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“Paradoxically, physicists claim that gravity is
the weakest of the fundamental forces.”

Prof. Hallstein Høgåsen– after having fallen
from a ladder and breaking both his arms

Preface

Many of us have experienced the same, fallen and broken something. Yet,
supposedly, gravity is the weakest of the fundamental forces. It is claimed to
be 10−15 times weaker than electromagnetism. But still, every one of us have
more or less a personal relationship with gravity. Gravity is something which
we have to consider every day. Whenever we loose something on the floor
and whenever we pour something in a cup, gravity is an active participant.
Had it not been for gravity, we could not have done anything of the above.
Thus gravity is part of our everyday life.

This is basically what this book is about: gravity. We will try to convey the
concepts of gravity to the reader as Albert Einstein saw it. Einstein saw upon
gravity as nobody else before him had seen it. He saw upon gravity as curved
spaces, four-dimensional manifolds and geodesics. All of these concepts will
be presented in this book.

The book offers a rigorous introduction to Einstein’s general theory of rela-
tivity. We start out from the first principles of relativity and present Einstein’s
theory in a self-contained way. For the readers convenience, we have included
a rough flowchart of chapter dependencies in Appendix D. Such a flowchart
is particularly useful if this book is used as a textbook for a course in General
Relativity.

After introducing Einstein’s field equations, we go onto the most impor-
tant chapter in this book which contains the three classical tests of the theory
and introduces the notion of black holes. Recently, cosmology has also proven
to be a very important testing arena for the general theory of relativity. We
have thus devoted a large part to this subject. We introduce the simplest mod-
els decribing an evolving universe, which in spite of their simpleness, can say
quite a lot about the universe we live in. We include the cosmological constant
and explain in detail the “standard model” in cosmology. After the main is-
sues have been presented we introduce an anisotropic and an inhomogeneous
universe model and explain some of their features. Unless one just accepts the
cosmological principles as a fact, one is unavoidably led to the study of such
anisotropic and inhomogeneous universe models. As an introductory course
in general relativity, it is suitable to stop after finishing the chapters with cos-
mology.

For the more experienced reader, or for people eager to learn more, we
have included a part called “Advanced Topics”. These topics have been cho-
sen by the authors because they present topics that are important and that
have not been highlighted elsewhere in textbooks. Some of them are on the
very edge of research, others are older ideas and topics. In particular, the last
two chapters deal with Einstein gravity in five dimensions which has been a
hot topic of research in recent years.

All of the ideas and matters presented in this book have one thing in com-
mon: they are all based on Einstein’s classical idea of gravity. We have not
considered any quantum mechanics in our presentation, with one exception:
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black hole thermodynamics. Black hole thermodynamics is a quantum fea-
ture of black holes, but we chose to include it because the study of black holes
would have been incomplete without it.

There are several people whom we wish to thank. First of all, we would
like to thank Finn Ravndal who gave a thorough introduction to the theory of
relativity in a series of lectures during the late seventies. This laid the founda-
tion for further activity in this field at the University of Oslo. We also want to
thank Ingunn K. Wehus and Peter Rippis for providing us with a copy of their
theses [Weh01, Rip01], and to Svend E. Hjelmeland for computerizing some
of the notes in the initial stages of this book. Furthermore, the kind efforts
of Kevin Reid, Jasbir Nagi, James Lucietti, Håvard Alnes, Torquil MacDonald
Sørensen, Olav Aursjø who read through the manuscript and pointed out to

without whom this book would probably never been published.

ØYVIND GRØNOslo, Norway
SIGBJØRN HERVIKHalifax, Nova Scotia, Canada

acknowledged. Last but not the least, we would like to thank Lailani Hervik
us numerous errors, typos and grammatical blunders. They are gratefully
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Notation

book. There are some exceptions, but as a general rule we use the following
notation.

Due to the large number of equations, the most important equations are
boxed, like this:

E = mc2.

All tensors, including vectors and forms, are written in bold typeface. A gen-
eral tensor usually has a upper case letter, late in the alphabet; e.g., T is a
typical tensor. Vectors are usually written in two possible ways. If it is more
natural to associate the vector as a tangent vector of some curve, then we usu-
ally use lower case bold letters like u or v. If the vectors are more naturally
associated with a vector field, then we use upper case bold letters, like A or
X. However, naturally enough, this rule is the most violated concerning the
notation in this book. Forms have Greek bold letters, e.g., ω is typical form.
All the components of tensors, vectors and forms have ordinary math italic
fonts.

Matrices are written in sans serif, like M, while determinants are written in
the usual math style: det(M) = M . A typical example is the metric tensor, g.
In the following notation we have:

g : The metric tensor itself.

gμν : The components of the metric tensor.

g : The matrix made up of gμν .

g : The determinant of the metric tensor, g = det(g).

The metric tensor comes in many guises, each one is useful for different pur-
poses.

Also, for the signature of the metric tensor, the (− + ++)-convention is
used. Thus the time direction has a − while the spatial directions all have +.

The abstract index notation

One of the most heavily used notation, both in this book and in the physics
literature in general, is the abstract index notation. So it is best that we get
this sorted out as early as possible. As a general rule, repeated indices means
summation! For example,

αμβμ ≡
∑

μ

αμβμ,

where the sum is over the range of the index μ. Furthermore, the type of
index can make a difference. Greek indices usually run over the spacetime

We have tried to be as consistent as possible when it comes to notation in this
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manifold, starting with 0 as the time component. Latin indices are usually
associated to a hypersurface or the spatial geometry; they start with 1 and
run up to the dimension of the manifold. Hence, if we consider the usual
four-dimensional spacetime, then μ = 0, ..., 3, while i = 1, ..., 3. However, no
rule without exceptions, also this rule is violated occasionally. Also, indices
inside square brackets, means the antisymmetrical combination, while round
brackets means symmetric part. For example,

T[μν] ≡ 1

2
(Tμν − Tνμ)

T(μν) ≡ 1

2
(Tμν + Tνμ) .

The following notation is also convenient to get straight right away. Here,
Aμ...ν is an arbitrary tensor (it may have indices upstairs as well).

eα (Aμ...ν) = Aμ...ν,α Partial derivative
∇αAμ...ν = Aμ...ν;α Covariant derivative
£X Lie derivative with respect to X

d Exterior derivative operator
d† Codifferential operator
� Hodge’s star operator
� Covariant Laplacian
⊗ Tensor product
∧ Wedge product, or exterior product
ωμ Basis one-forms
Ωμ

ν Connection one-forms
Rμ

ν Curvature two-forms
Rα

βμν The Riemann curvature tensor
Rμν The Ricci tensor
R The Ricci scalar
Eμν The Einstein tensor

xx



Part I

INTRODUCTION:
NEWTONIAN PHYSICS

AND SPECIAL RELATIVITY



1
Relativity Principles and Gravitation

To obtain a mathematical description of physical phenomena, it is advanta-
geous to introduce a reference frame in order to keep track of the position of
events in space and time. The choice of reference frame has historically de-
pended upon the view of human beings and their position in the Universe.

1.1 Newtonian mechanics

When describing physical phenomena on Earth, it is natural to use a coordi-
nate system with origin at the centre of the Earth. This coordinate system is,
however, not ideal for the description of the motion of the planets around the
Sun. A coordinate system with origin at the centre of the Sun is more natural.
Since the Sun moves around the centre of the galaxy, there is nothing special
about a coordinate system with origin at the Sun’s centre. This argument can
be continued ad infinitum.

The fundamental reference frame of Newton is called ‘absolute space’. The
geometrical properties of this space are characterized by ordinary Euclidean
geometry. This space can be covered by a regular Cartesian coordinate system.
A non-rotating reference frame at rest, or moving uniformly in absolute space
is called a Galilean reference frame. With chosen origin and orientation, the
system is fixed. Newton also introduced a universal time which ticks at the
same rate at all positions in space.

Newton’s 1st law: Free particles move with constant velocity,

u =
dr

dt
= constant,

where r is a position vector.

according to Newton’s three laws:
Relative to a Galilean reference frame, all mechanical systems behave
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Newton’s 2nd law: The acceleration a = du/dt of a particle is proportional
to the force F acting on it

F = mi
du

dt
, (1.1)

where mi is the inertial mass of the particle.

Newton’s 3rd law: If particle 1 acts on particle 2 with a force F12, then 2 acts
on 1 with a force

F21 = −F12.

The first law can be considered as a special case of the second with F =
0. Alternatively, the first law can be thought of as restricting the reference
frame to be non-accelerating. This is presupposed for the validity of Newton’s
second law. Such reference frames are called inertial frames.

1.2 Galilei–Newton’s principle of Relativity

Let Σ be a Galilean reference frame, and Σ′ another Galilean frame moving
relative to Σ with a constant velocity v (see Fig. 1.1).

We may think of a reference frame as a set of reference particles with given
motion. A comoving coordinate system in a reference frame is a system in which
the reference particles of the frame have constant spatial coordinates.

Let (x, y, z) be the coordinates of a comoving system in Σ, and (x′, y′, z′)
those of a comoving system in Σ′. The reference frame Σ moves relative to Σ′

with a constant velocity v along the x-axis. A point with coordinates (x, y, z)
in Σ has coordinates

x′ = x− vt, y′ = y, z′ = z (1.2)

in Σ′, or
r′ = r− vt. (1.3)

An event at an arbitrary point happens at the same time in Σ and Σ′,

t′ = t. (1.4)

The space coordinate transformations (1.2) or (1.3) with the trivial time trans-
formation (1.4) are called the Galilei-transformations.

Figure 1.1: Relative translational motion.

Σ Σ�x x�

v

4



1.3 The principle of Relativity

If the velocity of a particle is u in Σ, then it moves with a velocity

u′ =
dr′

dt
= u− v (1.5)

in Σ′.
In Newtonian mechanics one assumes that the inertial mass of a body is

independent of the velocity of the body. Thus the mass is the same in Σ as in
Σ′. Then the force F′, as measured in Σ′, is

F′ = mi
du′

dt′
= mi

du

dt
= F. (1.6)

hence, the force is the same in Σ′ as in Σ. This result may be expressed by
saying that Newton’s 2nd law is invariant under a Galilei transformation; it is
written in the same way in every Galilean reference frame.

All reference frames moving with constant velocity are Galilean, so New-
ton’s laws are valid in these frames. Every mechanical system will therefore
behave in the same way in all Galilean frames. This is the Galilei–Newton prin-
ciple of relativity.

It is difficult to find Galilean frames in our world. If, for example, we
place a reference frame on the Earth, we must take into account the rotation
of the Earth. This reference frame is rotating, and is therefore not Galilean.
In such non-Galilean reference frames free particles have accelerated motion.
In Newtonian dynamics the acceleration of free particles in rotating reference
frames is said to be due to the centrifugal force and the Coriolis force. Such
forces, that vanish by transformation to a Galilean reference frame, are called
‘fictitious forces’.

A simple example of a non-inertial reference frame is one that has a con-
stant acceleration a. Let Σ′ be such a frame. If the position vector of a particle
is r in Σ, then its position vector in Σ′ is

r′ = r− 1

2
at2, (1.7)

where it is assumed that Σ′ was instantaneously at rest relative to Σ at the
point of time t = 0. Newton’s 2nd law is valid in Σ, so that a particle which is
acted upon by a force F in Σ can be described by the equation

F = mi
d2r

dt2
= mi

(
d2r′

dt2
+ a

)
. (1.8)

If this is written as

F′ = F−mia = mi
d2r′

dt2
, (1.9)

we may formally use Newton’s 2nd law in the non-Galilean frame Σ′. This
is obtained by a sort of trick, namely by letting the fictitious force act on the
particle in addition to the ordinary forces that appear in a Galilean frame.

1.3 The principle of Relativity

At the beginning of the 20th century Einstein realised that Newton’s absolute
space is a concept without physical content. This concept should therefore
be removed from the description of the physical world. This conclusion is
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in accordance with the negative result of the Michelson–Morley experiment
[MM87]. In this experiment one did not succeed in measuring the velocity of
the Earth through the so-called ‘ether’ which was thought of as a ‘materializa-
tion’ of Newton’s absolute space.

However, Einstein retained, in his special theory of relativity, the Newto-
nian idea of the privileged observers at rest in Galilean frames that move with
constant velocities relative to each other. Einstein did, however, extend the
range of validity of the equivalence of all Galilean frames. While Galilei and
Newton had demanded that the laws of mechanics are the same in all Galilean

material world can be formulated in the same way in all Galilean frames. This is Ein-
stein’s special principle of relativity. (Note that in the special theory of relativity
it is usual to call the Galilean frames ‘inertial frames’. However in the gen-
eral theory of relativity the concept ‘inertial frame’ has a somewhat different
meaning; it is a freely falling frame. So we will use the term Galilean frames
about the frames moving relative to each other with constant velocity.)

Applying the Galilean coordinate transformation to Maxwell’s electromag-
netic theory, one finds that Maxwell’s equations are not invariant under this
transformation. The wave-equation has the standard form, with isotropic ve-
locity of electromagnetic waves, only in one ‘preferred’ Galilean frame. In
other frames the velocity relative to the ‘preferred’ frame appears. Thus Max-
well’s electromagnetic theory does not fulfil Galilei–Newton’s principle of rel-
ativity. The motivation of the Michelson–Morley experiment was to measure
the velocity of the Earth relative to the ‘preferred’ frame.

Einstein demanded that the special principle of relativity should be valid
also for Maxwell’s electromagnetic theory. This was obtained by replacing the
Galilean kinematics by that of the special theory of relativity (see Ch. 2), since
Maxwell’s equations and Lorentz’s force law is invariant under the Lorentz
transformations. In particular this implies that the velocity of electromagnetic
waves, i.e. of light, is the same in all Galilean frames, c = 299 792.5 km/s ≈
3.00× 108 m/s.

1.4 Newton’s law of Gravitation

Until now we have neglected gravitational forces. Newton found that the
force between two point masses M and m at a distance r is given by

F = −G
Mm

r3
r. (1.10)

This is Newton’s law of gravitation. Here, G is Newton’s gravitational constant,
G = 6.67 × 10−11m3/kg s2. The gravitational force on a point mass m at a
position r due to many point masses M1, M2, . . . , Mn at positions r′1, r

′
2, . . . , r

′
n

is given by the superposition

F = −mG

n∑
i=1

Mi

|r− r′i|3
(r− r′i). (1.11)

A continuous distribution of mass with density ρ(r′) so that dM = ρ(r′)d3r′

thus gives rise to a gravitational force at P (see Fig. 1.2)

F = −mG

∫
ρ(r′)

r− r′

|r− r′|3 d3r′. (1.12)

frames, Einstein postulated that all the physical laws governing the behaviour of the
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1.4 Newton’s law of Gravitation

′

Figure 1.2: Gravitational field from a continuous mass distribution.

position P where the gravitational field is measured.
The gravitational potential φ(r) at the field point P is defined by

F = −m∇φ(r). (1.13)

Note that the ∇ operator acts on the coordinates of the field point, not of the
source point.

Calculating φ(r) from Eq. (1.12) it will be useful to introduce Einstein’s sum-
mation convention. For arbitrary a and b one has

ajbj ≡
n∑

j=1

ajbj , (1.14)

where n is the range of the indices j.
We will also need the Kronecker symbol defined by

δi
j =

{
1 when i = j
0 when i �= j.

(1.15)

The gradient of |r− r′|−1 may now be calculated as follows

∇
1

|r− r′| = ei
∂

∂xi

[
(xj − xj ′)(xj − xj

′)
]−1/2

= −ei

(xj − xj ′)∂xj

∂xi[
(xj − xj ′)(xj − xj

′)
]3/2

= −ei
(xj − xj ′)δi

j

|r− r′|3

= − (xi − xi′)ei

|r− r′|3 = − (r− r′)
|r− r′|3 . (1.16)

Comparing with Eqs. (1.12) and (1.13) we see that

φ(r) = −G

∫
ρ(r′)

1

|r− r′|d
3r′. (1.17)

When characterizing the mass distribution of a point mass mathematically,
it is advantageous to use Dirac’s δ-function. This function is defined by the
following requirements

δ(r− r′) = 0, r′ �= r, (1.18)

is associated with positions in the mass distribution, and r with theHere r

r – r�

d3r�

r�

r

7
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and ∫
V

f(r′)δ(r− r′)d3r′ =

{
f(r), when r′ = r is inside V

0, when r′ = r is outside V.
(1.19)

A point mass M at a position r′ = r0 represents a mass density

ρ(r′) = Mδ(r′ − r0). (1.20)

Substitution into Eq. (1.17) gives the potential of the point mass

φ(r) = − GM

|r− r0| . (1.21)

1.5 Local form of Newton’s Gravitational law

Newton’s law of gravitation cannot be a relativistically correct law, because it
permits action at a distance. A point mass at one place may then act instanta-
neously on a point mass at another remote position. According to the special
theory of relativity, instantaneous action at a distance is impossible. An action
which is instantaneous in one reference frame, is not instantaneous in another
frame, moving with respect to the first. This is due to the relativity of simul-
taneity (see Ch. 2). Instantaneous action at a distance can only exist in a theory
with absolute simultaneity. As a first step towards a relativistically valid theory
of gravitation, we shall give a local form of Newton’s law of gravitation.

We shall now show how Newton’s law of gravitation leads to a field equa-
′

and (1.17) lead to

∇φ(r) = G

∫
ρ(r′)

(r− r′)
|r − r′|3 d3r′, (1.22)

which gives

∇2φ(r) = G

∫
ρ(r′)∇ · (r− r′)

|r− r′|3 d3r′. (1.23)

Furthermore,

∇ · (r− r′)
|r− r′|3 =

∇ · r
|r− r′|3 + (r− r′) ·∇ 1

|r− r′|3

=
3

|r− r′|3 + (r− r′) ·
(
−3

r− r′

|r− r′|5
)

= 0, r �= r′. (1.24)

In general the volume of integration encompasses the point r′ = r where the
field is measured. Thus, we have to find an expression for ∇ · (r− r′)/|r− r′|3

′ ′ 3

is proportional to Dirac’s δ-function. According to Eq. (1.19) the proportional-
ity factor can be found by calculating the integral

∫
∇ · (r− r′)/|r− r′|3d3r′.

We note that ∇ · (r − r′)/|r − r′|3 = −∇
′ · (r − r′)/|r − r′|3 where ∇

′ acts on
r′. So using Gauss’ integral theorem

−
∫
V

∇
′ ·Ad3r′ = −

∮
S

A · dS′, (1.25)

tion for gravity. Consider a continuous mass-distribution ρ(r ). Equations (1.16)

which is also valid at this point. Equation (1.24) indicates that ∇ ·(r−r )/|r− r |

8



1.5 Local form of Newton’s Gravitational law

where S is the surface enclosing V , we get

−
∫
V

∇
′ · r− r′

|r− r′|3 d3r′ = −
∮
S

r− r′

|r− r′|3 · dS
′. (1.26)

Note that the gradient∇φ in Eq. (1.22) is directed away from the source. Thus
the divergence of this vector in Eq. (1.23) must be positive. The direction of
the surface element dS′ in Fig. 1.3 is chosen to satisfy this criterion.

With reference to Fig. 1.3 the solid angle element dΩ is defined by

dΩ =
dS⊥

|r− r′|2 , (1.27)

where

dS⊥ = − r− r′

|r− r′| · dS
′. (1.28)

It follows that

dΩ = − r− r′

|r− r′|3 · dS
′ (1.29)

and

−
∫
V

∇
′ · r− r′

|r− r′|3 d3r′ =
∫

dΩ =

{
4π, P inside V
0, P outside V

(1.30)

Thus we get

∇ · r− r′

|r− r′|3 = 4πδ(r− r′). (1.31)

Substituting this into Eq. (1.23) and using Eq. (1.19) with f(r) = 1 we have

∇2φ(r) = 4πGρ(r). (1.32)

This Poisson equation is the local form of Newton’s law of gravitation. New-
ton’s 2nd law applied to a particle falling freely in a gravitational field gives
the acceleration of gravity

g = −∇φ. (1.33)

Newton’s theory of gravitation can now be summarized in the following way:
Mass generates a gravitational field according to Poisson’s equation, and the gravita-
tional field generates acceleration according to Newton’s second law.

Figure 1.3: Definition of surface elements.

r9

r – r9 dΩ
dS9

dS^r
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1.6 Tidal forces

A tidal force is caused by the difference in the gravitational forces acting on
two neighbouring particles in a gravitational field. The tidal force is due to
the inhomogeneity of a gravitational field.

In Fig. 1.4 two points have a separation vector ζ. The position vectors
of the points 1 and 2 are r and r + ζ, respectively, where we assume that
|ζ| � |r|. The gravitational forces on two equal masses m at 1 and 2 are F(r)
and F(r+ζ), respectively. By means of a Taylor expansion to the lowest order

force

fi = Fi(r + ζ)− Fi(r) = ζj

(
∂Fi

∂xj

)
r

. (1.34)

The corresponding vector equation is

f = (ζ ·∇)r F. (1.35)

Given
F = −m∇φ, (1.36)

the tidal force may be expressed in terms of the gravitational potential

f = −m (ζ ·∇)
r
∇φ. (1.37)

It follows that the i-component of the relative acceleration of the particles in
Cartesian coordinates is

d2ζi

dt2
= −

(
∂2φ

∂xi∂xj

)
r

ζj . (1.38)

Example 1.1 (Tidal forces on two particles)Examples
Let us first consider the case with vertical separation vector. We introduce a small

If we place a particle of mass m at a point (0, 0, z), it will, according to Eq. (1.10),
be acted upon by a force

Fz(z) = −m
GM

(R + z)2
, (1.39)

while an identical particle at the origin will be acted upon by a force

Fz(0) = −m
GM

R2
. (1.40)

Figure 1.4: Tidal forces.

F2

F1

2

1

z

in |ζ|, and using Cartesian coordinates, we get for the i-component of the tidal

Cartesian coordinate system at a distance R from a mass M , see Fig. 1.5.
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1.6 Tidal forces

If the coordinate system is falling freely together with the particles towards M , an

(assuming that z � R)

fz = Fz(z)− Fz(0) = 2mz
GM

R3
(1.41)

directed away from the origin, along the positive z-axis.
In the same way one finds that particles at the points (x, 0, 0) and at (0, y, 0) are

attracted towards the origin by tidal forces

fx = −mx
GM

R3
and fy = −my

GM

R3
. (1.42)

Eqs. (1.41) and (1.42) have among others the following consequence. If an elastic
circular ring is falling freely in the gravitational field of the Earth, as shown in Fig. 1.6,
it will be stretched in the vertical direction and compressed in the horizontal direction.

In general, tidal forces cause changes of shape.

Example 1.2 (Flood and ebb on the Earth)

be the mass of the Moon (or the Sun).
The potential in the gravitational field of M at a point P on the surface of the Earth

is (see Fig. 1.7)

φ(r) = − GM

(D2 + R2 − 2RD cos θ)1/2
, (1.43)

Figure 1.5: Tidal force between vertically separated particles.

Figure 1.6: Deformation due to tidal forces.

The tidal forces from the Sun and the Moon cause flood and ebb on the Earth. Let M

observer at the origin will say that the particle at (0, 0, z) is acted upon by a force

Fz(z)
m

Fz(0)

z = –RM

11
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where R is the radius of the Earth, and D the distance from the centre of the Moon (or
Sun) to the centre of the Earth. Making a series expansion to 2nd order in R/D we get

φ = −GM

D

„
1 +

R

D
cos θ − 1

2

R2

D2
+

3

2

R2

D2
cos2 θ

«
. (1.44)

If the gravitational field of the Moon (and the Sun) was homogeneous near the Earth,
there would be no tides. At an arbitrary position P on the surface of the Earth the
acceleration of gravity in the field of the Moon, would then be the same as at the centre
of the Earth

gMoon = −|∇φ1| = GM

D2
, (1.45)

where φ1 = −GM/D is the leading order term of Eq. (1.44). The height difference
between the point P and the centre of the Earth in the gravitational field of the Moon,
is ΔH = R cos θ. The ‘reference potential’ of P representing the potential of P if there
were no tides, is

φ2 = φ1 − gMoonΔH = −GM

D

„
1 +

R

D
cos θ

«
. (1.46)

The tidal potential φT is the difference between the actual potential at P , given in
Eq. (1.43) or to second order in R/D by Eq. (1.44), and the reference potential,

φT = φ− φ2 ≈ GMR2

2D3

`
1− 3 cos2 θ

´
. (1.47)

A water particle at the surface of the Earth is acted upon also by the gravitational
field of the Earth. Let g be the acceleration of gravity at P . If the water is in static
equilibrium, the surface of the water represents an equipotential surface, given by

gh +
GMR2

2D3

`
1− 3 cos2 θ

´
= constant. (1.48)

This equation gives the height of the water surface as a function of the angle θ. The
difference between flood at θ = 0 and ebb at θ = π/2, is

Δh =
3GMR2

2D3g
. (1.49)

Inserting numerical data for the Moon and the Sun gives ΔhMoon = 0.53 m and ΔhSun =

0.23 m.

Example 1.3 (A tidal force pendulum)

is free to oscillate in any vertical plane about its centre of mass. The mass of the rod is
negligible relative to m. The pendulum is at a distance R from the centre of a spherical
distribution of matter with mass M (Fig. 1.8).

The oscillation of the pendulum is determined by the equation of motion

|� × (F1 −F2)| = Iθ̈ (1.50)

Figure 1.7: Tidal forces from the Moon on a point P on the Earth.

Two particles each with mass m are connected by a rigid rod of length 2�. The system

Earth

R

D

q

Moon

1
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1.6 Tidal forces

where I = 2m�2 is the moment of inertia of the pendulum.
By Newton’s law of gravitation

F1 = −GMm
R + �

|R + �|3 , F2 = −GMm
R− �

|R− �|3 . (1.51)

Thus
GMm|� ×R|(|R− �|−3 − |R + �|−3) = 2m�2θ̈. (1.52)

From Fig. 1.8 it is seen that
|� ×R| = �R sin θ. (1.53)

It is now assumed that � � R. Then we have, to first order in �/R,

|R− �|−3 − |R + �|−3 =
6�

R4
cos θ. (1.54)

The equation of motion of the pendulum now takes the form

2θ̈ +
3GM

R3
sin 2θ = 0. (1.55)

This is the equation of motion of a simple pendulum in the variable 2θ, instead of
as usual with θ as variable. The equation shows that the pendulum oscillates about
a vertical equilibrium position. The reason for 2θ instead of the usual θ, is that the
tidal pendulum is invariant under a change θ → θ + π, while the simple pendulum is
invariant under a change θ → θ + 2π.

Assuming small angular displacements leads to

θ̈ +
3GM

R3
θ = 0.

This is the equation of a harmonic oscillator with period

T = 2π

„
R3

3GM

«1/2

.

Note that the period of the tidal force pendulum is independent of its length. This
means that tidal forces can be observed on systems of arbitrarily small size. Also, from
the equation of motion it is seen that in a uniform field, where F1 = F2, the pendulum
does not oscillate.

The acceleration of gravity at the position of the pendulum is g = GM/R2, so that
the period of the tidal pendulum may be written

T = 2π

„
R

3g

«1/2

.

Figure 1.8: Geometry of a tidal force pendulum.

m

m

M

R+ `

R

F1

F2

R − `

− `

`
q
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The mass of a spherical body with mean density ρ is M = (4π/3)ρR3, which gives for
the period of a tidal pendulum at its surface

T =

„
πG

ρ

«1/2

.

Thus the period depends only upon the density of the body. For a pendulum at the
surface of the Earth the period is about 50 minutes. The region in spacetime needed in
order to measure the tidal force is not arbitrarily small.

1.7 The principle of equivalence

Galilei experimentally investigated the motion of freely falling bodies. He
found that they moved in the same way, regardless of mass and of composi-
tion.

In Newton’s theory of gravitation, mass appears in two different ways:

1. in the law of gravitation as gravitational mass, mg;

2. in Newton’s 2nd law as inertial mass, mi.

The equation of motion of a freely falling particle in the gravity field of a
spherical body with gravitational mass M takes the form

d2r

dt2
= −mg

mi

M

r3
r. (1.56)

The result of Galilei’s observations, and subsequent measurements that veri-
fied his observations, is that that the ratio of gravitational to inertial mass is
the same for all bodies. With a suitable choice of units we obtain

mg = mi. (1.57)

Measurements performed by the Hungarian baron Eötvös at the turn of the
20th century, indicated that this equality holds with an accuracy better than
10−8. Recent experiments have given the result |mi −mg|/mi < 9× 10−33.

Einstein assumed the exact validity of Eq. (1.57) for all kinds of particles.
He did not consider this a coincidence, but rather as an expression of a funda-
mental principle, the principle of equivalence.

A consequence of this universality of free fall is the possibility of removing
the effect of a gravitational force by being in free fall. In order to clarify this,
Einstein considered a homogeneous gravitational field in which the acceler-
ation of gravity, g, is independent of the position. In a freely falling, non-
rotating reference frame in this field, all free particles move according to

mi
d2r′

dt2
= (mg −mi)g = 0, (1.58)

where Eqs. (1.6) and (1.57) have been used.
This means that an observer in such a freely falling reference frame will

say that the particles around him are not acted upon by any forces. They
move with constant velocities along straight paths. In the general theory of
relativity such a reference frame is said to be inertial.
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1.8 The covariance principle

Einstein’s heuristic reasoning also suggested full equivalence between Gali-
lean frames in regions far from mass distributions, where there are no gravi-
tational fields, and inertial frames falling freely in a gravitational field. Due to
this equivalence, the Galilean frames of the special theory of relativity, which
presupposes a spacetime free of gravitational fields, shall hereafter be called
inertial reference frames. In the relativistic literature the implied strong prin-
ciple of equivalence has often been interpreted to mean the physical equiva-
lence between freely falling frames and unaccelerated frames in regions free of
gravitational fields. This equivalence has a local validity; it is concerned with
measurements in the freely falling frames, restricted in duration and spatial
extension so that tidal effects cannot be measured.

The principle of equivalence has also been interpreted in ‘the opposite
way’. An observer at rest in a homogeneous gravitational field, and an ob-
server in an accelerated reference frame in a region far from any mass-distri-
bution, will obtain identical results when they perform similar experiments.
The strong equivalence principle states that locally the behaviour of matter in an
accelerated frame of reference cannot be distinguished from its behaviour in a cor-
responding gravitational field. Again, there is a local equivalence in an inho-
mogeneous gravitational field. The equivalence is manifest inside spacetime
regions restricted so that the inhomogeneity of the gravitational field cannot
be measured. An inertial field caused by the acceleration or rotation of the reference
frame is equivalent to a gravitational field caused by a mass-distribution (as far as
tidal effects can be ignored). The strong equivalence principle is usually elevated
to a global equivalence of all spacetime points so that the result of any local
test-experiment (non-gravitational or gravitational) is independent of where
and when it is performed.

1.8 The covariance principle

The principle of relativity is a physical principle. It is concerned with physical
phenomena. It motivates the introduction of a formal principle called the co-
variance principle: the equations of a physical theory shall have the same form
in every coordinate system.

This principle may be fulfilled by every theory by writing the equations in
an invariant form. This form is obtained by only using spacetime tensors in
the mathematical formulation of the theory.

The covariance principle and the equivalence principle may be used to
obtain a description of what happens in the presence of gravity. We start with
the physical laws as formulated in the special theory of relativity. The laws
are then expressed in a covariant way by writing them as tensor equations.
They are then valid in an arbitrary accelerated system, but the inertial field
(‘fictitious force’) in the accelerated frame is equivalent to a non-vanishing
acceleration of gravity. One has thereby obtained a description valid in the
presence of a gravitational field (as far as non-tidal effects are concerned).

In general, the tensor equations have a coordinate independent form. Yet,
such covariant equations need not fulfil the principle of relativity. A physi-
cal principle, such as the principle of relativity, is concerned with observable
relationships. When one is going to deduce the observable consequences of
an equation, one has to establish relations between the tensor-components of
the equation and observable physical quantities. Such relations have to be
defined; they are not determined by the covariance principle.
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From the tensor equations, which are covariant, and the defined relations
between the tensor components and the observable physical quantities, one
can deduce equations between physical quantities. The special principle of
relativity demands that these equations must have the same form in every
Galilean reference frame.

The relationships between physical quantities and mathematical objects
such as tensors (vectors) are theory-dependent. For example, the relative ve-
locity between two bodies is a vector within Newtonian kinematics. In the
relativistic kinematics of four-dimensional spacetime, an ordinary velocity
which has only three components, is not a vector. Vectors in spacetime, called
4-vectors, have four components.

Equations between physical quantities are not covariant in general. For
example, Maxwell’s equations in three-vector form are not invariant under
a Lorentz transformation. When these equations are written in tensor-form,
they are invariant under a Lorentz-transformation, and all other coordinate
transformations.

If all equations in a theory are tensor equations, the theory is said to be
given a manifestly covariant form. A theory that is written in a manifestly
covariant form will automatically fulfil the covariance principle, but it need
not fulfil the principle of relativity.

1.9 Mach’s principle

Einstein wanted to abandon Newton’s idea of an absolute space. He was at-
tracted by the idea that all motion is relative. This may sound simple, but it
leads to some highly non-trivial and fundamental questions.

spring. What will happen if the two particles rotate about each other? Will the
string be stretched due to centrifugal forces? Newton would have confirmed
that this is indeed what will happen. However, when there is no longer any
absolute space that the particles can rotate relatively to, the answer is not as
obvious. To observers rotating around stationary particles, the string would
not appear to stretch. This situation is, however, kinematically equivalent to
the one with rotating particles and observers at rest, which presumably leads
to stretching.

Such problems led Mach to the view that all motion is relative. The motion
of a particle in an empty universe is not defined. All motion is motion relative

that inertial forces must be due to a particle’s acceleration relative to the great
If there were no such cosmic masses, there would

exist no inertial forces. In our string example, if there were no cosmic masses
that the particles could rotate relatively to, there would be no stretching of the
string.

Another example makes use of a carousel. If we stay on this while it ro-
tates, we feel that the centrifugal force leads us outwards. At the same time
we observe that the heavenly bodies rotate.

Einstein was impressed by Mach’s arguments, which likely influenced Ein-
stein’s construction of the general theory of relativity. Yet it is clear that gen-
eral relativity does not fulfil all requirements set by Mach’s principle. There
exist, for example, general relativistic, rotating cosmological models, where
free particles will tend to rotate relative to the cosmic mass of the model.

Imagine that the Universe consists of only two particles connected by a

to something else, i.e., relative to other masses. According to Mach this implies

masses of the Universe.
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Problems

Some Machian effects have been shown to follow from the equations of
the general theory of relativity. For example, inside a rotating, massive shell

the free particles, are dragged around and tend to
rotate in the same direction as the shell. This was discovered by Lense and
Thirring in 1918 [LT18] and is called the Lense–Thirring effect. More recent

led to the following result:

A massive shell with radius equal to its Schwarzschild radius [see

Our result shows that in such models local inertial frames near the

way our result gives an explanation, in accordance with Mach’s
principle, of the fact that the ‘fixed stars’ are at rest on heaven as
observed from an inertial reference frame.

It is clear to some extent that local inertial frames are determined by the distri-
bution and motion of mass in the Universe, but in Einstein’s General Theory
of Relativity one cannot expect that matter alone determines the local inertial
frames. The gravitational field itself, e.g. in the form of gravitational waves,
may play a significant role.

Problems

1.1. The strength of gravity compared to the Coulomb force

(a) Determine the difference in strength between the Newtonian gravita-
tional attraction and the Coulomb force of the interaction of the proton
and the electron in a hydrogen atom.

(b) What is the gravitational force of attraction of two objects of 1 kg at a
separation of 1 m. Compare with the corresponding electrostatic force of
two charges of 1 C at the same distance.

then what would the charges be?

1.2. Falling objects in the gravitational field of the Earth

(a) Two test particles are in free fall towards the centre of the Earth. They
both start from rest at a height of 3 Earth radii and with a horizontal
separation of 1 m. How far have the particles fallen when the distance
between them is reduced to 0.5 m?

(b) Two new test particles are dropped from the same height with a time sep-
aration of 1 s. The first particle is dropped from rest. The second particle
is given an initial velocity equal to the instantaneous velocity of the first
particle, and it follows after the first one in the same trajectory. How far
and how long have the particles fallen when the distance between them
is doubled?

1.3. Newtonian potentials for spherically symmetric bodies

(a) Calculate the Newtonian potential φ(r) for a spherical shell of matter.
Assume that the thickness of the shell is negligible, and the mass per unit
area, σ, is constant on the spherical shell. Find the potential both inside
and outside the shell.

investigations of this effect by D.R. Brill and J.M. Cohen [BC66] and others,

tractive force was not gravitational but caused by opposite electric charges,
(c) Compute the gravitational force between the Earth and the Sun. If the at-

Ch. 10] has often been used as an idealized model of our Universe.

the inertial frames, i.e.,

centre cannot rotate relatively to the mass of the Universe. In this
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(b) Let R and M be the radius and the mass of the Earth. Find the potential
φ(r) for r < R and r > R. The mass-density is assumed to be constant
for r < R. Calculate the gravitational acceleration on the surface of the
Earth. Compare with the actual value of g = 9.81m/s2 (M = 6.0 · 1024kg
and R = 6.4 · 106m).

(c) Assume that a hollow tube has been drilled right through the centre of
the Earth. A small solid ball is then dropped into the tube from the sur-
face of the Earth. Find the position of the ball as a function of time. What
is the period of the oscillations of the ball?

(d) We now assume that the tube is not passing through the centre of the
Earth, but at a closest distance s from the centre. Find how the period
of the oscillations vary as a function of s. Assume for simplicity that the

1.4. The Earth-Moon system

(a) Assume that the Earth and the Moon are point objects and isolated from
the rest of the Solar system. Put down the equations of motion for the
Earth-Moon system. Show that there is a solution where the Earth and
Moon are moving in perfect circular orbits around their common centre
of mass. What is the radii of the orbits when we know the mass of the
Earth and the Moon, and the orbital period of the Moon?

(b) Find the Newtonian potential along the line connecting the two bodies.
Draw the result in a plot, and find the point on the line where the gravi-
tational interactions from the bodies exactly cancel each other.

(c) The Moon acts with a different force on a 1 kilogram measure on the
surface of Earth, depending on whether it is closest to or farthest from
the Moon. Find the difference in these forces.

1.5. The Roche-limit
A spherical moon with a mass m and radius R is orbiting a planet with mass
M . Show that if the moon is closer to its parent planet’s centre than

r =

(
2M

m

)1/3

R,

then loose rocks on the surface of the moon will be elevated due to tidal effects.

1.6. A Newtonian Black Hole
In 1783 the English physicist John Michell used Newtonian dynamics and
laws of gravity to show that for massive bodies which were small enough,
the escape velocity of the bodies are larger than the speed of light. (The same
was emphasized by the French mathematician and astronomer Pierre Laplace
in 1796).

(a) Assume that the body is spherical with mass M . Find the largest radius,

light cannot escape. Assume naively that photons have kinetic energy
1
2mc2.

(b) Find the tidal force on two bodies m at the surface of a spherical body,
when their internal distance is ζ. What would the tidal force be on the

ball is sliding without friction (i.e., no rotation) in the tube.

R, that the body can have in order for it to be a “Black Hole”, i.e., so that

18



Problems

cases (consider the head and feet as point particles, each weighing 5kg):

1. The human is standing on the surface of a Black Hole with 10 times
the Solar mass.

2. On the Sun’s surface.
3. On the Earth’s surface.

1.7. Non-relativistic Kepler orbits

(a) Consider first the Newtonian gravitational potential ϕ(r) at a distance r
from the Sun to be ϕ(r) = −GM

r , where M is the solar mass. Write down
the classical Lagrangian in spherical coordinates (r, θ, φ) for a planet with
mass m. The Sun is assumed to be stationary.
What is the physical interpretation of the canonical momentum pφ = �?
How can we from the Lagrangian see that it is a constant of motion? Find
the Euler-Lagrange equation for θ and show that it can be written

d

dt

(
mr4θ̇2 +

�2

m sin2 θ

)
= 0. (1.59)

Show, using this equation, that the planet can be considered to move in a
plane such that at t = 0, θ = π/2 and θ̇ = 0.

(b) Find the Euler-Lagrange equation for r and use it to find r as a function
of φ. Show that the bound orbits are ellipses. Of circular orbits, what is
the orbital period T in terms of the radius R?

(c) If the Sun is not completely spherical, but slightly squashed at the poles,
then the gravitational potential along the equatorial plane has to be mod-
ified to

ϕ(r) = −GM

r
− Q

r3
, (1.60)

where Q is a small constant. We will assume that the planet move in the
plane where this expression is valid. Show that a circular orbit is still
possible. What is the relation between T and R in this case?

(d) Assume that the orbit deviates slightly from a circular orbit; i.e. r = R+ρ,
where ρ � R. Show that ρ varies periodically according to

ρ = ρ0 sin

(
2π

Tρ
t

)
. (1.61)

Find Tρ, and show that the orbit precesses slightly during each orbit.
What it the angle Δφ of precession for each orbit?
The constant Q can be written Q = 1

2J2GMR2
S where J2 is the Sun’s

quadrupole moment, and RS is the Sun’s radius. Observational data
show that J2 � 3 · 10−5. What is the maximal precession of Δφ for the
Mercurian orbit?

head and the feet of a 2 m tall human, standing upright, in the following
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2
The Special Theory of Relativity

ciples of the special theory of relativity, and deduce some of the consequences
of the theory.

The special theory of relativity was presented by Albert Einstein in 1905.
It was founded on two postulates:

1. The laws of physics are the same in all Galilean frames.

2. The velocity of light in empty space is the same in all Galilean frames
and independent of the motion of the light source.

Einstein pointed out that these postulates are in conflict with Galilean kine-
matics, in particular with the Galilean law for addition of velocities. Accord-
ing to Galilean kinematics two observers moving relative to each other cannot
measure the same velocity for a certain light signal. Einstein solved this prob-
lem by a thorough discussion of how two distant clocks should be synchro-
nized.

2.1 Coordinate systems and Minkowski-diagrams

The most simple physical phenomenon that we can describe is called an event.
This is an incident that takes place at a certain point in space and at a certain
point in time. A typical example is the flash from a flashbulb.

A complete description of an event is obtained by giving the position of
the event in space and time. Assume that our observations are made with
reference to a reference frame. We introduce a coordinate system into our
reference frame. Usually it is advantageous to employ a Cartesian coordinate
system. This may be thought of as a cubic lattice constructed by measuring
rods. If one lattice point is chosen as origin, with all coordinates equal to
zero, then any other lattice point has three spatial coordinates equal to the
distances of that point along the coordinate axes that pass through the origin.
The spatial coordinates of an event are the three coordinates of the lattice point
at which the event happens.

In this chapter we shall give a short introduction to the fundamental prin-
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It is somewhat more difficult to determine the point of time of an event. If
an observer is sitting at the origin with a clock, then the point of time when
he catches sight of an event is not the point of time when the event happened.
This is because the light takes time to pass from the position of the event to
the observer at the origin. Since observers at different positions have to make
different such corrections, it would be simpler to have (imaginary) observers
at each point of the reference frame such that the point of time of an arbitrary
event can be measured locally.

But then a new problem appears. One has to synchronize the clocks, so
that they show the same time and go at the same rate. This may be performed
by letting the observer at the origin send out light signals so that all the other
clocks can be adjusted (with correction for light-travel time) to show the same
time as the clock at the origin. These clocks show the coordinate time of the
coordinate system, and they are called coordinate clocks.

By means of the lattice of measuring rods and coordinate clocks, it is now
easy to determine four coordinates (x0 = ct, x, y, z) for every event. (We have
multiplied the time coordinate t by the velocity of light c in order that all four
coordinates shall have the same dimension.)

This coordinatization makes it possible to describe an event as a point P
in a so-called Minkowski-diagram. In this diagram we plot ct along the vertical
axis and one of the spatial coordinates along the horizontal axis.

In order to observe particles in motion, we may imagine that each particle
is equipped with a flash-light, and that they flash at a constant frequency. The
flashes from a particle represent a succession of events. If they are plotted
into a Minkowski-diagram, we get a series of points that describe a curve in
the continuous limit. Such a curve is called a world-line of the particle. The
world-line of a free particle is a straight line, as shown to left of the time axis
in Fig. 2.1.

A particle acted upon by a net force has a curved world-line as the velocity
of the particle changes with time. Since the velocity of every material particle
is less than the velocity of light, the tangent of a world line in a Minkowski-
diagram will always make an angle less than 45◦ with the time axis.

A flash of light gives rise to a light-front moving onwards with the velocity
of light. If this is plotted in a Minkowski-diagram, the result is a light-cone. In
Fig. 2.1 we have drawn a light-cone for a flash at the origin. It is obvious that
we could have drawn light-cones at all points in the diagram. An important
result is that the world-line of any particle at a point is inside the light-cone of a flash
from that point. This is an immediate consequence of the special principle of
relativity, and is also valid locally in the presence of a gravitational field.

Figure 2.1: World-lines.
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2.2 Synchronization of clocks

2.2 Synchronization of clocks

There are several equivalent methods that can be used to synchronize clocks.
We shall here consider the radar method.

We place a mirror on the x-axis and emit a light signal from the origin at
time tA. This signal is reflected by the mirror at tB , and received again by
the observer at the origin at time tC . According to the second postulate of
the special theory of relativity, the light moves with the same velocity in both
directions, giving

tB =
1

2
(tA + tC). (2.1)

When this relationship holds we say that the clocks at the origin and at the
mirror are Einstein synchronized. Such synchronization is presupposed in the
special theory of relativity. The situation corresponding to synchronization by
the radar method is illustrated in Fig. 2.2.

The radar method can also be used to measure distances. The distance L
from the origin to the mirror is given by

L =
c

2
(tC − tA). (2.2)

Later (Chapter 8) we shall see that when we measure distances in a gravita-
tional field, the results depend upon the measuring technique that is used. For
example, measurements made using the radar method differ from those made
using measuring rods.

2.3 The Doppler effect

Consider three observers (1, 2, and 3) in an inertial frame. Observers 1 and 3
are at rest, while 2 moves with constant velocity along the x-axis. The situation
is illustrated in Fig. 2.3.

Each observer is equipped with a clock. If observer 1 emits light pulses
with a constant period τ1, then observer 2 receives them with a longer period
τ2 according to his or her1 clock. The fact that these two periods are differ-
ent is a well-known phenomenon, called the Doppler effect. The same effect is

1For simplicity we shall—without any sexist implications—follow the grammatical convention
of using masculine pronouns, instead of the more cumbersome ‘his or her’.

Figure 2.2: Clock synchronization by the radar method.
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observed with sound; the tone of a receding vehicle is lower than that of an
approaching one.

We are now going to deduce a relativistic expression for the Doppler effect.
Firstly, we see from Fig. 2.3 that the two periods τ1 and τ2 are proportional to
each other,

τ2 = Kτ1. (2.3)

The constant K(v) is called Bondi’s K-factor. Since observer 3 is at rest, the
period τ3 is equal to τ1 so that

τ3 =
1

K
τ2. (2.4)

These two equations imply that if 2 moves away from 1, so that τ2 > τ1, then
τ3 < τ2. This is because 2 moves towards 3.

The K-factor is most simply determined by placing observer 1 at the ori-
gin, while letting the clocks show t1 = t2 = 0 at the moment when 2 passes the
origin. This is done in Fig. 2.3. The light pulse emitted at the point of time tA,
is received by 2 when his clock shows τ2 = KtA. If 2 is equipped with a mirror,
the reflected light pulse is received by 1 at a point of time tC = Kτ2 = K2tA.
According to Eq. (2.1) the reflection-event then happens at a point of time

tB =
1

2
(tC + tA) =

1

2
(K2 + 1)tA. (2.5)

The mirror has then arrived at a distance xB from the origin, given by Eq. (2.2),

xB =
c

2
(tC − tA) =

c

2
(K2 − 1)tA. (2.6)

Thus, the velocity of observer 2 is

v =
xB

tB
= c

K2 − 1

K2 + 1
. (2.7)

Solving this equation with respect to the K-factor we get

K =

(
c + v

c− v

)1/2

. (2.8)

Figure 2.3: The Doppler effect.
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2.4 Relativistic time-dilatation

This is a consequence of the second postulate of special relativity; the velocity
of light is isotropic and independent of the velocity of the light source.

Since the wavelength λ of the light is proportional to the period τ , Eq. (2.3)
gives the observed wavelength λ′ for the case when the observer moves away
from the source,

λ′ = Kλ =

(
c + v

c− v

)1/2

λ. (2.9)

This Doppler-effect represents a red-shift of the light. If the light source moves
towards the observer, there is a corresponding blue-shift given by K−1.

It is common to express this effect in terms of the relative change of wave-
length,

z =
λ′ − λ

λ
= K − 1 (2.10)

which is positive for red-shift. If v � c, Eq. (2.9) gives,

λ′

λ
= K ≈ 1 +

v

c
(2.11)

to lowest order in v/c. The red-shift is then

z =
v

c
. (2.12)

This result is well known from non-relativistic physics.

2.4 Relativistic time-dilatation

Every periodic motion can be used as a clock. A particularly simple clock is
called the light clock. This is illustrated in Fig. 2.4.

The clock consists of two parallel mirrors that reflect a light pulse back and
forth. If the period of the clock is defined as the time interval between each
time the light pulse hits the lower mirror, then Δt′ = 2L0/c.

Assume that the clock is at rest in an inertial reference frame Σ′ where it is
placed along the y-axis, as shown in Fig. 2.4. If this system moves along the
ct-axis with a velocity v relative to another inertial reference frame Σ, the light
pulse of the clock will follow a zigzag path as shown in Fig. 2.5.

This result is relativistically correct. The special theory of relativity was
included through the tacit assumption that the velocity of the reflected light is c.

Figure 2.4: Light-clock.
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The light signal follows a different path in Σ than in Σ′. The period Δt of
the clock as observed in Σ is different from the period Δt′ which is observed
in the rest frame. The period Δt is easily found from Fig. 2.5. Since the pulse
takes the time (1/2)Δt from the lower to the upper mirror and since the light
velocity is always the same, we find(

1

2
cΔt

)2

= L2
0 +

(
1

2
vΔt

)2

(2.13)

Δt = γ
2L0

c
, γ ≡ 1√

1− v2

c2

. (2.14)

The γ factor is a useful short-hand notation for a term which is often used in
relativity theory. It is commonly known as the Lorentz factor.

Since the period of the clock in its rest frame is Δt′, we get

Δt = γΔt′. (2.15)

Thus, we have to conclude that the period of the clock when it is observed to
move (Δt) is greater that its rest-period ( Δt′). In other words: a moving clock
goes slower than a clock at rest. This is called the relativistic time-dilatation. The
period Δt′ of the clock as observed in its rest frame is called the proper period
of the clock. The corresponding time t′ is called the proper time of the clock.

One might be tempted to believe that this surprising consequence of the
special theory of relativity has something to do with the special type of clock
that we have employed. This is not the case. If there had existed a mechanical
clock in Σ that did not show the time dilatation, then an observer at rest in Σ
might measure his velocity by observing the different rates of his light clock
and this mechanical clock. In this way he could measure the absolute velocity
of Σ. This would be in conflict with the special principle of relativity.

2.5 The relativity of simultaneity

Events that happen at the same point of time are said to be simultaneous events.
We shall now show that according to the special theory of relativity, events
that are simultaneous in one reference frame are not simultaneous in another
reference frame moving with respect to the first. This is what is meant by the
expression “the relativity of simultaneity”.

1
2cΔt

1
2vΔt

y

xΣ

L0

i.e.,

Figure 2.5: Moving light-clock.

,
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2.5 The relativity of simultaneity

Consider again two mirrors connected by a line along the x′-axis, as shown
in Fig. 2.6. Halfway between the mirrors there is a flash-lamp emitting a spher-
ical wave front at a point of time tC .

The points at which the light front reaches the left-hand and the right-
hand mirrors are denoted by A and B, respectively. In the reference frame Σ′

Figure 2.6: Simultaneous events A and B.

of Fig. 2.6 the events A and B are simultaneous.

If we describe the same course of events from another reference frame (Σ),
where the mirror moves with constant velocity v in the positive x-direction
we find the Minkowski-diagram shown in Fig. 2.7. Note that the light follows

Figure 2.7: The simultaneous events in another frame.

world lines making an angle of 45◦ with the axes. This is the case in every
inertial frame.

In Σ the light pulse reaches the left mirror, which moves towards the light,
before it reaches the right mirror, which moves in the same direction as the
light. In this reference frame the events when the light pulses hit the mirrors
are not simultaneous.

As an example illustrating the relativity of simultaneity, Einstein imagined
that the events A, B and C happen in a train which moves past the platform
with a velocity v. The event C represents the flash of a lamp at the mid-point
of a wagon. A and B are the events when the light is received at the back end
and at the front end of the wagon respectively. This situation is illustrated in
Fig. 2.8.
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Figure 2.8: Light flash in a moving train.

As observed in the wagon, A and B happen simultaneously. As observed
from the platform the rear end of the wagon moves towards the light which
moves backwards, while the light moving forwards has to catch up with the
front end. Thus, as observed from the platform A will happen before B.

The time difference between A and B as observed from the platform will
now be calculated. The length of the wagon, as observed from the platform,
will be denoted by L. The time coordinate is chosen such that tC = 0. The
light moving backwards hits the rear wall at a point of time tA. During the
time tA the wall has moved a distance vtA forwards, and the light has moved
a distance ctA backwards. Since the distance between the wall and the emitter
is L/2, we get

L

2
= vtA + ctA. (2.16)

Thus

tA =
L

2(c + v)
. (2.17)

In the same manner one finds

tB =
L

2(c− v)
. (2.18)

It follows that the time difference between A and B as observed from the plat-
form is

Δt = tB − tA =
γ2vL

c2
. (2.19)

As observed from the wagon A and B are simultaneous. As observed from
the platform the rear event A happens a time interval Δt before the event B.
This is the relativity of simultaneity.

2.6 The Lorentz-contraction

During the first part of the nineteenth century the so-called luminiferous ether
was introduced into physics to account for the propagation and properties of
light. After J.C. Maxwell showed that light is electromagnetic waves the ether
was still needed as a medium in which electromagnetic waves propagated
[Ros64].

It was shown that Maxwell’s equations do not obey the principle of relativ-
ity, when coordinates are changed using the Galilean transformations. If it is
assumed that the Galilean transformations are correct, then Maxwell’s equa-
tions can only be valid in one coordinate system. This coordinate system was
the one in which the ether was at rest. Hence, Maxwell’s equations in com-
bination with the Galilean transformations implied the concept of ’absolute

C A B v

· · · · · ·
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2.6 The Lorentz-contraction

rest’. This made the measurement of the velocity of the Earth relative to the
ether of great importance.

An experiment sufficiently accurate to measure this velocity to order v2/c2

was carried out by Michelson and Morley in 1887. A simple illustration of the
experiment is shown in Fig. 2.9.

Our earlier photon clock is supplied by a mirror at a distance L along the x-
axis from the emitter. The apparatus moves in the x-direction with a velocity
v. In the rest-frame (Σ′) of the apparatus, the distance between A and B is
equal to the distance between A and C. This distance is denoted by L0 and is
called the rest length between A and B.

Light is emitted from A. Since the velocity of light is isotropic and the dis-
tances to B and C are equal in Σ′, the light reflected from B and that reflected
from C have the same travelling time. This was the result of the Michelson–
Morley experiment, and it seems that we need no special effects such as the
Lorentz-contraction to explain the experiment.

However, before 1905 people believed in the physical reality of absolute
velocity. The Earth was considered to move though an “ether” with a velocity
that changed with the seasons. The experiment should therefore be described
under the assumption that the apparatus is moving.

Let us therefore describe a experiment from our reference frame Σ, which
may be thought of as at rest in the “ether”. Then according to Eq. (2.14) the
travel time of the light being reflected at C is

ΔtC = γ
2L0

c
. (2.20)

For the light moving from A to B we may use Eq. (2.18), and for the light from
B to A Eq. (2.17). This gives

ΔtB =
L

c− v
+

L

c + v
= γ2 2L

c
. (2.21)

If length is independent of velocity, then L = L0. In this case the travelling
times of the light signals will be different. The travelling time difference is

ΔtB −ΔtC = γ(γ − 1)
2L0

c
. (2.22)

To the lowest order in v/c, γ ≈ 1 + 1
2 (v/c)2, so that

ΔtB −ΔtC ≈ 1

2

(v

c

)2

(2.23)

Figure 2.9: Length contraction.
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which depends upon the velocity of the apparatus.
According to the ideas involving an absolute velocity of the Earth through

the ether, if one lets the light reflected at B interfere with the light reflected
at C (at the position A) then the interference pattern should vary with the
season. This was not observed. On the contrary, observations showed that
ΔtB = ΔtC .

Assuming that length varies with velocity, Eqs. (2.20) and (2.21), together
with this observation, gives

L = γ−1L0. (2.24)

The result that L < L0 (i.e. the length of a rod is less when it moves than when
it is at rest) is called the Lorentz-contraction.

2.7 The Lorentz transformation

An event P has coordinates (t′, x′, 0, 0) in a Cartesian coordinate system asso-
ciated with a reference frame Σ′. Thus the distance from the origin of Σ′ to
P measured with a measuring rod at rest in Σ′ is x′. If the distance between
the origin of Σ′ and the position at the x-axis where P took place is measured
with measuring rods at rest in a reference frame moving with velocity v in the
x-direction relative to Σ′, one finds the length γ−1x due to the Lorentz con-
traction. Assuming that the origin of Σ and Σ′ coincided at the point of time
t = 0, the origin of Σ′ has an x-coordinate vt at a point of time t. The event P
thus has an x-coordinate

x = vt + γ−1x′ (2.25)

or
x′ = γ(x− vt). (2.26)

The x-coordinate may be expressed in terms of t′ and x′ by letting v → −v,

x = γ(x′ + vt′). (2.27)

The y and z coordinates are associated with axes directed perpendicular to
the direction of motion. Therefore, they are the same in the two coordinate
systems

y = y′ and z = z′. (2.28)

Substituting x′ from Eq. (2.26) into Eq. (2.27) reveals the connection between
the time coordinates of the two coordinate systems,

t′ = γ
(
t− vx

c2

)
(2.29)

and

t = γ

(
t′ +

vx′

c2

)
. (2.30)

The latter term in this equation is nothing but the deviation from simultaneity
in Σ for two events that are simultaneous in Σ′.

The relations (2.27)–(2.30) between the coordinates of Σ and Σ′ represent a
special case of the Lorentz transformations. The above relations are special since
the two coordinate systems have the same spatial orientation, and the x and
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2.7 The Lorentz transformation

x′-axes are aligned along the relative velocity vector of the associated frames.
Such transformations are called boosts.

For non-relativistic velocities v � c, the Lorentz transformations (2.27)–
(2.30) pass over into the corresponding Galilei-transformations, (1.2) and (1.4).

The Lorentz transformation gives a connection between the relativity of
simultaneity and the Lorentz contraction. The length of a body is defined as the
difference between the coordinates of its end points, as measured by simultaneity
in the rest-frame of the observer.

Consider the wagon of Section 2.5. Its rest length is L0 = x′B − x′A. The
difference between the coordinates of the wagon’s end-points, xA−xB as mea-
sured in Σ, is given implicitly by the Lorentz transformation

x′B − x′A = γ [xB − xA − v(tB − tA)] . (2.31)

According to the above definition the length (L) of the moving wagon is given
by L = xB − xA with tB = tA.

From Eq. (2.31) we then get

L0 = γL (2.32)

which is equivalent to Eq. (2.24).
The Lorentz transformation will now be used to deduce the relativistic for-

mulae for velocity addition. Consider a particle moving with velocity u along
the x′-axis of Σ′. If the particle was at the origin at t′ = 0, its position at t′ is
x′ = u′t′. Using this relation together with Eqs. (2.27) and (2.28) we find the
velocity of the particle as observed in Σ

u =
x

t
=

u′ + v

1 + u′v
c2

. (2.33)

A remarkable property of this expression is that by adding velocities less than
c one cannot obtain a velocity greater than c. For example, if a particle moves
with a velocity c in Σ′ then its velocity in Σ is also c regardless of Σ’s velocity
relative to Σ′.

so-called rapidity η defined by

tanh η =
u

c
(2.34)

for a particle with velocity u. Similarly the rapidity of Σ′ relative to Σ is

tanh θ =
v

c
. (2.35)

Since

tanh(η′ + θ) =
tanh η′ + tanh θ

1 + tanh η′ tanh θ
, (2.36)

the relativistic velocity addition formula, Eq. (2.33), may be written

η = η′ + θ. (2.37)

Since rapidities are additive, their introduction simplifies some calculations
and they have often been used as variables in elementary particle physics.

With these new hyperbolic variables we can write the Lorentz transforma-
tion in a particularly simple way. Using Eq. (2.35) in Eqs. (2.27) and (2.30) we
find

x = x′ cosh θ + ct′ sinh θ, ct = x′ sinh θ + ct′ cosh θ. (2.38)

,

Equation (2.33) may be written in a geometric form by introducing the
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Figure 2.10: The interval between A and B is space-like, between C and D light-like,
and between E and F time-like.

2.8 Lorentz-invariant interval

Let two events be given. The coordinates of the events, as referred to two
different reference frames Σ and Σ′ are connected by a Lorentz transformation.
The coordinate differences are therefore connected by

Δt = γ(Δt′ + v
c2 Δx′), Δx = γ(Δx′ + vΔt′),

Δy = Δy′, Δz = Δz′. (2.39)

Just like (Δy)2+(Δz)2 is invariant under a rotation about the x-axis,−(cΔt)2+
(Δx)2 + (Δy)2 + (Δz)2

(Δs)2 = −(cΔt)2 + (Δx)2 + (Δy)2 + (Δz)2

= −(cΔt′)2 + (Δx′)2 + (Δy′)2 + (Δz′)2.
(2.40)

This combination of squared coordinate-intervals is called the spacetime in-
terval, or the interval. It is invariant under both rotations and Lorentz trans-
formations.

Due to the minus-sign in Eq. (2.40), the interval between two events may
be positive, zero or negative. These three types of intervals are called:

(Δs)2 > 0 space-like
(Δs)2 = 0 light-like
(Δs)2 < 0 time-like

(2.41)

The reasons for these names are the following. Given two events with a space-

the distance between the events is purely spatial. Two events with a light-like
interval (C and D in Fig. 2.10), can be connected by a light signal, i.e. one
can send a photon from C to D. The events E and F have a time-like interval
between them, and can be observed from a reference frame in which they have
the same spatial position, but occur at different points of time.

Since all material particles move with a velocity less than that of light, the
points on the world-line of a particle are separated by time-like intervals. The
curve is then said to be time-like. All time-like curves through a point pass
inside the light-cone from that point.
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is invariant under a Lorentz transformation, i.e.,

like interval (A and B in Fig. 2.10), then there exists a Lorentz transformation to
a new reference frame where A and B happen simultaneously. In this frame
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2.8 Lorentz-invariant interval

If the velocity of a particle is u = Δx/Δt along the x-axis, Eq. (2.40) gives

(Δs)2 = −
(

1− u2

c2

)
(cΔt)2. (2.42)

In the rest-frame Σ′ of the particle, Δx′ = 0, giving

(Δs)2 = −(cΔt′)2. (2.43)

The time t′ in the rest-frame of the particle is the same as the time measured
on a clock carried by the particle. It is called the proper time of the particle, and
denoted by τ . From Eqs. (2.42) and (2.43) it follows that

Δτ =

√
1− u2

c2
Δt = γ−1Δt (2.44)

which is an expression of the relativistic time-dilatation.
Equation (2.43) is important. It gives the physical interpretation of a time

like interval between two events. The interval is a measure of the proper time
interval between the events. This time is measured on a clock that moves such
that it is present at both events. In the limit u → c (the limit of a light signal),
Δτ = 0. This shows that (Δs)2 = 0 for a light-like interval.

Consider a particle with a variable velocity, u(t), as indicated in Fig. 2.11.
In this situation we can specify the velocity at an arbitrary point of the world-

around this point,

dτ =

√
1− u2(t)

c2
dt. (2.45)

This equation means that the acceleration has no local effect upon the proper-
time of the clock. Here the word “local” means as measured by an observer at
the position of the clock. Such clocks are called standard clocks.

If a particle moves from A to B in Fig. 2.11, the proper-time as measured
on a standard clock following the particle is found by integrating Eq. (2.45)

τB − τA =

B∫
A

√
1− u2(t)

c2
dt. (2.46)

The relativistic time-dilatation has been verified with great accuracy by obser-
vations of unstable elementary particles with short life-times [FS63].

Figure 2.11: World-line of an accelerating particle.

in an infinitesimal intervalline. Eq. (2.44) can be used with this velocity,

ct

B

A

cΔt

Δx

x
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An infinitesimal spacetime interval

ds2 = −c2dt2 + dx2 + dy2 + dz2 (2.47)

is called a line-element. The physical interpretation of the line-element between
two infinitesimally close events on a time-like curve is

ds2 = −c2dτ2, (2.48)

where dτ is the proper-time interval between the events, measured with a
clock following the curve. The spacetime interval between two events is given
by the integral (2.46). It follows that the proper-time interval between two events
is path dependent. This leads to the following surprising result: A time-like
interval between two events is greatest along the straightest possible curve
between them.

2.9 The twin-paradox

Rather than discussing the life-time of elementary particles, we may as well
apply Eq. (2.46) to a person. Let her name be Eva. Assume that Eva is rapidly
acceleration from rest at the point of time t = 0 at origin to a velocity v along
the x-axis of a (ct, x) coordinate system in an inertial reference frame Σ. (See
Fig. 2.12.)

Figure 2.12: World-lines of the twin sisters Eva and Elizabeth.

At a point of time tP she has come to a position xP . She then rapidly
decelerates until reaching a velocity v in the negative x-direction. At a point
of time tQ, as measured on clocks at rest in Σ, she has returned to her starting
location. If we neglect the brief periods of acceleration, Eva’s travelling time
as measured on a clock which she carries with her is

tEva =

(
1− v2

c2

)1/2

tQ. (2.49)

Now assume that Eva has a twin-sister named Elizabeth who remains at rest
at the origin of Σ.

Elizabeth has become older by τElizabeth = tQ during Eva’s travel, so that

τEva =

(
1− v2

c2

)1/2

τElizabeth. (2.50)
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2.10 Hyperbolic motion

=
years as measured by Elizabeth. Therefore Elizabeth has aged 10 years during
Eva’s travel. According to Eq. (2.50), Eva has only aged 6 years. According to
Elizabeth, Eva has aged less than herself during her travels.

The principle of relativity, however, tells that Eva can consider herself as
at rest and Elizabeth as the traveller. According to Eva it is Elizabeth who has
only aged by 6 years, while Eva has aged by 10 years during the time they are
apart.

What happens? How can the twin-sisters arrive at the same prediction
as to how much each of them age during the travel? In order to arrive at a
clear answer to these questions, we shall have to use a result from the general
theory of relativity. The twin-paradox will be taken up again in Chapter 5.

2.10 Hyperbolic motion

With reference to an inertial reference frame it is easy to describe relativistic
accelerated motion. The special theory of relativity is in no way limited to
describe motion with constant velocity.

Let a particle move with a variable velocity u(t) = dx/dt along the x-axis
in Σ. The frame Σ′ moves with velocity v in the same direction relative to
Σ. In this frame the particle-velocity is u′(t′) = dx′/dt′. At every moment
the velocities u and u′ are connected by the relativistic formula for velocity
addition, Eq. (2.33). Thus, a velocity change du′ in Σ′ and the corresponding
velocity change du in Σ are related – using Eq. (2.30) – by

dt =
dt′ + v

c2 dx′√
1− v2

c2

=
1 + u′v

c2√
1− v2

c2

dt′. (2.51)

Combining these expressions we obtain the relationship between the acceler-
ation of the particle as measured in Σ and in Σ′

a =
du

dt
=

(
1− v2

c2

)3/2

(
1 + u′v

c2

)3 a′. (2.52)

Until now the reference frame Σ′ has had an arbitrary velocity. Now we
choose v = u(t) so that Σ′ is the instantaneous rest frame of the particle at
a point of time t. At this moment u′ = 0. Then Eq. (2.52) reduces to

a =

(
1− u2

c2

)3/2

a′. (2.53)

Here a′ is the acceleration of the particle as measured in its instantaneous rest
frame. It is called the rest acceleration of the particle. Eq. (2.53) can be integrated
if we know how the rest acceleration of the particle varies with time.

We shall now focus on the case where the particle has uniformly acceler-
ated motion and moves along a straight path in space. The rest acceleration of
the particle is constant, say a′ = g. Integration of Eq. (2.53) with u(0) = 0 then
gives

u =

[
1 +

g2

c2
t2
]−1/2

gt. (2.54)

For example, if Eva travelled to Proxima Centauri (the Sun’s nearest neighbour
0.8c, she would be gone for tenat four light years) with a velocity v
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Integrating once more gives

x =
c2

g

[
1 +

g2

c2
t2
]1/2

+ x0 − c2

g
(2.55)

where x0 is a constant of integration corresponding to the position at t = 0.
Equation (2.55) can be given the form(

x− x0 +
c2

g

)2

− c2t2 =
c4

g2
. (2.56)

diagram.

Figure 2.13: World line of particle with constant rest acceleration.

Since the world-line of a particle with uniformly accelerated, rectilinear
motion has the shape of a hyperbola, this type of motion is called hyperbolic
motion.

Using the proper-time τ of the particle as a parameter, we may obtain a
simple parametric representation of its world-line. Substituting Eq. (2.54) into
Eq. (2.45) we get

dτ =
dt√

1 + g2

c2 t2
(2.57)

Integration with τ(0) = 0 gives

τ =
c

g
arsinh

(
gt

c

)
(2.58)

or

t =
c

g
sinh

(gτ

c

)
. (2.59)

Inserting this expression into Eq. (2.55), we get

x =
c2

g
cosh

(gτ

c

)
+ x0 − c2

g
. (2.60)

These expressions shall be used later when describing uniformly accelerated
reference frames.

Note that hyperbolic motion results when the particle moves with constant
rest acceleration. Such motion is usually called uniformly accelerated motion. Mo-
tion with constant acceleration as measured in the “laboratory frame” Σ gives
rise to the usual parabolic motion.
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,

As shown in Fig. 2.13, this is the equation of a hyperbola in the Minkowski-

,

.
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2.11 Energy and mass

2.11 Energy and mass

The existence of an electromagnetic radiation pressure was well known before
Einstein formulated the special theory of relativity. In black body radiation
with energy density ρ there is an isotropic pressure p = (1/3)ρc2. If the radi-
ation moves in a certain direction (laser), then the pressure in this direction is
p = ρc2.

Einstein gave several deductions of the famous equation connecting the
inertial mass of a body with its energy content. A deduction he presented in
1906 is as follows.

Figure 2.14: Light pulse in a box.

Consider a box with a light source at one end. A light pulse with radiation

The box has a mass M and a length L. Due to the radiation pressure of the
shooting light pulse the box receives a recoil. The pulse is emitted during a
time interval Δt. During this time the radiation pressure is

p = ρc2 =
E

V
=

E

AcΔt
(2.61)

where V is the volume of the radiation pulse and A the area of a cross-section
of the box. The recoil velocity of the box is

Δv = −aΔt = − F

M
Δt = −pA

M
Δt

= −
(

E

AcΔt

)(
AΔt

M

)
= − E

Mc
.

(2.62)

The pulse takes the time L/c to move to the other side of the box. During this
time the box moves a distance

Δx = Δv
L

c
= − EL

Mc2
. (2.63)

Then the box is stopped by the radiation pressure caused by the light pulse
hitting the wall at the other end of the box.

Let m be the mass of the radiation. Before Einstein one would put m = 0.
Einstein, however, reasoned as follows. Since the box and its contents repre-
sents an isolated system, the mass-centre has not moved. The mass centre of
the box with mass M has moved a distance Δx to the left, the radiation with
mass m has moved a distance L to the right. Thus

mL + MΔx = 0 (2.64)

L

M

V=AcΔt

cΔtx

v

energy E is emitted to the other end where it is absorbed (see Fig. 2.14).
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which gives

m = −M

L
Δx = −

(
M

L

)(
− EL

Mc2

)
=

E

c2
(2.65)

or
E = mc2. (2.66)

Einstein derived Eq. (2.66) using several different methods showing that it is
valid in general for all types of systems.

The energy content of even small bodies is enormous. For example, by
transforming one gram of matter to heat, one may heat 300,000 metric tons of
water from room temperature to the boiling point. (The energy corresponding
to a mass m is enough to change the temperature by ΔT of an object of mass
M and specific heat capacity cV : mc2 = McV ΔT .)

2.12 Relativistic increase of mass

In the special theory of relativity, force is defined as rate of change of momen-
tum. We consider a body that gets a change of energy dE due to the work
performed on it by a force F . According to Eq. (2.66) and the definition of
work (force times distance) the body gets a change of mass dm, given by

c2dm = dE = Fds = Fvdt = vd(mv) = mvdv + v2dm, (2.67)

which gives
m∫

m0

dm

m
=

v∫
0

vdv

c2 − v2
, (2.68)

where m0 is the rest mass of the body – i.e. its mass as measured by an ob-
server comoving with the body – and m its mass when its velocity is equal to
v. Integration gives

m =
m0√
1− v2

c2

= γm0. (2.69)

In the case of small velocities compared to the velocity of light we may use the
approximation √

1− v2

c2
≈ 1 +

1

2

v2

c2
. (2.70)

With this approximation Eqs. (2.66) and (2.69) give

E ≈ m0c
2 +

1

2
m0v

2. (2.71)

This equation shows that the total energy of a body encompasses its rest-
energy m0 and its kinetic energy. In the non-relativistic limit the kinetic energy
is m0v

2/2. The relativistic expression for the kinetic energy is

EK = E −m0c
2 = (γ − 1)m0c

2. (2.72)

Note that EK →∞ when v → c.
According to Eq. (2.33), it is not possible to obtain a velocity greater than

that of light by adding velocities. Equation (2.72) gives a dynamical reason
that material particles cannot be accelerated up to and above the velocity of
light.

Here we have shown that radiation energy has an innate mass given by Eq. (2.65).
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2.13 Tachyons

2.13 Tachyons

Particles cannot pass the velocity-barrier represented by the velocity of light.
However, the special theory of relativity permits the existence of particles that
have always moved with a velocity v > c. Such particles are called tachyons
[Rec78].

Tachyons have special properties that have been used in the experimental
searches for them. There is currently no observational evidence for the physi-
cal existence of tachyons [Kre73].

There are also certain theoretical difficulties with the existence of tachyons.
The special theory of relativity, applied to tachyons leads to the following
paradox. Using a tachyon telephone a person, A, emits a tachyon to B at a
point of time t1. B moves away from A. The tachyon is reflected by B and

mation it might bring an order to destroy the tachyon emitter when it arrives
back at A.

Figure 2.15: A emits a tachyon at the point of time t1. It is reflected by B and arrives
at A at a point of time t2 before t1. Note that the arrival event at A is later than the

reflection event as measured by B.

According to the reinterpretation principle, the observer will interpret his
observations to mean that a tachyon with positive energy moves forward
in time. In this way, one finds that the energy-exchange between tachyons
and ordinary matter proceeds in accordance with the principle of causality
[BDS62].

However, the reinterpretation principle cannot be used to remove the prob-
lems associated with exchange of information between tachyons and ordinary
matter. The tachyon telephone paradox cannot be resolved by means of the
reinterpretation principle. The conclusion is that if tachyons exist, they cannot
be carriers of information in our slowly-moving world.

tachyons and ordinary matter, a reinterpretation principle is introduced for
To avoid similar problems in regards to the energy-exchange between

tachyons. For certain observers a tachyon will move backwards in time, i.e. the
observer finds that the tachyon is received before it was emitted. Special rela-
tivity tells us that such a tachyon is always observed to have negative energy.

reach A before it was emitted, see Fig. 2.15. If the tachyon could carry infor-

t1
t2

t�R

ct ct�
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of B

39



The Special Theory of Relativity

2.14 Magnetism as a relativistic second-order effect

Electricity and magnetism are described completely by Maxwell’s equations
of the electromagnetic field,

∇ · E =
1

ε0
ρq (2.73)

∇ ·B = 0 (2.74)

∇×E = −∂B

∂t
(2.75)

∇×B = μ0j +
1

c2

∂E

∂t
(2.76)

together with Lorentz’s force-law

F = q(E + v ×B). (2.77)

However, the relation between the magnetic and the electric force was not
fully understood until Einstein had constructed the special theory of relativity.
Only then could one clearly see the relationship between the magnetic force
on a charge moving near a current carrying wire and the electric force between
charges.

We shall consider a simple model of a current carrying wire in which we
assume that the positive ions are at rest while the conducting electrons move
with the velocity v. The charge per unit length for each type of charged par-
ticle is λ̂ = Sne where S is the cross-sectional area of the wire, n the number
of particles of one type per unit length and e the charge of one particle. The
current in the wire is

J = Snev = λ̂v. (2.78)

The wire is at rest in an inertial frame Σ̂. As observed in Σ̂ it is electrically
neutral. Let a charge q move with a velocity u along the wire in the opposite
direction of the electrons. The rest frame of q is Σ. The wire will now be
described from Σ (see Fig. 2.16 and 2.17).

Figure 2.16: Wire seen from its own rest frame.

Note that the charge per unit length of the particles as measured in their
own rest-frames, Σ0, is

λ0− = λ̂

(
1− v2

c2

)1/2

, λ0+ = λ̂ (2.79)

since the distance between the electrons is Lorentz contracted in Σ̂ compared
to their distances in Σ0.

v

r
J

uq

λ+

Σ
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2.14 Magnetism as a relativistic second-order effect

Figure 2.17: Wire seen from rest frame of moving charge.

The velocities of the particles as measured in Σ are

v− = − v + u

1 + uv
c2

and v+ = −u. (2.80)

The charge per unit length of the negative particles as measured in Σ, is

λ− =

(
1− v2

−
c2

)−1/2

λ0. (2.81)

Substitution from Eq. (2.79) and (2.80) gives

λ− = γ
(
1 +

uv

c2

)
λ̂ (2.82)

where γ =
(
1− u2/c2

)−1/2. In a similar manner, the charge per unit length of
the positive particles as measured in Σ is found to be

λ+ = γλ̂. (2.83)

Thus, as observed in the rest-frame of q the wire has a net charge per unit
length

λ = λ− − λ+ =
γuv

c2
λ̂. (2.84)

As a result of the different Lorentz contractions of the positive and negative
ions when we transform from their respective rest frames to Σ, a current car-
rying wire which is electrically neutral in the laboratory frame, is observed to
be electrically charged in the rest frame of the charge q.

As observed in this frame there is a radial electrical field with field strength

E =
λ

2πε0r
. (2.85)

Then a force F acts on q, this is given by

F = qE =
qλ

2πε0r
=

λ̂v

2πε0c2r
γqu. (2.86)

If a force acts upon q as observed in Σ̂ then a force also acts on q as observed
in Σ. According to the relativistic transformation of a force component in the
same direction as the relative velocity between Σ̂ and Σ, this force is

F̂ = γ−1F =
λ̂v

2πε0c2r
qu. (2.87)
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Inserting J = λ̂v from Eq. (2.78) and using c2 = (ε0μ0)
−1 (where μ0 is the

permeability of a vacuum) we obtain

F̂ =
μ0J

2πr
qu. (2.88)

This is exactly the expression obtained if we calculate the magnetic flux-density
B̂ around the current carrying wire using Ampere’s circuit law

B̂ = μ0
J

2πr
(2.89)

and use the force-law (Eq. (2.77)) for a charge moving in a magnetic field

F̂ = quB̂. (2.90)

We have seen here how a magnetic force appears as a result of an electrostatic
force and the special theory of relativity. The considerations above have also
demonstrated that a force which is identified as electrostatic in one frame of
reference is observed as a magnetic force in another frame. In other words, the
electric and the magnetic force are really the same. What an observer names it
depends upon his state of motion.

Problems

2.1. Two successive boosts in different directions
Let us consider Lorentz transformations without rotation (“boosts”). A boost
in the x-direction is given by

x = γ(x′ + βct′), y = y′, z = z′, t = γ(t′ + βx′/c)

γ = 1√
1−β2

, β = v
c (2.91)

This can be written as

xμ = Λμ
μ′x

μ′

(2.92)

where Λμ
μ′ is the matrix

Λμ
μ′ =

⎡⎢⎢⎣
γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (2.93)

(a) Show that (2.92) and (2.93) yield (2.91). Find the transformation matrix,
Λ̄μ

μ′ , for a boost in the negative y-direction.
(b) Two successive Lorentz transformations are given by the matrix product

of each matrix. Find Λμ
αΛα

μ′ and Λμ
αΛ̄α

μ′ . Are the product of two boosts
a boost? The matrix for a general boost in arbitrary direction is given by

Λ0
0 = γ,

Λ0
m = Λm

0 = γβm,

Λm
m′ = δm

m′ +
βmβm′

β2
(γ − 1),

γ =
1√

1− β2
, β2 = βmβm, m, m′ = 1, 2, 3 (2.94)

Does the set of all possible boosts form a group?
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Problems

2.2. Length-contraction and time-dilatation

(a) A rod with length � is moving with constant velocity v with respect to the
inertial frame Σ. The length of the rod is parallel to v, which we will for
simplicity’s sake assume is parallel to the x-axis. At time t = 0, the rear
end of the rod is in the origin of Σ. What do we mean by the length of
such a moving rod? Describe how an observer can find this length. Draw
the rod in a Minkowski diagram and explain how the length of the rod
can be read of the diagram. Using the Lorentz transformations, calculate
the position of the endpoints of the rod as a function of time t. Show that
the length of the rod, as measured in Σ, is shorter than its rest length �.

(b) The rod has the same velocity as before, but now the rod makes an angle
with v. In an inertial frame which follows the movement of the rod (Σ′),
this angle is α′ = 45◦ (with the x-axis in Σ). What is the angle between
the velocity v and the rod when measured in Σ? What is the length of
the rod as a function of α′, as measured from Σ?

(c) We again assume that α′ = 0. At the centre of the rod there is a flash that
sends light signals with a time interval τ0 between every flash. In the
frame Σ′, the light signals will reach the two ends simultaneously. Show
that these two events are not simultaneous in Σ. Find the time difference
between these two events.
Show that the time interval τ measured from Σ between each flash, is
larger than the interval τ0 measured in Σ′.
An observer in Σ is located at the origin. He measures the time-interval
Δt between every time he receives a light signal. Find Δt in terms of the
speed v, and check whether Δt is greater or less than τ .

(d) The length of the rod is now considered to be � = 1m and its speed, as
measured in Σ, is v = 3

5c. As before, we assume that the rod is moving
parallel to the x-axis, but this time at a distance of y = 10m from the axis.
A measuring ribbon is stretched out along the trajectory of the rod. This
ribbon is at rest in Σ. An observer at the origin sees the rod move along
the background ribbon. The ribbon has tick-marks along it which corre-
spond to the x coordinates. The rods length can be measured by taking a
photograph of the rod and the ribbon. Is the length that is directly mea-
sured from the photograph identical to the length of the rod in Σ?
In one of the photographs the rod is symmetrically centered with respect
to x = 0. What is the length of the rod as measured using this pho-
tograph? Another photograph shows the rod with its trailing edge at
x = 10m. At what point will the leading edge of the rod be on this pho-
tograph? Compare with the length of the rod in the Σ frame.

(e) At one point along the trajectory the rod passes through a box which is
open at both ends and stationary in Σ. This box is shorter than the rest
length of the rod, but longer that the length of the rod as measured in Σ.
At a certain time in Σ, the entire rod is therefore inside the box. At this
time the box is closed at both ends, trapping the rod inside. The rod is
also brought to rest. It is assumed that the box is strong enough to with-
stand the impact with the rod.
What happens to the rod? Describe what happens as observed from Σ
and Σ′. Draw a Minkowski diagram. This is an example of why the the-
ory of relativity has difficulty with the concept of absolute rigid bodies.
What is the reason for this difficulty?
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2.3. Faster than the speed of light?
0 towards

transverse) speed of the light-source is v = 10c. Find v0 when we assume that
φ = 10◦. What is the largest possible φ?

(a) The reflection angle of light equals the incidence angle of the light. Show
that this is also the case for mirrors that are moving parallel to the reflec-
tion surface.

(b) A mirror is moving with a speed v in a direction orthogonal to the reflec-
tion surface. Light is sent towards the mirror with an angle φ. Find the
angle of the reflected light as a function of v and φ. What is the frequency
to the reflected light expressed in terms of its original frequency f?

2.5. Minkowski-diagram
The reference frame Σ′ is moving relative to the frame Σ at a speed of v = 0.6c.
The movement is parallel to the x-axes of the two frames.

Draw the x′ and the ct′-axis in the Minkowski-diagram of Σ. Points separated
by 1m are marked along both axes. Draw these points in the Minkowski-
diagram as for both frames.

Show where the lines of simultaneity for Σ′ are in the diagram. Also show
where the x′ = constant line is.

Assume that the frames are equipped with measuring rods and clocks that are
at rest in their respective frames. How can we use the Minkowski-diagram
to measure the length-contraction of the rod that is in rest at Σ′? Similarly,
how can we measure the length-contraction of the rod in Σ when measured
from Σ? Show how the time-dilatation of the clocks can be measured from the
diagram.

2.6. Robb’s Lorentz invariant spacetime interval formula (A.A. Robb, 1936)
Show that the spacetime interval between the origin event and the reflection
event in Fig. 2.2 is s = c

√
tAtB .

2.7. The Doppler effect
A radar antenna emits radio pulses with a wavelength of λ = 1.0cm, at a
time-interval τ = 1.0s. An approaching spacecraft is being registered by the
radar.

Draw a Minkowski-diagram for the reference frame Σ. The antenna is at rest
in this frame. In this diagram, indicate the position of

The quasar 3C273 emits a jet of matter that moves with the speed v

Earth making an angle φ to the line of sight (see Fig. 2.18). The observed (the

Figure 2.18: A Quasar emitting a jet of matter.

To Earth
v0

f

2.4. Reflection angles of moving mirrors
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3. the outgoing and reflected radar pulses.

Calculate the time difference Δt1 between two subsequent pulses as measured
in the spacecraft. What is the wavelength of these signals?

Calculate the time difference Δt2 between two reflected signals, as it is mea-
sured from the antenna’s receiver? At what wavelength will these signals be?

2.8. Abberation and Doppler effect

ultra-relativistic velocity. Consider a surface element dA with velocity v = βc
in the laboratory frame F (i.e. the rest frame of the observer), as shown in

Figure 2.19: Light is emitted in the direction n′ as measured in the rest frame F ′ of
the emitting surface element. The light is measured to propagate in the n-direction in

the rest frame F of the observer.

(a) Show by means of the relativistic formula for velocity addition that the
relationship between the directions of propagation measured in F and
F ′ is

cos θ =
cos θ′ + β

1 + β cos θ′
. (2.95)

This is the abberation formula.

(b) Show that an observer far away from the surface will only observe light
from a spherical cap with opening angle (see Fig. 2.20)

θ0 = arccosβ = arcsin
1

γ
≈ 1

γ
for γ � 1. (2.96)

ν′ in F ′. Show that the observer in F will measure an angle-dependent
frequency

ν =
ν′

γ(1− β cos θ)
= γ(1 + β cos θ′)ν′. (2.97)

(c) Assume that the expanding shell emits monocromatic light with frequency

We shall describe light emitted from a spherical surface that expands with

Fig. 2.19.

1. the antenna,

2. the spacecraft, and

n

dA

n�
b

q�

q
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Figure 2.20: The far-away observer, O, can only see light from the spherical cap with
opening angle θ0.

(d) Let the measured frequency of light from M and Q be νM and νQ, re-
spectively. This is the maximal and minimal frequency. Show that the
expansion velocity can be found from these measurements, as

v =
νM − νQ

νQ
c. (2.98)

2.9. A traffic problem
A driver is in court for driving through a red light. In his defence, the driver
claims that the traffic signal appeared green as he was approaching the junc-

At what speed would the driver have to travel for the red traffic signal (λ =
6000 Å) to Doppler shift to a green signal (λ = 5000 Å)?

2.10. The twin-paradox
On New Years day 2004, an astronaut (A) leaves Earth on an interstellar jour-
ney. He is travelling in a spacecraft at the speed of v = 4/5c heading towards
α-Centauri. This star is at a distance of 4 l.y.(l.y. =light years) measured from
the reference frame of the Earth. As A reaches the star, he immediately turns
around and heads home. He reaches the Earth New Years day 2016 (in Earth’s
time frame).

The astronaut has a brother (B), who remains on Earth during the entire jour-
ney. The brothers have agreed to send each other a greeting every new years
day with the aid of radio-telescope.

(a) Show that A only sends 6 greetings (including the last day of travel),
while B sends 10.

(b) Draw a Minkowski-diagram where A’s journey is depicted with respect
to the Earth’s reference frame. Include all the greetings that B is send-
ing. Show with the aid of the diagram that while A is outbound, he only
receives 1 greeting, while on his way home he receives 9.

(c) Draw a new diagram, still with respect to Earth’s reference frame, where
A’s journey is depicted. Include the greetings that A is sending to B.
Show that B is receiving one greeting every 3rd year the first 9 years after
A has left, while the last year before his return he receives 3.

M

O

C

QQ

q0
q

tion. The judge says that this does not make his case stronger as he would have
been travelling at the speed of ...
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(d) Show how the results from (b) and (c) can be deduced from the Doppler-
effect.

2.11. Work and rotation
A circular ring is initially at rest. It has radius r, rest mass m, and a constant
of elasticity k. Find the work that has to be done to give the ring an angular
velocity ω. We assume that the ring is accelerated in such a way that its radius
is constant. Compare with the non-relativistic case. How can we understand
that in the relativistic case we also have to do elastic work?

2.12. Muon experiment
How many of the ten million muons created 10km above sea level will reach
the Earth? If there are initially n0 muons, n = n02

−t/T will survive for a time
t (T is the half-life time).

(a) Compute the non-relativistic result.

(b) What is the result of a relativistic calculation by an Earth observer?

(c) Make a corresponding calculation from the point of view of an observer
comoving with the muon. The muon has a rest half-life time T = 1.56 ·
10−6s and moves with a velocity v = 0.98c.

2.13. Cerenkov radiation

velocity of light in the medium, it emits a cone of radiation with a half angle θ
given by cos θ = c/nv (see Fig. 2.21).

(a) What is the threshold kinetic energy (in MeV) of an electron moving
through water in order that it shall emit Cerenkov radiation? The in-
dex of refraction of water is n = 1.3. The rest energy of an electron is
me = 0.511 MeV.

(b) What is the limiting half angle of the cone for high speed particles mov-
ing through water?

When a particle moves through a medium with a velocity greater than the

Figure 2.21: Cerenkov radiation from a particle.

wavefronts

θ
v
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3
Vectors, Tensors, and Forms

We shall present the theory of differential forms in a way so that the structure
of the theory appears as clearly as possibly. In later chapters this formalism
will be used to give a mathematical formulation of the fundamental principles
of the general theory of relativity. It will also be employed to give an invariant
formulation of Maxwell’s equations so that the equations can be applied with
reference to an arbitrary basis in curved spacetime.

3.1 Vectors

A vector is usually defined as a quantity with magnitude and direction, and
is denoted by a letter with an arrow above it, for example �v, or by boldface
letters, for example v. We shall use the latter notation.

Vectors can also be defined as quantities fulfilling certain axioms. An ex-
ample of such an axiom is the following. If a and b are real numbers, and if u

and v are vectors, then au + bv is a vector.
An expression of the form aμeμ where aμ (with μ ∈ {1, . . . n}) are real

numbers, is called a linear combination of the vectors eμ. The vectors e1, . . .en

are said to be linearly independent if no real numbers aμ �= 0 exist so that aμeμ =

A set of linearly independent vectors {eμ} is said to be maximally linearly
independent if for all vectors v the set of vectors {eμ,v} is linearly dependent.
Then there exist non-zero real numbers aμ

aμeμ + v = 0. (3.1)

A vector-basis for a space V is defined as a set of vectors in V that are max-
imally linearly independent. The number of vectors in the basis is called the
dimension of V . For example a vector-basis in spacetime consists of four vec-
tors.

Let the vector set {e1, . . . , en} be a basis in an n-dimensional space. Setting
aμ = −vμ in Eq. (3.1) we get

v = vμeμ. (3.2)

0. A geometrical interpretation is that the vectors are linearly independent if it
is not possible to construct a closed polygon by means of the vectors (see Fig. 3.1).

so that let stand as is
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Figure 3.1: Linearly dependent vectors.

The numbers vμ are called the components of v relative to the basis {eμ}.

3.2 Four-vectors

Spacetime is four-dimensional. At every point in spacetime we can place four
linearly independent basis vectors eμ. Thus, a vector in spacetime has four
components. Such vectors are called four-vectors.

A flat spacetime can be mapped by a global Cartesian coordinate system,
with coordinates (t, x, y, z). The basis vectors in this system are denoted by
{et, ex, ey, ez}. They are mutually orthogonal unit vectors. Such a basis of
orthogonal unit vectors is called an orthonormal basis.

The ordinary velocity of a particle is

u = uxex + uyey + uzez =
dx

dt
ex +

dy

dt
ey +

dz

dt
ez. (3.3)

According to the Galilean and Newtonian kinematics, all particles move in a
three-dimensional space, and the velocity u is a vector.

According to the relativistic description, however, particles exist in a four-
dimensional spacetime. In this description the ordinary velocity of a particle
is not a vector.

Instead one defines a four-velocity

U = c
dt

dτ
et +

dx

dτ
ex +

dy

dτ
ey +

dz

dτ
ez, (3.4)

where τ is the proper time of the particle, i.e. the time measured by a (hypo-
thetical) standard clock carried by the particle.1 Using Einstein’s summation
convention we may write

U = Uμeμ =
dxμ

dτ
eμ, xμ ∈ {x0, x1, x2, x3}, (3.5)

where x0 = ct, x1 = x, x2 = y, and x3 = z. Since dt/dτ = γ according to

nents of the ordinary velocity as

U = γ(c, ux, uy, uz), (3.6)

1A ‘particle’ in this context is an entity so small that its spatial extension can be neglected
within the accuracy of the description of spacetime.

Eq. (2.44), the components of the four-velocity are given in terms of the compo-
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which is often written as
U = γ(c,u). (3.7)

Below we shall use this notation when giving the component-form of four-
vectors.

In the rest frame of the particle, u = 0 and γ = 1. Hence, the four-velocity
reduces to

U = cet. (3.8)

In this frame the particle moves in the time direction with the speed of light.
One often uses units so that c ≡ 1. If this is done, both time and space

are measured in units of length. In such geometrical units of measurement the
particle moves with unit velocity in the time-direction in its own rest frame.

The four-momentum, P, of a particle with rest-mass m0 is defined by

P = m0U. (3.9)

Referring to the rest-frame of the particle and using units so that c = 1, we
see that the magnitude of the four-momentum is equal to the rest-mass of the
particle.

The ordinary (three-dimensional) relativistic momentum of the particle is

p = mu = γm0u. (3.10)

From Eqs. (2.65) and (3.8)–(3.10), follows

P = (E/c,p) (3.11)

where E is the total energy of the particle.

F =
dP

dτ
, (3.12)

while the ordinary force f is

f =
dp

dt
. (3.13)

It follows that

F = γ

(
dE

cdt
,
dp

dt

)
= γ

(
f · u

c
, f

)
. (3.14)

In the rest frame of the particle

F0 = (0, f0), (3.15)

where f0 is the Newtonian force on the particle.
The four-acceleration A of the particle is

A =
dU

dτ
. (3.16)

In the case that the rest-mass is constant we get

A =
1

m0
F. (3.17)

The four-force, or the Minkowski force F, is defined by
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The ordinary acceleration a is

a =
du

dt
, (3.18)

so using that

f = m0
d

dt
(γu) = γm0

(
a + γ2 u · a

c2
u
)

, (3.19)

we find from Eqs. (3.14) and (3.16)–(3.19),

A = γ2
(
γ2 u · a

c
, a + γ2 u · a

c2
u
)

. (3.20)

In the rest frame of the particle this reduces to

A0 = (0, a0) (3.21)

0

The component expressions (3.14) and (3.20) are valid only with respect to
an orthonormal basis field. It will be shown in Chapter 8 that in curved space
one can always introduce local Cartesian coordinate systems with orthonormal
basis coordinate vector fields.

3.3 One-forms

Let the set of real numbers be denoted by R and let V be a vectorspace.
A function f is said to be linear if

f(au + bv) = af(u) + bf(v) (3.22)

where a, b ∈ R and u,v ∈ V .
A one-form, α is defined as a linear function from V into R; i.e., α : V �→ R.

In other words, a one-form, α, acts on a vector, v, and gives out a real number,
α(v).

The sum of the two one-forms, α and β, and the product of a real number,
a, and a one-form is defined in the usual way for real functions

(α + β)(v) = α(v) + β(v), (3.23)

and
(aα)(v) = a[α(v)]. (3.24)

In order to be able to write a form in component-form, we have to define a
one-form basis {ωμ}. The basis is defined by

ωμ(eν) = δμ
ν , (3.25)

where δμ
ν is the Kronecker-symbol defined in Eq. (1.15). We can now write a

one-form as a linear combination of the basis-forms

α = αμωμ. (3.26)

The numbers αμ are called components of α relative to the basis {ωμ}.
By means of Eqs. (3.25) and (3.26) we get

α(eμ) = ανων(eμ) = ανδν
μ = αμ. (3.27)

,

,

four-acceleration is that it vanishes for a freely falling particle.
is the rest-acceleration of the particle. The physical significance of thewhere a
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The number α(v) is called the contraction or interior product of α with v, which
we will write as

ιvα ≡ α(v) (3.28)

Eq. (3.27) says that the components of a one-form are given by the contractions
of the form with the basis-vectors.

The number α(v) may now be expressed by the components of α and v,

α(v) = α(vμeμ) = vμα(eμ) = vμαμ. (3.29)

This is just the same number that is obtained by taking the scalar product of
two vectors v and α. One-forms correspond to vectors and the contraction of
a one-form by a vector to the scalar-product of two vectors.

Just like forms, vectors can also be perceived as linear functions. If a vector
v acts on a form α, it gives out the number v(α) = αμvμ. Since this is equal
to vμαμ we have v(α) = α(v), which corresponds to the symmetry of the
scalar-product of two vectors. It follows that the vector components vμ can be
expressed as

vμ = v(ωμ). (3.30)

The components of a vector are the contractions of the vector with the basis
forms.

Like the vectors, one-forms satisfy the axioms of a vector space. Therefore,
one-forms are sometimes referred to as dual vectors. In Dirac’s ‘bra-ket’ nota-
tion in quantum mechanics, the ‘kets’ |ψ〉 are the vectors and the ‘bras’ 〈ψ| are
the forms.

3.4 Tensors

We shall now consider functions of several variables. A multi-linear function
f is a function that is linear in all its arguments. A tensor is a multi-linear
function that maps vectors and one-forms into R. We distinguish between
covariant, contravariant and mixed tensors:

• A covariant tensor maps vectors, only.

• A contravariant tensor maps one-forms, only.

• A mixed tensor maps both vectors and one-forms.

A tensor of rank {n
n′}maps n one-forms and n′ vectors into R. (Less precise, of

rank n + n′).
In order to be able to write a tensor in component-form we need a tensor

basis. For this purpose we must introduce the tensor product, which is de-
noted by ⊗. The tensor product between two covariant tensors T and S of
rank m and n, respectively, is defined by

T⊗ S(u1, . . . ,um,v1, . . . ,vn) = T(u1, . . .um)S(v1, . . .vn). (3.31)

Corresponding expressions are valid for all types of tensors. The tensor prod-
uct is distributive and bilinear, but not commutative, T⊗ S �= S⊗T.
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Example 3.1 (Tensor product between two vectors)Example
Given two vectors u and v. The tensor product between u and v is a tensor T given
by its action on two arbitrary one-forms α and β

T(α, β) = (u⊗ v)(α, β) = u(α)v(β) = uμαμvνβν . (3.32)

Since T takes two one-form arguments, it is a tensor of rank {20}.

A basis for contravariant vectors of rank q is defined as a maximally lin-
early independent set of basis-elements {eμ1 , . . .eμq}. (The reason that the
indices μi have indices themselves, is that there are n ≥ q different indices
in an n-dimensional space.) The component form of a contravariant tensor of
rank q is

R = Rμ1...μqeμ1 ⊗ · · · ⊗ eμq . (3.33)

The tensor-components are defined as the values of R when R is applied to
the basis-forms,

Rμ1...μq ≡ R(ωμ1 , . . . ,ωμq ). (3.34)

A covariant tensor S is expressed in the same way:

S = Sμ1...μqω
μ1 ⊗ · · · ⊗ ωμq , (3.35)

where

Sμ1...μq ≡ S(eμ1 , . . . , eμq). (3.36)

A mixed tensor, T, of rank {q
p} is written as the number T (q one-forms,

p vectors) and is expressed by the components as

T = T μ1...μq
ν1...νpeμ1 ⊗ · · · ⊗ eμq ⊗ ων1 ⊗ · · · ⊗ ωνp . (3.37)

If, for example, q = p = 1 we get

T(u, α) = Tμ
νuμαν . (3.38)

Thus contraction of the mixed tensor T with the vector u and the one-form α

is a scalar.

Example 3.2 (Tensor-components)Example
Let u and v be two vectors and α and β two one-forms. The tensor components of the
tensors R = u⊗ v, S = α ⊗ v, T = α ⊗ β are

Rμν = (u⊗ v)(ωμ, ων) = u(ωμ)v(ων) = uμvν ,

Sμ
ν = (α ⊗ v)(eμ, ων) = α(eμ)v(ων) = αμvν ,

Tμν = (α ⊗ β)(eμ, eν) = α(eμ)β(eν) = αμβν ,

when expressed in the bases {eμ} and {ωμ}.
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3.5 Forms

An antisymmetric tensor, A, is a tensor that is antisymmetric under exchange
of two arbitrary arguments

A(. . .u, . . .v, . . .) = −A(. . .v, . . .u, . . .). (3.39)

tensors.
A p-form is defined as a covariant antisymmetric tensor of rank p. Since

A...μ...ν... = A(. . . eμ, . . . eν , . . .) = −A(. . . eν , . . .eμ, . . .)

= −A...ν...μ..., (3.40)

the tensor-components of a form are antisymmetric under exchange of two
arbitrary indices.

In order to write a form in component-form we need an antisymmetric
tensor basis. The antisymmetric combination of a tensor basis ωμ1 ⊗ · · · ⊗ωμp

is denoted by ω[μ1 ⊗ · · · ⊗ ωμp] and is defined by

ω[μ1 ⊗ · · · ⊗ ωμp] =
1

p!

p!∑
i=1

(−1)π(i)ωμ1 ⊗ · · · ⊗ ωμp , (3.41)

where π(i) is a function over the p! different permutations of indices μ1 to μp

defined by

π(i) =

{
0 if the permutation is even
1 if the permutation is odd.

(3.42)

Let us now consider a two-form in a three-dimensional space, and see how it
can be written in component form.

α = α12ω
1 ⊗ ω2 + α21ω

2 ⊗ ω1 + α13ω
1 ⊗ ω3

+ α31ω
3 ⊗ ω1 + α23ω

2 ⊗ ω3 + α32ω
3 ⊗ ω2 (3.43)

since α11 = α22 = α33 = 0 due to the antisymmetry of α. The antisymmetry
can also be used to express the form as:

α = α12(ω
1 ⊗ ω2 − ω2 ⊗ ω1) + α13(ω

1 ⊗ ω3 − ω3 ⊗ ω1)

+ α23(ω
2 ⊗ ω3 − ω3 ⊗ ω2) = αμνω[μ ⊗ ων]. (3.44)

An arbitrary p-form α may now be written in component form as

α = αμ1...μp ω[μ1 ⊗ · · · ⊗ ωμp]. (3.45)

Note that a zero-form α is only a pure number, α = α. The antisymmetry is
now trivially satisfied since a zero-form does not have any arguments.

An antisymmetric tensor product, denoted by ∧ and called the exterior prod-
uct or wedge product, is defined by

ω[μ1⊗ · · · ⊗ ωμp] ∧ ω[ν1 ⊗ · · · ⊗ ωνq ]

=
(p + q)!

p!q!
ω[μ1 ⊗ · · · ⊗ ωμp ⊗ ων1 ⊗ · · · ⊗ ωνq ]. (3.46)

Only purely covariant or contravariant tensors can be antisymmetric, not mixed
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The exterior product is linear

(aα + bβ) ∧ γ = a(α ∧ γ) + b(β ∧ γ), (3.47)
α ∧ (aβ + bγ) = a(α ∧ β) + b(α ∧ γ), (3.48)

and associative
α ∧ (β ∧ γ) = (α ∧ β) ∧ γ. (3.49)

Therefore we need not include the brackets in products like that in Eq. (3.49).
The antisymmetric basis in Eqs. (3.41) and (3.42) will now be expressed by

the exterior product. Putting q = p = 1 in Eq. (3.46) we get

ωμ1 ∧ ων1 = 2! ω[μ1 ⊗ ων1]. (3.50)

Using Eq. (3.46) once more we find

ωμ1 ∧ ων1 ∧ ων2 = 2ω[μ1 ⊗ ων1] ∧ ων2

= 3! ω[μ1 ⊗ ων1 ⊗ ων2]. (3.51)

Continuing in the same manner we get

p! ω[μ1 ⊗ . . .⊗ ωμp] = ωμ1 ∧ ωμ2 ∧ . . . ∧ ωμp . (3.52)

According to Eqs. (3.45) and (3.52) an arbitrary p-form α may be written as

α =
1

p!
αμ1...μpωμ1 ∧ . . . ∧ ωμp . (3.53)

The reason for p! in the denominator of this expression is that every term is
included p! times due to the summation with both increasing and decreasing
indices.

From the definition (3.46) follows that

ωμ ∧ων = −ων ∧ ωμ. (3.54)

An exchange of two basis forms in Eq. (3.46) involves an odd number of per-

sequence is that an exterior product is zero if it contains two equal basis one-
forms. It follows that in a space of n dimensions there do not exist non-trivial forms
with rank higher than n, since there are only n linearly independent one-forms
in such a space. So, in spacetime there are only zero, one, two, three and four-forms.

Another consequence of Eq. (3.54) is the equation

α ∧ β = (−1)pqβ ∧α, (3.55)

where α is a q-form and β a p-form.
Before we proceed further in the theory of forms, we shall deduce a useful

calculational result. Consider the quantities Aμ1μ2 and Bμ1μ2 . Assume that
Aμ1μ2 is antisymmetric and Bμ1μ2 is symmetric. Then,

Aμ1μ2B
μ1μ2 =

1

2
Aμ1μ2B

μ1μ2 − 1

2
Aμ2μ1B

μ1μ2

=
1

2
Aμ1μ2B

μ1μ2 − 1

2
Aμ2μ1B

μ2μ1 = 0, (3.56)

antisymmetric under exchange of two arbitrary one-forms. An important con-
mutations of two neighbouring forms. Thus the exterior product (3.46) is
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since we may exchange the names of the dummy-indices μ1 and μ2 in the
last term. In general we find that summation over the indices in a product of an
antisymmetric and a symmetric quantity gives zero,

A[μ1···μp]B
(μ1···μp) = 0 (3.57)

where ( ) denotes a symmetric combination.
For a covariant tensor of rank two, for example, we have

Tμν =
1

2
(Tμν − Tνμ) +

1

2
(Tμν + Tνμ) = T[μν] + T(μν); (3.58)

hence, every covariant or contravariant tensor of rank two can be separated in
an antisymmetric and a symmetric part.

From a covariant tensor, T, without any symmetry, one can construct a
form, τ . This consists of the antisymmetric part of T. Thus

τ = T[μ1···μp]ω
μ1 ⊗ · · · ⊗ ωμp

= T[μ1···μp]ω
μ1 ∧ · · · ∧ ωμp . (3.59)

Note that the tensor-equation T = 0 gives the component equations Tμ1···μp = 0
while the form-equation τ = 0 gives the component equations T[μ1···μp] = 0.

From Eq. (3.46) follows that the exterior product between a p-form, α, and
a q-form, β, is given by

(α ∧ β)μ1···μpμp+1···μp+q =
(p + q)!

p!q!
α[μ1···μp

βμp+1···μp+q ]. (3.60)

Until now we have only considered antisymmetric covariant tensors. We may
go through the same procedure step for step, with antisymmetric contravari-
ant tensors. Such a tensor of rank p is called a p-vector, and has the component
form

A =
1

p!
Aμ1···μpeμ1 ∧ · · · ∧ eμp . (3.61)

One-vectors are usual vectors. Two-vectors are called bi-vectors.
The exterior product of p vectors Ai is a p-vector with components

(A1 ∧ . . . ∧Ap)
μ1...μp = p!A

[μ1

1 Aμ2

2 . . . Aμp]
p . (3.62)

The corresponding expression for forms is

(α1 ∧ . . . ∧αp)μ1...μp = p!α1
[μ1

α2
μ2

. . . αp
μp]. (3.63)

Example 3.3 (Exterior product and vector product) Example
Let A and B be two vectors in a 3-dimensional space. Then

A ∧B = 2!A[μ1Bμ2]
eμ1 ∧ eμ2

= (A1B2 − A2B1)e1 ∧ e2 + (A1B3 − A3B1)e1 ∧ e3 + (A2B3 − A3B2)e2 ∧ e3.
(3.64)

Thus,
(A ∧B)k = (A×B)k. (3.65)

The exterior product of two vectors has the same components as the vector product.
So A ∧ B gives the area and orientation of the surface defined by A and B. Also, if

,
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A ∧B = 0 then A and B are parallel to each other.

Given a p-form α and a q-vector A in a space with n dimensions, where
p ≥ q. Then the contraction of α with A is a (p− q)-form defined by

ιAα =
1

q!(p− q)!
αν1...νpμ1...μp−qA

ν1...νqωμ1 ∧ . . . ∧ωμp−q . (3.66)

If q = p, then ιAα is the scalar function

ιAα = α(A) =
1

p!
αμ1...μpAμ1...μp . (3.67)

All covariant tensors can similarly be contracted with a vector. In this case the
wedge product in Eq. (3.66) is just replaced by a tensor product. For instance,
if g is a covariant vector of rank 2, then for a vector v we get

ιvg = g(v,−) = vμgμνων . (3.68)

So a contraction with a vector is just applying the vector using the first slot in
the tensor; hence, the rank is reduced with one.

Problems

3.1. The tensor product

(a) Given one-forms α and β. Assume that the components of α and β are
(1, 1, 0, 0) and (−1, 0, 1, 0), respectively. Show – by using two vectors as
arguments – that α⊗ β �= β ⊗α . Find also the components of α⊗ β.

(b) Find also the components of the symmetric and anti-symmetric part of
α⊗ β, defined above.

3.2. Wedge products of forms
Given the one-forms

α = x2ω1 − yω2, β = yω1 − xzω2 + y2ω3, σ = y2zω2,

the two-form
η = xyω1 ∧ ω3 + xω2 ∧ ω3,

and the three-form
θ = xyzω1 ∧ ω2 ∧ ω3.

Calculate the wedge products

α ∧ β, α ∧ β ∧ σ, α ∧ η, α ∧ θ.

3.3. Contractions of tensors
Assume that A is an anti-symmetric tensor of rank {20}, B a symmetric tensor
of rank {02}, C an arbitrary tensor of rank {02}, and D an arbitrary tensor of
rank {20}. Show that

AαβBαβ = 0,

AαβCαβ = AαβC[αβ],

and

BαβDαβ = BαβD(αβ).
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Problems

3.4. Four-vectors

(a) Given three four-vectors:

A = 4et + 3ex + 2ey + ez

B = 5et + 4ex + 3ey

C = et + 2ex + 3ey + 4ez,

where

ex · ex = ey · ey = ez · ez = 1,

while

et · et = −1.

Show that A is time-like, B is light-like and C is space-like.

• If A is time-like, then B is space-like.
• If A is light-like, then B is space-like or light-like.
• If A and B is light-like, then they are proportional.
• If A is space-like, then B is time-like, light-like or space-like.

Illustrate this in a three-dimensional Minkowski-diagram.

(c) A change of basis is given by

et′ = coshαet + sinhαex,

ex′ = sinhαet + coshαex,

ey′ = ey, ez′ = ez.

Show that this describes a Lorentz-transformation along the x-axis, where
the relative velocity v between the reference frames, are given by v =
tanhα. Draw the vectors in a two-dimensional Minkowski-diagram and
find what type of curves the et′ and ex′ describe as α varies.

(d) The three-vector v describing the velocity of a particle is defined with re-
spect to an observer. Explain why the four-velocity u is defined independent
of any observer.
The four-momentum of a particle, with rest mass m, is defined by p =
mu = mdr/dτ , where τ is the co-moving time of the particle. Show that
p is time-like, and that p · p = −m2. Draw, in a Minkowski-diagram, the
curve to which p must be tangent to, and explain how this is altered as
m −→ 0.
Assume that the energy of the particle is being observed by an observer
with four-velocity u. Show that the energy he measures is given by

E = −p · u. (3.69)

This is an expression which is very useful when one wants to calculate
the energy of a particle in an arbitrary reference frame.

(b) Assume that A and B are two non-zero orthogonal four-vectors, A ·B = 0 .
Show the following:
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3.5. The Lorentz-Abraham-Dirac equation

(a) Show that the Lorentz’s force-law, eq. (2.77), can be written as the four-
vector equation

m
duμ

dτ
= qF μ

νuν , (3.70)

where m is the rest mass of a particle, q its charge, and τ its proper time.
Here, Fμ

ν are the components of the electromagnetic field tensor,

Fμ
ν =

⎡⎢⎢⎣
0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎤⎥⎥⎦ . (3.71)

Since an accelerated charge radiates one expects that the electromagnetic
field produced by the charge acts upon the charge. This is not taken
into account by the Lorentz force-law. Hence one is lead to modify the
equation of motion of the charge as

m
duμ

dτ
= qF μ

νuν + Γμ, (3.72)

where Γμ is the field reaction four-force. According to Larmor’s formula
the energy radiated by the charge per unit proper time is (2/3)αAβAβ

where α = q2/(4πc) and Aβ is the four-acceleration of the charge. The
radiated four-momentum per unit proper time is (2/3)αAβAβuμ. This
acts back on the charge. Assuming that the particle radiates for a finite
time one may thus require that

Γμ = −2

3
αAβAβuμ +

dcμ

dτ
, (3.73)

for some vector cμ, because the second term does not contribute to the
total change in four-momentum

∫∞
−∞ Γμdτ .

(b) Use the four-velocity identity, uβAβ = 0, and the antisymmetry of Fμν to
show that uβΓβ = 0, and deduce that

Γμ =
2

3

α

c2

(
d2uμ

dτ2
− 1

c2
AβAβuμ

)
. (3.74)

The equation of motion of a charged particle with this expression for the
field reaction four-force is called the Lorentz-Abraham-Dirac equation.

(c) Deduce the non-relativistic limit of the Lorentz-Abraham-Dirac equation.
Is this equation invariant against reversal of the time direction?
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4
Basis Vector Fields

In this chapter we are going to introduce the basic concepts necessary to grasp
the geometrical significance of the metric tensor.

4.1 Manifolds and their coordinate-systems

Let Rn denote a succession of n real numbers (x1, . . . , xn). A map f , from a
space M to a space N is a rule that to each point, x, in M associates one point,
f(x), in N (this is usually denoted by f : M �→ N ). For the funtion to be
one-to-one we require that different points M are mapped to different points
in N , i.e., x �= y ⇒ f(x) �= f(y). This requirement implies that the map f has a
well-defined inverse, f−1 : N �→M . These concepts are illustrated in Fig. 4.1.

Figure 4.1: The mapping to the left is a one-to-one mapping. Those to the right are
not one-to-one mappings.

A manifold M is a space satisfying the following properties.

1. There exists a family of open neighbourhoods Ui together with continu-
ous one-to-one mappings fi : Ui �−→ Rn with a continuous inverse for a
number n.

and the Metric Tensor

M
N

M

M

N

N
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2. The family of open neighbourhoods cover the whole of M ; i.e.⋃
i

Ui = M.

The definition of M does only involve open sub-spaces in M because we do
not want to restrict the topological properties of M . The whole surface of a
sphere, for example, cannot be mapped onto R2. In particular, spherical co-
ordinates do not represent a one-to-one mapping on R2. On the other hand,
using a family of open neighbourhoods we can cover the sphere where each
of the neighbourhoods can be mapped onto the plane R2. Hence, the sphere
is a manifold.

According to the definition of a manifold M there exist mappings φ : U →
Rn, where U is an open region in M . If P is a point in M , then φ(P ) =
(x1, ..., xn) will be a vector in Rn. Such a mapping is called a coordinate sys-
tem, and U is called a coordinate region of M . A coordinate system consists
therefore of a set of maps {xμ}μ=1,...,n, and the coordinate system is a rep-
resentation of points, P , in U by n-tuples (x1, . . . , xn). In two dimensions it
may be represented by a net of squares, and in three dimensions by a cubic
network and so forth (see Fig. 4.2).

Figure 4.2: The coordinate system is a mapping from the manifold into a Euclidean

�= ∅with coordi-
nates {xμ} and {xμ′}, then we can define an invertible coordinate transformation

xμ = xμ′

(xμ) (4.1)

such coordinate transformations can be differentiated an arbitrary number of
times. Functions with this property that they can be differentiated an arbitrary
number of times, and having continuous derivatives at all levels, are called
smooth functions. Moreover, if a manifold has smooth coordinate mappings,
then the manifold is called a smooth manifold.

space.

U

M

P

Rn

(x1;:::; xn)

x(U)

If two regions U and V have non-empty intersection U ∩V

in U ∩ V (see Fig. 4.3). Unless otherwise explicitly stated, we will assume that
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4.2 Tangent vector fields and the coordinate basis vector fields

Figure 4.3: A coordinate transformation between two sets of coordinates.

Example

nates (x, y) is shown in Fig. 4.4

From the figure follows that in this case the transformation equation (4.1) is

x = r cos θ, y = r sin θ.

The inverse transformation is

r = (x2 + y2)
1
2 , θ = arctan(y/x).

4.2 Tangent vector fields and the coordinate basis
vector fields

Let us consider the special case that the manifold M is a curved surface in
a three-dimensional Euclidean space R3. Then it is possible to introduce a
position vector v in R3 to an arbitrary point P in M . Let r(λ) be a curve in M

The connection between the plane polar coordinates (r, θ) and the Cartesian coordi-

Figure 4.4: Polar coordinates in the plane.

coordinates)
Example 4.1 (Transformation plane polar-coordinates and Cartesianbetween

Rn (x1; :::; xn)

(x1�; :::; xn�)

x(U)

xm�

x�(V )

(xm)

V
P

U

M

U ∩ V

P

x

r

y

q

65



Basis Vector Fields and the Metric Tensor

with parameter λ. The tangent vector t(λ0) of this curve at a point λ0 is defined
by

t(λ0) =

(
dr

dλ

)
λ=λ0

. (4.2)

This is illustrated in Fig. 4.5

The definition given above presupposes that the manifold M is embedded
in a higher-dimensional Euclidean space. If this is not possible, one cannot
define a finite position vector r. This is because vectors do not exist in a curved
space M , but in a tangent space TP which is defined as follows (see Fig. 4.6).
The tangent space TP of a space M at point P is generated by the tangent

vectors of all possible curves in M through P .
Different points in M have different tangent spaces. Vector addition is

therefore possible only for vectors at one and the same point.
The coordinate basis vectors, eμ, of a coordinate system, {xμ}, in M are de-

fined by

eμ =
∂r

∂xμ
. (4.3)

Figure 4.5: Tangent vectors.

Figure 4.6: The tangent space of a point P.

r(λ)

P

M

R3

r

e

r(λ)

e
P

TP

M
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4.2 Tangent vector fields and the coordinate basis vector fields

(This definition will be generalized below so that the position vector can be
disposed of).

Hence, at every point P of the manifold M we can define a vector space
TP . The union of all these spaces over each point P is called the tangent space
of M , or the tangent bundle TM :

TM ≡
⋃

P∈M

TP . (4.4)

A vector field1 is a continuum of vectors in TM , with components that are
continuous and differentiable functions of the coordinates, xμ. In general the
basis vectors eμ define a basis vector field in a neighbourhood of a point P ∈ M .

A tangent vector v to a curve r(λ) can be expressed in component form,
relatively to an arbitrary basis vector field, as

v =
dr

dλ
=

dxμ

dλ

∂r

∂xμ
=

dxμ

dλ
eμ. (4.5)

The coordinate basis vectors are tangent vectors to the coordinate curves, with
the coordinates as curve parameters.

The basis vectors eμ are linearly independent. The number of vectors in a
basis is equal to the number of coordinates, which is equal to the dimension
of the manifold, M .

The relation between the coordinate basis vectors of two different coordi-
nate systems {xμ} and {xμ′} is

eμ′ =
∂r

∂xμ′ =
∂r

∂xμ

∂xμ

∂xμ′ = eμ
∂xμ

∂xμ′ , (4.6)

and

eμ =
∂r

∂xμ
=

∂r

∂xμ′

∂xμ′

∂xμ
= eμ′

∂xμ′

∂xμ
. (4.7)

For an arbitrary vector v we find

v = eμ′vμ′

= eμvμ = eμ′

∂xμ′

∂xμ
vμ. (4.8)

Hence, vector components transform as

vμ′

=
∂xμ′

∂xμ
vμ. (4.9)

d

dλ
=

dxμ

dλ

∂

∂xμ
. (4.10)

The directional derivative along the coordinate curves are the partial deriva-
tives

∂μ =
∂

∂xμ
. (4.11)

In an n-dimensional space, M , there are n linearly independent directional
derivatives. They transform in the same way as the basis vectors

∂

∂xμ′ =
∂xμ

∂xμ′

∂

∂xμ
. (4.12)

1In the mathematical literature, vector fields are often called sections.

Consider now the directional differential operator along a curve with para-
meter λ:
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Thus, the directional derivative can be used as a basis of M

eμ =
∂

∂xμ
. (4.13)

This is the general definition of a coordinate basis vector and does not rely on the
existence of a finite position vector. The definition is equally valid in curved
space as in flat space.

Since arbitrary vectors can be written in component form as linear com-
binations of basis vectors, eq.(4.13) implies that an arbitrary vector can be
thought of as a differential operator, too.

Example 4.2 (The coordinate basis vector field of plane polar coordinates)Examples
(See Example 4.1)
From the transformation equation

x = r cos θ, y = r sin θ,

we find the coordinate basis vectors of the polar coordinate system

er =
∂

∂r
=

∂x

∂r

∂

∂x
+

∂y

∂r

∂

∂y
= cos θex + sin θey,

eθ =
∂

∂θ
=

∂x

∂θ

∂

∂x
+

∂y

∂θ

∂

∂y
= −r sin θex + r cos θey.

The basis vectors er and eθ are shown in Fig. 4.7.

Figure 4.7: Basis vectors in polar coordinates.

A point concerned with practical calculations should be mentioned. If the trans-
formation of basis vectors and vector components is calculated by means of matrix
multiplication, the basis vectors, {eμ}, must be written as row matrix, and the vector
components {vμ} as column matrix, respectively.

Example 4.3 (The velocity vector of a particle moving along a circular path)

surface. Then the position of the particle can be described by a position vector r on
the surface. A system of plane polar-coordinates (r, θ) on the surface with origin at
the centre of the circle is introduced. According to the results of the preceding two
examples, the position vector may be expressed as

r = xex + yey = r cos θex + r sin θey = rer

We consider a particle moving with constant velocity along a circular path on a plane

er
eq

P

M

r

q
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4.2 Tangent vector fields and the coordinate basis vector fields

(Note that the formula r = xiei, with summation over all coordinates, is not generally
valid in a curved coordinate system). The velocity vector,

v =
dr

dt
=

dr

dt
er + r

der

dt
,

is tangent vector to the circular path. In the present case r = r0, dr/dt = 0 and

v = r0
der

dt
.

Using the expression for er and eθ from example 4.2, and that θ = ωt, ω = constant,
we get

v = −r0ω sin ωtex + r0ω cos ωtey = ωeθ.

This result follows immediately from eq. (4.5)

v =
dr

dt
er +

dθ

dt
eθ,

with r = r0 and θ = ωt.

Example 4.4 (Transformation of coordinate basis vectors and vector components)
Consider the transformation:

(e1′ , e2′) = (e1, e2)

"
∂x1

∂x1′
∂x1

∂x2′

∂x2

∂x1′
∂x2

∂x2′

#
.

This gives

e1′ = e1
∂x1

∂x1′
+ e2

∂x2

∂x1′
; e2′ = e1

∂x1

∂x2′
+ e2

∂x2

∂x2′
.

