
Embedded Systems

Sven Goossens
Karthik Chandrasekar
Benny Akesson
Kees Goossens

Memory
Controllers for
Mixed-Time-
Criticality Systems
Architectures, Methodologies and
Trade-offs

Embedded Systems

Series editors

Nikil D. Dutt, Irvine, CA, USA
Grant Martin, Santa Clara, CA, USA
Peter Marwedel, Dortmund, Germany

This Series addresses current and future challenges pertaining to embedded
hardware, software, specifications and techniques. Titles in the Series cover a
focused set of embedded topics relating to traditional computing devices as well as
high-tech appliances used in newer, personal devices, and related topics. The
material will vary by topic but in general most volumes will include fundamental
material (when appropriate), methods, designs and techniques.

More information about this series at http://www.springer.com/series/8563

http://www.springer.com/series/8563

Sven Goossens • Karthik Chandrasekar
Benny Akesson • Kees Goossens

Memory Controllers
for Mixed-Time-Criticality
Systems
Architectures, Methodologies
and Trade-offs

123

Sven Goossens
Faculty of Electrical Engineering
Technische Universiteit Eindhoven
Eindhoven, Noord-Brabant
The Netherlands

Karthik Chandrasekar
Nvidia Graphics
Bangalore, Karnataka
India

Benny Akesson
CISTER/INESC TEC
Polytechnic Institute of Porto
Porto
Portugal

Kees Goossens
Faculty of Electrical Engineering
Technische Universiteit Eindhoven
Eindhoven, Noord-Brabant
The Netherlands

ISSN 2193-0155 ISSN 2193-0163 (electronic)
Embedded Systems
ISBN 978-3-319-32093-9 ISBN 978-3-319-32094-6 (eBook)
DOI 10.1007/978-3-319-32094-6

Library of Congress Control Number: 2016935587

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The authors of this book all worked together at the Eindhoven University of
Technology in the Netherlands. They were united in what was unofficially called
the “Memory Team,” as either a Ph.D. student, an assistant professor, or a pro-
fessor. The team worked on various challenging research topics in the context of
memory controllers for real-time embedded systems, which matched well with the
overall goals of the Electronic Systems group by which they were all hosted. The
authors thank the other Ph.D. students in the Memory Team, Manil Gomony and
Yonghui Li, for their valuable input during countless discussions over the years,
and for all the fun that was had in the process. A large portion of the preliminary
exploration work for the topics discussed in this book was done by two excellent
master students, Tim Kouters and Jasper Kuijsten. They were great to have around,
and delivered good work, for which the authors are grateful.

A memory controller requires a system that tells it what to do. For the controller
in this book, the system takes the form of the CompSOC platform. The various
hardware and software components it consists of were jointly maintained by
Eindhoven University of Technology and Delft University of Technology. Most
of the experiments in this book would not have been possible without the infras-
tructure created by current and past CompSOC team members. The authors would
particularly like to thank Anca Molnos, Andrew Nelson, Ashkan Beyranvand
Nejad, Davit Mirzoyan, Gabriela Breaban, Juan Valencia, Martijn Koedam, Radu
Stefan, Rasool Tavakoli, Reinier van Kampenhout, and Shubhendu Sinha for their
work, and the great company they are.

Finally, the authors thank their family and friends, for all the obvious reasons.
Without their support, it is very unlikely this book would have existed.

v

Contents

1 Introduction . 1
1.1 The SoC—SDRAM Interface . 2
1.2 SDRAM Controllers . 3
1.3 Cramming More Applications onto (Power-Constrained)

SoCs . 4
1.4 Performance . 6

1.4.1 Application Requirements . 6
1.4.2 Interference . 7
1.4.3 Predictable Performance . 7
1.4.4 Composable Performance . 8

1.5 Requirements for SDRAM Controllers in Modern SoCs 9
1.6 Problem Statement and Contributions 10

1.6.1 Multi-generation Power-Aware Command
Scheduling . 11

1.6.2 Improving Average-Case Performance Without
Affecting Worst-Case Performance 12

1.6.3 Reconfigurable Architecture . 12
1.7 Outline . 13
References . 14

2 Reconfigurable Real-Time Memory Controller Architecture 17
2.1 SDRAM . 18

2.1.1 SDRAM Commands . 19
2.1.2 Timings and Timing Constraints 22
2.1.3 Memory Generations . 22
2.1.4 Memory Hierarchies . 23

2.2 Pattern-Based SDRAM Controllers . 24
2.2.1 Burst Grouping . 25

2.3 Controller Architecture . 27
2.3.1 Resource Front-End . 28
2.3.2 SDRAM Back-End . 31

vii

http://dx.doi.org/10.1007/978-3-319-32094-6_1
http://dx.doi.org/10.1007/978-3-319-32094-6_1
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec14
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Sec14
http://dx.doi.org/10.1007/978-3-319-32094-6_1#Bib1
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec16
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec16

2.3.3 PHY . 34
2.3.4 Reconfiguration Infrastructure 34

2.4 Worst-Case Performance Analysis . 35
2.4.1 Latency-Rate Servers . 35
2.4.2 Back-End Performance . 36
2.4.3 Front-End Performance . 45
2.4.4 Worst-Case Response Times 46

2.5 CompSOC Controller Instance . 47
2.6 Evaluation . 49

2.6.1 Synthesis Setup . 49
2.6.2 Synthesis Results . 50

2.7 Conclusion . 53
References . 54

3 Memory Patterns . 57
3.1 Generalized Command Scheduling Rules 58
3.2 Predictable Patterns . 60

3.2.1 Pattern Generation with Variable Bank Interleaving 63
3.2.2 BS PBGI Heuristic for DDR4 Pattern Generation 67
3.2.3 Auxiliary Patterns . 69
3.2.4 ILP-Based Pattern Generation 69
3.2.5 Memory Map Implications . 72

3.3 Composable Pattern Conversion . 74
3.3.1 Composable Memory Pattern Generation 74
3.3.2 Impact on Memory Efficiency 77

3.4 Evaluation . 78
3.4.1 Test Memories . 78
3.4.2 Evaluation of Pattern-Generation Heuristics 79
3.4.3 Composable Patterns . 82

3.5 Conclusion . 89
References . 90

4 Cycle-Accurate SDRAM Power Modeling 93
4.1 High-Level Description of the DRAMPower Model 94
4.2 Background on SDRAM Currents . 94
4.3 SDRAM Power State Machine . 96
4.4 Determining the Energy Cost of a Command 97

4.4.1 ACT, PRE, and PREA Commands 98
4.4.2 RD and WR Commands . 99
4.4.3 REF Commands . 100

4.5 Adaptation to LPDDR and WIDE I/O Memories 100
4.6 Trace-Level Energy and Power Calculation in DRAMPower . . . 101
4.7 Related Work . 102

4.7.1 Micron’s Approach . 103
4.7.2 Other Power Models . 104

viii Contents

http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec17
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec17
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec18
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec18
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec19
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec19
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec20
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec20
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec21
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec21
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec25
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec25
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec26
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec26
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec27
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec27
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec28
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec28
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec29
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec29
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec30
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec30
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec31
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Sec31
http://dx.doi.org/10.1007/978-3-319-32094-6_2#Bib1
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec16
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec16
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec20
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Sec20
http://dx.doi.org/10.1007/978-3-319-32094-6_3#Bib1
http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec12

4.8 Evaluation . 105
4.8.1 Experimental Setup . 105
4.8.2 Results . 106

4.9 Conclusion . 108
References . 108

5 Power/Performance Trade-Offs . 111
5.1 Worst-Case Bandwidth, Energy, and Power Metrics 111

5.1.1 Calculating Worst-Case Power and Energy
Efficiency . 112

5.2 Worst-Case Bandwidth/Power Trends 113
5.2.1 Comparing Pattern Configurations of a Single

Memory Device . 116
5.2.2 Comparing Multiple Speed Bins and SDRAM

Types . 117
5.3 Worst-Case Response Time of an Atom 119
5.4 Evaluation . 121
5.5 Conclusion . 123
References . 123

6 Conservative Open-Page Policy . 125
6.1 Conservative Open-Page Policy . 126
6.2 Impact on Pattern-Based Controller . 129
6.3 Using Explicit Precharge Commands . 131
6.4 Evaluation . 134

6.4.1 Time-Window Size . 134
6.4.2 Stall Time Reduction . 136

6.5 Conclusion . 144
References . 144

7 Reconfiguration . 145
7.1 Reconfiguration Options . 146
7.2 Performance Guarantees During a Use-Case Switch 148
7.3 Delay Block/Arbiter Reconfiguration with Persistent Clients 149
7.4 Reconfigurable TDM Arbiter . 150

7.4.1 Latency-Rate Parameters for TDM Arbiters 151
7.4.2 Safe TDM Arbiter Reconfiguration protocol 152
7.4.3 Arbiter Architecture . 153
7.4.4 Latency-Rate Guarantees During Reconfiguration 154

7.5 Evaluation . 159
7.5.1 Predictable Performance During Reconfiguration 160
7.5.2 Composable Performance During Reconfiguration 162

7.6 Conclusion . 164
References . 165

Contents ix

http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec14
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec14
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec15
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec15
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec16
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Sec16
http://dx.doi.org/10.1007/978-3-319-32094-6_4#Bib1
http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_5#Bib1
http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Sec10
http://dx.doi.org/10.1007/978-3-319-32094-6_6#Bib1
http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec4
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec5
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec6
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec7
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec11
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec12
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec13
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec14
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Sec14
http://dx.doi.org/10.1007/978-3-319-32094-6_7#Bib1

8 Related Work . 167
8.1 SDRAM Controllers . 167

8.1.1 Average-Case-Oriented Controllers 167
8.1.2 Real-Time-Oriented Controllers 168

8.2 SDRAM Performance Overviews . 178
8.3 Reconfiguration . 179
References . 180

9 Conclusions and Future Work . 183
9.1 Conclusions . 183
9.2 Future Work . 186
References . 187

Appendix A: ILP Problem Formulation . 189

Appendix B: Memory Specifications. 197

Appendix C: Code Listings . 201

x Contents

http://dx.doi.org/10.1007/978-3-319-32094-6_8
http://dx.doi.org/10.1007/978-3-319-32094-6_8
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec3
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec8
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Sec9
http://dx.doi.org/10.1007/978-3-319-32094-6_8#Bib1
http://dx.doi.org/10.1007/978-3-319-32094-6_9
http://dx.doi.org/10.1007/978-3-319-32094-6_9
http://dx.doi.org/10.1007/978-3-319-32094-6_9#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_9#Sec1
http://dx.doi.org/10.1007/978-3-319-32094-6_9#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_9#Sec2
http://dx.doi.org/10.1007/978-3-319-32094-6_9#Bib1

About the Authors

Sven Goossens received his M.Sc. in Embedded Systems from the Eindhoven
University of Technology in 2010. He worked as a researcher in the Electrical
Engineering of the same university until 2011, and then started as a Ph.D. student,
graduating in 2015. He is currently employed as a Hardware Architect at
Intrinsic-ID. His research interests include mixed time-criticality systems, com-
posability, and SDRAM controllers.

Karthik Chandrasekar earned his M.Sc. degree in Computer Engineering from
TU Delft in the Netherlands in November 2009. In October 2014, he received his
Ph.D. also from the same university. His research interests include SoC
Architectures, DRAM memories and memory controllers, on-chip communication
networks and performance and power modeling and analysis. He is currently
employed as a Senior Architect at Nvidia.

Benny Akesson received his M.Sc. degree at Lund Institute of Technology,
Sweden in 2005 and a Ph.D. from Eindhoven University of Technology, the
Netherlands in 2010. Since then, he has been employed as a Researcher at
Eindhoven University of Technology, Czech Technical University in Prague, and
CISTER/INESC TEC Research Unit in Porto. Currently, he is working as a
Research Fellow at TNO-ESI. His research interests include memory controller
architectures, real-time scheduling, performance modeling, and performance vir-
tualization. He has published more than 50 peer-reviewed conference papers and
journal articles, as well as two books about memory controllers for real-time
embedded systems.

Kees Goossens received his Ph.D. in Computer Science from the University of
Edinburgh in 1993. He worked for Philips/NXP Research from 1995 to 2010 on
networks-on-chips for consumer electronics, where real-time performance, pre-
dictability, and costs are major constraints. He was part-time Professor at Delft

xi

University from 2007 to 2010, and is now Full Professor at the Eindhoven
University of Technology, where his research focuses on composable (virtualized),
predictable (real-time), low-power embedded systems, supporting multiple models
of computation. He has published 4 books, 100+ papers, and 24 patents.

xii About the Authors

List of Figures

Figure 1.1 Typical SoC-SDRAM interface . 2
Figure 1.2 Simplified general memory controller architecture 3
Figure 1.3 The snapdragon 800 SoC [15] . 5
Figure 1.4 Mapping of requirements to contributions

and chapters . 11
Figure 1.5 Overview of chapters . 13
Figure 2.1 Schematic view on the architecture of an SDRAM

device with the dimensions of a 512 MiB DDR3-1600
chip (see Appendix B) . 19

Figure 2.2 High-level SDRAM operation. The activation of bank
3 happens in parallel with the read command to bank 2.
Data bursts of different banks are serialized, since the
data bus is shared across banks. The two cycles
between A2 and A3 are the result of the ACT-to-ACT
timing constraint (RRD) . 21

Figure 2.3 Typical memory hierarchy for embedded SoCs
and COTS systems. 22

Figure 2.4 Allowed pattern sequences . 25
Figure 2.5 Examples of the effects of grouping bursts. Shaded

bursts are page misses. It shows how the number
of bursts that can be executed within a fixed amount
of time varies based on how they are grouped.
a Using BI 1, BC 1. b BI 1, BC 4. c BI 4, BC 2 26

Figure 2.6 SDRAM controller architecture. Arrows indicate the
flow direction of data . 28

Figure 2.7 An example of the order in which patterns may
be executed. The shading on the commands
corresponds to bursts of data to different banks 31

Figure 2.8 SDRAM controller back-end . 32

xiii

Figure 2.9 Address generator. Both the shift amounts (s0–s3)
and the masks (m0–m3) used by the and-operators
are configurable. (The and-operators and or-operators
are bitwise.) The sizes of the row, column, and bank
components correspond to the ML605 memory
(Appendix B) . 33

Figure 2.10 A LR server and its associated concepts 36
Figure 2.11 The interface characterized by the back-end

performance. The call-outs on the MTL channels show
the relevant groups of wires they consist of. 37

Figure 2.12 Latency experienced by a read or write atom arriving
at an idle back-end at the start of a busy period.
a Read atom. b Write atom. 40

Figure 2.13 Worst-case back-end behavior for continuous reads. In
this (fictional) example, we used: tpr ¼ 6; tpw ¼ 8;
tprtw ¼ 3; tpwtr ¼ 1;Δr ¼ 3; Δw ¼ 2; δf ¼ 5; δb ¼ 3,
and each atom is worth 4 words. To simplify the
drawing, we assume eref ¼ 1. 42

Figure 2.14 Worst-case back-end behavior for continuous writes,
using the same parameters as Fig. 2.13. 43

Figure 2.15 Worst-case back-end behavior for interleaved
read/write atoms, using the same parameters as
Fig. 2.13. 43

Figure 2.16 Demonstration of latency compensation for WCSI,
using the same parameters as Fig. 2.13. The
compensated service bound is conservative in cycles
30 and 31, while the uncompensated service bound is
not. Note that the x-axis starts at maxðθr; θwÞ 44

Figure 2.17 The LR server describing the memory controller’s
performance is the concatenation of the front-end
server and the back-end server. 45

Figure 2.18 Typical clock frequencies and data bus widths
for Raptor . 48

Figure 2.19 Resource usage of Raptor versus MPMC using
512 byte read/write queues (1024 bytes in total)
per port . 51

Figure 2.20 Front-end LUT and register usage break-down per
port. 100 % = 1915 registers, 2837 LUTs. a Registers.
b LUTs . 52

Figure 3.1 The pattern flow in this chapter. The related section
numbers are written in round brackets 58

Figure 3.2 Constraint abstraction . 60
Figure 3.3 DDR3-1600 example schedules . 61
Figure 3.4 A (BI2, BC2) read pattern for a DDR3-1066. 63

xiv List of Figures

Figure 3.5 Example execution of the EARLIEST function. 65
Figure 3.6 Example execution of the MINPATTERNDISTANCE

function (The commands in the example are merely
there to show the functionality, but do not resemble
real patterns) . 65

Figure 3.7 (Partial) DDR4-1866 read pattern. Odd and even banks
are in a different bank group. Schedule a does not use
(BS PBGI), while b does. c shows how the distance to the
next activate in a following pattern reduces as more
bank groups are interleaved, resulting in longer
(less efficient) patterns . 69

Figure 3.8 Example of the ILP precedence constraints. An edge
between a set of commands means that the source
command has to be scheduled before the destination
command. Numbers in round brackets refer to the
associated rule in the ILP description 70

Figure 3.9 Memory map from logical to physical address. BGI
refers to the degree of bank-group interleaving, which
we limited to 2 in Sect. 3.2.2. Bits from the logical
address map to the similarly marked locations in the
physical address. For example, log2(BI/BGI) bits from
the corresponding position in the logical address are
used in the similarly marked position in the bank
address . 72

Figure 3.10 Three memory map examples, showing where the
bursts of requests to consecutive logical addresses
(separated by the access granularity) are written. The
third configuration, using (2, 1), behaves the same
regardless of the BGI setting . 73

Figure 3.11 Composable pattern-generation example. The naive
solution simply concatenates the switching patterns to
the access patterns and then adds NOPs to equalize the
length, while the proposed solution uses the switching
patterns to balance the lengths as much as possible
before adding more NOPs, leading to shorter
patterns. 75

Figure 3.12 Exceptional nonoptimal result for LPDDR3 in the
(4, 2) configuration . 80

Figure 3.13 Comparison of write pattern lengths for DDR4-1866
using bank scheduling (BS BI), bank scheduling with
pairwise bank-group interleaving (BS PBGI), and the
ILP formulation (ILP). Lower is better 81

List of Figures xv

Figure 3.14 Setup of the composability experiment. To simplify the
drawing, we combine the atomizer, width converter,
and atom buffer into a single block called AWB. Three
ports on the controller are not used and grayed out. The
(logical) configuration connections are drawn in gray,
but their exact path is not shown for simplicity 84

Figure 3.15 Timeline of events during the experiment. The timeline
splits when a new parallel group of hardware
components is activated. Timelines end when there are
no more changes in the behavior of the associated
process . 85

Figure 3.16 Difference in the execution trace of MB1 in different
run types k compared to the baseline trace (S14ðiÞ, which
corresponds to the gray flatline in graph (4)). In 122
runs, two unique traces are observed for each scenario,
drawn as one gray line with ‘x’-markers, and one black
line per graph . 88

Figure 4.1 DDR3 power state machine. 96
Figure 4.2 The figure shows how EACT and EPRE are determined.

The rectangles represent the modeled distribution of
energy during the IDD0 test for a DDR3-1066
(Appendix B), using the following parameters:
VDD = 1.5, IDD0 = 75 mA, IDD2N = 35 mA,
IDD3N = 45 mA, RC = 27, RAS = 20. An ACT is
executed in cycle 0, and a PRE in cycle 20. Note that
the width of the EACT and EPRE bars is arbitrary, but
their combined surface area (representing energy) is
not. In reality, the energy of these commands is
distributed over multiple
cycles. 98

Figure 4.3 Indication of the difference between Micron’s and
DRAMPower’s way of modeling self-refresh 104

Figure 4.4 Difference between measurements and the output
of DRAMPower and Micron’s model, respectively. 107

Figure 5.1 Worst-case bandwidth versus worst-case power
(part 1). Graph titles contain the type, data bus width in
bits, capacity, and die revision (Appendix B). Labels at
the top and right of the graphs are associated with the
closest isoline, showing the energy cost per bit in [pJ]
(125 divided by these labels yields gigabytes
per joule) . 114

Figure 5.2 Maximum energy efficiency achieved by the
considered pattern sets and memories in Fig. 5.1
at different access granularities . 118

xvi List of Figures

Figure 5.3 Request WCRT components. From bottom to top, the
stacked bar order is offset, tpwtr (zero in most
configurations), tpw, t

p
rtw (zero in most configurations),

tpr , and tpref . 119
Figure 5.4 Worst-case and measured bandwidth for different

pattern configurations . 122
Figure 6.1 Response time of a hit versus a miss. A miss may have

a longer response time in a speculative policy, while
the conservative policy behaves similar to a close-page
policy. 126

Figure 6.2 Read schedules for the DDR3-1600 memory in four
different modes, for BI 2, BC 2. Each block represents
a command, empty blocks represent NOPs. The tinted
commands have auto-precharge flags. The timing
constraints that dictate the length of the schedule are
shown on the arrows . 127

Figure 6.3 Allowed mode transitions. Schedules in dotted modes
are not always executed start to finish, but instead
begin where the connected mode on their incoming
vertex left off when the hit was detected. 128

Figure 6.4 Mapping of patterns to the pattern memory 129
Figure 6.5 Example of the relation between modes, executed

patterns and the predication of precharge commands.
Detected hits only change the mode if they are detected
before the time-window closes. 130

Figure 6.6 Example where an ANP pattern is longer than an AP
pattern. Note that each individual read burst still
completes at the same time or earlier when the NP
patterns are used . 131

Figure 6.7 Resulting patterns after converting auto-precharges to
explicit precharges (DDR3-1600, (2,2)) 133

Figure 6.8 Relative time-window size histogram (the height of a
bar represents the fraction of patterns in the result set
having a time-window in the bin corresponding to the
value on the x-axis) . 135

Figure 6.9 We use an upper bound on the optimal window size to
determine how far Algorithm 5 can maximally be from
the real optimum . 136

Figure 6.10 Setup of the conservative open-page experiments 138
Figure 6.11 Available spatial locality per trace for three pattern

configurations, from left to right: (BI 1, BC 4),
(BI 2, BC 2) and (BI 4, BC 1) . 139

List of Figures xvii

Figure 6.12 Single-application experiment results. Bar 1 represents
the exploited locality during the conservative
open-page run, bars 2 and 4 are relative numbers given
the close-page and conservative open-page runs,
and 3 is the fraction of time the traffic generator was
stalled during the close-page run. All runs use
(BI 2, BC 2) . 140

Figure 6.13 Multi-application experiment results 142
Figure 7.1 Overview of reconfigurable components and their

interdependencies. 146
Figure 7.2 An example of the placement of bursts in the memory

using two different pattern sets with the same access
granularity. Consecutive bursts have consecutive
numbers/characters, and each cell contains a burst.
Retrieving the data that was written using (BI 4, BC 2)
would require two atoms and reordering when using
(BI 2, BC 4) . 147

Figure 7.3 Client type hierarchy . 149
Figure 7.4 Example of potentially violated LR guarantees for

client A during reconfiguration. The figure shows
3 TDM-table iterations of 5 slots each. A letter in a slot
indicates the slots belongs to the client corresponding
to that letter . 152

Figure 7.5 Reconfigurable TDM arbiter architecture. 153
Figure 7.6 Splitting the reconfiguration in two steps that take

place in separate table iterations guarantees that the
provided service is always greater than the guaranteed
service . 154

Figure 7.7 Example of the latency-rate guarantees during
reconfiguration . 156

Figure 7.8 Experimental setup for Sect. 7.5.1. Labels on the
arrows correspond to the client name(s) that use the
connection . 160

Figure 7.9 Active clients over time. Three use-cases are visited:
U1 (A, B, C, D), U2 (A, D, F, G), and U3
(A, E, F, G) . 160

Figure 7.10 Slot allocation results . 161
Figure 7.11 Response times with and without predictable recon-

figuration, generated by the SystemC simulation 162
Figure 7.12 Predictable patterns runs. Note how the response times

in the MB1 interference and reconfiguration runs are
different with respect to the reference run, indicating
MB2 influences the (actual-case) performance
of MB1 . 164

Figure 7.13 Composable patterns runs . 164

xviii List of Figures

List of Tables

Table 2.1 Approximate values of SDRAM timings relative
to RC . 20

Table 3.1 Common constraints across SDRAM types
(definition of d()) . 59

Table 3.2 SDRAM-type specific constraints (definition of d()) 60
Table 3.3 Memory specifications. 79
Table 3.4 epc (Eq. 3.3) for a range of SDRAM �16 devices. 82
Table 3.5 The number of runs of a specific type that follow the

gray (x) or black plotted trace . 87
Table 4.1 Voltage domains in various SDRAM types 102
Table 4.2 Comparison of DRAMPower and Micron against

measurements. 107
Table 5.1 Raptor worst-case bandwidth (bwc) [MB/s] for an

MT4JSF6464H DIMM [12] with f = 400 MHz and
IW = 4 bytes for access granularities up to 256 bytes 122

Table 6.1 Time-window sizes using the conservative open-page
policy and the number of cycles contributed by the
heuristic for the schedules containing precharges
(DDR3-1600) . 134

