introduced. When a lon-
gitudinal magnetic field and a transport current are applied simultaneously
to a superconducting tape, and when their strengths are proportional to each
other, the magnetic field at the surface keeps its angle constant and only its
strength changes. Hence, it is simply expected that the penetration of flux
lines from each surface of the tape is independent from the other, so long as
the flux lines from each side do not meet at the center. That is, the penetra-
tion of flux lines seems to occur translationally without changing their angle,
which is similar to the case where only a transverse field is applied and in-
creased. However, the observed longitudinal magnetization was paramagnetic,
and the critical current density was enhanced as in the usual cases involving
the longitudinal field [32]. This result shows that flux lines are rotated when
they penetrate the superconducting tape. In other words, the current does not
flow in a perpendicular direction, but almost parallel to the flux lines. The
current flow originally has a degree of freedom under the given conditions, and
it is expected that the principle of irreversible thermodynamics determines the
current flow. The loss due to the current generally takes on a smaller value for
a larger critical current density as shown by Eq. (2.82). Therefore, the current
flow is proposed to become force-free-like, so that the loss is minimized. Note
that the current does not flow so that the path length may be the shortest
as in the normal state. If the current flows parallel to the tape length, the
paramagnetic moment does not appear in a longitudinal magnetic field.

As mentioned in Sect. 4.1, the force-free model is known to describe this
phenomenon as shown in Fig. 4.2 even for specimens with flux-pinning ef-
fects. The principle of minimum energy dissipation mentioned above gives us
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an answer to this apparent contradiction. The pinning energy may be mostly
allotted to the pinning interaction with larger critical current density so as to
minimize the energy dissipation. As a result, when the field angle changes un-
der the transport current, the pinning interaction mostly shields the rotation
of flux lines, but is almost ineffective in shielding the translational penetration
of flux lines driven by the Lorentz force (ψ � 0). This is similar to the vari-
ation of the current distribution in the case of the abnormal transverse-field
effect mentioned in Subsect. 3.3.3. The difference is only that the variation
of the current distribution from the transverse flow to the longitudinal one
is expected to be accomplished more quickly than in the case of the abnor-
mal transverse-field effect, since the anisotropy of the critical current density
is very large. In the flux-cutting model, the paramagnetic magnetization is
predicted to be smaller than in the force-free model, since the flux pinning
interaction is believed to shield the translational penetration of flux lines to
the full extent (f = 1).

Assume that an AC current or small AC transverse field is applied to
a long superconductor in a parallel DC field. The force-free state (ψ = 0) is
expected to be approximately attained in the steady state because of the large
difference in the critical current density. In this case Eq. (4.62b) predicts that
the distribution of the transverse magnetic flux component is like the one
described by the Bean-London model. In fact the experimental result [15]
shown in Fig. 4.26 proves that this prediction is correct. The experimental
result of Cave et al. [4] that the magnitude of the transverse magnetic flux

Fig. 4.26. Distribution of the transverse component of magnetic flux in a supercon-
ducting Nb-Ta slab [15]. ht is the amplitude of an AC magnetic field superimposed
perpendicularly on a DC longitudinal field, and λ′ is the penetration depth of the
AC field



194 4 Longitudinal Magnetic Field Effect

component is proportional to the second power of the AC current amplitude
also supports this prediction.

Here the experimental result of a simultaneous sweep of the longitudinal
field and the current mentioned above is briefly discussed. In this experimen-
tal condition flux cutting is not believed to occur, since the direction of the
magnetic field at the surface is unchanged and is parallel to the direction of
the internal flux lines.

The magnetic flux distribution in a longitudinal field is expected to be de-
scribed by Eqs. (4.62), (4.64) and (4.65). However, the questions of whether
the approximation of Eq. (4.64) is sufficient and whether Eq. (4.65) is really
satisfied have not yet been clarified, and these equations are now being com-
pared with experiments. Hence, the model will be evaluated on the basis of
investigations in the future.

4.7 Resistive State

When the transport current density in a longitudinal magnetic field exceeds
the critical value Jc‖, some flux motion is induced and the superconductor
becomes resistive. As mentioned previously, Walmsley [1] has proposed a flux-
cutting model in which only the transverse component of magnetic flux was
assumed to penetrate the superconductor to explain compatibly a steady lon-
gitudinal electric field and a constant longitudinal magnetization. Various
flux-cutting models were proposed afterwards by Cave et al. [4], Clem [10,
12] and Brandt [11]. According to these models the flux cutting is believed
to occur uniformly on the macroscopic scale because of symmetry and the
uniformity of superconducting specimens. Hence, the resultant electric field
is also believed to be uniform. However, the observed electric field in this
state is not uniform and is significantly different from the case of a transverse
field. That is, the observed electric field has a macroscopic structure on a
scale comparable to the size of specimens. The most prominent feature of this
structure is a negative electric field shown in Fig. 4.27. Namely, the direction
of observed electric field between voltage terminals is opposite to the current
direction given by the boundary conditions. (Note that this direction is not
necessarily identical with the direction of practical current flow.) This means
that there exists a region in which energy production seems to take place.
Such a macroscopic structure in the electric field cannot be explained by the
flux-cutting model in which all the difficulties are believed to be solved by the
local flux-cutting mechanism.

The structure of the electric field in the resistive state was clarified in de-
tail by Ezaki et al. [5, 34] They measured the current-voltage curves in the
longitudinal and azimuthal directions of a superconducting cylinder specimen
as shown in Fig. 4.28, and found the potential distribution represented in
Fig. 4.29. Figure 4.5 shows this structure schematically. The structure is heli-
cal, and there are two regions, i.e., the regions of positive and negative electric
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Fig. 4.27. Variation in longitudinal electric potential measured for a cylindrical Pb-
In specimen in a longitudinal magnetic field [33]. b is the reduced magnetic field, and
θh and R are the angle and the pitch of the magnetic field at the surface, respectively

fields. After their definition, the regions of positive and negative electric fields
shall be called the S-region and the N-region, respectively.

In the critical state in a longitudinal magnetic field, the driving force-free
torque is balanced with the moment of pinning forces. When the transport
current is further increased, this balance breaks and some motion of flux lines
is induced. What is this flux motion? Assume a distorted structure of flux
lines as shown in Fig. 4.30. When the tilt angle δθ exceeds the critical value
δθc, the structure becomes unstable, and the net torque appears to reduce δθ.
This torque is an internal one, and hence it cannot be predicted which flux
line is practically rotated. This is similar to the example that, although it is
known that a standing egg is unstable, it is unknown in which direction the egg
falls down. It is assumed that the left flux line in Fig. 4.30 is driven towards
the direction of v1 by the force-free torque, which exceeds the moment of
pinning forces. However, such a motion varies the direction of flux lines in the
superconductor and does not result in a steady state. Not only the rotational
motion v1 but also the translational motion v2 is necessary to satisfy the
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Fig. 4.28. Current-voltage curves for (a) longitudinal and (b) azimuthal directions
for a cylindrical Pb-Tl specimen in a longitudinal magnetic field [34]
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Fig. 4.29. Azimuthal variation in the surface electric potential of a cylindrical Pb-
Tl specimen in a longitudinal magnetic field [5]. Each line corresponds to a different
longitudinal position. This result shows a helical structure for the surface electric
potential

Fig. 4.30. Twisted motion of flux line. v1 is the rotational component of motion
caused by the force-free torque and v2 is the induced translational component of
motion [35]

conditions of steady state motion under given boundary conditions. There
is no driving force that directly causes the translational flux motion, and
hence the work done in connection with the translational motion is zero. The
condition of the steady state is given by

∂θ

∂t
= v2

∂θ

∂y
(4.66)
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for a slab geometry, where θ is the angle of the flux lines and the y-axis is
assumed to be directed along v2. The motion of flux lines in the steady state
is expected to be like the one shown by v in Fig. 4.30. If the condition is
exactly symmetric, flux motion in the opposite direction is also possible, and
the direction will be determined by fluctuation. Under practical experimental
conditions the direction of the magnetic field will be slightly tilted from the
axis of the superconductor, and the resultant small Lorentz force is expected
to determine the direction of flux motion.

Figure 4.31 represents the expected flux motion inside the cylindrical su-
perconductor [35]: (a) shows the motion of flux lines which pass through the
center of the cylinder and (b) shows the direction of flux motion at each posi-
tion along the length of the cylinder. This flux motion can be reproduced by
twisting a uniform and translational flux flow inside the cylinder around the
axis. Hereafter this shall be called the helical flux flow. A characteristic of the
helical flux flow is that the term B × v in Eq. (4.48) brings about a negative
electric field in the region N where the flux lines go out of the superconductor,
and this may possibly cause a net negative electric field including the second
term. In this region the Poynting vector is directed outward, and it is found
that the flow of energy is directed outward. On the other hand, the Poynt-
ing vector is directed inward in region S. Such behavior is similar to the flux
flow in a transverse magnetic field. As a result, the variation in the electric
potential along the azimuthal direction originates from the term B × v.

Fig. 4.31. Helical flux flow in a superconducting cylinder [35]: (a) motion of flux
lines which pass through the center of the cylinder and (b) direction of flux motion
at each point along the length of the cylinder. Angles represent the direction of flux
flow
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Fig. 4.32. Flux line and integral path of electric field on the surface of a supercon-
ducting cylinder

Here it will be shown that the electric field is given in the form of Eq. (4.48)
in the resistive state also. It was Kogan [36] who first showed theoretically that
Josephson’s relation E = B × v is not satisfied in a superconducting cylin-
der in a longitudinal magnetic field. Kogan showed that E and B are not
perpendicular to each other from the cylindrical symmetry. We shall proceed
with this discussion. Assume that a flux line just penetrates the supercon-
ducting cylinder as in Fig. 4.32 and treat the potential difference between two
points, a and b, on the flux line. The potential difference can be obtained by
curvilinearly integrating the electric field in Eq. (4.48) from b to a. In the
steady condition ∂B/∂t = 0 is satisfied. Hence, it is derived from the continu-
ity equation (2.15) that B × v is given by a gradient of some scalar function.
Then, the curvilinear integral of B × v does not depend on the integral path.
This means that the integral is the same whether the path is C′ or C on the
flux line shown in the figure. Since B is parallel to the integral path C, this
curvilinear integral is shown to be zero. Thus, we obtain∫

C′
(B × v) · ds = 0 . (4.67)

The above result means that B × v does not contribute to the net potential
difference in the current direction across terminals sufficiently father apart
than the pitch of the helical structure. Therefore, another term which describes
the observed electric field is necessary. As a result the electric field is given
in the form of Eq. (4.48) [35]. This discussion shows that B × v does not
contribute to the energy dissipation, and the important component exists in
the term −∇Ψ. It is concluded that the electric field associated with the
energy dissipation does not originate from the successive penetration of the
azimuthal component of the magnetic flux.
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Here −∇Ψ will be calculated as a function of the velocity of the flux lines.
Assume a superconducting slab and the flux motion as shown in Fig. 4.30
for simplicity. Since practical superconducting specimens have a cylindrical
shape, this treatment is not exact. However, the expected flux motion does
not have a general cylindrical symmetry, as shown in Fig. 4.31. Hence, the
present treatment is not a bad approximation. In fact, if we look at only a
part of the cylinder, the flux motion in this region is not essentially different
from that in a slab. Assume that the superconducting slab is parallel to the
x-z plane and occupies 0 ≤ y ≤ d. The magnetic field He and the current I
are applied along the z-axis. If the cylinder of radius R is approximated by
a rectangular rod of width 2R and thickness d, the requirement of the same
cross section leads to

d =
πR

2
. (4.68)

In addition, it is necessary to eliminate disorder at the edge in the rectangular
rod, since there is no disorder on the surface of the cylinder. Hence, only a
part of the width 2R in a sufficiently wide slab is treated (see Fig. 4.33). Flux
lines move translationally along the y-axis and rotationally in the x-z plane.
If the translational motion occurs in the positive direction of the y-axis, the
rotational motion occurs counterclockwise with respect to this direction. The
purpose of the analysis is to estimate −∇Ψ caused by the energy dissipation
due to the flux motion. Since the energy dissipation comes from the rotational
flux motion, only the energy dissipation due to the pure rotational flux motion
in the superconducting slab has to be estimated.

Consider the case where the external magnetic field parallel to the super-
conducting slab (−d ≤ y ≤ d) is rotated in a steady state in the x-z plane.
Because of symmetry, the flux motion in the half 0 ≤ y ≤ d of the slab is
treated. The magnetic flux distribution in the slab is expressed as

Fig. 4.33. Equivalent part of a superconducting slab for evaluation of the loss in a
superconducting cylinder
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B = (B sin θ, 0, B cos θ) , (4.69)

where θ is the angle of the flux lines in the x-z plane measured from the z-
axis. By analogy with the flux flow in a transverse magnetic field, it can be
expected that the force-free current of density J‖ flows uniformly. Hence, it is
derived that B is uniform and obeys B = µ0[H2

e + (I/2πR)2]1/2. The angle is
given by

θ = θd −
µ0J‖
B

(y − d) , (4.70)

where θd is the angle at the surface, y = d. In the case where θd varies
constantly with time, E = 0 is derived at the center (y = 0) from symmetry.
Thus, the electric field is easily calculated:

Ex(y = d) =
B2θ̇

µ0J‖

[
cos
(

θd +
µ0J‖d

B

)
− cos θd

]
,

Ez(y = d) =
B2θ̇

µ0J‖

[
sin θd − sin

(
θd +

µ0J‖d

B

)]
, (4.71)

where θ̇ = dθ/dt is the angular velocity of rotation of the external magnetic
field. It is easily found that Ey = 0. As a result the input power per unit
surface area of the superconducting slab is estimated as

P = − 1
µ0

(E × B)y|y=d = − B3θ̇

µ2
0J‖

[
1 − cos

(
µ0J‖d

B

)]

� −
BJ‖d

2θ̇

2
, (4.72)

when µ0J‖d/B is small. (Note that θ̇ < 0, since the magnetic field is rotated
counterclockwise.)

Now we go back to the helical flux flow in the superconducting cylinder.
In practice the rotational flux motion is accompanied by translational motion,
and there exists a relationship:

θ̇ = −
µ0J‖v2

B
(4.73)

from Eq. (4.66). Substitution of this into Eq. (4.72) leads to

P =
µ0J

2
‖d2v2

2
. (4.74)

The input power 2RP per unit length of the region of width 2R in the rod
shown in Fig. 4.33 should be equal to the loss power πR2(−∇Ψ)zJ‖ per unit
length of the cylinder. This requirement leads to [35]

(−∇Ψ)z =
µ0J‖dv2

2
. (4.75)
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Next the surface electric field of the superconducting cylinder will be in-
vestigated. Cylindrical coordinates (r, φ, z) are used, where the angle φ is mea-
sured from the direction of flux motion at z = 0. The magnetic flux density
at the surface is expressed as

B(R) = (Br, Bφ, Bz) = (0, B sin θR, B cos θR) , (4.76)

where θR is the angle of the surface magnetic field from the z-axis. It seems
to be acceptable to assume that the velocity of the translational flux motion
v2 is uniform. Then, from the condition B · v = 0 the velocity of flux lines on
the surface at z = 0 is given as

v(R) = (v2 cos φ,−v2 sinφ, v2 tan θR sin φ) . (4.77)

This leads to

(B × v)φ|R = Bv2 cos θR cos φ , (4.78a)

(B × v)z|R = −Bv2 sin θR cos φ . (4.78b)

The term −∇Ψ does not have an azimuthal component from symmetry. Hence,
the azimuthal electric field comes only from B × v. From Eq. (4.78a) we
obtain

V (φ, 0) − V (φ′, 0) = −
∫ φ

φ′
Bv2 cos θR cos φRdφ

= RBv2 cos θR(sin φ′ − sin φ) . (4.79)

Thus, the helical symmetry leads to

V (φ, z) − V (φ′, z) =

RBv2 cos θR

[
sin
(
φ′ − z

R
tan θR

)
− sin

(
φ − z

R
tan θR

)]
. (4.80)

Next, the longitudinal electric potential difference at φ = φ′ will be calculated.
The condition that φ − (z/R) tan θR = const. represents equivalent positions
for the flux motion. From Eq. (4.78b) the contribution from the term B × v
to the potential difference is

Bv2 sin θR

∫ z

0

cos
(
φ′ − z

R
tan θR

)
dz

= RBv2 cos θR

[
sin φ′ − sin

(
φ′ − z

R
tan θR

)]
. (4.81)

On the other hand, since µ0J‖d is equal to the azimuthal component of the
magnetic flux density at the surface given by B sin θR, the contribution from
the term in Eq. (4.75) leads to
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0

(−∇Ψ)zdz =
1
2
Bv2z sin θR . (4.82)

The longitudinal electric potential difference is given by a sum of Eqs. (4.81)
and (4.82). Thus, the electric potential difference on the surface is generally
given as [35]

�V = V (φ, z) − V (0, 0)

= Bv2

[z
2

sin θR − R cos θR sin
(
φ − z

R
tan θR

)]
. (4.83)

The obtained electric potential difference on the surface is shown in
Fig. 4.34(a). Here, Fig. 4.34(b) represents the corresponding experimental
results which are the same as in Fig. 4.29 shown previously. Comparing these
figures, it is found that a good agreement with experimental results is obtained
including the negative electric potential difference.

Fig. 4.34. (a) Surface electric potential given by Eq. (4.83) [35] and (b) correspond-
ing experimental results (same as Fig. 4.29)
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As has been shown above the structure of the surface electric field of the
superconducting cylinder can be explained using the helical flux flow derived
from the force-free torque. In addition, the constant longitudinal magnetiza-
tion and the steady electric field, which seemed to be incompatible with each
other, are now found to be compatible. Peculiar phenomena were proposed to
occur in region N because of the negative electric field. However, the above
discussion clarifies that such a speculation is not correct. That is, J ·E is pos-
itive and uniform over the entire superconductor. This can be derived from
J · (B × v) = (J × B) · v = 0. Such a negative electric field results from the
helical flow of the current. If we look at the electric field along the direction
of the current, it is always positive.

Measurements of the radial electric field in a cylindrical specimen by
Makiej et al. [37] constitute one of the experimental results which show the
occurrence of the helical flux flow. This component of the electric field can be
expected from the present flux flow. In other words this observation proves
that the translational motion of the longitudinal component of magnetic flux
occurs.

Here observed results of surface structure of the electric field are introduced
for a current-carrying superconducting Pb-In slab in a longitudinal magnetic
field. Arrangement of potential terminals on the surface of the slab specimen
is shown in Fig. 4.35 [38]. The distance between adjacent potential terminals
is 1.0 mm in the axial direction. Figure 4.36(a) shows the distribution of
longitudinal electric field and L is the distance from potential terminal V8 in
Fig. 4.35. Figure 4.36(b) shows the angle θ between the electric and magnetic

Fig. 4.35. Geometry of Pb-60at.%In specimen and arrangement of potential termi-
nals
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Fig. 4.36. (a) Longitudinal component of electric field and (b) angle between the
electric and magnetic fields on the surface of a Pb-In slab specimen carrying a current
of 31.25 A in various longitudinal magnetic fields [38]

fields on the specimen surface, and the negative θ means that the Poynting
vector is directed outward the specimen.

This result shows that the Poynting vector on the surface is necessarily
directed outward where the negative electric field is observed, and supports
the argument in this section. In addition, it is found from Fig. 4.36(b) that the
area of the region where the Poynting vector is directed outward is roughly
the same as that of the inward Poynting vector within one periodic length of
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the structure. Hence, it is understood that a steady flow of noncompressional
flux lines takes place in the superconductor.

Finally, it should be noted that what we did here was only to estimate
the electric field as a function of the velocity of flux lines v2. That is, the
electric field was not directly estimated under a given condition of the cur-
rent density, since we did not calculate the viscous coefficient of the viscous
torque during the rotational flux motion in the resistive state. For this kind
of discussion a more microscopic treatment as in Sect. 2.2 is necessary. But it
is intuitively expected that the resistivity in the longitudinal magnetic field
is approximately equal to the flow resistivity in the transverse magnetic field.
Figure 4.37 is the longitudinal magnetic field dependence of the observed resis-
tivity of the Pb-In slab specimen shown in Fig. 4.36 [38]. This agrees well with
the predictions of the Bardeen-Stephen model given by Eq. (2.30), and is the
same as for the usual flux flow resistivity in a transverse magnetic field. This
strongly suggests that the electric field does not originate from the motion of
the transverse magnetic flux due to the current.

Fig. 4.37. Dependence of the resistivity averaged along the length on longitudinal
magnetic field for a Pb-In slab specimen [38]

Exercises

4.1. It is assumed that a constant magnetic field He is applied along the
z-axis to a wide pin-free superconducting slab (0 ≤ y ≤ 2d), and then, a
force-free state is established by applying a current in the same direction.
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Derive the magnetic field distribution and the magnetization along the
z-axis during the process of establishing the force-free state. The force-
free current density is given by Eq. (4.3).

4.2. Discuss the strain of the flux line structure when a force-free current flows
in a superconducting cylinder (r ≤ R).

4.3. It is assumed that a magnetic field is applied to a wide pin-free super-
conducting slab (0 ≤ y ≤ 2d), and then, a force-free state is established
by rotating the field in the plane parallel to the slab surface. Calculate
the velocity of flux lines and the induced electric field, and discuss the
relationship between these results and Eq. (4.48).

4.4. Show that no solution for the velocity of flux lines exists under the condi-
tions of Exercise 4.1, if it is restricted to the form v = (0, v, 0), assuming
that there is no rotational motion.

4.5. Show that the work per unit time is given by (−∇Ψ) ·J when the electric
field of Eq. (4.48) is induced by the motion of flux lines driven by the
force-free torque.

4.6. Consider the case where a magnetic field parallel to a superconducting
disk is rotated and the case where the disk is rotated in the opposite
direction in a stationary parallel field. Discuss the equivalence of the two
cases from the viewpoints of the flux-cutting model and the flux-rotation
model. It is assumed that the superconductor does not contain pinning
centers and that the rotation takes place at a finite angular velocity such
that an eddy current can flow inside the superconductor.
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5

Measurement Methods
for Critical Current Density

5.1 Four Terminal Method

The most general method for measuring the critical current density Jc, an
important parameter of superconductors, is the four terminal method, in
which the voltage drop V between the terminals is measured as a function
of the transport current I. This is also called the resistive method. The crit-
ical current Ic is defined as the transport current at which the flow voltage
clearly appears. The critical current density is given by Ic divided by the
cross-sectional area S of the superconducting region: Jc = Ic/S. In multi-
filamentary superconductors, the cross-sectional area may include a metallic
stabilizer and reinforcing materials.

In practice, the current-voltage curves of superconducting wires are not
straight lines as in Fig. 1.13. Instead, voltage gradually rises due to various
causes, which will be described later. The measurement is also subject to
sensitivity limits. Hence, there is no clear point at which the flow voltage
appears. To define the critical current, the following criteria are used.

(1) Electric field criterion: This is the simplest method. The critical current
is defined by the current at which the electric field reaches a certain value (see
Fig. 5.1). A value of 100 µVm−1 or 10 µVm−1 is commonly used.

(2) Resistivity criterion: The critical current is defined by the current at which
the resistivity of the superconducting wire reaches a certain value (see Fig.
5.1). For composite superconductors with stabilizer, 10−13 Ωm or 10−14 Ωm
is commonly used.

(3) Off-set method: The critical current is determined by the current at which
a tangential line from part of the current-voltage curve crosses zero voltage
(see Fig. 5.1).

A large error results from the electric field criterion and the resistivity
criterion when flux creep is pronounced. Even in the case where the current-
voltage curve shows an ohmic characteristic as in Eq. (3.131), a nonzero critical
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Fig. 5.1. Current-voltage curve and methods of determination of critical current
density using respective criteria

current density is defined using the electric field criterion. These methods are
useful only for a strongly nonlinear current-voltage curve, which rises abruptly
at a nonzero current density. If the current-voltage curve is expressed as

V ∝ In, (5.1)

the index, n, is called the n value. The n value is a supplementary parame-
ter representing the strength of the nonlinearity. The electric field range of
1 µVm−1 to 100 µVm−1 is generally used to determine the n value. A su-
perconducting wire with larger n is often better. Note that it is possible to
reduce the induced voltage drastically by reducing the current slightly when
n is high. When n is low, on the other hand, the induced voltage does not
become small abruptly when the current is decreased slightly. To avoid errors
when n is small, it is practical to use the offset method. Using the line tangent
to the curve at the current density at the electric field criterion J0, the critical
current density determined by the offset method is

J ′
c =

(
1 − 1

n

)
J0 . (5.2)

This gives the correct result J ′
c = 0 for n = 1.

Here the meaning of the n value is discussed. The current-voltage char-
acteristics deviate from Eq. (2.31), the relationship of which is shown in
Fig. 1.13, and the voltage rises gradually near Jc. This voltage is due to
both microscopic causes, such as flux creep and the nonlinearity of flux mo-
tion around the pinning potential, and macroscopic causes such as spatial
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nonuniformity of the critical current density and sausaging of superconduct-
ing filaments. Sausaging is a nonuniformity of the filament diameter as a
result of wire drawing. Therefore, it is difficult to derive an n value directly as
a physical quantity; the n value is merely a convenient parameter for practical
use.

If the dispersion of Jc originates from the dispersion of Tc, its value ∆Jc

does not vary appreciably even at high temperatures and high magnetic fields.
Thus, ∆Jc/Jc is larger at higher temperatures and at higher magnetic fields
as shown in Fig. 5.2. In addition, the effect of flux creep becomes pronounced
under these circumstances. Hence, the n value is a decreasing function of T
and B.

Fig. 5.2. Current-voltage curves at (a) low temperatures and/or low magnetic
fields and (b) high temperatures and/or high magnetic fields. Arrows show ranges of
distribution of critical current density. At high temperatures and/or high magnetic
fields, the deviation is relatively large in comparison with the mean value of the
critical current density, and the n value is small

Equation (5.1) insists that a true superconducting state with zero resis-
tivity does not exist. The flux creep theory predicts that the electric field
abruptly decreases exponentially in a region of ultra low electric field, far be-
low the sensitivity of present measuring techniques. However, the electric field
is not zero even in this case. This is associated with the fact that the state
in which the flux lines are pinned by pinning potentials is not at equilibrium.
Hence, the process of relaxation to the equilibrium state with zero current
density cannot be avoided. Shortly after the discovery of high-temperature
superconductors, many researchers thought that these superconductors could
not be applied to the field of technology. Although the above properties are
true, it is not true that these superconductors cannot be applied.

Assume that Eq. (5.1) applies approximately within some range of cur-
rent. When the current is reduced by a factor p, the voltage can be reduced
by a factor pn. Hence, if the loss associated with the voltage drop can be re-
duced below that of an equivalent nonsuperconducting metal by reducing the
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current by an appropriate factor, practical application of the superconductor
can be realized. For example, consider a superconducting coil that is made of
1 km of wire with a critical current of 200 A at the electric field criterion of
100 µVm−1. When this coil is driven at the critical current, the voltage is 0.1
V and the loss power is 20 W. However, if the n value of the wire is 50, the loss
power is reduced to 0.5 W by reducing the current to 0.93Ic. This power may
be much less than the heat transmitted into a cryostat. Thus, the coil can be
applied as a superconducting device. As demonstrated by this example, if the
n value is sufficiently large, even a relatively weak electric field criterion such
as 100 µVm−1 can be used to define Ic. The n value in commercial supercon-
ducting wires exceeds 50, and n = 21 has been reported [1] for a Bi-2223 tape
at 77.3 K in the self field.

5.2 DC Magnetization Method

The DC magnetization of a superconductor is hysteretic as mentioned in
Sect. 2.5. Consider a superconducting slab with thickness 2d. In low mag-
netic fields, the field dependence of the pinning force density can be approxi-
mated by Eq. (2.46). Then, the parameters αc and γ are determined such that
Eq. (2.55) fits an observed magnetization curve, and the local critical current
density can be obtained from αcB̂

γ−1 (see Eq. (2.50)).
If the magnetization contains a diamagnetic component as mentioned in

Sect. 2.6, this contribution should be eliminated. This is possible only when
the diamagnetic property is known. However, even if the property is unknown,
the diamagnetic effect can be approximately canceled out in the hysteresis
of magnetization between increasing and decreasing fields. This is a good
approximation for superconductors with a large G-L parameter κ.

The hysteresis of magnetization of a superconducting slab in a parallel
external He is calculated from Eqs. (2.55b) and (2.55d):

�M =
2 − γ

3 − γ
Hp



[(

He

Hp

)2−γ

+ 1

](3−γ)/(2−γ)

+

[(
He

Hp

)2−γ

− 1

](3−γ)/(2−γ)

− 2
(

He

Hp

)3−γ

 . (5.3)

The paramaters αc and γ can be estimated by fitting the observed hysteresis
to the above theoretical result. By contrast, the critical current density ob-
tained by the transport method is a spatial average of the local critical current
density.

The average magnetic critical current density is usually estimated from

Jc =
�M

d
. (5.4)
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Fig. 5.3. Magnetic flux distributions in a superconducting slab during a magneti-
zation measurement (solid lines) and that in the critical state during a transport
measurement (broken line). HI represents the self field of the current

This is correct only when the local critical current density is constant through-
out the sample, i.e., when the Bean-London model holds.

The average transport critical current density 〈Jc〉 at external magnetic
field He is given by Eq. (2.61). 〈Jc〉 can also be obtained from ∆M . The
solid lines in Fig. 5.3 show the magnetic flux distributions in the processes of
increasing and decreasing the magnetic field, and the area of the diamond-
shaped region is equal to 2µ0∆Md. The broken line in the figure is the flux
distribution when the transport current reaches the critical value in the ex-
ternal field He. When the external magnetic field is sufficiently larger than
the penetration field Hp, Eq. (5.3) reduces to

�M � Hp

2 − γ

(
Hp

He

)1−γ
[
1 +

(1 − γ)(3 − 2γ)
12(2 − γ)2

(
Hp

He

)4−2γ
]

. (5.5)

Thus, in terms of ∆M , 〈Jc〉 is given by

〈Jc〉 �
�M

d

[
1 +

(1 − γ)(4γ − 3)
12

(
�M

He

)2
]

. (5.6)

The second term gives the correction to Eq. (5.4). This is very small when the
external field is large. In the case where γ = 0.5 and He = 2Hp, the second
term gives a correction of about 0.2%.

5.3 Campbell’s Method

The shielding current density induced in the superconductor by an AC mag-
netic field can be estimated by measuring the penetrating flux. One method
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Fig. 5.4. Application of magnetic field commonly used in Campbell’s method.
Arrows show the directions of penetration of AC magnetic flux

is Campbell’s method, [2] explained in this section. By using this method,
not only the current density but also the relationship between the force on
and the displacement of the flux lines can be derived. The analysis of the
force-displacement profile is useful for investigating the reversible motion of
flux lines described in Sect. 3.7 and the flux pinning properties described in
Chap. 7. Other AC inductive methods will be introduced in Sect. 5.4.

Usually a DC magnetic field He and a small AC field h0 cos ωt are applied
parallel to a superconducting cylinder or long slab, as shown in Fig. 5.4, to
avoid the effect of demagnetization due to the specimen shape. The magnetic
flux moving into and out of the specimen is measured using a pick-up coil
and a reference coil. The amplitude of penetrating flux is denoted by Φ, and
δΦ corresponds to the incremental flux change when h0 is slightly increased
by δh0. The magnetic flux distribution is expected to be like the one shown
in Fig. 5.5. The shielding current density, which is not necessarily equal to

Fig. 5.5. Variation in penetration of AC magnetic flux when the AC field amplitude
is slightly changed from h0 to h0 + δh0. Current density is assumed to be constant
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the critical value, is considered to be unchanged when the AC field amplitude
increases from h0 to h0 + δh0. Then, the depth of penetration of the AC field
is given by

λ′ =
1

2wµ0
· δΦ
δh0

(5.7)

when the width w of the slab specimen is much larger than the thickness 2d. In
a strict sense, 2w in the denominator of Eq. (5.7) is replaced by the perimeter
of the superconducting slab 2(w +2d), when λ′ is sufficiently smaller than 2d.
In the limit of small δh0, δΦ/δh0 reduces to the derivative, ∂Φ/∂h0. Then,
Eq. (5.7) leads to

λ′ =
1

2wµ0
· ∂Φ
∂h0

. (5.8)

In a cylindrical superconductor with radius R, a simple calculation gives

λ′ = R

[
1 −

(
1 − 1

πR2µ0
· ∂Φ
∂h0

)1/2
]

. (5.9)

When λ′ � R, the right-hand side of Eq. (5.9) reduces to (2πRµ0)−1∂Φ/∂h0.
This result is understandable from the fact that the perimeter is equal to 2πR.
The derivative of Φ with respect to h0 in Eqs. (5.8) and (5.9) can be obtained
by expressing Φ as a polynomial of h0.

An example of λ′(h0) is shown in Fig. 5.6 [3]. Except for small h0, this λ′-h0

characteristic can be regarded as the flux distribution in the superconductor
for increasing field; the ordinate and abscissa represent the internal magnetic
flux density and the depth of flux penetration, respectively. Hence, the slope
of this distribution gives µ0J :

J =
(

∂λ′

∂h0

)−1

, (5.10)

which is equal to Jc in the critical state. In Fig. 5.6 it is found that the
prediction of the Bean-London model is satisfied. Derivation of the magnetic
flux distribution and the critical current density is requested in Exercise 5.1
using Eqs. (5.8) and (5.9) for the Bean-London model. Note that the pene-
tration depth λ′ is finite, λ′ = λ′

0, deviating from the Bean-London model,
when h0 is small. This value (λ′

0) is Campbell’s AC penetration depth, given
by Eq. (3.92). In this region the reversible motion of flux lines mentioned
in Sect. 3.7 is pronounced, and the apparent magnetic flux distribution in
Fig. 5.6 is different from the real one. That is, although Eq. (5.10) predicts a
large current density, this may not be correct. The real distribution is like the
one shown in Fig. 3.32(a), and the current density takes a reasonable value.
In this region the penetrating flux is approximately given by Eq. (3.91), and
a replacement of b(0) by µ0h0 gives

Φ � 2w

∫ ∞

0

µ0h0 exp
(
− x

λ′
0

)
dx = 2wµ0h0λ

′
0 (5.11)



216 5 Measurement Methods for Critical Current Density

Fig. 5.6. Example of measurement of the λ′ vs. h0 characteristics using a modified
Campbell’s method for Nb-50at%Ta at µ0He = 0.336 T [3]. The prediction of the
Bean-London model holds except in the region of small h0

for a superconducting slab sufficiently thicker than λ′
0. Substitution of this

into Eq. (5.8) leads to
λ′ = λ′

0 , (5.12)

which coincides with experiment.
In Campbell’s method [2] the amplitude of penetrating AC flux Φ, i.e., half

of the difference between the magnetic flux at ωt = −π and that at ωt = 0
is measured. There is also a similar method, [4] in which a fundamental fre-
quency component of the AC flux Φ′ is approximately measured instead of Φ,
followed by the same analysis. The resultant error due to this approximation
is estimated in Exercise 5.2. In another method, [5] instantaneous values of the
external AC field and penetrating AC flux, represented by h(t) and Φ(t), are
measured. Since the relationship between these quantities is the same as that
between h0 and Φ, (∂Φ(t)/∂t)/(∂h(t)/∂t) is equal to ∂Φ/∂h0. Thus, Eq. (5.8)
can be rewritten as

λ′ =
1

2wµ0
· ∂Φ(t)/∂t

∂h(t)/∂t
. (5.13)

The denominator (µ0∂h(t)/∂t) and the numerator (∂Φ(t)/∂t) are the voltages
measured directly by a field monitor coil and a pick-up coil, respectively. This
is the wave-form analysis method. A characteristic of this method is that
differentiation as in Eq. (5.8) is not necessary.

In such AC inductive methods, many more measurements and analyses
are needed to determine Jc than in the four terminal method and the DC
magnetization method. However, other important information can also be ob-
tained. One of them is the relationship between the pinning force and the
displacement of flux lines, which will be discussed later. Observation of an
inhomogeneous current distribution is also possible, although applicable cases
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Fig. 5.7. Example of measurement of the λ′ vs. h0 characteristics using the modified
Campbell’s method for Nb-50at%Ta, the same specimen as that in Fig. 5.6, but at
µ0He = 0.123 T [6]. Extrapolation of the linear part does not go through the origin,
and is thus different from Fig. 5.6. This shows a strong flux pinning near the surface

are limited. Figure 5.7 shows an example of an observed flux distribution using
a modified Campbell’s method for a specimen with a surface irreversibility,
[6] which is discussed in Sect. 3.5. While the flux distribution is linear with a
uniform critical current density in the inner region, its extrapolation does not
pass through the origin, suggesting that a large magnetization is caused by a
high density of shielding current flowing in the surface region. This analysis
will be described later. When the shielding current flows in an inhomoge-
neous way, depending on a depth from the surface, as in the case of surface
irreversibility, such an inhomogeneous current distribution, which cannot be
obtained by the four terminal method and the DC magnetization method, can
be obtained by this method. However, observable quantities are those aver-
aged along the direction normal to the flux penetration, so any inhomogeneity
along this direction cannot be obtained. Another example is the simultane-
ous observation of intra- and inter-grain critical current densities in sintered
Y-based oxide superconductors with weakly coupled grains [7].

According to the analysis in [8], the relationship between the pinning force
density F and the displacement of flux lines u is derived as follows. The
equations used for this analysis are Eq. (3.88), the continuity equation for
flux lines:

du

dx
= − b

µ0He
(5.14)

and the force-balance equation between the Lorentz force FL and the pinning
force density F (see Eq. (3.89)):
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−F = FL = −He
db

dx
+ const. (5.15)

Note that this gives the absolute Lorentz force density, being different from
Eq. (3.89), and the constant term on the right side is the value in the initial
state (b = 0). The displacement of flux lines at the superconductor surface
is initially obtained from Eq. (5.14). The displacement in the half cycle from
ωt = −π (the initial state) to ωt = 0 is positive, suggesting that flux lines
move along the direction of the positive x-axis. This can be expressed in terms
of the amplitude of observed magnetic flux Φ as

u(0) = − 1
µ0He

∫ 0

d

b(x)dx =
Φ

µ0Hew
. (5.16)

Assume that the initial state is the critical state with FL = −µ0JcHe, as is
satisfied in many experiments. Then, the pinning force density on flux lines
at the surface is given by

−F = FL = −He

(
∂b

∂u
· ∂u

∂x

)
x=0

− µ0JcHe . (5.17)

From Eq. (5.14) and the relationship (∂b/∂u)x=0 = [∂b(0)/∂Φ] · [∂Φ/∂u(0)] =
µ0He/λ′, the above equation reduces to

−F =
2µ0Heh0

λ′ − µ0JcHe . (5.18)

This quantity is also obtained from the observed result of λ′.
Thus, −F and u(0) are obtained from λ′ and Φ at each h0, respectively.

The force-displacement profile can be derived directly by plotting these results.
Figure 5.8 shows the force-displacement profile for a Nb-Ta specimen [3],
the magnetic flux distribution (the λ′ vs. h0 characteristics) of which was
shown in Fig. 5.6. While the pinning force density varies linearly with the
displacement of flux lines for a small displacement, it reaches a constant value
asymptotically in the opposite critical state when the displacement becomes
large. The Jc obtained from the saturated pinning force density is naturally
equal to Jc obtained from the magnetic flux distribution.

What will be the results of the same analysis in the case of significant sur-
face irreversibility? Figure 5.9 is the force-displacement profile [6] correspond-
ing to the magnetic flux distribution shown in Fig. 5.7, where the pinning
force density initially increases with displacement, reaching a large peak, and
then deceases gradually with increasing displacement. The peak of the pin-
ning force density originates from the strong surface pinning, and the critical
current density in the surface region can be estimated from the peak value.
That is, if the peak value of the pinning force density measured from the
initial state is denoted by Fm, the surface critical current density is given by
Jcs � Fm/2µ0He. The surface critical current density shown in Fig. 3.25 was
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Fig. 5.8. Pinning force density vs. displacement of flux lines [3], corresponding to
the λ′ vs. h0 characteristics in Fig. 5.6

Fig. 5.9. Pinning force density vs. displacement of flux lines [6], corresponding to
the λ′ vs. h0 characteristics in Fig. 5.7. A large peak of the pinning force density
appears due to the strong surface pinning. Jcs is the critical current density in the
surface region

obtained by this method. When the displacement becomes sufficiently large
as in Fig. 5.9, the pinning force density asymptotically approaches the bulk
value.

Within the region of small displacement where the pinning force density
varies linearly with the displacement, the motion of flux lines is limited inside
the pinning potentials, and the phenomenon is almost reversible, as mentioned
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in Sect. 3.7. This linear relationship is represented by Eq. (3.87), and the coef-
ficient αL, called the Labusch parameter, means the second spatial derivative
of the averaged effective pinning potential. Hence, the pinning potential en-
ergy of flux lines in a unit volume is given by

Û0 =
αLd2

i

2
. (5.19)

Equation (3.94) holds for αL, Jc and di, the interaction distance. Such informa-
tion on the pinning potential can be obtained by using Campbell’s methods.
Thus, this method is useful for investigating electromagnetic phenomena. For
example, since the pinning potential energy U0 discussed in Sect. 3.8 is equal
to Û0 multiplied by the flux bundle volume, this volume can be estimated
from Û0 and U0 obtained by an AC inductive method and by a measurement
of irreversibility feld, respectively. In other areas, the flux pinning mechanism
is usually investigated by measuring the dependencies of the pinning force
density on magnetic field and temperature (temperature scaling law), and
on pinning parameters such as the elementary pinning force and the number
density of defects (summation problem). Even in this case a more precise in-
vestigation is possible by measuring the dependencies of αL or di on these
pinning parameters (see Sects. 7.5 and 8.2).

An evaluation of the critical current density in a longitudinal magnetic
field, Jc‖, is also possible [9] by measuring the response of a superconducting
slab to a transverse AC field superimposed on the longitudinal DC field as
shown in Fig. 5.10. In this case the shielding current induced by the AC field
is perpendicular to the AC field, and hence, parallel to the DC field. Figure
4.26 is an example of the distribution of the transverse magnetic flux obtained
by this method.

Fig. 5.10. Manner of application of magnetic field when measuring the critical cur-
rent density in a longitudinal magnetic field using the modified Campbell’s method.
Magnetic flux moving into and out of the specimen due to the AC magnetic field is
measured
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An outline of the AC inductive methods such as Campbell’s method was
briefly given above. However, note that these methods are not always effective.
For example, the method based on the irreversible critical state model does
not allow correct results to be devived for superconducting specimens of a
size comparable to or smaller than Campbell’s AC penetration depth λ′

0 in
which the reversible flux motion is pronounced. Consider the reason (Exercise
5.3). However, if the imaginary part of the complex susceptibility is measured
over a wide range of AC field amplitude, the critical current density can be
approximately estimated, as will be shown in the next section. On the other
hand, one of the simple methods used to estimate the critical current density
in such small specimens is a calculation from the hysteresis of a major DC
magnetization curve.

5.4 Other AC Inductive Methods

5.4.1 Third Harmonic Analysis

The critical current density of a superconducting specimen can also be esti-
mated by measuring the third harmonic voltage induced by an AC magnetic
field [10]. For example, it is assumed that a DC field He and an AC field
h0 cos ωt are applied parallel to a wide superconducting slab of thickness 2d
(0 ≤ x ≤ 2d). If the magnetic flux density averaged within the superconduct-
ing slab is expressed as

〈B〉 = h0

∞∑
n=0

µn cos(nωt + θn) , (5.20)

µn (n ≥ 2) represents the harmonic components of the AC permeability. These
components (n ≥ 1) are given by

µn = (µ′2
n + µ′′2

n )1/2 , (5.21)

µ′
n =

1
πh0

∫ π

−π

〈B〉 cos nωtdωt , (5.22)

µ′′
n =

1
πh0

∫ π

−π

〈B〉 sin nωtdωt , (5.23)

where µ′
n and µ′′

n are the real and imaginary parts of the harmonic AC per-
meability, respectively, and there is a relationship between them:

θn = tan−1

(
µ′′

n

µ′
n

)
(5.24)

In the following µ3 will be calculated assuming the Bean-London model.
When h0 < Hp = Jcd, the magnetic flux distribution varies as shown in
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Fig. 5.11. Magnetic flux distribution in a superconducting slab of thickness 2d in
a parallel AC magnetic field during processes of (a) increasing and (b) decreasing
field. The Bean-London model is assumed

Fig. 5.11(a) and (b) with phases of −π ≤ ωt < 0 and 0 ≤ ωt < π, respectively,
and the spatial average of the magnetic flux density is

〈B〉 = const. +
µ0h

2
0

4Jcd
(1 + cos ωt)2 ; −π ≤ ωt < 0 ,

= const. +
µ0h

2
0

4Jcd
[4 − (1 − cos ωt)2] ; 0 ≤ ωt < π , (5.25)

where const. = µ0(He − h0) + µ0Jcd/2. Substituting this into Eqs. (5.22) and
(5.23), a simple calculation gives µ′

3 = 0 and

µ3 = −µ′′
3 =

2µ0h0

15πJcd
. (5.26)

Hence, Jc can be estimated from the measurement of µ3. However, note that
the above result is correct only when h0 is smaller than the penetration field
Hp = Jcd. When h0 is larger than Hp, the expression of µ3 is complicated
(see Exercise 5.4). In addition, correct results can be obtained only when the
critical state model holds. Equation (5.26) does not hold when the effect of
reversible flux motion dominates.

A method to estimate the critical current density of a superconducting thin
film involves measuring an induced third harmonic voltage in a coil placed near
the film surface which applies an AC magnetic field to the film [11]. In this
case the coil axis is perpendicular to the film surface. However, the magnetic
field is almost parallel to the film surface due to the shielding current flowing
in the film. For a parallel AC magnetic field applied to the surface of a wide
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superconducting thin film, the third harmonic voltage induced in the coil can
be simply calculated using the critical state model. In some experiments a DC
magnetic field is superimposed on the superconducting thin film. The DC field
only influences the value of the critical current density, but does not influence
the third harmonic voltage, since a simple principle of superposition holds in
electromagnetism.

It is assumed that a wide superconducting thin film occupies 0 ≤ x ≤ d and
an AC magnetic field, h0 cos ωt, due to an AC current is applied to the surface
of x = 0. It is also assumed that the film thickness d is so small in comparison
with the coil size that the thickness can be neglected in a calculation of the
induced voltage in the coil.

In the case of h0 < Jcd, the magnetic field at the opposite surface, H(d),
is zero. Hence, the current induced in a unit length of thin film along the
direction of magnetic field is:

I ′(t) = H(0) − H(d) = h0 cos ωt . (5.27)

The corresponding voltage induced in the coil is:

V (t) = −K
dI ′(t)

dt
= Kh0ω sinωt , (5.28)

where K is a coefficient determined by the coil. The third harmonic voltage
is estimated as

V3 = (f2
1 + f2

2 )1/2 , (5.29)

where f1 and f2 are given by

f1 =
1
2π

∫ 2π

0

V (t) cos 3ωt dωt , (5.30)

f2 =
1
2π

∫ 2π

0

V (t) sin 3ωt dωt . (5.31)

In this case
V3 = 0 (5.32)

is easily derived.
In the case of h0 ≥ Jcd, we have

I ′(t) = Jcd − h0(1 − cos ωt); 0 ≤ ωt < θ0

= −Jcd; θ0 ≤ ωt < π , (5.33)

where θ0 is given by

θ0 = cos−1

(
1 − 2Jcd

h0

)
. (5.34)

This leads to
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V (t) = −Kh0ω sin ωt ; 0 ≤ ωt < θ0

= 0 ; θ0 ≤ ωt < π . (5.35)

Similar results are obtained for the latter half period, π ≤ ωt < 2π. After a
simple calculation we have

f1 = 2Kh0ω

∫ θ0

0

sin ωt cos 3ωt dωt

= 4Kh0ωhp(1 − hp)(1 − 8hp + 8h2
p) (5.36)

and

f2 = 2Kh0ω

∫ θ0

0

sin ωt sin 3ωt dωt

= 8Kh0ω sin θ0hp(1 − hp)(1 − 2hp) (5.37)

with
hp =

Jcd

h0
(5.38)

and
sin θ0 = 2(hp − h2

p)1/2 . (5.39)

Thus, we obtain

V3 = 4KωJcd

(
1 − Jcd

h0

)
. (5.40)

Hence, if hc is the AC magnetic field amplitude at which the third harmonic
voltage starts to appear, the critical current density of the film is estimated
as

Jc =
hc

d
. (5.41)

It should be noted, however, that this estimation is not correct, unless
the film thickness is so much thicker than Campbell’s AC penetration depth,
given by Eq. (3.92), that the effect of reversible flux motion can be neglected.
In practice, λ′

0 is estimated as 0.8 µm for the case of Jc = 1.0× 1010 A/m2 at
B = 1 T, where Eq. (3.94) is used for αL in Eq. (3.92) and the relationship
di = 2πaf for point-like defects is assumed. For ordinary thin films thinner
than 1 µm, therefore, the measurement of the third harmonic voltage may
not give a correct estimation of Jc in a DC magnetic field but may lead to
an overestimation due to the effect of reversible flux motion [12], similarly to
other AC measurements. The factor of overestimation is of the order of λ′

0/d,
[12] and is smaller than those involved in Campbell’s method (see Exercise
5.3) and AC susceptibility measurements. In the absence of a DC magnetic
field, λ′

0 is expected to be significantly smaller than the above estimation,
and this method may be useful for the estimation of Jc even for fairly thin
superconductors.
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5.4.2 AC Susceptibility Measurement

The critical current density can also be estimated from a measurement of the
AC susceptibility. If the magnetization of a superconducting specimen in an
AC magnetic field h0 cos ωt is expressed as

M(t) = h0

∞∑
n=0

(χ′
n cos nωt + χ′′

n sinnωt) , (5.42)

χ′
n and χ′′

n (n ≥ 1) are the real and imaginary parts of the n-th AC suscepti-
bility. In terms of M(t), these parts are given by

χ′
n =

1
πh0

∫ π

−π

M cos nωt dωt , (5.43)

χ′′
n =

1
πh0

∫ π

−π

M sin nωt dωt . (5.44)

These quantities are related to the AC permeabilities given by Eqs. (5.22) and
(5.23) as

χ′
1 =

µ′
1

µ0
− 1, χ′

n =
µ′

n

µ0
(n ≥ 2) (5.45)

with

χ′′
n =

µ′′
n

µ0
(n ≥ 1) . (5.46)

These relationships are easily derived from M = 〈B〉/µ0 − (He + h0 cos ωt).
Here, assume again a wide superconducting slab of thickness 2d, in which the
Bean-London model holds. Then, χ′

1 and χ′′
1 can be calculated easily:

χ′
1 = −1 +

h0

2Hp
; h0 ≤ Hp , (5.47a)

= − 1
π

(
1 − h0

2Hp

)
cos−1

(
1 − 2Hp

h0

)

− 1
π

[
1 − 4Hp

3h0
+

4
3

(
Hp

h0

)2
](

h0

Hp
− 1
)1/2

; h0 > Hp , (5.47b)

χ′′
1 =

2h0

3πHp
; h0 ≤ Hp , (5.48a)

=
2Hp

πh0

(
1 − 2Hp

3h0

)
; h0 > Hp . (5.48b)

The dependencies of χ′
1 and χ′′

1 on the AC field amplitude are shown in
Fig. 5.12(a) and (b), respectively. χ′

1 changes from −1 with increasing h0,
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Fig. 5.12. Prediction of the Bean-London model on the AC susceptibility of a
superconducting slab in a parallel AC magnetic field: (a) real part and (b) imaginary
part

takes on a value −1/2 at h0 = Hp, and then approaches 0 asymptotically. On
the other hand, χ′′

1 takes on a maximum value 3/4π at h0 = (4/3)Hp ≡ hm.
Hence, if hm is obtained from measurements, the critical current density can
be estimated as

Jc =
3hm

4d
. (5.49)

In most experiments, χ′′
1 is measured under a variation of temperature with

a constant amplitude h0. Even in this case, the critical current density is
estimated from Jc = 3h0/4d at the temperature at which χ′′

1 takes on a peak
value. More exactly speaking, however, the quantity obtained is nothing else
besides the temperature at which Jc takes on some given value, since h0 and
d are given in such experiments. A common purpose is to know Jc under
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the desired condition of temperature and magnetic field. In the latter case it
is required to measure χ′′

1 as a function of h0 at the given temperature and
magnetic field, as shown in Eqs. (5.48a) and (5.48b).

χ′′
1 is equal to µ′′

1 and is directly related to the energy loss density as shown
in Eq. (3.101). When the size of the superconducting specimen is compara-
ble to or smaller than Campbell’s AC penetration depth λ′

0, the critical state
model does not hold due to the reversible flux motion, as discussed in Sect. 3.7.
In this case the Campbell model [8] is useful for analyzing the magnetic flux
distribution, and the distribution can be derived by solving Eq. (3.96) nu-
merically. Then, the magnetization M is obtained from the distribution, and
χ′

1 and χ′′
1 are derived from Eqs. (5.43) and (5.44). The results obtained in

this manner [13] are shown in Figs. 5.13 and 5.14. Figure 5.13 shows the re-
sults for d/λ′

0 = 10, which corresponds to the case where the critical state
model describes the magnetic behavior correctly. In fact, this result can be
approximately explained by the critical state model.

By contrast, Fig. 5.14 shows the case of d/λ′
0 = 0.3 where the effect of

reversible flux motion is expected to be pronounced. In fact, χ′
1 deviates sig-

nificantly from the predicted value of −1 of the critical state model in the
region of small amplitude, showing an extremely small shielding effect. The
maximum value of χ′′

1 is also much smaller than predicted by the critical state
model with a considerable shift of the position of the maximum to a higher
AC field amplitude. Thus, the value of the critical current density obtained
by substitution of the observed hm into Eq. (5.49) is considerably overesti-
mated. In Fig. 5.14, for example, the critical current density is overestimated
by a factor of about 30. Hence, it is required to judge correctly if the analysis
using Eq. (5.49) is suitable for a superconductor of a relatively small size. For
this purpose, it is useful to compare the maximum value of χ′′

1 , denoted by
χ′′

m, with the theoretically predicted value 3/4π. That is, if χ′′
m is comparable

to the predicted value, Eq. (5.49) is applicable, and if χ′′
m is much smaller

than the predicted value, the use of Eq. (5.49) may lead to a serious overesti-
mation. There have been many reports on high-temperature superconductors
indicating that χ′′

m becomes smaller as the temperature is raised to the criti-
cal temperature. This is believed to originate from the reversible flux motion.
Note that Campbell’s AC penetration depth λ′

0 takes on a larger value for a
superconductor with a weaker pinning force. In high-temperature supercon-
ductors the pinning force is originally weak and becomes even weaker at a
higher temperature, resulting in very large λ′

0. Hence, this reversible behavior
can occur even in relatively large specimens.

To analyze the behavior under a reversible flux motion, it is required to
solve numerically Eq. (3.96), which is a nonlinear differential equation. How-
ever, this is not simple. Hence, approximate formulae for AC susceptibilities
are proposed here, since the dependencies of these formulae on the AC field
amplitude are rather simple, as shown in Figs. 5.13 and 5.14. One of the
conditions to be satisfied is that the result should approach the prediction
of the critical state model, Eqs. (5.47a), (5.47b), (5.48a) and (5.48b), in the
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Fig. 5.13. (a) Real and (b) imaginary parts of the AC susceptibility of a supercon-
ducting slab for d/λ′

0 = 10. The solid lines show the results of the numerical analysis
of Eq. (3.96) based on the Campbell model, and the chained lines show the results
of the Bean-London model. The broken lines represent the approximate formulae
given by Eqs. (5.54) and (5.55). All give similar results

irreversible limit. Characteristic points for χ′
1 are: χ′

1 → −1 for h0 � Hp,
χ′

1 = −1/2 at h0 = Hp and χ′
1 → 0 for h0 � Hp. Characteristic points for

χ′′
1 are that it approaches Eq. (5.48a) for h0 � Hp and χ′′

1 → 2Hp/πh0 for
h0 � Hp. Candidates which satisfy the above requirements are

χ′
1 = − Hp

Hp + h0
, (5.50)

χ′′
1 =

2
π
· Hph0

3H2
p + h2

0

. (5.51)
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Fig. 5.14. (a) Real and (b) imaginary parts of the AC susceptibility of a supercon-
ducting slab for d/λ′

0 = 0.3. The solid, chained and broken lines show the results of
the numerical analysis of Eq. (3.96), the results of the critical state model and the
approximate formulae, respectively. The results of the critical state model deviate
greatly from the other two

hm =
√

3Hp and χ′′
m = 1/

√
3π � 0.184 are obtained from Eq. (5.51), while

hm = (4/3)Hp and χ′′
m = 3/4π � 0.239 are obtained from Eq. (5.48b) based

on the critical state model. Thus, these results are not very different from
each other.

In the limit of reversible flux motion, where d is sufficiently smaller than
λ′

0 and h0 is sufficiently small, a simple calculation shows that χ′
1 approaches

asymptotically

χ′
1 = −1 +

λ′
0

d
tanh

(
d

λ′
0

)
� −1

3

(
d

λ′
0

)2

. (5.52)
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On the other hand, χ′′
1 approaches

χ′′
1 =

h0

6πHp

(
d

λ′
0

)4

. (5.53)

In the above Eqs. (3.101), (3.109) and (5.46) were used with replacement of
df by 2d. When h0 is sufficiently larger than H̃p given by Eq. (3.110), the
behavior becomes irreversible even if d is smaller than λ′

0, and χ′
1 and χ′′

1

approach 0 and 2Hp/πh0, respectively.
Here approximate formulae are proposed [13]:

χ′
1 = − Hp

[1 + 3(λ′
0/d)2]Hp + h0

, (5.54)

χ′′
1 =

2
π
· Hph0

3[1 + 2(λ′
0/d)2]2H2

p + h2
0

. (5.55)

These satisfy the above requirements. Figures 5.13 and 5.14 show a compar-
ison between these formulae and the results of numerical calculation. It is
found that a fairly good agreement is obtained in both limits of d � λ′

0 and
d � λ′

0. The important results of these formulae are as follows: firstly, χ′
1 does

not reach −1 even at very low temperature, when the sample size is smaller
than λ′

0. Hence, it is not correct to evaluate a superconducting volume fraction
from this value of χ′

1. This is similar to the incorrect estimation of the super-
conducting volume fraction from DC susceptibility, as described in Sect. 3.6.
Secondly, it is found from Eq. (5.55) that the AC field amplitude at which χ′′

1

peaks is

hm =
√

3

[
1 + 2

(
λ′

0

d

)2
]

Hp (5.56)

and the peak value is

χ′′
m =

1√
3π[1 + 2(λ′

0/d)2]
. (5.57)

Hence, Jc cannot be estimated only from hm. This is because the value of λ′
0

is unknown. However, Eqs. (5.56) and (5.57) allow us to derive

hmχ′′
m =

Hp

π
=

Jcd

π
. (5.58)

Thus, the unknown quantity λ′
0 is eliminated and Jc can be obtained from the

value of the product. From this Jc value λ′
0 can be determined. The value of

λ′
0 can also be obtained by comparing the slope of the observed minor curve

of the DC magnetization with Eq. (3.111) in which df is replaced by 2d.
When the size of the superconducting sample is much larger than λ′

0, the
critical state model holds. Even in this case Eq. (5.58) from which Jc can
be determined still holds. However, the further analysis to estimate λ′

0 may
contain a large error.
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Exercises

5.1. Assume that an AC magnetic field of amplitude h0 is applied parallel to
a superconducting slab 2d in thickness and w in width (w � 2d). When
the Bean-London model holds in the superconducting slab, show that the
penetration depth of the AC field is given by λ′ = h0/Jc, and that the h0

vs. λ′ curve represents the magnetic flux distribution for h0 < Hp = Jcd,
using the analysis based on Campbell’s method. Show also that λ′ = d
for h0 > Hp.