Furthermore, "
v1′

v2′

#
=

"
∂x1′

∂x1
∂x1′

∂x2

∂x2′

∂x1
∂x2′

∂x2

# »
v1

v2

–
,

which gives

v1′ =
∂x1′

∂x1
v1 +

∂x1′

∂x2
v2; v2′ =

∂x2′

∂x1
v1 +

∂x2′

∂x2
v2.

Example 4.5 (Some transformation matrices)

A: Transformation from plane polar coordinates to Cartesian coordinates

x = r cos θ; y = r sin θ.

(Mμ
μ′) =

„
∂xμ

∂xμ′

«
=

»
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

–
=

»
cos θ −r sin θ
sin θ r cos θ

–
.

B: Rotation of a Cartesian coordinate system From Fig. 4.8 is seen that

x = x′ cos α− y′ sin α; y = x′ sin α + y′ cos α

this gives

(Mμ
μ′) =

»
cos α − sin α
sin α cos α

–
.

Note that the transformation matrix of a rotation has the property M
T = M

−1.
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C: A Lorentz transformation Let R be a laboratory frame with a local Cartesian coor-
The frame R′

′ ′ ′ ′

transformation between (t′, x′, y′, z′) and (t, x, y, z) is

t = γ(t′ +
v

c2
x′), x = γ(x′ + vt′), y = y′, z = z′.

Differentiation gives the transformation matrix

„
∂xμ

∂xμ′

«
=

2664
γ γ v

c
0 0

γ v
c

γ 0 0
0 0 1 0
0 0 0 1

3775 .

Applying this boost to the components of a four vector A = Aμeμ′ , we get

At = γ
“
At′ +

v

c
Ax′
”

, Ax = γ
“
Ax′

+
v

c
At′
”

,

Ay = Ay′

, Az = Az′

.

Identifying A with the four-momentum, eq. (3.9), we find the transformation formula
for energy and ordinary momentum,

E = γ
“
E′ + vpx′

”
, px = γ

“
px′

+
v

c2
E′
”

,

py = py′

, pz = pz′

.

Let R′ be the rest-frame of the particle. Then the particle moves with velocity in the
x-direction in R, with energy and momentum given by

E = γE0, px = γ
v

c2
E0, py = pz = 0.

Now, letting A = F where F is the four-force (3.12), we find the force components

fx = fx
0 , fy = γ−1fy

0 , fz = γ−1fz
0 .

Finally, letting A be the four-acceleration, eq. (3.16), we find the components of the
ordinary acceleration of the moving particle in terms of the components of its rest
acceleration

ax = γ−3ax
0 , ay = γ−2ay

0 , az = γ−2az
0.

Figure 4.8: Rotation of a Cartesian coordinate system.

velocity v relative to R, and has comoving coordinate system (t , x , y , z ). The Lorentz
is moving in the negative x-direction withdinate system (t, x, y, z).

y�cos a

x�cos a

P

y

y�

y�sin a

x�sin ax�

x

a

a
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4.3 Structure coefficients

In order to see from an expression, when a basis vector is to be applied as a
differential operator, we shall indicate this by bracketing the argument. Thus,
if f is a scalar function, then

eμ(f) =
∂f

∂xμ
. (4.14)

∂f

∂xμ
≡ f,μ and

∂2f

∂xμ∂xν
≡ f,μν . (4.15)

4.3 Structure coefficients

In an arbitrary (non-coordinate) basis the vectors eμ are not simply partial
derivatives, but they are still linear combinations of partial derivatives.

Consider a vector field u = uμeμ. If f is a scalar function we have

u(f) = uμeμ(f), (4.16)

where eμ is a first order differential operator.
We define an operator product uv by

uv(f) = uμeμ(vνeν(f)) (4.17)

This may be written

uv(f) = uμeμ(vν)eν(f) + uμvνeμeν(f) (4.18)

is defined by
[u,v] = uv − vu. (4.19)

Using eq. (4.18) we get

[u,v] = {uμeμ(vν)− vμeμ(uν)}eν + uμvν [eμ, eν ] (4.20)

Since f,μν = f,νμ μ are linear combinations of partial derivatives, the
terms with second order derivatives will cancel. Thus, [u,v] is a vector.

The structure coefficients, cρ
μν , of an arbitrary basis field {eμ} are defined

by
[eμ, eν ] = cρ

μνeρ. (4.21)

Then eq. (4.20) takes the form

[u,v] = [uμeμ(vν)− vμeμ(uν)] eν + uμvνcρ
μνeρ. (4.22)

For two coordinate basis vectors we get

[eμ, eν ] =

[
∂

∂xμ
,

∂

∂xν

]
=

∂2

∂xμ∂xν
− ∂2

∂xν∂xμ
= 0. (4.23)

reduces to
[u,v] = (uμvν

,μ − vμuν
,μ)eν . (4.24)

The basis vectors have been defined as differential operators in eq. (4.12).

We shall also use a simple notation for partial derivatives introduced by
Einstein,

and e

The operator uv is not a vector since it contains second order derivatives.
The commutator (or Lie-product) of two vectors u and v, denoted by [u,v],

Thus the structure coefficients vanish in a coordinate basis. In this case eq. (4.22)

.

.

.
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4.4 General basis transformations

μ μ′} is

eμ′ = eμMμ
μ′ , (4.25)

eμ = eμ′Mμ′

μ , (4.26)

where the transformation matrix (Mμ′

μ ) is inverse to the matrix (Mμ
μ′), i.e.

Mμ
μ′M

μ′

ν = δμ
ν . (4.27)

The elements of the transformation matrix, Mμ
μ′ , are the components of the

basis-vectors eμ′ as decomposed in the basis {eμ}.
In the special case of a transformation between two coordinate basis fields,

Mμ
μ′ =

∂xμ

∂xμ′ , (4.28)

so that
Mμ′

μ,ν = Mμ′

ν,μ. (4.29)

These equations are not valid in general.
The transformation equation for vector components follows immediately

from eq. (4.26)
v = eμvμ = eμ′Mμ′

μ vμ = eμ′vμ′

, (4.30)

which gives
vμ′

= Mμ′

μ vμ. (4.31)

will be called contravariant components. Components with lower indices trans-
form in the same way as the basis vectors. They are called covariant components.

Basis one-forms have upper indices and transform contravariantly

ωμ′

= Mμ′

μ ωμ. (4.32)

The components of one-forms have lower indices and transform covariantly

αμ′ = αμMμ
μ′ . (4.33)

Corresponding formulae are valid for components of tensors of arbitrary rank.
For a mixed tensor of rank {12}, for example,

T α′

μ′ν′ = Mα′

α Mμ
μ′M

ν
ν′T α

μν . (4.34)

The components of a tensor transform homogeneously. The transformed com-
ponents are proportional to the original ones. A non-vanishing tensor has at
least one component different from zero. It follows that there is at least one
transformed component different from zero, too. It is not possible to transform
away a tensor, and it is not possible to obtain a non-vanishing tensor from a
vanishing tensor. Tensors have, in general, a coordinate independent existence.

The fact that one can transform away the ordinary velocity of a particle
by going into its rest frame, shows that the three-velocity is not a vector. The
four-velocity, on the contrary, is a vector. It cannot be transformed away.

Tensor components with upper indices transform according to eq. (4.31) and

written
The transformation between two arbitrary basis-fields {e } and {e
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4.4 General basis transformations

If we contract two of the indices of a component of a mixed tensor, we
obtain a quantity with two indices less. Let us consider the transformation

′ ′

using eq. (4.27), we get

T α′

α′ν′ = Mα′

α Mμ
α′M

ν
ν′T α

μν = δμ
αMν

ν′T α
μν = Mν

ν′T α
αν . (4.35)

This equation shows that the quantities T α
αν transform as a tensor of rank {01}.

The reduction of the rank of a tensor by two by summing over a contravariant
and covariant index is called contraction of the tensor. The contracted tensor
is a new tensor compared to the original one. The contraction of a tensor of a
tensor of rank {11} gives a scalar function, equal to the trace of the matrix made
up of its components.

The push-forward

We will now define a common notation which is used in the literature and will
also be useful later on. Consider a coordinate transformation f = (x′1, ..., x′n),
then we can for any vector v = vμeμ, define the derivative

f∗v ≡ vμ ∂xμ′

∂xμ
eμ′ . (4.36)

In general the map f does not need to be a coordinate transformation, it only
needs to be a map from the manifold M where v lives. The push-forward will
then be the mapping f∗ as defined above. Thus it can be considered as the
linear map, with the Jacobian matrix

(f∗)μ′

μ =
∂xμ′

∂xμ
. (4.37)

If v = ∂
∂xα , then

f∗v =
∂xμ′

∂xα

∂

∂xμ′ , (4.38)

so this is nothing but the “chain rule for partial derivatives”. If f : M �−→ N
and g is a function g : N �−→ Q, then we can form the composition (g ◦ f) :
M �−→ Q. The chain rule now says that

(g ◦ f)∗
∂

∂xα
=

∂xμ′

∂xα

∂xμ′′

∂xμ′

∂

∂xμ′′ . (4.39)

We also find that

g∗f∗
∂

∂xα
=

∂xμ′

∂xα

∂xμ′′

∂xμ′

∂

∂xμ′′ . (4.40)

Since the push-forward is linear we have

(g ◦ f)∗ = g∗f∗. (4.41)

This is just the chain rule in a more modern setting.

properties of these new quantities. Summing over α and μ in eq. (4.34), and
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Basis Vector Fields and the Metric Tensor

4.5 The metric tensor

In our development of the theory of tensors we have not yet been able to
define formally the absolute value of a vector. Therefore the scalar product
u·v, between two vectors could not be calculated from the elementary formula
u · v = |u||v| cosα, where α is the angle between u and v.

However, since every vector is a linear combination of basis vectors, the
scalar product between two arbitrary vectors can be defined by specifying the
values of all scalar products between the basis vectors in a basis {eμ}.

The scalar product between two vectors u and v is denoted by g(u,v) and

gives a scalar. It follows from the definition of tensors that this mapping is a
covariant, symmetrical tensor of rank {02}. It is called the metric tensor. Thus

v · u = u · v = g(u,v) = gμνuμvν , (4.42)

where
gνμ = gμν = g(eμ, eν) = eμ · eν . (4.43)

The absolute value or norm of a vector is defined by

|v| = [g(v,v)]1/2 = (gμνvμvν)1/2. (4.44)

The scalar product between two vectors can now be written

u · v = |u||v| cos α. (4.45)

μν

gμαgαν = δμ
ν . (4.46)

By a basis transformation the metric tensor gets new components

gμ′ν′ = gμνMμ
μ′M

ν
ν′ . (4.47)

The transpose of a matrix, MT is defined as the matrix obtained by interchang-
ing the rows and columns of the matrix M. The transformation equation (4.47)
can be written in matrix form as

g′ = MT gM, (4.48)

where g′ and g are the matrices made up of the components gμ′ν′ and gμν of
the metric tensor respectively. By means of the metric tensor we can define
linear one-to-one mappings between tensors of different type (covariant or
contravariant), but with the same rank. We can for example map a vector on
a one-form, ω = ιvg, with components

vμ = g(v, eμ) = g(vνeν , eμ) = vνg(eν , eμ)

= vνgνμ = gμνvν . (4.49)

This mapping is called lowering of an index. The raising of an index is given by

vμ = δμ
νvν = gμαgανvν = gμαvα. (4.50)

elements of the inverse matrix to the one made up of the covariant components,
The contravariant components, g , of the metric tensor are defined as the

is defined as a symmetric bilinear mapping, which for every pair of vectors

i.e.,
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4.5 The metric tensor

T ν
μγ = gμαgνβT α

βγ . (4.51)

Equation (4.46) can now be written

gμ
ν = δμ

ν . (4.52)

Thus, the mixed components of the metric tensor are equal to the Kronecker
symbols. In this sense the metric tensor can be thought of as the unit tensor of
rank two.

The metric tensor will now be used to define the distance along a curve.
Consider an infinitesimal distance, ds, between two points on a curve xμ(λ),
at λ0 and λ0 + dλ. Let v be a tangent vector field of the curve. Then

ds2 = g(v,v)dλ2 = gμνvμvνdλ2 = gμνdxμdxν (4.53)

since vμ = dxμ/dλ. The quantity ds is called the line-element associated with
the metric tensor gμν .

The finite distance along a curve, between two points λ0 and λ is calculated
from the line integral

s =

λ∫
λ0

√
|gμνvμvν |dλ, vμ =

dxμ

dλ
. (4.54)

The physical interpretation of the line-element along time-like curves in space-
time was discussed in section (2.8).

Example 4.6 (The line-element of flat 3-space in spherical coordinates) Example

ds2 = dx2 + dy2 + dz2.

From Fig. 4.9 is seen that the transformation between spherical and the Cartesian coor-
dinates is

x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ. (4.56)

(4.55)

The line-element of Euclidean 3-space in Cartesian coordinates is

Figure 4.9: Relationship between Cartesian and spherical coordinates.

Corresponding expressions are valid for tensors of arbitrary rank, for example,

z

(x; y; z)

x

(r; q; f)
q

r

f

y
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Basis Vector Fields and the Metric Tensor

Differentiating and substituting into eq. (4.55) we obtain the line-element of Euclidean
3-space in spherical coordinates,

ds2 = dr2 + r2(dθ2 + sin2 θdφ2). (4.57)

4.6 Orthonormal basis

For an arbitrary metric one can introduce a field of basis-vectors consisting of
orthogonal unit vectors. Such a basis is called an orthonormal basis, and fulfills

eμ̂ · eν̂ = ημ̂ν̂ =

{ ±1 , for μ̂ = ν̂
0 , for μ̂ �= ν̂.

(4.58)

The components of the metric tensor relative to an orthonormal basis, are

gμ̂ν̂ = diag(−1, . . . ,−1, 1, . . . , 1) (4.59)

The sum of the diagonal components, gμμ, is called the signature of the metric
tensor, and is denoted by sgn(g). We usually only write the sign of the diag-
onal elements for the signature of the metric. If the signature for a space is
(++ . . .+), then we call the space Riemannian. If the signature is (−++ . . .+),
then we call the space Lorentzian. Hence, spacetime is a Lorentzian space,
while the spatial surfaces are Riemannian.

In an Euclidean space one can introduce a Cartesian coordinate-system,
with an orthonormal coordinate basis vector field. The components of the
metric tensor are then

gμ̂ν̂ = δμ̂ν̂ , (4.60)

or, in matrix form
g = 1, (4.61)

where 1 is the unit matrix.
A transformation matrix, MC , between two Cartesian coordinate systems,

must satisfy
1 = MT

C · 1 ·MC , (4.62)

which requires
MT

C = M−1
C . (4.63)

Thus the transformation matrices between Cartesian coordinate systems are
orthogonal. These transformation matrices form a group called the orthonor-
mal group.

In the following three examples we shall consider a two-dimensional Eu-
clidean plane, with a system of plane polar coordinates. Some differences
between the coordinate basis vectors of this system and the corresponding
orthonormal basis vector field, are demonstrated.

Example 4.7 (Basis vector field in a system of plane polar coordinates)Examples

system, as decomposed in a Cartesian coordinate system, are

er = cos θex + sin θey,

eθ = −r sin θex + r cos θey.

In Example 4.2 it was shown that the coordinate basis vectors of the polar coordinate

.
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4.6 Orthonormal basis

The components of the metric tensor are

grr = er · er = 1, gθθ = eθ · eθ = r2, grθ = er · eθ = 0.

This gives the line-element
ds2 = dr2 + r2dθ2,

which represents the Pythagorean theorem as expressed in plane polar coordinates.
The absolute values of the coordinate basis vectors are

|er| = (er · er)
1/2 = 1, |eθ| = (eθ · eθ)

1/2 = r.

Thus eθ is not a unit vector.
The corresponding orthonormal basis field is

er̂ = er, eθ̂ =
1

r
eθ.

Example 4.8 (Velocity field in plane polar coordinates)

vector, v, of a particle is
v = vμ

eμ = vr
er + vθ

eθ,

where
vr =

dr

dt
, vθ =

dθ

dt
,

are the coordinate components of the velocity.
These components do not have the same dimension. While vr is a velocity, the

component vθ is an angular velocity.
A common dimension of the velocity components is obtained if the velocity vector

is decomposed in an orthonormal basis field

v = vμ̂
eμ̂ = vr̂

er̂ + vθ̂
eθ̂,

where
vr̂ =

dr

dt
, vθ̂ = r

dθ

dt
.

The component vθ̂ is the velocity in the eθ-direction. The “physical components” vr̂

and vθ̂ both have the dimension length/time.
The physical meaning of a calculation is often easier to see in an orthonormal basis

than in a coordinate basis.

Example 4.9 (Structure coefficients of an orthonormal basis field associated with
plane polar coordinates)
(See example 4.7)

[er̂, eθ̂] = [er,
1

r
eθ] = [

∂

∂r
,
1

r

∂

∂θ
]

=
∂

∂r

„
1

r

∂

∂θ

«
− 1

r

∂

∂θ

„
∂

∂r

«
= − 1

r2

∂

∂θ
+

1

r

∂2

∂r∂θ
− 1

r

∂2

∂θ∂r

= − 1

r2
eθ = −1

r
eθ̂ = cθ̂

r̂θ̂eθ̂,

where eq. (4.21) has been used. This gives

cθ̂
r̂θ̂ = −cθ̂

θ̂r̂ = −1

r
.

As decomposed in a coordinate system with plane polar coordinates (r, θ) the velocity
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Spacetime is four-dimensional. An orthonormal basis {eμ̂} for spacetime
has one time-like vector, et̂, and three space-like vectors, eî, î = 1, 2, 3 . . .. Such
a basis, and the corresponding one-form basis, will be called a tetrad.

The metric tensor of an arbitrary tetrad is denoted by η and its components
are given by

ημ̂ν̂ = diag(−1, 1, 1, 1). (4.64)

A transformation Λ between two tetrads must fulfill the equation

η = ΛT ηΛ. (4.65)

These are just the Lorentz transformations.
An arbitrary coordinate transformation, xμ = xμ(xμ′

), is in general differ-

Coordinates do not in general transform like vector components. However,
from the chain-rule for differentiation follows that the coordinate differentials
transform as vector components.

In the special case of linear transformations with constant elements of the
transformation matrix, the coordinates themselves transform like the coordi-
nate differentials. This is the case for the Lorentz transformations.

4.7 Spatial geometry

Three fundamental kinematical concepts are position, direction, and motion. To
each of these concepts there correspond an independent type of reference. The
position of a particle is referred to a coordinate system. The direction of a rod is
referred to a basis vector field, and the motion of a body is referred to a reference
frame.

These types of reference can be introduced in a physical description inde-
pendently of each other, and there are several sorts of each type. What type,
and which sort of reference that one introduces, is a matter of convenience.
In general relativity there is a much used alternative to introduce basis vec-
tors, namely to use basis one-forms. This corresponds to characterizing the
direction of a rod by the plane normal to the rod.

A coordinate system K covering a region of spacetime, is a continuum of
four variables {xμ} that uniquely label every event in the region. We define a
reference frame R as a continuum of non-crossing time-like or light-like curves
in spacetime. According to this definition a reference frame may be thought

A comoving coordinate system in a reference frame is defined by the require-
ment that the reference particles of the frame have constant spatial coordi-
nates.

In general the observers of a frame need not move freely. For example
the observers of a hyperbolically accelerated reference frame in flat spacetime
are not inertial. However, the kinematical properties of cosmological models,
their expansion, shear and rotation, usually are defined with reference to ob-
servers that move freely. This class of observers will be called inertial observers.

An orthonormal tetrad field can be associated with a reference frame R,
where e0 is the unit tangent vector field of the world lines of the fundamental
observers in R. In other words u = e0, where u is the four-velocity field of
these observers.

ent from the corresponding transformation of vector components, eq. (4.31).

observers.
of as a continuum of world-lines of particles, called reference particles or
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4.7 Spatial geometry

A set of simultaneous events, as measured by Einstein-synchronized clocks
at rest relative to an observer, defines a local 3-dimensional space, which we
call the rest space of the observer. This space is orthogonal to the four-velocity
vector u of the observer.

We shall now describe the spatial geometry in an arbitrary reference frame
R. Let e0 be a tangent vector field to the world lines of the fundamental ob-

i will not in general be orthogonal
to e0. Let the vectors ei⊥ be the projections of ei orthogonal to e0, i.e.,

ei⊥ · e0 = 0. (4.66)

The spatial metric tensor is defined by

γij = ei⊥ · ej⊥, γi0 = 0, γ00 = 0. (4.67)

Since
ei⊥ = ei − ei‖, (4.68)

where
ei‖ =

ei · e0

e0 · e0
e0 =

gi0

g00
e0, (4.69)

we get

γij = gij − gi0gj0

g00
. (4.70)

The spatial line-element is defined by

dl2 = γijdxidxj . (4.71)

Consider a transformation of the form

x0 = x0(xμ′

), xi = xi(xi′), (4.72)

μν

to eq. (4.47) and noting that M i
0′ = 0 for the transformation (4.72), we get

γi′j′ = M i
i′M

j
j′γij . (4.73)

This shows that the quantities γij transform as tensor components under a
transformation of the form (4.72).

From the transformation (4.72) we find

∂

∂x0′ =
∂xμ

∂x0′

∂

∂xμ
=

∂x0

∂x0′

∂

∂x0
(4.74)

since ∂xi/∂x0′

= 0. Thus

e0′ =
∂x0

∂x0′ e0, (4.75)

showing that e0′ , is parallel to e0. It follows that the four-velocity fields of
particles with fixed coordinates in two coordinate systems connected by a

ordinate transformations between different comoving coordinate systems in a
single reference frame R. Such coordinate transformations are called internal
coordinate transformations.

where μ = 0, 1, 2, 3 and i = 1, 2, 3. Using eq. (4.28), transforming g according

transformation of the form (4.72), are identical. Eq. (4.72) thus represents co-

servers of R. The space-like basis vectors e

79



Basis Vector Fields and the Metric Tensor

and the spatial line-element is invariant under internal coordinate transfor-
mations.

The line-element of spacetime may be written

ds2 = −dt̂2 + dl2, (4.76)

where

dt̂ =
√−g00

[
dt +

gi0

g00
dxi

]
. (4.77)

Here, dt̂ = 0 represents the local 3-dimensional space of simultaneity orthogo-
0

of this space.
The difference in coordinate time dt of two simultaneous events, dt̂ = 0,

with spatial coordinates xi and xi + dxi is

dt = − gi0

g00
dxi, (4.78)

which generally is not an exact differential2. In general the line integral of
dt around a closed path will not vanish. This means that one cannot always
synchronize clocks along closed path, or globally in space. However, if gi0 = 0,
i = 1, 2, 3, then this is possible.

We have seen that if gi0 �= 0, there does not exist a single space of simul-
taneity encompassing the “rest spaces” of all observers in an arbitrary refer-
ence frame. In this sense the 3-dimensional space described by the spatial
metrical tensor is local.

4.8 The tetrad field of a comoving coordinate

Let K be a comoving coordinate system of a reference frame R, with a coordi-
nate basis vector field {eμ}. It is assumed that the space-like vectors {ei} are
orthogonal to each other, but not necessarily to the vector e0. We shall find a
tetrad-field {eμ̂} so that e0̂ is parallel to e0. The vector e0̂ is the four-velocity
of the reference particles of R.

Since the absolute value of e0 is (−g00)
1/2 the vector e0 is given by

e0̂ = (−g00)
−1/2e0. (4.79)

From eqs. (4.68) and (4.69) follow

ei⊥ = ei − gi0

g00
e0. (4.80)

i⊥ is γ
1/2
ii

the tetrad is given by

eî = γ
−1/2
ii

[
ei − gi0

g00
e0

]
. (4.81)

Another space-like vector eĵ of the tetrad is chosen so that eĵ · eî = 0,
eĵ · e0̂ = 0. The last one is given by ek̂ = eî × eĵ , where × denotes the vector
product.

2What we mean by exact differential will be more rigorously defined in chapter 6.

system

nal to e . Eq. (4.76) shows that the spatial metric tensor describes the geometry

According to eq. (4.67) the absolute value of e , thus the ith vector of

Eq. (4.73) shows that the spatial metric tensor transforms like a tensor,
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4.9 The volume form

The corresponding orthonormal form-basis is given by

ωμ̂(eν̂) = δμ̂
ν̂ , (4.82)

giving

ω0̂ =
√−g00

[
ω0 +

gi0

g00
ωi

]
, (4.83)

ωî =
√

γiiω
i. (4.84)

Applying a basis-form ωμ to an infinitesimal displacement-vector

dr = drνeν , (4.85)

leads to
drμ = ωμ(dr). (4.86)

If eν is a coordinate basis vector, i.e., eν is a tangent vector to a coordinate
curve, then drμ = dxμ.

The components of a tensor relative to an orthonormal basis are called the
tetrad components of the tensor. They are invariant under an internal coor-
dinate transformation that does not change the orientation of the space-like
basis vectors, but Lorentz transform when the reference frame is changed.

The tetrad components of a basis vector eν are denoted by eμ̂
ν , and are

given by

eν = eμ̂
νeμ̂. (4.87)

It follows that the metric tensor of an arbitrary basis {eμ} are given in terms
of the tetrad components as

gμν = eα̂
μeβ̂

νηα̂β̂ (4.88)

4.9 The volume form

The antisymmetric Levi-Civitá symbol is defined by

εμ1...μn = sgn(g)εμ1...μn =

⎧⎨⎩
1 if μ1 . . . μn is an even permutation of 1 . . . n
−1 if μ1 n

0 otherwise.
(4.89)

It follows that εμ1...μn = 0 if two indices are equal.
The determinant of an n× n-matrix A with elements Aμν may be written

A = det(A) = εμ1...μnA1μ1A2μ2 . . . Anμn . (4.90)

For example, for n = 2 this equation gives

A = εμ1μ2A
1μ1A2μ2 = ε12A

11A22 + ε21A
12A21 = A11A22 −A12A21. (4.91)

We shall now consider an n-dimensional space with a metric tensor. Let {ωμ̂}
be a tetrad basis of one-forms. The volume form ε is defined by

ε = ω1̂ ∧ . . . ∧ωn̂. (4.92)

is an odd permutation of 1 . . .n. . .μ

.
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Let (Mμ
μ̂) be the transformation matrix to arbitrary basis ωμ = Mμ

μ̂ωμ̂. Then

ε = M 1̂
μ1

. . . M n̂
μn

ωμ1 ∧ . . . ∧ ωμn

= M 1̂
μ1

. . . M n̂
μn

εμ1...μnω1 ∧ . . . ∧ ωn

= Mω1 ∧ . . . ∧ ωn, (4.93)

where M is the determinant of the transformation matrix.
Since the determinant of a matrix is equal to the determinant of the trans-

posed matrix (rows and columns interchanged), the transformation equation
(4.48) for the components of the metric tensor leads to the determinant equa-
tion

g = M2ĝ, (4.94)

where ĝ is the determinant of the metric tensor relative to a tetrad basis. From
eq. (4.59) follows that ĝ =±1, where the sign depends upon the signature of g.

volume form can be written

ε =
√
|g|ω1 ∧ . . . ∧ ωn =

1

n!

√
|g|εμ1...μnωμ1 ∧ . . . ∧ ωμn , (4.95)

where |g| is the absolute value of the determinant of the metric tensor. The
If the ori-

entation of the vector basis is changed, so that for example e1 and e2 are ex-
changed, then the sign of ε is changed. A transformation that does not change
the sign of ε preserves the orientation of the basis, or in the case of coordinate
basis, of the coordinate system. The tensor components of the volume form
are

εμ1...μn = |g|1/2εμ1...μn . (4.96)

The volume form represents an invariant volume element. The corresponding
invariant distance in the μμ-direction is

εμ =
√
|gμμ|ωμ. (4.97)

4.10 Dual forms

Let the p-vector A have contravariant components found by raising the in-
dices of a p-form α. The dual of the form α in an n-dimensional space is
designated by �α and is defined as the contraction of ε with A,

�α = ιAε. (4.98)

The star � is called Hodge’s star operator . From the definitions (4.98) and (3.66)
follows that �α is a (n− p)-form given by

�α =
1

p!(n− p)!
εν1...νpμ1...μn−pαν1...νpωμ1 ∧ . . . ∧ ωμn−p . (4.99)

The dual of an orthogonal basis p-form is

�(ων1 ∧ . . .∧ωνp) =
1

(n− p)!

√
|g|g−1

p εν1...νpμ1...μn−pωμ1 ∧ . . .∧ωμn−p , (4.100)

where gp is the determinant of the metric tensor associated with the space
of the p-form α, and g is the determinant of the metric in the n-dimensional
space.

Inserting the positive square root of M from eq. (4.94) into eq. (4.93), the

volume form describes an oriented n-dimensional parallelepiped.
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4.10 Dual forms

Example 4.10 (Spherical coordinates in Euclidean 3-space) Example

is
x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ.

By differentiation one finds the basis vectors

er = ex sin θ cos φ + ey sin θ sin φ + ez cos θ,

eθ = exr cos θ cos φ + eyr cos θ sin φ− ezr sin θ,

eφ = −exr sin φ sin θ + eyr cos φ sin θ.

From eq. (4.43) we now find the non-vanishing components of the metric tensor

grr = 1, gθθ = r2, gφφ = r2 sin2 θ.

The line-element takes the form

dl2 = dr2 + r2dθ2 + r2 sin2 θdφ2,

so the volume form is
ε = r2 sin θω

r ∧ ω
θ ∧ ω

φ.

The dual of a one-form ων is

�ω
ν =

1

2
|g|1/2|gν |−1ενμ1μ2ω

μ1 ∧ ω
μ2 ,

with
gr = 1, gθ = r2, gφ = r2 sin θ.

Letting (x1, x2, x3) = (r, θ, φ) gives

�ω
r = r2 sin θε123ω

2 ∧ ω
3 = r2 sin θω

θ ∧ ω
φ,

and, in the same way,

�ω
θ = sin θω

φ ∧ ω
r,

�ω
φ = ω

r ∧ ω
θ.

The double dual is given by

� � α = ĝ(−1)p(n−p)α. (4.101)

Hence, the double dual operator is the identity up to a sign:

�2 = �� = ±1. (4.102)

The dual of the volume form is

�ε =
1

n!
εμ1...μnεμ1...μn = ĝ = ±1. (4.103)

Note that the equations (4.101) and (4.103) gives a useful expression for the
volume form:

ε = �1. (4.104)

Let α and β be p-forms with corresponding vectors A and B respectively.
Then

(�α) ∧ β =
1

p!
αμ1...μpβμ1...μpε1...nω1 ∧ . . . ∧ ωn = (A ·B)ε. (4.105)

The transformation from spherical coordinates (r, θ, φ) to Cartesian coordinates (x, y, z)
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0-form: 3-form:

φ = φ �φ : (�φ)123 =
√

gφ

1-form: 2-form:

E : [E1, E2, E3] �E :
√

g

⎡⎣ 0 E3 −E2

−E3 0 E1

E2 −E1 0

⎤⎦

2-form: 1-form:

B :

⎡⎣ 0 B12 −B31

−B12 0 B23

B31 −B23 0

⎤⎦ �B :
√

g[B23, B31, B12]

3-form: 0-form:

G : (G)123 = G �G = g−
1
2 G

Furthermore,
(�α) ∧ β = α ∧ (�β). (4.106)

The following connection for n = 3 between the wedge product of one forms
and the vector product of vectors should be noted

�(α ∧ β) = ιA∧Bε =
1

2
ενλμ(A ∧B)νλωμ = (A×B)μωμ. (4.107)

Problems

4.1. Coordinate-transformations in a two-dimensional Euclidean plane

2
m|m = x, y} is an orthonormal basis in E2, i.e.

em · en = δmn.

The components of a vector x in this basis is given by x and y, or xm:

x = xmem = xex + yey.

A skew basis set, {eμ|μ = 1, 2}, is also given. In this basis

x = xμeμ = x1e1 + x2e2.

The transformation between these to coordinates are

x1 = 2x− y,

x2 = x + y.

Table 4.1: Dual forms in 3-dimensional space with g > 0.

E . The set {eEuclidean plane
In this problem we will vectors x in the two-dimensionalinvestigate

See Tables 4.1 and 4.2 for examples of dual forms in 3 and 4 dimensions.
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Problems

0-form: 4-form:

φ = φ �φ : (�φ)0123 =
√−gφ

1-form: 3-form:

A : [A0, A1, A2, A3] �A : (�A)012 = −√−gA3 etc.

2-form: 2-form:

F :

⎡⎢⎢⎣
0 F01 F02 F03

−F01 0 F12 F13

−F02 −F12 0 F23

−F03 −F13 −F23 0

⎤⎥⎥⎦ �F :
√−g

⎡⎢⎢⎣
0 F 23 −F 13 F 12

−F 23 0 F 03 −F 02

F 13 −F 03 0 F 01

−F 12 F 02 −F 01 0

⎤⎥⎥⎦

3-form: 1-form:

G : (G)αβγ �G :
√−g[−G123, G230,−G301, G012]

4-form: 0-form:

H : (H)0123 = H �H = −(−g)−1/2H

(a) Find e1 and e2 expressed in terms of ex and ey . Determine the transfor-
mation matrix M, defined by

xm = Mm
μxμ.

What is M−1?

(b) The metric tensor g is given by

ds2 = gμνdxμdxν = gmndxmdxn,

where ds is the distance between x and x + dx. Show that we have

eμ · eν = gμν .

What is the relation between the matrices (gμν) and (gmn) and the trans-
formation matrix M?
The scalar product between two vectors can therefore be expressed as

v · u = gμνvμuν = gmnvmun.

Verify this equation for the case u = 2e1 and v = 3e2.

Table 4.2: Dual forms in 4-dimensional space with g < 0.
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(c) Using the basis vectors eμ, we can define a new set ωμ by

ωμ · eν = δμ
ν .

Find ω1 and ω2 expressed in terms of ex and ey . Why is ωm = em, while
ωμ �= eμ?
A vector x can now be expressed as

x = xμeμ = xμωμ.

What is the relation between the contravariant components xμ and the
covariant components xμ? Determine both set of components for the
vector A = 3ex + ey.
In a (x, y)-diagram, draw the the three set of basis vectors {eμ}, {em} and
{ωμ}. What is the geometrical interpretation of the relation between the
two sets {eμ} and {ωμ}? Depict also the vector A and explain how the
components of A in the three basis sets can be seen from the diagram.

(d) Find the matrix (gμν) defined by

ωμ · ων = gμν .

Verify that this matrix is the inverse to (gμν).
The metric tensor is a symmetric tensor of rank 2, and can therefore be
expressed with the basis vectors em ⊗ en in the tensor product space
E2 ⊗ E2,

g = gmnem ⊗ en.

Show that we also can express it as

g = gμνωμ ⊗ ων ,

and
g = gμνeμ ⊗ eν .

What is the dimension of the space spanned by the vectors em ⊗ en?
The antisymmetric tensors span a one-dimensional subspace. Show this
by showing that an antisymmetric tensor Amn is a linear combination of
the basis vector

ex ∧ ey = ex ⊗ ey − ey ⊗ ex

Find u ∧ v where u and v are the vectors from (b), expressed in terms of
the basis vector ex ∧ ey. What is the relation between this and the area
that is spanned by u and v? Calculate also ω1 ∧ ω2.

4.2. Covariant and contravariant components

(a) In a two-dimensional space the metric is given in covariant components
as

(gμν) =

[
1 2
2 3

]
.

Find the covariant components to the vector v = 3e1 − 4e2.
(b) The tensor T = T μνeμ ⊗ eν has the contravariant components given by

(T μν) =

[−1 2
0 3

]
.

Calculate the mixed components T μ
ν and T ν

μ and the covariant compo-
nents Tμν .
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Problems

4.3. The Levi-Civitá symbol
The three-dimensional Levi-Civitá symbol εijk , can be defined by

i) εxyz = +1,

ii) εijk is antisymmetric in any exchange of indices.

(a) Use this calculate all of the 27 components of the Levi-Civitá symbol.
(b) Show that the Levi-Civitá symbol satisfies the following relations

εijkεi
mn = δjmδkn − δjnδkm,

εijkεij
m = 2δkm.

(c) Show how the components to a cross-product A × B can be expressed
with the use of εijk , and use this, together with the properties of the Levi-
Civitá symbol to calculate the following expressions:

A× (B×C), (A×B) · (C×D), (A×B)× (C×D),

∇× (φA), ∇ · (A×B), ∇× (A×B), ∇× (∇×A).

(d) The cofactor determinant, Cof(Mij), of the matrix element Mij in a 3× 3-
matrix M, is defined by

Cof(Mij) =
1

2
εiklεjmnMkmMln.

Show that the inverse matrix M−1 is given by

(M−1)ij =
Cof(Mij)

|M| .

4.4. Properties of transformations of a basis
Consider a transformation in 3-dimensional space, given in terms of the basis
transformation em → eμ:

eμ = Mm
μem.

(a) What is the corresponding transformation for the one-forms ωμ defined
by ωμ(eν) = δμ

ν ? Find also the transformation of the components of the
metric tensor gμν and gμν , and the transformation of the components aμ

and aν for an arbitrary vector a.
(b) A quantity that is independent of any choice of basis is called an invari-

ant. Show, using the transformations above, that

ds2 = gμνωμ ⊗ ων ,

is an invariant.
The volume element dV spanned by three vectors da, db and dc, can be
expressed as

dV ex ∧ ey ∧ ez = daμdbνdcρeμ ∧ eν ∧ eρ,

where {ex, ey, ez} is an orthonormal basis. Show, using this equation,
that dV is an invariant. In particular, show that when da = dx1e1, db =
dx2e2, dc = dx3e3, we have

dV = det(Mm
μ )dx1dx2dx3 =

√
|g|dx1dx2dx3,

where g is the determinant of the matrix (gμν).
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(c) The fundamental contraction in a Cartesian system between the basis
one-forms ωm and the basis vectors en is ωm(en) = δm

n. Assume also
that in the transformed system we have ωμ(eν) = δμ

ν . How must the
basis one-forms transform?
Given the one-form σ which in the Cartesian system has components σm:
σ = σmωm. In the transformed system it has components σμ: σ = σμωμ.
Show that the components transform covariantly; i.e., σμ = σmMm

μ .

4.5. Dual forms
Let {ei} be a Cartesian basis in the three-dimensional Euclidean space. Using
a vector a = aiei there are two ways of constructing a form:

i) By constructing a one-form from its covariant components aj = gjia
i:

A = aidxi.

ii) By constructing a two-form from its dual components, defined by αij =
εijkak:

α =
1

2
αijdx

i ∧ dx
j .

We write this form as α = �A where � means to take the dual form.

(a) Given the vectors a = ex + 2ey − ez and b = 2ex − 3ey + ez . Find the
corresponding one-forms A and B, and the dual two-forms α = �A and
β = �B. Find also the dual form θ to the one-form σ = dx− 2dy.

(b) Take the exterior product A ∧B, and show that

θij = εijkCk.

where θ = A ∧ B, and C = a × b. Show also that the exterior product
A ∧ �B is given by the three-form

A ∧ �B = (a · b) dx ∧ dy ∧ dz.

4.6. Wedge product
Consider the two functions u = u(x, y) and v = v(x, y) and assume that this is
a coordinate transformation between two coordinate systems (x, y) and (u, v).
Show that

du ∧ dv = Jdx ∧ dy,

where J is the Jacobian

J =
∂(u, v)

∂(x, y)
= det

([
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

])
.
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5
Non-inertial Reference Frames

In this chapter we shall consider some consequences of the formalism devel-
oped so far, by studying the relativistic kinematics in two types of non-inertial
reference frames: the rotating reference frame and the uniformly accelerating
reference frame.

5.1 Spatial geometry in rotating reference frames

Let IF be an inertial reference frame with a cylindrical coordinate system
(T, R, ϑ, Z). In this system the line-element of spacetime is

ds2 = −c2dT 2 + dR2 + R2dϑ2 + dZ2. (5.1)

A reference frame RF with cylindrical coordinates (t, r, θ, z) rotates with con-
stant angular velocity ω relative to IF . The coordinate clocks of RF are syn-
chronized and adjusted so that they show the same time as those in IF .

The transformation between the comoving coordinates of IF and RF is

t = T, r = R, θ = ϑ− ωT, z = Z. (5.2)

Differentiating and substituting into eq. (5.1) we get the line-element

ds2 = −
(

1− r2ω2

c2

)
c2dt2 + dr2 + 2r2ωdtdθ + r2dθ2 + dz2. (5.3)

Thus the non-vanishing components of the metric tensor are

gtt = −c2γ−2, grr = 1, gtθ = r2ω, gθθ = r2, gzz = 1, (5.4)

where

γ =

(
1− r2ω2

c2

)−1/2

. (5.5)



Non-inertial Reference Frames

The transformation between the coordinate basis vectors of IF and RF fol-
lows from eqs. (4.26) and (4.28)

et = eT + ωeϑ, er = eR, eθ = eϑ, ez = eZ (5.6)

Even if t = T the basis vectors et and eT have different directions. The vector
field eT is directed along the world lines of the reference particles of IF , while
the vector field et is directed along the world lines of the particles of RF . The
rest-space of IF is orthogonal to eT , while the rest-space of RF is a succession

t

(4.70), (4.81) and (5.6) we find a comoving orthonormal basis field in RF ,

et̂ = γc−1et, er̂ = er, eθ̂ = γ−1r−1eθ + γrωc−1et, eẑ = ez. (5.7)

rotating coordinate system

dl2 = dr2 + γ2r2dθ2 + dz2 (5.8)

The distance between two points (t, r, θ, z) and (t, r, θ + dθ, z), as measured
with standard rods at rest in RF is dlθ = γrdθ. Thus the length of a circle with
coordinate radius r about the axis in RF is γ2πr. The distance from (t, r, θ, z)
to (t, r + dr, θ, z) is dlr = dr, so that the measured radius from the axis to
(t, r, θ, z) is r. Thus the quotient between the measured periphery and radius
is 2γπ, which is greater than 2π. This means that the surface dt̂ = 0 (see eq.
(4.77)), z = constant has negative curvature (see chapter 7).

5.2 Ehrenfest’s paradox
′

rotating disk, as observed in the inertial frame IF , and r the radius of the disk
when it is at rest. Then r′ must fulfill the following two requirements:

of 3-dimensional simultaneity planes locally orthogonal to e . From eqs. (4.79),

Figure 5.1: Planes of simultaneity in the rotating frame.

(5.7) into eqs. (4.67), (4.71) one finds the spatial line-element in the comoving

be the radius of theEhrenfest formulated his paradox as follows : “Let r

T = t = constant

T = t = constant

t = constant
q = constant

.

The simultaneity planes of RF are shown on Fig. 5.1 Inserting the expressions.
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5.2 Ehrenfest’s paradox

1. The periphery of the disk must be Lorentz contracted: 2πr′ < 2πr.

2. Since the radial line is moving normally to its direction, it is not Lorentz
contracted: r′ = r.

The kinematical resolution of this paradox depends upon the relativity
of simultaneity. Consider n equally spaced points around the periphery, see

Figure 5.2: Simultaneous events in the rotating frame.

program so that the rest distance between the particles remain constant. Then
the distance between them will be Lorentz contracted. Hence, for all pairs of
neighbouring particles, at θ and θ + dθ, the two particles have to be acceler-
ated simultaneously as observed in their instantaneous inertial rest frames,
IF ′. A Lorentz transformation from IF ′ to IF shows that, as observed in IF ,
the rear point is accelerated dt = γ(ωr2/c2)dθ′ earlier than the front point. Go-
ing around the periphery one finds that the point n − 1 is to be accelerated
Δt = 2πγ(ωr2/c2) later than the point n. However, it should also be acceler-
ated dt = γ(ωr2/c2)dθ′ earlier than the point n. So it appears that due to the
relativity of simultaneity the acceleration program that would realize an angular ac-
celeration of the disk, while keeping the rest length between neighbouring points on the
periphery constant, represents kinematically self-contradicting boundary conditions.

fest cannot be realized according to the special relativistic kinematics. This is
the kinematic resolution of Ehrenfest’s paradox.

We have seen that it is impossible to define locally simultaneous events
for all comoving observers along the periphery of a rotating disk. This leads
to an inconsistency as referred to the laboratory frame IF . If the comoving
observers in RF should synchronize their clocks, they must be able to define
a set of events which is locally simultaneous for each observer. Since such a set
of events does not exist, it is impossible to synchronize clocks in a rotating reference
frame.

Let us now see how the non-Euclidean spatial geometry develops as the
disk is given an angular velocity. The geometry is measured by standard mea-
suring rods in the “rest space” of RF . If arbitrary measuring rods are kept in
a fixed position relative to an accelerated system of reference, they will gen-
erally be submitted to forces that will cause deformations of the rods. These
deformations will, however, depend upon the elastic properties of the rods,
and all such deformations can therefore be corrected for. In general the stan-
dard measuring rods are subjected to Lorentz contractions only, which means

Fig. 5.2. In order to fulfill the requirement (1) one is to realize an acceleration

Thus, the motion corresponding to the condition given in point (1) of Ehren-

2 : t + 2dt

1 : t + dt
!

3 : t + 3dt

r 0 : t
n : t + ndt

(n – 1) : t + (n – 1)dt
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that they must move so that their rest lengths remain constant. Such motion
is called Born rigid. In other words: all standard measuring rods are assumed to
perform Born rigid motions.

In order to obtain this, n rods are assumed to rest on the disk without
friction, being kept in place by a frictionless rim on the circumference of the
disk, each rod being fastened to the disk at one end only, at points Pk′ so that
they just cover the circumference when the disk is not rotating, as shown in
Fig. 5.3.

Figure 5.3: A disk at rest with the periphery covered by measuring rods.

Now we regard the process of accelerating the disk with the rods, so that
it acquires an angular velocity. At a certain moment, the disk has an angu-
lar velocity ω, which is to be increased. The acceleration of the rods and the
disk must be prescribed so that (a) the proper length L0 of the rods remains
unchanged, and (b) no kinematic inconsistencies result.

Condition (a) demands that in the instantaneous rest frame IFk′ of each
rod, every point of the rod with which this inertial frame is associated is accel-
erated simultaneously. According to the Lorentz transformations from IFk′ to
IF one observes in IF that the front end of each rod is accelerated at a time
(ωr/c2)L0 later than the rear end of it. Thus each rod gets an increased Lorentz
contraction due to the acceleration. When the disk has an angular velocity ω,
every rod is observed in IF with a length L = L0(1− ω2r2/c2)1/2.

The only isotropic way of giving the disk an angular velocity is to accel-
erate all points Pk′ simultaneously as measured in IF . In IFk′ one then mea-
sures that the point Pk′ is accelerated at a point of time

Δtk′ =
γωr2

c2
L0 (5.9)

earlier than the point Pk′+1. Thus the distance between these points, that is the
point at the front of one measuring rod and at the front of the next, increases,
as observed in IFk′ . However, as the measuring rods are moving rigidly, their
proper lengths remain unchanged. Accordingly the rods separate from each
other as the disk accelerates. The velocity change, as observed from IFk′ , is
(1−ω2/r2)−1rdω. Then the distance between two neighbouring rods increases
by

dsk′ =
γ3ωr2

c2
L0dω. (5.10)
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5.3 The Sagnac effect

Integrating, one finds the distance between the rods, as measured in IFk,
when the disk rotates with an angular velocity ω:

sk′ = (γ − 1)L0. (5.11)

Thus the distance as measured in IF is

s = L0 − L0

√
1− ω2r2

c2
, (5.12)

in accordance with the fact that the measuring rods are Lorentz contracted,
while the circumference of the disk is not. The view of the rotating disk and
the measuring rods, as seen from IF , is shown in Fig. 5.4. The result of this

Figure 5.4: A rotating disk with measuring rods that have been Lorentz contracted.

analysis is that the ratio of the measured length of the periphery and the radius
of the rotating is 2πγ, which is consistent with the calculation based upon the
spatial metric tensor.

5.3 The Sagnac effect

An emitter is placed at a position (r, θ, z) in RF . Light is emitted in the posi-
tive and negative θ-directions, and absorbed at the position of the emitter, in
such a way that the light having traversed the circumference in opposite di-
rections, interferes. By observing how the interference pattern depends upon
the radius of the circular path and the angular velocity of RF , one finds that
the difference in travel times of the paths is given by

Δt =
4πγ2r2ω

c2
. (5.13)

This result will now be deduced in two ways: first with reference to IF , and
then as described in RF .

As referred to IF the velocity of light is the same in two directions, but
the absorber moves a distance rωt where T is the travelling time. Thus the
travelling times for light moving in the two directions are given by

2πr + rωt1 = ct1, 2πr − rωt2 = ct2, (5.14)

!
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which gives the travelling time difference

δt = t1 − t2 =
4γ2Aω

c2
, (5.15)

where A = πr2 is the area enclosed by the light path.
In RF the absorber is at rest, but the light moves with different velocities

in the two directions. From eq. (5.3) with ds = dr = dz = 0, we get

r2dθ2 + 2r2ωdtdθ − (c2 − r2ω2)dt2 = 0. (5.16)

The light velocities in the two directions are

v± = r
dθ

dt
= −rω ± c, (5.17)

first order effect in the angular velocity.
Note also that the Sagnac effect provides an optical means by which one

can measure the angular velocity of the apparatus, i.e. of the laboratory, by ob-
servations inside the laboratory. This means that in the special theory of rela-
tivity, at least, where spacetime is flat and unchangeable, angular velocity has
an absolute character. In the special theory of relativity every non-accelerated
observer can consider the laboratory to be at rest with respect to translational
velocity, but not with respect to angular velocity. The angular velocity of the
laboratory can be locally measured optically, by means of the Sagnac effect, as
well as mechanically, by means of a Fouceault pendulum.

The status of angular velocity, with respect to the principle of relativity, is
not so obvious in general relativity, due to the dynamical character of space-
time in this theory. The moving matter in the universe may act upon the space-
time in the laboratory in such a way that the Sagnac effect results.

5.4 Gravitational time dilatation

The coordinate clocks in RF are everywhere showing the same time as the
clocks in IF . Thus the coordinate time in RF represents a position indepen-
dent rate of time.

Consider now a standard clock in RF at a distance r from the axis. As
observed in IF From eq. (2.44) follows
that the time shown by the clock is

τ =

√
1− r2ω2

c2
τ0, (5.18)

where τ0 is the time shown by a standard clock at rest in IF , say at the axis
of RF . The standard clocks of RF go at a slower rate, the farther they are
from the axis. An observer in IF would ascribe this to the velocity dependent
special-relativistic time dilatation.

However, as observed in RF , these clocks are at rest. Yet, the fact that a
standard clock at r > 0 goes slower that a standard clock at r = 0, must be
equally true from this point of view.

dτ =

√
1− r2ω2

c2
dt. (5.19)

which, again, leads to eq. (5.15). This is called the Sagnac effect [Sag13] and is a

the clock moves with a velocity rω.

which gives
This is immediately verified from eqs. (5.3) and (2.48) with dr = dθ = dz =0,
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5.5 Uniformly accelerated reference frame

Since the rate of coordinate time t is position independent, this equation is

from RF . In general, the explanation of an effect depends upon the frame of refer-
ence.

According to Newtonian dynamics there is a centrifugal field in RF . The
centrifugal field is an inertial field causing free particles in RF to accelerate
away from the axis of rotation. As stated in section 1.7 the principle of equiv-
alence says that an inertial field caused by the acceleration or rotation of the
reference frame is locally equivalent to a gravitational field caused by a mass
distribution. This is one of the fundamental principles of the general theory
of relativity. Hence, in this theory the centrifugal field of Newtonian physics
is reckoned as a genuine gravitational field.

The gravitational potential at r, with zero at the axis, is

φ = −
r∫

0

rω2dr = −1

2
r2ω2, (5.20)

so eq. (5.18) can be written

dτ =

√
1 +

2φ

c2
dτ0. (5.21)

The interpretation of this equation is that the rate of time is position dependent
in a gravitational field. Since φ is less (more negative) farther down the field,
we conclude: time goes slower farther down in a gravitational field. Conversely,
time goes faster higher up in a gravitational field.

5.5 Uniformly accelerated reference frame

Let (T, X, Y, Z) be the Cartesian coordinates of an inertial frame IF0. A parti-
cle moves along the X-axis with constant rest-acceleration g. It performs hy-
perbolic motion, as discussed in section 2.10. The position X0 of the particle is
given in terms of its proper time τ0 by eq. (2.60):

1 +
gX0

c2
= cosh

(gτ0

c

)
, (5.22)

with X0(0) = 0. The coordinate time T0 at a point of time τ0 is given by
eq. (2.59)

gT0

c
= sinh

(gτ0

c

)
, (5.23)

with T0(0) = 0.
We now introduce a field of particles rigidly comoving with the one con-

sidered above. They are reference particles of a uniformly accelerated refer-
ence frame UA, with coordinate (t, x, y, z). The position of the above particle,
P0, is (t, 0, 0, 0) in this system.

The coordinate time t is defined by

t = τ0; (5.24)

i.e., the coordinate clocks in UA show the same time as a standard clock at the
spatial origin of UA. The coordinate time t represents a position independent
rate of time.

equivalent to eq. (5.18). The interpretation of eq. (5.19) however, must be quite
different from that of eq. (5.18) since no velocities are involved as observed
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Let X0 be the position vector of P0. Its components in IF0 are given by

X0 =

(
c2

g
sinh

(
gt

c

)
,
c2

g

[
cosh

(
gt

c

)
− 1

]
, 0, 0

)
. (5.25)

Consider now an event P in an instantaneous simultaneity space of P0, as
shown in Fig. 5.5. Let Σ̂ be a comoving orthonormal tetrad basis for P0. The

Figure 5.5: The simultaneity space of a uniformly accelerated reference frame.

position vector of P relative to Σ̂ is orthogonal to the time-like basis vector of
Σ̂.

Thus x̂ = (0, x̂, ŷ, ẑ). The spatial coordinates (x, y, z) are defined by

x = x̂, y = ŷ, z = ẑ. (5.26)

The position vector of P is
X = X0 + x̂. (5.27)

The connection between the basis vectors in IF and in Σ̂ is given by a Lorentz
transformation along the x-axis. From eq. (2.38) we have

eμ̂ = eμ
∂xμ

∂xμ̂
= (eT , eX , eY , eZ)

⎡⎢⎢⎣
cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , (5.28)

where θ is the rapidity of P0 as defined in eq.(2.35). Thus

tanh θ =
v0

c
=

1

c

dX0

dT0
. (5.29)

Differentiation of the expressions (5.22) and (5.23) gives

dX0

dT0
= c tanh

(
gt

c

)
, (5.30)

which shows that the rapidity of P0 is

θ =
gt

c
. (5.31)

X0
X

x

eT

et

ex

eX

cT

X

P0

P
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5.5 Uniformly accelerated reference frame

The Lorentz transformation of the basis vectors may now be written

et̂ = eT cosh

(
gt

c

)
+ eX sinh

(
gt

c

)
,

ex̂ = eT sinh

(
gt

c

)
+ eX cosh

(
gt

c

)
, (5.32)

eŷ = eY , eẑ = eZ .

formation

gT

c
=
(
1 +

gx

c2

)
sinh

(
gt

c

)
,

1 +
gX

c2
=
(
1 +

gx

c2

)
cosh

(
gt

c

)
,

Y = y, Z = z. (5.33)

The first two equations give

gT

c
=

(
1 +

gX

c2

)
tanh

(
gt

c

)
. (5.34)

t = constant are straight lines through the point (0,−c2/g). Applying the iden-
tity cosh2 θ − sinh2 θ = 1 to the first two equations (5.33) gives

(
1 +

gX

c2

)2

−
(

gT

c

)2

=
(
1 +

gx

c2

)2

(5.35)

Thus, the curves x = constant are hyperbolae with asymptotes ±cT = X +
c2/g. The coordinate curves t = constant and x = constant as drawn in the
(cT, X)-Minkowski diagram are shown in Fig. 5.6. The hyperbolic curves x =
constant are world lines of the reference particles in UA. The lines t = constant
are planes of simultaneity of these particles.

receive information from an emitter to the left of the asymptote cT = X+c2/g.
This asymptote is therefore called an event horizon of UA. It is located at the
position x = −c2/g in UA.

Since infinitely many coordinate lines t = constant pass through the point
(0,−c2/g), there is a coordinate singularity at this point. The coordinate system
cannot be continued through this point. In general, event horizons and co-
ordinate singularities appear in comoving coordinate systems of accelerated
reference frames.

Differentiating eq. (5.33) we obtain the line element

ds2 = −c2dT 2 + dX2 + dY 2 + dZ2

= −
(
1 +

gx

c2

)2

c2dt2 + dx2 + dy2 + dz2. (5.36)

The “rest space” of UA, dt = 0, has Euclidean geometry.
The rate of time as measured on standard clocks at rest in UA is given by

dτ =
(
1 +

gx

c2

)
dt =

(
1 +

gx

c2

)
dτ0, (5.37)

From the Minkowski diagram Fig. 5.6 is seen that an observer in UA cannot

This equation shows that in a (cT,X)-Minkowski diagram the coordinate curves

Substituting this into eq. (5.27) and using eq. (5.25) we find the coordinate trans-
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Figure 5.6: Minkowski diagram for the comoving coordinates of a uniformly
accelerated reference frame.

where τ0 is the proper time at x = 0. This equation shows that dτ > dτ0 for
x > 0.

Since UA accelerates in the positive x−direction an observer in UA experi-
ences a gravitational field in the negative x−direction. Thus the x−axis points

x > 0 measures a larger time interval between two events than a clock at
x = 0. Thus time goes faster farther upwards in the gravitational field of UA.
This is again the position dependent rate of time a gravitational field, which
we also found in the rotating reference frame.

5.6 Covariant Lagrangian dynamics

Consider a particle which moves along a world-line between two points P1

and P2. Let the curve be described by an invariant parameter λ. The La-
grangian L of the particle is a function of the coordinates and their deriva-
tives with respect to λ; L = L(xμ, ẋμ), ẋμ = dxμ/dλ. The action integral is
S =

∫
L(xμ, ẋμ)dλ. The world line of the particle is determined by the condi-

tion that S has a stationary value for all infinitesimal variations of the curve
connecting the fixed points P1 = xμ(λ1), P2 = xμ(λ2). Thus the curve is de-
termined by

δ

λ2∫
λ1

L(xμ, ẋμ)dλ = 0, (5.38)

for all variations δxμ(λ) satisfying the boundary conditions

δxμ(λ1) = δxμ(λ2) = 0. (5.39)

upwards in this gravitational field. Eq. (5.37) shows that a standard clock at

X

cT

c2– g
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5.6 Covariant Lagrangian dynamics

Furthermore,

δ

λ2∫
λ1

Ldλ =

λ2∫
λ1

[
∂L

∂xμ
δxμ(λ) +

∂L

∂ẋμ
δẋμ

]
dλ. (5.40)

μ = d(δxμ)/dλ,
and taking into account the boundary condition (5.39), we obtain

δ

λ2∫
λ1

Ldλ =

λ2∫
λ1

[
∂L

∂xμ
− d

dλ

(
∂L

∂ẋμ

)]
δxμ(λ). (5.41)

In order that this integral shall vanish for all variations δxμ(λ), the factor in
the square bracket must be zero along the curve. The variational (5.38) thus
leads to the Euler-Lagrange’s equations of motion

d

dλ

(
∂L

∂ẋμ

)
− ∂L

∂xμ
= 0. (5.42)

The covariant momentum conjugate to a coordinate xμ is defined by

pμ =
∂L

∂ẋμ
. (5.43)

The Euler-Lagrange equations can then be written as

dpμ

dλ
=

∂L

∂xμ
. (5.44)

If the Lagrange-function L is independent of a coordinate xμ, then this coor-
dinate is said to be cyclic. It follows that the covariant momentum conjugate to a
cyclic coordinate is a constant of motion.

For material particles the parameter λ is usually chosen to be the proper
time of the particle. In the case of a photon, λ is kept arbitrary.

to its kinetic energy. The corresponding relativistic Lagrangian is a scalar-
function depending upon the square of the particle’s four-velocity, V.

For a material particle we choose

L =
1

2
V ·V =

1

2
ẋμẋμ =

1

2
gμν ẋμẋν , (5.45)

where ẋμ = dxμ/dτ , and τ is the proper time of the particle.
Thus

∂L

∂ẋβ
= gβνẋν , (5.46)

∂L

∂xβ
=

1

2
gμν,β ẋμẋν , (5.47)

and
d

dτ
(gβνẋν) = gβν,μẋμẋν + gβν ẍν . (5.48)

Since ẋμẋν is symmetric in μ and ν, only the symmetric part of gβν,μ con-

Lagrange equations (5.42) for a free particle takes the form

gαν ẍν +
1

2
(gαμ,ν + gαν,μ − gμν,α)ẋμẋν = 0. (5.49)

In non-relativistic dynamics the Lagrange-function of a free particle is equal

tributes to the first term at the right hand side of eq. (5.48). Hence, the Euler-

Performing a partial integration of the last term, using that δẋ
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Using that ẍα = gαβgβν ẍν we get

ẍα + Γα
μν ẋμẋν = 0, (5.50)

where

Γα
μν =

1

2
gαβ(gβμ,ν + gβν,μ − gμν,β). (5.51)

are called Christoffel symbols. These symbols and their geometrical importance
will be discussed in the next chapter.

The four-velocity identity

ẋμẋμ = −c2, (5.52)

is a first integral of the relativistic Euler-Lagrange equations for free material
particles.

For photons

L =
1

2
P ·P =

1

2
gμνPμP ν , (5.53)

where the four-momentum P is given in eq. (3.11) with

E = �ω, p = (�ω/c)n. (5.54)

Here, � is Planck’s constant divided by 2π, ω is the frequency of the light and
n is a unit vector in the direction of motion of the photon. The Lagrange-

nates differentiation with respect to a (non-vanishing) invariant parameter. In
this case

ẋμẋμ = 0, (5.55)

which follows from the fact that P of eq. (5.53) is a light-like vector.

Example 5.1 (Vertical free motion in a uniformly accelerated reference frame)Example

the line-element (5.36), there is Minkowski metric at x = 0. Let a particle with unit
rest mass be shot upwards from the origin, so that it moves in the x-direction with an
initial velocity v. Then its four-velocity at x = 0 is

u = (u0, ux, 0, 0) = γ(c, v, 0, 0), γ =
1q

1− v2

c2

. (5.56)

We shall calculate the maximal height xM reached by the particle.
The Lagrange function of the particle is

L = −1

2

“
1 +

gx

c2

”2

c2 ṫ2 +
1

2
ẋ2, (5.57)

where the dot designates differentiation with respect to the particle’s proper time.
From the four-velocity identity (5.52) follows

ẋ2 =
“
1 +

gx

c2

”2

c2 ṫ2 − c2. (5.58)

Since t is a cyclic coordinate the covariant momentum pt conjugate to t is a constant of
motion:

pt =
∂L

c∂ṫ
= −

“
1 +

gx

c2

”2

cṫ = u0. (5.59)

function for a photon may also be written as in eq. (5.45), where the dot desig-

In the comoving coordinate system of a uniformly accelerated reference frame, with
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5.6 Covariant Lagrangian dynamics

Inserting this into eq. (5.58) gives

ẋ =

s„
u0

1 + gx
c2

«2

− c2. (5.60)

The maximal height is reached when ẋ = 0, giving

xM =
c

g
(u0 − c) =

c2

g
(γ − 1). (5.61)

For velocities v � c we have

γ ≈ 1 +
v2

2c2
, (5.62)

giving

xM ∼ v2

2g
, (5.63)

which is the usual, non-relativistic result.
Consider now a particle falling from rest at x = 0. Then ut = c, so that

ẋ = c

r“
1 +

gx

c2

”−2

− 1. (5.64)

Integration gives

τ =
c

g

r
1−

“
1 +

gx

c2

”2

. (5.65)

The proper time taken by the particle to reach the horizon at x = −c2/g is τH = c/g,
which is finite.

The coordinate time is found from

dt = ṫdτ =
dτ`

1 + gx
c2

´2 . (5.66)

Differentiating the above expression for τ and integrating the resulting expression for
dt leads to

t =
c

g
ln

241 +
q

1− `1 + gx
c2

´2
1 + gx

c2

35 , (5.67)

which gives t(−c2/g) =∞. As measured by an observer at x = 0, the particle takes an
infinitely long time to reach the horizon.

Resolution of the twin-paradox

The twin-paradox was considered in section 2.9. Elizabeth was at home and

years as measured by Elizabeth, and six years as measured by her own clock.
According to Elizabeth this is due to the velocity dependent time dilatation.

The principle of relativity tells, however, that Eva can consider herself as
at rest and Elizabeth as the traveller. Let us see how Eva calculates her own
and Elizabeth’s aging during the travel.

Eva observes that the Earth and Proxima Centauri moves with a velocity
v = 0.8c. Since the rest-distance between these bodies is s0

0

√
1 − v2/c2observes a Lorentz contracted distance s = s = 2.4 l.y., and she

= 4 l.y., she

ages by t = s/v = 3 years during Elizabeth’s travel, just as Elizabeth found for
her travel.

Eva travelled to Proxima Centauri and back with a velocity v = 0 8c, using ten.
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Elizabeth = Δt
√

1− v2/c2 =
1.8 years.

Then Eva feels a gravitational field with an acceleration of gravity g. If the
rest-acceleration of Eva is constant, we can associate a uniformly accelerated
reference frame UA with Eva, in which Eva is an observer P0 at the spatial
origin.

Eva observes that Elizabeth (and the Earth) moves with constant veloc-
ity until she is at a distance x1 = 2.4 l.y. from Eva. Then Eva experiences a
gravitational field, directed away from Elizabeth. Eva is at rest in the field,
but Elizabeth falls freely in it. Then the velocity of Elizabeth is retarded, she
comes to rest at x2 = 4 l.y., and then accelerates towards Eva.

The aging of Elizabeth as calculated by Eva, during the time that Eva expe-
riences the gravitational field, is found by applying the equations of Example
(5.1) to Elizabeth.

to the time-coordinate is given by

pt =
√

c2 + ẋ2
(
1 +

gx

c2

)
. (5.68)

Since ẋ = 0 for x = x2 we get

pt = c
(
1 +

gx2

c2

)
. (5.69)

Eq. (5.60) may be written

dτ =
1 + gx

c2√
p2

t − c2
(
1 + gx

c2

)2 dx. (5.70)

Integration from x1 to x2 gives

τ1−2 =
1

g

[√
p2

t − c2
(
1 +

gx1

c2

)2

−
√

p2
t − c2

(
1 +

gx2

c2

)2
]

. (5.71)

Because of eq. (5.69) the last term vanishes, so that

τ1−2 =
c

g

[(
1 +

gx2

c2

)2

−
(
1 +

gx1

c2

)2
]1/2

, (5.72)

which gives

lim
g→∞

τ1−2 =
1

c

(
x2

2 − x2
1

)1/2
. (5.73)

Inserting x1 = 2.4 l.y. and x2 = 4 l.y. gives Elizabeth’s aging during the turn-
ing, as calculated by Eva

δτElizabeth = 2 lim
g→∞

τ1−2 = 6.4 l.y. (5.74)

Eva thus finds that Elizabeth ages by 2 · 1.8 years + 6.4 years = 10 years
during the travel, in accordance with the expectation from Elizabeth’s point
of view. The explanation given by Eva, that Elizabeth is older than herself
when they meet again, in spite of the velocity dependent time-dilation during
the outward and inward parts of the journey, is that Elizabeth ages incredibly
fast during the short time Eva herself experiences the gravitational field which
makes Elizabeth move back again.

But what about Elizabeth? Eva observes that Elizabeth moves away with a
velocity v = 0.8c for a time Δt = 3 years as measured on her own clock. The cor-
responding time measured on Elizabeth’s clock is Δt

From eqs. (5.58) and (5.59) follow that the constant momentum conjugate
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5.7 A general equation for the Doppler effect

Example 5.2 (The path of a photon in uniformly accelerated reference frame) Example

L = −1

2

“
1 +

gx

c2

”2

c2 ṫ2 +
1

2
ẋ2 +

1

2
ẏ2, (5.75)

where the dot designates differentiation with respect to an invariant parameter. From
eq. (5.55) then follows

ẋ2 =
“
1 +

gx

c2

”2

c2 ṫ2 − ẏ2. (5.76)

The momentum pt and py conjugate to t and y are constants of motion

pt =
∂L

c∂ṫ
= −

“
1 +

gx

c2

”2

cṫ = −cṫ(0), (5.77)

py =
∂L

∂ẏ
= ẏ. (5.78)

Choosing the coordinate time at the origin as parameter gives−pt = py = c, so that

ṫ = −
“
1 +

gx

c2

”−2

, ẏ = c. (5.79)

Inserting these expressions into the equation for ẋ gives

ẋ = c

q
1− `1 + gx

c2

´2
1 + gx

c2

. (5.80)

The equation for the path of the photon is

dy

dx
=

ẏ

ẋ
=

1 + gx
c2q

1− `1 + gx
c2

´2 . (5.81)

Integration with y(0) = 0 gives„
x +

c2

g

«2

+ y2 =
c4

g2
. (5.82)

This shows that the photon follows a circular path as shown in Fig. 5.7. This path illus-

time as referred to a uniformly accelerated reference frame. Even though 3-space is
Euclidean a photon starting out with velocity c in the y-direction ends up moving into
the horizon at x = −c2/g without any motion at all in the y-direction. This is possi-
ble because of the gravitational time-dilatation in a gravitational field. The velocity of
light is constant and equal to c as measured locally, but an observer for example at x = 0

will measure a decreasing light velocity, (ẋ2 + ẏ2)1/2/ṫ = (1 + gx/c2)c, as the photon
approaches the horizon, in accordance with redshift-measurements that show to him
that time goes slower far down in the gravitational field near the horizon.

5.7 A general equation for the Doppler effect

P = E(c−1,w). (5.83)

Let a photon be emitted in the y-direction from the origin of the coordinate system of

city w is given in eq. (3.11), which may be written

trates an interesting and non-trivial property concerning the kinematics of flat space-

The four-momentum of a particle with relativistic energy E and spatial velo-

section 5.5. The Lagrange function is then
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Figure 5.7: A photon path in a uniformly accelerated reference frame. The line at

x = − c2

g
, is a horizon for the observer.

Let U be the four-velocity of an observer. In the comoving reference frame CF
of the observer his four velocity is given by eq. (3.8), and

U ·P = −Ê, (5.84)

where Ê is the energy of the particle as measured with instruments at the
position of the observer, and at rest in CF . In short, Ê = −U ·P is the energy
of the particle as measured locally by the observer.

Since U · P is a scalar, the value of Ê may be evaluated in an arbitrary
reference frame and in arbitrary coordinates; the result is always the same as
in Σ̂. However, U and P are still fixed four-vectors associated with a certain
observer and a certain particle. In this case, changing the reference frame does
not mean that the observer is changed.

Let Es = −(U · P)s and Ea = −(U · P)a be the energy of a photon with
four-momentum P as seen by the source and observer (an absorber) with four-
velocities Us and Ua, respectively. One immediately has

Es

(U ·P)s
=

Ea

(U ·P)a
. (5.85)

The frequencies ωs and ωa

respectively, are given by ωs = Es/� and ωa = Ea/�, which leads to

ωa =
(U ·P)a

(U ·P)s
ωs. (5.86)

This is the equation for the gravitational and kinematical Doppler effect, and
it is generally valid.

The frequency shift will now be expressed by the components of the metric
tensor, the direction of the velocity of light and the velocities of source and
observer.

The proper time interval dτ measured on a clock which moves with three-

of the light, as measured at the source and observer

velocity v in an arbitrary coordinate system Σ, where the elements of the

y

c2
g

x–
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5.7 A general equation for the Doppler effect

gμν , is

dτ = (−gμνdxμdxν)1/2

= (−g00 − 2gi0v
i − gijv

ivj)1/2dx0, (5.87)

where vi = dxi/dx0, and dx0 is the coordinate time interval. The four-velocity
of an observer (who may be accelerated or not) carrying the clock is

U =
dx

dτ
= (−g00 − 2gi0v

i − gijv
ivj)−1/2(1,v). (5.88)

Evaluating U ·P in the arbitrary coordinate system Σ gives

Ê = −U ·P
= −g00U

0P 0 − gi0U
iP 0 − gi0U

0P i − gijU
iP j , (5.89)

where we have used the fact that the metric tensor is symmetric. Use of U i =
U0vi and P i = P 0wi, together with the equation (5.88) gives

Ê =
g00 + gi0v

i + gi0w
i + gijv

iwj

(−g00 − 2gi0vi − gijvivj)1/2
P 0. (5.90)

We now assume that the metric is stationary, which means that there exists
a coordinate system such that the metric tensor is independent of the time
coordinate x0. Let us consider a freely moving particle in a time-independent
metric. Its relativistic Lagrangian is then independent of the coordinate x0.
In other words x0 is a cyclic coordinate. From the equations of motion then
follows that the covariant momentum conjugate to the time coordinate, P0, is
a constant of motion for the particle.

The connection between P0 and P 0 is

P0 = g0νP ν = g00P
0 + gi0P

i = (g00 + gi0w
i)P 0. (5.91)

Substitution into equation (5.90) gives

Ê = − (g00 + gi0v
i + gi0w

i + gijv
iwj)

(−g00 − 2gi0vi − gijvivj)1/2(g00 + gi0wi)
P0. (5.92)

Using equation (5.84), (5.86) and that P0 is a constant of motion gives the de-
sired equation

Daωa = Dsωs, (5.93)

where D is a general Doppler shift factor,

D =
(−g00 − 2gi0v

i − gijv
ivj)1/2(g00 + gi0w

i)

g00 + gi0vi + gi0wi + gijviwj
, (5.94)

and s designates source and a absorber.
We shall now consider some special cases.

Minkowski metric

In the Minkowski metric g00 = −c2, gi0 = 0, gij = 0 for i �= j, gii = 1. There is
no deflection of the light, and the magnitude of the velocity of light is constant,

metric tensor are
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so wa = ws = n, where n is a unit vector in the direction of propagation of
the light. In this case equations (5.93) and (5.94) give

ωa =
γa

(
1− va·n

c

)
γs

(
1− v·n

c

) ωs, γ =

(
1− v2

c2

)−1/2

. (5.95)

With the absorber at rest this equation gives

ωa =

√
1− v2

s

c2

(
1− v · n

c

)
ωs. (5.96)

In order for the light to reach the absorber, n must be pointing from the source
towards the absorber.

If the source moves in a direction orthogonal to this line, v · n = 0, and

ωa =

√
1− v2

s

c2
ωs. (5.97)

This frequency shift is called the transverse Doppler effect. It is an expression
of the special-relativistic time dilatation.

On the other hand, if the source moves towards the absorber, vs · n = vs,
which gives

ωa =

√
c + vs

c− vs
ωs. (5.98)

This is the longitudinal shift.

Source and absorber at rest in an arbitrary stationary metric

In this case va = vs = 0. Equations (5.93) and (5.94) give

ωa =

(
gs
00

ga
00

)1/2

ωs. (5.99)

This frequency shift is termed the gravitational Doppler effect.
As applied to a source and absorber at rest in a uniformly accelerated ref-

erence frame this equation gives

ωa =
1 + gxs

c2

1 + gxa

c2

ωs. (5.100)

For xa < xs eq. (5.100) gives ωa > ωs. In the case of a height difference h = xs−
xa = 20 m at the surface of the Earth, g = 10 m/s2, the relative frequency shift
is (ωa − ωs)/ωs ∼ gh/c2 = 2 · 10−15. This frequency shift has been measured
by Pound and Rebka [PRj60] using the Mössbauer effect, and the prediction
of eq. (5.100) was verified.

If the source and absorber are both at rest in a rotating reference frame RF ,
at distance rs and ra from the axis, respectively, eqs. (5.100) and (5.3) give

ωa =

√√√√1− r2
sω2

c2

1− r2
aω2

c2

ωs. (5.101)

The prediction of this equation has been confirmed experimentally by Cham-
peney et al. [CIK65].
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Problems

Problems

5.1. Geodetic curves in space

2 =
dx2 + dy2. A curve y = y(x) connects two points A and B in the plane.
The distance between A and B along the curve is therefore

S =

B∫
A

ds =

B∫
A

[
1 +

(
dy

dx

)2
] 1

2

dx. (5.102)

If we vary the shape of this curve slightly, but keeping the end points
A and B fixed, it would lead to a change δS of the length of the curve.
Whenever δS = 0 for all small arbitrary variations with respect to a given
curve, then the curve is a geodetic curve. Find the Euler-Lagrange equa-
tion which corresponds to δS = 0 and show that geodetic curves in the
plane are straight lines.

(b) A particle with mass m is moving without friction on a two-dimensional
surface embedded in the three-dimensional space. Write down the ex-
pressions for the Lagrangian, L, and the corresponding Euler-Lagrange
equations for the particle. Show that L is a constant of motion and ex-
plain this by referring to the forces acting on the particle.

The geodetic curves are found by variation of S =
∫ B

A
ds. Show, using the

Euler-Lagrange equations, that the particle is moving along a geodetic
curve with constant speed.

(c) A particle is moving without friction on a sphere. Express the Lagrange
function in terms of the polar angles θ and φ and find the corresponding
Euler-Lagrange equations.
The coordinate axes can be chosen so that at the time t = 0, θ = π/2 and
θ̇ = 0. Show, using the Euler-Lagrange equations, that this implies that θ
is constant and equal to π/2 for all t. Hence, the particle is moving on a
great circle, i.e. on a geodetic curve on the sphere.
Assume further that at t = 0, θ = π/2 and φ = 0, and at t = t1 > 0,
φ = θ = π/2. Along what type of different curves can the particle have
travelled for 0 < t < t1 so that δ

∫ t1
0

Ldt = 0 for the different curves?
Find the action integral S =

∫ t1
0

Ldt for the different curves. Do the all
the curves correspond to local minima for the total length S?

5.2. Free particle in a hyperbolic reference frame
The metric for a two-dimensional space is given by

ds2 = −V 2dU2 + dV 2. (5.103)

(a) Find the Euler-Lagrange equations for the motion of a free particle using
this metric. Show that they admit the following solutions:

1

V
=

1

V0
cosh(U − U0).

What is the physical interpretation of the constants V0 and U0?

(a) In the two-dimensional Euclidean plane the line-element is given by ds
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Non-inertial Reference Frames

(b) Show that these are straight lines in the coordinate system (t, x) given by

x = V coshU

t = V sinhU. (5.104)

Express the speed of the particle in terms of U0, and its x-component at
t = 0 in terms of V0 and U0. Find the interval ds2 expressed in terms
of x and t and show that the space in which the particle is moving, is a
Minkowski space with one time and one spatial dimension.

(c) Express the covariant component pU of the momentum using pt = −E
and px = p, and show that it is a constant of motion. How can this fact be
directly extracted from the metric? Show further that the contravariant
component pU is not a constant of motion. Are pV or pV constants of
motion?

5.3. Spatial geodesics in a rotating RF
We studied a rotating reference frame in the beginning of this chapter and will
now consider spatial geodesics in this reference frame. Consider the spatial
metric

d�2 = dr2 +
r2

1− ω2r2

c2

dθ2 + dz2. (5.105)

Using the Lagrangian L = 1
2

(
d�
dλ

)2
the shortest distance curves between points

will be calculated. We will for the sake of simplicity assume that dz
dλ = 0, i.e.,

the curve is planar.

(a) Assume that the parameter λ is the arc-length of the curve. What is the
“three-velocity” identity in this case?

(b) The system possesses a cyclic coordinate. Which coordinate is that? Set
down the expression for the corresponding constant of motion.

(c) Find the expressions for dr
dλ and dθ

dλ as a function of r. Deduce the differ-
ential equation for the curve.

(d) Use the initial condition dr
dλ = 0 for r = r0 and show that

pθ

r0
=

√
1 +

ω2p2
θ

c2
.

(e) Show that the differential equation can be written

dr

r
√

r2 − r2
0

− ω2

c2

rdr√
r2 − r2

0

=
dθ

r0
. (5.106)

Integrate this equation and find the equation for the curve. Finally, draw
the curve.
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6
Forms prove to be a powerful tool in differential geometry and in physics.
They have many wonderful properties that we shall explore further in this
chapter. We know that in physics and mathematics, integration and differ-
entiation are important, if not essential, operations that appear in almost all
physical theories. In this chapter we will explore differentiation on curved
manifolds and reveal several interesting properties.

6.1 Exterior Differentiation of forms

First we must find a way to differentiate forms. Since forms are antisymmetric
by construction, it is advantageous to define a differentiation that preserves
this antisymmetrical property.

Let us first consider 0-forms. The exterior derivative, denoted by d, is a local
operator, and for a 0-form f (a function) it is defined by

df =
∂f

∂xμ
dxμ.

quite easily checked. Since

∂f

∂xμ
=

∂f

∂xμ′

∂xμ′

∂xμ
,

and

dxμ = dxν′ ∂xμ

∂xν′ ,

we have that

df =
∂f

∂xμ
dxμ =

∂f

∂xμ′ dxμ′

.

(6.1)

(6.2)

(6.3)

(6.4)

and Integration

That this expression is invariant under a coordinate transformation can be
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Hence, df has the same form in any coordinate system, and is thus indepen-
dent of the coordinate system chosen. When we take the exterior derivative
of a 0-form we obtain a one-form. Thus if X = Xμeμ is a vector defined at a
point, where eμ is a coordinate basis, then we can form the directional derivative

df(X) = Xμ ∂f

∂xμ
= X(f). (6.5)

The directional derivative can be interpreted as the rate of change of the func-
tion in the direction of the vector.

Similarly, we define the exterior derivative of a p-form, α, by

dα =
1

p!

∂αμ1...μp

∂xν
dxν ∧ dxμ1 ∧ ... ∧ dxμp . (6.6)

This object is an antisymmetric tensor. Note that due to the antisymmetry of
the basis only the antisymmetric combination α[μ1...μp,ν] contributes in the ex-
pression for dα. Hence, the component equations corresponding to the form-
equation dα = 0 are α[μ1...μp,ν] = 0 (and not αμ1...μp,ν = 0).

The exterior derivative of a p-form is a (p + 1)-form. An immediate conse-
quence of this is that in an n-dimensional space, any n-form α yields dα = 0.
This is due to the fact that there are no non-trivial (n + 1)-forms in an n-
dimensional space.

Example 6.1 (Exterior differentiation in 3-space.)Example
Consider a one-form A = A1dx1 + A2dx2 + A3dx3 and a two-form F = F1dx2 ∧
dx3 + F2dx3 ∧ dx1 + F3dx1 ∧ dx2.

Then the exterior derivatives are

dA =

„
∂A2

∂x1
− ∂A1

∂x2

«
dx

1 ∧ dx
2 +

„
∂A3

∂x2
− ∂A2

∂x3

«
dx

2 ∧ dx
3

+

„
∂A1

∂x3
− ∂A3

∂x1

«
dx

3 ∧ dx
1

dF =

„
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3

«
dx

1 ∧ dx
2 ∧ dx

3.

Comparing these expressions to the corresponding expressions for curl, ∇ × �A, and
divergence, ∇ · �F , we note that each component coincide:

εijk(∇× �A)i ∼= (dA)jk

∇ · �F ∼= (dF)123.

If we set �F = ∇× �A we will, because of the identity

∇ · (∇× �A) = 0,

get

ddA = d
2
A = 0,

which can be easily checked. As we will show in what follows, this is by no means
a coincidence, in fact it is a very useful and powerful result of the exterior derivative.

Inspired by the results of the previous example we will take the exterior
derivative of a p-form twice.

(6.7)

(6.8)

(6.9)
(6.10)

(6.11)
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6.1 Exterior Differentiation of forms

From the definition of the exterior derivative (6.6) we get for a p-form ω

d2ω =
1

p!

∂2ωμ1...μp

∂xα∂xβ
dxα ∧ dxβ ∧ dxμ1 ∧ ... ∧ dxμp

=
1

2 p!

(
∂2ωμ1...μp

∂xα∂xβ
− ∂2ωμ1...μp

∂xβ∂xα

)
dxα ∧ dxβ ∧ dxμ1 ∧ ... ∧ dxμp

=0,

(6.12)

since partial derivatives commute. Since this result holds for all coordinate
systems, we may state

d2 = 0. (6.13)

This is related to Poincaré’s Lemma (see below) and is valid for pure forms.
We will see later that this is not true when we define d on “vector valued
forms”.

and dα = 0, does there always exist a (p − 1)-form β such that α = dβ?
The answer in general will be no, but this is by no means trivial. The general
answer to this question is beyond the scope of this book, but we will mention
a special case. We introduce a couple of important concepts related to this. If
α is a p-form, then we call α closed if

dα = 0, (6.14)

and exact if

α = dβ. (6.15)

Thus all exact forms are closed (but not all closed forms are exact).
There is one important case when the opposite is true:

Theorem: For any “star shaped1” open set U there will exist, for any closed
p-form α, a (p− 1)-form β such that

α = dβ (6.16)

when restricted to U .

This is called Poincaré’s Lemma and is true locally. This is often sufficient in
various problems and simplifies our calculation considerably in many cases.

We have also a rule for the differentiation of a wedge product. Let α and
β be a p-form and a q-form respectively. Then

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ. (6.17)

Notice the sign in the last term.
The equation (6.17) has some important consequences, for example:

d(α ∧ dβ) = dα ∧ dβ, (6.18)

and also note that

d(dα ∧ dβ) = 0. (6.19)
1By star shaped we mean a region that is homomorphic to a region in an Euclidean space that

has a point that can be connected to any other point in the region by a straight line.

One might contemplate whether the opposite is true, i.e., if α is a p-form
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The Codifferential operator

We shall now see how we can define a similar operator to the differential op-
erator d, but which work in the “opposite” direction. For an n-dimensional
metric space we define the coderivative of a p-form α, denoted d†α, by

d†α = sgn(g)(−1)n(p+1)+1 � d � α, (6.20)

where � is Hodge’s star operator defined in eq. (4.98). The coderivative of a
p-form is a (p− 1)-form. We note that(

d†
)2

α = d†d†α = ± � d � �d � α = ± � dd � α = 0. (6.21)

Hence, we have that (
d†
)2

= 0. (6.22)

tive. Using eq. (4.99) we have that for a one-form

�α =

√|g|
(n− 1)!

εμμ1...μn−1α
μdxμ1 ∧ ... ∧ dxμn−1 , (6.23)

where αμ = gμναν are the components of the vector A ≡ αμeμ. Exterior
differentiation gives

d � α = ± 1√|g|
(√

|g|αμ
)

,μ
ε, (6.24)

where ε =
√|g|ε|μ1...μn|dx

μ1∧...∧dx
μn is the volume form. Taking the Hodge

dual, we find

∇ ·A = −d†α =
1√|g|
(√

|g|αμ
)

,μ
. (6.25)

This expression is called the covariant divergence of the vector A.
The Laplacian and d’Alembertian differential operators are both general-

ized by the second-order differential operator Δ called de Rahm’s operator

Δ ≡ dd
† + d†d. (6.26)

if we
introduce � ≡ −Δ, then � is the usual Laplacian used in physics. If we let de
Rahm’s operator act on a scalar f , we obtain

�f = −Δf =
1√|g|
(√

|g|gμνf,ν

)
,μ

. (6.27)

This expression is valid in a curved space-time, when de Rahm’s operator is
acting on 0-forms.

Specializing to three-dimensional Euclidean space with Cartesian coordi-
nates we have

�f =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
f. (6.28)

In Minkowski space-time we get

�f =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2

∂2

∂t2

)
f. (6.29)

Let us now see how we can define a covariant divergence using the coderiva-

Because of a sign-convention, we usually use minus this operator, i.e.,
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6.2 Electromagnetism

6.2 Electromagnetism

The electromagnetic field can be expressed in a very elegant way in terms
of forms as this section will show. We have introduced a powerful tool just
waiting to be applied to physics. The electromagnetic field has been studied
since the time of Faraday, but little did he know of forms. However, forms and
exterior derivatives are now known and we will see that the electromagnetic
field can be considered as a two-form.

For simplicity’s sake we will assume that we are in Minkowski space. We
define the electromagnetic field tensor as the 2-form

F = (E1dx1 + E2dx2 + E3dx3) ∧ dt

+B1dx2 ∧ dx3 + B2dx3 ∧ dx1 + B3dx1 ∧ dx2

≡ E ∧ dt + B, (6.30)

where we have defined E = Eidxi and B = 1
2εijkBidxj ∧ dxk. In component

form F = 1
2Fμνdxμ ∧ dxν , where

Fμν =

⎡⎢⎢⎣
0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎤⎥⎥⎦ . (6.31)

We split the exterior derivative in a spatial part D and a time part Dt:

d = D + Dt. (6.32)

The exterior derivative of F can now be written

dF =

(
DE +

∂B
∂t

)
∧ dt +DB. (6.33)

We see that

DE +
∂B
∂t

=
1

2

(
∇×E +

∂B

∂t

)i

εijkdxj ∧ dxk, (6.34)

and

DB = (∇ ·B)dx1 ∧ dx2 ∧ dx3. (6.35)

Thus from the homogeneous Maxwell’s equations, equations (2.74) and (2.75),
we have

dF = 0. (6.36)

The electromagnetic field tensor is therefore closed and Poincaré’s Lemma en-
sures us that there exists locally a one-form A such that

F = dA, (6.37)

or in component form

Fμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
. (6.38)
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We note that A is not uniquely determined; for any function f , A′ given by

A′ = A + df (6.39)

defines – since d2 = 0 – the same electromagnetic field tensor. The shift of po-
tential according to eq. (6.39) is called a gauge transformation because it leaves
the field tensor invariant. The remaining Maxwell’s equations can also be
written using forms. To simplify notation we will will use the Hodge star oper-
ator �.

We introduce the current one-form J with components Jμ which is the cor-


equations can then be written

d � F = �J. (6.40)

This can be seen as follows. We write �F as

�F = −(B1dx1 + B2dx2 + B3dx3) ∧ dt

+E1dx2 ∧ dx3 + E2dx3 ∧ dx1 + E3dx1 ∧ dx2

≡ −B̂ ∧ dt + Ê ; (6.41)

i.e., we can get the form �F from F by the mapping Ei �→ −Bi and Bi �→ Ei.
The star operator acting on the current one-form is

�J = ρdx1 ∧ dx2 ∧ dx3

− (J1dx
2 ∧ dx

3 + J2dx
3 ∧ dx

1 + J3dx
1 ∧ dx

2
) ∧ dt. (6.42)

We can now see that equation (6.40) follows from Maxwell’s equations (2.73)
and (2.76).

Conservation of charge is expressed by the identity

d2 � F = d � J = 0, (6.43)

because of d2 = 0. Writing this in component form, we get the familiar form

Jμ
,μ = 0. (6.44)

Thus Maxwell’s equations can be written

dF = 0
d � F = �J,

(6.45)

or in component form

F[μν,λ] = 0
Fμν

,μ = −Jν .
(6.46)

Let us assume that we have a one-form potential A, such that

dA = F. (6.47)

As we already have mentioned, this is always the case locally. The first half
of Maxwell’s equations are now automatically satisfied, while the other half
states

d � dA = �J. (6.48)

responding one-form to the four-current vector (ρ, J). The remaining Maxwell’s
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6.3 Integration of forms

Using the Hodge star operator on each side and using eq. (6.20), we get

d†dA = J. (6.49)

We can write this using the Laplacian, eq. (6.26),

�A = −J− dd
†
A. (6.50)

We can achieve a further simplification by choosing a specific gauge. We have
the freedom of changing the potential by a gauge transformation. A particular
useful choice of gauge is the Lorenz gauge (introduced by the Danish physicist
Ludwig Lorenz [Lor67]):

d†A = 0. (6.51)

This choice of gauge can be achieved as follows. If we for any gauge potential
A′, let f be a function that satisfies

�f = d†A′, (6.52)

then by the gauge transformation,

A = A′ + df, (6.53)

the one-form A will satisfy the Lorenz gauge condition d†A = 0. In Lorenz
gauge, equation (6.50) simplifies to

�A = −J. (6.54)

Hence, Maxwell’s equations imply a pure wave-equation. From this equation
follows that electromagnetic waves move with the speed of light.

6.3 Integration of forms

The previous sections have shown how to differentiate forms. We will now
see how to integrate forms as well.

Let us start with the simplest example, one-forms. Assume that we have a
curve c in some n-dimensional space, and let this curve be parameterised by
xμ(λ), 0 ≤ λ ≤ t. Given a one-form ω, we can define the line integral

∫
c

ω ≡
t∫

0

ω(c′(λ))dλ =

t∫
0

ωμ
dxμ

dλ
dλ. (6.55)

The tangent vector of the curve is evaluated by the one-form along the curve.
The result is then integrated in an invariant manner. Some forms are particu-
larly easy to integrate. Let ω =df , where f is a 0-form. Then

∫
c

ω =

t∫
0

df = f(c(t))− f(c(0)); (6.56)

i.e., the integration is only dependent on the start and end points. Thus for
exact forms the integral does not depend on the path taken between the start
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and end points at all. In particular, if the path is a closed loop then we get
zero: ∮

df = 0, (6.57)

no matter how the loop actually look like. If we have two forms A′ and A

which differ only by an exact form, i.e.

A′ = A + df, (6.58)

then any loop integral will yield∮
A′ =

∮
(A + df) =

∮
A +

∮
df =

∮
A. (6.59)

Comparing this to the electromagnetic gauge transformation, these loop inte-
grals give rise to gauge invariant loop integrals. In physics these are often given
the name Wilson loops.

We have so far only studied integration of one-forms, but we will now
study the integration of another type of forms. If we consider an n-dimensional
space (which could be a submanifold of a higher-dimensional space), there ex-
ists only one type of n-forms. All these n-forms are of the form

V = V dx1 ∧ ... ∧ dxn, (6.60)

where V is some function. If M is some bounded region of the space we define
the integral of V over M by∫

M

V =

∫
· · ·
∫

M

V (x1, ..., xn)dx1...dxn; (6.61)

i.e., just a multiple integral over the region with some suitable parameteriza-
tion. For a metric space V can typically be the volume form. The volume form
is a unique positive form that “measures” the volume of the metric space. For
example, the volume form in Euclidean 3-space in ordinary Cartesian coordi-
nates is

ε = dx ∧ dy ∧ dz, (6.62)

or in spherical coordinates

ε = r2 sin φdr ∧ dθ ∧ dφ. (6.63)

Note that we usually write dV for the volume form, but in spite of the notation,
the volume form does by no means need to be exact! In most cases it is not,
but it is always closed.

Using the Hodge star operator the volume form can be expressed

ε = �1, (6.64)

which is very useful for certain cases.

Differentiation, Connections, and Integration116



6.3 Integration of forms

Example 6.2 (Not all closed forms are exact) Examples

the one-form in R2 given by

ω =
xdy

x2 + y2
− ydx

x2 + y2
, (6.65)

and choose the path parameterized by

c(θ) = (cos θ, sin θ),

where 0 ≤ θ ≤ 2π. Let us first check that this form is closed:

dω =
dx ∧ dy

x2 + y2
− 2x2dx ∧ dy

(x2 + y2)2
− dy ∧ dx

x2 + y2
+

2y2dy ∧ dx

(x2 + y2)2

=
2dx ∧ dy

x2 + y2
− 2dx ∧ dy

x2 + y2
= 0.

(6.66)

Thus ω is closed. Let us now calculate the integral of ω along c(θ) :

I
ω =

2πZ
0

„
cos θd(sin θ)

cos2 θ + sin2 θ
− sin θd(cos θ)

cos2 θ + sin2 θ

«

=

2πZ
0

1 · dθ = 2π.

(6.67)

Hence, according to equation (6.57), ω cannot be exact.

Example 6.3 (The surface area of the sphere)

sphere. Most readers will already know the answer but this simple case can serve as a
good illustration.

We parameterize the surface of a sphere in R3 with radius R by

x = R cos θ sin φ

y = R sin θ sin φ

z = R cos φ,

(6.68)

where 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π. The volume form on the spherical surface is

ε = R2 sin φdθ ∧ dφ. (6.69)

Integrating we find

Z
ε =

πZ
0

dφ

2πZ
0

dθR2 sin φ = 4πR2, (6.70)

which is of course the correct area for the sphere.

Stoke’s Theorem

Similarly can we define the 2-dimensional surface integral over a 2-form, and
in general the p-dimensional integral over a p-form.

Without proof we will state

We will here give an example of a form that is closed but cannot be exact. Let us choose

We shall consider a rather simple example. We will calculate the surface area of the
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Let M be a smooth n-dimensional (oriented) compact man-
ifold with intrinsic boundary ∂M , and let α be an (n− 1)-form. Then∫

M

dα =

∫
∂M

α. (6.71)

This is the generalisation of Gauss’ law for vector calculus.
In particular we note that if ∂M = 0 then the integral vanishes. This is

why any closed loop integral over an exact one-form yields zero, a loop has
no boundary.

We will not get into details in this book, but we will just see how this law
can be applied to the electromagnetic case.

Consider a bounded 3-dimensional region M which is purely spatial. From
Stoke’s theorem and Maxwell’s equations we have∫

M

d � F =

∫
M

�J =

∫
∂M

�F. (6.72)

Since the region is purely spatial, so will its intrinsic boundary be. Thus∫
M

�J =

∫
M

ρdx1 ∧ dx2 ∧ dx3 ≡ Q; (6.73)

i.e., Q is the total charge inside the spatial region. On the other hand∫
∂M

�F =

∫
∂M

(
E1dx2 ∧ dx3 + E2dx3 ∧ dx1 + E3dx1 ∧ dx2

)
=

∫
∂M

E · dS, (6.74)

where E · dS can be interpreted as the electric flux out of the surface element
dS. Thus, ∫

∂M

E · dS = Q. (6.75)

This is the famous Gauss’ law in electromagnetism.
The corresponding law for the magnetic field is

0 =

∫
M

dF =

∫
∂M

F =

∫
∂M

B · dS, (6.76)

and can be interpreted as the lack of magnetic monopoles in electromagnetism.

Example 6.4 (The Electromagnetic Field outside a static point charge)Examples
Let us investigate the electromagnetic field outside a point charge.

Assume that the field is a function of the radial coordinate, r, only. A pure static
electric field can be generated by a field potential A0 = ϕ(r). Using

Fμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
, (6.77)

Stoke’s Theorem:
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6.3 Integration of forms

the only non-zero components of the field tensor are

Fi0 =
∂ϕ

∂xi
=

∂ϕ

∂r

xi

r
, (6.78)

using the chain rule and r =
p

(x1)2 + (x2)2 + (x3)2. The electric field is now just
Ei = Fi0. If M is the interior of a spherical region so that ∂M is a sphere of radius r,
the area surface element dS has components

(dS)i =
xi

r
· r2dΩ. (6.79)

Thus Gauss’s law, eq. (6.75), gives

Q =

Z
∂M

E · dS =
∂ϕ

∂r
r2

Z
dΩ =

∂ϕ

∂r
4πr2, (6.80)

which can be integrated to yield

ϕ(r) = − Q

4πr
. (6.81)

We should note that even though this result was derived in Minkowski coordinates,
the result is highly general. Around any point we can introduce geodesic normal co-
ordinates (this will be shown later in this chapter). Hence, this result is valid for all
spherically symmetric spacetimes. The only requirement is that the coordinate system
is such that the area of a spherical surface with radius r is 4πr2.

Example 6.5 (Gauss’ integral theorem)

with this form. Define β = �α so that according to equations (6.24) and (6.25) we have

dβ = (∇ ·A)ε. (6.82)

According to Stoke’s theoremZ
M

dβ =

Z
M

(∇ ·A)ε =

Z
∂M

β. (6.83)

Also

β = �α =

p
|g|

(n− 1)!
εμμ1...μn−1αμ

dx
μ1 ∧ ... ∧ dx

μn−1 . (6.84)

If we now assume that x1, ..., xn−1 are coordinates on the surface ∂M , and that xn is
the orthogonal direction, then this can be written

β =

s
|g|
gnn

ε1...(n−1)n̂αn̂
dx

1 ∧ ... ∧ dx
n−1. (6.85)

Thus Z
∂M

β =

Z
∂M

A · dS, (6.86)

where dS = n̂

q
|g|

gnn
dx1...dxn−1 is the invariant surface element. In this case Stoke’s

theorem takes the form Z
M

(∇ ·A)ε =

Z
∂M

A · dS, (6.87)

which is Gauss’ integral theorem.

Let us apply Stoke’s theorem to the one-form α, and let A be the vector associated
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6.4 Covariant differentiation of vectors

We will now consider another kind of differentiation. In a curved space we
need to know how to differentiate different types of tensors, not only forms.
In order to do this we need to introduce connections. As the word says these
are geometrical operators that give us a rule of how to differentiate, or in more
physical terms, how nearby basis-vectors are connected in a basis-vector field.
This is a necessary ingredient in the generalized derivative, called the covariant
derivative. This covariant derivative will in component form be denoted by a
semicolon; i.e., for a vector Aμ, Aμ

;ν is its covariant derivative. We will first
define it for a vector, then in the subsequent sections generalize it for any
tensor field.

Heuristic motivation of the concept ’covariant differentiation’

As we noted in section 4.4 tensors have a coordinate independent existence
since the tensor components transform homogeneously. This is the essential
property of tensors making it possible to formulate the laws of nature by equa-
tions that have the same form in arbitrary coordinate systems. These equa-
tions contain generally derivatives of tensor components. Hence, in order to
be able to formulate the laws of nature in terms of tensors the derivative of a
tensor component must itself be the component of a tensor.

Vectors are tensors of rank one. Let us see if the partial derivative of a vec-
tor component transform as a tensor component. Consider a vector A with
components Aμ in a coordinate basis {eμ}. The partial derivatives of Aμ trans-
form as

Aμ′

,ν′ =
∂xν

∂xν′

∂

∂xν

(
∂xμ′

∂xμ
Aμ

)
=

∂xν

∂xν′

∂xμ′

∂xμ
Aμ

,ν +
∂xν

∂xν′

∂2xμ′

∂xν∂xμ
Aμ. (6.88)

Due to the last term the partial derivatives of vector components do not trans-
form as tensor components. Hence, one needs a generalization of this deriva-
tive in a tensor formulation of the laws of nature.

Besides this formal defect of the partial derivative of vector components
the meaning of this derivative is not quite appropriate. Although it represents
the change of a vector as decomposed in a Cartesian coordinate system, this is
not so in an arbitrary coordinate system. Differentiating a vector with respect
to an invariant parameter λ yields

dA

dλ
=

d

dλ
(Aμeμ) =

dAμ

dλ
eμ + Aμ deμ

dλ
= Aμ

,νuνeμ + Aμuνeμ,ν , (6.89)

where uμ ≡ dxμ

dλ . Hence the partial derivative Aμ
,ν does only represent the

change of the vector component Aμ, and not the whole vector.
We would like to have a generalized derivative of tensor components that

fulfill two requirements. The derivative of tensor components should trans-
form as tensor components, and it should represent the change of the whole
vector, not only one of its components. This new derivative will be called the
covariant derivative.

The derivative of a scalar function involves the difference between the
value of a function at a point and its value at a nearby point. Similarly, the
derivative of a vector field involves the difference between its value and di-
rection at two nearby points. However, as we saw in section 4.2, in a curved
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6.4 Covariant differentiation of vectors

space the vectors at different points exist in different tangent planes. Hence, in
order to compare two different vectors of a vector field one must first parallel
transport one vector to the position of the other. This process has not yet been
defined in curved spaces, but we know how to parallel transport a vector in
flat space. In flat space it is transported so that the components in a Cartesian
coordinate system remain unchanged. Hence, in order to obtain an intuitive
approach to the concepts of parallel transport and covariant derivative, we
shall first consider parallel transport in flat space using arbitrary coordinates.

Figure 6.1: The directional derivative of a vector field A along a curve c(λ) with
tangent vector field u = (dxμ/dλ)eμ.

Consider a curve c in flat space parameterized by xμ(λ) where λ is an in-
variant parameter. The tangent vector is u = uμeμ where uμ = dxμ/dλ. In
figure 6.1 we have drawn the curve c(λ) and two vectors of the field A at two
nearby points marked by the parameters λ and λ+ δλ. Here A||(λ + δλ) is the
vector A(λ+δλ) parallel transported from λ+δλ to λ. Then A(λ) is subtracted
from A||(λ + δλ) by the usual parallelogram rule.

Parallel transport can be defined in the same way, transporting a vector so
that its components remain unchanged, in a local Cartesian coordinate sys-
tem in curved space. This motivates the following definition of the directional
covariant derivative of a vector field A = Aμeμ in the direction of a vector
u = uμeμ in curved space,

Aμ
;νuνeμ = lim

δλ→0

A||(λ + δλ) −A(λ)

δλ
. (6.90)

In a local Cartesian coordinate system the component Aμ do not change as the
vector A is parallel transported. Hence, evaluating eq. (6.90) in such coordi-
nates is just like evaluating the derivative of a a scalar function. Thus

Aμ
;νuνeμ = Aμ

,νuνeμ (LCCS) (6.91)

where LCCS means that the equation is only valid in a local Cartesian coordi-
nate system.

This expression must, however, be generalized to arbitrary coordinate sys-
tems. Comparing with eq. (6.89) we see that the right hand side of eq. (6.91)
is equal to the derivative of the vector components Aμ. However, the deriva-
tive of the vector field A also involves a term representing the change of the
basis vectors with position. These changes are proportional to the difference

A(λ)

A (λ + δλ) – A (λ)

A (λ + δλ)
A(λ + δ)

λ + δλ

c(λ)

λ
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in position of two basis vectors. This implies

deμ

dλ
= Γα

μν

dxν

dλ
eα = Γα

μνuνeα, (6.92)

α
μν are connection coefficients. Hence, eq. (6.89) takes the

form

dA

dλ
=
(
Aμ

,ν + Γμ
ναAα

)
uνeμ. (6.93)

The covariant derivative, Aμ
;ν , of the vector components Aμ are defined by

dA

dλ
≡ Aμ

;νuνeμ. (6.94)

Comparing with the previous equation we obtain

Aμ
;ν ≡ Aμ

,ν + AαΓμ
αν . (6.95)

This derivative represents the change of the whole vector A, not only the com-
ponents Aμ. If the covariant derivative Aμ

;ν shall transform as components of
a tensor of rank {11}, the connection coefficients have to transform according
to

Γα
μν = Mν′

ν Mμ′

μ Mα
α′Γα′

μ′ν′ + Mα
α′Mα′

μ,ν . (6.96)

Hence, the connection coefficients do not transform as tensor components;
they transform inhomogeneously. This will turn out to be of physical signifi-
cance, as will be discussed in the next section.

The covariant derivative was introduced by Christoffel in order to differ-

symbols. The Christoffel symbols are the (metric) connection coefficients, Γα
μν ,

when expressed in a coordinate basis. The Christoffel symbols possess a special
symmetry which can be seen by letting the primed coordinates represent a lo-
cal Cartesian system with respect to a point. The Christoffel symbols, Γα′

μ′ν′ ,
will then vanish at that point. Then equation (6.96) takes the form

Γα
μν =

∂xα

∂xα′

∂2xα′

∂xμ∂xν
, (6.97)

Γα
μν = Γα

νμ. (6.98)

We must stress, however, that this symmetric property is only valid for the
Christoffel symbols, not for the generalized connection coefficients which we
will come to later.

The Levi-Civitá Connection

The geometrical interpretation of the covariant derivative was first given by
Levi-Civitá [LC17], and goes as follows. Consider again Fig. 6.1. If the curve
passes through a vector field A = Aμeμ, we define the directional covariant

indices:
showing that the Christoffel symbols have to be symmetric in the lower

where the functions Γ

entiate tensor fields. Today we associate his name to the so-called Christoffel
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6.4 Covariant differentiation of vectors

derivative along the curve of the vector field as Aμ
;νuν . The vectors of the field

are said to be parallel transported if

Aμ
;νuν = Aμ

,νuν + AαΓμ
ανuν = 0. (6.99)

According to the chain rule for differentiation, we can write

Aμ
,νuν =

∂Aμ

∂xν

dxν

dλ
=

dAμ

dλ
. (6.100)

Thus equation (6.99) may be written as

dAμ

dλ
+ Γμ

ανAα dxν

dλ
= 0. (6.101)

The geometrical interpretation of the covariant derivative is that

Aμ
;νuνeμ = lim

δλ→0

A||(λ + δλ) −A(λ)

δλ
. (6.102)

Since the vectors at λ and λ + δλ belong to two different tangent planes, the
vector at λ + δλ must be parallel transported to λ before they are subtracted.

Geodesic curves

In Euclidean space we know that the shortest curve connecting two different
points is a straight line. In a curved space this is not longer true. Curves
that connect points in the shortest or longest possible way are called geodesic
curves. There are two seemingly equivalent definitions of geodesic curves in a
general curved space. Either we can define it as the path with extremal length

Let us consider the latter definition first. The tangent vector of the curve is
given by

u = uμeμ. (6.103)

By the definition the tangent vectors of a geodesic curve are connected by
parallel transport, hence

uμ
;νuν = 0, (6.104)

or

d2xμ

dλ2
+ Γμ

αβ

dxα

dλ

dxβ

dλ
= 0. (6.105)

Denoting differentiation with respect to λ by a dot, the geodesic equation can
be written as

ẍμ + Γμ
αβ ẋαẋβ = 0. (6.106)

In a Cartesian coordinate system the Christoffel symbols vanish, and the solu-
tion of the geodesic equation are straight lines. In a curved space, they are the
“straightest possible”, but they are still curved.

between anytwo points (see Fig. 6.2), or we can define it as a straightest possible
curve, i.e., a curve whose tangent vectors are connected by parallel transport.
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Let us see how the same result can come out of the other definition of a
geodesic curve. The variation principle expressing that geodesic curves have
extremal “spacetime distance” between two given points, has the form

δ

λ2∫
λ1

ds = 0, (6.107)

where ds2 = gμνdxμdxν is the line-element of spacetime. Equation (6.107) may
be written as

δ

λ2∫
λ1

L(xμ, ẋμ)dλ = 0, (6.108)

where L =
√|gμν ẋμẋν |. We can now calculate the equations of the geodesic

curve by the Lagrange equations:

d

dλ

(
∂L

∂ẋμ

)
− ∂L

∂xμ
= 0. (6.109)

This gives the equations

ẍμ +
1

2
gμλ(gλα,ν + gλν,α − gαν,λ)ẋαẋν = 0. (6.110)

Comparing with equation (6.106) we see that the Christoffel symbols are given
in terms of the components of the metric tensor:

Γμ
αν =

1

2
gμλ(gλα,ν + gλν,α − gαν,λ). (6.111)

Comparing with the calculation in section 5.6 we may conclude that free parti-
cles particles follow geodesic curves in spacetime.

In order to find a physical interpretation of some of the Christoffel sym-
bols we will consider a free particle instantaneously at rest. Since the spatial
components of the four-velocity vanish, the geodesic equation then reduces to

ẍμ = −Γμ
00. (6.112)

Hence, the Christoffel symbols Γμ
00 represent the acceleration of gravity in the

chosen reference frame.

Figure 6.2: A geodesic is the shortest line connecting any two points.

P1

P2
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6.4 Covariant differentiation of vectors

The generalized connection (the Koszul connection)

The covariant derivative or the connection can be defined in a coordinate free
manner. Its independence of the coordinates chosen is then settled once and
for all.

We define a (Koszul) connection∇ as a function that associates a vector field
∇XY to any two vector fields X and Y, and which satisfies

(1) ∇X1+X2Y = ∇X1
Y +∇X2

Y (6.113)
(2) ∇X (Y1 + Y2) = ∇XY1 +∇XY2 (6.114)
(3) ∇fXY = f · ∇XY (6.115)
(4) ∇X(fY) = f · ∇XY + X(f) ·Y (6.116)

where f is a function.
Assume now that we have a set of basis vectors, eμ, and for the sake of

simplicity we will denote ∇eμ by ∇μ. The connection coefficients are defined
as the components of the directional derivative of the basis vectors,

∇νeμ = Γα
μνeα. (6.117)

Hence, the connection coefficient Γα
μν represents the α-component of the rate

of change of eμ by a displacement in the eν direction. If we have two vector
fields A = Aμeμ and u = uμeμ, then according to (6.114), (6.115) and (6.116)

∇uA = (eν (Aμ)uν + AαΓμ
ανuν) eμ. (6.118)

In component form on an arbitrary basis, this turns into

Aμ
;ν = eν (Aμ) + AαΓμ

αν . (6.119)

So A is parallel transported along u if

∇uA = 0, (6.120)

and the curve c is a geodesic if

∇uu = 0. (6.121)

Everything is now expressed in a coordinate-free manner, thus the connection
has to be independent of the choice of coordinates. The connection coefficients
are on the contrary, dependent on the choice of frame.

Example 6.6 (The Christoffel symbols for plane polar coordinates) Examples

er = cos θex + sin θey,

eθ = −r sin θex + r cos θey.
(6.122)

We get

∇θer = − sin θex + cos θey =
1

r
eθ = Γθ

rθeθ,

∇θeθ = −r cos θex − r sin θey = −rer = Γr
θθer;

(6.123)

hence,

Γθ
rθ = Γθ

θr =
1

r
, Γr

θθ = −r. (6.124)

If we decompose the basis vectors in a Cartesian coordinate system, we get the
following:
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Example 6.7 (The acceleration of a particle as expressed in plane polar coordinates)

replace the proper time of the particle with the coordinate time. Then the acceleration
of the particle is

r̈ = v̇ =
“
vi + Γi

jkvjvk
”
ei, (6.125)

where dot denotes derivative with respect to t. Inserting the velocity components from
Example 4.8 and the Christoffel symbols from Example 6.6, we get

r̈inert =
“
r̈ − rθ̇2

”
er +

„
θ̈ +

2

r
ṙθ̇

«
eθ, (6.126)

where the suffix “inert” indicates that the coordinate system is associated with an in-
ertial frame. Introducing an orthonormal basis er̂ = er, eθ̂ = (1/r)eθ , the acceleration
is expressed as

r̈inert =
“
r̈ − rθ̇2

”
er̂ +

“
rθ̈ + 2ṙθ̇

”
eθ̂. (6.127)

Example 6.8 (The acceleration of a particle relative to a rotating reference frame)

this result and the results from the previous Example, leads to

r̈rot =
“
r̈ − rθ̇2 − rω2 − 2rωθ̇

”
er̂ +

“
rθ̈ + 2ṙθ̇ + 2ṙω

”
eθ̂

= r̈inert −
“
rω2 + 2rωθ̇

”
er̂ + 2ṙωeθ̂. (6.128)

With

ω = ωez, r = rer̂, ṙ = ṙer̂ + rθ̇eθ̂, (6.129)

this equation can be written

r̈rot = r̈inert + ω × (ω × r) + 2ω × ṙ. (6.130)

The middle term on the right hand side is the centrifugal acceleration, and the last term
the Coriolis acceleration in a rotating reference frame.

We shall now explore further the relation between the connection coeffi-
cients and the structure constants. From eqs. (4.20) and (6.118) we obtain an
expression for the commutator of two vectors valid in an arbitrary basis,

[u,v] = ∇uv −∇vu +
(
Γρ

μν − Γρ
νμ + cρ

μν

)
uμvνeρ. (6.131)

The torsion operator T is defined by

T (u ∧ v) ≡ ∇uv −∇vu− [u,v] . (6.132)

The operator T is a two-form with vector components

T (u ∧ v) = − (Γρ
μν − Γρ

νμ + cρ
μν

)
uμvνeρ. (6.133)

Introducing the scalar torsion components T ρ
μν by (using the sign convention

of [MTW73])

T (u ∧ v) = T ρ
μνuμvνeρ, (6.134)

We consider a particle with velocity much less that the speed of light, so that we can

In the case, finding the Christoffel symbols is left as a problem (see problem 6.4). Using
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6.5

we have

T ρ
μν = Γρ

νμ − Γρ
μν − cρ

μν . (6.135)

In a coordinate basis cρ
μν = 0, so that

T ρ
μν = Γρ

νμ − Γρ
μν . (6.136)

The spacetime of the general theory of relativity is assumed to be torsion
free (we will later see that in this case the connection is compatible with the
metric). Then the connection coefficients are related to the structure constants
by

cα
μν = Γα

νμ − Γα
μν , (6.137)

and in the special case where we are in a coordinate basis, the structure co-
efficients vanish, and the Christoffel symbols are symmetric in their lower
indices.

The geometrical meaning of the commutator [u,v] in a torsion-free space
is shown in Fig. 6.3.

Figure 6.3: Geometrical meaning of the commutator [u,v] in a torsion-free space.

Letting u = eμ and v = eν in eqs. (6.131) and (6.132) we get

∇μeν −∇νeμ =
(
cρ

μν + T ρ
μν

)
eρ. (6.138)

The geometrical meaning of this equation is shown in Fig. 6.4.

6.5 Covariant differentiation of forms and tensors

Let us now look at how the covariant derivative can be generalized so that
it can act on any tensor, not only on vectors. First we define the covariant
derivative on a scalar function as

∇Xf = X(f). (6.139)

The covariant directional derivative of a one-form is defined as

(∇Xα) (A) = ∇X [α(A)]−α (∇XA) (6.140)

S

[u; v]
v(T )

∇uv

T

P

u(P)

R∇vu

v(P) Q

u(Q)
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Figure 6.4: Geometrical meaning of torsion. Here u||(P ) means the parallel
transported vector.

for any vector field A. The contraction between basis one-forms and the basis
vectors are equal to the Kronecker symbols, ωμ(eν) = δμ

ν , so their partial
derivatives vanish. Thus,

(∇αωμ)(eβ) = −ωμ(∇αeβ) = −ωμ(Γλ
βαeλ) = −Γμ

βα. (6.141)

This equation says that the β-component of ∇αωμ equals −Γμ
βα, so that

∇αωμ = −Γμ
βαωβ. (6.142)

The covariant derivative of a one-form α = αμωμ is then

∇λα = (∇λαμ)ωμ + αμ∇λωμ = [eλ(αν)− αμΓμ
νλ] ων . (6.143)

The covariant derivative of the one-form components αν is denoted by αν;λ

and is defined by

∇λα = αν;λων . (6.144)

It follows that

αν;λ = eλ(αν)− αμΓμ
νλ. (6.145)

We have now found the expression for the covariant derivative of vectors and
one-forms. The covariant derivative can now be generalized to arbitrary ten-
sors. Let A and B be two tensors of arbitrary rank. Then we define inductively
the covariant derivative on the tensor T = A⊗B by

∇X(A⊗B) = (∇XA)⊗B + A⊗ (∇XB). (6.146)

As an illustration we shall deduce the expression for the covariant derivative
of a covariant tensor S = Sμνωμ ⊗ ων . Using (6.146),

∇αS = ∇α(Sμνωμ ⊗ ων)

= (∇αSμν)ωμ ⊗ ων + Sμν(∇αωμ)⊗ ων + Sμνωμ ⊗ (∇αων)

=
[
eα(Sμν)− SβνΓβ

μα − SμβΓβ
να

]
ωμ ⊗ ων .

(6.147)

S

[u; v]
v(T)

∇uv

T

P

u(P)

T(u; v) R

∇vu

v(P)

v||(P)

Q

u(Q)
u||(P)

Differentiation, Connections, and Integration128



6.6 Exterior differentiation of vectors

Thus the components of∇αS are

Sμν;α = eα(Sμν)− SβνΓβ
μα − SμβΓβ

να. (6.148)

Since the metric tensor is a covariant tensor of rank 2 we get

gμν;α = eα(gμν)− gβνΓβ
μα − gμβΓβ

να. (6.149)

We now claim that there is a unique connection which is compatible with a
given metric in the sense that the metric tensor is covariantly constant:

∇ug = 0, (6.150)

for all u. This is what we call a metric connection. If A and B are two vec-
tors which is parallel-transported along a vector u, then their inner product is
constant as well:

∇u(A ·B) = (gμνAμBν);αuα = 0. (6.151)

Thus both the length of the vectors and the angle between them is preserved
under the parallel-transport.

If we are in a coordinate basis we can use the expression from equation
(6.111) to check whether this is the correct expression of the Christoffel sym-
bols that makes the metric tensor covariantly constant. Inserting (6.111) into
equation (6.149) we find

gμν;α = 0. (6.152)

Thus the Christoffel symbols are given by equation (6.96). Furthermore, since
the Christoffel symbols in a coordinate basis is symmetric in the lower indices,
eq. (6.136) implies that for the metric connection the torsion tensor vanishes.

6.6 Exterior differentiation of vectors

Until now we have only defined the exterior derivative of pure p-forms. It is
also convenient to define the exterior derivative of vector-valued forms. Con-
sider the mixed tensor

T = T μ
νeμ ⊗ ων . (6.153)

This tensor can be viewed upon as a vectorial one-form as follows; it is linear
tensor that to any vector u, assigns a vector given by

T(−,u) = T μ
νuνeμ. (6.154)

Thus this can be considered a vector-valued one-form or a vectorial one-form. In
principle the tensor T can be interpreted in three ways.

1. A mixed tensor of rank 2.

2. A vectorial one-form.

3. A form valued vector.
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A vectorial p-form is defined as the tensor A⊗ ω where A is a vector and
ω is a p-form. It has the basis elements given by

eμ ⊗ ων1 ∧ ... ∧ωνp . (6.155)

A vectorial p-form is antisymmetrical in the covariant part and assigns a vec-
tor to every set of p vectors. In particular a pure vector is a vectorial 0-form.

We define the exterior derivative of a basis vector field eμ as

deμ ≡ Γν
μαeν ⊗ ωα. (6.156)

The exterior derivative of a vector field A is

dA = d(eμAμ) = eμ ⊗ dAν + Aμdeμ. (6.157)

Using that in an arbitrary basis

dAμ = eλ(Aμ)ωλ, (6.158)

we get

dA = eμ ⊗ [eλ(Aμ)ωλ] + AμΓν
μλeν ⊗ ωλ

=
[
eλ(Aν) + AμΓν

μλ

]
eν ⊗ ωλ. (6.159)

One has to be a bit careful when one calculates the exterior derivative of a
vector field. The vector field must be written in component form as eμAμ so
that the factors of the tensor product eν⊗ωλ shall not appear in different order
in the two terms. Using equation (6.119) we can write

dA = Aν
;λeν ⊗ ωλ. (6.160)

For S a vectorial p-form and T a q-form, then we define exterior derivative
inductively by

d(S ∧T) = dS ∧T + (−1)pS ∧ dT. (6.161)

If S is a vectorial 0-form, then the wedge product S∧ just turns into a tensor
product S⊗ .

In a coordinate basis this gives for the exterior derivative of a vectorial
one-form A = Aν

λeν ⊗ ωλ,

dA = d(eνAμ
λ ⊗ ωλ) = d(eνAμ

λ)⊗ ωλ

= Aν
λ,μeν ⊗ ωμ ∧ ωλ + Aν

λdeν ⊗ ωλ

=
(
Aν

[λ,μ] + Γν
τ [νAτ

μ]

)
eν ⊗ ωμ ∧ωλ.

(6.162)

Since the Christoffel symbols are symmetrical in the lower indices, we may
add a term, −Aν

τΓτ
[λν] = 0, inside the parenthesis. The equation can then be

written

dA = Aν
[λ;μ]eν ⊗ ωμ ∧ωλ. (6.163)

With a metric connection the double exterior derivative of a vector field is

d2A = Aν
;[λμ]eν ⊗ ωμ ∧ ωλ. (6.164)
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6.6 Exterior differentiation of vectors

Equation (6.164) shows that equation (6.13) in general fails when d2 is acting
on vectorial forms.

The connection forms Ων
μ are one-forms defined by

deμ = eν ⊗Ων
μ. (6.165)

Then according to (6.156) we have

Ων
μ = Γν

μαωα. (6.166)

Defining the scalar product between a vector u = uμeμ and a vectorial one-
form A = Aν

λeν ⊗ ωλ by

u ·A = uμAν
λ(eμ · eν)ωλ = uμAν

λgμνωλ, (6.167)

we can calculate the exterior derivative of the components of the metric tensor

dgμν = d(eμ · eν) = eμ · deν + eν · deμ

= (eμ · eλ)Ωλ
ν + (eν · eλ)Ωλ

μ

= gμλΩ
λ
ν + gνλΩ

λ
μ = Ωμν + Ωνμ.

(6.168)

We now consider a field of orthonormal basis vectors. This means that the
basis vectors only change their direction. Their magnitude and relative angles
are constants. The connection forms Ωλ̂

ν̂ in such an orthonormal basis are
called rotation forms for that reason. They have, together with the correspond-
ing connection coefficients Γα̂

ν̂μ̂ some beautiful properties. Since the compo-
nents of the metric tensor in an orthonormal basis is everywhere 0 or ±1, we
have

dgμν = 0, (6.169)

and hence,

Ωμ̂ν̂ = −Ων̂μ̂, Γν̂μ̂α̂ = −Γμ̂ν̂α̂. (6.170)

The power of the orthonormal frame formalism is due to this antisymmetry. This
formalism also have several other nice properties. One is revealed in the so-
called Cartan’s first structural equation which we will derive in what follows.