Table 6.2 CHStone trace characteristics . 137
Table 6.3 Pattern configuration influence on single application

performance when using the conservative open-page
policy . 141

Table 7.1 Components we can reconfigure for persistent clients 150
Table 8.1 Related memory controllers (in chronological order

of publication) . 171

xix

Acronyms

ACT Activate
AG Access granularity
ANP Activate, no Precharge mode
AP Activate and Precharge mode
ASIC Application-Specific Integrated Circuit
AXI4 Advanced eXtensible Interface 4
BC Burst Count
BGI Bank-Group Interleaving
BI Bank Interleaving
BL Burst Length
BRAM Block RAM
BS Bank Scheduling
BS BI Bank Scheduling, variable BI
BS PBGI Bank Scheduling with Pairwise Bank-Group Interleaving
CCSP Credit-Controlled Static-Priority
CDC Clock Domain Crossing
CompSOC Composable System-on-Chip
COTS Commercial-Off-the-Shelf
CSDF Cyclo-Static Data Flow
DDR Double Data Rate
DFI DDR PHY Interface
DIMM Dual Inline Memory Module
DMA Direct Memory Access
DRAM Dynamic Random-Access Memory
DTL Device Transaction Layer
FAW Four Activate Window
FIFO First-in First-out
FPGA Field-Programmable Gate Array
FR-FCFS First-Ready First-Come First-Served
FSL Fast Simplex Link
IDD Current flow in power supply lines

xxi

ILP Integer Linear Programming
IP Intellectual Property
IW Interface Width
JEDEC Joint Electron Device Engineering Council
LR Latency-Rate
LSB Least Significant Bits
LUT Lookup Table
MMIO Memory Mapped I/O
MPMC Multi-Port Memory Controller
MTL Memory Transaction Layer
NANP No Activate, No Precharge mode
NAP No Activate, Precharge mode
NoC Network-on-Chip
NOP No Operation
NP No Precharge mode
ODT On-Die Termination
PDE Power-Down Entry
PDX Power-Down Exit
PHY Physical interface
PLB Processor Local Bus
PLL Phase Locked Loop
PRE Precharge
PREA Precharge All
RAM Random-Access Memory
RD Read
REF Refresh
RTW Read-to-Write (pattern)
SDRAM Synchronous Dynamic Random-Access Memory
SI Scheduling Interval
SoC System-on-Chip
SO-DIMM Small Outline DIMM
SOS Special Ordered Sets
SRAM Static Random-Access Memory
SRE Self-Refresh Entry
SRL Shift-Register Lookup
SRX Self-Refresh Exit
TDM Time-Division Multiplexing
VDD Voltage on power supply lines
VHDL VHSIC Hardware Description Language
WCET Worst-Case Execution Time
WCIAAT Worst-Case Inter-Atom Time
WCRT Worst-Case Response Time
WCSI Worst-Case Scheduling Interval
WR Write
WTR Write-to-Read (pattern)

xxii Acronyms

Symbols

General

bwc Worst-case bandwidth in MB/s or GB/s
bpeak Peak bandwidth in MB/s or GB/s
eref Refresh efficiency ð0\ eref � 1Þ
e Memory efficiency ð0\e � 1Þ
f Clock frequency in MHz
pwc maxðprwc; pwwcÞ in mW
ρ LR (allocated) rate
t time
tpr Predictable read pattern length in #cycles
tprtw Predictable read-to-write pattern length in #cycles
tpref Predictable refresh pattern length in #cycles
tpw Predictable write pattern length in #cycles
tpwtr Predictable write-to-read pattern length in #cycles
Θ LR service latency

In Pattern Figures

aP Cycle where an auto-precharge is executed
A Activate (command)
R Read (command)
W Write (command)

Chapter 2

c Client
δ
f
be

Pipeline latency of back-end on request path in #cycles

xxiii

δ
f
PHY

Pipeline latency of PHY on request path in #cycles

δbbe Pipeline latency of back-end on response path in #cycles

δbPHY Pipeline latency of PHY on response path in #cycles

δ f Pipeline latency of back-end and PHY on request path in #cycles

δb Pipeline latency of back-end and PHY on response path in #cycles
δfe Pipeline latency of front-end on combined request/response path in

#cycles
Δr #cycles from first read pattern command on the SDRAM command bus

and first data on the SDRAM data bus
Δw #cycles from first write pattern command on the SDRAM command bus

and first data on the SDRAM data bus
Δ0

r #cycles from first read pattern command on the SDRAM command bus
and the first data handshakes on the back-end interface

Δ0
w #cycles from first write pattern command on the SDRAM command bus

and the first data handshakes on the back-end interface
m0 � m3 Address decoder masks
ρbe Rate of back-end LR server in MB/s
ρcarb Rate of arbiter LR server for client c as a fraction of the total server

bandwidth 0 � ρcarb � 1
� �

ρcfe Rate of front-end LR server for client c in MB/s
ρcctrl Rate of combined front-end/back-end LR server for client c in MB/s
s0 � s3 Address decoder shift amounts
θr #cycles until service for a read atom that starts a busy period
θw #cycles until service for a write atom that starts a busy period
Θbe Service latency of back-end LR server in #cycles
Θc

arb Service latency of arbiter LR server for client c in #scheduling slots
Θc

fe Service latency of front-end LR server for client c in #cycles
Θc

ctrl Service latency of combined front-end/back-end LR server for client c
in #cycles

Chapter 3

dðcmda; cmdbÞ Function that returns the minimum relative delay between cmda
and cmdb in #cycles

epc Conversion efficiency from predictable to composable patterns
ð0\epc � 1Þ

S j
kðiÞ Function that returns the ith timestamp i 2 1::100½ �ð Þ in run j 2

½1::122� of type k 2 ½1; 2; 3; 4� of the experiment
s jkðiÞ Function that returns the relative timestamp S j

kðiÞ � S14ðiÞ
tcr Composable read pattern length in #cycles
tcw Composable write pattern length in #cycles

xxiv Symbols

Chapter 4

E Energy
Ea Active energy
EACT Energy cost of an ACT command
Ebg Background energy
EPRE Energy cost of a PRE command
EPREA Energy cost of a PREA command
ERD Energy cost of a RD command
EREF Energy cost of a REF command
EWR Energy cost of a WR command
Ibg Background
IDD0 One bank active-precharge current
IDD1 One bank active-read-precharge current
IDD2P0 Precharge power-down current—slow-exit
IDD2P1 Precharge power-down current—fast-exit
IDD3N Active standby current
IDD3P Active power-down current
IDD4R Burst read current
IDD4W Burst write current
IDD5B Refresh current
IDD6 Self-refresh current
nopen banks Number of open banks
PRDQ
M

I/O power per data bit during a read

PWDQ
M

I/O power per data bit during a write

Chapter 5

b0 Bandwidth delivered by a worst-case power trace in MB/s or GB/s
bmeasuredr Measured bandwidth when continuously reading in MB/s
bmeasuredw Measured bandwidth when continuously writing in MB/s
bmeasuredrw Measured bandwidth when continuously alternating read and write

requests in MB/s
p0 Power in mW of a worst-case bandwidth trace
prwc Average power in mW used when continuously serving read requests
pwwc Average power in mW used when continuously serving write requests

Chapter 6

A #cycles added to time-window by Algorithm 5
PS Pattern size in #cycles
WS Time-window size in #cycles after applying Algorithm 5

Symbols xxv

Chapter 7

c Client
c1; c2 Two independent and distinct allocations for a client
Θ1; ρ1ð Þ LR parameters corresponding to allocation c1
Θ2; ρ2ð Þ LR parameters corresponding to allocation c2
Θr; ρrð Þ LR parameters corresponding to the client’s requirements
φc Number of slots 2 Nþ

0

� �
allocated to client c

φ1 Number of slots 2 Nþ
0

� �
allocated to client c in allocation c1

φ2 Number of slots 2 Nþ
0

� �
allocated to client c in allocation c2

φol Number of overlapping slots 2 Nþ
0

� �
across c1 and c2

ρctdm Rate of TDM arbiter LR server for client c as a fraction of the total
server bandwidth 0 � ρctdm � 1

� �

ρol Rate corresponding to the overlapping slots across c1 and c2 as a
fraction of the total server bandwidth 0 � ρol � 1ð Þ

Θc
tdm Service latency of TDM arbiter LR server for client c in #scheduling

slots
Θ0 maxðΘ1;Θ2Þ
τ Start of a busy period
τ0 End of a busy period
tA The time at which allocation c2 is fully enabled in the slot table
tR The time at which allocation c1 is fully disabled in the slot table
T Length of the slot table in a TDM arbiter 2 Nþ

[0

� �

wrðtÞ Required LR service bound of the client
wgðtÞ LR service guarantee given to the client

Appendix A

c A command 3-tuple ðct; cb; cnÞ
ct Command type, ct 2 fACT ;RD;WR;PREg
cb Command bank, cb 2 f0. . .BI� 1g
cn Command incarnation, cn 2 f0; 1g
CACT Set of activate commands
CPRE Set of (auto) precharge commands
CRW Set of read/write commands
C Set of all commands
K Number of commands of a specific type allowed within a window
Lc Lower bound on the position of command c
nbg The number of bank groups in the considered SDRAM device
Nheuristic Upper bound on the pattern length based on Algorithm 2
^PRE ILP variable representing the position of the last precharge in the pattern

xxvi Symbols

pos Vcð Þ Returns a sub-expression representing the position of a command c in
the pattern

s Scaling factor to make pattern length the primary optimization goal
TCtp The value of the timing constraints in #cycles between two commands of

type tp, tp 2 fACT, RD,WRg
Uc Upper bound on the position of command c
Vc Set of Boolean variables in the ILP related to command c
Xc
i Boolean variable. true if command c is scheduled in cycle i, false

otherwise

Symbols xxvii

Chapter 1
Introduction

The average human has a working memory capacity of seven digits, according to one
of the most cited publications in psychology [1]. This means if you try to recite the
series 3, 8, 5, 3, 2, 1, 1 after simply reading it once you will probably succeed, but
repeating the trick with 4, 8, 1, 5, 1, 6, 2, 3, 4, 2 will likely fail. “Working memory” is
colloquially used to refer the Random-Access Memory (RAM) in a computer system.
The majority of the RAM in a computer is Synchronous Dynamic Random-Access
Memory (SDRAM), which is the center point of this book. Seven digits is approxi-
mately equal to 23 bits of information (7× 2 log (10)), so in some sense, we all are
the proud owners of 23 bits of brain-RAM, which is almost enough to store the word
“bit” in standard 8-bit ASCII encoding in a computer.

Even though the 640KB RAM that Bill Gates is rumored1 to have said “ought to
be enough for anybody” is already five orders of magnitude larger than the working
memory of the brain, the world’s hunger for memory has grown far beyond this
number.Memory sizes in the order of gigabytes are now commonplace. The advances
inmemory capacity are part of amuch larger trend, inwhich the number of transistors
that can be manufactured for the same cost grows over time, due to the down-scaling
of semiconductor circuits, as stated by Moore’s law [2]. An equally important aspect
of technology scaling is described by Dennard [3], who notes that the power density
of a chip remains constant, despite the scaling. The combination of Moore’s law and
Dennard scaling implied that the amount of potential functionality offered by a chip
of constant size and with a constant power envelope grew almost exponentially over
the past decades, and even though we may have reached the tail-end of this trend [4,
5], we are still experiencing the benefits today.

In this chapter, we first look at the developments and trends that led to the current
way of workingwith SDRAM in Sects. 1.1–1.4.We then identify the requirements on
a modern SDRAM controller in Sect. 1.5, and capture them in the problem statement
in Sect. 1.6. Here, we also briefly discuss how the contributions of this book address
the raised issues. Finally, we link the contributions to the remaining chapters in
Sect. 1.7.

1There are no reliable sources that confirm this quote.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_1

1

2 1 Introduction

1.1 The SoC—SDRAM Interface

The ability of chips to harbor more and more transistors led to the integration of
relatively powerful computing systems, into what is called a system-on-chip (SoC).
Their large computing capacity makes it possible to merge multiple distinct pieces
of functionality onto a single SoC [6], as opposed to using a separate chip for each of
them. The main advantage of doing this is cost reduction [7], which can be attributed
to several forms of resource sharing. Most obviously, consolidating the functionality
ofmultiple chips on a single SoC reduces the number of chips and the associated costs
involved in their manufacturing, consisting of raw materials, masks, packaging, etc.
Common circuit components related to power distribution and clock generation may
be shared. On-chip wires are less expensive in terms of area and power compared to
wires that leave the silicon, also reducing the costs.

SDRAM has been largely left out of this integration trend, i.e., most modern
SoCs connect to an external SDRAM chip. This can again be attributed to economic
pressure that drives the development of dynamic random-access memory (DRAM)
semiconductor technology in the direction of high-density and low-leakage chips.
The design goal is to reduce the costs per bit and power consumption, while still
satisfying capacity demands, contrary to logic-circuit technology which was mostly
guided by speed requirements [8]. Uniting DRAM and logic in the same technology
is not fundamentally impossible, but it is generally less cost effective than using
separate chips.

The implication of separating the SoCs from the SDRAM is that a chip-to-chip
interface has to be used to connect them, as shown in Fig. 1.1. Interfaces (pins)
that connect the SoC to external chips are relatively expensive. The International
Technology Roadmap for Semiconductors (ITRS) [9] estimates the costs per pin as
0.21 (dollar) cents for an SDRAM chip, and as 0.20 and 1.21 cents per pin on a
general low-end or high-performance SoC package, respectively. Assuming these
SoCs have a 84-pin and 240-pin memory interface, their total cost (at the SoC side)
is approximately between 0.17 and 2.90 dollars per chip, respectively.

Fig. 1.1 Typical
SoC-SDRAM interface

1.1 The SoC—SDRAM Interface 3

The number of pins that can be spent on the SDRAM interface is limited by the
size of the SoCs package, which additionally has to accommodate power-supply pins
and all other external connections. This naturally creates a bottleneck at the interface,
and the associated requirement to use the available SDRAM pins as efficiently as
possible.

A complicating factor at play here is the so-called memory wall problem [10, 11],
which, in short, consists of the observation that the performance of logic grows faster
than the performance of memory, such that memory performance eventually domi-
nates the overall system performance. The memory wall exists for the same reason
as the separation between the SoC and the DRAM, i.e., it is an implication of the
different optimization goals that are applied to logic-circuit and DRAM technology.
Even though 3D stacking promises to increase the number of connections between
logic and memory [12, 13], improving the available bandwidth significantly, it does
not seem likely that the drive for using the SDRAM interface efficiently will leave
the picture.

Looking back at these developments helps to explain the status quo: we only have
a relatively narrow interface by which the memory can be reached and shared by the
entire SoC. Even though parallelism (in terms of the production and consumption of
data)may exist within both the SoC and SDRAM,we require a serializing component
that controls what data is transported across the interface at a given time. The SDRAM
controller fulfills this role, and is discussed in more detail in the next section.

1.2 SDRAM Controllers

An SDRAM controller is the interface for the SoC to the SDRAM devices. SDRAM
controllers have one or more ports (on the SoC side), and each port is connected to
a memory client. We define clients as the sources of memory traffic that are directly
connected to the SDRAM controller. Clients generate read or write requests for the
controller, which are queued until it is ready to execute them.

Figure1.2 shows a simplified memory controller architecture. It is divided into
a front-end and back-end. The front-end deals with the multi-ported nature of the

Fig. 1.2 Simplified general memory controller architecture

4 1 Introduction

controller, by deciding on the order in which requests from different clients are
executed. It contains an (inter-client) arbiter and queues for requests that are not
executed immediately.

The back-end deals with the SDRAM protocol itself. Scheduled request are trans-
lated into SDRAM commands by a command generator. Once the commands are
generated, they can be scheduled for execution on the SDRAM by the command
scheduler. Although request-level arbitration and command-level scheduling are
conceptually separate issues, they may be combined, depending on the controller
implementation, although this naturally blurs the line between front-end and back-
end.

Command scheduling is complex, since there are multiple timing constraints that
have to be satisfied for each individual command to use the SDRAMcorrectly accord-
ing to its specification. Each scheduling decision changes the memory state, and thus
the constraints need to be taken into account for future decisions. Additionally, a
scheduler may have to choose between multiple schedulable commands without a
clear indication of the impact on performance and future scheduling options. This
leads to a type of emergent behavior that is hard to predict, and thus memory per-
formance is hard to bound in the general case; for many commercial controllers, no
analytical bounds can be provided. However, there are real-time memory controllers
that do provide hard bounds on the time to serve all requests to assure client-level
requirements are always satisfied, as will be discussed in Sect. 1.5.

In the next section, we will have a closer look at what the clients of a memory
controller actually represent, and why they are growing in number.

1.3 Cramming More Applications
onto (Power-Constrained) SoCs

Cost reduction through resource sharing is the main cause for the rise of the SoC,
and their availability paved the way for a growing catalog of applications that use
them. Applications might be purely software based, like those found in the app-store
of the particular phone ecosystem one subscribes to. However, we use “application”
here in the broader sense of the word, and also include combinations of hardware and
software that offer a certain chunk of functionality to the end user through sensors,
actuators, and communication links [14].

It is often possible to think of the clients of a memory controller as applications,
although this does not always work. For example, an application may be distributed
over multiple processing cores, each having its own connection to the controller, and
hence one application might be represented by multiple clients. In our definition,
applications cannot communicate or share data (if they do one of these things, they
by definition are part of the same application).

The success of SoCs has enabled the use of high-performancemulti-core architec-
tures in consumer electronics, like mobile phones [15], tablets [16], wearables (smart

1.3 Cramming More Applications onto (Power-Constrained) SoCs 5

Fig. 1.3 The snapdragon
800 SoC [15]

watches, health trackers), home automation, and smart TVs [17], for example. Simi-
larly, they find their way into cars, which contain a large number of electronic control
units (ECUs) [18], essentially SoCs with control applications. In all these areas, we
observe that the number of applications on a single SoC is increasing, as a logical
consequence of growing SoC performance, the availability of the applications, and
the drive toward cost reduction.

For example, consider mobile phones or tablets, which are simultaneously
involved in handling a multitude of wireless protocols (like Wifi, Bluetooth, LTE,
GPS, and NFC), implemented in dedicated radio solutions or by using software-
defined radio (SDR) [19]. At the same time, they render graphics onto the screen,
deal with encryption, while running user apps and the underlying operating system,
all on the same SoC [7]. A high-end phone SoC is drawn in Fig. 1.3, illustrating
the various applications it supports. Wearables aspire toward the same feature set,
although they are significantly more battery constrained. In general, battery capac-
ity does not grow as quickly as the demand for processing power [20]. For mobile
devices, the expected battery lifetime constrains the available power budget for the
SoC and the SDRAM, and limiting power usage is hence an important design goal
in this area.

One of the main challenges in the car industry is to merge the functionality of
multiple ECUs, reducing costs in terms of materials, cabling, and weight. Simultane-
ously, the trend toward (semi-) automated driving increases the required feature-set
of cars. Automated driving heavily relies on sensing (vision, radar) and communi-
cation applications [21–23], for which custom SoCs are desired to effectively deal
with all the required computation.

In conclusion, we see a growth of the number of applications per SoC across
application domains. A subset of those applications uses the SDRAM, and hence turn
into clients of the memory controller. Unfortunately, the effects of sharing are not all
positive, especially when it involves a scarce resource like the SDRAM interface. In
the next section, we discuss how applications are judged by their performance and
why resource sharing can have a negative impact on it.

6 1 Introduction

1.4 Performance

The evaluation of the success or failure of an application can be qualitative, but for
the most part it is quantified in terms of performance. Performance is an umbrella
term describing the rate at which something of interest is produced or consumed, or
the amount of time it takes to complete a specific operation [24]. Each instance of
such rate or quantity of time is called a performance metric. For example, a video
decoder’s performance may be expressed as frames per second, or a control loop
can process a specific number of input samples per millisecond. A better or higher
performance almost universally refers to an increase of the rate or reduction of time,
except when the quantity is consumed energy, in which case a smaller energy/time
ratio is considered better.

Some performance metrics straight-forwardly apply to SDRAM controllers [25].
Bandwidth (bytes/second), response time (seconds/access) andpower (joules/second)
are the ones featured most prominently in this book. At first sight this might seem
strange, since there are not many people who actually care how much bandwidth a
certain application receives, or howmuch power the SDRAMconsumes on its behalf.
Instead, requirements are usually expressed at a higher level of abstraction, based on
a specification of the functionality for user, e.g., “the video should play smoothly,”
or “the battery should last for at least 24h.” Once refined in terms of performance
metrics, requirements bound the allowed performance. Usually, requirements are
one-sided (upper/lower) bounds, e.g., “at least 60 frames per second should be gen-
erated,” or “at most 3 watts may be consumed.” A guarantee bounds the actual
performance. When the guaranteed performance equals or exceeds the required per-
formance, then the requirement is satisfied.

1.4.1 Application Requirements

A real-time application typically has a set of timing-related requirements it should
satisfy [25, 26]. Such applications often have links to peripherals of the SoC, i.e., the
interface to the real world. For example, a SDR application might have to generate a
response on the radio interfacewithin a limited amount of time to correctly implement
a communication protocol, or an adaptive cruise control system in a car might have
to detect slowdowns of the surrounding traffic in time to avoid accidents.

The severity of the consequences of not meeting a deadline is usually expressed as
a qualificationon the real-time requirement, although the exact definitions vary.Using
the definitions from [25, 27], we can distinguish Hard real-time (HRT) requirements
and Soft real-time requirements (SRT). HRT requirements relate to hard deadlines
that cannot be missed without severe loss of functionality for the application user.
Sometimes, such requirements are called critical or safety critical, in case the safety
of the user is not guaranteed and if the requirement is not satisfied. SRT requirements,
on the other hand, may occasionally be missed, although this is still undesirable. In

1.4 Performance 7

this book,we use real-time to refer toHRT, andwewill not discuss SRT requirements.
In the absence of real-time requirements, an application works on a best-effort basis.

Applications are not alone: instead, the increasing number of applications per SoC
leads to a growing amount of (unintentional) interaction between them. This has an
impact on the application’s performance, and on howwedealwith their requirements,
as is discussed in the next sections.

1.4.2 Interference

An application that shares SoC resources is susceptible to interference, i.e., its (func-
tional and temporal) behavior and that of other applications become interdependent.
Only one application can use a shared resource at a time, leading to resource con-
tention [28]. Other applications inevitably have to wait before they get access to the
same resource, and hence experience timing interference. In an analogous manner,
applications can experience state interference, which occurs when multiple applica-
tions change the state of a shared resource. As a straight-forward example, consider a
memory in which one application overwrites the data of another application, chang-
ing its behavior in a potentially destructive manner.

Measuresmitigating state interference formemory resources havebeen researched
for quite some time [29], and solutions are available in the form of memory pro-
tection [30, 31]/management units [32] or data protection units. These modules
effectively cordon off address ranges depending on the source of a memory access.
Therefore, we focus on the timing aspect of interference in this book.

In most contexts, the word “interference” represents a negative effect, which is
also the case here, since it changes the application’s performance with respect to the
case where there is no interference in an unpredictable way. In the following two
sections, we describe two ways to qualify performance that are useful for real-time
applications in the presence of interference.

1.4.3 Predictable Performance

Predictability is a qualification of a performancemetric of an application or hardware
component [33] that (partially) specifies the assumptions that were made when this
performance metric was derived. The predictable performance is a bound on all
actual performances, assuming any possible initial condition, and including worst-
case interference on shared resources without assumptions on the behavior of co-
running applications [34]. When we refer to guaranteed or worst-case performance
in this book, it is implied that this performance is predictable. When a resource or
methodology is predictable, then this means that predictable performance bounds
can be derived for it or based on it.

8 1 Introduction

Applications cannot communicate or share data (or else they would be part of
the same application). If all resources an application uses provide predictable per-
formance, then its worst-case performance is independent from other applications.
The verification of the worst-case requirements of the application can then be done
independently from other applications, i.e. it only has to consider the (predictable)
hardware and the application itself. This reduces the complexity of this analysis
compared to the unpredictable case, where all possible combinations of co-running
applications also need to be factored in [35]. As such, it enables incremental verifi-
cation at a low relative cost, and reduces verification time. Predictable performance
enables model-based verification of requirements, using dataflow [36], network cal-
culus [37], or other traditional real-time approaches, for example [38–40] outlined
what this process can entail.

1.4.4 Composable Performance

Predictable performance is sufficient in cases where an application’s verification is
done based on a (formal) analysis of its worst-case requirements. However, there
are cases where such an analysis is not possible, for example, when a model of the
application’s timing behavior is not available. Such applications might be verified by
simulation, instead essentially by executing them with a number of test inputs and
assessing the results. Two issues complicate this work flow inmulti-application envi-
ronments: (1) the performance of tested applications can only be definitely assessed
after they are integrated with their co-running applications, and (2) the performance
in conjunction with all possible combinations of co-running applications has to be
verified [35, 41]. If requirements are not satisfied, or if any application or the system
setup is changed for other reasons, then the verification process has to be repeated,
making the entire process circular [42].