5.2. Estimate the error of the critical current density derived from the modi-
fied Campbell’s method, when the amplitude Φ of the AC magnetic flux
moving into and out of the superconducting specimen is replaced by the
amplitude of the component of fundamental frequency Φ′. Assume that
the Bean-London model holds for the magnetic flux distribution.

5.3. Calculate the apparent value of the penetration depth λ′ of an AC mag-
netic field for a superconducting specimen of a size smaller than Camp-
bell’s AC penetration depth λ′

0, and discuss the reason why the critical
current density cannot be estimated correctly using the analysis based
on Campbell’s method.

5.4. Calculate µ3 when the amplitude of the AC magnetic field h0 is larger
than the penetration field Hp = Jcd.

5.5. Derive Eqs. (5.47a), (5.47b), (5.48a) and (5.48b).
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6

Flux Pinning Mechanisms

6.1 Elementary Pinning and the Summation Problem

Flux lines have spatial structures related to the order parameter and the
magnetic flux density as shown in Fig. 1.6. When a flux line is displaced near
a pinning center, it feels a variation in the energy caused by overlapping of
these structures with the spatial structure of the pinning center. This is the
pinning interaction, and the flux line suffers a pinning force corresponding
to the gradient of the energy. The pinning force density which stops the flux
line lattice from opposing the Lorentz force under a transport current is the
macroscopic mean value of summed individual pinning forces. At a magnetic
field sufficiently higher than Hc1, the flux lines repel each other and form
a lattice. On the other hand, the individual pinning forces originating from
randomly distributed pinning centers are directed randomly in most cases.
Hence, some parts cancel each other out in the resultant pinning force density,
Fp (see Fig. 6.1). That is, the pinning force density usually takes smaller values
than the direct summation, Fp = Npfp, where Np is the number density of
pinning centers and fp, called the elementary pinning force, is the maximum
pinning strength of an individual pinning center. Its value depends on the
strength of the elastic interaction of the flux line lattice. When the elastic
interaction is strong and the flux line lattice deforms only slightly, the resultant
pinning force density is small. The estimation of the pinning force density as
a function of the elementary pinning force and the number density of pinning
centers under given conditions of temperature and magnetic field is called the
summation problem:

Fp =
Np∑
i=1

fi(B, T ) , (6.1)

where fi is the force of the i-th pinning center and takes a value from −fp to
fp depending on the relative position of the interacting flux line with respect
to the pinning center. The estimation of the pinning potential energy, U0,
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Fig. 6.1. Forces of pinning centers distributed randomly

treated in Sect. 3.8 as a function of these quantities is also a kind of summation
problem.

The problem of estimating the pinning force density theoretically is usually
divided into the problem of calculating the elementary pinning force and that
of summing up these forces mathematically, as shown in the above. The reason
why such a treatment is used is based on the experimental fact that the
resultant pinning force density is almost independent of the kind and the size
of pinning centers. That is, similar pinning characteristics are derived from
both 0-dimensional point pinning centers and 2-dimensional grain boundaries
under particular conditions of the number density of pinning centers. The
characteristic features of a pinning center appear mostly in the elementary
pinning force.

In this chapter the pinning mechanisms and the elementary pinning forces
of various pinning centers will be discussed, and the resultant pinning force
density and its properties will be described in Chap. 7.

6.2 Elementary Pinning Force

There are several definitions of the elementary pinning force. For a small
pinning center which interacts with one flux line, the elementary pinning force
is defined by the maximum value of its interaction force. When the energy U
varies as shown in Fig. 6.2(a) during the displacement of the flux line across
the pinning center, Fig. 6.2(b) shows the corresponding interaction force. The
elementary pinning force is given by its maximum value:

fp =
(
−∂U

∂x

)
max

. (6.2)
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Fig. 6.2. (a) Variation in energy when a flux line passes through a pinning center
and (b) the variation in the pinning force

When the pinning center is so large that it interacts with many flux lines,
the definition is somewhat complicated. This is because the interaction force
varies depending on the arrangement of the flux lines. Hence, for wide grain
boundaries or wide interfaces between superconducting and normal regions,
the elementary pinning force is sometime defined by the maximum interaction
force per unit length of the flux line parallel to the boundary or the interface.
In such a case the pinning force of the boundary also needs to be estimated.
For such wide boundaries or long one-dimensional dislocations normal to the
flux lines, the flux lines are observed [1] to fit themselves to the pinning cen-
ter as shown in Fig. 6.3: a close-packed row of the flux line lattice arranges

Fig. 6.3. Flux lines with a suitable arrangement for pinning
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itself parallel to the pinning center. This makes the calculation of the pin-
ning force easy. Since the deformation of the flux line lattice is small for such
large pinning centers, the flux lines can arrange themselves most suitably for
the pinning. This behavior can also be interpreted as the effect of the irre-
versible thermodynamics to minimize the energy dissipation by maximizing
the pinning interaction.

For pinning centers of medium size, the flux lines are approximately treated
as a rigid perfect lattice, and the elementary pinning force is estimated by
Eq. (6.2) from the variation in the energy with respect to the virtual dis-
placement of the flux line lattice [2, 3]. This is because the strain of the flux
line lattice is too large for the lattice to be most suitably accommodated to a
pinning center on this scale. The flux lines are considered to form a triangular
lattice within this medium scale.

In the pinning center the material constants are different from those in the
surrounding superconducting region. These material constants are describable
phenomenologically as variations in the coefficients, α and β, in Eq. (1.21).
Hence, strictly peaking, the solutions of the order parameter Ψ and the mag-
netic flux density b should be obtained by solving the G-L equations containing
spatially varying α(r) and β(r), and then, the energy U should be calculated
by integrating spatially with the use of these solutions. However, this is not
easy, and in the case where the variations in α and β are not large, the solu-
tions of Ψ and b in the uniform superconducting region given by Eqs. (1.75)
and (1.62) are sometimes used approximately. For example, in the case of
pinning by grain boundaries, the variation in the coherence length ξ in the
vicinity of the boundary is caused by the electron scattering, but the same
functional form of Ψ is used for the theoretical calculation of the elementary
pinning force. Generally speaking, from Eqs. (1.36), (1.37) and (1.50) we have
α = −(µ0e�/m∗)Hc2 and β = 2µ0(e�/m∗)2κ2 and the variations in α and β
can be described as the variations in Hc2 and κ, respectively.

In the case where the material constants vary drastically, as in normal pre-
cipitates, such an approximation can no longer be used. Even in the normal
precipitates, the order parameter near the interface with the superconducting
region is not reduced to zero because of the proximity effect. In this case not
only the order parameter in the superconducting region but that in the nor-
mal region needs to be calculated under proper boundary conditions. These
boundary conditions are different dependent on whether the superconductor
is “clean” or “dirty” and whether its size is larger or smaller than the electron
mean free path or the coherence length. For example, the boundary condi-
tions were defined by de Gennes [4] for the case where the size of the normal
precipitates is very large and the superconductor is dirty, i.e., the electron
mean free path is shorter than the coherence length, and it is known that the
values of Ψ and its derivative along the direction normal to the boundary are
discontinuous at the boundary on a long range scale comparable to ξ.

The treatment is similar also for the case of dielectric precipitates or voids.
In this case, while Ψ is zero in the dielectric precipitate or the void, Ψ in the
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superconducting region should be calculated under the boundary condition of
Eq. (1.33).

Thus, the estimation of the elementary pinning force of normal precipitates
or dielectric precipitates is not easy in general. However, rough approximations
are usually used for the cases of very large precipitates and the like. The reason
for the use of rough approximations is that the exact solutions of Ψ and b
when the flux line exists cannot be obtained by the method described above.
Examples of these rough approximations will be discussed in Sects. 6.3–6.6.

The pinning mechanisms are classified into the condensation energy in-
teraction, the elastic interaction, the magnetic interaction and the kinetic
energy interaction according to the associated energy. In the following the
mechanisms will be explained according to this classification.

6.3 Condensation Energy Interaction

In this section the case is treated where a variation in the condensation energy
occurs during a displacement of flux lines resulting in the pinning interaction.
Typical examples of pinning centers involving this mechanism are normal
precipitates such as the α-Ti phase in Nb-Ti and grain boundaries in Nb3Sn.
In the following the mechanism is discussed, and the elementary pinning force
is derived.

6.3.1 Normal Precipitates

We assume, for example, a wide interface between the superconducting and
normal regions parallel to the flux line. It is is assumed for simplicity that the
superconducting and normal regions occupy x ≥ 0 and x < 0, respectively, and
that the flux line is directed along the z-axis. In the case of such a large normal
precipitate the tunneling or the diffusion of the superconducting electrons
due to the proximity effect is limited to the vicinity of the interface, and its
influence can be disregarded. Hence, there is no significant difference from the
case of a dielectric precipitate. We approximate that Ψ = 0 for x < 0. If we
disregard the energies of the magnetic field and current which are large but
less important, the energy of the flux line can be calculated from

F ′ = α|Ψ|2 +
β

2
|Ψ|4 + |α|ξ2(∇|Ψ|)2

= µ0H
2
c

[
−|ψ|2 +

1
2
|ψ|4 + ξ2(∇|ψ|)2

]
(6.3)

as shown in the answer to Exercise 1.1. It is assumed that an isolated flux line
is located sufficiently far from the boundary in the superconducting region.
Thus, Eq. (1.75) is used for the structure of the flux line:
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|ψ| = tanh
(

r

rn

)
, (6.4)

where r is the radius from the center of the flux line and rn = 1.8ξ for
high-κ superconductors. When the flux line is absent, |ψ| = 1 in the whole
superconducting region. Hence, the energy increase per unit length of the flux
line due to its presence in the superconducting region is approximately given
by

∆U = µ0H
2
c

∫ ∞

0

[
1
2
− |ψ|2 +

1
2
|ψ|4 + ξ2(∇|ψ|)2

]
2πrdr

=
2π

3
µ0H

2
c ξ2[(kξ)−2 + 2]

(
log 2 − 1

4

)
� 1.55πµ0H

2
c ξ2 , (6.5)

where the range of the integral was approximately widened to infinity for an
easy calculation. Since there is no energy change in the normal region due
to the presence of the flux line there, ∆U gives the energy increase when
the flux line stays in the superconducting region. If the approximation is
made that this energy increase takes place during a displacement of the flux
line by 2rn = 2k−1 as shown in Fig. 6.4, the elementary pinning force can be
estimated as

f ′
p � ∆U

2rn
= 0.430πξµ0H

2
c (6.6)

per unit length of the flux line. This argument shows that the normal precip-
itate acts as an attractive pinning center and the pinning interaction occurs
at the boundary.

If the common local model is applied, in which the order parameter is
approximated as |ψ| = 0 for r < ξ and |ψ| = 1 for r > ξ, the elementary
pinning force is given by f ′

p = (π/4)ξµ0H
2
c , which is considerably smaller

than the above estimation. However, if a new local model assuming that a
normal core of radius rn = 1.8ξ is introduced, the elementary pinning force is

f ′
p =

π

4
rnµ0H

2
c = 0.45πξµ0H

2
c , (6.7)

which is close to the result of Eq. (6.6).
At high fields |ψ| outside the core is generally reduced from 1, and hence,

the energy involved in the pinning is reduced, too, resulting in a smaller
elementary pinning force. The rate of decrease is proportional to that of the
main terms in the pinning energy, |ψ|2 and (∇|ψ|)2, which is approximately
given by that of 〈|ψ|2〉, namely [2κ2/(2κ2−1)βA](1−B/µ0Hc2) � 1−B/µ0Hc2.
Thus, the formula of the elementary pinning force which holds correct over a
wide region of magnetic field is

f ′
p � 0.430πξµ0H

2
c

(
1 − B

µ0Hc2

)
. (6.8)
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Fig. 6.4. Flux line near a large interface between superconducting and normal
regions. The normal core in the normal region is imaginary

For normal precipitates sufficiently larger than the flux line spacing, af =
(2φ0/

√
3B)1/2, each normal precipitate interacts simultaneously with many

flux lines. In such a case the flux lines are considered to locate themselves
parallel to the interface so as to be optimum for pinning as mentioned above.
Hence, for simplicity we assume a cubic normal precipitate of a size D, one
surface of which is parallel to the flux lines and perpendicular to the direction
of their motion due to the Lorentz force. The number of flux lines interacting
with the precipitate surface is D/af as shown in Fig. 6.5. The elementary
pinning force per flux line can be given by the value in Eq. (6.8) multiplied
by the length of the flux line, D. Thus, the elementary pinning force of the
precipitate is

fp � 0.430π
ξD2µ0H

2
c

af

(
1 − B

µ0Hc2

)
. (6.9)

On the other hand, the appearance of superconductivity as a consequence
of the proximity effect is appreciable inside a normal precipitate smaller than
the normal core of the flux line. That is, the normal precipitate behaves like a
weak superconducting region. From this fact it was argued [5] that the pinning
force of the condensation energy interaction is weakened. According to this
proposal the elementary pinning force of a thin normal precipitate of thickness
d would take a value smaller by a factor of (d/ξ)2 than that of an insulating
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Fig. 6.5. Large normal precipitate and flux lines

precipitate of the same geometry. If this is true, the pinning force density in
Nb-Ti which contains thin ribbons of normal α-Ti phase as pinning centers
would not be expected to be so large. Especially in the vicinity of the critical
temperature where the coherence length becomes long, it may be expected
that a significant decrease of the pinning force density and a deviation from the
temperature scaling law of the pinning force density, which will be introduced
later, would be observed. However, such results have not been observed [6],
and the pinning force density can be explained quantitatively in terms of
the elementary pinning force for which the proximity effect is not taken into
account [7].

How can we understand this experimental result? It can be concluded that
the influence of the proximity effect on the pinning energy was incorrectly
understood in [5]. For clarification of this point, the elementary pinning force
will be estimated for a normal precipitate in which the proximity effect is
significant using the G-L theory. For simplicity the case is treated where the
superconducting and normal layers of thicknesses ds and dn, respectively, are
assembled alternately as shown in Fig. 6.6. It is assumed that the coherence
length ξ is longer than these thicknesses. An example of such a structure can
be seen in α-Ti in Nb-Ti and the above assumption on the coherence length
can be attained at high temperatures near the critical temperature. Equation
(1.30) holds correct in the superconducting region. On the other hand, the
equation which is valid in the normal region will be approximately

1
2m∗ (−i�∇ + 2eA)2Ψ + αnΨ = 0 , (6.10)

an equation of the Schrödinger type. In the above, αn is a positive para-
meter representing the repulsive interaction between paired electrons. The
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Fig. 6.6. Multi-layered structure composed of superconducting and normal layers

corresponding free energy in the normal region is given by

F ′ = αn|Ψ|2 + |α|ξ2(∇|Ψ|)2 = µ0H
2
c [θ|ψ|2 + ξ2(∇|ψ|)2] , (6.11)

where θ is defined by

θ = −αn

α
=
(

ξ

ξn

)1/2

(6.12)

with ξn denoting the coherence length in the normal region. We first treat the
case where the flux lines do not exist. The x-axis is defined along the direction
perpendicular to the layered structure and Ψ varies only along this axis. In
such a one-dimensional situation the argument of the order parameter is a
constant, and Ψ can be chosen as a real number. Thus, Ψ is defined as Ψ =
R|Ψ∞| with R denoting a real number. The equations for the superconducting
and normal regions are

d2R

dη2
− R + R3 = 0 ;

dn

2ξ
< η ≤ ds + dn

2ξ
, (6.13a)

d2R

dη2
+ θR = 0 ; 0 ≤ η <

dn

2ξ
, (6.13b)

where η = x/ξ.
The boundary conditions on the continuity of R at the interface between

the superconducting and normal regions are necessary to solve R. In the case
of the α-Ti in Nb-Ti, the electron mean free path is estimated [8] as about
10 nm and is longer than the typical thickness of the α-Ti layers. Hence, the
boundary conditions of de Gennes [4] for the dirty case, according to which
the values of R and its derivative are discontinuous, cannot be used. Instead
of this the boundary conditions of Zaitsev [9] for the clean case which require
the continuity of R and its derivative are used. The solutions of R are given
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by Jacobi’s elliptic function and a hyperbolic function in the superconduct-
ing and normal regions, respectively [8]. However, such a calculation is very
complicated. Here the simple case is considered where both ds and dn are
much thinner than ξ. In this case R cannot vary spatially and is uniform in
both regions. Although this value of R can be obtained approximately from
the exact solution, it can also be derived simply so as to minimize the G-L
energy. The kinetic energy originating from the spatial variation in R can be
disregarded. Then, the free energy density in the superconducting region is
given by the first and second terms in Eq. (6.3), and that in the normal region
is given by the first term in Eq. (6.11). Thus, we have

R =
(

1 − dn

ds
θ

)1/2

. (6.14)

Secondly, the case is treated where flux lines exist. The order parameter is
approximately given by a superposition of the structure of the flux line of
Eq. (6.4) to Eq. (6.14):

|ψ| = R tanh
(

r

rn

)
. (6.15)

Now the elementary pinning force of the normal layer is estimated. Usually
the flux lines are not parallel to the layered structure shown in Fig. 6.6. Hence,
for simplicity the flux lines are assumed to be perpendicular to the layered
structure. The difference in the energy is treated between the cases where the
flux line is in the state shown in Fig. 6.7(a) and that in Fig. 6.7(b). The energy
is given by Eqs. (6.3) and (6.11) for the superconducting and normal regions,
respectively. The kinetic energy can be disregarded, since this is the same in
both regions. It is enough to treat the energy only in the region with the
length dn shown in Fig. 6.7 where the normal core meets the normal region.
In case (a) a change in the energy due to the presence of the flux line in the
region V1 is calculated as

Ua = −2 log 2 · πr2
ndnθR2µ0H

2
c .

In case (b) the change in the energy due to the presence of the flux line in the
region V2 is

Ub = πr2
ndnR2

[
2 log 2 − R2

(
4
3

log 2 +
1
6

)]
µ0H

2
c .

The elementary pinning force is approximately given by the difference in the
energy Ub − Ua divided by 2rn [10]:
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Fig. 6.7. Flux line near an edge of a normal layer

fp = πrndnR2

[
(1 + θ) log 2 − R2

12
(8 log 2 + 1)

]
µ0H

2
c

= 1.8πdn

(
1 − dn

ds
θ

)[
(1 + θ) log 2

− 1
12

(8 log 2 + 1)
(

1 − dn

ds
θ

)]
ξµ0H

2
c . (6.16)

The above variation in the energy takes place when the normal core passes
through the edge of the normal layer, and hence, it is found that the edge
interacts attractively with flux lines.

If the nonsuperconducting regions shaded in Fig. 6.6 are not the normal
conducting phase but an insulating phase, 1 and 0 are substituted into R
in the superconducting and nonsuperconducting regions, respectively. On the
other hand, as for the contribution from the potential energy, this replacement
leads to the same result as the replacement of θ by 0, since the energy of the
insulating region does not depend on Ψ in the case of θ = 0. In this case,
the kinetic energy in the superconducting region should be considered in the
interaction energy, since there is no corresponding energy in the insulating
region. Hence, the elementary pinning force of the insulating layer is given by
f ′
p in Eq. (6.6) multiplied by the thickness dn. If this value is denoted by fp0,

the elementary pinning force of the thin normal layer is

fp

fp0
= 4.19

(
1 − dn

ds
θ

)[
(1 + θ) log 2 − 1

12
(8 log 2 + 1)

(
1 − dn

ds
θ

)]
. (6.17)

In the usual Nb-Ti wires, θ is estimated as 1.4 for normal α-Ti phase [8].
Thus, fp/fp0 = 3.83 is derived when dn/ds = 0.2. This ratio is considerably
larger than the ratio of 2.7 estimated using the usual local model [8]. However,
it can be concluded that thin normal α-Ti layers are much stronger than
insulating layers even allowing for the proximity effect. Figure 6.8 shows the
dependence of fp/fp0 on θ when dn/ds = 0.2.
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Fig. 6.8. Dependence of the elementary pinning force at the edge of a normal layer
on θ for dn/ds = 0.2

As shown above, although the normal precipitate behaves like a supercon-
ductor due to the proximity effect, its pinning strength is not weakened. The
mistake in [5] comes from a confusion of the state in which the precipitate
is forced to behave like a superconductor under the environmental conditions
and the intrinsic superconducting state [11]. The energy increases locally in
the former case when the precipitate becomes superconducting, while the en-
ergy decreases in the latter case. It should be noted that αn is positive, while α
is negative. The reason why the precipitate becomes superconducting is that
it reduces the energy globally by preventing destruction of the superconduc-
tivity in the surrounding superconducting region and minimizing the spatial
variation in the order parameter around the interface. Hence, if the flux line
meets the normal precipitate, the superconductivity in the precipitate is de-
stroyed and the energy is decreased. Thus, the elementary pinning force takes
a larger value.

In a strict sense the application of the G-L theory to such a phenomenon on
a scale smaller than ξ may not be a good approximation. A more microscopic
theoretical calculation may be necessary for a detailed estimation of the ele-
mentary pinning force. Roughly speaking, however, the proximity effect can
be described even by the G-L theory in a similar way to the microscopic theory
[12]. Hence, the above result is considered to be correct qualitatively.

The local model predicts [11] that fp ≥ fp0 and fp/fp0 approaches 1 when
θ goes to 0. On the other hand, Fig. 6.8 shows that the elementary pinning
force slightly decreases due to the proximity effect in the case of small θ.
This is caused by the fact that the kinetic energy is increased by the spatial
variation in the induced order parameter when the normal core exists in the
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normal layer. When θ becomes large, the decrease in the potential energy due
to presence of the normal core becomes relatively larger than the increase in
the kinetic energy. Thus, the elementary pinning force increases.

6.3.2 Grain Boundary

The microstructure is different from grain boundary to grain boundary, and
a general discussion on the elementary pinning force is more difficult than
in the case of normal precipitates. For example, distortions only exist on an
atomic scale around the grain boundaries of a pure metal superconductor. On
the other hand, for grain boundaries in intermetallic superconductors formed
by diffusion through boundaries, the composition deviates sometimes from
stoichiometry within a certain distance from the boundary. In the former case
there are only the mechanisms of electron scattering and elastic interaction. In
the latter case the condensation energy interaction from a nonsuperconducting
layer with a finite thickness mentioned in Subsect. 6.3.1 is also involved. In
this subsection we describe mainly the electron scattering mechanism, and
the interactions from nonsuperconducting layers with finite thicknesses are
mentioned additionally. The elastic interaction will be treated in the next
section.

If we assume an interaction of the kind treated in Subsect. 6.3.1 as the
pinning mechanism of grain boundaries, the boundaries do not have a sufficient
thickness as normal precipitates, and hence, the volume of the region in which
the boundary overlaps the normal core of a flux line is very small. For this
reason the anisotropy of the upper critical field Hc2 among grains was first
considered as a candidate for the pinning mechanism of grain boundaries
[13]. That is, even if the thermodynamic critical field Hc is the same among
grains, the energy of the normal core is different from grain to grain because
of different coherence lengths ξ. Thus, the normal core feels a variation in
the energy when it passes through the boundary, and the pinning interaction
results from it. However, the pinning interaction does not arise from this
mechanism for isotropic polycrystalline superconductors, and strong pinning
interaction cannot be expected for superconductors with small anisotropy.

It was Zerweck [14] who first argued quantitatively that pinning by grain
boundaries takes place through the electron scattering mechanism. An outline
of this mechanism is as follows. A grain boundary provides an irregular varia-
tion in the potential energy for traveling electrons, which causes the scattering
of electrons. Thus, the electron mean free path becomes shorter near the grain
boundary, and the coherence length also becomes shorter. Hence, when the
normal core of a flux line reaches the grain boundary, the diameter of the
normal core with its higher energy density becomes smaller, and the energy
of the normal core changes. Namely, the grain boundary interacts attractively
with flux lines. In this case the properties of the superconductor influence the
pinning strength. That is, the variation in the coherence length ξ caused by
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Fig. 6.9. Direction of motion of an electron from point A near the grain boundary

the scattering depends strongly on whether the superconductor is “clean” or
“dirty.” Naturally a larger rate of variation in ξ results in stronger pinning.

Assumed that an electron is moving through a bulk superconductor which
does not contain grain boundaries. The probability that the electron can move
a distance r without being scattered after the last scattering is assumed to be
given by

p(r) =
1
lb

exp
(
− r

lb

)
, (6.18)

where lb is the bulk value of the electron mean free path. It can be easily shown
that integration of r multiplied by this probability from 0 to ∞ leads to lb.
Here a sufficiently wide planar grain boundary is assumed. The expectation
value of the electron mean free path at point A at a distance x from the
boundary is estimated. The probability that an electron traveling from point
A is scattered during the movement through r depends on the direction of the
movement. The angle of the movement of the electron measured from a line
perpendicular to the boundary is denoted by φ (see Fig. 6.9). For simplicity it
is assumed that the electron is certain to be scattered at the boundary. The
probability that the electron can travel a distance r without being scattered
is

p(r, φ) = p(r) ; 0 ≤ r < s ,

= δ(r − s)lbp(s) ; r = s , (6.19)
= 0 ; s < r

for 0 < φ < π/2, where s = x sec φ. The factor multiplied by the delta-function
in the second equation is determined from the condition of normalization and
is given by the integration of p(r) from s to ∞. For π/2 < φ < π the probability
is simply given by

p(r, φ) = p(r) . (6.20)
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Thus, the distance through which the electron can travel without being scat-
tered from point A into the direction given by φ is derived as

l(x, φ) =
∫ ∞

0

p(r, φ)rdr

= lb

[
1 − exp

(
s

lb

)]
; 0 ≤ φ ≤ π

2
, (6.21)

= lb ;
π

2
< φ ≤ π .

Averaging this with respect to the whole solid angle 4π, the mean free path
is obtained:

l(x) =
1
2

∫ π

0

l(x, φ) sin φ dφ

= lb − 1
2

[
lb exp

(
− x

lb

)
− x

∫ ∞

x/lb

exp(−z)
dz

z

]
. (6.22)

The obtained variation in the electron mean free path is shown in Fig. 6.10.

Fig. 6.10. Variation in the electron mean free path with the distance from the
boundary (after Zerweck [14])

The variation in the coherence length ξ caused by the variation in the elec-
tron mean free path depends on the degree of impurity in the superconductor.
Zerweck used the interpolation formula of Goodman:

ξ(T = 0) =
ξ0

(1 + 1.44ξ0/l)1/2
(6.23)

for this relation. In the above ξ0 is the BCS coherence length independent of
temperature. Figure 6.11 shows the variation in the coherence length with the
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Fig. 6.11. Variation in the coherence length with the distance from the boundary
(after Zerweck [14]). Respective lines are for the cases of the impurity parameter αi

of 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 from the top

distance from the boundary, where ξb is the bulk coherence length and αi in
the figure is the impurity parameter of the superconductor given by

αi =
0.882ξ0

lb
. (6.24)

Because of the variation in the coherence length the energy varies when the
flux line passes through the boundary. Zerweck [14] treated only the first and
second terms of Eq. (6.3). We will follow this. It is assumed that the magnetic
field is sufficiently low and that the flux line is isolated. The diameter of
the normal core is 2ξb and 2ξ in the directions parallel and perpendicular to
the boundary, respectively, and hence, the cross-sectional area of the normal
core is πξbξ. Since the condensation energy density is µ0H

2
c /2, the increase in

the energy, i.e., the pinning energy, per unit length of the normal core is given
by U ′

p = πξbξµ0H
2
c /2 omitting a constant term. This leads to the elementary

pinning force of the grain boundary per unit length of flux line:

f ′
p =

π

2
ξbµ0H

2
c

〈
dξ

dx

〉
m

, (6.25)

where 〈dξ/dx〉m is the maximum value of the mean variation rate of the co-
herence length, namely the mean variation rate between x = 0 and x = ξb.
The obtained result is shown in Fig. 6.12, where the ordinate represents the
elementary pinning force normalized by ξ0µ0H

2
c . If the temperature depen-

dence of ξ is given by Eq. (1.45), the same dependence can also be added to
Eq. (6.23). The factor representing this temperature dependence is the same
as that of ξb. This means that 〈dξ/dx〉m does not depend on the temperature.
Hence, the temperature dependence of the elementary pinning force is given
by that of ξbH2

c .
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Fig. 6.12. Dependence of the elementary pinning force (per unit length of the flux
line) of the grain boundary at low temperatures on the impurity parameter (after
Zerweck [14])

The elementary pinning force of grain boundaries varies considerably with
the impurity parameter αi. For “clean” superconductors with small αi or
“dirty” superconductors with large αi, the elementary pinning force is small.
In these extreme cases the variation in the coherence length caused by elec-
tron scattering by boundaries is small as mentioned previously. As a result,
the elementary pinning force takes a maximum around αi ∼ 1.4 where the
variation rate of the coherence length is at a maximum.

Based on the above estimation of the elementary pinning force at lower
fields, Yetter et al. [15] extended the calculation to the high field region in
which the flux lines form a lattice. At the same time an experimentally ob-
tained formula was used instead of Goodman’s interpolation formula given
by Eq. (6.23), since this formula deviates from experiments in the “clean”
limit of small αi. Although the obtained result is qualitatively similar to that
of Zerweck, the value of αi at which the elementary pinning force takes the
maximum value is shifted to about 10.

In the above treatments by Zerweck and by Yetter et al. the elementary
pinning force is obtained by numerical calculation and the result is not easy
to understand intuitively. For this reason Welch [16] carried out an analytical
calculation and derived an approximate formula. In the beginning the spatial
variation in the order parameter was approximately expressed by a simple
function and the variation in the coherence length or that in the G-L parame-
ter κ was assumed to be described by an exponential function of the distance
from the boundary. Then, the variation in the energy was estimated and the
elementary pinning force was calculated. The result is expressed as

f ′
p =

πµ0H
2
c ξ2

d
· ∆κ

κ

∣∣∣∣
0

· 1
1 + 2.0(ξ/d) + 2.32(ξ/d)2

, (6.26)
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where ∆κ/κ|0 is the relative variation in κ from the bulk value at the boundary
and d is the characteristic length describing the spatial variation in κ. The
following interpolation formula was used instead of Eq. (6.23) so as to give a
correct value of the coherence length even in the “clean” limit:

ξ(0) =
ξ0

(1.83 + 1.63αi)1/2
. (6.27)

From Eqs. (1.51) and (1.52) we have ∆κ/κ|0 = [ξb/ξ(x = 0)]2 − 1 (the co-
ordinates are the same as those in Fig. 6.9) assuming that Hc is unchanged.
Equation (6.27) is used for ξb and the same equation with αi replaced by
[lb/l(x = 0)]αi is used for ξ(x = 0). It can be easily seen that l(x = 0) = lb/2
from Eq. (6.22). Thus, we have

∆κ

κ

∣∣∣∣
0

=
1.63αi

1.83 + 1.63αi
. (6.28)

Using the result of the numerical calculation that d is as large as l/3, the
elementary pinning force is obtained from Eq. (6.26). The solid line in Fig. 6.13
shows the calculated dependence on αi of the elementary pinning force.

Welch calculated not only for the case of the ideal boundary with zero
thickness, but also the elementary pinning force for a boundary with a region
of finite thickness in which the composition deviates from stoichiometry as in

Fig. 6.13. Dependence of the elementary pinning force (per unit length of the
flux line) of the grain boundary on the impurity parameter (after Welch [16]). The
solid line is for the ideal boundary of zero thickness, the dot dashed line is for the
boundary of thickness 0.1ξ0 and the dashed line is for the optimum boundary with
the characteristic length of d = 1.5ξ
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compound superconductors produced by a diffusion process through bound-
aries. It was postulated that κ in this region was different from the bulk value
by the amount given in Eq. (6.28). The result for the case where the thickness
is equal to 0.1ξ0 is shown by the dot dashed line in Fig. 6.13. It turns out
that the elementary pinning force takes a larger value for a boundary with a
finite thickness. In addition Welch investigated the effect of variation in the
characteristic length d. It can be proved from Eq. (6.26) that the elementary
pinning force is at a maximum when d is equal to (2.32)1/2ξ � 1.5ξ. The result
of f ′

p in this optimum case is also shown by the dashed line in the figure.
A similar calculation was also done by Pruymboom and Kes [17]. The

most important characteristic of their calculation was that the kinetic energy
given by the third term in Eq. (6.3) was also included. In this treatment the
term proportional to |Ψ|4 was neglected and the expression of the energy was
transformed using the G-L equation (see Exercise 1.2). A qualitatively similar
result to that of Welch was obtained from a similar calculation. Quantitatively
the obtained elementary pinning force is about twice as large as that of Welch.
However, the effect of electron scattering appears originally in β through the
variation in κ, and hence, the neglect of β|Ψ|4/2 is questionable.

It is sometimes insisted that only the kinetic energy is important to the
pinning energy. This is based on the following argument [18]. The order para-
meter Ψ is determined so as to minimize the energy given by Eq. (6.3). This
equilibrium value of Ψ is represented by Ψe. In the vicinity of a pinning center
the material constants, α and β, vary and their variations are represented by
δα and δβ. A new equilibrium value, Ψe + δΨe, is correspondingly obtained.
The contribution from the first and second terms in Eq. (6.3) to the energy is
δα|Ψe|2+δβ|Ψe|4/2. The argument is that the contribution from the variation
in the equilibrium value should also be contained in the energy. According to
this argument, the new term just cancels the above contribution and only the
kinetic energy remains. However, this line of reasoning is clearly incorrect.
Here the kinetic energy is disregarded for simplicity. From the equilibrium
condition we have |Ψe|2 = −α/β. Hence, the variation in the energy is given
by

δF ′ = (α + δα)(|Ψe|2 + δ|Ψe|2) +
1
2
(β + δβ)(|Ψe|4 + δ|Ψe|4)

−α|Ψe|2 −
1
2
β|Ψe|4

� αδ|Ψe|2 +
1
2
βδ|Ψe|4 + δα|Ψe|2 +

1
2
δβ|Ψe|4

= δα|Ψe|2 +
1
2
δβ|Ψe|4

and is not zero. Thus, it is concluded that the new insistence on kinetic energy
alone is not correct but that the original argument by Campbell and Evetts
[19] is correct.
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However, it is true that the contribution from the kinetic energy to the
elementary pinning force is large. At the moment there is no exact theoret-
ical calculation in which all the energy is taken into account, and further
investigation is necessary.

There are experimental results which clarify the mechanism of pinning by
a grain boundary. Figure 6.14 shows the dependence of critical current in a
niobium bi-crystal specimen on the angle of the magnetic field [20]. A large
critical current is obtained when the magnetic field is parallel to the twin
boundary. This verifies the claim that the boundary acts as a pinning center.
Figure 6.15 shows the magnetic field dependence of the pinning force per unit
area of the twin boundary in a similar niobium bi-crystal specimen [21]. In
this specimen the crystal axes are not symmetric with respect to the magnetic
field, which is parallel to the boundary and perpendicular to the current. It
turns out that the pinning force is different when the direction of the current
or the direction of the Lorentz force is reversed, showing that the anisotropy
is also involved in the pinning. That is, the mean value of the pinning force of
the two directions gives the contribution from the electron scattering or the
elastic interaction and half of the difference between the two pinning forces
gives the contribution from the anisotropy. It can be seen from this figure that
the pinning force still has a finite value even at magnetic fields above the bulk
Hc2. This shows that the coherence length in the vicinity of the boundary is
reduced due to the electron scattering by the boundary, resulting in the local
enhancement of Hc2.

Fig. 6.14. Dependence of the critical current in a niobium bi-crystal on the angle of
the magnetic field [20]. φ is the angle between the twin boundary and the magnetic
field
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Fig. 6.15. Pinning force per unit area of the twin boundary in a niobium bi-crystal
[21]. The axes of the two crystals are not symmetric with respect to the magnetic
field, which is parallel to the boundary and perpendicular to the current. The dif-
ferent symbols represent the results for the different directions of the current

6.4 Elastic Interaction

For one-dimensional defects such as dislocations the cross-sectional area for
electron scattering is small, and hence, the pinning force arising from the
electron scattering mechanism is not believed to be strong. However, strains
exist around such defects, and the flux pinning occurs from the interaction
between the strain and the flux lines. Since the central core of a flux line is
almost in the normal state, the specific volume of this region is smaller (with
the relative difference on the order of 10−7) than that in the surrounding
superconducting region, and internal stress exists around the normal core. The
interaction caused by this internal stress is called the ∆V effect. On the other
hand, the elastic constant of the normal core is larger (the relative difference
is of the order of 10−4) than that of the surrounding superconducting region,
and hence, the elastic energy due to a defect is larger when the normal core
is close to it. The pinning interaction caused by the variation in this energy is
called the ∆C effect or ∆E effect. The energies of interaction due to the ∆V
and ∆C effects are proportional to the first and second powers of the strain
of the defects, respectively. Hence, these interactions are also called the first-
and second-order interactions.
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Theoretical calculation of the first-order interaction was attempted for
an edge dislocation parallel to the flux line [22]. Campbell and Evetts [23]
proposed a simplified method of calculation for this interaction. They esti-
mated the stress tensor of the flux line as shown below. An isolated flux line
is treated and the local model is used, in which a normal core of radius ξ is
assumed. The ratio of dilation in the region of the normal core to that in the
surrounding region is denoted by εv0(< 0). This is given by the dependence
of the condensation energy density on the pressure in the Meissner state,
εv0 = (µ0/2)∂H2

c /∂P . It is assumed that the dilation of the normal core does
not occur along the length of the flux line. Cylindrical coordinates are defined
where the z-axis lies on the center of the flux line. Then, the stress tensor is
expressed as

σ̃f =
Γξ2

r2


1 0 0

0 −1 0
0 0 0


 . (6.29)

In the above Γ is a positive quantity given by

Γ = −εv0µ(1 + ν)
3(1 − ν)

, (6.30)

where µ is the shear modulus and ν is the Poisson ratio.
It is assumed that the edge dislocation is parallel to the z-axis and located

at (r0, φ0) on the (r, φ) plane and that Burgers vector b0 is directed towards
the negative x-axis. Then, according to Peach and Koehler [24], the force on
the dislocation per unit length under the stress given by Eq. (6.29) is expressed
as f ′d = −(σ̃f · b0) × i, where i is a unit vector showing the direction of
the dislocation and is along the positive z-axis. The pinning force on the flux
line per unit length is equal in magnitude but directed opposite to this force.
Since Burgers vector is b0 = b0(− cos φ0, sin φ0, 0) in the (x′, y′, z) coordinates,
we have

f ′ =
Γξ2b0

r2
0

(− sin φ0, cos φ0, 0) (6.31)

(see Fig. 6.16). The magnitude of this pinning force is Γξ2b0/r2
0 and increases

with decreasing distance between the dislocation and the flux line. From the
range of applicability of the local model that was used, the lower limit of r0

is ξ, and hence, the elementary pinning force is obtained as

f ′
p = Γb0 (6.32)

per unit length of a flux line. This calculation can be applied to single element
superconductors. We treat niobium at 4.2 K for example [23]. From εv0 �
−3 × 10−7, µ � 3 × 1010 Nm−2, ν � 0.3 and b0 � 3 × 10−10 m, we have
f ′
p � 2 × 10−6 Nm−1. This result is compared with the condensation energy

interaction due to a normal precipitate. Assuming that µ0Hc � 0.16 T and
ξ = 33 nm (µ0Hc2 = 0.30 T), Eq. (6.6) leads to f ′

p � 9.1× 10−4 Nm−1. Thus,
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Fig. 6.16. Flux line at the origin and an edge dislocation parallel to it with the
forces on the flux line and the dislocation

it is found that the pinning force due to dislocations is considerably weaker
than that of normal precipitates.

The second-order interaction between a screw dislocation and a flux line
was calculated by Webb [25]. Since the strain field due to a screw dislocation
is a pure shear, the first-order interaction between it and the stress field due to
the flux line is zero. If the shearing compliance is represented by S44(= 1/µ),
the shear stress at a point at a distance r from the screw dislocation with
the magnitude of Burgers vector b0 is given by τ = b0/2πrS44. The energy
density of the strain is (1/2)S44τ

2. It is assumed that the extension of the
strain field is sufficiently larger than the diameter of the normal core of the
flux line and that the variation in the shearing compliance in the normal core
is represented by δS44(>0). Then, the increase in the local energy density
is δS44τ

2/2 = (1/2)δS44(b0/2πS44)2/r2. Here the case is treated for a screw
dislocation normal to the flux line, and the distance between the screw dis-
location and the flux line is represented by r0. The local model is again used
in which a normal core of radius ξ is assumed. Hence, δS44 is constant in the
normal core and is zero outside it. The z-axis is defined along the length of
the flux line. If r0 is sufficiently larger than ξ, the normal core can be regarded
as a thin line, and the increase in the total energy, i.e., the pinning energy is
estimated as

∆U � 1
2
δS44

(
b0

2πS44

)2

πξ2

∫ ∞

−∞

dz

r2
0 + z2

= δS44

(
b0

2πS44

)2
π2ξ2

2r0
. (6.33)

The pinning force is repulsive and its value obtained from f = −∂∆U/∂r0

increases with decreasing distance r0. Since the lower limit of r0 is ξ, the
elementary pinning force is approximately estimated as

fp � |f(r0 = ξ)| =
1
8
δS44

(
b0

S44

)2

. (6.34)
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In the case of niobium at 4.2 K, substitution of b0 � 3 × 10−10 m, S44 �
3×10−11 N−1m2 and δS44 � 4×10−15 N−1m2 leads to [23] fp � 5×10−14 N.
The elementary pinning force of a screw dislocation parallel to the flux line
can also be calculated in a similar manner. A question on this will be found
in Exercise 6.5.

The elastic interactions shown in the above originate from the varia-
tions in superconducting parameters. These variations are in general small
enough to be treated as perturbations. Hence, a general calculation using the
G-L theory can be done, and its details are described in [23]. Here the basic
outline is briefly explained. As mentioned previously the variations in α and
β in Eq. (6.3) can be described as the variations in Hc2 and κ, respectively.
Hence, if the normalized order parameter, ψ = Ψ/|Ψ∞|, is used, the variation
in the G-L energy is written as

δFs = −µ0H
2
c

∫ (
δHc2

Hc2
|ψ|2 − δκ2

2κ2
|ψ|4

)
dV , (6.35)

since the kinetic energy does not directly depend on the strain. The elastic
energy should also be taken into account as well as the G-L energy δFs. The
elastic energy is expressed as ΣCijkl

nεijεkl in terms of the elastic constant
tensor, [Cijkl

n], in the normal state. In the above εij is a component of the
strain tensor and Σ represents the summation with respect to i, j, k and l.
In the following the symbol of summation Σ is omitted after a conventional
description. When a product of quantities with the same subscript appears,
the summation with respect to this subscript should be taken. In this case
δHc2 and δκ2 arise from the strain and can be described as

δHc2

Hc2
= aijεij + aijklεijεkl , (6.36a)

δκ2

κ2
= bijεij + bijklεijεkl . (6.36b)

In the above each coefficient is given by

aij =
1

Hc2
· ∂Hc2

∂εij
, aijkl =

1
Hc2

· ∂2Hc2

∂εij∂εkl
, (6.37a)

bij =
1
κ2

· ∂κ2

∂εij
, bijkl =

1
κ2

· ∂2κ2

∂εij∂εkl
. (6.37b)

The strain εij can be divided into

εij = εij
d + εij

f , (6.38)

where εij
d and εij

f are the strain due to defects and the spontaneous strain of
the flux line, respectively. In general εij

f is much smaller than εij
d. Omitting a

constant term Cijkl
nεij

dεkl
d, the sum of δFs and the energy of strain reduces

to
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δF1 =
∫

εij
d

[
Cijkl

nεkl
f − µ0H

2
c

(
aij |ψ|2 −

1
2
bij |ψ|4

)]
dV . (6.39)

This gives the energy of the first-order interaction proportional to εij
d. On

the other hand, the energy of the second-order interaction is

δF2 = −
∫

εij
dεkl

dδCijkldV , (6.40)

where δCijkl is the variation in the elastic constant in the superconducting
state and is given by

δCijkl = µ0H
2
c

(
aijkl|ψ|2 −

1
2
bijkl|ψ|4

)
. (6.41)

Substituting the approximate expression of the flux line lattice of Eq. (1.98)
into |ψ|2, the elementary pinning force at high fields can be estimated.

When the superconductor is heavily worked, the defects obtained are not
simple dislocations but are significantly entangled each other. Sometimes a
dislocation cell structure is formed, in which a region with a low density
of dislocations is surrounded by an high density region. In extremely heavily
worked Nb-Ti, etc., internal low density regions and cell boundaries are similar
to grains and grain boundaries in a compound superconductor. For such two-
dimensional or three-dimensional pinning centers the probability for electrons
to be scattered becomes high, and the condensation energy interaction due
to the electron scattering mechanism seems to be more important than the
elastic interaction.

We now briefly discuss the elementary pinning force of a grain boundary
due to the elastic interaction. This was calculated by Kusayanagi et al. [26]
Assuming a small angle twin boundary composed of a row of edge disloca-
tions separated by the interval L, they estimated the strength of interaction
between the boundary and the flux line lattice. As for the first-order inter-
action, the strain takes positive and negative values alternately along the
boundary, resulting in almost zero elementary pinning force due to cancel-
lation of the respective contributions. On the other hand, the second-order
interaction depends on the arrangement of flux lines at the boundary. They
obtained

f ′
p =

b2
0γe

6
√

3L

(
1 − B

µ0Hc2

) ∣∣∣∣log
(

2πrc

L

)
− 1
∣∣∣∣ (6.42)

per unit length of flux line for the arrangement of the flux line lattice shown in
Fig. 6.17. In the above b0 is the magnitude of Burgers vector, rc is the cut-off
radius of the dislocation, and γe is a coefficient for expressing a variation in
the superconducting state as µ/(1 − ν) = µn/(1 − νn) − γe|ψ|2 and can also
be expressed in terms of the elastic constants, where the subscript “n” repre-
sents a value in the normal state. For niobium at 4.2 K and B/µ0Hc2 = 0.7,
substitution of rc � b0 � 3 × 10−10 m, L � 1.5 × 10−9 m and γe �
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Fig. 6.17. Twin boundary and flux line lattice

5.5 × 106 Nm−2 leads to f ′
p � 5.7 × 10−6 Nm−1. This value is consider-

ably smaller than the maximum value calculated from the electron scattering
mechanism by Zerweck [14] and Yetter et al. [15], 3 − 5 × 10−5 Nm−1. It is
also about 1/5 of the experimental result for the niobium bi-crystal shown in
Fig. 6.15. Thus, electron scattering is considered to be the dominant pinning
mechanism at grain boundaries in most cases.

6.5 Magnetic Interaction

Since the normal core of a flux line is surrounded by the magnetic field with a
radius of the order of the penetration depth λ, the magnetic interaction with
the flux line occurs for inhomogeneous regions sufficiently larger than λ. An
interaction between a wide superconducting-normal interface and a parallel
flux line is assumed at a sufficiently high magnetic field. The origin of the
interaction is the surface barrier mentioned in Sect. 3.5. In an equilibrium
state the superconducting region is slightly diamagnetic in comparison with
the normal region. Its magnetization, represented by Mr, in the magnetic field
H = B/µ0 in the normal region is given by Eq. (1.114) with replacement of
He by B/µ0. Hence, the flux line suffers a repulsive force from the interface
due to the Lorentz force caused by the magnetization current flowing near
the interface, when the flux line moves from the normal region to the super-
conducting region. This force can be written as φ0|Mr| exp(−x/λ)/λ in terms
of the flux quantum φ0, where x is the distance of the position inside the
superconducting region from the interface. On the other hand, an image flux
line exists in the normal region opposite the flux line in the superconducting
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region, and an attractive force acts between them. This force is written as
K exp(−2x/λ) with K denoting a constant. The total work done by the two
forces during movement of the flux line from x = 0 to x = ∞ should be zero.
From this requirement K = 2(φ0|Mr|)/λ is derived and the net attractive
force by the interface amounts to [27]

f ′
p =

φ0|Mr|
λ

=
φ0Hc2

[(2κ2 − 1)βA + 1]λ

(
1 − B

µ0Hc2

)
(6.43)

at x = 0. Thus, the normal phase also works as an attractive pinning center
due to the magnetic interaction.

The flux pinning strength from the magnetic interaction can be compared
with that from the condensation energy interaction given by Eq. (6.8). The
ratio of these elementary pinning forces is

f ′
p(magn)
f ′
p(cond)

=
9.30κ

(2κ2 − 1)βA + 1
� 4.01

κ
. (6.44)

Hence, it is concluded that the condensation energy interaction is the dom-
inant pinning mechanism of normal precipitates for superconductors with κ
larger than 4.

6.6 Kinetic Energy Interaction

The pinning performance in Nb-Ti with pinning centers of normal α-Ti is
very high, and it is desired to enhance the volume fraction of α-Ti for a fur-
ther improvement. However, it is empirically known that the obtained volume
fraction is 15% or so at maximum in the usual fabrication process. Thus,
an introduction of artificial pinning centers into Nb-Ti was examined. It was
found that the critical current density reached 4.25× 109 Am−2 at 4.2 K and
5 T when Nb of 27 vol.% was introduced and fabricated into thin laminar
structures after the usual drawing process [28].

However, added Nb is in a superconducting state at 4.2 K, and its pinning
mechanism is not a simple condensation energy interaction. In fact, if it was
the condensation energy interaction, the critical current density would show a
peak effect at a magnetic field in the vicinity of the upper critical field of Nb
(see Sect. 7.6). The observed critical current density decreased monotonically
with increasing magnetic field [28, 29] and the upper critical field was slightly
lower than in conventional Nb-Ti. Such a degradation of the upper critical
field can be attributed to the proximity effect between the Nb layers and the
superconducting matrix. This speculation seems to be reasonable, since the
thickness of the Nb layers is of the order of nanometers.

Multilayers of weakly superconducting Nb in a Nb-Ti superconducting
matrix are considered, as is schematically shown in Fig. 6.6, in which the nor-
mal layers are replaced by Nb layers. The thickness of the respective layers is
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denoted by dNT and dN, and it is assumed that the Nb layers are sufficiently
thin. It seldom occurs that flux lines are exactly parallel to the layered struc-
ture. Hence, the typical case is treated for simplicity where the magnetic field
is normal to the layers. It is assumed that the Nb layer is in the supercon-
ducting state due to the proximity effect even in a magnetic field above its
bulk upper critical field HN

c2. This situation will continue until the magnetic
field reaches the upper critical field Hav

c2 of the whole system. In addition, the
case is treated for a low magnetic field region in which the flux line spacing
is sufficiently large. Since the thickness of the Nb layers is thin enough, the
structure of the order parameter of the normal core of an isolated flux line
normal to the layers can be approximated by that in the thicker Nb-Ti layer:
Eq. (6.4) with rn = 1.8ξNT where ξNT is the coherence length in the Nb-Ti
layer. Since the thermodynamic critical field of Nb is approximately the same
as that of Nb-Ti as is the critical temperature, the condensation energy is ap-
proximately the same between Nb-Ti and Nb. Hence, the condensation energy
can be disregarded, but the kinetic energy is important when considering the
pinning interaction. The energy due to the current is also disregarded, and
only the third term of Eq. (6.3) is considered, similarly to the calculation
in 6.3.1.

Here the theoretical analysis given in [10] is introduced. The two cases
shown in Fig. 6.7(a) and (b) are considered. Here the normal layers are again
replaced by Nb layers. In case (a) a normal core of a flux line crosses one
more Nb layer in comparison with case (b). To discuss the difference in the
energy between the two cases, it is enough to compare the kinetic energy in
the regions of V1 and V2. In case (a) the kinetic energy comes only from
region V1 and is given by

Ua = µ0H
2
c ξ2

NdN

∫ ∞

0

(
d|ψ|
dr

)2

2πrdr =
4π

3
µ0H

2
c ξ2

NdN

(
log 2 − 1

4

)
. (6.45)

The kinetic energy in region V2 in case (b) is similarly given by

Ub =
4π

3
µ0H

2
c ξ2

NTdN

(
log 2 − 1

4

)
. (6.46)

Hence, the pinning energy is

∆UN = Ua − Ub =
4π

3
µ0H

2
c dN(ξ2

N − ξ2
NT)

(
log 2 − 1

4

)
� 0.591πµ0H

2
c dN(ξ2

N − ξ2
NT) . (6.47)

It is found that ∆UN > 0, since ξN > ξNT. Therefore, the niobium layers act
as repulsive pinning centers. The elementary pinning force of the edge of a
niobium layer is

fpN � ∆UN

2rn
=

0.164πµ0H
2
c dN

ξNT
(ξ2

N − ξ2
NT) . (6.48)
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The obtained pinning strength of the kinetic energy interaction of niobium
is compared with the pinning strength of the condensation energy interaction
of ordinary α-Ti in [10], and the probability of stronger pinning of niobium
than α-Ti is discussed. If the upper critical field in heavily worked Nb layers
is higher than 1.10 T, the pinning force of the Nb layer is expected to be
stronger than that of the α-Ti layer of the same geometry.

In this case the magnetic field dependence of the elementary pinning force
comes from a reduction in 〈|Ψ|2〉 as well as the usual condensation energy in-
teraction and is expressed as 1−(B/µ0H

av
c2 ). The upper critical field decreases

from the value of the Nb-Ti matrix HNT
c2 due to the proximity effect as: [30]

Hav
c2 = HNT

c2 · 1 + dN/dNT

1 + dNξ2
N/dNTξ2

NT

. (6.49)

6.7 Improvement of Pinning Characteristics

It can be seen from Fig. 6.12 that the elementary pinning force of a grain
boundary that originates from the electron scattering mechanism is at most
0.17ξ0µ0H

2
c per unit length of the flux line. On the other hand, Eq. (6.6) shows

that the elementary pinning force of a normal precipitate that originates from
the condensation energy interaction amounts to 1.35ξµ0H

2
c . The elementary

pinning force of the grain boundary takes the maximum value when the impu-
rity parameter αi is about 1.4, and then, ξ(T = 0) is approximately equal to
2ξ0. Hence, if the maximum elementary pinning force of the grain boundary
at low temperatures is normalized to 1, the elementary pinning force of the
normal precipitate is 4.0. Thus, it can be seen that the normal precipitate is
stronger than the grain boundary. This is because a large condensation energy
can be fully utilized as the pinning energy for normal precipitates, while the
pinning energy of the grain boundary is small, since the superconducting pa-
rameters vary only slightly near the boundary due to the electron scattering.

The elementary pinning force is proportional to H2
c ξ according to both

mechanisms. Hence, this quantity represents the flux pinning strength inher-
ent in superconducting materials. If we compare these values for Nb-Ti and
Nb3Sn, which are practical superconducting materials, at 4.2 K, a large differ-
ence of 1 : 4.3 is obtained. This means that Nb3Sn is a material with very high
potential for pinning. However, the difference in the practical critical current
density between these materials is small. One of the reasons for this result is
the difference in the pinning centers. That is, relatively weak grain boundaries
work as pinning centers in Nb3Sn, while strong normal precipitates work in
Nb-Ti. The difference in the number density of the effective pinning sites is
also one of the reasons.

Quite high pinning efficiency in Nb-Ti is owing to the fact that the dom-
inant pinning centers, the normal precipitates of the α-Ti phase, are not of
a cubic shape but are in the shape of very thin ribbons several nanometers
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Fig. 6.18. Large normal precipitate (upper) and variation in energy when the flux
line passes through (lower)

thick. For large cubic precipitates the elementary pinning force is given by
Eq. (6.9). It should be noted that only the surface regions of precipitates
work as pinning centers. The variation in the energy when the flux line passes
through a large normal precipitate is shown in Fig. 6.18. When the flux line
moves through the central part of the precipitate, the energy does not vary
much, and there is no appreciable pinning interaction. Thus, it is effective for
pinning to enlarge the surface area of precipitates. In fact such a structure of
pinning centers is realized in practical Nb-Ti superconductors.

In practical Nb-Ti superconducting wires, α-Ti is precipitated on subband
walls by heat treatment after a heavy drawing and then elongated to thin
ribbons by additional drawing. For example, we assume that the dimensions
of the α-Ti particles after the precipitation are 50 × 75 × 60 nm3 and that
those are deformed to 4 × 75 × 750 nm3 with the longest axis along the wire
by the additional drawing. Figure 6.19 shows the shapes of the precipitate
and the arrangements of flux lines before and after the additional drawing.
Before the drawing as in (a) the interaction per flux line is stronger, while
the number of interacting flux lines is as small as three. On the other hand,
after the drawing as in (b), although the interaction per flux line is smaller,
the number of interacting flux lines increases drastically. As a result, the
elementary pinning force in (b) is about 1.7 times as large as that in (a)
[31]. The improvement of pinning characteristics in Nb-Ti is achieved in this
manner by making α-Ti into thin ribbons.

The pinning efficiency in Nb3Sn is not as good as in Nb-Ti because of the
pinning by grain boundaries. However, this means that there is still room for
drastic improvement of the property. One of the possibilities is the improve-
ment of the elementary pinning force by addition of a third element to Nb3Sn.
The addition of a third element is now employed mainly for improvement in
the upper critical field Hc2. If a suitable element which is concentrated on
grain boundaries and contributes to the electron scattering is discovered, it
will be effective for the improvement of the pinning characteristics.
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Fig. 6.19. Typical shapes of α-Ti and the arrangement of flux lines (a) before and
(b) after a drawing of Nb-Ti at 4.2 K and 5 T. The circles represent normal cores
and the arrow shows the direction of the Lorentz force

From the relationship between the pinning force density and the reciprocal
size of grains as shown in Fig. 7.18, the elementary pinning force of the grain
boundary can be estimated. According to this f ′

p = 3.1 × 10−4 Nm−1 is
obtained for V3Ga [32] in Fig. 7.18, while we have f ′

p = 1.0 × 10−4 Nm−1

for Nb3Sn [33]. Such a strong pinning in V3Ga reflects its excellent pinning
characteristics at high fields (see Sect. 7.5). Although the reason for such
a strong pinning of grain boundaries in V3Ga has not yet been clarified, it
attracts attention by showing the possibilities for improvement of pinning
characteristics in Nb3Sn.

Exercises

6.1. Calculate the elementary pinning force of a wide interface between the
superconducting and normal regions parallel to a flux line assuming the
local model, in which the order parameter is approximated as |Ψ| = 0
for r < ξ and |Ψ| = |Ψ∞| for r > ξ.

6.2. Derive Eq. (6.14).
6.3. Figure 6.8 shows that the elementary pinning force decreases when θ

becomes too large. Consider the reason. How large is the elementary
pinning force expected to be in the limit of large θ?

6.4. It is assumed that values of the upper critical field in adjacent grains are
Hc2 and Hc2 + δHc2 (δHc2 is sufficiently small and positive) because of
the anisotropy. When the flux line moves from the grain with the higher
upper critical field to the grain with the lower one at low fields, estimate
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the elementary pinning force. Assume that the flux line is parallel to the
interface.

6.5. Calculate the elementary pinning force of a screw dislocation parallel to
a flux line based on the second-order elastic interaction.
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7

Flux Pinning Characteristics

7.1 Flux Pinning Characteristics

The macroscopic pinning force density, Fp = JcB, which works on flux lines
in a unit volume is an accumulation of individual pinning interactions and
depends generally on the elementary pinning force fp, the number density of
pinning centers Np and the density of flux lines, i.e., the magnetic field H (or
the magnetic flux density B). It depends also on the temperature T through
the elementary pinning force. The problem of analytically estimating Fp as a
function of fp, Np and B is called the summation problem. The reason why
such a method is useful is that the resultant Fp does not primarily depend
on the kind of pinning centers (hereafter briefly called pins), but depends
mostly on fp, a parameter representing the strength of pinning. The kind of
pin influences only the magnitude and the temperature dependence of fp.