Let α = αμωμ be a one-form. Then

α([u,v]) = uμανvν
,μ − vμανuν

,μ. (6.171)

Furthermore,

u(α(v)) = uμvναν,μ + uμανvν
,μ, (6.172)

and

v(α(u)) = vμuναν,μ + vμανuν
,μ. (6.173)

Also

dα(u ∧ v) = (αμ,ν − αν,μ)uνvμ. (6.174)
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From these equations it follows that

dα(u ∧ v) = u(α(v)) − v(α(u))−α([u,v]). (6.175)

This equation in valid in an arbitrary basis. Applying the equation to the basis
form α = ωρ and the basis vectors u = eμ and v = eν

dωρ(eμ ∧ eν) = −ωρ([eμ, eν ]) = −cρ
μν . (6.176)

Thus,

dωρ = −1

2
cρ

μνωμ ∧ων . (6.177)

From eqs. (6.134) and (6.135) follow that the torsion operator has the com-
ponent form

T =
1

2

(
Γρ

νμ − Γρ
μν − cρ

μν

)
eρ ⊗ ωμ ∧ ων . (6.178)

Inserting eqs. (6.166) and (6.177) we get

T = eρ ⊗ (dωρ + Ωρ
ν ∧ ων) . (6.179)

The torsion two-forms Tρ are defined by

T ≡ eρ ⊗Tρ. (6.180)

Hence,

Tρ = dωρ + Ωρ
ν ∧ων . (6.181)

This is Cartan’s first structural equation. With a metric connection (which we
will assume is the underlying geometry in most of this book) it reduces to

dωρ = −Ωρ
ν ∧ων . (6.182)

Using eq. (6.166) we can write this equation in terms of the connection coeffi-
cients

dωρ = −1

2
(Γρ

νμ − Γρ
μν)ωμ ∧ ων = −Γρ

νμωμ ∧ ων . (6.183)

This equation can by itself leave only information about the antisymmetric
part of the connection. For example, it is not very profitable to use this for
computing Christoffel symbols because they are purely symmetric in the last
two indices. In order to calculate the connection coefficients in an orthonormal
frame, however, this equation turns out to be very useful indeed, as we will
see in the next example.

Example 6.9 (The rotation coefficients of an orthonormal basis field attached to planeExample
polar coordinates)
Let us look at a plane with polar coordinates

ds2 = dr2 + r2dθ2. (6.184)

, we get
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6.7 Covariant exterior derivative

We introduce an orthonormal basis associated with the coordinate system

ω
r̂ = dr, ω

θ̂ = rdθ. (6.185)

Exterior differentiation of ω r̂ gives

dω
r̂ = 0. (6.186)

Comparing with equation (6.182) we get

Ω
r̂
θ̂
∧ ω

θ̂ = 0. (6.187)

Thus,

Ω
r̂
θ̂ = Γr̂

θ̂r̂ω
r̂ + Γr̂

θ̂θ̂ω
θ̂ = Γr̂

θ̂θ̂ω
θ̂, (6.188)

giving Γr̂
θ̂r̂

= 0, while Γr̂
θ̂θ̂

is still undetermined.

Exterior differentiation of ωθ̂ gives

dω
θ̂ = −Ω

θ̂
r̂ ∧ ω

r̂ =
1

r
ω

r̂ ∧ ω
θ̂ = −1

r
ω

θ̂ ∧ ω
r̂. (6.189)

Thus,

Ω
θ̂
r̂ = Γθ̂

r̂θ̂ω
θ̂ + Γθ̂

r̂r̂ω
r̂ =

1

r
ω

θ̂ + Γθ̂
r̂r̂ω

r̂, (6.190)

which gives

Γθ̂
r̂θ̂ =

1

r
, (6.191)

while Γθ̂
r̂r̂ is still left undetermined.

The undetermined connection coefficients are determined by means of the anti-
symmetry equation (6.170). In the orthonormal frame the metric coefficients are that of
Minkowski space. Thus antisymmetry implies

Ω
r̂
θ̂

= −Ω
θ̂
r̂, (6.192)

which shows that

Γr̂
θ̂θ̂

= −1

r
, Γθ̂

r̂r̂ = 0. (6.193)

The non-vanishing connection forms are

Ω
r̂
θ̂

= −Ω
θ̂
r̂ = −1

r
ω

θ̂. (6.194)

6.7 Covariant exterior derivative

In an arbitrary basis {eμ} the exterior derivative of a function φ is given by

dφ = eμ(φ)ωμ. (6.195)

The exterior curvature of a one-form α = αμωμ is

dα = dαμ ∧ ωμ + αλdωλ. (6.196)
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Using eq. (6.177) we get

dα =

(
α[μ,ν] − 1

2
aλcλ

νμ

)
ων ∧ωμ. (6.197)

From eqs. (6.135) and (6.145) follows

α[μ;ν] = α[μ,ν] +
1

2
αλ

(
cλ

μν + T λ
μν

)
. (6.198)

Inserting this into eq. (6.197) we get

(dα)νμ = 2α[μ,ν] + aλcλ
μν = 2α[μ;ν] − aλT λ

μν . (6.199)

In Riemannian geometry (with T λ
μν = 0) and in an arbitrary basis

(dα)νμ = αμ;ν − αν;μ. (6.200)

In an arbitrary space, with or without torsion, but with a reference to a coor-
dinate basis, eq. (6.199) reduces to

(dα)νμ = αμ,ν − αν,μ. (6.201)

The exterior derivative of a 2-form F = (1/2)Fμνωμ ∧ ων has components

(dF)λμν = 3F[μν,λ] − 3Fα[νcα
λμ] = 3F[μν,λ] + 3Fα[νT α

λμ]. (6.202)

Due to the antisymmetry of Fμν the expression reduces to

(dF)λμν = Fμν,λ + Fνλ,μ + Fλμ,ν , (6.203)

in a coordinate basis, and to

(dF)λμν = Fμν;λ + Fνλ;μ + Fλμ;ν , (6.204)

for a metric connection in an arbitrary basis.
We shall now introduce the covariant exterior derivative. For a p-form α

with scalar components, the covariant exterior derivative, Dα, is defined as

Dα ≡ dα. (6.205)

It follows from the above formulae that the covariant exterior derivative of the
elements, Rμ

ν , of a matrix of 2-forms is

DRμ
ν =

1

2

(
Rμ

ν[αβ;λ] + Rμ
ντ [αT τ

βλ]

)
ωλ ∧ ωα ∧ ωβ. (6.206)

Given a vector A with p-forms as components,

A = eμ ⊗Aμ =
1

p!
Aμ

ν1...νp
eμ ⊗ ων1 ∧ · · · ∧ ωνp . (6.207)

The covariant exterior derivative of the form-valued vector-components are
defined by

eμ ⊗DAμ = dA. (6.208)
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6.7 Covariant exterior derivative

For a vector v = vμeμ with scalar components we have

Dvμ = vμ
;νων , (6.209)

which may be written

Dvμ = dvμ + Ωμ
νvν . (6.210)

Let A be the vector

A = eμ ⊗Aμ = Aμ
νeμ ⊗ ων , (6.211)

with components Aμ = Aμ
νων that are one-forms. Then

DAμ =

(
Aμ

[ν;λ] +
1

2
Aμ

τT τ
λν

)
ωλ ∧ ων . (6.212)

Let Aμ
ν be a matrix of p-forms, and consider a tensor

A = eμ ⊗Aμ
ν ∧ ων . (6.213)

This may be interpreted as a tensor of {11} with components Aμ
ν that are p-

forms. The covariant exterior derivative of these components is defined by

eμ ⊗DAμ
ν ∧ ων = dA. (6.214)

Differentiation eq. (6.213) then yields

DAμ
ν = dAμ

ν + Ωμ
α ∧Aα

ν − (−1)pAμ
α ∧Ωα

ν . (6.215)

Let S = eμ⊗Sμ where Sμ are p-forms. Then we define DSμ by eμ⊗DSμ =
dS and obtain

DSμ = dSμ + Ωμ
α ∧ Sα. (6.216)

This equation is valid for arbitrary p.
The torsion operator has the same form as S with p = 2. Hence, the covari-

ant exterior derivative of the torsion operator is

DTρ = dTρ + Ωρ
ν ∧Tν . (6.217)

Cartan’s first structural equation may now be written

Tρ = Dωρ, (6.218)

which with a metric connection reduces to Dωρ = 0.
The quantities eμ ⊗Ωμ

ν are vectorial one-forms. It follows that

eμ ⊗DΩμ
ν = d (eμ ⊗Ωμ

ν) . (6.219)

Thus the covariant exterior derivatives of the connection forms are

DΩμ
ν = dΩμ

ν + Ωμ
α ∧Ωα

ν . (6.220)
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Example 6.10 (Curl in spherical coordinates)Example
Let A = Aiei

of ∇ ×A correspond to the covariant components of �dA, and using eq. (6.197) in an
orthonormal basis eî, we get

∇ ×A = εîĵk̂

„
Aĵ,̂i −

1

2
Am̂cm̂

îĵ

«
ek̂. (6.221)

The orthonormal basis vectors of a coordinate system aren
er̂, eθ̂, eφ̂

o
=

j
∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

ff
. (6.222)

Calculating the structure coefficients in the same way as in Example 4.9 we find

cθ̂
θ̂r̂ = −cθ̂

r̂θ̂ = cφ̂

φ̂r̂
= −cφ̂

r̂φ̂
=

1

r
,

cφ̂

φ̂θ̂
= −cφ̂

θ̂φ̂
= − cot θ

r
. (6.223)

Inserting these into eq. (6.221) gives the components of the curl in spherical coordi-
nates:

(∇ ×A)r̂ =
1

r sin θ

"
∂

∂θ

“
sin θAφ̂

”
− ∂Aθ̂

∂φ

#
,

(∇ ×A)θ̂ =
1

r sin θ

»
∂Ar̂

∂φ
− sin θ

∂

∂r

“
rAφ̂

”–
,

(∇ ×A)φ̂ =
1

r

»
∂

∂r

“
rAθ̂

”
− ∂Ar̂

∂θ

–
. (6.224)

6.8 Geodesic normal coordinates

We shall now show that there exists a local “Cartesian” coordinate system
with “canonical metric” gμν = diag(−1, 1, 1, 1) and vanishing Christoffel sym-
bols covering an infinitesimal region about an arbitrary point P in a Lorentzian
space-time. Such coordinates are termed geodesic coordinates.

The canonical form of the metric is obtained by introducing orthonormal
coordinate basis vectors at P . We shall now show that is it always possible to
introduce a coordinate system {x̄μ}with vanishing Christoffel symbols at P .

The transformation of the Christoffel symbols between two coordinate sys-
tems {x̄μ} and {xμ} are given by eq. (6.96)

Γ̄λ
μν =

∂xα

∂x̄ν

∂xβ

∂x̄μ

∂x̄λ

∂xτ
Γτ

αβ +
∂x̄λ

∂xτ

∂2xτ

∂x̄μ∂x̄ν
. (6.225)

From an arbitrary coordinate system {xμ} with origin at point P a new coor-
dinate system {x̄μ} is introduced via the transformation

x̄μ = xμ +
1

2

(
Γμ

αβ

)
P

xαxβ , (6.226)

be a vector in flat 3-space. Noting that the contravariant components
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6.9

where ( )P denotes the value at the point P . To second order in the distance
from P (in space-time) the inverse transformation is

xμ = x̄μ − 1

2

(
Γμ

αβ

)
P

x̄αx̄β . (6.227)

This leads to (
∂x̄α

∂xτ

)
P

= δα
τ . (6.228)

Furthermore,

∂xτ

∂x̄μ
= δτ

μ −
1

2

(
Γτ

αβ

)
P

(x̄αδβ
μ + x̄βδα

μ) = δτ
μ −

1

2

(
Γτ

αμ + Γτ
μα

)
P

x̄α, (6.229)

which leads to (
∂xτ

∂x̄μ

)
P

= δτ
μ, (6.230)

and (
∂2xτ

∂x̄μ∂x̄ν

)
P

= −1

2

(
Γτ

αμ + Γτ
μα

)
P

. (6.231)

Inserting these expressions into eq. (6.225) gives(
Γ̄λ

μν

)
P

= δα
μδβ

νδλ
τ

(
Γλ

αβ

)
P
− 1

2
δλ

τ

(
Γτ

αμ + Γτ
μα

)
P

=
1

2

(
Γτ

αμ − Γτ
μα

)
P

. (6.232)

Hence, in a Lorentzian space we have(
Γ̄λ

μν

)
P

= 0. (6.233)

Thus we have a local coordinate system with Minkowski metric and vanishing
Christoffel symbols at P .

In section 6.4 we saw that the Christoffel symbols Γμ
00 represent the accel-

eration of gravity in the chosen frame of reference. Hence, the possibility of
transforming into local geodesic normal coordinates with vanishing Christof-
fel symbols means physically that one may transform away the acceleration
of gravity locally. This is exactly what one does when staying inside a satellite
in orbit about the Earth. The possibility of transforming away the Christoffel
symbols locally is thus a mathematical expression of the principle of equiva-
lence.

6.9 One-parameter groups of diffeomorphisms

We will now introduce a special type of diffeomorphisms, or a change of co-
ordinates. These diffeomorphisms are associated with a vector field X as fol-
lows. Consider a vector field X = Xμeμ. Then for a point P we define a path
φ(P, t) by

∂φ

∂t
= Xφ(P,t)

φ(P, 0) = P (Initial condition). (6.234)
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Hence, φ(P, t) is the curve, starting at P at t = 0, with X as a tangent vector
(see figure 6.5). Let us for a fixed t denote this path by φ(P, t) ≡ φt(P ). Hence,
we can consider the map φt as the diffeomorphism that for every P moves the
point along the vector field X. If t = 0 then we do not move the point at all, so

φ0(P ) = P. (6.235)

This is the trivial diffeomorphism and reflects only the initial condition in eq.
(6.234). We also note that if we move P to Q, where φt(P ) = Q, and then
continue to R = φs(Q) then we have

φs(φt(P )) = (φs ◦ φt)(P ) = φs+t(P ) = (φt ◦ φs)(P ) = φt(φs(P )). (6.236)

Figure 6.5: A vector field X determines a unique flow φt

These diffeomorphisms are very useful in mathematics and physics, be-
cause these are special types of coordinate transformations written in a co-
ordinate independent manner. They depend only on the vector field X. We
say that φt is a local flow generated by the vector field X. For infinitesimal t, the
differential equation (6.234) can be approximated by

x′μ ≈ xμ + tXμ, (6.237)

where x′μ is to be understood as the μ-component of φt(P ) and xμ the μ com-
ponent of P in some coordinate system. We can do a “Taylor expansion” of
φt to find a formal solution of (6.234). The result is manifested as follows. We
say that the flow φt is the exponentiation of X and is denoted by

x′μ = expP (tX)xμ. (6.238)

The justification of the name exponentiation, can be given when we look at the
Taylor expansion of φt(P ) along the curve. To evaluate the coordinate x′μ of
a point which is separated from the initial point P = φ0(P ) by the parameter
distance t along the flow φt, the coordinate x′μ corresponding to φt(P ) is

x′μ = xμ + t
d

ds
φμ

s (P )

∣∣∣∣
s=0

+
t2

2!

(
d

ds

)2

φμ
s (P )

∣∣∣∣
s=0

+ ...

=

[
1 + t

d

ds
+

t2

2!

(
d

ds

)2

+ ...

]
φμ

s (P )

∣∣∣∣
s=0

≡ exp

(
t

d

ds

)
φμ

s (P )

∣∣∣∣
s=0

. (6.239)

for any given point P.

ft

P

X
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6.9

This equation can also be written as in eq. (6.238). More specifically, the expo-
nential function is a formal solution to eq. (6.234).

Pull-backs

Related to these diffeomorphisms are so-called pull-backs. These pull-backs
can be defined for any differentiable function F . If the function F is a function
from the space M to N , F : M �−→ N , the we can introduce a local set of
coordinates y so that yμ = Fμ(x), or for short, y = y(x). The pull-back F ∗ is
now defined on covariant tensors as follows.

For f a function, the pull-back is simply

(F ∗f)(x) = (f ◦ F )(x) = f(y(x)), (6.240)

i.e., the composition of f with F . If α is a one-form on N , the pull-back of
α = αμdy

μ is defined by

(F ∗α)(v) = α(F∗v), (6.241)

for all vectors v and where F∗ is the differential of F . Using the local coordi-
nates, we have that

F∗v = vβ ∂yμ

∂xβ

∂

∂yμ
, (6.242)

so

(F ∗α)(v) = (ανdyν)

(
vβ ∂yμ

∂xβ

∂

∂yμ

)
= vβ ∂yμ

∂xβ
αμ. (6.243)

Since this is valid for any v, F ∗α is the one-form on M given by

F ∗α =
∂yμ

∂xβ
αμdxβ . (6.244)

Here we see the reason why we call it pull-back: The one-form, α, on N is
“pulled back” to a one-form on M .

If now α = dyν the pull-b ck is only the chain rule

F ∗dyν =
∂yν

∂xβ
dxβ . (6.245)

Now let α be a covariant tensor of rank {0p} at y. Then the pull-back is
defined by

(F ∗α)(v , ...,v ) = α (F (v ), ..., F (v )) . (6.246)

One-parameter groups of diffeomorphisms 139

It is easy to prove the following facts

F ∗(α ∧ β) = (F ∗α) ∧ (F ∗β), (6.247)
F ∗(α⊗ β) = (F ∗α)⊗ (F ∗β). (6.248)

We have also that the pull-back commutes with the exterior differentiation

F ∗(dα) = d(F ∗α). (6.249)



6.10 The Lie derivative

Another useful derivation on a curved space is the Lie derivative which we will
denote £XT where X is a vector field and T is a general tensor field. The Lie
derivative transforms tensors of rank {p

q} into tensors of rank {p
q}, and it can

be defined in the following way. Consider a vector field X = Xμeμ which
induces the following infinitesimal transformation:

xμ −→ x′μ = xμ + tXμ, (6.250)

where t is a small parameter. Under this displacement the tensor field changes
from Tx to T′x′ where Tx means the tensor field T at the point x. Note that
Tx �= T′x′ for x′ = x because they represent different points in space. The Lie
derivative of T with respect to u can now be written as

£XT ≡ lim
t−→0

1

t
(T′x′ −Tx) . (6.251)

We first have to define how we determine the new tensor T′x′ . Consider
a vector field X and let φ(t) = φt be the local flow generated by X. The
parameter t can be considered as a “time” parameter so that φt(x) is the point
t seconds along the integral curve of X. Thus if the parameter t is infinitesimal,
we can approximate

(φt(x))μ ≡ x′μ = xμ + tXμ. (6.252)

If T is a covariant tensor, then we define the new tensor T′x′ as

T′x′ = φ∗t Tφt(x), (6.253)

£XT ≡ lim
t−→0

1

t

(
φ∗t Tφt(x) −Tx

)
. (6.254)

Let us first consider a function f , the pull-back is merely the composition
with φt, φ∗t f = f ◦φt, i.e. just the value of the function at the point φt(x) rather
than x. Hence, we can Taylor expand the function around x along φt:

f (φt(x)) ≈ f(x) + tXμf;μ = f(x) + tX(f). (6.255)

The Lie derivative of a function can now be seen to be

£Xf ≡ lim
t−→0

1

t
[f (φt(x))− f(x)] = X(f) = ∇Xf. (6.256)

Thus the Lie derivative of a function f with respect to a vector X is equal to
the directional derivative of f in the X-direction.

We now define the Lie derivative of a vector Y with respect to the vector
X. If T′x′

T′x′ = φ−t∗Tφt(x). (6.257)

£XY ≡ lim
t−→0

1

t

(
φ−t∗Yφt(x) −Yx

)
. (6.258)

i.e., the Lie derivative of a covariant tensor can be written as

is a vector then we define (see Fig. 6.6)

Thus, the Lie derivative of a vector Y is
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6.10 The Lie derivative

Figure 6.6: The Lie derivative: To compare the vectors Yx and Yφt(x) the latter must
be pushed back to x with φ−t∗.

At φt(x) = x′ the vector field has the value (introducing a locally Cartesian
coordinate system at x′):

Yx′ = (Y μeμ)x′ ≈
(
Y μ + tXνY μ

;ν

)
x

(eμ)x′ . (6.259)

In a locally Cartesian coordinate system eμ = ∂
∂xμ , so that

(eμ)x′ ≈
(

∂xν

∂x′μ
eν

)
x

. (6.260)

From the infinitesimal transformation we can write
∂xν

∂x′μ
= δν

μ − tXν
;μ, (6.261)

which gives

£XY =
(
XνY μ

;ν − Y νXμ
;ν

)
eμ = [X,Y] . (6.262)

The Lie derivative of Y with respect to X is the commutator of X and Y. It
follows that

£XY = −£YX. (6.263)

Using the commutator relation we find that

£Xeμ = [X, eμ] = [Xνeν , eμ]

= Xν [eν , eμ]− eμ(Xν)eν =
[
Xνcα

νμ − eμ(Xα)
]
eα. (6.264)

Thus in a coordinate basis

£eμX = Xα
,μeα. (6.265)

For the Lie derivative, the following rules will apply. Let S and T be ten-
sors of arbitrary rank, f , a, b scalar functions, X and Y vector fields, and α a
one-form. Then

£X (S + T) = £XS + £XT (6.266)
£X (fT) = T ·X(f) + f£XT (6.267)

£X (α (Y)) = (£Xα) (Y) + α (£XY) (6.268)
£X (S⊗T) = (£XS)⊗T + S⊗ (£XT) (6.269)
£aX+bYT = a£XT + b£YT. (6.270)

Yx

f–t∗Yft(x)

Yft(x)

ft(x)

x

f–t∗
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Using equations (6.264) and (6.268) we calculate the Lie derivative of a

(£Xα)ν = (£Xα) (eν) = £X (α (eν))−α (£Xeν)

= £Xαν −α
[(

Xμcλ
μν − eν(Xλ)

)
eλ

]
= X (αν) + αλeν

(
Xλ
)− αλXμcλ

μν . (6.271)

In a coordinate basis this expression simplifies to

(£Xα)ν = Xμαν,μ + αμXμ
,ν . (6.272)

An alternative form of equation (6.271) valid in an arbitrary basis is

(£Xα)ν = Xμαν;μ + αμXμ
;ν . (6.273)

For a basis one-form equation (6.271) gives

£Xων =
[
Xμcν

αμ + eα (Xν)
]
ωα. (6.274)

In a coordinate basis this equation becomes particularly simple:

£Xdxν = Xν
,αdxα = dXν . (6.275)

Let us now derive a very useful relation for one-forms, which turns out to be
valid for any p-form. Using

d (α (X)) = d (αμXμ) =
(
Xμαμ,ν + αμXμ

,ν

)
dx

ν , (6.276)
dα (X) = Xμ (αν,μ − αμ,ν)dxν , (6.277)

and equation (6.272) we get the general relation between the Lie derivative
and the exterior differentiation

£Xα = d (α (X)) + dα (X) . (6.278)

One may show that this relation holds for any p-form, thus one may write

£X = d ◦ ιX + ιX ◦ d, (6.279)

where ιX is the interior product (or a contraction), for Lie derivatives on forms.
This formula is called H. Cartan’s Formula. Using d2 = 0, we note that

£X ◦ d = d ◦ ιX ◦ d + ιX ◦ d2 = d ◦ ιX ◦ d (6.280)
d ◦£X = d2 ◦ ιX + d ◦ ιX ◦ d = d ◦ ιX ◦ d. (6.281)

Thus in general

£X ◦ d = d ◦£X. (6.282)

The Lie derivative commutes with the exterior derivative.

one-form:
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6.10 The Lie derivative

Example 6.11 (The divergence of a vector field) Example

by the formula

£Xε = (∇ ·X) ε. (6.283)

In local coordinates

ε =
p
|g|dx

1 ∧ ... ∧ dx
n. (6.284)

According to H. Cartan’s formula

£Xε = d (ιXε) = d
X

μ

(−1)μ−1
p
|g|dx

1 ∧ ...ιXdx
μ ∧ ... ∧ dx

n

= d
X

μ

(−1)μ−1
“p

|g|Xμ
”

dx
1 ∧ ...ddxμ ∧ ... ∧ dx

n, (6.285)

where ddxμ means that dxμ shall be omitted from the wedge product. Taking the exte-
rior derivative we get

£Xε =
X

μ

(−1)μ−1

»
∂

∂xμ

“p
|g|Xμ

”
dx

μ

–
∧ dx

1 ∧ ...ddxμ ∧ ... ∧ dx
n

=
X

μ

»
∂

∂xμ

“p
|g|Xμ

”–
dx

1 ∧ ...dx
μ ∧ ... ∧ dx

n. (6.286)

Hence,

∇ ·X =
1p
|g|

∂

∂xμ

“p
|g|Xμ

”
, (6.287)

which is valid in any metric space. Not surprisingly, this is the same as we got in

We can now, for instance, show that the Lie derivative of a tensor of rank
{02} is

(£XT)μν = Tμν;αXα + TανXα
;μ + TμαXα

;ν . (6.288)

Invariance and symmetry principles of tensor fields may be described by
means of the Lie derivative. In this connection, the concept of Lie transport of
a tensor field is applied. The tensors at different points of a tensor field T are
connected by Lie transport along a curve if the Lie derivative of T along the
curve vanishes. If u is the tangent vector along the curve, we say that T is Lie
transported iff

£uT = 0. (6.289)

More specifically, a scalar field connected by Lie transport along a curve is
constant along it.

The vectors of a Lie transported vector field along a curve commutes with
the tangent vectors of the curve. In this case the vector field is said to be in-
variant with respect to the transformation we denoted by φt. The geometrical
interpretation is as follows. Assume that u is a tangent vector field of a con-
gruence of curves xμ(λ) and v a vector field. If the vectors v are connected
by Lie transport along u, they will connect points with the same value of λ on
neighbouring curves of the congruence (see figure 6.7).

Let ε be the volume form. The divergence of X is defined to be the scalar ∇ ·X given

eq. (6.2 5).
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6.11 Killing vectors and Symmetries

A important concept in almost all branches in physics is the concept of sym-
metry. In this section we will define what we mean by symmetries for spaces.

Killing vectors are useful when we are going to describe the symmetry
properties of a space in an invariant way, independently of the choice of coor-
dinates.

Consider a space with coordinate system {xμ} and with a metric

g = gμνdxμ ⊗ dxν . (6.290)

Let φt(x) ≡ (x′μ) be a one parameter group of diffeomorphisms, and define a
new metric

ĝt = φ∗t g =
∂x′α

∂xν

∂x′β

∂xμ
gαβdx

μ ⊗ dx
ν . (6.291)

This is just the metric at φt(x) instead of at x, pulled back to x. If now this
metric happens to be equal to the original one, that is

ĝt = g, (6.292)

then we say that φt is an isometry. The Killing vectors are related to the isome-
tries as follows. Consider a vector field ξ.
diffeomorphisms generated by ξ is an isometry, then we call ξ a Killing vector
field. This yields an equivalent definition of a Killing vector field. We define a
Killing vector field by the relation

£ξg = 0. (6.293)

This can be seen as follows. If ξ is a Killing vector field, and φt its flow, then
by definition

φ∗t g = g, (6.294)

so that

£ξg = lim
t−→0

1

t
(φ∗t g − g) = 0. (6.295)

Figure 6.7: The Lie derivative.

u

u

u

u

v

v

λ2

λ2

λ1
λ1

If the one-parameter groups of
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6.11 Killing vectors and Symmetries

The Lie derivative of the metric tensor along a Killing vector vanishes.
In component form this equation is(

£ξg
)

μν
= gμν;αξα + gμαξα

;ν + gανξα
;μ = 0. (6.296)

Since the covariant derivative of the metric tensor vanishes, this equation can
be written

ξμ;ν + ξν;μ = 0. (6.297)

This is Killing’s equation. In this form Killing’s equation is valid in an arbi-
trary basis. In a coordinate basis the equation reduces to

ξμ,ν + ξν,μ = 2ξαΓα
μν . (6.298)

It is not difficult to show that if ξ(1) and ξ(2) are two Killing vectors, a

and b two constants, then aξ(1) + bξ(2) is a Killing vector. Furthermore, the
commutator [ξ(1), ξ(2)] is also a Killing vector.

In an n-dimensional space there are maximally n
2 (n + 1) linearly indepen-

dent Killing vectors. In four-dimensional space-time there may be up to 10
such vectors. A metric and the corresponding space that admits the maxi-
mally number of Killing vectors is said to be maximally symmetric. These
spaces are classified as follows [Kob72].

Theorem
Then M must be one of the following spaces.

1. The n-dimensional sphere, Sn.

2. The n-dimensional projective space, Pn.

3. The n-dimensional Euclidean space, En.

4. The n-dimensional hyperbolic space, Hn.

These spaces and their maximally symmetric metrics will be investigated
in the next chapter.

Example 6.12 (2-dimensional Symmetry surfaces) Example
Let us consider a 2-dimensional plane with the Euclidean metric

ds2 = dx2 + dy2. (6.299)

ξx,x = ξy,y = 0, ξx,y + ξy,x = 0. (6.300)

There are three independent solutions to this equation. These are

ξ1 =
∂

∂x
, ξ2 =

∂

∂y
, ξ3 = x

∂

∂y
− y

∂

∂x
. (6.301)

These Killing vectors are characteristic for plane symmetry. By calculating their com-
mutators, we get

[ξ1, ξ2] = 0, [ξ1, ξ3] = ξ2, [ξ2, ξ3] = −ξ1. (6.302)

In a Cartesian coordinate system the Christoffel symbols will vanish, and hence,
Killing’s equation (6.297) reduces to

Let M be an n-dimensional maximally symmetric Riemannian space.
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If a space possesses 3 Killing vectors which span a 2-dimensional tangent space at
every point, and, in addition, obey the commutator relations (6.302), we say that the
space is plane symmetric. In this way we can characterize plane symmetry entirely on
the basis of the Killing vectors.

Similarly, assume that a space possesses 3 Killing vectors which everywhere span
a 2-dimensional tangent plane. Then we call the space

1. Spherical symmetric if the commutator relations are

[ξ1, ξ2] = ξ3, [ξ2, ξ3] = ξ1, [ξ3, ξ1] = ξ2.

2. Hyperbolic-plane symmetric if the commutator relations are

[ξ1, ξ2] = −ξ3, [ξ2, ξ3] = ξ1, [ξ3, ξ1] = ξ2.

Furthermore, a space is called cylindrical symmetric if the space possesses two commut-
ing Killing vectors – i.e. [ξ1, ξ2] = 0 – where the corresponding one-parameter family
of diffeomorphisms to ξ1, say, is periodic. The periodicity implies that φt = φt+� for a
constant �. The � corresponds to going around the circumference of the cylinder once.

An invariant basis is defined as a basis-field where the basis-vectors are
connected by Lie transport along Killing vectors. Let {eμ} be an invariant
basis. Then

£ξeμ = [ξ, eμ] = 0, (6.303)

for an arbitrary Killing vector ξ.
The components of a tensor are scalar functions. This means that the Lie

derivative of for example the components of the metric tensor, gμν , along a
Killing vector field is equal to the directional derivative of gμν along ξ. Thus

ξ(gμν) = £ξ [g (eμ, eν)] = g
(
£ξeμ, eν

)
+ g
(
eμ,£ξeν

)
. (6.304)

If {eμ} is an invariant basis, then

ξ(gμν) = 0. (6.305)

The components of the metric tensor are constants along Killing vectors in a
space with an invariant basis field.

There is an interesting relation between particle motion and Killing vec-
tors. In Lagrangian dynamics we have the notion of cyclic coordinates, and
we will now find a relation between Killing vectors and cyclic coordinates.
Assume that xα is a cyclic coordinate, and consider the vector

∂

∂xα
= δμ

α

∂

∂xμ
. (6.306)

The covariant derivative of the covariant components of this vector is

(gμρδ
ρ
α);ν = gμρδ

ρ
α;ν = gμρΓ

ρ
να = Γμνα

=
1

2
(gμν,α + gμα,ν − gνα,μ) . (6.307)

Since xα is a cyclic coordinate gμν,α = 0, so that

(gμρδ
ρ
α);ν = gα[μ,ν]. (6.308)
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Problems

The fact that (gμρδ
ρ
α);ν is antisymmetric in μ and ν is a sufficient condition that

the vector ∂
∂xα fulfills Killing’s equations. We then have the following result.

The coordinate basis vector ∂
∂xα associated with a cyclic coordinate is a Killing vector.

Even if this does not give all the Killing vectors of a space, this is a useful
result when one shall find the Killing vectors of the space.

We can also find the relation between the Killing vectors of a space and the
constants of motion of a particle moving freely in that space.

A free particle moves along a geodesic curve, with equation

∇uu = 0 (6.309)

where u is the four-velocity of the particle. Consider the scalar product u · ξ
where ξ is a Killing vector field. The covariant directional derivative of this
product along the geodesic curve is

∇u (u · ξ) = uαuμ
;αξμ + uαuμξμ;α. (6.310)

Here the first term vanishes because of eq. (6.309) and the second vanishes
since uαuμ is symmetric and ξμ;α is antisymmetric in μ and α. Hence,

∇u (u · ξ) = 0. (6.311)

We then have the result that u · ξ is constant along a geodesic curve. For a
particle with constant rest mass this may also be expressed as p · ξ where p is
the four-momentum of the particle.

In the case where ξα is associated with a cyclic coordinate xα we get

p · ξα = pμξμ
α = pμδμ

α = pα. (6.312)

Thus p · ξα is equal to the covariant canonical momentum to a cyclic coordi-
nate. As we have seen earlier, this is a constant of motion for a free particle in
a gravitational field.

Problems

6.1. Loop integral of a closed form
By using complex analysis we will show that the integral∮

ω =

∮
xdy − ydx

x2 + y2
, (6.313)

equals 2π for any loop that encircles the origin once in the anti-clockwise di-
rection.

(a) Let us define the complex variable z by z = x + iy. Show that∮
dz

iz
=

∮ [
xdx + ydy

i(x2 + y2)
+

xdy − ydx

(x2 + y2)

]
. (6.314)

(b) Using the residue theorem from complex analysis, show that∮
xdx + ydy

i(x2 + y2)
= 0. (6.315)

,
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(c) Show that for any loop c1 that encircles the origin z = 0 once in the anti-
clockwise direction, the integral is given by∮

c1

ω = 2π, (6.316)

and show that in general for a loop cn that encircles the origin n times,
the integral is given by ∮

cn

ω = 2πn. (6.317)

Note also that the orientation is incorporated into this formula. If the
loop goes in the anti-clockwise direction, the integer n is positive, while
if it is clockwise then n is negative.

6.2. The covariant derivative

(a) Assume that Aμν
λ are the components of a tensor. Show that Aμν

ν will
transform as vector components, while Aμμ

λ will not (summation over
repeated indices).

(b) Show, using the expression

Γμνλ =
1

2
(gμν,λ + gμλ,ν − gνλ,μ) ,

that Γμ
νλ are not the components of a tensor.

(c) Assume that Aμ(x) is a vector field. Show that Aμ
,ν ≡ ∂Aμ

∂xν does not
transform according to a tensor, but that the covariant derivative

Aμ
;ν = Aμ

,ν + Γμ
λνAλ (6.318)

does.

(d) Show the following relations:

gμν;λ = 0,

(AμBν);λ = Aμ
;λBν + AμBν;λ.

(6.319)

Show also that the covariant divergence can be expressed as

∇ ·A ≡ Aμ
;μ =

1√|g| ∂

∂xμ

(√
|g|Aμ

)
. (6.320)

6.3. The Poincaré half-plane
2 2

+ = {(x, y) ∈
2

ds2 =
dx2 + dy2

y2
. (6.321)

(a) Use the orthonormal frame formalism and calculate the rotation forms.

(b) Using for instance the variational principle, show that the geodesics are
semi-circles centered at y = 0 or lines of constant x.

The Poincaré half-plane is the upper half of R given by R

R |y > 0}, see Fig. 6.8, equipped with the metric
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Problems

6.4. The Christoffel symbols in a rotating reference frame with plane polar coordinates

in a rotating reference frame with plane polar coordinates are given by

Γr
tt = −ω2r, Γr

θθ = −r,

Γr
θt = Γr

tθ = −ωr, Γθ
rt = Γθ

tr =
ω

r
,

Γθ
θr = Γθ

rθ =
1

r
. (6.322)

All other components are zero.

Figure 6.8: Geodesics in the Poincaré half-plane.

Show, using the transformation (5.6) on page 90, that the Christoffel symbols

y

x

R2
+
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7
Curvature

a space with non-vanishing acceleration of gravity, may be non-Euclidean. It
is easy to visualize curves and surfaces in three-dimensional space but it is
difficult to grasp visually what curvature means in three-dimensional space,
or worse still, in four-dimensional space-time. However the curvature of such
spaces may be discussed using the lower dimensional analogues of curves and
surfaces. It is therefore important to have a good knowledge of the differential
geometry of surfaces. Also the formalism used in describing surfaces may
be taken over with minor modifications, when we are going to describe the
geometric properties of curved space-time.

7.1 Curves
3

be the position vector of points parametrized by the arc length s. The unit
tangent vector along the curve is

t =
dr

ds
=

dxi

ds
ei. (7.1)

The faster the unit tangent vector changes the direction along the curve the
more curved the curve is. The curvature vector of the curve is defined by

k =
dt

ds
. (7.2)

Since t · t = 1 we have by differentiation t · k = 0, thus the curvature vector is
always orthogonal to the tangent vector. The length of the curvature vector is
called the curvature of the curve, and is denoted by κ:

κ ≡ |k|. (7.3)

A curve with vanishing curvature is a straight line.

We have seen, for example in rotating reference frames, that the geometry in

Let us consider curves in Euclidean three-dimensional space, E , and let r(s)



Curvature

Example 7.1 (The curvature of a circle)Example
Consider a circle of radius R. The tangent vector is

t =
dr

ds
=

dr

ds
er +

dθ

ds
eθ =

1

R
eθ (7.4)

since r = R and s = Rθ along the circle. The curvature vector can now be found with

k =
dt

ds
=

1

R2

deθ

dθ
= − 1

R
er. (7.5)

Thus the curvature of the circle is κ = 1
R

.

The unit vector n defined by

dt

ds
= κn, (7.6)

is called the principal normal vector of the curve. The vectors t and n span a
plane which is called the osculating plane of the curve. This plane turns as we
move along the curve. The unit normal vector b of this plane, defined by

b = t× n, (7.7)

db
ds

dt

ds
· b + t · db

ds
= 0. (7.8)

Combining this with equations (7.6) and (7.7) it follows that db
ds is orthogonal

to t. Since b has constant length, db
ds has no component along b either. Thus

db
ds points in the n direction. The torsion τ of a curve is defined by the equation

db

ds
= −τn. (7.9)

The vectors {t,n,b} represent three orthonormal basis vector fields along the

t = n× b, n = b× t. (7.10)

Figure 7.1: A curve in three-dimensional space.

t

t

b

b

n

n

is called the binormal vector of the curve (see Fig. 7.1). The rate of turning of the
osculating plane is given by . Since t · b = 0, it follows by differentiation that

curve (see Fig. 7.1). They are related by eq. (7.7) together with
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7.2 Surfaces

The variation of n along the curve is now given by

dn

ds
=

db

ds
× t + b× dn

ds
= −τn× t + κb× n (7.11)

so

dn

ds
= τb− κt. (7.12)

Equations (7.6), (7.9) and (7.12) are called the Serret-Frenet equations.

7.2 Surfaces

eu =
∂

∂u
, ev =

∂

∂v
, (7.13)

The line element on the surface is

ds2 = gμνdxμdxν , (7.14)

where x1 = u and x2 = v. This is often called the first fundamental form of the
surface.

The directional derivative of eμ along eν has generally one component in
the tangent plane of the surface and one component orthogonal to the surface,

eμ,ν = Γα
μνeα + Kμνn, (7.15)

where Γα
μν are the connection coefficients of the u, v system and n is the unit

normal vector field on the surface. The coefficients Kμν are defined by this
equation. Since eμ,ν = ∂2

∂xμ∂xν = ∂2

∂xν∂xμ = eν,μ these coefficients are symmet-

Γα
μν

Euclidean space, projected onto the tangent space of the surface.
The equation (7.15) is usually called Gauss’ equations. Using

Kμν = eμ,ν · n, (7.16)

we can calculate the coefficients Kμν . Let now u be the tangent vector of a
curve in the surface, parametrized by λ. Using equation (7.15) we have

du

dλ
= uμ

;νuνeμ + Kμνuμuνn. (7.17)

μνdxμdxν

dimensional Euclidean space in which it is embedded.

Consider a two-dimensional surface embedded in three-dimensional Euclidean

every point on the surface the basis vectors
space. Let u and v be coordinates (or parameters) on the surface. Then, at

tive of a surface embedded in an Euclidean space is the ordinary derivative in
. The covariant deriva-covariant derivative and the connection coefficients

ric. Note also that the eq. (7.15) provides us with an interpretation of the

mines the intrinsic geometry of the surface, the second fundamental form

define a tangent plane of the surface, see Fig. 7.2.

, is called the secondThe λ-independent coefficient in front of n, K

reflects the extrinsic geometry, i.e., how the surface curves in the ambient three-

fundamental form of the surface. Whereas the first fundamental form deter-

153



Curvature

Figure 7.2: A two-dimensional surface embedded in three-dimensional Euclidean

If λ is the arc-length, we can write equation (7.17) as

du

dλ
= κge + κnn, κg ≡ |uμ

;νuνeμ|, κn ≡ Kμνuμuν , (7.18)

where e is a unit vector. The quantities κg and κn are called the geodesic curva-
ture and the normal curvature of the surface, respectively.

Since du
dλ is orthogonal to u and n, the unit vector e in the surface is given

by

e = ±n× u. (7.19)

We see that the normal curvature can also be written

κn =
du

dλ
· n. (7.20)

By differentiating u · n we get

u · dn

dλ
= −κn = −Kμνuμuν . (7.21)

This is Weingarten’s equation.
The geodesic and normal curvatures, taken separately, characterize the ex-

trinsic geometry of the surface. We shall now find a quantity, called the Gaus-
sian curvature, which is a measure of the intrinsic geometry of the surface.

At an arbitrary point on the surface we consider geodesic curves through
the point with tangent vectors u = uμeμ. In order to compare the normal cur-
vature of the geodesics having different directions, we choose tangent vectors
of unit length,

u · u = gμνuμuν = 1. (7.22)

The directions with maximal and minimal values of the normal curvature are
found by extremizing κn as given by eq. (7.18) with the constraint eq. (7.22).
Thus we have to solve the variational problem δF for arbitrary uμ, where

F = Kμνuμuν − k(gμνuμuν − 1). (7.23)

μgives

δF = 2(Kμν − kgμν)uνδuμ. (7.24)

space.

eu
em

n

Here, k is a Lagrange multiplier. Variation with respect to u
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7.3 The Riemann Curvature Tensor

Thus we must have

(Kμν − kgμν)uν = 0. (7.25)

This set of equations has non-trivial solutions whenever

det (Kμν − kgμν) = 0, (7.26)

which yields the following quadratic equation for k

k2 det(gμν)− k(g11K22 − 2g12K12 + g22K11) + det(Kμν) = 0, (7.27)

with solutions k1 and k2. These are the extremal values of k.
To see the meaning of k we multiply eq. (7.25) by uμ and use eq. (7.18).

This gives

k = κn. (7.28)

The extremal values of k are called the principal curvatures of the surface. The
Gaussian curvature of the surface is defined as

K = k1k2. (7.29)

From eq. (7.27) it follows that

K =
det(Kμν)

det(gμν)
. (7.30)

Let the directions corresponding to the principal curvatures be characterized
by the vectors u and v. From equation (7.25) and the symmetry of Kμν follows

(k1 − k2)(u · v) = 0. (7.31)

For k1 �= k2 this implies that u and v are orthogonal. The principal curvatures
are found in orthogonal directions.

A positive Gaussian curvature means that the principal curvatures are of
the same sign. The surface is locally similar to a distorted sphere, and the
geometry is locally elliptic. If the Gaussian curvature vanishes, one of the

In the following sections we will show that the Gaussian curvature repre-
sents a measure of the intrinsic geometry of the surface. This will be achieved
by expressing it in terms of the components of the Riemann tensor, which we
will introduce in the next section. Note however that curves have no intrinsic
curvature.

7.3 The Riemann Curvature Tensor

In this section we will not restrict ourselves to two-dimensional surfaces, but
describe spaces of arbitrary number of dimensions. We will introduce the
important concept of curvature in an invariant way, described by the Riemann
curvature tensor.

the geometry is locally Euclidean. Finally, if the Gaussian curvature is nega-
tive the surface is locally saddle-shaped, i.e. like a hyperbolic surface. In this
case the geometry is said to be locally hyperbolic.

principal curvatures has to vanish and the geometry is locally planar and
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Curvature

Consider two nearby points Q and P connected by a vector δλv of in-
finitesimal length. Let A be a vector field. Then the difference between the
vector field at Q, denoted AQ, and the vector AP parallel-transported from
P to Q (which is denoted APQ) is to first order in δλ given by the directional
derivative at Q of A in the v-direction

δλ∇vA ≈ AQ −APQ. (7.32)

Thus,

APQ ≈ (1− δλ∇v)AQ. (7.33)

To second order APQ is given by the first terms of the Taylor expansion

APQ ≈
(

1− δλ∇v +
1

2
δλ2∇v∇v

)
AQ. (7.34)

We are now going to parallel-transport the vector AP around the polygon
shown in Fig. 7.3. Parallel-transporting APQ from Q to R gives

APQR ≈
(

1− δλ∇u +
1

2
δλ2∇u∇u

)(
1− δλ∇v +

1

2
δλ2∇v∇v

)
AR. (7.35)

Proceeding around the polygon gives

APQRSTP ≈
(

1 + δλ∇u +
1

2
δλ2∇u∇u

)(
1 + δλ∇v +

1

2
δλ2∇v∇v

)
× (1− δλ2∇[u,v]

)
(7.36)

×
(

1− δλ∇u +
1

2
δλ2∇u∇u

)(
1− δλ∇v +

1

2
δλ2∇v∇v

)
AP .

Thus, to second order, the change of the vector after parallel-transport around
the polygon is

δA = APQRSTP −AP =
(
[∇u,∇v]−∇[u,v]

)
δλ2AP . (7.37)

In flat space there would be no such change of A. This change is due to the
curvature of the space. It can be shown that δA as given in eq. (7.37) is a vector
which is linear in A, u and v (see e.g. [vW81]). Thus δA may be expressed by
a tensor of rank {13}. This tensor R is called the Riemann curvature tensor and
is defined by

R(u,v)A ≡ ([∇u,∇v]−∇[u,v]

)
A. (7.38)

The components of this tensor are given by

eμRμ
ναβ =

(
[∇α,∇β ]−∇[eα,eβ ]

)
eν . (7.39)

in α and β. We can therefore define a matrix of two-forms

Rμ
ν =

1

2
Rμ

ναβωα ∧ ωβ , (7.40)

It follows that the Riemann curvature tensor is antisymmetric in u and v, i.e.,
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Figure 7.3: The vector AP

which are called the curvature forms.
Equation (7.37) may now be written

δA = eμRμ
ναβAνuαvβ . (7.41)

The infinitesimal area of the polygon is to lowest order in u and v

ΔSαβ = uαvβ − uβvα. (7.42)

Using the antisymmetry of Rμ
ναβ we may then write

δA =
1

2
AνRμ

ναβΔSαβeμ. (7.43)

This shows that the change of a vector by parallel transport around a closed
curve is proportional to the curvature of the space and to the area enclosed by
the curve.

We shall now show how Rμ
ναβ may be expressed by the connection- and

structure coefficients of a given basis. We find

eμRμ
ναβ =

(
[∇α,∇β ]−∇[eα,eβ ]

)
eν

=
(
∇α∇β −∇β∇α − cρ

αβ∇ρ

)
eν (7.44)

=
(
Γμ

νβ,α + Γρ
νβΓμ

ρα − Γμ
να,β − Γρ

ναΓμ
ρβ − cρ

αβΓμ
νρ

)
eμ,

which implies that

Rμ
ναβ = Γμ

νβ,α − Γμ
να,β + Γρ

νβΓμ
ρα − Γρ

ναΓμ
ρβ − cρ

αβΓμ
νρ. (7.45)

parallel transported around the polygon PQRSTP.

The connection coefficients and structure coefficients are calculated from a

dimensional space. Thus eq. (7.45) shows that the Riemann tensor describes
the intrinsic geometry of space.

basis vector field in the space considered, without reference to any higher

Ap

u(P)

P

u(Q)

∇vAQ

∇uv

∇vu

Q

AQ

APQ

[u,v]

T

S

R

v(T)

v(P)
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This is an expression of Gauss’ Theorema Egregium, which says that an in-

the three-dimensional space, which reveals to him the curvature of that space.
It is not necessary to embed the space in a higher-dimensional one.

The curvature forms may now be written in component form as

Rμ
ν =

(
Γμ

νβ,α −
1

2
cρ

αβΓμ
νρ + Γρ

νβΓμ
ρα

)
ωα ∧ ωβ . (7.46)

Using equations (6.137) and (6.166) we find

Rμ
ν = dΩμ

ν + Ω
μ
λ ∧Ωλ

ν . (7.47)

This is Cartan’s 2nd structural equation.

Aμ
;βα = AλΓμ

λβ,α −AλΓτ
λαΓμ

τβ −Aμ
;λΓλ

βα + Aμ
,βα

+
(
Aλ

;αΓμ
λβ + Aλ

;βΓμ
λα

)
. (7.48)

The two latter terms are symmetric in α and β and do not contribute to the
antisymmetric combination Aμ

;βα − Aμ
;αβ . Hence, by using eqs. (7.45) and

(6.135), we get

Aμ
;βα −Aμ

;αβ = AλRμ
λαβ −Aμ

;λT λ
αβ . (7.49)

called the Ricci identity. In Riemannian geometry it reduces to

Aμ
;βα −Aμ

;αβ = Rμ
λαβAλ. (7.50)

Combining this with eq. (6.164) leads to

d2A =
1

2
Rμ

ναβAνeμ ⊗ ωα ∧ ωβ . (7.51)

By exterior differentiation of Cartan’s first structural equation, eq. (6.181) com-
bined with Cartan’s second structural equation and Poincaré’s Lemma, we
find

Rμ
ν ∧ων = dTμ + Ωμ

ν ∧Tν . (7.52)

By means of eq. (6.217), this equation takes the form

Rμ
ν ∧ ων = DTμ. (7.53)

This is Bianchi’s first identity. In Riemannian geometry it reduces to

Rμ
ν ∧ ων = 0. (7.54)

On component form this equation is

Rμ
[ναβ] = 0. (7.55)

Using eqs. (6.119) and (6.145) we get
We shall now deduce some identities fulfilled by the Riemann tensor.

Since this is a tensor equation it is valid in an arbitrary basis. Eq. (7.49) is

habitant of, say, a three-dimensional space, may perform measurements, within
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7.3 The Riemann Curvature Tensor

By exterior differentiation of Cartan’s second structural equation, and using
Poincaré’s Lemma, we get

dR
μ
ν = dΩ

μ
λ ∧Ωλ

ν −Ω
μ
λ ∧ dΩλ

ν = R
μ
λ ∧Ωλ

ν −Ω
μ
λ ∧Rλ

ν , (7.56)

which is more usually written

dRμ
ν + Ω

μ
λ ∧Rλ

ν −R
μ
λ ∧Ωλ

ν = 0. (7.57)

Applying eq. (6.215) to a matrix of two-forms this equation may be written

DRμ
ν = 0. (7.58)

This is Bianchi’s second identity. On component form this identity becomes

Rμ
ν[αβ;γ] = 0. (7.59)

An additional symmetry of the Riemann tensor is most easily found by de-
composing it in an orthonormal basis field. Applying eq. (6.170) and Cartan’s
second structural equation (7.47), we get

Rμναβ = −Rνμαβ . (7.60)

The fourth and last symmetry of the Riemann tensor is found by applying

Rμναβ =
1

2
(gμβ,να − gμα,νβ + gνα,μβ − gνβ,μα). (7.61)

It follows that

Rμναβ = Rαβμν . (7.62)

The four symmetries of the Riemann tensor reduce its number of indepen-
dent components in an n-dimensional space from n4 to 1

12n2(n2 − 1), in four-
dimensional space-time from 256 to 20.

We shall now construct a curvature tensor of rank {02} by contraction of the
Riemann tensor. Note first that

Rα
αμν = 0, (7.63)

because of the antisymmetry in the first two indices. Furthermore

Rα
μνα = −Rα

μαν . (7.64)

Thus there exists only one independent non-vanishing contraction of the Rie-
mann tensor. This is called the Ricci tensor and is usually written

Rμν = Rα
μαν . (7.65)

From eq. (7.62) follows that it is symmetrical. It has 1
2n(n + 1) independent

components in an n-dimensional space; 10 components in four-dimensional
space-time.

geodesic normal coordinates. From eqs. (7.45), (6.111) and (6.233) we then get
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Contraction of the Ricci tensor gives the Ricci scalar

R = Rμ
μ. (7.66)

Let us calculate the divergence of the Ricci tensor. Contraction of Bianchi’s
second identity eq. (7.58) (μ with α), yields

Rμ
νμβ;γ + Rμ

νγμ;β + Rμ
νβγ;μ =

Rνβ;γ −Rνγ;β + Rμ
νβγ;μ = 0. (7.67)

Raising the index ν and contracting with γ leads to

Rν
β;ν −R;β + Rμ

β;μ = 0. (7.68)

Hence the divergence of the Ricci tensor is

Rν
μ;ν =

1

2

(
δν

μR
)
;ν

. (7.69)

Thus the tensor

Eν
μ = Rν

μ −
1

2
δν

μR, (7.70)

is divergence free, Eν
μ;ν = 0.

components are

Eμν = Rμν − 1

2
Rgμν . (7.71)

It follows immediately that this tensor is symmetric.
In an n-dimensional space the vanishing of the divergence of the Einstein

1
2

The Weyl Curvature Tensor

Let us now focus on the case where the dimension of the manifold is 4, like
our four-dimensional spacetime. The symmetries of the Riemann tensor imply
that the Riemann tensor has 20 independent components in four dimensions.
The Ricci tensor, on the other hand, has only 10 independent components.
The components of the Riemann tensor which is not captured in the Ricci part
form what is called the Weyl curvature tensor.

In four dimensions the Weyl curvature tensor is defined by

Cαβγδ = Rαβγδ − gα[γRδ]β + gβ[γRδ]α +
1

3
Rgα[γgδ]β . (7.72)

It possesses the same symmetries as the Riemann tensor,

Cαβγδ = Cγδαβ , Cαβγδ = −Cβαγδ, Cα[βγδ] = 0,

and in addition, contraction over any pair of indices yields zero:

Cα
βαδ = 0. (7.73)

Its covariant

n(n − 1)

This is Einstein’s curvature tensor.

dent components in four-dimensional space-time.

tensor represents n equations. Thus the Einstein tensor has
differentially independent components in general, and 6 differentially indepen-
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7.4 Extrinsic and Intrinsic Curvature

Hence, when contracting the Riemann tensor over two indices only the Ricci
part of it will survive. This gives, as we will see later, a physical interpre-
tation of the Weyl tensor. Einstein’s equations, which will be introduced in
the next chapter, will only involve the Ricci tensor and hence the Weyl ten-
sor represents the free gravitational field. Thus even if the Ricci tensor is zero,
there can be a free gravitational field encoded in the Weyl tensor. This prop-
erty gives rise to many interesting phenomena; many of which will be dis-
cussed in this book. Two important examples are gravitational waves, and the
Schwarzschild vacuum solution.

The definition of the Weyl tensor in any dimension is given in section 18.4.
This section also discusses some further properties of the Weyl tensor.

7.4 Extrinsic and Intrinsic Curvature

be calculated from the components of the metric tensor. They are defined
in terms of basis-vectors in a space which has a curvature specified by the
Riemann tensor. Thus the specification of the metric does not presuppose
any embedding of the curved space in a higher-dimensional flat space. The
Riemann curvature tensor represents intrinsic geometric properties of space,
which may be measured by inhabitants of that space. (Such inhabitants are
always assumed to be creatures with the same number of dimensions as that

Therefore one says that the Riemann tensor is a
measure of the intrinsic curvature of space.

In the case of a two-dimensional surface, say a balloon, the intrinsic geom-
etry is measured by two-dimensional creatures on the surface, “flatlanders”.
In general, if the Riemann tensor in a space vanishes, the space is flat. For
a two-dimensional surface this means that the surface may be rolled onto an
Euclidean plane without any local changes of the geometry. If the surface is
an elastic membrane, no stresses or strains are introduced by this “rolling out”
of it. The intrinsic geometry of a cylindrical surface for example, is Euclidean,
and has no intrinsic curvature.

However, as seen from an external Euclidean three-dimensional space, the
cylindrical surface looks curved. The surface has external or extrinsic curva-
ture. We shall now introduce a tensor measuring the extrinsic curvature of a
space, which is embedded in a space of one more dimension.

In the following we shall consider a curved n-dimensional space Mn em-
bedded in an (n + 1)-dimensional space Mn+1 which also may be curved.
Such a space embedded in an space with one dimensional higher, is called a
hypersurface. Furthermore, Greek indices are associated with Mn+1 and Latin
indices with Mn.

A measure of the extrinsic curvature of a space is obtained by considering
how the direction of the unit normal vector n to the hypersurface changes
with position on the hypersurface. The extrinsic curvature tensor K is a tensor
on Mn of rank {02} defined up to a sign ambiguity by

Kab = −eb · ∇an, (7.74)

where the covariant derivative is taken in the ambient spaceMn+1. Since n is
orthogonal to the basis vectors eb onMn, so that ∇a(eb · n) = 0 we get

Kab = n · ∇aeb = n · eαΓα
ba = nαgαβΓβ

ba = nαΓα
ba, (7.75)

From eq. (7.45) it is seen that the components of the Riemann tensor may

of the space they inhabit.)
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where n = nαeα. We introduce an orthonormal basis {eâ} on Mn and a
normal unit vector n = en̂. By defining n · n = ε = ±1 we get

Kâb̂ = Γn̂
âb̂

, gn̂n̂ = ε. (7.76)

Equation (7.75) shows that the extrinsic curvature is symmetric.
Let us now deduce the relation between the Riemann tensors ofMn+1 and

Mn and the extrinsic curvature of Mn.
We will calculate the Riemann tensors using orthonormal frames. The Rie-

mann tensor inMn+1 projected onto Mn is given by

(
d2eb̂

)
⊥ =

(
1

2
(n+1)Rλ̂

b̂α̂β̂
eλ̂ ⊗ ωα̂ ∧ ωβ̂

)
⊥

=
1

2
(n+1)Râ

b̂ĉd̂
eâ ⊗ ωĉ ∧ ωd̂. (7.77)

We can also write this in another way, using instead the Riemann tensor in
Mn (

d2eb̂

)
⊥ =

(
d
[
eα̂ ⊗Ωα̂

b̂

])
⊥

=
(
deα̂ ⊗Ωα̂

b̂

)
⊥

+
(
eα̂ ⊗ dΩα̂

b̂

)
⊥

= eâ ⊗
(
dΩâ

b̂
+ Ωâ

α̂ ∧Ωα̂
b̂

)
⊥

. (7.78)

We can now use Cartan’s second structural equation in Mn by decomposing
the wedge product(

d2eb̂

)
⊥ = eâ ⊗

(
dΩâ

b̂
+ Ωâ

λ̂
∧Ωλ̂

b̂
+ Ωâ

n̂ ∧Ωn̂
b̂

)
⊥

= eâ ⊗
(

(n)Râ
b +
[
Ωâ

n̂ ∧Ωn̂
b̂

]
⊥

)
=

1

2

(
(n)Râ

b̂ĉd̂
+ Γâ

n̂ĉΓ
n̂
b̂d̂

)
eâ ⊗ ωĉ ∧ ωd̂

=
1

2

(
(n)Râ

b̂ĉd̂
±K â

ĉKb̂d̂

)
eâ ⊗ ωĉ ∧ωd̂. (7.79)

From equations (7.77) and (7.79) it follows that

(n)Râ
b̂ĉd̂

= (n+1)Râ
b̂ĉd̂
± 2K â

[ĉKd̂]b̂. (7.80)

Let us write equation (7.80) in a covariant manner. The Riemann tensor
on the right side in eq. (7.80) is the projected Riemann tensor of the ambient
spaceMn+1. If we split the metric tensor gαβ into

gαβ = hαβ + εnαnβ, (7.81)

where nα αβ

will act as a projection tensor onto the space Mn. In addition, the tensor hαβ
n n

curvature and the Riemann tensor in Mn already are projected we have

hλ
αKλβ = Kαβ , (7.82)

i.e., they are eigentensors to the projection map hλ
α. The equation (7.80) can

now be written covariantly as

(n)Rα
βμν = (n+1)Rλ

γσρh
α
λhγ

βhσ
μhρ

ν + ε
(
Kα

μKβν −Kα
νKβμ

)
. (7.83)

. Since the extrinsicwill be the metric tensor of the spaceM

are the components of the unit normal vector n, then the tensor h

for vectors onM
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Similarly, we can show that

(n)∇αKβμ − (n)∇μKβα = (n+1)Rλ
σρδnλhσ

βhρ
αhδ

μ, (7.84)

where (n)∇α = hβ
α∇β is the n-dimensional connection. The derivation of

this is left as a problem (see problem 7.4). This equation is called the Codazzi
equation.

In the special case where Mn+1 is flat, eq. (7.80) reduce to

(n)Râb̂ĉd̂ = ± (KâĉKd̂b̂ −Kâd̂Kĉb̂

)
. (7.85)

For a two dimensional surfaceM2 these equations reduce to the single equa-
tion

R1̂2̂1̂2̂ = K1̂1̂K1̂2̂ − (K1̂2̂)
2 = det(Kâb̂). (7.86)

Comparing with eq. (7.30) of a surface (with det(gâb̂) = 1) we obtain

K = R1̂2̂1̂2̂. (7.87)

Thus, the Gaussian curvature represents the intrinsic geometry of the surface.

Example 7.2 (The curvature of a straight circular cone) Example

ds2 = dl2 + r2dθ2 = dl2 +

„
R

H

«2

l2dθ2. (7.88)

Here are l and θ coordinates on the surface, and r a coordinate normal to the axis of
the cone.

We introduce an orthonormal basis on the surface

ω
l̂ = dl, ω

θ̂ =

„
R

H

«
dθ. (7.89)

Exterior differentiation yields

dω
l̂ = 0, dω

θ̂ =
1

l
ω

l̂ ∧ ω
θ̂. (7.90)

Figure 7.4: A cone is intrinsically flat.

l

R

H

r

From figure 7.4 it is seen that the line-element of the conical surface is
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Cartan’s first structural equation now give the non-vanishing connection forms

Ω
θ̂
l̂ = −Ω

l̂
θ̂ =

1

l
ω

θ̂. (7.91)

Thus

dΩ
θ̂
l̂
=

„
d

1

l

«
ω

θ̂ +
1

l
dω

θ̂ (7.92)

and Cartan’s second structural equation gives

R
θ̂
l̂
= R

l̂
θ̂

= 0, (7.93)

which shows that the intrinsic geometry of the conical surface is Euclidean.
The extrinsic curvature is given by eq. (7.75). In the present case the single non-

vanishing component of this tensor is

Kθ̂θ̂ = Γn̂
θ̂θ̂. (7.94)

In example 6.9 we found that Γr̂
θ̂θ̂

= − 1
r

, so

deθ̂ = −1

r
er̂ ⊗ ω

θ̂ . (7.95)

From Fig. 7.4 we see that

er̂ =
H

L
en̂ +

R

L
el̂, L = (H2 + L2)

1
2 . (7.96)

This yields

deθ̂ = − H

Lr
en̂ ⊗ ω

θ̂ − R

Lr
el̂ ⊗ ω

θ̂, (7.97)

which shows that

Γn̂
θ̂θ̂ = − H

Lr
. (7.98)

Hence, the conical surface has a non-vanishing extrinsic curvature given by

Kθ̂θ̂ = −
„

1 +
L2

H2

«− 1
2

· 1

r
. (7.99)

The limit H → ∞, r → R represents a straight cylinder with Kθ̂θ̂ = − 1
R

. The limit
H → 0 represents a plane with Kθ̂θ̂ = 0.

7.5 The equation of geodesic deviation

Consider two nearby geodesic curves, both parametrised by a parameter λ.
Let s be a vector connecting points on the two curves with the same value
of λ. The connecting vector s is said to measure the geodesic deviation of the
curves.

In order to deduce an equation describing how the geodesic deviation
varies along the curves, we consider the covariant directional derivative of
s along the curve∇u

= 0,

s where u is the tangent vector to the curve (see Fig. 7.5).
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Figure 7.5: The two solid lines are neighbouring geodesics. They are connected by

Let u and s be coordinate basis vectors of a coordinate system. Then
[s,u] = 0, so that

∇us = ∇su, (7.100)

giving

∇u∇us = ∇u∇su. (7.101)

Furthermore

R(u, s)u =
(
[∇u,∇s]−∇[u,s]

)
u

= [∇u,∇s]u. (7.102)

Thus

∇u∇us = ∇s∇uu + R(u, s)u. (7.103)

Since the curves are geodesics∇uu = 0, and the equation reduces to

∇u∇us + R(s,u)u = 0, (7.104)

where we have used the antisymmetry of the Riemann tensor. Equation (7.104)
is called the equation of geodesic deviation. The component form of the equation
is (

d2s

dλ2

)μ

+ Rμ
ανβuαsνuβ = 0. (7.105)

This equation shows that the Riemann tensor can be determined entirely from
measurements of geodesic deviation.

In comoving geodesic normal coordinates with u = (1, 0, 0, 0) the equation
reduces to (

d2s

dλ2

)i

+ Ri
0j0s

j = 0. (7.106)

an infinitesimal vector s that obeys the equation of geodesic deviation.

s

u u
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7.6 Spaces of constant curvature

We have in section 6.11 seen how important Killing vectors may be for the
solvability of the equations that govern particle motion. Highly symmetric
spaces are therefore important both in mathematics and in physics. We will
study maximally symmetric spaces with a Riemannian metric, Sn, Pn, En and
Hn. The first 2 of these differ only at a global scale, that is they are locally the
same but their topology is different. Maybe the mathematically most interest-
ing one is the hyperbolic space Hn. We will start out with the most familiar
one, the Euclidean space En.

The Euclidean space, En

We are all familiar with this space. The metric can be written

ds2 = gabdxa ⊗ dxb, (7.107)

where gab = δab. We can easily generalize this to the Minkowskian case by
letting the components of the metric tensor be of either sign, gab = ±δab. As
claimed, this is a maximally symmetric space, thus having 1

2n(n + 1) linearly
independent Killing vectors. We should stress that when we say linearly in-
dependent in this context, we mean linearly independent solutions of Killing’s
equations. The Killing vectors are not linearly independent in the space itself.
Killing’s equations do in this case reduce to

ξi,j + ξj,i = 0, (7.108)

because the connection coefficients all vanish identically. We can easily find n
linearly independent solutions to this equation,

ξ(a) =
∂

∂xb
. (7.109)

Another set of solutions are1

ξ(ab) = xb ∂

∂xa
− xa ∂

∂xb
. (7.110)

The solutions ξ(ab) are antisymmetric in the indices so they represent 1
2 n(n−1)

1
2 1)

= 1
2

claimed, the Euclidean spaces admit 1
2n(n + 1) linearly independent Killing

vectors and is therefore maximally symmetric.
The one-parameter group of diffeomorphisms associated to these Killing

vectors can be found by solving the equations

d

dt
φt = ξ. (7.111)

Representing φt by a vector V, the equations for ξ(a) can be written

d

dt
V(a) = ea. (7.112)

1Since we use Cartesian coordinates we have xi ≡ gijxj = xi. Hence, the position of the
index does not matter.

n(n −linearly independent solutions. Thus all in all we have found n +
n(n+1) linearly independent solutions of Killing’s equation. Hence, as
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7.6 Spaces of constant curvature

It has solutions

V(a) = V0 + tea, (7.113)

where V0 is a constant vector corresponding to the initial condition. These
mappings are mere translations a distance t in the a-direction. The Euclidean
spaces have translation invariance.

Defining J(ab) as the antisymmetric matrix with indices(
J(ab)

)
ij

= δaiδbj − δbiδaj, (7.114)

we can write for the Killing vectors ξ(ab)

d

dt
V(ab) = J(ab)V(ab). (7.115)

This equation have solutions

V(ab) = etJ(ab) ·V0, (7.116)

where

etJ(ab) = 1 + tJ(ab) +
1

2
t2J2

(ab) + ... = R(ab)(t) (7.117)

is the rotation matrix through an angle t with respect to the (ab)-plane. Show-
ing this is left as an exercise, see the problems in the end of this chapter. Thus,
the Euclidean spaces are also rotationally symmetric. The three-dimensional

lation and rotational invariance. There is one significant difference between
these operations. While the translations move “the whole space”, the rota-
tions leave an axis fixed. For a point p, the subgroup of the isometry group
that leaves p fixed, is called the isotropy subgroup. In the case of E3, the isotropy
subgroup of any point is the group of rotations with respect to this point. We
will come back to these concepts in a later chapter, where we will define these
groups more rigorously.

The elliptic spaces, Sn and Pn

n

(x1)2 + (x2)2 + ... + (xn+1)2 = 1. (7.118)

n

ξ(αβ) = xβ ∂

∂xα
− xα ∂

∂xβ
, (7.119)

where Latin indices run from 1 to (n+1). Here we have 1
2n(n+1) of them, and

when constrained to the sphere, they form the Killing vectors of the sphere.

. Consider the (n+1)-dimen-Let us first start out by defining the spheres S
sional Euclidean space and look at the hypersurface

Thus this space is maximally symmetric. Let us use eq. (7.83) to calculate its

,

Euclidean space has 6 linearly independent Killing vectors, representing trans-

. The two-dimen-This hypersurface with the induced metric is the sphere S

the sphere is the Killing vectors from the Euclidean space that generate maps

origin, with corresponding Killing vectors
that map the sphere onto itself. These are the rotations with respect to the

sional sphere is illustrated in Fig. 7.6. We claim now that the Killing vectors of
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curvature properties. Given a point on the sphere, then for one of the coordi-
nates xa �= 0. Assume that xn+1 �= 0. Then we can define the following basis
vectors

ea = ξ(a(n+1)) = xn+1 ∂

∂xa
− xa ∂

∂xn+1
, (7.120)

where Greek indices run from 1 to n. The metric in this basis is

gab = ea · eb =

(
xn+1 ∂

∂xa
− xa ∂

∂xn+1

)
·
(

xn+1 ∂

∂xb
− xb ∂

∂xn+1

)
= xaxb +

(
xn+1

)2
δab. (7.121)

The radial vector

er = xα ∂

∂xα
, (7.122)

has unit length on the sphere. Using this we can calculate the components of
the extrinsic curvature

Kab = er · (dea(eb)) = er ·
[

∂

∂xa

(
dxn+1(eb)

)− ∂

∂xn+1
(dxa(eb))

]
= er ·

[
xb ∂

∂xa
+ δab(x

n+1)
∂

∂xn+1

]
= xaxb +

(
xn+1

)2
δab. (7.123)

Thus we have

Kab = gab. (7.124)

Eq. (7.83) now gives us the Riemann tensor

Rabcd = gacgbd − gadgbc. (7.125)

Contracting once,

Rbd = (n− 1)gbd, (7.126)

we see that the Ricci tensor is proportional to the metric2. Thus in an orthonor-
mal frame, the Ricci tensor will be everywhere positive and constant. Con-
tracting once more to obtain the Ricci scalar

R = n(n− 1). (7.127)
2More generally, spaces for which the Ricci tensor can be written Rab = λgab where λ is a

constant, are called Einstein spaces. All the constant curvature spaces are Einstein spaces.

Figure 7.6: The two-dimensional sphere embedded in a Euclidean space.
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The projective space Pn can now be obtained by identifying opposite points
on the sphere Sn. The projective space is therefore basically half of the sphere.

That means there is no globally defined unit normal vector field on the space.
However, for n odd (including therefore dimension 3), the space is orientable,
and no problem of such kind exists.

Let us derive a useful form of the metric of the sphere. We introduce a
radial coordinate r by

r2 =
∑

a

(xa)
2
, (7.128)

so that

xn+1 = ±
√

1− r2. (7.129)

Hence, (
dxn+1

)2
=

r2dr2

1− r2
. (7.130)

Assuming now that dΩn−1 is the metric on the (n − 1)-dimensional sphere,
Sn−1, then ∑

a

(dxa)
2

= dr2 + r2dΩ2
n−1, (7.131)

which is just the expression for the Euclidean metric in spherical coordinates.
The metric on the sphere, Sn, is now

ds2 =
(
dxn+1

)2
+
∑

a

(dxa)2 =
dr2

1− r2
+ r2dΩ2

n−1. (7.132)

Note that this metric only covers half of the sphere. For the case Pn it covers
the whole space, except for the points on the equator which forms a set of
measure zero.

The Hyperbolic spaces, Hn

As for the sphere, the hyperbolic space can be viewed upon as a hypersurface

ds2 = ηαβdxα ⊗ dxβ = −dxn+1 ⊗ dxn+1 +
∑

a

dxa ⊗ dxa. (7.133)

The hyperbolic space is defined as the hyperboloid

−(xn+1)2 + (x1)2 + ... + (xn)2 = −1, xn+1 > 0. (7.134)

the Minkowski space that leave the hyperboloid invariant, are the Lorentz
transformations in (n + 1) dimensions. The Killing vectors for the Lorentz
transformations come in two classes, boosts

ξ(a) = xn+1 ∂

∂xa
+ xa ∂

∂xn+1
, (7.135)

There is a pathology however, for n even, the projective space is non-orientable.

be found by using the same argument as for the sphere. The symmetries for
This surface is space-like and has a Riemannian metric. Its symmetries can

Minkowski space with metric

in a flat (n + 1)-dimensional space. A two dimensional hyperbolic space is
illustrated in Fig. 7.7. But now we have to use the flat (n + 1)-dimensional
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and rotations

ξ(ab) = xb ∂

∂xa
− xa ∂

∂xb
. (7.136)

As for the sphere we can now choose a set of basis vectors by

ea = ξ(a), (7.137)

but these will now be globally defined since xn+1 ≥ 1. The metric in this basis
is

gab = ea · eb =

(
xn+1 ∂

∂xa
+ xa ∂

∂xn+1

)
·
(

xn+1 ∂

∂xb
+ xb ∂

∂xn+1

)
= −xaxb +

(
xn+1

)2
δab, (7.138)

since ∂
∂xn+1 · ∂

∂xn+1 = −1. The radial vector

er = xα ∂

∂xα
(7.139)

has on the hyperboloid a length

er · er = −(xn+1)2 +
∑

a

(xa)2 = −1. (7.140)

Following an almost identical procedure to the case of the sphere, we can cal-
culate the extrinsic curvature

Kab = er · (dea(eb))

= gab. (7.141)

Eq. (7.83) now turns into (we have to choose the negative sign due to the
negative length of the normal unit vector)

Rabcd = −(gacgbd − gadgbc). (7.142)

Contracting once,

Rbd = −(n− 1)gbd. (7.143)

Figure 7.7: The Hyperbolic plane embedded in three-dimensional Minkowski space.
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7.6 Spaces of constant curvature

This space has negative curvature, and basically just the same curvature prop-
erties as for the sphere, just with an opposite sign of the curvature. A metric
on the hyperbolic space can written by the following. Introduce spherical co-
ordinates,

r2 =
∑

a

(xa)2, (7.144)

and following the procedure as for the sphere, the metric can be written

ds2 =
dr2

1 + r2
+ r2dΩ2

n−1, (7.145)

where dΩ2
n−1 is the metric on the (n − 1)-dimensional sphere. In this case the

metric covers the whole of Hn.
As we see, this space has infinite volume in contrast to the sphere. Note

that there exist (and a lot of them) compact hyperbolic spaces as well, but these
breaks the isometries for the Hn at a global scale. Locally, however, they have
a hyperbolic metric and are locally isometric to Hn.

A more intuitive view of the hyperbolic plane is obtained by considering it
as the surface of a saddle, Fig. 7.8. A saddle surface in Euclidean three-space
has a negative curvature and has therefore much of the same properties as
the constantly curved hyperbolic plane. We should emphasize that the whole
hyperbolic plane given by eq. (7.134) for n = 2 cannot be embedded in the
three-dimensional Euclidean space. So the surface in Fig. 7.8 has not a con-
stant curvature.

We can find a constant negatively curved space in Euclidean space. Con-
sider the surface generated by the rotation around the z-axis of the tractrix

z = ln

∣∣∣∣∣1±
√

1− r2

r

∣∣∣∣∣∓√1− r2, (7.146)

where r2 = x2 + y2. This space will have constant negative curvature and
are sometimes called a pseudo-sphere. The tractrix and the pseudo-sphere are
depicted in Fig. 7.9.

The name tractrix is due to the fact that this is the curve which is traced
out by an object on the end of a rope of unit length held by a running child

Figure 7.8: The hyperbolic plane can be seen upon as a saddle-surface.
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along the z-axis. If the object and the child start in the xz-plane at (1, 0) and
(0, 0), respectively, then the curve is precisely the curve eq. (7.146) with y = 0.
The points along the circle r = 1 correspond to a singular line, and hence, this
cannot be the whole hyperbolic space.

Figure 7.9: The tractrix and the pseudo-sphere. The pseudo-sphere is obtained by
rotating the tractrix around the z-axis.

Problems

7.1. Rotation matrices
Show that

etJ(ab) = 1 + tJ(ab) +
1

2
t2J2

(ab) + ... = R(ab)(t), (7.147)

i.e. verify eq. (7.117).

7.2. Inverse metric on Sn

In this problem we will use the basis vectors ea defined in eq. (7.120):

ea = ξ(a(n+1)) = xn+1 ∂

∂xa
− xa ∂

∂xn+1
. (7.148)

(a) Assume that the basis forms on the sphere Sn has the form

ωa = Ca
μdxμ. (7.149)

Find the coefficients Ca
μ.

(b) Find gab, and verify that gabgbc = δa
c.

7.3. The curvature of a curve
Consider a curve y = y(x) in a two-dimensional plane. Utilize that the dif-
ferential of the arc length is ds =

(
1 + y′2

)1/2
dx and show that the tangent

x

y
r

(a) The tractrix (b) The pseudo-sphere

z

z
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vector, the curvature vector and the curvature of the curve are given by

t =
(
1 + y′2

)−1/2
(ex + y′ey) ,

k =
(
1 + y′2

)−2
y′′ (y′ex + ey) ,

κ =
(
1 + y′2

)−3/2
y′′, (7.150)

respectively.

7.4. The Gauss-Codazzi equations
The Gauss-Codazzi equations are of great importance and tell us much about
the geometry of hypersurfaces. We will need these equations for a later chap-
ter, and in this problem we will show an important relation between the Ricci
curvatures in the ambient space and on the hypersurface.

(a) We will first show that the projection operator hα
β , defined by eq. (7.81)

is what it is claimed to be. We define hαβ with eq. (7.81):

gαβ = hαβ + εnαnβ , (7.151)

where gαβ is the metric in the ambient space, and nα are the components
of the unit normal vector. The operator hα

β is now defined by hα
β =

gαλhλβ . Show the following:

hαβ = hβα

hα
λhλ

β = hα
β.

These properties define a projection map. It must be shown that it projects
onto the space that is orthogonal to nα. Hence, show that

hα
βvβ = 0, iff vβ is parallel to nβ .

hα
βvβ = vα, iff vβ is orthogonal to nβ .

Explain now we can define the projection of an arbitrary tensor by pro-
jecting the tensor, index by index.

(b) Verify the Codazzi equation, eq. (7.84). (Hint: Calculate
(
d2eb̂

) · n.)

(c) Show that

(n+1)R = (n)R− ε
(
K2 −KαβKαβ

)
+ 2ε(n+1)Rαβnαnβ , (7.152)

which can be written

−2ε(n+1)Eαβnαnβ = (n)R− ε
(
K2 −KαβKαβ

)
. (7.153)

7.5. The Poincaré half-space
Consider half of R3, z > 0 with metric

ds2 =
1

z2

(
dx2 + dy2 + dz2

)
. (7.154)

(a) Calculate the connection forms and the curvature forms using the struc-
tural equations of Cartan.

(b) Calculate the Riemann tensor, the Ricci tensor and the Ricci scalar.
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(c) Show that

Rabcd = −(gacgbd − gadgbc). (7.155)

Compare this with the three-dimensional hyperbolic space. Are there
any way we can differentiate between these two cases? Are they different
manifestations of the same space?

7.6. The pseudo-sphere
Show that the tractrix, eq. (7.146), obeys the differential equation(

dr

dz

)2

=
r2

1− r2
. (7.156)

Substitute this into the line-element for flat space, make the substitution r =
sin θ, and show that the metric on the pseudo-sphere can be written

ds2 = dθ2 + sinh2 θdφ2. (7.157)

Show that this metric has constant negative curvature.

7.7. A non-Cartesian coordinate system in two dimensions
Consider the following metric on a two-dimensional surface:

ds2 = v2du2 + u2dv2. (7.158)

You are going to show, in two different ways, that this is only the flat Euclidean
plane in disguise.

(a) Use the orthonormal frame approach and find the connection one-forms
Ωâ

b̂
. Find also the curvature two-forms Râ

b̂
and show that they are iden-

tically zero.
(b) Show that the metric can be put onto the form

ds2 = dx2 + dy2

by finding a transformation matrix M =
(
M i

a

)
connecting the basis vec-

tors eu and ev , and ex and ey . This can be done using the following
relations

gab = gijM
i
aM j

b

∂M i
a

∂xb
=

∂M i
b

∂xa
.

(7.159)

Where do these relations come from?

7.8. The curvature tensor of a sphere
Introduce an orthonormal basis on the sphere, S2, and use Cartan’s structural
equations to find the physical components of the Riemann curvature tensor.

7.9. The curvature scalar of a surface of simultaneity
The spatial line-element of a rotating disc is

d�2 = dr2 +
r2

1− ω2r2

c2

dφ2. (7.160)

Introduce an orthonormal basis on this surface and use Cartan’s structural
equations to find the Ricci scalar.

174



Problems

7.10. The tidal force pendulum and the curvature of space

shall use the equation for geodesic deviation, eq. (7.104), to find the period of
the pendulum.

(a) Why can the equation for geodesic equation be used to find the period
of the pendulum in spite of the fact that the particles do not move along
geodesics? Explain also why the equation can be used even though the
centre of the pendulum does not follow a geodesic.

(b) Assume that the centre of the pendulum is fixed at a distance R from the
centre of mass of the Earth. Introduce an orthonormal basis {eâ} with
the origin at the centre of the pendulum (see Fig. 7.10).

Show that, to first order in v/c and φ/c2, where v is the three-velocity of
the masses and φ the gravitational potential at the position of the pendu-
lum, that the equation of geodesic equation takes the form

d2�î

dt2
+ Rî0̂ĵ0̂�

ĵ = 0. (7.161)

(c) Find the period of the pendulum expressed in terms of the components
of Riemann’s curvature tensor.

7.11. The Weyl tensor vanishes for spaces of constant curvature
Use the definition eq. (7.72) to show that the constant curvature spaces S4, E4,
and H4 all have zero Weyl tensor.

7.12. Frobenius’ Theorem

particular, we shall obtain a necessary and sufficent criterion for when a vec-
torfield is hypersurface orthogonal. Assume that we have an m-dimensional
manifold M and a smooth collection of r-dimensional subspaces Dp ∈ TpM ,

We will again consider the tidal force pendulum from Example 1.3. Here we

Figure 7.10: The tidal force pendulum.

In this problem we will consider integrability conditions for vector fields. In

q

q
q

m

m

M

`

−`

φtφt`φR ˆ̂ ˆ̂ ˆ

rtrt`
r−R ˆ̂ ˆ̂ ˆ

ˆer

R

eφ̂
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one for each p ∈ M . A submanifold N of M is called an integral submanifold if
Dp = TpN for each p ∈ N . Frobenius’ theorem can now be stated:

Frobenius’ Theorem: Given a smooth collection of spacesDp as above. Then
there exists an integral submanifold N at every p if and only if {Dp} is invo-
lute; i.e., for all p ∈M ,

[Xi,Xj ] ∈ Dp, ∀Xk ∈ Dp.

(a) Assume that ωa is a set of one-forms that span the orthogonal comple-
ment of Dp; i.e. ωa(Xi) = 0 for all Xi ∈ Dp. Show that dωa must be on
the form

dωa =
∑

b

ωb ∧ ρb,

where each ρb is in T ∗p M . (Hint: Show first that XμY ν∇[μωa
ν] = 0 for all

Xμ, Y ν ∈ TpN .)

(b) In particular, this means if M is an m-dimensional manifold and ξμ is a
covariant vector field, then ξμ is hypersurface orthogonal to some (m−1)-
dimensional submanifold if and only if ∇[μξν] = ξ[μρν]. Show that a
sufficent condition for ξμ to be hypersurface orthogonal is

ξ[μ∇νξσ] = 0. (7.162)

176



Part III

EINSTEIN’S FIELD

EQUATIONS



8
Einstein’s Field Equations

Einstein’s field equations are the relativistic generalization of Newton’s law
of gravitation. Einstein’s vision, based on the equality of inertial and gravita-
tional masses, was that there is no gravitational force at all. What is said to
be “particle motion under the influence of the gravitational force” in Newto-
nian theory, is according to the general theory of relativity, free motion along
geodesic curves in a curved space-time.

First we will use a heuristic argument to derive Einstein’s field equations.
Then we shall use Hilbert’s variational principle to deduce Einstein’s field
equations.

8.1 From Newton’s law of gravitation to Einstein’s
field equations

We will first motivate Einstein’s field equations by trying to replace Newton’s
law of gravitation by a covariant tensor equation. Newton’s gravitational law

and that energy-momentum conservation should follow from them. He knew
that the energy-momentum conservation of a continuum of matter and energy
could be described covariantly by the vanishing of the divergence of a sym-
metric energy-momentum tensor of rank 2. Thus the field equations must be
of the same form: A symmetric and divergence-free curvature tensor of rank
2 is proportional to the energy-momentum tensor.

We will start with the local form of Newton’s law of gravitation. As ex-
plained in Chapter 1, the local form is given in terms of Poisson’s equation,
eq. (1.32):

∇2φ(r) = 4πGρ(r). (8.1)

The right hand side of this equation involves the matter density and therefore
we would like to replace this side with the energy-momentum tensor. The left

tells how mass generates gravitational force. Einstein demanded from his
field equations that they should tell how matter and energy curve space-time
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hand side involves a gravitational potential. In the new theory motion under
the influence of gravity could be seen as free motion in a curved space. The po-
tential should therefore somehow be represented by the metric of spacetime.
Since the left hand side of Poisson’s equation involves the second derivative
of the potential, we should replace the left hand side of Poisson’s equation
with a tensor involving second derivatives of the metric.

how acceleration of gravity can be deduced in Newton’s theory: acceleration
of gravity is generated by the gradient of the potential φ. Recall from chapter
6 that for a free particle instantaneously at rest, the acceleration is given by
ẍi = −Γi

00

by the Christoffel symbols in an appropriate frame. According to eq. (1.33),
we therefore seek a tensor which contains first derivatives of the Christoffel
symbols.

The Christoffel symbols contain first derivatives of the metric, and the Rie-
mann curvature tensor contains first derivatives of the Christoffel symbols.
Hence, the Riemann curvature tensor contains the right order of derivatives
to represent the left hand side of Poisson’s equation. We have already argued
that the right hand side is proportional to the energy-momentum tensor Tμν .
This is a symmetric tensor of rank 2. The first natural choice is therefore to
consider the Ricci tensor, which is obtained by contracting the Riemann ten-
sor once. Therefore Einstein initially tried:

Rμν ∝ Tμν .

He discovered, however, that this is not quite satisfactory; the Ricci tensor is
in general not divergence-free. With the help of Marcel Grossmann Einstein
then discovered that the combination Rμν−(1/2)Rgμν is divergence-free. This

nation of the Ricci tensor. The Einstein tensor has all the required properties:

has the right properties to represent the geometrical part of Einstein’s equations.
We therefore arrive at the relation

Rμν − 1

2
Rgμν ∝ Tμν , (8.2)

by “covariantising” the local form of Newton’s gravitational law. Einstein
also realised that since the metric gμν is also symmetric and divergence-free
(in fact, gμν;ρ = 0) we can even add a term Λgμν , where Λ is a constant. The
result is Einstein’s Field equations

Rμν − 1

2
Rgμν + Λgμν = κTμν , (8.3)

where κ is a constant which needs to be determined.

8.2 Deduction of Einstein’s vacuum field equations
from Hilbert’s variational principle

Since the previous argument was somewhat heuristic, we will derive the Ein-
stein field equations in a more formal way using a variational principle,

δSG = 0, (8.4)

An alternative way to see this is if we keep in mind eq. (1.33) which tells us

, see eq. (6.112); hence, the acceleration of gravity can be represented

is the Einstein tensor, see eq. (7.71), and is the simplest divergence-free combi-

it is a divergence-free symmetric tensor of rank two. Hence, the Einstein tensor
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where SG is the action integral for gravitation. SG is of a geometrical nature,
and is of the form

SG =
1

2κ

∫
M

L[gμν ]
√−gd4x, (8.5)

where κ is a constant. The constant κ will be determined under the require-
ment that the field equations reduce to Newton’s law in the weak field limit.
The function L[gμν ] has to be a scalar for the integral to transform in an invari-
ant manner. Since the simplest scalar involving curvature is the Ricci curva-
ture scalar, we will use

L[gμν ] = R− 2Λ, (8.6)

where we have also allowed for a pure constant in the action, Λ. This constant
is termed the cosmological constant and this name will be clear later on. The
action therefore reads

SG =
1

2κ

∫
(R − 2Λ)

√−gd4x. (8.7)

We are going to vary the action inside an infinitesimal region V , letting the
variation of the metric and its derivative vanish on the boundary of the region.
Then we calculate the variation of the action integrals, and deduce Einstein’s
field equations from the requirement that δSG = 0 for arbitrary variations of
the metric.

Writing

SG =
1

2κ

∫ (
Rμνgμν√−g − 2Λ

√−g
)
d4x, (8.8)

we get

δSG =
1

2κ

∫ (
gμν√−gδRμν + Rμνδ

[
gμν√−g

]− 2Λδ
√−g

)
d4x. (8.9)

Introducing a local coordinate system with vanishing Christoffel symbols
in V , the components of the Ricci tensor reduce to

Rμν = Γλ
μν,λ − Γλ

μλ,ν . (8.10)

Thus,

δRμν = δΓλ
μν,λ − δΓλ

μλ,ν . (8.11)

The variation commutes with the partial derivatives, so

δRμν =
(
δΓλ

μν

)
,λ
− (δΓλ

μλ

)
,ν

. (8.12)

Since the partial derivatives of the metric vanish in V this equation may be
written

gμνδRμν =
(
gμνδΓλ

μν − gμλδΓν
μν

)
,λ

. (8.13)

transform as a tensor index. Thus we may define a vector A by

Aλ = gμνδΓλ
μν − gμλδΓν

μν . (8.14)

According to eq. (6.96) the contravariant index of the Christoffel symbols
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Equation (8.13) now takes the form

gμνδRμν = Aμ
,μ. (8.15)

This is a total divergence, and hence, according to Stoke’s Theorem (or the
Gauss’ integral theorem), the integral of this term only contributes with a
boundary term. Since the metric and its derivative vanishes on the bound-
ary of V , it follows that∫ (

gμν√−gδRμν

)
d4x = 0; (8.16)

thus the first term of equation (8.9) does not contribute to δSG.
We shall now consider the last term in eq. (8.9). The variation of

√−g is

δ
√−g =

[
∂
√−g

∂gαβ

]
δgαβ = − 1

2
√−g

(
∂g

∂gαβ

)
δgαβ . (8.17)

To calculate ∂g
∂gαβ

we use the formula

g =
∑
α

gαβCofαβ =
Cofαβ

gαβ
, (8.18)

where Cofαβ is the cofactor matrix of the element gαβ in the matrix made of
the components of the metric tensor. This gives

∂g

∂gαβ
= Cofαβ = ggαβ, (8.19)

and therefore

δ
√−g =

1

2

√−ggαβδgαβ. (8.20)

It remains to calculate the second term in eq. (8.9). From

δ
[
gμν√−g

]
=
√−gδgμν + gμνδ

√−g, (8.21)

we see that it suffices to calculate δgαβ . Since

gμαgαβ = δμ
β, (8.22)

we get

δ (gμαgαβ) = 0, (8.23)

which leads to

δgαβ = −gαμgβνδgμν . (8.24)

Thus we get

δ
[
gμν√−g

]
=

√−g

(
δgμν +

1

2
gμνgαβδgαβ

)
=

√−g

(
δgμν − 1

2
gμνgαβδgαβ

)
. (8.25)
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Inserting equations (8.20) and (8.25) into eq. (8.9) gives

δSG =
1

2κ

∫ √−g

(
Rαβ − 1

2
Rgαβ + Λgαβ

)
δgαβd4x. (8.26)

The vacuum field equations of the general theory of relativity result from the
requirement δSG = 0 for any variation of the metric. This leads to

Rαβ − 1

2
Rgαβ + Λgαβ = 0. (8.27)

As noted in chapter 7 the Einstein tensor has only six independent compo-
nents. So there are only six field equations. However, the metric tensor has 10
independent components in four-dimensional space-time. This leaves us with
four degrees of freedom in the metric tensor; just the right number to permit
a free choice of coordinate system.

8.3 The field equations in the presence of matter
and energy

The field equations at a point with non-vanishing energy-momentum tensor
is obtained from the variational principle

δ(SG + SM ) = 0, (8.28)

where SM is the action integral for matter and energy, which can be written as

SM =

∫
LM

√−gd4x, (8.29)

where LM is the Lagrangian density of the matter and energy.
Variation of the argument in eq. (8.29) gives

δ
[√−gLM

]
=

∂ [
√−gLM ]

∂gμν
δgμν +

∂ [
√−gLM ]

∂gμν
,λ

δgμν
,λ, (8.30)

since the Lagrangian in general depends on both the metric and on the deriva-
M

We define a vector B by

Bλ =
∂ [
√−gLM ]

∂gμν
,λ

δgμν . (8.31)

The ordinary (not covariant) divergence of B is

Bλ
,λ =

{
∂ [
√−gLM ]

∂gμν
,λ

}
,λ

δgμν +
∂ [
√−gLM ]

∂gμν
,λ

δgμν
,λ. (8.32)

Inserting this into (8.30) gives

δ
[√−gLM

]
=

∂ [
√−gLM ]

∂gμν
δgμν −

{
∂ [
√−gLM ]

∂gμν
,λ

}
,λ

δgμν + Bλ
,λ. (8.33)

This is the case because the covariant expression for Ltives of the metric.
may be found from the special relativistic expressing by replacing partial deri-
vatives by their covariant derivatives. This introduces Christoffel symbols,
i.e. derivatives of the metric, into the expression.
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Thus the term
∫

Bλ
,λd4x contributes only with a boundary term, due to Gauss’

integral theorem. This boundary term vanishes because we have assumed that
the variation vanishes on the boundary. Finally this yields

δSM =

∫ (
∂ [
√−gLM ]

∂gμν
−
{

∂ [
√−gLM ]

∂gμν
,λ

}
,λ

)
δgμνd4x. (8.34)

The energy-momentum tensor Tμν of a system with Lagrangian density LM is
a symmetric tensor defined by

Tμν = − 2√−g

(
∂ [
√−gLM ]

∂gμν
−
{

∂ [
√−gLM ]

∂gμν
,λ

}
,λ

)
. (8.35)

This gives

δSM = −1

2

∫
Tμν

√−gδgμνd4x. (8.36)

Using equations (8.26) and (8.36) the variational principle then yields the grav-
itational field equations for the general theory of relativity

Rμν − 1

2
Rgμν + Λgμν = κTμν . (8.37)

These are the famous Einstein’s field equations. We will later see (Chapter 9)
that the constant κ can be determined to be

κ =
8πG

c4
.

Contracting eq. (8.37) we get

R = −κT + 4Λ, (8.38)

where T is the contracted energy-momentum tensor, T = T μ
μ. Inserting eq.

(8.38) into eq. (8.37) leads to

Rμν = Λgμν + κ

(
Tμν − 1

2
Tgμν

)
. (8.39)

This equation reflects a symmetry in the equations, the Ricci tensor and the
energy-momentum tensor is invariant under a permutation between the two
tensors. The vacuum equations with a cosmological constant are

Rμν = Λgμν . (8.40)

With Λ = 0 this equation says that the Ricci tensor must vanish for a vacuum
space-time without a cosmological constant:

Rμν = 0. (8.41)

Note, however, that this does not mean that such a space-time is flat. Already
in the next chapter we will see this. The reason for this is that the Riemann
tensor consists of basically two parts, one gives the contribution to the Ricci
tensor under contraction, while the other part, the trace-free part of the Rie-
mann tensor, will not give any contribution to the Ricci tensor; hence, it is not
determined directly by the Einstein equations.
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8.4 Energy-momentum conservation

The law of conservation of energy-momentum asserts that the total flux of
energy-momentum into a four-dimensional region Ω is equal to zero,∫

∂Ω

T μνnνdσ = 0, (8.42)

where ∂Ω is the boundary of Ω and nν is the outward normal vector of ∂Ω.
From Gauss’ integral theorem we obtain∫

Ω

T μν
;ν

√−gd4x = 0, (8.43)

for an arbitrary region Ω. Hence, the local formulation of the law of energy-
momentum conservation has the form

T μν
;ν = 0. (8.44)

The energy-momentum tensor is divergence-free.
The time component describes conservation of energy, and the space com-

ponents conservation of momentum. Note that the energy-momentum con-
servation follows from the Einstein’s field equations since the Einstein tensor
is divergence-free.

8.5 Some energy-momentum tensors

We will in this section give a few examples of different energy-momentum
tensors that occur in general relativity. From now on, unless stated otherwise,
units where the velocity of light is set to unity, i.e., c = 1, will be used.

Electromagnetic fields

The Lagrangian density of an electromagnetic field is the energy-scalar rep-
resenting the energy-density of the field in a local frame moving so that the
magnetic field vanishes

L = −1

4
FαβFαβ = −1

4
gαβgμνFμαFμβ . (8.45)

Since this Lagrangian does not contain any derivatives of the metric, we have

Tμν = − 2√−g

∂ [
√−gLM ]

∂gμν
= −2

∂L
∂gμν

− L
g
· ∂g

∂gμν
. (8.46)

Using that

∂g

∂gμν
= −gαμgβν

∂g

∂gαβ
= −ggμν, (8.47)

we find Tμν to be

Tμν = −2
∂L

∂gμν
+ gμνL. (8.48)
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Einstein’s Field Equations

Inserting the Lagrangian density of an electromagnetic field leads to

Tμν = Fα
μFαν − 1

4
gμνFαβFαβ . (8.49)

We note that the energy-momentum tensor of an electromagnetic field is
trace-free:

T μ
μ = 0. (8.50)

Perfect Fluids

In the theory of relativity the word fluid has a wide meaning, encompassing
not only what is called ordinary fluids, but also gases, radiation and even
vacuum energy. A fluid is said to be perfect when it has no viscosity and no
heat conduction. It can be characterised by a four-velocity u and by two of the
following scalar quantities: the proper density ρ, the isotropic pressure p, the
temperature T , the specific entropy s, or the specific enthalpy w = ρ+p

n , where
n is the baryon number density. These quantities are defined in a comoving
orthonormal basis field in the fluid. Here, n is given in terms of a baryon
number flux vector density

nμ = n
√−guμ, (8.51)

so that

n =

√
gμνnμnν

g
. (8.52)

We shall now deduce the form of the energy-momentum tensor of a perfect
fluid from eq. (8.35) under the constraint that the rates of entropy and parti-
cle production are conserved under variation of the metric. The Lagrangian
density of a perfect fluid is the energy scalar representing the energy in a local
rest frame of the fluid, i.e., the proper density ρ,

L = −ρ. (8.53)

Again the last term of eq. (8.35) vanishes and the energy-momentum tensor is
given by eq. (8.48) under the constraints

δs = 0, (8.54)
δnμ = 0. (8.55)

From the thermodynamical relation(
∂ρ

∂n

)
s

= w, (8.56)

we have

δρ = wδn. (8.57)

Using equations (8.51), (8.52) and (8.55) we obtain

δn =
1

2n

(
nμnν

g
δgμν − nμnν gμν

g
δg

)
=

n

2

(
−uμuνδgμν +

uμuμ

g
δg

)
. (8.58)
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Substituting from (8.19), (8.24), (8.47) and using that uμuμ = −1, we get

δn =
n

2
(uμuν + gμν) δgμν . (8.59)

From equations (8.53), (8.57) and (8.59) follows

∂L
∂gμν

= −nw

2
(uμuν + gμν) . (8.60)

Inserting the expression for w we get

∂L
∂gμν

= −1

2
(ρ + p) (uμuν + gμν) . (8.61)

Equations (8.48), (8.53) and (8.61) give the following expression for the energy-
momentum tensor of a perfect fluid

Tμν = (ρ + p)uμuν + pgμν . (8.62)

It may happen that one knows the components of Tμν for a material system

a general physical interpretation of the components Tμν without using this
expression. This is provided as follows.

The eigenvalues λ(α) and eigenvectors u(α) of the energy-momentum ten-
sor are given by

det |T μ
ν − λδμ

ν | = 0, (8.63)

and

T μ
νuν

(α) = λ(α)u
μ
(α), (8.64)

respectively.
Equation (8.63) is an equation of fourth degree with four roots λ(t), λ(i),

i = 1, 2, 3. Equation (8.64) gives the four corresponding eigenvectors u(t), u(i).
It follows from the symmetry of T μν that they are orthogonal and they are
fixed by choosing them to be unit vectors. These vectors can then represent
a comoving orthonormal basis field of the fluid, and u(t) is its four-velocity
(assuming u(t) is not null). Furthermore, λ(t) is the energy (or mass) density
as measured by an observer comoving with the fluid, and λ(i) are the scalar
stresses he measures. In the case of a fluid with with isotropic pressure λ(1) =
λ(2) = λ(3) = p. Note that λ(i) need not to be positive. A negative λ(i) means
strain. For the tensor in eq. (8.62) we have λ(t) = ρ, λ(i) = p and u(t) = u.

8.6 Some particular fluids

In this section we shall deduce the equation of state for vacuum energy, elec-
tromagnetic radiation and dust, described as perfect fluids. We shall also look
at a cosmic magnetic field.

from information or calculations not involving eq. (8.62). Then one needs
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Lorentz invariant vacuum energy, LIVE

The energy-momentum tensor for a LIVE can be deduced from the require-
ment that its components must be Lorentz invariant. Thus

Tμ̂ν̂ = Tμ̂′ν̂′ = Λα̂
μ̂′Λ

β̂
ν̂′Tα̂β̂, (8.65)

for arbitrary Lorentz transformations Λμ̂
μ̂′ . Consider first a boost in the x1̂-

direction:

Λμ̂
μ̂′ =

⎡⎢⎢⎣
γ vγ 0 0
vγ γ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , γ =
1√

1− v2
. (8.66)

Equations (8.65) and (8.66) give

v(T0̂0̂ + T1̂1̂) + T0̂1̂ + T1̂0̂ = 0. (8.67)

Transformation of T1̂1̂ gives the same equation. In a similar way transforma-
tion of T0̂1̂ and T1̂0̂ leads to

T0̂0̂ + T1̂1̂ + v(T0̂1̂ + T1̂0̂) = 0. (8.68)

From these equations follow that

T0̂0̂ = −T1̂1̂, T0̂1̂ = −T1̂0̂. (8.69)

Transformations on T0̂2̂ and T1̂2̂ give, respectively

T0̂2̂ = γ(T0̂2̂ + vT1̂2̂), (8.70)
T1̂2̂ = γ(vT0̂2̂ + T1̂2̂), (8.71)

which demands that

T0̂2̂ = T1̂2̂ = 0. (8.72)

In the same way one finds

T2̂0̂ = T2̂1̂ = T0̂3̂ = T1̂3̂ = T3̂0̂ = T3̂1̂ = 0. (8.73)

Thus as a result of Lorentz invariance of the components Tμ̂ν̂ under a boost in
the x1̂-direction, we have managed to reduce the energy momentum tensor to
the following for the vacuum fluid

Tμ̂ν̂ =

⎡⎢⎢⎣
T0̂0̂ T0̂1̂ 0 0
−T0̂1̂ −T0̂0̂ 0 0

0 0 T2̂2̂ T2̂3̂

0 0 T3̂2̂ T3̂3̂

⎤⎥⎥⎦ . (8.74)

Demanding Lorentz invariance under a boost in the x2̂ direction gives the
additional equations

T0̂1̂ = T1̂0̂ = T2̂3̂ = T3̂2̂ = 0, T2̂2̂ = T0̂0̂. (8.75)
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Lastly, Lorentz invariance under a boost in the x1̂-direction gives the addi-
tional equation

T3̂3̂ = T0̂0̂. (8.76)

It follows that the energy-momentum tensor for the vacuum fluid has to be

Tμ̂ν̂ = T0̂0̂diag(−1, 1, 1, 1) = T0̂0̂ημ̂ν̂ , (8.77)

where ημ̂ν̂ are the components of the Minkowski metric. Transforming to an
arbitrary basis the Minkowski metric can be replaced by a general metric gμν .
From the physical interpretation of the components of the energy-momentum
tensor, it follows that T0̂0̂ = −ρ, where ρ is the energy-density of the vacuum.
Thus,

Tμν = −ρgμν . (8.78)

Comparing with equation (8.62) shows that this is the energy-momentum ten-
sor of a perfect fluid with equation of state

p = −ρ. (8.79)

Hence, the vacuum is in a state of extreme stress.
Generally the density of vacuum is a scalar function of the four space-

time coordinates. If vacuum is homogeneous, the density depends upon time
only. Due to the relativity of simultaneity this condition is Lorentz invariant
only if ρ = constant. In this case the energy-density of the LIVE appears as a
cosmological constant.

Quintessence

There are more general forms of “vacuum energies” than LIVE. They are rep-

L = −1

2

∂φ

∂xμ

∂φ

∂xμ
− V (φ), (8.80)

not contain any derivatives of the metric. Hence we can use the expression
eq. (8.48) for the energy-momentum tensor. This leads to

Tμν =
∂φ

∂xμ

∂φ

∂xν
− gμν

(
1

2

∂φ

∂xμ

∂φ

∂xμ
+ V (φ)

)
. (8.81)

In the comoving expanding frame of a homogeneous and isotropic universe
model this energy-momentum tensor reduces to

Tμν = diag

(
1

2
φ̇2 + V (φ),

1

2
φ̇2 − V (φ),

1

2
φ̇2 − V (φ),

1

2
φ̇2 − V (φ)

)
. (8.82)

Let us consider the vacuum energy as a perfect fluid. In an orthonormal
basis comoving with the fluid the non-vanishing components of the energy-
momentum tensor are

Tμν = diag(ρ, p, p, p). (8.83)

where V (φ) is the potential of the field. The Lagrange density of eq. (8.80) does

a real scalar field φ with Lagrange density
energy”. We shall here consider the simple case where the energy is given by
resented by different vacuum fields and have been called ”quintessence
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ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ). (8.84)

Hence, the equation of state of this energy is

p =
1
2 φ̇2 + V (φ)
1
2 φ̇2 − V (φ)

ρ. (8.85)

Gas consisting of ultra-relativistic particles. Radiation

If the velocities of the gas particles approach that of light their rest energy be-
comes negligible compared to their total energy. In this limit their rest masses
can be neglected and the fluid behaves like a gas of photons, i.e. like elec-
tromagnetic radiation. From eq. (8.50) we know that the trace of the mixed
components of the energy-momentum tensor vanishes. Taking the trace of
the energy-momentum tensor eq. (8.62) for a perfect fluid we get

T μ
μ = 3p− ρ. (8.86)

This shows that the equation of state for a gas of ultra-relativistic particles,
and for electromagnetic radiation is

p =
1

3
ρ. (8.87)

Dust

For a gas of slowly moving particles the energy will be dominated by the rest
energy of the particles. Even if the pressure gradient will be important for
the motion of the fluid elements in inhomogeneous regions, the gravitational
effects of the pressure can be neglected in the non-relativistic limit.

A gas of particles with vanishing pressure is called dust. Thus the equation
of state of dust is

pdust = 0 (8.88)

and the energy-momentum tensor reduces to

Tμν = ρuμuν . (8.89)

A cosmic magnetic field

Observations indicate that galaxies are surrounded by huge magnetic fields.
Whether or not there exist magnetic fields at a cosmic scale is still unsettled,
but it is by no means ruled out that the universe has a such a field.

Consider a pure magnetic field in an orthonormal frame. Note that in this
case the character of the electromagnetic field is dependent of the frame cho-
sen. We will choose a frame where there is only a magnetic field present, i.e.,
Ei = 0.

homogeneous scalar field
Comparing with eq. (8.82) gives the density and pressure (or stress) of a
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8.7 The paths of free point particles

Using the electromagnetic field tensor in eq. (6.31) we find that the energy-
momentum tensor eq. (8.49) can be written as

Tμ̂ν̂ = (ρ + p)uμ̂uν̂ + pgμ̂ν̂ + πμ̂ν̂ , (8.90)

where

ρ = 3p =
1

2
B2, (8.91)

and πμ̂ν̂ is given by

πij = −BiBj +
1

3
B2δij , (8.92)

π0i = πi0 = π00 = 0. (8.93)

The tensor πμν is called the anisotropic stress tensor and it is in general symmet-
ric and trace-free; i.e.,

πμν = πνμ, πμ
μ = 0. (8.94)

We note that the magnetic field has a perfect fluid part which behaves like
radiation fluid, but it is not a perfect fluid because of this anisotropic stress
tensor.

8.7 The paths of free point particles

Consider a system of free point particles in curved space-time and assume that
the particles do not collide with each other. This system will be described as
a pressure-free perfect fluid, i.e., as dust. From Einstein’s field equations, as
applied to a dust-filled region, follow

(ρuμuν);ν = 0, (8.95)

or

(ρuν);ν uμ + ρuνuμ
;ν = 0. (8.96)

The four-velocity identity uμuμ = −1 gives

uμ
;νuμ = 0. (8.97)

In order to utilize this equation we multiply eq. (8.96) by uμ. This leads to

(ρuν);ν = 0. (8.98)

Inserting this into eq. (8.96) we obtain

uνuμ
;ν = 0, (8.99)

which is just the geodesic equation as given in eq. (6.104). Thus it follows from
Einstein’s field equations that free particles move along geodesic curves in space-time.

written

du

dτ
= 0, (8.100)

Note that eq. (8.99), or (6.104), is equivalent to eq. (6.105), which may be
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where u = (dxμ/dτ)eμ = uμeμ is the four-velocity of the particle. According
to eq. (3.16) this equation takes the form

A = 0, (8.101)

saying that a free particle has vanishing four-acceleration.

ing three-acceleration means that a particle accelerates relative to a reference
frame or an observer. This is a relational property of the particle and the ob-
server. The three-acceleration represents “Das Ding an Mich”.

Problems

8.1. Lorentz transformation of a perfect fluid
Consider a homogeneous perfect fluid. In the rest frame of the fluid the equa-
tion of state is p = wρ (with c = 1), and the energy-momentum tensor has the
form

Tμν = ρdiag(1, w, w, w). (8.102)

(a) Make a Lorentz transformation in the 1−direction with velocity v and
show that the transformed energy-momentum tensor has the form

Tμ′ν′ = ρ

⎡⎢⎢⎣
γ2(1 + v2w) γ2v(1 + w) 0 0
γ2v(1 + w) γ2(v2 + w) 0 0

0 0 w 0
0 0 0 w

⎤⎥⎥⎦ , γ =
1√

1− v2
. (8.103)

(b) The weak energy condition requires that the energy-density is positive.
What restriction does this put on w?

(c) Which value of w makes the components of the energy-momentum ten-
sor Lorentz invariant?

8.2. Geodesic equation and constants of motion
Show that the covariant components of the geodesic equation have the form

u̇μ =
1

2
gαβ,μuαuβ.

What does this equation tell about constants of motion for free particles?

8.3. The electromagnetic energy-momentum tensor
Consider a general energy-momentum tensor Tμν and a time-like vector uμ.
We can always decompose Tμν as follows:

Tμν = ρuμuν + phμν + 2u(μqν) + πμν , (8.104)

where ρ is the energy density; p is the isotropic pressure; qμ is the energy flux;
πμν is the anisotropic stress tensor; and hμν = gμν +uμuν is the 3-metric tensor
on the hypersurfaces orthogonal to uμ. These fulfill the following relations:

uμqμ = uμπμν = uμhμν = πμ
μ = 0, πνμ = πμν .

acceleration represents “Das Ding an Sich”. On the other hand, a non-vanish-

A non-vanishing four-acceleration of a particle means that it is acted
upon by non-gravitational forces and moves non-geodesically. This is an
invariant or intrinsic property of the particle. In the language of Kant the four-
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Problems

(a) Show that

ρ = Tμνuμuν , p =
1

3
Tμνhμν ,

qν = −uμhρ
νTμρ, πμν = Tρσ

(
hρ

μhσ
ν −

1

3
hρσhμν

)
. (8.105)

basis {et, ei}. Assume that uμ is aligned with the time-like basis vector
et. Use the electromagnetic energy-momentum tensor, eq. (8.49), to show
that

ρ = 3p =
1

2
(EkEk + BkBk),

qi = −εijkEjBk,

πij = −EiEj −BiBj +
1

3
δij(E

kEk + BkBk). (8.106)

What is the physical interpretation of qi?

8.4. Lorentz-invariant radiation

interval, and per unit solid angle moving in the direction e, as referred to an
orthonormal basis Σ. Let primed quantities be measured in a basis Σ′ moving
with a velocity v relative to Σ. A comoving volume element dV has a velocity
u in Σ. The corresponding rest volume is dV0.

The quantity n(ν, e)dV dνdΩ represents the number of photons occupying a
volume dV , with frequencies between ν and ν + dν, and moving with direc-
tions within a solid angle dΩ = sin θdθdφ. It is an invariant quantity. Hence,

n(ν, e)dV dνdΩ = n′(ν′, e′)dV ′dν′dΩ′.

(a) Use that dV0 is invariant to show that dV ′ = γ−1
u′ γudV where γu′ = (1 −

|u′|2/c2)−1/2 and γu = (1− |u|2/c2)−1/2.

(b) Choose the x′- and x-axes to be directed along v (so that v = vex) and
use the transformation formulae of the velocity components,

u′x =
ux − v

1− uxv
c2

, u′y =
uy

γv

(
1− uxv

c2

) , γv =

(
1− v2

c2

)− 1
2

,

to show that

γu′ = γuγv

(
1− u · v

c2

)−1

;

and hence that

dV ′ = γ−1
v

(
1− u · v

c2

)−1

dV.

(c) Let θ be the angle between the transformation velocity v and the velocity
u of the volume. Since the volume is comoving with photons moving in
the u-direction, we now set |u| = c. Show that this leads to dV ′ = κ−1dV ,
where κ = γv[1− (v/c) cos θ].

(b) Consider the electromagnetic field tensor, eq. (6.31), in an orthonormal

directions. Let n(ν,e) be the number of photons per unit volume, per frequency
Consider a region filled with photons of all frequencies and moving in all
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(d) Use the relativistic equations for the Doppler effect and abberation (see
problem 2.8), and show that the transformation equations for the differ-
entials of frequency and solid angle are

dν′ = κdν, dΩ′ = κ−2dΩ.

(e) Deduce that n′(ν′, e′) = κ2n(ν, e) and use the transformation equation
for the frequency to show that n(ν, e)/ν2 is a Lorentz-invariant quantity.

(f) Since ν is not Lorentz invariant it follows that n(ν, e)/ν2 must be inde-
pendent of ν. Use this, together with the fact that the energy of a photon
is given by hν, to find how the energy-density per frequency interval and
solid angle of a Lorentz-invariant radiation depends upon the frequency.
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9
The Linear Field Approximation

Einstein’s theory of general relativity leads to Newtonian gravity in the limit
when the gravitational field is weak and static and the particles in the grav-
itational field moves slowly compared to the velocity of light. In the case of
mass distributions of limited extension the field is weak at distances much
larger than the Schwarzschild radius of the mass (see Chapter 10). At such
distances the absolute value of the gravitational potential is much less than 1,
and there is approximately Minkowski spacetime.

In the linear field approximation the field is weak, but it need not be static,
and particles are allowed to move with relativistic velocities.

9.1 The linearised field equations

We shall describe small deviations from Minkowski spacetime. Then the prop-
erties of the spacetime are given by the metric tensor with components

gμν = ημν + hμν , |hμν | � 1. (9.1)

Let us consider the transformation of these components

gρ′σ′ = gμν
∂xμ

∂xρ′

∂xν

∂xσ′ , (9.2)

under an infinitesimal coordinate transformation at a point P ,

xμ′

(P ) = xμ(P ) + ξμ(P ), |ξμ| � |xμ|. (9.3)

This gives

gρ′σ′

∣∣∣
xμ

=
∂xμ

∂xρ′

∂xν

∂xσ′ gμν

∣∣∣
(xμ′−ξμ)

. (9.4)
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All calculations will be performed only to first order in hμν , ξμ and their
derivatives. Hence,

∂xμ

∂xρ′ = δμ
ρ −

∂ξμ

∂xρ
≡ δμ

ρ − ξμ
,ρ, (9.5)

gμν

∣∣∣
(xμ′−ξμ)

= ημν + hμν , (9.6)

which gives to first order

gρ′σ′ = (δμ
ρ − ξμ

,ρ)(δ
ν
σ − ξν

,σ)(ημν + hμν)

≈ ηρσ + hρσ − ξσ,ρ − ξρ,σ. (9.7)

Since

gρ′σ′ = ηρσ + hρ′σ′ , (9.8)

we get

hρ′σ′ = hρσ − ξσ,ρ − ξρ,σ . (9.9)

Because this transformation was induced by a coordinate transformation, such
a transformation in the linear field approximation is called a gauge transforma-
tion. In this approximation we see that generally the components of the metric
tensor are not gauge invariant. In the case that the components of the metric
tensor are gauge invariant, the transformation is called an isometry, and the
vector ξ is a Killing vector. Then ξσ;ρ+ξρ;σ = 0 which are the Killing equations.

To 1st order in hμν we may neglect products of the Christoffel symbols in
eq. (7.45) and the Riemann curvature tensor is

Rαμβν = Γαμν,β − Γαμβ,ν , (9.10)

where

Γαμν =
1

2
(hμα,ν + hνα,μ − hμν,α) . (9.11)

Hence,

Rαμβν =
1

2
(hνα,μβ + hμβ,αν − hμν,αβ − hαβ,μν) . (9.12)

The Ricci tensor is thus to 1st order

Rμν =
1

2

(
hα

ν,αμ + hα
μ,αν − h,μν −�hμν

)
, (9.13)

where � ≡ ηαβ∂α∂β = −∂2/∂t2 + ∇2 is the d’Alembert wave operator in
Minkowski spacetime. Contracting once more with ημν the Ricci scalar is ob-
tained as

R = hμν
,μν −�h, h ≡ hα

α. (9.14)

The linearised Einstein tensor is

Eμν =
1

2

[
hα

ν,αμ + hα
μ,αν − h,μν −�hμν − ημν(hαβ

,αβ −�h)
]
. (9.15)
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9.1 The linearised field equations

Hence, the linearised field equations take the form

hα
ν,αμ + hα

μ,αν − h,μν −�hμν − ημν(hαβ
,αβ −�h) = 2κTμν . (9.16)

It proves useful to introduce

h̄μν = hμν − 1

2
ημνh, (9.17)

which simplifies the field equations to

h̄α
ν,αμ + h̄α

μ,αν −�h̄μν − ημν h̄αβ
,αβ = 2κTμν. (9.18)

In order to simplify the equations still more, we perform a gauge transforma-
tion (9.9). The transformed metric h̄′αβ then becomes

h̄′αβ = h̄αβ − ξα,β − ξβ,α + ηαβησ
,σ. (9.19)

The transformed divergence of h̄αβ becomes

h̄′βα,β = h̄β
α,β −�ξα. (9.20)

Choosing gauge functions ξα fulfilling �ξα = h̄β
α,β , one obtains (dropping the

prime from now on)

h̄β
α,β = 0. (9.21)

This is called the Lorenz condition, or Lorenz gauge. In this gauge the field equa-
tions reduce to

�hμν = −2κTμν. (9.22)

Coordinates that obey the Lorenz condition are called harmonic.
In the time-dependent case the field equations of empty space are

�hμν = 0, (9.23)

which is d’Alemberts wave equation. The corresponding equation for the Rie-
mann tensor is

�Rαμβν = 0. (9.24)

This equation means that gravitational waves move in empty space with the
speed of light.

We have seen that an infinitesimal coordinate transformation xμ′

= xμ +
ξμ causes a change in the metric tensor so that the metric perturbation takes
the form (9.9). Both h′μν and hμν are solutions of the field equations. Hence,
ξμ,ν + ξν,μ are also solutions of the field equations. Solutions of the linearised
field equations of the form ξμ,ν + ξν,μ are called Weyl solutions. Calculating the
Riemann tensor associated with a Weyl solution one finds

R
Weyl
αμβν = 0. (9.25)

This means that the Weyl solutions do not represent properties of the space-
time. They only represent coordinate effects that may be transformed away.
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9.2 The Newtonian limit of general relativity

The motion of a free particle is given by the geodesic equation, eq. (6.105).
Using the proper time τ of the particle as parameter, it takes the form

d2xμ

dτ2
+ Γμ

αβ

dxα

dτ

dxβ

dτ
= 0. (9.26)

Taking the Newtonian limit, dxi

dτ � c (in this section we shall retain the speed
of light in the expressions) and keeping only terms to first order in the ve-
locity, we have dτ ≈ dt where dt is the usual Newtonian time. Assuming in
addition that the metric is diagonal and time independent, the i-component
of the acceleration of gravity is found to be

gi =
d2xi

dτ2
= −Γi

00

dx(ct)

dt

d(ct)

dt
= −c2Γi

00. (9.27)

We have hereby obtained a simple weak-field interpretation of the Christoffel
symbols Γi

00. They represent the components of the acceleration of gravity.
Using eq. (6.96) and remembering that the metric tensor is assumed to be
diagonal, we get

Γi
00 = −1

2
gαi ∂g00

∂xα
≈ 1

2
ηii ∂h00

∂xi
=

1

2

∂h00

∂xi
. (9.28)

Inserting this into eq. (9.27) we have

gi =
c2

2

∂h00

∂xi
. (9.29)

This equation shows explicitly how, in the Newtonian limit, the time compo-
nent of the metric tensor determines the acceleration of gravity.

We shall now take the Newtonian limit of Einstein’s field equations. With
the assumptions above the line element of space-time can be written

ds2 = −(1− h00)c
2dt2 + (ηii + hii)dxidxi. (9.30)

In this case we need only one independent equation, which can be taken as
the 00-component of eq. (8.39) with Λ = 0

R00 = κ

(
T00 − 1

2
g00T

)
. (9.31)

From eq. (9.12) we have

Rμ0α0 =
1

2
(hμ0,0α − hμα,00 − h00,μα + h0α,μ0) . (9.32)

Considering a static field, all terms with time derivatives are equal to zero. In
this case we get

Rμ0α0 = −1

2
h00,μα. (9.33)

Contracting μ with α leads to

R00 = Rα
0α0 = −1

2
h00,

α
α = −1

2

∂

∂xi

(
∂h00

∂xi

)
, (9.34)
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since derivatives with respect to time vanish.
Using (9.29) this can be written

R00 = − 1

c2

∂gi

∂xi
. (9.35)

In the limit with |hμν | � 1 we can use the Cartesian expression for the diver-
gence, so that

R00 = − 1

c2
∇ · g. (9.36)

Considering the components of the energy-momentum tensor of a perfect
fluid as given in eq. (8.62), we see that in the Newtonian limit the term
T00 = ρc2 is dominating; all the other terms can be neglected compared to
T00. Regarding the trace of the energy-momentum tensor in the Newtonian
limit, we find

T = T 0
0 = η0αTα0 = −T00. (9.37)

This gives

T00 − 1

2
g00T ≈ T00 − 1

2
η00T =

1

2
T00. (9.38)

Hence, equation (9.31) can be written

R00 =
1

2
κT00 =

1

2
κρc2. (9.39)

Equations (9.36) and (9.39) then give

∇ · g = −1

2
κρc4. (9.40)

This represents the Newtonian limit of Einstein’s gravitational field equations
in the case of static fields.