These issues are avoided by systems offering composable performance, which
means that the actual-case performance an application receives is not influenced by
co-running applications [43, 44]. This definition is strict: intuitively, it means that a
deviation of a single cycle from the actual timing behavior the application expressed
when running in isolation qualifies as being non-composable. Once an application
receiving composable performance has been verified in isolation, it is guaranteed
to also work correctly after integration, since its actual timing behavior during the
verification is (exactly) the same as after integration. Composability is orthogonal
to predictability, since it only implies independence of behavior, but by itself says
nothing about the existence of worst-case bounds.2

2In practice, predictability is often used to provide composable performance [34].

1.5 Requirements for SDRAM Controllers in Modern SoCs 9

1.5 Requirements for SDRAM Controllers
in Modern SoCs

In the previous sections, we discussed why the SDRAM is a scarce resource, and
how it is shared among more and more applications with diverse requirements. We
also discussed the complications interference introduces the evaluation of real-time
application performance. Based on these observations, we summarize the 5 main
requirements on modern SDRAM controllers in the context of this book as follows:

1. Some applications have real-time requirements. To assure these requirements
are met, the SDRAM controller must deliver predictable performance when the
requirement verification is based on worst-case models, or composable perfor-
mance, when the verification is based on simulation, or when a certification stan-
dard requires temporal isolation.

2. Some applications benefit from improved average-case (typical) performance,
i.e., they can make use of all the resources the system can spare for them. Gen-
erally, an application’s behavior or quality improves with additional resources,
benefiting the user. Best-effort applications, i.e., applications without real-time
requirements, generally fall within this category. Other examples include video
decoding algorithms that support quality scaling [45], and user interfaces, for
which higher responsiveness is generally better.

3. Applications are not active all the time. Instead, they can be transient, i.e., they
only run in specific use-cases, in conjunction with a subset of the other applica-
tions the SoC supports. A memory controller should hence be able to efficiently
deal with the changes in its set of clients.

4. SDRAM technology progresses quickly, and new generations are introduced
every 2–3 years. An SDRAM controller architecture should hence be sufficiently
flexible to handle the differences between the standards, such that it remains usable
for a reasonable amount of time. The same requirement holds for the analysis on
which its predictable performance guarantees are based. Ideally, a SoC should
use the type of SDRAM that best fits its applications’ requirements.

5. The power budget is limited for (battery-powered) SoCs. This requires a careful
evaluation of how the SDRAM is used to minimize its power usage, while still
satisfying the remaining performance requirements.

Existing memory controllers come in a variety of forms, some of which are a better
fit for these requirements than others. We distinguish three categories:

1. Real time, i.e., geared toward maximizing predictable performance. Real-time
controllers are designed such that their guaranteed performance is maximal. The
underlying assumption is that only the worst-case performance matters, and any-
thing that cannot be guaranteed and analyzed is wasted effort.

2. Best effort, i.e., geared toward maximizing average-case (typical) performance.
They are built according to the philosophy that mechanisms that positively impact
the average performance are considered worthwhile, even if they negatively affect
the worst case. They exploit knowledge that is only available at run-time to make

10 1 Introduction

request-level or command-level scheduling decisions. As a result, they typically
provide no useful analytical bounds on performance.

3. Mixed time-criticality,3 i.e., balancing the needs of real-time and best-effort appli-
cations. Ideally, these controllers guarantee sufficient performance to satisfy the
worst-case performance requirements of the real-time applications, while maxi-
mizing the average-case performance for the best-effort applications.

When these descriptions are matched with the requirements we listed earlier,
it is fairly obvious that best-effort controllers do not satisfy them, since they can-
not guarantee (sufficient) performance to real-time applications. Complete isola-
tion, as required for composability, is also practically impossible to achieve for
these controllers, due to the complex interaction between the various average-case
performance-improvement mechanisms, which inevitably leak state-information
from one application to the other.

Real-time controllers, on the other hand, miss opportunities to improve the
average-case performance that best-effort applications care about. It is hence not
surprising that we consider a mixed time-criticality controller the best fit for the
requirements. Such a controller is built upon concepts that are known to be real-
time analyzable, while selectively using techniques from best-effort controllers to
improve the average case.

1.6 Problem Statement and Contributions

The high-level question we answer in this book is:

How should a mixed time-criticality SDRAM controller be constructed that

(1) provides predictable and composable performance to its real-time applications,
both in terms of bandwidth, response time, and potentially within a limited power
budget, while exploiting opportunities to improve the average-case performance
for best-effort applications,

(2) is flexible, both in terms of architecture and worst-case performance analysis,
such that it can be used for the various available SDRAM generations, and
allows for comparisons between them, and

(3) retains these properties in the presence of transient applications, i.e., when it is
used in multiple use-cases.

Existing works on real-time SDRAM controllers focus on providing predictable
performance, and some extend this with composable performance. Mixed time-
criticality controllers improve average-case performance while retaining predictabil-
ity. However, their scopes and capabilities are limited in certain areas. We highlight

3We focus on the diversity of timing requirements this book. In contrast, the broader term mixed
criticality is typically used inworks that dealwith differences in certification requirements, including
fault tolerance concerns, and varying degrees of pessimism in WCET estimations based on the
required level of certainty [46].

1.6 Problem Statement and Contributions 11

Fig. 1.4 Mapping of requirements to contributions and chapters

these issues in the following sections, and connect them to the contributions in this
book that address them. A graphical representation of the mapping of requirements
from the previous section to contributions and chapters is shown inFig. 1.4.Adetailed
positioning of this book with respect to related work is given in Chap.8.

1.6.1 Multi-generation Power-Aware Command Scheduling

The rapid development of SDRAM technologymeans multiple SDRAMgenerations
are at a system designer’s disposal at any given time. To select the right memory for
a SoC that supports real-time applications, worst-case performance bounds of the
memories need to be available and comparable, to satisfy Requirements 1 and 4.
Existing real-time controllers and command scheduling algorithms are limited to a
single memory device, or one or two memory generations, and ignore the impact of
the command scheduling algorithm on the SDRAM power usage, even though this
is an important design constraint for (battery-powered) embedded systems [20], as
identified by Requirement 5.

To address these issues, we provide an abstraction that allows us to write down an
SDRAM command scheduling algorithm in a general fashion, i.e., without targeting
one specific memory device or generation. Using this abstraction, we introduce a
generation-agnostic command scheduling heuristic (Chap. 3). The schedules it pro-
duces allows us to bound the SDRAM’s performance. The quality of the heuristic is
evaluated through a comparisonwith optimal solutions generated by an integer linear
programming (ILP) formulation. We also provide a simple transformation for these
schedules to turn the memory controller into a composable resource with negligible
impact on the performance bounds.

We introduce a cycle-accurate SDRAM power model, which allows us to determine
the power or energy spent in the SDRAM (Chap. 4). Thismodel enables us to evaluate
the effects of our scheduling decisions on the energy efficiency by which the memory

http://dx.doi.org/10.1007/978-3-319-32094-6_8
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_4

12 1 Introduction

is used. The command scheduling heuristic is parameterized, such that worst-case
performance in terms of bandwidth and response time can be traded against worst-
case power, We apply the heuristic to 12 memory devices from 6 different memory
generations, and plot this trade-off space, effectively providing an overview of worst-
case power/performance tradeoffs across generations (Chap. 5).

1.6.2 Improving Average-Case Performance
Without Affecting Worst-Case Performance

Opportunities to improve (non-guaranteed) performance in real-time controllers are
generally ignored, even though they could have a positive impact on both the appli-
cation’s performance and the power usage. Improving average-case performance and
reducing power consumption is desirable, as mentioned in Requirements 2 and 5.
Locality of reference influences how long it takes to read or write a unit of data.
Memory controllers attempting to exploit locality across requests use an open-page
policy, while those that do not use a close-page policy [47]. Open-page policies
have only recently found their way into a few real-time and mixed time-criticality
controllers, although they require special measures (bank privatization, explained in
Chap.8) to avoid worst-case performance reduction.

In this book, we introduce a conservative open-page policy that improves
the average-case performance without compromising on worst-case guarantees
(Chap. 6). It exploits locality of reference to reduce the response time of requests,
like any open-page policy would. However, it only deviates from how a close-page
policy would act when the response time is guaranteed to be smaller while doing so.

1.6.3 Reconfigurable Architecture

Existing controllers typically configure the behavior of the request-level arbiter and
the command scheduler only once, when the SoC is booted. Therefore, this config-
uration has to cover all use-cases. Adapting the controller’s behavior per use-case
at run-time, to capture the arrival or departure of transient applications, is not con-
sidered, contradicting Requirement 3. If existing controllers would be reconfigured
at run-time, they provide no bounds on performance to applications that remain
active during these use-case transitions, which is unacceptable for real-time appli-
cations according to Requirement 1. Given how the number of applications per SoC
is growing, it becomes paramount to specialize the controller configuration to the
requirements of the active application set, in order to use the SDRAM in the most
efficient manner.

To address this, we introduce a reconfigurable SDRAM controller architecture
template (Chap.2), and a proof-of-concept implementation, integrated in a pre-
dictable and composable SoC. The performance that is provided to each controller

http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_8
http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_2

1.6 Problem Statement and Contributions 13

port is characterized by aworst-case analysis, and can be changed at run-time through
reconfiguration. This allows for specialization of the controller on a per use-case
basis, making it easier to swap transient applications in and out without having to
(over) dimension for the most challenging super-set of requirements. The rules that
have to be respected to retain predictability or composability for (real-time) applica-
tions that are active during reconfiguration are discussed in Chap. 7. We demonstrate
how to implement these rules for a Time-Division Multiplexing (TDM) arbiter, and
prove that our reconfiguration protocols are safe.

1.7 Outline

This remainder of this book is structured as follows. Chapter 2 introduces the nec-
essary background information on SDRAM memories and SDRAM controllers. It
also shows the architecture template and the worst-case analysis of the memory
controller we propose, and looks at one concrete instance of the template in more
detail. Chapter3 discusses how both predictable and composable configurations for
the command scheduler in this memory controller can be generated. The used algo-
rithms are transparently applicable to all contemporary SDRAMgenerations through
the introduction of a simple abstraction layer. Chapter4 discusses the cycle-accurate
SDRAM power model we use in the remainder of the book. In Chap. 5, we pro-
vide an overview of the worst-case power and performance tradeoffs in 12 memory
devices in 6 different memory generations as a function of the different command
scheduler parameters. Chapter6 introduces a mechanism that improves average-case

Fig. 1.5 Overview of chapters

http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_6

14 1 Introduction

performance without sacrificing worst-case guarantees. Chapter7 then shows when
and how the various configurable components in thememory controller can be recon-
figured without violating predictable or composable performance bounds. Figure1.5
shows the relations between Chaps. 2–7. Finally, Chap. 8 relates this book to the state
of the art, and we end with conclusions and future work in Chap.9.

References

1. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity
for processing information. Psychol Rev 63(2):81

2. Moore G (1965) Cramming more components onto integrated circuits. Electron Mag 38
3. Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-

implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits
9(5):256–268

4. Esmaeilzadeh H, Blem E, St.Amant R, Sankaralingam K, Burger D (2011) Dark silicon and
the end of multicore scaling. In: 2011 38th Annual international symposium on computer
architecture (ISCA), pp 365–376

5. ITRS (2013) International technology roadmap for semiconductors (ITRS) - system drivers
abstract

6. Henkel J (2003) Closing the SOC design gap. Computer 36(9):119–121
7. Lyne K (2005) Cellular handset integration - sip vs. SOC and best design practices for SIP. In:

Custom integrated circuits conference, 2005. Proceedings of the IEEE 2005, pp 765–770
8. Matick R, Schuster S (2005) Logic-based eDRAM: origins and rationale for use. IBM J Res

Dev 49(1):145–165
9. ITRS (2012) International technology roadmap for semiconductors (ITRS) - assembly & pack-

aging, 2012 tables
10. WulfWA,McKee SA (1995) Hitting the memory wall: implications of the obvious. SIGARCH

Comput. Architect. News 23(1)
11. McKee S (2004) Reflections on the memory wall. In: Proceedings of the conference on com-

puting frontiers, pp 162–167
12. Jeddeloh J, Keeth B (2012) Hybrid memory cube new DRAM architecture increases density

and performance. In: 2012 symposium on VLSI technology (VLSIT), pp 87–88
13. Xie Y (2013) Future memory and interconnect technologies. In: Design, automation and test

in Europe conference and exhibition (DATE), pp 964–969
14. TummalaR (2006)Moore’s lawmeets itsmatch (system-on-package). IEEESpect 43(6):44–49
15. Snapdragon 800 (2015) Snapdragon 800 processor specs. https://www.qualcomm.com/

products/snapdragon/processors/800. Online; Accessed 30 Mar 2015
16. anandtech.com (2014) Apple a8x SOC. http://www.anandtech.com/show/8716/apple-a8xs-

gpu-gxa6850-even-better-than-i-thought
17. DM-D large-size commercial LED LCD displays (2015) Samsung Electronics America Inc
18. Broy M (2006) Challenges in automotive software engineering. In: International conference

on software engineering, pp 3–42
19. Ramacher U (2007) Software-defined radio prospects for multistandard mobile phones. Com-

puter 40(10):62–69
20. van Berkel (C) Multi-core for mobile phones. In: Design, automation and test in Europe con-

ference and exhibition (DATE)
21. Ward L, Simon M (2015) Intelligent transportation systems using IEEE 802.11p (application

note 6.2015 - 1MA153_4e)
22. Festag A (2014) Cooperative intelligent transport systems standards in Europe. IEEE Commun

Mag 52(12):166–172

http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_8
http://dx.doi.org/10.1007/978-3-319-32094-6_9
https://www.qualcomm.com/products/snapdragon/processors/800
https://www.qualcomm.com/products/snapdragon/processors/800
http://www.anandtech.com/show/8716/apple-a8xs-gpu-gxa6850-even-better-than-i-thought
http://www.anandtech.com/show/8716/apple-a8xs-gpu-gxa6850-even-better-than-i-thought

References 15

23. Ross PE (2014) Europes smart highway will shepherd cars from Rotterdam to
Vienna. http://spectrum.ieee.org/transportation/advanced-cars/europes-smart-highway-will-
shepherd-cars-from-rotterdam-to-vienna

24. Jacob B, Ng S, Wang D (2007) Memory systems: cache, DRAM, disk. Morgan Kaufmann Pub
25. Steffens L, Agarwal M, der Wolf PV (2008) Real-time analysis for memory access in

media processing SOCs: a practical approach. In: Euromicro conference on real-time systems
(ECRTS), pp 255–265

26. Bekooij M, Moonen A, van Meerbergen J (2007) Predictable and composable multiprocessor
system design: a constructive approach. In: Bits and chips symposium on embedded systems
and software

27. Buttazzo G, Lipari G, Abeni L, Caccamo M (2005) Soft real-time systems: predictability vs.
efficiency. Series in computer science. Springer

28. Mutlu O, Moscibroda T (2007) Memory performance attacks: denial of memory service in
multi-core systems. In: USENIX security

29. Wilkes MV (1982) Hardware support for memory protection: capability implementations. In:
Proceedings of the 1st international symposium on architectural support for programming
languages and operating systems, pp 107–116

30. Application note 179 cortex - M3 embedded software development (2007) ARM Limited
31. RM57L843 16- and 32-Bit RISC flash microcontroller (2014) Texas Instruments Inc
32. Xilinx (2011) Microblaze processor reference guide. http://www.xilinx.com/support/

documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf
33. Cullmann C, Ferdinand C, Gebhard G, Grund D, Maiza C, Reineke J, Triquet B, Wegener S,

Wilhelm R (2010) Predictability considerations in the design of multi-core embedded systems.
Ingénieurs de l’Automobile 807:36–42

34. Akesson B, Molnos A, Hansson A, Ambrose Angelo J, Goossens K (2010) Composability and
predictability for independent application development, verification, and execution. In: Hübner
M, Becker J (eds) Multiprocessor system-on-chip — hardware design and tool integration,
Circuits and systems, chapter 2. Springer. ISBN 978-1-4419-6459-5

35. Rumpler B (2006) Complexitymanagement for composable real-time systems. In: Proceedings
of ISORC

36. SriramS, Bhattacharyya S (2000) Embeddedmultiprocessors: scheduling and synchronization.
CRC

37. Cruz RL (1991) A calculus for network delay. I. Network elements in isolation. IEEE Trans
Inf Theory 37(1)

38. Richter K, Jersak M, Ernst R (2003) A formal approach to MPSOC performance verification.
Computer 36(4):60–67

39. Nelson A, Goossens K, Akesson B (2015) Dataflow formalisation of real-time streaming appli-
cations on a composable and predictable multi-processor SOC. J Syst Architect

40. Goossens K, Azevedo A, Chandrasekar K, Gomony MD, Goossens S, Koedam M, Li Y, Mir-
zoyan D, Molnos A, Nejad AB, Nelson A, Sinha S (2013) Virtual execution platforms for
mixed-time-criticality systems: the CompSOC architecture and design flow. SIGBED Rev
10(3):23–34

41. Kopetz H, El Salloum C, Huber B, Obermaisser R, Paukovits C (2008) Composability in the
time-triggered system-on-chip architecture. In: 2008 IEEE international SOC conference, pp
87–90

42. Saleh R, Wilton S, Mirabbasi S, Hu A, Greenstreet M, Lemieux G, Pande P, Grecu C, Ivanov
A (2006) System-on-chip: reuse and integration. Proc IEEE 94(6):1050–1069

43. Hansson A, Goossens K, Bekooij M, Huisken J (2009) CompSOC: a template for composable
and predictable multi-processor system on chips. ACM TODAES 14(1)

44. Puschner P, Kirner R, Pettit R (2009) Towards composable timing for real-time programs. In:
2009 software technologies for future dependable distributed systems, pp 1–5

http://spectrum.ieee.org/transportation/advanced-cars/europes-smart-highway-will-shepherd-cars-from-rotterdam-to-vienna
http://spectrum.ieee.org/transportation/advanced-cars/europes-smart-highway-will-shepherd-cars-from-rotterdam-to-vienna
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf

16 1 Introduction

45. WuD,HouYT, ZhangY-Q (2001) Scalable video coding and transport over broadbandwireless
networks. Proc IEEE 89(1):6–20

46. Vestal S (2007) Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In: Real-time systems symposium, pp 239–243

47. Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory access scheduling. In:
International symposium on computer architecture (ISCA), pp 128–138

Chapter 2
Reconfigurable Real-Time Memory
Controller Architecture

The purpose of this chapter is to set the stage on which the rest of this book plays out.
We describe the technology that we work with, in the form of the SDRAM chips that
external companies produce for us (and the rest of the world) in Sect. 2.1. Because,
the same SDRAM chips are used by everyone, it is not surprising that most memory
controllers, i.e., the interfaces that interact with these chips, have at least the same
high-level structure, as introduced earlier in Sect. 1.2. For the sake of efficiency,
the proverbial wheel tends to be invented only a few times before the interested
community settles for a design that works in most cases. Further improvements are
driven by the needs of specific application areas and the gradual evolution of the
surrounding actors and requirements. This book focuses on the area of mixed time-
criticality systems, and uses an existing SDRAM controller template for real-time
systems, the pattern-based controller [1], as its starting point. The properties of this
controller are introduced in Sect. 2.2.

The story continues with a detailed description of our novel reconfigurable mem-
ory controller architecture in Sect. 2.3. It partially concerns the introduction of con-
cepts and structures used in the controller, and touches upon some of the real-time
aspects that are influenced by its structure and implementation. This controller is the
framework on which the other contributions in this book are pinned. The memory
patterns we generate in Chap.3 are stored within this controller. The analysis from
Chap.4 and the trade-offs we describe in Chap. 5 apply to memory controllers that
follows the architecture template we describe here, and the conservative open-page
policy in Chap.6 is implemented on a slightly modified version of the same template.
The embedded reconfiguration hardware enables the controller to adapt to different
use-cases as we describe in Chap.7.

In Sect. 2.4, we derive a worst-case performancemodel for this memory controller
architecture, based on a Latency-rate (LR) server abstraction. This performance
model applies tomanywell known arbiters and can be used in frameworks that enable
system-level analysis. We then continue with a discussion on the implementation
of a hardware instance on Field Programmable Gate Array (FPGA) in Sect. 2.5,
which demonstrates that this memory controller is not only conceptually sound,
but really works when it is connected to a real SDRAM module and integrated

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_2

17

http://dx.doi.org/10.1007/978-3-319-32094-6_1
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_7

18 2 Reconfigurable Real-Time Memory Controller Architecture

in the Composable System-on-Chip (CompSOC) platform [2]. Its cost in terms of
resource usage are evaluated and contrasted with a comparable FPGA controller
implementation in Sect. 2.6.

2.1 SDRAM

SDRAM is an extremely popular type of memory. DRAMExchange (a market ana-
lyst) reports that in February 2015 alone, 2.4 billion 2 gibibit (230) equivalent units
were produced worldwide [3], for a total capacity of 5.16 exabits. This amounts to a
production rate of 267GB/s,1 a relatively modest “bandwidth” that about 100 com-
bined contemporary SDRAM devices (single chips) could easily deliver in the worst
case, as we later show in Chap.5.

SDRAM is volatile and used as temporary data storage, similarly to caches or
Static Random-Access Memory (SRAM) memories. It only stores data as long as
power is provided to it. In terms of area and power consumption, it is cheaper than
SRAM, since it requires only a single transistor-capacitor pair to store a bit. This
efficiency makes it feasible to store gigabytes of data in SDRAM, while SRAM and
caches are limited to capacities in the order of megabytes.

Many generations of SDRAM have been developed since it was invented by
Robert Dennard in 1967 [5], but most of their characteristics are similar. SDRAM
devices contain a hierarchically structured storage array [6]. A schematic view on a
generic SDRAM architecture is shown in Fig. 2.1. Each device consists of typically
8 or 16 banks that can work in parallel, but share a command, address, and data bus.
Therefore, only one command can be sent to one bank at a time, but commands can
take multiple cycles to complete, and the execution of commands on different banks
can happen in a parallel (pipelined) fashion. A bank consists of a memory array,
divided into rows, each row containing a certain number of columns. A column is
as wide as the number of pins on the memory device’s data bus, and hence only one
bank may drive the data pins at a time. Typically, there are 210 or 211 columns per
row, and about 214–216 rows per column, depending on the capacity of the device
and its data bus width. SDRAMs with 4, 8, 16, and 32-bit data buses exist. The data
bus is bidirectional, i.e. the same pins are used for both reading and writing. Some
SDRAMs are Single Data Rate (SDR), transporting valid data on the rising clock
edges only. However, all memory generations we consider in this book use a Double
Data Rate (DDR), i.e., they transfer one data word (which is as wide as the data bus)
on both the rising and the falling edge of the clock.

1 2402× 106 · 2× 230/8 bytes
2.419 · 106 s . Incidentally, this is only 0.15% less than the traffic flowing into the Ams-

terdam Internet Exchange (AMS-IX) in the samemonth [4] (645772 TB). The (live) construction of
an SDRAM cache of a significant portion the Internet traffic was hence possible, although it might
have been the last month this was feasible, given the growth trend of AMS-IX traffic. The power
footprint of this Internet cache might be problematic though.

http://dx.doi.org/10.1007/978-3-319-32094-6_5

2.1 SDRAM 19

Fig. 2.1 Schematic view on
the architecture of an
SDRAM device with the
dimensions of a 512MiB
DDR3-1600 chip (see
Appendix B)

The name of an SDRAM device starts with its generation name, followed by its
data rate in MHz, so for example DDR3-1600 refers to a DDR3 memory with a
800MHz command clock frequency. In this book, we refer to the generation name
as the SDRAM type. The width of the data bus is often indicated by a postfixed
‘x’ followed by the width in bits, e.g., an LPDDR2-1066x32 has a 32-bit data bus.
The capacity of SDRAM devices is usually expressed in multiples of Mib (220 bits)
or Gib (230 bits), although the ‘i’ is commonly dropped in datasheets. Bandwidths
in this book use SI prefixes. For example, fully reading a 512MiB SDRAM with a
bandwidth of 512MB/s takes about 1.049s (Gi is 7.3% larger than G).

2.1.1 SDRAM Commands

An SDRAM can be instructed to perform certain actions by giving it commands.
There are six main SDRAM commands: (1) Activate (ACT), (2) Read (RD), (3)
Write (WR), (4) Precharge (PRE), (5) Refresh (REF) and (6) No operation (NOP).
The command bus of a DDR3 SDRAM consists of 4 wires: row address strobe
(RAS), column address strobe (CAS), chip select (CS) and write enable (WE). The
combination of these wires forms a (4-bit) command, which is clocked into the
SDRAM. The other generations use a similar interface, although some reuse parts
of the address bus as command wires. The commands work as follows:

• An ACT command opens a row in a bank, and makes it available for subsequent
RD and WR commands by moving its content to the row buffer of the bank. An
activate command is accompanied by the address of the row that should be opened.