When fp or Np increases, Fp generally increases. However, the depen-
dences are rather complicated. This comes from the fact that the individual
pinning forces originate from potentials, and hence, these forces are not di-
rected towards a specified direction but depend on the relative position of the
flux lines with respect to the pins as shown in Fig. 6.1. In the case of weak
pins, for example, most of the randomly directed individual forces due to the
random distribution of pins are canceled out, resulting in a very small value of
Fp. On the other hand, for strong pins the pinning force density has a simple
dependence of

Fp ∝ Npfp (7.1)

except in the high field region. This means that Fp increases with increasing
Np or fp. The dependence on the pinning parameters, fp and Np, given by
Eq. (7.1) is called a linear summation. Theories on the summation problem in-
cluding the linear summation will be described in Sect. 7.3, and corresponding
experimental results will be given in Sect. 7.4. Saturation and nonsaturation
phenomena are particularly notable pinning characteristics where practical
superconductors are concerned and will be treated in Sect. 7.5.
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The cancellation of the individual pinning forces of randomly distributed
pins shown in Fig. 6.1 is due to interference through the elastic interaction
of flux lines. That is, since flux lines strongly repel each other, each flux line
cannot necessarily stay at a suitable position for pinning. However, if the pins
are strong enough, the pinning forces exceed the elastic interactions among
the flux lines, and each flux line can stay at a suitable position for pinning.
Thus, the rate of cancellation of individual pinning forces is small, resulting
in the pinning force density of Eq. (7.1). It can be seen from this argument
that the elastic interaction among the flux lines is also an important factor in
determining the pinning characteristics. The corresponding elastic moduli of
the flux line lattice will be briefly discussed in Sect. 7.2.

Before discussing matters concerned with the summation problem, we shall
briefly mention here how the resultant pinning force density varies with tem-
perature and magnetic field. It is empirically known that these dependences
are described in the form:

Fp(B, T ) = AHm
c2(T )f(b) . (7.2)

This is called the scaling law of the pinning force density (or sometimes the
temperature scaling law in distinction from a similar scaling law on strain).
In Eq. (7.2) A is a constant and f is a function only of the reduced magnetic
field b = B/µ0Hc2, and in most cases has the form of

f(b) = bγ(1 − b)δ . (7.3)

One of the characteristics of the scaling law is that the temperature depen-
dence of the pinning force density can be expressed only in terms of that of
the upper critical field Hc2(T). m, γ and δ are important parameters describ-
ing the scaling law of the pinning force density. Figure 7.1 shows the results
for Pb-Bi [1] with normal precipitates, the elementary pinning force of which
is given by Eq. (6.9). In this case we have m = 2, γ = 1/2 and δ = 1. For
Nb3Sn showing a saturation phenomenon, m = 2.0–2.5, γ = 1/2 and δ = 2
are known. Such a scaling law is sometimes used for evaluation of the validity
of summation theories. It is also useful in practical cases for estimation of
the pinning characteristics under difficult circumstances for experiments. It is
useful, for example, for a measurement of critical current densities in very high
magnetic fields or for a measurement of very high critical current densities at
low magnetic fields. If a measurement is done at a high temperature where an
equivalent magnetic field or the critical current density is sufficiently reduced,
the desired characteristics can be deduced using the scaling law.

Similarly to the parabolic variation with temperature given by Eq. (1.2),
the upper critical field Hc2 varies also with the strain ε as

Hc2(ε) = Hc2m(1 − aε2) (7.4)

(see Fig. 7.2) and the pinning force density also shows a dependence [2] similar
to Eq. (7.2):
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Fig. 7.1. Scaling law of pinning force density in Pb-Bi with precipitates of normal
Bi phase [1]. (a) Relationship between normalized pinning force density and the
reduced magnetic field b. The solid line shows Eq. (7.3) with γ = 1/2 and δ = 1.
(b) Relationship between the pinning force density at b = 0.33 and b = 0.8 and the
upper critical field. The straight lines show Eq. (7.2) with m = 2

Fp(B, ε) = ÂHm̂
c2(ε)f(b) . (7.5)

This is the strain scaling law of the pinning force density. Comparing
Eqs. (7.2) and (7.5), the function f of the reduced magnetic field b is the same
between the two scaling laws. However, the parameters, m and m̂, describing
dependence on temperature and strain are different. For the abovementioned
Nb3Sn, m̂ � 1 is obtained, while we have m = 2.0–2.5.
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Fig. 7.2. Variation in the upper critical field vs. the strain in various superconduc-
tors [2]

The temperature dependence of the pinning force density comes from that
of the elementary pinning force mentioned in Chap. 6 and that of the elastic
moduli of the flux line lattice which will be mentioned in Sect. 7.2. The elemen-
tary pinning force and the elastic moduli depend only on the superconducting
parameters such as thermodynamic critical field, coherence length, penetra-
tion depth, etc., and there are no other temperature-dependent factors which
influence these quantities. The temperature dependence of these supercon-
ducting parameters can be approximately represented by that of Hc2, if the
temperature dependence of the G-L parameter κ is disregarded. This brings
about the result of the temperature scaling law. If the variation in the pin-
ning force density due to the strain originates only from the variations in the
superconducting parameters with the strain, it will depend only on Hc2(ε) as
the summation theory predicts, and hence, the index m̂ should coincide with
m. However, the practical situation in a superconductor under external stress
is not simple. This is because there are originally local strains around pins and
an additional strain is considered to be applied nonuniformly to the super-
conductor. Therefore a strain concentration may occur around pins, resulting
in a possible variation in the elementary pinning force itself. For example, the
elastic interaction given by Eqs. (6.39) and (6.40) will directly change through
the variation in the strain εij

d. The differences in the strain scaling law
from the temperature scaling law are speculated to originate from causes
other than the variation in Hc2(ε).
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7.2 Elastic Moduli of Flux Line Lattice

The displacement of flux lines is denoted by u. Then, the strain of the flux
line lattice is given by

εxx =
∂ux

∂x
, (7.6a)

εxy =
∂ux

∂y
+

∂uy

∂x
. (7.6b)

When the strain of the flux line lattice is sufficiently small, a linear relationship
holds between the strain and the stress σ, and this is expressed as

σi = Cijεj (7.7)

using the notation of Voigts used for crystals. In the above the subscripts, i
and j, represent numbers from 1 to 6 referring to xx, yy, zz, yz, zx and xy,
respectively. For example, σ6(= σxy) means the component of stress along
the y-axis working on the y-z plane normal to the x-axis. When a product of
quantities with the same subscript appears as in the above equation (j in this
case), a summation with respect to this subscript is taken. In this case the
symbol representing the summation is usually omitted. The coefficients Cij

defined in Eq. (7.7) are the elastic moduli.
Since the flux line lattice is two-dimensional, a displacement along the

length of the flux lines is meaningless. Hence, the displacement is defined to
be normal to the flux lines. If the z-axis is taken to be parallel to the flux
lines, uz = 0 and ε3(= εzz) = 0. Thus, from symmetry we have


σxx

σyy

σyz

σzx

σxy


 =




C11 C12 0 0 0
C12 C11 0 0 0
0 0 C44 0 0
0 0 0 C44 0
0 0 0 0 C66







εxx

εyy

εyz

εzx

εxy


 . (7.8)

In the above there is a condition of C12 = C11 − 2C66 among the elastic
moduli. Hence, the independent constants are three, i.e., C11, C44 and C66.
These are the elastic moduli for the strains of uniaxial compression, bending
deformation and shear, respectively (see Fig. 7.3). Labusch [3, 4] calculated
these moduli. According to his calculation these are expressed as

C11 = B2 ∂H
∂B

+ C66 � B2

µ0
, (7.9)

C44 =
B2

µ0
, (7.10)
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Fig. 7.3. Deformation of flux line lattice for (a) uniaxial compression, (b) longitu-
dinal shear (bending) and (c) transverse shear. The corresponding shear moduli are
C11, C44 and C66, respectively

C66 =
µ0

2

∫ B

0

B2 d2H(B)
dB2

dB ; in the vicinity of Hc1 , (7.11a)

= 0.48
µ0H

2
c κ2(2κ2 − 1)

[1 + βA(2κ2 − 1)]2
(1 − b)2 ; in the vicinity of Hc2 . (7.11b)

In the above H is the thermodynamic magnetic field and βA = 1.16. The shear
modulus C66 in Eq. (7.11a) is zero at B = 0 and increases with increasing B.
At high fields it decreases with increasing B and reduces to zero at Hc2. The
approximate formula of C66 in the entire field range is derived by Brandt [5]
as

C66 = µ0H
2
c

2κ2β2
A(2κ2 − 1)

[1 + βA(2κ2 − 1)]2
· b(1 − b)2

4

×(1 − 0.58b + 0.29b2) exp
(

1 − b

3κ2b

)
, (7.12a)

� µ0H
2
c

4
b(1 − b)2 . (7.12b)

The lower equation is an approximation for a superconductor with an high κ
value.

Contrary to the above results of Labusch, Brandt [5, 6] proposed a nonlocal
theory of the elastic moduli insisting that C11 and C44 are dispersive with
respect to the wave number of deformation of the flux line lattice and have
very small values for a large wave number. This idea was also supported by
Larkin and Ovchinnikov [7]. The moduli derived by Labusch correspond to the
limit of zero wave number and are called local moduli. The foundation of the
nonlocal theory is that, since the spatial variation of the local magnetic flux
density in a high-κ superconductor is extremely small, as shown in Eq. (1.115),
the influence of a displacement of a normal core due to a pinning interaction
with the magnetic flux density is expected to be very small. In other words,
the magnetic flux density and the order parameter are almost independent of
each other. Hence, the increase in the magnetic energy from a deformation of
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the flux line lattice is very small, resulting in a very small elastic modulus.
However, this idea encounters a serious problem, as will be mentioned later.

The elastic moduli are calculated from the increase in the energy when a
strain is imposed on the flux line lattice. Brandt introduced a strain of wave
number k and amplitude εk on the flux line lattice and obtained the elastic
moduli from the superconducting energy density given by Eq. (1.112). In this
equation the energy density depends only on the mean value of the local
magnetic flux density. This means that any contribution from the magnetic
flux density was disregarded and only contributions from terms associated
with the order parameter were treated in the above calculation. That is,

Cii =
∂Fs

∂βA
· ∂2βA

∂ε2k
, (7.13)

where βA = 〈|Ψ|4〉/〈|Ψ|2〉2. The obtained results are:

C11(k) = B2 ∂H
∂B

· k2
h

k2 + k2
h

·
k2

ψ

k2 + k2
ψ

+ C66 , (7.14)

C44(k) =
B2

µ0
· k2

h

k2 + k2
h

+ B

(
H− B

µ0

)
, (7.15)

where kh and kψ are characteristic wave numbers defined respectively by

k2
h =

〈|Ψ|2〉
λ2|Ψ∞|2 =

2κ2(1 − b)
[1 + βA(2κ2 − 1)]λ2

� 1 − b

λ2
, (7.16)

k2
ψ =

2(1 − b)
ξ2

. (7.17)

Equations (7.14) and (7.15) coincide with the results of Labusch in the limit of
k → 0. Such a nonlocal property appears only for C11 and C44 with respect to
the magnetic energy, as can be seen from the above explanation. The nonlocal
property becomes prominent when the wave number exceeds kh, and hence,
a high-κ superconductor is more likely to satisfy this condition.

Here we shall discuss the problem in the nonlocal theory. As is well known
in electromagnetism, the Lorentz force is derived from a divergence of the
Maxwell stress tensor, and components of the tensor do not depend on the
wave number of the deformation, even how the magnetic structure is deformed.
For example, it is assumed that the magnetic flux density has only the z
component B and varies only along the x-axis. In this case the Lorentz force
is the magnetic pressure in the direction of the x-axis. The Maxwell stress
tensor is given by

τ = µ−1
0


−B2/2 0 0

0 −B2/2 0
0 0 B2/2


 (7.18)
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and the Lorentz force is written as

F L = ix
∂

∂x
τxx , (7.19)

where τxx = −B2/2µ0. It is assumed that the magnetic flux density is slightly
varied by δB from a mean value 〈B〉 as B = 〈B〉 + δB. Then, we have
(∂/∂x)(−B2/2µ0) � −(〈B〉/µ0)∂δB/∂x. If the displacement of flux lines
along the x-axis is denoted by ux, from the continuity equation (2.15) for
flux lines, the relationship between δB and ux is written as

∂ux

∂x
= − δB

〈B〉 . (7.20)

Hence, Eq. (7.19) leads to

FL � 〈B〉2
µ0

· ∂2ux

∂x2
. (7.21)

On the other hand, this is also written as C11∂
2ux/∂x2 in terms of the uniaxial

compression modulus C11. Thus, we have

C11 =
〈B〉2
µ0

. (7.22)

This result agrees with that of Labusch, Eq. (7.9), where H = B/µ0 is used
because of neglect of the diamagnetic effect of the high-κ superconductor.

The elastic moduli for the “magnetic flux” outside the normal cores of flux
lines are generally described in terms of the components of the Maxwell stress
tensor in this manner, and hence, they should be of a local nature. As can
be understood from the abovementioned speculation that the magnetic flux
density and the order parameter are almost independent of each other, the
nonlocal theory insists that the outer “magnetic flux” and the inner normal
cores form their own lattices almost independently of each other, and these
lattices are deformed in different manners. That is, it is believed that the
lattice of “magnetic flux” is hardly deformed, while the lattice of normal
cores is easily deformed.

There is a question whether the lattices of “magnetic flux” and normal
cores can really deform independently of each other. The magnetic flux den-
sity and the order parameter are originally correlated to each other in a gauge-
invariant form as mentioned in Chap. 1. The quantization of magnetic flux
results from this correlation. Hence, the two quantities cannot behave com-
pletely independently. In fact, the maximum point of the magnetic flux density
and the zero point of the order parameter coincide with each other as shown
by Eq. (1.101). This fact suggests that displacements of the two lattices are
the same and the speculation that one lattice is easily deformed while the
other is not is incorrect. In other words, when the lattice of normal cores is
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deformed, the same deformation is necessarily induced in the lattice of “mag-
netic flux.” Therefore, the elastic moduli of the lattice of normal cores should
take the local values for the lattice of “magnetic flux.” For a strict proof of
this conclusion the continuity equation for flux lines is necessary. The details
of this proof are described in Appendix A.5, where a questionable point re-
garding the use of Eq. (1.112) for the energy in the estimation of the elastic
moduli is also argued. A derivation of the nonlocal elastic modulus is required
in Exercise 7.2 for the case where deformation of the “magnetic flux” lattice
and that of the normal core lattice do not satisfy the gauge-invariant relation-
ship. For this reason we use hereafter the local results, Eqs. (7.9) and (7.10),
for the elastic moduli C11 and C44 of the flux line lattice, respectively.

7.3 Summation Problem

The summation problem has been discussed by many researchers for a long
period. Although various aspects have been clarified by the theory of Larkin
and Ovchinnikov [7], there still remain many problems. For a discussion on
these problems some concepts are needed. For this reason the development
of summation theory is explained along with the history in this section. This
will be helpful for understanding the profound summation problem.

7.3.1 Statistical Theory

The summation theory for deriving the macroscopic pinning force density
from individual pinning potentials was proposed first by Yamafuji and Irie,
[8] who treated current-voltage characteristics in a dynamic state. However,
an important point in the summation problem was clarified first by Labusch
[9]. Labusch treated a static state and used a statistical method and a kind
of mean field approximation. The force balance equation Labusch used is

D̃2u(r) −
∑

i

∇U(r + u(r) − Ri) + fL = 0 , (7.23)

where u is a displacement of flux line lattice and D̃2 is a matrix given by

D̃2 =

[
C11∂

2
x + C66∂

2
y + C44∂

2
z (C11 − C66)∂x∂y

(C11 − C66)∂x∂y C66∂
2
x + C11∂

2
y + C44∂

2
z

]
. (7.24)

The first term in Eq. (7.23) shows the elastic force in the flux line lattice due
to its deformation, and the symbols ∂x etc. represent the differentials ∂/∂x
etc. U is the pinning energy and the second term in Eq. (7.23) represents
the pinning forces of the pins at r = Ri’s. The third term is the Lorentz
force. This force is originally included in the first term, and the third term
represents the mean value of this force. Hence, the mean value of the first
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term, is zero. For example, in the case of a superconducting slab carrying a
transport current in a normal magnetic field, flux lines are bent along their
length and the Lorentz force is expressed as the line tension, C44∂

2
zu. The first

term, the Lorentz force less its mean value, gives the elastic force against a
deviation from the mean curvature of the flux lines.

Labusch gradually introduced the pinning interactions and gradually de-
formed the flux line lattice which was not deformed in the beginning. In this
situation the compliance of an observed flux line for motion under the in-
fluence of surrounding pins is a key parameter. Labusch used a continuous
medium approximation for the flux line lattice and obtained the compliance
from Eq. (7.23). The second term was expanded in powers of u. From the
condition of equilibrium at u = 0 the second derivative of U is important,
and its mean value is written as α̃Lu. Here

α̃L =
〈∑

∇∇U
〉

(7.25)

is called the Labusch parameter. Equation (7.25) was approximately assumed
as a diagonal matrix and hereafter αL represents the diagonal element. αL

defined in Eq. (3.87) corresponds to this diagonal element. The obtained com-
pliance is given by

G′(0) � 1
4

(
B

πφ0

)1/2

(C44C66)−1/2 (7.26)

for (φ0/B)αL � 4πC66, i.e., for latticelike flux lines. The pinning force density
was obtained from the maximum value of the second term in Eq. (7.23) after
the complete introduction of pinning interactions. Here the approximation,

Fp = Np

∣∣∣∣
∫

ρ(X)∇U(X)dX

∣∣∣∣
max

, (7.27)

was used, where ρ(X) was the probability of finding a pin in a small region of
volume dX around a position X. In Eq. (7.27) the summation of individual
pinning interactions distributed in a space was approximately replaced by
a statistical average multiplied by the number density of pins Np. This is
considered to be a good approximation for the case of dilute pins, where the
cancellation of pinning forces through the elasticity of the flux line lattice was
taken into account using the parameter αL. Labusch calculated Eq. (7.27) for
a pinning potential with a particular shape and obtained the result shown in
Fig. 7.4. The result shows that there exists a threshold value, fpt ∼ G′−1(0)d,
for the elementary pinning force (fp) with 2d denoting the size of the pins,
and the pinning force density (Fp) is zero for fp ≤ fpt. Fp takes a finite value
for fp > fpt and approaches

Fp �
Npf2

pG′(0)L
2a2

f

(7.28)
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Fig. 7.4. Relationship between the pinning force density and the elementary pinning
force predicted by Labusch [9] with L = af and 2d = af/2. The broken line is the
result of the Lowell model, and the thinner straight line represents the characteristic
of Fp = Npf2

p/2kfaf . kf corresponds to G′(0)−1

for fp � fpt, where af is the flux line spacing and L is the size of a pin along
the direction of the current. The resultant pinning force density is proportional
to the second power of fp in agreement with the dynamic theory of Yamafuji
and Irie [8]. This proportionality is characteristic of the statistical summation
as opposed to the linear summation given by Eq. (7.1). The above result of
Labusch can more easily be understood using the simpler model of Lowell [10]
which is described below.

Lowell treated for simplicity a one-dimensional model in which the pinning
force is only varied along the direction of the Lorentz force. Here we focus on
a pin at the origin and a flux line interacting with the pin. The position of
the flux line is represented by x and its position when the effect of the pin is
virtually switched off is represented by x0. The flux line is displaced from x0

to x by the pinning force, and the elastic restoring force proportional to the
displacement, (x − x0), is balanced with the pinning force f(x). That is, the
force balance is expressed as

kf(x0 − x) + f(x) = 0 , (7.29)

where kf is the spring constant for the elastic restoring force. This equation is
reduced from Eq. (2.35) in the static limit. Lowell also assumed a statistical
set of such individual balances after Labusch. When a uniform flux line lattice
on the superconductor is overlaid with randomly distributed pinning centers,
it is believed that there is no correlation between the position of a pin and the
position of the nearest uniform lattice point x0. Hence, if we look statistically
over elements of the set, the probability of finding a virtual flux line at x0

will be uniform. On the other hand, the flux lines will in practice be drawn
to pins due to the pinning interactions, resulting in a nonuniform distribution
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ρ(x) for the statistical set: ρ(x) is expected to be high around the center of
the pin. As mentioned in the last section the Lorentz force is described as the
elastic force, and the statistical average of the first term of Eq. (7.29) gives
the Lorentz force. That is, this term corresponds to the sum of the first and
third terms of Eq. (7.23). At the same time the pinning force density is given
by the maximum value of the statistical average of the second term:

Fp = −Np

af

∣∣∣∣
∫ af

0

f(x(x0))dx0

∣∣∣∣
max

. (7.30)

Here we shall investigate the statistical distribution of flux lines around
the pins. After Lowell it is assumed that the pin is located at the origin in an
observed element of the statistical set and the pinning force varies spatially
as

f(x) =
2fp

d
(x + d) ; − d ≤ x < −d

2
,

= −2fp

d
x ; − d

2
≤ x <

d

2
,

=
2fp

d
(x − d) ;

d

2
≤ x < d ,

= 0 ; otherwise (7.31)

(see Fig. 7.5). The situation is considered in the beginning where the Lorentz
force is not applied. This can be virtually achieved by reducing the pinning
force to zero, resulting in a uniform flux line lattice, and then, recovering
the pinning strength gradually. There are two types of resultant distribution,
depending on whether the elementary pinning force fp is smaller or larger than
kfd/2. Figure 7.6 is for the case of fp smaller than kfd/2 and the lower figure
shows the distribution ρ(x). The upper figure shows a graphical method to
obtain x for given x0. The broken line gives the elastic restoring force with the
opposite sign, and the crossing point of this line with the pinning force f(x)
gives the position of the flux line x. In this case there is no vacant region for
flux lines inside the pin. On the other hand, vacant regions exist at both edges
of the pin in the case of fp larger than kfd/2 as shown in Fig. 7.7. Namely,
the flux lines near the edges are pulled to the bottom region of the pinning
potential due to the larger variation rate of the pinning force compared to the
spring constant kf .

The situation is next considered where the Lorentz force is applied by the
transport current. Because of the Lorentz force the flux lines are displaced to
the right-hand side, for example, in Figs. 7.6 and 7.7. In the case of fp < kfd/2
shown in Fig. 7.6, the flux lines come into the pin from the left-hand side and
go out of the pin to the right-hand side, resulting in an unchanged distribution.
When the pinning force is calculated from Eq. (7.30), we have

Fp = 0 . (7.32)
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Fig. 7.5. Variation in the energy (upper figure) and the pinning force (lower figure)
of a pin. The maximum value of the pinning force gives the elementary pinning force

Fig. 7.6. Pinning force (upper figure) and distribution of flux lines around pin ρ(x)
(lower figure) for fp < kfd/2. ρ is normalized so as to take a value of 1 outside the
pin

This can also be easily derived from the symmetric distribution of flux lines
resulting in cancellation of positive and negative pinning forces. On the other
hand, in the case of fp > kfd/2 shown in Fig. 7.7, the distribution changes
with the displacement of flux lines. That is, the flux lines move to the right
with movement of the unstable region to the outside of the pin, resulting an
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Fig. 7.7. Pinning force (upper figure) and distribution of flux lines around pin ρ(x)
(lower figure) for fp > kfd/2. ρ is normalized so as to take a value of 1 outside the
pin. An unstable region where ρ(x) = 0 exists in contrast to Fig. 7.6. (a) Distribution
when a transport current does not flow and (b) when the critical state is attained
on application of the transport current. In the latter case the unstable region is
asymmetric

asymmetrical distribution. After reaching the distribution shown in Fig. 7.7(b),
the distribution no longer changes. In this situation the critical state is at-
tained. After a simple calculation of Eq. (7.30) the pinning force density is
obtained as

Fp =
Np

2kfaf
· fp(fp + 3fpt)(fp − fpt)

fp + fpt
, (7.33)

where
fpt =

kfd

2
(7.34)

is the minimum value of the elementary pinning force giving a nonzero pinning
force density, i.e., the threshold value. Since G′−1(0) corresponds to kf , the
above result agrees with the condition of Labusch. In addition, Eq. (7.33)
reduces to Fp � Npf2

p/2kfaf for fp � fpt and this agrees with the result of
Labusch, Eq. (7.28), assuming L ∼ af (see Fig. 7.4). The difference comes
from the shape of individual pinning potentials. Thus, the model of Lowell
can summarize the theory of Labusch and the original essence is reproduced
correctly in the model.

The condition for the requirement that the pinning loss should be of the
hysteresis type discussed in Sect. 2.3, i.e., |∂f(x)/∂x| > kf , is nothing else
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than the condition for the existence of an unstable region as shown in Fig. 7.7
and agrees with the condition of nonzero pinning force density. Thus, the
threshold condition for the elementary pinning force is closely related to the
appearance of hysteresis loss. Namely, both the existence of a nonzero pinning
force density and the hysteretic nature shown in the current-voltage charac-
teristics in Fig. 1.13 are brought about by the abovementioned instability of
flux lines. It should be noted that the randomness represented by x0, which
means the motion of x0 with a constant velocity in a steady voltage state
in the dynamic condition, is also needed for such current-voltage character-
istics. On the contrary, for the approximation of a rigid body moving in a
potential under a constant force due to a steady current, the unstable mo-
tion of flux lines does not occur. Calculate the corresponding current-voltage
characteristics (Exercise 7.4).

In spite of a general agreement with the dynamic theory, the threshold
value itself of the elementary pinning force is significantly different from ex-
periments. In fact, it would be rather better to express that the threshold
value of the elementary pinning force does not exist in practice. This was the-
oretically proved by Larkin and Ovchinnikov [7]. However, the instability of
flux lines is necessary to derive the hysteresis loss. For discussing this point,
somewhat old statistical theory and dynamic theory are introduced in this
section.

In the case of dilute and isolated pins treated by Labusch and Lowell, the
pinning force density increases with increasing elementary pinning force fp in
proportion to its second power. This comes from the growth of the unstable
region of the right-hand side in Fig. 7.7(b). However, the growth of this unsta-
ble region is practically limited by the flux line spacing af . That is, even if one
flux line is depinned, when the next flux line comes, the pinning interaction
occurs again. As a result, the pinning force which the flux line lattice feels is
not isolated as assumed in Fig. 7.5 but is periodic in its displacement with a
period af . Thus, Campbell [11] proposed the periodic pinning force shown in
Fig. 7.8. From a similar calculation the pinning force density in this case is
obtained as

Fp = Np
fp(fp − fpt)

fp + fpt
; fp > fpt =

kfaf

4
,

= 0 ; fp < fpt . (7.35)

This result shows that the pinning force density approaches the direct
summation, Fp � Npfp, in the limit of large fp. Since it cannot happen
that Fp exceeds the direct summation with increasing fp in proportion to
its second power, the Campbell model is appropriate. General comparisons
between theories and experiments will be made in the next section.

We make comparisons here only on the threshold value of the elementary
pinning force, since this is the most important point in discussing the validity
of the summation theory and itself is deeply concerned with the development
of the theory. Figure 7.9 shows the results on niobium specimens with various
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Fig. 7.8. Model of periodic pinning force by Campbell [11]

Fig. 7.9. Contribution to pinning force density from one pin Fp/Np vs. elementary
pinning force fp for niobium at b = 0.55 (after Kramer [12]). The solid line gives the
direct summation, Fp/Np = fp, and the broken line represents the result of Labusch
theory extrapolated below the threshold value

pins (after Kramer [12]), where the abscissa is the elementary pinning force
obtained theoretically for each defect and the ordinate is the pinning force
density divided by the number density of the pins, i.e., the contribution per
pin. The solid straight line with a slope of unity represents the direct sum-
mation, Fp/Np = fp, and the vertical solid line gives the threshold value of
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the Labusch theory. The broken line is an extrapolation of Labusch’s result
neglecting the threshold value, Fp/Np ∝ f2

p . It is found from the results in
the figure that even defects weaker by more than four orders of magnitude
than the threshold value act effectively as pins, and it seems that there is no
practical threshold value. In order to overcome this disagreement between the
theory and experiments, the possibility of reduction in the threshold value
was discussed from the viewpoint of a decrease in the elastic moduli of the
flux line lattice caused by the nonlocal property [13] or by the existence of de-
fects [14]. Another argument was made on the possibility of easier fulfillment
of the threshold condition by a collective pinning of many weak defects [15].
However, each of them could give only an insufficient correction, and the con-
tradiction between the statistical theory and experiments was not essentially
solved.

Under this circumstance the following dynamic theory, developed first by
Yamafuji and Irie, [8] has attracted attention. It can be seen from Eq. (2.39)
that the pinning force density is proportional to the fluctuation of the velocity
of flux lines. (Note that the pinning loss power density Pp is proportional to
the pinning force density Fp.) Since even a very weak pin can bring about a
finite fluctuation, a nonzero contribution to the pinning force can be expected,
suggesting that the threshold value does not exist. The relationship between
this dynamic theory and the statistical theory will be discussed in the next
subsection.

7.3.2 Dynamic Theory

Yamafuji and Irie [8] treated the dynamic state of flux lines and clarified the
mechanism of pinning loss using the method shown in Sect. 2.3. Since the
pinning loss power density Pp is equal to Fpv with v denoting the velocity of
flux lines averaged with time, the pinning force density is obtained as

Fp =
B2

ρfv
[〈ẋ2〉t − v2] , (7.36)

where ρf is the flow resistivity and 〈 〉t represents an average with respect to
time. Yamafuji and Irie calculated Eq. (7.36) for a triangular pinning potential
and derived Fp = 3Npf2

p/kfdp, where dp is the mean interval of pins. This
result is qualitatively similar to the theoretical results of Labusch and Lowell.
However, the problem of the threshold value did not occur, since a triangular
potential, which automatically satisfied the condition |∂fp(x)/∂x| > kf due
to infinitely large variation rate of the pinning force, was assumed and the
voltage state was treated. A similar result was derived for a more general
calculation by Schmid and Hauger [16].

It is believed from Eq. (7.36) that even a very weak pin which does not
automatically satisfy the threshold condition can suitably affect the motion
of flux lines and give rise to some fluctuation of the velocity. If this is correct,
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it means that the threshold value of the elementary pinning force may not
exist. This is an interesting point of comparison with the statistical static
theory. There, Matsushita et al. [17] calculated the motion of flux lines for the
pinning model of Lowell and investigated the current-voltage characteristics.
The solved equation of motion was Eq. (2.35). The form of Eq. (7.31) was
assumed for the pinning force f(x), and the interval between pins was assumed
to be sufficiently large. The case was treated where 2d < af so that one pin
could not interact with several flux lines simultaneously as was done in other
calculations. It is assumed that an observed flux line reaches the edge of a
pin, x = −d, at a time, t = 0. Since dp is long enough, a distortion of the flux
line lattice, (x − x0), is considered to relax to a negligible small value before
the flux line reaches the next pin. Hence, we can simply adopt

x(t) = vt − d (7.37)

for t < 0. From the continuity of flux lines v should be equal to ẋ0 as shown
in Eq. (2.37). Thus, x(t) can directly be solved by substituting Eqs. (7.31)
and (7.37) into Eq. (2.35). The pinning force density is derived from the time
average:

Fp = −
N ′

p

Tp

∫ Tp

0

f(x(t))dt (7.38)

using the obtained solution of x(t). In the above Tp is the period of the flux
line motion and is thus the time for the observed flux line to pass through the
mean interval of pins:

Tp =
dp

v
. (7.39)

N ′
p is a number of pinning events which occur in a unit volume within the

period Tp and is equal to the product of the frequency for one pin to meet
flux lines during this period dp/af and the number density Np:

N ′
p =

Npdp

af
. (7.40)

Before starting the calculation, we shall discuss a fundamental point. The
observed flux line interacts with the pin only while it runs through a pin of
size 2d, and 2d is assumed to be smaller than af as abovementioned. (This
is not a necessary condition but is used only for simplicity. Other cases can
also be treated in a similar manner.) Hence, it is enough to integrate from 0
to T ′ = af/v in Eq. (7.38), the only region in which a nonzero contribution is
obtained. Thus, Eq. (7.38) leads to

Fp = −Np

T ′

∫ T ′

0

f(x(t))dt . (7.41)

If we transform to dt = v−1dx0 using Eq. (2.37), it is proved that the time
average of Eq. (7.41) is identical with the statistical average of Eq. (7.30).
Namely, it can be shown that the result of the dynamic theory reduces to
that of the statistical theory in the static limit without concrete calculation.
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The solution of x(t) is:

x(t) = − kfv

η∗γ
t − q1 + (q1 − d) exp(γt) ; 0 ≤ t < t1 ,

=
kfv

η∗γ′ (t − t1) + q2 −
(

d

2
+ q2

)
exp[−γ′(t − t1)] ; t1 ≤ t < t2 ,

= − kfv

η∗γ
(t − t2) − q3 +

(
q3 +

d

2

)
exp[γ(t − t2)] ; t2 ≤ t < t3 ,

= vt − d + (2d − vt3) exp
[
− kf

η∗ (t − t3)
]

; t3 ≤ t <
dp

v
(7.42)

for the case fp �= fpt. In the above t1, t2 and t3 are the times at which the flux
line reaches x = −d/2, x = d/2 and x = d, respectively, and can be obtained
from the above solution. The constants, γ, γ′, q1, q2 and q3 are respectively
given by

γ =
kf

η∗

(
fp

fpt
− 1
)

, (7.43)

γ′ =
kf

η∗

(
fp

fpt
+ 1
)

, (7.44)

q1 =
η∗vdfp

2(fp − fpt)2
+ d , (7.45)

q2 =
η∗vdfp

2(fp + fpt)2
− fpt

fp + fpt
(d − vt1) , (7.46)

q3 =
η∗vdfp

2(fp − fpt)2
− 1

fp − fpt
[d(fp + fpt) − fptvt2] . (7.47)

γ in Eq. (7.43) is equal to 1/τ in Eq. (2.41).
After a simple but long calculation, Eq. (7.38) leads to

Fp =
Npfpv

af(f2
p − f2

pt)

{
2fpt[fp(t1 + t2 − 2t3) − fpt(t1 − 3t2 + 2t3)]

+
vfpt

d
[fpt23 + fpt(2t21 − 2t22 + t23)]

+η∗v[fpt3 + fpt(2t1 − 2t2 + t3)] − 2η∗fpd

}
. (7.48)

Hereafter t1, t2 and t3 are numerically calculated and Fp is obtained. However,
in the case fp > fpt and sufficiently small mean velocity v, we have

t1 � t3 ∼ t2 � d(fp + 3fpt)
2fptv

. (7.49)

Substituting this into Eq. (7.48), the same result as Eq. (7.33) is derived.
When v is small, an expansion in powers of v can be introduced. If Fp is
calculated up to the first order in v, we have [17]
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Fp = Fps +
Npfpη∗vd

2af(f2
p − f2

pt)fpt

{
(fp − 3fpt)(fp + fpt)

+ fpt(fp + 3fpt) log
[
(fp − fpt)2

fpη∗v

]}
, (7.50)

where Fps is the value given by Eq. (7.33). In the case fp < fpt, Fp is obtained
as

Fp =
2Npf2

pη∗vd

af(f2
pt − f2

p)
. (7.51)

In the case fp = fpt, Fp is proportional to v1/2 [17]. Thus, these results agree
with Eq. (7.32) in the limit of zero v.

The current-voltage characteristics can be derived after Eq. (2.31) from
the Jc-value equal to Fp divided by B and the E-value equal to v multiplied
by B. Figure 7.10 shows these results and (a) and (b) correspond to the cases
fp > fpt and fp ≤ fpt, respectively.

Even in case (b) where Jc goes to zero in the limit of zero v, if a tangential
line is drawn at some voltage state on the current-voltage characteristic and
this line is extrapolated to v = 0(E = 0), some finite intercept remains.
Namely, it seems as if a nonzero Jc value exists. However, as is seen from
Eq. (7.36), 〈ẋ2〉t is of the order in v2 and Jc goes to zero in the limit v → 0 in
the case fp < fpt with no instability. 〈ẋ2〉t is of the order in v, and a finite Jc

remains only when the instability exists. This condition is identical with that
for the hysteresis loss mentioned in Sect. 2.3. In addition, when flux lines are
moved from the previous critical state to the opposite direction, the pinning
force density varies linearly with the displacement as shown in Fig. 3.33. Such
reversible flux motion also suggests the existence of unstable regions [11]. A
discussion on this point is required in Exercise 7.5.

From the above argument it is found that the dynamic theory does not
resolve the large contradiction between the statistical theory and the experi-
ments. However, the coincidence between the dynamic theory and the statisti-
cal theory itself has some meaning and is deeply concerned with the hysteresis
loss, a property inherent to the flux pinning.

7.3.3 Larkin-Ovchinnikov Theory

The large contradiction with experiments on the threshold value of the ele-
mentary pinning force, which could not be resolved by the statistical theory
of Labusch and the dynamic theories of Yamafuji and Irie and Matsushita
et al., was first resolved by Larkin and Ovchinnikov [7].

Labusch intended to calculate the pinning force density using the statisti-
cal method and found from the statistical average on an infinite set that the
pinning force density is zero for pins with an elementary pinning force below
the threshold value. On the other hand, Larkin and Ovchinnikov showed that
long-range order is not realized in the flux line lattice because of finite pin-
ning correlation lengths. This means that the statistical average on an infinite
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Fig. 7.10. Current-voltage characteristics calculated using the dynamic theory [17]
for (a) fp > fpt and (b) fp ≤ fpt. The broken lines are virtual characteristics when
the flow resistivity is not influenced by pinning

set under the assumption of long-range order does not give a correct result.
That is, within the range of the correlation length, even if the pinning forces
are randomly directed, the summation of the individual pinning forces does
not cancel out completely but leads to a finite value on the order of the
fluctuations. Hence, the force contributed by one pin remains finite. For
example, if n pins are included in a correlated volume, the summation of these
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forces is of the order of n1/2fp, and hence, the contribution from one pin is
about n−1/2fp. The calculation by Labusch corresponds to the case n → ∞.
Therefore, the pinning force density can be approximately calculated, if the
pinning correlation length is obtained. They started from a force balance
equation similar to Eq. (7.23) for a superconductor on a three-dimensional
scale. However, the elastic force related to the uniaxial compression was ne-
glected, since the uniaxial compression modulus C11 was very large and the
corresponding strain was small. The nonlocal property was assumed for the
bending modulus C44 and only the first term of Eq. (7.15) was used, neglecting
the effect of diamagnetism. The problem with the assumption of nonlocal C44

is discussed in Sect. 7.2 and Appendix A.5. In addition, the assumption that
the elastic force associated with C11 can be disregarded is also problematic
from the viewpoint of quantitative calculation. However, we shall follow their
paper, since these are not essential for discussing the problem of the threshold
value of the elementary pinning force.

A superconductor of sufficiently large size is assumed. After Fourier trans-
formation the force balance equation leads to

C66k
2
⊥uk + C44(k)k2

zuk = (2π)3δ(k)fL +
∑

i

f i exp(−ik · ri) , (7.52)

where the second term on the right-hand side is the contribution from the
pins, k⊥ is the wave number vector of the deformation in the plane normal to
the flux line and kz is the wave number of the deformation along the length of
the flux line. After the inverse transformation the displacement u is derived.
Thus, we have [18]

〈|u(r) − u(0)|2〉 =
W (0)

8πC
3/2
66 C

1/2
44

[(
r2
⊥ +

C66

C44
z2

)1/2

+
1

4kh
log
(

1 + k2
0r

2
⊥ +

C66k
4
0

C44k2
h

z2

)]
, (7.53)

where W (0) is defined by

W (0) = Np〈f2(r)〉 � 1
2
Npf2

p (7.54)

and r2
⊥ = x2 + y2. k0 is an equivalent radius when the first Brillouin zone in

the two-dimensional space of wave number is approximated by a circle and is
given by k0 = (2b)1/2/ξ with b = B/µ0Hc2. C44 in the above means the local
value C44(0). At low fields where the nonlocal effect of the flux line lattice is
not remarkable, the second term of Eq. (7.53) can be omitted. If rp represents
the distance over which the pinning force extends (hence, rp is a distance of
the order of ξ), the transverse pinning correlation length Rc can be calculated
from the condition:
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〈|u(r⊥=Rc, z=0)−u(r⊥=z=0)|2〉 = r2
p . (7.55)

This condition means that, if a flux line at the origin is displaced by rp by
introducing a pin, its effect does not appear at the position separated by Rc.
Thus,

Rc =
8π(C44C

3
66)

1/2r2
p

W (0)
(7.56)

is obtained. The pinning correlation length along the flux line Lc is obtained
in a similar manner as

Lc =
(

C44

C66

)1/2

Rc . (7.57)

Within a region of the flux line lattice of sizes Rc and Lc in the transverse
and longitudinal directions, respectively, the flux line lattice is proposed to
have translational order, and the pinning force within this region of the volume
Vc = R2

cLc is estimated to be about [VcW (0)]1/2, which is of the order of the
fluctuations. Since each region of volume Vc is elastically independent of the
others, the pinning force density is estimated as

Fp =
1
Vc

[VcW (0)]1/2 . (7.58)

Substitution of Eqs. (7.56) and (7.57) leads to

Fp =
W 2(0)

(8π)3/2C44C2
66r

3
p

. (7.59)

Thus, the threshold value of the elementary pinning force does not exist.
At higher fields important quantities vary as C66 ∝ (1 − b)2 and W (0) ∝

f2
p ∝ (1 − b)2 with a magnetic field, and hence, Rc decreases in proportion

to (1 − b). On the other hand, the characteristic wave number kh given by
Eq. (7.16) decreases. Hence, if the condition af < Rc < k−1

h is satisfied,
the nonlocal property of the flux line lattice becomes pronounced. Then, the
pinning force density varies as

Fp ∼ B exp

[
−

8πC
1/2
44 C

3/2
66 khr2

p

W (0)

]
(7.60)

and increases with increasing magnetic field. When the magnetic field is fur-
ther increased until Rc becomes as small as af , the flux line lattice becomes
almost amorphous, and each flux line is independent of the others. From the
fact that Rc is inversely proportional to W (0) from Eq. (7.56), this situation
can be realized even at low fields, if the pins are sufficiently strong. On the
other hand, the problem of determining Lc is a one-dimensional problem, and
the integral to determine Lc diverges. However, this characteristic length can
be estimated from dimensional analysis as [7]
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Lc =

[
πC2

44k
4
ha6

f r
2
p

W (0)

]1/3

. (7.61)

In this case the volume of the correlated region is Vc = a2
f Lc, and hence, the

pinning force density is obtained from Eq. (7.58) as

Fp =
[

W 2(0)
π1/2C44k2

ha6
f rp

]1/3

. (7.62)

Here we shall summarize the pinning force density obtained from the
Larkin-Ovchinnikov theory. At low fields where the pinning force density is
given by Eq. (7.59) its dependence on the pinning parameters is

Fp ∝ N2
pf4

p . (7.63)

At high fields where Eq. (7.62) holds or in the case of strong pinning, the
dependence is

Fp ∝ N2/3
p f4/3

p . (7.64)

These dependences are different from Fp ∝ Npf2
p predicted by the statistical

theory of Labusch and the dynamic theory. As for the magnetic field depen-
dence, from W (0) ∝ (1 − b)2, C44 ∝ b2, C66 ∝ b(1 − b)2, af ∝ b−1/2 and
k2
h ∝ (1 − b) the pinning force density varies as

Fp ∝ b−4 (7.65)

at low fields and as
Fp ∝ b1/3(1 − b) (7.66)

at high fields. Figure 7.11 shows the above magnetic field dependence of the
pinning force density. Except for the transient region shown by the broken line
the pinning force density decreases monotonically with increasing magnetic
field.

Here the case is treated where a magnetic field is applied perpendic-
ularly to a superconducting film with thickness d thinner than the longi-
tudinal correlation length Lc. The Larkin-Ovchinnikov theory is most fre-
quently compared with experiments for such a case. In this two-dimensional
case the transverse correlation length Rc is estimated as follows. The pin-
ning energy density of the flux line lattice interacting with pins amounts to
rp[W (0)/Vc]1/2 � ξ[W (0)/Vc]1/2 with Vc = R2

cd. On the other hand, the in-
crease in the elastic energy density is estimated as C66(ξ/Rc)2, since the distor-
tion along the length of flux line can be neglected. Hence, Rc is determined so
as to minimize the total energy density, δF = C66(ξ/Rc)2− ξ[W (0)/d]1/2/Rc.
Thus, we have

Rc =
2ξd1/2C66

W 1/2(0)
. (7.67)
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Fig. 7.11. Magnetic field dependence of the pinning force density predicted by
Larkin and Ovchinnikov [7] in the case of three-dimensional superconductor with
weak pinning force

Then, the pinning force density is obtained as

Fp =
W (0)

2ξdC66
. (7.68)

Rc decreases with magnetic field in proportion to (1 − b), and the pinning
force density reduces to

Fp =
W 1/2(0)
afd1/2

(7.69)

at high fields where Rc becomes shorter than af . In the case a of low number
density of pins such as Npa2

f d < 1, the pinning force density is given by
Fp = Npfp.

For a superconducting thin film, Lc varies with the magnetic field and be-
comes longer or shorter than the film thickness. Hence, a transition between
two- and three-dimensional pinning is expected to occur. Experiments asso-
ciated with this kind of transition were carried out in detail by Wördenweber
and Kes [19, 20]. Their experiments will be discussed in the next section, and
their modification of the Larkin-Ovchinnikov theory is introduced here. Since
the original Larkin-Ovchinnikov theory did not agree quantitatively with their
experimental results, they proposed the following modification. First, two-
dimensional pinning was assumed where the thickness of the superconducting
film d was shorter than the longitudinal correlation length Lc, the value of
which was estimated separately. Then, from a similar equation to Eq. (7.55)
with replacement of the right-hand side by (af/2)2, the transverse correlation
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length was calculated as [21]

Rc = afC66

[
2πd

W (0) log(w/Rc)

]1/2

, (7.70)

where w is the width of the superconducting thin film. This result is some-
what different from Eq. (7.67) of the Larkin-Ovchinnikov theory. The volume
of the region in which the short range order is maintained is Vc = R2

cd. They
assumed the most nonlocal case with the largest wave number k ∼ ξ−1 for
the longitudinal strain of a flux line. It was also assumed that a transition
from two-dimensional pinning to three-dimensional occurs when the longitu-
dinal correlation length Lc obtained by substituting Eq. (7.70) into Eq. (7.57)
is reduced to a half of the film thickness d. This treatment seems strange,
since such a transition should be determined from the more general condi-
tion that the correlation length in the three-dimensional pinning exceeds the
film thickness. In the model of Wördenweber and Kes, Lc, which originally
has meaning only in the three-dimensional case, is determined by this special
condition in the two-dimensional case. As will be discussed in the next sec-
tion, the quantitative agreement with experiments becomes better with this
assumption. However, its theoretical validity is questionable.

Although the theory of Larkin and Ovchinnikov resolved the failure of the
statistical theory of Labusch, their theory is in disagreement with experiments
for very weak pins. That is, the obtained theoretical pinning force density is
very much smaller than in experiments. The above model of Wördenweber and
Kes was proposed to give a correction to the original theory. For improvement
in the disagreement with experiments other approaches were also tried. These
are the theory of Kerchner [22] in which the volume of the region with short-
range order Vc is determined so as to maximize the pinning force density
Fp, and the model of Mullock and Evetts [23] in which Vc is assumed to be
decreased by defects in the flux line lattice.

7.3.4 Coherent Potential Approximation Theory

In addition to the abovementioned quantitative disagreement with experi-
ments on the pinning force density for weak pins, the theory of Larkin and
Ovchinnikov [7] also has the qualitative problem that the predicted depen-
dence on the pinning parameters, fp and Np, is different from experiments
as will be shown in the next section. This is probably because the pinning
phenomenon is only roughly described in their theory. For example, the co-
herence length ξ is used for rp in Eq. (7.55). However, judging from the fact
that the value of the correlation length largely influences the pinning force
density, this approximation seems to be quite rough. In addition, although a
short-range order is maintained within the volume Vc, a deformation of the
flux line lattice is expected to exist inside it, which will bring about a stronger
pinning than W (0). The existence of defects in the flux line lattice will also
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contribute to a quantitative improvement of the theory through a reduction
in the correlation length.

On the other hand, the statistical theories such as that of Labusch [9] were
proposed originally to give an exact estimation of the pinning force density. In
order to resolve the quantitative problems in the Larkin-Ovchinnikov theory
such a method seems to be effective. Since the statistical theory explains
successfully the origins of the hysteresis loss due to pinning and the reversible
motion of flux lines (see Exercise 7.5), [11] this method is expected to be
useful. However, the abovementioned serious problem with the threshold value
of the elementary pinning force remains in the statistical theory. Why does
such a problem arise? The statistical average on the infinite set itself shown
in Eq. (7.27) is originally a method for an exact calculation, and it seems
to be rather strange that this method gives rise to a problem. For example,
Eq. (7.33) is believed to give a correct result, if a correct value of G′−1(0) or kf

is given. If such a correct method is found, the abovementioned deformation
of the flux line lattice inside the volume Vc can probably be treated using this
method. Hence, it is considered that the evaluation of the spring constant of
the flux line lattice, G′−1(0) or kf , contains some problem.

Here Eq. (7.26) derived by Labusch is investigated. This value is for the
case where the flux line lattice is fixed at infinity. However, the boundary
condition at infinity is not satisfied in practical cases. For example, Eq. (7.26)
gives a value in the limit of weak pinning, αL → 0. In this limit the usual
pins are not effective because of smaller elementary pinning forces than the
threshold value. If this is true, since the pins are not effective, the flux flow
state should be brought about even by an infinitesimal force, resulting in a
divergence of the compliance. Thus, the boundary condition at infinity is not
satisfied. Hence, the strong restriction at infinity is expected to be weakened
drastically, and the compliance will be increased considerably. This result is
understandable also from the viewpoint of the Larkin-Ovchinnikov theory.
That is, since there is no long-range order in the flux line lattice as predicted
in the theory, such a boundary condition at infinity is meaningless.

It is assumed that a part of the flux line lattice is displaced. The region
surrounding this part is deformed and an elastic reaction occurs. However, this
reaction is nothing else than the transferred reaction from the surrounding
pins, since the elastic force is an internal force. That is, the force added to
the flux line lattice to deform it is finally balanced with the reaction from the
surrounding pins. Hence, the final result is not influenced by the elastic force
so far as the deformation is elastic. It suggests that the compliance of the
flux line lattice should be as large as α−1

L per unit volume. Under practical
conditions the compliance is considered to be slightly larger than this simple
estimation because of the deformation of the flux line lattice.

Strong pins are treated here for an example. It is assumed that the number
density Np is sufficiently low. We assume a segment of flux line lattice of a
proper size as in the treatment by Lowell, and the flux line lattice in the
superconductor is approximated by the statistical set of such elements. Details
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of the theory are given in [24]. The easiest choice for the size of each segment
seems to be such that each segment contains one pinning center. If the size is
smaller than this, the segments are not equivalent, and if the size is larger than
this, an additional summation of pinning forces is needed in each segment. The
sizes of this segment in the directions of the Lorentz force, and the transverse
and longitudinal directions normal to this force are represented by Lx, Ly

and Lz, respectively. Hence, LxLyLz = 1/Np is obtained. The phenomenon
is approximated by a one-dimensional model for simplicity. One segment of
the set is observed and the pinning force density is approximated by the
statistical average of the force on the set. The pin is assumed to be located
in the center of this segment, and the position of a flux line interacting with
this pin is denoted by x. Its position when only the pinning interaction of
this pin is virtually switched off and that when the pinning interactions of
all surrounding pins are also virtually switched off are denoted by x0 and ∆,
respectively. Then, the force balance equation inside this segment is given in
the same form as Eq. (7.29), where kf = G′−1(0). Strictly speaking, since the
range of the integral in the wave number space of the inverse Fourier transform
is not the first Brillouin zone, i.e., from 0 to a−1

f , but from about N
1/3
p to a−1

f ,
kf is larger than G′−1(0). However, here the mean pin spacing, dp = N

−1/3
p ,

is assumed to be sufficiently larger than af , and hence, this approximation
will be allowed. When the interactions of all surrounding pins are switched
on, the observed flux line is displaced from ∆ to x0. Hence, the observed
segment of the flux line lattice suffers an elastic restoring force proportional
to ∆−x0 from the surrounding regions. The spring constant of this restoring
force is represented by K. If we confine ourselves to within this segment, the
pinning force is balanced by the elastic restoring force due to the strain inside
the segment, kf(x0 − x). On the other hand, if we look at the interaction
with the outside, this pinning force is balanced by the elastic restoring force,
K(∆ − x0). The former local strain corresponding to x0 − x slightly disturbs
the short-range order inside the segment, and the latter strain corresponding
to ∆ − x0 destroys the long-range order outside the segment. In other words
Labusch assumed that x0 corresponds to a lattice point of the virtual flux line
lattice with long-range order. However, ∆ corresponds to this lattice point.

It should be noted here that ∆ is not correlated with the distribution of
pins. Therefore, the statistical average should be taken with respect to ∆.
Thus, Eq. (7.29) reduces

k′
f(∆ − x) + f(x) = 0 , (7.71)

where k′
f is an effective spring constant given by [24]

k′−1
f = k−1

f + K−1 . (7.72)

Thus, if the pinning force in Fig. 7.8 is assumed, the pinning force density is
formally given by Eq. (7.35) with fpt = k′

faf/4.
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Here K is estimated. Since K is concerned with the reaction from sur-
rounding pins, it is expected to be proportional to the Labusch parameter αL.
This αL is a variable to be determined consistently in the coherent potential
approximation. Each region of the flux line lattice composing the statistical set
is approximated to be in a mean “field” described by a common parameter. In
this case this “field” means the interaction from surrounding pins through the
elasticity of the flux line lattice. Referring to the Larkin-Ovchinnikov theory,
we assume Lx : Ly : Lz = C

1/2
66 : C

1/2
66 : C

1/2
44 . Thus, we have

Lx = Ly =
(

C66

C44

)1/6

dp, Lz =
(

C44

C66

)1/3

dp . (7.73)

Since dp is sufficiently longer than af , and since the pinning correlation lengths,
Rc � (C66/αL)1/2 and Lc � (C44/αL)1/2, are sufficiently smaller than Ly

and Lz, respectively, for strong pinning, the elastic interaction among the
segments exists only along the direction of the Lorentz force through C11.
These expressions of pinning correlation lengths are approximately the same
as those defined by Larkin and Ovchinnikov (see Exercise 7.7). In practice
Lx is considered not to exceed (C11/αL)1/2 � Lc, and hence, the elastic
interaction exists along this direction. In the Larkin-Ovchinnikov theory this
interaction was disregarded. This point will be taken up in Subsect. 7.4.3.
The displacement of flux lines along the x-axis varies as exp(−x/λ′

0) with
λ′

0 = (C11/αL)1/2 denoting Campbell’s AC penetration depth. Thus, K is
estimated as

K � αLLyLzλ
′
0exp

(
−Lx

λ′
0

)
. (7.74)

On the other hand, αL itself is also a quantity to be estimated by summa-
tion. As can be expected, αL should be zero, if the pinning interactions are
ineffective because the elementary pinning force is below the threshold value.
In this case we have k′

f = 0 from Eq. (7.72) and the contradiction mentioned
above is resolved. αL is concerned with the pinning force density as given by
Eq. (3.94). As for the interaction distance di, we shall use a generally known
relationship:

di =
af

ζ
, (7.75)

where ζ is a constant dependent on the kind of pinning centers and ζ �
2π is derived for pointlike defects [25]. Thus, Fp and αL can be solved self-
consistently from Eqs. (3.94), (7.35) and (7.73)–(7.75). If we write as fpt = tfp,
after a simple calculation we have

β · 4fp

kfaf
· 1 − t

1 + t
=

t2

[(kfaf/4fp) − t]2
, (7.76)

where β is given by

β =
1
16

(
2√
3π

)1/2(
C44

C66

)5/6
ζdp

af
exp

(
−2Lx

λ′
0

)
. (7.77)
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In the above C11 � C44 was used and G′−1(0) given by Eq. (7.26) was substi-
tuted into kf .

In the case where the pins are not so strong that kfaf/4fp > 1, the solution
of t can be obtained graphically as shown in Fig. 7.12(a). Since β is sufficiently
larger than 1, t has a value close to 1 and we have

t � 1 − 8fp

βkfaf
. (7.78)

The pinning force density is

Fp =
4Npf2

p

βkfaf
. (7.79)

It can be seen from this result that a threshold value of the elementary pinning
force does not exist even in the case of fairly weak pins. At the same time
the obtained pinning force density agrees formally with the results of the
statistical theory, neglecting the threshold value, and with the dynamic theory.
However, this case is not consistent with the initial assumption of strong pins,
and an application of this result to very weak pins has a quantitative problem.

Secondly the case of strong pins is treated. It is assumed that 4fp/kfaf is
sufficiently larger than 1. It can be seen from Fig. 7.12(b) that the solution of
t also exists in this case. Since the solution is given as

t � kfaf

4fp
, (7.80)

Fig. 7.12. Graphic solution of Eq. (7.76) for (a) relatively weak pins and (b) strong
pins. f1 and f2 represent the left and right sides of Eq. (7.76), respectively. A solution
is found to exist in each case
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the pinning force density obeys the linear summation [24]:

Fp = ηeNpfp . (7.81)

In the above ηe is a pinning efficiency given by

ηe =
1 − (kfaf/4fp)
1 + (kfaf/4fp)

. (7.82)

Thus, when the pins are very strong while their number density is not too
high, the direct summation Fp = Npfp holds approximately within a certain
accuracy.

The above result of the coherent potential approximation theory is sum-
marized. Since t is not zero, the threshold value of the elementary pin-
ning force is not zero. However, it depends on the elementary pinning force
and never exceeds the elementary pinning force. Thus, it can be said that
the threshold value of the elementary pinning force does not exist. This
explains the experimental result in Fig. 7.9. In addition, from the relationship
between the elementary pinning force and its threshold value, the pinning loss
is shown to be of the hysteresis type caused by the unstable location of flux
lines and agrees with generally known characteristics.

Here we shall treat pinning by large normal precipitates as an example of
the direct summation. The mean diameter of the precipitates is denoted by
D. The elementary pinning force is given by Eq. (6.9). This gives

Fp = 0.430π
NpξD2µ0H

2
c

af

(
1 − B

µ0Hc2

)
. (7.83a)

If the elementary pinning force derived from the local model for the normal
core with diameter 2ξ is used (see Exercise 6.1), the pinning force density is
given by

Fp =
πNpξD2µ0H

2
c

4af

(
1 − B

µ0Hc2

)
. (7.83b)

It can be shown from these results that the temperature scaling law holds for
the pinning force density with the pinning parameters of m = 2, γ = 1/2 and
δ = 1. This result agrees with the experimental results shown in Fig. 7.1(a)
and (b).

7.4 Comparison with Experiments

In this section the results of the Larkin-Ovchinnikov theory [7] and the coher-
ent potential approximation theory [24], which resolve the threshold problem,
are compared with experiments. However, experimental results suitable for
comparison are rather difficult to find. Hence, the comparison cannot be made
systematically but is restricted to only certain aspects. In the following the
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comparison is divided into qualitative aspects, such as dependences on the
number density of pins and the elementary pinning force, and quantitative
aspects, and then the results are discussed. Finally the problems that arise
from the theories are discussed.

7.4.1 Qualitative Comparison

The results are first compared on the dependence on the number density of
pins Np. For three-dimensional pinning, Fp is predicted to be proportional
to N2

p and N
2/3
p for weak collective pinning and strong pinning, respectively,

in the Larkin-Ovchinnikov theory. On the other hand, Fp is predicted to be
proportional to Np both for the weak and strong pinning when Np is not
too high in the coherent potential approximation theory. An example of ex-
perimental result supporting the former prediction is a report on pinning by
irradiated defects from fast neutrons. Figure 7.13 shows the result for Nb-Ta
[26]. It can be seen that, although a constant part remains due to residual
pinning, F

1/2
p increases linearly with the irradiation dose. Figure 7.14 shows

Fig. 7.13. Variation in pinning force density in irradiated Nb-20at%Ta at 5.0 K as
a function of the fast neutron dose [26]
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Fig. 7.14. Parameter showing the dose dependence of the pinning force density in
V3Si irradiated by fast neutrons [27]

Fig. 7.15. Replots of Fig. 7.13. Pinning force density vs. dose of neutrons for (a)
b = 0.31, b = 0.72 and (b) b = 0.96, b = 0.99

the results of the irradiation dose on V3Si [27], where the dependence is ex-
pressed as Fp ∝ Nn

p . According to this result n � 2 is obtained at low fields
when Np is not so large.