Comparing equation (9.40) with equations (1.32) and (1.33) we see that the
relativistic equation reduces to the “Newtonian” gravitational field equations
if

κ =
8πG

c4
. (9.41)

Thus we have to conclude that the Einstein field equations with the correct
constant is

Rμν − 1

2
Rgμν + Λgμν =

8πG

c4
Tμν . (9.42)

9.3 Solutions of the linearised field equations

We shall now consider solutions of the linearised field equations with a non-
relativistic mass-distribution as a source. “Non-relativistic” means that the
pressure is so small that it may be neglected compared to the mass density,
and the fluid moves so slowly that it is sufficient to include terms of 1st order
in the velocity in the energy-momentum tensor.
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Einstein’s field equations may be written

�hμν = −2κ

(
Tμν − 1

2
ημνT

)
. (9.43)

The solution to this equation can be written as the retarded potential

hμν =
κ

2π

∫ [
Tμν − 1

2ημνT
]
(t′,x′)

|x− x′| d3x′, (9.44)

where the retarded time, t′, is given by t′ = t− |x− x′|/c. In the following we
shall, however, assume that the distances are so small, and the variation of the
source so slow, that we may put t′ = t.

We shall solve the field equations in the presence of a perfect fluid with
energy-momentum tensor

T μν =
p

c2
gμν +

( p

c2
+ ρ
) dxμ

dτ

dxν

dτ
. (9.45)

With p = 0 and small velocities we get

T μν = ρ
dxμ

dt

dxν

dt
, T = −ρ, (9.46)

so that

T00 − 1

2
η00T =

1

2
ρ, Ti0 − 1

2
ηi0T = −ρvi,

Tij − 1

2
ηijT =

1

2
ρδij . (9.47)

In this case the field equations take the form

h00 = hii =
2G

c2

∫
ρ

r
d3r = −2

φ

c2
, (9.48)

there φ is the Newtonian gravitational potential of eq.(1.17), and

hi0 = −4G

c2

∫
ρvi

r
d3r ≡ Ai, hij = 0, for i �= j. (9.49)

Here, Ai is the i-component of a vector potential.
Assume that the source is non-rotating and spherically symmetric. Then

Ai = −4Gvi

c2

∫
ρ

r
d3r. (9.50)

Outside the mass-distribution this gives

Ai = −4
Gm

c2r
vi = −2

RS

r
vi, (9.51)

where RS ≡ 2Gm/c2 is called the Schwarzschild radius of the source, and r is
the distance from its centre to the field point. Hence, the external metric is

ds2 = −
(

1− RS

r

)
c2dt2 +

(
1 +

RS

r

)
(dx2 + dy2 + dz2)

−2RS

r
(vxdx + vydy + vzdz) dt. (9.52)

200



9.4 Gravitoelectromagnetism

In the static case the metric reduces to

ds2 = −
(

1− RS

r

)
c2dt2 +

(
1 +

RS

r

)
(dx2 + dy2 + dz2). (9.53)

In general one must have hμν → 0 infinitely far from the mass distribution
in order for the integrals to converge. This is the reason for using isotropic
coordinates in the linear field approximation.

The internal metric can easily be found for the special case that the density
is constant for r < R and vanishes for r > R. Let m be the total mass of
the system. In problem 1.3 it was shown that the Newtonian gravitational
potential at a distance r from the centre of the mass distribution is

φ = − Gm

2c2R

(
3− r2

R2

)
. (9.54)

Hence, the internal metric is

ds2 = −
[
1− Gm

2c2R

(
3− r2

R2

)]
c2dt2

+

[
1 +

Gm

2c2R

(
3− r2

R2

)]
(dx2 + dy2 + dz2). (9.55)

The generalisation of the solutions (9.53) and (9.55) to gravitational fields
of arbitrary strength are the external and internal Schwarzschild solutions of
the full field equations and will be derived in Chapter 10.

9.4 Gravitoelectromagnetism

The weak field approximation of Einstein’s equations is valid to great accu-
racy in, for example, the Solar system. The resemblance between the electro-
magnetic wave equation, eq. (6.54), and eq. (9.22) is evident. The similarity
between electromagnetism and the linearised Einstein equations goes even
further.

The solution of eq. (9.22) may be written in terms of retarded potentials as

h̄μν =
κ

2π

∫
Tμν(t− |x− x′|/c,x′)

|x− x′| d3x′, (9.56)

where x is a spatial vector and Tμν = Tμν(t,x). The energy-momentum tensor
Tμν mimics the behaviour of a electromagnetic four-current Jμ and the tensor
potential h̄μν mimics a field potential Aμ.

We will assume that the energy-momentum tensor obeys |T00| � |Tij | and
|T0i| � |Tij | in the weak field approximation. Hence from eq. (9.56)|h̄00| �
|h̄ij | and |h̄0i| � |h̄ij |. Then we can write

h̄00 = −4φ

c2
, (9.57)

h̄0i =
2Ai

c2
. (9.58)

Here, φ is the Newtonian or “gravitoelectric” potential

φ = −Gm

r
, (9.59)
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and Ai is the “gravitomagnetic” vector potential given in terms of the total
angular momentum S of the system

Ai =
G

c

Sjxk

r3
εijk. (9.60)

The mass m is related to the mass-density ρ = T00/c2 by∫
ρd3x = m, (9.61)

and the angular momentum S to the mass-current density ji = T 0i/c by

Si = 2

∫
εi

jkxjjkd3x. (9.62)

The Lorenz gauge condition h̄μα
,α = 0 can be written in terms of the po-

tentials φ and A

1

c

∂φ

∂t
+

1

2
∇ ·A = 0. (9.63)

This is, apart from a factor 1/2, the Lorenz gauge condition in electromag-
netism. This factor relates to the fact that the electromagnetic field is a spin-1
field, while the geometrodynamical field involves a spin-2 field.

Defining the gravitoelectric and gravitomagnetic fields EG and BG by

EG = −∇φ− 1

2c

∂A

∂t
(9.64)

BG = ∇×A, (9.65)

the equations (9.22) – using eqs. (9.56), (9.57), (9.58), (9.63), (9.64) and (9.65) –
reduces to

∇ · EG = −4πGρ (9.66)
∇ ·BG = 0 (9.67)

∇×EG = − 1

2c

∂BG

∂t
(9.68)

∇× 1

2
BG = −4πG

c
j +

1

c

∂EG

∂t
. (9.69)

These are the Maxwell equations for the gravitoelectromagnetic (GEM) fields.
These fields describes the spacetime outside a rotating object in terms of

the gravitoelectric and gravitomagnetic fields. The metric tensor can be writ-
ten in terms of the gravitoelectric and gravitomagnetic potential as

ds2 = −
(

1 +
2φ

c2

)
c2dt2 − 4

c
Aidxidt +

(
1− 2φ

c2

)
δijdxidxj . (9.70)

In the weak field approximation gravity can be considered analogous to elec-
tromagnetism. Furthermore, for a weakly gravitating rotating body, the grav-
itomagnetic field can be written as a dipole field

BG = −4G

c

3r (r · S)− Sr2

2r5
. (9.71)
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9.5 Gravitational waves

In the Newtonian theory there will not be any gravitomagnetic effects; the
Newtonian potential is the same irrespective of whether or not the body is
rotating. Hence the gravitomagnetic field is a purely relativistic effect. The
gravitoelectric field is the Newtonian part of the gravitational field, while the
gravitomagnetic field is the non-Newtonian part.

This can also be seen if we note a further analogy between the weak field
approximation and electromagnetic fields. The geodesic equation for a test
particle is

d2xμ

dτ2
+ Γμ

αβ

dxα

dτ

dxβ

dτ
= 0, (9.72)

where τ is the proper time of the particle. For a non-relativistic particle, we
have dx0

dτ ≈ 1 and dxi

dτ ≈ vi/c. Considering only linear terms in vi/c, and
restricting ourselves to static fields were gαβ,0 = 0, we obtain the expression

dv

dt
= EG +

v

c
×BG. (9.73)

This is the Lorentz’s force-law for GEM fields.
Particles orbiting a rotating body (like the Earth), will experience a gravit-

omagnetic field which will make their orbit precess. This precession is called

An orbiting body has an orbital angular momentum L. The gravitomag-
netic field interacts with this angular momentum and causes a torque given
by

τ =
1

2c
L×BG. (9.74)

The torque is, as usual, equal to the time derivative of the angular momentum,
and hence,

dL

dt
= −G

L× [3r (r · S)− Sr2
]

c2r5
, (9.75)

from which – using the formula dL
dt = Ω × L – we can read off the precession

angular velocity

Ω = G
3r (r · S)− Sr2

c2r5
. (9.76)

The Lense-Thirring effect will be taken up again in the next chapter were
we will derive it from an exact solution of Einstein’s field equations.

9.5 Gravitational waves

We shall now consider plane-wave solutions of the linearised field equations
(9.22) for empty space. In this and the next section we use units so that c = 1.
These equations admit the solutions

h̄μν = Aμν cos(kαxα), (9.77)

Thirring who first predicted this effect in 1918 [LT18].
the Lense-Thirring effect in honour of the physicists Josef Lense and Hans

203



The Linear Field Approximation

where Aμν is a constant symmetric tensor of rank 2 and kα is a constant wave-
vector. Inserting this into eq. (9.22) gives

kαkα = 0. (9.78)

Hence, kα is a null-vector, which means that the gravitational waves prop-
agate with the velocity of light. An observer with four-velocity Uμ would
observe the wave to have a frequency

ω = −kμUμ. (9.79)

The components of the wave-vector may therefore be written

kμ = (ω, k1, k2, k3), ω2 = kik
i. (9.80)

waves.
The solution (9.77) contains 13 parameters to specify the wave: ten for the

coefficients Aμν and three for the null vector kμ. However, most of these are
the result of coordinate freedom and gauge freedom.

Assume that the vector kα is given. Then we will show that there are physi-
cally only two polarisations left, when the gauge freedom is eliminated. Using
the Lorenz condition we have

kαAαβ = 0. (9.81)

This means that the wave is orthogonal or transverse to Aαβ . The Lorenz con-
dition does not completely specify the gauge. We still have the freedom of
choosing ξμ such that �ξμ = 0. This gauge transformation preserves the
Lorenz condition so we can use this ξμ to simplify Aμν further. By a clever
choice of ξμ we can require that

UαAαβ = Aα
α = 0. (9.82)

The two remaining free components of Aαβ represent the two degrees of free-
dom – the two polarisations – in the plane gravitational wave.

In the comoving frame of the observer, where Uμ = (1, 0, 0, 0), the trans-
verse traceless gauge conditions take the form

hTT
μ0 = hTT

kj,j = hTT
ii = 0. (9.83)

The first of these equations tells that only the spatial components of the metric
perturbation is non-zero. The second says that the spatial components are
divergence-free, and the third says they are trace-free. Note also that since
h = hμ

μ = 0 there is no distinction between h̄μν and hμν in this gauge.
If we choose the orientation of the coordinates such that the gravitational

wave is travelling along the z-axis, the components of the metric perturbation
can be written

hTT
μν =

⎡⎢⎢⎣
0 0 0 0
0 hxx hxy 0
0 hxy −hyy 0
0 0 0 0

⎤⎥⎥⎦ . (9.84)

We shall now describe physical effects of gravitational waves. Since this
is a ’curvature wave’ we consider the relative motion of nearby particles as

A general solution of eq. (9.22) can be written as a superposition of such plane
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geodesic normal coordinates of an observer,

d2si

dt2
= −Ri0j0s

j . (9.85)

Using eq. (9.12) we find in the transverse traceless gauge

Ri0j0 =
1

2
hTT

ij,00. (9.86)

Hence, eq. (9.85) takes the form

si
,00 =

1

2
sjhTT

ij,00. (9.87)

Inserting the components hij from eq. (9.84) we obtain the equations

sx
,tt =

1

2
sxhxx,tt +

1

2
syhxy,tt (9.88)

sy
,tt =

1

2
sxhxy,tt − 1

2
syhxx,tt (9.89)

sz
,tt = 0. (9.90)

These equations show that only the sx and sy components of the separation
vector between two nearby, free particles will be disturbed by a gravitational
wave travelling in the z-direction. Hence, test particles are only disturbed in
directions perpendicular to the wave propagation.

We can use the above equation to describe what happens to a ring of free,
stationary test particles in the xy-plane as a gravitational wave passes in the z-
direction. Consider first two particles separated in the x-direction. To lowest

y

and (9.89), so that

sx
,tt =

1

2
sxhxx,tt, sy

,tt =
1

2
sxhxy,tt. (9.91)

Similarly, for two particles initially separated in the y-direction,

sx
,tt =

1

2
syhxy,tt, sy

,tt = −1

2
syhxx,tt. (9.92)

Figure 9.1: Displacement of test particles caused by a travelling gravitational wave
with + polarisation. The states are separated by a phase difference of π.

described by the equation of geodesic deviation, eq. (7.104), in the comoving

order we can then neglect the terms with s at the right hand side of eqs. (9.88)

y

x

205



The Linear Field Approximation

Suppose a wave with hxx �= 0, hxy = 0 hits the particles. First the particles
along the x-direction come towards each other and then they move away from
each other as hxx reverses sign. This is called the + polarisation and is shown
in Fig. 9.1. If the wave had hxy �= 0, hxx = hyy

shown in Fig. 9.2. This is called the × polarisation.

Figure 9.2: Displacement of test particles caused by a travelling gravitational wave
with × polarisation. The states are separated by a phase difference of π.

Since hxy and hxx are independent, the figures 9.1 and 9.2 demonstrate
the existence of two different states of polarisations, which are oriented at an
angle 45◦ to each other.

9.6 Gravitational radiation from sources

We shall now consider the relation between the gravitational radiation, repre-
sented by h̄μν , and its source, represented by Tμν .

Let the source be a matter distribution localised near the origin O with
source particles moving slowly compared to the speed of light. We calculate
the field at a distance r from O which is large compared to the extension of the
matter distribution. Then eq. (9.56) may be approximated by (c = 1)

h̄μν(t, r) =
4G

r

∫
Tμν(t− r, r)dV. (9.93)

This means that we consider the gravitational radiation in the wave zone far

the radiative part of h̄μν is determined by its spatial part h̄ij . Hence, we need
only consider

∫
T ijdV , which will be calculated following Foster and Nightin-

gale [FN94].
The energy-momentum conservation equation T μν

;ν = 0 is equivalent to
the component equations

T 00
,0 + T 0k

,k = 0, (9.94)

T i0
,0 + T ik

,k = 0. (9.95)

Furthermore, we are also going to use the integral identity∫ (
T ikxj

)
,k

dV =

∫
T ik

,kxjdV +

∫
T ijdV, (9.96)

where the integrals are taken over a region of space enclosing the source, so
that T μν = 0 on the boundary of the region. Hence, transforming the integral

y

x

= 0 the particles respond as

from the source. In this zone the radiation looks like a plane wave, in which
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on the left hand side to a surface integral by means of Gauss’ integral theorem,
eq. (6.87), we see that the left hand side vanishes. Therefore,∫

T ijdV = −
∫

T ik
,kxjdV =

∫
T i0

,0x
jdV =

d

dt

∫
T i0xjdV. (9.97)

Interchanging i and j and adding gives∫
T ijdV =

1

2

d

dt

∫ (
T i0xj + T j0xi

)
dV. (9.98)

Furthermore,∫ (
T 0kxixj

)
,k

dV =

∫
T 0k

,kxixjdV +

∫ (
T i0xj + T j0xi

)
dV. (9.99)

Again, using Gauss’ integral theorem, the left hand side vanishes. Hence,
using eq. (9.94) we have∫ (

T i0xj + T j0xi
)
dV =

d

dt

∫
T 00xixjdV. (9.100)

For slowly moving source particles T 00 ≈ ρ, where ρ is the proper density.
Eqs. (9.93), (9.98) and (9.100) then yield the approximate expression

h̄ij =
2G

r

d2

dt2

[∫
ρxixjdV

]
t′=t−r

. (9.101)

The quadrupole moment of the source is defined by

qij =

∫
ρxixjdV. (9.102)

The solution then finally takes the form

h̄ij(t, r) =
2G

r
q̈ij . (9.103)

This equation tells us that the gravitational radiation produced by an iso-
lated non-relativistic object is proportional to the second derivative of the
quadrupole moment of the mass distribution at the emission time.

Example 9.1 (Gravitational radiation emitted by a binary star) Example

at a distance r from their common centre of mass, as shown in Fig. 9.3. It is sufficient
to treat the motion of the stars in the Newtonian approximation. Then, according to
Newton’s law of gravitation and Newton’s 2nd law,

GM2

(2R)2
=

Mv2

R
, (9.104)

which gives

v =

r
GM

4R
. (9.105)

The time it takes to complete a single orbit is T = 2πR/v. Hence, the angular velocity

We consider two stars of mass M in a circular orbit with radius R in the xy-plane,
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The Linear Field Approximation

Figure 9.3: Two stars of equal mass M are in a circular orbit around their mass
centre. The radius is R, and the orbital angular velocity is Ω. The observers are at a

point P at a large distance compared to the radius R.

of the orbit is

Ω =
2π

T
=

r
GM

4R3
. (9.106)

The paths of the stars are given parametrically as

(xA, yA) = (R cos Ωt, R sin Ωt), (xB, yB) = (−R cos Ωt,−R sin Ωt), (9.107)

for star A and B, respectively.
The mass density of the system is

ρ(t, r) = Mδ(z) (9.108)

× [δ(x−R cos Ωt)δ(y −R sin Ωt) + δ(x + R cos Ωt)δ(y + R sin Ωt)] .

Calculating the non-vanishing components of the quadrupole moment from eq. (9.102)
now leads to

qxx = 2MR2 cos2 Ωt = MR2(1 + cos 2Ωt)

qyy = 2MR2 sin2 Ωt = MR2(1− cos 2Ωt)

qyx = qxy = 2MR2 cos Ωt sin Ωt = MR2 sin 2Ωt. (9.109)

Inserting this into eq.(9.103) gives the components of the metric perturbation

h̄ij(t, r) =
8GMΩ2R2

r

24− cos[2Ω(t − r)] − sin[2Ω(t − r)] 0
− sin[2Ω(t − r)] cos[2Ω(t − r)] 0

0 0 0

35 . (9.110)

The frequency of the emitted radiation is thus twice the orbital frequency.

We shall finally set up the expression for the total power radiated gravita-
tionally by a slowly moving source. Let us start by expanding the Newtonian
potential φ in powers of r,

φ = −
(

M

r
+

djn
j

r2
+

3Qijn
inj

2r3
+ · · ·

)
, ni =

xi

r
. (9.111)

Here dj is the dipole moment of the source,

dj ≡
∫

ρxjdV, (9.112)

M

M

z

x

R

R

Ωt

y

r

P
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9.6 Gravitational radiation from sources

and

Qij ≡
∫

ρ

(
xixj − 1

3
δijr

2

)
= qij − 1

3
δijq

k
k (9.113)

is the trace-free part of the quadrupole moment of the mass distribution.
In the transverse traceless gauge one can introduce an effective energy-

momentum tensor for gravitational waves by

T GW
μν =

1

32π
〈hik,μhik,ν〉 (9.114)

where 〈 〉 denotes the average over wavelengths. The total power crossing a
sphere of radius r at a time t is

P (t, r) =

∫
T GW

0r r2dΩ. (9.115)

Using eq. (9.103) we have

T GW
0r =

1

32π
〈ḣikḣik〉

=
1

8πr2

〈...
Qjk

...
Qjk − 2ni

...
Qij

...
Qjknk +

1

2

(
nj

...
Qjknk

)2
〉

. (9.116)

The total power can be found by averaging the flux over all directions and
multiplying the result by 4π. One then needs

〈ni〉 = 〈ninjnk〉 = 0, 〈ninj〉 =
1

3
δij ,

〈ninjnknl〉 =
1

15
(δijδkl + δikδjl + δilδjk) . (9.117)

using the formulae (9.117) one finally arrives at the emitted power of gravita-
tional radiation from a slowly moving source

P (t, r) =
G

5

[...
Qij

...
Q

ij
]

t′=t−r
. (9.118)

Let us apply this formula to the gravitational radiation emitted by a binary
star, as considered in Example 9.1. The components of the quadrupole is given
in eq. (9.109). The traceless part of the quadrupole, as defined in eq. (9.113), is

Qij =
1

3
MR2

⎡⎣1 + 3 cos 2Ωt 3 sin 2Ωt 0
3 sin 2Ωt 1− 3 cos 2Ωt 0

0 0 −2

⎤⎦ . (9.119)

Its third derivative is

...
Qij = 8MR2Ω3

⎡⎣ sin 2Ωt − cos 2Ωt 0
− cos 2Ωt − sin 2Ωt 0

0 0 0

⎤⎦ . (9.120)

Hence, the power radiated by the binary star is

P =
128

5
GM2R4Ω6. (9.121)

Inserting the expression (9.116) into eq. (9.115) and performing the integration

,

209



The Linear Field Approximation

Using eq. (9.106) for the angular velocity this can be written

P =
2

5

G4M5

R5
. (9.122)

As expressed by the period T of the orbital motion the formula takes the form

P =
128

5
4

1
3

1

G

(
πGM

T

) 10
3

. (9.123)

Inserting numerical values

P = 1.9 · 1026

(
M

MSun

T0

T

) 10
3 J

s
, (9.124)

where MSun is the mass of the Sun and T0 = 1h.

E = 2

(
1

2
Mv2

)2

− M2

2R
. (9.125)

T gives

E = −M2

4R
= −M

4

(
4πM

T

) 2
3

. (9.126)

Differentiating E with respect to t and equating dE/dt to −P in eq.(9.123)
leads to

dT

dt
= −96

5
π4

1
3

(
2πM

T

) 5
3

. (9.127)

Inserting numerical values gives

dT

dt
= −3.4 · 10−12

(
M

MSun

T0

T

) 5
3

. (9.128)

The mass of both the pulsar and its unseen companion is about 1.4MSun,

rate of decrease of the period equal to about 10μs per year. This slow decrease
in the orbital period has been detected. Timing measurements over an epoch
of many years gave dT/dt = −(2.422± 0.006) · 10−12 in good agreement with
more accurate calculations taking into account several observed parameters
of the system.

Problems

9.1. The Linearised Einstein Field Equations

field equations. We will assume that the metric is

gμν = ημν + hμν (9.129)

observed for the binary pulsar PSR B1913+16 [TW89]. The emission of radia-
tion extracts energy from the system and hence decreases its period. The rate

The effect of emitting gravitational radiation upon the period has been

ximation to this non-relativistic system. Its energy is
of decrease of the period can be calculated by applying the Newtonian appro-

and the orbital period is 7.75h. Eq. (9.128) then gives a predicted value of the

In this problem we will do a more careful analysis of the linearised Einstein

Using eq. (9.105) to relate v to R and eq. (9.106) to relate R to the orbital period
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Problems

where ημν is the Minkowski metric and |hμν | � 1. The linearised Einstein
field equations are the Einstein field equations where we have only kept the
terms linear in hμν . In all the calculations in this problem we will therefore
ignore the terms of higher order in hμν and will assume that the derivative
operator ∂

∂xμ is the flat derivative operator with respect to ημν .

(a) Show that the inverse metric is gμν = ημν −hμν . Argue that the Riemann
tensor can be calculated using eq. (7.61) on page 159. Show that the Ricci
tensor can be written

Rαβ = hμ(α,β)
μ − 1

2
hαβ,μ

μ − 1

2
h,αβ (9.130)

where h = hμ
μ.

(b) Write down the expression for the Einstein tensor Eμν and show that it
can be simplified with the introduction of

h̄αβ = hαβ − 1

2
ηαβh. (9.131)

Write down the Einstein field equations in terms of h̄μν .

(c) In section 6.9 we learned how we could make a change of coordinates
with the aid of a vector field X = Xμeμ. The vector field generates a

gauge freedom, similarly as for the electromagnetic field. The vector field
induces an infinitesimal gauge transformation which transforms the met-
ric as

hμν �−→ hμν + £Xημν . (9.132)

Assume that X is an infinitesimal vector field. Show, with the aid of eq.
(6.288) on page 143 that the vector field X induces the gauge transforma-
tion

hμν �−→ hμν + Xα,β + Xβ,α. (9.133)

These gauge transformations only change the coordinates and should
not change the physical interpretation of the perturbation. This gauge
transformation can be used to simplify the expression for the linearised
Einstein field equations. Choose a vector field X where the components
satisfy the equations

Xα,μ
μ = −h̄αμ

,μ. (9.134)

Show that we can perform a gauge transformation such that

h̄αμ
,μ = 0. (9.135)

This is similar to the Lorenz gauge condition in electromagnetism. Write
down the Einstein field equations in the new gauge and show that they
are equal to

h̄αβ,μ
μ = −2κTαβ. (9.136)

a change of coordinates. This freedom of choosing coordinates is called a
one-parameter group of diffeomorphisms which can be seen upon as
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The Linear Field Approximation

(d) Assume now that the energy-momentum tensor has the 00-component
T00 = ρ, while all other components are zero. Assume also that the metric
is time-independent. The linearised Einstein field equations now reduce
to

∇2h̄00 = −2κρ,

∇2h̄ij = 0. (9.137)

The only solutions of h̄ij that are zero and well behaved at infinity are
h̄ij = 0. Assume that this is the case. Define φ by

φ = −1

4
h. (9.138)

Show that

hij = −2ηijφ,

h00 = −2φ, (9.139)

where φ satisfies Poisson’s equation

∇2φ =
κ

2
ρ. (9.140)

Compare with eq. (1.32) on page 9 and find κ (when c = 1).
Finally write down the metric in terms of φ.

9.2. Gravitational waves

Einstein’s equations using the Maxwell equations for the gravitoelectromag-
netic fields.

(a) Use these equations for vacuum, and the Lorenz gauge condition, eq.
(9.63), to show that φ and A satisfy the wave equations

�φ = 0,

�A = 0, (9.141)

where � is the d’Alembert operator in Minkowski space. Hence, not
surprisingly, gravitational waves travel with the speed of light. We can
assume that A has in general complex components. The physical vector
potential is the real part of A.

(b) Consider waves far from any sources, so that φ = 0. Find particular
solutions where the wave describes a plane-wave with wave-vector k.
What does the Lorenz gauge condition tell us about the nature of these
gravitational waves?

(c) A test particle is initially at rest as one of the plane waves with wave-
vector k = kex passes by. The wave is plane-polarised so that A can be
written

A = A0e
ik(x−ct), (9.142)

where A0 = A0ey , and A0 real. Assume that the test particle is placed at
the origin and that the deviation from the origin as the wave passes by
is very small compared to the wavelength of the wave. Hence, we can

We will here consider gravitational waves in the weak field approximation of
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assume that eik(x−ct) ≈ e−ikct. Assume also that the speed of the particle
v is non-relativistic: v/c � 1 (thus A0 has to be sufficiently small). Use
the Lorentz force law for GEM fields and derive the the position of the
particle to lowest order in A0/c2 as the wave passes by.

(d) Explain why gravitational waves cannot have only a Newtonian part,
and thus that there are no gravitational waves in the Newtonian theory
(or that they move with infinite speed).

9.3. The spacetime inside and outside a rotating spherical shell

found using the linearised Einstein’s field equations

�h̄αβ = −2κTμν, (9.143)

where h̄αβ is the metric perturbation with respect to the Minkowski metric
(see section 9.4). The rotation is assumed to be non-relativistic, thus the calcu-
lations should be made to first order in Rω.

Assume that the shell is composed of dust, so that the energy-momentum
tensor can be expressed as

Tαβ = ρuαuβ , ρ =
M

4πR2
δ(r −R)

uα ≈ (−1,−Rω sin θ sinφ, Rω sin θ cosφ, 0) (9.144)

where (r, θ, φ) are spherical coordinates:

x = r sin θ cosφ, y = r sin θ sin φ, r = cos θ. (9.145)

Find the metric inside and outside the rotating shell and show that

ds2 = −
(

1− 2M

R

)
dt2 +

(
1 +

2M

R

)
(dx2 + dy2 + dz2)

−8Mω

3R
r2 sin2 θdφdt, r < R

ds2 = −
(

1− 2M

r

)
dt2 +

(
1 +

2M

r

)
(dx2 + dy2 + dz2)

−4J

r
sin2 θdφdt, r > R (9.146)

where J = (2/3)MR2ω is the angular momentum of the shell.

9.4. Plane-wave spacetimes
We will in this problem consider the plane wave metric

ds2 = 2du(dv + Hdu) + dx2 + dy2, (9.147)

where the function H = H(u, x, y) does not depend on v (but is otherwise
arbitrary).

(a) From the above we have the metric components given by guv = 1, guu =
2H and gxx = gyy = 0. What is gμν? Calculate also the Christoffel
symbols and show that the vector k = ∂

∂v
kμ;ν = 0. Is k time-like, null or space-like?

A spherical shell with mass M and radius R is rotating with a constant angu-
lar velocity ω. In this problem the metric inside and outside the shell shall be

is covariantly constant; i.e.,
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The Linear Field Approximation

(b) Use the Christoffel symbols to calculate the Einstein tensor and show that
in vacuum (Λ = 0) the Einstein field equations reduce to(

∂2

∂x2
+

∂2

∂y2

)
H = 0. (9.148)

What are the linearised field equations in this case?

(c) Show that
H = C1(u)(x2 − y2) + 2C2(u)xy,

where C1(u) and C2(u) are arbitrary functions of u, is a solution to Ein-
stein’s field equations.
Consider the complex coordinate z = x + iy, and an arbitrary analytic
complex function f(u, z). Show that

H = f(u, z) + f̄(u, z̄),

where a bar means complex conjugate, is a solution to Einstein’s field
equations. Is it also a solution to the linear field equations?
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10
The Schwarzschild Solution

We have now established the Einstein field equations and explained their con-
tents. In this chapter we will explore the first known non-trivial solution to
these equations. The solution is due to the astronomer Karl Schwarzschild,
and in his honour the solution is referred to as the Schwarzschild solution for
empty space. This solution represents a spacetime outside a non-rotating black
hole. The Kerr solution representing spacetime outside a rotating black hole
will also be deduced. Finally, interior solutions will be investigated.

10.1 The Schwarzschild solution for empty space

The Newtonian potential around a static point object is spherically symmet-
ric. Also for objects like stars and planets the same is true to lowest order.
Exterior to such objects there is a static, spherically symmetric empty space.

From Example 4.6 follows that the line-element of Minkowski spacetime
as expressed in spherical coordinates has the form (in units with c = 1)

ds2 = −dt2 + dr̃2 + r̃2(dθ2 + sin2 θdφ2). (10.1)

We shall solve the field equations for empty spacetime with static and spheri-
cally symmetric 3-space. Then it is reasonable to assume that the line-element
can be written

ds2 = −f(r̃)dt2 + g(r̃)dr̃2 + h(r̃)r̃2(dθ2 + sin2 θdφ2). (10.2)

Introducing a new radial coordinate r = r̃
√

h(r̃), the line-element becomes

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdφ2). (10.3)

It has been customary to replace the functions A(r) and B(r) by exponential
functions in order to obtain somewhat simpler expressions for the components

and Black Holes

Motivated by this we will study spherically symmetric solutions to the Einstein
field equations for empty space.



The Schwarzschild Solution and Black Holes

of the Einstein tensor. Hence, we introduce the functions α(r) and β(r) by
e2α(r) = A(r) and e2β(r) = B(r), obtaining

ds2 = −e2αdt2 + e2βdr2 + r2(dθ2 + sin2 θdφ2). (10.4)

These coordinates are called Schwarzschild coordinates. Obviously, this is not
the only choice we have. For instance, we could choose isotropic coordinates

ds2 = −e2Adt2 + e2B(dr2 + r2(dθ2 + sin2 θdφ2)) (10.5)

or coordinates where the metric has off-diagonal components. We will how-
ever, use the coordinates where the metric takes the form (10.4).

These coordinates are particularly convenient because the spatial surface
of constant r and t has area 4πr2. We will use the Cartan formalism to derive
the static solution subject to the vacuum condition Tμν = 0.

Introducing an orthonormal basis,

ωt̂ = eαdt

ωr̂ = eβdr

ωθ̂ = rdθ

ωφ̂ = r sin θdφ, (10.6)

and taking the exterior derivatives, we get

dωt̂ = α′e−βωr̂ ∧ ωt̂

dωr̂ = 0

dωθ̂ =
e−β

r
ωr̂ ∧ωθ̂

dωφ̂ =
e−β

r
ωr̂ ∧ωφ̂ +

1

r
cot θωθ̂ ∧ ωφ̂, (10.7)

where a prime denotes derivative with respect to r. The next step is to use
Cartan’s first structural equation, eq. (6.182),

dωρ = −Ωρ
ν ∧ων , (10.8)

and the antisymmetry of the connection forms, Ωμ̂ν̂ = −Ων̂μ̂, to find the non-
t̂ that

Ωt̂
r̂ must have the form

Ωt̂
r̂ = α′e−βωt̂ + F (r)ωr̂. (10.9)

To determine the function F (r) we utilize the antisymmetry of the connection
forms which implies Ωt̂

r̂ = Ωr̂
t̂. Using the expression for dωr̂, we get

Ωr̂
t̂ = G(r)ω t̂. (10.10)

Comparing eqs. (10.9) and (10.10) yields F (r) = 0 and G(r) = α′e−β . The
other connection forms are determined analogously. The calculations give the
following expressions:

Ωt̂
r̂ = Ωr̂

t̂ = α′e−βωt̂

Ωθ̂
r̂ = −Ωr̂

θ̂
=

e−β

r
ωθ̂

Ω
φ̂
r̂ = −Ωr̂

φ̂
=

e−β

r
ωφ̂

Ω
φ̂

θ̂
= −Ωθ̂

φ̂
=

1

r
cot θωφ̂. (10.11)

zero connection forms. From eq. (10.7) we see from the expression for dω
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10.1 The Schwarzschild solution for empty space

From Cartan’s second structural equation, eq. (7.47),

R
μ̂
ν̂ = dΩ

μ̂
ν̂ + Ω

μ̂

λ̂
∧Ωλ̂

ν̂ (10.12)

we can calculate the curvature matrix. The non-zero components are

Rt̂
r̂ = −e−2β(α′′ + α′2 − α′β′)ωt̂ ∧ωr̂

Rt̂
θ̂

= −1

r
α′e−2βωt̂ ∧ ωθ̂

Rt̂
φ̂

= −1

r
α′e−2βωt̂ ∧ ωφ̂

Rr̂
θ̂

=
1

r
β′e−2βωr̂ ∧ ωθ̂

Rr̂
φ̂

=
1

r
β′e−2βωr̂ ∧ ωφ̂

Rθ̂
φ̂

=
1

r2
(1− e−2β)ωθ̂ ∧ ωφ̂. (10.13)

By means of the formula R
μ̂
ν̂ = 1

2Rμ̂

ν̂α̂β̂
ωα̂ ∧ ωβ̂ we can now extract the com-

ponents of the Riemann curvature tensor. Contracting once yields the Ricci
tensor

Rα̂β̂ = Rμ̂

α̂μ̂β̂
. (10.14)

One more contraction yields the curvature scalar

R = Rα̂
α̂. (10.15)

Using the definition of the Einstein tensor,

Eμ̂ν̂ = Rμ̂ν̂ − 1

2
ημ̂ν̂R, (10.16)

we find

Et̂t̂ =
2

r
β′e−2β +

1

r2

(
1− e−2β

)
(10.17)

Er̂r̂ =
2

r
α′e−2β − 1

r2

(
1− e−2β

)
(10.18)

Eθ̂θ̂ = Eφ̂φ̂ =
1

r
e−2β

(
rα′′ + rα′2 − rα′β′ + α′ − β′

)
. (10.19)

The condition Eμν = 0 for empty space implies that the expressions (10.17),
(10.18) and (10.19) equal zero. Adding equations (10.17) and (10.18) we get
simply

2

r
e−2β(α′ + β′) = 0. (10.20)

This equation can be integrated to give

α(r) + β(r) = K, (10.21)

where K is a constant. We note that by a rescaling of the time-coordinate we
can shift this constant to any value we like. It is therefore without loss of

,
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generality to choose K = 0 so we can set α(r) = −β(r). Equation Et̂t̂ = 0 can
be written

1

r2

[
r
(
1− e−2β

)]′
= 0. (10.22)

This equation can be integrated to give

e−2β = 1− 2M

r
, (10.23)

where M is an arbitrary constant. We can now easily check that this solu-
tion also solves equation (10.19). The Schwarzschild solution for empty space is
therefore:

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2(dθ2 + sin2 θdφ2). (10.24)

There are a couple of things worth noting. First, for large r, the metric is
approximately that of flat Minkowski spacetime. Second, the metric appears
singular when r = 0 and when r = 2M . These two values for r have special
physical importance as we will see later on. However, their nature is different;
at r = 0 we have a physical singularity where the curvature tensors diverge; at
r = 2M the curvature tensors are well-behaved and finite, but the spacetime
has a horizon at r = 2M in these coordinates.

The physical interpretation of M can be understood by considering a free
particle instantaneously at rest outside a spherical body and comparing with
the Newtonian limit. In a Newtonian gravitational field the acceleration of a
free particle is

g = −Gm

r2
, (10.25)

where m is the mass of the attracting body, and G is the Newtonian gravia-
tional constant. According to the theory of relativity the acceleration of a test
particle is given by the geodesic equation, eq. (6.105):

d2xμ

dτ2
+ Γμ

αβ

dxα

dτ

dxβ

dτ
= 0. (10.26)

Assuming that the particle is instantaneously at rest in a weak gravitational
field we can approximate the proper time dτ with dt and set dxα

dτ = (1, 0, 0, 0)
at that particular moment of time. The geodesic equation now simplifies to

g =
d2xμ

dt2
≈ −Γr

tt. (10.27)

Since we use a coordinate basis, the connection coefficients are Christoffel
symbols and Γr

tt is given by equation (6.111):

Γr
tt =

1

2
grα

(
∂gαt

∂t
+

∂gαt

∂t
− ∂gtt

∂xα

)
= −1

2
(grr)

−1 ∂gtt

∂r
. (10.28)

Inserting the found solution into the above equation we find to lowest order

g = −Γr
tt = −M

r2
. (10.29)
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10.1 The Schwarzschild solution for empty space

Comparing with the classical case we see that the constant M must be in-
terpreted as the mass of the gravitating body, m, times the Newtonian grav-
itational constant: M = Gm. If we include the speed of light c, we get
g = −Mc2/r2, and hence,

M =
Gm

c2
. (10.30)

For a mass m the radius

RS =
2Gm

c2
, (10.31)

is called the Schwarzschild radius. As we see, the metric apparently has a terri-
ble flaw; it is singular at the Schwarzschild radius. However, for a relatively
small gravitating body like the Earth, the Schwarzschild radius is so small that
we do not have to worry that our metric breaks down at RS . For the Earth
RS ≈ 9 · 10−3m, while for an object at the size of a solar mass RS ≈ 3 · 103m,
i.e., RS is well inside the surface of these bodies. Inside the surface of plan-
ets and stars the condition Tμν = 0 for empty space is no longer valid so the
Schwarzschild solution is not applicable in these regions. Outside the surfaces
of the Earth and the Sun we will have r � RS , and the Schwarzschild solution
can be used. In fact, for r � RS the weak field approximation is valid to great
accuracy.

For a static observer at a radius r outside a gravitating body the proper
time dτ will have a time dilatation given by

dτ =

√
1− RS

r
dt. (10.32)

Since the metric is inhomogeneous and static the coordinate clocks showing
the time t must flow at equal pace compared to standard clocks at infinity,
r −→ ∞. As we descend deeper and deeper into the gravitational field, the
standard clocks showing proper time tick slower and slower compared to the
coordinate time clocks. At the Schwarzschild radius the standard clocks are
apparently standing still; the time does not flow at all compared to the proper
time of the observer at infinity.

The singular behaviour at the Schwarzschild radius is only a coordinate
singularity.
fined as the “square” of the Riemann tensor we get

RαβγδRαβγδ =
48M2

r6
. (10.33)

This scalar diverges only at the origin; there is nothing special happening at
the Schwarzschild radius. This indicates that the origin, r = 0, is a physical
singularity, but the Schwarzschild radius is not. We should therefore be able
to find a new set of coordinates where the Schwarzschild radius is perfectly
regular in the metric.

Let us assume that we are near the Schwarzschild radius, but still outside.
We introduce the variable x by x2 = 2r − 4M . At the Schwarzschild radius,
x = 0, so we can approximate the metric with

ds2 =
1

4M
(−x2dt2 + (4M)2dx2) + (4M)2(dθ2 + sin2 θdφ2) (10.34)

If we for instance calculate Kretschmann’s curvature scalar de-
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close to the Schwarzschild radius. The last two variables only form a two-
sphere S2 which is perfectly regular everywhere. The t and x coordinates
form a Rindler space. By the transformation

T = x sinh[(4M)−1t] (10.35)
X = x cosh[(4M)−1t], (10.36)

the metric simply turns into

ds2 = 4M(−dT 2 + dX2) + (4M)2(dθ2 + sin2 θdφ2). (10.37)

The Schwarzschild radius, r = 2M , corresponds to T = ±X which is perfectly
regular in the metric (10.37). So, the space (10.34) can be smoothly continued
to a regular space containing no singularities. Thus we can conclude that the

S .

10.2 Radial free fall in Schwarzschild spacetime

We will consider a radially falling particle in a Schwarzschild spacetime. The
perhaps easiest way to calculate the equations of motion is to use Lagrange’s
equations. The Lagrangian of the particle is

L = −1

2

(
1− RS

r

)
c2ṫ2 +

1

2

ṙ2(
1− RS

r

) , (10.38)

where a dot means derivative with respect to the proper time τ . The time
coordinate is cyclic so its canonical momentum is a constant:

pt ≡ ∂L
∂t

= −
(

1− RS

r

)
c2ṫ. (10.39)

Inserting this into the 4-velocity identity, uμuμ = −c2, gives an expression
for ṙ:

ṙ2 − p2
t

c2
= −

(
1− RS

r

)
c2. (10.40)

The value of pt can be given in terms of the initial condition r(0) = r0, ṙ(0) = 0.
Using this initial condition we get the equation

ṙ = c

(
RS

r0

) 1
2
√

r0 − r

r
, (10.41)

which can be integrated to give

τ =
r0

c

(
r0

RS

) 1
2
[
arccos

√
r

r0
+

√
r

r0

√
1− r

r0

]
. (10.42)

Here, τ is the proper time that a particle spends falling from rest at r0 to r. The
particle reaches the singularity r = 0 in a finite proper time given by

τ(r = 0) =
πr0

2c

√
r0

RS
(10.43)

r = Rradius so that there are no singularities at
Schwarzschild solution can be smoothly expanded past the Schwarzschild
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Describing the same motion in terms of the coordinate time t we end up with
the equation

t =
1

c

(
r0 −RS

RS

) 1
2

r∫
r0

x
3
2 dx

(x−RS)
√

r0 − x
. (10.44)

As we approach r = RS , the integral on the right hand side diverges. Thus
for an observer at infinity a particle falling towards the origin will only reach
the Schwarzschild radius after an infinite amount of time has elapsed. The ob-
server at infinity will never see it pass the Schwarzschild radius. An observer
comoving with the particle, on the other hand, will not find anything partic-
ular happening at the Schwarzschild radius. It will pass the Schwarzschild
radius and reach the singularity r = 0 in a finite proper time.

singularity – not a singularity in the spacetime itself. However, it is obvi-
ous that for an observer at infinity there is something fundamental about the
Schwarzschild radius. Even though mathematically speaking the spacetime is
perfectly regular at RS , the radius RS has deep consequences for the physics.
We will see in the next section that at the Schwarzschild radius the observer
at infinity observes a horizon. Nothing can escape this horizon, not even light.
Once a photon has passed inside the horizon, it cannot get out. For this reason,
the Schwarzschild metric describes a black hole. The radius of the black hole
is the Schwarzschild radius. The inside of the black hole cannot, according to
general relativity, communicate with the outside. Particles and light can get
in, but there is nothing that can escape.

10.3 The light-cone in a Schwarzschild spacetime

We will now explore more of the significance of the horizon (which we will
from now on call the surface given by r = RS) and we will do so by studying
the light-cone in the Schwarzschild spacetime. Light serves as an upper bound
(except for so-called tachyons) for how fast particles can travel. It also serves
as a measure of how fast information can travel. To get information about the
life and times for some inhabitants of a planet outside the Solar system, say,
the fastest way that we can get such information is by means of light signals.
The light-cone tells us what region of spacetime we can get information from.
If our world-line is outside the future light-cone of some event, then we can
never get information about that event.

Consider radially moving light in a Schwarzschild spacetime. Radially
moving means that the angular velocity is zero, so we will drop the angular
part of the Lagrangian. Light has no proper time, so we will use the coordinate
time as a time parameter. The four-velocity identity for light, uμuμ = 0, yields

−
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

= 0. (10.45)

Rearranging we get

rdr

r − 2M
= ±dt, (10.46)

which can be integrated to yield

r ∓ t + 2M ln |r − 2M | = C, (10.47)

This is further evidence that the Schwarzschild radius is just a coordinate
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where C is an integration constant. The inward moving photons have the pos-
itive sign, while the outward photons have the negative sign. If we introduce
a time coordinate defined by

t̃ = t + 2M ln |r − 2M |, (10.48)

the inward going photons have

dr

dt̃
= −1. (10.49)

The outward going photons, on the other hand, have

dr

dt̃
=

r − 2M

r + 2M
. (10.50)

The inward going photons have constant coordinate velocity, but the “out-
ward going” photons are actually going inward for r < 2M . Thus with this
time coordinate the light-cone inside the horizon will point inwards towards

For an observer at infinity, who measures time in the parameter t the out-
ward and inward going photons have

dr

dt
= ±

(
1− 2M

r

)
(10.51)

Thus light is decelerated in the gravitational field, as the photons descend into
a gravitational field their speed is decelerated. At the horizon, the light-cone
collapses which indicates the strong significance the horizon has for an ob-
server at infinity. One could also believe that the Special Theory of Relativity
is violated since the observer at infinity sees light moving at a speed less than
c. However, one must keep in mind that the Special Theory of Relativity is
only valid locally.

Figure 10.1: Illustration of light-cones in the two coordinate systems. The top one is
in the Schwarzschild time coordinate t while the lower is in the coordinate t̃.

Collapse of the lightcone

r
=

0

r
=

2M

the metric of a black hole. Also note that at r = 0 the light-cone collapses.
light cannot escape, nothing can, according to general relativity. This is indeed

.

r = 0! (see Fig. 10.1) Light inside the horizon cannot escape the black hole. If
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Example 10.1 (Time delay of radar echo) Examples

of light in Schwarzschild coordinates is

c̃ =

„
1− 2M

r

«
(10.52)

The time used for light to travel from the Earth to Mercury and back is then given by
the integral (see figure 10.2)

t = 2

λMZ
−λE

dλ

1− 2M
r

≈ 2

λMZ
−λE

„
1 +

2M

r

«
dλ = 2

λMZ
−λE

„
1 +

2M√
b2 + λ2

«
dλ

= 2

"
λE + λM + 2M ln

 p
λ2

M + b2 + λMp
λ2

E + b2 − λE

!#
. (10.53)

The deceleration is the greatest when the Earth and Mercury are on the opposite sides
of the Sun. The impact parameter b is then very small compared to λE and λM . Thus
we can approximate λM ≈ rM , and λE ≈ rE which yield to lowest order in b

λ
:

t ≈ 2

»
rE + rM + 2M ln

„
4rErM

b2

«–
. (10.54)

The following data are given for the various parameters:
2M = Sun’s Schwarzschild radius ≈ 2 km
rE = radius of Earth’s orbit≈ 15 · 1010 m
rM = radius of Mercury’s orbit ≈ 5.8 · 1010 m
b = Sun’s radius ≈ 7 · 108 m.
Thus, theoretically, we get a time delay of

Δt = 2[t− (rE + rM )] = 2.2 · 10−4 s. (10.55)

+

radar signal bounce off Mercury’s surface. Later, by using a transponder on the surface
of Mars, the theoretical prediction was confirmed within ±0.1% accuracy [RT02]. We
have not taken into account the curvature in the neighbourhood of the Sun in the sense
that we have assumed a straight path for the light. Atmospheric disruption, amongst
other things, of a light-signal must also be taken into account if such a delay would be
measured.

Figure 10.2: Path of a light ray between the Earth and Mercury. The true path is
indicated by the dashed line.

Let us consider an experiment where we send light towards Mercury, say. The speed

71] managed to measure the time delay due to this effect by lettingShapiro et al. [SAI

Earth

Sun

Mercury

b

λΕ

λΜ

.
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Using data from NASA’s Cassini spacecraft an experiment by Italian scientists
[BLT03] has confirmed the relativistic correction for the time delay of radar echo with
a precision that is 50 times greater than the previous measurements. We can write

Δt = 2(1 + γ)M ln

„
4rErC

b2

«
, (10.56)

where rC is Cassini’s distance from the Sun, and γ − 1 measures deviation from the
general relativistic prediction. The results of the measurement was

γ − 1 = (2.1± 2.3) · 10−5.

Example 10.2 (The Hafele-Keating experiment)

atomic clocks. By having one clock on an airplane circumnavigating the Earth in the
western direction and one circumnavigating in the eastern direction, the time shown by
these clocks was compared to a clock on the ground. Even though the time difference
is minute, atomic clocks are accurate enough to measure this tiny time difference.

The proper time interval measured by a moving clock with a three-velocity vi =
dxi

dt
in a coordinate system with metric gμν is given by

dτ =

„
− 1

c2
gμνdxμdxν

« 1
2

=

„
−g00 − 2gi0

vi

c
− v2

c2

« 1
2

dt, (10.57)

where v2 = gijv
ivj . In the Schwarzschild metric this becomes

dτ =

„
1− 2M

r
− v2

c2

« 1
2

dt. (10.58)

If we consider an idealized situation where a plane flies at a constant altitude h and
with constant speed u along the equator, then if R and Ω are the Earth’s radius and
angular velocity respectively, the expression becomes to second order

Δτ =

„
1− Gm

Rc2
− R2Ω2

2c2
+

gh

c2
− 2RΩu + u2

2c2

«
Δt. (10.59)

Here g is the acceleration of gravity at Earth’s surface, and u > 0 if the plane is east-
bound and u < 0 if it is westbound. A clock left on the ground on the airport has
h = u = 0

Δτ0 =

„
1− Gm

Rc2
− R2Ω2

2c2

«
Δt (10.60)

Thus to the lowest order we get a relative time difference of the atomic clocks

κ =
Δτ −Δτ0

Δτ0
=

gh

c2
− 2RΩu + u2

2c2
(10.61)

If the planes have a travel time Δτ0 = 1.2 · 105 s , then theoretically the eastbound
plane will measure κE = −1.0 · 10−12 s while the westbound will measure κW =

2.1 · 10−12 s. The time difference for the two planes are approximately −120 ns and
250 ns respectively. These values were confirmed within 20% accuracy experimentally.
Thus despite that these numbers are small and that they are far beyond the human
detectability in everyday life, it can be observed with the aid of atomic clocks.

Another measured effect is the difference in time shown on stationary and moving

.

.
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10.4

Einstein and his contemporaries were not in the possession of modern atomic
clocks or even jet-planes when the General Theory of Relativity was in its in-
fancy. But they where aware of something else; a part amounting to 43” per
century of the perihelion precession of Mercury that could not be explained
by classical mechanics. Einstein soon realized that the General Theory of Rela-
tivity could explain this perihelion precession of the Mercurian orbit. We will
in this section investigate particle trajectories in the Schwarzschild spacetime
and see how general relativity explains this perihelion precession.

For a test particle outside a static spherically symmetric body we can use
the Lagrangian

L =
1

2
gμνuμuν

=
1

2

[
−
(

1− 2M

r

)
ṫ2 +

ṙ2

1− 2M
r

+ r2θ̇2 + r2 sin2 θφ̇2

]
(10.62)

In addition to the equations of motion derivable from this Lagrangian, we
have the four-velocity identity gμνuμuν = −1.

Both t and φ are cyclic coordinates, so their canonical momenta, pt and pφ

respectively, are constants:

pt =
∂L
∂ṫ

= −
(

1− 2M

r

)
ṫ (10.63)

pφ =
∂L
∂φ̇

= r2 sin2 θφ̇. (10.64)

These constants of motion can be interpreted in the following way: pφ is the
angular momentum of the orbit of the particle and−pt is the energy of the par-
ticle as measured by an observer at infinity. These are also constants of motion
in the Newtonian theory. Another constant of motion in the Newtonian theory
is the z-component of the angular momentum, which is also a constant here.
This is not difficult to see since we have a spherically symmetric Lagrangian,
but let us still check this out by explicit calculation. The equation of motion
for θ is

0 =
d

dτ

(
∂L
∂θ̇

)
− ∂L

∂θ

=
d

dτ

(
r2θ̇
)
− r2 sin θ cos θφ̇2

=
d

dτ

(
r2θ̇
)

+
p2

φ cos θ

r2 sin3 θ
. (10.65)

Multiplying by r2θ̇, we end up with a total derivative,

0 =
d

dτ

(
r2θ̇
)2

+
d

dτ

( pφ

sin θ

)2

. (10.66)

The spherical symmetry allows us to impose the boundary condition θ(τ0) =
π
2 and θ̇(τ0) = 0 at some time τ0. This is no loss of generality because there are
no preferred direction in a spherically symmetric spacetime, the North and
South can be anywhere. Integration then yields

(r2θ̇)2 = −p2
φ cot2 θ. (10.67)

Particle trajectories in Schwarzschild spacetime
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The left hand side is never negative, while the right hand side is never posi-
tive. Hence, they both have to be zero. This implies θ = π

2 and θ̇ = 0 always.
The orbit is therefore planar.

We therefore assume that the orbit is in the equatorial plane. The four-
velocity identity then yields

− p2
t

1− 2M
r

+
ṙ2

1− 2M
r

+
p2

φ

r2
= −1, (10.68)

which after a rearranging gives

1

2
ṙ2 + V (r) = E, (10.69)

where

V (r) = −M

r
+

p2
φ

2r2
− Mp2

φ

r3
, (10.70)

E =
1

2
(p2

t − 1). (10.71)

In the Newtonian case the “potential” V (r) is equal to the Newtonian potential

VN (r) = −M

r
+

p2
φ

2r2
. (10.72)

The term −Mp2
φ

r3 is thus a relativistic effect which has some interesting conse-
quences for the particle motion. First of all, it is this term that causes the fa-
mous perihelion precession of the Mercurian orbit. Secondly, for small enough
r this term will dominate and, since it has a negative sign, a particle with angu-
lar momentum can still plunge into the singularity r = 0. This is not the case
for Newtonian mechanics. The Newtonian potential has an infinitely high

Figure 10.3: The graphs of the two potentials V (r) and VN(r). Notice how the
Newtonian potential has a centrifugal barrier for small r.

Circular motion can only exist where ∂V
∂r = 0. Solving this equation for r

gives two possibilities:

r± =
pφ

2M

(
1±
√

1− 12
M2

p2
φ

)
. (10.73)

Classical Centrifugal Barrier

centrifugal barrier given by the angular momentum term (see Fig. 10.3).
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10.4 Particle trajectories in Schwarzschild spacetime

The innermost radius, r−, is unstable and a generic perturbation of this cir-
cular orbit will make it either plunge into the singularity or move outwards
far away from its original circular orbit. The outermost radius, r+, on the
contrary, is stable. If p2

φ < 12M2 there exist no possibilities for a circular or-
bit, and all particles having p2

φ < 12M2 will plunge unconditionally into the
singularity.

Let us instead write the radius as a function of φ: r = r(φ). This means
that we make a transition from the equation of motion of the particle to an
equation for the path it follows. Then

ṙ =
dr

dφ
φ̇ =

pφ

r2

dr

dφ
. (10.74)

It is also useful to introduce a new variable u by

u =
1

r
. (10.75)

The four-velocity identity (or the energy equation) is then(
du

dφ

)2

+ (1− 2Mu)
(
u2 + p−2

φ

)
= p2

t p
−2
φ . (10.76)

If we differentiate this equation once, we get the simple form

d2u

dφ2
+ u =

M

p2
φ

+ 3Mu2. (10.77)

The last of the terms on the right hand side is the relativistic correction. This
gives the deviation from a pure elliptic motion which follows from the laws of
Kepler. The Newtonian potential has the peculiar feature that bound particles
will have a closed orbit1. Any slight deviation from this potential will cause
the orbit not to close and we will have a precession of the orbit.

The perihelion precession of Mercury

Let us solve the classical equation first, and then consider a small relativistic
correction. The classical equation is

d2u0

dφ2
+ u0 =

M

p2
φ

, (10.78)

which has the solution

u0 =
M

p2
φ

(1 + e cosφ). (10.79)

Here, e is called the eccentricity of the orbit. For 0 ≤ e < 1 the orbit is an ellipse,
for e = 1 it is a parabola and for e > 1 it is a hyperbola. We are interested in
the elliptic case, therefore we will assume 0 ≤ e < 1. We can also write p2

φ/M
as

p2
φ

M
= a(1− e2), (10.80)

1This is because the r−1 and r2 potentials have an accidental symmetry in their mechanics. All
spherically symmetric systems have an SO(3) symmetry group, but for these specific potentials
there is an SO(4) symmetry.
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where a is the semi-major axis of the orbit.
Let us therefore make the ansatz

u = p−1(1 + e cosωφ) (10.81)

and assume that e is small and ω is close to 1. Inserting this into equation
(10.77) we get

p−1(1 + e(1− ω2) cosωφ) ≈ M

p2
φ

+ 3Mp−2(1 + 2e cosωφ + e2 cos2 ωφ) (10.82)

To lowest order in e we have

p =
p2

φ

2M

(
1 +

√
1− 12

M2

p2
φ

)
≈ p2

φ

M

3M

p
≈ (1− ω) = δω. (10.83)

The precession angular velocity is given by ωp = 2πδω
T where T is the classical

orbital period. From the 3rd law of Kepler, 4π2a3 = MT 2, we get finally the
precession angular velocity (with c and G inserted):

ωp =
2πδω

T
=

3(Gm)
3
2

c2(1− e2)a
5
2

. (10.84)

Here we also have written the angular momentum pφ in terms of a, m and e.
This is the correct expression in terms of e as well, even though we assumed
in our calculations that e was small.

Figure 10.4: The precession of the Mercurian orbit.

For the planet Mercury this formula predicts a precession of 43 arc seconds

Sun

df

per century (see Fig. 10.4). Even though this precession seems minute it cau-
sed problems for astronomers and physicists at that time. Of Mercury’s total
precession of approximately 500 arc seconds per century, Newtonian pertur-
bation analysis explained most of this precession as due to the other planets,
but about 40 arc seconds were unaccounted for. It was therefore a major break-

the headlines in the newspapers of the world in 1919.
43 arc seconds per century. It was another discovery however that would make
through for the General Theory of Relativity that it predicted a precession of
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Deflection of light

We will now see how light is deflected in a gravitational field. Like ordinary
matter, light is also under the influence of gravity. Since gravity curves space
itself, it is no surprise that photons travelling in space have their trajectories
curved when they move close to a massive body.

The orbit equation for light can be derived similarly as for a particle. The
only difference is that the four-velocity identity is zero: uμuμ = 0. The orbit
equation is for light

d2u

dφ2
+ u = 3Mu2. (10.85)

To lowest order we can solve the equation

d2u0

dφ2
+ u0 = 0. (10.86)

It has the solution

u0 =
1

b
cosφ, (10.87)

where b is the impact parameter. The integration constant is chosen so that φ = 0
closest to the gravitating body. Since the configuration is symmetric about this
point, we assume the perturbation is symmetric with respect to φ = 0. We thus
use the trial function

u =
1

b
(cosφ + B + A sin2 φ) (10.88)

to calculate the deflection angle to lowest order. Inserting this into equation
(10.85), we get to lowest order

1

b

(
B + 2A− 3A sin2 φ

)
=

3M

b2
(1− sin2 φ). (10.89)

Thus

B = A =
M

b
. (10.90)

The solution is therefore

u =
1

b

[
cosφ +

M

b

(
1 + sin2 φ

)]
. (10.91)

The photon flies out towards radial infinity, i.e. at u = 0. The deflection angle
δφ can therefore be determined from the equation (see Fig.10.5)

u

(
π

2
+

δφ

2

)
= 0. (10.92)

Expanding the function u around π
2 we obtain

δφ =
4M

b
. (10.93)
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Figure 10.5: The Sun’s gravitational field causes the light to deflect in the solar
neighbourhood.

For light that just barely misses the Sun’s surface the deflection angle turns
out to be δφ = 1.75′′. During a solar eclipse in 1919, two British expeditions
observed stars in the solar neighbourhood in the sky. The observers found that
the position of the stars was slightly shifted compared to their star charts. This
shift agreed with what the Theory of General Relativity had predicted. This
observation of light deflecting in the Sun’s gravitational field was seen upon
as the final breakthrough of the Theory of General Relativity. The theory was
not just a mathematical curiosity, it was a Theory that explained fundamental
properties of Nature.

10.5 Analytical extension of the Schwarzschild

The geometry of the Schwarzschild spacetime is quite intriguing and has some
nice properties which we shall explore in this section. Even though the Schw-
arzschild spacetime comes from a very simple ansatz, its geometry can be
quite complex. We will explore some of the techniques often used in general
relativity to find “exotic” spacetimes, mostly because the techniques them-
selves are highly general and are applicable to various problems related to
geometry and physics. We will first see how the spatial hypersurfaces “look
like”.

Embedding of a space-like hypersurface of the Schwarzschild
spacetime

Let us consider the three-dimensional spatial hypersurface given by t = 0 of
the Schwarzschild spacetime. The metric for this hypersurface is

dΣ2 =
dr2

1− 2M
r

+ r2(dθ2 + sin2 θdφ2). (10.94)

We will embed it in a four-dimensional Euclidean space E4. Since the metric is
spherically symmetric we use cylindrical coordinates in four dimensions. The
flat metric of the ambient space can be written

ds2 = dz2 + dr2 + r2(dθ2 + sin2 θdφ2). (10.95)

We will try to find a hypersurface in E4 which is rotationally symmetric around
the z-axis and has an induced metric equal to the metric (10.94). Since it is

spacetime

df
2b

Sun
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10.5 Analytical extension of the Schwarzschild spacetime

rotationally symmetric it should be possible, at least locally, to find a parame-
terization where the surface is given by z(r). Then, we have

dz =
dz

dr
dr. (10.96)

Thus the induced metric on the hypersurface is

dΣ2 =

(
1 +

(
dz

dr

)2
)

dr2 + r2(dθ2 + sin2 θdφ2). (10.97)

For this to coincide with the metric (10.94) we require

dz

dr
= ±

√
grr − 1. (10.98)

Integrating (choosing the positive sign) gives

z(r) =

r∫
2M

dx

√
x

x− 2M
− 1 =

√
8M(r − 2M). (10.99)

Figure 10.6: The embedding of a space-like hypersurface of the Schwarzschild
spacetime. Depicted is Flamm’s parabola which is two such hypersurfaces glued

together along the horizon.

This is half of a parabola going in the r direction. The negative sign gives

r(z) =
1

8M
z2 + 2M (10.100)

also that if we instead choose r to be a function of z we get simply

the other half of the parabola (see Fig. 10.6). The three-dimensional hyper-
surface can be either of these, they both yield the same induced metric. Note
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for both. This is Flamm’s parabola. Thus we can analytically continue the spa-
tial hypersurfaces to the whole parabola r = 1

8M z2 + 2M . Note that this sur-
face is totally regular everywhere, there is nothing particular happening at
z = 0 (r = 2M ). This expansion of the Schwarzschild spacetime is called
the Einstein-Rosen bridge. It describes two identical Schwarzschild spacetimes
with a common horizon. Since the horizon acts as a one way membrane, the
two exterior Schwarzschild solutions cannot communicate with each other. If
anything would pass though the horizon it can only end in the singularity, not
in the other “universe”.

In a previous section we showed that the horizon was only a coordinate
singularity, not a physical singularity. This fits well with the Einstein-Rosen
bridge. However, we noted that the metric could also be expanded to the in-
terior of the horizon. Both spacetimes in the Einstein-Rosen bridge are exterior
solutions so there must be something more. To find the maximally extended
Schwarzschild spacetime we must introduce a new set of coordinates which
is well-behaved at the horizon.

Eddington-Finkelstein- and Kruskal-Szekeres-coordinates

We have already noted that infalling observers do not experience anything
particular at the horizon. Let us therefore introduce a set of coordinates which
is connected to infalling/outgoing photons.

The radially travelling photons are governed by the geodesic equation
which reduces to (10.51):

dr

dt
= ±

(
1− 2M

r

)
. (10.101)

This equation can be integrated to yield

±t + r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ = C±, (10.102)

where C± are integration constants. For convenience, let us define

r∗ = r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ , (10.103)

so that

r∗ ± t = C±. (10.104)

The constant C+ uniquely tells us when the photon was sent towards the hori-
zon. We can therefore consider v ≡ C+ as our new time coordinate. Then

dt = dv − dr∗ = dv − dr

1− 2M
r

, (10.105)

which brings the Schwarzschild metric on the form

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2). (10.106)

We now have a non-singular description of particles falling inwards towards
r = 0 from spatial infinity r = ∞. These coordinates are called ingoing
Eddington-Finkelstein-coordinates.
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10.6 Charged and rotating black holes

Likewise, if we had chosen u ≡ C− as our new time coordinate we would
have gotten the metric

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2(dθ2 + sin2 θdφ2). (10.107)

These coordinates have a non-singular description of particles travelling out-
wards. Thus neither of the chosen time coordinates have a non-singular de-
scription for both outgoing and ingoing particles. Let us choose a combination

t =
1

2
(v + u) (10.108)

r∗ =
1

2
(v − u), (10.109)

so that

ds2 = −
(

1− 2M

r

)
dudv + r2(dθ2 + sin2 θdφ2). (10.110)

This does not quite take care of the problem at the horizon. However, intro-
ducing

U = −e−
u

4M (10.111)
V = e

v
4M , (10.112)

we get the result

ds2 = −32M3

r
e−

r
2M dUdV + r2(dθ2 + sin2 θdφ2). (10.113)

These coordinates are called Kruskal-Szekeres-coordinates and are the maximally
expanded Schwarzschild solution. It has no coordinate singularities except at
r = 0 which corresponds to a physical singularity. These Kruskal-Szekeres-
coordinates cover the whole spacetime and show explicitly that the horizon at
r = 2M is a mere coordinate singularity in the Schwarzschild coordinates.

interior of a “white hole” while region III is just a copy of region I.

10.6 Charged and rotating black holes

The Schwarzschild solution for empty space is perhaps the simplest possible
non-trivial solution to the Einstein equations. There are also similar solutions
which describe black holes with a cosmological constant, black holes with an
electric charge and with angular momentum. Let us investigate some of these
solutions.

The Reissner-Nordström Black Hole

The Reissner-Nordström black hole is a spherically symmetric spacetime that
has non-zero electric charge. If we start with an electromagnetic field one-form
A given by

A = −q

r
dt, (10.114)

In figure 10.7 we have illustrated the Kruskal-Szekeres diagram for

the region I, while region II is the interior of the black hole. Region IV is the
the analytically extended Schwarzschild solution. The original metric covers
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The Schwarzschild Solution and Black Holes

Figure 10.7: Kruskal-Szekeres diagram of the analytically extended Schwarzschild
solution.

then the electromagnetic field-tensor becomes

F = dA =
q

r2
dr ∧ dt. (10.115)

The energy-momentum tensor is no longer zero; the spacetime is no longer a
solution of Einstein’s field equations for empty space.

Using eq. (8.49), the non-zero components of the energy-momentum ten-
sor are

Tt̂t̂ = Tθ̂θ̂ = Tφ̂φ̂ =
q2

2r4
, Tr̂r̂ = − q2

2r4
. (10.116)

From eqs. (10.17) and (10.18) we get by adding the t̂t̂- and r̂r̂-field equations,
and integrating

α(r) = −β(r). (10.117)

Inserting this into the t̂t̂-equation, we get

1

r2

[
r
(
1− e−2β

)]′
= κ

q2

2r4
. (10.118)

This equation can be integrated to yield

e−2β = 1− 2M

r
+

Q2

r2
, (10.119)

where we have defined Q2≡ κq2. The general solution can thus be written

ds2 =−
(

1− 2M

r
+

Q2

r2

)
dt2 +

dr2

1− 2M
r + Q2

r2

+r2(dθ2 + sin2 θdφ2). (10.120)

I

II

III

IV

r = 0

t = con
stan

t

t = constant

r = 0

r = 2M
r 
= 2M

r =
 4
M

r = 2M
r 
= 2M
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10.6 Charged and rotating black holes

This metric describes a black hole with an electric charge. The electromagnetic
field tensor has a non-zero electric component. By inspecting the line-element
(10.120) we see that this spacetime has two horizons at

r = M ±
√

M2 −Q2. (10.121)

These horizons merge into to one in the extremal limit M = ±Q. For M <
|Q| there are no horizons, and the singularity at r = 0 becomes a so-called
naked singularity because it has no surrounding horizons. This is however an
unphysical situation2 so we have the bound M ≥ |Q|.

Also the coordinate singularity at the horizon for this metric can be re-
moved by introducing Kruskal-Szekeres-coordinates. The horizons are only
coordinate singularities, there are no physical singularities except at r = 0.

A spacetime is called stationary if there exists a Killing vector ξ which is asymp-
totically time-like at spatial infinity. If, in addition, this Killing vector is or-
thogonal to some space-like three-surface then we say that the spacetime is
static. The Schwarzschild and the Reissner-Nordström solutions are static, but
in the following we will only assume the spacetime is stationary. We will
consider axisymmetric spacetimes which possess an asymptotically time-like
Killing vector ξt = ∂

∂t . This spacetime will also have a two-dimensional sur-
face (2)Σ which is orthogonal to the Killing vectors ξt and ξφ = ∂

∂φ . Its metric
can therefore be written

ds2 = −V dt2 + 2Wdtdφ + Xdφ2 + e2μ
[
(dx1)2 + (dx2)2

]
(10.122)

where V , W , X and μ are functions of xA, A = 1, 2 only. A coordinate trans-
formation of the two-surface (2)Σ – which changes the coordinates xA only
– leaves the functions V , W and X invariant. Hence, they behave as scalars
under such transformations. Note also that the metric (10.122) stays invariant
under transformations

t �→ At + Bφ, φ �→ Ct + Dφ, (10.123)

with A, B, C and D constants. The determinant of the metric of the two-
dimensional surface spanned by (t, φ) is given by

−(V X + W 2) = −ρ2, (10.124)

where ρ is the coordinate distance from the axis. At the axis of symmetry,
W = X = 0, so ρ = 0. Moreover, ρ = 0 on event horizons as can be shown. In
addition, the Einstein’s field equations for empty space imply that ρ satisfies
the two-dimensional Laplace equation

(2)∇A
(2)∇Aρ = 0, (10.125)

on (2)

space (2)Σ, and, using the orthogonal direction z as the second variable, the
metric on (2)Σ can be written

ds2
2 = e2μ(ρ,z)

(
dρ2 + dz2

)
. (10.126)

2The statement that all physical singularities have to be surrounded by a horizon is referred to
as cosmic censorship.

Σ. It can be shown that ρ can be taken as a variable on the two-dimensional

equation
The axisymmetric and stationary line-element: The Ernst

,
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Introducing the metric functions h and γ by

W = hV, X = V −1ρ2 − h2V, e2μ = e2γV −1, (10.127)

the general axisymmetric metric (10.122) can be put onto the canonical form

ds2 = −V (dt− hdφ)
2
+ V −1

[
e2γ(dρ2 + dz2) + ρ2dφ2

]
. (10.128)

Henceforth, we will only consider Einstein’s equations for empty space,
Rμν = 0. After a long algebraic manipulation, the form of the vacuum equa-
tions can be deduced. Those involving V and h are

V ∇̄α∇̄αV =
(∇̄αV

) (∇̄αV
)− ρ−2V 4

(∇̄αh
) (∇̄αh

)
(10.129)

∇̄α
(
ρ−2V 2∇̄αh

)
= 0. (10.130)

Here, the Greek indices and the covariant derivative ∇̄α are with respect to
the fictitious Euclidean metric

ds2
3 = ρ2dφ2 + dρ2 + dz2. (10.131)

Eq. (10.130) can be written, using the metric (10.131),

∂

∂xα

(
ρ−1V 2 ∂h

∂xα

)
= 0. (10.132)

This implies that there exists a “potential” Φ′ which is a function of ρ and z
only, such that

ρ−1V 2 ∂h

∂xα
= εφαβ ∂Φ′

∂xβ
, (10.133)

where εγαβ is the totally antisymmetric tensor with εφρz = 1. Redefining Φ =
−Φ′ we can write this as

V −2 ∂Φ

∂xα
= −ρ−1εαφβ

∂h

∂xβ
, (10.134)

which implies that eq. (10.130) can be written

∇̄α

(
V −2 ∂Φ

∂xα

)
= 0. (10.135)

Further, this makes it possible to write eq. (10.129) as

∇̄α

[∇̄α(V 2 + Φ2)

V 2

]
= 0. (10.136)

Introducing the complex function ξ by

ξ − 1

ξ + 1
= V + iΦ, (10.137)

eqs. (10.135) and (10.136) are encompassed in the single equation

(ξξ∗ − 1) ∇̄α∇̄αξ = 2ξ∗
(∇̄αξ

) (∇̄αξ
)
, (10.138)
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where ∗ denotes complex conjugation. This equation is called the Ernst equa-
tion.

The Einstein equations for empty space are replaced in the axisymmetric
and stationary case by the Ernst equation. By finding solutions to the Ernst
equation we find the metric functions V and h (via Φ). The remaining metric
function γ can be determined from the remaining field equations, which are
equivalent to the equations

∂γ

∂ρ
=

ρ

(|ξ|2 − 1)2

(
∂ξ

∂ρ

∂ξ∗

∂ρ
− ∂ξ

∂z

∂ξ∗

∂z

)
∂γ

∂z
=

2ρ

(|ξ|2 − 1)2
Re

(
∂ξ

∂ρ

∂ξ∗

∂z

)
. (10.139)

An important class of solutions to the Ernst equation is when ξ is of the
form

ξ = eiα coth ψ, (10.140)

where α is a constant, and ψ is a real function of ρ and z only. The function ψ
obeys the linear differential equation

∇̄α∇̄αψ = 0. (10.141)

The Ernst equation, eq. (10.138), on the other hand is not linear, and thus for
any two solutions ξ1 and ξ2, the coefficients α1 and α2 need to be constrained
if the linear combination ξ = α1ξ1 + α2ξ2 is to be a solution.

The Kerr metric

The Kerr metric is due to Roy Kerr who in 1963 found an axisymmetric and
stationary solution to Einstein’s field equations for empty space [Ker63]. A

+65], but we
will only consider the Kerr solution here. We will derive this solution us-
ing the Ernst equation to illustrate how one can generate solutions using this
equation.

It is useful to introduce spheroidal coordinates x, y which are related to
cylindrical ones ρ, z by

ρ = k
√

(x2 − 1)(1− y2)

z = kxy, (10.142)

where |y| < 1 < |x| and k is a constant scale factor. The two-dimensional flat
metric becomes in these coordinates

dρ2 + dz2 = k2(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
. (10.143)

The surfaces of constant x and y are families of spheroids and hyperboloids,
respectively. Using these coordinates the Ernst equation, eq. (10.138), can be
written

(ξξ∗ − 1)

{
∂

∂x

[
(x2 − 1)

∂ξ

∂x

]
+

∂

∂y

[
(1− y2)

∂ξ

∂y

]}
= 2ξ∗

[
(x2 − 1)

(
∂ξ

∂x

)2

+ (1 − y2)

(
∂ξ

∂y

)2
]

. (10.144)

couple of years later it was generalized by Newman et al. [NCC
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Let us seek solutions of the form

ξ = px + qy, (10.145)

where p, q are complex constants. Inserting this trial function into eq. (10.144)
yields

px− qy = (p∗x + q∗y)(p2 − q2), (10.146)

which is equivalent to

p = p∗(p2 − q2)

q = −q∗(p2 − q2). (10.147)

change of phase: ξ �→ eiαξ. Thus there is no loss of generality to assume that
p = P where P is real.

Eq. (10.147) now implies q = ±iQ where Q is real, and

P 2 + Q2 = 1. (10.148)

The sign ambiguity in q corresponds to choosing the complex conjugate of ξ.
Choosing q = −iQ, eq. (10.145) yields

ξ = Px− iQy. (10.149)

The functions V and Φ can now be found from eq. (10.137):

V =
P 2x2 + Q2y2 − 1

(Px + 1)2 + Q2y2
(10.150)

Φ = − 2Qy

(Px + 1)2 + Q2y2
. (10.151)

It remains to find the metric functions h and γ. Eq. (10.133) relates Φ, V and h:

√
x2 − 1

∂Φ

∂x
=

V 2

ρ

√
1− y2

∂h

∂y

−
√

1− y2
∂Φ

∂y
=

V 2

ρ

√
x2 − 1

∂h

∂x
. (10.152)

Inserting for V and Φ gives

∂h

∂y
=

4k(x2 − 1)PQy(Px + 1)

(P 2x2 + Q2y2 − 1)2

∂h

∂x
=

2k(1− y2)Q
[
(Px + 1)2 −Q2y2

]
(P 2x2 + Q2y2 − 1)2

, (10.153)

which, upon integration, yields

h = −2kQ

P

(Px + 1)(1− y2)

(P 2x2 + Q2y2 − 1)
. (10.154)

Here, the integration constant has been determined by requiring that h van-
ishes on the axis of symmetry (y = ±1).

We can first note that the Ernst equation, eq. (10.138), is invariant under a
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It remains only to find γ. We define a new variable by the relation

e2γ′

= e2γ(x2 − y2). (10.155)

Eq. (10.139) can now – through a lengthy but straightforward calculation – be
written

∂γ′

∂y
=

Q2y

P 2x2 + Q2y2 − 1

∂γ′

∂x
=

Q2x

P 2x2 + Q2y2 − 1
. (10.156)

Integration yields

e2γ′

= C(P 2x2 + Q2y2 − 1), (10.157)

where C is an integration constant which will be determined later. All the
metric functions are now determined. Using eqs. (10.142) and (10.155), the
line element (10.128) can be written

ds2 = −V (dt− hdφ)
2
+ V −1

[
k2e2γ′

(
dx2

x2 − 1
+

dy2

1− y2

)
+ ρ2dφ2

]
. (10.158)

Due to the constraint (10.148) the metric depends on 2 parameters only. Let
these be a and M and make the following parameter change

P =

√
1− a2

M2
, Q =

a

M
, k =

√
M2 − a2. (10.159)

Introducing Boyer-Linquist coordinates r and θ by

r =
(
M2 − a2

)1/2
x + M

θ = arccos y, (10.160)

the metric functions become

V =
Δ− a2 sin2 θ

Σ
(10.161)

h = − 2Mar sin2 θ

Δ− a2 sin2 θ
(10.162)

e2γ′

=
C

M2
(Δ− a2 sin2 θ), (10.163)

where we have defined

Σ = r2 + a2 cos2 θ

Δ = r2 + a2 − 2Mr. (10.164)

Finally, choosing C = M2/(M2 − a2) the metric can be written

ds2 = −Δ− a2 sin2 θ

Σ
dt2 − 4Mar sin2 θ

Σ
dtdφ

+
Σ

Δ
dr2 +

[
(r2 + a2)2 −Δa2 sin2 θ

Σ

]
sin2 θdφ2 + Σdθ2. (10.165)
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This metric is called the Kerr metric. The physical interpretations of M and
a are found in problem 9.3. The Kerr metric describes the spacetime outside
a rotating mass distribution with mass M and angular momentum J = Ma.
When a = 0 this metric reduces to the ordinary Schwarzschild vacuum so-
lution, eq. (10.24). It behaves properly everywhere except where Δ = 0 or
Σ = 0. The equation Δ = 0 describes a horizon and is no real singularity.
However, the set of points given by the equation

Σ = r2 + a2 cos2 θ = 0 (10.166)

can by evaluation of curvature invariants like the Kretchmann scalar, for M �=
0 be shown to be physical singularities. It seems a bit strange that the only
solution to this equation is for r = 0, θ = π

2 . However, despite its immediate
appearance, this is a ring singularity. If we set M = 0 and make the coordinate
transformation

z = r cos θ

R =
√

r2 + a2 sin θ, (10.167)

we recover Minkowski space in cylindrical coordinates. Thus for M = 0 the
singularity r = 0, θ = π

2 is no physical singularity, but merely a coordinate
singularity. Since this set is a ring, the claim that the singularity for M �= 0
is a ring singularity is reasonable. This also tells us that we should not trust
blindly on the apparent topology for a spacetime based on some choice of
coordinates.

The exterior solution of Δ = 0 is

r+ = M +
√

M2 − a2, (10.168)

which is the radius of the horizon. The area of the horizon is

A =

∫
ωθ̂ ∧ ωφ̂ = (r2

+ + a2)

π∫
0

sin θdθ

2π∫
0

dφ = 4π(r2
+ + a2). (10.169)

Figure 10.8: The ergosphere in the Kerr spacetime.

Stationary observers have a four-velocity proportional to the Killing vector
ξt = ∂

∂t which in a Kerr spacetime has norm

ξμξμ = gtt = −Δ− a2 sin2 θ

Σ
. (10.170)

Ergosphere

J
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This becomes positive whenever

r2 + a2 cos2 θ − 2Mr < 0. (10.171)

If a �= 0, part of this region is outside the horizon at r+. This region of the Kerr

r+ < r < rS , (10.172)

where rS = M +
√

M2 − a2 cos2 θ, all particles and observers have to be
dragged along around the black hole, they simply cannot remain stationary
even though they are outside the black hole. The rotation drags the space
surrounding it along with it. The surface r = rS is thus called the stationary
limit.

This inertial dragging can be seen if we consider a freely falling observer in
a Kerr spacetime. We use the Lagrangian

L =
1

2

(
ds

dτ

)2

(10.173)

and the metric (10.165). Since φ is a cyclic coordinate, its canonical momentum
is a constant of motion

pφ =
∂L
∂φ

= gtφṫ + gφφφ̇ = gφφṫ(Ω− ω) (10.174)

where

Ω =
dφ

dt
(10.175)

ω = − gtφ

gφφ
=

a(r2 + a2 −Δ)

(r2 + a2)2 −Δa2 sin2 θ
(10.176)

As r −→ ∞, ω −→ 0. Thus if pφ = 0 at infinity, the infalling observer will
experience an angular velocity given by

Ω =
dφ

dt
= ω (10.177)

The Kerr spacetime in these coordinates is stationary, so an observer at infinity
observes that the infalling particle obtains an angular velocity. Since the in-
falling observer carries a local inertial frame, local inertial frames are dragged
around the source of the Kerr spacetime in the same direction as the source ro-
tates. Furthermore, because pφ = 0, we say that the infalling observer is a zero
angular momentum observer (ZAMO). In spite of this, the observer experiences
an inertial dragging effect from the rotating body.

If we consider a satellite in a polar orbit around the Earth, the orbit of the
satellite will precess due to the rotation of Earth. The Earth’s diurnal rotation
causes the space surrounding the Earth to be “dragged along” with it. The
orbit of the satellite will therefore experience an inertial dragging of its orbit,
and the orbit will precess in the same direction as the Earth’s rotation. This
effect is called the Lense-Thirring effect.

,

,

spacetime is called the ergosphere (see Fig. 10.8). Thus if an observer is to re-

This is of course impossible. Thus in the region given by
main stationary in this region, he has to travel faster than the speed of light.

.

.
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Example 10.3 (The Lense-Thirring effect)Example

be approximated by

ω ≈ 2Ma

r3
. (10.178)

Considering a satellite in orbit around the Earth, we get

ω ≈ 2GJE

r3
= 0.2

„
RE

r

«3

, (10.179)

where JE and RE is the Earth’s angular momentum and radius respectively. For the
LAGEOS and LAGEOS II satellites the precession is about 1/20 arc seconds per year.
During a period of 4 years this rotation of the orbital plane has been measured with
20% accuracy [CPC+98, CCV97, Ciu02]. This confirms that the space outside the Earth
can be considered a Kerr spacetime.

The Penrose process

We shall here see how the rotational energy can be extracted from a rotating
black hole [Pen69].

The energy of a free particle as measured by an observer in the asymp-
totic Minkowski spacetime far from the black hole is E = −pt where pt is
the covariant momentum conjugate to the time coordinate. Since the metric
is stationary, t is a cyclic coordinate, and hence E is a constant of motion. As
decomposed in an orthonormal ZAMO-field, et has a t̂-component and a φ̂-
component. Hence,

E = pt̂ωt̂(et)− pφ̂ωφ̂(et). (10.180)

Since p is time-like, pt̂ > pφ̂. If et is time-like, then ωt̂(et) > ωφ̂(et) and thus
E > 0. If et is space-like, then ωt̂(et) < ωφ̂(et) which permits E � 0.

Outside the stationary limit, gtt = et · et < 0. In this region et is time-like.
Since p is time-like, E is positive here. However, for r+ < r < rS (in the
ergosphere), gtt > 0, and et is space-like. In the ergosphere there exist paths
of particles with negative energy, i.e. the gravitational binding energy of the
particle can be larger than the sum of its mass-energy and kinetic energy.

In order to find the paths of the particles with negative energy we decom-
pose their four-velocity in an orthonormal ZAMO basis,

et̂ = e−ν (et + ωeφ) , er̂ = e−μer,

eθ̂ = e−λeθ, eφ̂ = e−ψeφ, (10.181)

where

e2ν = gtt + ω2e2ψ, e2μ = grr, e2λ = gθθ,

e2ψ = gφφ, ω = − gtφ

gφφ
. (10.182)

Thus et = eνet̂ − ωeψeφ̂. The four-velocity of the particle is

u = uμ̂eμ̂ = γ̂(1, v̂) = γ̂
(
et̂ + vφ̂eφ̂

)
, (10.183)

(see also section 9.4) In the weak-field approximation the angular velocity (10.176) can
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where γ̂ =
(
1− v̂2

)−1/2 is the usual relativistic factor used by an observer at
rest in the orthonormal basis field. This gives for the four-momentum of the
particle,

p = mu = γ̂m
(
et̂ + vφ̂eφ̂

)
. (10.184)

The energy of the particle is

E = −p · et = γ̂m
(
eν + vφ̂ωeψ

)
. (10.185)

Hence, the energy of the particle is negative if

vφ̂ < − 1

ω
eν−ψ = − ρ2Δ1/2

2Mar sin θ
. (10.186)

Such solutions are permitted in the ergosphere.
The following process is possible. A rocket ship moves into the ergosphere

and fires a particle that enters a path with negative energy. Hence, the rocket
ship emits a negative energy and thereby increases its energy. The rocket ship
then moves away from the black hole with greater energy than when it entered
the ergosphere. In this way it has extracted energy away from the Kerr black
hole. The particle with negative energy is absorbed by the black hole. It has
vφ̂ < 0, meaning that it rotates around the black hole in the opposite sense of
the black hole. Absorbing this particle the rotational energy of the black hole
decreases. Thus, the Penrose process is a mechanism for extracting rotational
energy from a rotating black hole.

Before leaving this topic we shall discuss the question “Can particles really
leave the ergosphere?” and try to understand how this can happen [Sch85].

Let us consider a photon moving in the equatorial plane of a Kerr black
hole. The equation p · p = 0 applied to this photon gives

−e−2νE2 + e−2ν2ωpφE +
(
e−2ψ − ω2e−2ν

)
p2

φ + e−2μp2
r = 0. (10.187)

Since pr = e2μṙ we obtain

ṙ2 = e−2(μ+ν)
[
E2 − 2ωpφE +

(
ω2 − e2ν−2ψ

)
p2

φ

]
, (10.188)

which may be factorized as

ṙ2 = e−2(μ+ν)(E − V+)(E − V−), (10.189)

where

V± = ωpφ ± eν−ψ |pφ| = 2Mapφ ± rΔ1/2 |pφ|
r3 + a2r + 2Ma2

. (10.190)

If there exist photon paths with a minimum for r in the ergosphere, the
photons will be able to move outwards in the ergosphere. Then there will
exist photon paths connecting an emitter in the ergosphere with an observer
outside it. This requires E ≤ V+ or E ≤ V−.

Also, the energy of a photon as measured by an arbitrary observer must be
positive. Consider a ZAMO-observer with four-velocity U = U0 (et + ωeφ).
As measured by this observer the energy of the photon is

Ê = −p ·U = U0 (E − ωpφ) . (10.191)
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Figure 10.9: Effective potentials of a photon moving in the equatorial plane of a Kerr
black hole. The photon moves in the same direction as the black hole rotates.

Hence, the constant energy measured by a far away observer must fulfill E ≤
ωpφ, which also requires E ≤ V+.

Consider a photon with angular velocity in the same direction as the black
hole rotates. Then apφ > 0 and V±(r) has the form shown in Fig. 10.9. At
equator θ = π/2 and the surface of infinite redshift is at r0 = 2M . All paths
with E = E2 > V+ have E > 0.

In the case of a photon with angular velocity in the opposite direction
apφ < 0 and V±(r) has the form shown in Fig. 10.10. In this case there exist

Figure 10.10: Effective potentials of a photon moving in the equatorial plane of a Kerr
black hole. The photon moves in the opposite direction as the black hole rotates.

paths in the ergosphere with E > V+ and E < 0. From Fig. 10.10 it is seen that
this photon cannot move out of the ergosphere.

We thus have an electromagnetic version of the Penrose process. Two rays
of electromagnetic radiation are emitted from a position in the ergosphere
both with E > V+, one with E = E1 < 0, and the other with E = E2 > 0. The
first will be absorbed by the black hole and reduce its rotational energy, and
the other will extract energy from the black hole.

It may be noted that an observer at the stationary limit, which is a surface
of infinite redshift, will measure an infinitely large frequency for the radiation.

r

V(r) E2

r0
r+

V+(r)

V−(r)
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V+(r)

r0
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10.7 Black Hole thermodynamics

We have seen how black holes in the General Theory of Relativity act as a one-
way membrane for particles and light. Matter can only go into a black hole,
it cannot get out. A black hole is black, it does not radiate anything accord-
ing to general relativity. The physicists were therefore quite surprised when
Stephen Hawking discovered that black holes do actually radiate. This is due
to quantum effects. When quantum mechanics is applied in areas where the
gravity is strong like in the neighbourhood of a black hole horizon, it implies
that an observer will see that black body radiation, usually of extremely low
temperature, is being emitted from the black hole.

The first sign of a such a property was when Bekenstein [Bek73] conjec-
tured that black holes have an entropy proportional to the black hole’s surface
area. Later Hawking took this idea seriously, discovered that black holes ra-
diates and gave an exact relation between the entropy of the black hole and
its surface area [Haw75]. The four laws of black hole thermodynamics were
completed just a few years later by Gibbons and Hawking [GH77]. We will
in this section review their results, but first we need to introduce the concept
surface gravity.

Surface Gravity

The surface gravity is an expression of the acceleration of gravity at the hori-
zon of a black hole. It can be defined and calculated in terms of the Killing
vector which is orthogonal to the horizon, or alternatively, in terms of the
four-acceleration and four-velocity of a free particle. Both procedures will be
demonstrated. First we shall calculate the surface gravity of a Schwarzschild
black hole by the Killing vector method, then that of a Kerr metric using the
four-acceleration of a free particle.

The surface gravity of a Schwarzschild black hole

The horizon of a black hole is a null surface. This can most easily be seen by
considering the black hole in Kruskal coordinates. That a surface is a null
surface means that any vector normal to the surface is a null vector. Let us
consider the Killing vector that generates time translations, ξ = ξμeμ. In the
Schwarzschild spacetime this vector is simply ξ = et. This Killing vector is
normal to the horizon so that3 ξμξμ = 0. More specifically, ξμξμ is constant on
the horizon, thus the gradient∇α (ξμξμ) is also normal to the horizon. Hence,
there exists a function κ called the surface gravity such that

∇α (ξμξμ) = −2κξα. (10.192)

This equation can be rewritten

ξν∇μξν = −ξν∇νξμ = −κξμ. (10.193)

A vector ξμ is hypersurface orthogonal if4

ξ[μ∇νξρ] = 0, (10.194)

3Note that in the Kerr spacetime this Killing vector’s obvious generalization – also given by a
pure time translation – is not orthogonal to the horizon. In the Kerr case we have to use another
Killing vector which is a linear combination of ∂

∂t
and ∂

∂φ
.

4This follows from Frobenius’ Theorem, see problem 7.12.
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evaluated on the hypersurface. For a Killing vector, ∇μξν = −∇νξμ, so

ξρ∇μξν = −2ξ[μ∇ν]ξρ (10.195)

evaluated on the horizon. Contracting with ∇μξν , we obtain

ξρ(∇μξν)(∇μξν) = −2(∇μξν)(ξ[μ∇ν]ξρ) = −2κξμ∇μξρ = −2κ2ξρ, (10.196)

found from

κ2 = −1

2
(∇μξν)(∇μξν) (10.197)

evaluated at the horizon. Since the Schwarzschild metric is diagonal we have

ξμ = δμ
t , ξμ = δμtgtt. (10.198)

The covariant derivative,∇μξν , is given in terms of the Christoffel symbols

∇μξν = ξν,μ − Γα
νμξα. (10.199)

The only nonzero ξν,μ is ξt,r = gtt,r since the metric components are dependent
on r only. From Killing’s equation, eq. (6.297),

∇μξν = −∇νξμ, (10.200)

and – since in a coordinate basis the connection coefficients are symmetric in
the lower indices – the only nonzero ∇μξν can be ∇rξt and∇tξr. Thus

∇rξt = ξt,r − Γt
trξt = −(ξr,t − Γt

trξt) = −∇tξr. (10.201)

Since ξr,t = 0 and

Γt
tr = +

1

2
gttgtt,r (10.202)

we get

κ =

√
−1

2
(∇μξν)(∇μξν) =

√
−1

4
grrgtt (gtt,r)

2
. (10.203)

Evaluating this at r = 2M the surface gravity of a Schwarzschild black hole is

κ =
1

4M
. (10.204)

The surface gravity of a Kerr black hole

Consider a particle with four-velocity u = ut(et + ωeφ). The components of
its four-acceleration are aμ = uμ

;νuν . The surface gravity is defined by

κ ≡ lim
r→r+

a

ut
, a = (aμaμ)

1
2 . (10.205)

Here, r+ is the radial coordinate of the horizon. The reason why we divide
by ut = dt/dτ is that the acceleration scalar is velocity change per unit time

where we have used eq. (10.193) successively. The surface gravity can thus be
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as measured by a clock moving along with the particle. Due to gravitational
time dilatation this clock stands still at the horizon. Hence, a diverges here.

We now consider a particle moving along a path with constant r and θ, and
with a constant angular velocity Ω = uφ/ut. The four-velocity of the particle
has components

uα =
[− (gtt + 2gtφΩ + gφφΩ2

)] 1
2 (1, Ω). (10.206)

Furthermore, the components of the four-acceleration are

aα =
(
uα

,ν + Γα
μνuμ

)
uν . (10.207)

Since ur = uθ = 0, ut
,t and Ω = constant we have uα

,νuν = 0. Hence, the
components are

aα =
(
Γα

tt + 2Γα
tφΩ + Γα

φφΩ2
) (

ut
)2

= −1

2
gαμ
(
gtt,ν + 2gtφ,νΩ + gφφ,νΩ2

)
= −1

2

(
ut
)2( 1

ut

)2

,μ

gμα = − (ln ut
)
,μ

gμα. (10.208)

The acceleration scalar is thus

a =

{
grr
[(

ln ut
)
,r

]2
+ gθθ

[(
ln ut

)
,θ

]2} 1
2

. (10.209)

velocity is Ω = −gtφ/gφφ. Using the expressions for the components of the
metric tensor and differentiating gives

(
ln ut

)
,θ

=
Mra2(r2 + a2) sin 2θ

ρ2
[
(r2 + a2)2 −Δ2 sin2 θ

] , (10.210)

(
ln ut

)
,r

=
ρ2(r −M)(r2 + a2)2

Δρ2
[
(r2 + a2)2 −Δ2 sin2 θ

]
−
[
rΔa2 sin2 θ + 2rρ2(r2 + a2)− r(r2 + a2)2

]
ρ2
[
(r2 + a2)2 −Δ2 sin2 θ

] . (10.211)

At the horizon, Δ = 0, and the acceleration scalar is

a+ =
r+ −M

ρ+Δ
1
2

. (10.212)

Moreover, the time component of the four-velocity at the horizon is

ut
+ =

r2
+ + a2

ρ+Δ
1
2

. (10.213)

Hence, the surface gravity of a Kerr black hole can be written

κ =
r+ −M

2Mr+
=

√
M2 − a2

2M
(
M +

√
M2 − a2

) . (10.214)

We now specialise to a zero-angular-momentum particle; i.e., the angular
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The Four Laws of Black Hole Thermodynamics

The expression (10.214) shows that the surface gravity has no angular depen-
dence. The zeroth law of black hole thermodynamics follows immediately.

• 0th law: κ is constant over the horizon of a black hole.

The first law of black hole thermodynamics is an expression of the energy
conservation formulated in a similar way as the first law in ordinary thermo-
dynamics. From eqs. (10.168) and (10.169) follow that the area of the horizon
is

A = 8π
(
M2 −

√
M4 − J2

)
. (10.215)

Due to a variation dM of its mass and dJ of its spin, the horizon area of a Kerr
black hole changes by

dA = 8π

(
2
M
√

M4 − J2 + M3

√
M4 − J2

dM − J√
M4 − J2

dJ

)
. (10.216)

Inserting the expression (10.214) of the surface gravity, and the angular veloc-
ity at the horizon given by

Ω ≡ ω(r+) =
a

r2
+ + a2

=
Jκ√

M4 − J2
, (10.217)

eq. (10.216) takes the form

dA =
8π

κ
(dM − ΩdJ) . (10.218)

This may be written

• 1st law:

dM =
κ

8π
dA + ΩdJ, (10.219)

or in S.I. units

d(mc2) =
κc2

8πG
dA + ΩdJ. (10.220)

This is the 1st law of black hole thermodynamics. ΩdJ is the work performed
upon a black hole when its spin changes by dJ . Comparing with the first law
of ordinary thermodynamics,

dU = TdS + dW, (10.221)

Bekenstein [Bek74] tentatively suggested that one can associate a temperature
T and entropy S with a black hole, such that T ∝ κ and S ∝ A.

We shall go on and deduce the black hole analogue of the second law of
black hole thermodynamics. We consider a free particle moving into a Kerr
black hole. Since the Kerr metric is independent of the angular coordinate φ,
the momentum pφ of the particle is a constant of motion. This is utilized by
writing

p · p = gμνpμpν = −m2, (10.222)
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where m is the mass of the particle. Writing out this equation we get

−e−2νE2 + e−2ν2ωpφE +
(
e−2ψ − ω2e−2ν

)
p2

φ

+e−2μp2
r + e−2λp2

θ = −m2, (10.223)

where E = −pt is the constant energy of the particle. The solution of this
equation corresponding to E = +m for a particle at rest in the asymptotic
far-away region is

E = ωpφ + eν
(
e−2φp2

φ + e−2μp2
r + e−2λp2

θ + m2
) 1

2 . (10.224)

Absorbing the particle the mass of the black hole changes by δM = E
and its spin by δJ = pφ. Both δM and δJ may be either positive or negative.
Since the particle has to pass through the horizon at r = r+, we can calculate
its energy by putting r = r+ in eq. (10.224). On the horizon we also have
eν = 0. Hence, only terms in the square root that diverge at the horizon will
contribute. The only such term is e−2μp2

r = m(ρ2/Δ)ṙ2 since Δ = 0 at the
horizon. Thus,

δM = ω(r+)δJ + m

(
ρ2

Σ
|ṙ|
)

r+

, (10.225)

where ω(r+) = a/(r2
+ + a2). This gives

δM =
aδJ + r2

+

r2
+ + a2

+
a2 cos2 θ

r2
+ + a2

m|ṙ|r+ . (10.226)

The change of mass is smallest if ṙ = 0 at the horizon. In this case the process
is called reversible. Hence, for a reversible process,

MdM =
JdJ

r2
+ + a2

. (10.227)

Using r2
+ + a2 = 2M

(
M +

√
M2 − a2

)
, the above equation takes the form

MdM =
JdJ

2M
(
M +

√
M2 − a2

) . (10.228)

Integrating and rearranging gives

M =
MI√

1− a2

4M2
I

, (10.229)

where MI is a constant of integration. From eq. (10.229) it is seen that MI is
the mass of a black hole with a = 0; i.e. a non-rotating black hole. MI is called
the irreducible mass of a Kerr black hole since it is the mass that remains when
all the rotational energy of the black hole is extracted by means of the Penrose
process.

Inverting eq. (10.229) gives

M2
I =

1

2

(
M2 +

√
M4 − J2

)
. (10.230)
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Hence,

MIδMI =
(r2

+ + a2)MδM − JδJ

4
√

M4 − J2
. (10.231)

I = 0.
For irreversible processes δMI > 0. The irreducible mass of a black hole can-
not decrease by any non-quantum mechanical process. Eq. (10.230) may be
written

M2
I =

1

4

(
r2
+ + a2

)
=

A

16π
. (10.232)

Then we can state the second law of black hole thermodynamics:

• 2nd law: No classical process can make the horizon area of a black hole decrease.

The third law of ordinary thermodynamics states that no system in ther-
modynamic equilibrium can have negative temperature. The corresponding
law of black hole thermodynamics is an expression of the existence of a cosmic
censorship: No naked singularity with J > M2 may exist.

This follows from the expressions of the surface gravity and the horizon.
A black hole with T = 0 has κ = 0; hence, r+ = M . This corresponds to an
extreme Kerr black hole with J = M2. If J2 > M then κ and T would be
negative, and the horizon would vanish. This is not possible according to the
third law of black hole thermodynamics.

Hawking radiation from a black hole

The tentative formulation of black hole thermodynamics by J. Bekenstein got
physical contents through a discovery by S.W. Hawking [Haw75]. Applying
quantum field theory to the curved spacetime of a black hole he found that
the black hole emits electromagnetic radiation with a temperature

T =
�κ

2πkBc
, (10.233)

where � is the reduced Planck constant and kB is the Boltzmann constant. In
the case of a Schwarzschild black hole this expression reduces to

T =
�c3

8πGkBm
. (10.234)

Inserting the values for the constants gives T = 10−7 (mSun/m)K, where mSun

is the mass of the Sun. The formula shows that the temperature of a black hole

giving away mass by radiation increases its temperature.
The energy loss when it radiates is given by the Stefan-Boltzmann law,

− Ė

A
= σT 4, (10.235)

where σ is Stefan-Boltzmann’s constant. Integration of this equation is left to
problem 10.4. It yields the following mass as a function of time:

m(t) =
(
m3

0 − 3Kt
) 1

3 , K =
�c4

15360πG2
, (10.236)

For reversible processes dM is given by eq. (10.228) which implies dM

increases with decreasing mass. Hence, a black hole has negative heat capacity;
with mass like that of the Sun is extremely low. However, the temperature
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where m0 ≡ m(0). At a point of time, t1 = m3
0/3K the black hole vanishes

in a great flash. Hawking speculated whether we might observe such flashes
from mini-black holes created shortly after the big bang and exploding now.
Putting t1 = t0 = 1018s, the age of the universe, we find m0 = 1012kg (see
problem 10.4). For such black holes, we can write

m(t) =

(
1− t

t0

) 1
3

m0. (10.237)

Let Δt be the time interval from an arbitrary point of time t to the hole has
exploded at t0. Then t = t0 −Δt, which gives

m(t) =

(
Δt

t0

) 1
3

m0. (10.238)

Inserting Δt = 1s gives m = 106kg. During the last second the black hole
radiates energy amounting to mc2 = 1023J. Hence, the average effect during
the last second is 1023W.

tropy, S, given by

SBH =
1

4

kBc3

G�
A. (10.239)

This black hole entropy comes in addition to the ordinary entropy of the mat-
ter. This entropy completes the picture of the black hole as a thermodynami-
cally interacting system.

Figure 10.11: Hawking radiation: particle-anti-particle pair production in the
neighbourhood of a black hole.

From eqs. (10.220), (10.221) and (10.233) the black hole possesses an en-

The radiation from a black hole has the name Hawking Radiation and is due
to random processes in the quantum fields near the horizon (see Fig. 10.11).
A striking thing about the radiation and the property of the black hole itself
is that the black hole is completely determined by three parameters: the mass
M , the charge Q and the angular momentum J . Thus the black hole is emitting
equal amounts of matter and antimatter! If a star in our universe which

hole huge amounts of information is lost in this process.
almost entirely consists of matter (and not antimatter) is collapsing into a black

B
la

ck
 H

ol
e

e−

e−

e−

e−

e+

e+

e+

e+

251



The Schwarzschild Solution and Black Holes

10.8 The Tolman-Oppenheimer-Volkoff equation

Until now we have only considered solutions for empty space (except the
Reissner-Nordström black hole). An equally interesting task is to study solu-
tions of the Einstein field equations in, for example, the interior of stars. Since
the interior of stars is a highly complex system we have to do quite a few sim-
plifications. In spite of these simplifications, some of the results obtained are
quite fascinating and interesting; for example, they provide an upper limit on
the mass of a star for it to avoid collapse to a black hole.

We consider the Einstein field equations inside a static, spherically sym-
metric distribution of perfect fluid. The line-element can be written

ds2 = −e2αdt2 + e2βdr2 + r2(dθ2 + sin2 θdφ2), (10.240)

where α = α(r) and β = β(r). This is the same form as for the exterior
Schwarzschild solution. In an orthonormal frame Einstein’s field equations
are

Eμ̂ν̂ = 8πGTμ̂ν̂ . (10.241)

The left hand side of these equations has already been calculated, while the
right-hand side is diagonal

Tμ̂ν̂ = diag(ρ, p, p, p), (10.242)

where ρ = ρ(r) and p = p(r). The t̂t̂-component is

1

r2

d

dr

[
r
(
1− e−2β

)]
= 8πGρ. (10.243)

Introducing the mass inside a spherical shell of coordinate radius r by

m(r) =

r∫
0

4πρ(r)r2dr, (10.244)

the solution can be written as

e−2β = (grr)
−1 = 1− 2Gm(r)

r
. (10.245)

Comparing this with the vacuum case, we see that this is of a similar form,
except that the mass in this case is r-dependent.

From the r̂r̂-equations we get

2

r
α′e−2β − 1

r2

(
1− e−2β

)
= 8πp. (10.246)

Inserting the solution for β and rearranging, we end up with the equation for
α:

dα

dr
= G

m(r) + 4πr3p(r)

r(r − 2Gm(r))
. (10.247)

To relate the p(r) and the ρ(r) we can use that the energy-momentum tensor
has to be divergence free, i.e. T μ̂

ν̂;μ̂ = 0. If we let ν̂ = r̂, then

T μ̂
r̂;μ̂ = T μ̂

r̂,μ̂ − Γρ̂
r̂μ̂T μ̂

ρ̂ + Γρ̂
μ̂ρ̂T

μ̂
r̂ = 0. (10.248)
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The first term of this equation is simply

T μ̂
r̂,μ̂ = T r̂

r̂,r̂ = e−β dp

dr
. (10.249)

Using the connection forms eq. (10.11) we can write

−Γρ̂
r̂μ̂T μ̂

ρ̂ + Γρ̂
μ̂ρ̂T

μ̂
r̂ = −Γρ̂

r̂ρ̂T
ρ̂
ρ̂ + Γρ̂

r̂ρ̂T
r̂
r̂

= −Ω
ρ̂
r̂(eρ̂)T

ρ̂
ρ̂ + Ω

ρ̂
r̂(eρ̂)T

r̂
r̂

= e−β(p + ρ)
dα

dr
. (10.250)

So,

dp

dr
+ (p + ρ)

dα

dr
= 0. (10.251)

Inserting the equation for dα
dr we get the Tolman-Oppenheimer-Volkoff (TOV)

equation:

dp

dr
= −G(p + ρ)

m(r) + 4πr3p(r)

r(r − 2Gm(r))
. (10.252)

In the Newtonian limit (p � ρ, Gm(r) � r) the TOV equation reduces to the
equation of hydrostatic equilibrium

dp

dr
≈ −G

ρm(r)

r2
. (10.253)

In order to see more clearly how the relativistic corrections appear in the TOV-
equation we may write it in the form

dp

dr
= −G

ρm(r)

r2

(
1 +

p

ρ

)(
1 + 3

p

ρ̄

)(
1− rS

r

)−1

, (10.254)

where ρ̄ = (3/r3)
∫ r

0 ρ(r)r2dr, and rS = 2Gm(r) is the Schwarzschild radius
of the mass inside r.

Note that the relativistic correction factors are all greater than one. This

10.9 The interior Schwarzschild solution

Let us now consider an incompressible star with radius R, i.e. we consider a
density distribution

ρ(r) = ρ = constant (10.255)

for r ≤ R. The mass function then becomes

m(r) =
4

3
πρr3. (10.256)

In the Newtonian limit the equation for the pressure yields

pN (r) =
2

3
πGρ2(R2 − r2), (10.257)

means that the relativistic gravity is stronger than Newtonian gravity at any r.
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where the boundary condition p(R) = 0 has been imposed. Thus Newton’s
theory puts no upper bound on the mass of a star.

In the relativistic case, we must use the TOV equation. This equation can
also be integrated exactly (which was first done by Schwarzschild in 1916) to
yield the result

p(r) = ρ

⎡⎢⎣
√

1− RS

R −
√

1− RSr2

R3√
1− RSr2

R3 − 3
√

1− RS

R

⎤⎥⎦ , (10.258)

where RS = 2GM is the Schwarzschild radius of the star. This expression is
valid for r ≤ R. The central pressure is given by

pc = p(0) = ρ

⎡⎣
√

1− RS

R − 1

1− 3
√

1− RS

R

⎤⎦ . (10.259)

Note that pc becomes negative when

1− 3

√
1− RS

R
< 0. (10.260)

This means that the central region of the star collapses. The star will there-
fore collapse under its own gravity. Hence, according to the general theory of
relativity, the requirement of hydrostatic equilibrium puts the bound

R >
9

8
RS (10.261)

for a star. This leads to the following restriction on the mass of a star with
constant density and radius R,

m <
8

9

R

RS,Sun
mSun, (10.262)

where RS,Sun = 3km and mSun are the Schwarzschild radius and mass of the
Sun. For a neutron star with R = 10km, say, this gives m < 3mSun.

Eq. (10.251) can formally be solved in the general case

α = −
∫

dp

p + ρ
. (10.263)

By scaling the time variable, the integration constant can be changed to an ar-
bitrary value. In the case of an incompressible fluid, ρ = constant, the integral
leads to

eα =
C

ρ + p
. (10.264)

Inserting the expression for the pressure and choosing the integration constant
such that it matches with the exterior solution we get

eα =
3

2

√
1− RS

R
− 1

2

√
1− RS

R3
r2. (10.265)
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Hence, the line-element for the interior Schwarzschild solution is

ds2 = −
(

3

2

√
1− RS

R
− 1

2

√
1− RS

R3
r2

)2

dt2 +
dr2

1− RS

R3 r2

+r2(dθ2 + sin2 θdφ2). (10.266)

We shall now deduce how the Newtonian expression for the gravitational
self-energy of a solid sphere with constant mass density is generalised rela-
tivistically. Let us first consider the Newtonian expression. Adding the self-
energy of spherical shells surrounding a solid sphere we obtain

UN = −G

R∫
0

4πrρ(r)m(r)dr = −4πGρ

R∫
0

r
4π

3
ρr3dr2 = −G

16π2ρ2

15
R5

= −3

5
G

M2

R
. (10.267)

Relativistically, M =
∫ R

0
4πr2ρ(r)dr is the mass of a star acting upon an

−pt for a particle, which includes the potential energy due to its position in a
gravitational field.

The invariant energy of the star is

E =

R∫
0

Tt̂t̂ω
φ̂ ∧ ωθ̂ ∧ ωr̂ = 4π

R∫
0

r2ρ(r)eβ(r)dr. (10.268)

This energy does not include the self-energy, U . Since M = E+U and U < 0 it
follows that M < E. the energy E corresponds to Elocal = −p · u for a particle
with four-momentum p measured locally (at the position of the observer) by
an observer with four-velocity u. Elocal does not include the potential energy
of the particle.

For an incompressible star we get

M =

R∫
0

4πr2ρdr =
4π

3
ρR3, (10.269)

E =

R∫
0

4πr2ρdr√
1− RS

r3

=
3

2

R

RS

(√
R

RS
arcsin

√
RS

R
−
√

1− RS

R

)
M. (10.270)

Making a series expansion of E to third order in RS/R we get for R � RS

E ≈M +
3

5
G

M2

R
, (10.271)

which represents the Newtonian result. In the limiting case R = RS we get
E = (3π/4)M and a self-energy U = −(3π/4− 1)M .

includes the gravitational self-energy of the star. The energy M corresponds to
asymptotically far-away observer. This mass or energy is not invariant; it
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10.10 Relativistic gravitation versus Newtonian
gravitation

It is often said that in the theory of relativity gravity is described as curved
space-time. This is, however, not the whole truth. In this section we shall
highlight the different conceptual contents of Newtonian gravity and the gen-
eral theory of relativity.

Newton’s theory is based upon the concepts of absolute space and time.
Space obeys the rules of Euclidean geometry independently of the proper-
ties of matter and energy filling the space. Time has an absolute character,
proceeding at a rate which does not dependent upon motion and matter. Fur-
thermore, the concept inertial frame is essential. Inertial frames are defined
as those frames in which Newton’s 1st law is valid. Such frames have a
global character according to Newton’s theory. Different inertial frames are
connected by the Galilean transformation, and the Newtonian dynamics is
Galilei invariant. However, acceleration and rotation of a reference frame in-
troduces fictitious forces such as the centrifugal force and the Coriolis force in

Newtonian theory.
According to Newton’s theory of gravity there exists a gravitational force

acting between masses. Since mass is positive this force is always attractive.

ory of gravitation may be summarized by the statement: Mass generates a
gravitational field according to Poisson’s equation, and the gravitational field
generates acceleration according to Newton’s 2nd law. The acceleration of
gravity experienced on the surface of the Earth is a result of the gravitational
force due to the Earth. Furthermore inhomogeneities in the gravitational field
produce tidal forces as given by eq. (1.38).

The concepts of space and time are unified in a four-dimensional space-
time according to the general theory of relativity. Hence, space and time
do not have an independent existence. Furthermore both space-time and
space can be curved, and their properties depend upon the matter and energy-
contents in the universe. In Einstein’s theory the concept inertial frame may
still be defined as a frame in which Newton’s 1st law is valid. A body at rest,
and not acted upon by any force, should remain at rest. Gravity is treated very
differently in Newton’s and Einstein’s theories. According to the general the-
ory of relativity there is no gravitational force. The principle of equivalence
says that the physical effects of permanent gravitational fields and those due
to the acceleration or rotation of the reference frame are equivalent.

Mathematically the acceleration of gravity comes from certain Christof-
fel symbols, as seen by applying the geodesic equation to a particle instanta-
neously at rest. They can be transformed away by introducing a co-moving
coordinate system in a local non-rotating and freely falling reference frame.
Hence in such a frame the acceleration of gravity vanishes. A free particle in
such a frame obeys Newton’s 1st law. Therefore, in the theory of relativity in-
ertial reference frames are defined as local non-rotating freely falling frames.
Hence, according to the general theory of relativity, the acceleration of gravity
comes from staying in a non-inertial frame of reference.

The relativistic equation which generalizes the Newtonian equation (1.38)
for tidal forces is the equation (7.106) for geodesic deviation. Comparison of

in a rotating reference frame. Therefore Newtonian dynamics is not Galilei
invariant. Consequently acceleration and rotation has an absolute character in

As shown in chapter 1 (eqs. (1.32) and (1.33)) the dynamics of Newton’s the-
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these equations shows that the Newtonian tidal force is perceived as space-
time curvature in the theory of relativity. This is mathematically represented
by a tensor and cannot be transformed away.

Relativistic gravity has two important properties that vanish in the New-
tonian limit. The first one is the phenomenon of inertial dragging, also called
the Lense-Thirring effect, which was described in sections 9.4 and 10.6. This
has a Machian character, and its cosmological significance will be taken up
in section 12.11. It means that the average motion of the cosmic masses may
determine the motion of the swinging plane of the Foucault pendulum at, say,
the South Pole, such that it does not rotate relative to the stars (neglecting lo-
cal effects due to the rotation of the Earth). Hence the state of “non-rotation”
of inertial frames may be determined mainly by the cosmic masses. The ques-
tion whether this effect makes it possible to extend the principle of relativity
to encompass accelerated and rotating motion, is still not settled [GV99].

the attractive gravity, and strain gives a repulsive contribution. Hence in the
theory of relativity there is a possibility of repulsive gravity. In chapter 12 we
will see that this is of fundamental significance for the large scale dynamics of
the universe.

Problems

10.1. The Schwarzschild metric in Isotropic coordinates

coordinates. The metric in isotropic coordinates has the form

ds2 = −e2Adt2 + e2B(dR2 + R2(dθ2 + sin2 θdφ2)), (10.272)

where A = A(R) and B = B(R).

(a) Show that the transformation

r =

(
1 +

M

2R

)2

R (10.273)

transforms the Schwarzschild metric from Schwarzschild coordinates to
the isotropic form.

(b) Calculate the Schwarzschild metric in isotropic coordinates by solving
the Einstein field equations.

10.2. Embedding of the interior Schwarzschild metric

ternal Schwarzschild solution. Join the resulting surface to the corresponding
embedding of the external Schwarzschild solution.

10.3. The Schwarzschild-de Sitter metric

stant. The Einstein equations with a cosmological constant Λ can be written

Rμν − 1

2
Rgμν + Λgμν = κTμν (10.274)

depends not only upon masses, but also upon pressure or strain as we saw
in section 10.8 and as is further explored in problem 10.16. Pressure increases

The second fundamental relativistic property of gravitation is that it

We will in this problem find the Schwarzschild solution expressed in isotropic

Make an embedding of the three-dimensional spatial section t = 0 of the in-

In this problem we will solve the Einstein equations with a cosmological con-
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(a) Use Schwarzschild coordinates and solve the Einstein vacuum equations
with a cosmological constant.

(b) Show that in this case there are two horizons. Set the mass parameter
equal to zero, and show that the spatial sections dt = 0 can be considered
as a 3-sphere, S3.

10.4. The life time of a black hole
B

G we have M = Gmc−2, the black hole temperature is

T =
�

2πkBc
κ (10.275)

and the Stefan-Boltsmann constant is

σ =
π2k4

B

60�3c2
(10.276)

(a) Assume that a black hole has a mass m0 at t = 0. Find m(t).

(b) If we consider a time span of approximately τ = 1010 years, what mass
would the black hole have at t = 0 to have m(τ) = 0?

(c) Show that a black hole of mass m cannot disintegrate into two smaller
black holes of mass m1 and m2 where m = m1 + m2.

10.5. A spaceship falling into a black hole

(a) In this problem we will consider a spaceship (A) falling radially into a
Schwarzschild black hole with mass M = 5MSun (set c = 1). What is
the Schwarzschild radius of the black hole? Find the equations of motion
of the spaceship in Schwarzschild coordinates r and t, using the proper
time τ as time parameter. At the time t = τ = 0 the spaceship is located
at r = 1010M . The total energy is equal to its rest energy. Solve the
equations of motion with these initial conditions. When (in terms of τ )
does the spaceship reach the Schwarzschild radius? And the singularity?

(b) Show that the spaceship, from the Schwarzschild radius to the singular-
ity, uses maximally Δτ = πGM no matter how it is maneuvered. How
should the spaceship be maneuvered to maximalise this time?

(c) The spaceship (A) has radio contact with a stationary space-station (B)
at rB = 1 light years. The radio-signals are sent with intervals ΔT and
with frequency ω from both A and B. The receivers at A and B receive
signals with frequency ωA and ωB , respectively. Find ωA and ωB as a
function of the position of the spaceship. Investigate whether something
particular is happening as the spaceship passes the Schwarzschild radius.
Discuss what these results tell us about how the events in the spaceship
is described in the space station, and vice versa.

10.6. The GPS Navigation System
GPS uses a network of 24 satellites orbiting the Earth about 20 000 km above
the ground with an orbital speed of 20 000 km/hour. On board each satellite
is an atomic clock that ticks with an accuracy of 1 nanosecond. A GPS receiver
determines its current position by comparing the time signals it receives from
several of the satellites and triangulating on the known positions of each. The
receiver can determine your position to within 10 meters in only a few sec-
onds. To achieve this level of precision, the clocks on the GPS satellites must

Consider a black hole in a zero-temperature heat-bath. Including c, �, k and
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be known to an accuracy of 30 nanoseconds. Determine, by the following cal-
culations, whether it is necessary to take account of the kinematical- and the
gravitational time dilation in the construction of this system.

(b) How many nanoseconds does it lie ahead due to the height of the satel-
lite?

ing relativistic effects upon the rate of the satellite clocks.

10.7. Physical interpretation of the Kerr metric
In this problem we shall use the linearised solution of the spacetime outside a
rotating shell derived in problem 9.3.

(a) Show that the Kerr metric (10.165) is reduced to the metric (9.146) in the
limit r > R and r � M and identify thereby the constant a with the
angular momentum per unit mass of the rotating shell. (Hint: Expand
the Kerr metric to first order in J/Mr, introduce isotropic coordinates
(r → ρ see problem 10.1), and expand the result to first order in M/ρ).

(b) Find the angular velocity

ωL = − g0φ

gφφ
(10.277)

that local reference frames are rotating with, with respect to reference
frames at infinity.

10.8. A gravitomagnetic clock effect
This problem is concerned with the difference of proper time shown by two
clocks moving freely in opposite directions in the equatorial plane of the Kerr
spacetime outside a rotating body. The clocks move along a path with r =
constant and θ = π/2.

(a) Show that in this case the radial geodesic equation reduces to

Γr
ttdt2 + 2Γr

φtdφdt + Γr
φφdφ2 = 0.

(b) Calculate the Christoffel symbols and show that the equation takes the
form (

dt

dφ

)2

− 2a
dt

dφ
+ a2 − r3

M
= 0,

where M is the mass of the rotating body and a its angular momentum
per unit mass, a = J/M .

(c) Use the solution of the geodesic equation and the four-velocity identity
to show that the proper time interval dτ shown on a clock moving an
angle dφ is

dτ = ±
√

1− 3M

r
± 2aω0dφ,

where ω0 =
(
M/r3

)1/2 is the angular velocity of a clock moving in the
Schwarzschild spacetime in accordance with Kepler’s 3rd law. The plus
and minus sign apply to direct and retrograde motion, respectively.

(c) Use eq. (10.58) to calculate the error which is made in 24 hours by neglect-

hours due to the velocity of the satellite?
(a) How many nanoseconds does the clock on a satellite lag behind in 24
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(d) Show that to first order in a the proper time difference for one closed
orbit (φ → φ + 2π) in the direct and the retrograde direction is τ+ − τ− ≈
4πa = 4πJ/M , or in S.I. units, τ+ − τ− ≈ 4πa = 4πJ/mc2.
Estimate this time difference for clocks in satellites moving in the equa-
torial plane of the Earth. (The mass of the Earth is m = 6 · 1026kg and its
angular momentum J = 1034kg m2s−1.)

10.9. The photon sphere radius of a Reissner-Nordström black hole
Show that there exists a sphere of radius

rPS =
3M

2

(
1 +

√
1− 8Q2

9M2

)
(10.278)

in the Reissner-Nordström black hole spacetime where photons will have cir-
cular orbits around the black hole.

spacetimes

(a) The 3-space of the internal Schwarzschild solution has a geometry given
by the line-element

d
2
I =

dr2

1− RS

R2 r2
+ r2(dθ2 + sin2 θdφ2)

where RS = 2M is the Schwarzschild radius of the mass distribution and

solution is

d
2
E =

dr2

1− RS

r

+ r2(dθ2 + sin2 θdφ2)

Find the spatial curvature k = k(r) = 1
6R of the 3-spaces, where R is the

Ricci scalar.

(b) We shall now consider the equatorial surfaces θ = π/2. The line-elements
of these surfaces are, for the internal solution

dσ2
I =

dr2

1− RS

R2 r2
+ r2dφ2,

and for the external solution

dσ2
E =

dr2

1− RS

r

+ r2dφ2.

K = − 1

2g
g′φφ +

gφφ

4g2
g′rrg

′
φφ +

grr

4g2

(
g′φφ

)2
,

where g = grrgφφ and differentiation is with respect to r. Show that the
Gaussian curvature of the equatorial surfaces are for
The internal solution: K = RS/R3. What sort of surface is this?
The external solution: K = −(1/2)(RS/r3).

10.10. Curvature of 3-space and 2-surfaces of the internal and the external Schwarzschild

describe are given by
For these line-elements the Gaussian curvatures of the surfaces they

R its radius. The corresponding line-element for the external Schwarzschild
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z =

K =
z′z′′

r(1 + z′2)2
.