• Each RD or WR command results in a burst of data, consisting of a range
of columns from the active row. One burst occupies the data bus for multiple

20 2 Reconfigurable Real-Time Memory Controller Architecture

consecutive cycles. The number of words per RD orWR is called the Burst Length
(BL). Across contemporary memory generations the commonly supported value
for BL is 8 [7–12]. The memory generations we consider all have a DDR, trans-
porting data on both the rising and falling clock edge. Therefore, it takes only BL/2
clock cycles to transfer a burst. A RD or WR command is accompanied by the
address of the first column of the burst, which generally must start at a multiple
of the burst length. Data is available on the data bus after the associated read or
write latency after the RD or WR has been issued. The latencies for RD and WR
commands may be different, but tend to be of the same order of magnitude (see
Table2.1).

• The PRE command closes a row, i.e., it stores the contents of the row buffer in
the memory array, allowing for another row to be subsequently opened. Only one
row per bank can be open at a time. An optional auto-precharge flag can be added
to RD and WR commands, such that the associated row is closed as soon as the
read or write is completed. A RD or WR with auto-precharge can be regarded as a
regular RD or WR, followed by a PRE command from a timing perspective. The
difference is that the precharge does not require the command bus. This frees a
slot in the command schedule, which may be used for other commands.
Another command that precharges banks is called Precharge All (PREA). As the
name suggests, it precharges all banks that are currently open.

• SDRAM is volatile, because the transistor–capacitor pairs it uses to store bits
lose their charge over time. To avoid data loss, the memory must be refreshed
periodically by issuing a REF command. The required refresh command interval
depends on the operating temperature and the memory size, and ranges between
approximately 1 and 10µs [7–12]. In this book, we assume the SDRAM always
works within a fixed temperature range, and that the refresh interval is set to an
appropriate (fixed) value.

• Finally, the NOP command does nothing. It is used to fill the time, e.g., while
waiting for timing constraints (see Sect. 2.1.2) to be resolved. Some standards also
support a deselect (DES) command that behaves similarly to a NOP, while others

Table 2.1 Approximate values of SDRAM timings relative to rc

Timing Related constraint Approximate value

rc ACT-to-ACT, same bank 45–60ns

ras ACT-to-PRE, same bank 70% of rc, 35ns

rcd ACT-to-RD/WR in the same bank 30% of rc, 15ns

rp PRE-to-ACT, same bank 30% of rc, 15ns

rrd ACT-to-ACT, same device 25–30% of rc, 12.5ns

rfc REF-to-ACT, same device 1–5 times rc, depends on capacity

rl, wl or cl RD/WR-to-data 30% of rc, 15ns

faw Four Activate Window 85% of rc (50% for DDR4)

2.1 SDRAM 21

only have DES commands.We do not require a distinction between NOP and DES
commands in this book, and always refer to unused command bus cycles as NOPs.

Four relevant command relate to the entry and exit of various power-downmodes.
They are called Self Refresh Entry (SRE), Self Refresh Exit (SRX), Power-down
Entry (PDE), Power-down Exit (PDX). Section4.3 explains what these commands
do exactly when it introduces the SDRAM power state machine.

The scheduling of PRE and ACT commands is determined by the memory con-
trollers’ page policy. Memory controllers that leave a row open after a request is
completed use an open-page policy, while those that close (precharge) it as soon as
possible use a close-page policy [13]. A request that does not require an activate
command, because the row it accesses is still open, is called a row hit or page hit.
Requests that target a closed row are called row misses or page misses. We return to
discuss page policies in Chap.6.

The relation between the command, address and data bus is shown in Fig. 2.2. In
figures,we often show traces of commands as a series of rectangular blocks, like at the
top of Fig. 2.2 for example. Each block in this series represents a command. A block
may contain a letter representing the command type, and a number, representing the

Fig. 2.2 High-level SDRAM operation. The activation of bank 3 happens in parallel with the read
command to bank 2. Data bursts of different banks are serialized, since the data bus is shared across
banks. The two cycles between A2 and A3 are the result of the ACT-to-ACT timing constraint
(rrd)

http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_6

22 2 Reconfigurable Real-Time Memory Controller Architecture

bank to which the command is directed. We abbreviate ACT, PRE, RD and WR by
A, P, R, and W, respectively, and encode NOPs as empty boxes (Fig. 2.2).

2.1.2 Timings and Timing Constraints

Vendors of SDRAM devices characterize their memory chips by specifying their
timings. Timings define the maximum time between internal operations in the mem-
ory, usually relating to the (analog) propagation delay between distinct components
in the SDRAM. Timing constraints are built as mathematical expressions from these
timings, and they define the minimum time between pairs of commands based on the
state of the memory, which in turn is a consequence of earlier executed commands.
An SDRAM controller has to satisfy all timing constraints to operate correctly. A
detailed explanation of what each timing represents for a specificmemory generation
is found in the standards [7–12]. For the purpose of this book, these details are less
important, since we mostly consider the SDRAM as a black box that we merely have
to use according to its interface specification.AppendixB shows the numerical values
associated with the timings of a range of SDRAM devices, while Chap. 3 provides a
detailed view on the relation between timings and timing constraints. However, we
will sometimes refer to timings before Chap.3 to point out trends, and hence provide
some early intuition on their relative length in Table2.1. All numbers in this table
are approximates, because timings vary across SDRAM devices and generations.

Some constraints only restrict commands for a single bank, like rc, and rcd
for example, while others like rrd and rfc, are device-level constraints. The Four
Activate Window (faw) is different from other constraints. Instead of specifying a
minimumdistance between two commands, it defines a rolling timewindow inwhich
at most four activate commands may be executed. In this book, we typeset timings
in small caps.

2.1.3 Memory Generations

SDRAM technology has evolved over the years. JEDEC creates the standards that
ensure compatibility between devices of the same memory generation from dif-
ferent vendors. We consider six generations in this book. Chronologically ordered
by the date of their introduction, they are: DDR2 [12], DDR3 [8], LPDDR [7],
LPDDR2 [14], LPDDR3 [11], and DDR4 [10]. Newer standards evolve by defin-
ing timings for higher clock frequencies and modifications of the physical interface.
The optional LP-part in a generation name stands for Low Power, and the respec-
tive standards are more suited for power/energy constrained systems, for example,
by operating at a lower supply voltage, or by the introduction of more efficient
low-power modes. LPDDR devices have a maximum of 4 banks, while DDR2s can
have 4 or 8 banks, and DDR4 may have 8 or 16 banks. The remaining generations

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3

2.1 SDRAM 23

always have 8 banks. Occasionally standards are augmented with new features, like
a reduced supply voltage, for example, as in the case of DDR3L [15].

2.1.3.1 DDR4 Bank Groups

DDR4 introduces bank groups: banks are clustered into (at least two) bank groups
per device. Banks in a bank group share power-supply lines. To limit the peak power
per group, sending successive commands to the same group makes certain timings
larger. These timings are postfixed with _l (long) or _s (short) for commands for
the same or a different bank group, respectively. Successive RD or WR commands
to the same group need to be separated by at least ccd_l cycles. Because ccd_l is
larger than the number of cycles per data burst (BL/2), performance is impacted by
ccd_l unless bursts are interleaved across bank groups.

2.1.4 Memory Hierarchies

SDRAM devices can be used as standalone chips, as generally done in embedded
SoCs [16–19] for example (Fig. 2.3). The Interface Width (IW), which we define as
the width of the data bus between the memory controller and the SDRAM, is then
equal to the data bus width of this chip, and typically ranges from 8 up to 32 bits.

Fig. 2.3 Typical memory hierarchy for embedded SoCs and COTS systems

24 2 Reconfigurable Real-Time Memory Controller Architecture

Bigger and wider memories can be built by having multiple chips work in lock-step
in a rank, executing the same commands, producing or consuming data in parallel.
The IW of the controller is then equal to the combined data bus width of all these
chips. The request size divided by IW and BL determines how many data bursts, and
thus RD or WR commands should be generated for a request, with a minimum of
one burst.

Multi-device setups are typically used in Commercial-Off-the-Shelf (COTS) and
high-performance computer systems. Memory chips are not bought individually for
these systems, but instead come pre-combined on Dual Inline Memory Modules
(DIMMs) [20] or Small Outline DIMMs (SO-DIMMs) [21] that contain one or more
ranks with a combined data bus width of 64 bits. Ranks can share a command and
data bus, as long as they do not drive the data bus simultaneously. Finally, a memory
hierarchy may contain multiple independent groups of ranks called channels, each
with an individual SDRAM controller.

In this book, we target embedded SoCs, and hencemost of our examples are based
on relatively narrow interfaces compared to DIMMs. The techniques that we propose
are independent from how the memory hierarchy beneath the SDRAM controller is
built, i.e., both single devices or DIMMmodules can be supported. We do, however,
rely on a custom controller architecture (Sect. 2.2), which by definition places this
work outside of the COTS realm (assuming FPGA development kits are classified as
non-COTS).We also focus on a single SDRAM controller, leavingmultiple channels
out of the equation. The interested reader can refer to [22] for more information on
multi-channel real-time memory controller architectures and configuration.

2.2 Pattern-Based SDRAM Controllers

To create a predictable SDRAM resource, useful bounds on the response time of
memory requests have to be given. The underlying technique by which our memory
controller bounds the response time of a request is the approach from [1], revolving
around memory patterns. A memory pattern is a design-time constructed series of
SDRAM commands with a known execution time (length) and a specific function.

The commands in a pattern are scheduled such that all timing constraints within
the pattern itself are satisfied. Six different patterns types exist: (1) Read, (2) Write,
(3) Read-To-Write switch (RTW), (4) Write-To-Read switch (WTR), (5) Refresh and
(6) Idle patterns. The sequences of patterns that can be executed by the controller
are summarized in Fig. 2.4. The function of each pattern type is the following:

• Read and write patterns are access patterns that transport data from and to the
SDRAM, respectively. Multiple read patterns and multiple write patterns may be
executed successively, indicated by their respective self-edges in Fig. 2.4. In their
construction, that factor has to be taken into account, such that SDRAM timing
constraints within and across these patterns are not violated. Typically, read and
write patterns contain between 1 and 32 bursts (RD or WR commands).
Read and write patterns implement a close-page policy. They activate the banks
they will be accessing, and all banks are precharged at the end of the pattern.

2.2 Pattern-Based SDRAM Controllers 25

Fig. 2.4 Allowed pattern
sequences

• Switching patterns consist of only NOPs. They are inserted between a read and
write pattern to resolve timing constraints across access patterns of opposing types.
If there are no such constraints, or if no additional NOPs are required to satisfy
them, then switching patterns may have a length of zero.

• A refresh pattern consists of a single refresh command preceded and succeeded
by enough NOPs such that it can be scheduled after an access pattern without
violating timing constraints. The switching patterns and the refresh pattern are
called the auxiliary patterns.

• Finally, the idle time of the controller can be discretized explicitly into idle or
power-down patterns [23]. We do not evaluate the use of power-down patterns in
combination with the techniques proposed in this book, and hence we stick to idle
patterns consisting only of NOPs. Idle patterns can be inserted on most edges in
Fig. 2.4 (only not between WTR and read patterns and RTW and write patterns).
Their minimum size is 1 cycle.

There is one pattern of each type available to the memory controller in what is called
a pattern set. The SDRAM controller makes scheduling decisions at the granularity
of patterns instead of individual commands, which simplifies bounding its perfor-
mance. Some close-page real-time controllers use variations of memory patterns in
their architecture [24–27], scheduling patterns from such a set instead of individual
commands. This simplifies the logic of the controller, since there are fewer con-
straints it has to track. Others define patterns only in their worst-case analysis [28,
29], knowing the behavior of their architecture is bounded by them. In both cases,
the analysis complexity is greatly reduced.

2.2.1 Burst Grouping

The smallest request size that a memory controller has to process is often larger
than the size of one read or write burst to a memory device in the embedded SoCs

26 2 Reconfigurable Real-Time Memory Controller Architecture

we focus on. This means that multiple bursts can be grouped together to form a
single atomic access at a larger access granularity. The relative order of bursts within
one such an atom is fixed, which gives it guaranteed properties that improve the
worst-case performance. Intuitively, this effect can be understood as a sort of batch
processing, in which groups of bursts that are relatively similar can be processed
more quickly than those that are relatively different. Most memory controllers try to
achieve some degree of burst grouping. The banks to which these grouped bursts are
sent is determined by the low-level memory map. Depending on this memory map,
grouping bursts can guarantee:

1. Bank parallelism: The atom is interleavedovermultiple banks thatwork in parallel
to produce or consume data. While one bank is precharged or activated, other
banks are accessed with read and write commands.

2. Consecutive bursts access the same row: Multiple bursts are fetched from the
same row in the same bank within an atom, in essence generating guaranteed row
hits, and guaranteeing no read-write switching of the data bus across those bursts.

Timing constraints enforce a minimum amount of time between consecutive activa-
tions of the same bank, and they also separate bursts of different types (read/write).
Atomically grouping bursts helps to reduce the overhead of these two effects, improv-
ing the memory efficiency, since more useful commands are executed in the same
amount of time, as shown in Fig. 2.5.

A trade-off exists between these two effects: requests have a fixed size, and hence
there is only a limited movement range within these two dimensions. The width of
the SDRAM’s data bus also plays an important role here. The wider it is, the more
bits are transferred per burst, and the fewer bursts can be grouped to fill an atom with
a given access granularity. DIMM-based (COTS) systems, which typically have a

(a)

(b)

(c)

Fig. 2.5 Examples of the effects of grouping bursts. Shaded bursts are page misses. It shows how
the number of bursts that can be executed within a fixed amount of time varies based on how they
are grouped. a Using BI 1, BC 1. b BI 1, BC 4. c BI 4, BC 2

2.2 Pattern-Based SDRAM Controllers 27

64-bit bus, are hence more limited in their ability to exploit burst grouping compared
to embedded SoCs that typically use single SDRAM chips with a smaller (8–32 bit)
interface.

We define two parameters to characterize where a controller operates within this
configuration space:

1. Bank Interleaving (BI): the number of banks that are accessed atomically, and
2. Burst Count (BC): the number of bursts per bank.

Using these parameters, we can describe the Access granularity (AG) of a pattern-
based controller, i.e., the number of bytes that are transported within a read or write
pattern. It depends of the number of bursts in the pattern, given by BI · BC, the length
of a burst in words (BL), and the number of bytes per word, which is equal to the
interface width in bytes (IW):

AG = BI · BC · BL · IW (2.1)

The worst-case or average-case behavior of an SDRAM controller’s command
scheduler can be characterized by a (BI, BC) combination, and this in turn determines
its performance. Some real-time memory controllers interleave bursts belonging to
one request over all available banks [25, 28, 29]. Others interleave consecutive bursts
to different banks [24, 26], but the origin of each of these bursts may be a different
request. Controllers using open-page policies generally assume each request maps
to a single burst [30, 31]. Stiliadis and Varma [25] considers the number of bursts
per bank as configuration parameter, but not the number of banks. Chapter 3 turns BI
and BC into an integral part of the generation of patterns for our memory controller,
and Chap.5 shows the configuration trade-offs when both degrees of freedom are
used.

2.3 Controller Architecture

The section describes the architecture template of a pattern-based SDRAM con-
troller. Figure2.6 shows the three main blocks that constitute its architecture. We
make a distinction between the resource front-end, which deals with the preparation
of requests from clients and the arbitration amongst them, and the SDRAM back-
end, which schedules patterns and translates them into SDRAM commands. Finally,
the Physical interface (PHY), deals with the physical connection to the (off-chip)
SDRAM. The following sections introduce the different components within these
blocks, discuss their functionality, and their qualitative impact on the worst-case
performance where relevant.

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_5

28 2 Reconfigurable Real-Time Memory Controller Architecture

Fig. 2.6 SDRAM controller architecture. Arrows indicate the flow direction of data

2.3.1 Resource Front-End

The first block we discuss is the resource front-end. Its primary function is to enable
sharing of the SDRAM amongst multiple clients. It implements and extends the
general template from [32]. First we look at the interface that is exposed to the
memory clients, and we discuss the contents of the front-end.

2.3.1.1 DTL Interfaces per Client

The controller has a Device Transaction Layer (DTL) interface [33] for each mem-
ory client, which is a handshake-based communication standard that is similar to
AXI4 [34]. DTL has individual command, read-data and write-data channels, and
supports multiple outstanding (pending) requests. Each DTL request consists of a
type, which can be either read or write, a size, specifying the number of words to
read or write, and an address. A multi-word request reads or writes its data from/to
consecutive locations in the logical address space. Byte masking is supported for
write-requests only, and addresses have to be byte-aligned. Requests are executed
by the controller in order of arrival on a per-client basis, i.e., requests from the same
client are never reordered, even though the DTL standard theoretically allows this.
DTL interfaces are also used to connect components within the front-end; all white
ports in Fig. 2.6 are DTL ports. The gray ports use non-DTL interfaces that are spe-
cific to the components they connect to. Commands and data passing though a pair
of DTL ports experience a cycle of latency, so each pair represents a pipeline stage
in the controller. Flow control is based on back-pressure by means of valid-accept
flags in the DTL interfaces of the blocks.

2.3 Controller Architecture 29

2.3.1.2 Atomizer

The commands in a pattern are fixed at design time, and the controller hence always
works at the same fixed access granularity, i.e., there is a specific number of bytes
associated with a read or write pattern. When clients send requests into the memory
controller, they are not necessarily of the same size as the access granularity. The
atomizer resolves this inconsistency by splitting incoming requests into atomic ser-
vice units called atoms. Access to the SDRAM is granted to clients by the arbiter
on a per-atom basis. This allows clients to be preempted at the granularity of atoms,
independently of the size of the requests they produce, which is a property we require
to be able to bound the interference from each client without making assumptions
about their behavior [2, 35]. The type of the atoms (read or write) is equal to the
type of the request they are based on, but the amount of data that is associated with
an atom is always equal to the access granularity of the memory controller, which
typically ranges from 16 bytes up to 1 KiB, depending on its configuration. The
atomizer concept was first shown in [32, 36], and we base our implementation on
these works.

To make the atomizer suitable for use with an SDRAM, it enforces the address
alignment of its outgoing requests to atom boundaries, and handles requests with
sizes that are non-integer multiples of the atom size by padding and masking them
where required. The atomizer is pipelined, such that the first stage acts as the input
buffer for the front-end, quickly terminating logic paths leading from the clients into
the controller, and allowing the overall design to run at a higher clock frequency. The
configuration port on the atomizer allows its access granularity to be (re)configured
at run time. The benefits and limitations of reconfiguration are explained in detail in
Chap.7. The atomizer uses the same data width as the client it is connected to.

2.3.1.3 Width Converter

The width converter accepts requests at the data width of the atomizer (generally 32-
bits wide), and converts them to the width the back-end works at, which is typically
larger. In essence, this is a common serial-to-parallel converter. Both the atomizer
and width converter work on a streaming basis, i.e., they contain no data buffers apart
from pipeline registers that break up the critical paths within the blocks. After width
conversion, all clients use the same data width on their DTL interfaces.

2.3.1.4 Atom Queue and Delay Block

The atom queue holds incoming atoms until either all associated data is buffered (for
write atoms), or enough space is available for the response (for read atoms). An atom
is only eligible for scheduling once this buffering requirement is satisfied. Internal
and individual buffering per client is necessary for two reasons

http://dx.doi.org/10.1007/978-3-319-32094-6_7

30 2 Reconfigurable Real-Time Memory Controller Architecture

1. the SDRAM determines when data must be provided to and accepted from it on
consecutive cycles, in accordance with the JEDEC specifications [7–12]. Clients
are not guaranteed (or required) to produce or consume all data for an atom on
consecutive cycles, and data must hence be buffered somewhere internally in the
memory controller to ensure this requirement is always satisfied.

2. Individual queues per client are needed to avoid situations where clients occupy
the shared resource before they are capable of reading/writing a complete atom.
If a shared queue would be used, then a noncooperative (blocking) client could
occupy the queue indefinitely and stall the resource as a result. This would break
the isolation between clients, because preempting (and flushing out) an ongoing
transaction is not supported. Using individual queues, a noncooperative client can
only indefinitely occupy its own queue, which is not disruptive for others.

Delay blocks wrap the atom queues. Each delay block can be configured such that
the data consumption and production behavior of the SDRAM is equal to a specific
Latency-rate (LR) curve [37] from the client’s point of view. It achieves this by
manipulating flow-control signals that govern the acceptance of incoming atoms and
their data, and the time at which responses are released by the atom queue. In essence,
it delays each response to its Worst-Case Response Time (WCRT), as specified by
its LR guarantee. This is a generalization of the Logical Execution Time (LET)
idea [38, 39], which uses a single number to represent the WCRT. Delay blocks
were introduced in [32], and we use the same design here. An introduction on LR
servers is provided later in Sect. 2.4.1.

2.3.1.5 Resource Bus

The resource bus grants one client at a time access to the SDRAM back-end. Arbi-
tration decisions are made by a predictable arbiter (e.g., any arbiter in the class of
latency-rate servers [37]), which schedules one of the eligible atoms from the atom
queues to be processed by the back-end. Each scheduling decision corresponds to a
single atom, allowing for fine-grained interleaving of atoms from different clients.
The resource bus drives the pace at which scheduling decisions are made by request-
ing scheduling decisions from the arbiter. It can be configured to do that strictly
periodically, or on-demand, e.g., when the back-end indicates it is ready to accept
new atoms.

Various predictable arbiters are supported within the associated design flow [40].
One option is a reconfigurable TDM arbiter, described in detail in Chap. 7. Other
available arbiter types are round-robin [41] and Credit-Controlled Static-Priority
(CCSP) [42]. The arbiter type is chosen at design time. Other arbiter settings, like
TDM slot allocations or the priorities in CCSP for example, are configurable at
run-time through the configuration bus. To increase the clock frequency at which
the resource bus can be synthesized, the arbitration between clients takes place in a
separate pipeline stage.

http://dx.doi.org/10.1007/978-3-319-32094-6_7

2.3 Controller Architecture 31

Although the communication interface between the front-end and back-end uses
DTL signals, its flow-control semantics [43] are slightly different compared to the
other ports. Once a request for an atom is handed to the back-end, the front-end
is required to be able to deliver all the associated data for a write atom whenever
the back-end demands it. Similarly, the front-end has to accept data from a read
atom whenever the back-end offers it. Both of these requirements are satisfied by
the eligibility test that the atom queues perform before they forward requests (see
Sect. 2.3.1.4).

To reduce its complexity, Fig. 2.6 only contains two memory clients. However,
up to 16 ports can be instantiated automatically by the associated design flow if
required. Section2.6 evaluates the effect of varying the number of ports on the hard-
ware resource usage.

2.3.2 SDRAM Back-End

The SDRAM back-end receives atoms from the resource bus that consist of a type
(read/write) and a logical address. Its main function is to select patterns from the
pattern memory, and to transfer their commands to the PHY, translating atoms into
command sequences. It has to ensure that the timing constraints between the com-
mands are satisfied by only issuing valid pattern sequences (Fig. 2.4). It accepts one
atom at a time, and based on the type (read or write) and the type of the previously
executed pattern, it executes one or two patterns:

1. A write pattern, if the previously executed pattern was a write, refresh or idle
pattern, and the current atom is a write.

2. A RTW pattern followed by a write pattern, if the previously executed access
pattern was a read, and the current atom is a write.

3. A read pattern, if the previously executed pattern was a read, refresh or idle
pattern, and the current atom is a read.

4. A WTR pattern followed by a read pattern, if the previously executed access
pattern was a write, and the current atom is a read.

Figure2.7 shows a pattern execution example. The time between scheduling deci-
sions, or Scheduling Interval (SI), is variable as a result of this behavior, both across

Fig. 2.7 An example of the order inwhich patternsmay be executed. The shading on the commands
corresponds to bursts of data to different banks

32 2 Reconfigurable Real-Time Memory Controller Architecture

atom types and for atoms of the same type, i.e., a write atom could require a RTW
and write pattern, or only a write pattern, as shown in Fig. 2.7. In the continuation of
book, we use the following terminology for the pattern lengths: tp

r , t
p
w, t

p
wtr and tp

rtw rep-
resent the read, write, write-to-read and read-to-write pattern lengths, respectively.
Additionally, the refresh pattern length is denoted by tp

ref .
In contrast to [25], which uses a hard-coded finite-state machine to implement the

required functionality, we use a flexible reconfigurable back-end, which is shown in
detail in Fig. 2.8. An incoming atom first arrives at the pattern selector. It generates
an index for the pattern Look-Up Table (LUT) based on the atom type (read or write)
and the previously executed pattern type. The index represents the type of pattern that
should be executed (the basic pattern types are mentioned in Sect. 2.2). There may
be more than one pattern set available in the pattern memory. An optional offset can
be added to the pattern index to switch to a different pattern set. Note that this offset
is not selectable per atom, but instead is part of the overall back-end configuration.
It can be used to switch between configurations in different use-cases, as further
explored in Chap.7.

The pattern LUT contains the starting addresses and the number of commands
of all patterns in the pattern memory. Its output is used by the command player to
read commands from the pattern memory. Both the pattern LUT and the pattern
memory are exposed to the resource manager through the configuration bus and are
thus reconfigurable.