On the other hand, there are questionable points in interpreting these
results. For example, Fig. 7.15(a) and (b) are replottings of the results in
Fig. 7.13. In (a) at b = 0.31 and b = 0.72, the pinning force density appears
to increase linearly with the dose of neutrons. Also in (b) at b = 0.96 and b =
0.99, the linear relationship seems to hold between the pinning force density
and the dose of irradiation. The dependence of the pinning force density on
the dose of neutrons in the region of n � 2 in Fig. 7.14 (its data will be shown
later in Fig. 7.20(a)) is replotted in Fig. 7.16, from which n is evaluated to
be close to 1 [28]. Thus, the assertion in [26] and [27] cannot be completely
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Fig. 7.16. Pinning force density vs. dose of neutrons in the region of n � 2 in
Fig. 7.14 (Φ < 1 × 1021 m−2 at B = 2.10 T and Φ < 5 × 1020 m−2 at B = 4.65 T)

Fig. 7.17. Critical current density at B = 1 T vs. effective surface area of normal
Bi precipitates in a unit volume, S = NpD2, in Pb-Bi specimens [29]

accepted, and hence, it cannot be concluded that these are just the dependence
on number density of pins which agrees with the Larkin-Ovchinnikov theory.

Contrary to the above results, experimental results which support the
predictions of the coherent potential approximation theory, Fp ∝ Np, are
found in the category of fairly strong pinning. Figure 7.17 shows the case of
Pb-Bi with precipitates of normal Bi phase [29]. The critical current den-
sity is proportional to the effective surface area of precipitates of the Bi
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Fig. 7.18. Critical current density at B = 6.5 T vs. reciprocal grain size d−1
g in

V3Ga [31]

phase in a unit volume, S = NpD2, over a wide range, showing agreement
with Eq. (7.83). The pinning by nonsuperconducting 211 phase particles in
Y-123 high-temperature superconductor [30] also agrees with this prediction.
Figure 7.18 shows the relationship [31] between the critical current density in
V3Ga and the inverse of the grain size dg, and a proportionality is obtained.
Here, the pinning by grain boundaries is similar to that by the surface of
normal precipitates, and if we note that dg and d−3

g correspond to D and Np,
respectively, it is derived that Fp is proportional to d−1

g . A similar result was
also obtained for Nb3Sn [32].

The dependence of the pinning force density only on the elementary pin-
ning force fp is difficult to investigate, and there is no suitable experiment.
This is because, when the size of pins is changed to change fp, Np also changes.
Hence, it is necessary to investigate the two dependences on fp and Np simul-
taneously. If we summarize the results of the two theories again, Fp is pro-
portional to N2

pf4
p and N

2/3
p f

4/3
p for weak pinning at low fields and for strong

pinning, respectively, in the Larkin-Ovchinnikov theory. In the coherent po-
tential approximation theory, on the other hand, Fp is proportional to Npf2

p

and Npfp for relatively weak pinning and for strong pinning, respectively.
The results on niobium [12] shown in Fig. 7.9 are suitable for a systematic
comparison. This result is not a direct comparison for the above functions
and is not perfect because fp and Np are not independent of each other as
mentioned above. However, all the data meet on a single master curve, and
hence, this seems to show the functions predicted by the coherent potential
approximation theory. In Fig. 7.19 the experimental result for Nb-Ta with
normal precipitates of Nb2N phase is compared with the two theories [33]. It
turns out that agreement is not obtained with experiment either qualitatively
or quantitatively for the Larkin-Ovchinnikov theory. On the other hand, two
groups of experimental results with considerably different pinning parameters
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Fig. 7.19. Comparison of pinning force density with predicted functions at b =
0.65 for Nb-Ta with normal Nb2N precipitates [33] for (a) the Larkin-Ovchinnikov
theory (shaded area shows the theoretical prediction) and (b) the coherent potential
approximation theory with ηe = 0.17. Data labeled A8, A18, A20 are experimental
results by Antesberger and Ullmaier [34]

[33, 34] can be simultaneously explained by the coherent potential approx-
imation theory. In Fig. 7.19(b) the straight line represents Eq. (7.81) with
ηe = 0.17 so as to get a good fit with experiments. The theoretical estimation
of ηe will be given in Subsect. 7.4.2.

Although the number of experimental results suitable for comparison with
the theories is not sufficient, it seems from the above results that the coherent
potential approximation theory is in better agreement with experiments, espe-
cially for strong pinning, than the Larkin-Ovchinnikov theory. As an example
of other experimental results which support the coherent potential approxima-
tion theory, we find the temperature scaling law of the pinning force density
in Pb-Bi with precipitates of normal Bi phase shown in Fig. 7.1.
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Fig. 7.20. (a) Variation in the pinning force density in V3Si by variation in the
irradiation dose of fast neutrons [27] and (b) the corresponding prediction of the
Larkin-Ovchinnikov theory. All measurements were done at temperatures at which
µ0Hc2 was equal to 11.6 T

On the other hand, the abovementioned experimental result [27] on neu-
tron irradiated V3Si was compared with the Larkin-Ovchinnikov theory.
Figure 7.20(a) and (b) show the experimental result and the corresponding
theoretical result, respectively. The elementary pinning force of defects pro-
duced by neutron irradiation was estimated so as to get a good agreement in
the case of an high number density of defects. Although the theoretical result
is considerably smaller than the experimental result for a low number density
of pins as will be mentioned later, the theory generally explains the trend of
experimental results.

Experiments compared with the Larkin-Ovchinnikov theory in most de-
tail are those on thin films by Wördenweber and Kes [19, 20]. For example,
Fig. 7.21 shows the dependence of the pinning force density on the film thick-
ness of Nb3Ge [35]. This agrees with the prediction of the Larkin-Ovchinnikov
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Fig. 7.21. Dependence of pinning force density on film thickness in Nb3Ge thin
films at b = 0.4 and at T/Tc = 0.7 [35]. The solid line shows the prediction of
Eq. (7.68)

Fig. 7.22. (a) Magnetic field dependence of pinning force density in Nb3Ge thin
film 7.9 µm thick [20] in a normal magnetic field at T/Tc = 0.44 (circles), in a
magnetic field tilted by 45◦ from the direction of current at the same temperature
(solid circles) and in a normal magnetic field at T/Tc = 0.95 (triangles). The solid
line is the prediction of two-dimensional collective pinning theory. The inset shows
the ratio of two pinning forces for different directions of the magnetic field at b =
0.4 (triangles), the peak field (solid squares) and b � 1 (circles). (b) Theoretical
prediction corresponding to the inset in (a)

theory, Eq. (7.68). Figure 7.22(a) gives the magnetic field dependence of the
pinning force density in a Nb3Ge thin film 7.9 µm thick in magnetic fields
normal to the surface and tilted by 45◦ from the direction of the current. The
inset shows the ratio of the pinning force density when the magnetic field
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Fig. 7.23. Magnetic field dependence of Lc/d in Nb3Ge thin film estimated at
T/Tc = 0.44 in a normal magnetic field [20]

is normal to the current and that when the field is tilted by 45◦ from the
current. Figure 7.22(b) is the corresponding theoretical prediction. According
to the theory, Fp is independent of the film thickness d for three-dimensional
pinning, proportional to d−1 as in Eq. (7.68) for the two-dimensional pinning
of latticelike flux lines, and proportional to d−1/2 as in Eq. (7.69) for the two-
dimensional pinning of amorphous flux lines. Since the film thickness increases
equivalently by a factor of 21/2 when the magnetic field is tilted by 45◦ from
the film, the results in Fig. 7.22(b) are predicted. Thus, a good agreement is
obtained between the theory and the experiment.

It is expected in the theory that a transition from the two-dimensional
pinning to the three-dimensional occurs when the longitudinal correlation
length Lc, obtained from Eqs. (7.57) and (7.70), decreases with increasing
magnetic field to a half of the film thickness d. A significant enhancement
of the pinning force density was observed at the field b = bCO, at which
the transition is speculated to occur. The value of Lc estimated using W (0)
obtained from the experimental result of Fp at b = 0.4 is shown in Fig. 7.23
[20]. In this estimation Vc = R2

cd and Eq. (7.57) were used for b < bCO,
and Vc = R2

cLc and Eq. (7.57) were used for b > bCO. According to this
result Lc � d/2 was obtained at b = bCO, and hence, it was asserted that the
transition between the two-dimensional pinning and the three-dimensional
had occurred. In this view the reason why Lc decreased discontinuously at
the transition point b = bCO with increasing magnetic field was because the
two-dimensional flux line lattice became unstable and went into an entangled
“spaghetti” state with penetration of screw dislocations nucleated near the
film surface. However, if such a discontinuous transition of the first order really
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occurs, hysteresis may be expected to exist between increasing and decreasing
magnetic fields. However, such a hysteresis has not yet been observed.

As for the result shown in Fig. 7.22(a), it is considered that two-dimensional
pinning is attained over the entire magnetic field region at high temperatures
near the critical temperature. In fact, a pronounced peak effect accompanied
by the transition to three-dimensional pinning was not observed. Since the
nonlocal property of the flux line lattice and the dependence of W (0) ∝ H2

c Hc2

were assumed, the longitudinal correlation length was predicted to be propor-
tional to H−1

c2 .

7.4.2 Quantitative Comparison

A quantitative comparison of theories with experiments has already been
made on some results in the last subsection. If the results are summarized
briefly, the Larkin-Ovchinnikov theory gives a very small pinning force den-
sity for weak pinning, as can be seen from the comparison in Fig. 7.20. This
is related to the prediction that Fp is proportional to N2

pf4
p , and hence, the

above trend is emphasized especially for weak pinning. On the other hand,
the theory gives a larger pinning force density than is seen in experiments
for strong pinning as in the case of normal precipitates shown in Fig. 7.19(a).
The theory predicts a stronger fp-dependence (Fp ∝ N

2/3
p f

4/3
p ) than the ex-

perimental result (Fp ∝ Npfp) in this case, too.
Such a trend can clearly be seen from the comparison with the experimen-

tal result on niobium [36] shown in Fig. 7.24 in which the results of the Larkin-
Ovchinnikov theory for the cases of Np = 1×1020 m−3 and Np = 1×1022 m−3

are compared. Namely, the theoretical results are very much smaller in the
region of small fp and larger in the region of large fp than the experimental
results. Thus, it is concluded that the Larkin-Ovchinnikov theory does not
agree quantitatively with the experiments.

On the other hand, some papers reported that the Larkin-Ovchinnikov the-
ory agreed with experiments. One of them is the pinning of three-dimensional
amorphous flux lines at high fields in niobium and vanadium by voids, which
were nucleated by neutron irradiation at high temperatures [37]. In this paper
the theoretical result of Thuneberg [38] on the electron scattering mechanism
was used for estimating the elementary pinning force of pointlike defects and
the Larkin-Ovchinnikov theory with the nonlocal elastic moduli of the flux
line lattice was used for the summation. Hence, there is a possibility that an
overestimation by the nonlocal theory and an underestimation by the Larkin-
Ovchinnikov theory are by chance canceled. It was reported that a quantita-
tive agreement was obtained also for a series of experiments on thin films [19,
20]. However, nonlocal elastic moduli were assumed in the analysis. From this
point and the ambiguity about practical defects acting as pinning centers it
cannot be concluded if this theory agrees quantitatively with experiments.

Here the coherent potential approximation theory is compared quan-
titatively with experiments. For example, the result on specimen 13 in
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Fig. 7.24. Comparison [36] of experimental results at b = 0.6 on the same niobium
specimens shown in Fig. 7.9 with the results of the Larkin-Ovchinnikov theory for
Np = 1 × 1020 m−3 and Np = 1 × 1022 m−3

Fig. 7.19(b) is compared with theory. µ0Hc2 of this specimen is 0.449 T and
µ0Hc is estimated as 0.084 T at 4.2 K. The mean number density of pins
is Np � 0.35 × 1018 m−3 and the elementary pinning force is estimated as
fp � 1.2× 10−10 N at b = 0.65 (B = 0.292 T, af = 9.05× 10−8 m) [33]. From
Eqs. (7.10) and (7.12b) C44 = 6.79 × 104 Nm−2 and C66 = 1.12 × 102 Nm−2

are derived. We have kf = 1/G′(0) = 3.29 × 10−3 Nm−1 from Eq. (7.26) and
kfaf/4fp = 0.62. Thus, ηe = 0.23 is obtained from Eq. (7.82). This is close to
the experimental result, ηe = 0.17, shown by the straight line in Fig. 7.19(b).
It can be seen that the experimental result for strong pinning can be explained
almost quantitatively by the coherent potential approximation theory. Since
the present theory is not applicable to weak pinning, comparisons cannot be
made for experimental results in this category. A new theoretical approach is
necessary for this purpose.

7.4.3 Problems in Summation Theories

The pinning force density is globally obtained through the estimated elastic
correlation length of the flux line lattice in the theoretical method of col-
lective pinning of Larkin and Ovchinnikov, while it is calculated from the
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statistical average by taking account of interactions among pins using the
mean field method in the coherent potential approximation theory. It is ex-
pected that the two methods would ultimately derive similar results by im-
proving the accuracy of approximations. However, some approximations are
still not good, and apparent problems remain at the moment. Here we shall
mainly describe the problems in the Larkin-Ovchinnikov theory and its modi-
fication by Wördenweber and Kes [19, 20], since these theories are considered
to contain apparent problems.

One of them is the assumption of nonlocal elastic moduli of the flux line
lattice. This is discussed in detail in Appendix A.5, and we do not mention it
further here.

Comparing Eqs. (7.23) and (7.52), it turns out that the uniaxial compres-
sion, a part of the Lorentz force, is not taken into account in the Larkin-
Ovchinnikov theory. This is clearly incorrect. According to the original paper,
this was neglected since the compression strain was small along the direction of
the Lorentz force because of the large C11 in comparison with C66. However,
this asserts that a strong compression force exists, contrary to the original
assumption. In fact it can be shown that a compression force of the same
magnitude exists from the partition of the strain energy. This force is known
as a hydrostatic pressure even in a liquid in which the shear modulus is zero.
It is also shown that an elastic interaction with a longer correlation length,
(C11/C66)1/2Rc � Lc, exists in practice along the direction of the Lorentz
force, and a theoretical calculation has already been done under this condition
[39]. Under this compression force clusters of flux lines with short-range order
interact with each other. The pinning force is originally the variation rate of
the pinning energy against the displacement in the direction of the Lorentz
force, and hence, the compression force is necessarily associated with this dis-
placement. Each cluster cannot always stay at a suitable position for pinning
because of this interaction, and its pinning force is distributed in the range of
−f to f as shown in Subsect. 7.3.4, with f denoting the maximum force on
each cluster. On the other hand, it was assumed in the Larkin-Ovchinnikov
theory that each cluster was independent of the others and that its pinning
force takes the value of f . However, there is no theoretical proof.

If the correction on the nonlocal elastic moduli is done and if the elastic
interaction due to the compression is taken into account in the collective
pinning theory, it will surely bring about a smaller pinning force density. In
the category of weak pinning the theoretical pinning force density is already
very small in the low field region where the local elastic moduli are used.
Hence, the difference between theory and experiments is further enhanced by
the introduction of the compression interaction. However, defects and strains
are considered to exist even inside a region with a short-range order in the
flux line lattice. Thus, the residual pinning force after the cancellation will be
considerably larger than that which only results from fluctuations. This may
compensate for the abovementioned reduction in the pinning force density due
to the corrections. In fact, the softening of C66 is remarkable due to defects
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in the flux line lattice and the influence of thermal activation of flux lines,
and the resulting enhancement of the pinning efficiency is significant (see
Appendix A.8). However, it should be noted that C66 cannot be theoretically
obtained by usual methods, as will be discussed in Sect. 7.7. For this reason
it is evident that any theoretical prediction may fail to explain experimental
results, unless the reduction in C66 from C0

66 for the perfect flux line lattice is
not taken into account. The most typical case may be found in the prediction
of the collective pinning theory for weak pinning forces. Hence, for the purpose
of more exact estimation of the pinning force density the coherent potential
approximation theory, in which the size of the treated region can be reduced
below the dimension of short-range order, seems to be more suitable. On the
other hand, a thermodynamic method in which the dimension of short-range
order is assumed to be determined so that the pinning force is maximized
was proposed by Kerchner [22]. This has attracted attention since it may
break through the limit of the Larkin-Ovchinnikov-type theory. However, the
softening of C66 is not considered in the Kerchner model and this influence
should be taken into account in the maximization of the pinning force density.

Wördenweber and Kes developed their collective pinning theory and ar-
gued for a transition between two- and three-dimensional pinning in thin films.
The fundamental problem with this theoretical treatment has already been
mentioned, and we do not repeat it here. Instead of this, we shall discuss
why such a transition cannot correctly be described by the original Larkin-
Ovchinnikov theory. If we summarize the pinning in two-dimensional lattice-
like, three-dimensional latticelike and three-dimensional amorphous flux lines
in a thin film that is predicted by the Larkin-Ovchinnikov theory, the results
are schematically shown in Fig. 7.25. According to these results the transition
between two-dimensional latticelike pinning and three-dimensional latticelike
pinning does not occur (and even if it dose occur, it is quite near Hc2). Hence,
the pronounced peak effects observed in experiment cannot be explained as
the transition. This is due to the fact that the effectiveness of pinning is too
different between the two- and three-dimensional cases even in the latticelike
state. We shall here discuss this from a purely theoretical viewpoint. In the
Larkin-Ovchinnikov theory the elastic interactions taken into account are the
bending associated with C44 and the shear associated with C66 for the three-
dimensional case, while only the shear is considered in the two-dimensional
case. Hence, the strength of elastic interaction is too different resulting in a
large difference in the pinning force density between the two cases. It is be-
lieved that the compression elastic interaction associated with C11 should be
taken into account for both cases. Then, the strength of the elastic interac-
tion would not be so different between the two- and three-dimensional cases,
and the pinning force densities in each case would become closer than before.
The dimensional transition of pinning might be successfully explained by this
correction. In this case we will face the problem of too small a pinning force
density. This is in fact a common problem in collective pinning theory. One
of the methods to solve this has already been mentioned above.
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Fig. 7.25. Pinning force densities in superconducting thin film for two-dimensional
latticelike pinning, three-dimensional latticelike pinning and three-dimensional
amorphous pinning predicted by Larkin and Ovchinnikov

7.5 Saturation Phenomenon

7.5.1 Saturation and Nonsaturation

The pinning force density Fp generally depends closely on the microstructure
of pins, and Fp increases when the elementary pinning force fp is strength-
ened or the number density of pins Np is increased. However, it is sometimes
observed that, when fp and/or Np are increased, Fp does not change much at
high fields, while Fp increases at low fields. This phenomenon at high fields
is called saturation. Figure 7.26(a) shows the case of Nb3Sn [40]. Although
Fp varies at low fields due to a variation in the effective Np resulting from a
variation in grain size, it is almost unchanged at high fields. It is also known
for Nb-Ti that Fp does not increase at high fields in spite of increasing fp

during the process of precipitation of α-Ti phase by heat treatment [41] (see
Fig. 7.26(b)). As can be seen from the fact that the saturation is observed
in commercial superconductors, this phenomenon occurs in the case of fairly
strong pinning. Under saturation the normalized magnetic field at which Fp is
maximized becomes lower when fp and/or Np are increased. One of the char-
acteristics of the saturation is that the parameter δ in Eq. (7.3) representing
the magnetic field dependence of Fp at high fields is about 2.

On the other hand, it is also normal to observe cases where the pinning
force density varies with variation in the microstructure of the pins without
showing saturation at high fields, although the value itself is of the same order
of magnitude as that in the saturation. Figure 7.27 shows the characteristics
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Fig. 7.26. Examples of the pinning force density showing saturation: (a) Nb3Sn
[40] and (b) Nb-Ti during precipitation of α-Ti by heat treatment [41]

of Nb-Ti wires [42] for which Fp has different values over the entire region
of magnetic field due to differences in the amount and/or structure of pre-
cipitates of α-Ti phase working as pinning centers. These are the results for
Nb-Ti wires that were heavily drawn after precipitation of α-Ti phase. The
normalnized magnetic field at which Fp is maximized is almost the same and
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Fig. 7.27. Nonsaturation of the pinning force density in Nb-Ti wires [42]

the function f(b) expressing the dependence of Fp on the normalized field is
also almost the same. This phenomenon is called nonsaturation as opposed
to the saturation discussed above. One of the characteristics of nonsaturation
is that the magnetic field dependence of Fp at high fields is characterized by
δ � 1 in Eq. (7.3).

Most high field superconductors such as the commercial ones show either
saturation or nonsaturation. For example, Nb3Sn belongs to the saturation
type and Nb-Ti and V3Ga to the nonsaturation type. From the viewpoint
of applications of superconductors at high fields the nonsaturation type with
smaller degradation of critical current at high fields is preferable. Hence, it is
desirable to improve the pinning characteristics of Nb3Sn, which has superior
superconducting properties to Nb-Ti and is more economical than V3Ga, from
the saturation type to the nonsaturation type.

There is no pure theory which can explain the saturation, but some models
have been proposed. In this section these models are introduced and exper-
imental results of Campbell’s method that are useful for verification of the
validity of the models are discussed.
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7.5.2 The Kramer Model

The first pinning model for saturation and nonsaturation was proposed by
Kramer [40, 43]. According to his model, when the number density of pins is
sufficiently high, strains of the flux line lattice due to individual pins heavily
overlap, and each flux line seems to be pinned as if by a line pin parallel
to itself. This situation is called line pinning. Kramer expressed the pinning
force per unit length of flux line as f̂p = wfp. He assumed that the equivalent
number of pins w fluctuates widely from one flux line to another. Then, weakly
pinned flux lines (with small w) are largely displaced by the Lorentz force,
resulting in shearing deformations around strongly pinned flux lines (with
large w). Since the magnitude of this displacement u is proportional to f̂p/C66,
it is found from f̂p ∝ (1− b) and C66 ∝ (1− b)2 that u increases in proportion
to (1−b)−1 with increasing field. The probability for the flux line to encounter
a stronger line pin increases in proportion to the displacement. Thus, a group
of strongly pinned flux lines is considered to be formed around a flux line that
was originally strongly pinned. The process by which the flux line lattice is
deformed with increasing field so that it fits a structure of distributed pins is
called synchronization. The pinning force of this group is proportional to u
and is expressed as

f̃p =
αKf̂p

2

C66
, (7.84)

where αK is a constant.
Groups of flux lines pinned with the forces given by Eq. (7.84) are dis-

tributed in space. Kramer used the results of the dynamic pinning theory of
Yamafuji and Irie [8] for evaluating the pinning force density. This is equiva-
lent to taking the statistical average of groups as a result. Hence, the pinning
force density is proportional to f̃2

p/C66 and is given by

Fp =
βKρpf̂p

4

C3
66af

, (7.85)

where βK is a constant and ρp is the area density of strong line pins. As to
the magnetic field dependence, Eq. (7.85) leads to

Fp = Kpb1/2(1 − b)−2 (7.86)

except for the low field region. Thus, the pinning force density increases with
increasing magnetic field caused by the synchronization. In the above, Kp is
a constant dependent on the temperature and its temperature dependence is
given by Kp ∝ H

5/2
c2 .

According to Kramer the pinning characteristics at higher fields are clas-
sified into two types depending on the strength of pinning. When the pinning
force of a strongly pinned flux line is weaker than the maximum shear force
of the flux line lattice, the synchronization is completely attained without
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plastic shear deformation of the flux line lattice. In this case the pinning force
density is given by the linear summation in Eq. (7.1). Thus, the pinning force
density depends on the structure of pins, and its magnetic field dependence is
expressed as (1 − b). These features satisfy the nonsaturation conditions (see
Fig. 7.28(a)).

Fig. 7.28. Variations in pinning mechanisms and pinning characteristics predicted
by Kramer for the cases of (a) nonsaturation and (b) saturation

On the other hand, when the pinning force is stronger than the maximum
shear force, the flux line lattice starts a shearing flow, resulting in a voltage
state before the synchronization is completed. The pinning force density in
this case is calculated as

Fp =
C66

12π2(1 − afρ
1/2
p )2af

. (7.87)

The characteristics of this pinning force density are that it does not depend
much on the area density of line pins ρp over its wide range from a very
low value to the high limit 1/4a2

f (if the mean spacing of line pins becomes
smaller than 2af , the shear flow does not occur), and that its magnetic field
dependence is given by

Fp = Ksb
1/2(1 − b)2 . (7.88)

That is, the magnetic field dependence comes mostly from that of the shear
modulus. Thus, Eq. (7.87) satisfies the characteristics of the saturation con-
ditions. Variations in the pinning mechanism and the pinning characteristics
in this category are shown in Fig. 7.28(b). In Eq. (7.88) Ks is a constant
dependent on temperature and is proportional to H

5/2
c2 as well as Kp. Hence,

it is derived from Eqs. (7.86) and (7.88) that the pinning force density can
be described in the form of the usual temperature scaling law in which the
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Fig. 7.29. Variation in the pinning force density due to variation in the pinning
strength predicted by Kramer [43]. The distribution of Kp representing the pinning
strength is assumed to obey the Poisson distribution

dependences on temperature and normalized magnetic field can be separated.
Figure 7.29 shows the predicted variation in the pinning force density with
strengthening pinning force [43]. This resembles qualitatively the experimental
results in Fig. 7.26.

Equation (7.88) is called Kramer’s formula and sometimes used for es-
timation of the upper critical field Hc2, etc. That is, this equation reduces
to

F 1/2
p B−1/4 = J1/2

c B1/4 = K1/2
s (µ0Hc2)−1/4

(
1 − B

µ0Hc2

)
, (7.89)

and hence, by extrapolating the linear part of the experimental data on
J

1/2
c B1/4 vs. B, µ0Hc2 can be obtained from a value of B at which J

1/2
c B1/4

reaches zero.
According to the Kramer model the pinning characteristic of saturation

gives the upper limit of the pinning force density, and it is predicted that a
further improvement of the critical current density at high fields is impossible.
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7.5.3 Model of Evetts et al.

Because the pinning force density of Nb3Sn does not agree quantitatively
with the saturation characteristic of the Kramer model, Evetts and Plummer
[44] and Dew-Hughes [45] proposed their model in which an occurrence of
the shearing flow of flux lines and the resultant pinning characteristic are
determined by the morphology of the pins. According to this model, since the
pins in a Nb-Ti wire are ribbonlike α-Ti precipitates and dislocation cell walls
elongated along the length of the wire, flux lines should overcome the pins as
shown in Fig. 7.30(a) to reach a voltage state. Thus, it leads to nonsaturation.
On the other hand, Nb3Sn has an isotropic grain structure, and the occurrence
of a shearing flow of flux lines along grain boundaries is possible as shown by
the thick line in Fig. 7.30(b). Thus, the pinning force density is expected to
be close to saturation, although the pinning force density varies depending on
the pinning morphology.

Fig. 7.30. Explanation of the model of Dew-Hughes [45]. Morphology of pins in
(a) Nb-Ti and (b) Nb3Sn. Arrows show the directions of the current and the Lorentz
force

7.5.4 Comparison Between Models and Experiments

As abovementioned, it is assumed that the shearing flow of flux lines occurs
depending on the pinning strength in the Kramer model or on the pinning
morphology in the model of Evetts, Plummer and Dew-Hughes, and that the
resultant pinning characteristic, saturation or nonsaturation, is determined by
the occurrence of shearing flow. It is expected in the Kramer model that the
pinning force density in saturation is larger than that in nonsaturation. How-
ever, many experimental results are contradictory to this assertion. For exam-
ple, saturation is observed in a process of precipitation of α-Ti by heat treat-
ment in Nb-Ti as shown in Fig. 7.26(b). When this material is cold worked, the
pinning force density increases, accompanied by a transition from saturation
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Fig. 7.31. Variation of the pinning force density by cold working Nb-Ti [41], which
shows saturation in Fig. 7.26(b)

to nonsaturation [41] as shown in Fig. 7.31. This is opposite to the prediction
of the Kramer model. On the other hand, although the pins in V3Ga are grain
boundaries just as in Nb3Sn, the fact that its pinning characteristic is close
to that of nonsaturation does not agree with the prediction of the model of
Evetts et al.

Examples of pinning characteristics showing saturation and nonsatura-
tion are classified with respect to the kind of pins in Table 7.1 [46]. It turns
out that saturation and nonsaturation are general phenomena independent of
superconductor, the G-L parameter (κ), and kind and morphology of pins.
Therefore, it can be said that the pinning characteristic cannot only be deter-
mined by the morphology of pins as assumed by Evetts et al. The results in
Table 7.1 suggest generally that pins resulting in nonsaturation are stronger
than those resulting in saturation. For example, a void of a size of about 10 nm
has a stronger elementary pinning force than a dislocation loop in niobium.
Even for similar grain boundaries it is also known [47] that the elementary
pinning force in V3Ga is stronger than that in Nb3Sn. In addition, it is shown
by a calculation [41] that the elementary pinning force of α-Ti precipitates
in Nb-Ti is stronger for a long thin ribbon shape after a heavy drawing than
for an isotropic geometry before the drawing. (See Sect. 6.7 for the above two
cases.) Thus, all of these results are contradictory to the predictions of the



318 7 Flux Pinning Characteristics

Table 7.1. Pins and pinning characteristics in various superconductors [46]

Saturation Nonsaturation

point pin Nb(dislocation loop) Nb(void)

(0-dimensional) V3Si(cascade defect)

planar pin Nb-Ta(subband wall) Pb-Bi(S-N interface)

(2-dimensional) Nb3Sn(grain boundary) V3Ga(grain boundary)

normal precipitate Nb-Ti(platelike) Nb-Ti(ribbonlike)

(2∼3-dimensional) Nb-Ta(platelike)

Kramer model. The reason why saturation is observed in Nb-Ti even for sim-
ilar platelike normal precipitates, while nonsaturation is observed in Nb-Ta,
is that the elementary pinning force in Nb-Ti is relatively weaker due to a
shorter coherence length ξ. The difference in the magnetic field strength is
also one of the reasons.

While nonsaturation is a normal phenomenon in which the linear summa-
tion holds for the pinning force density, saturation is a peculiar phenomenon.
So, we shall introduce the result of Campbell’s method which can provide us
with useful information on the flux line lattice for deducing the mechanism
of the peculiar saturation phenomenon. One merit of this method is that
it clarifies not only the pinning force density but also the Labusch parame-
ter αL and the interaction distance di mentioned in Sect. 5.3. These quanti-
ties provide us useful information on the flux line lattice. Figure 7.32(a) and
(b) show the results on αL and di, respectively, in the Nb-Ti specimen in
Fig. 7.26(b) which shows saturation [41]. The figure indicates that αL in-
creases with the pinning strength and is approximately proportional to (1−b)
at high fields. If the shearing flow model of Kramer held correct, αL would be
independent of the pinning strength and would be proportional to C66, and
hence, to (1 − b)2 (see Exercise 7.6). In addition, while its theoretical value
is at most 1.6 × 102 Nm−2 at b = 0.7, the observed value amounts to 1.0 ×
103 Nm−2 and is about seven times as large as the theoretical limit. This
means that the elastic restoring force against the motion of flux lines cannot
be the shear force of the flux line lattice. At the same time the interaction
distance di shown in Fig. 7.32(b) is not proportional to af ∝ B−1/2 but de-
creases linearly as (1− b) at high fields. This also shows that the phenomenon
is not so simple as assumed in the Kramer model. In addition, di decreases
with strengthening pinning, while αL increases. Similar results were also ob-
tained for Nb-Ta [48]. These results show that, while the elasticity of the flux
line lattice is enhanced with strengthening pinning, the elastic limit of strain
is lowered. That is, the flux line lattice becomes hard but brittle at the same
time, keeping the proof stress unchanged as shown in Fig. 7.33.
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Fig. 7.32. (a) Labusch parameter αL and (b) the interaction distance di in Nb-Ti
[41] showing saturation in Fig. 7.26(b)

In the case of nonsaturation, on the other hand, while αL behaves similarly
to the case of saturation, the decrease of di at high fields is less significant.
As a result, the pinning force density increases at high fields with strength-
ening pinning. That is, the characteristic brittleness of the flux line lattice in
saturation disappears.
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Fig. 7.33. Variation in pinning force density vs. displacement characteristic by
increment of fp or Np in the case of saturation

7.5.5 Avalanching Flow Model

Based on the above experimental results using Campbell’s method the
avalanching flow model [41, 48, 49] was proposed to explain saturation and
nonsaturation. The details of αL and di derived from this model are described
in Appendix A.6. A brief summary of it is given here. When a Lorentz force
with a certain strength is applied on the flux line lattice, local plastic deforma-
tions are proposed to occur around lattice defects. In this model it is assumed
that if the pins are not sufficiently strong, the whole flux line lattice becomes
unstable under local plastic deformations and an avalanching flux flow occurs
(see Fig. 7.34). In this case, when the pinning becomes stronger, the number
density of lattice defects increases, and the flux line lattice becomes more un-
stable, resulting in an easier occurrence of avalanching flux flow. Thus, the
increase of αL and the decrease of di are canceled out giving rise to satu-
ration. On the other hand, when the pinning strength exceeds some critical
level, local plastic deformations cannot develop to global instability due to the
strong shielding effect of surrounding pins. Hence, the flux flow occurs only
when a Lorentz force corresponding to the strength of the pins is applied, and
nonsaturation results.

According to this model saturation and nonsaturation occur for various
defects and the key factor which determines the characteristic is the pinning
strength. That is, nonsaturation occurs for sufficiently strong pins, and the
prediction of the Kramer model that a pinning characteristic superior to the
saturation cannot be realized is incorrect. It is empirically known that non-
saturation is difficult to attain in superconductors with high κ values. This
is because the elementary pinning force is weaker due to the shorter coher-
ence length ξ as mentioned above. The above argument only applies from the
viewpoint of pinning strength, i.e., the elementary pinning force fp. It should
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Fig. 7.34. (a) Local plastic deformation of flux line lattice around a defect and (b)
development to avalanching flux flow [49]

Fig. 7.35. Pinning force density in niobium with large voids for the cases of (a)
saturation with low number density of pins [50] and (b) nonsaturation with high
number density of pins [51]

be noted that the number density of pins Np is also important in determina-
tion of the pinning characteristic. Figure 7.35 shows the results for pinning
by strong voids in niobium [50, 51]. It can be seen that the characteristic is
of saturation type for small Np, while nonsaturation is attained for large Np.

Figure 7.36 summarizes the expected variation in Fp over wide ranges of
pinning parameters, fp and Np [41]. The summation theory is valid except
in the region of saturation. Namely, the linear summation and the statistical
summation described by the coherent potential approximation theory hold
in the regions beyond and below the saturation, respectively. In the figure
a variation from point a to point a′ is seen in an example of Nb-Ti (see
Fig. 7.26(b)) showing saturation, and that from point a′ to a′′ is seen in an
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Fig. 7.36. Expected dependences of the pinning force density Fp on pinning para-
meters, fp and Np [41]. In the region where Fp is constant saturation occurs

example of Nb-Ti (see Fig. 7.31) showing the transition from saturation to
nonsaturation. An example from point b to point b′ is found for Nb3Sn or
neutron irradiated V3Si [52]. The variation in niobium shown in Fig. 7.35 will
be clear.

7.6 Peak Effect and Related Phenomena

The peak effect is a peculiar pinning phenomenon. That is, the critical current
density has a peak at a certain magnetic field (peak field), while it usually
decreases monotonically with increasing magnetic field. The peak effect is
observed not only in metallic superconductors but also in high-temperature
superconductors. The peak field is close to the upper critical field for supercon-
ductors with a small G-L parameter κ, and is shifted to lower field according to
increasing κ. Especially in high-temperature superconductors with very large
κ the peak effect occurs at fairly low fields (see Fig. 7.37) [53–55]. The peak
effect in Bi-2212 superconductor with an extremely large anisotropy caused
by a layered crystalline structure will be described in Sect. 8.2.

The following mechanisms have been proposed for explanation of the peak
effect: (1) matching, (2) elementary pinning by a weakly superconducting re-
gion, (3) reduction in elastic moduli of the flux line lattice due to the nonlocal
nature and (4) synchronization of the flux line lattice, etc.

The matching mechanism is that the critical current density has a peak
at a magnetic field at which the flux line spacing is equal to the pin spacing.
Figure 7.38 shows the critical current density of a Pb-Bi thin film [56] pre-
pared by vapor deposition with a periodically varied concentration of bismuth.
The peak effect is observed not only at the matching field at which the flux
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Fig. 7.37. Peak effects in various superconductors: (a) Nb-50at%Ta [53] with low
κ, (b) Ti-22at%Nb [54] with high κ and (c) Y-Ba-Cu-O high-temperature super-
conductor in a magnetic field parallel to the c-axis [55]

line spacing is equal to the period of variation of the bismuth concentration,
but also at harmonic fields. However, such a matching mechanism is usually
observed only for a specimen with a highly periodic arrangement of relatively
weak pins. The peak fields are rather low in most cases. Another characteristic
of this peak effect is that the peak field is independent of temperature.

In most cases, however, the peak field varies with temperature as shown
in Fig. 7.37(a), and the pinning force density obeys the scaling law within a
certain range of temperature (except in the vicinity of the critical temperature,
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Fig. 7.38. Critical current density of Pb-Bi thin film with a pinning structure intro-
duced by periodic variation in Bi concentration [56]. 2a is the period of concentration
variations, and the flux line spacing coincides with this period at the peak field B1.
Harmonic peaks are also observed at B2 and B3

for example). In addition, the peak field is likely to move to lower fields with
strengthening pinning as shown in Fig. 7.20(a). This means that the trend is
just opposite to the matching mechanism. That is, since the flux line spacing
at matching becomes shorter when the number density of pins increases, this
mechanism predicts a shift of the peak to higher field.

If the pins are of a more weakly superconducting phase than the matrix
superconductor, the peak effect is expected to be observed at the magnetic
field where the pins change from a superconducting state to a normal state.
Figure 7.39 shows the magnetizations of two phases when pinning regions
have the same thermodynamic critical field but a slightly smaller κ value
than the matrix. The elementary pinning force originates from the magnetic
interaction, which is proportional to the difference in the magnetization, is
zero at point “a” and has a maximum at point ‘b’, the upper critical field of
the pinning region [57]. Thus, the peak effect arises from a variation in the
elementary pinning force itself with magnetic field, i.e., the so-called field-
induced pinning mechanism. Figure 7.40 shows the results [58] of magneti-
zation of Pb57In22Sn21 at 2.0 K and 4.2 K. It has been proposed that the
weaker pinning at 2.0 K than at 4.2 K in the low field region originates from
pinning by the superconducting tin phase and that the peak effect at higher
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Fig. 7.39. Magnetizations of superconducting matrix (solid line) and inclusions
(broken line) with the same thermodynamic critical field but a slightly smaller κ
value

Fig. 7.40. Magnetization curves of Pb57In22Sn21 at 2.0 K and 4.2 K [58]

field is caused by the transition of the tin phase to the normal state. The peak
effect of YBa2Cu3O7 shown in Fig. 7.37(c) is speculated to be caused by a
similar mechanism related to of oxygen deficient regions (YBa2Cu3O6.5) [59].
However, there is a problem in this speculation as will be mentioned later.

It is predicted in the Larkin-Ovchinnikov theory [7] that the flux bundle
size determined by the pinning correlation lengths decreases rapidly with in-
creasing magnetic field due to a reduction in the elastic moduli, C11 and C44,
originating from the nonlocal property, and resulting in the enhancement of
the critical current density. However, this reduction in the nonlocal elastic
moduli, i.e., the key factor of this mechanism, contains a theoretical prob-
lem (see Sect. 7.2 and Appendix A.5). In addition, the appearance of a sharp
peak of critical current density observed in low-κ superconductors cannot be
explained by this mechanism, since the decrease in the elastic moduli is not
appreciable in such superconductors. In high-κ superconductors such as high-
temperature superconductors, the peak effect is observed at relatively low
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fields. There is no theoretical foundation for a decrease in the elastic moduli
at such low fields.

Finally the mechanism of synchronization is discussed here. As mentioned
in the last section, this is a mechanism such that the flux lines rearrange
themselves to fit the structure of pins due to a reduction in the shear modu-
lus C66 with increasing field, resulting in a more strongly pinned state. This
mechanism was first proposed by Pippard [60] and then developed by Kramer
[43]. Although many problems are contained in this model concerned with the
saturation discussed in the last section, the concept of synchronization is de-
veloped to a model of the order-disorder transition of flux lines [61]. Namely, a
proliferation of dislocations into the flux line lattice occurs at the transition,
resulting in a more strongly pinned state of the flux line lattice. Since the
transition field at which the peak effect starts has a strong dependence on the
pinning strength, as shown in Fig. 7.20(a), it is considered that the pinning
energy is involved in the transition [62].

Changes in the peak effect in Y-123 single crystals with varying amounts
of oxygen deficiency and in V3Si single crystals with varying doses of neutron
irradiation are compared over a wide range in Fig. 7.41 [63]. These results for
similar pointlike defects are quite similar to each other. Thus, it can be said
that the peak effect is of a general nature independent of the kind of pinning
centers. This supports a speculation that the peak effect is brought about
by the order-disorder transition of flux lines. It can also be concluded that
the result shown in this figure cannot be explained by a simple field-induced
pinning mechanism.

Here we shall introduce a new experimental result on Sm-123 powder spec-
imens [64]. Figure 7.42 shows that the peak effect of the magnetization current
disappears for specimens of an average size smaller than the longitudinal pin-
ning correlation length L, which is approximately equal to Campbell’s AC
penetration depth λ′

0, since C44 � C11. If this peak effect comes from the ele-
mentary pinning force due to the field-induced pinning mechanism, the peak
effect will not be influenced by the specimen size. When the specimen size
is below the pinning correlation length, it is considered that a collective pin-
ning of lower dimension occurs, resulting in a higher pinning efficiency than in
three-dimensional pinning in the bulk case (see Eq. (7.69) which shows that Jc

is inversely proportional to the square root of the specimen diameter). Hence,
even when the magnetic field reaches the transition field, the transition itself
disappears, since the flux lines are already in the disordered state with the
higher pinning efficiency, resulting in a disappearance of the peak effect.

Many experimental results suggest that a plastic deformation of the flux
line lattice occurs in the disordered state around the peak field. One of the
proofs is pronounced flux flow noise [65] observed at a magnetic field just
below the peak field at which the critical current density increases with in-
creasing field as shown in Fig. 7.43. This result shows a variation in the flux
line structure accompanied by plastic deformation with increasing critical cur-
rent density and is consistent with the assumptions of the synchronization
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Fig. 7.41. (a) Variation in critical current density in Y-123 single crystal at 72 K
under variation in the amount of oxygen deficiency and (b) variation in the critical
current density in V3Si single crystal at 13.6 K under variation in the dose of neutron
irradiation [63]

mechanism. This variation is not the simple elastic deformation assumed by
Kramer.

A history effect is also observed in this region of magnetic field. That is,
the critical current density is not uniquely determined by the final condi-
tion of the magnetic field and temperature but depends also on the path
through which the final condition is reached, as shown in Fig. 7.44 [66].
Figure 7.44(b) shows the results on a niobium single crystal rod with a triangu-
lar cross-section after a tensile deformation of 1%. When the sample is cooled
in a magnetic field, the critical current density is largest and the current-
voltage characteristic is concave upward with a strong nonlinearity. When the
magnetic field is reduced from a sufficiently high value at a fixed tempera-
ture, the critical current density is smaller than that obtained in the field-
cooled process. The critical current density is lowest, and the current-voltage
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Fig. 7.42. Critical current density of superconducting Sm-123 powder specimens
with different particle sizes at 77.3 K [64]. When the pinning correlation length
exceeds the particle size around the peak field, the peak effect disappears

Fig. 7.43. Large flux flow noise observed in Pb-In [65] at a magnetic field just below
the peak field
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Fig. 7.44. (a) Various paths to the condition of measurement and (b) corresponding
current-voltage curves for a niobium specimen [66]

characteristic is almost linear when the magnetic field is increased at a con-
stant temperature. If a state of sufficiently high voltage is attained after any
other state, the current-voltage characteristic is the same as that in the in-
creasing field process. This history effect makes it clear that the state of the
flux line lattice varies considerably depending on the process leading to the
final condition of measurement. Especially in the field-cooled process, the
current-voltage characteristic shown in Fig. 7.44(b) deviates from linearity,
and hence, the flux line lattice is not believed to be in the perfectly ran-
dom state which is describable by the statistical average. Therefore, the syn-
chronization caused by the order-disorder transition seems to really involve a
change in the state of flux lines to fit a distribution of pins.
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Fig. 7.45. Pinning force vs. displacement characteristics in the field-cooled process
and after flux flow for Nb-Ta showing an history effect [67]. In the field-cooled process
the critical current density is larger, and the variation in the pinning force density
with displacement is larger

Figure 7.45 shows the pinning force vs. displacement of flux lines in Nb-Ta
showing an history effect [67]. It was found that the flux line lattice is hardly
deformed in the field-cooled process, while it is easily deformed after flux flow.
Figure 7.46 shows that the peak effect of the critical current density can be
introduced by introducing defects into the flux line lattice within a range of
magnetic field in which the state of the flux line lattice can easily be varied
[35]. That is, after a measurement at T/Tc = t = 0.7 in a certain magnetic
field the temperature was reduced to t = 0.6 and the measurement was done
again. Then, the temperature was brought back to t = 0.7, the magnetic field
was varied, and then the measurement was repeated. This result shows that
the flux line lattice forms an advantageous structure for pinning at the peak
field and at t = 0.7. Such a structure can be maintained and the peak effect
occurs again even when the temperature is reduced to t = 0.6. This result also
supports the order-disorder transition of flux lines with respect to the peak
effect. Similar history effects are observed in the magnetic field range between
the minimum and the maximum of critical current density also for RE-123
superconductors which show the peak effect [68], as in Fig. 7.37(c).

Figure 7.47(a) shows summarized results of history effects on various su-
perconductors investigated by Küpfer and Gey [69]. The ordinate is the ratio
of flux line spacing af to the mean pin spacing dp, and the abscissa is the
ratio of the calculated displacement of a flux line caused by one pin u to af .
The partially filled symbols in the figure show the rate of observation of the
history effect. According to this result the history effect is not observed in
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Fig. 7.46. History effect in Nb3Ge thin film [35]. After measurement at a normalized
temperature T/Tc = t = 0.7 in a certain magnetic field, the temperature is reduced
to t = 0.6 and the measurement is repeated. Then, the temperature is brought back
to t = 0.7, the magnetic field is varied and the measurement is done again. This
whole procedure is repeated. Circles and triangles show results at increasing and
decreasing field processes, respectively. The broken line shows the result when only
the magnetic field is changed under isothermal conditions

an amorphous state of flux lines where fp is very large or in a lattice state
where both fp and Np are small. The history effect is observed only in an
intermediate state (see Fig. 7.47(b)). This speculation on the state of the flux
lines is consistent with the above experimental results on flux flow noise, etc.

7.7 Pinning Potential Energy

In this section a method is treated to theoretically estimate the pinning po-
tential energy U0, which is important in determination of the relaxation rate
of the critical current density Jc and the irreversibility line, i.e., the bound-
ary between the reversible region with zero Jc and the irreversible region with
nonzero Jc. As mentioned in Sect. 5.3 the averaged pinning potential energy of
flux lines per unit volume is expressed as Û0 = αLd2

i /2 in Eq. (5.19) in terms
of the Labusch parameter αL and the interaction distance di. Since each flux
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Fig. 7.47. (a) Dependence on the history effect of the critical current density on
the number density of pins Np and the elementary pinning force fp [69]. The ordi-
nate represents the flux line spacing af divided by the mean pin spacing dp and is

proportional to N
1/3
p . The abscissa is the displacement of a flux line u divided by

af and is proportional to fp. A filled fraction of symbol shows the relative differ-
ence in critical current densities between increasing and decreasing field processes.
(b) Summary of the results in (a) from the viewpoint of the state of the flux line lat-
tice. The history effect is observed only in an intermediate state between amorphous
and lattice states
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bundle is expected to be independent of the others, Û0 is given by the pinning
potential energy of each flux bundle divided by its mean volume. It should
be noted here that observed values of αL and di, which are related to the
critical current density through Eq. (3.94), are influenced by the flux creep,
as is the critical current density deteriorated from the value (Jc0) obtained by
the summation theory. However, the pinning potential energy necessary for
analyzing creep phenomena would be a virtual one without the influence of
flux creep. Hence, we should use virtual values of αL and di in the creep-free
case when we evaluate Û0. This will be discussed later.

The pinning potential energy of a flux bundle is given by the product of Û0

in Eq. (5.19) and its volume V . Then, a method of estimating the volume is
described. Since the flux bundle is a cluster of flux lines which move coherently,
it is considered to correspond to the region in which short-range translational
order is maintained. Hence, a simple argument leads to the result that the sizes
of flux bundles will be given by the virtual pinning correlation lengths of the
flux line lattice in the creep-free case. The longitudinal pinning correlation
length is derived for an example. It is assumed that flux lines are directed
along the z-axis and that the flux line lattice is deformed by pins within an
elastic range. When the flux lines are slightly displaced by u in the direction
normal to the z-axis, the force balance is written as

C44
∂2u

∂z2
= αLu , (7.90)

where the left- and right-hand sides are the elastic restoring force density and
the pinning force density, respectively. This is easily solved and we have

u(z) = u(0)exp
(
−|z|

L0

)
, (7.91)

where

L0 =
(

C44

αL

)1/2

�
(

Baf

µ0ζJc0

)1/2

(7.92)

is the pinning correlation length in the longitudinal direction. In the above,
Eq. (7.75) and Eq. (3.94) in which Jc is replaced by Jc0 were used. The
transverse pinning correlation length can be obtained in a similar manner as

R0 =
(

C66

αL

)1/2

�
(

C66af

ζJc0B

)1/2

. (7.93)

Thus, the volume of the flux bundle is estimated as

V = L0R
2
0 (7.94)

for a bulk superconductor with a size larger than L0 and R0. The above
lengths, L0 and R0, are equivalent to Lc and Rc given by Eqs. (7.57) and
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(7.56) in the virtual creep-free case, respectively. On the other hand, the
observed pinning correlation lengths, L and R, are given by Eqs. (7.92) and
(7.93) with substitution of Jc into Jc0.

A longer pinning correlation length, L′
0 = (C11/αL)1/2, exists along the

direction of the Lorentz force due to the magnetic pressure. The reason why
R0 is chosen instead of L′

0 as the flux bundle size in this direction is that the
motion of flux lines in flux creep is not a global and continuous motion of the
whole flux line lattice as in flux flow but the local and discontinuous motion
of a cluster of flux lines. That is, the motion of flux lines will contain a plastic
shear. Such a motion is proposed to occur mostly within a restricted region
around lattice defects and the size of this region is expected to be much smaller
than L′

0. This is a different point from the collective creep theory argument by
Feigel’man et al. [39] If the size along this direction is given by L′

0 as assumed
by them, U0 is too large to explain quantitatively using practical Jc values.

In a case where flux creep is significant, as in high-temperature supercon-
ductors at high temperatures, the condition of the flux line lattice is largely
disordered, and the shear modulus C66 takes on a much smaller value than
that in Eq. (7.12) for a perfect flux line lattice. The practical value of C66 is
zero when the flux line lattice is melted. Since the condition of the flux line
lattice is determined as a result of flux creep, the values of C66 and R0 cannot
be known beforehand. Even if the condition of the flux line lattice is known,
it is very hard to determine these values. Hence, it is necessary to determine
R0 using a different method. One of the candidates is the method of irre-
versible thermodynamics which is sometimes used in this book (see Sect. 4.6
and Appendix A.3). That is, R0 is considered to be determined such that the
critical current density might take on a maximum value to minimize energy
dissipation under flux creep. If we represent R0 as

R0 = gaf , (7.95)

g2 gives the number of flux lines in a flux bundle. According to the result of
the derivation based on the above principle shown in Appendix A.8, we have
[70]

g2 = g2
e

[
5kBT

2Ue
log
(

Bafν0

Ec

)]4/3

, (7.96)

where g2
e and Ue are the values of g2 and U0 for a perfect flux line lattice. The

flux creep property of high-temperature superconductors depends strongly on
the dimensionality of the superconductor through the flux bundle size. This
will be discussed in detail in Sects. 8.3 and 8.5.

Here we shall mention matters to be noted in the above theoretical analy-
sis. One of them is that the physical quantities associated with flux pinning,
i.e., αL and di, are necessary to derive U0. These quantities must be virtual
ones in the creep-free case as mentioned above. Another point is that, al-
though these quantities can be theoretically obtained if the pins are known,
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the material parameters, α and β in Eq. (1.21), of pins are unclear, and theo-
retical calculations are impossible in most high-temperature superconductors.
Among them the interaction distance does not depend much on the kind of
pins and is known in most cases to be expressed as in Eq. (7.75). In fact
a relationship of this form is confirmed by experiments on various metallic
superconductors in the region where the influence of flux creep is not sig-
nificant. Using this relationship αL can be expressed in terms of the virtual
critical current density Jc0 in the creep-free case. As a result, the pinning po-
tential energy U0 can be described in terms of Jc0 alone. Even in this case, if
the dominant pins are unknown as in high-temperature superconductors, Jc0

cannot be calculated. However, if the critical current density is observed at
sufficiently low temperatures where the influence of flux creep is not large, it
may be approximately used for Jc0. That is, the virtual critical current den-
sity at high temperatures can be estimated using the scaling law of critical
current density at sufficiently low temperatures. This is a practical method
by which ambiguity of pinning centers can be compensated to some extent
by experimental results. On the other hand, in the case of significant flux
creep, Jc0 should be determined so as to explain Jc(B, T ) over a wide range
of temperature. This will be discussed in Sect. 8.3.

Thus, the pinning potential energy of the flux bundle is given by [64, 71]

U0 =
g2

2(
√

3/2)7/4ζ3/2

(
φ7

0J
2
c0

µ2
0B

)1/4

=
0.835kBg2J

1/2
c0

ζ3/2B1/4
(7.97)

for a bulk superconductor, where (1/2)(2/
√

3)7/4(φ7
0/µ2

0)
1/4 � 0.835kB was

used for a numerical equation. In such a bulk case the pinning potential energy
is independent of the size of the superconductor. This is the case where the
size of the superconductor along the direction of magnetic field is larger than
L0 given by Eq. (7.92). On the other hand, for a superconducting thin film of
thickness d smaller than L0 in a perpendicular magnetic field, the flux bundle
volume is

V = dR2
0 (7.98)

and the pinning potential energy is given by

U0 =
4.23kBg2Jc0d

ζB1/2
(7.99)

(Exercise 7.8). In the above the following numerical equation was used:
(1/2)(2/

√
3)3/2φ

3/2
0 � 4.23kB. This result holds also for superconducting pow-

der of a size smaller than L0.
It should be noted that the pinning potential energy is different from the

apparent one obtained from magnetic relaxation measurements as mentioned
in Sect. 3.8. It is irreversibility field what is directly related to U0. The ir-
reversibility field obtained from U0 will be discussed for high-temperature
superconductors in Sect. 8.5.
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The above treatment to estimate U0 is formally the same as in collective
creep theory [39]. However, there are many points of difference. One of them is
the difference in the flux bundle size along the direction of the Lorentz force
as abovementioned. Another point is that the summation for Jc is treated
separately here, since the collective pinning theory cannot explain the experi-
mental results on Jc. This treatment may seem to be contradictory. However,
such an assumption is incorrect. Although the two theories are the same with
regards to the correlation lengths under the given Jc, their standpoint is dif-
ferent only for the influence of the correlation lengths on the summation of
Jc. The resultant large difference from the theory of Feigel’man et al. is that
the maximum value of the activation energy U is given by U0 and does not
diverge even at zero current density, unless Jc0 does not reduce to zero.

Exercises

7.1. It is assumed that, when a strain ε is added to a superconductor, a
stress concentration occurs around pins and the pinning force density
is increased by a factor of (1 + cε2) due to the pinning mechanism of
elastic interaction except for the contribution from the variation of Hc2.
In the above c is a small constant value. Discuss the difference between
the temperature scaling law and the strain scaling law of pinning force
density in this case.

7.2. It is assumed that a periodic displacement u∗ of a single mode of wave
number k is added to a flux line lattice of |Ψ|2 given by Eq. (1.98) along
the x-axis normal to the close-packed row. In the above the wave number
k is sufficiently smaller than ξ−1. If the local magnetic flux density is given
by Eq. (1.101), show that the quantization of magnetic flux is not fulfilled
under this variation. At the same time calculate the uniaxial compression
modulus C11(k).

7.3. Derive Eqs. (7.50) and (7.51).
7.4. The force balance equation describing the motion of a rigid body in a

periodic potential of period 2π/kp under a constant driving force f is
written as

f + fpcoskpx − η∗ẋ = 0 ,

where x is the position of the rigid body and the third term is the viscous
force. Solve this and calculate the current-voltage characteristic. Compare
the obtained result with the result shown in Fig. 7.10(a).

7.5. Derive the variation in the pinning force density against the displacement
of flux lines using the statistical theory for the pinning force given by
Eq. (7.31) and discuss the reversible motion of flux lines.

7.6. Calculate the Labusch parameter αL when the Kramer model holds cor-
rect. Assume the arrangement of line pins shown in Fig. 7.48. (Hint : Cal-
culate the shearing displacement of flux lines under the driving force in
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Fig. 7.48. Deformation of flux line lattice pinned by line pins distributed like a
superlattice under the driving force. Shadowed flux lines are strongly pinned by line
pins

the direction shown by the arrow. Derive αL from a relationship between
the average displacement and the driving force.)

7.7. Show that the pinning correlation lengths, Lc and Rc, given by Eqs. (7.57)
and (7.56) are approximately the same as the characteristic lengths, L0

and R0, defined by Eqs. (7.92) and (7.93), respectively.
7.8. Derive Eq. (7.99) for a superconducting thin film of thickness d thinner

than L0 in a perpendicular magnetic field.
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8

High-Temperature Superconductors

8.1 Anisotropy of Superconductors

One of the properties of the crystal structure of oxide superconductors with
high critical temperature is an alternating multi-layer of CuO2 planes which
generate superconductivity and charge-reservoir blocks which are almost in-
sulating. This structure causes a large anisotropy in normal conducting and
superconducting properties. Lawrence and Doniach [1] proposed a phenom-
enological theory for an alternating multi-layer of thin superconductors and
insulators before the discovery of high-temperature superconductivity. This
model is considered to be approximately applicable for high-temperature su-
perconductors. In this case each superconducting layer is numbered and the
two-dimensional order parameter defined in the n-th layer is represented as
Ψn(x, y) with the z-axis defined normal to the layers, i.e., along the c-axis.
Assuming a case where a magnetic field is not applied, the vector potential
can be neglected. Then, the kinetic energy density given by Eq. (1.20) is gen-
eralized to the anisotropic case as

�
2

2m∗
ab

(∣∣∣∣∂Ψn

∂x

∣∣∣∣
2

+
∣∣∣∣∂Ψn

∂y

∣∣∣∣
2
)

+
�

2

2m∗
cs

2
|Ψn − Ψn−1|2 , (8.1)

where m∗
ab and m∗

c are the effective masses of superconducting electrons mov-
ing in the a-b plane and along the c-axis, respectively, and s is the distance
between superconducting layers. The spatial variation along the c-axis is ap-
proximated by the difference between the adjacent layers. Inserting the vector
potential, the free energy density is given by

F =
∑

n

∫
Vn

[
α|Ψn|2 +

1
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1
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∣∣∣∣Ψn − Ψn−1 exp
(

2ieAzs
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2
]

dV , (8.2)
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where ∇′ and A′ are two-dimensional vectors in the a-b plane and Az is
the z-component of the vector potential. The integral is taken in the n-th
superconducting layer. Minimizing this energy density with respect to Ψ∗

n,
the Lawrence-Doniach equation is obtained:

αΨn + β|Ψn|2Ψn +
1

2m∗
ab

(−i�∇′ + 2eA′)2Ψn

− �
2

2m∗
cs

2

[
Ψn+1 exp

(
−2ieAzs

�

)
− 2Ψn + Ψn−1 exp

(
2ieAzs

�

)]
= 0 .(8.3)

If the spatial variation along the z-axis is smooth, the discontinuous func-
tion Ψn can approximately be replaced by a smooth function Ψ. The difference
is replaced by a derivative and the Lawrence-Doniach equation of (8.3) leads
to the anisotropic Ginzburg-Landau equation:

αΨ + β|Ψ|2Ψ +
1
2
(−i�∇ + 2eA) ·

[
1

m∗

]
· (−i�∇ + 2eA)Ψ = 0 , (8.4)

where [1/m∗] is a tensor defined by

[
1

m∗

]
=


1/m∗

ab 0 0
0 1/m∗

ab 0
0 0 1/m∗

c


 . (8.5)

Anisotropic superconducting parameters are obtained from the anisotropic
effective mass. From a treatment similar to that in Chap. 1 the coherence
length is derived as

ξi =
�

(2m∗
i |α|)1/2

, (8.6)

where the subscript i denotes either ab or c, representing quantities in the a-b
plane or those along the c-axis. Thus, the upper critical field is given by

Hab
c2 =

φ0

2πµ0ξabξc
, Hc

c2 =
φ0

2πµ0ξ2
ab

. (8.7)

From Eq. (1.43) the penetration depth is

λi =
�

2
√

2eµ0Hcξi

. (8.8)

In the above the thermodynamic critical field Hc is isotropic.
Here the anisotropy parameter is defined by

γa =
(

m∗
c

m∗
ab

)1/2

. (8.9)
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Then, anisotropies of various superconducting parameters are expressed as

ξab

ξc
=

λc

λab
=

Hab
c2

Hc
c2

= γa . (8.10)

As for the lower critical field, neglecting the anisotropy of log κ, the relation-
ships of Hab

c1 ∝ ξabξc and Hc
c1 ∝ ξ2

ab lead to

Hc
c1

Hab
c1

� γa . (8.11)

Parameters of typical high-temperature superconductors are listed in
Table 8.1.