Calculate the Gaussian curvatures of the embedding surfaces of the inter-
nal Schwarzschild solution, as given in problem 10.2, and of the external
solution, as given in eq. (10.99). Compare the results with those of the
previous point.

10.11. Proper radial distance in the external Schwarzschild space
Show that the proper radial distance from a coordinate position r to the hori-
zon RS in the external Schwarzschild space is


r =
√

r
√

r −RS + RS ln

(√
r

RS
−
√

r

RS
− 1

)
.

Find the limit of this expression for RS � r.

10.12. Gravitational redshift in the Schwarzschild spacetime
Define z, describing the redshift of light, by

z =
Δλ

λe
, (10.279)

where Δλ is the change in the photons wavelength and λe the wavelength of
the photon when emitted.

Show that the gravitational redshift of light emitted at rE and received at rR

in the Schwarzschild spacetime outside a star of mass M is

z =

(
rR −RS

rE −RS

) 1
2

− 1

where RS = 2M is the Schwarzschild radius of the star. What is the gravita-
tional redshift of light emitted from the surface of a neutron star as observed
by a faraway observer? A neutron star has typically a mass of 1.2 solar masses
and a radius of about 20km.

10.13. The Reissner-Nordström repulsion
Consider a radially infalling neutral particle in the Reissner-Nordström space-
time with M > |Q|. Show that when the particle comes inside the radius
r = Q2/M it will feel a repulsion away from r = 0 (i.e. that d2r/dτ2 < 0 for τ
the proper time of the particle). Is this inside or outside the outer horizon r+?
Show further that the particle can never reach the singularity at r = 0.

10.14. Light-like geodesics in the Reissner-Nordström spacetime

spacetime. The horizons of this spacetime are at r± = M ±
√

M2 −Q2, and
we will assume that M > |Q|.

(a) Show that the radial light rays obey the differential equation

dr

dt
= ±

(
1− 2M

r
+

Q2

r2

)
.

z(r), is
surfaces. The Gaussian curvature of a surface of revolution given by

(c) The equatorial surfaces shall now be the embeddingcompared to

We will in this problem consider radial photon paths in the Reissner-Nordström

,
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(b) It is convenient to introduce two null coordinates u and v by

u = t− r∗

v = t + r∗, (10.280)

where
r∗ =

∫
dr

1− 2M
r + Q2

r2

.

Show that u is a constant of motion for outgoing photons, while v is a
constant of motion for ingoing photons. Show further that

r∗ = r +
r2
+

r+ − r−
ln

[
1

2M
|r − r+|

]
+

r2
−

r+ − r−
ln

[
1

2M
|r − r−|

]
. (10.281)

(c) Draw the light-cones in the tr-plane for the three regions r < r−, r− <
r < r+ and r+ < r.

10.15. The Jebsen-Birkhoff theorem

the spacetime external to some region. We will first assume that the metric is
time dependent, but will show that, under some assumptions, that this cannot
be possible.

A spherically symmetric metric outside a source can always be put onto the
canonical form

ds2 = −e2α(r,t)dt2 + e2β(r,t)dr2 + r2(dθ2 + sin2 θdφ2). (10.282)

Assume also that the spacetime is asymptotically flat; i.e.

lim
r→∞

α(r, t) = lim
r→∞

β(r, t) = 0.

(a) Outside some r0 we have Tμν = 0. Denote the derivative ∂
∂r with a prime

and ∂
∂t with a dot. Show that Einstein’s field equations in vacuum (for

r > r0) can be written as

e−2β

(
2α′

r
+

1

r2

)
− 1

r2
= 0 (10.283)

e−2β

(
1

r2
− 2β′

r

)
− 1

r2
= 0 (10.284)

2e−2β β̇

r
= 0 (10.285)

e−2β

(
α′′ + α′2 +

α′ − β′

r
− α′β′

)
−e−2α

(
β̈ + α̇2 − α̇β̇

)
= 0. (10.286)

(b) Show that for r > r0 we have β(r, t) = β(r). Show also that α′ = −β′,
and by integrating, α(r, t) = −β(r) for r > r0. Explain that the metric
must have the static form (10.4).
This is what is called the Jebsen-Birkhoff theorem [Jeb21, Bir23]: If a space-
time contains a region which is spherically symmetric, asymptotically flat, and
empty (Tμν = 0) for r > r0, then the metric in this region is time independent
and hence independent of the dynamical properties of its source.

We will in this problem consider a spherically symmetric metric describing
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10.16. Gravitational mass

schild black hole can be written

κ = −eα−βα′. (10.287)

(b) Show, using Einstein’s field equations, that

4πr2eα+β
(
T 0

0 − T 1
1 − T 2

2 − T 3
3

)
=
(
r2eα−βα′

)′
. (10.288)

Hence, deduce that the surface gravity can be written

κ = −4π

r2

r∫
0

(
T 0

0 − T 1
1 − T 2

2 − T 3
3

)
eα+βr2dr. (10.289)

(c) Define the gravitational mass MG inside a radius r of a spherical mass
distribution by

κ = −MG

r2
, (10.290)

and deduce that

MG = 4π

r∫
0

(
T 0

0 − T 1
1 − T 2

2 − T 3
3

)
eα+βr2dr. (10.291)

This is the Tolman-Whittaker expression for the gravitational mass of a
system.
What is the condition for repulsive gravitation?

10.17. The river model for black holes
In this problem you are going to picture space as flowing like a river into a
Schwarzschild black hole [HL04]. “Space” is then represented by a continuum
of local inertial frames falling freely from zero velocity at infinity.

(a) Show that the Schwarzschild metric, eq. (10.24), may be written in the
Gullstrand-Painlevé form [Gul22, Pai21],

ds2 = −dτ2 + (dr + βdτ)2 + r2(dθ2 + sin2 dφ2), β =

√
rS

r
,

by introducing a new coordinate time

τ = t + 2rS

(
1

β
− artanhβ

)
.

(b) Show that β(r) = −dr/dτ is the velocity of an inertial frame falling freely
from rest at infinity, i.e., the river velocity. What happens at the horizon
of the black hole? Show that dτ is the proper time interval as measured
by a clock comoving with the inertial frames that define the river model
of the space.

(a) Use the line-element (10.4) and show that the surface gravity of a Schwarz-

θ
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11
Homogeneous and Isotropic

Universe Models

One of the most successful and useful applications of Einstein’s General The-
ory of Relativity is within the field of cosmology. Newton’s theory of gravita-
tion, involves attraction between celestial bodies. However, very little is said
of the evolution of the universe itself. The universe was believed to be static,
and its evolution was beyond any physical theory. But after the year 1917,
things were different. Within two years after the birth of the General Theory
of Relativity, Einstein realized that this theory actually could say something
about the universe and constructed a static universe model as a solution of the
relativistic field equations. The era of modern cosmology had begun, which

11.1 The cosmological principles

Since medieval times, the universe was seen upon as something fixed, with
the Earth itself at the centre. The Earth was a very special place in this geo-
centric universe; everything – the Moon, the Sun, the planets and even the
stars – moved in perfect circles around the Earth. However, beginning with
Copernicus, this view upon the universe was going to be drastically altered.
Copernicus placed our Sun in the centre, not our Earth. As the observational
techniques developed and improved, the centre of the universe was shifted
further away, and today we believe that there is no centre of the universe. Even
as late as 1920, cosmologists and astrophysicists thought that our Milky Way
was the only galaxy in the universe. Now we know that our Milky Way is
only one of billions of galaxies in the universe. The Milky Way is not a special
galaxy, it is rather a typical one.

When we observe galaxies, there are a couple of things to note. Looking
in different directions of the sky, the galaxies are evenly distributed at large
scales. Large scales in this context, are not galactic scales, nor scales large
as galactic clusters, but scales of the order of a billion light years. At this

would revolutionize our view of the universe.
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scale, the galaxies have an isotropic distribution; they are distributed evenly in
the different directions in the sky. The galaxies are also evenly distributed in
space, they are homogeneously distributed in the universe at large scales. These
two apparent facts are referred to as the two cosmological principles:

• There is no special point in the universe, the galaxies are evenly dis-
tributed in space at large scales. The universe is said to be homogeneous
at large scales.

• There is no special spatial direction in the universe, the galaxies are
evenly distributed in different angular directions at large scales. The
universe is said to be isotropic.

We know that these two principles are not true at small scales, there are some
inhomogeneities at small scales. There are galaxies, there are Solar systems
and planets. However, at the largest scales, the universe is said to be homoge-
neous and isotropic. This principle provides us with the simplest cosmolog-
ical models, the homogeneous and isotropic universe models. They give us
the simplest models of the evolution of the universe.

This was early realized by several physicists, most notably by Einstein
himself. Einstein applied his equations to cosmology, and realized to his as-
tonishment, that in general the field equations yield a dynamical universe. To
Einstein, this could not be correct, so he inserted a term, now called the cosmo-
logical constant term, into the equations. The equations now yielded a static
and fixed universe, more in agreement with Einstein’s beliefs. However, later
it was observationally verified that the universe was actually expanding, the
universe was indeed dynamical. This was shown by Edwin Hubble in 1929,
and Einstein had to withdraw his cosmological constant. Later, Einstein called
the inclusion of the cosmological constant “the biggest blunder of his life”. By
including the cosmological constant, he produced what he thought was cor-
rect, but in this process failed to be the first to realize that the universe was
expanding. We will see in the next chapter, that his “blunder” was not really
as big a blunder as he thought; newer observational facts, have shown that
a cosmological constant most probably is present and can be interpreted as
representing Lorentz-invariant vacuum energy with constant density. In this
chapter, on the other hand, we will assume that the universe is homogeneous
and isotropic, and that the cosmological constant is absent.

11.2 Friedmann-Robertson-Walker models

Based on the assumption of spatial homogeneity and isotropy, the equations
of motion of the universe will be deduced. This will be performed by applying
the structural equations of Cartan to calculate the components of the Einstein
tensor.

The assumption of spatial homogeneity and isotropy, implies that we can
foliate our spacetime with spatial sections. Each of the spatial sections is la-
belled with a parameter t, which can be identified as “cosmic time”. The as-
sumption of isotropy allows us to assume that the time direction, denoted by
the time-like vector et, is orthogonal to the spatial sections. Hence, if we fo-
liate our spacetime as R × Σt where R is the time direction and Σt are the
spatial hypersurfaces, then et can be chosen to be orthogonal to Σt. If this
had not been the case, the projection of the time-vector onto Σt would yield
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11.2 Friedmann-Robertson-Walker models

a preferred direction in space which would have violated the assumption of
isotropy.

We can therefore assume that the line-element has the form

ds2 = −dt2 + a(t)2
(
dχ2 + r(χ)2(dθ2 + sin2 θdφ2)

)
(11.1)

where χ is the radial coordinate. Here, the function a(t) is called the expan-
sion factor or the scale factor since the proper distance in the radial direction is
dlχ = a(t)dχ. It is dimensionless and is normalised so that it has the value 1
at the present time, i.e. a0 = a(t0) = 1. This means that a(t) is the ratio of
the distance to a far away object in the universe (a galactic cluster) at an arbi-
trary point of time t and its present distance. We also use polar coordinates
comoving with free reference particles without any motion except that due to
the expansion of the universe. The function r(χ) has dimension length and
will be determined by requiring that the model is isotropic in the three spatial
directions, while the function a(t) will be determined by Einstein’s field equa-
tions. In principle, we can use any other time coordinate, this special choice
where the metric is given by eq. (11.1), is called the universal time gauge or
cosmic time. This is the proper time of the reference particles. There are other
time coordinates that are more useful in other connections; some of them will
be mentioned later.

may think of these particles as galaxies without peculiar motions (see prob-
lem 11.3). Then χ, θ, φ are comoving coordinates in this reference frame, and
t is the proper time shown by clocks carried by the galaxies. The coordinate χ
of an object is its present distance from an observer at χ = 0.

Let us introduce an orthonormal frame given by

ωt̂ = dt

ωχ̂ = adχ

ωθ̂ = ardθ

ωφ̂ = ar sin θdφ. (11.2)

By exterior differentiation we get

dωt̂ = 0

dωχ̂ =
ȧ

a
ωt̂ ∧ ωχ̂

dωθ̂ =
ȧ

a
ωt̂ ∧ ωθ̂ +

r′

ra
ωχ̂ ∧ ωθ̂

dωφ̂ =
ȧ

a
ωt̂ ∧ ωφ̂ +

r′

ra
ωχ̂ ∧ ωφ̂ +

1

ar
cot θωθ̂ ∧ωφ̂ (11.3)

where overdot means derivative with respect to t, and prime means derivative
with respect to χ. According to Cartan’s first structural equation, eq. (6.182),

The physical significance of our coordinates is the following. We first
choose a set of reference particles defining a cosmic reference frame. You

,
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the non-zero connection forms are

Ωt̂
χ̂ = Ω

χ̂

t̂
=

ȧ

a
ωχ̂

Ωθ̂
t̂ = Ωt̂

θ̂
=

ȧ

a
ωθ̂

Ω
φ̂

t̂
= Ωt̂

φ̂
=

ȧ

a
ωφ̂

Ωθ̂
χ̂ = −Ω

χ̂

θ̂
=

r′

ra
ωθ̂

Ω
φ̂
χ̂ = −Ω

χ̂

φ̂
=

r′

ra
ωφ̂

Ω
φ̂

θ̂
= −Ωθ̂

φ̂
=

1

ra
cot θωφ̂. (11.4)

Using Cartan’s second structural equation, eq. (7.47), the curvature forms are

Rt̂
î

=
ä

a
ωt̂ ∧ ωî

Rθ̂
χ̂ =

(
ȧ2

a2
− r′′

ra2

)
ωθ̂ ∧ ωχ̂

R
φ̂
χ̂ =

(
ȧ2

a2
− r′′

ra2

)
ωφ̂ ∧ ωχ̂

Rθ̂
φ̂

=

(
ȧ2

a2
+

1

r2a2
− (r′)2

r2a2

)
ωθ̂ ∧ ωφ̂ (11.5)

where î runs over the spatial coordinates.
From the assumption of isotropy, the three spatial directions should be

equal for the orthonormal frame. Hence, the components of the curvature
matrix should be equal for the three directions. This means that we must have

−rr′′ = 1− (r′)2 ⇔ r′r′′

(r′)2 − 1
=

r′

r
. (11.6)

Integrating, one finds

dr

dχ
=

(
1− κ

R2
0

r2

) 1
2

=
(
1− kr2

) 1
2 , k ≡ κ

R2
0

, (11.7)

where κ is a dimensionless integration constant whose sign characterizes the
solution. Here R0 is a constant with dimension length, which represents the
present value of the curvature radius of the 3-space t = constant.

Integrating once more leads to

r(χ) = R0Sk(χ/R0) (11.8)

where the function Sk(y) is defined by

Sk(y) =

⎧⎪⎨⎪⎩
sin y, k > 0

y , k = 0

sinh y , k < 0

. (11.9)

Hence, the line-element (11.1) takes the form

ds2 = −dt2 + a(t)2
(
dχ2 + R2

0S
2
k(χ/R0)(dθ2 + sin2 θdφ2)

)
. (11.10)
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dinate r as

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (11.11)

where k > 0, k = 0 or k < 0. This is the Robertson-Walker form of the line-
element. All of the homogeneous and isotropic universe models may be repre-
sented by this line-element. For k > 0 the spatial hypersurfaces have constant
positive curvature and are usually called closed models. For k = 0 the spa-
tial hypersurfaces are Euclidean and are called flat models. Lastly, for k < 0
the spatial hypersurfaces have constant negative curvature and are called open
models. It should be noted that the so-called flat models will in general have
curved spacetime.

The shape of the spatial space is not completely determined by the as-
sumption of homogeneity and isotropy. There are basically three options. The
function a(t) has to be determined by Einstein’s field equations. Let us derive
the curvature part of Einstein’s field equations, that is the left side of eq. (9.42).

From equations (11.5) and (11.9) we have the non-zero components of the
Riemann tensor (no summation!)

Rĵ

îĵî
=

ȧ2 + k

a2
(̂i �= ĵ)

Rt̂
ît̂̂i

=
ä

a
. (11.12)

Hence, the non-vanishing components of the Einstein tensor are

Et̂t̂ = 3
ȧ2 + k

a2

Eî̂i = −2
ä

a
− ȧ2 + k

a2
. (11.13)

These will be useful later on.

11.3 Dynamics of Homogeneous and Isotropic

tensor which is also homogeneous and isotropic. A general form of the energy-
momentum tensor which is compatible with homogeneity and isotropy, is

Tμν = (ρ + p)uμuν + pgμν . (11.14)

Here, ρ is the proper energy (or mass) density of the fluid and p its pressure
(p > 0) or strain (p < 0). Homogeneity implies that the pressure and density
should be position independent on the spatial hypersurfaces. Hence, they can
only be time dependent. If the vector uμ, which is the four-velocity of the fluid,
has a spatial component then the fluid has a special direction compared to the
hypersurfaces Σt. This would violate our assumption of spatial isotropy. Thus
the vector uμ has only a time component; the fluid flow is orthogonal to the
hypersurfaces.

We have assumed that our universe is homogeneous and isotropic. To solve the
Einstein field equations under this assumption we need an energy-momentum

Using eq. (11.7) the line-element may be expressed in terms of the radial coor-

cosmologies
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The energy-momentum tensor is therefore diagonal in the coordinate sys-
tem given by (11.11), and hence,

Tμ̂ν̂ = diag(ρ, p, p, p). (11.15)

The Einstein field equations with Λ = 0 now turn into

3
ȧ2 + k

a2
= 8πGρ (11.16)

−2
ä

a
− ȧ2 + k

a2
= 8πGp. (11.17)

These equations are called the Friedmann equations.
Inserting eq. (11.16) into eq. (11.17) yields

ä

a
= −4πG

3
(ρ + 3p). (11.18)

The effective gravitational energy is given by ρ + 3p; the pressure also con-
tributes to gravitation. Note that p < −ρ/3 implies repulsive gravitation.

We also need an equation relating the energy, the pressure and the scale

the conservation of energy. This follows automatically from the equations
(11.16) and (11.17) from which we find the following relation

ρ̇ + 3
ȧ

a
(ρ + p) = 0, (11.19)

which may be written

d

dt

(
ρa3
)

+ p
d

dt
a3 = 0. (11.20)

Let V = a3 be the volume of a region expanding together with the cosmic
fluid; a so-called comoving volume. The energy in a comoving volume is
U = ρa3. In terms of U and V , eq. (11.20) takes the form

dU + pdV = 0. (11.21)

The first law of thermodynamics states for a fluid in equilibrium

TdS = dU + pdV (11.22)

where T is the temperature and S the entropy. A process which has dS = 0
is called an adiabatic process. Equation (11.21) shows that the isotropic and
homogeneous universe models with a perfect fluid expand adiabatically. This
is not surprising since homogeneity and isotropy imply no temperature gra-
dients and hence no heat flow.

If we further assume that the perfect fluid obeys the barotropic equation of
state

p = wρ (11.23)

then equation (11.20) turns into

d

dt

(
ρa3
)

+ wρ
d

dt
a3 = 0. (11.24)

factor. The energy-momentum tensor has to be divergence-free which signals

,

,
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11.4 Cosmological redshift and the Hubble law

This equation admits the solution

ρa3(w+1) = ρ0 (11.25)

where ρ0 is the present value of the density.
LIVE has w = −1 and in this case the density of matter is constant as a

function of the volume. For dust we have w = 0 while for radiation we have
w = 1

3 . Hence,

ρv = ρv0 for LIVE,
ρm = ρm0a

−3 for dust,
ργ = ργ0a

−4 for radiation. (11.26)

As the scale factor of the universe increases, the density of radiation will de-
crease faster than for dust. The Friedmann equation (11.16) for a universe
dominated by a perfect fluid with equation of state (11.23) may be written(

ȧ

a

)2

=
8πG

3

ρ0

a3(w+1)
− k

a2
. (11.27)

This equation shows that the ultimate fate of the universe is determined by
the spatial curvature if w > −1/3. Then a flat and a negatively universe will
expand forever, while a positively curved universe will stop expanding and
will recollapse to a Big Crunch. If w < −1/3 the expansion will proceed for all

universe dominated by a fluid with vanishing gravitational mass density. The
expansion velocity ȧ is constant in such a universe, just as it is in an empty
universe.

11.4 Cosmological redshift and the Hubble law

The reason that the density of radiation decreases faster than that of dust is
that each photon will also be redshifted during the expansion. As the uni-
verse expands the light-waves will be stretched towards the red part of the
spectrum. This result will now be deduced.

Consider a galaxy far away from an observer who is located at r = 0. If the
radial coordinate distance to the galaxy is χ, the proper distance is dP = a(t)χ.
The velocity of the galaxy relative to the observer will be

v =
d dP

dt
=

ȧ

a
aχ = HdP (11.28)

where H = ȧ
a is called the Hubble parameter. Its present value is called the

Hubble constant and is usually written

H0 = hH1 (11.29)

where H1 = 100km s−1Mpc−1 ≈ 30km/s per l.y. Recent measurements have
indicated that h ≈ 0.7.

Hubble’s law states that the velocity of a galaxy is proportional to its dis-
tance

v = HdP . (11.30)

,

time independent of the curvature. The limiting case, w = −1/3, represents a
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This result was observationally obtained in 1929 and was taken as an evidence
for an expanding universe. Until then many physicists had believed that the

The Hubble parameter has the dimension of inverse time. The inverse of
the Hubble parameter is called the Hubble age of the universe, tH ≡ 1/H . It
is the age of a universe expanding with constant velocity. Thus a universe
with decelerated expansion has an age less than its Hubble age. The Hubble
sphere is defined as a spherical region within a distance beyond which the
recession velocity exceeds the speed of light, dPHS ≡ ctH = c/H . Inserting
the measured value of H0, the present Hubble age is 14 · 109 years.

When light is travelling in an expanding universe, the light will be red-
shifted. Light moves along null geodesics. Hence, the world lines of light
travelling towards us have ds2 = 0, dθ = dφ = 0 and dt = −a(t)dχ. Let Δte
be the period of light at the emitter event and Δt0 at the observation event (see

e and te + Δte, respectively.
Then

−
0∫

χe

dχ = χe =

t0∫
te

dt

a(t)
=

t0+Δt0∫
te+Δte

dt

a(t)
(11.31)

or
t0+Δt0∫

te+Δte

dt

a(t)
−

t0∫
te

dt

a(t)
= 0. (11.32)

Hence,

t0+Δt0∫
t0

dt

a(t)
−

te+Δte∫
te

dt

a(t)
= 0. (11.33)

evidence for a dynamical universe was put forward, they had to admit that
this was not the case. The universe is dynamical and is in a state of expansion!

universe was static (including Einstein). However, after the observational

Figure 11.1: Cosmological redshift of light.

Fig. 11.1). Consider two light signals emitted at t

t

χeχ0 = 0

t0 + Δ t0 

te + Δ te

te

t0 

χ
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11.4 Cosmological redshift and the Hubble law

Under the integration from te to te +Δte and from t0 to t0 +Δt0 the expansion
factor can be considered constant with values a(te) and a(t0) respectively. This
gives

Δte
a(te)

=
Δt0
a(t0)

. (11.34)

Since the wavelength of light is λ = cΔt we have

λ0

λe
=

a(t0)

a(te)
(11.35)

This equation shows that the light waves are stretched by the expansion of
the space. If λ is the corresponding wavelength of the light signal, the redshift
factor, z, is defined by

z ≡ λ0 − λe

λe
=

a(t0)

a(te)
− 1 (11.36)

If we make a Taylor expansion of a(te) to second order

a(te) ≈ a0 + ȧ0(te − t0) +
1

2
ä0(te − t0)

2, (11.37)

and introduce the deceleration parameter,

q = −aä

ȧ2
, (11.38)

the expansion factor can be written

a(te) ≈ a0

[
1 + H0(te − t0)− 1

2
q0H

2
0 (te − t0)

2

]
. (11.39)

Using eq. (11.36) this yields a power series for the redshift as a function of the
time of flight t0 − te,

z = H0(t0 − te) +
(
1 +

q0

2

)
H2

0 (t0 − te)
2 + · · · (11.40)

Inverting this we obtain a formula for the time of flight in terms of the redshift

H0(t0 − te) = z −
(
1 +

q0

2

)
z2 + · (11.41)

To the same order the comoving coordinate of the emitter is

χe =

t0∫
te

dt

a(t)
≈ t0 − te

a0

[
1 +

1

2
H0(t0 − te)

]
. (11.42)

The proper distance of the emitter at the present time is dP = a0χe. From eqs.
(11.40) and (11.41) we can relate the proper distance to the redshift for z � 1,

dP =
z

H0

[
1− z

2
(1 + q0)

]
(11.43)

.

· ·

.
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This relationship is purely kinematical. We have not used Einstein’s field
equations. Hence, it is generally valid independently of the matter and en-
ergy content of the universe.

For small values of z we have approximately z = H0dP . Interpreting the
redshift as a Doppler effect, z = v, Hubble’s law is recovered. However, in
general relativity the cosmic redshift should be interpreted as an expansion
effect. The quantity 1 + z is the ratio of distances at the time of arrival and the
time of emission of a light signal. If, for example, z = 1, the cosmic distances
have doubled during the time of travel of the light from the object to the ob-
server. By measuring the distance and the redshifts to very distant objects,
one can determine the deceleration parameter q0. The deceleration parameter
is positive if the expansion of the universe is decelerating. Recent measure-
ments indicate that q0 < 0! The universe seems to be in a state of accelerated
expansion! This will be taken up in the next chapter.

Eq. (11.26) implies that the density of radiation decreases faster than the
density of matter in an expanding universe. From the temperature T = 2.726K
of the cosmic microwave background radiation one finds that its present den-
sity is ργ0 = 4.8 · 10−31kg/m3. The present density of matter is ρm0 = 6.0 ·
10−27kg/m3. Radiation emitted at the point of time of equal density has a
redshift

zeq ≈ a0

aeq
=

ρm0

ργ0
= 1.25 · 104. (11.44)

For a flat universe k = 0 the Friedmann equation (11.16) reduces to

H2 =
8πG

3
ρc (11.45)

where the density in the flat universe has been denoted by ρc and is called the
critical density. Its present value is given in terms of the Hubble parameter by

ρc = ρ1h
2 (11.46)

where ρ1 = 3H2
1/8πG = 4 · 10−26kg/m3. With h = 0.7 the critical density is

ρc = 2 · 10−26kg/m3. If the mass density is larger than ρc the universe has
positive spatial curvature, k > 0, and is thus closed. If it is less the curvature
is negative, k < 0, and the universe is open.

The density relative to the critical density is denoted by Ω and is called the
density parameter or the relative density; i.e.

Ω =
ρ

ρc
. (11.47)

Defining a spatial curvature parameter

Ωk = − k

H2a2
(11.48)

the Friedmann equation (11.16) takes the form

Ω + Ωk = 1, (11.49)

where Ω is the total relative density of energy and matter. Since for an open
model Ωk < 0, a flat model Ωk = 0 and for a closed model Ωk > 0 we have

Ω

⎧⎪⎨⎪⎩
> 1, for k > 0,

= 1, for k = 0,

< 1, for k < 0.

(11.50)

,

,
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11.4 Cosmological redshift and the Hubble law

Hence, in principle we can measure the matter content of the universe and

defining the Hubble distance �H = ctH , where tH = 1/H0 is the Hubble age of
the universe, we find that the present curvature radius of the cosmic 3-space
is given by

R0 = �H

√
κ

Ω0 − 1
. (11.51)

[UKE03] show that Ω0 = 1.04±0.02
0.04. Hence, R0 > 4�H = 56 · 109l.y.. This

means that the 3-space of the universe is close to Euclidean on large scales.
m and Ωk

dust (matter). We see that the universe at small scales is matter-dominated,
while at late times and large scales it is curvature-dominated.

Figure 11.2: Ωm and Ωk as a function of ln a in the matter-dominated open model
(k = −1).

Introducing the relative density of radiation, Ωγ , matter, Ωm, and vacuum
v

(
Ωv0a

4 + Ωk0a
2 + Ωm0a + Ωγ0

)− 1
2 ada = H0dt, (11.52)

z∫
0

(1 + z)dz

[Ωv0 + Ωk0(1 + z)2 + Ωm0(1 + z)3 + Ωγ0(1 + z)4]
1
2

= H0(t0 − te) (11.53)

where t0 is the present age of the universe and te the emission time of radia-
tion observed with redshift z. The parameters Ωv0, Ωk0, Ωm0 and Ωγ0 are not
independent due to the constraint (11.49). The present age of the universe is

From eqs. (11.48), (11.49), the last of eqs. (11.7), anddetermine its geometry.

radiation and the apparent luminosity and redshift of supernovae of type Ia
Recent measurements of the temperature variations in the background

expressed as a redshift-time relationship
where the index 0 denotes the present value. This equation may also be

as a function of ln a in an open model filled withFig.11.2 shows Ω

written
energy, Ω , and using eq. (11.26), the Friedmann equation (11.16) can be

0

1

Ωm

Ωk

1n a
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given in terms of Hubble parameter, the present values of the relative densi-
ties, and the curvature parameter by

t0 =
1

H0

1∫
0

ada

(Ωv0a4 + Ωk0a2 + Ωm0a + Ωγ0)
1
2

. (11.54)

It may also be noted that the Friedmann equation (11.18) may be expressed
as a relation between the deceleration parameter and the relative densities,

q =
Ωm

2
+ Ωγ − Ωv. (11.55)

11.5 Radiation dominated universe models

Let us now solve Einstein’s field equations for a radiation fluid. Even though
the radiation is not the dominant fluid at the present epoch, the radiation was
dominant for a redshift z > 1.25 · 104.

We start with the Friedmann equation, eq. (11.16)

ȧ2

a2
=

8πG

3
ρ− k

a2
. (11.56)

From eq. (11.26) we have that ργ = ργ0a
−4 for radiation. Inserting this into

the Friedmann equation we get

ȧ2 = Ca−2 − k (11.57)

where C = 8πG
3 ργ0. One can either integrate this equation directly or we can

take the trace of the Friedmann equations (11.16) and (11.17). Since p = 1
3ρ for

radiation, we get

aä + ȧ2 + k =
d

dt
(aȧ + kt) = 0. (11.58)

Integrating twice, we obtain

a2 + kt2 = 2Bt + B′ (11.59)

where B and B′ are integration constants. By choosing a(0) = 0 we can set
B′ = 0. Hence, the solution for a radiation dominated universe is

a(t) =
√

2Bt− kt2 (11.60)

Inserting this into eq. (11.57) we can relate B and C:

C = B2. (11.61)

From eq. (11.56) follows H0 =
√

k/(Ωγ0 − 1) (k �= 0), where H0 and Ωγ0

are the present values of the Hubble parameter and the relative density of the
radiation. Eqs. (11.57) and (11.61) give H2

0 = B2 − k. Hence,

B =
(
H2

0 + k
) 1

2 =

(
k

Ωγ0

Ωγ0 − 1

) 1
2

. (11.62)
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11.5 Radiation dominated universe models

Note that the expansion velocity ȧ is

ȧ =
B − kt√
t(2B − kt)

(11.63)

which diverges as t −→ 0. Hence, the expansion of the universe is infinite as
we approach the initial t = 0. Even though a particle in our space cannot ex-
ceed the speed of light relative to any observer, the expansion of the universe
can be of arbitrary velocity. This initial point where t = 0 is called the Big
Bang.

Note also that for a closed universe (k > 0), the universe has a turning
point at t = B where the universe stops expanding and begins to contract.
The universe will end its days in a Big Crunch at t = 2B.

As the universe becomes bigger during the expanding phase, one expects
that the radiation would cool to lower temperatures. From quantum statistical
mechanics of massless particles we know that (Stephan-Boltzmann’s law)

ρ ∝ T 4. (11.64)

Close to t = 0 all of the models (11.60) behave similarly to the flat case

a(t) =
√

2Bt. (11.65)

The radiation density will decrease as

ργ ∝ t−2. (11.66)

This means that during the radiation era, the temperature will fall as

T ∝ ρ
1
4
γ ∝ 1√

t
. (11.67)

This relation may be written t = (T1/T )2t1 where T1 = 1010K and t1 = 1s. The

ture of about 1015K, which was attained when the universe was about 10−10s
old.

If a universe at t = 1s had a temperature of T = 1010K, say, then the
temperature would have dropped by a factor of 10 to T = 109K at t = 100s.
The initial universe was a hot universe1 dominated by radiation. However,
today the universe is more dominated by matter (dust) than radiation.

The transition from a radiation to a dust dominated model, is believed to
have happened around t =44 000 years (see below). Since this time, the dy-
namics of the universe has been driven by matter and vacuum energy. As
the temperature of the radiation cooled the radiation reached a point where
it did not have enough energy to keep the atoms ionised. At around t = 400
000 years matter and radiation decoupled. During the period before this time
the radiation was thermalized and in thermal equilibrium with the matter.
But at this point, the free electrons could bind to a nucleus and form a neu-
tral atom. Hence, the first atoms in the universe were created about 400 000
years after the Big Bang. The photons moved freely after this time; there were
no free electrons to Compton-scatter them. Effectively, the universe became
transparent! This time in the history of the universe is called the recombina-
tion. Since this point in time the photons have travelled more or less freely

1At least in the Hot Big Bang model. It is this model we will consider in the present book.

highest energies accessible to terrestrial experiments correspond to a tempera-
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in space. These photons are what make out the cosmic microwave background
radiation (CMB). Today the cosmic microwave background radiation has a

= 3000K. Hence, this

by studying the CMB we can learn much about the state of our universe in its
childhood.

Example 11.1 (The temperature in the radiation dominated epoch)Examples

t0 = 10−33s and t1 = 1011s. Assuming that the temperature at t1 was T1 = 103K we
can estimate the temperature at the start of the radiation era. Since

T ∝ t−
1
2 (11.68)

during a radiation dominated epoch, we have

T1

T0
=

„
t1
t0

«− 1
2

. (11.69)

Hence the temperature at t0 was

T0 = T1

„
t1
t0

« 1
2

≈ 1025K. (11.70)

At these temperatures, all atoms will be completely ionised; there will only be a soup
of protons, neutrons and electrons. At some time during this radiation dominated
period, one believes that the temperature was sufficiently low to allow for the lightest
atoms to form. This is what cosmologists call the period of nucleosynthesis. During
nucleosynthesis the lightest elements like Hydrogen, Helium, Beryllium and Lithium,
formed. This process requires a temperature of about Tn = 109K which corresponds
to a time

tn = t1
T 2

1

T 2
n

≈ 1s (11.71)

after the Big Bang.

Example 11.2 (The redshift of the cosmic microwave background)
e =

3000K to T0 = 2.7K since its emission. The frequency of a photon gas is directly
related to its temperature:

kBT = �ν. (11.72)

The redshift is found via

z =
νe

ν0
− 1 =

Te

T0
− 1 ≈ 103. (11.73)

The microwave background has been redshifted approximately by a factor thousand
since its emission!

radiation is the relics of the universe, when it was only 400 000 years old. Thus
400 000 years after the Big Bang at a temperature of T
temperature of about 2.7K but the radiation was emitted approximately

Cosmologists believe that the universe was radiation dominated in the period between

The temperature in the cosmic microwave background has decreased from T
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11.6 Matter dominated universe models

11.6 Matter dominated universe models

We will now turn our attention to universe models dominated by pressure-
free matter with density ρm. The Friedmann equation is

ȧ2 + k =
8πG

3
ρa2. (11.74)

Multiplying by a and using eq. (11.26), gives

aȧ2 + ka =
8πG

3
ρma3 = C = H2

0Ωm0 (11.75)

where H0 and Ωm0 are the present values of the Hubble parameter and the
relative matter density.

Let us introduce a dimensionless conformal time coordinate, η, by

1

t0

dt

dη
= a(η). (11.76)

So

ȧ =
dη

dt

(
da

dη

)
=

1

a

(
da

dη

)
1

t0
. (11.77)

Equation (11.75) gives

1

a
· 1

t20

(
da

dη

)2

= C − ka (11.78)

which can be rewritten as

1

a

da

dη
=

1

t0

√
C

a

√
1− ka

C
. (11.79)

By making the substitution a = Cx2 we can readily integrate this equation.
Using that a(0) = 0 we obtain

k < 0 :

{
a(η) = Ωm0

2(1−Ωm0) (cosh η − 1)

t(η) = Ωm0

2H0(1−Ωm0)3/2 (sinh η − η)
(11.80)

k = 0 : a(t) =
(

t
t0

) 2
3

(11.81)

k > 0 :

{
a(η) = Ωm0

2(Ωm0−1) (1− cos η)

t(η) = Ωm0

2H0(Ωm0−1)3/2 (η − sin η).
(11.82)

Note from eq. (11.75) that H2
0 (Ωm0 − 1) = k = κ/R2

0. Inserting eq. (11.80) or
(11.82) into eq. (11.79) gives R0 = t0.

For k > 0, the solution is that of a cycloid. The universe expands, reaches
a maximum size, and recollapses. The big crunch happens at a point of time
tC = πΩm0/(Ωm0 − 1)3/2(1/H0). The flat model (k = 0) is called the Einstein-
de Sitter model. It is ever-expanding but its expansion velocity reaches zero
in the far future, ȧ → 0 as t → ∞. The open model is also ever-expanding
and for large values of t the scale factor grows as a(t) = t. Hence, the flat
matter dominated model is just on the borderline between ever-expanding
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Figure 11.3: The cosmological scale factor for the open (k < 0), flat (k = 0) and
closed (k > 0) models.

for the three cases.
We shall calculate the point of time, teq, for the transition from a radiation

dominated period to a matter dominated period [Ryd03]. Let us consider a
flat universe and neglect vacuum energy. Then eq. (11.52) reduces to

aȧ = H0 (Ωm0a + Ωγ0)
1
2 . (11.83)

Integration with a(0) = 0 gives

H0t =
4

3

Ω
3/2
γ0

Ω2
m0

+
2

3

(Ωm0a− 2Ωγ0)
√

Ωm0a + Ωγ0

Ω2
m0

. (11.84)

From eq. (11.26) follows that the scale factor at equal density of matter and
radiation is aeq = Ωγ0/Ωm0. This gives

teq =
2

3

(
2−

√
2
) Ω

3/2
γ0

Ω2
m0

tH , (11.85)

where tH = 1/H0 is the Hubble age of the universe. Inserting the measured
values Ωγ0 = 8.4 · 10−5, Ωm0 = 0.3 and tH = 14 · 109yr gives teq = 47 · 103yr.
The value Ωm0 = 0.3 is, however, inconsistent with the assumption that the
universe model is flat. One should insert Ωm0 ≈ 1 which gives teq = 34 ·103yr.
The corresponding result if one assumes an Einstein-de Sitter universe before
the point of time t = teq is teq = (2/3)(Ωγ0/Ωm0)

3/2tH = 44 · 103yr. The result
obtained for our universe with numerical integration of

Hteq =

Ωγ0/Ωm0∫
0

ada√
Ωv0a4 + Ωm0a + Ωγ0

with Ωv0 = 0.7 and Ωm0 = 0.3 is teq = 47 · 103yr. Note that the vacuum energy
does not affect the result significantly due to the small value of Ωv0a

4 in the
radiation dominated period before t = teq.

and recollapsing. The scale factor as a function of time is depicted in Fig. 11.3

a(t)

t

k> 0

k=0

k<0

,
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11.7 The gravitational lens effect

Example 11.3 (Age-redshift relation in the Einstein-de Sitter universe) Example

relation between the age of the universe and the redshift.
From eq. (11.81) we find

H =
2

3t
. (11.86)

Let t0 be the present time with the corresponding Hubble factor H0. The Hubble-time
tH = H−1

0 is the age of the universe if the expansion rate has been constant. We see
that

t0 =
2

3
tH . (11.87)

Inserting tH = 14 · 109yr we find that the age of the Einstein-de Sitter universe with
the present rate of expansion is t0 = 9.3 · 109yr.

The redshift is given by

1 + z =
a0

a
=

„
t0
t

« 2
3

. (11.88)

The time difference between emission and receiving the photons is called the lookback
time. From eq. (11.88) follows that it is given by

Δt = t0 − t = t0

»
1− 1

(1 + z)3/2

–
. (11.89)

This can be written as

Δt = t0 − t =
2

3
tH

»
1− 1

(1 + z)3/2

–
. (11.90)

The age of the universe can be found by taking the limit for infinite redshift

Δt = lim
z−→∞

2

3
tH

»
1− 1

(1 + z)3/2

–
=

2

3
tH (11.91)

in accordance with eq. (11.87).

11.7 The gravitational lens effect

We have seen how a mass can deflect light towards it. Similarly, a concen-
tration of masses, like a galaxy, will deflect light rays and may cause some
interesting effects, such as making several images, and changing the intensity
of the images of, for example, quasars lying behind the galaxy. It is called the
gravitational lens effect [MHL89, MFS89].

Interestingly, this effect – as shown by Sjur Refsdal in 1964 [Ref64a, Ref64b]
– can be used to determine the Hubble parameter. We will here show the idea
behind Refsdal’s derivation [GR92].

In the Einstein-de Sitter model (dust dominated with k = 0) we can now find a useful
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Figure 11.4: The Einstein ring. Here, Q is the observed object, and G is the
gravitational lens.

Quasar masses determined from gravitational lens pictures

We will first consider the symmetrical case where the observed object is situ-
ated directly behind the gravitational lens, as shown in Fig. 11.4.

Let Q be the observed object, and G the gravitational lens. Usually, Q
is a far-away quasar and G is a more nearby galaxy. The distance from the
observer to Q and G are DQ and D respectively, and the distance between
Q and G is DGQ. Two light-rays are depicted; one on each side of the lens.
The shortest distance between the rays and G is r0, and the angle between the
light-rays at the observer is θ0. It is the measured angle between the objects.
The deflection angle of the light-rays is

φ =
4Gm

c2r0
(11.92)

where m is the mass of the lens, which is considered as a point mass. In this
case the picture of the lens is a circle, called the Einstein ring, with angular
radius θ0 which is called the Einstein radius. In the case of the Sun this angle is
less than 1.75 arc seconds. Also in the case of a galaxy, this deflection angle is
small. Hence, using radians, we can assume that θ0 � 1. Inspecting Fig. 11.4,
we get

θ0 =
2r0

DG
⇒ r0 =

DGθ0

2
, (11.93)

and by expressing the distance BQ in two different ways, we get

DGQφ = DQ
θ0

2
⇒ φ =

DQθ0

2DGQ
. (11.94)

Inserting this into eq. (11.92), yields

θ0 = 4

(
DGQ

DGDQ
· Gm

c2

) 1
2

. (11.95)

B

φ

q0

r0r0

φ

AQ

DQ

DGQ

G

DG

G,
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11.7 The gravitational lens effect

Due to the expansion of the universe the received light will be redshifted by a
factor z. To lowest order the redshift is given by the Hubble law, and hence,

czQ = H0DQ, czG = H0DG. (11.96)

Inserting this into eq. (11.95) yields

θ0 = 4

(
zQ − zG

zGzQ
· GH0m

c3

) 1
2

. (11.97)

For a massive galaxy with a mass m = 1012mS , where mS is the mass of the
Sun, at redshift zG = 0.5 and an object, say a quasar, at redshift zQ = 2.0 in a
universe with a Hubble parameter H0 = 15km/s per million light years, the
Einstein radius is θ0 ≈ 1.8 (m/mS)

1/2 · 10−6 arc seconds. In the case of so-
called microlensing in which stars in the disk of the Milky Way act as lenses
for stars close to the centre of the Milky Way, the angular scale defined by the
Einstein radius is θ0 ≈ 0.5 (m/mS)1/2 arc seconds.

Solving eq. (11.97) with respect to m, gives the mass of the object in terms
of observable quantities

m =
c3

16GH0

zGzQ

zQ − zG
θ2
0. (11.98)

Microlensing

When a star moves in front of another star it may act as a gravitational lens
and magnify the star behind. In the case that the lensing star passes the line
of sight of the far away star the intensity of the star will change with time in a
characteristic way. We shall now deduce the shape of the light-curve.

Figure 11.5: Microlensing. Here, L is the lens and S is the observed star.

we can use the approximations tanx ≈ x ≈ sin x and cosx ≈ 1. Here, L is the
Consider the situation shown in Fig. 11.5, where angles are so small that

S2

DLS

DS

DL

L

S S1

α

α̃

β

ξ

θ
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star which acts as a lens, and S the observed star. From the figure it is seen
that

β = θ − α. (11.99)

The deflection angle is

α̃ =
4Gm

c2

1

ξ
. (11.100)

The angle α is

α =
DLS

DS
α̃. (11.101)

Furthermore, ξ = DL tan θ ≈ DLθ. Hence, we get

β = θ − DLS

DLDS

4Gm

c2θ
. (11.102)

Inserting the Einstein radius θ0 from eq. (11.95), leads to the lens equation

β = θ − θ2
0

θ
. (11.103)

Solving this for θ one finds that a gravitational point lens produces two images
of a background source (except in the case that the lens in positioned on the
line of sight of the background source, when an Einstein ring appears). The
positions of the images are given by the two solutions

θ1,2 =
1

2

(
β ±

√
β2 + 4θ0

)
. (11.104)

μ ≡ dΩSi

dΩS
=

sin θdθ

sin βdβ
≈ θdθ

βdβ
. (11.105)

Using eq. (11.103) we get

μ1,2 =

(
1− θ4

0

θ4
1,2

)−1

. (11.106)

The sum of the absolute values of the two image magnifications is the mea-
surable total magnification μ. Using that θ1θ2 = θ2

0 , we find

μ = μ1 − μ2 =
θ4
2 − θ4

1

2θ0 − (θ4
1 + θ4

2)
. (11.107)

Inserting the solutions (11.104), and introducing a parameter u ≡ β/θ0, leads
to

μ =
u2 + 2

u
√

u2 + 4
. (11.108)

(It may be noted that the difference between the two image magnifications is
unity, μ1 + μ2 = 1.)

Magnification of stars caused by gravitational microlensing by Massive
Astronomical Compact Halo Objects (MACHOs) has been used in the search
for dark matter in the universe.

angles of the images and the source. Hence the magnification is given by
The magnification of an image is defined as the ratio between the solid

286



11.7 The gravitational lens effect

The Hubble parameter determined from the gravitational

By considering the non-symmetrical situation, Refsdal showed that – by mea-
suring the time difference in the two lightpaths – it is possible to determine
the Hubble parameter. This is a direct way of measuring the Hubble parame-
ter and thus avoids the problem of finding “standard candles”. However, an
accurate determination of the value of H requires a good model for the gravi-
tational lens and the galactic cluster of which a galaxy is usually a member.

itational lens is not quite on the line-of-sight to the observed object Q.

Figure 11.6: Typical gravitational lens situation.

We will assume that the gravitational lens has a mass distribution M(r) ∝
r in our derivation.

The main idea of the calculation is the following. The redshift of the quasar
and the galactic lens can be measured with great accuracy. Since the redshift
is proportional to the distance from us, one determines in this way the ratio
between these distances. Furthermore, the angles θA and θB are observed.
Thus a correct picture of the geometry can be drawn. The only missing piece
of information to specify the figure completely, is the correct scaling factor.
What are the actual distances? It suffices to know one of the distances to know
all the others. This is just what a measurement of Δt – the difference in travel
time for light-rays travelling on opposite side of the lens – provides, as we
shall see.

Consider the wave-fronts in Fig. 11.6. The travel-time from Q to the point
of symmetry S is the same for all light-signals reaching S. Since the wave-
fronts I and II intersect at S, all points on these wavefronts must correspond
to the same travel-time, tI = tII . Inspecting Fig. 11.6 yields

Δt = tIII − tI = tIII − tII = θξ. (11.109)

Consider the non-symmetrical situation shown in Fig.11.6 where the grav-

lens effect

B A

G P

DGQ

DG

Δt

DQ

θQ

θAθB

θ θ

ξ

Q

φφ

Ι

ΙΙ
ΙΙΙ

S O
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Here, θ is the angle between the two wave-fronts intersecting at S. Since the
deflection angle is independent of the impact parameter for the gravitational
model under consideration, the angle between the pictures is equal to θ. Fur-
thermore, ξ is the distance between the observer and S. Thus it is possible to
determine ξ from measuring Δt and θ, and hence, the scale of the figure can
be determined.

The distance GP can be expressed in two ways, giving

θGDG =
DGQ

DQ
ξ. (11.110)

The angle θG A and θB are. From Fig.11.6 it is
seen that AQ = BQ. Thus θA − θQ = θB + θQ giving

θQ =
1

2
(θA − θB) . (11.111)

Inserting eqs. (11.110) and (11.111), together with DGQ = DQ − DG and θ =
θA + θB (see Fig. 11.6) into eq. (11.109) gives

Δt =
DQDG

DGQ
θθG =

1

2

DQDG

DQ −DG

(
θ2

A − θ2
B

)
. (11.112)

Expressing the distances DQ and DG by the corresponding redshifts zQ and
zG using Hubble’s law, gives

Δt =
1

2H0

zQzG

zQ − zG

(
θ2

A − θ2
B

)
, (11.113)

and hence,

H0 =
1

2Δt

zQzG

zQ − zG

(
θ2

A − θ2
B

)
. (11.114)

This equation may be called Refsdal’s equation and says how we can determine
the Hubble parameter using the gravitational lens effect.

Refsdal’s equation is derived using the following assumptions.

1. The gravitational lens has a mass proportial to the radius.

2. Possible modifications of the Hubble law depending on the universe
model, have been neglected.

3. The lensing galaxy is not a member of a cluster of galaxies.

A more careful derivation of the Hubble parameter where these assump-
tions are not needed, gives the expression

H0 = KLKU

(
v

v0

)2
zQzG

zQ − zG

(
θ2

A − θ2
B

) 1

Δt
. (11.115)

Here, KL is a numerical factor representing the mass distribution of the lens;
KU is a factor representing the geometric properties of the universe; v/v0 is
a factor representing the effect of the lensing galaxy upon the travel-time of
the light-rays. More specifically, v is the radial velocity dispersion of the stars
in the lensing galaxy, and v0 is the radial velocity dispersion of an imaginary
galaxy which is so massive that it can produce the lensing alone.

is not directly measurable, but θ
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For example, if the mass distribution of the lensing galaxy is M(r) ∝ rn,
we have KL = 1− n/2. The factors KU and v/v0 are usually slightly less than
1. For more details, consult for example [GR92].

The first gravitational lens images were detected in 1979. This was a dou-
ble image of the quasar Q0957+561. The two images of this quasar have a
redshift of about zQ = 1.41 while the lens itself is at a redshift zG = 0.36. The
angular separations from the centre of the lens are θA = 5.24 arc seconds and
θB = 0.9 arc seconds respectively. By studying the variation of the light in-
tensity, one has established that Δt = 1.4 years. Using a model for the lens
one finds M(r) ∝ r4/3 and thus KL = 1/3. The factor KU representing the
geometry of space is probably close to unity, so KU = 1. Furthermore, the
velocities v and v0 have been estimated to have the values v = 360km s−1 and
v0 = 390km s−1. Inserting these values into eq. (11.115) gives the value of the
Hubble parameter H0 = 57km s−1Mpc−1.

11.8 Redshift-luminosity relation

Consider radiation emitted from a coordinate distance re at a point of time
te and received at r = 0 at a point of time t0. The radiation is detected by a
telescope with proper area A. The light rays that just graze the mirror form
a cone at the light source with solid angle A/a2(t0)r

2
e = A/r2

e where we have
used the normalization a(t0) = 1. The fraction of the isotropically emitted
radiation that reaches the mirror is the ratio of this solid angle to 4π, or A/4πr2

e .
Light with frequency νe is redshifted to frequency νe/(1+z), and light emitted
during a time interval dte is received during a time interval dt0 = dte(1 + z)

absolute luminosity L times the factor (1 + z)−2 times the fraction A/4πr2
e ,

P = L(1 + z)−2 A

4πr2
e

. (11.116)

The apparent luminosity, l, is defined as the received power per unit area,

l ≡ P

A
=

L

(1 + z)24πr2
e

. (11.117)

The luminosity distance, dL, of a light source is defined as

dL ≡
(

L

4πl

) 1
2

. (11.118)

Hence,

dL = (1 + z)re. (11.119)

We must now evaluate the function re(z). From the redshift formula 1 + z =
a0/a = 1/a follows

dz = − ȧ

a2
dt = −H

a
dt. (11.120)

For light moving towards the observer

dt = − adr√
1− kr2

(11.121)

since the observer is moving away from the emitter. Thus the power P
received by the mirror is equal to the power emitted by the source, i.e., its
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which gives

dr√
1− kr2

=
dz

H(z)
. (11.122)

H2(z) = H2
0E2(z) (11.123)

where

E2(z) ≡ Ωk0(1 + z)2 +
∑

i

Ωi0(1 + z)3(1+wi) (11.124)

and Ωi0 is the present relative density at t0 of a cosmic fluid with equation of
state pi = wiρi, where wi = constant. In particular, for z = 0 this gives

Ω0 + Ωk0 = 1, Ω0 ≡
∑

i

Ωi0. (11.125)

Inserting eq. (11.123) into eq. (11.122), using −k = Ωk0H
2
0 , and integrating

leads to

re(z)∫
0

dr√
1− kr2

=

re(z)∫
0

dr√
1 + H2

0Ωk0r2
=

1

H0

z∫
0

dy

E(y)
(11.126)

and thus, using the change of variables R = H0|Ωk0| 12 r, we get

H0|Ωk0| 12 re(z) = Sk[χ(z)] (11.127)

where

χ(z) =
√
|Ωk0|

z∫
0

dy

E(y)
(11.128)

and Sk(χ) is given in eq. (11.9). Inserting this into eq. (11.119) finally leads to
the general redshift-luminosity relation

dL =
1 + z

H0

√|Ωk0|
Sk

⎡⎣√|Ωk0|
z∫

0

dy

E(y)

⎤⎦ , (11.129)

where the function E(z) is defined in eq. (11.124). In the case of a flat universe
the relation reduces to

dL =
1 + z

H0

z∫
0

dy

E(y)
. (11.130)

To second order in z this gives

dL ≈ z

H0

[
1 +

z

2
(1− q)

]
. (11.131)

From Friedmann’s equation (11.16) and eq. (11.25) follow

,

,

,
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Figure 11.7: Luminosity distance as a function of cosmic redshift for four universe
models; a de Sitter model (dS) with Ωv0 = 1, Ωm0 = 0 and a Friedmann-Lemaître
model (FL) with Ωv0 = 0.7 and Ωm0 = 0.3 having ä > 0; the Milne model (M) with

Ωv0 = Ωm0 = 0 having ä = 0; the Einstein-de Sitter model (E-dS) with Ωv0 = 0 and
Ωm0 = 1 having ä < 0.

universe models.
Two other concepts of cosmic distance should be mentioned. Proper dis-

tance, dP , is the distance at time t from source to observer. It is given by

dP (t) = a(t)

re∫
0

dr√
1− kr2

=
a(t)

H0|Ωk0| 12
[S−1]k(H0|Ωk0| 12 re)

=
χ(z)

H0|Ωk0| 12 (1 + z)
, (11.132)

where

[S−1]k(y) =

⎧⎪⎨⎪⎩
arcsin y, k > 0

y, k = 0

arsinh y, k < 0

. (11.133)

In a flat universe the proper distance can be expressed very simply in terms
of conformal time. Then the proper distance of a source at the time that the
signal is received, is dP (t0) = re = η0 − ηe. Note that the coordinate distance
of an object is its present distance in a flat universe.

Finally, the angular-diameter distance, dA is based on the fact that the length
l subtends a smaller angle θ the further away it is. This distance is given by

dA =
dL

(1 + z)2
. (11.134)

It is the angular-diameter distance which is used to derive the power spectrum
of the cosmic microwave background radiation. In a flat universe it is simply

dA =
η0 − ηe

1 + z
. (11.135)

In Fig. 11.7 the luminosity distance is plotted as a function of redshift for some

0

2
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6

1 2
z
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M
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Example 11.4 (Redshift-luminosity relations for some universe models)Example

which has Ωk = 1 and Ωi = 0. Then eq. (11.129) takes the form

dL =
(1 + z)

H0
sinh χ, χ =

zZ
0

dy

(1 + y)
. (11.136)

Hence,

H0dL = z +
1

2
z2. (11.137)

Consider now a flat universe dominated by a perfect fluid with equation of state
p = wρ where w is constant. Then eq. (11.129) takes the form

dL =
(1 + z)

H0

zZ
0

(1 + y)−
3
2
(1+w)dy, (11.138)

which leads to

H0dL =
2

1 + 3w

h
1 + z − (1 + z)

1
2
(1−3w)

i
. (11.139)

Measuring the luminosity distance and red-shift of far-away standard ra-
diation sources allows one to determine the difference between the cosmic
density of matter, Ωm0, and vacuum energy, Ωv0.

The best candidates for standard sources are supernovae of type Ia. They
are thought to be white dwarf stars that accumulate gas from a companion
star. When the mass of the white dwarf exceeds the Chandrasekhar mass
of 1.4MSun, where 4MSun is the mass of the Sun, the white dwarf becomes
unstable against the force of gravity, and it collapses. This leads to a supernova
explosion with an absolute luminosity that is determined mainly by the mass
of the star. Since this is around 1.4MSun for all such stars their luminosity does
not vary very much. The peak luminosity reaches about 1010LSun where LSun

is the absolute luminosity of the Sun. Hence, they are visible at cosmological
distances.

The luminosity of an object is usually expressed by a quantity called mag-
nitude. The apparent magnitude is defined in terms of the apparent luminosity
by

m = −2.5 log10 l + C, (11.140)

where C is a constant. The absolute magnitude M corresponds to the luminosity
of some source if it were at a distance 10pc = 32.6l.y. from the observer. The
difference m−M is called the distance modulus and is given by

m−M = 5 log10 dL − 5 (11.141)

where the luminosity distance, dL, is expressed in parsecs, pc.
Using eq. (11.131) with q0 = (1/2)Ωm0 − Ωv0 if we neglect radiation, we

obtain second order in z for the distance modulus [Wei72]

m−M = 25− 5 log10 H0 + 5 log10 z + 1.086

(
1 + Ωv0 − Ωm0

2

)
z. (11.142)

We shall first consider an empty universe model (the so-called Milne universe model)
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of determining the distance modulus and red-shift of around fifty supernovae
of type Ia with red-shifts in the range z ∼ 0.4− 0.8. The results indicated that
we live in a flat universe with Ωm0 ≈ 0.28 and Ωv0 ≈ 0.72. Although there are
some uncertainties, the results of the measurements strongly excluded that the
cosmic density of the vacuum energy is zero. On the contrary, the measure-
ments indicate that we live in a vacuum dominated universe.

11.9 Cosmological horizons

Light moves along null geodesics. Hence for light moving from an object to-
wards an observer at r = 0, ds2 = dθ = dφ = 0 so that

dr

(1− kr2)
1
2

= − dt

a(t)
. (11.143)

The particle horizon is a surface dividing space into a region that can be seen
at a time t by an observer at the origin, and one that cannot yet be seen. The
coordinate radius of this surface is given by

rPH∫
0

dr

(1− kr2)
1
2

=

{∫ t

0
dt

a(t)∫ t

−∞
dt

a(t)

(11.144)

where the lower limit in the integral on the right hand side depends upon
the region of definition of t. The particle horizon represents the extension of
causally connected regions in the universe, or how far an observer can see.

The event horizon of an observer also divides the space into two regions:
one from which light can reach the observer at a finite time, and one from
which this is not possible. Light emitted at the event horizon takes an infinite
time to reach the observer. The coordinate radius of the event horizon is given
by

rEH∫
0

dr

(1− kr2)
1
2

=

∞∫
t

dt

a(t)
. (11.145)

The proper distance to the horizons are

�PH = a(t)

rPH∫
0

dr

(1− kr2)
1
2

=

{
a(t)

∫ t

0
dt

a(t)

a(t)
∫ t

−∞
dt

a(t)

(11.146)

and

�EH = a(t)

rEH∫
0

dr

(1− kr2)
1
2

= a(t)

∞∫
t

dt

a(t)
. (11.147)

From eq. (11.36) follows dz = −(H/a)dt. Hence,∫
dt

a(t)
= −

∫
dz

H(z)
. (11.148)

In 1998 two groups of astronomers, the Supernova Cosmology Project [Pet. al.
99] and the High-z supernova search team [Set. al.98, Ret. al.98] published results
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Applying eqs. (11.123) and (11.124) we can calculate the proper distances to
the horizons by solving the integral

∫
dz

E(z) . The radius of the observable uni-
verse is equal to the proper distance to the particle horizon.

Summarizing, one may say that the event horizon defines a region from
which we will never receive information in the future about events occur-
ing now, while the particle horizon defines a region from which informa-
tion has not yet been received about events that occurred in the past.

Example 11.5 (Particle horizon for some universe models)Example

takes the form

a
1
2
(1+3w)ȧ = H0. (11.149)

Integration with normalization a(t0) = 1 gives

a(t) =

„
t

t0

« 2
3(1+w)

, (11.150)

where the age of the universe is

t0 =
2

3(1 + w)H0
. (11.151)

For such a universe model the proper distance to the particle horizon is

lPH =
3(1 + w)

1 + 3w
t. (11.152)

radius if w < −1/3. Note that this is just the condition that the expansion of the
universe model accelerates. Hence, in a universe model dominated by quintessence
energy with w < −1/3 one would observe fewer quasars in the far future.

11.10 Big Bang in an infinite Universe

We shall discuss the compatibility of the concept of a homogeneous open uni-
verse model having infinite spatial extension with the concept of a point like

Consider the questions: Does the point-like character of the big bang event
contradict the homogeneity of the Friedmann model? Did big bang happen
everywhere?

In order to answer these questions it is sufficient to consider a simple uni-
verse model. In 1933 E.A. Milne presented a homogeneous, isotropic, expand-
ing universe model as a solution of Einstein’s field equations for empty space.
The line-element of the model is

ds2 = −dt2 +

(
t

t0

)2
(

dr2

1 + r2

R2
0

+ r2dΩ2

)
. (11.153)

This is called the Milne model. The expansion factor is a(t) = t/t0, and the
3-space has negative curvature; it is an open universe model.

p = wρ where w ≥ −1 is a constant. Using eq. (11.25) the Friedmann equation (11.16)
Consider a flat universe model dominated by a perfect fluid with equation of state

Eqs. (11.150) and (11.152) show that the scale factor a(t) increases faster than the particle

W. Rindler [Rin00].
big bang event in spacetime. Our treatment is based upon an analysis by
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11.10 Big Bang in an infinite Universe

Introducing the coordinates

R =
rt

t0
, T = t

(
1 +

r2

t20

) 1
2

, (11.154)

the line-element takes the form

ds2 = −dT 2 + dR2 + R2dΩ2, (11.155)

which represents Minkowski spacetime in spherical coordinates.
Let us find the shape of the coordinate curves t = constant in an (T, R)-

Minkowski diagram. From the transformation (11.154) follows

R =
r√

1 + r2

t20

T

t0
, T 2 −R2 = t2. (11.156)

Hence, the curves r = constant are straight lines in the diagram. They are
the world lines of the reference particles in an expanding reference frame in
Minkowski spacetime with r as a comoving radial coordinate. The simul-
taneity space of this reference frame, t = constant, are hyperbolae. In the
(r, t)-coordinate system a part of the Minkowski spacetime is represented as
an expanding universe model with 3-space defined by constant cosmic time
t = constant.

Figure 11.8: The (R, T )-system is the comoving stationary inertial system of an
arbitrarily chosen test particle in the Milne universe. The figure shows the world lines

and the simultaneity curves of the expanding reference frame in the Minkowski
diagram referring to the stationary system.

Figure 11.8 shows the world lines and simultaneity curves of the (r, t)-
system in a Minkowski diagram which refers to the static, inertial (T, R)-

W. Rindler [Rin00] pointed out that instead of regarding the Milne universe
as empty, it may be useful to imagine it filled with test particles that do not
gravitate. Each particle carries with it a clock showing the time t since the big
bang event of the universe model. The particles have constant velocities, but

lightcone of an observer at O with the plane of the paper.
Also indicated on the figure is the intersection of the backwardssystem.

cT

R

O

T=a

t=
0 t=

0

t=
a
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particles with all velocities between 0 and c were “emitted” at the big bang
event.

Since each test particle move with a constant velocity the distance between
two particles is equal to their relative velocity times the cosmic time. Hence
each particle moves away from an arbitrary chosen “origin-particle” with a
velocity proportional to the distance to the “origin-particle”. This is Hubble’s
law which describes the expansion of Milne’s universe model.

In Fig. 11.8 the vertical axis, R = 0, is the world line of the chosen origin
particle, which we will call the observer. All clocks in the comoving inertial
frame of the observer show the proper time, T , of the observer. Hence, each
horizontal line T = a in Fig. 11.8 represent the simultaneity space of the ob-
server at different points of time. Milne called this the private space of the
observer.

The 3-space of the Milne universe, however, is defined at constant cosmic
time. This space, at different cosmic time, is represented by the hyperbolae
t = a in Fig. 11.8. Milne called this the public space. Each hyperbola has infinite
length. This means that the (negatively curved) 3-space of the Milne universe
has infinite extension. Note that this is the case for every point of cosmic time
t > 0.

The lines representing the backwards light-cone of the observer at the event
O comes from the lines t = 0. Hence in the Milne universe model an observer
can in principle observe the big bang event. Since the direction of the radial
coordinate is arbitrary in an isotropic universe model, the big bang would be
observed in every direction, and because the observer is arbitrary the big bang
event may be observed from every position. In this sense big bang happened
everywhere.

However with reference to the comoving frame of the observer big bang
was a point event. Furthermore, the 3-space at constant T of that part of
Minkowski spacetime that makes up the Milne universe has finite extension,
� = cT , which decreases to zero at the big bang event.

The main point of this discussion is valid for open universe models in gen-
eral, namely: The simultaneity of a chosen particle in an expanding universe
model is different from the simultaneity of all the reference particles of the
model. Hence, the corresponding 3-spaces are different. The big bang was a
point event. The 3-space of a universe model with a big bang has finite exten-
sion as defined by the simultaneity of a fixed observer. However, as measured
by constant cosmic time space may have infinite extension.

Problems

11.1. Physical significance of the Robertson-Walker coordinate system
Show that the reference particles with fixed spatial coordinates move along
geodesic world lines, and hence are free particles.

11.2. The volume of a closed Robertson-Walker universe
=

V = 2πa3

(
χ− 1

2
sin 2χ

)
.

Find the maximal volume. Find also an approximate expression for V when
χ� R.

a

arcsin r is
Show that the volume of the region contained inside a radius r = aχ
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(a) Show that the radial standard coordinate of the past light-cone is

χlc(te) = c

t0∫
te

dt

a(t)
. (11.157)

(b) The proper distance at a point of time t to a particle at a radial coordinate
χ is d = a(t)χ. Differentiation gives ḋ = ȧχ + aχ̇ which may be written

vtot = vrec + vpec, (11.158)

where vtot is the total radial velocity of the particle; vrec is its recession
velocity; and vpec is its peculiar velocity.
Show that the recession velocity of a light source with redshift z is given
by

vrec(z) = c
E(z)

1 + z

z∫
0

dy

E(y)
. (11.159)

Can this velocity be greater than the speed of light? What is the total
velocity of a photon emitted towards χ = 0? Is it possible to observe a
galaxy with recession velocity greater than the speed of light?

(c) Make a plot of the past light-cone; i.e. of te as a function of the proper
distance

dlc = a(te)χlc(te),

for a flat, matter dominated universe model. Explain the shape of the
light-cone using that its slope is equal to the total velocity of a photon
emitted towards an observer at the origin.

(d) Introduce conformal time and calculate the coordinate distance of the
past light-cone as a function of conformal time for the flat, matter dom-
inated universe model. Make a plot of the past light-cone in these vari-
ables.

11.4. Lookback time

emitting object to the receiver. Hence, it is tL ≡ t0 − te, where t0 is the point
of time that the object is observed and te is the point of time the light was
emitted.

(a) Show that the lookback time is given by

tL =
1

H0

z∫
0

dy

(1 + y)E(y)
, (11.160)

where z is the redshift of the object.

(b) Show that tL = t0
[
1− (1 + z)−3/2

]
, where t0 = 2/(3H0), in a flat, matter-

dominated universe.

(c) Show that the lookback time in the Milne universe model with a(t) =
(t/t0), k < 0, is

tL =
1

H0

z

1 + z
.

11.3. The past light-cone in expanding universe models

The lookback time of an object is the time required for light to travel from an
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(d) Make a plot with tL as a function of z for the last two universe models.

11.5. The FRW-models with a w-law perfect fluid

assume that the perfect fluid obeys the equation of state

p = wρ (11.161)

where −1 ≤ w ≤ 1.

(a) Write down the Friedmann equations for a FRW model with a w-law
perfect fluid. Express them in terms of the scale factor a only.

(b) Assume that a(0) = 0. Show that when −1/3 < w ≤ 1, the closed model
will recollapse. Explain why this does not happen in the flat and open
models.

(c) Solve the Friedmann equation for a general w �= −1 in the flat case.
What is the Hubble parameter and the deceleration parameter? Write
also down the time evolution for the matter density.

(d) Find the particle horizon distance in terms of H0, w and z.

11.6. Radial motion in a Friedmann universe [GE07]

(a) Calculate the Christoffel symbols Γχ
tχ and Γt

χχ from the line-element
(11.10).

(b) Consider the radial motion of a free particle in the space-time described
by this line-element. Show that the geodesic equations then reduce to

d2χ

dτ2
= −2

ȧ

a

χ̇

τ̇2
,

d2t

dτ2
= −aȧ

c2

χ̇2

τ̇2
, (11.162)

where the dot denotes differentiation with respect to coordinate time,
and τ is the proper time of the particle.

(c) Express χ̇ and χ̈ in terms of derivatives with respect to τ and show that
the equation of motion of the particle takes the form

χ̈ =
aȧ

c2
χ̇3 − 2

ȧ

a
χ̇. (11.163)

Introduce the dimensionless variable y = c2/χ̇2 and show that the equa-
tion can be written

ẏ − (ln a4 )̇y = −(a2)̇. (11.164)

(d) Find the general solution of this equation and show that the radial coor-
dinate of the particle is

χ = ±
∫

cdt

a
√

1 + Aa2
, (11.165)

where A is a positive constant.

In this problem we will investigate FRW models with a perfect fluid. We will

models.
(e) Specialize the above to the dust and radiation dominated universe
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(e) Using the result a = (t/t0)
2/3(1+w) from Problem 11.5c, show that in a flat

universe with a perfect fluid with equation of state p = wρ, w = constant,
the result in (d) reduces to

χ = χ0 ± 3

2
(1 + w)ct0

a∫
1

x
1
2 (3w−1)

√
1 + Ax2

dx, (11.166)

where the initial condition is χ = χ0 and t = t0.

(f) We shall now assume that the particle is initially at rest relative to an
observer at χ = 0 and is then let free. The proper distance of the particle
from the observer is � = aχ. Show that the initial coordinate velocity of
the particle is

χ̇0 = −H0χ0,

where H0 is the present value of the Hubble parameter.

(g) Differentiate � = aχ twice and use the equation of motion of the particle
together with χ̇0 = −H0χ0 to show that the initial acceleration of the
particle after it has been let free is

�̈0 =

(
ä0 − H4

0

c2
χ2

0

)
χ0.

Find what happens to a particle which is let free at χ0 >
c
√
|ä0|

H2
0

and try
to explain its behaviour.

11.7. Age-density relations

(a) Show that the age of a radiation dominated universe model is given by

t0 =
1

H0
· 1

1 +
√

Ωγ0

, (11.167)

for all values of k.

(b) Show that the age of a matter dominated universe model with k > 0 may
be expressed by

t0 =
Ωm0

2H0(Ωm0 − 1)
3
2

[
arccos

(
2

Ωm0
− 1

)
− 2

Ωm0
(Ωm0 − 1)

1
2

]
(11.168)

and of a matter dominated universe model with k < 0

t0 =
Ωm0

2H0(1− Ωm0)
3
2

[
2

Ωm0
(1− Ωm0)

1
2 − arcosh

(
2

Ωm0
− 1

)]
.(11.169)

(c) Show that the lifetime of the closed universe is

T =
π

H0

Ωm0

(Ωm0 − 1)
3
2

, (11.170)

and that the scale factor at maximum expansion is

amax =
Ωm0

Ωm0 − 1
. (11.171)
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11.8. Redshift-luminosity relation for matter dominated universe
Show that the luminosity distance of an object with redshift z in a matter dom-
inated universe with relative density Ω0 and Hubble parameter H0 is

dL =
2c

H0Ω2
0

[
Ω0z + (Ω0 − 2)(

√
1 + Ω0z − 1)

]
. (11.172)

For the Einstein-de Sitter universe, with Ω0 = 1, this relation reduces to

dL =
2c

H0
(1 + z −√1 + z). (11.173)

Plot this distance in light years as a function of z for a universe with Hubble
parameter H0 = 20km/s per light years.

11.9. Newtonian approximation with vacuum energy
Show that Einstein’s linearised field equations for a static spacetime contain-
ing dust with density ρ and vacuum energy with density ρΛ takes the form of
a modified Poisson equation

∇2φ = 4πG(ρ− 2ρΛ). (11.174)

11.10. Universe with multi-component fluid
Consider a FRW universe model with perfect fluids

Ωi, ρi = wipi. (11.175)

Show that the deceleration parameter q can be written as

q =
1

2E2

∑
i

Ωi0(1 + z)3(1+wi)(1 + 3wi) (11.176)

where E is defined in eq. (11.124). What is q for z = 0?

Consider a universe with cold dark matter (dust) and vacuum energy. Find
the redshift z1 at which the universe went from cosmic retardation to acceler-
ation. Express z1 in terms of the Ωi0’s.

11.11. Gravitational collapse
In this problem we shall find a solution to Einstein’s field equations describ-
ing a spherical symmetric gravitational collapse. The solution shall describe
the spacetime both exterior and interior to the star. From the Jebsen-Birkhoff

the metrics must be expressed in the same coordinate system. We will as-
sume that the interior solution has the same form as a Friedmann solution.
The Friedmann solutions are expressed in comoving coordinates, thus freely
falling particles have constant spatial coordinates.

Let (ρ, τ) be the infalling coordinates. τ is the proper time to a freely falling
particle starting at infinity with zero velocity. These coordinates are connected
to the Schwarzschild coordinates via the requirements

ρ = r, for τ = 0

τ = t, for r = 0.

(11.177)

is the Schwarzschild metric. But to connect the exterior and interior solutions,
theorem [Jeb21], stated in problem 10.15 on page 262, the exterior metric
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(a) Show that the transformation between the infalling coordinates and the
Schwarzschild coordinates is given by

τ =
2

3
(2M)−

1
2

(
ρ

3
2 − r

3
2

)
,

t = τ − 4M
( r

2M

) 1
2

+ 2M ln

⎡⎣( r
2M

) 1
2 + 1(

r
2M

) 1
2 − 1

⎤⎦ ,

metric in these coordinates takes the form

ds2 = −dτ2 +

[
1− 3

2
(2M)

1
2 τρ−

3
2

]− 2
3

dρ2

+

[
1− 3

2
(2M)

1
2 τρ−

3
2

] 4
3

ρ2
(
dθ2 + sin2 θdφ2

)
. (11.178)

Show that the metric is not singular at the Schwarzschild radius. Where
is it singular?

(b) Assume the star has a position dependent energy-density �(τ), and that
the pressure is zero. Assume further that the interior spacetime can be
described with a Friedmann solution with Euclidean geometry (k = 0).
Find the solution when the radius of the star is R0 at τ = 0.

11.12. Cosmic redshift
We shall in this problem study the cosmic redshift in an expanding FRW uni-
verse and show that this redshift, for small distances between emitter and
receiver, can be split into a gravitational and a kinematic part.

(a) Show that the assumption that the distance between emitter and receiver
is small, can be expressed as

H0(t0 − te)� 1.

Here, the lower index of 0 and e mean evaluated at the receiver and emit-
ter, respectively.
In the following, include only terms to 2nd order in H0(t0 − te).

(b) Light is emitted at wavelength λe and received at λ0. Show that the red-
shift, z, can be written as

z = H0(t0 − te) +
(
1 +

q0

2

)
H2

0 (t0 − te)
2, (11.179)

where q is the deceleration parameter.

(c) Use the relativistic formula for the Doppler shift,

zD =

√
1 + ve

1− ve
− 1, (11.180)

where ve (in units where c = 1) is the velocity of the source when it
emitted the light, together with the formula for the expansion velocity,
ve = ȧeχe, to show that to second order in ve the formula for the Doppler
shift takes the form

zD = ȧeχe +
1

2
ȧ2

eχ
2
e. (11.181)

where M is the Schwarzschild mass of the star. Show that the Schwarzschild
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(d) Use a Taylor expansion of ȧ to first order in H0(t0−te) and the expression
(11.42) for χe in terms of H0(t0 − te) to show that

zD = H0(t0 − te) + (1 + q0)H
2
0 (t0 − te)

2, (11.182)

to second order in H0(t0 − te).

(e) The Newtonian expression for the gravitational frequency shift is

zG = −φe, (11.183)

where φe is the gravitational potential at the emitter, and the potential has
been defined so that φ0 = 0 at the observer. Assuming that the universe
is dominated by dust with density ρ0, show that

φe =
2πG

3
ρ0χ

2
e. (11.184)

(f) Show that the Friedmann equations give

4πG

3
ρ0 = q0H

2
0 , (11.185)

for a flat, dust dominated universe. Using this and that χe = t0 − te to
lowest order, show that the gravitational frequency shift is

zG = −1

2
q0H

2
0 (t0 − te)

2. (11.186)

Is this a redshift or a blueshift? Explain!

(g) Show from the previous results that for small values of z the cosmic red-
shift can be separated into a Doppler effect and a gravitational frequency
shift, as follows:

z = zD + zG. (11.187)

11.13. Universe models with constant deceleration parameter

(a) Show that the universe with constant deceleration parameter q has ex-
pansion factor

a =

(
t

t0

) 1
1+q

, q �= −1, and a ∝ eHt, q = −1.

(b) Find the Hubble length 
H = H−1 and the radius of the particle horizon
as functions of time for these models.

11.14. Relative densities as functions of the expansion factor
Show that the relative densities of matter and vacuum energy as functions of
a are

Ωv =
Ωv0a

3

Ωv0a3 + (1− Ωv0 − Ωm0) a + Ωm0

Ωm =
Ωm0

Ωv0a3 + (1− Ωv0 − Ωm0) a + Ωm0
(11.188)

What can you conclude from these expressions concerning the universe at
early and late times?
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11.15. FRW universe with radiation and matter
Show that the expansion factor and the cosmic time as functions of conformal
time of a universe with radiation and matter are

k > 0 :

{
a = a0 [α(1 − cos η) + β sin η]

t = a0 [α(η − sin η) + β(1 − cos η)]
(11.189)

k = 0 :

{
a = a0

[
1
2αη2 + βη

]
t = a0

[
1
6αη3 + 1

2βη2
] (11.190)

k < 0 :

{
a = a0 [α(cosh η − 1) + β sinh η]

t = a0 [α(sinh η − η) + β(cosh η − 1)]
(11.191)

where α = a2
0H

2
0Ωm0/2 and β = (a2

0H
2
0Ωγ0)

1/2, and Ωγ0 and Ωm0 are the
present relative densities of radiation and matter, H0 is the present value of
the Hubble parameter.
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12
Universe Models with Vacuum

Energy

Soon after Einstein had introduced the cosmological constant he withdrew it
and called it “the biggest blunder” of his life. However, there has been devel-
opments in the last decades that have given new life to the cosmological con-
stant. Firstly, the idea of inflation gave cosmology a whole new view upon the
first split second of our universe. A key ingredient in the inflationary model
is the behaviour of models that have a cosmological constant-like behaviour.
Secondly, recent observations may indicate that we live in an accelerated uni-
verse. The inclusion of a cosmological constant can give rise to such behaviour
as we will show in this chapter. We will first start with the static solution that
Einstein found and was the reason that Einstein introduced the cosmological
constant in the first place.

12.1 Einstein’s static universe

The Einstein field equations with a cosmological constant are (see eq. (9.42))

Rμν − 1

2
gμνR + Λgμν = 8πGTμν . (12.1)

We assume that the space-time is homogeneous and isotropic as in the previ-
ous chapter. The line-element has the form

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
. (12.2)

The components of the Einstein tensor were calculated in the previous chapter
for this metric, eq. (11.13). Using this the field equations are

3
ȧ2 + k

a2
= 8πGρ + Λ (12.3)

−2
ä

a
− ȧ2 + k

a2
= 8πGp− Λ. (12.4)
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Note that eq. (11.19) is still valid with a non-vanishing Λ. Einstein also as-
sumed that we lived in a static matter dominated universe where p = 0. This
immediately leads to

Λ = 4πρ =
k

a2
. (12.5)

Thus the only possibility is that the universe is closed, k > 0, and that a2 =
Λ−1. Einstein’s static solution is therefore given by

ds2 = −dt2 +
1

Λ

(
dr2

1− r2

R2
0

+ r2(dθ2 + sin2 θdφ2)

)
. (12.6)

The metric is often written in Schwarzschild coordinates. Rescaling the radial
coordinate by defining R = ra, we get for the Einstein’s static universe

ds2 = −dt2 +
dR2

1− ΛR2
+ R2(dθ2 + sin2 θdφ2). (12.7)

The later observations made by Edwin Hubble that the universe was expand-
ing, dethroned this model as the model for our universe. In addition to this,
physicists noticed that this model is unstable. The configuration between mat-
ter and the cosmological constant in this model is highly fine-tuned. Einstein’s
field equations show that for any small perturbation away from this configu-
ration the universe tends to enlarge this perturbation even more. If the matter
has a slightly higher density, then the universe will recollapse! Hence, the
static universe is unstable and is therefore unphysical.

12.2 de Sitter’s solution

We will now solve the vacuum (Tμν = 0) field equations for a homogeneous
and isotropic model with a positive cosmological constant. The solutions we
find will be the simplest inflationary solutions and are highly interesting for
various reasons.

The Einstein field equations are

3
ȧ2 + k

a2
− Λ = 0

−2
ä

a
− ȧ2 + k

a2
+ Λ = 0. (12.8)

The first of the above equations can be written

ȧ2 − ω2a2 = −k (12.9)

where ω2 = Λ
3

a(t) =

⎧⎪⎪⎨⎪⎪⎩
√

k
ω coshωt, k > 0

eωt, k = 0√
|k|
ω sinh ωt, k < 0.

(12.10)

Note that in the closed case, k > 0, the universe obtains an expansion min-
imum at t = 0 which is not zero. The universe contracts for t < 0, reaches

. This equation has the following solution (see Fig. 12.1)
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12.2 de Sitter’s solution

Figure 12.1: The scale factor as a function of time for de Sitter’s solutions.

a minimum size at t = 0 and thereafter expands for all time. The universe
“bounces” and is not reaching a singularity. The cases k = 0 and k < 0 are
more subtle. For k = 0 the universe is not really reaching zero size until
t −→ −∞. Hence, the universe has no singularity for any finite t. The case
k < 0 has what appears to be a zero-size singularity at t = 0, but as we shall
see later, this can be seen upon as a coordinate singularity.

H =
ȧ

a
= ω. (12.11)

Hence, in this case the Hubble parameter is a constant, and the metric can be
written

ds2 = −dt2 + e2Ht
(
dx2 + dy2 + dz2

)
. (12.12)

Typical for the de Sitter models is that they possess horizons. The flat model,

ticle horizons are present for the de Sitter solutions, as we will see in the next
example.

Figure 12.2: A cosmological horizon: Galaxies farther away than 1/H in the flat de
Sitter universe model is hidden from our view.

meter, we get
Let us consider the flat case k = 0. When we calculate the Hubble para-

for instance, has an event horizon at a distance 1/H (see Fig. 12.2). Also par-

cosh ωt

eωt sinh ωt

Future
lightcone

Future infinity

P
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Example 12.1 (The particle horizon of the de Sitter universe)Example

The expansion factor is a(t) = (1/ω) cosh ωt where ω = (Λ/3)1/2. The coordinate

rPHZ
0

dr

R0

q
1− r2

R2
0

=

tZ
−∞

ωdt

cosh ωt
(12.13)

which gives

arcsin
rPH

R0
= arcsin(tanhωt)− π

2

where we have used that tanh(−∞) = −1 and arcsin(−1) = 3π/2. This gives

rPH

R0
= sin u cos v − cos u sin v

where u = arcsin(tanhωt), v = 3π/2. Hence sin u = tanhωt, cos u = 1/ cosh ωt which
leads to

rPH

R0
=

1

cosh ωt
. (12.14)

The proper distance to the particle horizon is

dPH = a(t) arcsin
rPH

R0
=

1

ω
cosh ωt · arcsin

„
1

cosh ωt

«
. (12.15)

These equations tell that during the contracting period, t < 0, this universe model has
a particle horizon with a proper distance which increases from 1 at ωt = −∞ to π/2
at t = 0, while the coordinate distance of the horizon increases from zero at t = −∞
to 1 at t = 0. At the moment t = 0 the whole 3-space from r = 0 to r = 1 is inside
the particle horizon. An observer at r = 0 is from now on able to see the whole of this
space. For positive values of t there is no particle horizon.

The integrals on the right hand side of eq. (11.144) diverge for the vacuum domi-
nated models with k = 0 and k < 0. They have no particle horizon.

An event horizon in the de Sitter models can be seen when we use Schwarz-
schild coordinates. As we will show in the next section, the de Sitter space in
Schwarzschild coordinates is

ds2 = − (1−H2r2
)
dt2 +

dr2

1−H2r2
+ r2

(
dθ2 + sin2 θdφ2

)
. (12.16)

Clearly, at r = 1/H the metric is singular. This singularity is much like the co-
ordinate singularity at the horizon in the Schwarzschild spacetime except that
we are now inside the horizon. We can send signals out through the horizon
at r = 1/H , but there is no way we can receive information from outside the
horizon.

The similarity between the horizon in the Schwarzschild spacetime and
the horizon in de Sitter’s solution is striking. Both of them can be assigned a
temperature and an entropy. Their nature are quite different – one is a black
hole horizon while the other is a cosmological horizon – but still they have
many of the same thermodynamical properties.

We shall first consider the particle horizon for the de Sitter universe models with k > 0.

radius of the particle horizon as a function of time is given in eq. (11.144), which in
this case takes the form
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12.3 The de Sitter hyperboloid

12.3 The de Sitter hyperboloid:
The many guises of the de Sitter spacetime

Consider the hyperboloid given by

−T 2 + X2 + Y 2 + Z2 + W 2 = R2
0, (12.17)

embedded in flat 5-dimensional Minkowski space

ds2
5 = −dT 2 + dX2 + dY 2 + dZ2 + dW 2. (12.18)

The radius R0 is related to Λ via R2
0 = 3/Λ. First of all we note that the de Sit-

ter hyperboloid is invariant under Lorentz transformations in 5-dimensional
Minkowski space with respect to the origin of the Minkowski space. This can
be seen as follows. The Lorentz transformations L are linear transformations

X̄ = LX, (12.19)

that leaves the metric invariant, i.e.

LtηL = η. (12.20)

We note that the hyperboloid eq. (12.17) can be written

XtηX = R2
0. (12.21)

From eq. (12.19) we have

XtηX = XtLtηLX = (LX)tη(LX) = X̄tηX̄. (12.22)

Both the metric of the ambient space and the hyperboloid are invariant under
such transformations. Thus the Lorentz transformations have to be isometries
for the hyperboloid. Lorentz transformations in 5-dimensional Minkowski
spacetime form a 10 dimensional space; hence, this hyperboloid is a maxi-
mally symmetric space.

First we choose a set of global coordinates. Let dΩ2
3 be the metric on the

unit 3-sphere and define R as

R2 = X2 + Y 2 + Z2 + W 2. (12.23)

The de Sitter hyperboloid then becomes

−T 2 + R2 = R2
0, (12.24)

which can be parameterized by

T = R0 sinh t (12.25)
R = R0 cosh t. (12.26)

Inserting this into the 5-dimensional Minkowski metric, we get the induced
metric

ds2 = R2
0

(−dt2 + cosh2 tdΩ2
3

)
. (12.27)

By a rescaling of t, this is the same metric as the de Sitter’s solution eq. (12.10)
with k > 0 and R0 = 1/ω. The other solutions for k = 0 and k < 0 can also be
found, but these cover only part of the de Sitter hyperbola (see Fig. 12.3).
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Figure 12.3: The de Sitter hyperboloid: The different de Sitter solutions are different
sections of this hyperboloid. From left to right: closed, flat and open spatial sections.

The flat solution k = 0 are the sections given by

T −X = R0e
t

T + X = R0(r
2et − e−t)

Y = R0re
t cosφ cos θ

Z = R0re
t cosφ sin θ

W = R0re
t sin φ. (12.28)

The hyperbolic k < 0 sections are

T = R0

√
1 + r2 sinh t

X = R0 cosh t

Y = R0r sinh t cosφ cos θ

Z = R0r sinh t cosφ sin θ

W = R0r sinh t sin φ. (12.29)

These different sections of de Sitter space are similar to the conical sections
from classical geometry. We can also parameterize the hyperboloid as

T = R0

√
1− r2 sinh t

X = R0r

Y = R0

√
1− r2 cosh t cosφ cos θ

Z = R0

√
1− r2 cosh t cosφ sin θ

W = R0

√
1− r2 cosh t sinφ. (12.30)

Inserting this into the metric (12.18) we see that this is the static de Sitter space-
time, eq. (12.16). Hence, we have shown that all of de Sitter’s solutions can be
seen upon as different foliations of the same space! In particular, this shows
that the singularity at t = 0 for the k < 0 de Sitter solution, eq. (12.10) can be
viewed upon as a coordinate singularity.

A thorough discussion of the de Sitter spacetime as described in various
coordinate systems is found in [EG95].

12.4 The horizon problem and the flatness problem

The cosmological constant laid almost dead for several decades. Not many
physicists or astronomers believed that the cosmological constant had any-
thing to do with the real world. Measurements of the evolution of the uni-
verse and the matter content in it, showed that the cosmological constant was
very close to zero. Therefore it was assumed that Λ = 0.

T
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12.4 The horizon problem and the flatness problem

However, there were a couple of observations that puzzled the physicists
for a long time. Gravity has a tendency to clump matter together and form
inhomogeneities. This process causes galaxies to form and stars and planets
to form. It is an irreversible process that has been going on since the begin-
ning of time. Hence, if gravity steadily is clumping matter together and forms

universe was formed in a rather arbitrary state. A homogeneous and isotropic
state is quite special; an inhomogeneous state is by far a more general state
than a homogeneous one.

Also the horizon problem disturbed the cosmologists. The cosmic microwave
background was seen to be very homogeneous and isotropic. Actually it is the
most perfect blackbody known to man. The isotropy of the radiation indicates
that the radiation had thermal contact once in the past, before it was emitted.
But there was no universe model which seemed to explain this; the radiation
of the cosmic microwave background coming from one direction could not
have been in thermal contact with the radiation in different directions (see
Fig. 12.4). This is what is called the horizon problem because the particle hori-
zon to each photon in the last scattering surface1 only covers a small patch of
the sky.

Figure 12.4: The Horizon problem: The horizon of the photons in the last scattering
surface covers only a very small patch of the sky.

In order to find a simple quantitative expression of the horizon problem
we shall consider the Einstein-de Sitter universe model. For this model the
proper distance to the particle horizon is


PH = t
2
3

t∫
0

x−
2
3 dx = 3t. (12.31)

The volume inside the horizon is therefore VPH ∝ t3. Hence, the “horizon
volume” at the time of decoupling is

(VPH)d =

(
td
t0

)3

V0, (12.32)

where V0 is the present magnitude of the horizon volume i.e of the presently
observable part of the universe. Events inside the horizon volume are causally
connected. A volume with size (VPH)d may be in thermal equilibrium at the
time of decoupling.

1The last scattering surface is the three dimensional spatial hypersurface for which the uni-
verse became transparent. At the last scattering surface the photons decoupled from the matter
in the universe and became more or less free photons.

homogeneity initially. This seems very unlikely because one expects that the
inhomogeneities, then the universe must have been in an extreme state of

Past
lightcone

Surface of
last scattering

Singularity

BA
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Let (V0)d be the magnitude at the time of the decoupling, of V0. Then

(V0)d =
a3(td)

a3(t0)
V0 =

(
td
t0

)2

V0. (12.33)

From eqs. (12.32) and (12.33) follow

(VPH)d

(V0)d

=
td
t0

. (12.34)

Inserting the time of decoupling td = 3 · 105 years and the present age of the
universe t0 = 15 · 109 years we get (VPH)d/(V0)d = 2 · 10−5. This shows that
at the time of decoupling the volume of a causally connected region was only
a 2 · 10−5 part of the region representing our observable part of the universe.
This is the quantitative expression of the horizon problem.

We may also deduce a quantitative expression of the flatness problem. From
eqs. (11.48) and (11.49) follow that the time evolution of the total relative den-
sity is given by

Ω− 1 =
k

ȧ2
. (12.35)

From eq. (11.63) follows that in the case of a radiation dominated universe
with near critical density

Ω− 1

Ω0 − 1
=

t

t0
. (12.36)

The order of magnitude of Ω0 − 1 is not larger than one, maybe less. When
we are going to stipulate initial values for the universe it is natural to consider
the Planck time, tP = 10−43s. It follows that the magnitude of Ω− 1 was less
than 10−60 at the Planck time 2. Such an extreme adjustment could not be ex-
plained within the old standard Big Bang model of the universe. However the
problems were solved in a natural way within the frame of the inflationary
universe models. We shall give a brief summary of the physical ideas behind
these universe models and start by considering gauge theories and sponta-
neous breaking of symmetries.

12.5 Inflation

The idea of “gauge invariance” was first proposed by Herman Weyl in 1919.

These were described by the general theory of relativity and Maxwell’s the-
ory of electromagnetism, respectively. A fundamental principle in the theory
of relativity is that the laws of physics should be formulated in a coordinate
independent way. As we have seen this requires that partial derivatives are
replaced by covariant derivatives, which requires the introduction of connec-
tion coefficients, Γα

μν , that also appear in the equations of motion of particles
in a gravitational field.

2This argument is potentially flawed. In fact, allowing for anisotropies, the value Ω = 1 is
unstable both in the future and in the past. Notwithstanding this, why its value is so close to
unity still has to be explained.

The only known elementary particles were the electron and the proton, and the
only known fundamental forces were gravitation and electromagnetism.
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12.5 Inflation

Weyl wanted to formulate a unified theory of gravitation and electromag-
netism. His idea was that since the motion of particles in a gravitational field
is determined by connections introduced in the covariant derivative, there
should also exist a connection determining the motion of charged particles
in electromagnetic fields. He suggested that the laws of nature should be for-
mulated in a scale invariant, or gauge invariant, way and introduced a gauge-
covariant derivative, Dμ = ∂μ−iqAμ, in order to formulate the laws in a gauge
invariant way. Here, Aμ are the covariant components of the electromagnetic
vector potential.

It was later pointed out that Weyl’s idea of scale invariance was in conflict
with quantum mechanics as the Compton-wavelength of a particle, λ = h/mc,
defines a position independent scale for the particle. However, with the de-
velopment of quantum mechanics Weyl, Fock, and London could in 1927

−i�∇μ−eAμ. In this way one was able to formulate a theory which contained
the principle of gauge invariance, interpreted as a phase invariance.

The next main idea in the conceptual evolution towards the inflationary
universe models was the introduction of the Higgs mechanism in order to ex-
plain the masses of the gauge bosons mediating the weak interaction. The
main idea is that bosons that are originally massless, obtain an effective mass
by interacting with vacuum. In this theory the energy of the vacuum is repre-
sented by certain fields, φ, called Higgs fields. Different values of the Higgs
fields cause different energies of the vacuum.

This can happen when the Higgs field has a temperature dependent po-
tential. Let us, as an illustration, consider a real scalar field with the Lagrange
density

L =
1

2

∂φ

∂xμ

∂φ

∂xμ
− V (φ), V (φ) = −1

2
μ2φ2 +

1

4
λφ4 (12.37)

The potential V (φ) is shown in Fig. 12.5 for two different temperatures.
The sign of μ2 and thereby of the form of the potential depends upon the

temperature. If it is above a critical temperature TC the potential has the form
of Fig. 12.5a. Then there is a stable minimum at φ = 0. If it is less the form is
that of Fig. 12.5b and there are stable minima at φ = ±φ0 = ±|μ|/√λ and an
unstable maximum at φ = 0. The true vacuum state of the system is a stable
minimum for the potential. For T > TC the minimum is in the symmetrical
state φ = 0. But for T < TC the state φ = 0 is unstable and is therefore called a

±φ0.
Regardless of the sign of μ2 the potential is invariant under the symmetry

transformation φ ↔ −φ. But when the system is in one of the minima at ±φ0

it is no longer invariant under a change of sign of the field δ ≡ φ∓ φ0. Such a
symmetry, which is not present in the actual state of the vacuum, is said to be

is greater than in a true vacuum.

and 1928 give the mathematical formalism of Weyl’s theory a new meaning.
The new idea was to require that the laws of Nature should be represented

The gauge-covariant derivative was replaced by a “quantum operator”,
by equations independent of the phase of the wave-function of the particle.

spontaneously broken. From Fig. 12.5 is seen that the energy in a false vacuum

The false vacuum at φ = 0 in Fig. 12.5 is classically unstable. There may also
be a false vacuum at a local minimum of the potential, as shown in Fig. 12.6.

“false vacuum”. The system will then pass over to one of the stable minima at

Such a state is classically stable. But it may nevertheless be quantum mechanically
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Figure 12.5: The shape of the potential V (φ) = − 1
2
μ2φ2 + 1

4
λφ4. Depicted are two

different potentials corresponding to the different signs of μ2.

Figure 12.6: The effective potential to a system with a false vacuum at φ = 0 and true
vacuum at φ = φ0.

The main idea behind the inflationary universe models was to take into
consideration the consequences of the gauge theories of the fundamental in-
teractions when constructing relativistic universe models. According to the
Friedmann models the temperature was extremely high early in the history of
the universe. The Higgs field of the Grand Unified Theories of the electromag-
netic, weak and strong interactions has a critical temperature TC correspond-
ing to the energy kBTC = 1014GeV. This was the temperature of the universe
10−35s after the hypothetical Big Bang singularity. At this time there existed
a false vacuum with mass density of the order ρv = 1076kg/m3 and radiation
energy with about the same density. While the radiation energy density de-

unstable because of a finite probability of quantum tunnelling through the
potential barrier.

(a)  μ2< 0 : T > Tc (b)  μ2  > 0 : T < Tc

φ φ

V (φ)V (φ)

φ0

φ

V (φ)

φ00
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12.5 Inflation

creased as a−4 the vacuum energy density remained constant until a transition
to true vacuum with a much smaller energy density. According to calculations
based on suitably chosen potentials of the Higgs field this happened about
10−33s after t = 0.

According to the original inflationary universe models the inflationary era
lasted from 10−35s to 10−33s. However, there now exist several inflationary
scenarios. In some of them the universe entered a vacuum dominated era
already at the Planck time as a result of a quantum fluctuations.

We shall consider a simple inflationary scenario which illustrates the main
properties of most models. In this connection it is usual to employ units so
that the velocity of light and the reduced Planck constant is put equal to one
and Newton’s constant of gravity is related to the Planck mass by G = m−2

Pl .
Inserting eq. (8.84) into eq. (11.19) we obtain the equation of motion of the
scalar field

φ̈ + 3Hφ̇ = −V ′(φ). (12.38)

Assuming that the universe is flat and dominated by the scalar field, the en-
ergy density and pressure are given by

ρ =
1

2
φ̇2 + V, p =

1

2
φ̇2 − V. (12.39)

Thus eqs. (11.16) and (11.18), respectively, take the form

H2 =
8π

3m2
Pl

(
1

2
φ̇2 + V

)
, (12.40)

and

ä

a
= − 8π

3m2
Pl

(
φ̇2 − V

)
. (12.41)

Accelerated expansion, i.e. inflation, happens whenever the potential dom-
inates, V > φ̇2. This is realized in the case of the slow-roll approximation, when

¨ ˙ 2

these equations reduce to

3Hφ̇ = −V ′, (12.42)

and

H2 =
8π

3m2
Pl

V. (12.43)

Differentiating eq. (12.42) leads to

φ̈ = −V ′′φ̇
3H

+
Ḣφ̇

H
. (12.44)

Using eqs. (12.42) and (12.43) this can be written

φ̈ = (−η + ε)Hφ̇ (12.45)

where the slow-roll parameters η and ε are defined by

η =
m2

Pl

8π

V ′′

V
, ε =

m2
Pl

16π

(
V ′

V

)2

. (12.46)

the term φ is neglected in eq. (12.38) and the term (1/2)φ in eq. (12.40). Hence

,
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Hence the slow-roll condition |η| � 1, ε � 1 secures that φ̈ � Hφ̇ so that φ̈

from eqs. (12.42) and (12.43) follow

φ̇2 =
V ′2

9H2
=

m2
PlV

′2

24πV
=

2

3
εV (12.47)

˙ 2 ˙2

be neglected in the slow-roll approximation. The slow-roll parameter ε also
tells how fast the Hubble parameter changes. This can be seen as follows.
Differentiating eq. (12.43) gives

Ḣ

H
=

4π

3m2
Pl

V ′

H2
φ̇ =

1

2

V ′

V
φ̇. (12.48)

˙ 2

leads to

Ḣ

H2
= −3m2

Pl

16π

(
V ′

V

)2

. (12.49)

Hence,

Ḣ = −εH2. (12.50)

This shows that the Hubble parameter changes very slowly during a period
when the scalar field rolls slowly.

The number of e-foldings during inflation is

N = ln

(
af

ai

)
(12.51)

where ai and af are the initial and final values of the expansion factor. In
the slow-roll approximation the potential is approximately constant in time,

is given by

N =

tf∫
ti

Hdt. (12.52)

From eq. (12.42), dt = −(3H/V ′)dφ. Combining this with eq. (12.43) leads to

N = − 8π

m2
Pl

φf∫
φi

V

V ′
dφ. (12.53)

If V = λφν we get

N =
4π

m2
Plν

(
φ2

i − φ2
f

)
. (12.54)

Dividing by H , substituting for φ from eq. (12.42) and then for H from (12.43)

and hence, according to eq. (12.43), the Hubble parameter is also constant, and
there is exponential expansion (see eq. (12.12)). Then the number of e-foldings

which shows that the term (1/2)φ of eq. (12.40) and φ i n eq. (12.41) can

can be neglected in eq. (12.38). Furthermore, from the dominating terms, i.e.,

� V ,
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Example 12.2 (Polynomial inflation) Example

massive non-interacting field

V =
1

2
m2φ2. (12.55)

In this case the slow roll parameters are

η = ε =
m2

Pl

4πφ2
. (12.56)

Hence inflation can happen if |φ| > mPl/
√

4π. The solutions of the slow-roll equations
are now

φ(t) = φi − mmPl

2
√

3π
t,

a(t) = ai exp

"r
4π

3

m

mPl

„
φit− mmPl

4
√

3π
t2
«#

. (12.57)

The number of e-foldings is

N = 2π
φ2

i

m2
Pl

− 1

2
. (12.58)

During the vacuum dominated inflationary era the dominating gravita-
tional mass density was negative, ρG = ρv + 3pv = −2ρv < 0. Hence the

verse is a remnant of the accelerated expansion during this incredibly short
era.

In the approximation that the density of radiation energy is neglected the

positive or vanishing there was no initial singularity in any finite past time.
The Big Bang was then just the explosive inflationary era that lasted for about
10−33s.

Let us now see how the existence of an inflationary era solves the flatness-
and horizon problems. The flatness problem was that the present average rel-
ative density of the cosmic energy and matter is so close to unity in spite of
the fact that the total density evolves away from the critical density according
to the pre inflationary cosmological models. The inflationary models give an-
other result. All three expressions (12.10) for the expansion factor approach
the exponential form for t � √

3/8πGρv, i.e. t > 1.5 · 10−35s when we use
the GUT value above for the density of the vacuum energy. Inserting this into
eq. (12.35) we get

Ω− 1 =
k

ω2
e−2ωt. (12.59)

Eq. (12.59) shows that during the inflationary era the total density approaches
exponentially to the critical density. The quotient between the values of Ω−1 at
the end and the beginning of the inflationary era (assuming minimal duration
from 10−35s to 10−33s) is

Ω2 − 1

Ω1 − 1
= e−2ω(t2−t1) = 10−56. (12.60)

A simple inflationary model arises when one chooses the polynomial potential of a

repulsive gravitation of the vacuum energy. The observed expansion of the uni-

expansion factor evolved according to eq. (12.10). If the spatial curvature was

dynamical evolution of the universe during this era was dominated by the
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Within a large range of initial conditions this implies that the total density is
extremely close to the critical density at the end of the inflationary era, and
that it is close to the critical density also at the present time. The physical
picture of this mechanism is illustrated in Fig. 12.7.

Figure 12.7: The resolution of the flatness problem in the inflationary scenario.

Let us now consider how the inflationary universe models solve the hori-
zon problem. In order to obtain the order of magnitude of the horizon radius
at the initial point of time t1 = 10−35s of the original inflationary universe
models, we may assume that the universe is flat. Then we get


PH(t1) = 2t1 = 6 · 10−27m. (12.61)

We shall compare this with the radius d1 at t1 of the region which is inside
the horizon today. The present radius of this region is 
PH(t0) = 15 · 109ly =
1.4·1026m. Since the density is close to the critical density after the inflationary
era we may put k = 0. Then a ∝ t1/2 in the radiation dominated era from
t2 = 10−33s to t3 = 1011s and a ∝ t2/3 in the matter dominated era from t3 to
the present time t0 = 1017s. Hence we obtain

d1 = eω(t1−t2)

(
t2
t3

) 1
2
(

t3
t0

) 2
3

rPH = 1.4 · 10−28 (12.62)

We see that the horizon radius at the point of time t1 of the beginning of the in-
flationary era was greater than the radius at t1 of the region inside the present

reason is that the vast expansion during the inflationary era implies that our
observable region of the universe was much smaller at points of time before
inflation than it would have been at the same points of time according to uni-
verse models without inflation. One more question that the pre-inflationary
universe models could not answer was where did the density fluctuations
that developed into stars and galaxies come from? One had to postulate a
suitable initial fluctuation spectrum. According to the inflationary universe
models however, there appeared density fluctuations early in the inflationary
era due to quantum mechanical fluctuations, and these were greatly expanded
during the inflationary era. Inflationary cosmology predicts a scale-invariant
spectrum for the fluctuations. This corresponds very well with the Harrison-
Zel’dovich spectrum [Har70, Zel70] of the observed distribution of matter in
the universe.

observable part of the universe already before the inflationary era started. The
Hence thermal equilibrium could have been established in ourhorizon.

Ahh.. Better.
Flat and BIG!

Uh.. Too small 
and curved.

m.
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12.6 The Friedmann-Lemaître model

Figure 12.8: Guth’s Inflation was driven by a false vacuum.

Even though the mechanism that causes inflation is probably more sophis-
3

many questions. By this date, there has not been a single idea that has chal-
lenged inflation when it comes to explaining many of the features of our uni-
verse; its flatness, its homogeneity, the homogeneity in the CMB, etc.

12.6 The Friedmann-Lemaître model

At the turn of the millennium observations of supernovae of type Ia indicated
that the universe is currently in a state of accelerated expansion. This means
that ä > 0. From eq. (11.18) then follows that

ρ + 3p < 0. (12.63)

All known forms of matter has ρ > 0, thus to obey the above inequality the
pressure must be negative! The simplest model that can describe such a be-
haviour is a model with a cosmological constant. A cosmological constant

p = −ρ, (12.64)

and hence,

ρ + 3p = −2ρ < 0, (12.65)

which means that LIVE produces repulsive gravity. Models with matter and
a cosmological constant are termed Friedmann-Lemaître universe models.

The Friedmann equations with cosmological constant for homogeneous
and isotropic universe models with pressure-free matter are

ä

a
=

Λ

3
− 4πG

3
ρ,

H2 =
ȧ2

a2
=

Λ

3
− k

a2
+

8πG

3
ρ. (12.66)

3

ticated than the initial proposal , inflation is a wonderful idea which solves

energy is
represents LIVE with constant density. The equation of state for vacuum
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The first inflationary model was put forward by Alan Guth in 1981 [Gut81] (see Fig. 12.8).
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Universe Models with Vacuum Energy

The critical mass density ρc is defined by

ρc =
3H2

8πG
. (12.67)

Defining the parameters Ωm, Ωk and ΩΛ by

Ωm =
ρ

ρc

Ωk = − k

a2H2

ΩΛ =
Λ

3H2
, (12.68)

we may write the Friedmann equation, eq. (12.66), as

1 = ΩΛ + Ωk + Ωm. (12.69)

This is a very useful form of the Friedmann equation. It tells us that we have
to add up the contribution from both the cosmological constant and the mat-
ter term to find out whether the universe is closed (k > 0), flat (k = 0) or open
(k < 0). Present day observations indicate that Ωk0 ≈ 0 and Ωm0 ≈ 0.3. Hence,
this indicates that ΩΛ0 ≈ 0.7. This fits well with the observation that the uni-
verse is currently accelerating. The present epoch can have a significant con-
tribution from a cosmological constant! Einstein’s “blunder” has resurrected
and shown its place in the physical world.

Figure 12.9 shows different possibilities for the cosmological expansion as
a function of matter density and vacuum energy. The line 1 = ΩΛ0 + Ωm0

Figure 12.9: Different expansion histories depending upon the densities of matter and
vacuum energy.

represents a flat universe separating open from closed universes. The line
ΩΛ0 = Ωm0/2 corresponds to uniform expansion with vanishing decelera-
tion parameter separating decelerating from accelerating universes (see eq.
(11.55)). The dashed, nearly horizontal curve corresponds to critical universes
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12.6 The Friedmann-Lemaître model

separating eternal expansion from recollapse in the future. The upper dotted
curve corresponds to t0H0 = ∞where t0 is the present age of the universe and
H0 the present value of the Hubble parameter. If the density of the vacuum
energy is above this curve there will be no Big Bang. An initially collapsing
universe of this type will bounce and then expand with increasing velocity.

A universe expanding forever is called hyperbolic. In a hyperbolic ΛCDM
universe the vacuum energy will eventually dominate and give accelerated
expansion. A universe that eventually collapses is called elliptic. The border-
line between elliptic and hyperbolic universes represents critical universes; i.e.
universe models with vanishing expansion velocity as t→∞. The border-line
between hyperbolic and bouncing universes represents loitering universes; i.e.
universes that are nearly static for a period before the vacuum energy becomes
dominant and the expansion becomes accelerating.

The mathematical expressions of the curves representing bounce and criti-

H = H0a
− 3

2

(
ΩΛ0a

3 + Ωk0a + Ωm0

) 1
2 . (12.70)

The condition that the Hubble parameter vanishes gives the cubic equation

ΩΛ0a
3 + Ωk0a + Ωm0 = 0. (12.71)

If ΩΛ0 < 0 the universe recollapses. If ΩΛ0 > 0 and Ωm0 < 1 the universe
expands to infinity independently of the curvature. If Ωm0 > 1 recollapse is
only avoided if ΩΛ0 exceeds a critical value4

ΩΛ0 = 4Ωm0 sin3

[
1

3
arcsin

(
1− Ω−1

m0

)]
. (12.72)

This is the equation of the dashed curve in Fig. 12.9. For ΩΛ0 larger than

ΩΛ0 = 4Ωm0

[
f

(
1

3
f−1

(
Ω−1

m0 − 1
))]3

,

f(x) =

{
coshx, Ωm0 < 1

2

cosx, Ωm0 > 1
2

(12.73)

is the equation of the slightly bent curve in the upper part of Fig. 12.9.
Let us now consider the flat (k = 0) model. The matter density can be

written as 8πG
3 ρ = Ka−3, where K is a constant. Introducing v = a

3
2 we can

write the Friedmann equation, eq. (12.66) with k = 0 as

v̇2 =
9

4

(
Λ

3
v2 + K

)
. (12.74)

This equation can be solved to yield

v =

(
3K

Λ

) 1
2

sinh (t/tΛ) , tΛ ≡ 2√
3Λ

. (12.75)

4To obtain this expression we have utilized the identities

sin 3x = 3 sin x − 4 sin3 x, cos 3x = 4 cos3 x − 3 cos x.

a universe which initially collapses bounces, and there is no Big Bang. Eq. (12.73)

parameter. Neglecting radiation the Friedmann equation (11.16) can be written

cal universes, respectively, are found by considering the conditions for a bounce
and an expansion that instantaneously stops, i.e. for a vanishing Hubble
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Universe Models with Vacuum Energy

Let us normalize the scale factor a(t) such that a(t0) = 1. This implies v(t0) = 1
and K = 8πG

3 ρ0. Hence, using eqs. (12.68) and (12.69) with Ωk = 0, we can
write

A ≡ 3K

Λ
=

Ωm0

ΩΛ0
=

1− ΩΛ0

ΩΛ0
. (12.76)

The scale factor is now given by

a(t) = A
1
3 sinh

2
3 (t/tΛ) . (12.77)

The age t0 of the universe is found by the requirement a(t0) = 1 (or equiva-
lently v(t0) = 1). By use of the identity artanhx = arsinh(x/

√
1− x2) we get

the expression

t0 = tΛ artanh
√

ΩΛ0. (12.78)

Inserting the values t0 = 13.7 · 109 years and ΩΛ0 = 0.7 found from the
WMAP measurements of temperature fluctuations in the cosmic microwave
background radiation, and from the determination of the luminosity-redshift
relationship of supernovae of type Ia, we get A = 0.43, tΛ = 11.2 · 109 years
and Λ = 1.1 · 10−20 years−2. With these values the expansion factor is a(t) =

0.75 sinh2/3 (1.2t/t0). This function is plotted in Fig. 12.10.

Figure 12.10: The expansion factor as function of cosmic time in units of the age of
the universe.

The Hubble parameter as a function of time is

H =

(
Λ

3

) 1
2

coth (t/tΛ) . (12.79)

In Fig. 12.11 the function Ht0 = 0.8 coth (1.2t/t0) is plotted.
The Hubble parameter decreases all the time and approaches a constant

value

H∞ =

√
Λ

3
, (12.80)

in the infinite future. The present value of the Hubble parameter is

H0 =

√
Λ

3ΩΛ0
. (12.81)

0
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1 2

a(t)

t/t0
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12.6 The Friedmann-Lemaître model

Figure 12.11: The Hubble parameter of a flat universe model with dust and LIVE as a
function of cosmic time.

The corresponding Hubble age is tH0 =
√

3ΩΛ0

Λ . Inserting numerical values

gives H0 = 69kms−1Mpc−1 and tH0 = 14.1 · 109 years. This value of the Hub-
ble constant is in good agreement with the results of the measurements by the
Key Project Group of the Hubble Space Telescope. In this universe model the
age of the universe is nearly as large as the Hubble age, while in the Einstein-
de Sitter model the corresponding age is tEdS0 = 2

3 tH0 = 9.4 · 109 years (see
Example 11.3). The reason for this difference is that in the Einstein-de Sit-
ter model the expansion is decelerated all the time, while in the Friedmann-
Lemaître model the repulsive gravitation due to the vacuum energy have
made the expansion accelerate lately. Hence, for a given value of the Hub-
ble constant the previous velocity was larger in the Einstein-de Sitter model
than in the Friedmann-Lemaître model.

The age of the universe increases with increasing density of vacuum en-
ergy. In the limit that the density of the vacuum approaches the critical den-
sity, there is no dark matter, and the universe approaches the de Sitter model
with exponential expansion and no Big Bang. This model behaves in the same
way as the Steady State cosmological model and is infinitely old.

A dimensionless quantity representing the rate of change of the cosmic ex-
pansion velocity is the deceleration parameter, which is defined in eq. (11.38).
For the present universe model the deceleration parameter as a function of
time is

q =
1

2

[
1− 3 tanh2 (t/tΛ)

]
, (12.82)

which is shown graphically in Fig.12.12.
The inflection point of time t1 when the deceleration turned into accelera-

tion is given by q(t1) = 0. This leads to

t1 = tΛ artanh

(
1√
3

)
, (12.83)

or expressed in terms of the age of the universe

t1 =
artanh

(
1√
3

)
artanh

(√
ΩΛ0

) t0. (12.84)

0
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1 2

Ht0
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Universe Models with Vacuum Energy

Figure 12.12: The deceleration parameter as a function of cosmic time.

The Hubble parameter at this time is H(t1) =
√

Λ. The corresponding cosmic
redshift is

z(t1) =
a0

a(t1)
− 1 =

(
2ΩΛ0

1− ΩΛ0

) 1
3

− 1. (12.85)

Example 12.3 (Transition from deceleration to acceleration for our universe)Example

eration to an acceleration state. Inserting ΩΛ0 = 0.7 gives t1 = 0.54t0 and a redshift of
z(t1) = 0.67.

The results of analysing the observations of supernova SN 1997 at z = 1.7, corre-
sponding to an emission time te = 0.30t0 = 4.1·109 years, have provided evidence that
the universe was decelerated at that time [Ret. al.01]. M. Turner and A.G. Reiss[TR02]
have argued that the other supernovae data favour a transition from deceleration to
acceleration for a redshift around z = 0.5.

Note that the expansion velocity given by Hubble’s law, v = H�, always
decreases as seen in Fig. 12.11. This is the velocity away from the Earth of
the cosmic fluid at a fixed physical distance � from Earth. The quantity ȧ on
the other hand, is the velocity of a fixed fluid particle comoving with the ex-
pansion with the universe. If such a particle accelerates, the expansion of the
universe is said to accelerate. While Ḣ tells how fast the expansion velocity
changes at a fixed distance from the Earth, the quantity ä represents the accel-
eration of a free particle comoving with the expanding universe. The connec-

tion between these two quantities is ä = a
(
Ḣ + H2

)
. Note from eqs. (12.3)

and (12.4) that

Ḣ = −4πG(ρ + p), (12.86)

for a flat universe. Hence, in order that Ḣ > 0 the universe must be dom-
inated by a fluid with p < −ρ, which has been called phantom energy (see
problem 12.9). In order that ä > 0 it is sufficient that p < −ρ/3, as is seen from
eq. (11.18).

It may be noted that the critical density is given by

ρcr = ρΛ tanh−2 (t/tΛ) , ρΛ ≡ Λ

8πG
, (12.87)

Let us use the observational data to find out when our universe turned from an decel-

�0.5

0

0.5

1 2
t/t0

q
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12.7 Universe models with quintessence energy

showing that the critical density decreases with time.
Using eqs. (12.68) and (12.79) the relative density of the vacuum energy is

found to be

ΩΛ = tanh2 (t/tΛ) . (12.88)

Hence, the relative density of the matter is

Ωm = 1− ΩΛ = cosh−2 (t/tΛ) , (12.89)

for the flat Friedmann-Lemaître universe model. These densities are depicted
in Fig. 12.13.

Figure 12.13: The relative densities in the Friedmann-Lemaître model as a function of
cosmic time.

Lemaître universe model, the deceleration parameter may be expressed in
terms of the relative density of vacuum only, q = 1

2 (1− 3ΩΛ). Hence, if ob-
servations show that the universe is accelerating, then this alone means that
ΩΛ0 > 1

3 , presupposing a homogeneous universe model.

12.7 Universe models with quintessence energy

As noted in section 12.5 one of the predictions of the inflationary universe
models is that the average total density of the cosmic matter and energy is
close to the critical density. This prediction has been confirmed by the re-
cent WMAP-measurements of the in

density. Hence, 70% is missing. Furthermore, measurements of redshifts and
distances to supernovae of type Ia have shown that the universe is in a state of
accelerated expansion. Thus at recent times the universe must be dominated
by a sort of energy causing repulsive gravitation.

We shall assume that this energy can be described as a perfect fluid with
equation of state p = wρ. From eq. (11.18) follows that the dark energy must
have w < −1/3, hence it must be in a state of tension.

One candidate for the missing energy is LIVE for which w = −1, corre-
sponding to a cosmological constant, Λ. The resulting universe model, called

Note from eqs. (12.82) and (12.88) that in the case of a flat Friedmann-

microwave background radiation. However, measurements of the large scale
temperature fluctuations the cosmic

distribution and motions of the matter in the universe indicate that the ave-
rage cosmic density of the gravitating mass is only 30% of the critical mass

0

0.5

Ωm

ΩΛ

t=t0
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Universe Models with Vacuum Energy

Two difficulties arise from this scenario. The first is the fine-tuning problem:
Why is the missing energy density today so small compared to typical parti-
cle physics scales? The missing energy density is of order 10−47GeV4 which
is 14 orders of magnitude smaller than the electroweak scale. The second dif-
ficulty is the cosmic coincidence problem: Since the missing energy density and
the matter energy density decrease at different rates as the universe expands,
their ratio must be specified incredibly accurately in the very early universe
in order for the two densities to nearly coincide today.

There have been several attempts to resolve the fine-tuning problem. A

and the vacuum energy can vary discretely among widely separated regions.
Structures, such as galaxies, will only form if the vacuum energy fulfills the
bounds

−10−123 < ρΛ < 10−121.

Since galaxies are presumably a requirement for the existence of observers,
we can only exist in a region that fulfills this bound. Such an argument, which
essentially says that ”if the universe was different we would not have been
here to observe it”, is often called an anthropic argument [BT86].

We will focus on an alternative candidate for the dark energy called quint-
essence. This is a perfect fluid model with −1 < w < −1/3. The value of w
may vary with the cosmic time. This energy comes from a scalar field with
a potential that is introduced in an ad hoc way to suit observations. It has a
phenomenological character, and may be regarded as a first step in order to
find some properties that dark energy may have.

There exists a class of quintessence models of dark energy called tracker
models [ZWS99]. They are constructed to solve the coincidence and fine-
tuning problems. Let us consider universe models containing dark energy
and one other type of energy or matter, say radiation or cold dark matter. The
tracker models have the property that the energy density of the tracker field
approaches that of the other component from a wide variety of initial con-
ditions. A special type of tracker field, called k-essence [APMS01], behaves
as follows. The k-essence energy density catches up and overtakes the matter-
density, typically several billions of years after matter-domination, driving the
universe into a period of accelerated expansion. In this scenario, we observe
cosmic acceleration today because the time for human evolution and the time
for k-essence to overtake the matter density are both several billions of years
after matter-radiation equality.

A full description of the tracker models requires both analytical and nu-
merical calculations. In this section we shall only consider a rather simple
class of quintessence models following [ZP01] in order to illustrate some prop-
erties of such models at late times with constant ratio between energy density
and matter density.

The total density and pressure of the cosmic fluid are

ρ = ρs + ρm, p = ps, (12.90)

where the indices s and m refer to a scalar field component and a cold matter
component, respectively. The energy density and pressure of the scalar field

mater.
the ΛCDM-model, consists of a mixture of vacuum energy and cold, dark

relatively recent attempt comes from string theory (and the so-called land-”
scape”) [Bou05]. String theory contains a dense discretuum of metastable vacua
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12.7 Universe models with quintessence energy

are

ρs =
1

2
φ̇2 + V (φ), ps =

1

2
φ̇2 − V (φ). (12.91)

We do not assume that the dark energy and the matter evolve independently,
but allow on interaction between them, described by a source (loss) term δ in
the energy conservation equations,

ρ̇m + 3Hρm = δ, (12.92)

and

ρ̇s + 3H(ρs + ps) = −δ. (12.93)

The last equation may be written

φ̇

(
φ̈ + 3Hφ̇ +

dV

dφ

)
= −δ, (12.94)

energy and the cosmic matter.
We shall now study a model with constant ratio r ≡ ρm/ρs.

(12.92) and (12.93) lead to

ρ̇s + 3Hρs +
3

1 + r
Hps = 0. (12.95)

Assuming ps = wsps with ws = constant, this equation takes the form

ρ̇s

ρs
+ n

ȧ

a
= 0, n = 3

(
1 +

ws

1 + r

)
. (12.96)

Integration with a0 = 1 gives

ρs = ρs0a
−n. (12.97)

Inserting this into eq. (12.93) gives for the interaction term

δ = − 3rws

1 + r
Hρs. (12.98)

For the present universe model the Friedmann equation (11.16) takes the
form

ȧ2 =
8πG

3
ρ0a

2−n, ρ0 = ρm0 + ρs0. (12.99)

Integration with a(t0) = 1 yields

a(t) =

(
t

t0

) 2
n

. (12.100)

The deceleration parameter, defined in eq. (11.38), is

q =
1

2

(
1 +

3ws

1 + r

)
. (12.101)

which generalizes eq. (12.38) to allow for energy transfer between the dark

Then eqs.
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Observations of supernovae of type Ia and of temperature fluctuations in the
cosmic background radiation indicate r ≈ 1/3. Using this value the condition
for accelerated expansion, q < 0, becomes ws < −4/9.