The pattern memory is conceptually implemented as a simple SRAM memory,
containing a representation of an SDRAM command and optional bank at every

Fig. 2.8 SDRAM controller back-end

http://dx.doi.org/10.1007/978-3-319-32094-6_7

2.3 Controller Architecture 33

Fig. 2.9 Address generator. Both the shift amounts (s0–s3) and the masks (m0–m3) used by the
and-operators are configurable. (The and-operators and or-operators are bitwise.) The sizes of the
row, column, and bank components correspond to the ML605 memory (Appendix B)

entry. The command player increments the command address every clock cycle, and
triggers a new pattern selection when the current pattern ends, while also converting
the commands into control signals for the PHY. Section2.5 discusses the specific
implementation in our FPGA prototype.

The address generator translates a logical address to the corresponding bank, row
and column (physical) address elements (Fig. 2.9). The command player controls the
address generator such that the correct address is given to the PHY at the right time,
i.e., the row address when activating and the column address during read or write
commands. Auto-precharge flags have to be included in the column address of the
associated read or write command. The bit-position (loc) of this flag depends on the
SDRAM type. Commands in the pattern memory are directed to a specific bank.
The address of that bank is referred to as cmd.bank, and is included into the address
calculation. The address generator has four configurable masks (m0–m3) and shift
amounts (s0–s3) throughwhich the logical to physicalmemory-mapping function can
be selected. When combined with the or-operators, the following physical addresses
are generated:

row = (addr � s0) and m0 (2.2)
column = ((addr � s1) and m1) or ((addr � s2) and m2) or (autoPreFlag � loc) (2.3)

bank = ((addr � s3) and m3) or cmd.bank (2.4)

Each atom only has one logical address. This address is registered (in the reg. block
in Fig. 2.9) and incremented after each read or write command to generate the address
for the next burst (in case the atom consists of more than one burst). Section3.2.5
shows how to configure the address decoder, based on the selected memory map.

The final block to consider is the refresh timer, which is responsible for periodi-
cally inserting refresh patterns into the SDRAM. It consists of a cycle counter with
a configurable threshold value. When the counter reaches the threshold, it resets to
zero and a refresh is scheduled as soon as the currently executing pattern finishes.
Automatic refresh can optionally be disabled to allow manual refresh schemes, as
described in [24, 44] for example, to be used.

http://dx.doi.org/10.1007/978-3-319-32094-6_3

34 2 Reconfigurable Real-Time Memory Controller Architecture

2.3.3 PHY

The PHY handles the physical I/O connections to the SDRAM module. It acts as a
level of abstraction from the circuit-level details of the SDRAM, and offers a generic
interface to the back-end. Several companies create PHY IPs, and specifications like
DFI [45], for example, standardize the interface they expose. A PHY is inherently
specific to the SDRAMgeneration it connects to, although there is often a fair amount
of logic that can be reused across generations [46]. Since the FPGA prototype is
meant for a DDR3 memory, the following description of the PHY functionality is
also DDR3 specific.

Each byte on an SDRAM interface is individually clocked with a strobe signal,
and both the byte lanes and strobe signals are bidirectional, i.e., the same wires
are used for both reading and writing. At initialization, the PHY runs through a
calibration procedure (called read-leveling) to determine the time offset between
these strobe signals and the presence of valid data on the byte lanes when reading
from the memory. Each byte can have a different offset, based on the wire layout
of the PHY and its connection to the SDRAM chips. After calibration, the PHY
can compensate for these offsets appropriately by inserting delays, such that all the
bytes from a single memory word are aggregated and are forwarded to the back-end
synchronously. A similar timing-offset issue exists for data flowing into the SDRAM
(write-leveling), and it is solved in an analogous manner.

The PHY also configures the SDRAM by programming the mode registers in the
device. In this work, we assume that both the calibration and the configuration finish
in a bounded amount of time. Since this initialization process happens only once
(after the SoC comes out of reset), it can be regarded as part of the boot process and
has no further influence on the real-time analysis of the controller, assuming there
are no real-time requirements on the boot time.

The additional delay that the PHY introduces after calibration, on the other hand,
has to be included in the worst-case response time of the memory controller (in
δb
PHY), as we later discuss in Sect. 2.4.2. Since the hardware in the PHY can only
compensate for a limited byte-level offset (in the order of a few cycles), we use this
maximum compensation as a worst-case bound for the contribution of the PHY to
the WCRT.

2.3.4 Reconfiguration Infrastructure

The configuration bus allows various memory-mapped registers to be programmed
by a configuration host. The host does this by sending (DTL) configuration requests
to the reconfigurable components. Requests are generated by the driver code of the
memory controller running on the configuration host.

All components in the front-end can be pre-configuredwith a design-time selected
default configuration after reset, allowing potential early (predictable) access to the

2.3 Controller Architecture 35

back-end while the rest of the system is still booting. The back-end starts out with
an empty pattern memory, and hence needs to be configured before it can be used.
A small ROM containing a minimal back-end configuration can be added in case a
functioning memory controller is required before the configuration host is active in
the system.

2.4 Worst-Case Performance Analysis

This section discusses the worst-case performance analysis of the SDRAM con-
troller architecture that was presented in the previous section. The general structure
we apply is similar to that in [1], and relies on a Latency-rate (LR) server abstrac-
tion (Sect. 2.4.1) of the controller’s behavior. We present a word-level performance
model that shows in detail how (hardware) pipelining impacts the analysis. The two
performance metrics we derive for the memory controller are

1. Worst-case bandwidth (bwc), which specifies how much bandwidth the SDRAM
delivers in the worst-case when connected to our controller (assuming there is
always at least one request to serve). The worst-case bandwidth is distributable
amongst the different ports on the front-end, and

2. WCRT of a request for a client connected to the front-end.

The analysis is split in two parts. First, we look at the performance of the back-end
in Sect. 2.4.2, which we characterize with a LR server. Second, we repeat that effort
for the front-end in Sect. 2.4.3. Finally, we derive the WCRT of the combination of
the back-end and front-end in Sect. 2.4.4 by concatenating their two respective LR
servers.

2.4.1 Latency-Rate Servers

To characterize the (predictable) performance of the memory controller, we rely on
a LR server abstraction [37]. A LR server guarantees a (client specific) minimum
rate, ρ, after a maximum service latency, �, to each of its clients. When the LR
abstraction is applied to amemory controller, the rate (ρ) maps to a certain bandwidth
(bytes/second). The service latency is expressed in a unit of time (seconds or cycles),
and it intuitively captures the initial latency a client experiences before the server
can sustain the guaranteed rate. This linear service guarantee has to (lower) bound
the amount of data that can be transferred during any interval. We proceed with a
brief intuitive introduction of the properties of LR servers.

Figure2.10 plots the service bound as a thick black line, given the example
requested service line (dotted line). A LR guarantee is conditional and only applies
if the client requests enough service to keep the server busy. This is captured by the
concept of busy periods, which are periods where a client requests at least as much

36 2 Reconfigurable Real-Time Memory Controller Architecture

Fig. 2.10 A LR server and its associated concepts

service as it has been allocated on average (ρ). In Fig. 2.10, the client is busy as long
as the requested service line is above the busy line, and hence the start of the first busy
period is marked by the first intersection of the dash-dotted and dotted line (at t = 0).
It ends at the second intersection with the dash-dotted line. The second busy period
starts when the requested service exceeds the busy line again, which is equivalent to
one or more new requests entering the memory controller. After� units of time have
passed since the start of this second busy period, the server once again guarantees
the ρ in the second busy period.

The service bound line is equal to the busy line delayed by �, and hence starts �

after the start of the busy period and increases with rate ρ. The provided service is
always greater than or equal to the service guarantee, since it follows the actual-case
performance, and not the worst-case performance. An example of what the provided
service curve could look like is drawn in Fig. 2.10with the thick gray line. The service
bound is maximal if the client continuously remains busy, i.e., if the client requests
service at a sufficiently high rate (≥ρ).

Note that requests arrive instantaneously, as shown by the discrete jumps in the
requested service line. A read request is considered to instantaneously arrive once the
request arrives in the atom queue and there is space for the corresponding response.
A write arrives when its last data word arrives in the atom queue. The service bound
and busy line are fractional, and therefore shown as continuous curves. The provided
service for a memory controller is discrete at the level of words, bursts, or atoms,
whichever is preferred (in Sect. 2.4, we use a word-level characterization).

2.4.2 Back-End Performance

The back-end performance refers to the performance the SDRAM controller would
deliver if it was not shared amongst multiple clients. We characterize back-end per-
formance with a LR server with parameters (�be, ρbe). The server describes the
behavior of the interface at the dotted line in Fig. 2.11 (annotated with “back-end
performance”).

2.4 Worst-Case Performance Analysis 37

Fig. 2.11 The interface characterized by the back-end performance. The call-outs on the MTL
channels show the relevant groups of wires they consist of

The requested service increases by one atom worth of bytes when the request for
the atom is offered by the front-end to the back-end. For simplicity, we assume that
the back-end runs at the same clock frequency as the SDRAM. It has dedicated read
and write data buses (the PHY later serializes writes and reads onto the bidirectional
SDRAM data bus). Each of these buses is twice as wide as the IW of the SDRAM,
such that the difference in data rate between the controller and SDRAM (SDR vs.
DDR) is compensated for. TheLR server gives guarantees onwhen a specific amount
of data is available from/consumed by the back-end. This amount corresponds to the
sum of the number of handshakes on the read (valid flags) and the write (valid/accept
pairs) data buses.

First, we evaluate the overhead of refresh in Sect. 2.4.2.1. Thenwe focus onworst-
case bandwidth, bwc, in Sect. 2.4.2.2. The worst-case analysis of memory patterns
in terms of bandwidth has been extensively discussed in related work [1, 47, 48].
We apply the same procedure to derive our results as described in those works, but
for convenience and completeness provide a small summary of it in this section.
No assumptions are made on the order in which read and write atoms are given to
the back-end. This decouples the inter-client scheduling from the analysis of the
back-end, simplifying both. Later, in Sect. 2.4.2.3, we determine the value of ρbe and
�be such that the LR server with parameters (�be, ρbe) conservatively bounds the
behavior of the back-end.

38 2 Reconfigurable Real-Time Memory Controller Architecture

2.4.2.1 Refresh

An SDRAM needs to be refreshed once every refi cycles on average (Appendix B).
During a refresh, the SDRAM is unavailable to clients, which impacts the worst-case
performance. Most works [1, 29, 30, 49] assume refresh is triggered asynchronously
with respect to the inter-client scheduling by an internal timer in the controller, and
has precedence over requests from clients. Refresh then impacts both bandwidth and
response time.

The refresh efficiency describes the refresh-related bandwidth reduction when
such a timer-based refresh mechanism is used. It is defined as one minus the fraction
of time spent on refreshing, which for a pattern-based controller is equal to

eref = 1 − tp
ref

refi
(2.5)

where tp
ref is the length of the refresh pattern as defined earlier. The refresh efficiency

ranges from 0.96 to 0.99 for the devices we evaluate in this book, and hence only
a small fraction of all requests is actually affected by a refresh. In related works,
refresh has been incorporated in the worst-case analysis in several ways.

Busy-Period-Level Refresh

Each request might have to wait for a refresh. A conservative request-level WCRT
therefore incorporates at least one refresh pattern. When the worst-case analysis is
based on LR servers, like in [1], then it has to account for at least one refresh at the
start of a busy period, which may span many requests.

Application-Level Refresh

Other approaches, like [29, 30, 49, 50], let go of the notion of a conservative request-
level WCRT, and instead derive an application-level bound. First, the Worst-Case
Execution Time (WCET) of an application interacting with the SDRAM is deter-
mined, without accounting for refresh. Based on this, the maximum number of inter-
fering refreshes is found by dividing this number by refi. A cost is assigned to each
of these refreshes, and added to the application’s WCET. This can lead to smaller
application-level WCET bounds compared to [1], as shown in [50], which also does
this.

Manual Refresh

Finally, there is an approach thatwe refer to asmanual refresh [24, 26, 44].Activating
and precharging a row effectively refreshes it, so data is retained as long as each row
is visited at regular intervals. Controllers that use manual refresh do not have an
internal timer, but instead have a refresh client that cycles over all rows, activating
and precharging them.

When manual refresh is used, eref can be set to 1. The cost of refresh is instead
taken into account when bandwidth is set aside for the refresh client in the front-end.
Manual refresh is less efficient [44, 51] than the (built-in) REF command, because

2.4 Worst-Case Performance Analysis 39

it refreshes fewer rows per cycle, and hence the fraction of the available bandwidth
that needs to be reserved for the refresh client is larger than 1 − eref . However, the
number of consecutive cycles for which the SDRAM is unavailable during a manual
refresh can be smaller, which generally reduces the WCRT of a single request.

For the remainder of this book, we ignore refresh at the level of busy periods,
and assume it is taken into account at a later (application-level) stage, as is done
in [29, 30, 49, 50]. Akesson and Goossens [1] shows how to include refresh at the
busy-period level for a pattern-based controller for the interested reader.

2.4.2.2 Calculating Worst-Case Bandwidth

Theworst-case bandwidth delivered by a pattern set is a function of its pattern lengths,
the clock frequency, the amount of data that is transported per read/write pattern (the
access granularity, AG), and the refresh period.

The worst-case bandwidth (bwc) is a lower bound on the average amount of bytes
transported across the data bus per unit of time. This bound is valid during a busy
period, for every interval starting �be after the start of that busy period. To find bwc,
we need to identify the pattern sequence allowed by the pattern state machine that has
the lowest average data transfer rate (excluding sequences that include idle patterns).
This could imply continuously reading or writing, transportingAG bytes per pattern,
or constantly switching between reads and writes, transporting 2 · AG bytes per pair
of read and write patterns. Note that in the latter case switching patterns are required,
reducing the efficiency. All these pattern sequences are periodically interrupted by
refreshes, and hence we multiply with the refresh efficiency

(
eref

)
(see Sect. 2.4.2.1

for its definition). Finally, multiplying with the command clock frequency f to obtain
a bytes/seconds metric, leads to the following worst-case bandwidth equation:

bwc = eref · AG · min

(
1

tp
r
,
1

tp
w
,

2

tp
w + tp

r + tp
wtr + tp

rtw

)
· f (2.6)

The peak bandwidth (bpeak) that an SDRAMwould theoretically deliver if its data
bus was fully utilized is obtained by multiplying the data clock frequency by the
interface width in bytes (IW). The data clock frequency is 2 · f for double data rate
memories

bpeak = 2 · f · IW (2.7)

The ratio of the worst-case bandwidth and the peak bandwidth is referred to as
the memory efficiency (e) of a pattern set

e = bwc

bpeak
(2.8)

40 2 Reconfigurable Real-Time Memory Controller Architecture

The memory efficiency shows how well a certain pattern set performs with respect
to the theoretical maximum bandwidth of a memory device.

2.4.2.3 Calculating Back-End Service Latency

The back-end service latency (�be) has to be chosen such that bwc bounds the band-
width after this latency has passed since the start of each busy period.Wefirst consider
the scenario in which the largest amount of time passes between the request for an
atom (requested service) by the front-end and the associated data handshakes (pro-
vided service), since �be necessarily has to include this time. Figure2.12 shows the
relation between the variables we introduce, and the events they relate to.

First, we account for the latency related to pipeline stages in the hardware, both
in the back-end and the PHY. We use the symbol δ to represent these latencies.

1. δ
f
be on the request (forward) path: cycles that a request for an atom spends in
pipeline stages in the back-end, before the back-end begins to issue commands
to the PHY. We assume write data words traversing the back-end experience the
same latency.

(a)

(b)

Fig. 2.12 Latency experienced by a read or write atom arriving at an idle back-end at the start of
a busy period. a Read atom. b Write atom

2.4 Worst-Case Performance Analysis 41

2. δ
f
PHY on the request path: cycles that a command or write data word spends in
pipeline stages in the PHY before it is issued to the SDRAM.

3. δb
PHY on the response (backward) path: cycles that a read data word spends in
pipeline stages in the PHY before it emerges on its interface to the back-end.

4. δb
be on the response path: cycles that a read data word spends in pipeline stages in
the back-end before it emerges on the back-end interface.

We combine the pipeline latencies on the forward and backward paths into a single
variable, sincewe do not require them individually in the continuation of the analysis:

δf = δ
f
be + δ

f
PHY (2.9)

δb = δb
be + δb

PHY (2.10)

To account for the time between the start of a pattern and the actual transfer of
data on the SDRAM data bus, we use the symbol �.

1. �r is the number of cycles between the first command of a read pattern entering
the SDRAM, and the emergence of the first word of read data on the SDRAMdata
bus. It is the sum of the relative cycle of the first RD command in the read pattern
with respect to the start of that pattern, and the RD-to-data latency (usually rl)
of the SDRAM.

2. �w is the number of cycles between the first command of a write pattern entering
the SDRAM, and the transfer of the first word of write data by the SDRAM data
bus. It is the sum of the relative cycle of the firstWR command in the write pattern
with respect to the start of that pattern, and the WR-to-data latency (usually wl)
of the SDRAM. Relative to this number, write data handshakes on the back-end
interface happen δf cycles earlier, under the assumption that commands and data
are equally deeply pipelined.

Both for �r and �w we assume that all data associated with a pattern exits/enters
the SDRAM on consecutive cycles.2

We define �′
r and �′

w as the offset from the start of the pattern (first command
enters the SDRAM) until data handshakes happen on the back-end interface. For
reads, this happens later than �r , since they generate data on the response path,
while for writes it happens earlier than �w on the request path

�′
r = �r + δb (2.11)

�′
w = �w − δf (2.12)

Now,we can describe the number of cycles after which service starts for a read or
write atom arriving at the start of a busy period as θr and θw, respectively

2If this is not the case, i.e., when there are bubbles in the transfer, compensation is required. The
number of additional idle cycles should then be added to �r and �w.

42 2 Reconfigurable Real-Time Memory Controller Architecture

θr = δf + tp
wtr + �′

r = tp
wtr + �r + δf + δb (2.13)

θw = δf + tp
rtw + �′

w = tp
rtw + �w (2.14)

Analogously to Eq. (2.6), we have to conservatively cover three scenarioswhenwe
determine (�be, ρbe): continuously reading, writing, or switching between reads and
writes. These three scenarios are illustrated in Figs. 2.13, 2.14 and 2.15, respectively.
The figures consist of two parts. The bottom half is a gantt chart of the activity in
various parts of the controller. When a request for an atom is offered to the back-
end by the front-end, a block is drawn on the atom in line. The commands that the
PHY issues to the SDRAM are drawn as blocks on the SDRAM command bus line,
and the corresponding pattern is drawn above it on the pattern line. Read and write
commands result in data transfers on the SDRAM data bus after a certain latency.
The blocks on the SDRAM data bus line, represent one word of data on this bus. Note
that two words can be transferred per clock cycle for a DDR memory, and hence the
blocks on the SDRAM data bus line are half as wide as on the command bus. We
assume the rate difference is compensated for by the double width of the back-end
data buses, as mentioned earlier. Finally, the back-end (read/write) lines represent
handshakes on the data buses that the back-end exposes to the front-end. Each block
on these buses corresponds to a 1 word increase of the provided service curve on the
top half of the figures. Based on ρbe in each scenario, the requested service curve
and busy line are drawn. Each increase of the requested service corresponds to the
arrival of an atom (an atom is worth 4 words in this example). Atoms arrive as late
as possible within a busy period, which leads to the minimum provided service.

Fig. 2.13 Worst-case back-end behavior for continuous reads. In this (fictional) example, we
used: tp

r = 6, tp
w = 8, tp

rtw = 3, tp
wtr = 1,�r = 3,�w = 2, δf = 5, δb = 3, and each atom is worth

4 words. To simplify the drawing, we assume eref = 1

2.4 Worst-Case Performance Analysis 43

Fig. 2.14 Worst-case back-end behavior for continuous writes, using the same parameters as
Fig. 2.13

Fig. 2.15 Worst-case back-end behavior for interleaved read/write atoms, using the same parame-
ters as Fig. 2.13

In one of these three scenarios (the worst-case, Fig. 2.15 for the particular set of
parameters we used to draw the figures), ρbe is equal to bwc. Which scenario this is,
depends on the length of the patterns. We want to make no assumptions on the order
of reads and writes, and hence select:

44 2 Reconfigurable Real-Time Memory Controller Architecture

ρbe = bwc (2.15)

In this scenario, the worst-case distance between the “atom in” blocks in Figs. 2.13,
2.14 and 2.15, the Worst-Case Inter-Atom Time (WCIAT), is given by

WCIAT = max

(
tp
r , tp

w,
1

2
· (

tp
w + tp

r + tp
wtr + tp

rtw

)
)

(2.16)

It is proportional to the slope of the busy line, and shows at what intervals the
requested service line has to increase to remain within a busy period.

The number of commands that are executed forone specific atomcanbe larger than
WCIAT. For example, if the first argument of the max-term in Eq. (2.16) dominates,
then an atom that triggers a switch fromwriting to reading takes tp

wtr + tp
r ≥ tp

r cycles.
WCIAT is the average time the back-end spends per atom when serving a worst-case
sequence of atoms. Equation (2.6), which calculates bwc, uses the same duration.
We call the maximum time between two atom scheduling decisions the Worst-Case
Scheduling Interval (WCSI):

WCSI = max
(
tp
rtw + tp

w, tp
wtr + tp

r

)
(2.17)

When WCSI > WCIAT, the back-end can alternate between generating one atom
worth of service quicker than and slower than WCIAT, respectively. This behavior
is drawn in Fig. 2.16 as the atoms completed line. The graph starts at max(θr, θw),
i.e., at the time where we know the provided service starts to increase when serving
only read or write atoms. If read and write atoms are mixed, we must ensure that

Fig. 2.16 Demonstration of latency compensation for WCSI, using the same parameters as
Fig. 2.13. The compensated service bound is conservative in cycles 30 and 31, while the uncom-
pensated service bound is not. Note that the x-axis starts at max(θr, θw)

2.4 Worst-Case Performance Analysis 45

the time required for each possible pair of atoms is conservatively bounded by the
(average) WCIAT. To achieve this, we addWCSI − WCIAT to �be. This effectively
shifts the start of the rate phase of the server forward in time to make the service
guarantee conservative. This amount of time can be seen in Fig. 2.16 as the 2-cycle
difference between the compensated service bound and the uncompensated service
bound. The figure also shows that a bound based on atoms that always take WCSI
cycles is overly pessimistic if WCSI > WCIAT. Finally, the expression for �be is
equal to:

�be = WCSI − WCIAT + max(θr, θw) (2.18)

2.4.3 Front-End Performance

Clients observe a certain performance from the memory controller through the port
bywhich they are connected to it. The arbiter in the front-end regulates which clients’
atom is processed by the back-end. Each client has an abstract allocation within the
arbiter that for most intents and purposes can be seen as a specific fraction of the
total shared resource time. We assume that the allocation of client c in the arbiter
can be described with two new LR parameters,

(
�c

arb, ρ
c
arb

)
. These parameters are

normalized, such that ρc
arb represents the fraction of the total server bandwidth that

a client receives after it has waited for �c
arb scheduling slots. Because the arbiter

schedules atoms, each scheduling slot represents an atom-sized access.
We always assume a predictable arbiter is used within the memory controller, like

TDM, round-robin [41] or CCSP [42]. [37] shows how to derive the LR parameters
for various popular arbiter types, [42] focuses on CCSP, and [52, 53] extensively
discuss TDM arbiters in the context of LR servers. For the purpose of this book, we
only need to look at the details for TDM arbiters, which is done later in Sect. 7.4.1.
All these arbiters guarantee that the allocated fraction of back-end performance is
always visible and usable by clients, even during worst-case interference from other
clients. The guarantees that our controller gives to a client are (solely) based on
this (guaranteed) fraction of the back-end performance (budget), which is hence not
dependent on the behavior of other clients. This implies that the memory controller
offers predictable performance to a client.

Fig. 2.17 The LR server
describing the memory
controller’s performance is
the concatenation of the
front-end server and the
back-end server

http://dx.doi.org/10.1007/978-3-319-32094-6_7

46 2 Reconfigurable Real-Time Memory Controller Architecture

We characterized the front-end for client c as another LR server with parameters(
�c

fe, ρ
c
fe

)
. ρc

fe represents the bandwidth that is allocated to the client.

ρc
fe = ρc

arb · ρbe | 0 < ρc
arb ≤ 1 (2.19)

Intuitively, we can see that if ρc
arb = 1, the client has the full back-end at its disposal.

Finally, we de-normalize �c
fe such that it is expressed in clock cycles instead of

scheduling slots. We do this by multiplying with the duration of such a slot in the
back-end. We can use WCIAT for this, since the back-end LR server is guaranteed
to process at least one atom per WCIAT once �be has passed. Additional pipeline
stages in the front-end, on the forward and backward path, are represented by δfe:

�c
fe = ⌈

�c
arb

⌉ · WCIAT + δfe (2.20)

2.4.4 Worst-Case Response Times

A client uses the concatenation of its front-end server and the back-end server. When
two LR servers are concatenated, a single server equivalent has a latency equal to
the sum of latencies of the individual servers, and the minimum of their rates [37].
We use

(
�c

ctrl, ρ
c
ctrl

)
to represent the combined server (Fig. 2.17)

�c
ctrl = �c

fe + �be (2.21)

ρc
ctrl = min

(
ρc

fe, ρbe
) = ρc

fe (2.22)

The WCRT of a request is defined as the maximum time difference between the
arrival of the request in the controller and the departure of the response. Intuitively,
the WCRT of a request can be read directly from the LR curve for the client, as the
difference between the time at which the request arrives (i.e., where the requested
service increases with one request worth of service), and the time at which the service
bound reaches the same vertical height (see Fig. 2.15 for example). LR guarantees
are dependent on the client’s (prior) behavior (the number of outstanding requests,
and when they arrived), and because of that, the WCRT cannot be described as a
single simple number, contrary to what we did earlier with the worst-case bandwidth.
Instead, each requests may have its own WCRT.