Table 8.1. Superconducting parameters of high-temperature superconductors

Superconductor Tc µ0H
ab
c2 (0) µ0H

c
c2(0) ξab(0) ξc(0) κab κc

(K) (T) (T) (nm) (nm)

Y-123 93 670 102 1.80 0.27 67 355
Bi-2212 91 >530 19 4.16 <0.15 – –
Hg-1212 128 454 113 1.71 0.42 114 466
Hg-1223 138 389 88 1.93 0.44 76 339

In the case of field direction in terms of angle θ from the c-axis, the upper
critical field obeys the relationship:

Hc2(θ) = Hc
c2(cos2 θ + γ−2

a sin2 θ)−1/2

= Hc
c2

[
cos2 θ +

(
Hc

c2

Hab
c2

)2

sin2 θ

]−1/2

. (8.12)

The anisotropic transverse cross-sectional structure of an isolated flux line
is shown in Fig. 8.1, where (a) and (b) are the cases of magnetic field along
the a- and c-axes, respectively. Both the normal core and the surrounding
magnetic flux are of ellipsoidal structure with a shorter radius in the direction
of the c-axis in the case of (a), while both are isotropic in the case of (b).

In general, the electric conductivity of block layers in the normal state is
low and their thickness s is large in superconductors with large anisotropy. In
particular, ξc is shorter than s in the most anisotropic superconductor (Bi,
Pb)2Sr2CaCu2O8(Bi-2212), and the three-dimensional anisotropic Ginzburg-
Landau model cannot be applied to this case. When a magnetic field is applied
parallel to the a-b plane of such a superconductor, the normal core of a flux
line usually stays in the block layer as shown in Fig. 8.2(a). This is called a
Josephson vortex. In this case the transverse cross-section of the flux line is
anisotropic similarly to the case in Fig. 8.1(a). The size of the normal core is
s along the c-axis and is about γaac in the a-b plane, where ac is the lattice
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Fig. 8.1. Transverse cross-sectional structure of isolated flux line in anisotropic
three-dimensional superconductor: (a) flux line along the a-axis and (b) along the
c-axis

Fig. 8.2. Structure of isolated flux lines in two-dimensional superconductor:
(a) Josephson vortex along to the a-axis and (b) a pancake vortex along the c-
axis

parameter along the c-axis. The size of the magnetic flux along the c-axis is
λab and that in the a-b plane is the Josephson penetration depth given by

λJ =
(

φ0

2πµ0jcs

)1/2

, (8.13)

where the effective thickness of the junction D in Eq. (A.65) in Appendix A.7
has been replaced by the distance between the superconducting layers s.

When the magnetic field is applied along the c-axis, the flux lines are two-
dimensional structures formed in the CuO2 planes. Their structure is the same
as in Fig. 8.1(b). These are weakly coupled with each other along the c-axis
by the Josephson coupling energy given by the second term of Eq. (8.1). This
flux line is called a pancake vortex (see Fig. 8.2(b)).

According to the mean-field theory of Ginzburg and Landau, the upper
critical field is defined as the transition point between the superconducting
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mixed state and the normal state. However, a clear phase transition does
not seem to occur on the phase boundary predicted by this mean field theory
because of the very strong influence of fluctuations caused by high temperature
and two-dimensionality. It should be noted, however, that this fact does not
make the upper critical field derived from the mean field theory meaningless.
If we look at some physical quantity in a sufficiently low field region where
the influence of fluctuation is not serious, the theory describes its magnetic
field dependence. For example, the magnetization is predicted to vary linearly
with magnetic field, and if this variation is extrapolated to high fields, the
magnetization seems to become zero at the “upper critical field.” That is, the
magnetic field dependence of the magnetization at low fields can be correctly
expressed in terms of the “upper critical field.”

8.2 Phase Diagram of Flux Lines

There has been much detailed discussion, and many things have been clar-
ified on the state of flux lines in the mixed state of type-II superconduc-
tors, especially of high-temperature superconductors. This state is classified
in principle by magnetic field and temperature as shown in Fig. 1.2(b). In high-
temperature superconductors, however, the state of the flux lines is strongly
influenced by the pinning interactions from a high density of included defects.
Hence, the pinning interaction is not simply treated as a perturbation but
as one of the external variables such as magnetic field and temperature. In
addition, there are influences of the dimensionality of the superconductor, the
size of the specimen, the kind of pinning centers, etc. Hence, the situation is
very complicated. Only the most important aspects are treated in this section
for simplicity.

For this reason, we consider the pinning energy Up in addition to two
other energies, i.e, the thermal energy UT = kBT and the elastic energy UE

necessary for an argument on the state of flux lines. Hence, we can simply
expect three phase transitions determined mainly by two of three energies [2].
The third energy will give some perturbation to the transition except in the
region near the critical point where the three energies are comparable to each
other in magnitude.

The elastic energy is the energy of the flux line system itself, and is gener-
ally associated with the elastic moduli described in Sect. 7.2. The Josephson
coupling energy between superconducting layers given by Eq. (8.1) is some-
times treated separately. However, this is a part of the kinetic energy due to
the spatial variation in the order parameter. Thus it is included in the elastic
energy here.

8.2.1 Melting Transition

The most fundamental transition is the melting transition determined by UT

and UE, and it is known that this transition is first order. In this case it is
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considered that the melting occurs when the mean displacement of flux lines
from their lattice points due to thermal activation reaches approximately 15%
of the lattice parameter, similarly to Lindemann’s criterion for melting of
solids. This transition occurs only in a superconductor in which Up is suffi-
ciently smaller than UE.

8.2.2 Vortex Glass-Liquid Transition

The transition determined by UT and Up is the vortex glass-liquid transition
(hereafter called the G-L transition) and is known to be second order [3]. It was
initially considered to be independent of the flux pinning property [4]: glass
and liquid states of flux lines existed first, and the state then determined the
flux pinning property. According to the G-L transition model, the coherence
length and the relaxation time in the vortex glass state are expected to diverge
as ξg ∼ |T − Tg|−ν and τ ∼ ξz

g , respectively, in the vicinity of the transition
temperature Tg. In the above ν and z are the static and dynamic critical
indices, respectively. Then, if the resistivity E/J and the current density J
are replotted in the relationship (E/J)/|T −Tg|ν(z+2−D) vs. J/|T −Tg|ν(D−1),
taking account of the dimension D of the state of the flux lines, a scaling of
the E-J curves is obtained. Figure 8.3 shows the E-J curves and the result
of scaling for an Y-123 thin film in a magnetic field of 4 T along the c-axis
[5]. It can be seen that all curves meet on the two master curves representing
the glass and liquid states of the flux lines. It is considered in the model that
ν takes a value of 1–2 and z takes a value of 4–5. It has been reported that
[6] if the relationship with D = 3 is used for an analysis of two-dimensional
flux lines in Bi-based superconductors, ν is smaller than 1 and z is larger
than 10. However, the use of the appropriate parameter, D = 2, leads to the
critical indices in the above range [6]. This indicates that the G-L transition
model correctly describes the transition phenomena of flux lines including the
dimension.

However, it seems appropriate to consider that the cause and the result
are opposite, judging from the fact that the transition is determined by the
thermal energy and the pinning energy. Namely, we postulate that the flux
lines are in the glass state when they are effectively pinned and in the liquid
state when they are not. In fact, the transition itself is strongly influenced
by the flux pinning: the transition point Tg is determined by the flux pinning
strength. In addition, the static critical index ν determined by the scaling of
E-J curves corresponds to half of the pinning parameter δ′, which describes
the temperature (or magnetic field) dependence of the critical current density
as Jc ∝ (Tg − T )δ′

(see Fig. 8.4) [7]. The dynamic critical index z decreases
with broadening distribution width of the flux pinning strength [8] and is
determined by one of the Weibull parameters describing the nonuniformity [9].
Namely, the z value is larger for a superconductor with a sharper distribution
of the flux pinning strength. In fact, z = 11.8 and ν = 0.7 are obtained even
for three-dimensional flux lines in a homogeneous Y-123 thin film [9]. On the
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Fig. 8.3. (a) E-J curves and (b) the scaling (ν = 1.7, z = 4.8) in an Y-123 thin
film in a magnetic field of B = 4 T along the c-axis [5]

other hand, z takes the value of 3–4 and ν takes the value of 2–3 even for the
two-dimensional case as in Bi-based superconductors, when the specimens are
inhomogeneous [10]. Therefore, it cannot be said that the dimensionality of
the flux lines influences the G-L transition. One consequence is a trend that
the z value in Bi-based superconductors is larger. The reason is considered to
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Fig. 8.4. Relationship between ν and δ′/2 for Bi-2223 tapes (open circles), Bi-2212
tapes (solid triangles) and dip-coated tapes (solid squares) and Y-123 thin films
(open squares) [7]. The straight line shows ν = δ′/2

be that the transition temperature is low and the variation rate of the pinning
force with temperature is very large there.

Originally, the static critical index ν was associated with a divergence of
the correlation length, which determines the G-L transition, as (Tg − T )−ν in
the vicinity of the transition temperature Tg. The pinning correlation length,
which leads to Eq. (7.92) in the creep-free case, is approximately the same
as Campbell’s AC penetration depth of Eq. (3.92) and diverges as (Tg −
T )−δ′/2 at the transition temperature. Hence, the result of Fig. 8.4 indicating
the relationship ν = δ′/2 makes it clear that the correlation which governs
the transition is the flux pinning. This is the reason why ν depends on the
flux pinning phenomena. The divergence of the correlation length when the
magnetic field changes is also expressed as (Hg − H)−ν with the same static
critical index ν. Here, Hg is the transition field, and Hg(T ) is the inverse
function of Tg(H). Hence, the scaling of E-J curves with varying magnetic
field is similar to that with varying temperature.

Hence, the scaling of E-J curves can be explained by the mechanism of
flux creep and flow. An example of the scaling is shown in Fig. 8.5, and the
theoretical results on the transition line and the critical indices are compared
with experiments in Fig. 8.6 [11].

The irreversibility line, Ti(H) or Hi(T ), discussed from the viewpoint of
practical applications, is the same characteristic as the G-L transition line,
but is determined by a different criterion, i.e., the temperature or magnetic
field at which the critical current density obtained using a proper electric
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Fig. 8.5. Scaling of E-J curves of a Bi-2223 tape in a magnetic field of B = 0.5 T
along the c-axis: [11] (a) experimental result and (b) theoretical result of the flux
creep-flow model. Small deviation from exact scaling seems to be caused by imperfect
compensation of the resistance of silver



350 8 High-Temperature Superconductors

Fig. 8.6. (a) Transition line, (b) static critical index and (c) dynamic critical index
of the Bi-2223 tape shown in Fig. 8.5 [11]. Solid and open symbols are experimental
results and theoretical results of the flux creep-flow model, respectively
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field criterion is reduced to some threshold value. Hence, there is a strong
correlation between the G-L transition line and the irreversibility line. The
irreversibility field can only be explained by the mechanism of flux creep as
will be described in Sect. 8.5. The G-L transition magnetic field is significantly
influenced by the level of electric field at which it is determined, similarly to
the irreversibility magnetic field [12, 13]. Figure 8.7 represents the E-J curves
of a Bi-2223 tape at 70 K over a wide range of electric field [14], and shows
that, even if the log E-log J curve is concave upward, suggesting a glass state
at some electric field level, it becomes concave downward suggesting a liquid
state at a much lower level of electric field. This behavior is related to the
electric field dependence of the irreversibility field which will be discussed in
Sect. 8.5 (see Fig. 8.43). The scaling parameters at 70 K are: µ0Hg = 310 mT,
ν = 0.68 and z = 9.5 in the high electric field region and µ0Hg = 56 mT,
ν = 0.80 and z = 14.5 in the low electric field region [15]. Thus, not only the
transition point but also the critical indices change with electric field. A similar
change is also observed in an Y-123 thin film [13], and Tg = 88.4 K, ν = 1.4
and z = 8.2 are obtained in a high electric field region, while Tg = 56.6 K,
ν = 0.6 and z = 22.5 are obtained in a low electric field region at B = 0.52
T. Such a feature is considered to be caused by the mechanism of TAFF and
a nonuniform distribution of flux pinning strength.

Fig. 8.7. E-J curves of a Bi-2223 tape at 70 K [14]. Results at high and low
electric fields are obtained using the four terminal method and the relaxation of DC
magnetization, respectively. Solid lines are theoretical results of the flux creep-flow
model
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Since such a transition changes depending on the level of electric field
or the time of observation, the phase diagram of flux lines is different for
different kinds of measurement. For example, the mean velocity of flux lines
in a magnetic flux density of B = 1 T is 0.1 mms−1 at an electric field of
1 × 10−4 Vm−1 as in the resistive measurement, and is 0.1 nms−1 or only
3 mm in a year at an electric field of 1× 10−10 Vm−1 as in the magnetization
measurement. In the latter case, it is hard to understand over a short period if
the flux lines are moving or not. The same thing will occur in other transitions.

At this transition, it has been theoretically explained that the degree of
disorder of flux lines due to the pinning is reduced significantly as the tem-
perature is increased from the transition point Tg, approaching a perfect flux
line lattice, if the effect of melting can be disregarded [3, 7]. This prediction
agrees with an observation of flux lines in the liquid state using a Lorentz
microscope [16]. In practice, the behavior of flux lines in the vicinity of the
transition point is significantly influenced by the spatial distribution of the
pinning strength, and the E-J characteristics and their scaling at an electric
field level above 10−4 Vm−1 observed by the usual resistive method can well
be explained by a percolation model [17], in which the thermally activated
flux motion is described by an effective flux flow. The percolation model will
be described in Subsect. 8.4.4.

8.2.3 Order-Disorder Transition

The transition determined by UE and Up is an order-disorder transition. One
of the features of this transition is the peak effect of critical current density in
a magnetic field parallel to the c-axis. In three-dimensional superconductors
such as Y-123, the transition field at which the peak effect starts decreases as
the pinning becomes stronger as shown in Fig. 7.41. This is a common behavior
in metallic and high-temperature superconductors. Brandt and Mikitik [18]
calculated the transition line using a similar Lindemann criterion to that for
the melting transition. As for the flux pinning, it is assumed that each flux
bundle composed of multiple flux lines is pinned at high temperatures, while
the single vortex pinning mechanism is adopted at low temperatures. The
corresponding deformation of flux lines is shear, and the flux lines are expected
to be in a lattice-like Bragg-glass state and an amorphous-like vortex-glass
state at low and high fields, respectively. It was predicted that the transition
is first order. Although the transition width is very wide as is seen from Fig.
7.41, this is considered to be caused by an inhomogeneous pinning strength
and the distribution of magnetic field in the specimens. Observation of the
history effect accompanied by the peak effect [19] shows that this is a first-
order transition.

On the other hand, the two-dimensional Bi-2212 shows a sharp peak effect
at low magnetic field along the c-axis as in Fig. 8.8 [20]. The peak field is
almost independent of the temperature. Usually the magnetization measure-
ment is done for a specimen of a finite size, and hence, the magnetic field
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Fig. 8.8. Local magnetic flux density in a Bi-2212 single crystal measured using a
small Hall probe [20]

is not uniform throughout the specimen, resulting in some transition width.
Figure 8.9 shows the observed critical current density of an overdoped Bi-
2212 single crystal using Campbell’s method with a small AC magnetic field
in the a-b plane superimposed on a DC magnetic field initially applied along
the c-axis [21]. It is found that the critical current density changes discon-
tinuously with magnetic field. In addition, there are two stable states with
different values of the critical current density under the same conditions of
temperature and magnetic field. This proves that this transition is also first
order. One of the two states is a state where flux lines are slightly deformed
and weakly pinned as depicted in Fig. 8.10(a). This state continues from a
lower magnetic field. The other state is a state where flux lines are signifi-
cantly deformed and strongly pinned, and is attained at a higher magnetic
field. It is proposed that a double potential well is formed by a combination
of the elastic energy and the pinning energy. This will bring about the results
in Fig. 8.9. At a sufficiently low temperature, the critical current density in-
creases dramatically with a disappearance of the peak effect. This seems to
result from the formation of a single potential well as shown in Fig. 8.10(b)
owing to a rapid enhancement of the pinning energy which comes from the
enlarged condensation energy at low temperatures (see Fig. 8.55).

The reason why such a measurement is possible is that the shielding effect
against the DC magnetic field along the c-axis is eliminated by the superposi-
tion of a small AC magnetic field normal to the DC field as shown in Fig. 3.14,
resulting in the penetration of the uniform DC magnetic field. This transition
is also a kind of order-disorder transition and takes place accompanied by a
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Fig. 8.9. Critical current density in a Bi-2212 single crystal measured by using
Campbell’s method [21]

Fig. 8.10. Free energy composed of elastic energy and pinning energy: (a) a double
potential well with two stable states in the region of dimensional crossover of flux
lines and (b) a single potential well due to strong pinning at low temperatures
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Fig. 8.11. Phase diagram of flux lines in a Bi-2212 single crystal. At a magnetic
field higher than the shaded region, the neutron diffraction pattern of flux lines
disappears, suggesting that flux lines change to two-dimensional pancake vortices
[22]

crossover of flux lines from the three-dimensional state to the two-dimensional
with an increase in the magnetic field. The dimensional crossover was deduced
from the experimental result [22] that the neutron diffraction pattern disap-
pears in the low temperature region for a magnetic field parallel to the c-axis
above the hatched region in Fig. 8.11. The corresponding deformation of flux
lines is along the length of the flux lines, i.e., a bending. The interaction dis-
tance di shown in Fig. 8.12(b) changes drastically at the transition field, while
the Labusch parameter αL shown in Fig. 8.12(a) does not appreciably change
[21]. This shows that flux lines become flexible owing to the crossover, result-
ing in an enhanced threshold for depinning, although the shape of the pinning
potential does not change appreciably. This supports the order-disorder tran-
sition explanation for the origin of the peak effect. The theoretical predictions
of the usual collective pinning of point-like defects, αL ∝ B3/2 and di ∝ B−1/2,
are shown for comparison by the dashed lines in these figures.

The characteristic peak effect is not observed for heavily underdoped Bi-
2212 superconductors with a very large anisotropy parameter. The crossover
field is very low for these superconductors. Hence, the disappearance of the
peak effect is considered to be caused by the fact that flux lines are pinned
with a high efficiency independently of each other at such low fields, and a
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Fig. 8.12. (a) Labusch parameter and (b) interaction distance in the same Bi-
2212 single crystal as in Fig. 8.9 [21]. The dashed lines in these figures represent
theoretical predictions of collective pinning of point-like defects, αL ∝ B3/2 and
di ∝ B−1/2, respectively
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further enhancement of the pinning efficiency is not attained even when the
crossover occurs.

8.2.4 Phase Diagram of Flux Lines in Each Superconductor

The phase diagram of flux lines is slightly different between three-dimensional
Y-123 and two-dimensional Bi-2212 as mentioned above. Figure 8.13 shows
the phase diagram for a twin-free Y-123 single crystal with a weak pinning
force [23]. The solid line with solid circles which is drawn from the criti-
cal temperature to a higher field with decreasing temperature is the melting
transition line Hm(T ). This line disappears at the critical point around 73 K.
The dotted line with solid triangles which extends further is the G-L transi-
tion line Hg(T ). The solid line with solid squares at lower temperature and at
lower field is the order-disorder transition line Hdis(T ), at which the critical
current starts to increase with increasing magnetic field. This line extends to
a high field at elevated temperature and terminates at the critical point. The
dimensional crossover of flux lines is expected [23] to occur at around 80 T.
The dotted line with open triangles Hpk(T ) represents the peak field of the
critical current density and is shown for comparison. The dotted line with
open circles represents the irreversibility line Hi(T ), which extends to a high
field with decreasing temperature, reaches the critical point and meets the
G-L transition line at low temperatures. In the original paper [23] the irre-
versibility line is not considered as a phase transition. However, the pinning
correlation length diverges on this line as abovementioned, and this shows

Fig. 8.13. Phase diagram of flux lines in twin-free Y-123 single crystal [23]. Hpk is
the magnetic field at which the critical current density has a peak
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that the irreversibility line is a second-order transition. In fact, it agrees with
the G-L transition at low temperatures. Hence, it seems to be reasonable to
treat Hg(T ) and Hi(T ) as a single transition curve, although there exists a
difference due to the different definitions.

The state of the flux lines is the Bragg-glass state in the regime below
Hdis(T ) and Hi(T ) in the H-T plane, the vortex glass state in the regime
between Hdis(T ) and Hg(T ), and the vortex liquid state in the regime above
Hg(T ) and Hm(T ). It is considered in [23] that flux lines are in the Bragg-
glass state in the regime between Hi(T ) and Hm(T ). However, it seems to be
reasonable to regard this as a crystalline phase (the Abrikosov vortex state),
[24] since the pinning correlation length diverges.

If the flux pinning becomes strong, the melting transition line Hm(T ) does
not change appreciably, but the irreversibility line Hi(T ) moves to a higher
temperature and merges with the melting transition line. As a result the criti-
cal point (Hcp), the intersection of Hm(T ) and Hi(T ), moves in the direction of
higher temperature and lower field, as shown in Fig. 8.14(b) [24]. The order-
disorder transition line Hdis(T ) follows the movement of the critical point.
If the flux pinning strength is further increased, the critical point reaches
the critical temperature, the melting line disappears and the G-L transition
line Hg(T ) extends to the critical temperature, as shown in Fig. 8.14(c). The
order-disorder transition line Hdis(T ) also reaches the critical temperature.

A typical phase diagram of flux lines in an optimally doped single crystal
of most two-dimensional Bi-2212 superconductor is shown in Fig. 8.15 [25].
This is essentially the same as that of Y-123 single crystals with relatively
weak pinning forces except that the order-disorder transition comes from the

Fig. 8.14. Change in phase diagram of flux lines in Y-123 single crystal with twin
boundaries by enhancement of flux pinning strength by increasing oxygen deficiency
δ [24]
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Fig. 8.15. Phase diagram of flux lines in optimally doped Bi-2212 single crystal [25]

dimensional crossover of flux lines and the transition field is almost indepen-
dent of temperature. The order-disorder transition field at low temperatures
is about 80 mT and this low value is also a characteristic of Bi-2212. Its value
becomes extremely low for specimens with very large anisotropy parameters
in underdoped states. In fact, it is given by [26] µ0Hdis = φ0/(γas)2. Hi in
Fig. 8.15 was defined as the field at which observed M -T curves of increas-
ing and decreasing temperature merged, while HF was defined as the field at
which observed M -H curves of increasing and decreasing field merged. Hence,
some flux pinning effect remains in the region between Hi and HF. This dif-
ference might come from the difference in the electric field strength during the
measurements. That is, in the M -T measurement the electric field strength is
proportional to dM/dt = (dM/dH)(dH/dt) which is typically three orders of
magnitude smaller than dH/dt in the M -H measurement (see Subsect. 8.5.3).
However, the final conclusion has not yet been obtained. Hdp is the boundary
between the Bragg glass state with strong pinning forces and the Abrikosov
vortex state with weak pinning forces. This line coincides with the irreversibil-
ity line above the critical point.

8.2.5 Size Effect

For three-dimensional superconductors like Sm-123, the peak effect disap-
pears when the specimen size is smaller than the pinning correlation length,
as described in Sect. 7.6 (see Fig. 7.42). For two-dimensional Bi-2212 the
peak effect also disappears when the film thickness becomes small, as will



360 8 High-Temperature Superconductors

be discussed in Subsect. 8.4.2. In this case, however, the critical thickness
is not the pinning correlation length, which is on the order of 10 µm, but
smaller than 1 µm [27]. Such a size effect and how it differs between two-
and three-dimensional superconductors will be discussed in more detail again
in Subsect. 8.4.2. These results suggest that the order-disorder transition it-
self disappears when the specimen becomes small, as already mentioned in
Sect. 7.6.

The G-L transition originates from thermal activation of flux lines which
determines the irreversibility line as mentioned above. Hence, the transition
line and the behavior of flux lines in the vicinity of this line can be expressed in
terms of the E-J characteristic in the theoretical model of flux creep and flow.
The important parameter for this description is the pinning potential energy
U0 discussed in Sect. 7.7. The U0 depends on the size of the superconductor
as shown in Eqs. (7.97) and (7.99). Thus, the G-L transition is also affected
by the specimen size, and the transition field or the transition temperature
decreases for a superconductor smaller than the critical size, as can be eas-
ily supposed. The corresponding critical size is the pinning correlation length,
which is independent of the dimensionality of the superconductor and is differ-
ent from the critical size for the order-disorder transition in two-dimensional
superconductors. This difference will be discussed in Subsect. 8.4.2.

It is considered that the melting transition is also influenced by the size
of the superconductor. However, the details have not yet been clarified.

The phase diagram of flux lines should be represented with respect to
three-dimensional axes of the temperature, the magnetic field and the flux
pinning strength, as can be seen from the above argument. Other factors
which influence the diagram are the dimensionality and the size of the super-
conductor and the electric field strength. The type of pinning center is also
one of the factors. More detailed states in the liquid phase are also now being
examined.

8.2.6 Other Theoretical Predictions

Here the features which can easily be predicted on the basis of the phase
diagram of flux lines are described.

The first item is the argument that the irreversibility line which is extended
from the critical point to higher temperatures and lower magnetic fields is the
G-L transition of the second order. Experiments to prove this prediction such
as a scaling of E-J curves are required.

This prediction means that the melting line and the G-L transition line,
which start from the critical temperature, meet at the critical point, in the
case where the pinning is not so strong. Since the G-L transition line is ex-
tended from the critical point to the higher field region, the melting line is
also expected to be extended in a similar manner, but below the G-L tran-
sition line [3]. In this region the transition is a change of flux lines from the
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Fig. 8.16. Irreversibility and melting transition lines of Bi-2212 single crystal in an
underdoped state [28]

crystalline state to the amorphous state, and hence, observations were con-
sidered to be difficult [2]. However, the melting transition was observed at a
magnetic field lower than the irreversibility field for an underdoped Bi-2212
specimen with an extremely large anisotropy parameter as shown in Fig. 8.16
[28]. However, the possibility exists of strong surface pinning which might
cause a much higher irreversibility field than the bulk one as was pointed
out. Hence, a current distribution in a similarly underdoped Bi-2212 single
crystal was measured, and it was found that the current is not localized in
the surface region but flows fairly uniformly throughout the whole specimen
[29]. Therefore, the claim in [28] is expected to be valid. This result indicates
the possibility that the melting line can be observed in the temperature re-
gion lower than the critical point as mentional above. Further experiments
are necessary for confirmation of this prediction.

8.3 Weak Links of Grain Boundaries

In sintered Y-123 superconductors fabricated just after the discovery of high-
temperature superconductors, it was found that the critical current den-
sity measured by the resistive four terminal method was much lower than
the value estimated from the magnetization hysteresis. Sintered specimens
were of polycrystalline structure, and grain boundaries severely restricted the
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transport current, while a closed current of fairly high density flowed inside
grains of single crystalline structure.

In later years, Y-123 bulk superconductors which were composed of big sin-
gle grains were successfully fabricated by the melt process, and Y-123 coated
conductors with a highly oriented polycrystalline structure were grown on tex-
tured substrates. The weak link property in these superconductors was much
improved.

Typical misorientation of crystal axes at the grain boundary is shown in
Fig. 8.17. The main reasons for much stronger restriction by grain bound-
aries in high-temperature superconductors than in metallic superconductors
are the short coherence length and the low carrier density which restricts the
number of superconducting electrons tunneling through grain boundaries. An-
other reason is the d-wave symmetry of the superconductivity: the tunneling
probability of superconducting electron pairs across a grain boundary reduces
with increasing misorientation angle between grains. A higher tunneling bar-
rier due to the high sensitivity of the superconductivity to various kinds of
disorder such as local stress and impurity is also one of the reasons. A deteri-
oration of superconductivity occurs at most grain boundaries for this reason.
For example, a [001] tilt boundary with a small misorientation angle can be

Fig. 8.17. Typical misorientation of crystal axes at grain boundary
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regarded as a row of edge dislocations and there is speculation [30] that the
superconductivity will disappear at the core of the dislocation due to strong
stress, local deviation from chemical stoichiometry and variation in the hole
concentration. In addition, it is also considered [31] that the electronic band
structure is bent and the boundary becomes insulating due to local variation
of the work function and/or the existence of impurity atoms.

If the grain boundary misorientation angle is θ, the critical current density
generally obeys:

Jc ∝ exp
(
− θ

θ0

)
(8.14)

as shown in Fig. 8.18 [32]. For [001] tilt and [100] tilt boundaries, θ0 amounts
to 4–5◦. On the other hand, its value is slightly lower than this for [100] twist
boundaries. Thus, the critical current density is significantly reduced with
increasing misorientation angle. Hence, the crystal axis orientation, especially
that of the c-axis, is important. The abovementioned Y-123 bulk and coated
conductors are examples of improvement of the critical current property by
alignment of crystal axes.

On the other hand, it was recently reported that the weak link property
was improved by Ca doping. Figure 8.19(a) shows a dependence of the critical
current density on the Ca concentration at 4.2 K for Y1−xCaxBa2Cu3O7−δ

Fig. 8.18. Relationship of critical current density and misorientation angle of [001]
tilt grain boundary in Y-123 thin film at 4.2–5.0 K in the absence of magnetic field
[32]
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Fig. 8.19. Dependence of (a) critical current density at 4.2 K and (b) normal state
resistivity of 24◦ [001] tilt grain boundaries in Y1−xCaxBa2Cu3O7−δ thin films on
Ca concentration [31]
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thin films deposited on STO substrates with 24◦ [001] tilt grain boundaries
[31]. This result shows that the critical current density at a low temperature
is significantly improved by doping with a high concentration of Ca. This is
considered to result from an overdoped state of the CuO2 planes due to the
substitution of Y by Ca and from a reduction of the built-in potential at
the boundary owing to the smaller valence of Ca2+ than Y+3. Figure 8.19(b)
shows the normal state resistivity of the same boundaries, and the resistivity
decreases significantly with increasing Ca concentration. This suggests that
the transport property of the boundary is improved by the Ca doping.

However, the problem with this method is that the critical temperature
is lowered by substitution of Y by Ca. The improvement of critical current
density is not appreciable at high temperatures such as 77 K, although it is
significant at low temperatures. Hence, it is necessary to optimize the doping
conditions. For example, it is expected to be effective for the purpose to de-
posit a thin layer of (Y, Ca)-123 on the Y-123 film followed by a subsequent
heat treatment to make Ca diffuse into grain boundaries [33]. Since the dif-
fusion constant of Ca in grain boundaries is larger by a factor of 103 than
that in grains, this method allows a diffusion of Ca only in grain boundaries.
Hence, it is expected to improve the weak link property of grain boundaries
without degrading the critical temperature of the whole superconductor.

8.4 Electromagnetic Properties

The electromagnetic properties in high-temperature superconductors are es-
sentially the same as those in metallic superconductors: most of them are
described by the critical state model, while in superconductors smaller than
Campbell’s AC penetration depth they obey the Campbell model and devi-
ate from the critical state model due to the reversible motion of flux lines.
However, some electromagnetic properties are inherent to high-temperature
superconductors, and these will be introduced in this section.

8.4.1 Anisotropy

High-temperature superconductors are composed of superconducting layers
and almost insulating block layers, and this results in a large anisotropy of
the critical current density. Namely, the value of the critical current density
flowing along the c-axis Jc

c is much lower than that in the a-b plane Jab
c . This

anisotropy is larger for a more two-dimensional superconductor.
In addition, even the critical current density flowing in the same direction

takes different values depending on the direction of the magnetic field as shown
in Fig. 8.20 [34]. Generally speaking, the critical current density is smaller in a
magnetic field parallel to the c-axis than in a field in the a-b plane. This differ-
ence comes from the anisotropy of superconducting electron mass described in
Sect. 8.1 and the solid line in the figure shows the theoretical prediction with
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Fig. 8.20. Magnetic field anisotropy of critical current density in an Y-123 PLD
thin film deposited on MgO single crystal substrate (75.5 K, 5 T) [34]. The solid
line shows the theoretical prediction with the anisotropy parameter γa = 5 for the
electron mass

the effective magnetic field; H̃ = Hε(θ), ε(θ) = (cos2 θ + γ−2
a sin2 θ)1/2 with

γa = 5 for Y-123 supercunductor. The cause of the deviation from the theory
at around θ = 0◦ and 90◦ will be described in Subsect. 8.6.1. At high fields,
the anisotropy becomes more significant due to the effect of the irreversibility
field.

The electromagnetic phenomena are also anisotropic and complicated be-
cause of such anisotropies of the critical current density. For example, the
magnetization current in a magnetic field along the a-axis flows in the direc-
tion of the b- and c-axes of the superconductor. Hence, the extended Bean
model which takes account of the anisotropic critical current density is nec-
essary to describe the magnetization. When an AC magnetic field is applied
to a superconducting Bi-system tape with a large anisotropy, the AC loss is
mostly determined only by the c-axis component of the AC magnetic field.
Hence, when a coil is wound with such a superconducting tape, the direction
of the magnetic field is different between the central part and the edge of the
coil, resulting in large differences in the critical current density and the loss
density in the different parts.
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8.4.2 Differences in the Size Effect due to the Dimensionality

As mentioned in Sect. 8.2, the critical size of the superconductor for the
irreversibility field, i.e., the G-L transition field, is the virtual pinning corre-
lation length L0 given by Eq. (7.92) for both Bi-2212 and Y-123, indepen-
dently of the dimensionality of the superconductor. The details will be ex-
plained in Sect. 8.5. On the other hand, the critical size for the order-disorder
transition associated with the peak effect is much smaller than the pinning
correlation length in two-dimensional Bi-2212, while it is given by the pin-
ning correlation length in three-dimensional Sm-123 as shown in Sect. 7.6.
Figure 8.21 shows the critical current density of Bi-2212 single crystal speci-
mens with different thicknesses [27]. It is found that the peak effect is not ob-
served for films thinner than 0.5 µm, while the peak effect occurs for specimens

Fig. 8.21. Critical current density of Bi-2212 single crystal specimens with different
thicknesses [27]
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Fig. 8.22. Variation in irreversibility field with the thickness for the same Bi-2212
specimens in Fig. 8.21 at 20 K [27]

thicker than 1 µm. This suggests that, even when the dimensional crossover
of flux lines takes place, its characteristic length is not shorter than 0.5 µm.

Figure 8.22 shows the thickness dependence of the irreversibility field of
the same specimens at 20 K [27]. The irreversibility field increases monoton-
ically with the thickness and seems to be saturated at the critical size L0,
which is expected to exceed 10 µm. Hence, the critical sizes are different be-
tween the G-L transition and the order-disorder transition in Bi-2212. Here is
another example which indicates a long coupling of flux lines along the c-axis
in a Bi-2212 superconductor, deviating from the prediction of the pancake
vortex model. Figure 8.23(a) shows the pinning correlation length obtained
by Campbell’s method for a Bi-2212 single crystal in a magnetic field parallel
to the c-axis [35]. The correlation length is longer than 10 µm even when flux
lines are in the two-dimensional state and increases with increasing magnetic
field and/or temperature. Figure 8.23(b) shows the theoretical prediction of
the pinning correlation length of

L =
(

Baf

2πµ0Jc

)1/2

, (8.15)

in which the observed Jc values are substituted and the relationship ζ = 2π
for pointlike defects is used for the interaction distance in Eq. (7.75). It can
be seen that the two results agree well with each other. Similar agreement
is obtained also for three-dimensional Y-123 superconductors [36, 37]. There-
fore, Eq. (8.15) holds generally, independently of the dimensionality of the
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Fig. 8.23. Pinning correlation length in a Bi-2212 single crystal in a magnetic field
along the c-axis [35]: (a) experimental results obtained by using Campbell’s method
and (b) theoretical estimates using Eq. (8.15) with observed Jc value
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Fig. 8.24. Pinning correlation length in an Y-123 single crystal in a magnetic field
along the c-axis [38]: (a) experimental results obtained by using Campbell’s method
and (b) theoretical estimates

superconductor. Figures 8.24(a) and (b) are an example for an Y-123 single
crystal showing the peak effect [38], and L takes maximum and minimum
values at magnetic fields at which the critical current density takes minimum
and maximum values, respectively.

The critical size of the dimensional crossover of flux lines can also be ap-
proximately estimated from the rate of discontinuous variation in the critical
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current density at the peak effect. Namely, since the critical current den-
sity increased approximately by a factor of 4 with the variation from the
three-dimensional vortex state to the two-dimensional one, the virtual crit-
ical current density Jc0 is expected to increase approximately by the same
factor. Thus, the mechanism of the collective pinning indicates that the cor-
relation length of the normal core inside the vortex decreased from L0 to
L0/42 = L0/16. The observed L was about 35 µm [21]. Since L0 is expected
to be shorter than L, it seems to be reasonable that L0/16 is close to the
critical thickness for the peak effect observed for thin films.

The critical size of the normal core of a flux line in most two-dimensional
Bi-2212 superconductors was estimated similarly from independent experi-
ments on the peak effect. Hence, the estimated critical size seems to be valid.
This value shows that the pancake normal cores in CuO2 planes do not be-
have independently of each other along the c-axis but are coupled over a
fairly long distance even in two-dimensional superconductors. In the three-
dimensional superconductors such as Y-123, on the other hand, the critical
size of the irreversibility field coincides with that of the peak effect, suggesting
that the outer magnetic flux and the inner normal core behave as one body.
Figure 8.25 schematically depicts the difference in the deformation between
the normal core of a flux line and the surrounding magnetic structure due to
the difference in the state of flux lines.

Fig. 8.25. Schematic illustration of deformed flux line in Bi-2212 superconductor:
(a) three-dimensional state at low magnetic fields and (b) two-dimensional state at
high magnetic fields
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According to Vinokur et al. [26] the interlayer coupling length is given by

r3D � (γasaf)1/2 . (8.16)

Substitution of typical values for Bi-2212, i.e., γa = 100, s = 1.5 nm and
B � 0.1 T (af � 150 nm) for the peak field leads to r3D � 0.15 µm. This
value is slightly shorter than the critical size for the peak effect, which is
on the order of 0.5 µm, but is of the same order of magnitude. Hence, the
characteristic length of the normal core in a two-dimensional vortex might be
given by the interlayer coupling length.

However, the interlayer coupling length of Eq. (8.16) takes on very small
values for three-dimensional superconductors with small anisotropy parame-
ters, and any phenomena associated with such critical sizes have not yet been
observed.

The characteristic lengths of Bi-2212 superconductors in the two-
dimensional vortex state are now summarized. In each instance of thermal
agitation the normal cores of the flux lines are interacting with pinning cen-
ters with a strength corresponding to the virtual critical current density Jc0,
which is not influenced by the flux creep, and are deformed along their length
characterized by a distance Lc less than 1 µm. The magnetic flux in the outer
region of the normal core is deformed along the length by a distance L0. Hence,
a segment of the flux lines of this length moves by a distance of about af when
hopping by the thermal agitation. Thus, the longitudinal flux bundle size is
given by L0. When the flux motion is averaged over a time period during an
observation in experiments, the critical current density is decreased to Jc due
to the flux creep and the pinning correlation length is increased to L.

The longitudinal flux bundle size in a three-dimensional superconductor is
also given by L0. However, if the size of a specimen is less than L, the pinning
efficiency takes a higher value due to a weaker interference among pinning
interactions in the stage of determination of Jc, resulting in a disappearance
of the peak effect.

8.4.3 Flux Creep

High-temperature superconductors are frequently used at high temperatures,
and the effect of flux creep is strong. The strength of the effect changes from
superconductor to superconductor depending on the dimensionality. In two-
dimensional superconductors the irreversibility field, the characteristic most
strongly influenced by the flux creep, takes on significantly small values. Fig-
ure 8.26 shows the relationship between the irreversibility field at fixed nor-
malized temperatures and the anisotropy parameter [39]. Extremely small
irreversibility fields in two-dimensional superconductors are caused by their
small condensation energy density. As schematically shown in Fig. 8.27, the
superconductivity in the block layer is very weak and this layer is thick in a
two-dimensional superconductor, resulting in a small effective condensation
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Fig. 8.26. Relationship between the irreversibility field along the c-axis at the same
reduced temperatures and the anisotropy parameter [39]

Fig. 8.27. Schematic variation in the superconducting order parameter along the
c-axis

energy density when the magnetic field is applied parallel to the c-axis. This
leads to very weak pinning.

Another effect of the small condensation energy density is a small trans-
verse flux bundle size. As shown in Eq. (7.93) the transverse flux bundle size
is determined by the shear modulus of the flux lines C66, which is related to
the shear energy of the flux line lattice, i.e., the energy increase due to the
deformation of the structure of the order parameter. In a two-dimensional
superconductor C66 is very small due to the small mean value of the order
parameter, resulting in a small transverse flux bundle size. Figure 8.28 depicts
how the flux bundle changes with the dimensionality of the superconductor
under an assumption of the same flux pinning strength, i.e., the same longi-
tudinal size [36].
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Fig. 8.28. Schematic illustration of different geometries of flux bundles due to
differences in the dimensionality of the superconductor when the pinning strength
is the same [36]

Thus, the small condensation energy density causes the weak pinning and
the small flux bundle size, and both of them then bring about the small
pinning potential energy. Hence, the influence of flux creep is severe in a two-
dimensional superconductor. Such an influence of the dimensionality of the
superconductor appears in Jc0 and g2 in U0 in Eqs. (7.97) and (7.99). Practical
examples of the influence of the dimensionality on the irreversibility field will
be described in Sect. 8.5.

8.4.4 E-J Curve

One of the characteristic electromagnetic phenomena in high-temperature su-
perconductors is a gradual rise in the electric field at the critical point in the
E-J curve represented by the quite small value of n in Eq. (5.1) in comparison
with metallic superconductors. This seems to be caused by a wide statistical
distribution of the flux pinning strength as well as the strong effect of flux
creep. High-temperature superconductors have complicated crystal structures
composed of many kinds of elements, and hence, a high number density of
crystalline defects, especially oxygen deficiencies, is expected to exist. These
defects will act as weak pinning centers. Defects of bigger size such as dislo-
cations or stacking faults of fairly high number density will also be contained
in the superconductor, acting as stronger pinning centers. In addition, very
strong pinning centers such as normal precipitates will also be included. As a
result it is expected that the pinning strength is very widely distributed.

In addition, there are regions where the superconducting current finds it
hard to flow due to weak links at grain boundaries. This also causes inho-
mogeneity in the superconductor. As a result, the distribution of the local
critical current density where the weak links are included is extremely wide,
and the observed critical current density changes greatly with the electric
field strength. Figure 8.29 shows the pinning force densities of a Bi-2223 tape
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Fig. 8.29. Flux pinning strength of a Bi-2223 tape [40] in a magnetic field along the
c-axis obtained by (a) the four terminal method at 1.0×10−4 Vm−1 and by (b) the
DC magnetization method at 1.0× 10−10 Vm−1. The solid lines are the theoretical
results of the flux creep-flow model
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observed by the four terminal method at 1.0 × 10−4 Vm−1 and by the DC
magnetization method at 1.0×10−10 Vm−1 [40]. It is found that these results
are completely different.

In inhomogeneous superconductors the motion of flux lines is not uniform
as in an ideal superconductor with a uniform critical current density but is
complicated. Such a motion of flux lines can be correctly described by the
percolation model [17]. In this model the activated flux motion due to flux
creep is expressed as an effective flux flow in a shallow pinning potential,
and it is assumed that the probability that flux lines pinned with nonuniform
strength will be depinned by a Lorentz force is expressed by a Weibull function.
Thus, the distribution function of the critical current density Jc is given by

P (Jc) =
m0

J0

(
Jc − Jcm

J0

)m0−1

exp
[
−
(

Jc − Jcm

J0

)m0
]

; Jc ≥ Jcm ,

= 0 ; Jc < Jcm , (8.17)

where Jcm is the minimum value of Jc and J0 shows the distribution width.
m0 is a parameter that determines the structure of the distribution and is
related to the dynamic critical index z in the scaling of the E-J curve as
m0 = (z − 1)/2. Thus, the E-J curve is expressed as

E(J) =
ρfJ

m0 + 1

(
J

J0

)m0
(

1 − Jcm

J

)m0+1

; B ≤ µ0Hg ,

=
ρf |Jcm|
m0 + 1

(
|Jcm|
J0

)m0
[(

1 +
J

|Jcm|

)m0+1

− 1

]
; B > µ0Hg . (8.18)

In the above Hg is the G-L transition field, and it should be noted that Jcm < 0
for B > µ0Hg. In Fig. 8.30 the theoretical results with adjusted parameters
Jcm, J0, m0 and Hg are compared with experiments for an Y-123 thin film [9].
It is found that the percolation model describes the experiments well. The E-
J curves given by the percolation model are approximately explained by the
mechanism of flux creep and flow [14], and this agreement proves the validity
of the percolation model.

When the results obtained at various temperatures are summarized for
Jcm and Jk = Jcm + J0, which corresponds to a representative value of Jc, a
relationship similar to the scaling law of pinning force density is obtained:

JcmB = AHg(T )ζ′
[

B

µ0Hg(T )

]γ [
1 − B

µ0Hg(T )

]δ

. (8.19)

An example is shown in Fig. 8.31. A similar relationship is obtained also
for Jk.

Since the percolation model describes simply the E-J characteristics in
a suitable range of electric field and over a wide range of temperature and
magnetic field, it is very useful for the application of superconductors.
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Fig. 8.30. Comparison of E-J curves between experiments on an Y-123 single
crystal thin film and the percolation model (solid lines) [9]

Fig. 8.31. Scaling law of the minimum pinning force density JcmB of an Y-123
single crystal thin film in Fig. 8.30 [9]
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8.4.5 Josephson Plasma

Two-dimensional high-temperature superconductors such as Bi-2212 are com-
posed of superconducting CuO2 planes and insulating block layers, and form
stacked intrinsic Josephson junctions. Hence, it is expected that the Joseph-
son current flowing along the c-axis across the block layers is coupled with
electromagnetic fields, resulting in a unique excitation. This excited wave is
called the Josephson plasma wave. The characteristic feature of the Joseph-
son plasma wave is that the resonance frequency is not very high, since the
electric charges cannot move quickly across the block layers. Hence, the reso-
nance frequency is sufficiently lower than the superconducting gap frequency
that the excitation of quasiparticles does not occur. As a result the Joseph-
son plasma can be stably excited without damping. There are two Josephson
plasma waves, i.e., the longitudinal wave which propagates along the c-axis
and the transverse wave which propagates in the a-b plane.

The longitudinal Josephson plasma wave is considered at first. If the phases
of the order parameter in the n-th and (n + 1)-th superconducting layers are
represented by φn and φn+1, respectively, the difference in gauge-invariant
phase between these layers is:

θn+1,n = φn+1 − φn − 2π

φ0

∫ n+1

n

Azdz , (8.20)

where the z-axis is parallel to the c-axis. Hence, the Josephson current density
along the c-axis is given by

Js = jc sin θn+1,n . (8.21)

The wave number of the longitudinal plasma wave is denoted by k. When its
wave length 2π/k is sufficiently longer than the distance between the super-
conducting layers s, the phase difference can be approximated by a continuous
function which varies along the c(z)-axis: it will be given as

θ(z) = θ0 exp i(kz − ωt) . (8.22)

When these equations are coupled with Maxwell equations, we have: [41]

∂2θ

∂t2
= v2

B

∂2θ

∂z2
− ωp − 2θ , (8.23)

where vB is a propagation velocity of the phase difference along the z-axis and
ωp is the Josephson plasma frequency given by

ωp =
c̄

λJ
=

c

ε
1/2
s λJ

. (8.24)

In the above c = 1/(ε0µ0)1/2 and c̄ = c/ε
1/2
s are the light velocities in the

vacuum and in the block layers, respectively, with εs denoting the relative di-
electric constant of the block layers, and λJ is given by Eq. (8.13). Substituting
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Eq. (8.22) into Eq. (8.23) derives the dispersion relation of the longitudinal
Josephson plasma frequency:

ω = (ω2
p + v2

Bk2)1/2 . (8.25)

In the case of the transverse Josephson plasma wave, the dispersion relation
of the plasma frequency is given by

ω =
(

ω2
p +

c2k2

εs

)1/2

. (8.26)

Because c2/εs � v2
B, the dispersion of the transverse wave is much stronger.

The dispersion relations of the two plasma waves are compared in Fig. 8.32.

Fig. 8.32. Dispersion relations of Josephson plasma frequency [41]. The solid and
dotted lines represent longitudinal and transverse plasma waves

A proof of the excitation of Josephson plasma waves is obtained from
measurements of absorption of electromagnetic microwaves, etc. Figure 8.33
shows an observed result [42] of the surface resistance of a Bi-2212 single
crystal in an AC electric field of 45 GHz in the direction of the c-axis during
a sweep of DC magnetic field in the same direction. Sharp peaks show that
the longitudinal Josephson plasma oscillation takes place.

With the aid of measurements of Josephson plasma waves the behavior
or the state of flux lines mainly in the liquid state has been investigated in
detail.
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Fig. 8.33. Observed result of surface resistance of a Bi-2212 single crystal when an
AC electric field of 45 GHz and a DC magnetic field are applied along the c-axis [42]

8.5 Irreversibility Field

The irreversibility field, a characteristic field at which the critical current den-
sity reduces to zero, is one of the important parameters of the superconductor
for its application. This is strongly associated with the G-L transition field as
will be discussed.

The irreversibility field is determined by the mechanism of flux creep, since
most of the induced electric field does not originate from the flux flow but from
the flux creep at the electric field strength of 1×10−4 Vm−1 at which the crit-
ical current is usually determined [14]. Hence, the irreversibility field can be
derived from the E-J characteristics caused by the flux creep. Here the statis-
tical distribution of the local critical current density is neglected for simplicity.
This allows us to show analytically various aspects of the irreversibility field.
Later a theoretical treatment in which the distribution of the critical current
density is taken into account will be introduced and the results will be com-
pared with experiments. A discussion will also be given on the association
with the G-L transition.

8.5.1 Analytic Solution of Irreversibility Field

According to the flux creep model, Eq. (3.129) gives the condition of the
irreversibility field, if the flux motion in the opposite direction to a Lorentz
force is neglected. This is allowed except in the vicinity of the TAFF region.
The analytic expression of the irreversibility field is obtained by substituting
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Eq. (7.97) or (7.99) into this equation. It is assumed that the scaling law of
the virtual critical current density in the creep-free case Jc0 is expressed as ∗

Jc0(B, T ) = A

[
1 −

(
T

Tc

)2
]m′

Bγ−1

(
1 − B

µ0Hc2

)δ

. (8.27)

Usually the irreversibility field is sufficiently lower than the upper critical field,
and hence, the factor (1 − B/µ0Hc2)δ in the above equation can be regarded
as 1. Then, the irreversibility field is obtained:

(µ0Hi)(3−2γ)/2 =
(

K

T

)2
[
1 −

(
T

Tc

)2
]m′

≡ (µ0Himax)(3−2γ)/2; d ≥ L0,

=
K ′

T

[
1 −

(
T

Tc

)2
]m′

; d < L0 . (8.28)

In the above Himax is the irreversibility field of a bulk superconductor, and
the constants K and K ′ are given by

K =
0.835g2A1/2

ζ3/2 log(Bafν0/Ec)
, (8.29)

K ′ =
4.23g2Ad

ζ log(Bafν0/Ec)
. (8.30)

Various aspects of the irreversibility field, i.e., its dependencies on various
factors, will be described later. This enables us to qualitatively understand
these aspects. In case of an exact comparison with experiments, a theoretical
analysis involving the statistical distribution of the pinning force, which is
the distribution of A in most cases, is necessary as will be shown in the next
subsection.

8.5.2 Effect of Distribution of Pinning Strength

As described above, it is necessary to take account of the wide distribution
of the effective virtual critical current density Jc0 for a description of the
practical pinning property over a wide range of electric field strength. This is
directly associated with the wide distribution of Jc in the percolation model.
Here we introduced a theoretical treatment of the flux creep-flow model [43]

∗ For high-temperature superconductors the temperature dependence of Jc0 is
sometimes expresses as [1 − (T/Tc)]

m′
instead of Eq. (8.27). This seems to be

more suitable for Bi-2212 superconductors in which the temperature dependence
of thermodynamic critical field is linear (see Fig. 8.52). These temperature depen-
dencies are not different appreciably in the vicinity of the critical temperature,
although they are remarkably different at low temperatures.
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in which the distribution of Jc0 is considered. It is assumed for simplicity that
only A, representing the magnitude of Jc0, is distributed.

There are many other pinning parameters, i.e., m′, γ and δ in addition to
A. Hence, a simple distribution function for A is desirable. However, it does
not obey the gaussian distribution. Here we assume the distribution function
as:

f(A) = G exp
[
− (log A − log Am)2

2σ2

]
, (8.31)

where Am is the most probable value of A, σ is a parameter representing the
distribution width and G is a normalization constant.

When the virtual critical current density Jc0 changes locally, flux flow
takes place where the flowing current density J is larger than Jc0, and flux
creep occurs where J is smaller than Jc0. Here the normalized current density
is defined:

j =
J

Jc0
. (8.32)

then, the electric field due to the flux flow is given by

Eff = 0; j ≤ 1 ,

= ρfJc0(j − 1) : j > 1 . (8.33)

On the other hand, the electric field due to the flux creep is given by
Eq. (3.115). Here, taking account of its contribution in the flux flow state, we
approximate it as

Efc = Bafν0 exp
[
−U(j)

kBT

] [
1 − exp

(
−πU0j

kBT

)]
; j ≤ 1 ,

= Bafν0

[
1 − exp

(
−πU0j

kBT

)]
; j > 1 . (8.34)

Equation (3.125) is used for the activation energy U . The local electric field
from the two contributions is approximated by

E′ = (E2
ff + E2

fc)
1/2 . (8.35)

This gives Efc for j ≤ 1 and is approximately equal to Eff for j � 1. Then,
the electric field when the current density J is applied is calculated from

E(J) =
∫ ∞

0

E′f(A)dA . (8.36)

The E-J curves in Figs. 8.5(b) and 8.7 are obtained in this manner. Figures
8.29 and 8.53(b) show the pinning force density corresponding to the critical
current density which is determined from the theoretical critical current den-
sity using the electric field criterion Ec, as in experiments. The irreversibility
field is also determined as the magnetic field at which the obtained critical
current density reduces to some threshold value, as in experiments.
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8.5.3 Comparison with Flux Creep-Flow Model

For an application of a high-temperature superconductor, design of the pin-
ning properties under circumstances in which the superconductor is to be
used is necessary. Hence, it is desirable that the practical pinning properties
including the irreversibility field, the upper limit of the magnetic field for
application, can be described theoretically. In this subsection, some experi-
mental results on the irreversibility field for various superconductors will be
compared with each theoretical prediction of the flux creep-flow model.

(a) Temperature Dependence
Initially the temperature dependence of the irreversibility field, i.e., the

irreversibility line is discussed. Equation (8.28) leads to

Hi(T ) ∝
[
1 −

(
T

Tc

)2
]n

(8.37)

with

n =
2m′

3 − 2γ
(8.38)

in the vicinity of the critical temperature independently of the size of the
superconductor. In Fig. 8.34 the observed parameter n is compared with the

Fig. 8.34. Parameter n representing the temperature dependence of the irreversibil-
ity field [44]. Ordinate and abscissa are experimental values and theoretical values
obtained from Eq. (8.38), respectively
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corresponding value determined from m′ and γ, which are obtained at low
temperatures [44]. It is found that a good agreement is obtained over a wide
range of the parameter. At low temperatures the temperature dependence
becomes stronger due to the factor of T−2 or T−1 on the right hand side of
Eq. (8.28).

(b) Dependence on Flux Pinning Strength
The dependence of the irreversibility field on the flux pinning strength

is mainly expressed as that on the parameter A. As mentioned in Sect. 8.4,
the influence of the dimensionality of the superconductor is also included,
and the pinning strength is different for different superconductors even for
the same defect. In this sense, the influences of the flux pinning strength and
the dimensionality cannot be strictly distinguished. However, we focus only
on the dependence on A, the parameter representing the pinning strength.
In this case it should be noted that g2 in Eq. (7.96) is also influenced by A.
For simplicity the superconductor is assumed to be sufficiently large. From
the relationship of αL ∝ A we have g2

e ∝ A−1. Substitution of this and
Ue ∝ g2

eA1/2 ∝ A−1/2 into Eq. (7.97) leads to

g2 ∝ A−1/3 . (8.39)

Hence, in the case of γ = 1/2 observed for many superconductors we have

Himax ∝ g4A ∝ A1/3 . (8.40)

Figure 8.35 shows the relationship between the irreversibility field perpendic-
ular to the c-axis at T/Tc = 0.75 and A for various high-temperature super-
conductors [45]. The straight lines represent the relationship of Eq. (8.40).
Good agreement with experiments is obtained for Bi-2212 and Bi-2223.

It should be noted that Eq. (8.40) holds, if the irreversibility field is much
lower than the upper critical field. If not, the irreversibility field is restricted by
the upper critical field. In this case the irreversibility field should be calculated
without neglecting the factor (1−B/µ0Hc2)δ in Eq. (8.27) (see Exercise 8.5).

(c) Influence of Dimensionality of Superconductor
The dimensionality of the superconductor influences the irreversibility field

not only through g2 but also through A as described in Subsect. 8.4.3. Here
we confine ourselves to the influence of the dimensionality only through g2, so
as to be consistent with the former subsection. This parameter is responsible
for the difference between the straight lines representing the characteristic of
each superconductor in Fig. 8.35. In a magnetic field normal to the c-axis,
the typical value of g2 is about 2, 4 and 6 for Bi-2212 bulk, Bi-2223 tape and
Y-123 bulk, respectively. Examples of calculation of g2 is given in Appendix
A.8. In the case of γ = 1/2, we have Himax ∝ g4, which approximately ex-
plains the experimental results in the figure. Experimental and corresponding
theoretical results on the irreversibility field normal to the c-axis for various
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Fig. 8.35. Pinning strength dependence of the irreversibility field normal to the
c-axis at T/Tc = 0.75 for various superconductors [45]. A corresponds to Jc0 at
T = 0 K and B = 1 T

superconductors are shown in Fig. 8.36, and the parameters used in the cal-
culation are listed in Table 8.2 [45]. These results are for sufficiently large
superconductors, and the agreement implies that the irreversibility line is de-
termined by the dimensionality of the superconductor, the pinning strength
and the pinning parameters such as m′ and γ.