From eqs. (12.97) and (12.100) follow

ρs = ρs0

(
t0
t

)2

. (12.102)

During this late era the densities of the dark energy and the cold matter both
decrease as t−2. The potential as a function of the time is found from eqs.
(12.91) and (12.102),

V =
1

2
(1 − ws)ρs0

(
t0
t

)2

. (12.103)

Differentiation gives

V̇ = φ̇
dV

dφ
= −2

t
V. (12.104)

From eqs. (12.91) and (12.102) we also have

φ̇ =
√

(1 + ws)ρs0
t0
t

. (12.105)

Hence,

dV

V
= −λdφ, λ2 =

4

(1 + ws)ρs0t0
, (12.106)

giving

V (φ) = V0e
−λφ. (12.107)

This shows that a scenario with a late-time constant ratio between the densi-
ties of the dark energy and matter can be realized by a quintessence energy
with a simple exponential potential.

12.8 Dark energy explored by means of supernova
observations and the statefinder diagnostic

Observations of supernovae of type Ia have shown that the universe is dom-
inated by dark energy causing accelerated expansion. V. Sahni and cowork-
ers [ASSS03] have recently introduced a pair of of parameters {r, s} called
statefinders, which are useful to distinguish different types of dark energy.

The Friedmann-Robertson-Walker models of the universe have earlier been
characterized by the Hubble parameter and the deceleration parameter, de-
pending upon the first and second derivatives of the scale factor.

If the satellite SNAP works according to the planes, we shall eventually
have accurate determinations of the luminosity distance and redshift of more
than 5000 supernovae of type Ia. These data will permit a very precise deter-
mination of a(z). Then it will be important to include also the third derivative
of the scale factor in our characterization of different universe models.

328



12.8 Dark energy and the statefinder diagnostic

The statefinders were introduced to characterize primarily flat universe
models with cold dark matter (dust) and dark energy. They were defined as

r ≡
...
a

aH3
, (12.108)

s ≡ r − 1

3
(
q − 1

2

) . (12.109)

For the present universe models the Friedmann equation takes the form

H2 =
8πg

3
(ρm + ρx) . (12.110)

If the equation of state of the dark energy has the form px = wρx with w =
constant, the energy conservation equation implies

ρm = ρm0a
−3, ρx = ρx0a

−3(1+w). (12.111)

Introducing the cosmic redshift by 1 + z = a−1 we obtain

H(y) = H0

[
Ωm0y

3 + Ωx0y
3(1+w)

] 1
2

, y ≡ 1 + z. (12.112)

Using Ḣ = −H ′Ha, where H ′ ≡ dH/dy, the deceleration parameter is given
by

q(y) =
H ′

H
y − 1. (12.113)

For flat universe models

ρx = ρcr − ρm =
3H2

8πG
(1− Ωm) =

3

8πG

(
H2 − Ωm0H

2
0y3
)
. (12.114)

From Friedmann’s acceleration equation (11.18) follows

px =
H2

4πG

(
q − 1

2

)
=

3

8πG

[
1

3
(H2)′y −H2

]
. (12.115)

Hence,

w(y) =
1
3 (H2)′y −H2

H2 −H2
0Ωm0y3

. (12.116)

Calculating r, and using a′ = −a2, we obtain

r(y) = 1− 2
H ′

H
y +

(
(H ′)2

H2
+

H ′′

H

)
y2. (12.117)

into eq. (12.109).
If the luminosity distance dL is found as a function of y for standard light

respect to H , giving

H(y) =

[(
dL

y

)′]−1

. (12.118)

sources, the Hubble parameter may be calculated by solving eq. (11.130) with

The state finder s(y) is found by inserting the expressions (12.113) and (12.117)
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We shall now calculate the localization of universe models with different
types of dark energies in the statefinder diagrams. Let us first consider dark
energy obeying an equation of state of the form p = wρ. The formalism of
Sahni and coworkers will here be generalized to permit curved universe mod-
els. In this case the definition of s is generalized to

s =
r − Ω

3
(
q − Ω

2

) . (12.119)

The deceleration parameter may be expressed as

q =
1

2
[Ωm + (1 + 3w)Ωx] . (12.120)

hence, if Ωx, Ω and q are determined by measurements the equation of state
factor w may be found from

w =
2q − Ω

3Ωx
. (12.121)

Differentiation of eq. (11.38), together with eq. (12.108) leads to

r = 2q2 + q − q̇

H
. (12.122)

From eq. (12.120) we have

q̇ =
1

2
Ω̇m +

1

2
(1 + 3w)Ω̇x +

3

2
wΩx. (12.123)

Furthermore,

Ω̇ =
ρ̇

ρcr
− ρ

ρ2
cr

ρ̇cr, (12.124)

with

ρ̇cr =
3HḢ

4πG
, (12.125)

and

Ḣ = −H2(1 + q). (12.126)

Hence,

ρ̇cr = −2(1 + q)Hρcr, (12.127)

which leads to

Ω̇ =
ρ̇

ρcr
+ 2(1 + q)HΩ. (12.128)

For cold matter ρ̇m = −3Hρm giving

Ω̇m = (2q − 1)HΩm, (12.129)

and for dark energy ρ̇x = −3(1 + w)Hρx giving

Ω̇x = (2q − 1− 3w)HΩx. (12.130)
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into eq. (12.122) finally leads to

r = Ωm +

[
1 +

9

2
w(1 + w)

]
Ωx − 3

2

ẇ

H
Ωx. (12.131)

Inserting the expression (12.131) into eq. (12.119) gives

s = 1 + w − 1

3

ẇ

wH
. (12.132)

It may be noted that a universe with cold dark matter and LIVE has r = Ω,
s = 0. For a flat universe Ωm + Ωx = 1 and the expression reduces to

r = 1 +
9

2
w(1 + w)Ωx − 3

2

ẇ

H
Ωx. (12.133)

If the dark energy is due to a scalar field the equation of state factor w is
given by

w =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (12.134)

Differentiation gives

ẇρx =
2φ̇(2φ̈V − φ̇V̇ )

φ̇2 + 2V (φ)
. (12.135)

Using the equation of motion for the scalar field

φ̈ = −3Hφ̇− V ′, (12.136)

and that V̇ = V ′φ̇ in eq. (12.135) and inserting the result into eq. (12.131) we
obtain

r = Ω + 12πG
φ̇2

H2
+ 8πG

V̇

H3
. (12.137)

Furthermore,

q − Ω

2
=

3

2
wΩx = 4πG

px

H2
=

4πG

H2

(
1

2
φ̇2 − V

)
. (12.138)

Hence, the statefinder s is

s =
2
(
φ̇2 + 2

3
V̇
H

)
φ̇2 − 2V (φ)

. (12.139)

We shall now find expressions for r and s that are valid even if the dark
energy does not fulfill an equation of state of the form p = wρ. The expression
for the deceleration parameter may be written as

q =
1

2

(
1 + 3

px

ρx

)
Ω. (12.140)

Inserting eqs. (12.129) and (12.130) into eq. (12.123) and the resulting expression
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Using this in eq. (12.122) we find

r =

(
1− 3

2

ṗx

Hρx

)
Ω, (12.141)

s = − 1

3H

ṗx

px
. (12.142)

If the universe contains only dark energy with an equation of state p = p(ρ),
then

ṗ =
∂p

∂ρ
ρ̇ = −3H(ρ + p)

∂p

∂ρ
, (12.143)

which leads to

r =

[
1 +

9

2

(
1 +

p

ρ

)
∂p

∂ρ

]
Ω, (12.144)

s =

(
1 +

ρ

p

)
∂p

∂ρ
. (12.145)

If the universe contains cold matter and dark energy these expressions are
generalized to

r =

(
1 +

9

2

ρx + px

ρm + ρx

∂px

∂ρx

)
Ω, (12.146)

s =

(
1 +

ρx

px

)
∂px

∂ρx
. (12.147)

Example 12.4 (Universe model with Chaplygin gas)Examples
Let us consider a universe model containing only Chaplygin gas. Then

p = −A

ρ
. (12.148)

The energy conservation equation then takes the form

ρ̇ = −3
ȧ

a

„
ρ− A

ρ

«
. (12.149)

Integration gives

ρ =

r
A +

B

a6
, (12.150)

where B is a constant of integration. Imposing the standard normalization of the scale
factor, a(t0) = 1, we obtain

A = ρ2
∞, B = ρ2

0 − ρ2
∞, (12.151)

where ρ0 is the current density of the Chaplygin gas and ρ∞ in its asymptotically far
future. For the Chaplygin gas

∂p

∂ρ
=

A

ρ2
= −p

ρ
, (12.152)

giving

r =

»
1− 9

2
s(1 + s)

–
Ω, (12.153)

s = −
„

1 +
p

ρ

«
. (12.154)
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In the case of a universe model with cold dark matter and Chaplygin gas we have

r =

"
1− 9

2

s(1 + s)

1 + ρm
ρx

#
Ω, (12.155)

s = −
„

1 +
px

ρx

«
. (12.156)

Here
ρm

ρx
=

ρm0√
Aa6 + B

= κ
√−s, (12.157)

where

κ =
ρm0√

B
=

ρm0p
ρ2
0 − ρ2∞

=

„
ρm

ρx

«
a=0

. (12.158)

This gives

r =

»
1− 9

2

s(1 + s)

1 + κ
√−s

–
Ω. (12.159)

Example 12.5 (Third order luminosity redshift relation)

redshift. To this order eq. (11.129) gives

H0dL ≈ (1 + z)I

„
1 +

1

6
Ωk0I

2

«
. (12.160)

Making use of a series expansion of the Hubble parameter to 2nd order in z,

H(z) ≈ H0 +

„
dH

dz

«
0

z +
1

2

„
d2H

dz2

«
0

z2, (12.161)

we have

I ≈
zZ

0

dy

1 + ay + by2
, a =

1

H0

„
dH

dz

«
0

, b =
1

2H0

„
d2H

dz2

«
0

. (12.162)

To third order in z this leads to

(1 + z)I ≈ z +

„
1− 1

2
a

«
z2 −

„
1

2
a +

1

3
b− 1

3
a2

«
z3. (12.163)

Using that

Ḣ = −(1 + q)H2, Ḧ = (r + 3q + 2)H3, (12.164)

and
d

dz
= − 1

(1 + z)H

d

dt
, (12.165)

we obtain

a = 1 + q0, b =
1

2
(r0 − q2

0). (12.166)

finally gives the luminosity redshift relation

H0dL ≈ z

»
1 +

1

2
(1− q0)z − 1

6

`
1 + r0 − q0 − 3q2

0 −Ωk0

´
z2

–
. (12.167)

We shall find a series expansion of the luminosity distance to third order in the cosmic

Inserting these expressions in eq. (12.163) and the resulting expression in eq. (12.160)
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12.9 Cosmic density perturbations

We shall present the most simple aspects of the cosmological perturbation the-
ory (see also [LL00, Ama03]). This will provide a background for describing
acoustic oscillations in the plasma that existed during the first 400 000 years
of our universe, and which produced temperature fluctuations in the cosmic
microwave background.

The physical universe is described as a Friedmann-Robertson-Walker uni-
verse that is perturbed due to density perturbations in the cosmic fluid. Since
we are concerned with fluctuations at early times when the universe was very
close to flat, we choose to consider only flat universe models. The line-element
of the unperturbed universe can then be written

ds2 = a2(η)
(−dη2 + δijdxidxj

)
, (12.168)

where η is conformal time which is related to the cosmic time t by

t =

η∫
0

a(η′)dη′. (12.169)

In the so-called Newtonian gauge, and assuming that there is no shear in
the cosmic fluid, the line-element of the perturbed universe can be written

ds2 = a2(η)
[−(1 + 2Φ)dη2 + (1− 2Φ)δijdxidxj

]
, (12.170)

where the perturbing function Φ satisfies |Φ| � 1.
Calculating the components of the Einstein tensor from the line-element to

1st order in Φ, one finds the zeroth order components,

(0)E0
0 = − 3

a2
H2, (0)E0

i = 0, (0)Ei
j = − 1

a2
(H2 + 2Ḣ)δi

j , (12.171)

where

H =
1

a

da

dη
=

1

a

da

dt

dt

dη
= aH. (12.172)

Here, H is the usual Hubble parameter. The first order components are

δE0
0 = − 2

a2

[
∇2Φ− 3H(Φ̇ +HΦ)

]
, (12.173)

δE0
i = − 2

a2

(
Φ̇ +HΦ

)
, (12.174)

δEi
j =

2

a2

[
(H2 + 2Ḣ)Φ + Φ̈ + 3HΦ̇

]
δi

j . (12.175)

The energy-momentum tensor of the cosmic fluid can be split into zeroth
and first order parts as follows

(0)T 0
0 = −ρ0, δT 0

0 = −δρ0, (12.176)
(0)T 0

i = 0, δT 0
i = (ρ0 + p0)aδui, (12.177)

(0)T i
j = p0δ

i
j , δT i

j = δpδi
j . (12.178)

We will assume that the equation of state is p = wρ, and that there are en-
tropy perturbations. Hence, the speed of sound on the fluid is given by c2

s =
∂p/∂ρ = w, and the pressure perturbation is δp = wδρ.
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The zeroth order Einstein equations are

H2 =
8πG

3
a2ρ0, (12.179)

H2 + 2Ḣ = −8πGa2p0 = −8πGa2wρ0. (12.180)

Next we consider the first order Einstein equations. The time-time component
is

∇2Φ− 3H(Φ̇ +HΦ) = 4πGa2δρ. (12.181)

Taking the Newtonian limit of this equation by letting a → 1 and H → 0, it
reduces to ∇2Φ = 4πGδρ, which is just the Poisson equation (1.32) of Newto-
nian gravitational theory, where Φ is the gravitational potential due to mass-
inhomogeneity δρ.

It is often convenient to define the density contrast, δ, by

δ ≡ δρ

ρ0
. (12.182)

0

obtain

∇2Φ− 3H(Φ̇ +HΦ) =
3

2
H2δ. (12.183)

The first order time-space equations are(
Φ̇ +HΦ

)
,i

= −3

2
H2(1 + w)aδui, (12.184)

while the space-space equations are

(H2 + 2Ḣ)Φ + Φ̈ + 3HΦ̇ =
3

2
H2wδ. (12.185)

We shall now find solutions to these equations, and start with the zeroth
order equations. They are simply the Friedmann equations for flat universe
models expressed in conformal time.
bined to give

Ḣ = −1

2
H2(1 + 3w). (12.186)

Integration gives

1

H =
1

2
(1 + 3w)η + C0, (12.187)

where C0

grating leads to

a = C1

[
1

2
(1 + 3w)η + C0

] 2
1+3w

, (12.188)

where C1 is a constant. For a universe model where w �= −1 we can impose the
condition a(0) = 0 which implies C0 = 0. Using the standard normalization
a(η0) = 1, the scale factor may be written

a =

(
η

η0

) 2
1+3w

. (12.189)

by means of eq. (12.179) weIntroducing this in eq. (12.181) and eliminating ρ

Eqs. (12.179) and (12.180) can be com-

is a constant of integration. Inserting this into eq. (12.172) and inte-
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The “conformal Hubble parameter” is

H =
2

1 + 3w

1

η
, w �= −1. (12.190)

as a function of the conformal time

ρ0(η) =
3η

2
1+3w

0

2πG(1 + 3w)2
η−

6(1+w)
1+3w . (12.191)

cosmic time in terms of the conformal time,

t = t0

(
η

η0

) 3(1+w)
1+3w

, t0 =
1 + 3w

3(1 + w)
η0. (12.192)

of cosmic time

a(t) =

(
t

t0

) 2
3(1+w)

, (12.193)

where a(t0) = 1.
The results are not valid for universe models where w = −1. Hence, they

are not valid for a universe dominated by LIVE. In this case eq. (12.188) gives

a(η) =
C1

C0 − η
; H =

1

C0 − η
. (12.194)

0 Λ=(8πGρ0/3)1/2

and choosing again a(η0) = 1, we get

a(η) =
1

1−HΛ(η − η0)
, (12.195)

t(η) = t0 − 1

HΛ
ln [1−HΛ(η − η0)] , (12.196)

or

1−HΛ(η − η0) = e−HΛ(t−t0), (12.197)

giving

a(t) = eHΛ(t−t0). (12.198)

Let us now consider the first order equations. First we consider a dust
dominated model, i.e. a model in which w = 0. Then the scale factor and the
Hubble parameter are

a(η) = a0η
2, H =

2

η
. (12.199)

In this case eq. (12.185) reduces to

Φ̈ +
6

η
Φ̇ = 0. (12.200)

Inserting these expressions into eq. (12.179) we find the unperturbed density

From eqs. (12.189) and (12.192) we obtain for the scale factor as a function

From this and eq. (12.179) follows that ρ =constant. DefiningH

Substituting expression (12.189) into eq. (12.169) and integrating, we find the
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The general solution of this equation is

Φ(x, η) = c1(x) + c2(x)η−5. (12.201)

which leads to

δ(x, η) =
1

6η3
∇2c2(x) +

3

η5
c2(x) +

1

6
η2∇2c1(x)− 2c1(x). (12.202)

This solution consists of two types of terms; those depending on c1(x) are
growing with time, and those depending on c2(x) are decaying. We are inter-
ested in the growing solutions with c2(x) = 0,

Φ(x, η) = c1(x); δ(x, η) =
1

6
η2∇2c1(x) − 2c1(x). (12.203)

Hence, the metric perturbation of this kind is constant in time although the
density perturbation grows.

For dust the conformal time is related to the cosmic time as η ∼ t1/3. This
means that the growing term of δ increases proportionally to t2/3. The im-
portant conclusion is that there are growing density perturbation in a matter
dominated FRW universe.

We shall now investigate if there are growing density perturbations in a
radiation dominated universe model, too. For this purpose we can assume
that the spatial variation of the perturbation has the form of a plane sinus
wave,

Φ(x, η) = f(η) sin(k · x). (12.204)

In the case of a radiation dominated universe, w = 1/3, and we get the follow-
ing zeroth order parameters,

a = a0η; H =
1

η
; Ḣ = − 1

η2
. (12.205)

Inserting eqs. (12.204) and (12.205) into eqs. (12.183) and (12.185) we get

k2η2f + 3ηḟ + 3f = −3

2
δ, (12.206)

η2f̈ + 3ηḟ − f =
1

2
δ. (12.207)

These equations can be combined to give

f̈ +
4

η
ḟ + ω2f = 0, ω2 ≡ k2

3
. (12.208)

The general solution of this equation is

f(η) = c1
ωη cosωη − sin ωη

η3
+ c2

ωη sin ωη + cosωη

η3
, (12.209)

1 2

g(η) =
4

η3

{
c1

[
(ω2η2 − 1) sinωη + ωη

(
1− 1

2
ω2η2

)
cosωη

]

+c2

[
(1− ω2η2) cosωη + ωη

(
1− 1

2
ω2η2

)
sin ωη

]}
. (12.210)

are integration constants. Inserting this expression into eq.and cwhere c
(12.207) we find the time evolution of the amplitude g(η) of the density contrast

The density contrast is found by inserting this expression into eq. (12.183),
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The amplitude of the density contrast consists of terms that are proportional
to 1, η−1, η−2 and η−3 times a trigonometric function. This leads to the conclu-
sion that in a radiation dominated universe model perturbations in the density
of radiation do not grow with time.

12.10 Temperature fluctuations in the cosmic

As noted in the last sections the photons of the CMB have moved freely since
the universe was about 400 000 years old. The emitter events form a spherical
shell around us with a radius around 13.7 billion light years and a thickness
about 50 million light years.

In a flat matter dominated universe the horizon radius at a point of time t
is 3ct. Hence, the horizon radius at the time of decoupling is about one million
years. As seen from our position this distance extends over an angle about 1◦

on the sky.

The original density fluctuations are thought to have their origin in quan-
tum fluctuations that happened extremely early in the history of the universe,
during the inflationary era.

Physical effects causing CMB-temperature fluctuations

One can describe the statistical properties of these fluctuations and the corre-
sponding temperature fluctuations. In order to give a mathematical descrip-
tion of the CMB-temperature fluctuations, one utilizes that they are observed
on a spherical surface. Hence, they can be written as a sum of spherical har-
monic functions

ΔT

T
(θ, φ) =

∞∑
�=0

�∑
m=−�

a�mY�m(θ, φ). (12.211)

One then introduces the expectation value of |a�m|2,

c� ≡
〈|a�m|2

〉
. (12.212)

The power per logarithmic interval in 	 is defined as

P 2(	) =
	(	 + 1)

2π
c�. (12.213)

Here, 	 is the multipole number which is related to the angular extension on
the sky, so that θ = (π/	)radians = 180◦/	. The function P (	) is called the
power spectrum. It represents the average of the root mean square temperature
difference ΔT in two directions separated by an angle θ = 180◦/	. Hence,
ΔT = P (	)TCMB , where TCMB is the average temperature of the CMB.

At scales larger than the horizon radius the fluctuations have not been
modified by causal, dynamical processes since they were created. Hence, at

Measuring the temperature fluctuations in the CMB we obtain a map show-
ing the physical conditions in the surface of last scattering. The observed
temperature variations are due to density fluctuations in the shell of last
scattering.

microwave background (CMB)
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such scales the power spectrum shows the spectrum of the original fluctua-
tions that were created quantum mechanically early in the inflationary era. It
has been shown that this part of the spectrum should be scale invariant. This is
one of the predictions of inflationary cosmology. Hence, the power spectrum
of the CMB-temperature fluctuations is expected to be flat for angles greater
than about 2◦; i.e. for values of 	 less than about 100. Measurements by COBE
have confirmed this prediction and determined the magnitude of the power
in the flat part of the spectrum, ΔT = 27.9± 2.5μK [Met. al.94, Bet. al.96].

One may distinguish between primary and secondary fluctuations. The

primary fluctuations.

The Sachs-Wolfe effect

The Sachs-Wolfe effect is due to spatial variations of the gravitational poten-
tial in the shell of last scattering. This has two effects. (i) Photons from regions
with high density at last scattering loose energy as they move out of the grav-
itational field (moving “upwards”), and hence, they get a redshift. This gives
a temperature decrease (

ΔT

T

)
I

= −Δφ

c2
, (12.214)

where Δφ is the difference of gravitational potential at the emitter position and
an observer position far away from the emitter. (ii) Due to gravitational time
dilatation the time proceeds at a slower rate far down in a gravitational field.
Looking toward a region with a deeper potential than at the surroundings,
we observe a region where time goes slower. So we seem to be looking at
a younger, and hence hotter region of the universe where there is an over-
density. The time dilatation is

Δt

t
= −Δφ

c2
. (12.215)

The density ργ of radiation is related to the expansion factor by ργa4 = ργ0,
and according to Stefan-Boltzmann’s law ργ ∝ T 4. Hence, aT = constant,
independent of the time dependence of the scale factor a(t). We thus have(

ΔT

T

)
II

= −Δa

a
. (12.216)

Assuming a flat universe dominated by a fluid with equation of state p = wρ,
the time difference of the scale factor is a ∼ t2/3(1+w). This leads to

Δa

a
=

2

3(1 + w)

Δt

t
= − 2

3(1 + w)

Δφ

c2
. (12.217)

Hence, (
ΔT

T

)
II

=
2

3(1 + w)

Δφ

c2
. (12.218)

due to changes of the frequency (apart from that caused by the expansion of
the universe) while the photons move from the shell of last scattering to the
detector. We shall first consider the three most important effects causing the

verse became transparent for the CMB-radiation. The secondary fluctuations are
primary fluctuations are a result of processed happening before the uni-
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The Sachs-Wolfe temperature fluctuations are(
ΔT

T

)
SW

=

(
ΔT

T

)
I

+

(
ΔT

T

)
II

= − 1 + 3w

3(1 + w)

Δφ

c2
. (12.219)

For a matter dominated universe, w = 0, which gives(
ΔT

T

)
SW

= −1

3

Δφ

c2
. (12.220)

The internal adiabatic effect

This effect is due to a coupling between the photon gas and the matter [Pea98].
The photon gas is compressed in regions with a large mass density. If the
density fluctuations are adiabatic the density fluctuations of the photon gas
and the matter are related by(

Δρ

ρ

)
γ

=
4

3

(
Δρ

ρ

)
m

. (12.221)

In a region with increased density of the photon gas there is higher temper-
ature. On the other hand, the surface of last scattering is determined by the
ionization potential of the hydrogen molecule, and thereby represents a sur-
face of constant temperature. However, at a given point of time regions with
larger density will have higher temperature. Hence, the surface of last scat-
tering does not represent a set of simultaneous events. Since the temperature
decreases with time, one observes later emitter events in direction of mass
concentrations. The cosmic redshift is therefore less in these directions, and
one observes a higher temperature,(

ΔT

T

)
A

= − Δz

1 + z
=

Δρ

ρ
, (12.222)

where the last equality assumes linear growth Δρ ∼ (1 + z)−1.

Doppler effect

This is the effect upon the observed temperature of the CMB of the peculiar
velocity of that part of the surface of last scattering which is along the line of
sight. The temperature change due to this effect is(

ΔT

T

)
D

=
v · n

c
, (12.223)

where n is a unit vector along the line of sight.

Acoustic oscillations in the early cosmic plasma

The Sachs-Wolfe, the adiabatic, and the Doppler effect tell us how the CMB-
temperature result from fluctuations of the gravitational potential, the density
and the velocity in the shell of last scattering. We shall now consider the phys-
ical mechanism behind these three types of fluctuations.
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The most important mechanism is associated with the so-called acoustic
oscillations. The photon and mass densities are assumed to be coupled adi-
abatically, so that nγ ∼ nm ∼ T 3. Hence, the temperature fluctuations and
density fluctuations are related by

ΔT

T
(x, η) =

1

3
δ(x, η). (12.224)

In order to obtain a mathematical description of the fluctuations the fractional
perturbations of the temperature are expanded in Fourier modes, with a cor-
responding Fourier expansion of the density contrast,

δ(x, η) =
1

(2π)3

∫
δk(η)e−ik·xd3k, (12.225)

where k is a wave-number vector. One can then study each mode separately.

Denoting the fractional temperature fluctuations due to the Sachs-Wolfe effect
by θ, i.e.

θ ≡
(

ΔT

T

)
SW

, (12.226)

the equation of motion of the density fluctuations in the photon gas can be
written

θ̈ + c2
sk

2θ = 0, (12.227)

where the adiabatic sound speed is defined by

c2
s ≡

ṗγ

ρ̇γ
. (12.228)

Since p = ρ/3 the sound speed is c2
s = 1/3 (corrections due to matter are

considered in Example 12.6). The pressure waves propagate extremely fast.

gas. Hence, one calls the temperature fluctuations due to this effect for acoustic
peaks in the power spectrum of the fluctuations.

The general solution of eq. (12.227) is

θ(η) = θ(0) cos(ks) +
θ̇(0)

kcs
sin(ks), (12.229)

where s is the sound horizon, defined by

s ≡
η∫

0

csdη. (12.230)

All modes are frozen in at recombination, at ηrc, yielding temperature pertur-
bations of different amplitude for different modes. For adiabatic oscillations
with θ̇(ηrc) = 0,

θ(ηdc) = θ(0) cos(ksdc). (12.231)

Ignoring, for the moment, the matter, one can deduce the equation of motion
for the photon gas from the Euler equation and the equation of continuity.

The equation of motion describes oscillations, i.e. sound waves in the photon
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Modes with extrema of their oscillations at the surface of last scattering have
knsdc = nπ. This introduces a fundamental scale related to the inverse sound
horizon, kdc = π/sdc.

The fundamental physical scale is translated into a fundamental angular
scale by a simple triangulation. The angle subtended by the proper value of
the fundamental scale,

lPdc ≈ a(tdc)
2π

kdc
=

2sdc

1 + z
≈ 2ηdc√

3(1 + z)
, (12.232)

lAdc =
η0 − ηdc

1 + z
≈ η0

1 + z
, (12.233)

is

θdc =
2√
3

ηdc

η0
. (12.234)

The corresponding value of the spherical harmonic index is

	dc =
2π

θdc
≈ π

√
3

η0

ηdc
. (12.235)

In a matter dominated universe model, η ∝ a1/2, so

	dc ≈ π

√
3

adc
≈ π

√
3zdc. (12.236)

Inserting zdc = 1100 gives 	dc = 180. In this region of the power spectrum one
expects a transition from a flat spectrum due to the original scale invariant
fluctuations to a part of the spectrum containing acoustic peaks.

In order to obtain an accurate CMB spectrum one must perform some
rather complex calculations. Computer based packages performing such cal-
culations have been developed. One of the most used packages is CMB-FAST.
However, some properties of the spectrum can be found analytically.

Let us first investigate how the positions of the peaks depend upon the
curvature of space. Consider a space with constant positive curvature. Then
the proper distance, dP , is replaced by R sin(dP /R) where R is the curvature
radius of the space. Hence, the ratio of the angle subtended by a physical scale
λ in the curved space and in flat space is

θ+

θ0
=

dP

R sin dP

R

. (12.237)

Assuming that dP � R we obtain to 3rd order in dP /R,

θ+

θ0
≈ 1 +

1

6

(
dP

R

)2

. (12.238)

The curvature radius of space in a Friedmann universe model with relative
density Ωtot is (see eq. (11.51))

R =
(
Ha
√
|Ωk|
)−1

=
(
Ha
√
|Ωtot − 1|

)−1

. (12.239)

at the angular diameter distance of the surface of last scattering (see eq. (11.135))
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At the present time

R0 =
(
H0

√
|Ωtot0 − 1|

)−1

. (12.240)

The proper distance to the surface of last scattering is presently

dP = η0 − ηrc ≈ η0 ≈ 3t0, (12.241)

where the last approximate equality is valid for a flat mass dominated uni-
verse. We consider universe models that are nearly flat. Using that t0 ≈
(2/3)H−1

0 gives

θ+

θ0
≈ 1

3
(1 + 2Ωtot) . (12.242)

One can show that the same expression is valid in a negatively curved uni-
verse. The expression shows that the same physical distance subtends a larger
angle in a closed universe, Ωtot > 1, than in a flat universe, and a smaller angle
in a negatively curved universe, Ωtot < 1.

We shall now consider the effects of baryons upon the CMB-spectrum.
Baryons add inertia to the cosmic fluid. There are three effects of raising the
baryon density: an amplitude increase, a zero-point shift towards higher com-
pression, and a frequency decrease. The magnitude of these effects are given
by the factor 1+ r where r is the density plus momentum ratio of baryons and
photons,

r =
ρb + pb

ργ + pγ
≈ 3ρb

4ργ
, (12.243)

which may be expressed as

r =
3Ωb0

4Ωγ0
a. (12.244)

Inserting the measured values Ωb0 = 0.04 and Ωγ0 = 5 · 10−5, gives at the
time of last scattering rrc ≈ 0.5. More accurate calculations give a some-
what smaller number. However, the CMB-temperature fluctuations are a good
baryometer. The recent very accurate measurements by the WMAP-mission
have given the result, Ωb = 0.044 ± 0.004. This is in very good agreement
with results of measurements of the cosmic abundances of the lightest element
combined with the theory of their production in the cosmic nucleosynthesis
during the first ten minutes of our universe.

Example 12.6 (The velocity of sound in the cosmic plasma) Example

due to a change of pressure, dp. It is defined as

κ = −V
dp

dV
= −V

ṗ

V̇
. (12.245)

The negative sign indicates that the volume decreases when the pressure increases.
The mass of a fluid element is constant. Hence,

(ρV )· = ρ̇V + ρV̇ = 0, V̇ = −V

ρ
ρ̇, (12.246)

The bulk modulus of a fluid gives the relative change of volume dV/V of a fluid element
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giving

κ = ρ
ṗ

ρ̇
. (12.247)

displacement of fluid particles in the direction of motion of a plane pressure wave.
The corresponding change of pressure at a wave front with area A is

δp = −κ
δV

V
= −κ

A [s(z + δz)− s(z)]

Aδz
−→
δz→0

−κ
∂s

∂z
. (12.248)

The variation of the pressure in the z-direction is

∂δp

∂z
= −κ

∂2s

∂z2
. (12.249)

The corresponding variation of the pressure force is

dF = −Adδp = −A
∂δp

∂z
dz = κA

∂2s

∂z2
dz. (12.250)

Newton’s 2nd law applied to the fluid element gives

dF = adm =
∂2s

∂t2
Aρdz, (12.251)

which leads to

∂2s

∂t2
=

κ

ρ

∂2s

∂z2
. (12.252)

This is the equation of motion for the pressure waves.
In general, the wave equation has the form

∂2s

∂t2
= c2

s
∂2s

∂z2
, (12.253)

where cs is the velocity of propagation of the waves. The pressure waves are often
called acoustic waves or sound waves. From eqs. (12.252) and (12.253) we get

c2
s =

κ

ρ
, (12.254)

which together with eq. (12.247) gives

c2
s =

ṗ

ρ̇
. (12.255)

We shall find the velocity of sound in a cosmic fluid consisting of cold matter, LIVE
and radiation. The relative densities of the components of the cosmic fluid are Ωm, ΩΛ,
and Ωγ . The total relative density is Ω = Ωm + ΩΛ + Ωγ .

Using that the deceleration parameter is

q =
1

2

„
1 + 3

p

ρ

«
Ω, p =

X
pi, ρ =

X
ρi, (12.256)

the statefinder r, using eq. (12.122), is

r =

»
1 +

9

2

„
1 +

p

ρ

«
ṗ

ρ̇

–
Ω. (12.257)

Using eq. (12.255), this may be written

r =

»
1 +

9

2

„
1 +

p

ρ

«
c2
s

–
Ω. (12.258)

We shall now deduce the equation of pressure waves in a fluid. Let s(z, t) be the
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From eqs. (12.256) and (12.258) we get

c2
s =

1

3

r − Ω

q + Ω
. (12.259)

In the case of a flat universe this reduces to

c2
s =

1

3

r − 1

q + 1
. (12.260)

We now proceed with the general case permitting curved universe models. If the
components of the cosmic fluid have relative densities Ωi and equations of state pi =
wiρi, the deceleration parameter and the statefinder may be expressed as

q =
1

2

X
i

(1 + 3wi)Ωi, (12.261)

r =
X

i

»
1 +

9

2
wi(1 + wi)

–
Ωi. (12.262)

In a universe with cold matter, LIVE and radiation we get

q =
1

2
(Ω− 3ΩΛ + Ωγ), r = Ω + 2Ωγ , (12.263)

which gives

c2
s =

4

9

Ωγ

Ωm + 4
3
Ωγ

. (12.264)

This may be written

1

c2
s

= 3

„
1 +

3

4

Ωm

Ωγ

«
. (12.265)

Note that cs is the total matter sound speed. The photon-baryon sound speed squared
is given by the above expressions replacing Ωm by the relative density of baryons, Ωb.
It is the photon-baryon sound speed which appears in the theory of the temperature
fluctuations in the cosmic microwave background radiation [Väl99].

12.11 Mach’s principle

This principle was introduced in section 1.9. The effect that inertial frames
are dragged by rotating and accelerating mass distributions was mentioned.
This effect has the potential of explaining the fixed direction of the swinging
plane of a Fouceault pendulum relative to the stars as a gravitational effect
due to the remote mass in the Universe. The phenomenon of perfect dragging
inside a massive shell with radius equal to its Schwarchild radius is significant
in this connection. We shall here consider rotational inertial dragging in the

Schmid [Sch04]. Until now we have only considered isotropic perturbations
with a line element of the form (12.170). This must now be generalized in
order to permit vorticity perturbations. The unperturbed universe models are

ds2 = −dt2 + (ahi)
2
(
dxi
)2

+ 2(ahi)
2βidxidt, (12.266)

context of cosmological perturbation theory, following a work by C.

here assumed to be flat. The line-element is written
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Here a(t) is the scale factor, hχ = 1, hθ = χ, hφ = χ sin θ and βi are the com-
ponents of the so-called shift vector. We consider vector perturbations in an
asymptotic isotropic universe, i.e. βi → 0 for r →∞. The coordinate system is
comoving with galaxies having no peculiar velocities in the unperturbed uni-
verse. The spatial coordinate basis vectors, ei = ∂/∂xi point along geodesics
from an observer point P to the galaxies. In the unperturbed universe the ob-
servers are at rest in the coordinate system. An orthonormal basis field with
time-like basis vector e0̂ = u, is comoving with the observers, where u is the
four-velocity field of the observers.

The perturbation introduces a vorticity field with a 3-velocity having co-
ordinate components βi. This is the velocity field of the observers in the per-
turbed universe. The velocity of a freely falling particle in the cosmic fluid has
covariant components vî in the orthonormal basis field of the observers, and
a gyroscope has corresponding spin components Sî.

The laws of linearized gravity shall now be formulated in a similar way as
the laws of electromagnetism in a (3 + 1)-formalism. The gravitoelectric field
strength is defined by considering a freely falling particle instantaneously at
rest,

v̇î ≡ Eg

î
. (12.267)

Hence Eg = g, where g is the acceleration of gravity. The gravitomagnetic field
strength is defined by

Ṡî ≡ −
1

2
[Bg × S]̂i . (12.268)

This equation gives the angular velocity of precession of the gyroscope spin
axis relative to the orthonormal frame of the observers,

Ωgyro = −1

2
Bg. (12.269)

In the linear field approximation the equations of motion for freely falling test
particles and for the spin axes of the gyroscopes carried along by the observers
are

v̇â + Γâ
b̂ĉ

vb̂uĉ = 0, Ṡ î + Γî
ĵ0̂

S ĵ = 0 (12.270)

where Γâ
b̂ĉ

are the connection coefficients of the basis comoving with the ob-
servers. Hence

Γî0̂0̂ = −Eg

î
, Γîĵ0̂ = −1

2
Bg

îĵ
, (12.271)

where Bîĵ ≡ εîĵk̂Bk̂ with summation over k̂.
To first order in βi the basis vectors of the observer’s orthonormal basis

may be expressed in terms of the coordinate vectors as

e0̂ =
∂

∂t
, ek̂ =

1

ahk

(
∂

∂xk
+ βk

∂

∂t

)
, (no summation over k) (12.272)

From this one may calculate the connection coefficients (no summation over i

,
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and j, summation over k)

Γî0̂0̂ = −Eg

î
=

1

ahi
β̇i, (12.273)

Γîĵ0̂ = = −εîĵk̂Bg

k̂
= − 1

2a2hihj

(
∂βi

∂xj
− ∂βj

∂xi

)
, (12.274)

Γî0̂ĵ = = −εîĵk̂Bg

k̂
+ δîĵH, (12.275)

Γîĵk̂ =
δîĵ

ahj

(
Hβj +

∂Lî

∂xj

)
− δĵk̂

ahj

(
Hβi +

∂Lĵ

∂xi

)
, (12.276)

where Lî ≡ ln hi and H ≡ ȧ/a is the Hubble parameter.
We now identify the shift vector β with the gravitomagnetic vector poten-

tial given by Bg = ∇×Ag g

be written

Eg +
1

a

∂

∂t
(aAg) = 0, (12.277)

∇×Eg +
1

a2

∂

∂t

(
a2Bg

)
= 0, (12.278)

corresponding to the homogeneous Maxwell equations in electromagnetism.
Inserting the connection coefficients (12.273) – (12.276) into the first one of

obtains

1

a

∂

∂t
(av) = Eg + v ×Bg + Hv × (β × v) . (12.279)

The first term on the right hand side represents the acceleration of gravity,
i.e. the acceleration of a freely falling particle instantaneously at rest. From

term is an acceleration of the test particle due to the expansion of the Universe.
The expansion velocity of the particle increases as it moves farther away from
the observer.

Cartan’s second equation is used to calculate the curvature forms, from which
the components of the Einstein tensor are found.

For the vorticity perturbations the relevant Einstein equation is E0̂̂i = κT0̂̂i,
which takes the form

∇×Bg − 4ḢAg = −2κJ, (12.280)

where

J î ≡ T 0̂î = (ρ + p)vî (12.281)

and we have used β = Ag.
From Ḣ = −(κ/2)(ρ + p) we see that Ḣ ≤ 0 for p ≥ −ρ. Hence, we may

define μ2 ˙
g

that ∇ ·Ag = 0 so that ∇×Bg = ∇× (∇×Ag) = −∇2Ag , the equation may
be written (−∇2 + μ2

)
Ag = −2κJ. (12.282)

, i.e. β = A . Then eqs. (12.273) and (12.274) may

eqs. (12.270) and writing the component equations as a vector equation one

eq. (12.269) is seen that the second term is the Coriolis acceleration. The third

The connection forms have components given in eqs. (12.273) – (12.276).

into eq. (12.280), and using≡ −4H. Inserting the vector potential A
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The solution of this equation is the Yukawa potential for Ag in terms of the
sources J at the same fixed time

Ag(r, t) = − κ

2π

∫
J(r′, t)

exp (−μ |r− r′|)
|r− r′| d3r′. (12.283)

We shall now consider the dragging of gyroscope axes by a homogeneous
rotation of the matter in the Universe out to distances significantly beyond the
˙

μ2Ag = −2κJ, (12.284)

which gives β = −v. Using eq. (12.269) we then have

Ωgyro =
1

2
∇× v = Ωfluid. (12.285)

This shows that there is perfect dragging in this case with a homogeneous
rotation of the cosmic fluid beyond the Ḣ-radius.

g = ∇×Ag

B(r = 0) = −(1/2)Ωgyro. Then we obtain Ωgyro in terms of the sources at a
fixed time

Ωgyro =
κ

2π
(ρ + p)

∞∫
0

(1 + μr) exp(−μr)

r3
r× vd3r. (12.286)

This is an expression for Mach’s principle telling that the motion of the axis
of a gyroscope – or the plane of a Fouceault pendulum – here at r = 0 is
determined by a specific average of the energy flow in the Universe. Using
that 2κ(ρ + p) = −μ2 this average may be written

Ωgyro =
μ2

3

∞∫
0

Ωfluid(r)r(1 + μr) exp(−μr)dr. (12.287)

For the special case that Ωfluid(r) is independent of r the integral (12.287) gives
Ωgyro = Ωfluid

12.12 The History of our Universe

We have gone through the most important concepts in the standard model of
our universe. We will now give a short outline of the history of our universe,
from the Big Bang to the present time and beyond.

The Planck era: t < 10−43s , T > 1032K.

The laws of physics, as we know then, may describe the universe backwards
until a time Δt after the point of time of a theoretical and singular Big Bang
event. The time Δt may be estimated heuristically from Heisenberg’s un-
certainty relation, ΔEΔt ≤ � where ΔE is the energy fluctuation during a
time interval Δt. The energy fluctuation has an extension Δx = cΔt so that
ΔE = �c/Δx. If ΔE is equal to or larger than the gravitational self-energy

H-radius . Then the second term in the parenthesis of eq. (12.282) dominates

from eq. (12.283) and set r = 0, which givesWe now calculate B

over the first one. Hence, in this case we may write

, i.e., perfect dragging.
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of the fluctuation, Gm2/Δx, then the fluctuations are so significant that the
spacetime cannot be described without a quantum theory of gravity. No gen-
erally accepted theory of this type has been constructed. The Planck mass is
defined by the limiting case, Gm2

Pl/Δx = �c/Δx, which yields

mPl =

√
�c

G
= 2.2 · 10−8kg. (12.288)

The corresponding Planck time is

tPl =
�

mPlc2
=

√
�G

c3
= 5.4 · 10−44s. (12.289)

So close to the Big Bang singularity can we in principle describe the universe,
but not closer. The corresponding Planck length is 	Pl = ctPl ≈ 1.6 · 10−35m, the
Planck temperature is TPl = mPlc

2/kB ≈ 1.5 · 1032K, where kB is Boltzmann’s
constant, and the Planck energy density is ρPl = mPlc

2/	3
Pl ≈ 1097kg/m3.

The time before tPl is called the Planck era. At this time the Universe was
filled with a plasma of relativistic elementary particles, including quarks, lep-
tons, gauge bosons and possibly Higgs bosons. This spacetime cannot be de-
scribed by means of the presently known laws of physics. However, one might
guess that the universe existed in a state of fluctuating chaos during this era.
Time was not a well defined quantity, and the curvature and even the topology
of space fluctuated wildly.

A fluctuation may have happened so that a region of space became domi-
nated by vacuum energy.

The inflationary era: 10−43 < t < 10−33s

Due to repulsive gravity this region got an exponentially accelerated expan-
sion (see section 12.5) which lasted for 10−33s. However, although recent
observations of the temperature variations in the cosmic microwave back-
ground indicate that the universe has really passed through an inflationary
era, the question when and how this started (and ended) can only be answered
by educated guesses. We have no knowledge about this. Maybe it started
due to a phase transition at a temperature 1027K at the GUT point of time,
tGUT ≈ 10−35s, when the strong force separated from the electroweak force.
Thinking about this possibility the period from 10−43s to 10−35s is called the
GUT era. During the GUT-era the quarks and leptons were indistinguishable
since quarks and leptons exchanged X-bosons which changed their identities:
quarks became leptons and vice versa.

Exponential expansion starts slowly. Hence, during the first part of the in-
flationary era the radiation within our observable part of the universe came

they are the seeds from which the galaxies evolved much later.

exponentially towards the critical density, corresponding to a flat universe.
Hence, a prediction of the inflationary cosmological models is that the uni-
verse should still be extremely flat within the limits of observational accuracy.
This seems now to be confirmed by, among others, the WMAP-observations
of the cosmic microwave background temperature fluctuations.

During the inflationary era the total density of the cosmic energy approached

into a state of thermal equilibrium. This explains the isotropy of the micro-
wave background radiation. But still there were quantum fluctuations, and
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The density of the vacuum energy remained constant during the cosmic
expansion in the inflationary era. Hence, a vast amount of vacuum energy
was produced. Still the energy of the inflating part of the universe may be
considered to be constant. This may be understood by considering an expand-
ing surface bounding a finite volume of space. Due to the negative pressure
of the vacuum energy the thermodynamic work at the surface transports en-
ergy through the surface in the opposite direction of its motion. Hence, there
was an energy flux from the region outside the surface to the region inside it.
This accounts for the increase of vacuum energy inside the comoving surface
during the inflationary era.

At about 10−33s the vacuum energy field began to oscillate, and vacuum
energy was transformed into radiation and elementary particles.

Baryongenesis

If equal amounts of matter and antimatter were created, the antimatter would
rapidly annihilate the matter, and the end result would be a universe filled
with radiation and no matter. Hence, in order to arrive at the present universe
without antimatter and about 109 more photons than baryons there must have
been created slightly more matter than antimatter. Since all the antibaryons
annihilated together with an equal amount of baryons leaving an excess num-
ber of baryons, we can calculate the magnitude of the original asymmetry in
terms of the present ratio of baryon and photon numbers [Ham].

Let the baryon number density be nb, the number density of antibaryons
be n̄b, and the number density of photons be nγ . Present values are denoted by
an index 0. Before the annihilation there were approximately equal numbers
of baryons, antibaryons and photons, nb ≈ n̄b ≈ nγ . From baryon number
conservation we have a preserved comoving number density,

(nb − n̄b)a
3 = (nb0 − n̄b0)a

3
0 = nb0a

3
0. (12.290)

Similarly, for photons

nγa3 = nγ0a
3
0. (12.291)

Hence,

nb − n̄b

nb + n̄b
≈ nb0

2nγ0
≈ 10−9, (12.292)

showing that the original baryon asymmetry was very small. For every bil-
lion antibaryons in the early universe there were one billion and one baryons.
This was an asymmetry of the order one part in a billion. It is believed that this
asymmetry were generated dynamically at some very early time in the history
of the universe. However, one still does not know when and how the baryon
asymmetry in the universe was produced. Two possibilities have been consid-
ered: that it happened either at the beginning or at the end of the electroweak
era.

It was argued by Andrei Sakharov in 1967 that three conditions must be
fulfilled in order to produce matter-antimatter asymmetry.

1. There must exist a C and CP violation of one of the fundamental inter-
actions.

2. Non-conservation of baryon number must be possible.
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3. There must have existed a state of thermodynamical non-equilibrium.

The basic statement of the rule that baryon number is conserved is that no
physical process can change the net number of quarks. To understand why
we need baryon non-conserving processes to generate a baryon asymmetry
from an initial symmetric state, one may suppose that all physical processes
obey the rule of baryon number conservation. Then the net baryon number
zero of the initial state cannot be changed. Hence, the universe would always
be baryon symmetric.

Imagine that nature allows for a baryon non-conserving process where a
massive gauge particle with baryon number B = 0 decays into a proton with
B = 1 and an electron with B = 0. The initial net baryon number is zero and
the final +1. Suppose that a second process in which the particles are replaced
by their antiparticles, occurs at the same rate as the first process. Then the
change of baryon number produced by the two processes would cancel, and
the universe would remain baryon symmetric.

We now turn to the question of whether the cancelling “anti-reaction”
would take place. There are three fundamental symmetry transformations
in classical physics: charge conjugation, C, parity transformation, P, and time
reversal, T. The operation of charge conjugation reverses the signs of all the
internal quantum numbers in a system leaving the mass, energy, momentum
and spin unchanged. A neutrino, for example, carries a non-zero internal
quantum number called the lepton number. Charge conjugation changes the
sign of the lepton number which means that it changes a neutrino to its an-
tineutrino without changing its spin.

The parity operation is essentially a mirror reflection. The effect of the
parity operation on a right-handed neutrino is to turn it into a left-handed
neutrino. Under time reversal the motion reverses while the internal proper-
ties remain unchanged. Hence, for a right-handed neutrino we find that time
reversal gives us a right-handed neutrino travelling in the opposite direction.

Under a combined CP-transformation a right-handed neutrino becomes a
left-handed antineutrino. Getting back to our hypothetical reaction capable
of generating baryon asymmetry, it turns out that the “anti-reaction” is just
the CP-transformed reaction of the original process we considered. There-
fore, suppression of the “anti-reaction” requires CP-violation in this situation.
Hence, CP-violation allows for a preference of matter over antimatter in some
processes. CP-violation must therefore have been an essential ingredient in
generating the baryon asymmetry.

The Grand Unified Theories unifies the electroweak force with the strong
force between quarks. One expects the gauge bosons of the GUT-theory to me-
diate interactions mixing leptons and quarks, thereby allowing non-conserva-
tion of baryon number. CP-violation is a feature of the simplest GUT-theory.
A problem, however, is that this CP-violation provides far too small a contri-
bution to account for successful baryogenesis. Extensions of the GUT-theories
have been constructed that provide sufficient CP-violation. The earliest at-
tempts at constructing a model of baryogenesis therefore incorporated the
GUT-theories. In these models the baryogenesis happened before the GUT
phase transition at t = 10−35s. At this early time the expansion of the universe
was sufficiently fast to allow deviation from thermodynamical equilibrium.
However, there exists a serious problem for the GUT baryogenesis. The diffi-
culty arises from the subsequent inflation that lasts for 10−33s. The inflation
will dilute the generated net baryon density, so that the baryon density
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Particle created Energy Temperature Time
proton

neutron

}
1GeV 1013K 10−6s

muon 50MeV 5 · 1011K 4 · 10−4s
electron 0.5MeV 5 · 109K 4s

Table 12.1: Particle creation in the early universe.

genesis must have happened at the end of the inflationary era if the reheating
at this point of time was sufficiently strong. However, it can be shown that the
temperature expected during reheating is not sufficiently high to reignite the
GUT process.

Due to these difficulties with GUT-baryogenesis, one has focused on baryo-
genesis at much lower energies5. In particular, one has studied the possibil-
ity of baryogenesis at the electroweak symmetry breaking, which happened
about 10−10s after the big bang. The electroweak vacuum allows processes
that violate baryon number conservation. At this time deviations from ther-
modynamical equilibrium happened due to rapid changes of the properties
of the vacuum. However, whether the CP-violation during these processes
is sufficiently effective to account for successful baryogenesis is still an open
question.

Cosmic time and temperature for annihilation of particle species

In order to create particle-antiparticle pair of particles, with mass m, from
the photon energy in an hot mixture of plasma and radiation the tempera-
ture must fulfill kBT > 2mc2. Inserting numerical values for c and kB gives
approximately T > (m/1MeV)1010K, where the mass is measured in MeV.

In a flat, radiation dominated universe model the cosmic time correspond-
ing to annihilation at temperature T is

t =
2.3√
geff

(
1010K

T

)2

s =
2.3√
geff

(
1MeV

m

)2

s, (12.293)

where geff is the effective degrees of freedom. The particle content around 1s
after the big bang gives geff = 5.4 leading to t ≈ (1010K/T )2s = (1MeV/m)2s.
We can use this relation also at other energy scales than 1MeV to estimate

The last protons and neutrons were created about 10−6s after the big bang, and
the final large scale electron-positron annihilation happened about 10s later.

The electro-weak era: 10−33 < t < 10−10s

During this period, which started at the end of the inflationary era, the elec-
tromagnetic and weak force were unified into an electro-weak force. In this
era the temperature was above 1015K. This corresponds to energies which
are much higher than the energies represented by the masses of the W± and
Z0 bosons that mediate the weak force. Hence in this era the masses of these

5

becomes too small to account for its presently observed value. Hence, the baryo-

example, baryogenesis via leptogensis is also possible at intermediate scale energies [BPY05].
It should be pointed out that baryogenesis is also possible at intermediate energies. For

typical points of time for different processes. The result is shown in Table 12.1.
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bosons can be neglected so that the weak interaction can be considered as be-
ing mediated by massless spin 1 particles, like the photons that mediate the
electromagnetic force.

When the temperature dropped below 1015K the bosons acquired mass by
interacting with the vacuum via the Higgs mechanism. Then the weak force
separated from the electromagnetic force and became a short range force. The
universe was filled with hadrons, leptons, weak bosons and photons.

If one characterizes the universe by its dominating matter contents, and
not by the type of fundamental interaction, the first part of the electroweak era
is instead called the quark era (there is no general agreement on the use of this
term, however). The dominating form of matter was now quark-antiquark-
gluon plasma.

Usually this era is said to last until the thermal energy is no longer suf-
ficiently large to produce quark-antiquark pairs, at 10−10s. However, there
has been some speculation that the quark era was replaced by a hadron dom-
inated era at the time 10−23s when the observable universe became larger
than the size of a nucleon [Har81] . If that happened, the quark era existed
at 10−33s < t < 10−26s and the hadron era 10−26s < t < 10−6s. However,
there is still no established theory for baryogenesis at the time 10−26s.

The hadron era: 10−10 < t < 10−6s

If the baryogenesis happened at the time of electro-weak symmetry breaking,
this time marks the end of the quark era and the beginning of the hadron era.
The dominating form of matter was now protons and neutrons with an equal
number of pions. The last protons and neutrons were made 10−6s after the
big bang. Then the proton-antiproton and neutron-antineutron pairs annihi-
lated and left their energy to photons and lighter particles that were produced
in this process. The baryon asymmetry secured that the later universe had
sufficient baryonic matter to evolve stars and eventually life.

The lepton era: 10−6 < t < 10s

During this era the temperature decreased from about 1012K to 6 · 109K. The
thermal energy of the cosmic plasma was no longer large enough to create
quark-antiquark pairs. The quarks were from now on confined in baryons
and mesons. However, the dominating form of matter was electron-positron
pairs. At the initial time of the lepton era the average density of the cosmic
plasma was 1017kg/m3. The hadrons were buried in a dense lepton-gas. To
each hadron there existed roughly one billion photons, electron-positron pairs
and neutrino-antineutrino pairs. Everything was in thermal equilibrium and
there were approximately equal numbers of photons, electrons and neutrinos,
and initially also of muons. However, at about 10−3s there was no longer
sufficient energy to create muon-antimuon pairs.

Although the muons had decayed, the much lighter μ-neutrinos were still
present and continued to interact with the electrons via the neutral-current
weak interactions

e+ + e− � νi + ν̄i, i = e, μ.

In order to judge the importance of this reaction at a certain cosmic time, we
must take into consideration that all reactions in the universe will have a cer-
tain reaction rate, and, the inverse of this, a characteristic reaction time-scale.
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If the reaction time is longer than the age of the universe at the epoch in ques-
tion, then the reaction can be considered not to be occurring.

This certainly applies to the reaction above. The reaction rate can be ex-
pressed as the product of a velocity, v a number-density, n, and a reaction
cross section, σ. From weak interaction physics we get tweak = 1/nσc with
n = 2 · 10−31(T/1010)3cm−3, σ = 10−44(T/1010)2cm2, which leads to tweak =
160(T/1010)5s. These neutral-current reactions occur typically at a tempera-
ture around 5 · 1010K corresponding to a time 4 · 10−2s. After this time the
muon-neutrinos effectively interact no further with the rest of the universe
except gravitationally.

The electron neutrinos, νe, can continue to interact with the electrons and
positrons through the charged-current weak interactions,

p+ + e− � n0 + νe, n0 + e++ � p+ + ν̄e.

weak interactions, around (1010K)5s. Hence, these reactions proceed until the
temperature has fallen below 1010K., at about 1s after the big bang. After this
the neutrinos do not interact with the rest of the universe. Hence, the universe
became transparent for the neutrinos about 1s after the big bang.

These neutrinos now form a background neutrino gas. In order to calculate
the present temperature of this gas, we must consider what happened to the
electron-positron pairs a little later. About 3s after the big bang the tempera-
ture became lower than 6·109K. Then the photon-energy was not large enough
to produce electron-positron pairs. Hence, the electron and positrons started
to annihilate and produced photons. Most of the cosmic electromagnetic back-
ground radiation was produced at this time. The present temperature of this
radiation has been measured with great accuracy, and is 2.728K.

The energy released by the electron-positron annihilation slowed down the
rate at which the electromagnetic radiation cooled, but the decoupled neutri-
nos did not get any of this extra heat. Hence, the neutrino gas became colder
than the electromagnetic radiation.

positron pairs are in thermodynamic equilibrium during the annihilation pro-
cess. The gas expands adiabatically. The total entropy is therefore conserved.
The entropy of a gas with density ρ, pressure p and temperature T in a comov-
ing volume V = a3 is

S = (ρ + p)
V

T
. (12.294)

Radiation and ultra-relativistic gas of electrons and neutrinos have p = (1/3)ρ,
so that

S =
4

3

a3

T
ρ. (12.295)

The photons are bosons and obey the Bose-Einstein statistics which leads to
the Planck spectrum. The energy density per unit frequency interval is

u(ω) =
�ω3

π2c3

1

e
�ω

kBT − 1
. (12.296)

These reactions have slightly shorter reaction time-scale than the neutral-current

before and after the electron-positron annihilation. The photons and the electron-
Let us find the relationship between the temperature of the photon-gas
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The density of the photon gas is

ρ =

∞∫
0

u(ω)dω =
4σ

c
T 4, (12.297)

where σ = π2k4
B/60�c2 is Stephan’s constant. This is the Stephan-Boltzmann

radiation law. Thus the entropy of the photon gas is

Sγ =
16

3

σ

c
a3T 3. (12.298)

The electrons and neutrinos are fermions obeying Fermi-Dirac statistics
with +1 in the denominator of eq. (12.296) instead of −1. Calculating the
energy density one finds in the relativistic limit, where the rest mass can be
neglected,

ρe = ρν =
7

2

σ

c
T 4. (12.299)

Hence, the entropy of a relativistic electron and neutrino gas is

Se = Sν =
14

3

σ

c
a3T 3. (12.300)

The total entropy of a gas consisting of photons and ultra-relativistic electrons
and positrons is then

S1 = Sγ + Se+ + Se− =
44

3

σ

c
a3
1T

3
1 , (12.301)

where a1 and T1 are the expansion factor and temperature at the start of the
annihilation process. At the end of the annihilation process, where the expan-
sion factor is a2 and the temperature T2, the energy is dominated by a photon
gas with entropy Sγ , as given in (12.298). Since the total entropy has been
conserved, it follows that

a2T2

a1T1
=

(
11

4

) 1
3

. (12.302)

This is the relationship between the temperature of the cosmic gas before and
after the electron-positron annihilation.

At the same time the neutrino gas expanded freely. From eqs. (11.65) and
(11.67) follow that aT = constant. Hence, the temperature, Tν , of the neutrino
gas at the time when the electron-positron annihilation had finished, was

Tν =
a1

a2
T1. (12.303)

Here we have used that the neutrino gas had the same temperature as the rest
of the universe before the annihilation. Thus the ratio between the tempera-
tures of the photon gas and the neutrino gas after the annihilation is

T2

Tν
=

a2T2

a1T1
=

(
11

4

) 1
3

≈ 1.4. (12.304)

This ratio has not been changed during the later history of the universe.
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Since the present temperature of the electromagnetic background is 2.728K
we find that the present temperature of the neutrino gas is 1.95K. These neu-
trinos have been moving freely since they decoupled 1s after the big bang.
This means that if we can observe the state of the cosmic neutrinos, we will be
able to observe the state of the universe about 1s after the big bang. However,
this low temperature neutrino gas is extremely difficult to observe.

The neutrinos are very numerous. About a million trillion cosmic neutri-
nos pass through each human body every second. In every cubic centimetre
of the universe there are now 600 neutrinos. They are so numerous that even
if only one type of neutrinos has mass, a very modest rest mass of around
90eV would suffice to make the universe flat. The average density of the neu-
trino gas would then equal the critical mass density. Recent measurements
at the Super Kamiokande in Japan have shown that neutrinos have indeed a
rest mass. However, the measurements indicate a neutrino mass much less
than 90eV. Probably the neutrinos contribute to less than 0.5% of the critical
density to the cosmic gas.

The number density of the photons per unit frequency interval is n(ω) =
u(ω)/�c, where u(ω) is given in eq. (12.296). Hence, the number density of
photons of all frequencies is

nγ =

∞∫
0

n(ω)dω = 20.3T 3cm−3K−3. (12.305)

limit, the number density of the electrons and positrons is

ne− ≈ ne+ ≈ 3

4
nγ = 15.3T 3cm−3K−3. (12.306)

The annihilation starts at a temperature T = 6 · 109K, around 3s after the
big bang. Then, according to the above formula, the number density of the
electrons was 3 · 1030cm−3.

Let us now calculate the number density of the electrons after the annihi-
lation. The annihilation finished at a temperature T = 109K, about 3 minutes
after the big bang. From eq. (12.305) the number density of the photons at this
point of time was nγ = 2 · 1028cm−3. After the electron-positron annihilation
there were no cosmic production of photons. Hence, both photon number and
baryon number in a comoving volume a3 were constant during the expansion
to the present time. From observation of baryon mass density and the energy
density of the cosmic microwave background follow that the present ratio of
baryon number and photon number is 10−9. Hence, this ratio had the same
value just after the annihilation. Furthermore, since the universe is electrically
neutral, the electron number density is equal to the proton number density,
which was one billionth of the photon number density. It follows that the
electron number density just after the annihilation was ne− = 2 · 1019cm−3.
Comparing with the corresponding number 3 · 1020cm−3 before the annihila-
tion, we see that only a very small part of the electrons that existed 1s after the
big bang was left intact after the annihilation.

However, there were sufficiently many energetic electrons left to make the
universe opaque for the electromagnetic radiation.

One more process of great significance happened in the lepton era: the
neutron-proton ratio was ’frozen’. This ratio can be calculated as follows.

Similarly, one finds, usingthe Fermi-Diracdistribution, that in the ultra-relativistic
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12.12 The History of our Universe

We consider the conditions a little earlier than 1s after the big bang when
the temperature was a little higher than 1010K. Then the baryons were non-
relativistic. Their number density at thermodynamical equilibrium is given
by the Boltzmann distribution. The neutron-proton ratio is therefore given by

r =
nn

np
= e

−Δmc2

kB T , (12.307)

where Δm = mn −mp = 1.29MeV.
Due to the temperature decrease when the universe expands the reaction

time of reactions such as p + e− n + νe increases. As long as the reac-
tion times are shorter than the age of the universe these reactions maintain
thermodynamic equilibrium. Eventually the reactions were so slow that ther-
modynamical equilibrium was lost, and the neutron-proton ratio was frozen.
This happened at a temperature T ∗ = 1010K, corresponding to a cosmic time
about one second. After this time the neutron-proton ratio has been constant
and equal to r∗ = r(T ∗) = 0.21.

Primordial cosmic nucleosynthesis: 1s < t < 12min

As mentioned above, during the lepton era protons and neutrons were able to
transform into each other through the following weak interactions,

p+ + ν̄e � n0 + e+, p+ + e− � n0 + νe.

The weak interaction time scale for these interactions exceeds the the expan-
sion timescale when the temperature falls below 1010K, about 1s after the big
bang. Then the reactions effectively cease, and the neutron fraction is frozen
in the value it had at this time.

Free neutrons, which are unstable to β-decay with a half life of a approx-
imately 10.6 minutes, unless they are bound to protons in stable atomic nu-
clei, would eventually decay into protons. However, nuclear reactions occur
which bind the neutrons and protons into stable nuclei before this β-decay of
free neutrons had progressed very far. The first process of interest is

p+ + n0 � 2H + γ,

i.e. a proton and a neutron form a deuterium nucleus with emission of elec-
tromagnetic radiation.

Now 2H has a binding energy of only 2.2MeV and there were enough high
energy photons present to photo-dissociate 2H until the temperature dropped
to around 109K, about 3min after the big bang. During this period the neutron
fraction decreased due to the β-decay of free neutrons. After 3min and 46s the
temperature was 0.9 · 109K. Now the photons were sufficiently soft such that
the 2H-nuclei could survive. Then several nuclear reactions, building heavier
elements from protons and neutrons, took place. The hold off of the fusion
processes in the first three minutes due to the photo-dissociation of 2H is called
the ’deuterium bottleneck’.

After the deuterium bottleneck the following chain reactions took place.
Deuterium nuclei collided with protons and neutrons, forming Helium-3 (3He)
and tritium (3H). Finally, the Helium-3 collided with a neutron, and the tri-
tium could collide with a proton, in both cases forming a nucleus of ordinary
helium (4He), consisting of two protons and two neutrons.

�
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Let us calculate the fraction by weight of helium,

f ≡ mHe

mHe + mH
=

1

1 + mH

mHe

. (12.308)

Since each helium nucleus contains 2 neutrons it is possible to create a number
density equal to nn/2 of helium nuclei. Each has mass approximately equal to
4mp. Hence,

mH

mHe
=

(np − nn)mp
nn

2 · 4mp
=

np − nn

2nn
, (12.309)

which leads to

f =
2nn

np + nn
=

2r

1 + r
, (12.310)

where r = nn/np. After the time t∗ the ratio r has been constant and equal to
r∗ = 0.21. Inserting this in the above equation gives for the helium-hydrogen
mass ratio f = 0.35. This is only an approximate result. Taking into account
the β-decay of free neutrons one obtains a mass ratio around f = 0.25. This is
rather close to the observed ratio fobs = 0.24.

present value of the total relative density, Ωtot0, the value of Ωtot at such early
cosmic time will be extremely close to 1. There is, however, a weak depen-
dence on Ωbh

2. A higher value of Ωbh
2, which may be due to higher density

of baryons and to faster expansion, means that the deuterium bottleneck is
overcome earlier and hence there will be less free-neutron decay. Then the
neutron fraction will be higher, which results in a slightly higher 4He abun-
dance.

Apart from minute amounts of 7Li big bang nucleosynthesis stops at 4He
because there are no stable nuclei with mass numbers 5 and 8. Heavier ele-
ments are produced in stars.

The last scattering surface of the microwave background

When the nucleosynthesis had finished around twelve minutes after the big
bang, nothing qualitatively new happened during the next 300 000 years.
Then the temperature had decreased to 3000K, and a new process started.
At this time the first neutral atoms were formed.

Looking back along the cosmic light paths one can calculate the optical
depth to Thompson scattering. In order to carry out the integral one must first
find how the ionization fraction of the matter depends upon the the cosmic
redshift due to reionization happening between 300000 years and 400000 years
after the big bang. The result of the calculation is that the optical depth to
scattering is

τ(z) = 0.37
( z

1000

)14.25

. (12.311)

For τ = 1 there is a high probability that light is scattered. Inserting τ = 1 in
the above equation gives the redshift of the last scattering surface, zLS = 1055.
In reality the probability of scattering increases from near zero to near one

total present density of all forms of matter and energy, because whatever the
It may be noted that this prediction is essentially independent of the
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Figure 12.14: The history of our universe.

over a finite interval. The chance that a photon was last scattered at a redshift
less than z is

P (< z) = e−τ(z). (12.312)

Hence, there is 25% chance that a photon is last scattered for z < 980 and
75% for z < 1100. So half of the photons in the microwave background were
last scattered at 980 < z < 1100. Observations of temperature fluctuations in
the cosmic microwave background tell us about the physical properties in the
universe during this redshift interval.

The future?

As we now have presented the past history of our universe, which is schemat-

future? Observations seem to indicate that we already have entered a new
era. The universe is currently accelerating. An effective cosmological constant
is once again dominating the universe. However will this endure for ever?
If it does, the universe will best be described by a de Sitter universe at late
times. The universe will expand for all time, growing larger and larger at an
exponential rate.

Or maybe, for some reason, the effective cosmological constant is turned
off again. Maybe a curvature dominated epoch will follow? Or perhaps a dark
matter domination? Or maybe the universe will recollapse in a Big Crunch?
There are certainly many open questions still left in cosmology.

Problems

12.1. Matter-vacuum transition in the Friedmann-Lemaître model
Find the point of time of transition from matter domination to vacuum domi-

ically illustrated in Fig. 12.14, we might wonder what can be said about the
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nation of the flat Friedmann-Lemaître universe model and the corresponding
redshift.

12.2. Event horizons in de Sitter universe models
Show that the coordinate distances to the event horizons of the de Sitter uni-
verse models with k > 0, k = 0 and k < 0 are (assuming Λ = 3)

rEH = 1
cosh t , k > 0, t ≥ 0

rEH = e−t, k = 0,
rEH = 1

sinh t , k < 0, t ≥ 0

respectively.

12.3. Light travel time
In this problem you are going to calculate the light travel time of light from
an object with redshift z in a flat Friedmann-Lemaître model with age t0 and
a present relative density of LIVE, ΩΛ0.

Show that the point of time of the emission event is

te = t0
arsinh

√
ΩΛ0

(1−ΩΛ0)(1+z)3

arsinh
√

ΩΛ0

1−ΩΛ0

, (12.313)

and calculate the light travel time t0 − te. Make a plot of (t0 − te)/t0 as a
function of z.

12.4. Superluminal expansion
Show from Hubble’s law that all all objects in a flat Friedmann-Lemaître model
with redshifts z > zc are presently receding faster than the speed of light,
where zc is given by

1+zc∫
0

dy√
ΩΛ0 + Ωm0y3

= 1. (12.314)

Find zc for a universe model with ΩΛ0 = 0.7 and Ωm0 = 0.3.

12.5. Flat universe model with radiation and vacuum energy

(a) Find the expansion factor as a function of time for a flat universe with
radiation and Lorentz-invariant vacuum energy represented by a cosmo-
logical constant Λ, and with present relative density of vacuum energy
Ωv0.

(b) Calculate the Hubble parameter, H , as a function of time, and show that
the model approaches a de Sitter model in the far future. Find also the
deceleration parameter, q(t).

(c) When is the inflection point, t1, for which the universe went from decel-
eration to acceleration? What is the corresponding redshift observed at
the time t0?

12.6. Creation of radiation and ultra-relativistic gas at the end of the inflationary era
Assume that the vacuum energy can be described by a decaying cosmological
parameter Λ(t). Show from energy conservation that if the density of radiation
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and gas is negligible at the final period of the inflationary era compared to
after it, then the density immediately after the inflationary era is

ρ =
1

8πGa(t)4

t2∫
t1

Λ̇a(t)4dt (12.315)

where t2 − t1 is the duration of the period with Λ̇ �= 0.

12.7. Universe models with Lorentz invariant vacuum energy (LIVE).
(see [Sil02]) We shall here consider universe models with LIVE and a perfect
fluid with equation of state p = wρ, ρv = constant. The density of the LIVE is
constant and related to a cosmological constant Λ by Λ = 8πGρv.

(a) Show that the mass of the fluid M inside a comoving volume a3 is

M = ρa3(1+w).

(b) Introduce a rescaled time variable τ =
√

Λ/3t, a rescaled expansion fac-
tor y(τ) = (Λ/8πGM)1/3(1+w) a, and the parameters n = 1 + 3w and
ω = (3/Λ) (Λ/8πGM)2/3(1+w), and show that the Friedmann equation
(12.3) takes the form

ẏ2 = y−n + y2 − kω (12.316)

where the dot denotes derivative with respect to τ . We shall consider so-
lutions with the initial condition y(0) = 0. The equation can be integrated
in terms of elementary functions in the following four cases.

(c) Flat universe: k = 0.
Show that in this case the solution is:

y(τ) =

[
sinh

(
2 + n

2
τ

)] 2
2+n

.

Find the Hubble parameter, and the deceleration parameter as a function
of time for the models with n = 1 (dust) and n = 2 (radiation), and
calculate the age of the models assuming that the present value of the
Hubble parameter is H0 = 20km/s per million light years.

(d) Show that the age of the flat universe models may be expressed as

t0 =
tΛ

1 + w
artanh

√
ΩΛ0, tΛ =

2√
3Λ

,

where ΩΛ0 is the present value of the relative density of the LIVE.

(e) Universe with radiation and LIVE: n = 2 (w = 1/3)
Show that in this case the solution is:

y(τ) =

√
sinh(2τ)− kω sinh2 τ .

Show that in this case the solution is:

y(τ) =
√

1− kω sinh τ.

(f) Universe with "string fluid" and LIVE: n = 0, (w = −1/3)
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(g) Universe with "domain-wall fluid" and LIVE: n = −1, (w = −2/3)
Show that in this case the solution is:

y(τ) =
√
−kω sinh τ + sinh2(τ/2).

These universe models only exist for k = 0, k < 0.

(h) Show that for all the universe models with LIVE and perfect fluid obey-
ing the equation of state p = wρ the ratio of ΩΛ and ΩM is

ΩΛ

ΩM
= yn+2.

12.8. Cosmic strings
At the end of the inflationary era there was a phase transition from a false to
a true vacuum with very high energy density for the false vacuum and low
energy density for the true vacuum. Due to the topological properties of the
vacuum field long stable strings of false vacuum may have been formed at
this time. These objects are called cosmic strings.

In this problem you are going to find a solution of Einstein’s field equations
describing the gravitational field of a thin, static, straight string lying along
the z-axis. The energy- momentum tensor of the string is

(T μ
ν) = λδ(ρ)diag(1, 0, 0, 1)

where σ = dμ/dA = λδ(ρ) is the mass per unit volume of the string, μ its mass
per unit length, and δ(ρ) is Dirac’s delta function. Choosing coordinate time
equal to the proper time measured with clocks at rest, the line element for the
static, cylindrically symmetric space may be written

ds2 = −dt2 + dρ2 + B2(ρ)dφ2 + dz2.

(a) Show that Einstein’s field equations reduce to the single equation

1

B

d2B

dρ2
= −8πGσ.

metric in the absence of a string, and showing that B(0) = μ/2πλ. Intro-
duce a new radial coordinate

ρ̄ = ρ +
μ

2πλ(1− 4Gμ)

where G is Newton’s constant of gravitation, and show that the line ele-
ment takes the form

ds2 = −dt2 + dρ̄2 + (1− 4Gμ)2ρ̄2dφ2 + dz2.

(c) Introduce a new angular coordinate

φ̄ = (1 − 4Gμ)φ.

What does the new form of the line element tell you about the spacetime
outside the string?

(b) Find B(ρ), determining a constant of integration by demanding Minkowski

,
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Figure 12.15: A cosmic string.

(d) The old usual angular coordinate varies in the range 0 ≤ φ < 2π . Hence
the new angular coordinate varies in the range 0 ≤ φ̄ < 2π(1 − 4Gμ).
Thus there is an angular ’deficit angle’

Δφ = 8πGμ

which shows that a surface of constant t and z has the topology of a cone
rather than that of a plane, as illustrated in Fig. 12.15.
An observer photographs a quasar at a distance dQ. Assume that there is
a cosmic string between the quasar and the observer at a distance dS from
the observer, orthogonal to the direction of sight of the quasar. Describe
the picture qualitatively and quantitatively.

12.9. Phantom Energy

tion of state, p = wρ, w = constant. We shall consider ’phantom energy’ with
w < −1 (see also [CKW03]).

(a) Use the normalization a(t0) = 1 and find the scale factor a as a function
of cosmic time.

(b) Find the energy density as a function of time.

(c) Show that the scale factor and the density blows up to infinity at a time

tr = t0 − 2

3(1 + w)H0

√
ΩP0

, (12.317)

where ΩP0 is the relative density of the phantom energy at the present
time. The cosmic catastrophe at the time tr is called ’the Big Rip’. What
is tr − t0 for H0 = 20km/s per 106l.y., ΩP0 = 0.64, and w = −3/2?

(d) A planet in an orbit of radius R around a star of mass M will become
unbound roughly when −(4π/3)(ρ + 3p)R3 ≈ M , where ρ and p are the
density and the pressure of the phantom energy.
Show that a gravitationally bound system of mass M and radius R will
be stripped at a time ts before the big rip, given by

ts ≈ −
√−2(1 + 3w)

6π(1 + w)
T,

where T is the period of a circular orbit with radius R around the system.
Find ts for the Milky Way galaxy with w = −3/2.

12.10. Velocity of light in the Milne universe
We consider light emitted towards an observer at the spatial origin of a two

Consider a flat universe model dominated by quintessence energy with equa-

dimensional Milne universe with line-element (14.44). The physical distance

Identify
Quasar String

Observer

Observer
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Universe Models with Vacuum Energy

from the origin to a point with coordinate x is 	 = ax where a = t is the
expansion factor. The velocity of an object is 	̇ = ȧx + aẋ. The first term is
the velocity due to the expansion of the universe and the second term is the
peculiar velocity.

(a) Show that the peculiar velocity of light emitted towards the origin is

ẋ = −1

	
.

(b) Show that the physical distance from the observer of a pulse of light emit-
ted from a position xe at a point of time te towards the observer is

	 = xet− t ln(t/te).

Make a plot of 	 as a function of time.
Explain the shape of the curve. How can it be that there is a maximal
distance where the light instantaneously has unchanging distance from
the observer?

12.11. Universe model with dark energy and cold dark matter
We shall here consider a universe model with dark energy having equation of
state ps = wsρs and with dust with energy density ρm.

(a) Show that the deceleration parameter in this universe model is

q =
1

2
[Ωm + (1 + 3ws)Ωs] .

(b) Show that a transition from decelerated to accelerated expansion hap-
pens at a redshift

z1 =

[
−(1 + 3ws)

Ωs0

Ωm0

]− 1
3ws

− 1, (12.318)

where Ωs0 and Ωm0 are the present values of the relative densities. Make
a plot of z1(ws) for Ωs0/Ωm0 = 3.

(c) Show that the dark energy and the cold matter has equal density at a
redshift

zeq =

(
Ωs0

Ωm0

)− 1
3ws − 1. (12.319)

Plot zeq for Ωs0/Ωm0 = 3 in the same diagram as z1(ws).

12.12. Luminosity-redshift relations

(a) Show that the luminosity distance of an object with redshift z in a Milne
universe is

dL,Milne =
z2 + 2z

2H0
.

(b) Show that the luminosity-distance of an object with redshift z in a flat
universe model with a single perfect fluid having equation of state p =
wρ is

dL = − 2(1 + z)

H0(1 + 3w)

[
(1 + z)−

1
2 (1+3w) − 1

]
.
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Problems

12.13. Cosmic time dilation

time. Their rate of time is position independent.

(a) How does the rate of time t, as measured by co-moving clocks in the

Discuss whether this effect contradicts the homogeneity of

(b) Consider light waves emitted from a source at x to an observer at x = 0.

expression for the cosmic time dilation in terms of the scale factor.

12.14. Chaplygin gas

sure. A so-called Chaplygin gas has this property. It is defined as a perfect
fluid having the equation of state p = −A/ρ, where A is a positive constant.
We shall consider a flat Robertson-Walker universe model dominated by a
Chaplygin gas [KMP01].

(a) Show from the Friedmann equation (11.16) and the energy conservation
equation (11.19) that the density of the gas depends on the scale factor as
follows: ρ = (A + B/a6)1/2, where B is an integration constant.

(b) Describe the behaviour of ρ for small and large values of a, and find the
expansion factor as a function of time in these limits.

(c) Make a series expansion of ρ and p in a−6 including only the first two
terms. Consider the Chaplygin gas to consist of two fluids corresponding
to the two terms and find the equation of state, p = p(ρ), of these fluids.

12.15. The perihelion precession of Mercury and the cosmological constant

mological constant, Λ, is present.

(b) Show that the equation for the orbit of a test particle in the spacetime
found above is (see section 10.4)

d2u

dφ2
+ u =

M

p2
φ

+ 3Mu2 +
Λ

3p2
φu3

, (12.320)

where pφ is the conjugated momentum of the angular variable φ.

(c) Find the perihelion precession of the orbit per orbit according to the
above equation. Assume as in section 10.4 that the eccentricity is very
small, e � 1.

(d) The results for the Mercurian orbit excluding the Λ-term agree with the
the observational data to an accuracy of less that 1 arc second per century.
What upper bound does this give on the value of Λ?

the effect.
the Milne universe.

Milne universe, depend upon the position? Make a plot to visualize

cosmological constant, by combining positive energy density and negative pres-
lated the search for new types of matters or fields that can behave like a

The clocks showing the time T of eq. (14.46) are at rest in Minkowski space-

No waves disappear. Use this, together with eq. (11.34), to obtain a simple

The discovery that the expansion of the universe is accelerating has stimu-

(a) Generalize the Schwarzschild solution to the case where a non-zero cos-
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13
Anisotropic and Inhomogeneous

Universe Models

In this chapter we will investigate anisotropic and inhomogeneous universe
models. If we relax the cosmological principles a bit we can get new and inter-
esting models of our universe. Actually, one of the main goals of cosmology
today is to explain the isotropy and homogeneity the universe has and in order
to explain a certain property of the universe one has to consider sufficiently
general models that need not have this property. In this chapter we will inves-
tigate the Bianchi type I universe model and the inhomogeneous Lemaître-

13.1 The Bianchi type I universe model

The Bianchi type I universe model is the generalization of the flat Friedmann-
Robertson-Walker model. It has a metric

ds2 = −dt2 + a(t)2dx2 + b(t)2dy2 + c(t)2dz2. (13.1)

In this case there are three functions, a(t), b(t) and c(t), to be determined by
the Einstein equations. All the scale factors in different directions are allowed
to vary independently of each other.

The universe is still spatially homogeneous, because we can find three
Killing vectors given by

ξ1 =
∂

∂x
, ξ2 =

∂

∂y
, ξ3 =

∂

∂z
, (13.2)

which form a basis for the spatial hypersurfaces t = constant. These Killing
vectors correspond to translation in the spatial directions. The Bianchi type I
universe is translation invariant.

Tolman-Bondi (LTB) universe models. The Bianchi type I model is the simplest
of the spatially homogeneous models which allows for anisotropy and the
LTB-models are inhomogeneous universe models with spherically symmetric
three-space.



Anisotropic and Inhomogeneous Universe Models

Let us find the curvature tensors for the metric (13.1). It is useful to intro-
duce the following parametrisation:

a(t) = eα(t)+a1(t),

b(t) = eα(t)+a2(t),

c(t) = eα(t)+a3(t), (13.3)

where

a1 = β+ +
√

3β−,

a2 = β+ −
√

3β−,

a3 = −2β+. (13.4)

In this way we separate the anisotropic expansion and the volume expansion.
We see that a1 + a2 + a3 = 0, so the comoving volume is given by

abc = e3α. (13.5)

We can define a Hubble factor in each of the three different directions

H1 =
ȧ

a
, H2 =

ḃ

b
, H3 =

ċ

c
, (13.6)

and an average Hubble factor

H =
1

3
(H1 + H2 + H3) = α̇. (13.7)

These will be useful later on.
The following will hold ∑

i

ai = 0,∑
i

a2
i = 6(β2

+ + β2
−),∑

j

∑
i	=j

aiaj = −6(β2
+ + β2

−). (13.8)

To avoid confusion, there is no summation over Latin indices unless explicit
specified.

We introduce the orthonormal frame

ωt̂ = dt,

ωî = eαeaidxi. (13.9)

Thus,

dωt̂ = 0,

dωî = (α̇ + ȧi)ωt̂ ∧ ωî. (13.10)

Then by Cartan’s first structural equation,

dωμ̂ = −
∑

ν̂

Ω
μ̂
ν̂ ∧ ων̂ ,
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13.1 The Bianchi type I universe model

the non-trivial connection forms are:

Ωî
t̂ = Ωt̂

î
= (α̇ + ȧi)ωî.

By Cartan’s second structural equation,

R
μ̂
ν̂ = dΩ

μ̂
ν̂ +
∑

λ̂

Ω
μ̂

λ̂
∧Ωλ̂

ν̂ ,

the non-vanishing curvature forms are

Rî
t̂
= Rt̂

î
=
[
α̈ + äi + (α̇ + ȧi)

2
]
ωt̂ ∧ωî,

Rî
ĵ

= −R
ĵ

î
= (α̇ + ȧi)(α̇ + ȧj)ω

î ∧ ωĵ . (13.11)

Hence, the non-vanishing components of the Riemann tensor are

Rî
t̂̂it̂

= − [α̈ + äi + (α̇ + ȧi)
2
]
,

Rî
ĵîĵ

i	=j

= (α̇ + ȧi)(α̇ + ȧj). (13.12)

By contraction we find the Ricci tensor

Rt̂t̂ =
∑

î

Rî
t̂̂it̂

= −3
[
α̈ + α̇2 + 2(β̇2

+ + β̇2
−)
]
,

Rĵĵ =
∑
i	=j

Rî
ĵîĵ

+ Rt̂
ĵt̂ĵ

= 3α̇2 + 3α̇ȧj + α̈ + äj . (13.13)

Hence, the scalar curvature is

R =
∑

μ

Rμ̂
μ̂ = 6

[
α̈ + 2α̇2 + (β̇2

+ + β̇2
−)
]
. (13.14)

The Einstein tensor can now readily be calculated

Et̂t̂ = −3
[
−α̇2 + β̇2

+ + β̇2
−
]
,

Eĵĵ = −3α̇2 − 2α̈ + 3α̇ȧj + äj − 3
(
β̇2

+ + β̇2
−
)

. (13.15)

It is useful to define E+ and E− by

E+ =
1

6
(E1̂1̂ + E2̂2̂ − 2E3̂3̂) ,

E− =
1

2
√

3
(E1̂1̂ − E2̂2̂) . (13.16)

Using eq. (13.4) we find

E± = 3α̇β̇± + β̈±. (13.17)

For a Bianchi type I model we define the shear scalar as1

σ2 =
1

2

∑
i

ȧ2
i = 3

(
β̇2

+ + β̇2
−
)

. (13.18)

The physical interpretation of the shear scalar is that is measures the degree
of anisotropy of the spacetime. For an isotropic spacetime, we have σ2 = 0,
while for spacetimes that expands anisotropically the shear will be non-zero.

1We will define the shear tensor and the shear scalar more rigorously in a later chapter.
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Anisotropic and Inhomogeneous Universe Models

13.2 The Kasner solutions

As a first step we derive the vacuum solutions for the Bianchi type I model.
These solutions are named the Kasner solutions due to E. Kasner who first
found them in 1921 [Kas21].

In this case the energy-momentum tensor vanishes so according to Ein-
stein’s equations, the Einstein tensor has to vanish as well. Hence, from the
requirement Eμν = 0, we get

Et̂t̂ = −3
[
−α̇2 + β̇2

+ + β̇2
−
]

= 0,

E± = 3α̇β̇± + β̈± = 0. (13.19)

Multiplying the latter equation with e3α, the equation can be written

d

dt

(
β̇±e3α

)
= 0, (13.20)

which admits the first integral

β̇±e3α = p±. (13.21)

We define the anisotropy parameter by

A2 = p2
+ + p2

−. (13.22)

The equation Et̂t̂ = 0 can now be written

α̇2 = A2e−6α ⇒ 3α̇e3α = 3A. (13.23)

This equation yields the integral

e3α = 3At + C. (13.24)

By a translation of time, t �→ t − t0, we can set the integration constant C to
zero. Note that the shear is now given by

σ2 =
1

3
· 1

t2
. (13.25)

We can now integrate the equations for β±

β̇± =
p±
e3α

=
p±
3A

· 1

t
⇒ β± =

p±
3A

ln t. (13.26)

Since A2 = p2
+ + p2

−, we can introduce an angular variable φ defined by

p+ = A cosφ, p+ = A sin φ. (13.27)

The expressions for β± are now simply

β+ =
1

3
cosφ ln t,

β− =
1

3
sin φ ln t. (13.28)

The anisotropy parameter is only present in the expression for α. By a rescal-
ing of the metric (13.1), A can be set to whatever we like. We will therefore
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13.3 The energy-momentum conservation law in an anisotropic universe

choose 3A = 1 for simplicity. Using eq. (13.4) and trigonometric identities we
have

a1 = β+ +
√

3β− =
2

3
cos (φ + π/3) ln t,

a2 = β+ −
√

3β− =
2

3
cos (φ− π/3) ln t,

a3 = −2β+ = −2

3
cos(φ) ln t. (13.29)

The Kasner solutions can now be written

ds2 = −dt2 + t
2
3

[
t

4
3 cos(φ+π/3)dx2 + t

4
3 cos(φ−π/3)dy2 + t−

4
3 cos(φ)dz2

]
. (13.30)

Since this metric is parametrised with an angular variable, this set of solutions
is sometimes called the Kasner circle.

Figure 13.1: A geometrical representation of the Kasner solutions.

and goes as follows. Draw a circle in the xy-plane centered at (1/3, 0) with
radius 2/3. Draw an equilateral triangle inside this circle, with the vertices on
the circle. Call the vertices P1, P2 and P3. If the Pi’s has the x-components pi,
then the metric

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (13.31)

with
∑

i pi =
∑

i p2
i = 1 is one of the Kasner solutions. Since the orientation

of the equilateral triangle can be given by any angle φ the whole of the Kasner
circle is represented this way.

13.3 The energy-momentum conservation law

A useful representation of the Kasner solutions is illustrated in Fig. 13.1

in an anisotropic universe

include some non-trivial energy-momentum tensor.
We know that in our real universe there are matter. We should therefore

P2

P3

P1

p2
p1 p3
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Let us assume that the energy-momentum tensor is of the form

Tμν = (ρ + p)uμuν + pgμν + πμν . (13.32)

The tensor πμν is called the anisotropic stress tensor and has the properties

πμν = πνμ, πμ
μ = 0, πμαuα = 0. (13.33)

Using the energy-momentum conservation equation T μ
ν;μ = 0 we will derive

an equation that must be fulfilled by the fluid.
Since the Einstein tensor is diagonal, the energy-momentum tensor must

also be so in the orthonormal frame. Taking the covariant divergence, we get

T μ̂

t̂;μ̂
= = T μ̂

t̂,μ̂
− Γρ̂

t̂μ̂
T μ̂

ρ̂ + Γρ̂
μ̂ρ̂T

μ̂

t̂

= −ρ̇−Ω
ρ̂

t̂
(eμ̂)T μ̂

ρ̂ + Ω
ρ̂
μ̂ (eρ̂)T μ̂

t̂
. (13.34)

The second term can be simplified as

Ω
ρ̂

t̂
(eμ̂)T μ̂

ρ̂ = Ωî
t̂(eĵ)T

ĵ

î
= 3α̇p +

∑
i

ȧiπ
î
î
, (13.35)

while the third term is

Ω
ρ̂
μ̂ (eρ̂)T μ̂

t̂
= −Ωî

t̂ (eî) ρ = −3α̇ρ. (13.36)

Hence, the energy-momentum conservation equation turns into

ρ̇ + 3α̇(ρ + p) +
∑

i

ȧiπ
î
î
= 0. (13.37)

term. Let us define
dE

dt
= −

∑
i

ȧiπ
î
î
. (13.38)

The energy conservation law can now be written as

ρ̇ + 3α̇(ρ + p) = Ė. (13.39)

For a perfect fluid the left side can be interpreted as the change in entropy:

dS = dU + pdV (13.40)

Inserting U = V · ρ where V = e3α is the comoving volume, we get

dS = V (ρ̇ + 3α̇(ρ + p))dt, (13.41)

which is the left side of eq. (13.39). For a perfect fluid the change in entropy is
zero. If we consider viscous and dissipative fluids there is a change of entropy:

dS = ĖV dt, (13.42)

where Ė is given in eq. (13.38). According to the second law of thermodynam-
ics, the entropy must increase for any physical process. Hence, for viscous
fluids we have to assume that

Ė ≥ 0. (13.43)

We would stress that this is only true for irreversible processes, and strictly
speaking, only for processes close to equilibrium. There are a lot of fluids (for
instance a cosmic magnetic field) that violate this inequality, so we have to
utilize care when using this equation.

The last term on the left hand side can be interpreted as an energy-production
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13.4 Models with a perfect fluid

13.4 Models with a perfect fluid

We will first consider the simplest example, a universe with a w-law perfect
fluid. In this case we have

p = wρ, πμν = 0. (13.44)

The energy-momentum conservation equation turns now simply into

ρ̇ + 3(w + 1)α̇ = 0. (13.45)

This equation can readily be solved to yield

ρ = Ke−3(w+1)α, (13.46)

where K is an integration constant. Since the three spatial pressures are equal,
we have

T+ ≡ 1

6
(T1̂1̂ + T2̂2̂ − 2T3̂3̂) = 0,

T− ≡ 1

2
√

3
(T1̂1̂ − T2̂2̂) = 0, (13.47)

and hence Einstein’s field equations yield2

E± = T± = 0. (13.48)

These equations are the same as in the vacuum case. Integration gives

β̇±e3α = p±. (13.49)

The Ett equation is

−3
[
−α̇2 + β̇2

+ + β̇2
−
]

= ρ, (13.50)

which, by using eqs. (13.46) and (13.49), turns into

α̇2 =
K

3
e−3(w+1)α + A2e−6α, (13.51)

and can be solved in quadrature for a general w. Let us solve this equation
for two particular cases, namely for w = −1 (vacuum dominated) and w = 0
(dust).

Vacuum dominated Bianchi type I model

The equation for α is now

α̇2 =
Λ

3
+ A2e−6α, (13.52)

where the Lorentz invariant vacuum energy with a constant energy density
has been represented by a cosmological constant. This equation can be inte-
grated by means of the substitution e3α = A

√
3/Λx. The solution is

e3α = A

√
3

Λ
sinh(

√
3Λt). (13.53)

2In this chapter we will set 8πG = 1.
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We have set the integration constant equal to zero because it only corresponds
to a shift in the Big Bang time. The equations for β± turn into

β̇± =
p±
A

√
Λ

3

1

sinh(
√

3Λt)
. (13.54)

This equation can be readily integrated. The result is

β± =
p±
3A

ln

[
tanh

(√
3Λ

2
t

)]
. (13.55)

ds2 = −dt2 +
(
sinh(

√
3Λt)

) 2
3

(13.56)

×
[
Θ(t)

4
3 cos(φ+π/3)dx2 + Θ(t)

4
3 cos(φ−π/3)dy2 + Θ(t)−

4
3 cos(φ)dz2

]
.

Here, Θ(t) is given by

Θ(t) = tanh

(√
3Λ

2
t

)
. (13.57)

Furthermore, the shear scalar is given by

σ2 =
Λ

sinh2(
√

3Λt)
. (13.58)

At late times,

e2α =
(
sinh(

√
3Λt)

) 2
3 ≈ 2−2/3 exp

(
2

√
Λ

3
t

)

Θ(t) = tanh

(√
3Λ

2
t

)
≈ 1

σ2 ≈ 4Λe−2
√

3Λt. (13.59)

tion. The shear scalar is decreasing exponentially, much faster than the power
function decrease t−2 in the Kasner case. At early times,

e2α =
(
sinh(

√
3Λt)

) 2
3 ≈

(√
3Λt
) 2

3

Θ(t) = tanh

(√
3Λ

2
t

)
≈

√
3Λ

2
· t

σ2 ≈ 1

3
· 1

t2
. (13.60)

and hence, (up to a rescaling) this solution approximates a vacuum Kasner
solution at early times.

Hence, the line-element can be written

Thus at late times this line-element approaches that of the flat de Sitter solu-
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13.4 Models with a perfect fluid

Dust dominated model

For dust, eq. (13.51) turns into

α̇2 =
K

3
e−3α + A2e−6α. (13.61)

Integrating yields

e3α = 3At +
3K

4
t2. (13.62)

Inserting this result into the equation for β± leads to the result

β̇± =
p±

3At + 3K
4 t2

. (13.63)

Integration gives

β± =
p±
3A

ln

[
t

3K
4 t + 1

]
. (13.64)

ds2 = −dt2 +

(
3At +

3K

4
t2
) 2

3

(13.65)

×
[
Θ(t)

4
3 cos(φ+π/3)dx2 + Θ(t)

4
3 cos(φ−π/3)dy2 + Θ(t)−

4
3 cos(φ)dz2

]
.

where Θ(t) is given by

Θ(t) =
t

3K
4 t + 1

. (13.66)

The shear is found to be

σ2 =
1

3
(
t + K

4A t2
)2 . (13.67)

Hence, the shear decreases faster than the t−2 decrease for the Kasner solu-
tions. However, comparing with exponential decrease in the cosmological
constants case, the isotropization due to pure dust is by no means as effective
as for a cosmological constant.

At late times, we have(
3At +

3K

4
t2
) 2

3

≈
(

3K

4

) 2
3

t
4
3

t
3K
4 t + 1

≈ constant. (13.68)

This is the same as the dust dominated flat FRW universe. At early times,

both of these models, even though they start near the initial singularity as
anisotropic Kasner solutions, evolve at late times towards the isotropic FRW
solutions. The solutions isotropise in the future. Especially effective is a cos-
mological constant which isotropises the universe exponentially, compared to
a mere power-law in the dust case.

The line-element can now be written down

the line-element approaches the Kasner vacuum solutions. Hence, we see that
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13.5 Inflation through bulk viscosity

We will in this section investigate a specific type of fluid which has a bulk
viscosity. The fluid has an effective pressure

peff = p + Π. (13.69)

Here, Π is called the bulk viscous pressure and is typically on the form Π =
−6ξH , where H is the Hubble parameter. The positive factor ξ is called the
bulk viscous coefficient. We will also assume that a cosmological constant is
present and that p = wρ.

The equations of motion for this bulk viscous fluid are

−3
[
−α̇2 + β̇2

+ + β̇2
−
]

= ρ +
Λ

3
,

β̈± + 3α̇β̇± = 0,

ρ̇ + 3α̇(w + 1)ρ = 18α̇ξH. (13.70)

The Hubble scalar is given by H = α̇. Differentiating the top equation with
respect to time, using the latter two to replace β̈± and ρ̇, and finally using the
uppermost to replace β̇±, we obtain the expression

Ḣ = 3(H2
Λ + ξH −H2) +

1− w

2
ρ, (13.71)

where H2
Λ = Λ/3. Henceforth, we will assume that the bulk viscous coefficient

is constant but it should be noted that the above equations are valid for a
general ξ. There is one choice of w for which the above equation simplifies,
namely w = 1. This type of fluid is called a Zel’dovich fluid or a stiff fluid and
we will now assume that we have this type of fluid.

Eq. (13.71) now simplifies to

Ḣ = 3(H2
Λ + ξH −H2). (13.72)

Integration leads to

H =
ξ

2
+ Ĥ

e6Ĥt − Ĉ

e6Ĥt + Ĉ
, (13.73)

where Ĥ2 = ξ2/4 + H2
Λ, and Ĉ is an integration constant. We can integrate

this equation once more to find α:

e3α = e
3ξ
2 t
(
C1e

3Ĥt + C2e
−3Ĥt

)
, with C2 = C1Ĉ. (13.74)

The shear scalar can now be expressed as

σ2 =
Ae

3ξ
2 t

3
(
C1e3Ĥt + C2e−3Ĥt

) . (13.75)

For some values of C1 and C2, this model has no initial singularity. If both
C1 and C2 are positive, then no initial singularity will be present. However, if
they have different sign then a singularity will be either in the future or in the
past.
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13.6 A universe with a dissipative fluid

At late times, the Hubble scalar approaches

H̄ =
ξ

2
+ Ĥ, (13.76)

and hence, the late time asymptotics of this solution is a de Sitter solution with
H = H̄ . The bulk viscous pressure makes the universe enter a de Sitter phase
at late time. The effective cosmological constant is no longer dictated only by
the cosmological constant, but has a larger value. This value is non-zero even
though Λ = 0.

Note also that the shear decays exponentially at late times. The effect is
the same as for the pure cosmological constant case, but with the effective H̄
instead of HΛ.

For a pure Zel’dovich fluid with vanishing cosmological constant, Λ = 0,
the above solution simplifies to

H =
ξe3ξt

e3ξt + Ĉ
,

e3α = C1e
3ξt + C2, with C2 = C1Ĉ. (13.77)

Also in this case, the bulk viscosity drives the universe into inflation at late
times. Note also that if C1 and C2 are both positive, then there will be no
singularity in the past.

This effect is a typical feature of bulk viscous terms. If they are allowed
to dominate they drive the universe into a de Sitter-like state. Through these
processes, it isotropises the universe indirectly through the massive expan-
sion. The bulk viscous terms do not interact with the shear itself.

13.6 A universe with a dissipative fluid

In this section we will investigate another viscous model which isotropises
the universe quite differently. It interacts with the shear and isotropises the
universe directly via this interaction. An example of these types of interaction
is frictional forces; friction counter-act shear through dissipation. These dis-
sipation processes basically convert the energy in the shear into heat. In the
following we will investigate a fluid that has such “frictional forces”.

We assume that the anisotropic stress tensor is given by

πî̂i = −2ηȧi, (13.78)

where η > 0 is a constant. We will also assume that the pressure obeys a w-law
equation of state

p = wρ. (13.79)

The energy-momentum conservation equation is now

ρ̇ + 3α̇(w + 1)ρ = 12η
(
β̇2

+ + β̇2
−
)

. (13.80)

The left side of this equation is the usual adiabatic expansion for a perfect
fluid. The right side is the dissipative term and is manifestly positive. Hence,
it expresses the increase of entropy for dissipative processes.
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Einstein’s field equations are

Et̂t̂ = −3
[
−α̇2 + β̇2

+ + β̇2
−
]

= ρ,

E± = 3α̇β̇± + β̈± = −2ηβ̇±. (13.81)

The E±-equations has the first integral

β̇±e3α+2ηt = p±. (13.82)

Hence, solving for β̇± we find that the anisotropy is exponentially damped:

β̇± = p±e−3αe−2ηt. (13.83)

Dissipative processes will in general damp the anisotropy quite effectively.
The frictional forces in the fluid are reducing the shear exponentially.

Inserting this into the energy-momentum conservation equation leads to

ρ̇ + 3(w + 1)α̇ρ = 12ηA2e−6αe−4ηt, (13.84)

which can be solved in quadrature:

ρ = Ke−3(w+1)α + 12ηA2e−3(w+1)α

∫
e−4ηte−3α(1−w)dt. (13.85)

The first term is the usual decay of the density due to the expansion of the
universe, while the second term is due to the dissipative processes. Unfortu-
nately, for arbitrary w this equation cannot be solved in terms of elementary
functions. However, note that for a Zel’dovich fluid (w = 1) the dependence
on α in the integral disappears. We will for the sake of illustration consider
the case where w = 1. In that case, the integral can be evaluated to give

ρ = e−6α
(
K − 3A2e−4ηt

)
. (13.86)

Inserting this into the Et̂t̂ equation and simplifying, leads to

α̇2 =
K

3
e−6α. (13.87)

This equation can be easily solved, giving

e3α =
√

3Kt. (13.88)

Here we have set the initial condition e3α = 0 at t = 0. The energy density is
from eq. (13.86)

ρ =
1

3t2

(
1− 3A2

K
e−4ηt

)
. (13.89)

The density ρ must be positive, thus K ≥ 3A2.
The shear is

σ2 =
A2

K

1

t2
e−4ηt, (13.90)

and hence is exponentially damped, compared to the Kasner case. In this case
the dissipative processes are interacting directly with the shear. The frictional
forces effectively convert shear into heat.

378
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We believe that these dissipative processes were much more effective than
they are today during the early times of our universe. In an era when the
universe was much more dense than it is today, the particles would have a
much shorter mean-free-path. That means that the particles would collide
and interact with each other. These collisions and interactions are strongly
non-adiabatic which means that they covert kinetic energy into heat and radi-
ation. Hence, effectively these collisions yielded frictional type of forces. The
viscosity seems unavoidable – at least in the early universe – and may have
had a significant effect on the evolution of our universe.

In particular, one believes that neutrino viscosity may be one of the most
important factors in the isotropisation of our universe. Nevertheless, we know
that real fluids are not perfect fluids. Real fluids behave irreversibly and have
necessarily viscous terms like the ones we have investigated. However, a com-
plete picture of the effects from viscous fluids has not been given to date. It
is important to study these processes because they may be the key to several
riddles of our mysterious Universe.

13.7 The Lemaître-Tolman-Bondi universe models

In the previous chapter homogeneous universe models with dark energy were
considered. However, we do not know what sort of energy this is or if there
is so much of it that it dominates the evolution of the Hubble flow of the uni-
verse. One motivation for introducing dark energy into the cosmological mod-
els was to explain the present accelerated state of the Hubble flow suggested
by the supernova type Ia observations.

However, inhomogeneous universe models may permit an alternative ex-
planation. We observe the supernovae along the backwards light cone. Ob-
serving objects farther away is the same as observing them at an earlier time.
Maybe the seemingly accelerated expansion is a sort of illusion coming from
the inhomogeneity of space? If we are at a position with a larger velocity of
the Hubble flow than in the large scale surroundings, then the inhomogeneity
causes us to observe a greater value of the Hubble parameter for the super-
novae closest to us. Since they are observed at the latest emission times, this
would cause us to observe an increase in the Hubble parameter with time even
in a universe model with a stationary Hubble flow. If this is how the universe
is, we would not need dark energy to explain the supernovae observations.
However, it would mean that we are positioned at a very special place in the
universe [AAG06].

In order to be able to discuss this and similar problems we need to become
familiar with what the general theory of relativity can tell us about inhomo-
geneous universe models.

The line-element for a spherically symmetric, inhomogeneous universe
model may be written

ds2 = −dt2 + X2(r, t)dr2 + R2(r, t)dΩ2, (13.91)

where the coordinates are co-moving with the cosmic fluid, so that the four
velocity of the fluid is uμ = δμ

t . We shall consider models containing only
perfect fluid and LIVE.
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The 01-component of the Einstein tensor for the line-element (13.91) is

E0
1 = −2

(
Ṙ′

R
− Ẋ

X

R′

R

)
, (13.92)

where we use the notation ′ = ∂/∂r and ˙ = ∂/∂t. Solving the equation
E0

1 = 0 gives

X(r, t) =
R′(r, t)
f(r)

, (13.93)

where f is an arbitrary function of the radial coordinate.
We define two Hubble parameters

H⊥ ≡ Ṙ

R
, Hr ≡ Ṙ′

R′
. (13.94)

Then the remaining Einstein equations may be written

H2
⊥ + 2HrH⊥ − β

R2
− β′

RR′
= κρ + Λ, (13.95)

−6H2
⊥q⊥ + 2H2

⊥ − 2
β

R2
− 2HrH⊥ +

β′

RR′
= −κ(ρ + 3p) + 2Λ. (13.96)

where β(r) ≡ f2 − 1 and

q⊥ ≡ − 1

H2
⊥

R̈

R
. (13.97)

In order to see more clearly how the Lemaître-Tolman-Bondi (LTB) uni-
verse models generalize the homogeneous Friedmann models we introduce a
scale factor, a(r, t), and a spatial curvature parameter, k(r), as follows

a(r, t) =
R

r
, k(r) = − β

r2
. (13.98)

Then the line-element takes the form

ds2 = −dt2 + a2

[(
1 +

ra′

a

)2
dr2

1− k(r)r2
+ r2dΩ2

]
. (13.99)

Although k(r) is related to the spatial curvature, the relationship between the
curvature and k(r) is more complicated than in homogeneous universe mod-
els. The Ricci curvature scalar of the spatial part of the line element is

RS = 2

[
k

a2
+ 2

(r2k)′

(r2a2)
′

]
. (13.100)

Adding eqs.(13.95) and (13.96) we obtain for the deceleration parameter,

q⊥ =
1

2

(
1 +

k(r)

ȧ2
+

κp− Λ

H2
⊥

)
. (13.101)

One may define an effective Hubble parameter

Heff =
1

3
(Hr + 2H⊥) , (13.102)

380
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and a shear scalar, σ, by

σ2 =
1

3
(Hr −H⊥)

2
. (13.103)

may be written

3H2
eff − σ2 = −1

2
RS + κρ + λ. (13.104)

The critical density is the density of a flat, dust dominated universe,

κρcr = 3H2
eff − σ2. (13.105)

Defining a curvature parameter and a density parameter for dust and LIVE by

ΩK ≡ − RS

2κρcr
, Ωm ≡ ρ

ρcr
, ΩΛ ≡ Λ

κρcr
, (13.106)

eq. (13.104) may be written

ΩK + Ωm + ΩΛ = 1. (13.107)

Hence one may define a cosmic triangle for the LTB-models in analogy to the
triangle of the Friedmann-Lemaitre models.

Dust dominated LTB-universe models

Tol34, Bon47] with dust only, putting p = Λ = 0. Adding eqs. (13.95) and
(13.96) we then obtain for the deceleration parameter,

q⊥ =
1

2
− 1

2

β

Ṙ2
. (13.108)

The condition for accelerated expansion now takes the form

β > Ṙ2 > 0 or f2 > 1 + Ṙ2. (13.109)

Inserting the expression for the deceleration parameter, equation (13.101) takes
the form

2RR̈ + Ṙ2 = β. (13.110)

Integration leads to

RṘ2 = βR + α(r) or H2
⊥ =

β

R2
+

α

R3
. (13.111)

Hence, the dynamical effects of α and β are similar to that of curvature and
dust, respectively. Therefore α(r) is regarded as a gravitational mass function.

Substituting eq. (13.111) into eq. (13.96) we find

R̈ = −1

2

α

R2
or q⊥ =

1

2

α

RṘ2
. (13.112)

Allowing for inhomogeneity with −βR < α(r) < 0 seems to allow accel-
erated expansion even for dust dominated universe models. The dynamical

We shall now consider Lemaitre-Tolman-Bondi (LTB)-universe models [Lem33,

Using eq. (13.101) and the above definitions the Friedmann equation (13.95)

381



Anisotropic and Inhomogeneous Universe Models

effect of α < 0 corresponds to that of dust with negative density in a homoge-
neous universe model. It should be noted, however, that the inequality above
forbids accelerated expansion in a ’big bang’ model where the scale factor has
the initial value R(r, 0) = 0 which implies α(r) ≥ 0. However this initial con-
dition may not be physically realistic. The universe may have started with
a finite scale factor, or maybe has collapsed and reached a finite minimum
radius. In such models accelerated expansion does not seem to be forbidden.

Integration of eq. (13.111) with R(r, t0) = R0(r) gives√
βR(α + βR)−

√
βR0(α + βR0)

−α ln

( √
βR +

√
α + βR√

βR0 +
√

α + βR0

)
= t− t0. (13.113)

Introducing conformal time η by
√|β|dt = Rdη and choosing t0 = η0 = 0 we

find

β > 0 :

⎧⎨⎩R = α
2β (cosh η − 1) + R0

[
cosh η +

√
α+βR
βR0

sinh η
]
,

√
βt = α

2β (sinh η − η) + R0

[
sinh η +

√
α+βR
βR0

(cosh η − 1)
]
,

(13.114)

β = 0 : R =

(
R

3
2
0 +

3

2

√
αt

) 2
3

, (13.115)

β < 0 :

⎧⎨⎩R = α
2|β|(1− cos η) + R0

[
cos η +

√
α+βR
|β|R0

sin η
]
,√|β|t = α

2|β|(η − sin η) + R0

[
sin η +

√
α+βR
|β|R0

(1 − cos η)
]
.

(13.116)

Equations (13.114 – 13.116) with R0 = 0, represent the form of the LTB-solution
of the field equations starting from a Big Bang event at t = η = 0. The scale
factor as a function of time is shown for some typical models in Figure 13.2.

Figure 13.2: Graphs of eq.(13.113) for α = β = 1 (solid line) and for α = −1,
β = 1.0001 (dashed line).

position through the functions α(r) and β(r). Hence, a possible explanation
of the supernova type Ia observations which indicate a present state of cosmic
acceleration, is that we are positioned at r = 0, at a position where the rate of
expansion is maximal, and that it decreases with increasing r.

Λ = 0 we obtain the density distribution for this class of models

κρ =
α′

R2R′
= 3

α′

V ′
. (13.117)

From eqs. (13.114 – 13.116) we see that the rate of expansion depends on the

Differentiating eq. (13.111) and comparing the result with eq. (13.95) with

2

2

0
t − t0

R
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Hence a physically realistic model must have α′ > 0.

universe model with α(r) < 1. However this model may not be physically
2dΩ2, where dΩ is

a solid angle element. It represents the area of a surface extending a certain
solid angle. At the origin, r = 0, this area must vanish, and thus R(0, t) = 0.
From eq. (13.101) we then get α(0) = 0. Since α′ > 0, it follows that α(r) > 0
for all r. But accelerated expansion is only possible for models with α < 0.
Hence the dust dominated LTB-universe models have decelerated expansion.

Problems

13.1. The wonderful properties of the Kasner exponents
We will in this problem find another useful representation of the Kasner solu-
tions. The exponents in the solution (13.30) have some nice properties as we
will see.

(a) For the metric (13.30) call the exponents inside the square brackets x1,
x2 and x3. Show that you can represent the Kasner solutions as a cubic
equation

z3 + a3eiφ = 0 (13.118)

where a is some constant and xi are the three real parts of the solutions
of eq. (13.118).

(b) Write the Kasner solutions as

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2. (13.119)

Show that
∑

i pi =
∑

i p2
i = 1.

13.2. Dynamical systems approach to a universe with bulk viscous pressure
We will in this problem consider the type I universe model with a fluid with a
bulk viscous pressure, and a cosmological constant. We will assume that the
equations of motion are given by eqs. (13.70) and eq. (13.71). These equations
imply the following set of equations

ρ̇ = −3H(w + 1)ρ + 18ξH2

Ḣ = 3(H2
Λ + ξH −H2) +

1− w

2
ρ (13.120)

where H2 ≥ H2
Λ + ρ/3 > 0, and ξ and w are constants. These constants have

bounds ξ ≥ 0 and −1 ≤ w ≤ 1.

(a) Find all the static solutions, ρ̇ = Ḣ = 0 to eq. (13.120). What type of
solutions do the static solutions correspond to?

(b) Let X be the column vector with components ρ and H . The system of
equations (13.120) can now be written

Ẋ = F(X) (13.121)

where F is a column vector which is a function of X. In a neighbourhood
of a fixed point X0 where F(X0) = 0, we can expand the differential
equation in a Taylor series to get

Ẋ ≈ F′(X0)X. (13.122)

Figure 13.2 shows accelerated cosmic expansion for a dust dominated LTB-

realistic after all. The angular part of the line-element is R
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Whether a point X0 where F(X0) = 0 is stable thus depends on the Jaco-
bian matrix

J(X0) = F′(X0) ≡
(

∂F i

∂Xj

)
(X0). (13.123)

Find the Jacobian J(X0) where X0 are the static points of eq. (13.120).
Show that det (J(X0)) > 0 and Tr (J(X0)) < 0. This implies that both
eigenvalues of the Jacobian matrix have negative real parts. This implies
further that the point X0 is future stable.
What is been shown in this problem is that the static point found is future
stable. Hence, for a large class of possible initial states the universe will
end up in the static point. Note this point is stable for any values of w
and ξ, not only for the values for which we managed to find an exact
solution.

13.3. Murphy’s bulk viscous model
In this problem we will consider a bulk viscous model of the same type as in
section 13.5. We will, however, consider a non-constant bulk viscous coeffi-
cient ξ. The eqs. (13.70) and (13.71) shall be used and solved for the choice
ξ = αB

2 ρ, where αB is a constant.

(a) Verify eqs. (13.70) and (13.71) in the general case ξ = ξ(t).
We will in the further assume that ξ = αBρ/2, and that Λ = 0.

˙±= 0.
Show that eqs. (13.70) and (13.71) give

Ḣ =
3

2
H2(3αBH − γ), γ = w + 1. (13.124)

Set R = eα, and show that the general solution to Einstein’s field equa-
tions is

H =
γ

3αB
· 1

1 + CR
3γ
2

, γ �= 0

CR
3γ
2 +

3γ

2
ln R =

γ2

2αB
(t− t0), (13.125)

where C and t0 are arbitrary constants.

What is the approximate behaviour for early times, | 3γ
2 ln R| � CR

3γ
2 ,

and for late times, |3γ
2 ln R| � CR

3γ
2 ? Compare late time behaviour for

γ = 1 with that of the matter dominated Einstein-de Sitter universe.

(c) We will now generalise the above model to the anisotropic case.
Show that A2 ≡ σ2R6 is a constant of motion, and that this implies

A2 = 3H2R6 − 2

3αB

(
Ḣ

H
+ 3H

)
R6. (13.126)

If the universe is ever-expanding, we can introduce a new time variable
R instead of t. We then can write

d

dt
= RH

d

dR
. (13.127)

(b) We will first consider the isotropic case, hence we will assume that β
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It is also convenient to introduce the function

F (R) ≡ HR3. (13.128)

Show that F obeys

A2 = 3F 2 − 2

3αB
R4F ′. (13.129)

Integrate this equation and find H , σ2 and ρ in terms of R. Show that for
small R, we have

R3 =
√

3A(t− t0). (13.130)

Hence, in the anisotropic generalisation there is a singularity for R = 0,
in contrast to the isotropic model. What is the asymptotic value of ρ as
R → 0? Compare this with the isotropic model.

13.4. Inhomogeneous generalization of the Friedmann-Lemaître model
An inhomogeneous generalization of the flat ΛCDM-universe model can be
found by putting p = β = β′ = 0 and adding eqs. (13.95) and (13.96). Show
that integration of the resulting equation leads to

R(r, t) =

(
3

Λ

) 1
3

[g(r)]
1
3 sinh

2
3 [(t + h(r)) /tΛ] , tΛ =

2√
3Λ

. (13.131)

Show that the Hubble parameter and the deceleration parameter are, respec-
tively

H⊥ =

√
Λ

3
+

g

R3
=

(
Λ

3

) 1
2

coth
t + h

tΛ
, Hr =

1− 3h′

g′ gH⊥q⊥

1 + 3h′

g′ gH⊥
H⊥,

q⊥ = − 1

H2
⊥

R̈

R
=

1

2

(
1− 3 tanh2 t + h

tΛ

)
, (13.132)

and that the density distribution is

κρ =
3ρ
R3

1 + 3h′

g′ gH⊥
. (13.133)
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14
Singularities,

and Canonical Cosmology

In this chapter we will perform a 3+1 decomposition of the spacetime. This

14.1 Covariant decomposition

Non-relativistic decomposition
a

(Latin indices have range 1-3 while Greek indices have range over the full
spacetime 0-3), typically this can for example be the flow of material particles
in space. We will specialize to Cartesian coordinates; hence, the spatial metric
is hij = δij .

A particle is moving along a trajectory xa(t) with a velocity vb(xa, t). The
acceleration can be expressed as

a =
Dv

dt
(14.1)

where Dv

dt is the total time derivative of the velocity field,

Dv

dt
=

∂v

∂t
+ (v ·∇)v. (14.2)

Here are ∂v

∂t and (v ·∇)v called the local derivative and the convective derivative
respectively. The local derivative describes the change of v in time at a fixed

We will first consider non-relativistic particles. Consider a velocity field v(x , t)

decomposition is very useful for various applications, in particular, we will use

in this framework.
general relativity. We will also see how the singularity theorem can be described

,

the 3+1 decomposition to derive a Lagrangian and Hamiltonian formalism of

Covariant Decomposition,



position. The convective derivative on the other hand describes how the field
v depends on position.

By using the chain rule for derivatives we find

Dva

dt
=

∂va

∂t
+

∂va

∂xb

dxb

dt
=

∂va

∂t
+ vb ∂va

∂xb
. (14.3)

This equation shows that the convective derivative can be written on matrix
form

(v ·∇)v = Mv (14.4)

where M is the matrix

M = (vi
,j) =

⎡⎢⎣
∂vx

∂x
∂vx

∂y
∂vx

∂z
∂vy

∂x
∂vy

∂y
∂vy

∂z
∂vz

∂x
∂vz

∂y
∂vz

∂z

⎤⎥⎦ . (14.5)

The entries in this matrix is the gradient of the velocity field.
We can separate this matrix into a symmetric and an anti-symmetric part:

vi,j = θij + ωij (14.6)

where the symmetric part is given by

(θi
j) =

1

2

(
M + Mt

)
(14.7)

while the anti-symmetric part is given by

(ωi
j) =

1

2

(
M−Mt

)
. (14.8)

The symmetric part θij is called the expansion tensor and ωij the rotation ten-
sor. ωij is sometimes also called the vorticity tensor. We can further split the
expansion tensor into trace and trace-free parts

θi
j =

1

3
θδi

j + σi
j (14.9)

where

θ = TrM

(σi
j) =

1

2

(
M + Mt

)− 1

3
δi

jTrM. (14.10)

The tensor σij is trace-free and is called the shear tensor.
The convective derivative can now be written as

vi,j =
1

3
θδij + σij + ωij . (14.11)

Relativistic decomposition

We will now consider a velocity field u(xμ) in spacetime with metric gμν . A
particle is moving along a trajectory with four-velocity u. The four-acceleration
is given by the covariant derivative along the trajectory

a =
du

dτ
(14.12),

,

,

,

,

390 Covariant Decomposition, Singularities, and Canonical Cosmology



14.1 Covariant decomposition

where τ is the proper time of the particle. In coordinate form this is expressed
as

aα = uα;μuμ ≡ u̇α. (14.13)

In chapter 7, problem 7.4, we introduced the projection operator

hμν = gμν + uμuν , (14.14)

which projects tensors onto the plane of simultaneity orthogonal to the four-
velocity uμ. The projection of the tensor uα;μ is given by

(uα;β)⊥ = uν;μhν
αhμ

β . (14.15)

It follows that the relativistic decomposition is

θ = uμ
;μ, (14.16)

σαβ =
1

2
(uμ;ν + uν;μ)hμ

αhν
β −

1

3
uμ

;μhαβ , (14.17)

ωαβ =
1

2
(uμ;ν − uν;μ)hμ

αhν
β . (14.18)

As in the non-relativistic case, θ is called the expansion scalar, σαβ is called the
shear tensor, and ωαβ is called the vorticity tensor.

The covariant derivative of the four-velocity can therefore be written as

uα;β =
1

3
θhαβ + σαβ + ωαβ − u̇αuβ. (14.19)

Due to the four-velocity identity uμuμ = −1 we have

u̇μuμ = 0 and uμ;βuμ = 0. (14.20)

Thus using the expression hμ
α = δμ

α + uμuα, the projection of the covariant
derivative can be written

uν;μhν
αhμ

β = uα;β + u̇αuβ . (14.21)

Hence, the shear and vorticity tensors can be written as

σαβ = u(α;β) − 1

3
uμ

;μhαβ + u̇(αuβ),

ωαβ = u[α;β] + u̇[αuβ]. (14.22)

Assume that the vector field describes the movement of a physical frame of
reference, for example the movement of a collection of particles. We can now
(locally) give a covariant characterisation of the following types of reference
systems:

Irrotational (non-vortic): ωαβ = 0.

Stiff: σαβ = θ = 0.

geodesics – the four-acceleration will vanish.
If this particle is moving freely, then – because free particles move along
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Static: A system which is stiff and irrotational; i.e. uμ;νhμ
αhν

β = 0.

Inertial: A freely falling static system; i.e. uα;β = 0.

14.2 Equations of motion

We will assume that the vector field uμ has vanishing four-
μ = uμ

;νuν

Let us consider an energy-momentum tensor of the form

Tμν = ρuμuν + phμν + πμν . (14.23)

also already encountered the last term, which is the anisotropic stress tensor.
This tensor is symmetric and has the properties

πμ
μ = 0, uμπμν = 0. (14.24)

The energy-conservation equation T ν
μ;ν = 0 implies by contraction with uμ

uμT ν
μ;ν = 0. (14.25)

Using eq. (14.23) this can be written as

0 = uμ(ρ,νuμuν + ρuμ;νuν + ρuμuν
;ν

+hν
μ;νp + hν

μp,ν + πν
μ;ν). (14.26)

We define an overdot by ˙ ≡ uν∇ν . The first term in eq. (14.26) equals −ρ̇, the
second vanishes because of (14.20), the third equals −θρ, and using eq. (14.14)
the fourth yields −θp. The last term can be written (using uμπμν = 0)

uμπν
μ;ν = −uμ;νπμν = −u(μ;ν)π

μν

= −(u(μ;ν) + u̇(μuν))π
μν = −σμνπμν (14.27)

μν

momentum conservation equation can be written

ρ̇ + θ(ρ + p) + σμνπμν = 0. (14.28)

In addition to a possible equation of state for the fluid, this equation governs
the dynamical evolution of the fluid along the fluid world-lines.