The LR server that describes a client’s memory performance can be included
as a component in a larger analysis model to validate the client’s requirements. A
general outline of this process can for example be found in [2, 54], which use the
dataflow [55] model of computation for this purpose. In this context, it is not useful
or required to define a single WCRT that is valid for all requests.

2.4 Worst-Case Performance Analysis 47

Introducing additional assumptions can take the client’s behavior out of the equa-
tion if this is really desired. Arguably, the most conservative option is to assume that
each request starts a new busy period, for example, but this potentially introduces
a large amount of undesirable pessimism into the performance analysis. In general,
the WCRT of a number of outstanding requests with a total size s for client c is equal
to:

WCRT(s) = �c
ctrl + s

ρc
ctrl

(2.23)

The remaining contributions of this book directly impact the back-endLR server,
but have little impact on the front-end server, since only δfe increases slightly due
to the addition of a few extra pipeline stages, as explained in Sect. 2.3.1. Hence,
we focus on the quantification of the back-end performance in Chap.5, leaving the
front-end (mostly) out the equation.

2.5 CompSOC Controller Instance

The proposed controller has been integrated into the CompSOC flow [40] in two
different forms:

1. Transaction-level SystemC. This implementation is flexible in terms of the mod-
eled SDRAM generation. The PHY is not included in this model.

2. Synthesizable VHSIC Hardware Description Language (VHDL), targeted at
DDR3 devices on theML605 [56] FPGA development board. A fully functioning
PHY is included in the controller design, and hence both simulation with a VHDL
simulator such as Modelsim, and actual runs on the FPGA hardware are enabled.

The SystemC model is aimed at prototyping controller features, and verification
of its functional correctness. It can produce cycle-level accurate SDRAM command
traces, which can for example be used to check for timing constraint violations,
and/or power estimation through external tools, like DRAMPower [57] for example.
Simulating the model offers superior visibility on the internal state of the controller
compared to FPGA-based experiments, but is unfortunately 3–4 orders of magnitude
slower.

The VHDL version of the controller for the ML605 board is called Raptor.3 This
board contains a Virtex 6 FPGA (XC6VLX240T) from Xilinx, which is connected
to a DDR3 SO-DIMM slot. The PHY of Raptor is generated by the Xilinx Memory
Interface Generator (MIG) 3.6 tool [59], and uses an interface that closely resembles
the DFI 2.1 standard [45].

3Raptor is a forced acronym for reconfigurable and predictable open-page controller, and also
short for Velociraptor, a genus of dinosaurs, and a type of Predator [58].

http://dx.doi.org/10.1007/978-3-319-32094-6_5

48 2 Reconfigurable Real-Time Memory Controller Architecture

A small LUT in the pattern player converts the commands from the pattern mem-
ory into a 6-bit control field and a 3-bit bank field. The control field contains values
for the standard RAS, CAS, CS and WE signals, and the value for the 10th address
bit in the physical address, which is the auto-precharge flag location for DDR3 (as
used earlier in Fig. 2.9). The final bit is reserved for a strobe signal that is specific
to the used PHY (and not part of the DFI standard), and selects the desired data bus
(read/write) direction. The 3-bit bank field specifies the bank for which the command
is meant. The pattern memory is implemented using Block RAM (BRAM) resources
on the FPGA.

The back-end of the controller runs at half the frequency of the SDRAMcommand
clock, and sends two commands (and four data words) per clock cycle into the
PHY to compensate for this difference. This degree of parallelism is needed because
the FPGA fabric is relatively slow compared to the SDRAM device, which makes
designing a controller thatworks at the native command rate infeasible [60]. ThePHY
eventually serializes the commands and data before sending them to the SDRAM.
Note that this is common practice, and both the DFI standard and commercially
available controllers [61] may provide this operating mode as an option.

The SDRAM slot of an ML605 by default contains a 512 MiB DDR3-1066
device [62] (speed grade 1G1), capable of running at a 533MHz command clock,
although later versions have started shipping with larger and slightly faster devices.
Figure2.18 shows how this memory is typically used. The SDRAM is under-clocked
to run at 400MHz to match it up to the attainable controller frequencies on the
FPGA, effectively turning it into a DDR3-800 with the controller back-end run-
ning at 200MHz. The full data bus width of the DIMM is 64 bits, but a user of
the CompSOC flow has the option to synthesize a controller with a 32-bit interface
(connecting only half of the data pins) to save synthesis time or to emulate memories
with a smaller interface, at the cost of making only half the memory accessible.

Fig. 2.18 Typical clock frequencies and data bus widths for Raptor

2.6 Evaluation 49

2.6 Evaluation

The goal of this section is to show that the VHDL implementation of our real-time
memory controller is not prohibitively expensive in terms of hardware usage, and to
give the reader a feeling for its relative size. Section2.6.1 explains how the experi-
ment was setup and why this specific setup was chosen, while Sect. 2.6.2 discusses
the results.

2.6.1 Synthesis Setup

The demonstrated concepts in Raptor are technology agnostic, but its prototype
implementation is bound to FPGA: the PHY is FPGA specific, and hence can-
not straight-forwardly be synthesized to an Application-Specific Integrated Circuit
(ASIC). Furthermore, the back-end generates two commands in parallel due to speed
restrictions of the FPGA fabric. An ASIC implementation would be significantly
different, primarily in terms of the high-speed I/O implementation of the PHY. Com-
parisons with ASIC implementations would hence have to based on the front-end
and/or back-end only, but that still leaves the 2-to-1 command ratio as a significant
difference. Although there are works which describe combinations of back-ends and
PHYs on ASIC [46, 63], they provide insufficient information to clearly separate
the contribution of the two components, and lack details on the controller imple-
mentation. Hence, a comparison with the back-end of these works would be hard to
interpret, and at most of limited use.

The authors of [30] provide a verilog implementation of their controller front-end
and back-end, and also have an FPGA as synthesis target. However, this controller
has only been tested in simulation and lacks an FPGA PHY, the addition of which we
expect impacts the back-end design in a similar way as that of Raptor (i.e., requiring
a lower clock frequency and a parallel generation of multiple commands per cycle).
Since the authors furthermore indicate that improvement of and further elaboration
on the implementation is part of future work, we will not attempt to compare to it in
its current state. An FPGA implementation of the controller from [64] is available,
but it uses a relatively low-frequency SDR SDRAM. The hardware requirements on
such a controller are so different from ours that a comparison is not useful.

An appropriate comparison that we can actually make involves the Multi-Port
Memory Controller (MPMC) controller [65] fromXilinx. TheMPMC iswidely used,
because it is the default SDRAM controller for Virtex 6 FPGAs and relatively easy
to instantiate from the Xilinx tools. Its PHY is similar in structure to that of Raptor,
uses the same I/O resources, and targets the same memory generation (DDR3). Both
controllers generate two commands per (back-end) cycle. This allows us to focus
the comparison on the main contributions of Raptor, which are the reconfigurable
back-end and front-end. The number of basic FPGA resources (registers and LUTs)
consumed by each design is used as the metric for comparison. Version 13.3 of the

50 2 Reconfigurable Real-Time Memory Controller Architecture

Xilinx tools are used, and unless mentioned otherwise, we use the default settings
provided by the Base System Builder wizard of the XPS tool to create the MPMC-
based controllers. The MPMC version is v6.05.a.

The MPMC by default uses BRAMs to implement its equivalent of the atom
queues. This has advantages in terms of timings, since they are essentially dedicated
SRAMs on the FPGA fabric, but it also over-allocates the queues in terms of capacity,
because the minimal size of a BRAM block is 4 KiB. Alternatively, the MPMC can
be configured to use a Shift-Register Lookup (SRL) buffer implementation, which
also maps efficiently to FPGA resources, but is available at smaller granularities.
We select this configuration and set the atom queues in the Raptor front-end to the
same size as the default MPMC SRL size, which is 512B per read or write queue per
port. Raptor’s atom queues also map to SRL resources on the FPGA, which hence
leads to comparable results in terms of size. Note that for Raptor, this queue size is
configurable at design time, and does not necessarily have to be 512B.

The MPMC and Raptor use different protocols for communicating with their
clients: MPMC provides several protocol sockets, while Raptor uses DTL.We select
Processor Local Bus (PLB) as the socket for the MPMC front-end, since it is similar
to DTL in terms of wiring signature (AXI4 would be a more obvious choice, but
is not available). We use a 32-bit SDRAM bus for both controllers (leaving half of
the DIMM unconnected). The Raptor instances use a reconfigurable TDM arbiter,
configured to have the same number of table slots as there are ports on the front-end.
TheMPMCuses a round-robin arbiter.We limit the fan-out of Raptor’s configuration
bus (Fig. 2.6) to 16 ports, and instantiatemultiple buses ifmore than 16 reconfigurable
components (more than 7 clients) are present.

2.6.2 Synthesis Results

Figure2.19 shows the resource usage of theMPMCandRaptorwith a varying number
of front-end ports (eight is the maximum number of supported ports on the MPMC).
Note that these numbers are indicative only, since place and route has not been done
yet at this stage, and hence the wiring cost is not visible yet. The performance (clock
frequency) after routing will vary based on the success of the mapping and routing
heuristics, which is highly dependent on the other hardware which is placed on the
same FPGA.

The figure shows that the LUT and register usage of Raptor and the MPMC are
of the same order of magnitude, although Raptor consistently uses more resources:
the MPMC uses 1305 registers and 930 LUTs per additional port on average, versus
1882 registers and 2304 LUTs per port for Raptor. The difference in size can mainly
be attributed to:

2.6 Evaluation 51

Fig. 2.19 Resource usage of Raptor versus MPMC using 512 byte read/write queues (1024 bytes
in total) per port

• The modularity of the design: each DTL port incurs a handshaked-pipeline stage
with double buffering for the command and data lines. This modularity allows the
blocks in the front-end to be easily reused and individually instantiated as needed,
at the cost of more hardware at their interfaces.

• The MPMC is tailored for the Virtex 6, often spelling out the exact mapping to
basic FPGA resources, leaving very little to the imagination of the synthesis tool.
This improves the maximum clock frequency and lowers the resource usage, but
complicates portability to a different FPGA. Raptor is written at a slightly higher
level of abstraction, and has not been extensively optimized for size.4

• The MPMC is synthesized as a single unit, while Raptor is separated in two, the
first one containing the front-end, and the second containing the back-end and
PHY. This means that the synthesis tool has more knowledge to exploit when it
eliminates constants and unused hardware for the MPMC. Global optimization
across blocks happens after the point where the numbers in Fig. 2.19 are extracted,
and its results are hence not incorporated in the data set.

• Raptor can generate anySDRAMcommand at any cycle, while theMPMCrestricts
activates and precharges to even-cycles, and read and write commands to odd-
cycles. This constraint has a slight performance implication in terms of bandwidth
and response time.

4Compared to earlier publications on the approximate size of the controller [66], we did however
reduce the resource usage of all FIFOs significantly by modifying their implementation such that
they map to SRL and LUTRAM resources instead of individual registers. Hence, a 4-port controller
with 512 bytes per queue now uses 88% fewer registers in Fig. 2.19 than a version with 256 bytes
per queue in [66].

52 2 Reconfigurable Real-Time Memory Controller Architecture

(a) (b)

Fig. 2.20 Front-end LUT and register usage break-down per port. 100% = 1915 registers,
2837 LUTs. a Registers. b LUTs

• The reconfiguration infrastructure and delay block functionality that exists in Rap-
tor is not available in the MPMC.

For a single-port controller, the front-end/back-end ratio is 0.48 for registers and 0.60
for LUTs, i.e., the back-end is bigger, while for an 8-port controller this shifts to 3.7
and 4.5, respectively, with the front-end dominating the resource usage.

Figure2.20 shows a break-down of the resource usage in the front-end, obtained
by individually synthesizing its components. Buses are dimensioned for eight front-
end ports, and their size is divided by eight as an approximation of the contribution
of each port. Since splitting the front-end into multiple synthesis units reduces the
global optimization opportunities as mentioned earlier, the total number of registers
and LUTs accounted for by the sum of the components is, respectively, 1.8% and
23% higher than the costs per port estimated based on Fig. 2.19. This underlines the
importance of these optimizations, and should serve as awarning that the break-down
is approximate only.

Figure2.20a shows that the resource bus uses the most registers, at least relatively.
It contains a set of pipeline registers as wide as its total fan-in (i.e., for each port),
implemented as registers. The atom queues store significantly more bits, but use
LUTs to do this, which is more efficient.5 Hence, the proportional register usage
of the resource bus and the delay block might at first glance look unintuitive. The
atomizers use a relatively large amount registers because they also contain the input-
buffers for the front-end. For similar reasons, they use relatively more LUTs than the
other components, as shown in Fig. 2.20b. The delay block spends approximately
half of its LUTs on the atom queues, while the resource bus uses practically all of
them to implement the required multiplexing logic.

532 bits can be stored in a single LUT (although only one of those 32 bits can be read/written at a
time), versus 1 bit per register.

2.6 Evaluation 53

Raptor and MPMC have different design goals: the first one provides real-time
guarantees and isolation per client, while the second does not. MPMC is built to
sustain a high average-case throughput and was optimized for size, while this is
not the main focus of the Raptor prototype. It is hence not possible to connect hard
conclusions to a size comparison of the two solutions, since they have different prop-
erties and applications areas. We observe that Raptor is consistently larger (2.2 and
1.3 times the size of the MPMC in LUTs and registers, respectively, according to
Fig. 2.19). However, keeping in mind that Raptor is still the prototype stage, the
results indicate that the cost of the extra functionality that Raptor offers appear to
be manageable.

2.7 Conclusion

This chapter introduced the architecture template of a real-time memory controller.
Themain novel feature is its reconfigurability,which is expressed in twoways. Firstly,
the components in the front-end are reconfigurable, allowing the performance that is
provided to each port to be changed at run-time by modifying its front-end settings,
i.e., budgets in the arbiter and delay block settings. Secondly, the back-end contains
a pattern memory that holds the SDRAM commands the controller issues to the
memory. The contents of the pattern memory can be changed at run-time to modify
the properties of the scheduling algorithm implemented by the patterns. The appli-
cation, properties and limitations of the available reconfiguration mechanisms will
be discussed further in Chap. 7, while Chap.3 elaborates on the possible configura-
tions of the scheduling algorithm used to create the memory patterns that are stored
in the back-end. Furthermore, we have shown how the worst-case performance of
our SDRAM controller can be characterized in terms of worst-case bandwidth and
WCRT. We apply this analysis later in Chap. 5 to compare the worst-case perfor-
mance of different contemporary memory devices.

The Raptor instance of this controller template has been implemented and cus-
tomized for use on an FPGA, and is a part of the CompSOC platform. The complete
integration all the way down to the PHY level shows the controller successfully com-
municates with real SDRAM devices, and allowed for a resource usage comparison
with the MPMC controller from Xilinx. This proved that our controller template can
provide real-time capabilities at competitive costs, which has significant added value
for mixed time-criticality systems. Additionally, Raptor has been used on a daily
basis both in lab-based courses [67] and as a research vehicle [2, 68] for several
years now, and has shown to be a stable and versatile component for these purposes.

http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_5

54 2 Reconfigurable Real-Time Memory Controller Architecture

References

1. Akesson B, Goossens K (2011) Memory controllers for real-time embedded systems. Embed-
ded systems series. Springer, New York

2. Goossens K, Azevedo A, Chandrasekar K, Gomony MD, Goossens S, Koedam M, Li Y, Mir-
zoyan D, Molnos A, Nejad AB, Nelson A, Sinha S (2013) Virtual execution platforms for
mixed-time-criticality systems: the CompSOC architecture and design flow. SIGBED Rev
10(3):23–34

3. DRAMExchange (2015) Monthly worldwide DRAM output in 2015. http://www.
dramexchange.com/Market/Market_Activity. Online; Accessed 15 Oct 2015

4. Amsterdam internet exchange (2015) Historical monthly traffic volume. https://ams-ix.net/
technical/statistics/historical-traffic-data?year=2015. Online; Accessed 15 Oct 2015

5. Dennard RH (1968) Field-effect transistor memory. US Patent 3,387,286
6. Jacob B, Ng S, Wang D (2007) Memory systems: cache, DRAM, disk. Morgan Kaufmann Pub
7. JEDEC (2009) Low power double data rate specification JESD209B
8. JEDEC (2010) DDR3 SDRAM specification JESD79-3E
9. JEDEC (2010) Low power double data rate 2 specification JESD209-2D
10. JEDEC (2012) DDR4 SDRAM specification JESD79-4
11. JEDEC (2013) Low power double data rate 3 specification JESD209-3B
12. JEDEC (2009) DDR2 SDRAM specification JESD79-2F
13. Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory access scheduling. In:

International symposium on computer architecture (ISCA), pp 128–138
14. Mobile LPDDR2 SDRAM (2010) 2gb_mobile_lpddr2_s4_g69a.pdf - Rev. N 3/12 EN. Micron
15. DDR3L SDRAM (2011) 4Gb_DDR3L.pdf - Rev. I 9/13 EN. Micron
16. Kollig P, Osborne C, Henriksson T (2009) Heterogeneous multi-core platform for consumer

multimedia applications. In: Design, automation and test in Europe conference and exhibition
(DATE), pp 1254–1259

17. RM57L843 16- and 32-Bit RISC Flash Microcontroller (2014). Texas Instruments Inc
18. van der Wolf P, Geuzebroek J (2011) SOC infrastructures for predictable system integration.

In: Design, automation and test in Europe conference and exhibition (DATE), pp 1–6
19. Snapdragon 800 (2015) Snapdragon 800 processor specs. https://www.qualcomm.com/

products/snapdragon/processors/800. Online; Accessed 30 Mar 2015
20. JEDEC (2014) 240 pin DDR3 DIMM, 1.00mm pitch MO-269J
21. JEDEC (2014) DDR3 unbuffered SODIMM reference design specification 4.20.18, revision

2.8, release 24
22. GomonyMD, Akesson B, Goossens K (2015) A real-timemultichannel memory controller and

optimal mapping of memory clients to memory channels. ACM Trans Embed Comput Syst
14(2):25:1–25:27

23. Chandrasekar K, Akesson B, Goossens K (2012) Run-time power-down strategies for real-time
SDRAM memory controllers. In: Design automation conference (DAC), pp 988–993

24. Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization
for predictability and temporal isolation. In: Proceedings of CODES+ISSS, pp 99–108

25. Akesson B, Goossens K (2011) Architectures and modeling of predictable memory controllers
for improved system integration. In: Design, automation and test in Europe conference and
exhibition (DATE), pp 1–6

26. Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank
privatization and fixed priority scheduling. In: Embedded and real-time computing system and
application (RTCSA)

27. Hassan M, Patel H, Pellizzoni R (2015) A framework for scheduling DRAMmemory accesses
for multi-core mixed-time critical systems. In: Real-time and embedded technology and appli-
cation symposium (RTAS), pp 307–316

28. ShahH,RaabeA,Knoll A (2012) BoundingWCETof applications using SDRAMwith priority
based budget scheduling in MPSOCs. In: Design, automation and test in Europe conference
and exhibition (DATE), pp 665–670

http://www.dramexchange.com/Market/Market_Activity
http://www.dramexchange.com/Market/Market_Activity
https://ams-ix.net/technical/statistics/historical-traffic-data?year=2015
https://ams-ix.net/technical/statistics/historical-traffic-data?year=2015
https://www.qualcomm.com/products/snapdragon/processors/800
https://www.qualcomm.com/products/snapdragon/processors/800

References 55

29. PaolieriM,QuiñonesE,Cazorla FJ (2013)Timing effects ofDDRmemory systems in hard real-
time multicore architectures: issues and solutions. ACM Trans Embed Comput Syst 12(1s):64

30. Krishnapillai Y, Pei Wu Z, Pellizzoni R (2014) ROC: a rank-switching, open-row DRAM con-
troller for time-predictable systems. In: Euromicro conference on real-time systems (ECRTS),
pp 27–38

31. Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar R (2014) Bounding memory
interference delay in COTS-basedmulti-core systems. In: Real-time and embedded technology
and application symposium (RTAS), pp 145–154

32. AkessonB,HanssonA,GoossensK (2009) Composable resource sharing based on latency-rate
servers. In: Digital system design (DSD)

33. Device transaction level (DTL) protocol specification (2002) Version 3.2. Philips semiconduc-
tors

34. AMBA AXI and ACE protocol specification (2011). ARM Limited
35. Akesson B, Molnos A, Hansson A, Ambrose Angelo J, Goossens K (2010) Composability and

predictability for independent application development, verification, and execution. In: Hübner
M, Becker J (eds) Multiprocessor system-on-chip — hardware design and tool integration,
Circuits and systems, chapter 2. Springer. ISBN 978-1-4419-6459-5

36. Hansson A, Goossens K, Bekooij M, Huisken J (2009) CompSOC: a template for composable
and predictable multi-processor system on chips. ACM TODAES 14(1)

37. StiliadisD,VarmaA (1998)Latency-rate servers: a generalmodel for analysis of traffic schedul-
ing algorithms. IEEE/ACM Trans Netw 6(5)

38. Kopetz H (1997) Real-time systems: design principles for distributed embedded applications.
Springer

39. Ghosal A, Henzinger TA, Kirsch CM, Sanvido MA (2004) Event-driven programming with
logical execution times. In: Hybrid systems: computation and control, pp 357–371. Springer

40. Goossens S, Akesson B, KoedamM, Nejad AB, Nelson A, Goossens K (2013) The CompSOC
design flow for virtual execution platforms. In: Proceedings of the 10th FPGAworld conference,
pp 7:1–7:6

41. Nagle JB (1987) On packet switches with infinite storage. IEEE Trans Commun COM-35(4)
42. Akesson B, Steffens L, Strooisma E, Goossens K (2008) Real-time scheduling using credit-

controlled static-priority arbitration. In: Embedded and real-time computing system and appli-
cation (RTCSA), pp 3–14

43. Memory transaction level (MTL) protocol specification (2002) CoReUse 3.2.1. Philips semi-
conductors

44. Bhat B, Mueller F (2011) Making DRAM refresh predictable. Real-Time Syst 47(5):430–453
45. Denali (2010) DDR PHY interface (DFI) specification version 2.1.1
46. Kaviani K, Wu T, Wei J, Amirkhany A, Shen J, Chin T, Thakkar C, Beyene W, Chan N, Chen

C, Chuang BR, Dressler D, Gadde V, Hekmat M, Ho E, Huang C, Le P, Mahabaleshwara CM,
MishraN,RaghavanL, SaitoK, Schmitt R, SeckerD, ShiX, Fazeel S, SrinivasG, Zhang S, Tran
C, Vaidyanath A, Vyas K, Jain M, Chang K-Y K, Yuan X (2012) A tri-modal 20-Gbps/Link
differential/DDR3/GDDR5 memory interface. IEEE J Solid-State Circuits 47(4):926–937

47. AkessonB (2010) Predictable and composable system-on-chipmemory controllers. PhD thesis,
Eindhoven University of Technology

48. Akesson B, Hayes Jr W, Goossens K (2010) Classification and analysis of predictable memory
patterns. In: Embedded and real-time computing systems and applications (RTCSA), pp 367–
376

49. Wu ZP, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor
systems. In: Real-time systems symposium, pp 372–383

50. Shah H, Knoll A, Akesson B (2013) Bounding SDRAM interference: detailed analysis vs.
latency-rate analysis. In: Design, automation and test in Europe conference and exhibition
(DATE), pp 308–313

51. Bhati I, Chishti Z, Lu SL, Jacob B (2015) Flexible auto-refresh: enabling scalable and energy-
efficient DRAM refresh reductions. In: International Symposium on Computer Architecture
(ISCA)

56 2 Reconfigurable Real-Time Memory Controller Architecture

52. Akesson B, Minaeva A, Sucha P, Nelson A, Hanzalek Z (2015) An efficient configuration
methodology for time-divisionmultiplexed single resources. In: Real-time and embedded tech-
nology and application symposium (RTAS)

53. Minaeva A, Šůcha P, Akesson B, Hanzálek Z (2016) Scalable and efficient configuration of
time-division multiplexed resources. J Syst Softw 113:44–58

54. Nelson A, Goossens K, Akesson B (2015) Dataflow formalisation of real-time streaming appli-
cations on a composable and predictable multi-processor SOC. J Syst Archit

55. SriramS, Bhattacharyya S (2000) Embeddedmultiprocessors: scheduling and synchronization.
CRC

56. Xilinx (2011) ML605 documentation UG533. http://www.xilinx.com/support/documentation/
boards_and_kits/ug533.pdf

57. Chandrasekar K, Weis C, Li Y, Akesson B, Wehn N, Goossens K (2014) Drampower: open-
source DRAM power and energy estimation tool. http://www.drampower.info

58. Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM memory con-
troller. In: Proceedings of CODES+ISSS

59. Xilinx (2011) Virtex-6 FPGA memory interface solutions - user guide UG406
60. Cosoroaba A (2013) Achieving high performance DDR3 data rates, Xilinx, WP383 (v1.2).