In a magnetic field along the c-axis, the irreversibility field is qualitatively
the same, although it is much lower. The irreversibility lines of typical Y-123
bulk, [46] Bi-2223 tape [47] and Bi-2212 tape [48] are shown in Fig. 8.37. In
each superconductor the observed result is explained by the theoretical results
of the flux creep-flow model shown by the solid lines. The parameters used in
the calculation are given in Table 8.3. The value of Am is occasionally the same
among three superconductors. On the other hand, the value of g2 is about 1 in
Bi-2212, ranged between 1 and 2 in Bi-2223 and above 3 in Y-123, which are
similar to other measurements. This suggests that the influence of flux creep
is less significant for a more three-dimensional superconductor. In most cases
of Bi-2212 superconductors theoretical estimations using Eq. (7.98) are less
than 1, and the practical minimum value, g2 = 1, is used. For sintered powder
specimens with similar particle sizes, it is known [49] that the irreversibility
field of Yb-123 is higher than that of Y-123 at the same reduced temperature.
This suggests that the dimensionality of Yb-123 is higher than that of Y-123,
and this is likely to be caused by a more uniform carrier distribution along
the c-axis in the block layer in Yb-123.
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Fig. 8.36. (a) Experimental and (b) theoretical results of the irreversibility line in
a magnetic field normal to the c-axis for various superconductors [45]

Here we show an example of the anisotropy of the irreversibility field.
Figure 8.38 illustrates the results obtained from Jc estimated using Campbell’s
method for a Bi-2223 tape [50]. Although this anisotropy is larger than that
obtained using the four terminal method, it is smaller than expected from the
anisotropy of the electron mass. This is caused by a misalignment of grains
in the superconductor: even if a magnetic field is parallel to the tape surface,
it is not parallel to the a-b plane of each grain, resulting in a suppressed
irreversibility field.
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Table 8.2. Parameters of various superconductors for theoretical calculation of
irreversibility field normal to the c-axis shown in Fig. 8.36(b) [45]. Two kinds of
pinning centers are assumed for (Pb,Bi)-2223 tape and Bi-2212 melt specimen, and
the distribution of A is not considered

Y-123 (Pb, Bi)-2223 Bi-2212 Bi-2212
(melt) (tape) (melt) (crystal)

Tc (K) 92.0 107.7 92.8 77.8

µ0H
ab
c2 (0) (T) 670 1000 690 690

ρn(Tc) (Ωm) 2.0 × 10−6 1.0 × 10−4 1.0 × 10−4 1.0 × 10−4

A 2.58 × 109 2.54 × 109/ 7.52 × 108/ 1.71 × 106

6.57 × 108 3.33 × 108

m′ 1.5 3.0/1.5 2.25/1.5 3.10
γ 0.5 0.63/0.50 0.79/0.50 0.98
δ 2.0 2.0 2.0 2.0
g2
e 44.4 6.7/1.55 2.2 620

g2 6.0 4.0/1.5 2.0 14∗

ζ 4 2π/4 2π 2π

∗g2 = 14 is assumed so as to get a good fit, although g2 = 4.0 is theoretically
predicted.

Fig. 8.37. Irreversibility lines in a magnetic field parallel to the c-axis for various
superconductors [46–48]. The solid lines are theoretical results of the flux creep-flow
model
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Table 8.3. Parameters of various superconductors for theoretical calculation of
irreversibility field parallel to the c-axis shown in Fig. 8.37 [46–48]

Tc

(K)
µ0H

c
c2(0)

(T)
ρn(Tc)
(µΩm)

Am σ2 m′ γ δ g2

Bi-2212 90.0 34.5 100 1.00 × 109 0.08 3.9 0.90 2.0 1.00
Bi-2223 110.0 50.0 100 1.00 × 109 0.10 2.6 0.70 2.0 1.40
Y-123 90.8 80.5 1.5 1.00 × 109 0.04 1.5 0.50 2.0 4.32

Fig. 8.38. Anisotropy of irreversibility field of a Bi-2223 tape [50]

(d) Size Dependence
The dependence of the size of the superconductor can be seen in Eq. (8.28).

This is expected to be more simply expressed as:(
Hi

Himax

)(3−2γ)/2

= 1; d ≥ L0 ,

=
d

L0
; d < L0 . (8.41)

The derivation of Eq. (8.41) is asked in Exercise 8.4.
In Fig. 8.39 the irreversibility field along the c-axis is compared for a typical

Bi-2223 tape and a Bi-2223 thin film with a high Jc value [45]. It is found that
the irreversibility field of the thin film, which has a Jc value about five times
larger at 4.2 K and 1.0 T, is much lower than that of the tape. The theory
explains this difference, although the distribution of Jc0 is not considered.
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Fig. 8.39. Comparison of irreversibility line in a magnetic field parallel to the c-
axis for a typical Bi-2223 tape and a high Jc Bi-2223 thin film [45]. Open and solid
symbols show experimental and theoretical results, respectively

Figure 8.40 displays the irreversibility field of Sm-123 superconducting
powders with different average particle sizes at 77.3 K [51]. The irreversibility
field increases with increasing particle size and tends to be saturated when
the particle size exceeds the pinning correlation length L0, as predicted by the
theory. In fact, Fig. 8.41 is a replot of the result in the form of Eq. (8.41): it
shows that the analytic result of Eq. (8.41) holds also for the case of distributed
pinning strength. In the figure each theoretical line shows a virtual variation
in the ideal case where only the particle size changes with the same pinning
parameters. In the practical case, even if the pinning centers and the number
density are unchanged, Jc0 changes with the particle size when the size is
below L0.

The phenomenon that the irreversibility field reduces with the size of a
small superconductor is observed also for metallic superconductors with very
fine filaments [52].

(e) Electric Field Dependence
As was shown in Subsect. 8.4.4, the critical current density depends ap-

preciably on the electric field criterion Ec. Hence, the irreversibility field also
depends on the electric field criterion. This can be explained from the elec-
tric field criterion in K and K ′ given by Eqs. (8.29) and (8.30), respectively.
Namely, when Ec becomes small as in a DC magnetization measurement, K
and K ′ become small, resulting in a reduction of the irreversibility field.
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Fig. 8.40. Irreversibility field at 77.3 K vs. particle size of superconducting Sm-123
powders [51]

Fig. 8.41. Replot of Fig. 8.40 in the form of Eq. (8.41) [51]. Each line is a theoretical
estimate for each sample
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Fig. 8.42. Irreversibility lines of a Bi-2223 tape measured by various methods [12].
The G-L transition field obtained in different ranges of electric field is also shown
for comparison

Figure 8.42 shows the irreversibility lines of the same Bi-2223 tape mea-
sured by various methods [12]: the differences come from the different values
of the electric field strength at the measurement. Figure 8.43 is a replot of
the irreversibility field at 70 K as a function of the electric field. The results
of the G-L transition field obtained for different ranges of the electric field
are also shown for comparison. The G-L transition field obtained from the
scaling of the E-J curves at low electric fields measured by a relaxation of
the magnetization was mentioned in Subsect. 8.2.2. It can be seen from this
result that the irreversibility field changes dramatically with the electric field
at the measurement. The solid line in the figure is a theoretical prediction of
the flux creep-flow model, and it is found that this model correctly describes
the phenomenon.

8.5.4 Relation with G-L Transition

It was initially believed that there were intrinsically glass and liquid states
for flux lines and that the flux lines could be pinned effectively and ineffec-
tively when they were in the glass and liquid states, respectively. However,
the causality is opposite, and the flux pinning determines the state of the flux
lines as described in detail in Subsect. 8.2.2. In fact, the G-L transition field
or temperature can be determined and the scaling of the E-J curves can be
explained as shown in Fig. 8.5 by the flux creep-flow model, when the pinning
parameters are given. The G-L transition theory might in principle be useful
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Fig. 8.43. Relationship between the irreversibility field at 70 K and the electric
field strength [12]. The solid line is a theoretical prediction of the flux creep-flow
model

for a description of the behavior of flux lines when the transition takes place.
However, it should be noted that it cannot determine the transition point.
In addition, the effect of flux pinning is not taken into account for the two
critical indices in the original theory. By the way, it has been clarified from the
viewpoint of flux pinning [3] that a derivative of the disorder of flux lines with
respect to temperature or magnetic field is discontinuous at the transition
point as a typical example of the difference between the two states.

In other words, the two states are distinguished by the effectiveness of the
flux pinning: a finite critical current density is observed in the glass state,
while flux lines are driven to the resistive state by application of an infini-
tesimal current in the liquid state. This is the definition of the irreversibility
temperature or magnetic field. Hence, it is concluded that the G-L transition
field is identical with the irreversibility field. In this sense the G-L transition
can be called the thermal depinning transition.

However, the practical results are different between the G-L transition field
and the irreversibility field due to the difference in the method of determina-
tion. To describe the state of flux lines in a given regime of electric field the
G-L transition is more rigorous. However, many measurements and a detailed
analysis are needed for the determination of the G-L transition field. Also,
from the viewpoint of theoretical analysis using the flux creep-flow model,
the scaling of theoretical E-J curves is necessary, similarly to the analysis of
experimental results for the G-L transition field, while the irreversibility field
can be directly and simply determined as shown in Subsect. 8.5.1. For this
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reason the irreversibility field, which can be easily determined with a suitable
current criterion, is mostly used in the field of applications.

The irreversibility line and the G-L transition line of a Bi-2223 tape are
compared in Fig. 8.44 [53]. It is found that the irreversibility line exists at
higher temperature or magnetic field in the B-T plane. The theoretical results
of the two lines determined with the same pinning parameters are also shown
in the figure for comparison. Agreement is fairly good, and it can be seen
that the transport phenomena in this range can be correctly described by the
theoretical model. A similar agreement between the theory and experiment is
obtained for a Bi-2212 tape [48].

Fig. 8.44. Irreversibility line and G-L transition line of a Bi-2223 tape in a magnetic
field along the c-axis [53]. Open and solid symbols are experimental results and
theoretical results from the flux creep-flow model

It has been shown that the electromagnetic phenomena associated with
the flux pinning, e.g., the critical indices, ν and z, in the scaling of E-J
curves, are strongly influenced by the distribution of flux pinning strength
and the electric field. This fact casts a doubt on the theoretical assumption of
Fisher et al. [54] that the index µ, representing the state of flux lines in the
glass state, is an inherent parameter dependent only on the dimensionality
of the superconductor. The fact that the transition point, as well as the two
critical indices, changes dramatically with the electric field strength also shows
that such a simple assumption is not correct. Although the framework of the
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theory itself using the index µ might be valid, µ must be a parameter which
is influenced by the distribution of pinning strength and the electric field.

8.6 Flux Pinning Properties

One of the important parameters for application of high-temperature super-
conductors is the critical current density, and this is determined by the flux
pinning property. In the determination various aspects are involved such as
kind of defects to pin flux lines, their pinning mechanism, the summation prop-
erty described in Chaps. 6 and 7, and the flux creep described in Chap. 3.
In this section various features inherent to high-temperature superconductors
will be described.

High-temperature superconductors consist of superconducting CuO2

planes and almost insulating block layers with the superconducting order pa-
rameter varying along the c-axis as shown in Fig. 8.27. Hence, the structure
of the superconductor itself is proposed to interact with the flux lines, and
this pinning interaction, first pointed out by Tachiki and Takahashi [55], is
called the intrinsic pinning. This interaction is a kind of condensation energy
interaction with an attractive force. However, for a realization of this pinning
interaction, each flux line must fall in the potential of a block layer for a very
long length, and hence, it would be observed only when a magnetic field is
applied exactly parallel to the a-b plane of a highly perfect superconductor.
When the magnetic field is even at a slight angle from the a-b plane, each flux
line will have a step-wise structure, and positive and negative pinning forces
will appear alternately, resulting in a cancellation of the pinning force except
at the two edges. This pinning property will be mentioned later in connection
with Y-123 coated conductors. In the following the pinning properties of the
main high-temperature superconductors will be described.

8.6.1 Y-123

Y-123 superconductors have the most three-dimensional properties, and the
flux pinning is strong. These superconductors are transformed from a tetrago-
nal crystalline structure to an orthorhombic one when cooled from the reaction
temperature. In this transformation twin boundaries are formed so as to re-
duce the distortion by equating the fractions of the a- and b-axes in each
direction. It has been found that the flux pinning strength of a twin bound-
ary is strongly influenced by the oxygen deficiency at the boundary, and the
pinning is weak when the oxygen deficiency is low [56]. Hence, the pinning
mechanism of the twin boundary is the condensation energy interaction of a
local region with a lower Tc.

Figure 8.45 shows the variation in the torque density on a single crystal
Y-123 slab specimen with twin boundaries aligned in two directions normal to
each other when the magnetic field is rotated in a plane perpendicular to the
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Fig. 8.45. Variation in the torque density on a single crystal Y-123 slab specimen
with twin boundaries aligned in two directions normal to each other in a magnetic
field rotated in a plane perpendicular to the common c-axis [57]. While a sharp peak
appears when the magnetic field is parallel to twin boundaries at 76 K in (a), these
peaks disappear at 27 K in (b)

common c-axis [57]. The torque takes a sharp peak when the magnetic field is
parallel to the twin boundaries at 76 K as shown in (a). This strongly implies
that the twin boundaries work as pinning centers. If the mean value of the
peak of the torque density and the magnitude of the magnetization due to the
pinning interaction of twin boundaries are denoted by ∆τ and M , respectively,
we have ∆τ � BM/2. Here it is taken into account that approximately half of
the twin boundaries in the specimen contribute to each peak. If the mean size
of the specimen in the rotating plane of the magnetic field is w, we have M �
Jcw/2. From these relationships the critical current density due to the pinning
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by twin boundaries is estimated as Jc � 4 × 107 Am−2 at 76 K and 0.67 T.
This result is approximately the same as the result, 4.5× 107Am−2 at 77.3 K
and 1.0 T, obtained from the field angle dependence of the magnetization
critical current density of a melt-processed Y-123 bulk specimen [58]. It can
be concluded from these results that the pinning by twin boundaries is not very
strong. The elementary pinning force per unit length of flux line is estimated
as f ′

p � 1.6 × 10−6 Nm−1, even if the mean spacing of twin boundaries is
overestimated to be approximately 1.0 µm. This value is only about 1/20 of
the pinning strength of grain boundaries of Nb3Sn and only about 1/80 of the
pinning strength of grain boundaries of V3Ga shown in Fig. 7.18.

On the other hand, the peak of the torque due to twin boundaries
cannot be observed at 27 K because it is embedded in the torque of the
background pinning as shown in Fig. 8.45(b). This is caused by the different
temperature dependence of the pinning force for twin boundaries from that
of background pinning centers. Namely we expect m′ = 3/2 for planar defects
with the condensation energy interaction, while m′ � 4 is obtained for back-
ground pinning from Figs. 8.45(a) and (b). Therefore, the background pinning
by point defects, etc. is superior at low temperatures.

It is known that a high density of nonsuperconducting Y2BaCuO5(211)
phase particles smaller than several micrometers in size is distributed in bulk
Y-123 superconductors. The pinning mechanism of these particles is the con-
densation energy interaction, similarly to the normal precipitates mentioned
in Subsect. 6.3.1. From the size of the particles it is likely that the surface
works effectively, and a characteristic similar to that shown in Fig. 7.11 is
expected. The relationship between the critical current density of Y-123 bulk
superconductors and the surface area of 211 phase particles at 77.3 K and at
1.0 T parallel to the c-axis is shown in Fig. 8.46 [59]. The strong correlation
shows that the surface of 211 phase particles works effectively.

A broad peak effect of the critical current density is observed in Y-123 sin-
gle crystals and bulks in a medium field range at around 77.3 K as mentioned
in Sect. 7.6. The pinning centers responsible for the peak effect are oxygen
deficient regions including twin boundaries. A similar peak effect is also ob-
served for RE-123 superconductors containing rare earth (RE) elements with
a large ionic radius, and the pinning centers are substituted regions where Ba
sites are occupied by RE elements. Since the substituted regions have lower Tc

than the surrounding matrix phase, it is considered that the same mechanism
brings about the peak effect as that of oxygen deficient regions. The mecha-
nism which has been considered to cause the peak effect is a field induced one
[60]: these regions become normal state at a magnetic field higher than their
Hc2 at the ambient temperature and may work as strong pinning centers.

However, the assumption that the peak effect directly arises from the el-
ementary field-induced pinning mechanism has some problems: for example,
the fact that the peak effect disappears when the particle size of Sm-123 super-
conducting powders is reduced below the pinning correlation length cannot be
explained by this mechanism (see Sect. 7.6). Nd-123 provides another example.
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Fig. 8.46. Critical current density of Y-123 bulk superconductors vs. surface area
of 211 phase particles in a unit volume at 77.3 K and at 1.0 T parallel to the c-axis
[59]

The variation in the critical current density of Nd-123 superconductor in a
magnetic field along the c-axis due to an addition of 422 phase is shown in
Fig. 8.47 [61]. This result shows that Jc in the medium field region decreases
and the peak effect also decreases or even disappears after the addition of
422 phase, while Jc is increased at low and high magnetic fields. The same
behavior of Jc has been observed also for the addition of 211 phase to Y-123
bulks, while a strong correlation exists between Jc and the surface area of 211
phase particles at low and high magnetic fields [46].

It is clear that this variation cannot be explained by the field-induced
pinning mechanism. If the lower Tc regions contribute to the attractive con-
densation energy interaction as well as 211(422) phases, Jc should be increased
by the addition as observed in the low and high fields. To explain the opposite
result a mechanism involving the kinetic energy interaction with the lower Tc

regions has been proposed [62]. Tc of oxygen deficient regions is approximately
60 K, and hence, the lower Tc regions are considered to be in the normal state
at 77.3 K. However, it seems to be reasonable to assume that the lower Tc re-
gions are in a weakly superconducting state due to the proximity effect, since
their size is expected to be sufficiently smaller than ξab, etc. Thus, the order
parameter around the lower Tc phase may be like the one shown by the solid
line in Fig. 8.48. If a magnetic flux penetrates this phase, the order parameter
will change as shown by the broken line. Since the coherence length of this
phase is longer than that of the surrounding region, the kinetic energy would
appreciably increase, and these phases would act as repulsive pinning centers
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Fig. 8.47. Variation in magnetic field dependence of critical current density of
Nd-123 superconductors at 77.3 K due to addition of Nd-422 phase [61]

Fig. 8.48. Spatial variation in the order parameter around the lower-Tc region [62].
The broken line represents the order parameter when a flux line penetrates the
lower-Tc region

against the flux lines. This is the same mechanism (kinetic energy interaction)
as that of artificial Nb pinning centers in superconducting Nb-Ti described in
Sect. 6.6. Thus, the disappearance of the peak effect in medium fields can be
explained by the interference between the negative pinning energy of 211(422)
phases and the positive pinning energy of the lower Tc regions.

The important thing to be explained in this case is the reason for the
increase of Jc without the above interference in the low and high field regions.
In the low field region, since the spacing between the individual flux lines
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is sufficiently long, it is proposed that direct interference is not significant.
That is, the individual pinning forces on flux lines are almost independent of
each other, and the resultant global pinning force tends to increase due to the
contribution of the two kinds of interaction. On the other hand, every flux
line cannot occupy its preferred position because of the very short spacing at
high fields. Hence, flux lines must penetrate the lower Tc regions, and the free
energy increases so long as the induced superconductivity is present. Then, the
superconductivity in the lower Tc phase and its surrounding region is proposed
to diminish to reduce the total free energy. The kinetic energy interactions
cease, and Jc is determined only by the condensation energy interactions from
211(422) phases. This explains the above experimental results. This argument
can also explain a commonly known experimental result that the occurrence of
the peak effect and the irreversibility field are independent. A superconductor
with a significant peak effect contains a large volume fraction of lower Tc

regions, and the superconductivity is considered to be appreciably degraded
at high fields, resulting in the deterioration of the irreversibility field.

It should be noted that the artificial Nb pins in Nb-Ti do not bring about
the peak effect by themselves as shown in Sect. 6.6. The peak effect in high-
temperature superconductors such as Y-123 originates from the order-disorder
transition of flux lines as mentioned in Subsect. 8.2.3. The reason why the peak
effect does not arise from artificial Nb pins in Nb-Ti is that there is no room
for the transition, since the pinning efficiency is already high enough. On the
other hand, 211 phase does not cause the peak effect, although any kind of
pinning center can do so. This is because the usual size of 211 phase particles
is so big that the pinning force does not change appreciably as a result of a
slight displacement of flux lines. Hence, this small change in the pinning force
does not bring about a further displacement of flux lines, and hence, this kind
of feedback does not develop to the point of a transition. In summary, for
the occurrence of the peak effect, the superconductor should be of a sufficient
size, the pinning centers should not be too strong, and their size should be
comparable to or smaller than the flux line spacing so that their force could
appreciably change after a small displacement of the flux lines.

From the above argument, the following can be said about applications
of Y-123 superconductors: those which contain lower Tc regions but not 211
phases are desirable for medium-field applications, and those which contain a
large amount of 211 phases but not lower Tc regions are desirable for high-field
applications.

Recently, RE-123 coated conductors deposited on various substrates have
been developed, and the critical current densities have been improved. There
are mainly two fabrication methods for substrates: the IBAD (Ion Beam As-
sisted Deposition) method in which a crystal-axis aligned intermediate layer
is deposited on a nonaligned metallic substrate and the RABiTS (Rolling As-
sisted Biaxially Textured Substrate) method in which an aligned substrate is
fabricated by rolling and heat treatment and an intermediate layer is deposited
on it. There are many deposition methods for the RE-123 layer such as PLD
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(Pulsed Laser Deposition) and TFA-MOD (TriFluoroAcetate-MetalOrganic
Deposition) in which a coating solution with trifluoroacetate is deposited on
a substrate and then heat treated, etc.

The magnetic field angle dependence of the critical current density [63] is
similar to that shown in Fig. 8.20 for a single crystal thin film. The critical
current density is large for a magnetic field in the a-b plane and small for
a magnetic field parallel to the c-axis. Over a wide range of magnetic field
angle, the critical current density obeys the theoretical prediction based on
the random pinning and the anisotropy of the superconducting electron mass.
The observed critical current density takes larger values, deviating from the
expectation for the field in the a-b plane or along the c-axis. The deviation
within a narrow range of field angle parallel to the a-b plane is attributed to the
pinning centers parallel to the a-b plane, and candidates are intrinsic pinning
centers, i.e., the block layers themselves, stacking faults and the surface of
specimens. The deviation within a relatively wide region of field angle along
the c-axis is considered to be caused by defects directed along the c-axis,
and candidates are twin planes and screw dislocations nucleated during the
deposition of thin films. In this case the cores of dislocations are considered to
be in the normal state due to the large strain. Hence, the pinning mechanism
of dislocations is not the elastic interaction described in Sect. 6.4 but the
condensation energy interaction with a strong force.

Figure 8.49 shows the thickness dependence of the critical current density
in self field at 77.3 K for optimized Y-123 thin films fabricated by various
methods [64]. The dotted line represents the dependence predicted by the

Fig. 8.49. Thickness dependence of critical current density in the self field at 77.3 K
of optimized Y-123 thin films [64]. The line represents the prediction of the two-
dimensional collective pinning mechanism where Jc ∝ d−1/2
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two-dimensional collective pinning mechanism for random point pins: Jc ∝
d−1/2. The experimental results are close to this prediction, and the agree-
ment seems to support the assumptions about the pinning mechanism. Similar
thickness dependence has been observed for Y-123 coated conductors fabri-
cated by the PLD process [65].

The two-dimensional collective pinning occurs when the layer thickness is
smaller than the pinning correlation length. Figure 8.50 shows the thickness
dependent critical current density at 0.1 T parallel to the c-axis for Y-123
coated tapes prepared by the PLD method on IBAD substrates [66]. It can be
seen that the critical current density varies with the thickness as predicted by
the collective pinning theory for the thickness below 1 µm. This dependence
does not change over a wide temperature range of 5 to 60 K. The change at
higher temperatures is a degradation due to the flux creep. The pinning cor-
relation length estimated from Eq. (8.15) with the observed critical current
density of the thickest specimen which seems to be in the three-dimensional
pinning regime is 0.12 µm at 5 K and increases to 0.37 µm at 60 K. This claims
that the flux pinning mechanism is not two-dimensional but three-dimensional
at 5 K. Hence, the degradation of the critical current density with increasing
thickness in PLD processed tapes is not caused by the collective pinning mech-
anism. This seems to be consistent with the result that the critical current
density is almost independent of the thickness over a wide range of thickness
up to 1.4 µm for TFA-MOD processed tapes [67]. In fact, it was shown that

Fig. 8.50. Dependence of magnetization critical current density on the thickness
of superconducting layer at 0.1 T parallel to the c-axis for PLD processed Y-123
coated tapes [66]. The straight lines show the relationship Jc ∝ d−1/2
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the degradation in thick PLD processed tapes is caused by a change in the
structure of superconducting layers such as nucleation of voids and growth of
a-axis oriented grains [68].

However, the critical current density at high fields is higher for a thicker
superconductor because of the higher irreversibility field [69, 70]. In addition,
although the effect of thickness seems not to be large at low temperatures, the
n value in the very low electric field region is found to be larger for a thicker
specimen [70]. Hence, thicker superconductors are advantageous for applica-
tions such as magnets used in a persistent current mode. On the other hand,
thinner superconductors are desirable for applications at low fields because of
the higher critical current density as well as the lower AC loss.

In these days the introduction of artificial pinning centers into Y-123 thin
films or Y-123 coated tapes is being attempted to improve the critical current
density at high fields. There are two approaches: one is an introduction of pin-
ning centers by making defects on a substrate, and the other is a precipitation
of different phase particles by changing the chemical composition. Matsumoto
et al. [71] deposited Y2O3 on single crystal SrTiO3 (100) substrates by the
PLD process such that small islands of about 25 nm in diameter are formed,
and then Y-123 layers were deposited. These islands are useful to nucleate
one-dimensional defects such as screw dislocations normal to the substrate.
In this case the critical current density in a magnetic field parallel to the c-axis
was dramatically enhanced as shown in Fig. 8.51.

Haugan et al. [72] alternately deposited Y-123 and Y-211 layers on single
crystal substrates using the PLD process and formed 211 particles of about
10 nm in size after heat treatment. These particles were precipitated in planes
parallel to the a-b plane in which 211 layers had existed originally, and the
critical current density in a magnetic field parallel to the a-b plane was signifi-
cantly improved. MacManus-Driscoll et al. [73] deposited Y-123 layers using a
target of Y-123 + 5 mol.% BaZrO3 on single crystal substrates or IBAD-MgO
substrates. In the films Ba2(Zr, Y)2O6 nanoparticles or nanorods of about
10 nm in diameter are found to be dispersed after heat treatment. These were
approximately parallel to the c-axis and the resultant critical current density
along this field direction was improved.

8.6.2 Bi-2223

Practical Bi-2223 superconductor is now mostly in the form of silver-sheathed
tapes fabricated by the PIT (Powder-In-Tube) method. The critical current
density of these tapes is much inferior to those of Y-123 thin films or coated
conductors. However, the engineering critical current density including sub-
strates or normal conducting matrix is not much different. In addition, tak-
ing account of the poor crystal axis alignment in these tapes, the weak link
property is not so serious as in Y-123. On the contrary, because of imperfect
alignment of the c-axis of individual grains, the current can flow along the
direction of the thickness of the tape as assumed in the railway-switch model,
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Fig. 8.51. Field angle dependence of critical current density of Y-123 thin films de-
posited on a single crystal SrTiO3 substrate and a substrate with Y2O3 nanoislands
[71]

[74] resulting in a solution of the percolation problem of the transport critical
current density to some extent.

The weak pinning property in comparison with Y-123 is the main fac-
tor which restricts applications at high temperatures to the low field region.
This property is due to the low condensation energy density resulting from
the two-dimensional nature of the superconductor. Hence, even for the same
defects the pinning energy and the resultant Jc0 are smaller than in Y-123.
In addition, the more serious effects of flux creep make the practical Jc even
smaller. Thus, improvement in the dimensionality of the superconductor is
more effective for increasing Jc than the introduction of defects. However, im-
provement of the pinning characteristics by oxygen doping, which is effective
in Bi-2212, has not yet been observed in Bi-2223 silver-sheathed tapes.

The temperature dependence of the condensation energy density is shown
in Fig. 8.52 for a Bi-2223 single crystal specimen #2 heat-treated at 350◦C
for 24 hours in an oxygen atmosphere of 1 atm. The condensation energy
density was estimated from the analysis of the pinning force of columnar de-
fects nucleated by heavy ion irradiation. Specimen #2 has a much higher
condensation energy density than specimen #1 without oxygen treatment. It
is found that, although the condensation energy density of specimen #2 is
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Fig. 8.52. Reduced temperature dependence of condensation energy density of
various high-temperature superconductors [75]

much inferior to that of most three-dimensional Y-123 at high temperatures,
it increases abruptly with decreasing temperature and exceeds that of Y-123
at 5 K. This shows a high potential of Bi-2223 superconductor for improve-
ment of the critical current density at low temperatures by introduction of
strong pinning centers. In fact, a surprisingly high critical current density of
2.8 × 1011 Am−2 was attained at 5 K and 0.1 T by introduction of columnar
defects of about 10 nm in diameter with the matching field of 1 T to the same
single crystal specimen [75]. For comparison the condensation energy density
of Bi-2212 is also shown in Fig. 8.52. This with the difference in the critical
temperature shows that Bi-2223 has the advantage of Bi-2212 for application
at middle and high temperature regions.

The n value of Bi-2223 tapes is low due to the weak links and the strong
effect of flux creep, as described in Subsect. 8.4.4. For this reason the pinning
force density has a long tail in the vicinity of the irreversibility field. Figure
8.53(a) shows the scaling law of the pinning force density in a magnetic field
along the c-axis of a single-core Bi-2223 tape determined by the offset method
for the compensation for the current sharing with the silver sheath [43]. Figure.
8.53(b) shows the theoretical results of the flux creep-flow model.

The anisotropy of the transport Jc of a Bi-2223 tape with respect to
the field angle is smaller than the anisotropy of the magnetization Jc [76].
These anisotropies are very much smaller than what is expected from the
anisotropy of the effective mass of the electrons. The smaller anisotropy in
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Fig. 8.53. Scaling law of the pinning force density of a single-core Bi-2223 tape in a
magnetic field parallel to the c-axis [43]: (a) experimental result and (b) theoretical
result of the flux creep-flow model
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the magnetization Jc compared to the intrinsic anisotropy is caused by the
imperfect alignment of the a-b plane of each grain and the small fraction of
grains with their a-b planes exactly parallel to the tape surface, which con-
tribute to a large intragrain critical current in a magnetic field parallel to the
tape, as discussed in Subsect. 8.5.3. The smaller anisotropy of the transport
Jc than that of the magnetization Jc is caused by the fact that such high in-
tragrain critical currents of isolated grains cannot contribute to the transport
Jc due to the percolation property of the superconducting current in the same
field direction.

Application of overpressure more than 20 MPa to tapes at the final heat
treatment is effective to densify the superconducting region by elimination of
voids. This leads to a significant enhancement of the critical current density
and even to an enhancement of the critical current in spite of the reduction in
the cross-sectional area of superconducting region. This process also brought
about enhancements of the irreversibility field and the n value [77]. These
improvements seem to be attributed to a sharpened distribution of Jc0 with
improvement of small Jc0 values. In practice, a better c-axis alignment is
obtained by this treatment and this seems to contribute to an elimination of
weak links of grains. The optimization of this overpressure process is desired
for further improvement of the critical current properties.

8.6.3 Bi-2212

Practical Bi-2212 superconductor is also in the form of silver-sheathed tapes
or round wires fabricated by the PIT method. The critical current density
is very low at high temperatures. This is caused by the weak pinning and
the strong effect of flux creep, both of which originate from the very two-
dimensional properties of Bi-2212. Hence, it seems to be quite difficult to
drastically improve the present properties at high temperatures, and a signif-
icant improvement of the irreversibility field cannot be expected, as predicted
by Eq. (8.40).

For improvement of the pinning properties, improvement of the dimension-
ality of the superconductor is most effective, similarly to the case of Bi-2223.
For this purpose oxygen doping and substitution at Bi sites by Pb atoms are
effective [78]. In fact, the critical current density is significantly improved by
these treatments, although the critical temperature is depressed because the
superconductor changes to an overdoped state. When a large amount of Pb
is introduced, a lamellar structure composed of regions with a high density of
Pb and those with a low density of Pb appears [79]. This structure is expected
to contribute to the strong flux pinning.

The characteristic feature of this superconductor is that the critical cur-
rent density and the irreversibility field increase dramatically with decreasing
temperature below the critical point. The temperature dependence of the irre-
versibility field of Bi-2212 single crystals with various anisotropy parameters is
shown in Fig. 8.54 [80]. The physical origin of such a temperature dependence
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Fig. 8.54. Temperature dependence of the irreversibility field of Bi-2212 single crys-
tals with different anisotropy parameters [80]. Numbers attached to each specimen
are anisotropy parameters

of the irreversibility field is not clear. This dependence is directly associated
with a significant increase in the condensation energy density with decreasing
temperature as shown in Fig. 8.52.

Figure 8.55 shows the temperature dependence of the thermodynamic crit-
ical field Hc estimated from the condensation energy density [81]. Hc de-
creases approximately linearly with increasing temperature and the charac-
teristic temperature T ∗ lower than Tc is obtained by the linear extrapolation
to zero. Hc decreases exponentially above T ∗, suggesting that the supercon-
ductivity in block layers may disappear there. The normalized temperature
T ∗/Tc is maximum at the optimally doped state and decreases as the condi-
tion deviates from the optimal one [81]. Such a degradation is speculated to
be caused by increasing chemical inhomogeneity in the a-b plane.

Figure 8.56 shows the relationship between the condensation energy den-
sity and the anisotropy parameter at 5 K [81]. It is found that the super-
conductivity in block layers is improved and the condensation energy density
increases as γa decreases. Hence, the introduction of strong pinning forces
is possible in the low temperature region for such Bi-2212 superconductor
with improved anisotropy. In practice, the high critical current density of
1.7 × 1011 Am−2 was attained at 5 K and 0.1 T in an overdoped Bi-2212
single crystal irradiated by a low dose of heavy ions with a matching field of
1.0 T [81]. Thus, application of this superconductor at low temperatures and
at high fields is expected to take advantage of this property.
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Fig. 8.55. Temperature dependence of the thermodynamic critical field of Bi-2212
single crystals with different anisotropy parameters [81]

Fig. 8.56. Relationship between condensation energy density at 5 K and anisotropy
parameter for Bi-2212 superconductors [81]
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Exercises

8.1. Assume a large normal precipitate like a 211 phase particle. Argue the
anisotropy of the pinning force of a wide interface between the super-
conducting and normal regions by considering the cases of magnetic field
parallel to the a- and c-axes. It is assumed that the current flows along
the b-axis and the geometry of the precipitate is isotropic.

8.2. It is assumed that the scaling law of the pinning force density of Eqs. (7.2)
and (7.3) is satisfied at sufficiently low temperatures and that the effective
mass model of Eq. (8.12) holds correct for the upper critical field. Show
that the critical current density in a magnetic field of arbitrary direction
is determined almost entirely by the field component parallel to the c-axis
for a superconductor with Hab

c2 � Hc
c2 due to the large anisotropy.

8.3. Derive Eq. (8.18) from Eq. (8.17). (Hint : Expand the exponential term
in Eq. (8.17) as ex � 1 − x.)

8.4. Derive Eq. (8.41).
8.5. Estimate the irreversibility field along the c-axis at 77.3 K for an Y-

123 superconductor which contains a volume fraction of 20% 211 phase
particles with a mean diameter of 2.0 µm. For estimation of Jc0, use

Jc0B =
πNpξabD

2µ0H
2
c

4af

(
1 − B

µ0Hc
c2

)2

(8.42)

of the saturation-type characteristic instead of Eq. (7.83b) because of
the low efficiency of pinning. Use Eqs. (7.12b), (7.93) and (8.42) for es-
timation of g2

e . Use the values of Tc and Hc
c2(0) in Table 8.3 with the

assumptions of µ0Hc(0) = 1.0 T and the temperature dependence of
[1 − (T/Tc)2] for these critical fields. The logarithmic term in Eq. (7.96)
is assumed to be 14.
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MgB2

9.1 Superconducting Properties

MgB2 is a new metallic superconductor with a critical temperature of about
39 K that was discovered in 2001. This superconductor has superior proper-
ties, such as a critical temperature significantly higher than usual for metallic
superconductors and less serious issues of anisotropy and weak links at grain
boundaries, which are inevitable in high-temperature superconductors. For
these reasons, not only fundamental research in physical properties, but also
applied research, has been enthusiastically conducted on this superconductor,
and important applications are expected, especially around liquid hydrogen
temperature. Thus, wires, including multifilamentary ones, and thin films have
been fabricated, and investigations have been intensively carried out on their
pinning properties, including the irreversibility field.

This superconductor has a layered crystal structure composed of parallel
alternate hexagonal close-packed Mg layer and honeycomb B layer. Hence, the
electromagnetic properties show an anisotropy due to the crystal structure,
and the coherence length in the a-b plane is longer, resulting in a lower value
of the upper critical field for the magnetic field direction along the c-axis
normal to the plane, as shown in Fig. 9.1 [1]. Its temperature dependence
shows a pronounced upward curvature, which can be seen in the figure. This
is caused by the two-gap superconductivity in the π and the σ bands of boron
with different critical temperatures. The anisotropy of the upper critical field
is shown in the inset. It can be seen that the anisotropy factor is about 2
at the critical temperature and increases with decreasing temperature. The
coherence lengths estimated from the upper critical fields are approximately
ξc(0) = 9.6 nm and ξab(0) = 2.0 nm. These are considerably longer than
those in high-temperature superconductors and hence, flux pinning properties
similar to those of the usual metallic superconductors are expected.

Figure 9.2 shows the temperature dependence of various characteristic
magnetic fields for a polycrystalline specimen [2]. The values of the thermo-
dynamic critical field Hc below 25 K are estimated from the values of the
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Fig. 9.1. Temperature dependence of upper critical field of MgB2 single crystal [1].
Inset shows the anisotropy of the upper critical field, γa = Hab

c2 /Hc
c2

Fig. 9.2. Various critical fields and irreversibility field in MgB2 polycrystalline spec-
imen [2]. The values of the thermodynamic critical field below 25 K (open circles) are
estimated using extrapolated values of the upper critical field to the low temperature
region



9.2 Flux Pinning Properties 415

Fig. 9.3. Ginzburg-Landau parameter in MgB2 polycrystalline specimen [2]

upper critical field Hc2 extrapolated from the high temperature region and
the observed lower critical field Hc1. Thus, the values of Hc1 and Hc2 are val-
ues averaged with respect to the anisotropy. Hc at 10 K is about 0.5 T and is
similar to that of Nb3Sn at 4.2 K. The Ginzburg-Landau parameter, κ, shown
in Fig. 9.3 is about 20, independently of the temperature [2]. The coherence
length in polycrystalline bulk specimens, wires or thin films can be shortened,
resulting in a significant enhancement of the upper critical field from values in
single crystals, by choosing a suitable annealing temperature or by addition of
carbon atoms. As can be seen from Fig. 9.2, the irreversibility field is remark-
ably lower than the upper critical field in MgB2 superconductor. However,
the difference is much smaller than in high-temperatures superconductors.
Hence, MgB2 has an irreversible property intermediate between metallic and
high-temperature superconductors. The main differences from metallic super-
conductors are higher temperatures for applications and weaker flux pinning
strengths at the present stage.

9.2 Flux Pinning Properties

9.2.1 Wires and Bulk Materials

With respect to the MgB2 wires being fabricated now, the powder in tube
(PIT) process is common, in which a metallic sheath such as iron is packed
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with powders and then is drawn. There are two methods: one is an in situ
method in which mixed powders of magnesium and boron or their compounds
are used with heat-treatment for reaction after the drawing, and the other is
an ex situ method in which reacted MgB2 powders are used. The in situ wires
usually have superior critical current density in high magnetic fields.

MgB2 superconductor in wires is usually polycrystalline, and it is consid-
ered that there are no issues of weak links in grain boundaries to influence the
transport properties as with metallic superconductors. Thus, the dominant
pinning centers are considered to be grain boundaries. In fact, there exists
a strong correlation between the critical current density and the grain size
over a wide range of grain sizes from wires to thin film, as shown in Fig. 9.4
[3]. This shows that the above hypothesis is correct. Very high critical current
densities in thin films in a self field come from the very high density of pinning
centers due to small grain sizes. However, the critical current density at 4.2
K and 5 T is only of the order of 1× 108 Am−2, even for the small grain size
of dg = 0.2 µm, which is 2–3% of the critical current density of Nb3Sn under
the same conditions. This fact may suggest that the flux pinning strength of
grain boundaries is very weak in MgB2.

The reason for the low critical current density in present MgB2 supercon-
ductors can be found in the low density of MgB2 phase, which is caused by

Fig. 9.4. Relationship between the critical current density at 4.2 K and 5 T and the
grain size for MgB2 [3]
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the low packing density of powders and also by the reduction in volume by
the chemical reaction in the in situ fabrication process. Nucleation of MgO
grains or thin MgO layers at grain boundaries is also a dominant factor in low
critical current densities. The grain connectivity is evaluated from the normal
state resistivity based on the Rowell model [4]. Yamamoto [5] estimated the
connectivity K and the proportion of grain boundaries covered with insulating
oxide layers α using the cubic bond-percolation model for various specimens
prepared under the same conditions, but with different packing factor P . It
was found from the analysis that α is about 0.14.

Then, the grain connectivity, which represents the rate of reduction of
the critical current density from a perfect condition, can be estimated as a
function of P in terms of the bond-percolation model. The material is ap-
proximated by a cubic bond system of grains, each of which has bonds to six
adjacent grains. If the number of bonds from one grain is represented by z, the
threshold packing density Pc is given by 2/z, hence we have Pc = 1/3. Since
the effective packing factor for the transport current is given by (1−α)P , the
grain connectivity is given by

K =
(1 − α)P − Pc

1 − Pc
. (9.1)

This result reveals that in the case of P = 0.5 as in the usual in situ processed
wires, the grain connectivity is estimated as 0.15. This means that the critical
current density is reduced below 1/ 6 of the intrinsic value due to the porosity
and oxide layers. Thus, the bad influence of oxide layers is remarkable, espe-
cially for materials with poor packing density such as in situ wires. For further
improvement of the critical current density, not only the improvement of the
packing density, but also the development of a new process which suppresses
the formation of thin oxide layers is necessary. For this purpose it has been
reported that removal of B2O3 by purification of B powders is effective [6].
In particular, the removal of adhesive B2O3 from the surface of B powders is
important.

For the improvement of the critical current density it is also important
to increase the packing density of MgB2 as shown above. The ex situ process
seems to be suitable for this purpose. In fact, it was proved that a high criti-
cal current density could be achieved at high fields using this method [7]. In
this case special care was taken with the MgB2 powders sealed in a stain-
less steel sheath: a tape was fabricated from MgH2 and amorphous boron in
the usual in situ PIT process, and the powdered MgB2 in the core was used.
Easy production of clean MgB2 powders will be a key issue for this process in
the future. It was also reported [8] that application of hot pressing to an in
situ wire was effective for enhancing the critical current density at low fields
by reduction of voids in the superconducting region. On the other hand, the
PICT (Powder In Closed Tube) process was proposed to produce bulk super-
conductors with a high volume fraction with the aid of a high vapor pressure
of Mg, and a high critical current density was reported [9]. In addition, it was
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also reported that very high density MgB2 could be synthesized by a diffusion
process between an Fe-Mg alloy substrate and a B sheet [10]. Furthermore, a
packing factor close to 100% was achieved by a diffusion process for a mix-
ture of commercial MgB2 powder and B powder using the PICT method [11].
Addition of In or Sn was also proposed to fill voids in order to improve the
connectivity among grains [12].

Another method for improvement is the strengthening of flux pinning:
it is known that addition of SiC is effective. Figure 9.5 shows an example
[13]. Added C atoms occupy B sites, and the honeycomb structure of the B
atoms is distorted. As a result the unit length of the a-axis is reduced by the
addition, while that of the c-axis is not changed [14]. As can be seen from
Fig. 9.5, C-addition is effective for the improvement of the critical current

Fig. 9.5. Improvement of critical current density by addition of 10wt% fine SiC
powders to MgB2 [13]. Solid symbols show the results for the SiC added specimen
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Fig. 9.6. Relationship between the irreversibility field at 20 K in MgB2 specimens
with different amounts of SiC addition and different temperatures for the 1 h sin-
tering [15]

density, especially at high fields. It can be concluded that this results from
the improvement of the irreversibility field due to the enhanced upper critical
field, which is brought about by reduction in the coherence length due to the
distortion of the crystal structure by C substitution. Figure 9.6 shows the
influence on the irreversibility field at 20 K from the amount of SiC addition
and the temperature of a 1 hr heat treatment [15]. For pure specimens the
irreversibility field is decreased significantly by a the heat treatment at high
temperature. This can be attributed to the reduction in the upper critical
field. On the other hand, the irreversibility field is likely to increase with the
heat treatment temperature in the SiC doped material. This is because the
critical temperature is improved without reduction in the upper critical field
by the sintering at high temperatures.

Figure 9.7 represents the relationship between the full-width half-maximum
(FWHM) of the (110) X ray diffraction peaks and the irreversibility field at 20
K for pure specimens and specimens doped with B4C or SiC [16]. This shows
that the irreversibility field increases with FWHM. The crystal structure is
deformed by the C addition, and the deformation causes the change in the
pinning property. This change is ascribed partly to the enhancement of the
upper critical field and may also be partly due to the enhancement of the flux
pinning strength of grain boundaries by the electron scattering mechanism
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Fig. 9.7. Relationship between FWHM of (110) X ray diffraction peaks and the
irreversibility field at 20K for pure specimens and specimens doped with B4C or
SiC [16]

(see Subsect. 6.3.2). The latter possibility will be clarified by an analysis of
experimental results later.

Not only SiC addition but also addition of carbon nanotubes [17], B4C
[18] or aromatic hydrocarbons [19] is also effective for the improvement of the
critical current properties at high magnetic fields. Among them SiC is usually
best, since the substitution rate at the B sites is highest for SiC. In the future
it will be necessary to seek the optimum amount of C substitution so that the
impurity parameter takes a value near 1 in order to enhance the flux pinning
strength of the grain boundaries.

Recently it has been found that the irreversibility field is also increased
by synthesis at low temperatures such as 600◦C [20]. In fact, a relationship
between the irreversibility field and FWHM of XRD peaks, similar to that
shown in Fig. 9.7, is obtained also for pure specimens synthesized at differ-
ent temperatures [21]. However, the distortion which causes the increase in
FWHM is not that of the honeycomb structure of B due to the C substitution
but the distortion due to fine grain structures. This structure is also expected
to directly contribute to the improvement of the irreversibility field through
the increase in the number density of pinning centers. The merit of the low
temperature synthesis is that it does not cause deterioration of the critical
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Table 9.1. Specifications of specimens, and pinning and superconducting parame-
ters of specimens which fit the experiments [22]

Specimen 1 2 3 4
MgB2 MgB2 MgB1.5(B4C)0.1 MgB1.8(SiC)0.2

Heat treat. 950◦C×12h 600◦C×24h 850◦C× 3h 850◦C× 3h
Tc (K) 38.6 38.2 35.4 35.5

Am(109) 1.9 3.5 3.1 2.7
m′ 1.4 1.7 1.6 1.5

m1/m2 2.4/1.6 2.0/1.3 1.4/1.1 1.3/1.1
γ 0.3 0.3 0.4 0.4
δ 2 2 2 2
σ2 0.0002 0.0008 0.0001 0.0009
g2 1.0–2.8 1.0–2.8 1.0–1.2 1.0–1.7

µ0Hc2(0) (T) 12 15 20 25

temperature. Hence, this procedure is more advantageous than C-addition for
applications at temperatures higher than 20 K.

Here the result of quantitative investigation is shown for the effect of C-
addition and low temperature synthesis on the flux pinning properties. Spec-
imen 1 was C-free and was synthesized at 950◦C for 12 h. Specimen 2 was
also C-free but was synthesized at 600◦C for 24 h. Specimens 3 and 4 were
doped with SiC and B4C, respectively, and were heat treated at 850◦C for 3
h. These specimens were prepared by the PICT method. The specifications of
the specimens are listed in Table 9.1. It can be seen that the critical tempera-
ture is above 38 K for pure specimens 1 and 2, and is degraded by about 3 K
due to the C-addition. DC magnetization measurements were carried out on
these specimens, and the critical current density was estimated. The obtained
results are shown in Fig. 9.8 [22]. It was found that specimen 2 synthesized at
low temperature has a considerably higher critical current density at low fields
than specimen 1. On the other hand, the critical current density at high fields
is significantly improved for specimens 3 and 4 with C-addition. Specimen 4
doped with B4C shows a very high critical current density at low tempera-
tures. The critical current densities of all the specimens at T/Tc = 0.2 and
0.6 are compared in Fig. 9.9 to clarify the characteristics of each specimen.

The scaling behavior of the pinning force density of each specimen is shown
in Fig. 9.10, where the solid line represents the relationship:

Fp

Fpmax
∝ b

1/2
i (1 − bi)2 , (9.2)

where bi = B/µ0Hi is the magnetic field normalized by the irreversibility
field and Fpmax is the maximum pinning force density. The values of the
irreversibility field at low temperatures were estimated from the extrapolation
of the relationship of (JcB

1−x)1/2 vs. B, which was linearized by adjusting
the value of x. It is found that this relationship fits well with the result for
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Fig. 9.8. Dependencies of each MgB2 specimen on temperature and magnetic field:
(a) specimen 1, (b) specimen 2 synthesized at low temperature, (c) specimen 3
with B4C addition and (d) specimen 4 with SiC addition [22]. Solid lines show the
theoretical predictions of the flux creep-flow model in the high temperature region

specimen 1, which was synthesized at high temperature, over the entire range
of measurement temperatures and with the results for other specimens in the
high temperature region.

However, the normalized magnetic field at which the pinning force den-
sity is at a maximum is appreciably smaller than 0.2, which is predicted by
Eq. (9.2), suggesting a different pinning mechanism in the low temperature
region for the three specimens other than the specimen synthesized at high
temperature.

Figure 9.11 shows the temperature dependence of the irreversibility field
for the four specimens. The irreversibility field is significantly enhanced in
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Fig. 9.9. Critical current density of each specimen at (a) T/Tc = 0.2 and (b)
T/Tc = 0.6 [22]
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Fig. 9.10. Scaling law of the pinning force density of each MgB2 specimen: (a)
specimen 1, (b) specimen 2 synthesized at low temperature, (c) specimen 3 with
B4C addition and (d) specimen 4 with SiC addition [22]. Solid line shows the scaling
law of Eq. (9.2)

specimens 3 and 4 with C-addition and is considerably increased also in spec-
imen 2, which was synthesized at low temperature. The critical current den-
sity in the high field region is accompanied by such an improvement in the
irreversibility field. The temperature dependence of the irreversibility field is
almost linear for all the specimens at high temperatures. At low tempera-
tures, although the irreversibility field is somewhat saturated with decreasing
temperature in the specimen synthesized at high temperature, it increases re-
markably in the C-added specimens. The property of the specimen synthesized
at low temperature is intermediate between them.
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Fig. 9.11. Irreversibility field of each MgB2 specimen [22]. Solid lines show the
theoretical predictions of the flux creep-flow model

The relationship between Fpmax and Hi, i.e., the temperature dependence
of the pinning force density, is shown in Fig. 9.12. In the high temperature re-
gion Fpmax is proportional to the second power of Hi for all the specimens. On
the other hand, the dependence of Fpmax on Hi is weaker at low temperatures,
and this tendency is significant in the specimens with C-addition.

The shift of the maximum of the pinning force density to a low field may
be explained by a new contribution from point defects, etc. at low fields. If
so, however, Fpmax must increase more in the low field region, resulting in a
contradiction with the experiments shown in Fig. 9.11. If the slower rate of
increase of Fpmax in the low temperature region is caused by weak links at
grain boundaries, as in Y-123 superconductor, only the high critical current
density at low fields is limited, which would result in the shift of Fpmax to a
higher field.

Another reason for the shift of Fpmax to a lower field may be an extra-
ordinary increase in the irreversibility field at low fields, as indicated by the
result in Fig. 9.11. When the superconductor becomes extremely dirty, the up-
per critical field is significantly enhanced at low temperatures because of the
two gap superconductivity, resulting in the enhancement of the irreversibility
field at low temperatures. On the other hand, the temperature dependence of
the thermodynamic critical field, on which the flux pinning property directly
depends, would not be so much different from that in fairly clean supercon-
ductors. Such a difference in the temperature dependence between the upper
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Fig. 9.12. Relationship between the maximum pinning force density and the irre-
versibility field [22]. Lines are guides for the eye

critical field and the thermodynamic critical field may be the reason for the
change in the scaling behavior of the pinning force density at low tempera-
tures.

For a quantitative discussion on the above experimental results, the pin-
ning parameters which match the results in the temperature region above 18 K
in Figs. 9.8 and 9.11 were estimated using the flux creep-flow model. As with
the scaling law of Jc0 which represents the flux pinning strength, the following
formula was used:

Jc0(B, T ) = Af(t)m′
Bγ−1

(
1 − B

µ0Hc2

)δ

, (9.3)

where
Hc2(T ) = Hc2(0)f(t) = Hc2(0)(1 − tm1)m2 (9.4)

with t = T/Tc instead of Eqs. (8.27) and (1.2), respectively. The temperature
dependence of Eq. (9.4) is adopted here, since this explains the experimental
results in a wide temperature regime up to Tc, as in Fig. 9.13. Equation (8.31)
is assumed for the statistical distribution of A. The E-J curve is calculated
using Eq. (8.36), and the critical current density is estimated using the electric
field criterion, E = 1 × 10−8 Vm−1, corresponding to the DC magnetization
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Fig. 9.13. Temperature dependence of upper critical field for (a) specimen 1 and
(b) specimen 3. The solid lines show results calculated from Eq. (9.4)

experiments. The irreversibility field was determined with the same criterion
as the experiments. The pinning parameters are determined so as to get good
agreement with experiment. The parameters used are listed in Table 9.1.

The obtained theoretical critical current densities in the high temperature
region are shown by solid lines in Fig. 9.8 [22]. Although the theoretical results
show very high critical current density deviating from the experiments at
low fields due to small values of γ in the modified Irie-Yamafuji model, the
agreement with the experiments is good. Figure 9.11 shows that the agreement
is also good for the irreversibility field. Thus, it can be concluded that the
parameters listed in Table 9.1 exactly represent the practical situation of each
specimen.

The following conclusions can be obtained from the parameters in
Table 9.1.

• In specimen 2 synthesized at low temperature Am expressing the flux pin-
ning strength is increased most, and Hc2 is also considerably increased.

• In both the specimens with C-addition Am is somewhat increased, and
Hc2 is significantly increased.

The very large value of Am is the reason for the high Jc at low fields in
specimen 2. An increase in the effective number density of pins caused by
the fine crystalline structure seems to result in the large Am. In addition,
the enhancement of the flux pinning strength at grain boundaries due to the
shortened coherence length, which can be expected from the enhanced upper
critical field due to the electron scattering, is also considered to contribute to
the increase in Am. The improvement of the high field properties is attributed
to the increases in Am and Hc2.
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The significant increase in Hc2 in specimens 3 and 4 is attributed to the
reduction in the coherence length due to the electron scattering by boron sites
where there has been carbon substitution. This leads to a significant improve-
ment of the high field properties. The enhancement of Am is also obtained
in these specimens, and this explains the improvement of Jc at low fields.
The increase in Am seems to be attributed to the enhancement of the flux
pinning strength at grain boundaries. The improvement of the irreversibility
field, which influences the pinning properties at high fields, can be attributed
to the enhancement of the flux pinning strength Am and of the upper critical
field Hc2.

According to the flux creep theory the irreversibility field Hi is proportional
to A

1/3
m (see Eq. (8.40)), when Hi is sufficiently lower than Hc2. If specimens

1 and 2 are compared, the increase in Am by a factor of 1.8 is expected to
contribute to the increase in Hi by a factor of 1.2. The observed enhancement
factor of Hi at T/Tc = 0.5 is about 1.73. Hence, it can be said that the increase
in Hc2 has a larger effect than the increase in Am. The increase in Hi in the
other two specimens results mostly from the increase in Hc2.

On the other hand, the pinning properties at low fields are mostly deter-
mined by Am. From the comparison between the low temperature synthesis
and carbon addition it can be said that the reduction in the grain size is more
effective than the reduction in the coherence length for increasing the flux
pinning strength.

There are some differences in the pinning properties between specimens
3 and 4. For example, the properties at high fields are better in specimen 4
with SiC, while specimen 3 with B4C has better properties at low fields and
at low temperatures. However, the reason is not clear.

9.2.2 Thin Films

There are mainly two methods for fabrication of MgB2 thin films: an indirect
method in which magnesium is diffused into a deposited thin film by a heat
treatment and a direct method to fabricate the compound without heat treat-
ment. Using the former method, the critical temperature can be increased to
a value comparable to bulk specimens or single crystals by a heat treatment
at high temperatures. However, the upper critical field is not high. On the
other hand, using the latter method, whereas the critical temperature is fairly
low, the upper critical field can be significantly increased. Hence, the latter
method is advantageous for applications at high fields. This is attributed to
a short coherence length due to the electron scattering by boundaries of fine
grains in a thin film. The reduction in the critical temperature is also caused
by the strain in the crystalline structure of fine grains.

The upper critical field and irreversibility field parallel to the c-axis are
shown in Fig. 9.14 for thin films fabricated by the two methods [23]. One of
them is an ex situ thin film, which was fabricated by sealing a boron precursor
film wrapped in Ta foil with Mg pellets and Ar gas in a stainless steel tube
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Fig. 9.14. Upper critical field and irreversibility field parallel to the c-axis of two
kinds of MgB2 thin film [23]

and then heat treating it at 900◦C for 30 min, and the other is an in situ
thin film, which was directly deposited from a MgB2 target using a pulsed
laser technique and then heat treated at 685◦C for 12 min. Although the
critical temperature is higher, the enhancement of the upper critical field and
the irreversibility field with decreasing temperature is not significant for the
former thin film. The enhancement of these fields in the latter thin film is
significant.

The critical current density in thin films is generally higher than those in
bulk specimens or wires. This is owing to the stronger flux pinning strength
of grain boundaries at higher density due to the small size of grains. Such a
high density of grain boundaries also contributes to the enhancement of the
upper critical field, and this results in the better performance of Jc at high
fields through the enhancement of the irreversibility field.

Figure 9.15 shows the critical current density for two thin films prepared by
the different methods [23], the upper critical fields of which have been shown
in Fig. 9.14. The critical current densities of the two films at low fields are
approximately the same and are very high. Hence, the flux pinning strength
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Fig. 9.15. Critical current density in the normal field for ex situ thin film heat
treated at 900◦C (solid symbols) and in situ thin film heat treated at 650◦C (open
symbols) [23], which are shown in Fig. 9.14

seems to be comparable in both. However, the value of the ex situ thin film is
lower at high fields due to the lower irreversibility field. This can be attributed
to the lower value of the upper critical field. The high critical current density
of 2.5 × 1011 Am−2 was attained for a similar ex situ thin film in self field at
5 K by Kwang et al. [24]. However, Jc quickly decreased with increasing field
and was about 1 × 1010 Am−2 at 4.5 T.

Such a difference in the magnetic field dependence of the critical current
density between ex situ thin films made at high temperatures and in situ thin
films made at low temperatures is fundamentally the same as the difference
between bulk specimens made at high temperatures and those made at low
temperatures, which have been discussed in Subsect. 9.2.1.