Using eq. (7.50), we can write

−uμuνRαμβν = uνRαμνβuμ

= uα;βνuν − uα;νβuν

= uα;βνuν + uα;νuν
;β (14.29)

where we have also used that uα;νuν = 0. Contracting the above expression
(over α and β) leads to

−uμuνRμν = uβ
;βνuν + uα;νuν;α. (14.30)

vious section.

Using Einstein’s field equations we will derive the equations of motion
using the variables in the relativistic decomposition we described in the pre-

= 0; hence, they describe the four-velocity of geodesics.acceleration u̇

where we have used the symmetry and tracelessness of π . Hence, the energy-

The first two terms can be recognized as a usual perfect fluid part. We have
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14.2 Equations of motion

Using this together with Einstein’s field equations and eq. (14.19), we get

θ̇ +
1

3
θ2 + σμνσμν − ωμνωμν +

κ

2
(ρ + 3p)− Λ = 0. (14.31)

This equation is called Raychaudhuri’s equation and tells how the expansion
scalar varies along the geodesic curves defined by the vector field uμ.

Similarly, we can take the symmetric and anti-symmetric part of eq. (14.29)
to find a propagation equation for the shear and the rotation respectively.
However, the results are not very illuminating at this stage. It is usually more
practical to investigate a special case of the above. If we assume that the space-
time is foliated into hypersurfaces and that the vector field u is the normal
vector field to the hypersurfaces, then we must have ωμν = 0 = u̇α. The above
analysis simplifies in that case and the equations of motion likewise.

In this case, the tensor uα;β reduces simply to the extrinsic curvature of the
hypersurfaces. Hence,

uα;β = θαβ = Kαβ . (14.32)

We can now use eq. (7.152), together with Einstein’s field equations to obtain

κT αβuαuβ =
1

2

(
(3)R−KαβKαβ + K2

)
− Λ. (14.33)

Using the decomposition eq. (14.19) with ωαβ = u̇α = 0 and eq. (14.23), we
get the generalised Friedmann equation

1

3
θ2 =

1

2
σαβσαβ − 1

2
(3)R + κρ + Λ. (14.34)

This is the Friedmann equation for spacetimes with shear and a more general
geometry of the spatial hypersurfaces. From the above analysis it is clear that
the Friedmann equation is essentially the Ett-component of Einstein’s field
equations. We will see another derivation of the same equation in the next
section which gives yet another interpretation of this equation.

Taking the trace-free part of eq. (14.29) we can find the shear propagation
equations. Angled brackets mean that the projected and trace-free part should
be taken. Thus for a spatial tensor Aαβ , we define

A〈αβ〉 ≡ Aαβ − 1

3
hαβAμ

μ. (14.35)

By projecting Einstein’s field equations onto the spatial hypersurfaces and tak-
ing the trace-free part we get

hρ
〈αhλ

β〉Rρλ = hρ
〈αhλ

β〉 (κTρλ + gρλ(R− Λ))

= hρ
〈αhλ

β〉κTρλ = κπαβ . (14.36)

using eq. (14.36), we get

hρ
〈αhλ

β〉u
μuνRρμλν = hρ

〈αhλ
β〉(−gμν + hμν)Rρμλν

= −κπαβ + hρ
〈αhλ

β〉h
μνRρμλν . (14.37)

Projecting and taking the trace-free part of the left side of eq. (14.29), and
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For the second term of this equation we can use eq. (7.83). This, and that the
extrinsic curvature is Kαβ = uα;β , lead to

hρ
〈αhλ

β〉h
μνRρμλν = (3)R〈αβ〉 + KK〈αβ〉 −Kμ〈αKμ

β〉

= (3)R〈αβ〉 + θσαβ − uμ;〈αuμ
;β〉. (14.38)

The trace-free part of the right-hand side of eq. (14.29) is

u〈α;β〉μuμ + uμ;〈αuμ
;β〉 = σ̇αβ + uμ;〈αuμ

;β〉. (14.39)

Thus the eq. (14.29) turns into the shear propagation equations

σ̇αβ + θσαβ + (3)R〈αβ〉 = κπαβ . (14.40)

Note that the “time derivative” σ̇αβ is defined as σαβ;μuμ. Hence, the expres-
sion will in general contain the connection coefficients.

14.3 Singularities

We have presented some cosmological solutions to the Einstein field equa-
tions. Some of them begin at a certain cosmic time, which we will for the sake
of simplicity set to t = 0. This time is usually referred to as the point of time
of the Big Bang. However, what we have not investigated is what really hap-
pens at t = 0? Some of the models have clearly no singularity, like the k = 1 de
Sitter solution. Other models have a singularity, and in chapter 10 we also pre-
sented a solution, namely the Schwarzschild solution, that had a singularity.
In this section we will be concerned with cosmological singularities.

We will start out by defining a singularity, and in order to do that we need
to introduce some technical concepts. If a geodesic has finite affine length1

then we say that the geodesic is incomplete. Hence, if a geodesic is inextendible
in at least one direction for a finite affine parameter then the geodesic is incom-
plete. Singular spacetimes are spacetimes which has at least one incomplete
geodesic. There are basically four types of singularities:2

1. Scalar Curvature Singularities: Singularities where one or more curva-
ture scalar diverges along the geodesic. One example of this singularity
is the singularity in the Schwarzschild solution.

2. Parallelly propagated Curvature Singularities: Singularities where no
scalar blows up, but where one or several components of the Riemann
tensor diverges in a parallelly propagated tetrad along the geodesic.

3. Inextendible non-curvature Singularities: Singularities where the cur-
vature scalars are everywhere bounded along the geodesic. An example
of this is the circular cone. The cone itself is everywhere flat, but the
apex of the cone is a singularity that cannot be removed.

4. Removable Singularities: Singularities that can be removed by adding
for instance a single point. An example of this is a plane with one point
removed.

1Affine length is the length of a geodesic using a unit tangent vector.
2There are other kinds of singularities than those mentioned here, for example singularities

associated with non-geodesic observers [EK74, LCH07].
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14.3 Singularities

Singularities that come under the first category are often easy to spot. Since
one or several curvature scalars diverge we can find these by calculating the
curvature scalars. The singularities in the second category are also not very
difficult to find. The question whether a singularity ends in the third or fourth
category is a bit more tricky and troublesome. Usually we only know the
intrinsic property of the space and it is often difficult to say whether we can
remove the singular point by adding a point or a line etc. However, removable
singularities are not very interesting and are rather unphysical; they are con-
structed from a regular spacetime by artificially removing points. The fourth
category consist for example of coordinate singularities, while the physical sin-
gularities are singularities of the first three categories.

Example 14.1 (A coordinate singularity) Examples

ds2 = −x2dt2 + dx2. (14.41)

This metric is similar to the Schwarzschild spacetime in the neighbourhood of the hori-
zon. We have already seen that the horizon is not a true singularity but is merely a
result of a certain choice of coordinates.

Figure 14.1: The Rindler spacetime is a part of Minkowski spacetime.

The coordinate transformation

T = x sinh t,

X = x cosh t, (14.42)

turns the Rindler metric into

ds2 = −dT 2 + dX2. (14.43)

This is the Minkowski metric in two dimensions, and x = 0 corresponds to the future
light-cone of origo. The Minkowski metric has no singularities, and is therefore a reg-
ular spacetime. The Rindler spacetime can therefore be embedded isometrically into
Minkowski spacetime. Hence, the singularity in the Rindler spacetime is removable.

Example 14.2 (An inextendible non-curvature singularity)
Consider the two-dimensional Milne universe

ds2 = −dt2 + t2dx2. (14.44)

This metric is very similar to the previous metric, just with t and x interchanged. How-
ever, as we will see, they have very different physical properties. Consider the variable

t=co
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x
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X

T

Consider the two-dimensional Rindler spacetime (see Fig. 14.1)
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x to be an angular variable, thus assume that 0 ≤ x < � for some � > 0. If we had
done the same in the previous example the time variable would have been circular
which does not make sense. Here in the Milne universe, on the other hand, it does
make sense. This identification of the x variable (identifying x = 0 with x = �) makes
it impossible to embed the space isometrically into Minkowski space. Locally it can be
embedded into Minkowski space, but not globally.

For 0 < x < � (not including x = 0 and x = �) we can consider the transformation

T = t cosh x

X = t sinh x. (14.45)

The metric turns into

ds2 = −dT 2 + dX2, (14.46)

which is the flat Minkowski metric. The lines x = 0 and x = � correspond to the lines
X = 0 and X = T tanh � in the Minkowski space eq. (14.46), see Fig. 14.2. Saying that
x is an angular variable with period � is the same as saying that these two lines should
be identified as one. As you go around in the universe and you hit one of the lines and
cross it, you are at the same time at the other line and continue from there. In this way
you will be always inside the two lines X = 0 and X = T tanh �. However, these lines
intersect at X = T = 0. This point will be a singular point in this universe, a conar-like
point which cannot be removed. Since the Minkowski space is flat, the whole interior
of this space will have vanishing curvature tensor. Hence, this spacetime has a category
3 singularity.

Figure 14.2: The 2D Milne universe with finite spatial sections.

We can now let the identification radius � go to infinity: � → ∞. We will then
recover the Milne universe with infinite spatial sections. However, as � → ∞, the
initial singularity will remain to be a point-like event. Thus we have to conclude that
the Milne universe model has an initial point-like singularity of category 3.

Note that we considered the infinite open universe in section 11.10 from a physical
point of view. Nonetheless, we reached the same conclusion. Hence, the above discus-
sion puts mathematical ground to the discussion in section 11.10.

Let us investigate the conditions for a spacetime to have a singularity. This
issue is important in the context of cosmology because this can maybe give us
the answer to whether we have had a Big Bang or not. We will in this analysis
assume that the cosmological constant is part of the energy-momentum tensor
as we have seen it can be.

Identify
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14.3 Singularities

We have already encountered cosmological solutions that had singularities
in their past. FRW universes with dust or radiation have a singularity in their
past. A solution like the closed de Sitter solution has no singularity as we
have seen. So a cosmological constant or a vacuum fluid can avoid such a
singularity. Generally, we may ask ourself: What are the necessary criteria for
a past singularity?

The weak and strong energy conditions

Two important concepts are linked with this question. We know that most of
the matter in our universe has a positive energy-density. An observer with a
four-velocity uμ will measure the energy density T μνuμuν .

T μνuμuν ≥ 0, (14.47)

for all time-like vectors uμ

obeys the weak energy condition.

This condition for the energy-momentum tensor is satisfied by most fluids
known, even the vacuum fluid. It is basically saying that all time-like ob-
servers will measure a positive energy density.

The Strong Energy Condition (SEC) If the energy-momentum tensor obeys
the inequality (

T μν − 1

2
Tgμν

)
uμuν ≥ 0, (14.48)

for all time-like vectors uμ then we say that the energy-momentum tensor

Note that the SEC is a much stronger restriction on the energy-momentum ten-
sor. For instance if the energy-momentum tensor consists of a single vacuum
fluid then the energy-momentum tensor will fail to obey the SEC. The energy-
momentum tensor can be diagonalised (with some exceptions) by choosing a
frame with the eigenvectors of the energy-momentum tensor. The eigenval-
ues of the eigenvectors will be ρ and pi where i = 1, .., 3. The eigenvectors pi

are called the principal pressures. The WEC is equivalent to

WEC ⇔ ρ ≥ 0 and ρ + pi ≥ 0 (i = 1, 2, 3) (14.49)

and the SEC is equivalent to

SEC ⇔ ρ +
∑

i

pi ≥ 0 and ρ + pi ≥ 0 (i = 1, 2, 3). (14.50)

If now for instance we have a barotropic perfect fluid

p = wρ (14.51)

and all the principal pressures are equal to p, the WEC is equivalent to w ≥ −1.
The SEC on the other hand, put the stronger constraint w ≥ − 1

3 . Note from eq.

then we say that the energy-momentum tensor

obeys the strong energy condition.

The Weak Energy Condition (WEC) If the energy-momentum tensor obeys
the inequality
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(11.18) that if SEC is satisfied then gravity is attractive for observers moving
along time-like geodesics.

momentum tensor with the Ricci tensor. The SEC can therefore be written as

Rμνuμuν ≥ 0 (14.52)

for all time-like uμ. Hence, the spacetime has a positive curvature for time-
like vectors. If we have two neighbouring parallel geodesics, then if the SEC
is satisfied, the geodesics will converge and at some point meet.

The singularity theorem

As we have seen, the strong energy condition implies that the space is posi-
tively curved for time-like vectors. This turns out to be what we need to have
a singularity in the past of a spacetime.

Assume therefore that the matter obeys the SEC, and we will also assume
that the geodesics are non-rotating. This implies ρ + 3p ≥ 0. Hence, from
Raychaudhuri’s equation (14.31) we get the inequality

θ̇ ≤ −1

3
θ2. (14.53)

Dividing by θ2 yields

d

dτ

(
1

θ

)
≥ 1

3
(14.54)

and hence, integrating

1

θ(τ)
≤ 1

θ0
+

1

3
τ. (14.55)

Here, θ0 is the value of θ at τ = 0, and τ ≤ 0. Assume further that the geodesic
congruences are expanding at τ = 0, i.e. θ0 > 0 (which would be the case for
an expanding universe). Then according to eq. (14.55), the function θ−1(τ)
must have passed through zero at a finite time τs. In particular, τs is bounded
by the inequality |τs| ≤ 3θ−1

0 . This means that at the time τs, the expansion
scalar was infinite θ(τs) = ∞, which indicates that there was a singularity at
τs. Strictly speaking, this only tells that there is a singularity of the geodesic
congruences, but this analysis is one of the key ingredients for proving the
singularity theorem stated below. There are also some global aspects that we

If the matter obeys the SEC and there exist a positive constant C > 0 such
that θ > C, where H is the Hubble parameter, everywhere in the past of some

Note that this is a sufficient criterion, but not necessary. Spacetimes can
have singularities even though the SEC is violated.

If a spacetime satisfies the Einstein equations then we can replace the energy-

Ellis [HE73] for details. Roughly speaking we can say that:
have to consider, but we refer the reader to Wald [Wal84] or Hawking and

specific hypersurface, then there exists a past singularity where all past
directed geodesics end (see Fig. 14.3).
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14.4 Lagrangian formulation of General Relativity

Figure 14.3: An expanding universe containing matter that obeys the SEC, means
that the universe has a past singularity.

14.4 Lagrangian formulation of General Relativity

We saw in chapter 8 how Einstein’s field equations could be derived using
a simple variational principle. In this section we will pursue this idea even
further. In classical mechanics the Lagrangian and Hamiltonian formulations
are very useful tools in the analysis of the dynamical behaviour of the system.
Not only are they important concepts in classical mechanics, but they also
proved to be the key to quantum mechanics. The Lagrangians and Hamiltoni-
ans link classical mechanics with quantum mechanics in a quite elegant way.
We will not dwell upon the possible quantum aspects in this book, but we
will introduce the Lagrangian and Hamiltonian formalism for the “classical”
gravitational field.

Again we perform a 3+1 split of the spacetime. However, we will here do
it in a slightly different way. Consider our spacetime M . We will assume that
the spacetime (at least locally) can be foliated with three-dimensional spatial
sections. Each of these spatial sections, which will be denoted by Σt, is labelled
by a time parameter t. It is useful to let the direction of time, denoted by a
vector t, be arbitrary; we only demand at this stage that it is non-zero and
time-like. We thus have

M = R× Σt. (14.56)

Let hab be the metric on the spatial surfaces Σt. As the time varies, the metric
hab will also vary describing the dynamical evolution of the spatial surfaces
Σt.

For each Σt, there will be a unit normal vector field n. Since Σt is space-
like, n will be time-like. If t is the time-vector, we can split this into

t = Nn + N, (14.57)

where N is tangent to Σt (and thus orthogonal to n). The function N is called

We may choose the time vector t freely; hence, the shift and the lapse can be
an arbitrary vector- and scalar function respectively. This is a gauge freedom
which we have in general relativity, reflecting the general covariance of the
theory. This freedom has, as we will see later, interesting consequences for the
Lagrangian and Hamiltonian formulation.

the lapse and the vector N is called the shift vector. This is illustrated in Fig. 14.4.

Σtti
m

e

geodesics

Singularity
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Figure 14.4: The hypersurfaces with the lapse and the shift vector.

The metric components gμν can now be calculated (raising Latin indices is
done using hab):

gtt = t · t = −N2 + NaNa

gta = t · ea = N bhab = Na

gab = ea · eb = hab. (14.58)

This shows that instead of using the metric components gμν as variables, we
may equally well use the set of variables (N, Na, hab).

The determinant of the metric tensor is
√−g = N

√
h, (14.59)

where h is the determinant of the spatial metric hab. We define the time-
derivative using the Lie-derivative with respect to the time-vector t. In partic-
ular, the time derivative of the metric hab is

ḣab ≡ £thab. (14.60)

Henceforth, we will use a mixture or Latin and Greek indices. When we want
to emphasise that the tensor is purely spatial, we will use Latin indices. In
general we will use Greek indices to emphasise the covariant nature of the
equations.

We introduce the extrinsic curvature Kμν from section 7.4 which in these

Kμν = − (eα · ∇βn) hα
μhβ

ν =
1

2
£nhμν . (14.61)

In the previous sections we used an arbitrary vector field u. In the special case
where u = n we see that the covariant derivative of the vector u can be written
as

nμ;ν = uμ;ν = Kμν . (14.62)

Thus the extrinsic curvature splits in a trace-free part, and a trace part

Kμν =
1

3
Khμν + σμν (14.63)

t

Nn

N
Σt

variables is given by
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14.4 Lagrangian formulation of General Relativity

where K = θ = Kμ
μ. Hence, by comparing with eq. (14.19), the vector field n

is found to be non-rotating.
Why this has to be so, is seen quite clearly when we remind ourself of the

analysis done in chapter 5. If the normal vector field is rotating, the planes of
simultaneity have a discontinuity along some line from the centre. In our case
the surfaces Σt are assumed to be smooth everywhere and hence, the normal
vector field has to be non-rotating.

The covariant derivative on the hypersurfaces Σt will be denoted by ∇̄μ

and is the projection of the covariant derivative in the four-dimensional space-
time. Thus

∇̄μeν = hα
μhβ

ν∇αeβ . (14.64)

The time derivative of hμν can now be calculated to give

ḣμν = £thab = £Nn+Nhab

= N£nhab + £Nhab

= 2NKμν + ∇̄μNν + ∇̄νNμ. (14.65)

The Einstein-Hilbert action for pure gravity reads3

SG =
1

2κ

∫
M

LGd4x (14.66)

where

LG = (R− 2Λ)
√−g. (14.67)

We will now express the Ricci scalar R in the new variables. The Ricci scalar
can be written as

R = 2(Eμνnμnν −Rμνnμnν) (14.68)

by contracting the Einstein tensor with the vector nμ. We can write the twice
contracted Gauss’ equation, eq. (7.152), as

Eμνnμnν =
1

2

(
R̄−KabKab + K2

)
(14.69)

where R̄ is the Ricci scalar of the three-spaces Σt. As for the term Rμνnμnν in
eq. (14.68), we can use the definition of the Riemann tensor:

Rμνnμnν = Rα
μανnμnν

= −nμ (∇μ∇α −∇α∇μ) nα

= (∇μnμ)(∇αnα)− (∇μnα)(∇αnμ)

−∇μ(nμ∇αnα) +∇μ(nα∇αnμ)

= K2 −KabKab −∇μ(nμ∇αnα) +∇μ(nα∇αnμ). (14.70)

The last two terms in the above expression are total derivatives and will there-
fore only yield boundary terms to the action integral, eq. (14.66). Thus these
terms can be omitted from the Lagrangian.

3It is common in the Lagrangian and Hamiltonian formulation of general relativity to set 2κ =
1. Henceforth we will do the same.
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By using eqs. (14.68), (14.69), (14.70) and (14.59), the Lagrangian eq. (14.67)
can be written

LG = N
√

h
[
R̄ + KabKab −K2 − 2Λ

]
(14.71)

where the extrinsic curvature is given by

Kab =
1

2N

(
ḣab − ∇̄aNb − ∇̄bNa

)
. (14.72)

a ab)
will now yield Einstein’s field equations.

Note that the Lagrangian eq. (14.71) does not contain time derivatives of
the variables N or Na. Hence, variation with respect to these variables imme-
diately yield constants of motion. This fact will be even more apparent in the
Hamiltonian formulation which we will introduce now.

14.5 Hamiltonian formulation

In this section we will assume that there are no matter sources in the space-
time. Hence, the total Lagrangian coincide with the Lagrangian for pure grav-
ity LG.

Assume we have a Lagrangian L = L(qA, q̇A; t) where qA are the gener-
alised coordinates. We define the canonical momenta, pA, by

pA =
∂L

∂q̇A
. (14.73)

The Hamiltonian is now defined as

H = q̇ApA − L, (14.74)

where we consider H to be a function of qA, pA, and possibly a time-variable t:
H(qA, pA; t). One can now show that the variational principle implies Hamil-
ton’s equations4:

q̇A =
∂H

∂pA
, ṗA = − ∂H

∂qA
. (14.75)

Define the canonical momenta

Πab ≡ ∂LG

∂ḣab

=
√

h(Kab − habK). (14.76)

The canonical momenta to N and Na vanish identically:

ΠN ≡ ∂LG

∂Ṅ
= 0

Πa ≡ ∂LG

∂Ṅa

= 0. (14.77)

4For the theory of the Hamiltonian formulation in classical mechanics, see, for example, the
book by Goldstein [Gol50].

Variation of the Einstein-Hilbert action with respect to the variables (N,N , h

We will nowapplythis togeneral relativitystartingwiththe Lagrangianeq.(14.71).
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14.5 Hamiltonian formulation

The variables N and Na have to be interpreted as Lagrange-multipliers, and
hence, cannot be considered as real dynamical variables. The only dynami-
cal variables are therefore hab. As we mentioned in the last section, we can
freely choose the functions N and Na. They correspond to a free choice of
time vector, and thus should not be considered as dynamical variables. These
variables can be chosen arbitrarily; they reflect a choice of gauge.

More specifically, the choice of N says how close two subsequent hyper-
surfaces Σt1 and Σt2 are in time. N represents the free choice of time rescaling;
it is a generator for time evolution. Similarly, the vector Na is a generator for
coordinate transformations for the spatial hypersurfaces Σt.

We define the Hamiltonian by

HG =

∫
M

HGd4x (14.78)

where HG is the Hamiltonian density given by

HG = ḣabΠ
ab − LG. (14.79)

we get

HG = NHG + NaHa
G (14.80)

where

HG =
√

h

[
2Λ− R̄ + h−1

(
ΠabΠab − 1

2
Π2

)]
(14.81)

Ha
G = −2

√
h∇̄b

(
h−1/2Πba

)
(14.82)

and Π = Πa
a. When we vary the Hamiltonian with respect to N and Na, we

get the following interesting result:

HG = 0, Ha
G = 0. (14.83)

a

time with a cosmological constant.
These two constraints are inevitable in a Hamiltonian formulation and ex-

presses the gauge freedom that we have in the general theory of relativity. It
also poses a problem for the ordinary concept of time. Time is quite arbitrary
in this formulation, the choice of time is an unphysical gauge freedom. These
two constraints therefore manifest a very deep and profound problem: The
problem of Time. In a quantum theory of gravity, this is indeed a very serious
problem. In ordinary relativistic quantum mechanics, the background space-
time is something fixed. For a quantum theory of gravity, the spacetime is
dynamical and the problem of time inevitable pops up and has to be resolved
in some way. We will not dwell any further on these deep and difficult ques-
tions here; many books have been written on this problem (see for example
[Dav74, Dav83, HPMZ94, Pen79, Sav95]).

Inserting the expression for the Lagrangian density (14.71) and using eq. (14.76),

constraint respectively. We can recognize H = 0 and H = 0 as the twice con-
tracted eq. (7.83) and the contracted Codazzi equations for a vacuum space-

These equations are called the Hamiltonian constraint and the momentum
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ḣab =
δHG

δΠab

= 2h−
1
2 N

(
Πab − 1

2
habΠ

)
+ 2∇̄(aNb) (14.84)

Π̇ab = −δHG

δhab

= −Nh
1
2

(
R̄ab − 1

2
R̄hab + habΛ

)
+

1

2
Nh−

1
2 hab

(
ΠcdΠ

cd − 1

2
Π2

)
−2Nh−

1
2

(
ΠacΠb

c −
1

2
ΠΠab

)
+ h

1
2

(∇̄a∇̄bN − hab∇̄c∇̄cN
)

+h
1
2 ∇̄c

(
h−

1
2 N cΠab

)
− 2Πc(a∇̄cN

b) (14.85)

where we have used eq. (14.83) and ignored boundary terms to simplify the
equations. The equations (14.83), (14.84) and (14.85) are equivalent to the vac-
uum Einstein’s field equations with a cosmological constant.

14.6 Canonical formulation with matter and energy

If we want to include matter, then we have to include a matter term. The
matter action can be written as

Sm =

∫
M

Lmd4x. (14.86)

From eq. (8.36) the energy momentum tensor is defined via the action by

T μν = − 2√−g

δSm

δgμν
. (14.87)

The total Lagrangian density is now just the sum of the two Lagrangians

LT = LG + Lm. (14.88)

We have already mentioned the electromagnetic case where

LEM = −1

4

√−gFμνFμν . (14.89)

Another important example is the Klein-Gordon Lagrangian

LKG = −1

2

√−g
(∇μφ∇μφ + m2φ2

)
. (14.90)

All the equations of motion can now be derived similarly as in the vacuum
case, except that we in addition get matter degrees of freedom. These matter
degrees of freedom are dealt with in the same way as in ordinary Lagrangian
and Hamiltonian formulation. For example, if the matter Lagrangian contains
only a single matter field φ, then the canonically conjugated momentum is

Πφ ≡ ∂LT

∂φ̇
. (14.91)

The rest of the vacuum Einstein field equations can now be derived:
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14.6 Canonical formulation with matter and energy

The Hamiltonian density is similarly

HT = ḣabΠ
ab + φ̇Πφ − LT . (14.92)

Again, the Hamiltonian density will be a sum

HT = NHT + NaHa
T (14.93)

where each part is a sum of contributions from pure gravity and the matter

HT = HG + Hm, Ha
T = Ha

G + Ha
m. (14.94)

One can imagine more complicated theories for which the total Hamiltonian
is not purely a direct sum, however, the total Hamiltonian will always be a
constraint due to the diffeomorphism invariance of the theory. Hence,

HT = 0, Ha
T = 0. (14.95)

Example 14.3 (Canonical formulation of the Bianchi type I universe model) Example

13 the Bianchi type I universe. We will in this example apply the canonical formulation
to this model.

In chapter 13 we calculated all the necessary connection coefficients and curvature
tensors for this model. The extrinsic curvature is found by using the connection forms.
In the calculation we used an orthonormal frame, hence N = 1 in that case. We can
calculate the invariants and afterwards include a non-trivial N .

The extrinsic curvature is

Kî̂i = Γt̂
î̂i = Ω

t̂
î (et̂) = ȧ + ȧi (14.96)

while the off-diagonal components are zero. Note that from this equation, we can find
the volume expansion factor and the shear

θ = Kâ
â = 3α̇ (14.97)

σîĵ = diag(β̇+ +
√

3β̇−, β̇+ −
√

3β̇−,−2β̇+) (14.98)

where we have used Kab = 1
3
θhab + σab. Using this we get

Kâb̂K
âb̂ −

“
Kâ

â

”2

= 6(−α̇2 + β̇2
+ + β̇2

−). (14.99)

The three-curvature can be found from eq. (7.152):

R̄ = 2Et̂t̂ + (Kâb̂Kâb̂ −K2) = 0. (14.100)

This means that the spatial three-hypersurfaces have vanishing Ricci scalar. Actually,
one can show that the three-dimensional Riemann tensor vanishes for the Bianchi type
I model. The type I model has flat spatial sections; the Bianchi type I generalises the
flat FRW model. We find the shear scalar to be

σ2 ≡ 1

2
σabσ

ab = 3(β̇2
+ + β̇2

−). (14.101)

The type I model reduces to the flat FRW model if and only if σ2 = 0.
From eq. (14.71), the Lagrangian for the Bianchi type I model is

LI =
6e3α

N

“
−α̇2 + β̇2

+ + β̇2
−
”
− 2Ne3αΛ. (14.102)

Let us consider a simple but nevertheless, illumination example. We studied in chapter
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We can now easily check that the Euler-Lagrange equations for this Lagrangian reduces
to the vacuum Einstein field equations with a cosmological constant.

We go a step further and define the canonical momenta

pα ≡ ∂LI
∂α̇

= − 12e3α

N
α̇

p± ≡ ∂LI

∂β̇±

= 12e3α

N
β̇±. (14.103)

Using eq. (14.79), the Hamiltonian becomes

HI =
N

24

ˆ
e−3α `−p2

α + p2
+ + p2

−
´

+ 12Λe3α˜ . (14.104)

Note that since the variables β± are cyclic, their conjugated momenta p± are constants
of motion. In addition to this, the Hamiltonian must identically vanish

HI = 0. (14.105)

The remaining equations (for α) can be found and integrated without any difficulty.
The solutions are of course the same as the solutions in chapter 13.

Note that the Lagrangian for the type I model is the same as for a particle moving
in a curved space with metric

ds2 = 12
e3α

N
(−dα2 + dβ2

+ + dβ2
−) (14.106)

and with a “time-dependent” potential

V (α) = 2NΛe3α. (14.107)

The function α acts as a “time”-variable in this space, and the state of the universe can
be regarded as a point in this space. The evolution of the universe traces out a world-
line in this space. The metric (14.106) is called DeWitt’s supermetric for the Bianchi type
I model. This analogy is often useful because it is often easier to understand the motion
of a point particle than the abstract behaviour of the dynamical universe directly.

14.7 The space of three-metrics: Superspace

As we saw in the example in the canonical formulation of the Bianchi type
I universe model, we could interpret the evolution of the model as a point
particle in a space with a metric given by eq. (14.106).

Such an interpretation can in general be done, and the space in which the
point particle moves is called superspace. Superspace is the space of all three-

tial metric hab.
We define DeWitt’s supermetric as

Gabij =
1

4

√
h
(
haihbj + hajhbi − 2habhij

)
. (14.108)

The canonical momenta can now be defined by

Πab = −2GabijKij . (14.109)

This definition makes it possible to write the Hamiltonian as

HG =
1

2
GabcdΠ

abΠcd + V (hab) (14.110)

dimensional metrics and each point in this space corresponds to a certain spa-
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14.7 The space of three-metrics: Superspace

where Gabcd is given by

Gabij =
1√
h

(haihbj + hajhbi − 2habhij) (14.111)

so that

GabijG
cdij = δc

(aδd
b) (14.112)

and

V (hab) =
√

h(2Λ− (3)R). (14.113)

Note that the Hamiltonian has a very simple form. The metric Gabij acts as
a metric in superspace and V (hab) mimics a potential. The Hamiltonian con-
straint implies that the total energy is zero, hence

1

2
GabcdΠ

abΠcd + V (hab) = 0. (14.114)

The universe “point” moves in superspace on zero-level-curves of the Hamil-
tonian. Including matter fields (for example Klein-Gordon fields), will in-
crease the dimension of superspace; one dimension for each matter degree
of freedom.

This analogy between the dynamics of the universe and a point particle dy-
namics in superspace is very prosperous and useful. The point particle picture
is easier to visualise and it is easier to understand the dynamical behaviour of
a point particle than the abstract behaviour of the spatial hypersurfaces. In
principle, superspace is infinite-dimensional, but in many applications we re-
duce the system by assuming that the model has a finite number of degrees
of freedom. For example, the FRW universe models have only one variable:
the scale factor. In this case the vacuum FRW superspace has only one dimen-
sion. Other models which has a finite number of degrees of freedom are the
homogeneous Bianchi models which we will introduce in the next chapter.
We have already investigated the Bianchi type I model, which has 3 degrees
of freedom. We call the canonical formulation of such reduced systems by the
name minisuperspace models.

The Mixmaster Universe

We will here consider one such minisuperspace model. The model we will in-
vestigate is the so-called vacuum Bianchi type IX minisuperspace model with
Λ = 0. It was termed the mixmaster universe by Misner [Mis69] due to its oscil-
latory behaviour near the initial singularity.

The metric for this model can be written

ds2 = −N2dt2 + hijσ
iσj, (14.115)

where

σ1 = cosψdθ + sin ψ sin θdφ,

σ2 = − sinψdθ + cosψ sin θdφ,

σ3 = dψ + cos θdφ, (14.116)
0 ≤ ψ < 4π, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.
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We can assume that the metric hij is diagonal and, using the Misner variables,
can be written as

hij = e−2Ωdiag
(
e2(β++

√
3β−), e2(β+−

√
3β−), e−4β+

)
. (14.117)

The variables β± describe the anisotropy of the spacetime, and, in particular, if
β± = 0, the model reduces to the ordinary closed FRW model. Here, we shall
assume that β± �= 0 which will, as we will see, result in a very interesting
behaviour near the initial singularity as Ω →∞.

Using the forms σi as basis one-forms, the extrinsic curvature is

Kij =
1

2N

d

dt
hij . (14.118)

Hence, we get

K2 −KijK
ij =

6

N2

(
−Ω̇2 + β̇2

+ + β̇2
−
)

. (14.119)

The three-curvature (3)R can be calculated to be

(3)R =
1

2
e2Ω
[
2e4β+

(
1− cosh 4

√
3β−
)

+ 4e−2β+ cosh 2
√

3β− − e−8β+

]
≡ −1

2
e2ΩV (β+, β−). (14.120)

Finally, we have
√

h = e−3Ω. (14.121)

Hence, the integrand in the action integral is only dependent on time and
thus we can perform the integration over the spatial hypersurfaces. This time-
independence reflects the fact that the model we consider is spatially homoge-
neous. By integration, we have∫

σ1 ∧ σ2 ∧ σ3 = (4π)2. (14.122)

The Lagrangian for the Mixmaster universe is thus

LIX =
6e−3Ω

N

(
−Ω̇2 + β̇2

+ + β̇2
−
)
− Ne−Ω

2
V (β+, β−), (14.123)

and the Hamiltonian is

HIX =
e3ΩN

24

[−p2
Ω + p2

+ + p2
− + 12e−4ΩV (β+, β−)

]
. (14.124)

Note that this is the Hamiltonian of a particle moving in a curved space with
a non-trivial potential. Note that of the potential vanishes, the behaviour is
exactly the same as in the Bianchi type I with Λ = 0 (see Example 14.3). Hence,
if e−4ΩV ≈ 0, then the behaviour describes Kasner solutions. The function
V (β+, β−) has a triangular shape with a minimum at β± = 0. The function
V (β+, β−) is illustrated in Fig. 14.5. The minimum of V is −3; hence,

e−4ΩV (β+, β−) ≥ −3e−4Ω. (14.125)
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14.7 The space of three-metrics: Superspace

Figure 14.5: The potential for the mixmaster universe. Drawn are equipotential
curves for the function V (β+, β−).

Figure 14.6: The Mixmaster Universe: the Universe point bounces between different
Kasner epochs. The Kasner epochs are represented with straight lines with velocity 1.

The walls form a triangular-shaped region where the walls recede with velocity 1/2.

Thus sufficiently close to β± = 0, the potential will be e−4ΩV ≈ 0 as Ω → ∞.
These periods are therefore Kasner epochs in the evolution of the universe.

The potential e−4ΩV has exponentially steep triangularly shaped walls, as
can be seen from Fig. 14.5. Consider the special case β− = 0. In this case the
potential simplifies to

e−4ΩV (β+, 0) = e−4Ω−8β+ − 4e−4Ω−2β+ . (14.126)

The case β+ → ∞ represents the narrow channel going out to infinity while
β+ → −∞ represents the wall. From this we can see that the wall recedes with
a “minisuperspace velocity” dβ+/dΩ ≈ −1/2. A “universe particle” travel-
ling with this velocity would experience a constant value of the potential as
β+ → −∞. However, for e−4ΩV ≈ 0 the universe will be approximately
Kasner-like. The Kasner solutions have |dβ+/dΩ| = 1, and hence, if the uni-
verse point moves in the negative β+ direction then it would eventually hit
the potential wall and bounce back into a new Kasner epoch. This evolution
is schematically illustrated in Fig.14.6.

The above description is the general behaviour as Ω → ∞. The universe
will go through a succession of Kasner epochs separated by sharp bounces.
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Due to the shape of the potential, the universe will generally bounce back
and forth inside the triangular shaped area. This oscillatory behaviour of the

Problems

14.1. FRW universes with and without singularities
In this problem we will investigate various FRW models with a perfect fluid.
The perfect fluid obeys the barotropic equation of state

p = wρ. (14.127)

(a) Write the density ρ as a function of the scale factor a and the parameter w.
Assume also that ρ = ρ0 for a = 1. Write down the Friedmann equation
and solve the equation for w = − 1

3 for k = 1, k = 0 and k = −1 with the
boundary condition a(1) = 1.

(b) In one of the above cases, there does not exist a t0 such that a(t0) = 0.
Which case is that? What criterion for a singularity mentioned in section
14.3 does not hold in this case? Does the criteria hold in the other cases?

(c) With the same boundary condition as before, solve the Friedmann equa-
tion for w = − 2

3 . In this case the SEC is violated, but are there cases for
which there are a singularity? Are there cases for which there are no sin-
gularity? Draw a diagram of the typical evolution for the various values
of k.

14.2. A magnetic Bianchi type I model
In this problem we will consider a Bianchi type I universe (see chapter 13)
with a cosmic magnetic field and a vanishing cosmological constant, Λ = 0. A
pure magnetic field has the energy-momentum tensor (see section 8.6)

Tμ̂ν̂ = (ρ + p)uμ̂uν̂ + pgμ̂ν̂ + πμ̂ν̂

where
ρ = 3p =

1

2
B2

and πμ̂ν̂ is given by

πij = −BiBj +
1

3
B2δij

π0i = πi0 = π00 = 0.

Upon a choice of orientation we can assume that the magnetic field is aligned
with the z-axis. The anisotropic stress tensor will in that case be diagonal

πμ̂ν̂ = B2diag

(
0,−1

3
,−1

3
,
2

3

)
.

We will also consider the case where the shear tensor is diagonal; thus we can
write

σμ̂ν̂ = diag(0, σ+ +
√

3σ−, σ+ −
√

3σ−,−2σ+).

We will further assume that the time-like vector field uμ is non-rotating and
can be chosen so that uμ∇μ = ∂

∂t . Furthermore, the Bianchi type I model has
flat spatial three-geometry: (3)Rμν = 0.

Bianchi type IX model gave the “Mixmaster universe” its name.
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Problems

(a) Use an orthonormal frame, and show that the equations of motion in
section 14.2 reduces to the following set of equations (κ = 1)

Ḃ = −2

3
θB − 2σ+B

θ̇ = −1

3
θ2 − 6(σ2

+ + σ2
−)− 1

2
B2

σ̇+ = −θσ+ +
1

3
B2

σ̇− = −θσ− (14.128)

with the constraint

1

3
θ2 = 3(σ2

+ + σ2
−) +

1

2
B2. (14.129)

Which of these correspond to Maxwell’s equations for the magnetic field?

(b) It is convenient to introduce a new set of variables by

Σ± =
3σ±
θ

, H =
B

θ
, (14.130)

and a new time variable τ by requiring

dt

dτ
=

3

θ
. (14.131)

Show that in these variables, the equations of motion can be written

θ′ = −(1 + q)θ

H′ = (q − 1− 2Σ+)H
Σ′+ = (q − 2)Σ+ + 3H2

Σ′− = (q − 2)Σ− (14.132)

where

q = 1 + Σ2
+ + Σ2

−

1 = Σ2
+ + Σ2

− +
3

2
H2, (14.133)

and prime denotes derivative with respect to τ . Note that one of the vari-
ables can in principle be obtained from the constraint equation. Hence,
the equation of motion for this variable is redundant.

(c) Show that the solutions corresponding to Σ2
+ + Σ2

− = 1, H = 0, are the
Kasner solutions, eq. (13.30).

(d) The set of equations can, as a matter of fact, be solved exactly in full gen-
erality (the solutions are called the Rosen solutions). However, we will
here consider the axisymmetric case where Σ− = 0. Show that the equa-
tion for Σ+ in this case can be written

Σ′+ = (1− Σ2
+)(2 − Σ+). (14.134)

Solve this equation. Find alsoH and θ. What are the late-time and early-
time asymptotes?
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14.3. FRW universe with a scalar field
Let us consider a FRW universe with a Klein-Gordon scalar field. The Klein-
Gordon field has a Lagrangian given by eq. (14.90). We will assume that the
model is isotropic and homogeneous and that the scalar field only depends on
the time variable t.

(a) Write down the total Lagrangian (pure gravity + matter fields) for the
FRW minisuperspace model with a scalar field.

(b) What is the supermetric for this model? Is it Lorentzian or Riemannian?
Find the total Hamiltonian.

(c) Derive the equations of motion from the Hamiltonian equations.

14.4. The Kantowski-Sachs universe model
In this problem we shall derive the equations of motion for an anisotropic
model called the Kantowski-Sachs universe model. The Kantowski-Sachs uni-
verse model has the line-element

ds2 = −dt2 + a(t)2dz2 + b(t)2(dθ2 + sin2 θdφ2). (14.135)

Assume also that the universe is empty apart from the presence of a cosmo-
logical constant, Λ.

(a) Derive the equations of motion using the generalized Friedmann equa-

in section 14.2.

(b) Introduce a non-zero lapse function, N(t), and find the Lagrangian and
Hamiltonian for the Kantowski-Sachs model. Find the equations of mo-
tion using the Hamiltonian equations. Set N = 1 and compare with what
you found in (a).
(You can check your answers by comparing your results with Example
15.3 on page 422 in the following chapter.)

tion, the shear propagation equations and Raychaudhuri’s equation given
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15
Spatially Homogeneous Universe

Models

here. In doing so, we will generalise the FRW models to the Bianchi models
which are in general spatially homogeneous but not necessarily isotropic.

15.1 Lie groups and Lie algebras

First we will introduce some very important concepts used in mathematics
and physics. Whenever we talk about continuous symmetries, the words Lie
groups and Lie algebra are usually mentioned.

We saw earlier that the Killing vectors generate a special class of diffeo-
morphisms; Killing vectors generate isometries. The isometries of a space form
a group. For instance, let us take the sphere, S2, with the usual round met-
ric. The isometry group of the sphere is all the rotations in three-dimensional
space that leaves the sphere invariant. These (orientation-preserving1) rota-
tions form the group SO(3). What is so special about this group, is that the
group itself, can be considered as a manifold! Since the dimension of the
group is three, the group SO(3) can be considered as a three-dimensional
manifold. The group SO(3) is an example of a Lie group. We define Lie groups
as follows.

Definition: Lie Group. A Lie group, G, is a topological space that has the
following properties:

1. G is a manifold.

2. The group multiplication m : G×G �−→ G is smooth.

1We will always assume that we are talking about orientation-preserving isometries, unless
stated otherwise.

introduced some of the basics in chapter 6, and we will pursue the ideas further
In this section we will explore the concept of symmetries even further. We
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3. Inversion i : G �−→ G is smooth.

To show that SO(3) has these properties is not difficult. We already know
that multiplication and inversion are continuous operations. Each element in
SO(3) corresponds to a rotation, and rotations are continuous operations. We
can show that SO(3) is actually equal to the manifold P3 and hence, SO(3) is
a manifold.

Let us also define what we mean by Lie algebra.

Definition: Lie Algebra.

which satisfies the following properties:

1. [X,X] = 0 for all X ∈ g.

2. The Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0, (15.1)

for all X, Y,Z ∈ g.

Note that 1. implies that the bilinear map [−,−] is skew-symmetric:

[X,Y] = −[Y,X]. (15.2)

An example of a Lie algebra is the space of all n×n matrices gl(n). The bracket
[−,−] is in this case simply defined by

[A, B] = AB− BA, (15.3)

for all matrices A and B. The bracket is in this case the usual commutator
multiplication of matrices.

There is actually a deep connection between these two concepts. A Lie
algebra is a vector space, while a Lie group is a group manifold. Amazingly
we have the following theorem.

Theorem: Let G be a Lie group. Then the tangent space of G at the identity
element, TeG, is a Lie algebra; i.e.,

g = TeG.

sponding Lie algebra.
Let us take the example SO(3) again. SO(3) can be considered as the 3× 3

matrices obeying RtR = 1 and det(R) = 1 where 1 is the identity element. We
consider a curve R(t) in SO(3) going through the identity element. For sake
of simplicity, we assume R(0) = 1. We denote the tangent vector of this curve
at the identity element as A, i.e. R′(0) = A. From

RtR = 1,

we get by differentiating
R′tR + RtR′ = 0.

groups. We can, by calculating the tangent space of a Lie group, find a corre-
This gives a very interesting connection between Lie algebras and Lie

dimensional) vector space equipped with a bilinear map [−,−] : g × g �−→ g

A real (or complex) Lie algebra, g, is a (finite
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Hence, at t = 0 we get

At = −A. (15.4)

The Lie algebra of SO(3), which is usually written so(3), consists of all skew-
symmetric matrices.

We have seen how these Lie algebras are the tangent vector space over the
unit element of the Lie group. Hence, each element of the Lie algebra can be
considered as a vector at the unit element of a manifold. If X is a vector in the
Lie algebra, then we can define the local flow φt of the vector X as in section
6.9. The flow will now be a flow on the Lie group G, so each element φt ∈ G.
The vector X is only defined over the unit element, so we have to parallel
transport the X to the point φt by the group action: φt ·X. We usually write
the differential equation that defines the flow φt as

(φt)
−1 ∂φt

∂t
= X,

φ0(e) = e, (15.5)

where e is the unit element. This differential equation has, as we saw in section
6.9, the exponential map as the solution. Hence,

φt(e) = exp(tX). (15.6)

We can therefore define the exponential map exp : g �−→ G by the action on a
Lie algebra element as follows

exp(X) = φ1(e) ∈ G. (15.7)

Thus there is an intimate relation between the Lie algebra, the Lie group and
the exponential map. By exponentiation, we can get from the Lie algebra to
its Lie group. The inverse function of exp, called log can also be defined in a
neighbourhood of the identity element. For a neighbourhood U ⊂ G of e, we
can define

log : U �−→ g,

log ≡ exp−1
∣∣
U

, (15.8)

where exp−1 means the inverse function of exp.
We choose a basis {Xi} for the Lie algebra g and define the structure con-

stants Ck
ij by

[Xi,Xj ] = Ck
ijXk. (15.9)

Note that the structure constants are antisymmetric in the lower indices, Ck
ij =

−Ck
ji, and that by a change of basis, we can change the structure constants,

without changing the Lie algebra.

Example 15.1 (The Lie Algebra so(3)) Example
We have shown that the Lie algebra so(3) consists of skew-symmetric matrices:

so(3) = {A|At = −A, A 3× 3 matrix.}. (15.10)

Let us choose the following basis for so(3):

X1 =

240 0 0
0 0 −1
0 1 0

35 , X2 =

24 0 0 1
0 0 0
−1 0 0

35 , X3 =

240 −1 0
1 0 0
0 0 0

35 . (15.11)
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Spatially Homogeneous Universe Models

By calculating the commutators, we find

[X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2. (15.12)

We note that this can be written

[Xi,Xj ] = εijkXk. (15.13)

The structure constants are therefore

Ck
ij = εijk. (15.14)

15.2 Homogeneous spaces

We are now ready to introduce the concept of homogeneous spaces. Roughly
speaking, a homogeneous space is a space where you can get from one point to any

Figure 15.1: In a homogeneous space you can get anywhere on the manifold using
an isometry.

Consider a space M with metric g. We define the isometry group Isom(M)
by

Isom(M) ≡ {φ : M �−→ M |φ is an isometry} . (15.15)

Recall that φ is an isometry if φ∗g = g. The isometry group will in general be
a Lie group. Since a Killing vector field generates an isometry, a Killing vector
field corresponds to an element of the Lie algebra of Isom(M). The Killing
vector fields forms a finite dimensional vector space, isomorphic to the Lie
algebra of Isom(M).

We can now go on and define the isotropy subgroup of a point p ∈ M by

Ip(M) = {φ ∈ Isom(M)|φ(p) = p} . (15.16)

Hence, the isotropy subgroup is the subgroup of the isometry group that
leaves the point p fixed. Sometimes the word stabilizer is used for the isotropy
subgroup.

The definition of a homogeneous space now goes as follows.

Definition (Homogeneous space): If for each pair of points p, q ∈ M there
exists a φ ∈ Isom(M) so that φ(p) = q, then we say that M is a homogeneous
space.

Sometimes we use the word transitive for a homogeneous space.

p

q2
q3

q4
q1

other point using an isometry (see Fig. 15.1).
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15.2 Homogeneous spaces

Figure 15.2: The relation between the Isometry group and the set of Killing vectors,
and the concepts of Lie groups and Lie algebras.

Let the dimension of Isom(M) be n and Ip(M) be m. A necessary condi-
tion for the space to be homogeneous is that n ≥ dim(M). We call M simply
transitive if M is homogeneous and n = dim(M), and multiply transitive if M
is homogeneous and n > dim(M). This implies that for a simply transitive
space, m = 0, while for a multiply transitive space , m > 0. For example, the
maximally symmetric spaces are multiply transitive.

Consider the subspace of M given by

Hp = {q ∈M |q = φ(p) for a φ ∈ Isom(M)} , (15.17)

for a point p in M . The subspace Hp is called the orbit of p under the isometry
group. Hence, all the points we can reach by the action of an isometry on p, is
in the orbit of p. If the orbit of p is the whole space M , i.e. Hp = M , then the
space is transitive (and hence homogeneous).

We have seen how the Lie algebra, Lie groups and symmetries are linked

choose a Lie algebra and then go on and define a space having this symmetry,
and that are by construction, simply transitive.

In a simply transitive space there exists a set of Killing vector fields that
obey

[ξi, ξj ] = Dk
ijξk, (15.18)

which can be taken to be the basis vectors. However, it is more convenient to
define a basis set as follows. At a point p we choose a basis ei and define a left
invariant frame by Lie transporting this basis around the space. Hence, we
require that

£ξj
ei = [ξj , ei] = 0. (15.19)

Due to the relation

£ξj
[ei, ek] =

[
£ξj

ei, ek

]
+
[
ei,£ξj

ek

]
= 0, (15.20)

the frame ei itself spans a Lie algebra. Hence, for some constants Ck
ij , we have

[ei, ej] = Ck
ijek. (15.21)

Note that for a homogeneous space these structure constants are real constants
on each orbit. This is not necessarily true for the “structure constants” we
defined for the commutator between basis vectors in an arbitrary basis.

The left invariant frame is an invariant frame under the action of ξi. The
opposite is also true; ξi is an invariant basis under the action of ej because

£ej ξi = −£ξi
ej = 0. (15.22)

together, see Fig. 15.2. Now we will go a step further and show how we can

Lie Algebra {ξi}2⏐⏐ 2⏐⏐
Lie Group Isom(M)
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Spatially Homogeneous Universe Models

Since the isometry group is the only group of this space, we might wonder if
these two Lie algebras are two different representations of the Lie algebra of
the isometry group. The answer is yes, and this can be seen as follows. Let us
for the sake of simplicity, assume that the vector fields ξi and ei coincide at a
point p. Such a choice can always be done, since they are linearly independent
by assumption and they both span the tangent space at every point. Thus
there will exist an invertible matrix αi

j such that

ej = αi
jξi, αi

j

∣∣
p

= δi
j (15.23)

In general the matrix is dependent on the position. The structure constants
are, on the contrary, not dependent on the position. In general we have

£ξj
ei = [ξj , ei] = αk

i [ξj , ξk] + ξj(α
k
i )ξk

=
(
αl

iD
k
jl + ξj(α

k
i )
)
ξk = 0, (15.24)

using eqs. (15.18) and (15.22). Hence,

Dk
ij = −βl

jξi(α
k
l ), (15.25)

where βl
j = (α−1)l

j . Similarly,

Ck
ij = −αl

jei(β
k
l ). (15.26)

Since the structure constants are not dependent on the position, we can evalu-
ate these at the point p. At p we have βl

j = αl
j = δl

j and ξi = ei. The derivative
of βk

l can be written in terms of the derivative of αk
l :

ξi(β
k
l ) = −βk

nβm
l ξi(α

n
m). (15.27)

Thus, at p this is simply

ξi(β
k
l ) = −ξi(α

k
l ). (15.28)

Hence, we can write eq. (15.26) at p as

Ck
ij = −αl

jei(β
k
l ) = ξi(α

k
j ) = −Dk

ij . (15.29)

Here we see that these structure constants are just different representations of
the same Lie algebra. If we choose frames where ξi and ei coincide at one
point, then the structure constants will differ only by a sign.

We say that the frame ej defines a left invariant frame, while the frame ξi

defines a right invariant frame.
We can therefore construct a homogeneous space as follows. Take the

structure constants of a Lie algebra, Ck
ij , and define a left invariant frame as

[ei, ej ] = Ck
ijek. (15.30)

If ωk is the dual basis to ek, then according to eq. (6.177)

dωk = −1

2
Ck

ijω
i ∧ ωj . (15.31)

These basis one-forms will also be left invariant:

£ξi
ωk = 0, (15.32)
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15.2 Homogeneous spaces

as can easily be checked. Using these invariant forms we can equip the space
with a left invariant metric given by

ds2 = gijω
i ⊗ ωj , (15.33)

where the metric coefficients gij are constants. This is a homogeneous metric on
the space. By construction, the Killing vectors of the metric are ξi, and the
basis ej is a left invariant frame.

Example 15.2 (The Poincaré half-plane) Example

[X1,X2] = X1, (15.34)

where all other commutators are zero. It is arbitrary whether we define the Killing
vectors to be the representatives of this Lie algebra or the corresponding left invariant
basis vectors. Let us choose the Killing vectors. By inspection we note that

[ξ1, ξ2] = ξ1, (15.35)

where

ξ1 =
∂

∂x
,

ξ2 = x
∂

∂x
+ y

∂

∂y
. (15.36)

We define the left invariant vector fields by

[ξi, ej ] = 0. (15.37)

By solving a set of differential equations we can find the general form of the left invari-
ant fields. One of the solutions is

e1 = y
∂

∂x
,

e2 = y
∂

∂y
. (15.38)

This frame coincides with the frame of Killing vectors at (x, y) = (0, 1). Hence,

[e1, e2] = −e1, (15.39)

which can be shown by direct calculation. The invariant one-forms are the dual to the
invariant frame and are given by

ω
1 =

dx

y
,

ω
2 =

dy

y
. (15.40)

Thus, an invariant metric can be obtained by

ds2 =
`
ω

1
´2

+
`
ω

2
´2

=
dx2 + dy2

y2
. (15.41)

This is the so-called Poincaré half-plane which we have encountered before in problem
6.3. By construction it has the symmetry group compatible with the Lie algebra given
by eq. (15.34).

Let us take a two-dimensional example and consider the two-dimensional Lie algebra
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15.3 The Bianchi models

We assume that the four-dimensional space can be foliated with three-
dimensional spatial sections

M = R× Σt. (15.42)

The R is the time variable, and each Σt is labelled with a time variable. By
construction, each Σt is a homogeneous space of dimension three.

For Σt homogeneous, we have three different possibilities

1. dim Isom(M) = 6: Σt is a multiply transitive space of maximal symme-
try. These are the FRW models.

2. dim Isom(M) = 4: Σt is a multiply transitive space with an isotropy
subgroup Ip(M) = SO(2).

3. dim Isom(M) = 3: Σt is a simply transitive space.

It turns out that except in one case, all of the spaces in category 1 and 2
t

exception is if Σt has the covering space2 R× S2. Apart from this single case,
we can consider a space in categories 1 and 2 as a special symmetric case of
category 3. We will therefore first consider the category 3 case: We will assume
that Σt is a simply transitive space.

We can therefore wonder: What possibilities do we have for Σt under these
conditions? The answer to this question depends upon how many differ-
ent Lie algebras we have in three dimensions. A classification of the three-
dimensional Lie algebras is therefore necessary.

The classification of the three-dimensional Lie algebra is called the Bianchi
classification, and each Lie algebra is labelled by a number I-IX. By using one
of these Lie algebras, we can construct a spatially homogeneous cosmological
model. The corresponding cosmological model is called a Bianchi model. If, for
example, a Bianchi model has the symmetry from the type III algebra, we say
that it is a Bianchi type III model.

The Bianchi models are listed in terms of their structure constants in Table
15.1. In column 2 and 3 the Bianchi types are written in terms of the so-called
Behr decomposition in which the structure constants are decomposed in terms
of the trace-free part and trace part

Ck
ij = εijln

lk + al

(
δl

iδ
k
j − δl

jδ
k
i

)
, (15.43)

where ai is the “vector” part of the Lie algebra. The trace of Ck
ij is

Cj
ij = 2ai. (15.44)

We can always choose a basis such that ai = aδ3
i. This vector is written in the

j
ij = 0 for class

A models. The ones with Cj
ij �= 0 are called class B models.

There are a couple of things we can note.
2If M is a covering space of H , then H = M/Γ where Γ is a discrete group. For more details

of how this quotient is defined, see the later section 15.6.

We have seen how we can construct a homogeneous space, given a Lie algebra

The Bianchi models are cosmological models that have spatially homogeneous
sections, invariant under the action of a three-dimensional Lie group.

In cosmology we are mainly interested in three-dimensional spatial sections.

second column in Table 15.1. We usually call the models with C

have a subgroup H ⊂ Isom(M) such that H acts simply transitive on Σ . The
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15.3 The Bianchi models

Bianchi Type ai n Structure constants
I 0 0 Ci

jk = 0

II 0 diag(1, 0, 0)
C1

23 = −C1
32 = 1,

rest of Ci
jk = 0

III 1
2δ3

i − 1
2A

C1
13 = −C1

31 = 1,
rest of Ci

jk = 0

IV δ3
i diag(1, 0, 0)

C1
13 = −C1

31 = 1,
C1

23 = −C1
32 = 1,

C2
23 = −C2

32 = 1,
rest of Ci

jk = 0

V δ3
i 0

C1
13 = −C1

31 = 1,
C2

23 = −C2
32 = 1,

rest of Ci
jk = 0

VIh h̃
2 δ3

i
1
2 (h̃− 2)A

C1
13 = −C1

31 = 1,

C2
23 = −C2

32 = (h̃− 1),
rest of Ci

jk = 0

VIIh h̃
2 δ3

i diag(−1,−1, 0) + h̃
2 A

C2
13 = −C2

31 = 1,
C1

23 = −C1
32 = −1,

C2
23 = −C2

32 = h̃,
rest of Ci

jk = 0

VIII 0 diag(−1, 1, 1)

C1
23 = −C1

32 = −1,
C2

31 = −C2
13 = 1,

C3
12 = −C3

21 = 1,
rest of Ci

jk = 0

IX 0 1 Ci
jk = εijk

where A =

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ and 1 denotes the identity matrix. The parameter h̃ is

related to the group parameter h as follows.

VIh : h = − h̃2

(h̃− 2)2
, VIIh : h =

h̃2

4− h̃2

Table 15.1: The classification scheme of the 3-dimensional Lie algebras.
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Spatially Homogeneous Universe Models

• Bianchi type I corresponds to flat spatial sections. Thus, it generalizes
the flat FRW model.

• Bianchi type IX corresponds to the Lie algebra so(3).

• The class A models are: I, II, VI0, VII0 and IX.

• We have VI−1=III.

The Bianchi models are therefore constructed as follows. For the specific
Bianchi type, we choose an invariant basis {ωi} that satisfies

dωk = −1

2
Ck

ijω
i ∧ ωj . (15.45)

The Bianchi model of the corresponding type can now be written

ds2 = −dt2 + gij(t)ω
i ⊗ ωj . (15.46)

This metric will in general have the symmetries of the corresponding Bianchi
group. This metric approach is useful when we would like to introduce the
Lagrangian and Hamiltonian formulations for the Bianchi models. This has to
be done with care though, because it turns out that the canonical formulation
only works well for the class A models. This fact is intimately related to the
fact that the the class A models are “trace-free”.

The Kantowski-Sachs model

The Kantowski-Sachs model is the only spatially homogeneous model that
has not a three-dimensional transitive subgroup. It has spatial sections R×S2

with a four dimensional symmetry group. Its metric can be written as

ds2 = −dt2 + a(t)2dz2 + b(t)2(dθ2 + sin2 θdφ2). (15.47)

The functions a(t) and b(t) are functions to be determined by the Einstein field
equations.

Example 15.3 (A Kantowski-Sachs universe model)Example

universe. Using the metric (15.47), we can write the vacuum equations as

2
ȧḃ

ab
+

ḃ2

b2
+

1

b2
= Λ

2
b̈

ab
+

ḃ2

b2
+

1

b2
= Λ

ä

a
+

b̈

b
+

ȧḃ

ab
= Λ. (15.48)

Note that there is a special solution where b(t) = b0 = constant and

1

b2
0

= Λ,
ä

a
= Λ. (15.49)

This equation can be solved to yield

a(t) = e
√

Λt. (15.50)

We will now solve Einstein’s field equation for one special case for a Kantowski-Sachs
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15.4 The orthonormal frame approach to the non-tilted Bianchi models

Thus the metric for this solution is

ds2 = −dt2 + e2
√

Λtdz2 +
1

Λ
(dθ2 + sin2 θdφ2). (15.51)

This metric describes a universe with two spherical dimensions having a fixed size
during the cosmic evolution. The third dimension, on the other hand, is expanding
exponentially. A closer analysis of this solution shows that this solution is unstable,
hence it is unphysical and must be considered as a mathematical artifact.

15.4 The orthonormal frame approach

A very useful and powerful way to study the dynamical behaviour of the
Bianchi models is by using orthonormal frames. This approach was first ap-
plied to the Bianchi models in a pioneering work by Ellis and MacCallum
[EM69].

We will assume that the energy-momentum tensor has the form

Tμν = ρuμuν + phμν + πμν (15.52)

where uμ is the four-velocity of the fluid flow. We will also assume that the
four-velocity is orthogonal to the hypersurfaces Σt spanned by the action of
the isometry group. If this is the case for a model, then we say that the fluid is
non-tilted. If the fluid four-velocity is not orthogonal to the hypersurfaces Σt,
then the fluid is tilted.

The above assumption implies that the vorticity tensor and the four-accele-
ration of the fluid are zero:

ωμν = 0, uμ;νuν = 0. (15.53)

This allows us to use the equations of motion derived in chapter 14. We split
the expansion tensor into trace and trace-free parts

θμν = uμ;ν =
1

3
θhμν + σμν . (15.54)

The commutator functions3 cα
μν are given by

[eμ, eν ] = cα
μνeα. (15.55)

Ωμν = −Ωνμ which makes it possible to write the connection coefficients in
terms of the structure coefficients

Γαμν =
1

2
(gαβcβ

νμ + gμβcβ
αν − gνβcβ

μα). (15.56)

We note that, since the vector uμ is orthogonal to the hypersurfaces Σt, we
have θμν = Γt

μν and hence

ct
ta = ct

ab = 0. (15.57)
3We will use the notation where lowercase c’s in the structure coefficients mean they are gen-

eral functions while uppercase mean they are real constants.

to the non-tilted Bianchi models

These functions are related to the connection coefficients via eq. (6.137) on
page 127. In an orthonormal frame, the rotation forms possess the anti-symmetry
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For the structure coefficients ca
tb, we can write

ca
tb = − (Γa

tb − Γa
bt) = −Γt

ab + Γa
bt. (15.58)

The first part of the right-hand side is symmetric in a, b and is equal to the
expansion tensor: Γt

ab = θab. The antisymmetry of the rotation forms implies
that

Γabt = −Γbat ≡ εabcΩ
c (15.59)

where we have defined a rotation vector Ωc by

Ωα =
1

2
εαβγδuβeγ · ėδ. (15.60)

It is easy to check that this vector is spatial and that eq. (15.59) holds. The
structure coefficients ca

tb can therefore be written as

ca
tb = −θa

b + εa
bcΩ

c. (15.61)

The vector Ωc can be interpreted as the local angular velocity, in the rest-frame
of an observer with four-velocity uμ, of a set of Fermi-propagated axes with
respect to the spatial frame {ea}.

The remaining structure coefficients are all purely spatial and hence, they
must correspond to one of the Bianchi Lie algebras. We write the spatial struc-
ture coefficients as

ck
ij = εijln

lk + al

(
δl

iδ
k
j − δl

jδ
k
i

)
, (15.62)

where nlk is a symmetric matrix. Note that these structure coefficients are con-
stants along each orbit of transitivity. Thus nlk and ai are only functions of
time. The spatial frame {ea} will be a set of left invariant vectors on the hy-
persurfaces Σt. In this orthonormal approach we let the structure coefficients
vary as a function of time. The type of Lie algebra therefore has to be classified
in terms of invariant properties of the matrix nlk and the vector ai.

We can find evolution equations for these functions by noting that for all
vectors, the Jacobi identity eq. (15.1) holds. In particular, it must hold for the
set of vectors (u, ea, eb). Thus we must have

0 = [u, [ea, eb]] + [ea, [eb,u]] + [eb, [u, ea]]

= [u, cμ
abeμ]] + [ea, [eb, c

μ
bteμ] + [eb, c

μ
taeμ]

=
(
u(cν

ab) + cν
tμcμ

ab + cν
aμcμ

bt + cν
bμcμ

ta

)
eν . (15.63)

Using eq. (15.57) we get the identity

u(ck
ab) + ck

tdc
d
ab + ck

adc
d
bt + ck

bdc
d
ta = 0. (15.64)

Applying the Jacobi’s identity to the three spatial vectors, and then contract-
ing, we get

nijai = 0. (15.65)

Using eqs. (15.57), (15.61), (15.62) and (15.65) we can find the evolution equa-
tions for the structure constants. Taking the trace of eq. (15.64), we get the
propagation equation for ai

u(ai) +
1

3
θai + σija

j + εijkajΩk = 0. (15.66)
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Class Type a n1 n2 n3

A I 0 0 0 0
II 0 + 0 0

VI0 0 + − 0
VII0 0 + + 0
VIII 0 + + −
IX 0 + + +

B V + 0 0 0
IV + + 0 0

VIh + + − 0
VIIh + + + 0

Table 15.2: The Bianchi types in terms of the algebraic properties of the structure
coefficients.

and the trace-free part of eq. (15.64) is

u(nab) +
1

3
θnab + 2nk

(aεb)klΩ
l − 2nk(aσ k

b) = 0. (15.67)

In order that the structure coefficients eq. (15.62) shall correspond to a Lie
algebra, the vector ai must, according to eq. (15.65), be in the kernel4 of the
matrix nij . For the class A model, ai = 0, and this equation is identically
satisfied, and for the class B models, ai must be an eigenvector of the matrix
nij with zero eigenvalue. In any case, since nij is a symmetric matrix, we can
diagonalise it using a specific orientation of the spatial frame. Thus, without
any loss of generality we can assume that

nij = diag(n1, n2, n3), ai = (0, 0, a), (15.68)

by a suitable choice of frame. The Jacobi identity then implies n3a = 0.
The eigenvalues of a matrix are invariant properties of a matrix under con-

jugation with respect to rotations. The Bianchi models can now be charac-
terised by the relative signs of the eigenvalues n1, n2, n3 and a. In Table 15.2
the classification of the Bianchi types in terms of these eigenvalues is listed.
For the types VIh and VIIh the group parameter is defined by the equation

hn1n2 = a2. (15.69)

In this table III=VI−1.
Note that for some of the Bianchi types, two or three eigenvalues are equal

to zero. Hence, for these we have unused degrees of freedom to choose the
orientation of the spatial frame. For example, the type I case has vanishing
structure coefficients. Thus we have an unused SO(3) rotation for the spatial
frame. Since the shear is symmetric, we can choose to diagonalise σab instead.
So for a Bianchi type I universe model we can without any loss of generality choose
the shear to be diagonal.

Einstein’s Field Equations for the non-tilted Bianchi

We can use the results from the previous chapter to find the field equations
for the Bianchi type universe models. The Ricci tensor can be found from

4Consider a matrix M and a vector v. The vector v is in the kernel of M if and only if Mv = 0.

type universes

425



Spatially Homogeneous Universe Models

contracting the Riemann tensor eq. (7.45). Using the four-dimensional Ricci
tensor we can show that the tt-equation yields Raychaudhuri’s equation, eq.
(14.31), and the spatial ab-equations yield the shear propagation equations, eq.

ta-equations yield a non-trivial constraint:

3abσba − εabcn
cdσb

d = 0. (15.70)

All the spatial derivatives vanish because the structure coefficients are con-
stant along each surface of transitivity. Hence, the three-dimensional Ricci
tensor is given by

(3)Rab = Γd
abΓ

c
dc − Γd

acΓ
c
db − cd

cbΓ
c
ad = Γd

abΓ
c
dc − Γd

bcΓ
c
ad, (15.71)

where we have used eq. (6.137). Using equations (15.56) and (15.62) we get

(3)Rab = −2εcd
(anb)cad + 2nadn

d
b − nnab − hab

(
2a2 + ncdn

cd − 1

2
n2

)
, (15.72)

where n = nd
d. In equations (14.40), the overdot is defined by ˙ = uμ∇μ, thus

we have

σ̇ab = u(σab)− Γμ
aνσμbu

ν − Γμ
bνσaμuν. (15.73)

Using eq. (15.59) we can write this as

σ̇ab = u(σab)− 2σd
(aεb)cdΩ

c. (15.74)

Thus, using equations (14.40), (14.31) and (14.34), Einstein’s field equations
imply the shear propagation equations

u(σab) + θσab − 2σd
(aεb)cdΩ

c + (3)Rab − 1

3
hab

(3)R = κπab, (15.75)

Raychaudhuri’s equation

θ̇ +
1

3
θ2 + σabσ

ab +
κ

2
(ρ + 3p)− Λ = 0, (15.76)

and the Friedmann equation

1

3
θ2 =

1

2
σabσ

ab − 1

2
(3)R + κρ + Λ, (15.77)

where

(3)R = (3)Ra
a = −

(
6a2 + ncdn

cd − 1

2
n2

)
. (15.78)

These are the field equations for the Bianchi type universe models in the or-
thonormal frame approach. There is an interesting thing worth noting. It may
be shown that (3)R ≤ 0 for all Bianchi types except for type IX. Dividing the
Friedmann equation by θ2/3 leads to

1 = Σ2 + Ωk + Ωρ + ΩΛ, (15.79)

(14.40), and the generalised Friedmann equation, eq. (14.34). The off-diagonal
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where

Σ2 =
3

2

σabσ
ab

θ2
, Ωk = −3

2

(3)R

θ2
,

Ωρ =
3κρ

θ2
, ΩΛ =

3Λ

θ2
. (15.80)

The Friedmann equation (with Λ ≥ 0) implies that for all Bianchi types except
for IX, the expansion-normalised shear, Σ, is bounded

0 ≤ Σ2 ≤ 1. (15.81)

Equality in the upper limit in the above equation happens only in the Kasner
vacuum solutions; they have maximal possible shear. For all other models,
this is a strict inequality.

Example 15.4 (The Bianchi type V universe model) Example

vanishing matrix nlk. We will choose an orientation of the spatial frame so that it aligns
with the vector ai. Hence, ai = aδi

3 and nlk = 0. We will also choose a universal time
gauge, u = ∂

∂t
.

Jacobi’s identity eq. (15.65), and the nlk propagation equation will now be identi-
cally satisfied. The constraint eq. (15.70), leads to the three equations

aσ31 = aσ32 = aσ33 = 0. (15.82)

Since a �= 0 (or else we would not have a type V algebra), we get

σ31 = σ32 = σ33 = 0. (15.83)

We still have a rotation with respect to the axis defined by e3 which we can freely
choose. We can use this freedom of rotation to set σ12 = 0 as well. Hence, there will be
only two non-zero shear components

σab = diag(σ+,−σ+, 0) (15.84)

since σa
a = 0. From the ai-propagation equations eq. (15.66), we get

Ω2 = Ω1 = 0 (15.85)

from the 1- and 2-equations, and for the 3-equation we get

∂a

∂t
+

1

3
θa = 0. (15.86)

The three-curvature turns simply into

(3)Rab = −2a2hab. (15.87)

This implies that the trace-free part of the three-curvature vanishes:

(3)R〈ab〉 = −2a2h〈ab〉 = 0. (15.88)

The anisotropic stress tensor is now to some extent constrained by the shear propaga-
tion equation, eq. (15.75). One possibility is that the anisotropic stress tensor vanish
identically: πab = 0. Consider this to be the case.

The shear equation now reduces to

σ+Ω3 = 0 (15.89)

Let us consider the Bianchi type V universe model. This model is of class B with a
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from the off-diagonal equations and

∂σ+

∂t
+ θσ+ = 0 (15.90)

from the diagonal equations. Assuming that σ+ = 0 leads to the isotropic negatively
curved FRW universe. Hence, assuming anisotropy we have to set Ω3 = 0.

The remaining equations, Raychaudhuri’s equation and the Friedmann equation
have also got to be satisfied. The full set of equations has simplified considerably and
there remains to integrate these for a particular type of fluid. The case of a vacuum
fluid is considered in problem 15.3.

15.5 The 8 model geometries

The connection between the various Bianchi types and the geometry of the
space is interesting but highly non-trivial. The classification of three dimen-

they are sometimes referred to as the “Thurston geometries” [Thu97]. They
are defined as follows.

Definition: Model Geometry (à la Thurston) A pair (M, G) with M a con-
nected and simply connected manifold, and G is a group acting transitively
on M , is called a model geometry if the following conditions are satisfied:

1. M can be equipped with a G-invariant Riemannian metric.

2. G is maximal; i.e. there does not exist a larger group H ⊃ G which acts
transitively on M and requirement 1 is satisfied.

3. There exists a discrete subgroup Γ ⊂ G such that M/Γ is compact; i.e.
M allows for a compact quotient.

The last item, is a technical issue which we will discuss in section 15.6.
Some examples of such model geometries can be found among the maxi-

mally symmetric spaces. Since they are maximally symmetric, 1 and 2 is triv-
ially satisfied. 3 is more subtle, but it can be shown that Sn, En and Hn with
their maximally symmetric isometry groups are model geometries for all n.

A question now arises: What are the model geometries in dimension three?
In dimension two, the maximally symmetric spaces are the only model geome-
tries. In three dimensions, we will have 8 different model geometries. These
are

S3 E3 H3

E1 × S2 E1 ×H2

˜SL(2, R) Nil

Sol

The first three, are already familiar to us. These are the maximally symmetric
spaces that we discussed in section 7.6.

geometries. These geometries were defined by W.P. Thurston, and therefore
sional spaces is still unsettled, but central in the discussion is the model
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E1 × S2: The product between a sphere and a line. The group is in this case
four-dimensional, but as we already mentioned, it does not have a simply
transitive subgroup. Hence, it is not one of the Bianchi models. An invariant
metric can be written

ds2 = dz2 + a2
(
dθ2 + sin2 θdφ2

)
, (15.91)

where a is constant.

E1 × H2: The product between the hyperbolic plane and a line. The group
in this case is also 4 dimensional, but contains a simply transitive subgroup of
Bianchi type III. An invariant metric can be written as

ds2 = a2 dx2 + dy2

y2
+ dz2. (15.92)

˜SL(2, R): The covering space of the matrix Lie group SL(2, R). The group of
isometries is of dimension 4 but contains a three-dimensional simply transi-
tive subgroup of Bianchi type VIII or III. An invariant metric is

ds2 = a2 dx2 + dy2

y2
+ b2

(
2dz +

dx

y

)2

. (15.93)

Nil: Nilgeometry, or sometimes also called the Heisenberg group. The group
is four-dimensional with an invariant metric

ds2 = dx2 + dy2 + a2

[
dz +

1

2
(ydx− xdy)

]2
. (15.94)

Sol: Solvegeometry. The group is 3 dimensional and simply transitive. An
invariant metric is

ds2 = e2zdx2 + e−2zdy2 + a2dz2. (15.95)

Example 15.5 (The Lie algebra of Sol) Example

Bianchi classification. Hence, Sol which has a three dimensional isometry group, must
correspond to one of the Bianchi types. The invariant metric is (choosing a = 1)

ds2 = e2zdx2 + e−2zdy2 + dz2. (15.96)

Let us try the invariant basis

ω
1 = ez

dx, ω
2 = e−z

dy, ω
3 = dz. (15.97)

We calculate their exterior derivatives to find the structure constants, using eq. (6.177).
The exterior derivatives are

dω
1 = −ω

1 ∧ ω
3

dω
2 = ω

2 ∧ ω
3

dω
3 = 0. (15.98)

We have seen that all the possible three-dimensional Lie algebras are classified in the
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Model Geometry dim(G) Bianchi type

E3 6
I

VII0
S3 6 IX

H3 6 V
VIIh

E1 × S2 4 KS
E1 ×H2 4 III

˜SL(2, R) 4
VIII
III

Nil 4 II
Sol 3 VI0

Thus the non-zero structure constants are true constants in this case:

C1
13 = −1, C2

23 = 1. (15.99)

0 geometry.

Each Bianchi model defines a transitive group GB on some three dimen-
sional simply connected space Σ. Hence, by going to a maximal group G that
acts on Σ such that GB ⊂ G, the pair (Σ, G) will satisfy the first two condi-
tions for a model geometry. It can by construction, only fail to satisfy the third
condition; it does not necessarily allow a compact quotient. Note that there
can be two different simply transitive groups G1 and G2 such that G1 ⊂ G
and G2 ⊂ G. This can happen in all the cases where the model geometry has
a group of dimension larger than three. For example, the Euclidean space, E3,
is both Bianchi type I invariant and VII0 invariant. The question of a compact
quotient will be addressed in the next section.

Let us finish this section with a table that gives the relation between the
Listed are also the

dimension of the largest symmetry group possible (the group G). The types
IV and VIh for h �= 0,−1 are not on the list. Thus, this means that there does
not exist a compact quotient of these geometries. Interestingly, the Bianchi
type III, can correspond to two different model geometries, namely E1 × H2

and ˜SL(2, R).

15.6 Constructing compact quotients

In this section we will give a short introduction to how we can construct com-
pact quotients of the model geometries. The method is highly general, so we
will not restrict ourselves to the three dimensional case.

we construct quotients of spaces, we use this property of the isometry group.
Let us start out by constructing a compact quotient of the Euclidean line to
illustrate the idea. The Euclidean line has the metric

ds2 = dx2, (15.100)

Table 15.3: The relation between the model geometries and the Bianchi type.

Comparing this with the Table 15.1 we see that Sol is a Bianchi type VI

Bianchi types and the model geometries (see Table 15.3).

Using an isometry you can travel from one to another equivalent point. When
The isometry group tells us what points in our spacetime are “equal”.

430



15.6 Constructing compact quotients

with the Killing vector field

ξ =
∂

∂x
. (15.101)

The isometries are therefore translations in the x-direction:

x �−→ x + 
, (15.102)

for any 
 ∈ R. This isometry says that any point on the line is equivalent to
any other. This we can use to construct a compact space. What we do is to say
that every point that is separated by the distance 
 for some 
 �= 0, is the same
point. Thus we identify the points x and x + 
. The variable x now turns into
an angular variable, and by introducing the variable θ ∈ [0, 2π〉, we can write
the metric after the identification as

ds2 =

(



2π

)2

dθ2. (15.103)

Hence, is the circle with radius R = �
2π . From the infinite

1 we have constructed a compact quotient which is a circle.
We will now leap to the general case; we will give a recipe of how we in

general can construct such compact quotients. We will thereafter go on and
construct some compact spaces using this recipe.

Recipe for constructing Compact Quotients

Consider a space M with a group G acting transitively on M . This could well
be the isometry group, but it does not necessary need to be so. However, in
most practical problems this will be the case, as it is in this book.

1. Find a discrete subgroup Γ ⊂ G which acts properly discontinuous
on

2. Construct the quotient M/Γ, given by the identification of points in M
under the action of Γ. Hence, define an equivalence relation ∼: p ∼ q if
there exists a γ ∈ Γ such that γ(p) = q. The quotient M/Γ is then the
quotient M/ ∼.

3. If the action of Γ is free, then M/Γ is a smooth manifold.

That the action is free means that the Γ “moves all points”. Hence, for all
p ∈ M there does not exist an element γ ∈ Γ, apart from the identity element,
such that γ(p) = p.

Properly discontinuous mapping means that for any point p ∈ M , there
exists a neighbourhood U of p such that γ1(U) ∩ γ2(U) = ∅ for γ1, γ2 ∈ Γ,
except for γ1 = γ2.

For the case of the Euclidean line, E, with G = R, we can choose the dis-
crete subgroup Γ = Z. This group identifies any point x ∈ Z with the lattice
(or grid) L1(x) = {x + 2πnR|n ∈ Z} for any R > 0.

For the higher dimensional Euclidean spaces, we can similarly construct
higher dimensional tori. Since En is translation invariant, given a basis {ei},
we can define the lattice

Ln = {v ∈ Rn|v = viei, v
i ∈ Z} ∼= Zn. (15.104)

EEuclidean line
the quotient

M .
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Figure 15.3: How to construct a torus from a lattice in the plane.

This lattice defines an action Γ which has the right properties. Therefore we
set Γ ∼= Ln and identifies points in the Euclidean space to obtain the torus:

Tn = En/Ln (15.105)

Topologically, the torus Tn is a product of circles,
(
S1
)n , and hence can be

parametrised by n angular variables. The torus Tn is a compact quotient of the
Euclidean space. It is, as the Euclidean space, flat; all of the curvature tensors
are inherited from the original space. After the identification is obtained, we
can deform the torus such that it is no longer flat. The torus T2 embedded in
E3 is an example of a non-flat torus.

Example 15.6 (Lens spaces)Examples
The 3-sphere, S3

3.
We start by considering S3 embedded in the complex 2-dimensional space, C2:

S3 =
˘
(z1, z2) ∈ C

2
˛̨
|z1|2 + |z2|2 = 1

¯
. (15.106)

We note that the mapping zj �−→ zje
iλ for λ ∈ R leaves the sphere invariant, and

hence, is an isometry. We go on and define a subgroup Γp,q generated by the mapping

(z1, z2) �−→ (z1 exp(2πi/p), z2 exp(2πiq/p)) (15.107)

where p and q are integers with no common divisors. The spaces defined by

L(p, q) = S3/Γp,q , (15.108)

are called Lens spaces. These spaces are compact quotients of S3 and are manifolds.
Note that L(2, 1) is the same as projective space, P3.

Example 15.7 (The Seifert-Weber Dodecahedral space)
3

it must admit a compact quotient. This result might be surprising perhaps, but the
hyperbolic space admits a huge number of compact quotients. In fact, the hyperbolic
space turns out to be the richest of all the 8 model geometries. Contrary to the other
model geometries, all of the possible compact quotients have not been classified.

For the two-dimensional case, the idea is illustrated in Fig. 15.3.

cally different spaces by taking the quotient of S
, is already compact, but we can construct a whole series of topologi-

We have already claimed that the hyperbolic space, H , is a model geometry, thus
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Figure 15.4: The Seifert-Weber dodecahedral space.

We will mention one of the compact hyperbolic spaces here as an example. It is
called the Seifert-Weber Dodecahedral space and was the first known example of a three-
dimensional compact hyperbolic manifold. We use a solid dodecahedron as a “funda-

in pairs; each member of the pair is opposite to the other. Twist one of them by 3/10
and identify the two pentagons in that pair. Do this for all pairs of the dodecahedron.
It can be shown that the resulting space is a manifold and is a quotient of H3. Hence,
we have constructed a compact hyperbolic manifold.

In principle, there is nothing in Einstein’s field equations that forbid us to
make such identifications. On the contrary, Einstein’s field equations are local;
they tell us only about the local geometry. Regarding the global properties
of spacetime, very much is left unsaid. Hence, if we find by local measure-
ments that the local geometry is flat, say, then, even though we would assume
that the geometry is flat everywhere, could not say anything precise about the
global structure of the universe. We do not know if the universe is infinite,
like an infinite sheet, or compact like a flat torus. To find out about the global
topology of the universe, we have to make different measurements which can
reveal to us the global structure of the universe we live in.

Problems

15.1. A Bianchi type II universe model

type II Lie algebra is defined by the single non-trivial commutator

[X,Y] = Z. (15.109)

Using the orthonormal frame approach we will derive the equations of motion
for this model, and find a particular solution.

(a) Let eμ be an orthonormal frame. The vectors X, Y and Z are linearly
independent, so there exists coefficients λI

j such that ei = λI
iXI where

XI = (X,Y,Z) and i are spatial indices. For simplicity, choose e3 = λ3
3Z.

Show that

[e1, e2] = ke3, (15.110)

mental cube”, see Fig. 15.4. Each face of a dodecahedron are pentagons, and they come

In this problem we will study the Bianchi type II universe model. The Bianchi

3
10
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where k is a constant on each hypersurface. Hence, since the vectors
ei form a spatial basis, there will be a preferred direction in the spatial
hypersurfaces. Therefore we choose the orientation of the frame such
that e3 points in this direction. Explain that the most general form of the
structure constants Ck

ij under the above assumptions is

Ck
ij = εijln

lk, nlk = diag(0, 0, n), n �= 0. (15.111)

(b) We will assume that the matter content in this universe is that of non-
tilted dust and Λ = 0. Hence,

Tμν = ρuμuν (15.112)

where u = e0. Show that the (0, i) equations imply that

σ13 = σ23 = 0. (15.113)

This implies that the only non-zero off-diagonal shear component is σ12.
However, we still have an unused rotation of the vectors e1 and e2 (we
have only fixed the direction of e3) with respect to the axis defined by e3.
Thus we can use this freedom to diagonalise σab completely. Hence, we
can without loss of generality assume that the shear is diagonal.
Show, using the equations for nab, that we must have

Ωa = 0. (15.114)

(c) Set σab = diag(σ+ +
√

3σ−, σ+ −
√

3σ−,−2σ+) (so that σab is trace-free).
Choose the universal time gauge u = ∂

∂t . Set down the equations of
motion for n, σ±, ρ. Write also down Raychaudhuri’s equation and the
generalised Friedmann equation in these variables.

(d) We will now find a particular solution to these equations. We will search
for a solution where the variables have the time-dependence

θ ∝ t−1

σ± ∝ t−1

n ∝ t−1

ρ ∝ t−2. (15.115)

To avoid that n = 0 (which would not yield a Bianchi type II spacetime)
we must assume that σ− = 0. Find a solution of this form. The obtained
solutions is called the Collins- Stewart solution for dust. Show that the
solution corresponds to the metric

ds2 = −dt2 + t3/2(dx2 + dy2) + t

(
dz +

1

2
xdy

)2

. (15.116)

15.2. A homogeneous plane wave
We will consider a solution of Einstein’s field equations given by

ds2 = −dt2 + t2dx2 + t2re2rx
[
eβ(ω2)2 + e−β(ω3)2

]
, (15.117)

where

ω2 = cos[b(x + ln t)]dy + sin[b(x + ln t)]dz,

ω3 = − sin[b(x + ln t)]dy + cos[b(x + ln t)]dz (15.118)
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and β, r and b are constants satisfying

b2 sinh2 β = r(1 − r). (15.119)

(a) Show that this metric has a null Killing vector given by

ξ =
∂

∂v
(15.120)

where v = te−x. (Hint: introduce the coordinates v = te−x, u = tex)
(b) Introduce an orthonormal basis ημ, where

η0 = dt, η1 = tdx,

η2 = trerxeβ/2ω2, η3 = trerxe−β/2ω3. (15.121)

Show that the structure constants obey the relation

CA
0B = CA

1B, A, B = 2, 3. (15.122)

Find the rest of the structure constants. What is ai = − 1
2Cj

ij?

(c) Show that the matrix nab is

nab =
1

t
diag(0,−beβ, be−β). (15.123)

Show further that the volume expansion tensor is

θa
b =

1

t

⎡⎣1 0 0
0 r −b coshβ
0 −b coshβ r

⎤⎦ (15.124)

and

Ωa = b sinhβ δa
1. (15.125)

(d) Is this spacetime spatially homogeneous? If so, to which Bianchi type
does it belong?
The metric above, in fact, satisfies the vacuum Einstein field equations
(Λ = 0) and describes a gravitational plane wave. Since this spacetime
also, in addition to the 3 spatially Killing vectors spanning the Bianchi
type, has a null Killing vector, it is homogeneous in spacetime (not only
in the spatially directions).

15.3. Vacuum dominated Bianchi type V universe model

V universe model with a cosmological constant. Also, write down the metric
of the resulting solutions.

15.4. The exceptional case, VI∗−1/9

has to be treated separately. This is called the exceptional case.

constraint. Consider the class B models where ab = aδb
3. Assume also

that a choice of frame is chosen so that nab is diagonal. Show that this
constraint leads to

3aσ33 + (n1 − n2)σ21 = 0,

3aσ31 + n2σ32 = 0,

3aσ32 − n1σ31 = 0. (15.126)

Use the results of example 15.4 and solve Einstein’s field equations for a type

In this problem we will consider a special case of the Bianchi models which

(a) For all Bianchi models except type I, the constraint (15.70), is a non-trivial
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(b) This means that in general, three components of the shear have to be
constrained. However, show that in the special case of

9a2 + n1n2 = 0, (15.127)

one of the above constraints vanishes identically (they are not linearly
independent). Hence, we can have an additional shear degree of freedom
in this case. According to eq. (15.69), this happens in type VI−1/9. Models
for which this extra shear degree of freedom is included are denoted with
a star; i.e. VI∗−1/9.

15.5. Symmetries of hyperbolic space
3

coordinates:

ds2 =
1

z2
(dx2 + dy2 + dz2). (15.128)

(a) Show that the following vector fields are Killing vector fields.

ξ1 = ∂
∂x , ξ2 = ∂

∂y , ξ3 = y ∂
∂x − x ∂

∂y ,

ξ4 = x ∂
∂x + y ∂

∂y + z ∂
∂z . (15.129)

Indicate on a figure the flow of each of these vector fields.

(b) Verify that the Killing vectors ξ1, ξ2, and ξ4 are non-vanishing every-
where (except possibly at the boundary), while ξ3 vanishes along a line.
Also, verify that the set {

ξ1, ξ2, h̃ξ3 + ξ4

}
where h̃ is any real number, forms a basis.

(c) Show that for h̃ = 0, and h̃ �= 0, this set of Killing vectors corresponds to
the Bianchi type V, and VIIh Lie algebras, respectively.

(d) Find the corresponding left-invariant frame {e1, e2, e3}which coincides
with the frame of Killing vectors given in (b) at (x, y, z) = (0, 0, 1).
Indicate on a figure the flow of each of the left-invariant basis vectors.

(e) Find the corresponding left-invariant one-forms.

15.6. The matrix group SU(2) is the sphere S3

entries given by

SU(2) =
{
A ∈ GL(2, C)|A†A = 1, detA = 1

}
,

and the three-sphere embedded in R4,

S3 =
{
(X, Y, U, V ) ∈ R4|X2 + Y 2 + U2 + V 2 = 1

}
.

Here, dagger † means the adjoint matrix; i.e. transpose and complex conju-
gate.

Given a 2 × 2 matrix A with complex entries. What are the conditions on the
entries of the matrix in order for the matrix to be in SU(2)?

We will in this problem consider the hyperbolic space, H , given in Poincaré

We will in this problem consider the group of 2 × 2 matrices with complex
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We consider the matrix

A =

[
X + iY U + iV
−U + iV X − iY

]
.

Show that this matrix is in SU(2) if and only if (X, Y, U, V ) are coordinates on
the three-sphere S3.

This implies, firstly, that the group SU(2) is a manifold since S3 is one, and,
secondly, the sphere S3 admits a group structure. This is directly related to
the fact that the sphere admits a simply transitive group; the sphere is acting
simply transitively on itself. Verify that the Bianchi type IX algebra, corre-
sponding to the sphere S3, is the same as the Lie algebra of SU(2).

15.7. Left-invariant one-forms of Bianchi type VIII and IX

(a) Consider the set of one-forms:

ω1 = a

(
dx− dz

y

)
,

ω2 =
b

y
(cosx dy + sinx dz) ,

ω3 =
c

y
(− sinx dy + cosx dz) . (15.130)

Verify that these one-forms can be considered to be a set of left-invariant
one-forms for the Bianchi type VIII model. Assume that these one-forms
are orthonormal. In general, there will be only 3 Killing vectors for the
Bianchi type VIII metric. Under what conditions will the type VIII met-

additional rotational Killing vector?

(b) Consider the set of one-forms given by eq. (14.116) on page 407. Verify
that these one-forms are indeed left-invariant one-forms on the Bianchi
type IX Lie group.

ric simplify to the Thurston geometry eq. (15.93), and hence, acquire an
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16
Israel’s Formalism:

tensor along a surface. For example, what is the connection between the
curvature properties for the interior Schwarzschild solution and the exterior
Schwarzschild solution? Here, along the boundary of some surface, the en-
ergy density experiences a jump discontinuity. Another analogous scenario is
for example a shock wave propagating outwards from an exploding star. In
models of such shock waves the density can be infinite.

To investigate these problems, W. Israel [Isr66] developed a mathematical
framework which is called Israel’s formalism.

16.1 The relativistic theory of surface layers

Consider a spacetime which is separated into two different regions. This can
for instance be the interior and the exterior region of a star, or it can be a
domain wall dividing the spacetime in two. Assume therefore that spacetime
M is split in two,

M = M+ ∪M−, (16.1)

with a common boundary Σ:

∂M+ ∩ ∂M− = Σ. (16.2)

This is illustrated in Fig. 16.1.
Assume also that this surface is a hypersurface of dimension 3. In the inte-

rior of each of the two different regionsM±, Einstein’s equations are assumed
to be satisfied. Thus

E±μν = κT±μν , (16.3)

A question that often arises in gravitational theory is what happens to the
geometry of space when there is a jump discontinuity in the energy-momentum

The Metric Junction Method



Figure 16.1: The hypersurface Σ divides the spacetime into two regions
M+ and M−.

where + and−means the tensor evaluated inM+ andM−, respectively. The
line-elements of the two regions are given by

ds2 = g±μνdxμ
±dxν

±, (16.4)

and the induced line-element on Σ is

dσ2 = hijdxidxj . (16.5)

Define the unit normal vector n to Σ to be the vector pointing from M− to
M+. The surface Σ can be both space-like and time-like which is given by the
norm of n:

n · n = gμνnμnν ≡ ε =

{
1, if Σ is time-like
−1, if Σ is space-like.

(16.6)

The case ε = 0 will not be treated here1.
The geometry of each of the regions are reflected in how the hypersurface

Σ is embedded in the different regionsM±. Using the extrinsic curvature of Σ
induced by the two different regions we can compare the geometries in which
Σ is embedded.

Define therefore K±
μν as the n-component of the covariant derivative in

regionM± on a vector eμ in Σ. Hence,

K±
μν = n · ∇±μ eν = εnα Γα

μν

∣∣± . (16.7)

The question is now how these two extrinsic curvature tensors relate. We
require the induced metric, hμν , on Σ from M± to agree. However, the em-
beddings, and thus the extrinsic curvature tensors, do not need to agree. The
induced metric is given by the projection

h±μν = g±μν − εn±μ n±ν , (16.8)

1For null shells, see, for example, Poisson’s book [Poi04].

M+M−

n

Σ
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16.2 Einstein’s field equations

and hence, there must be a coordinate transformation on Σ which relates h+
μν

with h−μν . Thus we can set h±μν = hμν .
From eq. (7.83), and the Codazzi equation (7.84) we have

Eμνnμnν |± = −1

2
ε(3)R +

1

2

(
K2 −KαβKαβ

)±
(16.9)

Eμνhμ
αnν |± = −

(
(3)∇μKμ

α − (3)∇ αK
)±

(16.10)

Eμνhμ
αhν

β

∣∣± = (3)Eαβ + εnμ∇μ (Kαβ − hαβK)
± − 3εKαβK|±

+ 2εKμ
αKμβ |± +

1

2
εhαβ(K2 + KμνKμν)±. (16.11)

16.2 Einstein’s field equations

We will now relate the curvature tensors to the energy-momentum tensor
according to Einstein’s field equations. The energy-momentum tensor is al-
lowed to be discontinuous at Σ, but is continuous elsewhere. The metric ten-
sor is required to be continuous across the whole spacetime.

The Einstein tensor contains second derivatives of the metric tensor, but we
will allow the derivative gμν;αnα to be discontinuous. The second derivative
can therefore be a delta-function since θ′(x) = δ(x) where θ(x) is the step-
function

θ(x) =

{
0, x < 0

1, x > 1.
(16.12)

Let y be an orthogonal coordinate so that ∂
∂y = n and y = 0 at the surface Σ.

The most general energy-momentum tensor across the boundary is therefore

Tαβ = Sαβδ(y) + T +
αβθ(y) + T−αβθ(−y). (16.13)

The energy-momentum tensor of the surface Sαβ can be defined as the
integral over the thickness of the surface Σ as the thickness goes to zero

Sαβ = lim
τ→0

τ/2∫
−τ/2

Tαβdy. (16.14)

For this to be well defined the tensor Sαβ has to live on the hypersurface so
that

hα
μhβ

νSαβ = Sμν . (16.15)

This way of defining the tensor Sαβ is called the thin shell approximation.
Introduce a set of coordinates so that xi are coordinates on the hypersur-

face and y is the coordinate in the orthogonal direction (as before). Using the
thin shell approximation we can find an expression for Sij .

From equation (16.11), we have

lim
τ→0

τ/2∫
−τ/2

Eijdy = lim
τ→0

τ/2∫
−τ/2

[εnμ∇μ (Kij − hijK) + Uij ] dy, (16.16)
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where Uij is containing quadratic terms in Kab and the three-curvature. Thus
this term is assumed to be bounded. The remainder of the integrand is a total
derivative so we get

lim
τ→0

τ/2∫
−τ/2

Eijdy = ε ([Kij ]− hij [K]) , (16.17)

where we have defined the bracket operation as

[T ] ≡ T + − T−, (16.18)

for a general tensor T . Using Einstein’s field equations we get

[Kij ]− hij [K] = εκSij . (16.19)

This equation is called the Lanczos equation. The remaining components of Sμν

vanish

Snn = Sni = 0. (16.20)

For a given tensor T± we define

{T } =
1

2
(T + + T−). (16.21)

Note the following identities

[TS] = [T ]{S}+ {T }[S], (16.22)

{TS} = {T }{S}+
1

4
[T ][S]. (16.23)

These will be useful later on.
By contracting the Lanczos equation (16.19) and substituting into the same

equation, we get

[Kij ] = κε

(
Sij − 1

2
hijS

)
. (16.24)

This equation connects the difference of embeddings of the surface Σ through

The remaining equations of motion is obtained by replacing the right-hand
side of eqs. (16.9) and (16.10), using Einstein’s equations, with the energy-
momentum tensor (16.13). Applying the [ ] operation and using the Lanczos
equation (16.19), yield the equations

(3)∇jS
j
i + [Tin] = 0, (16.25)

and

Sij{Kij}+ [Tnn] = 0. (16.26)

Note that we can go to a more general coordinate system (not necessary or-
thogonal) by letting all Latin indices go to their projected versions. Hence, let

like hypersurfaces; thus we assume ε = 1.

the energy-momentum tensor of the surface. It is one of the equations of
motion of the surface. Henceforth, we will, for simplicity, consider only time-
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16.3 Surface layers and boundary surfaces

Sij go to Sαβhα
μhβ

ν , and Tnn = Tαβnαnβ . We readily see that these are tensor
equations and independent upon the choice of coordinates.

(16.19), we get two constraints

(3)R− {K}2 + {Kij}{Kij} = −κ2

4

(
SijS

ij − 1

2
S2

)
− 2κ{Tnn}, (16.27)

{(3)∇jK
j
i} − {(3)∇iK} = −κ{Tin}. (16.28)

16.3 Surface layers and boundary surfaces

There are two important concepts related to this formalism. If, say, we have
an exploding star sending out a thin shell of matter, the energy-momentum
tensor will have a sharp peak at the location of the shell. In the approximation
where the shell is infinitesimally thin we can describe the energy-momentum
tensor by a delta-function at the shell. This is called a surface layer. More
precisely, a surface layer is a thin layer of matter where the energy-momentum
tensor has a non-zero Sαβ .

A boundary surface is a surface where Sαβ = 0. For example, the surface of
a star is a boundary surface. Here the energy-momentum tensor has only a
discontinuity at the surface and is everywhere bounded.

Let us elaborate a bit more about these cases. Consider a surface layer on
which there is a flow of particles. The particles have four-velocity u = uαeα

and are confined to the surface. Thus the velocity is orthogonal to n:

uαnα|± = 0. (16.29)

The geodesic equation reads

uα∇αuβ
∣∣± =

(
uα(3)∇αuβ + Γn

αγuαuγnβ
)±

. (16.30)

By contracting this equation with nβ and using Kij = nαΓα
ij the orthogonal

component of the four-acceleration is

nαaα|± = K±
iju

iuj. (16.31)

This shows that non-zero difference in the embeddings implies non-zero four-
acceleration of the particles of the surface layer. The tangential acceleration
is

aj = ui(3)∇iu
j . (16.32)

We can split the energy-momentum tensor Sij into

Sij = σuiuj + tij , tiju
iuj = 0. (16.33)

Here, σ is called the mass-energy density of the layer and tij is called the stress
tensor of the layer. Using the Lanczos equation (16.19), and eq. (16.31), we can
write

[aαnα] =
κ

2
σ. (16.34)

Hence, the orthogonal component of the four-acceleration is determined by
the mass-energy density of the surface layer.

} to the eqs. (16.9) and (16.10), using the Lanczos equationApplying {

443



Inspecting eq. (16.25) we see that it is similar to the energy-conservation
equation for particles on the surface layer. An observer comoving with the
particles on the layer with velocity u = uiei observes a momentum-flux given
by the contraction of eq. (16.25) with u

ui(3)∇jS
j
i = −ui[Tin]. (16.35)

Hence, the bulk energy-momentum tensor may exert a force on the particle in
the surface layer.

Consider now eq. (16.26). This equation can also be written as an energy-
conservation equation. First note that

nα∇βSαβ
∣∣± = SijK

ij
∣∣± . (16.36)

This leads to

Sij{Kij} = {nα∇βSαβ}, (16.37)

and hence eq. (16.26) can be written as

{nα∇βSαβ}+ [Tαβnαnβ ] = 0. (16.38)

The term [Tαβnαnβ ] is the difference in pressures exerted normal to the surface
Σ. If no such pressure exist (for example for a surface layer in vacuum), the
energy-momentum tensor of the surface will obey {nα∇βSαβ} = 0. Also,
using eq. (16.36) and the Lanczos equation (16.19), we get

[nα∇βSαβ ] = κ(SijS
ij − S2). (16.39)

The equation of continuity of the shell, eq. (16.35), may be written in the
case of vanishing energy-momentum tensor outside the shell as

ui(3)∇jS
j
i = 0. (16.40)

Inserting the expression (16.33) into this equation, and noting that ui(3)∇i =
d/dτ , gives

σ̇ = −σ(3)∇iu
i + ui(3)∇jt

j
i. (16.41)

For boundary surfaces these equations will simplify. As mentioned, the
boundary surfaces are characterized by Sij = 0 which – by the Lanczos equa-
tion – implies

[Kij ] = 0. (16.42)

This shows that the embeddings of the surface Σ have to be the same for the
two regions. Furthermore, eqs. (16.9) and (16.10) imply that for boundary
surfaces we have

[Tαβnαnβ ] = [Eαβnαnβ] = 0, (16.43)
[Tαβhα

μnβ ] = [Eαβhα
μnβ] = 0. (16.44)
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16.4 Spherical shell of dust in vacuum

16.4 Spherical shell of dust in vacuum

Consider a surface energy-momentum tensor of the form

Sij = σuiuj, uiui = −1, (16.45)

which describes a shell of dust. We will assume that the energy-momentum
tensor inM± is that of vacuum; i.e., T±μν = 0. The comoving velocity ui of the
dust is tangent to the surface Σ and – according to eq. (16.25)– we have

(3)∇j(σujui) = ui(3)∇j(σuj) + σuj(3)∇ju
i = 0. (16.46)

Contracting this equation with ui, and using that uiu
j(3)∇ju

i = uia
i = 0,

yields

(3)∇j(σui) = 0, (16.47)

which shows that the particle number is conserved, and

uj(3)∇ju
i = 0, (16.48)

which shows that the dust particles are freely falling and their world-lines are
geodesics in Σ.

Eq. (16.26) implies

Sij{Kij} = σuiuj{Kij} = 0, (16.49)

since we assumed T±μν = 0.
Consider a spherically symmetric spacetime with a shell of dust embedded

in vacuum. Outside the shell there is Schwarzschild metric

(ds2)+ = g+
μνdxμ

+dxν
+

= −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2(dθ2 + sin2 θdφ2), (16.50)

while inside the metric is that of flat spacetime

(ds2)− = g−μνdxμ
−dxν

−
= −dT 2 + dr2 + r2(dθ2 + sin2 θdφ2). (16.51)

Note that the interior and exterior coordinates do not join smoothly at Σ. This
does not really matter since the equations for the junction conditions are coor-
dinate independent tensor equations.

The line-element for the 3-spacetime of the shell is

ds2 = −dτ2 + R2(τ)(dθ2 + sin2 θdφ2), (16.52)

where τ is the proper time of the shell. Eq. (16.25) now gives

ui(3)∇j(σuiu
j) = 0, (16.53)

which leads to

σ̇ = −σ(3)∇ju
j = −σ

1√|h|
(√

|h|uj
)

,j
, (16.54)
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where the dot denotes differentiation with respect to the proper time of the
shell. With

h = −R4(τ) sin2 θ, (16.55)

and u = uτeτ = eτ , this leads to

σ̇ = −σ
1

R2

(
R2
)
, τ = −2σ

Ṙ

R
. (16.56)

Integration gives

σR2 = constant, (16.57)

and hence, the rest mass,

μ = 4πσR2, (16.58)

of the shell is constant.
The four-velocity of the particles measured from outside the shell is

uα
+ =

dxα

dτ
= (ṫ, Ṙ, 0, 0). (16.59)

The vector nα can be seen by inspection to be

n+
α = (−Ṙ, ṫ, 0, 0). (16.60)

The expression for ṫ can be found from the four-velocity identities

uαuα|+ = −nαnα|+ = ṫ2g+
tt + Ṙ2g+

rr = −1. (16.61)

Thus

ṫ =

√
1− 2M

R + Ṙ2

1− 2M
R

. (16.62)

Taking the covariant derivative, uβ∇β , of the identity uαuα = −1, we obtain

uαaα|+ = uαuβ∇βuα
∣∣+ = utu

β∇βut
∣∣+ + uru

β∇βur
∣∣+ , (16.63)

which can be used to substitute uβ∇βut into

nαaα|+ = uαuβ∇βuα
∣∣+ = ntu

β∇βut
∣∣+ + nru

β∇βur
∣∣+

=

(
nr − nt

ur

ut

)
uβ∇βur

∣∣∣∣+ . (16.64)

Writing the covariant derivative using the connection coefficients

uβ∇βur
∣∣+ = ur

,αuα
∣∣+ + Γr

αβuαuβ
∣∣+ , (16.65)

and using the expression for the connection coefficients, eq. (6.111) and the
metric (16.50), we get

Γr
αβuαuβ

∣∣+ =
1

2
grr (2grα,β − gαβ,r)uαuβ

∣∣+
=

1

2
grr
(
2grr,ru

rur − gtt,ru
tut
)∣∣+

=
M

R2
. (16.66)
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16.4 Spherical shell of dust in vacuum

Thus,

uβ∇βur
∣∣+ = R̈ +

M

R2
. (16.67)

(
nr − nt

ur

ut

)∣∣∣∣+ =

(
nr − nt

grru
r

gttut

)∣∣∣∣+
=

1√
1− 2M

R + Ṙ2

. (16.68)

Hence, eq. (16.64) turns into

nαaα|+ =
R̈ + M

R2√
1− 2M

R + Ṙ2

. (16.69)

To get the expression for the inner region, we can set M = 0 and obtain

nαaα|− =
R̈√

1 + Ṙ2
. (16.70)

The equation of motion can now be found by using eqs. (16.31) and (16.49):

nαaα|+ + nαaα|− = 0, (16.71)

which – using eqs. (16.69) and (16.70) – leads to

R̈√
1 + Ṙ2

+
R̈ + M

R2√
1− 2M

R + Ṙ2
= 0. (16.72)

This is the equation of motion for the expanding shell. Multiplying by Ṙ, the
expression turns into a total derivative

d

dτ

[√
1 + Ṙ2 +

√
1− 2M

R
+ Ṙ2

]
= 0. (16.73)

The equation has a first integral

√
1 + Ṙ2 +

√
1− 2M

R
+ Ṙ2 = 2a, (16.74)

which can be rearranged to yield√
1 + Ṙ2 = a +

M

2aR
. (16.75)

Here, a is a constant of integration. The physical interpretation of a is as fol-
lows. Note first that if Ṙ = 0 as R → ∞, then a = 1. From eq. (16.34) we get,
using eq. (16.75),

4πR2σ =
M

a
. (16.76)

Using eqs. (16.59), (16.60) and (16.62) together with the metric (16.50), yield
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The left-hand side is the rest mass of the particles in the shell. The gravita-
tional mass M of the Schwarzschild solution gives the total mass of the shell.
Hence, both the rest mass and the kinetic energy contributes to M . The differ-
ence

M

a
−M =

M(1− a)

a
, (16.77)

therefore gives the “binding energy” of the shell. A shell which reaches zero
velocity at infinity, has zero binding energy.

Example

himself [Isr70].
In the following we need both the covariant and contravariant components of the

Kerr metric. These are (order of the diagonal, (gtt, grr, gθθ, gφφ))

(gμν) =

26664
− `1− 2M

Σ

´
0 0 − 2Mar sin2 θ

Σ

0 Σ
Δ

0 0
0 0 Σ 0

− 2Mar sin2 θ
Σ

0 0
“
r2 + a2 + 2Ma2r sin2 θ

Σ

”
sin2 θ

37775 , (16.78)

(gμν) =

26664
−
“
r2 + a2 + 2Ma2r sin2 θ

Σ

”
1
Δ

0 0 − 2Mar
ΣΔ

0 Δ
Σ

0 0
0 0 1

Σ
0

− 2Mar
ΣΔ

0 0 Δ−a2 sin2 θ
ΣΔ sin2 θ

37775 , (16.79)

where
Σ = r2 + a2 cos2 θ, Δ = r2 + a2 − 2Mr.

Consider the unit vector given by n = nrer, grr(n
r)2 = 1. Using the metric (16.78),

gives

n =

r
Δ

Σ
er. (16.80)

We will now find the exterior curvature of a surface given by r = constant. Eq. (7.75)
gives the following non-zero components

Kθθ = nrΓrθθ = −1

2
nr ∂gθθ

∂r
= −rnr = −r

r
Δ

Σ
,

Kφφ = −1

2

r
Δ

Σ

∂gφφ

∂r
= −

»
r +

„
1− 2

r2

Σ

«
Ma2

Σ
sin2 θ

–r
Δ

Σ
sin2 θ,

Ktt = −1

2

r
Δ

Σ

∂gtt

∂r
=

„
1− 2

r2

Σ

«
M

r
Δ

Σ3
,

Ktφ = −1

2

r
Δ

Σ

∂gtφ

∂r
=

„
1− 2

r2

Σ

«
Ma

r
Δ

Σ3
. (16.81)

We consider the surface r = 0. The metric for r = 0 is diagonal

gμν = diag(−1, cos2 θ, a2 cos2 θ, a2 sin2 θ),

gμν =
1

a2 cos2 θ
diag(−a2 cos2 θ, a2, 1, cot2 θ), (16.82)

so the extrinsic curvature on the surface simplifies to

Kθθ = 0, Kφφ = −M
sin4 θ

cos3 θ
,

Ktt = − M

a2 cos3 θ
, Ktφ =

M

a

sin2 θ

cos3 θ
. (16.83)

in (10.165) on page 239. The following source for the Kerr field was first found by Israel

Example 16.1 (A source for the Kerr field)
Here we will consider the Kerr metric which in Boyer-Lindquist coordinates is given
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16.4 Spherical shell of dust in vacuum

We also need the mixed components, which – using the metric (16.82) – can be found
to be

Kθ
θ = 0, Kφ

φ = −M
sin2 θ

a2 cos3 θ
, Kt

t = aKφ
t =

M

a2 cos3 θ
. (16.84)

Thus,

K = Kt
t + Kθ

θ + Kφ
φ =

M

a2 cos θ
.

We will assume that two identical spacetimes is glued along the surface r = 0. The
different extrinsic curvatures Ki±

j will then differ by only a sign: Ki+
j = −Ki−

j . The
energy-momentum tensor of the surface layer can then be found using the Lanczos
equation (16.19). The expressions (16.84) yield (using G = 1 = c)

St
t =

1

4π

sin2 θ

a2 cos3 θ
M, Sθ

θ =
1

4π

M

a2 cos θ
,

Sφ
φ = − 1

4π

M

a2 cos3 θ
, Sφ

t =
1

4π

M

a3 cos3 θ
. (16.85)

These expressions are encompassed in the single equation

Si
j = σ(uiuj + kikj), σ = − 1

4π

M

a2 cos θ
, (16.86)

and

ui = (ut, uθ, uφ) =

„
tan θ, 0,

1

a sin θ cos θ

«
,

ki = (kt, kθ, kφ) =

„
0,

1

a cos θ
, 0

«
. (16.87)

This is Israel’s source for the Kerr spacetime. The surface layer consist of matter with
negative energy-density, and a stress ti

j = σkik j where the only non-zero component
is tθ

θ .
The coordinate velocity of particles comoving with the surface, vi, can be found

from

ui =
dxi

dτ
=

dt

dτ

dxi

dt
= utvi, (16.88)

which gives

vφ =
1

a sin2 θ
. (16.89)

The coordinate velocity of light moving in the φ-direction, can be found by inserting
ds = dr = 0 in the metric of the surface layer. This gives

cφ =
1

a sin θ
, (16.90)

and hence,

vφ =
cφ

sin θ
, (16.91)

which shows that the particles are moving at tachyonic speeds.
Further details and an extension to the Kerr-Newman spacetime (rotating black

hole with an electric charge) can be found in [Lop84, Grø85].
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Problems

16.1. Energy equation for a shell of dust
Use the first integral eq. (16.75) for a shell of dust and write the equation on
the form

1

2
Ṙ2 + V (R) = E, (16.92)

where E is a constant such that E = 0 for a = 1. What is V (R)?

What is the condition on a for recollapse of the shell? What is the condition
for ever-expansion?

16.2. Charged shell of dust

(a) Show that the equation of motion of a thin, charged shell of dust is

R̈ +
μ2 −Q2

2μ

√
1 + Ṙ2

1

R2
= 0, (16.93)

where μ is the rest mass of the shell and Q its charge.
(b) Show that the energy equation of the shell may be written

M = μ
√

1 + Ṙ2 − μ2 −Q2

2R
,

where M is the total mass of the shell, which appears in the Reissner-

16.3. A spherical domain wall
In this problem we will consider a spherical domain wall (or a shell) and as-
sume that spherical coordinates are used. The energy-momentum tensor of
the shell is

tij = −σ(hij + uiuj). (16.94)

Hence the only non-vanishing components are

tθθ = tφφ = −σ.

(a) Show that the equation of continuity (16.44), as applied to a spherical
domain wall reduces to σ̇ = 0. What happens to the rest mass of the
domain wall during expansion? Try to find a physical reason for the
result you found.

(b) Show that the energy equation of the domain wall may be written

M = 4πσR2
[√

1 + Ṙ2 − 2πσR
]
.

(c) Calculate, in terms of σ, the radius RS of a static domain wall with radius
equal to its Schwarzschild radius. Can the domain wall have greater
radius than RS?

16.4. Dynamics of spherical domain walls

time with line element

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
,

f(r) = 1− 2M

r
− Λ

3
r2. (16.95)

Nordström metric, eq. (10.120). Give a physical interpretation of the terms.

We shall consider a spherical domain wall in the Schwarzschild-de Sitter space-
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Problems

The values of Λ and M can be different inside and outside the domain wall.
− and

f+

ds2
d = −dτ2 + R(τ)2

(
dθ2 + sin2 θdφ2

)
. (16.96)

Hence, observers on the wall will perceive R(τ) as an expansion factor.

(a) Show that the four velocity of a fixed particle on the wall is

u =

√
f + Ṙ2

f
et + Ṙer.

(b) Show that the unit normal vector is

n =
Ṙ

f
et −

√
f + Ṙ2er.

(c) Show that the θθ-component of the extrinsic curvature is

Kθθ = −
√

f + Ṙ2R.

tensor of a domain wall, Sij = −σhij , to show that the equation of motion
of the domain wall is√

f+ + Ṙ2 +

√
f− + Ṙ2 = 4πGσR. (16.97)

(d) Use the Israel junction condition, eq. (16.33), with the energy momentum

inside and outside are denoted, respectively, by fThe values of f
. The motion of the domain wall is given by r = R(τ ) where τ is the

proper time of the wall. The line element of the domain wall is

451



17
Brane-worlds

for our universe [RS99b, RS99a]. They imagined our four-dimensional world
as a brane-world or a surface layer in a five-dimensional bulk. This bulk may
be infinite in size, but due to the special properties of the bulk the gravita-
tional fields are effectively localised to the brane. The other standard model
fields are confined to the brane; only gravity is allowed to propagate in the
fifth dimension.

Here we will shortly review the idea behind the brane-world models. The
interest for brane-worlds has been enormous the following years after Ran-
dall and Sundrum’s papers appeared. This focus on brane-worlds has also
renewed the interest for the metric junction method, which we introduced in
the previous chapter, and this application is a prime example of the diversity
and the generality of the metric junction method. The brane-worlds are mod-
els with an extra dimension, and hence, we cannot use all the former equa-
tions directly without special consideration of the dimensionality. However,
the Lanczos equation (16.19) is valid without any further adjustments.

17.1 Field equations on the brane

(Shiromizu et al. [SMS00] and Maartens [Maa00])
In the brane-world scenario our four-dimensional world is described as a four-
dimensional surface – the brane – in a five-dimensional spacetime – the bulk.
In order to deduce the field equations on the brane we start with eq. (7.83)
written on the form

(4)Rα
μβν = (5)Rλ

δρσhα
λhδ

μhρ
βhσ

ν + Kα
βKμν −Kα

νKμβ, (17.1)

where hαβ = gαβ − nαnβ is the metric on the brane. Contracting α with β we
find

(4)Rμν = (5)R ρσhρ
μhσ

ν − (5)Rα
βγδnαhβ

μnγhδ
ν + KKμν −Kα

μKαν , (17.2)

In 1999, Lisa Randall and Raman Sundrum presented a five-dimensional model
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where K = Kα
α. Calculating the Einstein tensor this gives

(4)Eμν = (5)E ρσhρ
μhσ

ν − (5)R αβnαnβhμν + KKμν −Kα
μKαν

−1

2
hμν

(
K2 −KαβKαβ

)− (5)Rα
βγδnαhβ

μnγhδ
ν . (17.3)

Decomposing the Riemann tensor into the Ricci tensor, the Ricci scalar and the
Weyl curvature tensor, Cμανβ , according to

(5)Rμανβ =
2

3

(
gμ[ν

(5)Rβ]α − gα[ν
(5)Rβ]μ

)
− 1

6
gμ[νgβ]α

(5)R

+(5)Cμανβ , (17.4)

ten as

(4)Eμν =
2

3

[
(5)E ρσhρ

μhσ
ν − hμν

(
(5)E αβnαnβ − 1

4
(5)E

)]
+KKμν −Kα

μKαν − 1

2
hμν

(
K2 −KαβKαβ

)− Eμν . (17.5)

Here,

Eμν ≡ (5)Cαβγδn
αhβ

μnγhδ
ν , (17.6)

is the so-called1 “electric part” of the Weyl tensor. Eq. (17.5) is a geometrical
identity without physical contents.

We now apply Einstein’s five-dimensional field equations2

(5)Eμν = κ5
(5)Tμν . (17.7)

bμν =δ(y)Sμν ,
where y = 0 is the position of the brane, and from the bulk, TBμν , i.e. (5)Tμν =
Tbμν + TBμν . Using eq. (17.7) the five-dimensional Einstein tensor can be re-

vature tensor can be replaced by the stress-energy tensor, Sμν , of the brane by
means of Israel’s junction conditions

[Kij] = κ5

(
Sij − 1

3
Shij

)
. (17.8)

implies that hi
i = 4. Assuming mirror symmetry, or Z2-symmetry, across the

brane, we can replace the jump in the extrinsic curvature by twice the value
of the extrinsic curvature at the location of the brane. Hence (dropping the
sup-script +)

Kij =
κ5

2

(
Sij − 1

3
Shij

)
. (17.9)

1Usually the electric part of the Weyl tensor is defined for nα time-like; however, it is common
in the brane literature to call Eμν the electric part although nα is space-like.

2In the literature on brane cosmology it has become usual to denote Einstein’s gravitational
constant by κ2

5 and not by κ5 as we do in this book.

The energy-momentum tensor has contributions from the brane, T

placed by the energy-momentum tensor in eq. (17.5). Next, the extrinsic cur-

assumed ε = 1. This is due to the four spacetime dimensions of the brane, which
Note that the factor 1/2 in eq. (16.19) has been replaced by 1/3 and we have

and replacing the Ricci tensor with the Einstein tensor, eq. (17.3) may be rewrit-
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17.1 Field equations on the brane

We shall assume that the bulk is empty except for LIVE represented by a
cosmological constant, ΛB . The stress-energy tensor of the brane is written as

Sij = −λhij + T̃ij , (17.10)

where λ and T̃ij are the vacuum energy density and energy-momentum ten-
sor, respectively, on the brane. From a five-dimensional point of view λ is

eq. (17.5) can be written as

(4)Eij + Λhij = κ4T̃ij + κ2
5τij − Eij , (17.11)

where

Λ =
1

2

(
ΛB +

κ2
5λ

2

6

)
=

1

2
(ΛB + κ4λ) , (17.12)

is the ordinary cosmological constant measured by brane inhabitants, and3

8πGN = κ4 =
κ2

5

6
λ. (17.13)

Furthermore,

τij = −1

4
T̃iaT̃ a

j +
1

12
T̃ T̃ij − 1

24
hij

(
3T̃abT̃

ab − T̃ 2
)

, (17.14)

and Eij is the electric part of the Weyl tensor defined in eq. (17.6).
Equation (17.11) is the brane generalization of the four-dimensional Ein-

stein equations. Note that for the Newtonian gravitational constant to be non-
zero and positive there must exist a positive vacuum energy (or brane tension)
on the brane.

If the matter on the brane is a perfect fluid,

T̃ij = ρuiuj + ph̃ij , (17.15)

where h̃ij = hij + uiuj is the spatial metric tensor on the brane. The effective
energy-momentum tensor coming from the Israel matching conditions associ-
ated with the external curvature of the brane, is

τij =
1

12
ρ2uiuj +

1

12
ρ(ρ + 2p)h̃ij . (17.16)

If the fluid obeys the equation of state p = wρ this tensor takes the form

τij =
1

12
ρ2
[
uiuj + (1 + 2w)h̃ij

]
. (17.17)

The term Eij in eq. (17.11) represents the effect on the brane of the free
gravitational field in the bulk. This term vanishes if the bulk spacetime is

3Eq. (17.13) can also be expressed as a relation between the four- and five-dimensional Planck
masses. The four-dimensional Planck mass is given by mPl =

p
�c/G. Using units so that

� = c = 1, Newton’s gravitational constant may be expressed by G = m−2
Pl or κ4 = 8πm−2

Pl . In
a similar way the five-dimensional gravitational constant and Planck mass are related by G5 =

m−3
5 . Hence, κ5 = 8πm−3

5 . Inserting these expressions into eq. (17.13) gives m2
Pl = 3m6

5/4πλ.