White paper
61. Cadence Design Systems Inc (2014) Multi-protocol LPDDR4/3/DDR4/3 controller and

PHY subsystem IP. http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_
LPDDR4_3_DDR4_3_Subsystem_ds.pdf

62. DDR3 SDRAM SODIMM - MT4JSF6464H - 512MB JSF4C64_64x64HY.fm - Rev. B 3/08 EN
(2007). Micron

63. Chang K, Lee H, Chun J-H, Wu T, Chin T, Kaviani K, Shen J, Shi X, Beyene W, Frans Y,
Leibowitz B, Nguyen N, Quan F, Zerbe J, Perego R, Assaderaghi F (2008) A 16Gb/s/link,
64GB/s bidirectional asymmetric memory interface cell. In: 2008 IEEE symposium on VLSI
circuits, pp 126–127

64. Lakis E, Schoeberl M (2013) An SDRAM controller for real-time systems. In: 2013 IEEE 16th
international symposium on object/component/service-oriented real-time distributed comput-
ing (ISORC), pp 1–8

65. Xilinx (2011) LogiCORE IP - multi-port memory controller DS643
66. Goossens S, Kuijsten J, Akesson B, Goossens K (2013) A reconfigurable real-time SDRAM

controller for mixed time-criticality systems. In: 2013 international conference on hard-
ware/software codesign and system synthesis (CODES+ISSS), pp 1–10

67. Nelson A, Molnos A, Nejad AB, Mirzoyan D, Cotofana S, Goossens K (2013) Embedded
computer architecture laboratory: A hands-on experience programming embedded systems
with resource and energy constraints. In: Proceedings of the workshop on embedded and
cyber-physical system education, pp 7:1–7:8

68. Schoeberl M, Abbaspour S, Akesson B, Audsley N, Capasso R, Garside J, Goossens K,
Goossens S, Hansen S, Heckmann R, Hepp S, Huber B, Jordan A, Kasapaki E, Knoop J,
Li Y, Prokesch D, Puffitsch W, Puschner P, Rocha A, Silva C, Sparsø J, Tocchi A (2015)
T-CREST: time-predictable multi-core architecture for embedded systems. J Syst Archit

http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.drampower.info
http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_LPDDR4_3_DDR4_3_Subsystem_ds.pdf
http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_LPDDR4_3_DDR4_3_Subsystem_ds.pdf

Chapter 3
Memory Patterns

The previous chapter outlined the foundation of the mixed-time-criticality SDRAM
controller by showing thehardware it consists of. In the process, it introducedmultiple
storage elements that reside in the memory controller back-end, like the pattern
memory and the registers in the address generator. In this chapter, we focus on the
creation of configurations for the controller back-end that fill these storage elements.

A pattern memory, as the name suggests, contains memory patterns (Sect. 2.2),
which are groups of prescheduled SDRAM commands that the controller selects
and executes at run-time. Our goal is to provide a memory controller template that
is not bound to a specific memory device or SDRAM type, and hence the memory
pattern-generation algorithm should be written in such a way that it is easily trans-
ferable across SDRAM types (DDR2/3/4 and LPDDR1/2/3). Section 3.1 describes
an abstraction step that allows us to do this. Section 3.2 applies this abstraction in
the form of a parameterized pattern-generation heuristic, which is later refined to
improve its effectiveness for DDR4 memories. As an alternative, we provide the
option to generate patterns that are guaranteed to be optimal, although this is more
time consuming. The connection between the pattern configuration andmemorymap
is also explained in this section. Figure 3.1 shows a flowchart of the pattern generation
and post-processing steps.

A predictable pattern set can be converted into a composable pattern set, as we
show in Sect. 3.3, hence providing an alternative to the delay blocks (Sect. 2.3.1) as
a method of creating a composable memory resource. We show that the impact on
the memory efficiency can be expressed as a function of the original pattern lengths.

At the end of this chapter, in Sect. 3.4, we first introduce the set of memory devices
that are used to evaluate the effectiveness of the pattern-generation heuristics. We
compare the heuristics with the optimal solution to evaluate the quality of their
solutions to the pattern-generationproblem.Theproduced schedules are also the basis
for the worst-case performance evaluation in Chap.5. The same range of memory
devices is used to quantify the typical conversion efficiency from predictable to
composable patterns. Finally, we use the FPGA instance of our memory controller
to demonstrate how using composable patterns isolates the timing behavior of two
co-running applications.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_3

57

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_5

58 3 Memory Patterns

Fig. 3.1 The pattern flow in this chapter. The related section numbers are written in round brackets

3.1 Generalized Command Scheduling Rules

SDRAM command scheduling is an old problem, and solutions to this problem are
(almost) equally old: an SDRAM cannot be used without a controller that schedules
commands to it. Even though the number of popular SDRAM standards introduced
in the past 10years is large [1–6], their structural differences from the scheduler’s
perspective are fortunately quite small, although this is not immediately apparent
when the standards are compared. The numerical values of the timings that govern
thememory behavior vary, timings are renamed, and certain constraints are expressed
differently across generations, obfuscating the similarities. These factors complicate
the reuse of command scheduling algorithms and make it hard to compare them
structurally, since the details of a particular SDRAM standard are often intermixed
with the actual algorithm. Even though individual timings may be required for the
(circuit-level) SDRAM design or detailed modeling of power usage, for example,
they are of little use for command schedulers (and arguably for memory controllers
as a whole), and can hence be hidden from them. Instead, all they need to know is
the minimum delay between pairs of commands.

For this purpose, we introduce a function d, which serves as the interface for
these algorithms to obtain the minimum relative delay between two commands,
cmda and cmdb. Based on five properties of these commands and the SDRAM type,
it is conceptually a lookup table that determines the delay. The first two properties
describe the types of the commands, t ypea, t ypeb ∈ {ACT, RD, WR, PRE, REF},
while the remaining boolean properties specify the relative physical location of the
bank at which the commands are targeted, i.e., if they go to the same or a different
rank, bank group (DDR4) or bank, respectively:

dsdramType(cmda, cmdb) = LU TsdramType(t ypea, t ypeb,

sameRank(cmda, cmdb),

sameBankGroup(cmda, cmdb),

sameBank(cmda, cmdb)) (3.1)

Based on the JEDEC specifications [1–6], we collected the delays that this func-
tion should produce for six SDRAM generations in Tables3.1 and 3.2, effectively

3.1 Generalized Command Scheduling Rules 59

Table 3.1 Common constraints across SDRAM types (definition of d())

t ypea typeb sameBank Constraint

ACT ACT True rc

ACT ACT False rrd_x

ACT PRE True ras

ACT RD/WR True rcd - al

PRE ACT True rp

PRE REF True or false rp

REF ACT True or false rfc

condensing hundreds of pages of documentation into the bare minimum required to
creatememory command scheduling algorithms. Since expressing afive-dimensional
lookup table compactly on a two-dimensional page is quite challenging, a few nota-
tional shortcuts are applied:

• If a combination of inputs is not mentioned in the tables, then it is either uncon-
strained, or not allowed by the state machine of an SDRAM bank. For example, a
read followed by an activate to the same bank is not mentioned, since they should
at least be separated by a precharge command.

• The timings that are postfixed with _x depend on the sameBankGroup argument.
For DDR4, an implementation of d() selects the _l or _s versions of the timing if
sameBankGroup is true or false, respectively, as required by the specification [4].
For other SDRAM types, the non-postfixed version of the timing is used.

• TheFour Activate Window (FAW) timing is not mentioned in the table, because it is
a window-based constraint, and not a simple delay. It has to be taken into account
separately on a per-rank basis for all SDRAM types except LPDDR, which has no
FAW constraint.

For brevity, and because multi-rank operation is not standardized, the tables only
show constraints for the cases where the command pair is sent to the same rank.
Commands across ranks are generally not constrained, unless they use the (shared)
data bus, i.e., RD and WR commands. An additional delay, typically one or two
cycles, has to be taken into account in those cases to make sure only one rank at a
time drives the bus.

By writing scheduling algorithms in terms of calls to the d() function instead of
referring directly to timing constraints, they can be written in a compact, SDRAM-
type-agnostic manner, as later demonstrated in Algorithm 2. To create an SDRAM-
type specific instance of a schedule, one only has to substitute the relevant device-
specific timings in the constraints in the tables, and resolve the d()-calls the scheduler
makes. Figure 3.2 illustrates this process.

60 3 Memory Patterns

Table 3.2 SDRAM-type specific constraints (definition of d())

Memory t ypea typeb = P RE typeb = R D typeb = W R

type sameBank = true sameBank = true
or false

sameBank = true
or false

LPDDR RD b b b + cl

LPDDR WR b + dqss + wr b + dqss + wtr b

DDR2 RD b + al − 2 +
max(rtp, 2)

b b + rtw

DDR2 WR b + wl + wr b + cl − 1 + wtr b

DDR3 RD al + max(rtp, 4) b b + cl − cwl + 2

DDR3 WR b + cwl + al +
wr

b + cwl + wtr b

DDR4 RD al + rtp ccd_x b + cl − cwl +
pa

DDR4 WR b + cwl + al +
wr

b + cwl + wtr_x ccd_x

LPDDR2/3 RD b + max(0, rtp −
d)

b b + rl − wl +
dqsck max + 1

LPDDR2/3 WR b + wl + wr + 1 b + wl + wtr + 1 b

b represents the burst transfer time, equal to BL/2. For DDR2, if BL = 4, rtw = 2, and if BL = 8,
rtw = 6. For DDR4, pa depends on the selected read/write preamble. If a read or write preamble
of 1 cycle is used, pa = 2. With a preamble of two cycles, pa = 3. For LPDDR2/3, D = 1, 2, or 4 for
LPDDR2-S2, LPDDR2-S4, or LPDDR3 devices, respectively

Fig. 3.2 Constraint abstraction

3.2 Predictable Patterns

Commands for all devices in the previously mentioned SDRAM generations can be
scheduled by respecting the constraints in Sect. 3.1. By means of the examples in
Fig. 3.3, we discuss some of the options the back-end has when it comes to deciding
which commands to generate and schedule. The semantics of the figure are explained
first, and then we look at its content.

Each block in this figure represents a command, and each line of blocks repre-
sents a possible schedule for a DDR3-1600 device. A block may contain a letter
representing the command type, and a number, representing the bank to which the
command is directed. Empty blocks represent NOP commands. Shaded blocks rep-

3.2 Predictable Patterns 61

F
ig

.3
.3

D
D
R
3-
16
00

ex
am

pl
e
sc
he
du
le
s

62 3 Memory Patterns

resent activity on the data bus, caused by a read (R) or write (W) command. Each of
those commands generates a burst transfer, lasting multiple cycles. The size of the
burst is determined by the burst length setting (BL), which is typically 8 for DDR3,
resulting in 4 clock cycles of data-bus activity. In reality, there is a certain delay
between the read or write command and the corresponding data burst, but in Fig. 3.3
the shading starts immediately at the command for simplicity.

Activate commands are annotated with the letter A, while cycles where an auto-
precharge is executed have the letters aP written in them. We assume precharge
commands are always implemented using auto-precharge flags that are attached to
the final read or write command to a bank, which has as advantages that they do
not need to be scheduled explicitly, and do not take up space on the command bus
(we draw them as regular commands when they happen in parallel with NOPs).
Figure3.3g illustrates this, with the auto-precharge to bank 0, which happens in
parallel with the write to bank 3. If an explicit precharge was used, then either the
write or the precharge would have to happen one cycle later, increasing the schedule
length and reducing performance.

Double-headed arrows are annotated with the timing constraints that determined
the shape of the schedules. Each schedule is extended with NOPs until it is repeat-
able after itself. This is the behavior that a memory controller would exhibit in the
worst case if it used the shown schedule to service requests, since in the worst case
different rows in the same banks that were used earlier are accessed by each request.
Auto-precharges that are scheduled relatively late can be pipelined with commands
designated for following requests, i.e., they might be executed during the next repeat
of the same schedule. In the figure, this is indicated by the overline on their aP
annotation.

The fact that the figure has to be tilted awkwardly to fit on the page while most
of the blocks are empty illustrates an important point: schedules are relatively long
compared to the amount of useful commands that are executed in them. In a naive
implementation, a memory controller could chop all incoming requests into atoms
the size of one burst, and issue one ACT, one RD/WR, and one PRE command to
service each of them. Figure3.3a shows what such a command schedule would look
like. Due to overhead of activating and precharging, the schedule is significantly
longer (46 cycles) than the actual data transfer time (4 cycles assuming a burst length
of 8), a difference of more than an order of magnitude. The worst-case bandwidth
is thus a lot smaller than the peak bandwidth obtained by only considering the data
rate, and this efficiency gap grows as the memory clock frequency increases, as later
shown in Chap.5.

http://dx.doi.org/10.1007/978-3-319-32094-6_5

3.2 Predictable Patterns 63

3.2.1 Pattern Generation with Variable Bank Interleaving

The distribution of the bursts in the pattern across banks and the associatedworst-case
performance is determined by how thememory controller groups bursts (Sect. 2.2.1).
This section introduces a command scheduling algorithm that changes its behavior
based on a selected burst-grouping configuration. Instead of interleaving each atom
over all banks in the memory [7–10], or assuming that each atom maps only to a
single burst [11, 12], we treat the number of banks involved in executing an atom as
a free parameter. With this extra degree of freedom, we use the parameters defined
earlier in Sect. 2.2.1 to denote

1. BI as the number of banks that are accessed by an atom, and
2. BC as the number of bursts per bank.

The number of bursts per atom is then equal to BI · BC. These parameters can be
used to generate a range of possible pattern configurations characterized by a (BI,
BC) combination. BI can be equal to or smaller than the number of banks in the
memory. If BI is smaller than the number of available banks, then there are multiple
ranges of BI banks that could be accessed by a pattern, offset by BI banks from each
other. For example, if BI=2, then the accessed banks could be { 0, 1 } or { 2, 3 }, but
not { 1, 2 } or { 0, 5 }. We require the ranges to be mutually exclusive, such that the
worst-case sequence of banks is generated by successive atoms accessing a different
row in the same range of BI banks. Figure3.4 illustrates this for a DDR3-1066. If
we were to abandon that requirement, then an atom could potentially start its pattern
with the same bank the previous atom ended its access with, effectively eliminating
most of the (guaranteed) bank parallelism, and requiring longer patterns to satisfy all
constraints, reducing performance. Therefore, the addresses of atoms that enter the
back-end are required to be aligned at atom-sized boundaries. This is enforced by
the atomizer in the controller’s front-end. BI and BC effectively define the low-level
memory map for bursts (see Sect. 3.2.5).

Fig. 3.4 A (BI2, BC2) read pattern for a DDR3-1066

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2

64 3 Memory Patterns

Figure3.3 illustrates how the schedules change for different (BI, BC) combina-
tions for the DDR3-1600 example (Note that each line is annotated with a (BI, BC)
pair). Figure3.3b demonstrates the benefit of bank interleaving. Two bursts are inter-
leaved, i.e., BI=2. The ACT-to-RD/WR delay (rcd) of bank 1 is (partially) hidden
by the data access to bank 0.

IncreasingBCenables hiding theACT-to-ACTconstraint betweenbanks (rrd_x).
This is relevant for all memory devices for which the maximum activate command
rate is lower than the read/write command rate (rrd_x > b), a relatively common
property (Appendix B). The DDR3-1600 memory from Fig. 3.3b has rrd = 6, and
this constraint causes the two-cycle pause in the data transfer between the burst to
bank 0 and bank 1. Figure3.3c, d shows how this issue is resolved when BC is
increased.

For memories that have more than 4 banks, configurations with BI≤ 4 are of par-
ticular interest, since they deal betterwith theFour Activate Window (FAW) constraint
than those that interleave over more than 4 banks. With at most 4 activate commands
within a pattern, the FAW can only play a role if multiple consecutive patterns are
considered. This allows NOPs inserted at pattern edges to satisfy the FAW constraint
to overlap with NOPs that resolve other constraints, like rc (ACT-to-ACT) and
rp (PRE-to-ACT) for example, and hence these configurations are more efficient.
Figure3.3g, h illustrates this: the schedules contain the same number of bursts, but
Fig. 3.3g avoids the FAW penalty, increasing the efficiency from 38.5 to 61.6%. Effi-
ciency generally increases with the number of bursts per atom, because the constant
activate/precharge overhead is amortized over more and more data. In practice, the
atom size is limited by the size of the requests the memory clients generate, since
there is no point in fetching data at high efficiency when it has to be discarded later
because the client is not interested in it. Chapter5 quantifies the effects of BI and
BC on the worst-case performance for a set of different memories in more detail.
Here, we now focus on how to automatically generate patterns, such as those shown
in Fig. 3.3, based on a particular BI and BC.

Pattern-Generation Heuristic

The functions in Algorithms 1 and 2 build up the pattern in the set P, in which
each element is a 3-tuple representing the type, bank, and clock cycle (cc) of a
command. Record-/struct-like semantics are used to access the elements in the tuple,
i.e., x .cc accesses the clock cycle element of the tuple. The max() function executed
on a set returns the largest element within that set. Indentation delimits code blocks.
We use the bank scheduling heuristic (BS) described in [13] as a starting point for
the order and placement of the commands, because it has been shown to perform
well for DDR2/3 memories. In this heuristic, read and write patterns are created
independently. Within these patterns, read or write commands are scheduled as soon
as possible, accessing banks in ascending order. Activate commands are scheduled as

http://dx.doi.org/10.1007/978-3-319-32094-6_5

3.2 Predictable Patterns 65

late as possible, but just in time not to delay the read or write commands. Typically,
this is rcd cycles before the first read or write to the associated bank, or earlier if
this cycle is already taken by another command. Patterns start with bank activation,
and the final access to a bank has an auto-precharge flag. This heuristic is extended
to include the new BI parameter, and we refer to bank scheduling with variable bank
interleaving as BS BI. Algorithm 2 shows the most relevant read and write pattern-
generation functions; a complete executable version can be found in [14]. For BS BI,
the input argument useBsPbgi should be set to false. (The same algorithm is reused
later in Sect. 3.2.2 with this parameter set to true.

Algorithm2 uses two small helper functions, shown inAlgorithm1. The earliest
function returns the earliest cycle at which a command cmdb may be scheduled,
given the location of the commands in the (partial) pattern P. It uses the d() function
(Eq.3.1), which symbolizes the lookup in Tables3.1 and 3.2. If the P parameter is an
empty set, then 0 is returned (line 6). Figure 3.5 shows the function output with an
example. The minPatternDistance function finds the smallest number of cycles
(NOPs) that must be inserted between two patterns to satisfy all constraints spanning
across them. An example for this function is shown in Fig. 3.6.

Now we move on to Algorithm 2. The nested loops (lines 4–8) generate 1 activate
and BC read or write commands per bank. The addActAndRw function sched-
ules an activate command using addAct before the first burst to a bank (lines
17–18). Additionally, it schedules the read/write commands as soon as possible
(lines 16, 19).

Fig. 3.5 Example execution of the earliest function

Fig. 3.6 Example execution of theminPatternDistance function (The commands in the example
are merely there to show the functionality, but do not resemble real patterns)

66 3 Memory Patterns

addAct first finds a range of possible locations for an ACT command. A lower
bound (lb) for the location is based on the ACT-to-ACT and FAW constraints (lines
22–23). The definition of remainingFawCyclesAt can be found in Algorithm 6
in Appendix C. An upper bound (ub) is set by the minimum distance between the
planned location of the RD/WR command (rwCc) and the ACT command (line 25).
Set S contains the cycles within this range that are not occupied by other commands
(line 26). If this set is not empty, then the largest option is chosen, scheduling theACT
as late as possible (lines 27–28). Otherwise, the RD/WR command is postponed by a
cycle, and by extension the upper bound for the ACT shifts forward, until a suitable
location is found (lines 24, 30). This guarantees the algorithmalways finds a schedule.

What remains is to determine the location of the precharge commands (lines 9–12),
which are stored in a separate copy of the pattern (P′) since they are implemented
using auto-precharge flags and hence are not explicitly scheduled. Their location
is still relevant, because the precharges can constrain commands that follow them,
within the next incarnation of the pattern. Additionally, they are required to generate
the auxiliary patterns.

Given the commands in P′, makeRepeatable finds the minimum length the
pattern should have to be repeatable after itself without violating regular constraints
(line 33) and the FAW constraint (lines 34–35) spanning across pattern incarnations.
The definition of fawSatisfiedAcross can be found inAlgorithm 6 inAppendix C.
Each time the length is increased, one NOP is implicitly added to the end of the
pattern. Finally, the scheduled commands and the length of the pattern are returned
and the algorithm ends.

Algorithm 1 Helper functions
1: function earliest(cmdb, P)
2: // d() is a lookup in Table 3.1-3.2. It returns -inf if the command combination is
3: // not mentioned.
4: pos := 0
5: for all cmd ∈ P do
6: pos := max(pos, cmd.cc + d(cmd, cmdb))
7: return pos

8: function minPatternDistance(pattLen, nextP, P)
9: // Determine the minimum distance between P and nextP,
10: // given the length of P is pattLen.
11: minDistance :=0
12: for all cmd ∈ nextP do
13: minDistance :=max(minDistance, earliest(cmd, P) - cmd.cc - pattLen)
14: return minDistance

3.2 Predictable Patterns 67

Algorithm 2 Bank scheduling heuristic for BS BI and BS PBGI
1: function patternGen(BI, BC, rdOrWr, useBsPbgi)
2: BGi := if BI > 1 and useBsPbgi == true then 2 else 1
3: P := { } // The pattern
4: for all bankPair ∈ { 0...BI/BGi − 1 } do
5: for all burst ∈ { 0...BC − 1 } do
6: for all offset ∈ { 0...BGi − 1 } do
7: bnk :=bankPair × BGi + offset
8: P :=addActAndRw(bnk, rdOrWr, burst, P)
9: P’ :=P // A copy with explicit precharges.
10: for all bnk ∈ {0...BI − 1} do
11: preCc :=earliest((PRE, bnk, 0), P)
12: P’ := P’ ∪ { (type: PRE, bank: bnk, cc: preCc) }
13: return makeRepeatable(P, P’)

14: function addActAndRw(bnk, rdOrWr, burst, P)
15: rw := (type: rdOrWr, bank: bnk, cc: 0)
16: rwCc :=earliest(rw, P)
17: if burst == 0 then
18: P, rwCc :=addAct(rw, rwCc, P)
19: return P ∪ { (type: rdOrWr, bank: bnk, cc: rwCc) }

20: function addAct(rw, rwCc, P)
21: act := (type: ACT, bank: rw.bank, cc: 0)
22: lb :=earliest(act, P)
23: lb := lb + remainingFawCyclesAt(lb, P)
24: while true do
25: ub := rwCc − d(act, rw)
26: S := {i ∈ {lb...ub − 1} | cmd.cc �= i ∀ cmd ∈ P}
27: if S �= ∅ then
28: P := P ∪ { (type: ACT, bank: rw.bank, cc: max(S)) }
29: return P, rwCc
30: rwCc := rwCc + 1

31: function makeRepeatable(P, P’)
32: len := max({cmd.cc ∀ cmd ∈ P}) + 1
33: len := len + minPatternDistance(len, P’, P)
34: while not fawSatisfiedAcross(len, P) do
35: len := len + 1
36: return P, len

3.2.2 BS PBGI Heuristic for DDR4 Pattern Generation

The heuristic that was presented in the previous section works well for most con-
temporary SDRAM types, as will be shown in Sect. 3.4. However, due to the intro-
duction of bank groups in DDR4, there is room for improvement in the heuristic for
this SDRAM type, such that it works around the penalties related to accessing the
same bank group twice in a row (see Sect. 2.1.3.1 and [4]). To generate more efficient
DDR4 patterns and avoid hitting the ccd_l constraints between bursts, read or write
commands should be interleaved across bank groups. To this end, we propose a pair-

http://dx.doi.org/10.1007/978-3-319-32094-6_2

68 3 Memory Patterns

wise bank-group interleaving heuristic, as demonstrated in Fig. 3.7. Two banks from
different bank groups are paired together. In contrast to regular bank scheduling,
which finishes all BC bursts to a bank before switching to the next bank, the read or
write commands of such a pair are interleaved per burst. The remaining rules of the
heuristic are the same as described in Sect. 3.2.1. We refer to bank scheduling with
pairwise bank-group interleaving as BS PBGI. Setting useBsPbgi to true in Algo-
rithm 2 generates the proposed interleaving. The algorithm assumes that consecutive
bank ids map to different bank groups (and wrap around once the bank groups run
out). This can be implemented by wiring the least significant bits of the bank address
(described in Sect. 3.2.5) to the bank-group bits on the DDR4 interface.