9.3 Possibility of Improvements in the Future

Here we shall discuss the possibility of improvement of MgB2 superconduc-
tor in the future. At first it is necessary to remove oxide layers that block
the transport current. At the same time, densification of the superconducting
phase is also important. For this purpose the PICT method and the diffusion
method seem to be useful. For practical applications the long wire fabrication
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Table 9.2. Comparison of the value of (µ0Hc)
2ξ among bulk MgB2, Nb-Ti and

Nb3Sn (the data on MgB2 are from [2]).

MgB2 Nb-Ti Nb3Sn
10 K 20 K 4.2 K 4.2 K

µ0Hc (T) 0.48 0.27 0.20 0.50
ξ (nm) 6.04 6.81 5.70 3.90

(µ0Hc)
2ξ (T2nm) 1.39 0.50 0.23 0.98

with ex situ method seems to be promising, although it needs further improve-
ment. These problems will hopefully be resolved by progress in metallurgical
technology in the future.

Then, the question is whether or not sufficiently strong flux pinning
strength will be achieved in MgB2. This entirely depends on the intrinsic su-
perconducting properties of MgB2. It can be seen from Eqs. (6.7) and (6.25)
that the pinning force is proportional to (µ0Hc)2ξ for the cases of pinning
by normal precipitates and grain boundaries. Hence, from a comparison of
this quantity the potential of the superconductor for applications can be esti-
mated. The value of this quantity is compared between MgB2 at 10 and 20 K,
in which case the mean value of the bulk material is given, and Nb-Ti and
Nb3Sn at 4.2 K in Table 9.2. This shows that MgB2 has an excellent property;
its value at 10 K exceeds considerably the value of Nb3Sn at 4.2 K and its value
even at 20 K exceeds the value of Nb-Ti at 4.2 K. Hence, it can be concluded
that MgB2 is a superconducting material which has a sufficient potential for
application and that the critical current density can be significantly improved
in the future.

For the improvement of the critical current density it is necessary to en-
hance the flux pinning strength as discussed in Subsect. 9.2.1, and an increase
in the area of grain boundaries achieved by reducing the grain size is effective.
Low temperature synthesis will be useful for this purpose. Another important
point for the improvement is enhancement of the upper critical field. This
leads to the improvement of high field performance through the enhancement
of the irreversibility field. This also contributes to strengthening the pinning
force at grain boundaries by reducing the coherence length, as discussed in
Subsect. 9.2.1. Addition of carbon is effective. It has been made clear recently
that suitable addition of nonmagnetic impurities can significantly enhance the
upper critical field in bulk and thin film superconductors [25, 26]. Figure 9.16
represents the upper critical field along the c-axis for c-axis-oriented thin films
prepared by various methods [25]. It is found that the upper critical field is
high for a thin film with a high normal resistivity, and its value reaches about
22 T even at 10 K. The upper critical field normal to the c-axis is about 1.8
times as high as the value along the c-axis in the medium temperature region.

From the above argument it is concluded that the addition of impurities
and low temperature synthesis are useful for the improvement of the proper-
ties. Hence, it is necessary from now on to find out the best conditions for the
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Fig. 9.16. Upper critical field (solid symbols) and irreversibility field (open symbols)
along the c-axis for c-axis-oriented thin films [25]. The solid line shows the theoretical
prediction in the dirty limit for a superconductor with two energy gaps

kind and amount of impurities to add and the synthesis temperature under
the combined situation of these techniques. Mechanical plastic deformation
may also be useful as a practical technique to introduce pinning centers into
long wire.

Furthermore, if fine normal precipitates like α-Ti in Nb-Ti can be intro-
duced as pinning centers, a high pinning efficiency as in Nb-Ti will be attained.
In this case flux pinning properties which surpass Nb3Sn and Nb-Ti will be
obtained.

Exercises

9.1. Calculate the virtual critical current density Jc0 at 10 K and at 5 T in
bulk MgB2 superconductor of grain size dg = 0.2 µm. For simplicity grain
boundaries are assumed to be parallel to flux lines and perpendicular to
the Lorentz force. The impurity parameter is assumed as αi = 0.5 with
the elementary pinning force of a grain boundary: f ′

p � 0.14µ0H
2
c ξ0 from

Fig. 6.12. The pinning force density is given by

Fp0 = Jc0B =
f ′
p

afdg

(
1 − B

µ0Hc2

)2
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taking into account the correction factor at high fields. Use the value in
Table 9.2 for the thermodynamic critical field and µ0Hc2(0) = 25.0 T
for a SiC-doped specimen in Table 9.1. Use Goodman’s formula (6.23)
for the estimation of the BCS coherence length. Assume Eq. (9.4) with
m1 = m2 = 1 for the temperature dependence of each critical field with
Tc = 35.5 K.

9.2. Estimate the irreversibility field at 10 K based on the conditions assumed
in Exercise 9.1. It is not necessary to assume a statistical distribution of
the flux pinning strength. Assume g2 = 1.0 and 14 for the logarithmic
term in Eq. (8.29).
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A

Appendix

A.1 Description of Equilibrium State

Here we shall derive the force balance equation on flux lines in a usual trans-
verse magnetic field after the method of Josephson [1] and also discuss the
problem in a longitudinal magnetic field.

It is assumed that the magnetic flux density is slightly varied by δB in
a superconductor, and the corresponding variation in the vector potential is
represented by δA. Thus, we have the relationship ∇ × δA = δB. The cor-
responding displacement of flux lines is denoted by δu. Josephson postulated
that δA could be written as

δA = δu × B (A.1)

by choosing a suitable gauge. It should be noted that this equation reduces to
Eq. (2.17) by differentiating with respect to time. In fact, Eq. (2.17) is satisfied
in the transverse field geometry where the magnetic field and the current are
perpendicular to each other and there is no problem in the above postulation.
However, the postulation of Eq. (A.1) is questionable in the longitudinal field
geometry where the magnetic field is parallel to the current, since Eq. (2.17)
is not satisfied. This point will be discussed later.

Firstly, Josephson treated an ideal pin-free superconductor. The equilib-
rium state in this case can be expressed as that in which the work done by an
external source is equal to the variation in the free energy inside the super-
conductor. This is identical to the description that there is no energy loss. If
the current density of the external source is represented by Je, the work done
by this current during the variation is given by

δW =
∫

Je · δAdV , (A.2)

where the integral is taken over the entire space. On the other hand, the
variation in the free energy is written as
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δF =
∫

H · δBdV =
∫

out

∇× H · δAdV +
∫

in

∇× H · δAdV . (A.3)

In the above a partial integration is done and the surface integral is dis-
regarded. The first and second integrals are taken outside and inside the
superconductor, respectively. The condition of δW = δF is satisfied in the
equilibrium state. If we note here that ∇ × H = Je outside the supercon-
ductor and Je = 0 and ∇ × H = J inside the superconductor, the above
condition reduces to

−
∫

in

J · δAdV = 0 . (A.4)

The left hand side is the energy loss in the superconductor. If Eq. (A.1) is
used for δA, Eq. (A.4) is written as

−
∫

in

J · (δu × B)dV =
∫

in

δu · (J × B)dV = 0 . (A.5)

Since this is fulfilled for arbitrary δu, the equation describing the equilibrium
state in the pin-free superconductor is obtained as

J × B = 0 . (A.6)

In the case where the superconductor contains pins, the equilibrium con-
dition is given by

δW = δF + δWp , (A.7)

where δWp is the pinning energy loss. If the pinning force density is denoted by
F p, the pinning energy loss density is given by −F p · δu. Thus, the equilibrium
condition reduces to ∫

in

δu · (J × B − F p)dV = 0 . (A.8)

Since δu is arbitrary, the force balance equation is obtained:

J × B − F p = 0 . (A.9)

When the magnetic field and the current are parallel to each other,
Eq. (A.6) suggests that a force-free current parallel to the flux lines can flow
stably even in a pin-free superconductor. However, it should be noted that
Eqs. (2.17) and (A.1) are not satisfied in the above geometry. Thus, we have

δA = δu × B + ∇Ξ (A.10)

from Eq. (4.48). In the above Ξ̇ = Ψ. Hence, the equilibrium condition for the
pin-free superconductor is given by

−
∫

in

J · (δu × B + ∇Ξ)dV = 0 . (A.11)
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Ξ is generally a function of δu, and hence, we have [2]

J = 0 (A.12)

so that Eq. (A.11) is satisfied for arbitrary δu.
The case of simple rotation of flux lines treated in Exercise 4.3 is considered

here for an example. When J �= 0, the kernel in the integral in Eq. (A.11)
leads to (B2δθ/µ0) sin θ with δθ denoting the variation in the surface angle of
magnetic field and it can be seen that Eq. (A.11) is not satisfied. This equation
is satisfied only when αf = 0, i.e., when Eq. (A.12) is satisfied. Hence, it can
be concluded that the force-free state in a longitudinal magnetic field cannot
stably exist without the flux pinning effect.

In the cases of the usual transverse magnetic field or a tilted magnetic
field where J and B are not parallel to each other, Eq. (A.6) is identical with
Eq. (A.12). Therefore, the equation which generally describes the equilibrium
state in a pin-free superconductor is only Eq. (A.12).

A.2 Magnetic Properties of a Small Superconductor

The magnetic properties are briefly discussed for a small superconductor, the
size of which is comparable to or only slightly larger than the penetration
depth λ. For simplicity the case is treated where a magnetic field He is applied
parallel to a sufficiently wide superconducting slab of thickness 2d (−d ≤ x ≤
d). In the beginning a type I superconductor is assumed. The magnetic flux
density in the superconductor is

B(x) = µ0He
cosh(x/λ)
cosh(d/λ)

. (A.13)

Thus, the average magnetic flux density is

〈B〉 =
µ0Heλ

d
tanh

(
d

λ

)
≡ aµ0He (A.14)

and the average magnetic energy density is

1
2µ0

〈B2〉 =
1
4
µ0H

2
e

[
1

cosh2(d/λ)
+

λ

d
tanh

(
d

λ

)]
. (A.15)

Thus, the Gibbs free energy density in the superconducting state is

Gs(He) = Fn(0) − 1
2
µ0H

2
c +

1
4
µ0H

2
e

[
1

cosh2(d/λ)
− 3λ

d
tanh

(
d

λ

)]
. (A.16)

On the other hand, the free energy density in the normal state is given by
Eq. (1.26). Hence, the critical field of the small superconductor H∗

c is obtained
from the condition Gs(H∗

c ) = Gn(H∗
c ) as
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H∗
c =

[
1 +

1
2 cosh2(d/λ)

− 3λ

2d
tanh

(
d

λ

)]−1/2

Hc . (A.17)

It can be seen that the critical field is enhanced from the bulk value. Especially
in the case of thin limit Eq. (A.17) leads to

H∗
c =

(
15
2

)1/2(
λ

d

)2

Hc . (A.18)

Figure A.1 shows the thickness dependence of the critical field in the direction
parallel to the surface of thin films of Sn [3]. It can be seen that the dependence
is well explained by Eq. (A.17).

Fig. A.1. Thickness dependence of the critical field in the direction parallel to
the surface of thin films of Sn [3] at (T/Tc)

2 = 0.8. The solid line represents the
theoretical prediction of Eq. (A.17) with the assumption of λ = 132 nm

Secondly the lower critical field is investigated for a type II superconduc-
tor. The magnetic flux has already penetrated the superconductor before the
quantized flux lines penetrate. Hence, the variation in the average magnetic
flux density due to the penetration of flux lines is smaller than in the case of
a bulk superconductor. Presuppose a certain region of the cross-sectional area
S in which only one flux line exists on average. In this case the magnetic flux
which has already penetrated this region is approximately aSµ0He in terms
of a defined in Eq. (A.14). Since the magnetic flux after the penetration of
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the flux line is comparable to φ0 from the definition of S, Sµ0He � φ0 is
obtained. Thus, the increment of the magnetic flux due to the penetration
of the flux line is approximately equal to (1 − a)φ0. If the thickness of the
superconducting slab is not smaller than λ, the energy of the flux line per
unit length ε may not be appreciably different from the bulk value. Repeating
a similar discussion to that in Subsect. 1.5.2, an approximate expression is
obtained for the lower critical field of the small superconductor:

H∗
c1 � (1 − a)−1Hc1 =

[
1 − λ

d
tanh

(
d

λ

)]−1

Hc1 , (A.19)

where Hc1 is the lower critical field of the corresponding bulk superconductor.
This result indicates that H∗

c1 is proportional to d−2 when d is small. Numer-
ical analysis [4] supports this expectation and shows that this proportional
relationship holds correct even where the dimensions of d are much smaller
than λ.

A.3 Minimization of Energy Dissipation

For simplicity a bulk superconducting slab (0 ≤ x ≤ 2d) is assumed. It is also
assumed that the maximum critical current density determined by the flux
pinning mechanism is a constant value denoted by Jc and that the practical
critical current density is given by νJc (0 < ν ≤ 1). In fact, it can occur that
the current density takes a value smaller than Jc depending on the microscopic
arrangement of flux lines, as argued in Sect. 3.7. When the magnetic field
applied parallel to the superconducting slab is increased from 0 to He in the
initial state, the energy loss density inside the superconducting slab is easily
calculated as

W =
µ0

2νJcd

∫ He

0

H2dH =
µ0H

3
e

6νJcd
, (A.20)

where He is assumed to be sufficiently low that the penetration depth of the
external magnetic field He/νJc is shorter than d. Thus, ν = 1 is obtained
from the condition of minimum energy loss density. This result agrees with
the hypothesis in the critical state model that the flux pinning interaction
prevents variation in the flux distribution as strongly as possible. In the above
ν = 0 is a singular point and corresponds to an unrealistic situation where
there is no energy dissipation. Hence, this case is avoided.

After the magnetic distribution given by ν = 1 is established, when the
external magnetic field is further increased resulting in flux motion in the same
direction as before, the condition ν = 1 is clearly maintained. This is because,
if ν becomes smaller during a slight variation in the external magnetic field,
the flux penetration occurs as shown in Fig. A.2, which causes a large energy
loss. When the external magnetic field is changed in the opposite direction
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Fig. A.2. Penetration of magnetic flux into superconducting slab

from before, e.g., a variation from increasing field to decreasing field, a similar
argument can be repeated to that in the initial state.

As shown above the hypothesis in the critical state model is the same as
the condition of minimum energy dissipation. This is similar to the principle
of minimum energy dissipation in linear dissipative processes.

A.4 Partition of Pinning Energy

Consider the case where the flux lines move translationally along the y-axis
and simultaneously rotate in the plane normal to the y-axis to the direction
represented by the angle θ under the influence of the flux pinning interaction.
It is assumed that the flux lines are in the equilibrium state at (ye, θe) in
the coordinate system (y, θ). When the pinning potential is expanded around
this equilibrium state, only terms of even order remain from the condition of
symmetry. If only the terms of the lowest order are taken into account, the
pinning potential energy density may be written as

U =
a

2
(y − ye)2 +

b

2
(θ − θe)2 , (A.21)

where a and b are coefficients. It is assumed that the critical state is attained
when U reaches a threshold value Up. If the coordinates of the flux lines in
the critical state are represented by (yc, θc), the threshold value is given by

Up =
a

2
(yc − ye)2 +

b

2
(θc − θe)2 . (A.22)
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The position where only the critical balance between the Lorentz force and the
pinning force occurs as in a transverse magnetic field is represented by (ycm,
θe), and the position in the critical force-free state where only the balance
between the force-free torque and the moment of pinning forces occurs is
represented by (ye, θcm). Then, we have

|ycm − ye| =
(

2Up

a

)1/2

=
Fp

a
, (A.23a)

|θcm − θe| =
(

2Up

b

)1/2

=
Ωp

b
. (A.23b)

It is possible to define

|yc − ye| = |ycm − ye|sinψ , (A.24a)

|θc − θe| = |θcm − θe|cosψ (A.24b)

in terms of a new variable ψ. Using these expressions, the pinning force density
and the density of moment of the pinning forces are respectively described as

a|yc − ye| = Fpsinψ , (A.25a)

b|θc − θe| = Ωpcosψ. (A.25b)

Thus, if the conditions of the balance are written in the forms of Eqs. (4.62a)
and (4.62b), we have

f = sinψ, g = cosψ . (A.26)

A.5 Comments on the Nonlocal Theory of the Elasticity
of the Flux Line Lattice

It is considered in the nonlocal theory for the elastic moduli of the flux line
lattice that the normal core of a flux line surrounded by the “magnetic flux”
can be fairly freely displaced. This leads to small C11 and C44, which are
originally associated with the magnetic energy. However, it was mentioned
at the end of Sect. 7.2 that such a lack of influence between the internal
normal core and the surrounding magnetic flux seems to be incompatible
with the requirement of gauge-invariance between the order parameter and
the magnetic field. This problem is discussed here.

First a deformation of the flux line lattice associated with C11 is treated.
An arrangement of flux lines parallel to the z-axis and forming a triangular
lattice is assumed as shown in Fig. A.3. The flux line spacing is denoted by af
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and the interval between the rows of flux lines along the y-axis is denoted by
bf . This leads to bf = (

√
3/2)af . One of the results that follow from the gauge-

invariance is the quantization of magnetic flux. If the magnetic flux density
when the lattice is not deformed and its mean value in space are denoted by
B0 and 〈B0〉, respectively, the quantization condition is expressed as

Fig. A.3. Triangular lattice of flux lines

〈B0〉 =
φ0

afbf
. (A.27)

When the flux line lattice is deformed and the zero points of the order para-
meter are slightly displaced by u∗(x) along the x-axis, the new interval of the
rows of flux lines is given by

b′f = bf +
∂u∗

∂x
bf . (A.28)

The magnetic flux density also changes due to the deformation, and the quan-
tization condition is now written as

〈B0〉 + δB =
φ0

afb′f
. (A.29)
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Hence, the variation in the magnetic flux density should obey the relationship:

δB =
φ0

afb′f
− φ0

afbf
� −〈B0〉

∂u∗

∂x
. (A.30)

Here it is necessary to define the region in which the magnetic flux is quantized.
A candidate may be the region surrounded by two straight lines along the y-
axis connecting maximum points of the magnetic flux density (the region
between two solid lines in Fig. A.3)[5]. Although the current density is not
zero on these straight lines, the direction of the current is perpendicular to the
lines and the quantization inside this region can be derived. (This comes from
the contribution from the zero points of the order parameter. See Exercise
1.8.)

On the other hand, the variation in the magnetic flux density is deeply
connected to the displacement of the “magnetic flux,” which is the same as
the magnetic field line in electromagnetism. This displacement u(x) can be
obtained from the continuity equation for flux lines, Eq. (2.15). In the case of
the small variation treated here, this equation leads to

δB = −〈B0〉
∂u

∂x
. (A.31)

Comparing Eqs. (A.30) and (A.31), we have

u = u∗ . (A.32)

Namely, the displacement of the “magnetic flux” is identical with that of
the structure of the order parameter. This can be easily anticipated from
Eq. (1.101), suggesting that the maximum point of the magnetic flux density
coincides with the zero point of the order parameter. This means that when the
normal core is deformed, the same deformation of the “magnetic flux” occurs
too, and hence, the result of the local theory is derived from the corresponding
magnetic energy. Therefore, softening of the flux line lattice does not occur
for C11.

The above result holds correct for arbitrary u(x). However, the theoretical
treatment using Eqs. (A.28) and (A.30) is allowable for a gentle variation,
and hence, there is a limit on the wave number k. For a superconductor
with a high κ value, however, it is possible to show that the above result is
applicable up to a wave number sufficiently larger than the characteristic one
kh, above which the nonlocal property is predicted to be significant. That is,
if the wave length of the periodic deformation at k = kh is denoted by Λ,
we have Λ/bf = 2π/khbf = (4π/

√
3)1/2[b/(1 − b)]1/2κ, where b = B/µ0Hc2 is

the reduced field. It can be seen that the above value is very large. Hence,
the above perturbational method can be used even for k = kh. Thus, it is
concluded that the elastic modulus C11 dose not show the nonlocal property.

In the above, it was shown from the condition of quantization of magnetic
flux that C11 takes the local value. On the other hand, it is argued in Exercise



444 A Appendix

7.2 that a nonlocal C11 is derived from an assumption similar to that of
Brandt [6] and that the quantization of magnetic flux is not fulfilled under
this assumption.

Secondly the bending deformation of the flux line lattice associated with
C44 is considered. It is assumed initially that the flux lines are uniformly
distributed and lie in the direction of the z-axis with a magnetic flux density
B0(r), where r is a vector in the x-y plane. We assume that the zero points of
the order parameter in the flux line lattice are slightly displaced by u∗(z) along
the x-axis. Then, the displacement of the “magnetic flux” outside the normal
core occurs along the x-axis and an x-component of the magnetic flux density
appears consequently. These are denoted by u(z) and δB(z), respectively.
These quantities are correlated to each other through the continuity equation
for flux lines as

δB = 〈B0〉
∂u

∂z
. (A.33)

On the other hand, since the maximum points of the magnetic flux density
and the zero points of the order parameter are identical with each other, the
condition

Bx

Bz
� δB

〈B0〉
=

∂u∗

∂z
(A.34)

should be satisfied along a line passing through the maximum points of the
magnetic flux density. Comparison of Eqs. (A.33) and (A.34) leads to

u = u∗ . (A.35)

Thus, the result of the local theory is also derived for C44. In fact, the Lorentz
force can be written as

FL =
1
µ0

(B · ∇)B � 〈B0〉
µ0

· ∂

∂z
δBix =

〈B0〉2
µ0

· ∂2u∗

∂z2
ix , (A.36)

and this is required to be identical with the elastic force, C44∂
2u∗/∂z2. Hence,

we have again

C44 =
〈B0〉2

µ0
. (A.37)

The above deformation is written as u∗(r) = u∗(z)ix. Hence, it satisfies
∇ · u∗ = 0, and Eq. (22) in the paper by Brandt [7] is written as

B = 〈B0〉
{

1 +
1

2bκ2
[〈ω〉 − ω(r − u∗)]

}[
iz + a(k)

∂u∗

∂z

]
, (A.38)

where b = 〈B0〉/µ0Hc2, ω = |Ψ|2/|Ψ∞|2 and a(k) = k2
h/(k2 + k2

h). A small
correction was carried out taking account of the deformation of the flux line
lattice with a nonuniform magnetic flux density due to the spatial variation
in |Ψ|2. Equation (A.38) leads to
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Fig. A.4. Structure of flux lines assumed for derivation of C44 in the nonlocal
theory. Solid lines show “magnetic flux lines” and broken lines pass through the
maximum points of B. These lines do not coincide with each other

Bx

Bz
= a(k)

∂u∗

∂z
�= ∂u∗

∂z
(A.39)

on the line through the zero points of |Ψ|2, i.e., the maximum points of the
magnetic flux density. This means that the streamline of B, i.e. the “magnetic
flux line” in electromagnetism, and the line connecting the maximum points
of B are not the same (see Fig. A.4). This means that the requirement of
∇·B = 0 is not satisfied [8] according to the theoretical result of Brandt. For
the above deformation simply we have ∂ω/∂z = −(∂u∗/∂z) · (∂ω/∂x). This
leads to

∇ · B = −〈B0〉
2bκ2

[
∂ω

∂z
+ a(k)

∂u∗

∂z
· ∂ω

∂x

]

=
〈B0〉
2bκ2

[1 − a(k)]
∂u∗

∂z
· ∂ω

∂x
. (A.40)

Hence, a(k) should be equal to 1, i.e., the local theory should hold correct so
that ∇·B = 0 is satisfied. It is true that any solutions of the London equation
satisfy ∇ · B = 0. However, Eq. (A.38) is not a good approximate solution.

Brandt [9] derived the nonlocal elastic moduli which depends on the wave
number of the distortion using the energy given by Eq. (1.112). It is a general
method to directly substitute A and Ψ for a distorted flux line lattice into
Eq. (1.21) in order to obtain the energy associated with the distortion of the
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flux line lattice. Brandt did not do so but started from the simpler Eq. (1.112).
To clarify the problems in such a theoretical treatment we shall here show the
result from the correct treatment of the same matter.

The expression of the energy which Brandt used is Eq. (1.21) with substi-
tution of Eq. (1.30). It should be noted that A and Ψ corresponding to the
distorted flux line lattice do not satisfy Eq. (1.30). This equation is derived
so as to minimize the free energy, and hence, so that the distortion is zero.
Therefore, it is necessary to use an equation which distorted A and Ψ satisfy
to rewrite Eq. (1.21). It is considered that these variables are determined so
that the total energy is minimized which includes an additional energy term,
i.e., the pinning energy required to distort the flux line lattice. We assume that
the pinning energy is of the form Up = Ũp(r)|Ψ|2 after Miyahara et al. [10].
Namely, the effect of the pinning centers is likely to appear in the coefficient
α in Eq. (1.21). Even in this case Eq. (1.31) is not influenced by the pinning
centers. Thus, the equation which Ψ and A satisfy is

1
2m∗ (−i�∇ + 2eA)2Ψ + (α + Ũp)Ψ + β|Ψ|2Ψ = 0 . (A.41)

Substituting this into Eq. (1.21) and taking an average in space, we have

〈Fs〉 =
〈

B2

2µ0
− µ0H

2
c |Ψ|4

2|Ψ∞|4 − Up

〉
(A.42)

after a simple calculation. The third term, the pinning energy is originally
introduced to distort the flux line lattice. In order to estimate the energy of
distortion the energy necessary to introduce the distortion itself should be
omitted. Hence, the energy of the distorted flux line lattice is given by

〈Fs〉 =
〈

B2

2µ0
− µ0H

2
c |Ψ|4

2|Ψ∞|4
〉

. (A.43)

This gives the same result as Eq. (1.111). It is necessary to use Eq. (1.101) to
derive Eq. (1.112) from this equation as Brandt did. However, it is shown in
Exercise 7.2 that Eq. (1.101) does not satisfy the condition of flux quantization
for a deformed flux line lattice.

The uniaxial compression modulus is derived as

C11 =
∂〈Fs〉
∂βA

· ∂2βA

∂ε2k
+

∂〈Fs〉
∂βm

· ∂2βm

∂ε2k
(A.44)

from Eq. (A.43), where εk is the root mean square value of the distortion of
the wave number k and

βm =
〈B2〉
〈B〉2 � 〈B2〉

〈B0〉2
. (A.45)

Writing B = B0 + δB, we have 〈B2〉 � 〈B2
0〉 + 〈δB2〉. If a distortion of



A.5 Comments on the Nonlocal Theory of the Elasticity 447

u(x) = ukm sin(kx) (A.46)

with the wave number k is assumed for u(x) in the continuity equation for
flux lines, Eq. (A.31), we have

〈δB2〉 = 〈B0〉2
k2u2

km

2
= 〈B0〉2ε2k , (A.47)

where εk = (∂u/∂x)max/
√

2 = kukm/
√

2. Thus, Eq. (A.44) leads to [11]

C11 =
∂Fs

∂βA
· ∂2βA

∂ε2k
+

〈B0〉2
µ0

. (A.48)

This agrees with the expectation of Eq. (7.22). In the above the first term
is a correction of the order of C66 to the magnetic interaction. Thus, the
local result is obtained again. The local result is also obtained for C44 from
a similar argument. In this case the variation in the magnetic flux density is
very small and the variation in the order parameter is also very small. Hence,
the contribution from the first term in Eq. (A.44) can be neglected.

Larkin and Ovchinnikov [12] obtained the same result as Brandt. This is
ascribed to the assumption that the displacement of the normal core of a flux
line and the variation in the vector potential are independent of each other.
Correctly speaking, the term (rotA1)2 in Eq. (24) in their original paper
corresponds to 〈δB2〉 in this book, and the correct local result is obtained
from it. However, this term was neglected in their original paper, resulting
in the incorrect moduli. The neglect of (rotA1)2 is equivalent to the use of
Eq. (1.112) instead of Eq. (A.43). (rotA1)2 or 〈δB2〉 may seem to be safely
neglected because it is a small term of the second order. However, this small
term is important, since the increase in the elastic energy is proportional to
the square of the small distortion.

The effect of nonlocality on the elastic moduli of a flux line lattice is here
investigated from the experimental results of flux pinning. Figure A.5 shows
the relationship between the contribution to the pinning force density from
one pinning center (ordinate) vs. its elementary pinning force (abscissa) for
various superconductors. In the figure, vanadium, niobium and Nb-Hf have
the lowest, medium and highest κ values, respectively. The nonlocal theory
was originally proposed to explain why the normal core of a flux line is easily
deformed and pinned. It is derived from this theory that this softening is more
effective for a superconductor with a shorter coherence length ξ, and hence a
higher κ. That is, it may be expected that the pinning is more effective for a
higher κ superconductor. However, Fig. A.5 shows that the pinning efficiency
is worse and flux lines are not more easily pinned in a higher κ superconductor.
This result does not support the nonlocal theory.
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Fig. A.5. Contribution to the pinning force density from one pin Fp/Np vs. the
elementary pinning force fp for various superconductors. The pinning efficiency is
lower for a superconductor with a higher Ginzburg-Landau parameter κ

A.6 Avalanching Flux Flow Model

When the saturation phenomenon of the pinning force density occurs, the
interaction distance di corresponding to the yielding strain decreases abruptly
as the magnetic field or the elementary pinning force increases, as is shown
in Fig. 7.32(b). This suggests that the flux line lattice has become brittle.
Since di is not proportional to the flux line spacing af , the beginning of flux
flow exceeding the critical state is not simply determined by the limit of the
elastic deformation as with the shearing flow assumed in the Kramer model.
It is rather considered that the flux line lattice yields before reaching the
ideal elastic limit due to some cause resulting in the flux flow state. The cause
which seems to be responsible for the yielding is the presence of defects in the
flux line lattice. Namely, when the local distortion around a defect reaches a
certain limit, a local plastic deformation will occur. Then, a new distortion will
be created at the position where a vacancy is brought about by the motion of
the flux line. Since the stress will be concentrated on this region, local plastic
deformation will be induced again. Thus, the plastic deformation of the flux
line lattice will be propagated throughout the specimen and the flux flow state
will be the result (see Fig. 7.34).
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In such a case the probability of occurrence of the initial local plastic
deformation will be proportional to the number density nd of defects in the flux
line lattice, since it is considered that the local plastic deformation takes place
around the defect. The nucleation of defects in the flux line lattice originates
from flux pinning interactions. Hence, nd will be expressed as an increasing
function G of the elementary pinning force fp and the number density of pins
Np. On the other hand, nd is expected to be inversely proportional to the
maximum shear stress of the flux line lattice C66af/4, since the nucleation of
defects is depressed when the shear stress is strong. Hence, we expect

nd ∝ G(fp, Np)
C66af/4

. (A.49)

The probability of occurrence of the local plastic deformation increases with
the displacement of flux lines u. As a result, it is speculated that the proba-
bility of occurrence of the avalanching flux flow is proportional to nd and u.
Here it seems to be reasonable to assume that the avalanching flux flow takes
place when the product of nd and u reaches a certain threshold value. If we
note that u = di in the critical state, we have

di ∝
C66af

G(fp, Np)
. (A.50)

On the other hand, the Labusch parameter αL represents the strength
of reaction from pins against the driving force. Hence, αL is also given by a
certain increasing function G′ of fp and Np. It may be reasonable to assume
that nd is proportional to the number density of edge dislocations ne in the
flux line lattice. ne is generally related to the current density J through

J =
2afBne

µ0
(A.51)

and the pinning force density, F = BJ , is given by

F = αLu . (A.52)

Thus, we have
αL ∝ ne . (A.53)

This leads to the result that αL is proportional to nd. That is, G′ is propor-
tional to G and we have

αL ∝ G(fp, Np) . (A.54)

This allows us to derive the threshold value of the pinning force density:

Fp = αLdi ∝ C66af ∝ b1/2(1 − b)2 . (A.55)

The obtained pinning force density is independent of the pinning parameters,
fp and Np, and its magnetic field dependence coincides with Kramer’s formula
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given by Eq. (7.88). When the flux pinning is strengthened and G increase,
αL increases and di decreases obeying Eqs. (A.54) and (A.50), respectively.
That is, the flux line lattice becomes harder but brittle, when the flux pinning
is strengthened, as mentioned in Subsect. 7.5.4. These two effects cancel each
other and result in a constant yielding stress, i.e., the saturation phenomenon.
Since the flux pinning is strong enough even at the saturation phenomenon, a
linear summation will hold correct for G. Thus, its magnetic field dependence
will be given by

G(fp, Np) ∝ fp ∝ 1 − b . (A.56)

As a result, we have

αL ∝ 1 − b, di ∝ b−1/2(1 − b) . (A.57)

The magnetic field dependences of these quantities agree approximately with
the experimental results in Fig. 7.32 for Nb-Ti.

When the pinning parameters are increased even more, the defects in the
flux line lattice will be increased even more, and the flux line lattice is ex-
pected to be in an amorphous state. Both the reduction in the shear modulus
C66 and the enhancement of αL cause the reduction in the transverse elastic
correlation length of the flux line lattice (C66/αL)1/2. Hence, even if a local
plastic deformation occurs as shown in Fig. 7.34(a), it is considered that the
surrounding strong pinning interactions prevent the deformation from devel-
oping to a catastrophic instability. In other words the brittle flux line lattice
containing defects is stabilized by strong pins and can endure until the strain
reaches the yielding value determined by the flux pinning strength. Thus,
some scaling holds on the state of the flux line lattice, and it is expected that
the interaction distance behaves normally as

di ∝ af ∝ b−1/2 (A.58)

and increases from the saturation case as in Fig. A.6. In this case the pinning
force density is

Fp ∝ G(fp, Np) ∝ b1/2(1 − b) . (A.59)

This shows that the pinning force density depends on the pinning parameters
and is proportional to (1−b) at high fields. That is, the nonsaturation phenom-
enon is explained. In fact, the interaction distance expressed by Eq. (A.58) is
observed for Nb-Ti showing a nonsaturation characteristic [13] (see Fig. A.7).
In the figure, di decreases in the vicinity of the upper critical field. This seems
to be caused by flux creep, since the trend becomes clearer at higher temper-
atures.

The variation from saturation to nonsaturation with strengthening flux
pinning and the brittle property of the flux line lattice at saturation, etc.
can be qualitatively explained by the avalanching flux flow model. However,
quantitative arguments are necessary for the value of the saturated pinning
force density and the value of the elementary pinning force required for the
transition from saturation to nonsaturation.
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Fig. A.6. Proposed variation in the interaction distance when the flux line lattice
is stabilized and nonsaturation is attained by strengthening the flux pinning. The
broken line shows the interaction distance in the saturation case

Fig. A.7. Variation in the interaction distance of Nb-Ti during the variation in
the pinning force density from saturation (�) to nonsaturation (�) [13] as shown in
Fig. 7.31
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A.7 Josephson Penetration Depth

Suppose a long Josephson junction and define the x-axis along the length with
x = 0 denoting the edge of the junction. The magnetic field inside the junction
is not uniform along the x-axis and is represented by h. ∂h/∂x is equal to the
current density flowing across the junction, and Eq. (1.136) expressing the
Josephson effect leads to

∂h

∂x
= jc sin θ(x) . (A.60)

In the above θ(x) is the phase difference given by

θ(x) = θ(0) +
2π

φ0
Φ(x) , (A.61)

where θ(0) is a phase at the edge and Φ(x) is the magnetic flux in the region
of 0 to x given by

Φ(x) = µ0D

∫ x

0

h(x)dx (A.62)

with D denoting the effective thickness of the junction. Thus, we have

∂θ

∂x
=

2π

φ0
µ0Dh . (A.63)

Hence, the following equation is derived:

∂2θ

∂x2
=

1
λ2

J

sin θ , (A.64)

where λJ is a distance given by

λJ =
(

φ0

2πµ0jcD

)1/2

. (A.65)

The above equation shows that the magnetic flux penetrates only up to about
λJ from the edge of the junction when θ is small. This length is called the
Josephson penetration depth and is much longer than the London penetration
depth.

A.8 On the Transverse Flux Bundle Size

In the collective flux creep theory the transverse flux bundle size is assumed to
be equal to the transverse pinning correlation length R0 given by Eq. (7.93).
In the case of strong thermal activation, however, C66 is smaller than C0

66 for
the ideal perfect flux line lattice given by Eq. (7.12) and becomes almost zero
in the vicinity of the melting line. Hence, it varies drastically depending on
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the state of the flux lines and cannot be foreseen. Thus, it seems to be more
effective to determine the transverse flux bundle size by a thermodynamic
method.

It is assumed that the flux bundle size is determined so that the critical
current density under the influence of the flux creep is maximized. This hy-
pothesis is similar to the principle of minimum energy dissipation in linear
dissipative systems.

If the second term in Eq. (3.115) is neglected, the critical current density
under the flux creep is given as

Jc = Jc0

[
1 − kBT

U∗
0

log
(

Bafν0

Ec

)]
(A.66)

using the expanded approximation of Eq. (3.117). The quantity most difficult
to derive in this equation is the apparent pinning potential energy U∗

0 . Here,
we shall confine ourselves to the flux bundle size in the vicinity of the irre-
versibility line. In this region the current density is approximately zero, and
hence, U∗

0 approaches the true pinning potential energy U0, as is shown in
Fig. 3.44. Thus, the theoretical result on U0 in Sect. 7.7 can be used.

The number of flux lines in the flux bundle is denoted by g2. It is assumed
that g reduces to

g = yge , (A.67)

where ge is the value of g for C66 = C0
66 and y is a number smaller than 1.

It is assumed here that the flux bundle size along its length dose not change
and is given by L0. This is because the tilt modulus of the flux line lattice
C44 depends only on the magnetic energy and is not appreciably changed by
defects in the flux line lattice. Thus, the correlated volume of the flux line
lattice is y2 times as large as the value when g = ge. From the collective
pinning mechanism the virtual critical current density Jc0 in the creep-free
case is y−1 times as large as its value Jce when g = ge. Equation (7.97) leads
to the result that the pinning potential energy U0 is y3/2 times as large as its
value Ue when g = ge. Hence, Eq. (A.66) is written as

Jc =
Jce

y

[
1 − kBT

Uey3/2
log
(

Bafν0

Ec

)]
. (A.68)

By differentiating this with respect to y, the condition of the maximum critical
current density is obtained [14]:

y =
[
5kBT

2Ue
log
(

Bafν0

Ec

)]2/3

. (A.69)

Since Ue is proportional to J
−1/2
ce , it is predicted that Ue will become larger,

and the decrease of g2 from g2
e becomes more significant as the flux pinning

strength is weakened.
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Figure A.8 shows the relationship between g2 and g2
e for various Bi-based

superconductors in a magnetic field normal to the c-axis [14]. This shows that
for a larger g2

e due to weaker pinning, the difference from g2 becomes larger,
indicating the same trend as the theoretical prediction.

Fig. A.8. Relationship between g2 and g2
e for Bi-based superconductors in a mag-

netic field normal to the c-axis [14]. The solid straight line represents the relationship
of Eq. (A.70) for specimen 5 of silver-sheathed tape

The above result is discussed in more detail. g2
e is used instead of Jc0 as a

parameter representing the flux pinning strength. Exactly speaking, the value
of g2

e cannot be obtained unless Jce is known. Here, we approximately use Jc0

instead of Jce at low temperatures. Then, we have Jce ∝ g−2
e and Ue ∝ ge.

Substitution of these relationships into Eqs. (A.67) and (A.69) leads to

g2 ∝ g2/3
e . (A.70)

The solid line in Fig. A.8 shows this relationship and qualitatively explains
the experimental results.

Now the predicted g2 is discussed quantitatively. The case is considered
firstly where the magnetic field is applied normal to the c-axis. We treat for
example the results on specimen 5 of Bi-2223 tape wire shown in Fig. A.8.
The critical temperature of this specimen is 108.8 K and the parameters in
Eq. (8.27) are A = 4.22× 108 Am−2, m′ = 3.6 and γ = 0.50. The irreversibil-
ity field at 80 K is µ0Hi = 3.0 T, and g2 estimated from this value using
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Eqs. (8.27)–(8.29) for the bulk case is 10.3. The flux bundle size is calculated
under these conditions. Point-like defects are proposed to be the dominant
pinning centers in this temperature region, and hence, we use ζ = 2π. If it
is assumed again that Jce can be approximately estimated by a value of the
critical current density measured at low temperatures as mentioned above,
g2
e = 44.5 is obtained from Eq. (7.93), where the values of µ0H

ab
c2 (0) = 1000 T

and µ0Hc(0) = 1.0 T were assumed. Substituting these values into Eq. (7.97),
we have Ue = 1.26 × 10−19 J at 80 K and at 3.0 T. Substitution of typical
values into the logarithmic term in Eq. (A.69) leads to log(Bafν0/Ec) � 14,
and g2 = 9.4 is obtained. This theoretical estimation is close to the value of
10.3 calculated directly from the observed irreversibility field. The straight
solid line in Fig. A.8 is an extrapolation of this theoretical value after
Eq. (A.70).

Secondly, we shall discuss the case of the same specimen in the magnetic
field parallel to the c-axis. The irreversibility field at 70 K is 1.30 T and the ob-
tained pinning parameters are A = 6.84 × 107 Am−2, m′ = 3.3 and γ = 0.66.
Substituting log(Bafν0/Ec) � 12.5 and ζ = 2π from the assumption that
point-like defects are the dominant pinning centers, we obtain g2 = 2.1. On
the other hand, Eq. (7.93) leads to g2

e = 806, which is tremendously larger
than g2 estimated above. In the above µ0H

c
c2(0) = 50 T and µ0Hc(0) = 1.0 T

were assumed. Thus, Ue = 1.81 × 10−18 J and finally g2 = 3.4 are derived at
the treated point on the irreversibility line. Although this value is somewhat
larger than 2.1 estimated directly from the irreversibility field, it is signifi-
cantly smaller than g2

e . Judging from the ambiguity in the superconducting
parameters such as µ0H

c
c2(0), it may be said that the agreement is rather

good.
Therefore, the principle that the flux bundle size is determined so as to

maximize the critical current density seems to hold correct for both field
directions and to be general. Quantitatively speaking, the reduction in the
flux bundle size is more pronounced for the case of magnetic field parallel
to the c-axis, suggesting that the effect of flux creep is more severe in this
case. From an intuitive argument, the effect of flux creep seems to be smaller
in this field direction, since the corresponding coherence length ξab and the
shear modulus C66 are larger, suggesting a larger flux bundle size. However,
the result is exactly opposite to this direct speculation. Namely, too large a g2

e

brings about too large a Ue and results in an enormous factor of reduction in
the flux bundle size given by Eq. (A.69). Hence, it is an imaginary mechanism
that the flux bundle size is large and the pinning potential energy U0 takes a
large value when the flux pinning is weak. We reach the conclusion that the
flux pinning should be made stronger to enhance U0. The strengthening of
flux pinning surely makes g2 small. However, g2 never takes a value smaller
than 1, and hence, if the flux pinning is made stronger beyond some level, it
feeds directly into the enhancement of U0.

As shown above the significant reduction in C66 from C0
66 for the perfect

flux line lattice occurs in practice, especially for the case of weak pinning.
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Hence, if the expression of C0
66 is substituted, theoretical predictions will sig-

nificantly differ from experimental results. Very small pinning forces predicted
by Larkin-Ovchinnikov theory [12] for the case of weak collective pinning stem
from this fact. On the other hand, Eq. (7.81) predicted by the coherent poten-
tial approximation theory is not influenced by the reduction in C66. It should
be emphasized that the above thermodynamic method only is useful for the
derivation of C66 because of the positive feedback that the softening of C66

caused by the flux line defects and thermal agitation leads to the enhanced
pinning efficiency which results in further reduction in C66.

Here we shall also discuss the dependence of the pinning force density on
the pinning parameters. It is predicted in the Larkin-Ovchinnikov theory that
Jce ∝ N2

pf4
p for the case of weak collective pinning. Since Jc is proportional to

y−1Jce as above-mentioned and y is proportional to J
1/3
ce from the relationship

g2 ∝ J−1
ce and from Eqs. (7.97) and (A.69), we have

Jc ∝ J2/3
ce ∝ (Npf2

p)4/3 . (A.71)

This relationship is close to the experimental results of Jc ∝ Npf2
p obtained

for Nb in the region of small fp shown in Fig. 7.9. Thus, the theory can also
be improved from the qualitative viewpoint.

In addition, Eq. (A.69) suggests that the reduction in the flux bundle size
is pronounced at low temperatures. This will also be briefly discussed here. If
the pinning potential is approximated by a sinusoidally varying one as shown
in Fig. 3.43, the activation energy is given by Eq. (3.125). This reduces to
U ∝ (1 − J/Jc0)3/2 in the vicinity of J � Jc0. In this case the apparent
pinning potential energy derived by Welch [15], Eq. (3.128), leads to

U∗
0 = 1.65(kBTU2

0 )1/3 . (A.72)

Thus, from U0 = y3/2Ue and Eq. (A.69) we have

U∗
0 = 3.04

[
log
(

Bafν0

Ec

)]2/3

kBT � 2.4 × 10−22T . (A.73)

In the above the logarithmic term was estimated as 14. Figure A.9 shows the
temperature dependence of the apparent pinning potential energy of a melt-
processed Y-123 superconductor [15], and the solid line represents the result of
Eq. (A.73). It can be seen that the theoretical prediction agrees approximately
with the experimental result. This theoretical result predicts that the apparent
pinning potential energy at low temperatures does not appreciably depend on
the flux pinning strength except in the case of very strong flux pinning where
ge takes a value smaller than 1. It explains also many experimental results
implying that U∗

0 takes a value of several tens of meV at 30 K.
In addition, Eq. (A.73) predicts that the logarithmic relaxation rate of the

magnetization takes a nonzero value even in the limit T → 0. This tempera-
ture dependence is very different from that in Fig. 3.46 for a simple sinusoidal
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Fig. A.9. Temperature dependence of apparent pinning potential energy estimated
from logarithmic relaxation rate of magnetization for a melt-processed Y-123 super-
conductor [15]. (The data are the same as in Fig. 3.48.) The solid line represents
Eq. (A.73)

washboard potential. Such an abnormal logarithmic relaxation rate was orig-
inally explained only by the mechanism of quantum tunneling [16]. However,
the present theoretical prediction shows another possibility to explain this
relaxation rate. Hence, a further investigation is necessary on the phenomena
at ultra low temperatures to find the true mechanism.

The irreversibility field of Bi-2212 thin films at low temperatures monoton-
ically increases with increasing film thickness as shown in Fig. 8.22. This is
caused by the fact that the pinning potential energy increases with the film
thickness. However, the thickness dependence of the irreversibility field at
T/Tc = 0.5 is shown in Fig. A.10, and the irreversibility field is rather found
to decrease with increasing thickness contrary to the dependence at low tem-
peratures. It appears to contradict the theoretical prediction of the flux creep
model.

Here, we shall try to explain the experimental results on the magnetic field
dependence of the critical current density of the 0.5 µm thick specimen at each
temperature shown in Fig. A.11. In this case, if the usual assumption of g2 = 1
for a bulk superconductor is used, the magnetic field dependence of the critical
current density cannot be explained even by freely adjusting other pinning
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Fig. A.10. Thickness dependence of irreversibility field of Bi-2212 thin films [17]
at T/Tc = 0.5. The solid line represents the prediction of Eq. (A.75) for γ = 0.70

Fig. A.11. Magnetic field dependence of critical current density at each temperature
for a Bi-2212 thin film of 0.5 µm thick [17]. The solid lines show the theoretical
prediction of the flux creep-flow model with g2 used as a fitting parameter
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Fig. A.12. Temperature dependence of g2 for a Bi-2212 thin film 0.5 µm thick

parameters [18]. Hence, g2 is now also used as a fitting parameter along with
other pinning parameters to explain the results in Fig. A.11. The obtained
g2 is shown in Fig. A.12 [17]. The value of g2 is not necessarily equal to 1
even in two-dimensional Bi-2212 superconductors, but may be larger at high
temperatures. The thickness dependence of g2 at 30, 40 and 50 K obtained
for each specimen is shown in Fig. A.13. It is found that g2 takes on larger
values for thinner specimens and at higher temperatures. These results will be
explained based on the principle of Eq. (7.96). When the thickness is smaller
than the pinning correlation length, the pinning potential is proportional to
d. Substituting this dependence of Ue ∝ d into Eq. (7.96) leads to

g2 = C

(
T

d

)4/3

. (A.74)

The three straight lines in Fig. A.13 are the theoretical predictions with
C = 2.3 × 10−10(K−1m)4/3 at 30, 40 and 50 K, and it can be seen that
these agree with the above theoretical prediction except for the results on
specimen 4 where the pinning force is weak. The value of C can also be ap-
proximately explained by the theory (C = 2.0× 10−10 (K−1m)4/3) [17]. Here,
compensation for the weak pinning force of specimen 4 is attempted. Ab-
stracting the dependence of C on the pinning strength, we have C ∝ A−1

m (1−
T/Tc)−m. The results on specimen 4 compensated by this factor are also shown
in Fig. A.13. Thus, the behavior of g2 obtained from experiments is
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approximately explained. The above result leads to U0 ∝ d−1/3, suggest-
ing that the irreversibility field increases with decreasing thickness. In fact,
substitution of Eq. (7.99) with this dependence into Eq. (3.129) leads to

H
(3−2γ)/2
i ∝ d−1/3 . (A.75)

The straight line in Fig. A.10 shows this result for γ = 0.70 and approximately
explains the observed result. Thus, it can be understood that the transverse
correlation of flux lines is developed so as to reduce the energy dissipation due
to the flux creep at high temperatures for a very thin superconductor.

It should be noted that the same tendency of thickness dependence of g2

exists also in the low temperature region. In this case, since the thickness re-
gion in which g2 changes becomes narrower as can be expected from Fig. A.13,
the influence on the theoretical prediction of Eq. (8.41) is not so significant
as in the higher temperature region. The weaker thickness dependence of the
irreversibility field in Fig. 8.22 than the simple theoretical prediction is caused
by the large g2 values in thin superconductors.

The discussion has been given on the dependence of g2 on the dimension-
ality of the superconductor, flux pinning strength, temperature and the size

Fig. A.13. Thickness dependence of g2 at 30, 40 and 50 K [17]. The three straight
lines show the predictions of Eq. (A.74) with C = 2.3×10−10 (K−1m)4/3. The open
symbols are the results for specimen 4 with d = 1.0 µm compensated by a pinning
strength factor
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of the superconductor. Equation (A.69) predicts that g2 depends also on the
magnetic field through the magnetic field dependence of Ue and the electric
field strength. The reason why the thickness dependence on Bi-2212 super-
conductors shown in Fig. A.13 is emphasized in comparison with the usual
bulk case with g2 = 1 is the very weak electric field strength corresponding
to the DC magnetization measurement. In the usual transport measurements
the value of g2 is expected to be about a half of the present case. The apparent
magnetic field dependence of g2 was not observed in the above measurements
on Bi-2212 superconductors. This can be attributed to the narrow magnetic
field region due to the irreversibility field much lower than the upper critical
field within the temperature region of measurements: only the Jc0 character-
istics at low magnetic fields influence the g2 value.

The thickness dependence of the irreversibility field in three-dimensional
Y-123 thin films and coated conductors also deviates from the simple theoret-
ical prediction of Eq. (8.41) for the same reason [19]. In this case the thickness
dependence is considered to be complicated in comparison with the case of
Bi-2212 superconductor. This is attributed to the magnetic field dependence
of g2 due to the high irreversibility field, and also to the thickness dependence
of the critical current density in superconductors made by the pulsed laser
deposition due to the defect nucleation in thicker superconductors.
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Answers to Exercises

Chapter 1

1.1. If we write Ψ = |Ψ|eiφ, Eq. (1.31) reduces to

j = − 2e

m∗ |Ψ|2(�∇φ + 2eA) .

Hence, the kinetic energy term is written as

1
2m∗ | (−i�∇ + 2eA)Ψ |2= �

2

2m∗ (∇|Ψ|)2 +
µ0

2
λ2

(
|Ψ∞|
|Ψ|

)2

j2 ,

where Ψ∞ is the equilibrium value of Ψ at zero magnetic field. In the London
theory the condensation energy, α|Ψ|2 + β|Ψ|4/2, and the energy associated
with the spatial variation in the order parameter, (�2/2m∗)(∇|Ψ|)2, are not
considered. In the low field region where Ψ is approximately equal to Ψ∞, the
kinetic energy in the G-L theory agrees with the energy due to the current in
the London theory.

The London theory holds correct when the G-L parameter κ is very large
as mentioned in Sect. 1.3. At low fields where the flux lines are isolated from
each other, the energy originating from the variation in the order parameter
inside the core of a flux line, (�2/2m∗)(∇|Ψ|)2, which cannot be derived from
the London theory, is only about 3/(8 log κ) times as large as the energy of the
flux line. Hence, this energy is not essential for discussing the superconduct-
ing property, although it cannot be neglected for discussing the flux pinning
property. Thus, the energy in the London theory agrees with that in the G-L
theory at low fields except for the condensation energy which takes a constant
value outside the core.
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1.2. If we add Eq. (1.30) multiplied by Ψ∗ to its complex conjugate, we have

i�eA · (Ψ∗∇Ψ − Ψ∇Ψ∗) − 2e2A|Ψ|2

m∗(α|Ψ|2 + β|Ψ|4) −
(

�

2

)2

(Ψ∗∇2Ψ + Ψ∇2Ψ∗) .

Substitute this into Eq. (1.21) and rewrite it using the expression Ψ = |Ψ|eiφ.

1.3. A triangular flux line lattice is considered. If we assume the boundary
C around a flux line contains a unit cell as in Fig. 1, we have j = 0 on C
from symmetry. Thus, Eq. (1.55) holds correct. Hence, it is shown that the
magnetic flux is quantized in a unit cell.

Fig. 1. Unit cell of triangular flux line lattice

1.4. We assume the approximate expression |Ψ| = |Ψ∞|[(3r/2a0) − (r3/2a3
0)]

for the order parameter inside the core (r ≤ a0 = (8/3)1/3ξ). The increment
in the energy due to the variation in the order parameter from its equilibrium
value is given by∫ a0

0

[
α|Ψ|2 +

β

2
|Ψ|4 + |α|ξ2

(
d
dr

|Ψ|
)2
]

2πrdr − πa2
0

(
α|Ψ∞|2 +

β

2
|Ψ∞|4

)

per unit length of the flux line. After a simple calculation this reduces to
(209/210)πµ0H

2
c ξ2 � 0.995πµ0H

2
c ξ2.

From Eq. (1.62a) the magnetic flux density inside the core is obtained as
b � (φ0/2πλ2) log κ. Thus, the magnetic energy inside the core is given by

1
2µ0

(
φ0

2πλ2

)2

(logκ)2πa2
0 =

8
3
πµ0H

2
c ξ2

(
logκ

κ

)2

.
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1.5. If we express |Ψ|2 as

|Ψ|2 =
∑
m,n

amnexp
[
2πi
af

(mX + nY )
]

using the double Fourier series, the coefficient amn is given by

amn =
1
a2
f

∫ af

0

∫ af

0

|Ψ|2exp
[
−2πi

af
(mX + nY )

]
dXdY

=
1
a2
f

∑
p,q

C∗
pCq

∫ af

0

dY exp
[
2πi
af

(p − q − n)Y
]

×
∫ af

0

dXexp

{
2πi
af

(
p − q

2
− m

)
X

−
√

3π

2a2
f

[
(X − paf)2 + (X − qaf)2

]}
.

In the above the integration with respect to Y can be written as afδp,q+n

using Kronecker’s delta. Since the equation

∑
p

∫ af

0

f(X − paf)dX =
∫ ∞

−∞
f(X)dX

holds for an arbitrary function f , the above coefficient reduces to

amn =
|C0|2
af

(−1)mnexp
[
− π√

3
(m2 − mn + n2)

]

×
∫ ∞

−∞
dXexp

{
−
√

3π

a2
f

[
X +

naf

2
+ i

af√
3

(
m − n

2

)]2}
.

If S is a complex variable, the function exp[−(
√

3π/a2
f )S

2] is regular, and
there is no pole in the region of the complex plane between the two parallel
lines ImS = i(af/

√
3)(m − n/2) and ImS = 0. Thus, using Cauchy’s theorem

the above integration reduces to

∫ ∞

−∞
dXexp

(
−
√

3π

a2
f

X2

)
= 3−1/4af .

Thus, amn is obtained and Eq. (1.97) is derived.

1.6. Using the relationship Cn = C0 exp(iπn2/2), we have

Ψ

(√
3

4
af , −af

4

)
=
∑

n

C0exp
[
iπn(n + 1)

2

]
exp

[√
3π

4
(2n − 1)2

]
.
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If the summation with respect to n is divided into that from 1 to ∞ and that
from 0 to −∞, the latter leads to

∞∑
n=1

C0exp
[
iπ(n − 1)(n − 2)

2

]
exp

[√
3π

4
(2n − 1)2

]

= −
∞∑

n=1

C0exp
[
iπn(n + 1)

2

]
exp

[√
3π

4
(2n − 1)2

]

by rewriting as n → −n + 1. Thus, Ψ((
√

3/4)af ,−af/4) = 0 can be proved.

1.7. The kinetic energy density is reduced to

1
2m∗ |(−i�∇ + 2eA)Ψ|2

=
1

2m∗
[
�

2∇Ψ · ∇Ψ∗ − 2i�eA · (Ψ∗∇Ψ − Ψ∇Ψ∗) + 4e2A2|Ψ|2
]
.

The volume integral of the first term is transformed as∫
∇Ψ · ∇Ψ∗dV =

∫
Ψ∗∇Ψ · dS −

∫
Ψ∗∇2ΨdV .

If we assume a sufficiently large superconductor, the integral on the surface
of the superconductor is less important and can be neglected. From a similar
treatment we have ∫

A · Ψ∇Ψ∗dV = −
∫

A · Ψ∗∇ΨdV ,

where ∇ · A = 0 was used. Thus, the integral of the kinetic energy is written
as ∫

1
2m∗ |(−i�∇ + 2eA)Ψ|2dV =

1
2m∗

∫
Ψ∗(−i�∇ + 2eA)2ΨdV .

Using Eq. (1.30), this is found to be equal to −
∫

(α|Ψ|2 + β|Ψ|4)dV . Thus,
Eq. (1.111) is derived.

1.8. Such a wrong result is brought about by neglect of the fact that ∇φ
is singular at the center of the quantized flux so that ∇ × ∇φ is given by
the two-dimensional delta function as in Eq. (1.67). When A is integrated on
the assumed closed loop, there is no contribution from j, but this curvilinear
integral is identical with the surface integral of (−�/2e)∇ × ∇φ inside the
closed loop. This leads to the correct magnetic flux, φ0/2.

Here we shall consider a small closed loop composed of a half circle R′ and
a segment of the straight line L as shown in Fig. 2. The center of the half
circle coincides with that of the flux line and its radius is infinitesimal. When



Answers to Exercises 467

Fig. 2. Integral path composed of a segment of a straight line through the center
of a flux line and a half circle R′ with an infinitesimal radius

carrying out a curvilinear integral of (m∗/4e2|Ψ|2)j on the closed loop, the
integral on the segment of L is zero, and the integral on R′ remains nonzero.
On the other hand, this curvilinear integral is divided into the curvilinear
integral of (−�/2e)∇φ and that of −A from Eq. (1.54). The former is equal
to the surface integral of (−�/2e)∇ × ∇φ inside this area and gives φ0/2.
The latter gives the magnetic flux inside the small area and can be neglected.
Hence, it can be shown from this result and Eq. (1.74) that the current flows as
j � (Hc2/λ2)riθ in the vicinity of the center of the flux line. It can be derived
that the magnetic structure near the center is expressed as b � const. −
(µ0Hc2/2λ2)r2.

1.9. The first term in the superconducting current density given by Eq. (1.54)
is proportional to ∇φ and |Ψ|2. The center of the quantized flux is a singular
point and ∇φ diverges with the order of 1/r as given by Eq. (1.66). The current
density should approach zero with the order of r as shown in the answer to
Exercise 1.8, and this means that the order parameter should approach zero
as |Ψ| ∼ r in the center of the quantized flux. Thus, the central part of the
quantized flux is approximately in the normal state.