Using eqs. (17.7), (17.9) and (17.10),interpreted as the tension of the brane.
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purely anti-de Sitter. Also, if there are several branes they interact gravitation-
ally via the Weyl curvature that they generate. The effective energy-density
on the brane, arising from the free gravitational field in the bulk, is defined as

U = −κ4λ

6
Eiju

iuj. (17.18)

Furthermore, the tensor Eij can be covariantly decomposed as

Eij = − 6

κ4λ

[
U
(

uiuj +
1

3
h̃ij

)
+ Pij + 2Q(iuj)

]
. (17.19)

Here, Pij is a trace-less and symmetric tensor called the non-local anisotropic
stress tensor, andQi is the non-local energy flux. This tensor is very similar to
the energy-momentum tensor of a radiation fluid. This correspondence goes
even further. From Bianchi’s second identity, eq. (7.58), we have

∇iEij = κ2
5∇iτij . (17.20)

In the case of an isotropic brane with no energy flux on the brane, i.e. a brane
that may be described by the Robertson-Walker line-element, the electric part
of the Weyl tensor may be written as

Eij = − 6

κ4λ
U
(

uiuj +
1

3
h̃ij

)
. (17.21)

For a perfect fluid, the right hand side of eq. (17.20) vanishes due to the
energy-momentum conservation of the fluid. Hence, in this case the non-local
energy-density obeys the radiation-like energy-conservation equation

U̇ + 4HU = 0, (17.22)

where H is the Hubble parameter on the brane. However, unlike radiation,
the non-local energy-density may be negative. Also, it is worth noting that the
limit λ → ∞ while keeping κ4 fixed makes κ5 → 0 and Eij → 0. In this limit
the non-local density U decouples the brane and we recover the conventional
Friedmann equations of four-dimensional cosmology.

17.2 Five-dimensional brane cosmology

Let us now consider some universe models resulting from a brane picture of
the world which is assumed to be five-dimensional (see also [Lan03, MPLP01]).
The line-element of the five-dimensional spacetime may then be written

ds2 = −n2(t, y)dt2 + a2(t, y)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
+ b2(t, y)dy2.

(17.23)

The brane has zero thickness and is localized at y = 0. The functions a(t, y),
b(t, y) and n(t, y) are continuous at the brane, but their derivatives are discon-
tinuous. The metric in the brane is

ds2
Brane = −n2(t, 0)dt2 + a2(t, 0)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (17.24)
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17.2 Five-dimensional brane cosmology

If t is the proper time on the brane then n(t, 0) = 1.
Einstein’s equations of the five-dimensional world are

(5)Rμν − 1

2
(5)Rgμν = κ5 (Tbμν + TBμν) , (17.25)

where (5)Rμν is the five-dimensional Ricci tensor and (5)R ≡ (5)Rμ
μ its trace,

κ5 = 8πG5 is the gravitational constant of five-dimensional spacetime Fur-
thermore, Tbμν and TBμν are the energy-momentum tensors of the brane and
bulk, respectively.

We shall consider isotropic perfect bulk and brane fluids. Then the energy-
momentum tensors of the brane and bulk are

Tb
μ
ν = Sμ

νδ(y) = diag(−ρb, pb, pb, pb, 0)δ(y) (17.26)

where ρb is the brane energy density and pb the brane pressure, and

TB
μ
ν = diag(−ρB, pB, pB, pB, pB), (17.27)

respectively.
Einstein’s field equations in the bulk are (using an orthonormal frame)

Et̂t̂ =
3

n2

(
ȧ2

a2
+

ȧḃ

ab

)
− 3

b2

(
a′′

a
+

a′2

a2
− a′b′

ab

)
+

3k

a2
= κ5ρB, (17.28)

Eî̂i =
1

b2

[
2
a′′

a
+

n′′

n
+

a′2

a2
+ 2

a′n′

an
− b′

b

(
2
a′

a
+

n′

n

)]

+
1

n2

[
2
ȧṅ

an
− 2

ä

a
− ȧ2

a2
+

ḃ

b

(
ṅ

n
− 2

ȧ

a

)
− b̈

b

]
− k

a2
= κ5pB, (17.29)

Et̂ŷ = 3

(
n′ȧ
na

− ȧ′

a
+

a′ḃ
ab

)
= 0, (17.30)

Eŷŷ =
3

b2

(
a′2

a2
+

a′n′

an

)
− 3

n2

(
ä

a
+

ȧ2

a2
− ȧṅ

an

)
− 3k

a2
= κ5pB, (17.31)

where a dot denotes derivative with respect to t and a prime with respect to
y. Eq. (17.30) is due to the assumption that there is no energy flux in the bulk.

The Bianchi identity implies the energy-momentum conservation law for
the bulk fluid

TB
μ
ν;μ = 0, (17.32)

which gives the equations

ρ̇B +

(
3
ȧ

a
+

ḃ

b

)
(ρB + pB) = 0, (17.33)

p′B +
n′

n
(ρB + pB)− 3

a′

a
(ρB − pB) = 0. (17.34)

In the case of a time-like brane, ε = 1. From eq. (16.7), and using that
the unit normal vector to the brane is n = ey , we find the non-vanishing
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components of the extrinsic curvature tensor of the brane

Ktt = −1

2
ny ∂gtt

∂y
=

n0

b0
n′0,

Kii = −1

2
ny ∂gii

∂y
= −a0

b0
a′0, (17.35)

where the index 0 means that the quantity shall be evaluated at the brane. If
the brane is identified with our world, then a0 ≡ a(t, 0) is the expansion factor
of the Friedmann-Robertson-Walker models. Note that the non-vanishing of
the extrinsic curvature of the brane means that the five-dimensional metric
depends necessarily on the coordinate of the fifth dimension, in contrast to
the usual assumption in the Kaluza-Klein approach which we will review in
the next chapter.

Substituting eqs. (17.26) and (17.34) into eq. (17.9) gives the relations

n′0
n0

=
κ5

6
b0 (2ρb + 3pb) ,

a′0
a0

= −κ5

6
b0ρb. (17.36)

the brane, so that n0 = 1, we get

ä0

a0
+

ȧ2
0

a2
0

= −κ2
5

36
ρb (ρb + 3pb)− κ5

3
pB − k

a2
0

. (17.37)

We shall now solve Einstein’s vacuum equations with a cosmological con-
stant ΛB = κ5ρB in the bulk outside the brane4. In the main text we shall
assume that the scale factor of the fifth dimension is constant and normalized
to 1. (Some models with variable b(t, y) will be considered in problem 17.4.)
With b(y, t) = 1 the combination Et̂t̂ + 2Eŷŷ − 3Eî̂i yields

3
a′′

a
+

n′′

n
=

κ5

3
(pB − ρB) , (17.38)

and the equation Et̂ŷ = 0 leads to

n′

n
=

ȧ′

ȧ
. (17.39)

Integration gives

ȧ = f(t)n, (17.40)

where f(t) is an arbitrary function of t. Note that f(t) = ȧ0 since n0 = 1.
Furthermore, eq. (17.28) gives

(aa′)′ − f2 − k +
ΛB

3
a2 = 0. (17.41)

Multiplying by aa′ and integrating, one obtains

(aa′)2 − f2a2 − ka2 +
ΛB

6
a4 = U. (17.42)

4Some authors identify ΛB with ρB . If this is done, one should multiply ΛB by κ5 or alterna-
tively by 8πm−3

5 in the equations below.

Inserting these expressions into eq. (17.31) and letting t be the proper time on
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17.3 Solutions in the bulk

Using eq. (17.31) one finds that U cannot depend on the time; i.e. U is a
constant. Evaluating the terms at the position of the brane, y = 0, where
f = ȧ0, and inserting the second of eq. (17.36), we arrive at

H2
0 =

(
ȧ0

a0

)2

=
κ2

5

36
ρ2

b +
ΛB

6
− k

a2
0

+
U

a4
0

. (17.43)

This equation relates the Hubble parameter to the energy density. How-
2

five-dimensional Planck scale m5 is larger than 10TeV the effect of the ρ2 term
will be negligible from the time of neutrino decoupling (at 1MeV, i.e. about 1s
after the big bang) onwards. The last term in eq. (17.43) reminds of a radiation
term, but there is no contribution from radiation in the energy-momentum
tensor. If non-vanishing it would constitute a sort of dark radiation. Later, in
section 17.4, it is explicitly shown that this is exactly the radiation-like term
that arises from the tensor Eij defined in eq. (17.21).

Problem with perfect fluid brane world in an empty bulk

Eqs. (17.36) and (17.39) lead to the energy conservation equation on the brane

ρ̇b + 3H0 (ρb + pb) = 0. (17.44)

Integration of this equation for a perfect fluid with equation of state pb = wρb

gives

ρb = ρ0a
−3(1+w)
0 , (17.45)

with ρb(t0) = ρ0 and the normalization a0(t0) = 1. In the simplest case where
ΛB = k = U = 0, eq. (17.43) can be integrated to yield the result

a0 ∝ t
1

3(1+w) , w �= −1,

a0 ∝ exp
(κ5

6
ρbt
)

, w = −1. (17.46)

This is the expansion factor in the brane, i.e. in our four-dimensional world.
In the cases with radiation (w = 1/3) and dust (w = 0) the evolution of the
expansion factor is a0 ∝ t1/4 and a0 ∝ t1/3, respectively, instead of the usual
a0 ∝ t1/2 and a0 ∝ t2/3. The new cosmological equation thus leads typi-
cally to slower evolution. This behaviour is problematic. When it is inserted
into the theory of cosmic nucleosynthesis the predictions of the abundances
of the lightest elements are different from the observed ones. Hence, the five-
dimensional brane universe models with perfect fluid in a single brane em-

17.3 Solutions in the bulk

Due to the presence of the brane the spacetime of the bulk is curved. We shall
now find solutions with vanishing bulk matter describing the geometry of the

depends quadratically upon the density and not linearly as usual. As long as the
ever, it is different from the usual Friedmann equation. In particular H

bedded in an empty bulk with vanishing cosmological constant come in
conflict with observations.
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may be written

(
a2
)′′

+
2ΛB

3
a2 = 2(f2 + k). (17.47)

In the case of an empty universe with ΛB = 0 which is mirror symmetric about

a2(t, y) = (f2 + k)y2 + A(t)|y| + a2
0,

n(t, y) =
a0

a
+

Ȧ

2af
|y|+ ḟ

a
y2, (17.48)

where A is an arbitrary function of t and f(t) = ȧ0. Determining the function
A by applying eq. (17.36) yields

a2(t, y) = a2
0

(
1− κ5

3
ρb|y|

)
+ (f2 + k)y2,

n(t, y) =
a0

a

[
1 +

κ5

3
(2ρb + 3pb)|y|

]
+

ḟ

a
y2 (17.49)

where ρb and pb obey the adiabatic energy conservation equation

d

dt

(
a3
0ρb

)
+ pb

d

dt

(
a3
0

)
= 0. (17.50)

We now consider the case that there is a negative Lorentz invariant vac-
uum energy in the bulk, corresponding to a cosmological constant ΛB < 0.
Then κ5pB = −κ5ρB = −ΛB . Defining a parameter μ by

μ2 = −2ΛB

3
, (17.51)

spect to y gives

a2(t, y) = A(t) cosh(μy) + B(t) sinh(μ|y|) +
3(f2 + k)

ΛB
. (17.52)

0 = 1
leads to

a2(t, y) =

[
a2
0 −

3(f2 + k)

ΛB

]
cosh(μy)− κ5a

2
0ρb

3μ
sinh(μ|y|) +

3(f2 + k)

ΛB
,

n(t, y) =
a0

a

(
1− 3ḟ

ΛB

)
cosh(μy) +

κ5

6μaf
(2ρb + 3pb) sinh(μ|y|) +

3ḟ

ΛB
.

(17.53)

If the bulk cosmological constant is positive the hyperbolic functions in the
above equations should be replaced by trigonometric ones. The functions a0

and f = ȧ0 can be found by integrating eq. (17.43).

bulk in an empty bulk and in a bulk with a cosmological constant. Eq. (17.41)

y = 0, integration of this equation with respect to y and use of eq. (17.40) gives

assuming mirror symmetry about y = 0, and integrating eq. (17.47) with re-

Utilizing eq. (17.36) together with eq. (17.40) and the normalization n
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17.4 Towards a realistic brane cosmology

17.4 Towards a realistic brane cosmology

We shall now consider a brane with total energy density ρb = λ + ρ where λ is
the tension of the brane which is assumed to be constant in time, and ρ is the
energy density of ordinary cosmic matter. Then eq. (17.43) takes the form

H2
0 =

κ2
5

36
ρ2 +

κ2
5

18
ρλ +

κ2
5

36
λ2 +

ΛB

6
− k

a2
0

+
U

a4
0

. (17.54)

Inserting the four-dimensional cosmological constant Λ defined in eq. (17.12)

takes the form of a four-dimensional generalized Friedmann equation,

H2
0 =

Λ

3
+

κ4

3
ρ
(
1 +

ρ

2λ

)
− k

a2
0

+
U

a4
0

. (17.55)

We now assume that the cosmic matter on the brane obeys the equation of
state p = wρ. From eq. (17.44) we have ρ = ρ0a

−q
0 , q = 3(1 + w). Hence, eq.

(17.55) takes the form

H2
0 =

Λ

3
+

κ4

3

ρ0

aq
0

+
κ4

6λ

ρ2
0

a2q
0

− k

a2
0

+
U

a4
0

. (17.56)

ΛB = −κ2
5

6
λ2. (17.57)

The Friedmann equation of a critical brane with U = 0 reduces to

H2
0 =

κ4

3
ρ
(
1 +

ρ

2λ

)
− k

a2
0

. (17.58)

the matter approaches the tension of the brane.
Subtracting eq. (17.43) with k = U = 0 from eq. (17.37) gives

ä0

a0
= −κ2

5

36
ρb (2ρb + 3pb)− κ5

6
(ρB + 2pB) . (17.59)

Inserting ρb = λ + ρ, pb = −λ + p, κ5ρB = −κ5pB = ΛB , and using eq.(17.13),
leads for a critical brane to

ä0

a0
= −κ4

6

[
ρ + 3p + (2ρ + 3p)

ρ

λ

]
. (17.60)

Thus the condition for accelerated expansion on the brane is

ä0 > 0, if p < −
(

λ + 2ρ

λ + ρ

)
ρ

3
. (17.61)

In the low energy limit, ρ � λ, there is accelerated expansion if p < −ρ/3,
while ρ 	 λ, there is accelerated expansion if
p <−2ρ/3.

and the four-dimensional gravitational constant defined in eq.(17.13),eq. (17.54)

energy correction which becomes significant only when the energy density of

in the high energy limit,

Hence, we have recovered the usual Friedmann equation, but with a high

A critical brane has Λ = 0, i.e.,
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We shall now consider cosmological solutions where the cosmic matter is
a perfect fluid with equation of state p = wρ. Equation (17.44) then has the
solution (17.45). In this case eq. (17.58) (i.e. k = U = Λ = 0) may be written

ẋ2 = q2(βx + ξ), β =
κ4

3
ρ0, ξ =

κ4

6λ
ρ2
0, q = 3(1 + w), (17.62)

where we have introduced a new variable x = aq
0. The solution with a0(0) = 0

is

aq
0 =

q2

4
βt2 + q

√
ξt. (17.63)

This expression shows that there is a transition, at a typical time of the order
tλ ≈ 1/

√
4

a0 ∝ t1/q

a0 ∝ t2/q .
For a non-critical brane the Friedmann equation takes the form

ẋ2 = q2

(
Λ

3
x2 + βx + ξ

)
. (17.64)

Integration with a0(0) = 0 gives

aq
0 =

√
3ξ

Λ
sinh

(
q

√
Λ

3
t

)
+

3β

2Λ

[
cosh

(
q

√
Λ

3
t

)
− 1

]
, Λ > 0,

aq
0 =

√
3ξ

|Λ| sin
(

q

√
|Λ|
3

t

)
+

3β

2Λ

[
cos

(
q

√
|Λ|
3

t

)
− 1

]
, Λ < 0.

(17.65)

Figure 17.1: Evolution of the expansion factor for Λ > 0, Λ = 0 and Λ < 0.

case Λ > 0, which admits a positive cosmological constant, the universe will
enter an era with accelerated expansion.

The evolution of the expansion factors is shown in Fig. 17.1. Note that in the

a0(t)

t

Λ

Λ

<0

Λ 0

0=

>

κ λ, between a high energy regime characterized by the behaviour
and a low energy regime characterized by the standard evolution
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17.4 Towards a realistic brane cosmology

As we have seen (problem 10.3 with M = 0, section 12.2, example 14.2
and Appendix C) the Minkowski spacetime and the de Sitter spacetime can
be represented both by static metrics and as expanding universes. Minkowski
spacetime described with reference to an expanding reference frame is the
Milne universe, and the de Sitter spacetime is the exponentially accelerated
universe of the inflationary era. Similarly, the bulk of the brane world consid-
ered above is in fact a Schwarzschild–anti-de Sitter spacetime (ΛB < 0) and
can also be represented by a static metric, namely

ds2 = −f(R)dT 2 +
dR2

f(R)
+ R2γijdxidxj , f(R) = 1− U

R2
− ΛB

6
R2, (17.66)

where γij is the 3-dimensional spatial metric

γijdxidxj = R−2h̃ijdxidxj =
dr2

1− r2
+ r2

(
dθ2 + sin2 θdφ2

)
. (17.67)

For simplicity, we have assumed that the FRW model is closed, i.e. k = 1. The
expression (17.66) shows that the constant U is the five-dimensional analogue
of the Schwarzschild mass. The R−2 dependence instead of the usual R−1 is
due to the fourth spatial dimension.

The metric (17.66) corresponds to a description of the brane-world from
a bulk point of view, while the metric (17.23) represents the description from
the brane point of view. While the brane is at rest in the coordinate system of

The trajectory of the brane
can be defined in parametric form T = T (τ), R = R(τ) where τ is the proper
time of the brane. The five-velocity identity gabu

aub = −1 then takes the form

−fṪ 2 +
Ṙ2

f
= −1, (17.68)

where the dot denotes differentiation with respect to τ . This yields

Ṫ =

√
f + Ṙ2

f
. (17.69)

The unit normal vector of the brane is defined by

naua = 0, nana = 1. (17.70)

Up to a sign ambiguity this leads to

n = − Ṙ

f
eT −

√
f + Ṙ2eR. (17.71)

The four-dimensional metric on the brane is

ds2 = −dτ2 + R(τ)2
[

dr2

1− r2
+ r2(dθ2 + sin2 θdφ2)

]
. (17.72)

This expression shows that the expansion factor of the brane, denoted by a0

previously, can be identified with the radial coordinate of the brane, R(τ). The
θθ-component of eq. (16.7) gives

Kθθ = −1

2
nR ∂gθθ

∂R
= −R

√
f + Ṙ2. (17.73)

eq. (17.23), it moves in the static reference frame.
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we get √
f + Ṙ2

R
=

κ5

6
ρb. (17.74)

yields

Ṙ2

R2
=

κ2
5

36
ρ2

b +
ΛB

6
− 1

R2
+

U

R4
, (17.75)

which is exactly the Friedmann equation (17.43) with k = 1.
This embedding of the brane in a Schwarzschild–anti-de Sitter bulk can

be used to show explicitly the correspondence between the dark energy term
U , defined by eq. (17.18), and the radiation-like term U/R4 in the general-
ized Friedmann equation. Using the definition of the Weyl tensor, eq. (17.4),
one can find the independent non-zero components of the Weyl tensor for the
Schwarzschild–anti-de Sitter spacetime (17.66) to be (for i, j �= T, R)

CTRTR = −3
U

R4
, CTiTj =

U

R4
fh̃ij , CRiRj = − U

R4

1

f
h̃ij ,

Crθrθ =
U

R4
h̃rrh̃θθ, Crφrφ =

U

R4
h̃rrh̃φφ, Cθφθφ =

U

R4
h̃φφh̃θθ. (17.76)

From the definition of Eij , eq. (17.6), we can find the components of the electric
part of the Weyl tensor. For i, j �= τ , we have

Eij = CTiTj(n
T )2 + CRiRj(n

R)2 = − U

R4
h̃ij ,

Eττ = CTRTR

[
(nT )2(uR)2 + (nR)2(uT )2 − 2nT uRnRuT

]
= CTRTR

[
nT uR − nRuT

]2
= −3

U

R4
. (17.77)

Here we have also used that the Weyl tensor possesses the same symmetries
as the Riemann tensor. The components can also be written as

Eij = −3U

R4

(
uiuj +

1

3
h̃ij

)
. (17.78)

Comparing this result with eq. (17.21), we see that we have to identify

U

R4
=

2

κ4λ
U . (17.79)

Since U is a integration constant and that H = Ṙ
R , U obeys eq. (17.22) as it

should do.

17.5 Inflation in the brane

(see also [Kal99])
We shall briefly consider inflationary universe models within the frame-

work of brane cosmology. The simplest model is that of a brane with constant

Taking the square of this equation and substituting for f(R) from eq. (17.66)

Using the junction conditions (17.8) with the energy-momentum tensor (17.26),
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vacuum energy density, ρb = ρλ, and with k = U = 0 in an empty bulk. The

ds2 = (1−H |y|)2 (−dt2 + e2Ht[dr2 + r2(dθ2 + sin2 θdφ2)]
)

+ dy2, (17.80)

where H = κ5λ
6 . On the brane, where y = 0 this reduces to the ordinary de Sit-

ter metric. This line-element describes an inflating brane in a five dimensional
bulk with a Rindler-like horizon at yH = ±H−1. The bulk is not singular at
the horizon, only at the surface y = 0 due to the presence of the brane.

From eq. (17.43) with ρ = k = 0 follows that the Hubble parameter for an
inflating brane in a bulk with a negative cosmological constant is

H2
0 =

κ2
5

36
λ2 +

ΛB

6
=

κ2
5

36
λ2 − μ2. (17.81)

For sufficiently small vacuum energy on the brane the Hubble parameter is
imaginary. Then one can analytically continue the solution by a coordinate
transformation t = −ix′, x = it′, y = y′, z = z′. Writing H0 = iH0 and
considering a brane with negative spatial curvature the line-element takes the
form (see Appendix C)

ds2 = a(y)2
[
−dt2 + |H0|2 cos2 |H0t|

(
dr2

1 + r2
+ r2(dθ2 + sin2 θdφ2)

)]
+ dy2

(17.82)

where we have omitted the prime on the coordinates.
If there is a negative cosmological constant in the bulk, the geometry of the

bulk is given by eq. (17.53). Furthermore, if −κ2
5λ

2/6 ≤ ΛB ≤ 0 the Hubble-
parameter is real and the expansion factor in the brane a(t, 0), is still an expo-
nential function of time as in eq. (17.80). The line-element is then

ds2 =

(
coshμy − κ5λ

6μ
sinh μ|y|

)2

× (−dt2 + e2Ht
[
dr2 + r2(dθ2 + sin2 θdφ2)

])
+ dy2, (17.83)

Sitter bulk.
A notable property of this solution is the existence and location of a bulk

event horizon. Its position is found by putting gtt = 0 which gives

yH = ±
 artanh

(
6μ

κ5λ

)
, (17.84)

where


 =

√
− 6

ΛB
, (17.85)

is the anti-de Sitter curvature radius. In the limit ΛB → 0 this reproduces yH =
±6/(κ5λ) found in the solution (17.80) for an inflating 3-brane in a flat bulk.
On the other hand, when ΛB → −κ5λ/6, then yH → ∞. Hence, as the brane
expansion decreases, either by increasing the bulk cosmological constant or by
decreasing the density of the vacuum energy in the brane, the Rindler horizon
moves farther away from the brane.

where μ is given in eq. (17.51). This describes an inflating brane in an anti-de

solution for this case is given in eqs. (17.46) and (17.49) giving the line element

,
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If ΛB > 0 the inflation of the 3-brane is even more vigorous than in the case
ΛB

corresponding trigonometric functions, and the position of the event horizon
is

yH = 
̄ arctan

(
6μ̄

κ5λ

)
, μ̄ =

√
ΛB

6
. (17.86)

In this case the location of the Rindler horizon as a function of
√

ΛB/6 oscil-
lates and can be arbitrarily close and far from the brane.

although the negative vacuum energy in the brane is gravitationally attractive.
However, in this case there is no Rindler horizon in the bulk. In contrast to the
case λ > 0 the brane is now gravitationally attractive for particles in the bulk
rather than repulsive. Hence, any free particle in the bulk will fall onto the
brane in a finite time and contribute with positive energy to the brane. This
indicates that the solution with negative brane energy is unstable.

with k = 0 and ρ = V where V (φ) is the potential of a scalar field φ we have

H2
0 =

κ4

3
V

(
1 +

V

2λ

)
, (17.87)

eq. (12.42) and writing the resulting equation in the form (12.45), we obtain

η =
1

κ4

V ′′

V

2λ

2λ + V
, ε =

2

κ4

(
V ′

V

)2
λ(λ + V )

(2λ + V )2
. (17.88)

The slow-roll approximation requires |η|, ε � 1. At low energies, V � λ, the

energies, V 	 λ, the new factors become≈ λ/V � 1. Hence, the brane effects
makes it easier for the scalar field to roll slowly for a given potential.

Eq. (12.53) for the number of e-folds during inflation is now replaced by

N = −κ4

φf∫
φi

V

V ′

(
1 +

V

2λ

)
dφ. (17.89)

The effect of the modified Friedmann equation at high energies is to increase
the rate of expansion by the term V/(2λ). Hence, there is more inflation

a given potential. Thus we can obtain a given number of e-folds for a smaller
initial value, φi, of the inflaton field.

Let us consider a simple model of an inflationary universe, driven by a
scalar field with potential V = (1/2)m2φ2. Then eq. (17.89), together with
eq. (17.58) leads to

N =
4π

m2
Pl

(
φ2

i − φ2
f

)
+

π2m2

3m6
5

(
φ4

i − φ4
f

)
. (17.90)

The new “brane-term”, compared to the four-dimensional equation (12.54),
means that in the brane universe models we get more inflation for a given
initial value φi of the scalar field.

If there is a negative vacuum energy in the brane, λ < 0, the solution is still
given by eq. (17.83). As can be seen from eq. (17.81) the brane is still inflating

eralization of the slow-roll parameters η and ε of eq. (12.46). From eq. (17.58)

which generalizes eq. (12.43). Inserting this expression into eq. (12.44) using

between any two values of φ in brane cosmology than in standard cosmology for

Following Maartens et al. [MWBH00] we shall now deduce the brane gen-

< 0. In this case the hyperbolic functions of eq. (17.83) are replaced by the

slow-roll parameters reduce to the expressions in eq. (12.46). However at high
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17.6 Dynamics of two branes

17.6 Dynamics of two branes

Some of the most important applications of the theory of brane cosmology
have been made to brane universe models with two branes. We shall therefore
extend the theory of the previous sections to such models. The dynamics of a

We shall use a coordinate system where the metric of the bulk is given in

visible brane. It is at rest at y = 0. The other, called the hidden brane, has
a time dependent position y = R(t). The function R = R(t) is often called

brane. The induced metric on the visible brane is then

ds2
vis = −dt2 + a0(t)

2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (17.91)

The induced metric on the hidden brane depends upon its velocity like the
proper time of a moving clock as given in eq. (10.57), and has the form

ds2
hid = −

[
n(t, R(t))2 − Ṙ2

]
dt2

+a(t, R(t))2
[

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(17.92)

where a dot denotes differentiation with respect to the proper time of the visi-
ble brane. In terms of the proper time τ of the hidden brane this can be written

ds2
hid = −dτ2 + a2(τ)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (17.93)

where a2 = a(t, R(t)) is the expansion factor of the hidden brane. The proper
time of the hidden brane is related to the proper time of the visible brane by

dτ = n(t, R(t))

√
1− Ṙ2

n2
dt = n2γ

−1dt, (17.94)

where

γ ≡ 1√
1− Ṙ2

n2

. (17.95)

Due to the local character of gravity according to the general theory of

without any changes. It will be useful to define an expansion rate,H2, for the
hidden brane by

H2 ≡ ȧ2

a2
=

(
ȧ

a
+

a′

a
Ṙ

)
y=R

. (17.96)

Note that H2 does not coincide with the standard definition of the Hubble

H2 =
1

a2

da2

dτ
=

γ

n2
H2. (17.97)

brane-world with two branes have been developed by Binetruy et al. [BDL01].

eq. (17.23). One brane representing our four-dimensional world, is called the

the radion. The time coordinate t is chosen to be the proper time of the visible

relativity eq. (17.43) of the Hubble parameter in the visible brane is still valid

respect to the proper time of the visible brane and not of the hidden brane.
The Hubble parameter of the hidden brane is

parameter for an observer in the hidden brane because it is defined with
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The four-velocity of a comoving observer in the hidden brane is

uμ =

(
dt

dτ
, 0, 0, 0,

dy

dτ

)
=

γ

n2

(
1, 0, 0, 0, Ṙ

)
. (17.98)

We shall now use the junction conditions to relate the motion of the hidden
brane to its matter content. The unit normal vector to the hidden brane is

n = γ

(
Ṙ

n2
et + ey

)
. (17.99)

extrinsic curvature tensor

K0
0 =

γ5

n2

(
R̈ + nn′ − 2

n′

n
Ṙ2 − ṅ

n
Ṙ

)
,

Ki
j = γ

(
a′

a
+

ȧ

a

Ṙ

n2

)
δi

j ,

K5
0 = ṘK0

0, K0
5 = − Ṙ

n2
K0

0, K5
5 = − Ṙ2

n4
K0

0, (17.100)

where all quantities are evaluated on the brane.
The energy-momentum tensor of the visible and hidden branes are, respec-

tively

T μ
νvis = Sμ

νvisδ(y) = diag(−ρvis, pvis, pvis, pvis, 0)δ(y),

T μ
νhid = Sμ

νhidδ(y −R(t)) = diag(−ρhid, phid, phid, phid, 0)δ(y −R(t)).

(17.101)

Defining

Ŝμν ≡ Sμν − 1

3
Shμν , (17.102)

we find

Ŝ0
0 = −1

3
γ2 (2ρhid + 3phid) ,

Ŝi
j =

1

3
ρhidδi

j ,

Ŝ5
0 = ṘŜ0

0, Ŝ0
5 = − Ṙ

n2
Ŝ0

0, Ŝ5
5 = − Ṙ2

n4
Ŝ0

0. (17.103)

to only two equations

R̈

n2
+

n′

n

(
1− 2

Ṙ2

n2

)
− ṅ

n

Ṙ

n2
= −1

6
κ5 (2ρhid + 3phid)

(
1− Ṙ2

n2

) 3
2

,

a′

a
+

ȧ

a

Ṙ

n2
=

1

6
κ5ρhid

(
1− Ṙ2

n2

) 1
2

, (17.104)

where the metric functions are to be evaluated on the brane. These equations

Inserting these expressions into the Israel junction conditions, eq. (17.8), leads

From eq. (16.24) we now find the following non-vanishing components of the

generalize eq. (17.36). By differentiation one can show that the left hand side
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17.7 The hierarchy problem and the weakness of gravity

moving particle in the hidden brane having four-velocity (17.98). The equa-
tion shows that the matter of the brane causes this motion to deviate from
geodesic motion. Also one can show that the upper equation in (17.104) fol-

conservation equation

ρ̇hid + 3H2(ρhid + phid) = 0. (17.105)

Solving eq. (17.104) with respect to Ṙ one obtains

Ṙ =

n

(
− a′ȧ

a2n ± κ5

6 ρhid

√
ȧ2

a2n2 − a′2

a2 +
κ2
5ρ2

hid
36

)
ȧ2

a2n2 +
κ2
5ρ2

hid
36

. (17.106)

the visible brane can also we rewritten in terms of the proper time τ of the hid-

take the form

d2R

dτ2
+

n′

n

(
1 +

(
dR

dτ

)2
)

= −κ5

6
(2ρhid + 3phid)

√
1 +

(
dR

dτ

)2

,√
1 +

(
dR

dτ

)2
a′

a
+

ȧ

an

(
dR

dτ

)
=

κ5

6
ρhid. (17.107)

If the branes are at rest relative to each other, i.e. with Ṙ = 0 in a bulk with-

hidden brane in terms of the energy density an pressure of the visible brane
and the position y = R2 of the hidden brane

ρhid =
6μ

κ5

(
sinh μR− κ5ρvis

6μ cosh μR

coshμR− κ5ρvis
6μ sinh μR

)
. (17.108)

In the limit μR ≈ 0, for example if the branes are very close to each other, or if
the positions of the branes are identified with another one obtains ρhid ≈ −ρvis.

17.7

In our universe there seems to exist two fundamental energy scales: The elec-
troweak scale, mEW ∼ 103GeV, and the Planck scale, mPl ∼ 1019GeV. The
hierarchy problem is in essence: Why is there such a vast difference between
the two scales? A related question is: Why is gravity so weak? At the Planck
energy scale one expects gravity to be as strong as the gauge interactions.

One way of answering these questions has been by so-called Kaluza-Klein
5

5This will be the subject of the next chapter.

of the upper eq. (17.104) is just the four-acceleration in the y-direction of a co-

lows by differentiating the lower and using eq. (17.39) together with the energy

By means of eq. (17.94) the equations of motion of the hidden brane relative to

den brane instead of the proper time t of the visible brane. Then eqs. (17.104)

Using these equations one can express the energy density and pressure of the
reduce to eq. (17.36), and the geometry of the bulk is given by eq. (17.53).
out matter, but with a non-vanishing cosmological constant, then eqs. (17.104)

of gravity
The hierarchy problem and the weakness

introduced. Gravity is postulated to be fundamentally strong. Expanding the
, where one or more additional compact dimensions arecompactification
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metric as a Fourier series one get an infinite number of field modes in four
dimensions. Modes with n �= 0 correspond to massive modes with mass n/R,
where R is the radius of an extra dimension. The zero mode corresponds to
massless gravitons. As we take R to be smaller and smaller the mass of the
first massive mode becomes very large. This means that if the compact dimen-
sion has sufficiently small extension, only the zero mode has been probed by
gravitational experiments up to the present time. Hence effectively gravity is
weak at the observed scales. In order that effects of the fundamental strength
of gravity shall not be observed, the extension of the compact dimension must
be less than about 10−18m.

The questions above can also be answered without demanding that the
extra dimensions have so extremely small extension. Assume that the elec-
troweak scale, characterized by the mass mEW, is the only fundamental short
distance scale in nature. Furthermore, suppose that there are n extra compact
dimensions of radius R. In the brane-world scenarios it is also assumed that
the electromagnetic, weak and strong forces, as well as the matter in the uni-
verse, is trapped in ordinary four-dimensional space, i.e. on our 3-brane. Only
gravity is able to spread out in the extra dimensions.

The Planck scale mPl(4+n) of this (4 + n)-dimensional theory is taken to be
the electroweak scale mEW. The gravitational potential at a distance r from a
point mass m in ordinary four dimensional spacetime is

V (r) = G
m

r
. (17.109)

Using units so that � = c = 1, Newton’s gravitational constant is given by
G = m−2

Pl . Hence, the ordinary Newtonian gravitational potential takes the
form

V (r) =
1

m2
Pl

m

r
. (17.110)

Suppose now that the particle is in a space with n extra compact dimensions
with radius R. The gravity is spreading in all these dimensions, and the grav-
itational potential measured at a distance r � R from the particle is

V (r) ≈ 1

mn+2
Pl(4+n)

m

rn+1
. (17.111)

On the other hand, if one measures the potential at a distance r 	 R from
the particle one does not recognize that part of gravity which spreads in the

is, however, still valid, but with rn – due to the extra dimensions – replaced
by Rn. Hence one measures a potential

V (r) ≈ 1

m2+n
Pl(4+n)R

n

m

r
. (17.112)

given by [AHDD98]

m2
Pl ≈ m2+n

Pl(4+n)R
n. (17.113)

because it is

there might be only one fundamental scale.

extra dimensions. Then one measures an effective (1/r)-potential. Eq. (17.111)

diluted by the extra dimensions. Viewed from the higher-dimensional bulk
According to this picture the gravitational force is so weak

Comparing with eq. (17.110) our effective four-dimensional Planck mass is
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Putting mPl(4+n) ≈ mEW and demanding that R be chosen to reproduce the
observed mPl yields

R ≈ 10
30
n −17cm×

(
1TeV

mEW

)1+ 2
n

. (17.114)

For n = 1 the typical radius of the compact dimensions is R = 1013cm imply-
ing deviations from Newtonian gravity over solar system distances, so this
case is empirically excluded. However, for n = 2 one gets R = 10−2cm. Mea-

The Kaluza-Klein requirement on the extension of the compact dimen-
sions, mentioned above, appears in a different way in this scenario. From
high-energy accelerator experiments we know that the strong, weak and elec-
tromagnetic forces cannot be modified at distances larger than about 10−18m.
If the 3-brane representing our world has a finite thickness R in the higher
dimensional bulk, one should be able to measure deviations of the usual force
laws at distances less than R. If these forces are trapped in a brane, the thick-
ness of the brane must therefore be less than 10−18m.

However, there is a problem. While this scenario eliminates the hierarchy
between the electroweak scale mEW and the Planck scale mPl, it introduces
a new hierarchy, namely the one between the compactification scale and the

native solutions to the hierarchy problem and to search for another reason for
the weakness of gravity.

17.8 The Randall-Sundrum models

archy problem and the weakness of gravity.
In the first model there are two parallel branes, the visible brane is at y = 0

and the hidden at y = yh. The bulk coordinate is taken to be periodic with
period equal to 2yh. Also, the surface (xi, y) is identified with the surface
(xi,−y). This is usually referred to as the Z2-symmetry in the literature. Fur-
thermore it is assumed that the branes are domain walls with equal and op-
posite tension interpreted as vacuum energy by brane inhabitants. Hence

pvis = −ρvis, and phid = −ρhid with ρhid = −ρvis = −λ, (17.115)

where λ < 0 is the tension of the visible brane. The branes are separated by an
anti-de Sitter bulk with a cosmological constant ΛB < 0 , and are supposed to
be critical. Hence, from (17.12) with Λ = 0 follows

ΛB = −κ2
5

6
λ2. (17.116)

Thus, the cosmological constant in the bulk and the tension of the bulk are
negative, and there is a fine-tuning between these which secures the vanishing
of the four-dimensional cosmological constant observed by habitants of the
visible brane.

It is assumed that there exists a solution that respects four-dimensional
Poincare invariance in ordinary spacetime. A five-dimensional metric satisfy-
ing this ansatz takes the form

experiments to be performed in the near future.
surements of deviations from Newton’s law at such scales are feasible in

electroweak scale. This motivated L. Randall and R. Sundrum to explore alter-

Two five-dimensional static universe models have been constructed by L. Randall
and R. Sundrum [RS99b, RS99a] (see also [Pad02, Räs02]) to explain the hier-
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ds2 = a(y)2ηαβdxαdxβ + dy2, (17.117)

where ηαβ is the Minkowski metric on the brane and 0 ≤ y ≤ yh is the coordi-
nate of a compact extra dimension with a finite size set by yh. In the present
case eq. (17.36) takes the form

a′i
ai

= ±
√
−ΛB

6
= ±1


, (17.118)

with i = 1 and i = 2 for the visible and the hidden brane, respectively. Choos-
ing the negative sign and imposing Z2-symmetry about y = 0, the solution
is

a = e−|y|/�, (17.119)

This function is called the warp factor. Hence the line-element of the bulk be-
tween the branes is

ds2 = e−2|y|/�ηαβdxαdxβ + dy2, (17.120)

which represents a slice of anti-de Sitter space, and the branes are Minkowski
branes. The warp factor of the RS-I model is shown in Fig. 17.2.

Figure 17.2: The warp factor in the RS-I model.

The most important quality of the RS-I model is that it provides an inge-
nious approach to the hierarchy problem. In the RS-I scenario the fundamen-
tal Planck scale is equal to the fundamental electroweak scale. However, the
scales separate when we consider the effective interactions on the brane. By a
field renormalization invoking a Higgs field calculation Randall and Sundrum
arrive at the following result: Any mass m0 in five-dimensional spacetime on
the brane representing our world corresponds to a physical mass

m = e−yh/�m0. (17.121)

If eyh/� is of order 1015, which only requires yh/ ≈ 50, this mechanism pro-
TeV, physical masses from masses around the Planck

y

yy 0 == yh

duces weak scale, i.e,.

472



17.8 The Randall-Sundrum models

scale, 1019GeV, in the five-dimensional spacetime. Saying this means that the
Planck scale is considered fundamental and the TeV scale as derived. How-
ever one could equally well have regarded the TeV scale as fundamental and

in the brane representing our four-dimensional world, the Planck scale, i.e.
the weakness of gravity, arises because of the small overlap of the graviton
wave function in the fifth dimension with our brane.

From a phenomenological point of view this result is particularly exciting.
If the fundamental scale of gravity is as low as a few TeV then we would
expect quantum gravity effects to start showing up in forthcoming collider
experiments.

It should be pointed out that for the RS-I model to work we need a radius
stabilization mechanism. As can be seen yh/ ≈ 50 seems somewhat arbi-
trary and therefore we are in need for something that stabilizes the distance

the presence of bulk fields stabilize the extra dimensions. Such a mechanism
can therefore provide a model which solves the hierarchy problem without
fine-tuning the parameters.

J. Garriga and T. Tanaka [GT00] have considered the gravitational field
of a point mass, m, surrounded by spherically symmetric static space in the
Randall-Sundrum brane, in the weak field approximation. They found the
Newtonian gravitational potential

V (r) = −Gm

r

(
1 +

22

3r2

)
. (17.122)

Thus, deviations from Newton’s gravitational law should be apparent at dis-
tances of the order of the characteristic scale of the cosmological constant of
the bulk. Hence this distance cannot be greater then about a tenth of a mil-
limetre.

In these brane models, although gravity is allowed to propagate in the
bulk, the standard model fields are confined to the brane. Hence, electromag-

will therefore remain almost entirely unmodified. Only gravity is modified in
these scenarios.

It should be noted, however, that the RS-I model is unstable. As noted after

fall towards the brane and make its energy positive. Randall and Sundrum
have constructed a second brane universe model that does not suffer from
such an instability. However, the second model does not provide a resolution
of the hierarchy problem, although it gives an explanation for the weakness
of gravity in our world.

In the second RS-model there is only one brane in an anti-de Sitter bulk
of infinite extension. The brane has positive vacuum energy density which
is again fine tuned against the bulk cosmological constant to ensure Poincaré
invariance on the brane. The warp factor is similar to that of the RS-I model,
but there is now global symmetry about the position of the brane. The warp
factor of this model is shown in Fig. 17.3.

Standard Kaluza-Klein compactification ensures that gravity looks four-
dimensional by stating that the extra dimensions should be small. In the RS-II

dimensionless quantity. From this point of view, which is the one of an observer
the Planck scale as derived since the ratio of the two is the only physical

between the branes. In the original RS-I model such a mechanism was absent.
However, later Goldberger and Wise [GW99] suggested a model where

netism, and the weak and strong forces are fields living on the brane only. Inter-
actions involving these fields will not directly feel the extra dimension and

eq. (17.86), matter in the bulk outside a brane with negative energy density will
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Figure 17.3: The warp factor in the RS-II model.

model the extra dimension is infinite, and gravity is allowed to propagate into
the extra dimension so we would expect it to look five-dimensional even to an
observer on the brane. However, the exponential warp factor causes the grav-
itational interaction to be damped in the direction away from the brane. This
has the effect that gravity looks four-dimensional to a brane-world observer.

The ideas of the RS-I and RS-II models can be combined such that both the
hierarchy problem is solved and the weakness of gravity is explained. In the
combined model there are two branes with positive vacuum energy density,
the Planck brane and the TeV brane. The hierarchy problem is solved in the
same way as in the RS-I model provided we live on the TeV brane, and in a
similar way to RS-II gravity looks four-dimensional, at least up to a few TeV,
on both branes.

Problems

17.1. Domain wall brane universe models
We shall here consider the brane cosmological solutions for brane domain
walls with an equation of state pb = −ρb.

(a) Show that the energy density of a domain wall brane is constant.

(b) A critical brane is defined as a brane satisfying

κ2
5

6
ρb + ΛB = 0.

Show that the expansion factor in a critical domain wall brane with a(0) =
0 is

a =
√

2U1t− kt2,

where U1 is a constant of integration.

for domain wall branes with(c) Show non-critical
κ2 5

6 ρb + ΛB are≡α

that the solutions

y

Brane
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a2 =

√
β

α
sinh

(
2
√

αt
)

+
k

2α
, β > 0,

a2 = e2
√

at +
k

2α
, β = 0,

a2 = ±
√
−β

α
cosh

(
2
√

αt
)

+
k

2α
, β < 0, (17.123)

where β = U − k2

4α .
Plot the expansion factors as functions of time for the following cases:
(i) k = 1, β < 0; (ii) k = 1, β > 0; (iii) k = −1, β < 0; (iv) k = −1, β > 0.

17.2. A brane without Z2-symmetry
In this problem it is not assumed – in contrast to what is usually assumed for
brane worlds – that there is a Z2-symmetry across the brane. Assume therefore
that the metric on either side of the brane is given by the Schwarzschild–anti-
de Sitter metric

ds2
± = −f±(R)dT 2 +

dR2

f±(R)
+ R2γijdxidxj , f±(R) = 1− U±

R2
− Λ±B

6
R2,

where γij is the metric on the three-sphere.

(a) Assume that the metric on the brane is that of a FRW model

ds2 = −dτ2 + R(τ)2γijdxidxj , (17.124)

where τ is the proper time of the brane. Write the junction conditions in
term of the functions f and show that√

f+ + Ṙ2

R
+

√
f− + Ṙ2

R
=

κ5

3
ρb. (17.125)

(b) Show that the Friedmann equation on the brane is

Ṙ2

R2
=

κ2
5

36
ρ2

b +
Λ+

B + Λ−B
12

+

(
Λ+

B − Λ−B
)2

16κ2
5ρ

2
b

− 1

R2
+

9 (U+ − U−)
2

4κ2
5ρ

2
b

1

R8

+

(
U+ + U− +

3 (U+ − U−)
(
Λ+

B − Λ−B
)

2κ2
5ρ

2
b

)
1

2R4
.

Write also down the Friedmann equation in the case ρb = λ + ρ and
U± = 0. What is the cosmological constant on the brane?
This model requires a severe fine-tuning of the values of ΛB on both sides
of the brane in order to be consistent with observations.

17.3. Warp factors and expansion factors for bulk and brane domain walls with fac-
torizable metric functions (I. Brevik et al. [BGOY02])
Assume that the metric functions n(t, y) and a(t, y) of the line element (17.23)
obey the conditions a(t, y) = a0(t)n(y), n(t, y) = n(y), and that the bulk is
filled with a perfect fluid with equation of state pB = wρB .
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dependent density in the brane is the so-called stiff fluid with pB = wρB .
In following problems we shall assume that both the bulk and the brane
are empty except for a cosmological constant ΛB in the bulk and a tension
λ on the brane.

(b) Show that in this case eq. (17.28) leads to the equations

ȧ2
0

a2
0

+
k

a2
0

=
1

2

(
n2
)′′

+
ΛB

3
n2 = D, (17.126)

where D is a constant. Show from eq.(17.43) with U = 0 that D =
Λ/3, where Λ is the four-dimensional cosmological constant given in
eq. (17.12).
Show also that eq. (17.38) now reduces to

n′′ +
ΛB

6
n = 0. (17.127)

Hence, the assumption that the metric function a is separable requires
that the function n has to obey two differential equations.

(c) Assuming mirror symmetry about y = 0, and normalising the warp fac-
tor n so that n(0) = 1 at the brane, show that the equations have the
following solutions:

Λ = 0 :

{
k = 0, a0 = 0, n = e−|y|/�,

k = −1, a0 = t, n = e−|y|/�,
(17.128)

where  is given in eq. (17.118).

Λ > 0 :

⎧⎨⎩ΛB < 0, n = 
√

Λ
3 sinh

(
yh−|y|

�

)
,

ΛB > 0, n = 
√

Λ
3 sin

(
yh−|y|

�

)
,

(17.129)

where yh is a constant defining the position of the horizon in the bulk.
The expansion function is the same for the latter two cases, but depends
upon the spatial curvature on the brane. The solutions for a0(t) are the
same as for the de Sitter solutions (12.10) with different spatial geometry.
For Λ < 0, there is only one solution, for k = −1

n = 

√
−Λ

3
sinh

(
yh − |y|



)
, a0 =

√
− 3

Λ
sin

(√
−Λ

3
t

)
. (17.130)

17.4. Solutions with variable scale factor in the fifth dimension

fect fluid with density ρ and pressure p obeying an equation of state p = wρ,
where w is constant. We shall consider models with n = 1 in the bulk.

(a) Show that in this case a′ = bh(y) where h(y) is an arbitrary function.

(b) Show that when the bulk is empty except for vacuum energy given by a
cosmological constant, ΛB , the function a obeys the differential equation(

a2
)̈ − 2ΛB

3
a2 = 2(b2h2 − k). (17.131)

(a) Use eq. (17.38) to show that the only type of perfect fluid allowing a time

Assume that the bulk is filled with vacuum energy with density λ and a per-
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(c) Find a2(t, y) in terms of arbitrary functions of y appearing in the integra-
tion, for the cases ΛB = 0 and ΛB < 0.

(d) Use eq. (17.36) to show that the gravitational constant is given by

8πG = −κ5

3

(
2 + 3w

1 + w

)
h(0)

a0(t)
. (17.132)

Note that a positive G requires h(0) < 0. Does this equation allow a
constant “gravitational constant”?

“ ”
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18
Kaluza-Klein Theory

Already in 1914 – before Einstein had fulfilled the construction of the general
theory of relativity – Gunnar Nordström1 had published a five-dimensional
scalar-tensor theory of gravitation in an effort to unify gravitation and elec-
tromagnetism. Since it was based upon his own theory of gravitation which
was soon surpassed by Einstein’s theory, this work was neglected for several
decades.

However, in 1919, Theodor Kaluza constructed a similar unified theory of
gravity and electromagnetism based on the linearized version of the general
theory of relativity. The full theory was worked out by Oscar Klein in 1926.
Later Einstein became interested in this theory and developed it further to-
gether with Peter Bergmann.

During the last thirty years more general versions of multidimensional the-
ories have been constructed in order to find a scheme for unifying the four
fundamental forces. There are now a large class of such theories, and the in-
troduction of several spatial dimensions is part of the superstring theories and

working out a quantum theory of gravitation.
In the present chapter we shall consider the version of the theory presented

by Oscar Klein and show how it provides a geometrical unified theory of grav-
ity and electromagnetism.

18.1 A fifth extra dimension

The idea is quite simple. Let us assume that there is – in addition to the four
spacetime dimensions – one compact extra spatial dimension. This extra di-
mension has to be small, or else we would have been able to see it. We will
investigate what a such dimension means to the physics of the observable
four-dimensional spacetime, following [Weh01, WR04].

1English translations of this and the other works mentioned in this section are found in the
book Modern Kaluza-Klein Theories [ACF87].

M-theory that many physicists now hold as promising in the effort towards



Kaluza-Klein Theory

Figure 18.1: In the Kaluza-Klein theory we assume that every point in spacetime has
a small extra dimension.

Assume that our world is a five-dimensional manifold with metric

ds2 = Gabdxadxb (18.1)

where Latin indices have the range 0-4, Greek have range 0-3. Assume also
that there is one spatial Killing vector ξ. This makes it possible to compactify
the space in that direction, and make it as small as needed. We can therefore
interpret this – if the extra dimension is small enough – as if every point in our

have illustrated this idea.
The physical implications of this “small internal dimension” can be seen if

we project the fifth dimension onto the orthogonal complement of the Killing
vector ξ as follows. We choose a set of basis vectors such that e4 coincides with
this Killing vector. The remaining vectors are chosen to be vectors that are
Lie-transported around the manifold. Hence, we choose eμ to be an invariant
basis

[eμ, e4] = 0. (18.2)

This implies that

e4(Gab) = 0; (18.3)

the metric is independent of the fifth dimension.
The vectors eμ will not in general be orthogonal to e4. Thus in general

eμ · e4 = Gμ4. (18.4)

We decompose our vectors eμ into a parallel and orthogonal part

eμ = eμ⊥ + eμ||, eμ⊥ · e4 = 0. (18.5)

(see Fig. 18.2)

Figure 18.2: The projection of the extra dimension onto the orthogonal complement.
Here, π is the projection map.

Proceeding along similar lines as in section 4.7, we write the line element
as

ds2 = gμνdxμdxν + G44

(
dy +

G4μ

G44
dxμ

)2

(18.6)

four-dimensional world has an extra dimension attached to it. In Fig. 18.1 we

em

em⊥

e4 p

,

,
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18.2 The Kaluza-Klein action

where gμν is the projection of Gab onto the orthogonal complement of e4. The
projection tensor can in this case be written as

gab = Gab − ξaξb (18.7)

where ξ = e4 = ξaea. Define A to be the one-form with components

Aμ =
G4μ

G44
, (18.8)

and φ to be the scalar

φ =
√

G44. (18.9)

The scalar φ defines the size of the extra dimension while the vector Aμ defines
the “tilt” of the extra dimension.

18.2 The Kaluza-Klein action

A physical interpretation of the theory can be given by finding the action of
this theory. We start by assuming that the five-dimensional action has the
same form as four-dimensional Einstein gravity. Assume therefore that the
Kaluza-Klein action is

SKK =
1

2κ5

∫
(5)R

√−Gd5x. (18.10)

Here, κ5 is the five-dimensional gravitational constant. We will relate the five-
dimensional Ricci scalar to the four-dimensional one. This can be done using

directly. The reason for this can be seen as follows. Using an orthonormal
frame, we choose

ω4̂ = φ
(
dy + Aμ̂ωμ̂

)
. (18.11)

Taking the exterior derivative, we get

dω4̂ =
φ;ν̂

φ
ων̂ ∧ ω4̂ + φAμ̂;ν̂ων̂ ∧ωμ̂

= (lnφ);ν̂ων̂ ∧ ω4̂ + φAμ̂;ν̂ων̂ ∧ ωμ̂. (18.12)

We define the antisymmetric tensor

Fμν = Aμ;ν −Aν;μ, (18.13)

so that

dω4̂ = (lnφ);ν̂ων̂ ∧ω4̂ − 1

2
φFν̂μ̂ωμ̂ ∧ ων̂ . (18.14)

If the space at a point orthogonal to the vector e4 spans a hypersurface in the
five dimensional world, then the exterior derivative dω4̂ must vanish. Thus
φ is constant, and Fαβ = 0. This makes the situation trivial, as can be shown.
However, we are interested in the case when e4 is not orthogonal to the hyper-
surface; i.e., when Aμ �= 0. We will see that this assumption yields interesting
physics in the four-dimensional world.

a similar method as in the derivation of eq. (7.83), but we cannot use this result

,
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Using Cartan’s first structural equation, eq. (6.182), we can find the five-
dimensional rotation forms. From eq. (18.14) we get

(5)Ω4̂
μ̂ =

1

2
φFμ̂α̂ωα̂ + (lnφ);μ̂ω4̂. (18.15)

The five-dimensional version of Cartan’s first structural equation yields

dων̂ = −(5)Ων̂
α̂ ∧ ωα̂ − (5)Ων̂

4̂ ∧ ω4̂ (18.16)

while the four-dimensional version states

dων̂ = −(4)Ων̂
α̂ ∧ωα̂. (18.17)

This implies that

(5)Ων̂
α̂ = (4)Ων̂

α̂ −
1

2
φF ν̂

α̂ω4̂. (18.18)

From this we can read off the connection coeffients

Γ4̂
α̂β̂

= −Γα̂
4̂β̂

=
1

2
φFα̂β̂ . (18.19)

Note that generally we have(
(5)Ων̂

α̂

)
⊥

= (4)Ων̂
α̂. (18.20)

However, taking the exterior derivative, and then projecting, yields(
d(5)Ων̂

α̂

)
⊥

=

(
d(4)Ων̂

α̂ −
1

2
d(φF ν̂

α̂ω4̂)

)
⊥

= d(4)Ων̂
α̂ −

1

4
φ2F ν̂

α̂Fβ̂γ̂ωβ̂ ∧ ωγ̂ . (18.21)

Following the procedure in section 7.4 we will calculate the projected Rie-
mann tensor. On one hand, we have(

d2eν̂

)
⊥ =

(
1

2
(5)Rd̂

ν̂âb̂
ed̂ ⊗ ωâ ∧ ωb̂

)
⊥

=
1

2
(5)Rμ̂

ν̂α̂β̂
eμ̂ ⊗ ωα̂ ∧ ωβ̂ . (18.22)

On the other hand, using the Riemann tensor in the four dimensional space-
time, we have(

d2eν̂

)
⊥ =

(
d
[
eâ ⊗ (5)Ωâ

ν̂

])
⊥

=
(
deâ ⊗ (5)Ωâ

ν̂

)
⊥

+
(
eâ ⊗ d(5)Ωâ

ν̂

)
⊥

= eμ̂ ⊗
(
d(5)Ω

μ̂
ν̂ + (5)Ω

μ̂
â ∧ (5)Ωâ

ν̂

)
⊥

. (18.23)

We can now use Cartan’s second structural equation, eq. (7.47), by decompos-
ing the wedge product(

d2eν̂

)
⊥ = eμ̂ ⊗

(
d(5)Ω

μ̂
ν̂ + (5)Ω

μ̂

λ̂
∧ (5)Ωλ̂

ν̂ + (5)Ω
μ̂
n̂ ∧ (5)Ωn̂

ν̂

)
⊥

= eμ̂ ⊗
(

(4)Rμ̂
ν −

1

4
φ2F μ̂

ν̂Fα̂β̂ωα̂ ∧ ωβ̂ +
[
(5)Ω

μ̂

4̂
∧ (5)Ω4̂

ν̂

]
⊥

)
=

1

2

(
(4)Rμ̂

ν̂α̂β̂
− 1

4
φ2
[
2F μ̂

ν̂Fα̂β̂ + F μ̂
α̂Fν̂β̂

])
eμ̂ ⊗ ωα̂ ∧ ωβ̂ (18.24)
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18.2 The Kaluza-Klein action

where we have used eq. (18.15). From equations (18.22) and (18.24) it follows
that

(5)Rμ̂

ν̂α̂β̂
= (4)Rμ̂

ν̂α̂β̂
− 1

4
φ2
(
2F μ̂

ν̂Fα̂β̂ − F μ̂
α̂Fβ̂ν̂ + F μ̂

β̂
Fα̂ν̂

)
. (18.25)

is exactly due to the different properties of the connection coefficients.
By contracting this equation twice we get an expression relating the Ricci

scalars in four and five dimensions. The right side of eq. (18.25) contracts to

(4)Rα̂β̂
α̂β̂ −

1

4
φ2
(
2F α̂β̂Fα̂β̂ − F α̂

α̂F β̂

β̂
+ F α̂β̂Fα̂β̂

)
= (4)R − 3

4
φ2F α̂β̂Fα̂β̂ . (18.26)

We first express the left hand side of eq. (18.25) in terms of the the projection
tensor gab. Upon contraction over the 5 dimensional space we get

(5)Re
fijg

a
eg

fbgi
agj

b = (5)Re
fijg

e
ig

fj

= (5)Re
fij(G

e
i − ξeξi)(G

fj − ξfξj)

= (5)R− 2Rabξ
aξb, (18.27)

where we have used the antisymmetry of the Riemann tensor. It remains to
find the contraction Rabξ

aξb. Using the same trick as in eq. (14.70) with ξa =
na as the normal vector, we can find an expression for Rabξ

aξb. The covariant
derivative of ξb is

∇aξb = −ξcΓ
c
ba = −Γ4

ba. (18.28)

This yields

∇aξa = 0

∇b(ξa∇aξb) = −(lnφ);μ;μ

(∇aξb)(∇bξa) = −1

4
φ2FαβFαβ − (lnφ);μ(ln φ);μ. (18.29)

Hence, from the second to last line in eq. (14.70), we get

Rabξ
aξb =

1

4
φ2FαβFαβ + (lnφ);μ(lnφ);μ − (ln φ);μ;μ

=
1

4
φ2FαβFαβ − 1

φ
�φ. (18.30)

Thus from equations (18.26), (18.27) and (18.30), we get

(5)R = (4)R− 1

4
φ2FαβFαβ − 2

φ
�φ. (18.31)

Amazingly, we have obtained a Lagrangian which looks very much like
four-dimensional gravity plus electromagnetism. We also have a scalar field
which couples to the electromagnetic field. Five-dimensional Einstein grav-
ity from a four-dimensional point of view, looks like four-dimensional Ein-
stein gravity plus electromagnetism and a scalar field. This is the “miracle” of

This is eq. (7.83) in a different form than the hypersurface case. The difference
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Kaluza-Klein theory; it connects the theory of electromagnetism and gravity
in a fascinating way.

The determinant of the five-dimensional metric can be written as
√−G = φ

√−g, (18.32)

thus the five-dimensional Lagrangian takes the form

LJ = φ
√−g

(
(4)R − 1

4
φ2FαβFαβ − 2

φ
�φ

)
. (18.33)

This is the Kaluza-Klein Lagrangian in the Jordan frame. In this frame the La-
grangian has an overall scaling in the φ-field.

We first consider the simplest case where the scalar field is constant and
equal to unity.

Thus assume for a while that the scalar field is

φ = 1.

The Lagrangian simplifies and the action can be written

SKK =
1

2κ5

∫ √−g

(
(4)R− 1

4
FαβFαβ

)
d5x. (18.34)

We want to relate this to the four-dimensional action. The fifth dimension is
spanned by a Killing vector, hence the integrand is independent of the fifth
coordinate, x4 ≡ y. This makes it possible to integrate the action over the co-
ordinate y. If the length of the fifth dimension (or the compactification length)
is �, then we have

SKK =
1

2κ5

∫ √−g

(
(4)R− 1

4
FαβFαβ

)
d4xdy

=
�

2κ5

∫ √−g

(
(4)R− 1

4
FαβFαβ

)
d4x. (18.35)

For this to correspond to the four-dimensional action, we have to identify the

κ4 =
κ5

�
. (18.36)

If we further rescale the field Aμ by

Aμ �−→
√

2κ4Aμ (18.37)

then the action can be written in the usual four-dimensional form

SKK =

∫ √−g

(
1

2κ4

(4)R− 1

4
FαβFαβ

)
d4x. (18.38)

tromagnetic field. Hence, Einstein’s theory of relativity and electromagnetism
have been unified.

four-dimensional gravitational constant with

,

This action describes Einstein gravity in four dimensions coupled to an elec-
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18.3 Implications of a fifth extra dimension

In the same way as gravitation is reduced to a geometric property of the
spacetime in Einstein’s theory of general relativity, gravitation and electro-
magnetism are reduced to geometric properties of a five-dimensional space-
time in the Kaluza-Klein theory.

Let us consider geodesic curves in the five-dimensional spacetime (5)M.2

They are given by the equation

d2ua

ds2
+ Γa

iju
iuj = 0 (18.39)

where s is the proper time in (5)M. Since x4 is a cyclic coordinate, p4, defined
by

p4 =
∂L

∂ẋ4
= m0G4aua = m0(Aμuμ + u4) = m0u4, (18.40)

is a constant of motion. Here, m0 is an invariant mass for the particle, and p4

is the component of the momentum of the particle in the e4-direction. Solving
eq. (18.40) with respect to u4 yields

u4 = u4 −Aμuμ. (18.41)

The μ-component of the geodesic equation (18.39) is

d2uμ

ds2
+ Γμ

αβuαuβ + 2Γμ
4βu4uβ + Γμ

44u
4u4 = 0, (18.42)

where we have used a coordinate basis. From eq. (18.15) we see that Γμ
44 = 0.

Also, since Fαβ transforms as a four-dimensional tensor, we have

d2uμ

ds2
+ Γμ

αβuαuβ =
p4

m0
Fμ

βuβ. (18.43)

If we take into account the rescaling (18.37) and compare this equation with
the movement of a charged particle in an electromagnetic field, we see that
the charge of the particle is

q = 8π
√

ε0G
p4

c
. (18.44)

A neutral particle has p4 = 0. In the Kaluza-Klein theory a charge in the four-
dimensional spacetime corresponds to a covariant momentum component in
the fifth dimension. The charge of a particle is conserved since p4 is a constant
of motion.

The parameter s is the invariant interval in (5)M. We introduce the proper
time of the particle as a parameter. The line-element has the form

−εds2 = −dτ2 + (dy + Aμdxμ)2 (18.45)

where dτ is the proper time in the four-dimensional spacetime (we will only
consider time-like curves in four-space), and ε = 1, 0 and−1 for time-like, null
and space-like curves in (5)M, respectively. This implies

−ε = −
(

dτ

ds

)2

+ (u4 + Aμuμ)2 = −
(

dτ

ds

)2

+ (u4)
2. (18.46)

2In this section we will set φ = 1.
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Thus eq. (18.43) can be written

d2uμ

dτ2
+ Γμ

αβ

dxα

dτ

dxβ

dτ
=

q

m0

√
(u4)2 + ε

Fμ
βuβ. (18.47)

spacetime) rest mass is

m̄0 = m0

√
(u4)2 + ε =

√
m2

q + εm2
0 (18.48)

where we have used eq. (18.44) and

mq =
|q|

8π
√

ε0G
. (18.49)

The smallest possible mq is for q = e (e is the elementary charge). This
gives mq = 10−9kg. For null or time-like (ε = 0, 1) geodetic curves the par-
ticle mass is equal or larger than this. For space-like curves in (5)M – which
perfectly well can be time-like in the four-dimensional spacetime – m̄0 can be
arbitrary small. Thus the trajectories of charged particles with mass less than
10−9kg are space-like in (5)M. Using eqs. (18.44) and (18.49) we can write eq.
(18.48) as

m̄0 = mq

√
1 + ε

c2

(u4)2
. (18.50)

This shows that for a particle with large charge-to-mass ratio, for example an
electron (q/m̄0 = −2.9 · 1020), the world-line is tachyonic (ε = −1) and u4 ≈ c.

The five-dimensional world is neutral and without any electromagnetic
fields. One may wonder, then, what is the five-dimensional field which cor-
responds to the Coulomb field of a charge from the four-dimensional point of
view? The nature of the five-dimensional field may be identified by noting
that what we perceive as charge is the motion of a neutral particle around a
closed fifth dimension. Such motion generates an inertial dragging field. A
detailed calculation [Grø86] shows that the Coulomb field is indeed the pro-
jection of the inertial dragging field into our four-dimensional world. Hence,
if gravity was correctly decribed by a theory like that of Newton involving no
inertial dragging field, there would not exist any electromagnetic fields. From
the five-dimensional point of view electromagnetism is a general relativistic
gravitational effect which vanishes in the Newtonian limit.

The 5-dimensional wave-equation and the Klein-Gordon

Consider the five-dimensional wave-equation

�5ψ = 0 (18.51)

5

operator

�5ψ =
1√−G

∂

∂xa

(√−GGab ∂ψ

∂xb

)
. (18.52)

equation

Hence, it follows that the particles physical (as measured in the four-dimensional

where ψ represents a wave-function, and � is the five-dimensional d’Alembert
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Since the fifth dimension is closed and periodic, ψ must be a periodic function
in x4. Hence it can be expanded in Fourier modes

ψ(xa) =
∑

n

ψn(xμ)einy/�, x4 = y. (18.53)

The inverse metric Gab is

Gμν = gμν , G4μ = Aμ, G44 = 1 + AμAμ, (18.54)

so – using
√−G =

√−g – we get

√−g�5ψ =
∂

∂xμ

(√−ggμν ∂ψ

∂xν

)
+

∂

∂y

(√−gG4μ ∂ψ

∂xμ

)
+

∂

∂xμ

(√−gGμ4 ∂ψ

∂y

)
+

∂

∂y

(√−gG44 ∂ψ

∂y

)
. (18.55)

Substituting eqs. (18.53) and (18.54) we can write eq. (18.51) as

�4ψn +
in

�

[
∂

∂xμ
(
√−gAμψn) +

√−gAμ ∂

∂xμ
ψn

]
−n2

�2

√−g(1 + AμAμ)ψn = 0. (18.56)

Let us assume that the metric in the observable spacetime is the Minkowski
metric. Also, introduce a charge3, qn, and mass, mn, by

qn = n
�
√

16πG

c�
, mn = n

�c

�
. (18.57)

Eq. (18.56) can now – after the rescaling Aμ �→
√

16πGAμ – be written

gμν

(
∂

∂xμ
− i

qn

�
Aμ

)(
∂

∂xν
− i

qn

�
Aν

)
ψn − m2

n

�2
ψn = 0. (18.58)

This is the Klein-Gordon equation for particles with charge qn in the presence
of an electromagnetic field.

The expectation value of the momentum in the fifth dimension, p4, for the
eigenfunction ψ(xa) = ψn(xμ)einy/�, is given by

p4 =
1

�

∫
dy

∫
d4xψ∗

(
−i�

∂

∂y

)
ψ = n

�

�
. (18.59)

Hence, the momentum in the fifth dimension is quantised. Eq. (18.44) can –
using eq. (18.59)– be written as

q = n · 8π

√
ε0G

c

�

�
. (18.60)

This shows that the charge of the particle is quantised. In the Kaluza-Klein

3This charge must be interpreted as the charge as expressed in CGS units. In SI units one
chooses Ampere (A) to be a fundamental unit and the Coulomb (C) to be a derived unit: 1C =
1As. However, in Kaluza-Klein theory there is no reason why the unit of Ampere should appear
since this refers to moving charges and no charges have yet been defined! In SI units the charge
is given below, eq. (18.60). To get from SI to CGS units swap ε0 with 1/(4π).

momentum.
theory the quantisation of the charge is a result of the quantisation of the
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Substituting q = ne we get

� = 8π
√

ε0G
�

ce
= 4

√
π

α
�Pl (18.61)

where α = e2/(4πε0�c) is the fine structure constant, and �Pl = (�G/c3)1/2 is
the Planck length.

This means that � = 10−33cm. That the fifth dimension is so incredible tiny
explains why we do not have any physical experience of it. The quantisation
of charge in Kaluza-Klein theory is reformulated in terms of quantisation of
the radius of the compact dimension. Hence, if this can be explained in a
quantum theory of gravity, we can also explain the quantisation of charge.

18.4 Conformal transformations

The scalar field φ is called a dilaton field. If we want to include a non-constant
φ in Kaluza-Klein theory, then we have to rescale the Lagrangian such that we
can identify φ(4)R with a Ricci scalar (4)R̃. In order to do this we will introduce
the notion of conformal transformations.

Definition: Conformal transformations Let N and M be two manifolds
with metrics g̃ and g respectively. A smooth function f : N �−→ M is said to
be a conformal transformation if

Ω−2g̃ = f∗g (18.62)

where Ω is some non-zero function.

If such a map exists for two manifolds N and M , then we say that they are
conformally equivalent.

A conformal transformation rescales the metric, thus conformal transfor-
mations relates manifolds where the metric is the same up to a rescaling. In
particular, we see that isometries are conformal transformations with Ω = 1.

Let v and u be two vectors. Isometries will preserve both the lengths and
the angles of these vectors. For conformal transformations we have

g̃(v,v) = Ω2g(v,v) (18.63)

while

∠̃(v,u) ≡ g̃(v,u)√
g̃(v,v)g̃(u,u)

=
g(v,u)√

g(v,v)g(u,u)
= ∠(v,u). (18.64)

Thus, angles are preserved under conformal transformations.
A manifold M is said to be conformally flat if, for every point p ∈ M , there

exists an open neighbourhood U ⊂ M such that U is conformally equivalent
to a flat manifold. Note that conformal flatness is only defined locally, which
is of course not as restrictive as the global requirement.

An important result is that any 2-dimensional Lorentzian or Riemannian man-
ifold is conformally flat. For manifolds of higher dimensions, we have to investi-
gate the properties of the curvature tensors under conformal transformations
more carefully.
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18.4 Conformal transformations

Example 18.1 (Hyperbolic space is conformally flat) Example
Let us provide an example of two conformally related manifolds.

We will consider hyperbolic space H3. The metric for H3 can be written as

ds2 =
dr2

1 + r2
+ r2(dφ2 + sin2 φdθ2). (18.65)

We will show that this metric is conformally flat. To show this, we try to find a coordi-
nate transformation R(r) such that the metric takes the form

ds2 = Ω2 ˆdR2 + R2(dφ2 + sin2 φdθ2)
˜
. (18.66)

The metric inside the square brackets is flat, thus if a function R(r) exists, then the
metric is conformally flat. From the above we clearly require

r = ΩR
dr√

1 + r2
= ΩdR. (18.67)

These equations can be solved to yield

R =
r√

1 + r2 + 1

Ω =
2

1−R2
. (18.68)

Note that R is bounded by 0 ≤ R < 1; hence hyperbolic space is conformally equiva-
lent to the open Euclidean disk

D
3 =

˘
(R, φ, θ) ∈ E

3
˛̨
0 ≤ R < 1

¯
. (18.69)

Thus the hyperbolic space is conformally flat.
Remember that we have already encountered hyperbolic space in a different form,

namely the Poincaré half-space model

ds2 =
1

z2

`
dx2 + dy2 + dz2´ . (18.70)

From this metric we can easily see that hyperbolic space is conformally flat. The scale
factor in this case is simply Ω = z. The disk model of the hyperbolic space, which
we described above, is called the Poincaré disk. Thus since two successive conformal
transformations are also a conformal transformation, then we have to conclude that
the upper half Euclidean plane is conformally equivalent to the Euclidean disk.

We call a vector field ξC generating a conformal transformation a confor-
mal Killing vector field. We can define a conformal Killing vector field by the
requirement

£ξ
C
g = 2κg, (18.71)

where κ is in general a function. If κ happens to be constant then we call ξC

a homothety. The homotheties generate a subclass of the conformal transfor-
mations, usually called the similarity group. The similarity group are special
conformal transformations where the function Ω in eq. (18.62) is a constant.

In component form, the metric will transform under a conformal transfor-
mation as

gμν �−→ Ω2gμν . (18.72)
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We can use this to investigate the transformation properties for the curvature
tensors under such conformal transformations. Through a rather lengthy cal-
culation, we can compare the Riemann tensors of g̃μν and gμν . The result is as
follows

R̃δ
αβγ = Rδ

αβγ + 2δδ
[α∇β]∇γ ln Ω− 2gδλgγ[α∇β]∇λ ln Ω

+2
(∇[α ln Ω

)
δδ

β]∇γ ln Ω− 2
(∇[α ln Ω

)
g β]γgδλ∇λ ln Ω

−2gγ[αδδ
β]g

λκ (∇λ ln Ω)∇κ ln Ω. (18.73)

Contracting once, we obtain the Ricci tensor

R̃αγ = Rαγ − (n− 2)∇α∇γ ln Ω− gαγgδλ∇δ∇λ ln Ω

+(n− 2) (∇α ln Ω)∇γ ln Ω

−(n− 2)gαγgδλ (∇δ ln Ω)∇λ ln Ω, (18.74)

where n is the dimension of the manifold. Contracting with g̃αγ = Ω−2gαγ we
obtain the Ricci scalar

R̃ = Ω−2
[
R − 2(n− 1)gαβ∇α∇β ln Ω

− (n− 2)(n− 1)gαβ (∇α ln Ω)∇β ln Ω
]
. (18.75)

It is useful to define the Weyl tensor Cα
βγδ for dimensions n ≥ 3 as

Cαβγδ = Rαβγδ − 2

n− 2

(
gα[γRδ]β − gβ[γRδ]α

)
+

2

(n− 1)(n− 2)
Rgα[γgδ]β . (18.76)

This tensor has many interesting properties. First of all, it has the same sym-
metries as the Riemann tensor concerning permutations of the indices. Sec-
ondly, the trace over any pair of indices vanishes:

Cα
βαδ = 0. (18.77)

This tensor is completely trace-free. Thirdly, it transforms very nicely under
conformal transformations

C̃α
βγδ = Cα

βγδ. (18.78)

Whether or not a space is conformally flat relies on the Weyl tensor through
the following theorem:4

Theorem: Conformal flatness A manifold of dimension n ≥ 4 is confor-
mally flat if and only if its Weyl tensor vanish.

For these reasons the Weyl tensor is also called the conformal curvature tensor.
Since the Weyl tensor is trace-less, it will not contribute to the Ricci tensor.

the Ricci part of the Riemann tensor will be zero due to the field equations.
The remaining non-zero components of the Riemann tensor must therefore
correspond to non-zero components of the Weyl tensor. This is the case in, for
example, the Schwarzschild spacetime where the Ricci tensor vanishes.

4For the case of dimension 3, see problem 18.5.

determined by Einstein’s field equations. For example, in a vacuum spacetime,
The Weyl tensor is basically the part of the Riemann tensor which is not
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18.5 Conformal transformation of the Kaluza-Klein action

Example 18.2 (Homotheties for the Euclidean plane) Example
Let us consider the Euclidean plane with metric

ds2 = dx2 + dy2 = δμνdxμdxν . (18.79)

We will try to find all possible homotheties for the Euclidean plane. To find these we
solve the equation

£ξg = 2κg. (18.80)

Since in Cartesian coordinates all the connection coefficients vanish, the conformal
Killing equation reduces to

ξμ,ν + ξν,μ = 2κδμν . (18.81)

The diagonal equations are

ξ1,1 = κ, ξ2,2 = κ, (18.82)

which have in general the solutions

ξ1 = κx + f1(y), ξ2 = κy + f2(x). (18.83)

Inserting this into the off-diagonal equations we get

f ′1(y) = −f ′2(x). (18.84)

This shows that f1(y) and f2(x) can at most be linear in their respective variables. For
κ = 0 we get the usual Killing vector fields

ξ1 =
∂

∂x
, ξ2 =

∂

∂y
, ξ3 = y

∂

∂x
− x

∂

∂y
. (18.85)

We note that there is only one linearly independent vector field for κ �= 0. We choose
κ = 1, and the homothety can be written

ξ4 = x
∂

∂x
+ y

∂

∂y
. (18.86)

This is a radial vector field, each vector pointing away from the origin. As we move
along the vector field we “expand” the space radially.

18.5 Conformal transformation of the Kaluza-Klein
action

In the Jordan frame, the Kaluza-Klein Lagrangian has an overall scaling factor
given by the scalar field φ. In this section we will introduce a different frame,
the so-called Einstein frame. This frame is related to the Jordan frame via a
conformal transformation.

Let us therefore perform a conformal transformation of the Kaluza-Klein

It turns out that we get the same result whether we transform the four-
dimensional spacetime or the five-dimensional spacetime. Let us choose a
transformation of the four-dimensional metric. Henceforth we will skip the

action to illuminate the effect this extra dimension has upon our four-
dimensional world.
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(4)

The Ricci scalar transforms as

R̃ = Ω−2
[
R− 6gαβ∇α∇β ln Ω− 6gαβ (∇α ln Ω)∇β ln Ω

]
= Ω−2R− 6Ω−3�Ω. (18.87)

The determinant of the metric
√−g will transform as√

−g̃ =
√
−Ω8g = Ω4√−g, (18.88)

thus the pure gravity term in the action will transform as√
−g̃φR̃ =

√−gφ
[
Ω2R− 6Ω�Ω

]
. (18.89)

Hence, by choosing

Ω = φ−
1
2 , (18.90)

we can get rid of the φ in front of the Ricci tensor. The action will then turn
into the sought after form.

Using Ω = φ−
1
2 we get

FμνFαβ g̃μαg̃νβ = φ2FμνFαβgμαgνβ = φ2FαβFαβ , (18.91)

and

�̃φ =
1√−g̃

(√
−g̃g̃μνφ,μ

)
,ν

=
φ2

√−g

(
φ−1√−ggμνφ,μ

)
,ν

= −φ,νφ,ν + φ�φ. (18.92)

�Ω =
3

4
φ−

5
2 φ,νφ,ν − 1

2
φ−

3
2 �φ, (18.93)

we get the Lagrangian into the form

LKK =
√
−g̃φ

[
R̃− 1

4
φ2FμνFαβ g̃μαg̃νβ − 2

φ
�̃φ

]
=

√−g

[
R− 1

4
φ3FαβFαβ − 5

2

φ,νφ,ν

φ2
+

�φ

φ

]
. (18.94)

Since the action is the integral of this Lagrangian, we can perform a partial
integration of the �φ-term. The total derivative yields only boundary terms
and can therefore be disposed of. For convenience, it is useful to define ϕ by

φ3 = e−
√

6κ4ϕ, (18.95)

and to rescale Aμ as Aμ �→
√

2κ4Aμ. The Kaluza-Klein action in the Einstein
frame can then be written as

SKK =

∫ √−g

(
1

2κ4
R− 1

4
e−
√

6κ4ϕFαβFαβ − 1

2
ϕ,νϕ,ν

)
d4x. (18.96)

objects.
label on the tensors because we will only consider four-dimensional

Also, using
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18.5 Conformal transformation of the Kaluza-Klein action

Hence, in addition to pure Einstein gravity, we have an electromagnetic
field and a scalar field which is coupled to the kinetic term of the electromag-
netic field. As the scalar field varies, the field strength of the electromagnetic
field varies.

Upon variation of the above action, we find the following equations of
motion:

�ϕ =

√
3κ4

8
e−
√

6κ4ϕFαβFαβ , (18.97)

∇α
(
e−
√

6κ4ϕFαβ

)
= 0, (18.98)

Eμν = κ4

[
e−
√

6κ4ϕT EM
μν + T ϕ

μν

]
, (18.99)

where

T EM
μν = Fα

μFαν − 1

4
FαβFαβgμν ,

T ϕ
μν = (∇μϕ) (∇νϕ)− 1

2
(∇αϕ) (∇αϕ) gμν (18.100)

are the usual energy-momentum tensors for the electromagnetic field and
scalar field, respectively.

Jordan frame or Einstein frame?

We have so far introduced two choices of frames which seem to give different
actions and thus different physical interpretations. However, the two frames,
the Jordan and Einstein frames, are mathematically equivalent; they are re-
lated via a conformal transformation.

Suppose we have defined the speed of light to be unity and the unit of
time to be the inverse of some atomic transition frequency. We can now mea-
sure distances in space by sending light signals and determine the travel time
using the proper time as defined by this atomic transition. This will corre-
spond to a measurement done in the Jordan frame. In the Jordan frame the
matter Lagrangian is independent of the dilation, φ; i.e. it will have the form
Lm[ĝμν , ψm] where ψm is some matter field. An atomic clock will measure
a proper time with respect to the metric ĝμν , and hence, any measurement
where the time is defined in terms of the atomic clock will determine the
spacetime geometry in the Jordan frame.

Suppose, on the other hand, that one desides to define the unit of time in
terms of a purely general relativistic object, like a black hole (the speed of light
is still unity). A unit of time can, for example, be the inverse of the fundamen-
tal quasinormal frequency of a certain “standard” non-spinning black hole.
The proper time of the black hole then defines a unit of time which measures
the geometry of spacetime in terms of a metric for which the gravitational ac-
tion takes the standard Einstein-Hilbert form; hence, the result is the Einstein
frame metric.

By choosing a frame, i.e. conventions and units of time etc., only one of the
actions can be physically correct even though they might be mathematically
equivalent. However, if we consider any arbitrary conventions for adjustable,
not fixed, then two mathematically equivalent theories can also be physically
equivalent5.

5These issues have been discussed more elaborately by Flanagan [Fla04].
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18.6 Kaluza-Klein cosmology

Here, we will give some applications of Kaluza-Klein theory to cosmology.
The extra dimension can alter the evolution of the observable universe, as we
will see. Cosmology may also be the arena which can explain why the fifth
dimension is so incredibly smaller than the 3 spatial dimensions we observe.

5-dimensional Kasner universe

(see also Chodos and Detweiler, and Hervik [CD80, Her01])
For five-dimensional spacetime the Kasner solutions have the form

ds2 = −dt2 +

4∑
i=1

t2pi(dxi)2 (18.101)

where

4∑
i=1

pi =
4∑

i=1

p2
i = 1. (18.102)

We can give a geometrical meaning of the exponents in this case as well, sim-
ilarly to the four-dimensional Kasner solutions, see Fig. 18.3. Consider the

Figure 18.3: A tetrahedron inscribed in a sphere.

sphere centered at (1/4, 0, 0) with radius 3/4. Inscribe a regular tetrahedron
inside this sphere with its four vertices on the sphere. If the vertices are called
ni, i = 1, ..., 4, then the 1-component of the point ni will give the exponent
pi. All the different orientations of the tetrahedron correspond to the different
solutions.

Note that there are two different configurations of the tetrahedron which
give an isotropic flat observable universe. One is the case where p1 = 1, p2 =
p3 = p4 = 0 and has the metric

ds2 = −dt2 + t2(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2. (18.103)

This metric has one expanding direction and the rest are stationary. This is
certainly not an accurate description of the universe which we live in. The

n1

n2

n3

n4
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other solution is more interesting. It has p1 = p2 = p3 = 1/2 and p4 = −1/2.
This metric has three expanding directions and a contracting one:

ds2 = −dt2 + t
[
(dx1)2 + (dx2)2 + (dx3)2

]
+ t−1(dx4)2. (18.104)

Hence, this universe model has the right behaviour. If the fifth direction is
closed with 0 ≤ x4 ≤ �, the size of the fifth dimension will be

L =
�√
t
. (18.105)

The five-dimensional plane symmetric de Sitter universe

(see also Appelquist and Chodos [AC83])
The line-element has the form

ds2 = −dt2 + f(t)(dx2 + dy2 + dz2) + g(t)(dx4)2 (18.106)

with the solution

f(t) = A sinh ωt, g(t) = B
cosh2 ωt

sinh ωt
. (18.107)

Here, ω2 = 2Λ/3.
In the limit t→ 0, we have

f(t) ≈ Aωt, g(t) ≈ B(ωt)−1 (18.108)

and thus the solution corresponds to the Kasner solution (18.104). For ωt 	 1
we have

f(t), g(t) ∝ eωt. (18.109)

This is the isotropic five-dimensional de Sitter universe.

Plane-wave solutions in five dimensions and exact

We will now provide an example where we generate exact solutions of the
four-dimensional Einstein-Maxwell equations from exact solutions for the five-
dimensional vacuum field equations [Her03].

Let β+, ω, β, Q1, Q2 be parameters and let s be given by

s(1− s) = 2β2
+ +

2

3
ω2 sinh2 2β +

1

6
(Q2

1 + Q2
2). (18.110)

Also, define the two one-forms

ω2 = cos[ω(w + t)]dy − sin[ω(w + t)]dz,

ω3 = sin[ω(w + t)]dy + cos[ω(w + t)]dz. (18.111)

Then there exist homogeneous plane-wave solutions given by

ds2
5 = e2t(−dt2 + dw2) + e2s(w+t)

×
[
e−4β+(w+t)

{
dx + e3β+(w+t)

(
q1e

−βω3 − q2e
βω2
)}2

+ e2β+(w+t)
{

e−2β
(
ω2
)2

+ e2β
(
ω3
)2}]

, (18.112)

Einstein-Maxwell solutions in four dimensions
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where

q1 =
Q1ω + 3β+Q2e

2β

ω2 + 9β2
+

,

q2 =
Q2ω − 3β+Q1e

−2β

ω2 + 9β2
+

. (18.113)

These are solutions to the five-dimensional vacuum field equations and de-
scribe a travelling gravitational wave in five dimensions.

Note that ξ = ∂
∂x is a Killing vector, and hence, we can compactify the

space in this direction. Also note that for a specific choice of parameters s =
2β+, and hence, for this choice the dilaton will be constant. In this case, the
above solutions can be reduced to exact solutions to Einstein’s field equations
with an electromagnetic field. Let us therefore choose s = 2β+, and perform
the Kaluza-Klein reduction with respect to the Killing vector ξ = ∂

∂x .
The metric is already written in the right form so we can just read off the

electromagnetic vector potential

A = e3β+(w+t)
(
q1e

−βω3 − q2e
βω2
)
. (18.114)

The electromagnetic field tensor is thus

F = dA = e−t(η0 + η1) ∧ (Q1η
2 + Q2η

3), (18.115)

where we have introduced an orthonormal frame ημ so that

ds2
4 = ημνημην , (18.116)

where ημν is the four-dimensional Minkowski metric.
The four-dimensional spacetime has the following solution given in terms

of the orthonormal frame:

η0 = etdt

η1 = etdw

η2 = es(w+t)e−β {cos[ω(w + t)]dy − sin[ω(w + t)]dz}
η3 = es(w+t)eβ {sin[ω(w + t)]dy + cos[ω(w + t)]dz}

s(1− s) = ω2 sinh2 2β +
1

4
(Q2

1 + Q2
2). (18.117)

Here, we have redefined the free parameter s so that its similarity with metric
(15.117) on page 434 is more evident. That F satisfies the source-free Maxwell
equations

dF = 0, d†F = 0, (18.118)

and that Einstein’s field equations are satisfied (for the specific choice of con-
stants 16πG = e = c = 1) can be readily verified.

The four-dimensional solutions generalise the metric (15.117) to the non-
vacuum case, and are homogeneous plane-wave solutions of Bianchi type
VIIh. The source is an electromagnetic field which is of a very particular type.
The electric and magnetic fields are (in the orthonormal frame)

Ei = e−t(0,−Q1,−Q2), Bi = e−t(0,−Q2, Q1). (18.119)
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Problems

Thus this is a null field where all invariants composed of the two-form field
vanish

FμνFμν = Fμν (�F )
μν

= 0. (18.120)

The energy density of the field is

ρEM =
1

2
(E2 + B2) = e−2t(Q2

1 + Q2
2). (18.121)

Problems

18.1. A five-dimensional vacuum universe

dσ2 =
4

u2

[
du2 +

(
dv +

1

2
(xdy − ydx)

)2

+ u
(
dx2 + dy2

)]
. (18.122)

This is the metric of the two-dimensional complex hyperbolic plane, H2
C

(2
complex dimensions, but 4 real dimensions). The Ricci tensor for this space is
proportional to the four-metric, hij :

Rij = −3

8
hij .

(a) Consider the five-dimensional universe model where

ds2
5 = −dt2 + a2(t)dσ2. (18.123)

Find the Friedmann equation for the vacuum, using the twice contracted
Gauss equation (7.152). Show that there is a solution where the metric
takes the form

ds2
5 = −dt2 +

t2

2u2

[
du2 + u

(
dx2 + dy2

)
+

(
dv +

1

2
(xdy − ydx)

)2
]
. (18.124)

(b) Since ξ = ∂
∂v is a Killing vector, we can perform a Kaluza-Klein reduction

by compactifying the space in this direction. Do this for this model, and
write down the expressions for the dilaton field φ and the two-form field
F = dA in the Jordan frame.

(c) In the Jordan frame, show that the underlying four-dimensional space
is an open FRW model. (Hint: Perform the coordinate transformation
Z =

√
u, X = 2x and Y = 2y, and show that the spatial three-space is the

hyperbolic space in Poincaré half-space form, see problem 7.5 on page
173.)

18.2. Another five-dimensional vacuum spacetime
Consider the metric

ds2 = 2du

[
dv +

v2

a2
du + 2v(dx + sin ydz)

]
+a2(dx + sin ydz)2 +

a2

2
(dy2 + cos2 ydz2), (18.125)

In this problem we will consider a five-dimensional universe with four-
dimensional spatial sections given by the metric
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Kaluza-Klein Theory

where a is a constant. This metric is a solution to the five-dimensional Einstein
equations for vacuum; i.e., Rμν = 0.

(a) Verify that ξ = ∂
∂x is a Killing vector. Consider also the vector k = ∂

∂v .
Show that

kμkμ = kμ
;μ = kμ;νk(μ;ν) = kμ;νk[μ;ν] = 0,

which means that k is null, expansion-free, shear-free, and twist-free.
(b) Using ξ as the five-dimensional Kaluza-Klein Killing vector, write the

metric on standard form. Find the two-form F for this metric. Verify that
F satisfies dF = 0 and d†F = 0. What is the four-dimensional reduced
metric?

(c) Consider again the vector k for the four-dimensional reduced metric. Is k

18.3. A five-dimensional cosmological constant
Show that a five-dimensional cosmological constant (i.e., in the Jordan frame)
implies a potential for the scalar field ϕ in the Einstein frame. Show that this
potential has the form

V (ϕ) = Aeλϕ, (18.126)

where A and λ are constants.

18.4. Homotheties and Self-similarity
In this problem we will consider the plane-wave solution given in eq. (18.117).
We will show that this spacetime is a so-called self-similar spacetime.

(a) Show that the basis one-forms defined in eq. (18.117) have the property

£Xημ = ημ (18.127)

where X is the vector-field

X =
∂

∂t
− ∂

∂w
+ y

∂

∂y
+ z

∂

∂z
. (18.128)

Show further that this implies that X is a homothety.
Homotheties (including the isometries) form what is called the similarity
group of a spacetime. If the similarity group acts transitive on the space-
time, then we call the spacetime self-similar. In particular, this means that
the plane-wave spacetime (18.117) is self-similar.

ically, find £XA, £XF, and £Xρ, where A, F and ρ are the electromag-
netic one-form potential, field strength, and energy-density, respectively.

18.5. Conformal flatness for three-manifolds
≥

dimensional manifolds we have the following (see eg. [GHL90]).

covariant derivative of the tensor

Sμν ≡ Rμν − 1

4
Rgμν (18.129)

is a symmetric 3-tensor.

metric?

A three-dimensional Riemannian space is conformally flat if and only if the

manifold is conformally flat if and only if the Weyl tensor vanishes. For three-

also null, expansion-free, shear-free, and twist-free for the reduced

All two-dimensional manifolds are conformally flat, and for n 4 an n-

(b) How do the matter fields transform under such homotheties? More specif-
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Problems

(a) Show that for three-dimensional spaces the number of independent com-
ponents of the Riemann and the Ricci tensors are both 6. This shows that
all the components of the Riemann tensor survive the contraction when
one forms the Ricci tensor. Thus the Weyl tensor have to be identically
zero for three-dimensional spaces.

(b) Show that the maximally symmetric Riemannian spaces S3, E3 and H3,
are conformally flat.

(c) Show that the Thurston geometry, Sol, with metric given in eq. (15.95), is
not conformally flat.
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Part VI

APPENDICES



A
Constants of Nature

Fundamental constants
Speed of light c = 2.9979 · 108m/s

Newton’s gravitational constant G = 6.673 · 10−11Nm2/kg2

Elementary charge e = 1.602 · 10−19C
Electron volt 1eV = 1.602 · 10−19J
Planck’s constant � = 1.055 · 10−34J s
Magnetic constant μ0 = 4π · 10−7N/A2

Permittivity in vacuum ε0 = 1
μ0c2 = 8.854 · 10−12C2/Nm2

Boltzmann’s constant kB = 1.381 · 10−23J/K
Stefan-Boltzmann’s constant σ = 5.67 · 10−8J/sm2K4

Fine-structure constant α = e2

4πε0�c ≈ 1
137

Mass of electron me = 9.109 · 10−31kg
Mass of proton mp = 1.673 · 10−27kg

The Solar System

Mass of the Earth MEarth = 6.0 · 1024kg
Mass of the Sun MSun = 2.0 · 1030kg
Distance Earth-Sun a = 1AU

a = 1.5 · 1011m
Radius of the Earth REarth = 6.4 · 106m
Radius of the Sun RSun = 7.0 · 108m
Acceleration of gravity at Earth’s surface
Lunar mass MMoon = 7.4 · 1022kg
Distance Mercury-Sun aMercury = 5.8 · 1010m
Orbital period of Mercury TMercury = 88 days
Eccentricity of Mercurian orbit e = 0.17
Perihelion precession of Mercurian orbit Δφ = 43′′ per century

g = 9.8m/s2



Constants of Nature

Astrophysical/Cosmological parameters

Only approximate values are given. Some values must be handled with care.

Hubble constant H0 = 72km s−1Mpc−1

CMB temperature T = 2.725K
CMB fluctuations δT/T ≈ 10−5

Age of the universe t0 = 13, 7 · 109 years
Curvature Ωk = −0.02± 0.02
Vacuum energy ΩΛ = 0.7
Ordinary matter Ωm = 0.04
Dark matter ΩDM = 0.28

Planckian units

Planck length �Pl =
√

�G
c3 = 1.62 · 10−35m

Planck time tPl =
√

�G
c5 = 5.39 · 10−44s

Planck mass mPl =
√

�c
G = 2.18 · 10−8kg

Planck energy EPl =
√

�c5

G = 1.22 · 1019GeV
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B
In this appendix we will review the concept of Penrose diagrams. They provide
a useful geometric picture of the global and causal structure of the spacetime.

B.1

Penrose diagrams are concerned with mapping an infinite spacetime onto a
finite manifold with a boundary using a conformal transformation. Recall
that conformal transformations rescale the metric

f∗g = Ω−2g.

Such transformations preserve the causal structure; hence they preserve the
sign of the norm g(v,v) for any given vector v. This means that space-like
vectors are mapped to space-like vectors, light-like to light-like vectors, and
time-like to time-like vectors. Using conformal transformations we can un-
der some circumstances pull the infinities of spacetime back onto a finite and
bounded region. For example, the function arctanx maps the whole real line
R onto the finite interval [−π/2, π/2].

Let us consider Minkowski spacetime and see how we can map the infi-
nite Minkowski space onto a diamond-shaped finite region using a conformal
transformation. In polar coordinates Minkowski space takes the form

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (B.1)

Introducing null coordinates by

u =
1

2
(t− r), v =

1

2
(t + r), (B.2)

gives

ds2 = −4dudv + (v − u)2
(
dθ2 + sin2 θdφ2

)
. (B.3)

Conformal transformations and causal structure

Penrose Diagrams



Introducing the coordinates

U = arctanu, V = arctan v, (B.4)

the metric is brought onto the form

ds2 =
1

cos2 U cos2 V

[−4dUdV + sin2(V − U)
(
dθ2 + sin2 θdφ2

)]
. (B.5)

Note that the range of U and V are finite. Both coordinates lie in the interval
[−π/2, π/2], and hence, Minkowski space is mapped onto the finite region
[−π/2, π/2]× [−π/2, π/2]. Making the coordinate transformation

R = V − U, T = V + U, (B.6)

the metric can be expressed as

ds2 =
1

cos2 U cos2 V

[−dT 2 + dR2 + sin2 R
(
dθ2 + sin2 θdφ2

)]
. (B.7)

The conformal factor 1/cos2 U cos2 V can be disposed of using a conformal
transformation Ω−2 = 1/cos2 U cos2 V . The Penrose diagram of Minkowski
space is a diagram of the spacetime given by the regular metric inside the

ds̃2 = −dT 2 + dR2 + sin2 R
(
dθ2 + sin2 θdφ2

)
. (B.8)

Usually the two spherical dimensions are suppressed to make the diagram
two-dimensional. The resulting diagram is depicted in Fig. B.1.

Figure B.1: Penrose diagram of Minkowski space.

Here, i±, i0 and I± constitute the boundary of the diagram and have the
following interpretations.

i+ (i−): Time-like future (past) infinity. All maximally extended time-
like geodesics end (begin) here.

I+ (I−): Light-like future (past) infinity. All maximally extended light-
like geodesics end (begin) here.

i0: Space-like infinity. All maximally extended space-like geodesics end/
begin here.

U I+ I+

I−I−

R

T

V

i0

i+

i−

i0

square brackets; i.e., the conformally related metric
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B.2 Schwarzschild spacetime

We can also find the Penrose diagram for the Schwarzschild spacetime. The
Schwarzschild spacetime in Kruskal-Szekeres-coordinates is (see eq. (10.113))

ds2 = −32M3

r
e−

r
2M dudv + r2(dθ2 + sin2 θdφ2). (B.9)

In this case a slightly more complicated function than arctanx is needed. Here,
the function

F (x) ≡ arctan

[
x√

1 + x2
ln(1 + x2)

]
, (B.10)

will do the trick. We perform the coordinate transformation

U = F (u), V = F (v)

which maps the analytically extended Schwarzschild solution onto a finite
region. The Penrose diagram is depicted in Fig. B.2.

Figure B.2: Penrose diagram of Schwarzschild spacetime.

The lines U = 0 and V = 0 (r = 2M ) correspond to the event hori-
zon. The wavy horizontal lines are the future and past singularities in the
Schwarzschild spacetime.

B.3 de Sitter spacetime

Consider the de Sitter space with positive spatial curvature in global coordi-
nates

ds2 = −dt2 + cosh2 t

[
dr2

1− r2
+ r2(dθ2 + sin2 θdφ2)

]
. (B.11)

We introduce the conformal time, η, by

η = arctan(et)− π

4
. (B.12)

The metric then turns into

ds2 = cosh2 t

[
−dη2 +

dr2

1− r2
+ r2(dθ2 + sin2 θdφ2)

]
. (B.13)

de Sitter spacetimeB.3

r= 0

r= 0

r=
2M

r=
2M

I+

I−

i0
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Figure B.3: Penrose diagram of de Sitter spacetime.

We suppress one of the coordinates and represent global de Sitter space as
two beer cans with the interior included. This is illustrated in Fig. B.3. The
surfaces of the beer cans are identified as indicated on the figure. In this case
past and future space-like infinities, i±, constitute the whole boundary; the
spatial sections for the closed de Sitter model are finite and without boundary.

The different sections of de Sitter spacetime are different sections of these
beer cans. Some of these are illustrated in Fig. B.4. The flat de Sitter model
is the inside of the future light-cone of a point of past time-like infinity. The
hyperbolic de Sitter model, on the other hand, is the inside of the future light-
cone of the central point of one of the cans. Static de Sitter space is also entirely
inside one can. It is the inside of a diamond-shaped region where the light-like
boundary is the de Sitter horizon.

identify

identify

i+i+

i− i−
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B.3 de Sitter spacetime

Figure B.4: Penrose diagram of the different sections of de Sitter spacetime.

flat

(a) Spatially flat sections

hyperbolic

(b) Spatially hyperbolic sections

static

(c) Static de Sitter space
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C
In the recent years the interest for anti-de Sitter spacetimes – maximally sym-
metric spacetimes with a negative cosmological constant – has exploded. The
main interest for these spaces has come from string theory and M-Theory, but
also cosmological models with extra dimensions use properties of the anti-de
Sitter spacetimes. We will in this appendix review the construction of these
spacetimes and investigate some of their properties.

C.1 The anti-de Sitter hyperboloid

The n-dimensional anti-de Sitter space, denoted AdSn, can be considered as
the hyperboloid

−V 2 − U2 + X2
1 + X2

2 + ... + X2
n−1 = −R2, (C.1)

embedded in the flat (n + 1)-dimensional ambient space with metric

ds2 = −dV 2 − dU2 + dX2
1 + dX2

2 + ... + dX2
n−1. (C.2)

AdSn is maximally symmetric and is a solution to Einstein’s field equations
with a negative cosmological constant

Eμν = −Λgμν, Λ < 0, (C.3)

where R2 = − (n−1)(n−2)
2Λ . That this space is maximally symmetric can be seen

if we note that the symmetry group is the matrix group G which leaves the

MtηM = η (C.4)

where η = diag(−1,−1, 1, ..., 1). This symmetry group G is usually called
O(2, n− 1) and has dimension 1

2n(n + 1).
Note that the ambient space has signature (− −+...+) which implies that

the hyperboloid, eq. (C.1), has closed time-like curves. The time-variable can

,

metric (C.2) invariant; i.e., all matrices M such that

Anti-de Sitter Spacetime



be periodic, which, in any physical context, would be absurd. To prevent
this, one usually considers the universal cover of AdSn – which will be denoted
ÃdSn – by unwinding the time-direction. Hence, instead of the hyperboloid
model, one gets a infinite sheet model of AdSn. How this “unwinding” can be
achieved will be more clear later on.

C.2 Foliations of AdSn

Consider the global parameterization of the AdSn-hyperboloid given by

V =
√

r2 + R2 sin(t/R)

U =
√

r2 + R2 cos(t/R)

X2
1 + ... + X2

n−1 = r2, (C.5)

and let dΩ2
n−2 be the metric on the unit (n − 2)-sphere. The metric on AdSn

can be written in static coordinates

ds2 = −
(

1 +
r2

R2

)
dt2 +

dr2

1 + r2

R2

+ r2dΩ2
n−2. (C.6)

For this metric the time-variable t is an angular variable with periodicity 2πR.
By going to the universal cover ÃdSn, the time variable becomes infinite in
range, −∞ < t < ∞, which will avoid the troublesome closed time-like
curves. Generally it is assumed that this metric is the metric on the univer-
sal cover ÃdSn.

In the four-dimensional case, this metric reduces to the static de Sitter
model with a cosmological constant Λ = − 3

R2 .
There are other interesting foliations of AdSn as well. First, there are two

other static versions of the AdSn, none of them covers the AdSn hyperboloid
globally. Static AdSn in Poincaré coordinates,

ds2 =
R2

z2

(−dt2 + dz2 + dx2
1 + ... + dx2

n−2

)
, (C.7)

is achieved as follows. We introduce the dummy variable, α, by

α = −t2 + x2
1 + ... + x2

n−2. (C.8)

Xn−1 − U =
R

z

Xn−1 + U = R
(
−z +

α

z

)
V =

Rt

z

Xi =
Rxi

z
(i = 1, ..., n− 2). (C.9)

Static AdSn on “black hole” form is obtained as follows. Let V̂ , X̂i, i =
1, ..., n − 2 be coordinates on the hyperbolic space Hn−2 (or rather of the am-
bient space, see section 7.6 for details) such that

−V̂ 2 + X̂2
1 + ... + X̂2

n−2 = −1, (C.10)

The metric (C.7) can now be obtained by
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C.3 Geodesics in AdSn

and let dH2
n−2 be the metric on Hn−2

dH2
n−2 = −dV̂ 2 + dX̂2

1 + ... + dX̂2
n−2. (C.11)

The parameterization

U =
√

r2 −R2 cosh(t/R)

Xn−1 =
√

r2 −R2 sinh(t/R)

V = rV̂

Xi = rX̂i (i = 1, ..., n− 2), (C.12)

yields

ds2 = −
(

r2

R2
− 1

)
dt2 +

dr2

r2

R2 − 1
+ r2dH2

n−2. (C.13)

This is a static version of AdSn and has a horizon at r = R. All of these static
versions of AdSn are useful for different purposes.

Second, the cosmological form of AdSn,

ds2 = −dt2 + R2 sin2(t/R)dH2
n−1, (C.14)

can be obtained by the parameterization

U = R cos

(
t

R

)
V̂

V = R sin

(
t

R

)
V̂

Xi = RX̂i (i = 1, ..., n− 1), (C.15)

where V̂ , X̂i, i = 1, ..., n− 1 are coordinates on the hyperbolic space Hn−1.
These are not, of course, all of the different forms of AdSn, but they illus-

trate the diversity of the different possibilities of this space. This space has a
rich structure which is one of the reasons why it is so interesting.

C.3 Geodesics in AdSn

In order to explore some of the properties of AdSn we will study geodesics in
this space. More specifically, time-like and light-like geodesics will be found
which will provide us with a physical interpretation of this space. It is conve-
nient to use the globally defined coordinates on ÃdSn.

Consider radially moving particles and assume R = 1 for simplicity. The
effective Lagrangian is then

L =
1

2

[
− (1 + r2

)
ṫ2 +

ṙ2

1 + r2

]
. (C.16)

Since t is a cyclic coordinate, pt will be a constant of motion:

pt ≡ ∂L

∂ṫ
= −(1 + r2)ṫ. (C.17)

; i.e.,
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Together with the identity uμuμ = −ε, where ε = 1, 0,−1 for time-like, light-
like and space-like geodesics, respectively, this yields the differential equation

ṙ2 + εr2 = p2
t − ε. (C.18)

This equation can easily be integrated

ε = 1 : r = ±
√

p2
t

+

1 sin(τ − τ0) (C.19)
ε = 0 : r = ±|pt|(τ − τ0) (C.20)

ε = −1 : r = ±
√

p2
t

−

1 sinh(τ − τ0). (C.21)

The last of these tells us that spatial infinity is at infinite spatial distance; i.e.
τ → ∞ as r → ∞. Massive particles have ε = 1 and will recollapse after a
time Δτ = π. However, photons will reach spatial infinity r = ∞. In terms of
the coordinate time t, we have

pt = −(1 + r2)ṫ, (C.22)

and hence for light,

dt = − ptdτ

1 + p2
t (τ − τ0)2

. (C.23)

Thus, upon integration

t = t0 + arctan [|pt|(τ − τ0)] . (C.24)

Since t − t0 < π/2, photons reach spatial infinity within finite coordinate time.
This is an astonishing result. As we follow a photon, it will reach infinity
within a finite coordinate time, and at this time, it will cease to exist! This
is one of the major problems with AdSn, it leaks photons – and thus energy
– out through spatial infinity. The space does not have constant energy. In
a quantum theory this problem has to be resolved before any sensible field
theory can be imposed.

C.4 The BTZ black hole

Consider the anti-de Sitter space on “black hole” form (C.13). We have al-
Thus one might get

tempted to think there is a singularity at r = 0 as well. However, this can-
not be true since the metric (C.13) is only a certain choice of coordinates of
the AdS-hyperboloid. This hyperboloid is everywhere regular, and hence, the
space (C.13) cannot have a singularity at r = 0.

Notwithstanding, it is possible to construct a black hole solution which
has a singularity using metric (C.13). This black hole solution is called the
BTZ black hole.

For simplicity, assume that n = 3, but the construction can be performed
in any dimension n ≥ 3. The metric for AdS3 can be written

ds2 = −
(

r2

R2
− 1

)
dt2 +

dr2

r2

R2 − 1
+ r2dφ2. (C.25)

Note that the variable φ has infinite range, and hence, despite its immediate
appearance it is not an angular variable. However, the metric has a Killing

ready noted that the spacetime has a horizon at r = R.
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C.5 AdS3 as the group SL(2, R)

vector ξ = ∂
∂φ which we can use to periodically identify φ. After the identifi-

cation, φ will be an angular variable with a certain period and the metric looks
more like a black hole metric.

Given M > 0, we identify

φ ∼ φ + 2π
√

M. (C.26)

Also, it is convenient to rescale φ so that it has period 2π. Therefore, define
φ̂ = φ/

√
M , r̂ =

√
Mr and t̂ = t/

√
M so that we obtain

ds2
BTZ = −

(
r̂2

R2
−M

)
dt̂2 +

dr̂2

r̂2

R2 −M
+ r̂2dφ̂2. (C.27)

This is the metric for the BTZ black hole and was first found by Bañados,
Teitelboim and Zanelli [BTZ92].

This metric is locally isometric to the anti-de Sitter space with a horizon
at r̂ =

√
MR. It is a constant curvature Lorentzian space and thus the space

cannot have a curvature singularity anywhere. Notwithstanding, it does have a
singularity at r̂ = 0. How this comes about can be seen as follows.

We identified points in the space given by the metric (C.25), under φ ∼
φ + 2π

√
M . If we go back to the parameterization (C.12), we note that this

group action is not free; all points given by r = 0 are fixed points under the
above identification. This means that we violate requirement 3 on page 431.
Thus the resulting manifold does not need to be a smooth manifold. As a
matter of fact, the points given by r = 0 is a singularity of the same type as the
compactified Milne universe in Example 14.2. The BTZ black hole possesses
an inextendible non-curvature singularity.

Similarly as for the Schwarzschild black hole, we can associate a tempera-
ture

T =

√
M

2πR
(C.28)

and an entropy

S =
1

4
A =

π
√

MR

2
(C.29)

to the black hole horizon. Furthermore, it is possible to construct a rotating
BTZ black hole [BHTZ93, Car95], but we will not consider this case here.

C.5 AdS3 as the group SL(2, R)

Interestingly, AdS3 admits a group structure. In a String theory context, this
makes this space particularly interesting. We will not dwell upon the stringy
aspects of this space here, but we will emphasize on the consequences this
group structure has for the geometry.

To establish the isomorphism between AdS3 and the group SL(2, R) we
write the matrices in SL(2, R) as

A =
1

R

[
U + X1 V + X2

−V + X2 U −X1

]
. (C.30)

,

,
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The matrix A is in SL(2, R) if and only if

det(A) = 1 ⇔ −U2 − V 2 + X2
1 + X2

2 = −R2. (C.31)

Thus the matrix A is in SL(2, R) if and only if the coordinates (U, V, X1, X2)
are coordinates on AdS3. Hence, the isomorphism is established.

In a sloppy notation the metric can be written

ds2 = −R2 det(dA). (C.32)

Isometries are therefore mappings that map SL(2, R) onto itself, and leave the
determinant fixed. Any L ∈ SL(2, R) will do the trick, due to the fact that
SL(2, R) is a Lie group and that

det(dA · L) = det(L · dA) = det(dA) · det(L) = det(dA). (C.33)

Isometries are therefore given by left and right multiplication of the matrices.
The isometry group is SL(2, R)× SL(2, R)/Z2: the two copies of SL(2, R) act
by left and right multiplication

A �−→ L · A · R,

L, R ∈ SL(2, R) with (L, R) ∼ (−L,−R). (C.34)

Hence, the group structure of AdS3 immediately provides us with the isome-
tries. Note that we have already considered SL(2, R) with a Riemannian met-
ric in section 15.5. This space does not have the same isometries because the
metric in that case cannot be expressed in terms of a group-invariant polyno-
mial. Hence, eq. (C.32) will fail and in general left and right multiplication
will not leave the metric invariant.
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Depending on the length of the course and what the emphasis would be, dif-
ferent routes may be chosen. The flowchart also indicates different dependen-
cies of the various chapters.

Depending on the background a course in general relativity can start either
with chapter 1 or chapter 3. If the students are assumed to have no knowledge
of special relativity, it is advised that the course should start with chapter 1.
However, if the students have prior knowledge of the special theory of rel-
ativity the introductory chapters may be omitted and one can go directly to
chapter 3.

A minimal course in general relativity is recommended to consist of the
first chapters including chapter 10. Such a course would not include any cos-
mology since the cosmology chapters start with chapter 11. Regarding chapter
9, this chapter can be omitted since no other chapter depends directly on this
chapter (however, note that some sections of chapter 9 might be useful for a
student). In a course where cosmology is included we recommend, at least,
chapters 11 and 12. By including also chapter 13 the students will get a taste
of non-FRW cosmologies and thereby get introduced to some non-standard
cosmologies and their properties.

For a more comprehensive course, also some of the more advanced chap-

In Fig. D.1 we have indicated different possible course outlines for this book.

researchers in general relativity.
of general relativity and can be useful for graduate students, as well as
ters can be included. These chapters include various modern applications

How to Read This Book



Figure D.1: A rough flowchart of dependencies and possible course outlines for the
chapters contained in this book. Here, ⊥ means a natural stop.
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In this appendix we will provide some references which can act as a spring-
board into the literature. They come in addition to the ones already cited in
the text. There exist a wealth of articles and books related to the field, so this
list is by no means complete. Unavoidably it is also biased but we have tried
to include references that we think may be relevant.

General reference works

There are a wealth of books written on general relativity since its birth. Some
recommended books are Misner, Thorne and Wheeler’s treatise [MTW73],
Wald’s book [Wal84], Stephani’s introduction to the field of general relativ-
ity [Ste77], and the newer book by Ludvigsen [Lud99]. Stewart’s book [Ste91]
is recommended for the more experienced reader, and treats other advanced
topics than we do in this book, for example, spinors, and asymptopia. Regard-
ing exact solutions of Einstein’s Field equations, the books by Stephani et al.
[SKM+03] and Krasiński [Kra97] are unavoidable references.

Chapter 1

In classical mechanics there are many books worth mentioning. In particular
the book by Goldstein [Gol50] is worth reading. The jewel in classical me-
chanics, the canonical transformations and the Hamilton-Jacobi equation, is
something a theorist cannot afford to avoid learning. For an application of the
theory, and highly relevant for gravitational physics, see for example Roy’s
book on orbital motion [Roy88].

Chapter 2

There is also quite a large amount of literature concerning the special theory of
relativity. Of special historical interest is perhaps the book by Einstein himself
[Ein16]. Moreover, [Bar99] is a useful and straightforward introduction to the
special theory of relativity.
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Chapter 3

The book by Göckeler and Schückler [GS87] deals with vectors and forms
more generally. It can also be considered as complementary to the field of
differential geometry in general.

Chapter 4

A reference to the world of differential geometry is Spivak’s first volume in his
comprehensive introduction [Spi75a]. In this book manifolds and differential
structure are more rigorously introduced and investigated.

A more advanced and mathematical book in differential geometry is for
example [MT97]. It’s highly technical but treats also more topological aspects
of differential geometry.

Chapter 5

A thorough investigation of non-inertial reference frames are some research
articles by Eriksen and Grøn [EG90, EG00a, EG00b, EG00c, EG02, EG04]. For
the rotating reference, see also [Grø04].

Chapter 6

For a more mathematical treatment, two volumes of Spivak’s comprehensive
work is recommended [Spi75a, Spi75b]. Also a quite technical book by Gallot,
Hulin and Lafontaine has some nice applications and examples [GHL90].

areas in mathematical physics is highly recommendable [Nak90].

Chapter 7

The second volume of Spivak’s work [Spi75b] contains both an introduction
to the concept of curvature (very much like the introduction in this book),
and some interesting historical sections. Benedetti and Petroni’s book on hy-
perbolic geometry [BP92], is an excellent book to learn more about the many
interesting aspects of hyperbolic space. For the theory of hypersurfaces, a
whole chapter in Poisson’s book [Poi04] is devoted to various mathematical
and physical aspects of this topic.

Chapter 8

Carroll’s book [Car04] contains a similar approach to the Einstein field equa-
tions to the one taken here. Some classical books on Einstein’s general theory
of relativity are [Foc66, ABS75, DFC90, Møl72, Rin77, Har03]. We should also
mention a biography of the man Hilbert [Rei96]. Also some of Minkowski’s
life is vividly portrayed in this book, due to the fact that they were close
friends.

geometry of physics [Fra97]. Also, the book by Nakahara which covers many
From a physical point of view, Frankel has written a nice book on the
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Chapter 9

Gravitational waves and the weak field limit are treated in the book by Schutz
[Sch85]. This book can also be considered as a general reference as it is sup-
posed to be an introduction to the field. An article by Ruggiero and Tartagia
[RT02] gives an nice introduction to gravitomagnetic effects. It gives also a
nice review of the different experimental tests of general relativity which have
been performed to date.

Chapter 10

The original articles by Bekenstein [Bek73] and Hawking [Haw75] are clas-
sics in terms of black hole radiation and entropy. Also the related article by
Gibbons and Hawking [GH77] are worth reading. The famous book by Chan-
drasekhar on black holes [Cha83] is also a very nice book on the physics of
black holes. For a more recent elucidation of the physics of black holes, see
Poisson’s book [Poi04].

De Felice and Clarke’s book [DFC90] treats the Ernst equation and in-
vestigates the Kerr solution more throughly. It also discusses the Reissner-
Nordström black hole more thoroughly. See also [Hoe93] in this regard.

Chapter 11

As an interesting and easy-to-read book on various aspects of cosmology, is
[Col98]. The book by Peacock [Pea98] is very useful as a general reference to
the realm of modern cosmology, and the book by Islam is also worth look-
ing into [Isl92]. An interesting, and rather philosophical book is the classic
work by Barrow and Tipler [BT86]. This work has been highly debated but is
probably unsurpassed when it comes to its depth and richness.

Chapter 12

A nice review of the various sections of de Sitter space is given by Eriksen and
Grøn [EG95]. Apart from Guth’s paper [Gut81], some of the original papers on
inflation are worth noting [AS82, Lin82, Lin83]. See also the two books by Kolb
and Turner [KT90] and Linde [Lin90] for a more detailed account of how in-
flation solves some of the cosmological problems. Furthermore, inflation and
early universe cosmology, including CMB anisotropies, are nicely dealt with
in the more recent book by Liddle and Lyth [LL00]. Other introductionary
articles on these topics are [GB99, Pal00, Pee93].

Chapter 13

Some of the earliest investigations of the Bianchi type I model are from the six-
ties [Tho67, Jac68, Jac69, Sau69]. These address the mechanism of isotropiza-
tion of our universe, both in terms isotropic fluids and magnetic fields. Later,
these issues have been discussed by other authors [LNSZ76, HP78, LeB97].
For a review of viscous universe models, see [Grø90].

Chapter 14

The complete covariant decomposition of spacetime, including all degrees of
freedom, is done in for example [Maa97]. Some applications of these equation
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of motion are, for example [Bar97, BM98]. An alternative covariant decom-
position is the so-called Newman-Penrose-formalism which is treated in for
example Stewart’s book [Ste91].

Deser and Misner [ADM62]. Later, DeWitt used this formulation to formulate
“Quantum Cosmology” [DeW67]. After this, numerous papers and books us-
ing the canonical formulation [Rya72, RS75] and its quantum version [Mis69,

worth noting [Vil82, Vil83, Vil94].

Chapter 15

The book by Kobayashi [Kob72], deals with homogeneous spaces in general
and states the theorems and their proofs we use in this chapter. Of histor-

treated the remaining multiply transitive case in [KS66]. More recent trea-
tises, which are extremely valuable for anybody interested in the dynamical
behaviour of Bianchi models, are the report [BS86] and the book Dynami-
cal Systems in Cosmology [WE97]. For the tilted Bianchi models, see [CH05,
HvdHC05, HvdHLC06, HL06] and references therein. A book [Thu97] and
an article [Thu82] by Thurston give a nice mathematical introduction to the
model geometries and their importance in topology and geometry. Kodama’s
two articles bring these ideas into the field of cosmology [Kod98, Kod02].
Other papers that discuss more physical aspects of these ideas are [LRL95,
LSW99, Lev02].

Chapter 16

Apart from the original paper by Israel [Isr66], there are some other research
papers reviewing the metric junction method [Kuc68, BI91]. Moreover, Pos-
sion’s book [Poi04] considers the metric junction method, including the null
case.

Chapter 17

There are an enormous number of pages written on brane-worlds the years
since its launch. For a couple of reviews on brane-worlds, see [Maa04, Col05].
Moreover, in addition to those already mentioned in the chapter, we would
like to emphasize some works on anisotropic branes. A Kasner brane was
found by Frolov [Fro01]; anisotropic branes with isotropic fluids have been
studied [CS01, Top01, Col02a, Col02b], as well as with magnetic fields [SVF01,
BH02]; and exact plane-wave branes in a bulk containing gravitational waves
was found in [CH04].

Chapter 18

Apart from a few books [ACF87], the articles on Kaluza-Klein theory is scat-
tered around in the literature. The generalization of the Bianchi models to 4+1
dimensions is done in [Her02].

The canonical version of General relativity was first formulated by Arnowitt,

ical interest is also Bianchi’s original article [Bia98]. Kantowski and Sachs

Lou88, CHPW91, Hal91, Haw84, Haw94, Sim01] have appeared. One paper
worth pointing out is Hartle and Hawking’s paper were they formulate the
“No Boundary”-proposal [HH83]. Also, Vilenkin’s alternative proposal is
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for Bianchi models, 426

scalar, 369
tensor, 391

shift vector, 399
signature, 76
similarity group, 489
singularity, 394, 398
skew-symmetric, 414
SL(2, R), 429, 515
slow-roll approximation, 315
smooth

function, 64
manifold, 64

Sn, 145
SO(3), 413
so(3), 415
Sol, 429

perihelion precession, 227
permeability of vacuum, 42
phantom energy, 324
photon, 103
Planck

mass, 349
era, 349

perfect fluid, 186 redshift
z, 275

reference frame, 78
rotating, 89
uniformly accelerated, 95

reference particles, 4
Refsdal’s equation, 288
reinterpretation principle, 39
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standard measuring rods, 91
	, 82
statefinders, 328
static spacetime, 235
stationary spacetime, 235
Stefan-Boltzmann law, 250
stiff fluid, 376
Stoke’s theorem, 118
strong energy condition, 397
strong equivalence principle, 15
structure coefficients, 71
structure constants

for a Lie algebra, 415
SU(2), 436
Sun, 11
supernova, 292
superspace, 406
surface gravity, 245
surface layer, 443
surface of last scattering, 358
symmetry

cylinder, 146
hyperbolic, 146
plane, 146
spherical, 146

synchronization
radar method, 23

tachyons, 39
tangent bundle, 67
tangent space, 66

of M , 67
tangent vector, 66
tensor, 55

tetrad, 78
components, 81

thin shell approximation, 441
Thurston geometries, 428

Thurston, W.P., 428
tidal force, 10

pendulum, 12
relativistic, 175

tilted fluid, 423
time delay, 223
time-dilatation, 25

relativistic, 26
time-like, 32
Tolman-Oppenheimer-Volkoff equation,

253
Tolman-Whittaker mass, 263
torsion, 126, 152
tractrix, 171
transitive, 416

multiply, 417
simply, 417

transpose, 74
transverse traceless gauge, 204
twin-paradox, 34, 101

universal time, 269

vacuum field equations, 183
vacuum fluid, 188
vector field, 67
vectorial p-form, 130
vectors, 51
viscous models, 376
volume form, 81, 116
vorticity tensor, 391

warp factor, 472, 473
weak energy condition, 397

Weingarten’s equations, 154
Weyl tensor, 160, 490, 499

5D, 454
Weyl, H., 312
Wilson loops, 116
work, 38
world-line, 22

ZAMO, 241
Zel’dovich fluid, 376
zero angular momentum observer, 241

solid angle, 9
solvegeometry, 429
sound waves, 344
space-like, 32
spacetime interval, 32
special theory of relativity, 21
stabilizer, 416
standard clocks, 33
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