Chapter 2

2.1. An elementary vector ds is defined on a closed loop C as shown in
Fig. 3, where the direction of ds is chosen so that it and the magnetic flux
density B satisfy the right-hand rule. When the velocity of flux lines is v,
the magnetic flux which comes into C crossing |ds| in a unit time is equal to
(ds × v) · B = (v × B) · ds. Hence, the total magnetic flux coming into C in
a unit time is given by∮

C

(v × B) · ds =
∫

S

∇× (v × B) · dS ,
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Fig. 3. Magnetic flux density B and velocity of flux lines v on a closed loop

where S is the area of the plane surrounded by C. This should be equal to the
variation of the total magnetic flux inside S with time:

∂

∂t

∫
S

B · dS =
∫

S

(
∂B

∂t

)
· dS .

In the above it is assumed that C and S do not vary with time. Since these
two equations are satisfied for arbitrary S, we obtain generally

∇× (B × v) = −∂B

∂t
.

2.2. Using Eq. (2.35), the input power is written as 〈η∗u̇2〉t + 〈f(u)u̇〉t. The
second term is calculated as

〈f(u)u̇〉t =
1
T0

∫ T0

0

f(u)
∂u

∂t
dt =

1
T0

∫ dp

0

f(u)du =
1
T0

[−U(u)]dp
0 ,

where T0 is the period in which the flux line meets the pins, dp is the pin
spacing and U is the pinning potential. When the spatial variation of U is
repeated with the period dp, this term is found to be zero from Fig. 4. Hence,
it is proved that the input power is equal to the viscous power loss, 〈η∗u̇2〉t.

2.3. It is necessary that 〈(u−u0)u̇〉t = 〈u−u0〉tv is satisfied so that Eq. (2.38)
coincides with 〈η∗v − kf(u − u0)〉tv. Here we have

〈(u − u0)(u̇ − v)〉t =
1
T0

∫ T0

0

(u − u0)
∂

∂t
(u − u0)dt =

1
2T0

[(u − u0)2]t=T0
t=0 ,

which reduces to zero under a periodic condition. Hence, the above relation-
ship is satisfied. Thus, some periodic condition is needed, such as the one used
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Fig. 4. Variation in the pinning potential along the direction of motion of a flux
line

by Yamafuji and Irie, where the pin spacing is assumed to be so long that the
strain (u − u0) relaxes completely until the flux line reaches the next pin.

2.4. The self-field of the current flowing through the superconducting cylinder
of radius R has only the azimuthal component in cylindrical coordinates. If
the Bean-London model is assumed, the magnetic flux distribution when the
current applied to the z-axis is increased is given by

rB = Rµ0HI −
1
2
αcµ0(R2 − r2)

(see Subsect. 3.1.1). In the above HI(> 0) is the strength of the self-field. The
critical state is attained, and the flux front reaches the center (r = 0) when
HI = αcR/2. When the current is increased more, the resistive state starts. In
this case azimuthal flux rings move to the center of the cylinder (v = −vir)
due to the Lorentz force. The induced electric field is E = Biθ × (−v)ir =
Bviz and directed parallel to the current. This electric field is induced by the
continuous motion of the azimuthal flux rings (see Fig. 5), and the flux rings
are annihilated when they reach the center.

2.5. The macroscopic magnetic flux distribution in the superconductor at zero
external magnetic field is like the one shown in Fig. 2.20, but the magnetic
flux density outside the superconductor is reduced to zero and the area where
B = 0 is extended wider. A discussion was given using Fig. 2.22 for the
case where the external magnetic field He was reduced from Hc1. Here we
repeat a similar argument for the present case. We assume that, when He

is reduced slightly below zero, the thermodynamic fields and the magnetic
flux densities in the superconducting region just near the surface and in the
adjoining superconducting region are like those shown in Fig. 6. The reason
why H is different between the two regions while B is uniformly zero is because
of the trapping of flux lines in the pinning region. This is essentially the same
argument as in Sect. 2.6. When He is further decreased, the distribution on the
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Fig. 5. Motion of flux line rings due to the self field of the current flowing in the
superconducting cylinder and the induced electric field

Fig. 6. Thermodynamic magnetic field near the surface of a superconductor when
the external magnetic field is reduced slightly below zero

left-hand side is successively shifted to the right. As a result, the macroscopic
magnetic flux distribution is considered to vary with decreasing external field
as shown in Fig. 7(a) and (b).

2.6. For the case of Hp < Hm < 21/(2−γ)Hp we consider the following four
steps in a variation in He using h∗ as defined below: (1) from Hm to 0, (2) from
0 to −Hmh∗, (3) from −Hmh∗ to −Hp and (4) from −Hp to −Hm. The con-
tribution to the energy loss from each step can be calculated using Eq. (2.79).
The energy loss density is given by twice the sum of these contributions and
we have
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Fig. 7. Macroscopic magnetic flux distribution in the superconductor after the
external magnetic field is inverted: (a) for He between 0 and −Hc1 and (b) for He

below −Hc1

W =
2(2 − γ)µ0H

4−γ
m

H2−γ
p

[
2

4 − γ
− 2−1/(2−γ)

∫ 1

0

(1 + ζ2−γ)1/(2−γ)ζ2−γdζ

+2−1/(2−γ)

∫ h∗

0

(1 − ζ2−γ)1/(2−γ)ζ2−γdζ

+
∫ hp

h∗
(h2−γ

p − ζ2−γ)1/(2−γ)ζ2−γdζ −
∫ 1

hp

(ζ2−γ − h2−γ
p )1/(2−γ)ζ2−γdζ

]
,

where hp = Hp/Hm and h∗ = (2h2−γ
p − 1)1/(2−γ).

Four similar steps are considered also for the case of Hm > 21/(2−γ)Hp

and the following result is obtained.

W =
2(2 − γ)µ0H

4−γ
m

H2−γ
p

[
2

4 − γ
− 2−1/(2−γ)

∫ 1

h†
(1 + ζ2−γ)1/(2−γ)ζ2−γdζ

−
∫ h†

0

(ζ2−γ + h2−γ
p )1/(2−γ)ζ2−γdζ

+
∫ hp

0

(h2−γ
p − ζ2−γ)1/(2−γ)ζ2−γdζ −

∫ 1

hp

(ζ2−γ − h2−γ
p )1/(2−γ)ζ2−γdζ

]
,

where h† = (1 − 2h2−γ
p )1/(2−γ). These results coincide with Eq. (2.84) for

γ = 1.

2.7. The sign factor of the current is represented by δJ (when the current
flows in the direction of the positive y-axis, δJ = 1). From the condition that
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B = µ0He at the surface x = 0 the magnetic flux distribution near the surface
of half of a superconducting slab (0 ≤ x ≤ d) is expressed as

B = −β + [(µ0He + β)2 − 2δJµ0α0x]1/2 ,

B = β − [(µ0He − β)2 − 2δJµ0α0x]1/2

for the regions B > 0 and B < 0, respectively. The penetration field Hp is
given by

µ0Hp = −β + (β2 + 2µ0α0d)1/2 .

If the maximum field Hm satisfies the condition µ0Hm > −β + (β2 +
4µ0α0d)1/2, the expressions for the magnetization corresponding to the cases
from a to e in Eq. (2.55) are:

M =
H2

e

6α0d
(2µ0He + 3β) − He; 0 < He < Hp ,

= − β

µ0
+

1
3µ2

0α0d
{(µ0He + β)3 − [(µ0He + β)2 − 2µ0α0d]3/2} − He;

Hp < He < Hm ,

= − β

µ0
+

1
3µ2

0α0d
{2−1/2[(µ0Hm + β)2 + (µ0He + β)2]3/2 − (µ0He + β)3

−[(µ0Hm + β)2 − 2µ0α0d]3/2} − He; Hm > He > Ha ,

= − β

µ0
+

1
3µ2

0α0d
{[(µ0He + β)2 + 2µ0α0d]3/2 − (µ0He + β)3} − He;

Ha > He > 0 ,

= − β

µ0
+

1
3µ2

0α0d
{(µ0He − β)3 + 3β(µ0He − β)2 − 3β3

+[2β2 − (µ0He − β)2 + 2µ0α0d]3/2} − He; 0 > He > −Hp.

In the above Ha is given by

µ0Ha = −β + [(µ0Hm + β)2 − 4µ0α0d]1/2 .

The above results for the case β → 0 agree with the values of Eq. (2.55) for
the case γ → 0.

2.8. While the external magnetic field He is reduced from Hm, the magneti-
zation is given by

M− =
H2

m + 2HmHe − H2
e

4Hp
.

On the other hand, the magnetization as He increases from −Hm is given by

M+ =
−H2

m + 2HmHe + H2
e

4Hp
.
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Thus, the energy loss density is calculated as

W =
∫ Hm

−Hm

µ0(M− − M+)dHe =
2µ0H

3
m

3Hp
.

2.9. The force on a single flux line per unit length is φ0Jc. Since the vari-
ation in the magnetic flux density extends from the surface to Hm/Jc =
xm, the number density of moving flux lines is approximately estimated as
(µ0He)·(Hm/Jcd)/φ0. If the displacement of flux lines and the variation in the
magnetic flux density are represented by u and b, respectively, the continuity
equation for flux lines is written as ∂u/∂x � b/µ0He. Since b is approximately
given by the mean value µ0Hm, the mean distance of flux motion over a half
period is approximately given by (Hm/He) · xm/2 = H2

m/2JcHe. Thus, we
have

W � φ0Jc ·
µ0HeHm

φ0Jcd
· H2

m

2JcHe
· 2 =

µ0H
3
m

Hp
.

This value is 3/2 times as large as the theoretical result of the Bean-London
model.

2.10. A half process during which the external field varies from Hm to −Hm is
considered. (1) When He decreases from He to Hc1, the magnetic flux density
inside the superconducting slab is expressed as

B(x) = µ0(He − Hc1) + µ0Jcx; 0 ≤ x ≤ xb ,

= µ0(Hm − Hc1) − µ0Jcx; xb < x ≤ xm ,

where xb = (Hm − He)/2Jc and xm = (Hm − Hc1)/Jc. Hence, the average
magnetic flux density inside the slab is given by

〈B(x)〉 =
µ0

4Jcd
[2(Hm − Hc1)2 − (Hm − He)2] .

(2) When He is varied from Hc1 to −Hc1, the average magnetic flux density
is constant and given by

〈B(x)〉 =
µ0

4Jcd
(Hm − Hc1)2 .

(3) When He is varied from −Hc1 to −Hm, the average magnetic flux density
is calculated as

〈B(x)〉 =
µ0

4Jcd
[2(Hm − Hc1)2 − (Hm − He − 2Hc1)2] .

From symmetry between this half period and the other half period the
energy loss density per unit cycle is obtained as

W = 2
∫ Hm

−Hm

〈B(x)〉dHe =
2µ0

3Jcd
(Hm − Hc1)2

(
Hm +

Hc1

2

)
.

In the limit Hc1 → 0 this result reduces to the usual formula for the energy
loss density for the Bean-London model.
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Chapter 3

3.1. The shielding current flows only on the surface of the superconduct-
ing cylinder, and hence, the scalar potential φm can be used to express the
magnetic flux density as B = −∇φm inside and outside the superconductor
except in the surface region. This scalar potential satisfies the Laplace equa-
tion ∇2φm = 0. In the present cylindrical geometry, the situation is uniform
along the length and we can separate variables to write φm as φm = R(r)Θ(θ).
From the condition of symmetry with respect to θ and the requirements that
the potential is finite at r = 0 and that B → µ0He at r → ∞, we have the
solution

φm =
∞∑

n=1

αnr−ncosnθ − µ0Hercosθ; r > R,

=
∞∑

n=1

βnrncosnθ; r < R,

except for a constant. It is required that B = 0 inside the superconductor.
Thus, we have βn = 0(n ≥ 1). The normal component of B, i.e. (∇φm)r,
should be continuous at the boundary r = R. This leads to α1/R2 = −µ0He

and αn = 0(n ≥ 2). Hence, the magnetic flux density in the region r > R is
given by

Br = −∂φm

∂r
= µ0He

(
1 − R2

r2

)
cosθ ,

Bθ = −1
r
· ∂φm

∂θ
= −µ0He

(
1 +

R2

r2

)
sinθ.

The shielding current density J̃(θ) flowing on the surface is obtained from the
difference in the tangential component of the magnetic field as

J̃(θ) =
1
µ0

Bθ(r = R + 0) = −2Hesinθ .

3.2. From symmetry we have only to treat the case of 0 ≤ ωt < π(δ = −1)
and the contribution to the energy loss from this period is the same as that
from the period π ≤ ωt ≤ 2π. The average viscous power loss density in the
superconductor is

〈pv〉 =
ηµ0He

φ0d

∫ xb0

0

v2dx =
µ0h

3
0ω

2

6Jcdω0
(1 − cos ωt)3 sin2 ωt .

Thus, the viscous energy loss density is obtained as

2
ω

∫ π

0

〈pv〉dωt =
2µ0h

3
0

3Jcd
· 7πω

16ω0
.
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Fig. 8. Magnetic flux distribution inside the superconducting slab when the AC
magnetic field increases

3.3. We consider the process where the AC magnetic field increases from the
minimum value. The increment of the surface field is represented by h. When
h < 2Hp(1 − j), the penetration depth of magnetic flux from the surface is
xb = h/2Jc as shown in Fig. 8. From the continuity equation for flux lines we
have Bv = µ0(∂h/∂t)(xb − x). The energy dissipation occurs at the surface
on both sides of the superconducting slab, and the average pinning power loss
density is

1
2d

∫ xb

0

JcBvdx × 2 =
µ0Jc

2d
· ∂h

∂t
x2

b .

Hence, the contribution to the energy loss density from the period 0 < h <
2Hp(1 − j) is given by

µ0Jc

2d

∫
∂h

∂t
x2

b dt =
µ0H

2
p

3
(1 − j)3 = W1 .

When 2Hp(1 − j) < h < 2h0, the penetration depth of magnetic flux is
d(1 + j) and d(1 − j) from the left and right surfaces, respectively. Thus, the
average power loss density is

µ0Jc

4d
· ∂h

∂t
[d2(1 + j)2 + d2(1 − j)2] =

µ0Hp

2
· ∂h

∂t
(1 + j2)

and the energy loss density is

µ0Hp

2
(1 + j2)

∫
∂h

∂t
dt = µ0Hp(1 + j2)[h0 − Hp(1 − j)] = W2 .
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The energy loss in the decreasing field process is the same as that in the
increasing field process and finally we obtain Eq. (3.39) from W = 2(W1+W2).

3.4. The first term in the first integral in Eq. (3.58) is transformed as

λ2

2µ0

∫
Sc

[bf × (∇× bf)] · dS =
λ2

2µ0

∫
V′

[(∇× bf)2 − bf · (∇×∇× bf)]dV

from a partial integration of (∇× bf)2. In the above V′ is all space (including
the vacuum of x < 0) except the region of the normal core. It should be noted
that bf is also defined for x < 0. Using the modified London equation, the
second term in the integral is written as b2

f /2µ0. This term and the first and
second terms in the second integral in Eq. (3.58) reduce to

1
2µ0

∫
V

[b2
f + λ2(∇× bf)2]dV = φ0Hc1 ,

where V represents all space. Secondly the fourth term in the first integral in
Eq. (3.58) is transformed as

−λ2

∫
Sc

[He × (∇× bf)] · dS

= λ2

∫
V′

[He · (∇×∇× bf) − (∇× He) · (∇× bf)]dV

and the second term on the right-hand side is zero. Using the modified London
equation again, the sum of this and the third term in the second integral in
Eq. (3.58) reduces to

−
∫

V

bf · HedV = −φ0He .

In the fifth term in the first integral in Eq. (3.58), b0 is approximately given
by µ0He exp(−x0/λ)iz, where iz represents the unit vector along the magnetic
field. ∇ × bf is perpendicular to b0 with its magnitude approximately equal
to φ0/2πλ2ξ and b0 × (∇× bf) is parallel to dS. Hence, this term is given by
φ0He exp(−x0/λ). Since bi is approximately given by (φ0/2πλ2)K0(2x0/λ)iz,
the second term in the first integral reduces to −(φ2

0/4πµ0λ
2)K0(2x0/λ).

The third and sixth terms in the first integral are almost constant vectors
within the region of integration. Thus, these terms go to zero in the limit
of zero radius of the normal core. Hence, these terms can be neglected, and
Eq. (3.59) is obtained.

3.5. In the temperature range Ti ≥ T > T0 the resultant χ is the same as in
the case of m′ �= 2 and given by Eq. (3.86a). In other ranges of temperature
we have
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χ = − [εHc2(0)(1 − δ)]2

4dAHe

[
3
2

+ log
{

2dA

εHc2(0)(1 − δ)

(
1 − T

(1 − δ)Tc

)}]
;

T0 ≥ T > Tc1 ,

= − [εHc2(0)(1 − δ)]2

4dAHe

[
3
2

+ log
{

2dAHe

[εHc2(0)(1 − δ)]2

}]
≡ χs; Tc1 ≥ T ,

from a similar calculation [1].

3.6. The magnetic flux distribution in this case is given by

B(x) = µ0He + µ0M(T ) − µ0Jc(T )x

instead of Eq. (3.81). If the point at which B is zero is denoted by x = x′
0, we

have

x′
0 =

He

A
f−m′

(T ) − εHc2(0)(1 − δ)
A

f1−m′
(T ) ,

where
f(T ) = 1 − T

(1 − δ)Tc
.

If the temperature at which x′
0 reaches d is denoted by T ′

0, a simple calculation
leads to [1]

χ = −1; T ≤ Tc1 ,

= −1 +
He

2dA
f−m′

(T ) − εHc2(0)(1 − δ)
dA

f1−m′
(T )

+
[εHc2(0)(1 − δ)]2

2dAHe
f2−m′

(T ) ; Tc1 < T ≤ T ′
0 ,

= −εHc2(0)(1 − δ)
He

f(T ) − dA

2He
fm′

(T ) ; T ′
0 < T.

3.7. It is assumed that the magnetic flux distribution is initially in the critical
state under the minimum surface field. The variation in the magnetic flux
density from this state is denoted by b(x). The displacement of flux lines in
a half period from the initial state is given by Eq. (3.108). From the balance
between the Lorentz force density and the pinning force density given by
Eq. (3.103), we have

db

dx
= −b(0)

λ′2
0

(
df

2
− x

)
+

b2(0)
4µ0Jcλ′4

0

(
df

2
− x

)2

.

This leads to

b(x) = b(0) − b(0)
λ′2

0

[(
df

2

)2

−
(

df

2
− x

)2
]

+
b2(0)

12µ0Jcλ′4
0

[(
df

2

)3

−
(

df

2
− x

)3
]

.
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Averaging this within the superconducting slab, we have

〈b(x)〉 = b(0) − 2b(0)
3λ′2

0

(
df

2

)2

+
b2(0)

16µ0Jcλ′4
0

(
df

2

)3

.

In the above the first and second terms are linear with respect to b(0), and
hence, these terms are reversible responses and do not contribute to the loss.
Hence, these are neglected and only the third term is treated. The energy loss
density W is approximately given by twice the area surrounded by the above
〈b(x)〉 vs. b(0)/µ0 curve and the straight broken line connecting the initial
and final points in Fig. 9. Namely, if the value of 〈b(x)〉 at b(0) = 2µ0h0 is
denoted by bm, we have

W = 2h0bm − 2
∫ 2µ0h0

0

1
µ0

〈b(x)〉db(0) =
µ0h

3
0

3Jcdf

(
df

2λ′
0

)4

.

This coincides with Eq. (3.109).

Fig. 9. Variation in the average magnetic flux density during a variation in the
surface field of half a period. The area of the hatched region gives half of the energy
loss density

3.8. Because of 〈B〉 � µ0h0 cos ωt Eq. (3.99) leads to

µ′ � µ0

π

∫ π

−π

cos2 ωt dωt = µ0 .

On the other hand, from Eqs. (3.102) and (3.107) we have
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µ′′ =
2µ0h0

9πJcD
.

Substitution of these into Eq. (3.98) leads to

ηp �
[
1 +

(
9πJcD

2h0

)2
]−1/2

� 2h0

9πJcD
.

Thus, it can be shown that ηp is proportional to h0, when h0 is sufficiently
small.

3.9. It is assumed that the external magnetic field is decreased from a cer-
tain value after an increasing process on a major magnetization curve. If the
decrease in the internal magnetic flux density after starting to decrease the
external field is represented by b(x), it is easily calculated as

b(x) = b0
cosh(x/λ′

0)
cosh(df/2λ′

0)
,

where b0 is the decrease in the surface magnetic flux density. Thus, the vari-
ation in the magnetization is

δM =
b0

µ0

[
1 − 2λ′

0

df
tanh

(
df

2λ′
0

)]
.

From the definition of the characteristic field, Ĥp is given by (∂µ0δM/∂b0)−1Hp

in the limit b0 → 0. As a result, Eq. (3.111) is obtained. Since tanhx � x−x3/3
for x � 1, we have Ĥp = 3(2λ′

0/df)2Hp = (
√

3/2)H̃p, where H̃p is defined by
Eq. (3.110).

3.10. The amplitude of the AC magnetic field applied parallel to the super-
conducting slab is denoted by h0. In order to change the current density from
Jc to −Jc completely irreversibly in the entire region of the slab, h0 should be
equal to the penetration field Jcd as shown by the critical state model. In this
case, the change in magnetic field is maximum at the surface and amounts to
2h0. The displacement of flux lines is also maximum at the surface, and this
displacement is denoted by um. Then, Eq. (3.88) leads to 2µ0Jcd/B = um/d,
where the right hand side is obtained from the requirement of symmetry that
the displacement is zero at the center. So as to be in the reversible state in
the entire slab, um should be less than 2di. This leads to

d2 <
Bdi

µ0Jc
= λ′2

0 .

3.11. If the activation energy is expressed as U(J) = U0(1 − J/Jc0)N , an
expansion of this expression around J = J0 observed at a certain time (t = t0)
in the relaxation process leads to
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U(J) � U0

(
1 − J0

Jc0

)N

− N
U0

Jc0

(
1 − J0

Jc0

)N−1

(J − J0) .

If we express this as U(J) = U∗
0 (1 − J/J∗

c0), we have

U∗
0 = U0

(
1 − J0

Jc0

)N−1 [
1 + (N − 1)

J0

Jc0

]
,

J∗
c0 =

Jc0

N

[
1 + (N − 1)

J0

Jc0

]
.

Hence, Eq. (3.119) is written as

J0

J∗
c0

= 1 − kBT

U∗
0

C0 ,

where C0 � log(2Bafν0U
∗
0 t0/µ0d

2J∗
c0kBT ). If we assume 1 − (J0/Jc0) � 1 as

observed usually at low temperatures, we have J∗
c0 � Jc0 and

U∗
0 � NU0

(
C0kBT

U∗
0

)N−1

.

This reduces to

U∗
0 � (NCN−1

0 )1/N [(kBT )N−1U0]1/N .

Here we consider, for example, the case of Nb3Sn at T = 4.2 K and B = 1 T
(af = 49 nm). C0 is written as C0 � log(afρfU

∗
0 t0/πµ0did

2kBT ) in terms of
the interaction distance di. Substitution of typical values of ρf � 1.6 × 10−8

Ωm, di � af/2π, d � 1 mm, U∗
0 � 0.29 × 10−19 J (observed value [2]) and

t0 = 1 s leads to C0 � 16.4. Thus, in the case of N = 3/2 for a sinusoidal
washboard potential, we have

U∗
0 � 3.3(kBTU2

0 )1/3 .

Although this result is about twice as large as the theoretical result of Welch
[3], these are qualitatively the same. This result predicts that, while U0 in-
creases slightly with decreasing temperature, U∗

0 decreases. This prediction
agrees qualitatively with the results in Fig. 3.46(a) and (b). In addition, the
above result is written as U∗

0 /U0 ∝ (kBT/U0)1/3. This insists that, even if U0

is increased by strengthening the flux pinning, the relative difference between
U∗

0 and U0 becomes larger, and U∗
0 does not increase so much. This also agrees

with the results in the figure.

3.12. From Eq. (3.131) the resistivity is written as

ρ =
πBafν0U0

Jc0kBT
exp

(
− U0

kBT

)
.
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Hence, if we use the resistivity criterion of ρ = ρc, the irreversibility line is
given by

U0 = kBT log
(

πBafν0U0

ρcJc0kBT

)
instead of Eq. (3.129). Using Eq. (3.114), this is also written as

U0 = kBT log
(

ρfafU0

2ρcdikBT

)
,

where di is the interaction distance defined in Eq. (3.94).

Chapter 4

4.1. From symmetry we have only to consider half the slab, 0 ≤ y ≤ d.
If the magnetic flux density in the superconducting slab is represented by
B = (B sin θ, 0, B cos θ), Eq. (4.2) leads to

∂

∂y
(B cos θ) = αfB sin θ,

∂

∂y
(B sin θ) = −αfB cos θ .

From these equations we have ∂B/∂y = 0. Namely, B is uniform in space.
Substituting this into the above equations,

θ = θ0 − αfy

is obtained, where θ0 is a constant. The boundary conditions to be satisfied
are B cos θ0 = µ0He and B sin θ0 = µ0HI, where HI is the self field in the
direction of the x-axis due to the current and B = µ0(H2

e +H2
I )1/2. Although

the current has an x-component, this is canceled by the component in the
region of d ≤ y ≤ 2d, resulting in no net current along the x-axis. This force-
free state is established from the surface to a depth of y0 = θ0/αf . In the inner
region the magnetic flux density has only a z-component and its magnitude
is equal to B (see Fig. 10). Thus, the magnetization along the z-axis is given
by

Mz =
B

µ0d

∫ y0

0

cosθdy +
B

µ0

(
1 − y0

d

)
− He

= (H2
e + H2

I )1/2 − He +
HI

αfd

[
1 − (H2

e + H2
I )1/2

HI
sin−1 HI

(H2
e + H2

I )1/2

]
.

When HI � He, Mz � H2
I /2He and the paramagnetic magnetization is ob-

tained.

4.2. It can be seen from Eqs. (4.8) and (4.9) that the angle θ of helical flux
lines measured from the z-axis increases with the distance from the center
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Fig. 10. Distribution of components of the magnetic flux density in the supercon-
ducting slab when it is in the force-free state

of the cylinder. Hence, this magnetic structure contains a torsional strain as
shown in Fig. 11. When the distance from the center is sufficiently longer than
the flux line spacing, this is approximately the same as the strain shown in
Fig. 4.14(c).

Fig. 11. Torsional structure of flux lines in the superconducting cylinder when it is
in the force-free state
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From Eqs. (4.3) and (4.4) it is easy to derive (∂/∂r)(B2
φ+B2

z) = −2B2
φ/r <

0. Hence, the magnetic flux density has a higher value in the inner region, and
the magnetic pressure works outward in the radial direction. On the other
hand, the line tension due to the curvature of the flux lines works inward in
the radial direction and is balanced with the magnetic pressure.

4.3. The magnetic flux distribution is expressed as B = (B sin θ, 0, B cos θ),
where B is a constant and θ = θ0 − αfy. If the angle at the surface θ0 is
small enough to satisfy θ0 < αfd, the rotation of flux lines penetrates only to
the depth of θ0/αf from the surface, and the variation in the magnetic flux
density in this region is

∂B

∂t
= ixB

∂θ

∂t
cosθ − izB

∂θ

∂t
sinθ .

On the other hand, if we assume the velocity of flux lines as v = (vx, 0, vz),
the continuity equation for flux lines is solved with Eq. (4.36) as

vx =
∂θ

∂t
cos θ(x sin θ + z cos θ + C) ,

vz = −∂θ

∂t
sin θ(x sin θ + z cos θ + C) ,

where C is a constant and the equation

x sin θ + z cos θ + C = 0

represents a straight line connecting the rotation centers of flux lines. If the
position of the rotation center of the flux line which we are observing is denoted
by x = x0 and z = z0, the velocity of this flux line is written as

vx = r
∂θ

∂t
cosθ, vz = −r

∂θ

∂t
sinθ ,

where r = (x − x0) sin θ + (z − z0) cos θ is the radius of rotation. Hence, it
is found that the continuity equation for flux lines describes correctly the
rotational motion of flux lines.

The electric field in the region of 0 ≤ y ≤ θ0/αf is given by

Ex =
B

αf
· ∂θ

∂t
(1 − cos θ), Ey = 0, Ez =

B

αf
· ∂θ

∂t
sin θ

and satisfies
Ex

Ez
= tan

θ

2
.

Since Bx/Bz = tan θ, it is found that E and B are not perpendicular to
each other and do not satisfy E = B × v. In particular, E is parallel to the
x-z plane, while B × v is along the y-axis because of the flux motion in the
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x-z plane. Thus, if we express the electric field in terms of v, Eq. (4.48) is
obtained.

4.4. The continuity equation for flux lines is written as

v =
1
αf

· ∂θ

∂t
,

∂v

∂y
= − 1

B
· ∂B

∂t
.

The first equation reduces to v = 0 for θ0/αf ≤ y ≤ d and to

v =
∂HI

∂t
· µ2

0He

B2αf

for 0 ≤ y < θ0/αf . On the other hand,

v =
∂HI

∂t
· µ2

0HI

B2
(d − y)

is obtained for the entire region of 0 ≤ y ≤ d from the second equation
with the condition of v = 0 at the center x = d. Hence, the two results do
not coincide. Thus, the solution of v does not exist under such an incorrect
restriction.

4.5. The power density is given by E · J = (B × v) · J −∇Ψ · J . In the case
of flux motion driven only by the force-free torque, the first term reduces to
(J ×B) · v = 0 and E ·J = −∇Ψ ·J is obtained. Hence, the important term
in Eq. (4.48) is not B × v but −∇Ψ.

4.6. For simplicity only the flux lines just inside the surface of the supercon-
ducting disk are considered. It is assumed that, when the disk is rotated by
an angle Θ with a finite angular velocity, the flux lines near the surface follow
by δθ due to the viscous force of the eddy current.

Firstly we argue from the viewpoint of the flux rotation model. According
to this model, when the disk is rotated, the internal flux lines are driven by
the moment of the viscous force and are rotated until this driving moment is
balanced with the force-free torque which prevents flux lines from rotating.
The resultant angle is δθ. On the other hand, when the external magnetic field
is rotated in the opposite direction, the force-free torque acts in proportion to
the angle between the external field and the internal flux lines, and the internal
flux lines are rotated. But the rotation is retarded by the viscous effect of the
eddy current. As a result, the situation is determined by the balance between
the force-free torque and the moment of the viscous force in both cases. That
is, the two cases are equivalent. In addition, when the rotation is stopped, δθ
reduces to zero due to the force-free torque in both cases.

Secondly we argue from the viewpoint of the flux cutting model. When
the disk is rotated, the angle between the flux lines following the disk and the
external field is represented by θ. It is assumed that this angle exceeds the
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cutting threshold δθc. Then, flux cutting takes place, and the angle is assumed
to decrease to δθ. Hence, it can be seen that this situation is equivalent to
the flux rotation model. On the other hand, in the case where the external
field is rotated in the opposite direction, the flux cutting is expected to occur
when the angle between the external field and the internal flux lines reaches
δθc. Thus, the angle by which the internal flux lines “rotate” from the flux
cutting should be Θ − δθc so that the same result is reached. However, this
angle is different from θ − δθc in the case of rotation of the disk. That is, the
two processes are not equivalent to each other, in so far as the flux cutting
has a finite threshold value and is accompanied by a finite energy dissipation.
The two processes can be equivalent only when θ = Θ, i.e., when the flux
lines follow the disk completely. However, this is not fulfilled when the angular
velocity of rotation is made sufficiently low. In addition, the number of cutting
events is independent of the angular velocity of rotation but depends only
on the angle of rotation. Such a hysteretic nature is contradictory to the
assumption that there is no other mechanism of energy dissipation besides
the viscosity. Thus, the rotation of the superconducting disk and the rotation
of the external field are not equivalent in the flux cutting model. In this model,
when the rotation is stopped, δθ approaches δθc and this result is different from
the result of the flux rotation model. However, this difference is attributed to
the threshold problem and such an argument exceeds the area of the present
argument.

Chapter 5

5.1. Using the Bean-London model, we have Φ = µ0h
2
0w/Jc for h0 < Hp.

Hence, λ′ = h0/Jc is obtained from Eq. (5.7), and we have J = Jc from
Eq. (5.10). For h0 > Hp, Φ = µ0(2h0 − Hp)w leads to λ′ = d.

5.2. From Eqs. (5.45), (5.47a) and (5.48a) we have

µ1 = µ0[(χ′
1 + 1)2 + χ′′2

1 ]1/2 =
µ0h0

2Hp

[
1 +

(
4
3π

)2
]1/2

for h0 ≤ Hp. While Φ = wµ0h
2
0/Jc, the amplitude of the fundamental compo-

nent of the AC magnetic flux is Φ1 = 2µ1h0wd. Hence, the penetration depth
of AC magnetic flux when Φ1 is used instead of Φ is

λ′
1 =

1
2wµ0

· ∂Φ1

∂h0
= λ′

[
1 +

(
4
3π

)2
]1/2

� 1.086λ′ .

Thus, the penetration depth of AC magnetic flux is overestimated by about
8.6% and the critical current density is underestimated by about 8.6%.
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5.3. Firstly we consider the case where the motion of flux lines is completely
reversible. Since the magnetic flux density inside the superconducting slab is
given by b(x) = µ0h(t) cosh(x/λ′

0)/ cosh(d/λ′
0) with h(t) = h0 cos ωt denoting

the magnetic field at the surface, the amplitude of the AC magnetic flux going
in and out of the superconducting slab is given by Φ = 2wµ0h0λ

′
0 tanh(d/λ′

0).
Hence, the apparent penetration depth of AC magnetic flux is obtained as
λ′ = λ′

0 tanh(d/λ′
0) � d[1 − (d/λ′

0)
2/3] from Eq. (5.7). Thus, the upper limit

of the penetration depth is d.
This is qualitatively the same even when the motion of flux lines becomes

irreversible. Namely, the penetration depth of the AC magnetic flux at the
penetration field is smaller than d. Hence, Jc cannot be correctly estimated
but never fails to be overestimated. This is similar to the overestimation of
Jc from the peak field amplitude of χ′′

1 . Figure 12 shows the factor of overes-
timation, i.e., the ratio of the estimation J ′

c from the usual analysis of Camp-
bell’s method to the given value Jc, where the Campbell model is used in the
calculation [4].

Fig. 12. Factor of overestimation of the critical current density J ′
c obtained from

Campbell’s method

5.4. The average magnetic flux density inside the superconductor in an AC
magnetic field of h0 cos ωt is

〈B〉 = µ0

[
−h0 +

Hp

2
+

h2
0

4Hp
(1 + cosωt)2

]

for the phase −π < ωt < −θ0 and
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〈B〉 = µ0

(
h0cosωt − Hp

2

)

for the phase −θ0 < ωt < 0. In the above θ0 = cos−1[(2Hp/h0) − 1] and a
constant contribution from the DC magnetic field was neglected for simplicity.
Each integral in Eqs. (5.22) and (5.23) is given by twice the integral in the
range from −π to 0. After a simple but long calculation we obtain

µ3 =
2µ0Hp

15πh0

[
20
(

Hp

h0

)2

− 44
(

Hp

h0

)
+ 25

]1/2

.

5.5. If the DC component of the average magnetic flux density 〈B〉 is disre-
garded, each integral in Eqs. (5.43) and (5.44) is given by twice the integral
in the range from −π to 0 for both cases of h0 < Hp and of h0 > Hp. For
this purpose we can assume const. = µ0h

2
0/2Hp in Eq. (5.25) for h0 < Hp. In

the case of h0 > Hp, 〈B〉 is given in the answer to Exercise 5.4. The rest is
omitted.

Chapter 6

6.1. Since the kinetic energy due to the spatial variation in the order para-
meter can be disregarded, the flux line energy per unit length is f1 = 0 when
the flux line is in the superconducting region. When the flux line moves to the
normal region, the energy in the region where the flux line existed before the
movement becomes f2 = −(1/2)µ0H

2
c πξ2 per unit length. This energy differ-

ence occurs during the movement of the flux line by 2ξ. Hence, the elementary
pinning force of the superconducting-normal interface is approximately given
by

f ′
p � f1 − f2

2ξ
=

π

4
ξµ0H

2
c

per unit length of the flux line.

6.2. The order parameter takes the same value in the superconducting and
normal regions, and the average free energy density is given by

F ′ =
ds

ds + dn

(
α|Ψ|2 +

β

2
|Ψ|4

)
+

dn

ds + dn
αn|Ψ|2

=
µ0H

2
c

ds + dn

[
ds

(
−R2 +

R4

2

)
+ dnθR2

]
.

R2 is determined so that F ′ is minimized and Eq. (6.14) is derived.
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6.3. If θ or αn becomes too large, the degradation of the order parameter in
the superconducting region due to the proximity effect becomes remarkable,
resulting in a reduction in the condensation energy. This explains the reduc-
tion in the elementary pinning force when θ becomes too large. In this limit
ξn is very short and the boundary conditions at the interface (continuity of
Ψ and its derivative along the normal direction to the interface) used in the
analysis in Sect. 6.3 are no longer correct. In this case the pinning interac-
tion is similar to that by an insulating layer. Thus, it is considered that fp

approaches fp0.

6.4. The coherence length in the region with the higher upper critical field
is shorter by δξ = (ξ/2Hc2)δHc2. Hence, according to the local model,
the energy of the flux line per unit length is lower by (µ0H

2
c /2)2πξδξ =

(πξ2µ0H
2
c /2)(δHc2/Hc2), when the flux line exists in the region with the

higher upper critical field. As a result the elementary pinning force of the
grain boundary is estimated as

f ′
p =

π

4
µ0H

2
c ξ

(
δHc2

Hc2

)

per unit length of the flux line.

6.5. The shear stress at a position at distance r from the screw dislocation is
τ = b0/2πrS44. The interaction energy density is given by (1/2)δS44τ

2, where
δS44 is the variation in the shearing compliance due to the presence of the
flux line. Hence, if the distance between the screw dislocation and the flux
line is r0, the interaction energy is

∆U � 1
2
δS44

(
b0

2πr0S44

)2

πξ2

per unit length of the flux line, and the corresponding pinning force is given
by f ′ = −∂∆U/∂r0 = δS44(b0/2πS44)2πξ2/r3

0. This increases with decreasing
r0. The elementary pinning force is given in the vicinity of the lower limit of
r0, i.e. ξ, as [5]

f ′
p =

π

ξ
δS44

(
b0

2πS44

)2

=
1

4πξ
δS44

(
b0

S44

)2

per unit length of the flux line.

Chapter 7

7.1. If the pinning force density under no strain is given by Eq. (7.2), the
pinning force density under the strain ε changes as
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Fp = AHm
c2(ε)(1 + cε2)f(b) � AHm

c2m[1 − (am − c)ε2]f(b)

� ÂHm̂
c2(ε)f(b)

in the range of small a and c. In the above Â = AH
c/a
c2m and

m̂ = m − c

a
.

7.2. Under the condition of Eq. (1.98), the variation in the local magnetic
flux density due to the given displacement u∗ is

δB = g〈B〉
{
−cos

(
2π

bf
(x − u∗)

)
+ cos

(
2π

bf
x

)

−2sin
(

2π

af
y

)[
sin
(

2π

bf
(x − u∗)

)
− sin

(
2π

bf
x

)]}
,

where bf = (
√

3/2)af and

g =
µ0Hc2

6κ2〈B〉 ·
〈|Ψ|2〉
|Ψ∞|2 � µ0Hc2

6κ2βA〈B〉 (1 − b)

with b = 〈B〉/µ0Hc2 denoting the reduced field. It should be noted that this
assumption is the same as the standpoint of Brandt’s theory (Eq. (15) in [6])
from which the nonlocal result is derived. Averaging δB with respect to y
leads to

〈δB〉y
〈B〉 = g

[
cos
(

2π

bf
x

)
− cos

(
2π

bf
(x − u∗)

)]
.

Hence, the corresponding displacement of flux lines u is obtained from the
continuity equation for flux lines (Eq. (A.31) in Appendix A.5) as

∂u

∂x
= −g

[
cos
(

2π

bf
x

)
− cos

(
2π

bf
(x − u∗)

)]
.

The zero point of the order parameter of the flux line lattice before the dis-
placement is generally expressed as xn = (n + 1/2)bf with n being an integer.
Here we displace the |Ψ|2 structure by u∗ = ε cos kx, where ε is sufficiently
small. The resultant magnetic pressure is calculated as

C11(0)
∂2u

∂x2

∣∣∣∣
x=xn

� −C11(0)g
(

2π

bf

)2

ε coskxn

in terms of the local value. On the other hand, the elastic force due to the
variation in |Ψ|2 is

C11(k)
∂2u∗

∂x2

∣∣∣∣
x=xn

= −C11(k)k2ε coskxn .



490 Answers to Exercises

The requirement that these two forces are the same leads to

C11(k)
C11(0)

=
2π

3
√

3βA

· k2
h

k2
� 1.04

k2
h

k2
.

This result is approximately the same as the result of the nonlocal theory,
C11(k)/C11(0) � k2

h/(k2+k2
h), in the present range of wave number sufficiently

smaller than ξ−1. In the above we did not eliminate the divergence at k → 0,
and hence, the derived result is not completely the same as the result of the
nonlocal theory.

If the variation in the magnetic flux density assumed in the above really
occurs, the spacing of the flux line lattice bf should vary as b′f = (1−kε sin kx)bf

according to the displacement u∗. Then, the magnetic flux in the unit cell
between xn and xn+1 is calculated as

af

[
b′f〈B〉 +

∫ xn+b′f(xn)

xn

〈δB〉ydx

]
� φ0[1 − (1 − g)kε sinkxn] ,

where the relationship afbf〈B〉 = φ0 is used. Therefore, it is shown that the
flux quantization is not fulfilled.

The variations in the magnetic flux density accompanied by the displace-
ment of flux lines assumed in the local and nonlocal theories are schematically
shown in Fig. 13(a) and (b), respectively. In the figure the quantization to a
half of φ0 is shown for simplicity. In the nonlocal theory the maximum and
minimum values are fixed as shown in (b), and hence, the quantization of
magnetic flux is not fulfilled when the spacing of flux lines changes. On the
other hand, the average magnetic flux density in the unit cell changes when
the spacing of the flux lines changes, resulting in the fulfillment of the quan-
tization of magnetic flux in the local theory.

7.3. For fp > fpt the characteristic times are reduced to

t1 � 1
γ

log
[
(fp − fpt)2

η∗vfp

]
, t2 � d(fp + 3fpt)

2vfpt
, t3 � t1 + t2 .

By substituting these into Eq. (7.48), Eq. (7.50) is obtained. For fp < fpt, t2
is the same as above but the others are

t1 � d(fpt − fp)
2vfpt

, t3 � 2d

v
.

7.4. Since the force balance equation is in a separable form, this can be easily
integrated:

(
f − fp

f + fp

)1/2

tan
(

kpx

2

)
= tan

[
(f2 − f2

p)1/2kp

2η
(t + t0)

]
≡ tan[c(t + t0)]
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Fig. 13. Expected variations in the magnetic flux density due to the deformation
of the flux line lattice from (a) the local theory and (b) the nonlocal theory. Broken
and solid lines show the magnetic flux densities before and after the deformation,
respectively

for f > fp, where t0 is an integral constant. If we assume that x = 0 at t = 0,
we have t0 = 0. Substituting this into the force balance equation, the mean
velocity is obtained as

〈ẋ〉 =
1
2π

∫ 2π

0

ẋd(ct) =
1
η
(f2 − f2

p)1/2 .

Using the relationships 〈ẋ〉 = E/B, f = φ0J , fp = φ0Jc and η = Bφ0/ρf , the
above equation reduces to [7]

E = ρf(J2 − J2
c )1/2 .

Hence, the E-J characteristic approaches asymptotically E = ρfJ for J � Jc

(see Fig. 14) and is different from the usual pinning characteristic such as the
ones shown in Fig. 7.10(a).

7.5. It is assumed that the initial statistical distribution of flux lines around
pins is in the critical state with the pinning force density F = −Fp shown
in Fig. 7.7(b), and then, flux lines are displaced by u in the direction of the
negative x-axis (see Fig. 15). The corresponding displacement of flux lines
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Fig. 14. Current-voltage characteristic for a solid cluster of flux lines or a flux
bundle moving in a periodic potential under a constant driving force

Fig. 15. Variation in the statistical distribution of flux lines on pins (lower figure)
when flux lines are displaced by u in the opposite direction from the initial critical
state
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inside pins is u′ = fptu/(fp + fpt). Hence, the pinning force density, which is
defined to be positive when directed along the positive x-axis, is

F =
Np

af

∫ d/2−u′

x1−u′
fp(x)

∂x0

∂x
dx =

Np

af
· fp + fpt

fpt

∫ d/2−u′

x1−u′

(
−2fp

d
x

)
dx ,

when the displacement is sufficiently small. In the above x1 = −fptd/(fp+fpt).
After a simple calculation we have

F = −Fp

(
1 − u

di

)

using Eq. (7.33). The interaction distance di defined by Eq. (3.94) is calculated
as

di =
d

4

(
fp

fpt
− 1
)

.

For a displacement longer than 2di the pinning force takes the constant value
Fp.

The obtained pinning force density vs displacement characteristic is shown
in Fig. 16. When the flux lines are displaced in the opposite direction before
they reach 2di, the characteristic is reversible. After they reach 2di, the charac-
teristic is hysteretic. Thus, the pinning force density vs displacement charac-
teristic observed by experiments can be qualitatively explained (see Fig. 3.33).
This result is deeply associated with the existence of an unstable region for
flux lines inside pinning potentials.

Fig. 16. Pinning force density vs. displacement of flux lines predicted by the sta-
tistical theory
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7.6. It is assumed that flux lines are strongly pinned by line pins parallel
to them which are distributed in the form of a square lattice with spacing
1/ρ

1/2
p in the x-y plane as shown in Fig. 7.48. The driving force density F is

applied uniformly in the direction of the x-axis on the flux line lattice which
is strongly pinned by the line pins distributed on the rows where y = 0 and
y = 1/ρ

1/2
p . The force balance is described as

C66
d2u

dy2
= −F ,

where u is the displacement of flux lines. From the condition that u = 0 at
y = 0 and y = 1/ρ

1/2
p

u =
F

2C66
y

(
1

ρ
1/2
p

− y

)

is obtained for 0 ≤ y ≤ 1/ρ
1/2
p . Hence, the average displacement with respect

to y is 〈u〉 = F/12C66ρp. On the other hand, the driving force density is writ-
ten as F = αL〈u〉. Thus, the Labusch parameter for the shearing deformation
is given by

αL = 12C66ρp .

The obtained Labusch parameter is proportional to (1− b)2 at high fields and
takes a maximum value of 3C66/a2

f at the maximum line pin concentration
ρp = 1/4a2

f . In the critical state F is equal to Fp in Eq. (7.87) and 〈u〉 is equal
to the interaction distance di. Hence, di amounts to af/9π2 at the maximum
line pin concentration and is proportional to b−1/2.

7.7. Using Eq. (7.59), Eq. (7.56) is written as Rc = (8π)1/4(C66rp/Fp)1/2.
Hence, if we use the relationship Fp = αLdi and note that rp corresponds to
di, it is found that Rc ∼ (8π)1/4R0 = 2.24R0. The relationship between Lc

and L0 is also similar.

7.8. From Eqs. (3.94), (5.19), (7.75), (7.95) and (7.98) the pinning potential
energy is estimated as

U0 =
(

2√
3

)3/2
φ

3/2
0 dg2Jc0

2ζB1/2
.

With the numerical equation (1/2)(2/
√

3 )3/2φ
3/2
0 � 4.23kB Eq. (7.99) is

obtained.
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Chapter 8

8.1. It is assumed that the size of the normal precipitate D is sufficiently
larger than the diameter of the normal core of flux lines 2ξab or 2ξc. At first,
the case of low magnetic field is treated. When the flux line is directed parallel
to the a-axis, the cross-sectional area of the normal core is πξabξc, and the
pinning energy of the precipitate is ua

p = (µ0H
2
c /2)πξabξcD per flux line. The

Lorentz force is directed along the c-axis, and the contribution of this pinning
interaction to the force is fa

p � ua
p/2ξc = πµ0H

2
c ξabD/4. When the flux line

is directed parallel to the c-axis, the cross-sectional area of the normal core is
πξ2

ab, and the pinning energy of the precipitate is uc
p = (µ0H

2
c /2)πξ2

abD per
flux line. The Lorentz force is directed along the a-axis, and the contribution
of this pinning interaction to the force is fc

p � uc
p/2ξab = πµ0H

2
c ξabD/4, which

is the same as fa
p . Thus, the pinning force is isotropic.

On the other hand, since the irreversibility field changes drastically de-
pending on the direction of the magnetic field, the anisotropy of the pinning
force appears at high magnetic fields. That is, the anisotropy of the pinning
force arises from the anisotropy of the irreversibility field.

8.2. From Eqs. (7.2) and (7.3) the dependence of the critical current density
on the field angle is written as

Jc0(θ) =
A

µ0
Hm−1

c2 (T )bγ−1(θ)[1 − b(θ)]δ ,

where θ is the angle between the field and the c-axis and b(θ) = B/µ0Hc2(θ).
In the case of Hab

c2 /Hc
c2 � 1, Eq. (8.12) leads to Hc2(θ) � Hc

c2 sec θ except in
the vicinity of θ = 90◦. Thus, the above scaling law reduces to

Jc0(θ) =
A

µ0
Hm−1

c2 (T )
(

B⊥
µ0Hc

c2

)γ−1(
1 − B⊥

µ0Hc
c2

)δ

,

where B⊥ = B cos θ is the c-axis component of the external magnetic flux
density. The above relationship shows that the critical current density is de-
termined only by this component.

8.3. In the case B ≤ µ0Hg, Jcm ≥ 0 and the electric field is given by

E(J) =
∫ J

0

ρf(J − Jc)P (Jc)dJc .

The exponential term is expanded as

exp
[
−
(

Jc − Jcm

J0

)m0
]
� 1 −

(
Jc − Jcm

J0

)m0
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and after a simple calculation the electric field is derived:

E(J) =
ρf

m0 + 1

(
1
J0

)m0

(J − Jcm)m0+1 .

In the case B > µ0Hg, Jcm is negative and the electric field is given by
the above result minus the contribution from the region Jcm ≤ Jc ≤ 0, which
does not exist. The latter is formally given by the same formula with the
replacements Jcm → 0 and J → |Jcm|. Hence, the electric field is given by

E(J) =
ρf

m0 + 1

(
1
J0

)m0

[(J + |Jcm|)m0+1 − |Jcm|m0+1] .

8.4. In the case d < L0, the left hand side of Eq. (8.41) is rewritten as

3µ0ζ
2d

2φ2
0g

2
kBT log

(
Bafν0

Ec

)
=

3µ0ζ
2d

2φ2
0g

2
U0 (1)

after some calculation with Eq. (8.28), where the original quantities are used
for numerical factors and Eq. (3.129) is used. In the above, U0 is the pinning
potential energy for a bulk superconductor given by

U0 =
1
2

αLd2
i (afg)2L0 =

2φ2
0g

2

3µ0ζ2L0
,

where the equation, αL = C44/L2
0, is used. Hence, the value of Eq. (1) reduces

to d/L0 and Eq. (8.41) is proved to be valid.

8.5. The virtual critical current density at 0 K and 1 T is estimated as
Jc0(0 K, 1 T) = A = 2.58 × 109 Am−2 with ξab(0) = 2.02 nm. At 77.3 K
we have ξab = 3.85 nm. We expect µ0Hi ∼ 8 T at this temperature and
g2
e = 2DBξab/ζfφ0 is approximately estimated as 74.4 with ζ = 4, where f is

the volume fraction of 211 phase and the above expression of g2
e is obtained

from Eqs. (7.12b) and (7.83a). Then, Ue = 4.75 × 10−19 J is obtained from
Eq. (7.97) with Jc0(77.3 K, 8 T) = 5.56 × 107 Am−2. Thus, g2 is estimated
as 2.51 from Eq. (7.96). Hence, K = 9.39 × 102 is obtained from Eq. (8.29).
Equation (8.28) with γ = 1/2 and m′ = 3/2 leads to µ0Hi∞ = 21.7 T. How-
ever, this result is incorrect, since it is quite close to the upper critical field,
µ0H

c
c2(77.3 K) = 22.4 T. Hence, the irreversibility field should be exactly

calculated from

(µ0Hi)(3−2γ)/2 = (µ0Hi∞)(3−2γ)/2

(
1 − Hi

Hc
c2

)2

in which the effect of the upper critical field is not disregarded. This leads
to µ0Hi = 8.4 T, which is close to the initial speculation. Thus, the above
calculation is consistent.
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Chapter 9

9.1. The coherence length at 0 K is estimated as ξ(0) = 3.63 nm from the value
of Hc2(0). Equation (6.23) and this value give us ξ0 = 4.89 nm. Hence, f ′

p =
1.26×10−4 Nm−1 is obtained. The flux line spacing at 5 T is af = 2.19×10−8

m and the upper critical field is 18.0 T at 10 K. Thus, Jc0 = 3.00×109 Am−2

is obtained.

9.2. Using the value of Jc0 at B = 5 T obtained in Exercise 9.1, the magnetic
field dependence of Jc0 is given by

Jc0 = 1.29B−1/2

(
1 − B

18.0

)2

× 1010 Am−2 .

From Eqs. (3.129) and (7.97) the equation to estimate the irreversibility field
Hi is:

µ0Hi = 1.85
(

1 − µ0Hi

18.0

)2

× 103 ,

where g2 = 1.0, ζ = 2π and log Bafν0/Ec = 14 were substituted. µ0Hi = 16.3
T is obtained. This value amounts to about 91% of the upper critical field.
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flux flow 45, 46

flux flow noise 326

flux jump 103

flux line lattice

triangular lattice 24, 25, 27



Index 501

flux pinning 36
flux quantum 16, 17
force balance equation 44, 45, 56, 69,

86, 95, 436
force-displacement profile 127, 218

history effect 330
force-free current 169
force-free model 158, 192
force-free state 158, 168, 436
force-free torque 173, 178, 181, 195
four terminal method 209
free energy density (G-L energy density)

10

G
generalized critical state model 191
Ginzburg-Landau (G-L) equations 13
Ginzburg-Landau theory 2, 9
G-L parameter 15, 30
G-L transition 346, 391
Goodman’s interpolation formula 247
grain boundary 245

pinning in metallic superconductor
252, 301

pinning in MgB2 416
grain connectivity 417

H
helical flux flow 198
history effect 327, 352
hysteresis loss 51

I
impurity parameter 248
in situ thin film (MgB2) 429
in situ wire (MgB2) 416
interaction distance 129

at dimensional crossover of flux lines
355

change during saturation 319
interlayer coupling length 372
intrinsic pinning 394
Irie-Yamafuji model 56
irreversibility field 380

analytic solution 380
anisotropy 386
dependence on

anisotropy of superconductor 372,
384, 406

electric field 389
pinning strength 384
size 388
temperature 383

irreversibility line 148, 348

J
Josephson current 17
Josephson junction 32
Josephson penetration depth 344, 452
Josephson plasma frequency 379
Josephson plasma wave

longitudinal 378
transverse 379

Josephson’s relation 44
break in longitudinal magnetic field

157, 179, 199
Josephson vortex 343

K
Kim model 56, 82
kinetic energy density 9, 29
kinetic energy interaction 259, 398
Kramer model 313
Kramer’s formula 315

L
Labusch parameter 125

change during saturation 319
Labusch theory 275
Larkin-Ovchinnikov theory 286

comparison with experiments
298–307

modification by Wördenweber and
Kes 291

peak effect 289, 325
two-dimensional pinning 290

Lawrence-Doniach equation 342
line pinning 313
line tension 65
linear summation 267, 297
logarithmic relaxation rate 141
London equations 7, 8
London theory 6, 13
longitudinal magnetic field effect 155
Lorentz force 43
Lowell model 277
lower critical field 3, 22

in small superconductor 438



502 Index

M
magnetic flux distribution 57

Campbell’s method 193, 215
magnetic interaction 258
magnetic pressure 65
magnetization 4, 60

by pins 61, 62
in the Meissner state 3
near upper critical field 28

matching mechanism 322
Maxwell equations 41
Meissner current density 35
Meissner effect 1, 7, 13
Meissner state 3
melting transition 345
misorientation angle 362
mixed state 3
modified London equation 18

N
negative electric field 157, 194, 204
nonlocal elastic modulus (see elastic

modulus) 272
nonsaturation (of pinning force density)

312
normal core 20, 21
normal precipitate 237
n-value 210

O
off-set method 209
order-disorder transition 326, 330, 352
order parameter 9
order parameter in normal core 20
oscillation frequency 139
oxygen deficiency 394, 396

P
pancake vortex 344
paramagnetic effect 155, 159
partition of pinning energy 440
peak effect 322, 352
penetration depth 7, 13

in clean superconductor 15
in dirty superconductor 15
in Pippard superconductor 15

penetration field 57
percolation model (for E-J curve) 376
perfect conductivity 1

perfect diamagnetism 1
phase diagram 5
phase diagram of flux lines (high-

temperature superconductor)
345

Bi-2212 358
Y-123 357, 358

pinning correlation length
longitudinal 289, 333, 348, 368, 401
transverse(three-dimensional) 289,

333
transverse(two-dimensional) 290,

292
pinning force density 37, 44, 267

in reversible state 125
pinning potential 125
pinning potential energy 142, 220, 331

three-dimensional 335
two-dimensional 335

pinning power loss density 51, 76
pinning property

Bi-2212 406
Bi-2223 402
MgB2 415
Y-123 394

plastic shear (of flux lines) 314
power factor 129
principle of minimum energy dissipation

192, 334, 439, 453, 460
principle of stabilization 107
proximity effect 240, 261

Q
quantization of magnetic flux 16
quantum tunneling 457

R
rectifying effect 97
relaxation of current 141
resistivity criterion 209
reversible flux motion 125
rotational shear distortion (of flux lines)

169
rotation of flux lines (by force-free

torque) 178, 181, 182, 195

S
saturation (of pinning force density)

310



Index 503

scaling law of pinning force density
268

in Bi-2223 tape 404
in MgB2 421
in Y-123 thin film 376
strain scaling law 269
temperature scaling law 268

scaling of E-J curves 346
screw dislocation 255
Shapiro step 34
shear flow 314
Silcox-Rollins model 56
singular point (of phase) 18
size effect

G-L transition 360
irreversibility field 368, 388
peak effect (order-disorder transition)

326, 359, 367
SQUID 33
static critical index 346
statistical summation 277
statistical theory 275

Campbell 281
Labusch 275
Lowell 277

substituted region by RE element 396
summation problem 233, 267, 275
superconducting volume fraction 123
surface barrier 109
surface irreveresibility 108

measurement 217
surface pinning 116
surface sheath 109
surface superconductivity 30
synchronization 314, 326

T
thermal energy 139
thermally activated flux flow (TAFF)

state 149
thermodynamic critical field 4, 16, 30

in Bi-2212 407
in MgB2 413

thermodynamic magnetic field 43, 68
third harmonic voltage method 221
threshold value for elementary pinning

force 276, 280, 282, 289
coherent potential approximation

theory 297
transition (at critical temperature) 11
transition (in magnetic field) 12
transition temperature (G-L transition)

346
twin boundary 394
two-gap superconductivity 413, 425
211 phase particle 396
type-1 superconductor 3, 4, 5
type-2 superconductor 3, 4, 5, 16

U
upper critical field 3, 15, 16, 30

V
virtual critical current density 141
viscous coefficient 44, 50
viscous force density 44, 95
viscous power loss density 51, 97
vortex glass-liquid transition 346
vortex glass state 352
vortex state 3

W
Walmsley’s model 70
wave-form analysis method 216
weak link

in MgB2 416
in high-temperature superconductor

361

Y
Yamafuji-Irie model 52, 283
Yasukochi model 56