Algorithm 3 Creating auxiliary patterns
1: function rtwPattern(rdP, wrP, rdPLen)
2: return minPatternDistance(rdPLen, rdP, wrP)

3: function wtrPattern(rdP, wrP, wrPLen)
4: return minPatternDistance(wrPLen, wrP, rdP)

5: function refPattern(rdP, wrP, rdPLen, wrPLen)
6: // Create the refresh pattern.
7: refP := { (type: REF, bank: 0, cc: 0) }
8: prefix :=max(minPatternDistance(rdPLen, rdP, refP),
9: minPatternDistance(wrPLen, wrP, refP))
10: refP := { (type: REF, bank: 0, cc: prefix) }
11: postfix :=max(minPatternDistance(prefix + 1, refP, rdP),
12: minPatternDistance(prefix + 1, refP, wrP))
13: refPLen :=prefix + 1 + postfix
14: return refP, refPLen

In cases where BI ≥ 2,BC ≥ 2, this heuristic behaves differently from BS
BI. Pairwise interleaving reduces the time between successive read and write
commands from ccd_l to ccd_s, which typically saves one or two cycles per
burst pair for the currently released DDR4 devices. In total, this could save
(ccd_l – ccd_s) ·BI · (BC − 1) cycles per pattern, assuming there are no other
constraints that force a separation larger than ccd_s between (some of) the bursts.

The advantage of interleaving only two instead of, for example, four bank groups
is that the last access to the first bank pair happens relatively early in the pattern,
as shown in Fig. 3.7. As a result, these banks can be precharged (partially) while
accesses to other banks pairs are executed, eventually allowing them to be activated
earlier. Interleaving more than two banks reduces the overlap, and could hence lead
to patterns that require more NOPs at the end of the pattern to satisfy the constraints
required to repeat the pattern, without any benefits.

3.2 Predictable Patterns 69

(a)

(b)

(c)

Fig. 3.7 (Partial) DDR4-1866 read pattern. Odd and even banks are in a different bank group.
Schedule a does not use (bs pbgi), while b does. c shows how the distance to the next activate in
a following pattern reduces as more bank groups are interleaved, resulting in longer (less efficient)
patterns

3.2.3 Auxiliary Patterns

To finish a pattern set, it needs auxiliary patterns, i.e., read-to-write and write-to-read
switching patterns, and a refresh pattern. These patterns are created based on the
read and write patterns (rdP, wrP), and their respective lengths (rdPLen, wrPlen), as
shown in Algorithm 3. The first two functions in this algorithm determine the length
of the switching patterns, which are inserted between access patterns of the opposite
type to resolve constraints between them. Since switching patterns consists solely of
NOPs, it is sufficient to return only the length of these patterns.

The refresh pattern, generated by the third function, consists of a single refresh
command, optionally surrounded by NOPs. First, we determine the number of NOPs
that has to precede it, and store that in the prefix variable. The REF command is
scheduled after this prefix. Finally, theminimumnumber ofNOPs that has to separate
the refresh command from the start of the next read or write pattern, whichever is
larger, is appended at the end of the refresh pattern.

3.2.4 ILP-Based Pattern Generation

Sections 3.2.1 and 3.2.2 describe two heuristics, BSBI and BS PBGI, which generate
close-page read and write patterns. The lengths of these patterns can be used as a
measure for their quality, since they determine the worst-case memory performance,
as later shown in Sect. 3.5. The commands in a pattern are chosen andfixed once a (BI,
BC) combination is selected, so we can define a pattern as optimal in terms of length

70 3 Memory Patterns

Fig. 3.8 Example of the ILP precedence constraints. An edge between a set of commands means
that the source command has to be scheduled before the destination command. Numbers in round
brackets refer to the associated rule in the ILP description

if there is no other permutation of this set of commands satisfying pattern scheduling
rules and timing constraints resulting in a shorter pattern. The limitation of this
definition is that it considers the read and write patterns separately. When combined,
it is possible (although not likely) that they might not make an optimal pattern set
(in terms of worst-case bandwidth for example), since the auxiliary patterns are not
taken into account during their creation. We can, however, always use them as a
lower bound on the length of the individual read and write patterns, and contrast that
with the output of our heuristics.

This section explains how (length) optimal patterns can be generated using a
parameterized ILP formulation of the command scheduling problem. Based on a
(BI, BC) combination and an implementation of Eq. (3.1), we create an ILP problem
that, when solved, finds the optimal pattern size and the location of the commands
within the pattern. Any memory controller that uses a close-page policy and relies
on memory patterns in analysis or implementation, like [7–10, 15], can use this
formulation to improve the schedules it uses, or to extend its scope to different
memory devices or generations.

We later use the ILP formulation as a means to evaluate the BS BI and BS PBGI
heuristics. The translation to a formal problem definition is available in Appendix
A, but here we only describe the formulation in natural language: Fig. 3.8 illustrates
a subset of the properties of the formulation.

1 Create a set of variables representing the locations of the commands in the pattern
that should be generated as a function of the selected (BI, BC) combination: there
are BI different ACT commands, one for each bank, and BI times BC different
RD/WR commands, and BI PRE commands (as auto-precharge flags).

2 Add variables representing the location of an extra activate command for each
bank in this set. These activate commands represent the start of a second instance
of the pattern, which should be schedulable immediately after the first instance,
because read/write patterns should be repeatable after themselves (Sect. 2.2).

http://dx.doi.org/10.1007/978-3-319-32094-6_2

3.2 Predictable Patterns 71

3 Given this set of memory commands, assign a single location in the schedule to
each command such that

(a) An ACT to bank 0 is scheduled in cycle 0.
(b) No two commands are scheduled in the same cycle. Precharges are exempted

from this rule, since they are executed using auto-precharge flags and do not
require a slot in the schedule.

(c) The relative delays between any pair of commands is at least as large as pre-
scribed by Eq. (3.1), and there are at most four ACTs in each FAW window.

(d) The commands for each bank are executed in the proper order, i.e., start
with an activate, followed by BC read or write commands, followed by a
precharge. This formulation allows different banks to be used in parallel,
i.e., one can be activating while another is used for reading or writing. The
extra activate commands added in Step 2 should happen after the precharge
to the associated bank.

(e) Commands for the second instance of the pattern must be scheduled after
the extra activate to bank 0, and commands for the first instance must be
scheduled before the extra activate to bank 0. This activate command itself
and all precharge commands are exempt from this rule. Precharges may be
(automatically) pipelined across patterns, because auto-precharge flags are
used and they are hence scheduled automatically.

(f) The first and second instances of the pattern are the same.A set of constraints
enforces that the distance between the extra activate command to a bank and
the extra activate to bank 0 is equal to the distance between the first activate
command to that bank and cycle 0. As a result, the activates appear in the
same relative position in the second pattern instance. The positions of the
read or write commands in the second instance follow from the positions of
the activates, and do not need to be scheduled explicitly.

4. To limit the search space and eliminate equivalent symmetric solutions, we add
the following constraints (see Fig. 3.8):

(a) The order of the read or write commands to the same bank is fixed, because
we cannot (and do not want to) distinguish between different bursts to the
same bank within a pattern.

(b) Banks are activated and precharged in ascending order. For DDR4, we again
use the assumption that consecutive bank ids map to different bank groups
(and wrap around once the bank groups run out).

(c) An upper bound on the optimal length of the pattern in cycles can be found
based on the BS BI or BS PBGI (DDR4) heuristics. Both provide a valid
bound, so we use whichever is the smallest to limit the solution space as
much as possible, and hence reduce the computation time of the solver.

(d) A lower bound for the pattern length is the size of a schedule where the
commands for bank 0 are scheduled as soon as possible. A lower bound
for the location of the extra activate commands of other banks is derived

72 3 Memory Patterns

from this bound, since they must at least be scheduled one ACT-to-ACT
constraint away from bank 0’s activate.

5. The optimization goal is to minimize the pattern length. Therefore, we minimize
the location of the second activate to bank 0, which signifies the start of the next
incarnation of the pattern.

The ILP formulation might create shorter patterns than BS BI and BS PBGI, because
it does not restrict the relative ordering of bursts across banks nor the placement of
bursts within the pattern, and it has no preferred location for activate commands (i.e.,
it could postpone them compared to the heuristics). Section 3.4 evaluates how close
to optimal the heuristic results are.

3.2.5 Memory Map Implications

The order of the data bursts within a memory pattern is fixed, meaning they are
mapped to consecutive logical memory addresses by definition. The pattern config-
uration (BI, BC) thus has a direct influence on the decoding of the (least significant)
portion of the logical address into a physical address, as it partially determines which
bits should be selected for the bank, row and column address. A (BI, BC) combina-
tion is hence as much a memory map configuration as it is a pattern or scheduler
configuration. This is illustrated in Fig. 3.9, which shows how the lower log2(BI ·
BC · BL · IW/8) bits of the logical address (top row) are mapped to the column and
bank address Least significant Bits LSB, respectively. The connection to the memory
map practically limits the possible values for BI and BC to powers of two.

The address generator that was shown in the previous chapter (Fig. 2.9) can extract
4 chunks of consecutive bits from an incoming logical address. Two of these chunks
form the column address, concatenating the remaining column bits and BC chunks,
while forcing the lower BL bits to zero, since sub-burst addressing is not supported.
The address generator can extract a portion of its bank address bits from the command
bank pairs that are stored in the pattern memory, as discussed in Sect. 2.3.2. They are

Fig. 3.9 Memory map from logical to physical address. BGI refers to the degree of bank-group
interleaving, which we limited to 2 in Sect. 3.2.2. Bits from the logical address map to the similarly
marked locations in the physical address. For example, log2(BI/BGI) bits from the corresponding
position in the logical address are used in the similarly marked position in the bank address

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2

3.2 Predictable Patterns 73

combined with the remaining bank bits chunk to complete the bank address. This
feature allows us to transparently use the more complex bank interleaving orders
that the ILP formulation might produce. The final chunk of bits simply represents
the row address. Note that if a parameter like for example BGI has the value 1, then
its corresponding chunk disappears from the address (log2(1) = 0).

The remaining (white) portion of the logical address can be mapped freely to
different physical address elements, such that for example (1) separate memory
regions are generated for different clients (spatial partitioning), and (2) locality is
promoted as much as possible in case a conservative open-page policy (Chap.6) or
cache [16] is used. This could imply different things for different types of clients. If
incremental request address sequences are to be expected then it makes sense to map
consecutive addresses to the same bank and row as much as possible to maximize
locality. Similarly, for caches, it can be beneficial to map addresses that map to the
same cache line to the same row and bank as much as possible.

Figure 3.10 shows three data layout examples in an extremely small 4-bank mem-
ory, resulting from different (BI, BC) and ‘useBsPbgi’ settings (written as BGI in
the figure). We map the bits that are not bound to the pattern configuration (the white
part in Fig. 3.9) such that for consecutive logical addresses the bank changes first,
followed by the column, and finally the row.

Fig. 3.10 Threememorymap examples, showingwhere the bursts of requests to consecutive logical
addresses (separated by the access granularity) are written. The third configuration, using (2, 1),
behaves the same regardless of the BGI setting

http://dx.doi.org/10.1007/978-3-319-32094-6_6

74 3 Memory Patterns

3.3 Composable Pattern Conversion

The previous section discussed different means to create predictable memory pat-
terns. These can be used within the memory controller template to offer worst-case
bandwidth and response time guarantees to thememory clients. However, there is still
interference between memory clients, since variation exists in the amount of time it
takes to process atoms based on their types. For example, read and write patterns can
be of different lengths, and switching patterns are inserted between access patterns
of different types, both causing differences in the execution time of the sequence of
commands belonging to an atom.

Delay blocks can be added to create the cycle-level isolation required for compos-
able behavior, although they have some disadvantages, besides the obvious additional
hardware cost (Sect. 2.6). Delay blocks turn the actual-case performance into the ana-
lytically determined worst-case performance, which additionally may be pessimistic
if computed bounds are not tight. Additionally, a delay block cannot just isolate and
eliminate variation caused by other clients, but instead removes all variation. It needs
to assume that each busy period starts one cycle after an arbitration decision has been
made, such that the client misses its first chance on a scheduling slot. As a result,
the benefit generated by better-than-worst-case request arrival times of the client’s
own requests with respect to the arbitration cycle of the resource is absorbed by the
delay block, harming the client. This section introduces a new mechanism to extend
the predictable pattern-based memory controller to create a composable SDRAM
resource in which requests from separate memory clients are temporally isolated,
while avoiding the previously mentioned disadvantages.

The key idea is to share the SDRAM through non-work-conserving TDM arbi-
tration, and to make the start of a client’s time slots independent from other clients.
In this context, ‘non-work-conserving’ means that slots that are not claimed by their
owner cannot be used by other clients. To ensure that a slot always starts at the same
time, all slot lengths have to be equal regardless of the atom type or the presence
or absence of an eligible atom. Also, the state of the memory must return to neutral
after each atom, such that following atoms are not constrained by previous atoms
from other clients. This implies that a close-page policy must be used. The influence
of the atom type must also be eliminated, meaning that the timing constraints that
allow both read and write patterns must be satisfied at the end of the slot. To meet
these requirements, the predictable memory patterns are converted to composable
patterns. Section 3.3.1 discusses that process, after which performance bounds for
these patterns are derived in Sect. 3.3.2.

3.3.1 Composable Memory Pattern Generation

Composable memory patterns are constructed at design time in a similar manner as
predictable patterns. The goal is to create composable read and write patterns that

http://dx.doi.org/10.1007/978-3-319-32094-6_2

3.3 Composable Pattern Conversion 75

Fig. 3.11 Composable pattern-generation example. The naive solution simply concatenates the
switching patterns to the access patterns and then adds NOPs to equalize the length, while the
proposed solution uses the switching patterns to balance the lengths as much as possible before
adding more NOPs, leading to shorter patterns

can be scheduled arbitrarily without violating timing constraints, and are equal in
length. Their length determines the length of one TDM slot.

The composable patterns are generated in three steps. The first step generates a
predictable pattern. The last two steps make the pattern set composable. Figure 3.11
shows the relation between a predictable pattern set and its composable counterpart.
We proceed by discussing each of these steps in more detail:

1. Read and write patterns are generated based on one of the methods in Sect. 3.2.1.
NOPs have already been added at the end of these patterns, such that they can
be repeated after themselves without violating SDRAM timing constraints. This
determines the minimum length of the predictable access patterns. Based on this,
the lengths of the switching patterns are determined.

2. Composable pattern sets cannot contain switching patterns, since they introduce
timing dependencies on the previous atom type. Instead of having separate switch-
ing patterns, the required NOPs are distributed amongst the read and write pat-
terns. NOPs resolving read-to-write (RTW) constraints can be added either at the
end of the read pattern or the beginning of the write pattern, while NOPs resolv-
ing write-to-read (WTR) constraints can be added either at the end of the write
pattern or the beginning of the read pattern. A naive approach, which simply con-
catenates the full switching patterns to the corresponding read or write pattern,
incurs unnecessary overhead in Step 3. Therefore, we aim to equalize the lengths

76 3 Memory Patterns

of the access patterns with all available NOPs from both switching patterns. They
are distributed to balance the pattern lengths as much as possible, reducing the
conversion overhead in terms of efficiency, as shown in Fig. 3.11.

3. Finally, any length difference that still remains between the read and write pattern
has to be compensated for by adding NOPs at the end of the shortest pattern.

TDM slots that are not occupied by an atom are filled with idle patterns consisting
of only NOPs. The idle pattern length is made equal to the composable read or write
pattern length, which guarantees that all slots always take the same number of cycles.
The refresh timer triggers the execution of refresh patterns at the end of a regular or
idle slot after every refi cycles. The actual insertion time is not influenced by the
running clients since all slots are equally long, meaning refresh is also composable.

“The start of a time slot” is an abstract concept, which in the hardware imple-
mentation of the memory controller is translated into valid-accept handshakes on the
DTL interface between the atom queue, which is private to a client, and the resource
bus. The resource bus experiences back-pressure from the back-end, i.e., the back-
end does not accept a new atom while it is still working on a previous one. This
back-pressure is forwarded to the port-specific hardware in a pipelined fashion. The
hardware implementation is only composable if the timings of the valid-accept hand-
shakes on the command, read data, and write data channels of the bus-to-back-end
DTL interface (see Fig. 2.11) do not leak information from one client to the other.
This is assured in different ways for each channel:

• The command channel has a guaranteed acceptance rate, because patterns have a
known fixed length and hence a new command can be inserted at regular intervals.
At the start of a slot, that is, after a scheduling decision by the arbiter, the command
channel is guaranteed to only exert back-pressure if a refresh was inserted. This
delays new scheduling decisions independently of the clients, creating room for
the refresh in the schedule, and all future slots shift forward in time appropriately.

• The time between the acceptance of an atom on the command channel and the
arrival of data on the read channel is fixed, since theSDRAMcommands in a pattern
have a fixed delay with respect to the valid-accept handshake on the command
channel, and read data has a fixed delay with respect to the RD commands in a
pattern. The atom buffer is guaranteed to have space for the data (since it otherwise
would not have presented the atom to the resource bus), and hence the valid-accept
handshake on this channel is not client-dependent.

• The rate at which data enters the back-end is the same as the rate at which it exits
the back-end, although the time at which data leaves is shifted with respect to
the start of the pattern. This happens because the first few commands of a pattern
are typically not WR commands, and there is an additional required delay (write
latency) between the WR command and the associated data on the SDRAM data
bus. The write latency could theoretically span across pattern/slot boundaries for
certain memories and (BI, BC) configurations, and in the mean time the data is
temporarily buffered in the back-end. Thewrite-data buffer accepts all data as soon
as possible at the start of a pattern if it is empty. Since the presence or absence
of buffered write data connected to a slot is dependent on the type of atom that

http://dx.doi.org/10.1007/978-3-319-32094-6_2

3.3 Composable Pattern Conversion 77

was scheduled in it, we must make sure that this can never cause back-pressure
for another slot, since that implies there is cross-client interference. To guarantee
this, the size of the write-data buffer in the back-end is increased such that it never
causes back-pressure at slot edges. In practice, this means it has a capacity of
2 atoms worth of data, assuming the maximum offset between the command and
write channel is less than 2 slots, which holds for all SDRAMs we are aware of,
including those considered in our experiments (Appendix B).

The impact of the conversion frompredictable to composable patterns on thememory
efficiency is shown in the next section.

3.3.2 Impact on Memory Efficiency

The worst-case analysis for predictable patterns is based on the notion of memory
efficiency, as shown in Sect. 2.4.2.2. To evaluate the performance of composable
patterns, the efficiency loss with respect to the corresponding predictable pattern set
has to be determined. This section derives an expression for the efficiency loss. In
Sect. 3.4.3.1, we apply it to quantify the efficiency loss for a set of relevant memories.

The lengths of the predictable read,write, write-to-read, and read-to-write patterns
are denoted by t p

r , t p
w , t p

wtr , and t p
rtw, while the composable access pattern lengths are

denoted by t c
r and t c

w, respectively. We need to distinguish three different cases,
depending on the length of the predictable patterns. For this purpose, we use the
dominance classes from [13]:

1. If the read pattern is longer than thewrite pattern plus both switching patterns, then
the worst-case request sequence consists of only read requests, and the pattern set
is read dominant. The composable access patterns are as long as the predictable
read pattern, t c

r = t c
w = t p

r .
2. If the write pattern is longer than the read pattern plus both switching patterns,

then the worst-case request sequence consists of only write requests, and the
pattern set is write dominant. The composable access patterns are as long as the
predictable write pattern, t c

r = t c
w = t p

w .
3. Pattern sets that do not fit in class 1 or 2 show worst-case behavior if read and

write requests are alternated. These pattern sets are mix dominant. The pattern set
in Fig. 3.11 is an example of this class. In this case,

t c
r = t c

w =
⌈

t p
r + t p

w + t p
wtr + t p

rtw

2

⌉
(3.2)

In the worst case, only the dominant pattern of a read or write dominant pattern set is
used. Executing this pattern is the most time-consuming way to transfer one atom, so
it determines the worst-case efficiency. Composable patterns based on read or write
dominant predictable patterns have composable read and write patterns lengths that
are equal to the dominant pattern length. This means their worst-case efficiency is
unaffected by the conversion.

http://dx.doi.org/10.1007/978-3-319-32094-6_2

78 3 Memory Patterns

If the composable pattern set is based on a mix dominant pattern set, then the
worst-case efficiency is only affected if the two switching patterns are smaller than
the length difference between the read andwrite pattern, andNOPs had to be added in
Step 3 of the conversion to balance the patterns. At most one NOP is required for this
by definition, or else the pattern set would not be mix dominant. If t p

r + t p
w + t p

wtr + t p
rtw

is odd, then the sum of the composable pattern lengths is equal to the sum of the
predictable pattern lengths plus 1, as a result of rounding up in Eq. (3.2). In all other
cases, the composable pattern set efficiency is equal to the predictable pattern set
efficiency. The conversion efficiency (epc) is thus as follows:

epc =
{

t p
r +t p

w +t p
wtr+t p

rtw

1+t p
r +t p

w +t p
wtr+t p

rtw
if mix dominant and t p

r + t p
w + t p

wtr + t p
rtw is odd,

1 otherwise.
(3.3)

3.4 Evaluation

This chapter presented two novel pattern-generation heuristics, an ILP formulation of
the pattern-generation problem, and a conversion method to create composable pat-
terns out of predictable patterns. This section evaluates the efficiency of these ideas.
First, we introduce the set of test memories that are used in the remainder of this book
in Sect. 3.4.1. For these memories, Sect. 3.4.2 compares the schedule lengths gener-
ated by the two heuristics to those generated by the ILP instance, while Sect. 3.4.3
evaluates the technique for converting predictable patterns into composable patterns.

3.4.1 Test Memories

We consider two devices per SDRAM type. Each device is part of a speed bin defined
by the associated JEDEC standard for that SDRAM type. We select speed bins based
on the commercial availability of the device and data sheets at the time of writing,
the range of clock frequencies they cover (we select a device from the slowest and
fastest bin if available), and comparability with speed bins of other SDRAM types
(select common speeds and data bus widths asmuch as possible). Table 3.3 shows the
specifications of the selected devices. All devices are made by the same vendor, since
this makes it more likely that consistent safety margins (σ) have been applied to the
specifications in the data sheet to compensate for variation [17]. This is especially
important for the IDD current measures we supply to the power model in Chaps. 4
and 5, as it makes the evaluation across devices fairer. Furthermore, it is important
to note which data sheet revision and die revision are used in the comparison, since
SDRAM manufacturers frequently update both documentation and the design of
their chips. Appendix B contains timings and currents per memory that were used
for the experiments.

http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_5

3.4 Evaluation 79

Table 3.3 Memory specifications

Name Clock
frequency
(MHz)

Data bus
width

Capacity
(Gib)

Part number Die
revision

LPDDR-266 133 ×16 1 MT46H64M16LF-75 B

LPDDR-400 200 ×16 1 MT46H64M16LF-5 B

DDR2-800 400 ×16 1 MT47H64M16-25E H

DDR2-1066 533 ×16 1 MT47H64M16-178E H

DDR3-1066 533 ×16 1 MT41J64M16-178E G

DDR3L-1600 800 ×16 4 MT41K256M16-125 E

LPDDR2-667 333 ×32 2 MT42L64M32D1-3 A

LPDDR2-1066 533 ×32 2 MT42L64M32D1-18 A

LPDDR3-1333 667 ×32 4 EDF8132A1MC-15 1

LPDDR3-1600 800 ×32 4 EDF8132A1MC-125 1

DDR4-1866 933 ×8 4 MT40A512M8-1G9 A

DDR4-2400 1200 ×8 4 MT40A512M8-2G4 A

The access granularities we consider vary from a single SDRAMburst to multiple
grouped bursts up to a size of 256 bytes. This range thus includes typical cache miss
sizes (8–64 bytes), as well as larger DMA or accelerator-based transactions.

3.4.2 Evaluation of Pattern-Generation Heuristics

The lengths of the patterns determine the efficiency of a pattern set; a shorter pattern
is preferred over a longer pattern if it transfers the same amount of data. To eval-
uate the quality of the BS BI and BS PBGI heuristics, we use the ILP formulation
from Sect. 3.2.4.

3.4.2.1 Non-DDR4 Memories

The ILP formulation and the BS BI heuristics are used to generate read and write
patterns for the selected memories (Table 3.3), for all (BI, BC) combinations with
access granularities up to 256 bytes, and we compared the resulting pattern lengths.
For the non-DDR4 memories, we conclude that the bank scheduling heuristic gen-
erates patterns of the same length as the ILP formulation for all considered devices
except LPDDR3-1333, and is hence optimal for most devices.

For two LPDDR3-1333 configurations (4, 2) and (2, 4) BS BI is nonoptimal; the
write patterns are 1 cycle too long in these cases. Figure 3.12 shows the patterns
generated by BS BI and the ILP formulation for the first of these two configurations.

80 3 Memory Patterns

Fig. 3.12 Exceptional nonoptimal result for LPDDR3 in the (4, 2) configuration

The nonoptimality is caused by an activate command that is scheduled earlier than
rcd (ACT-to-RD/WR) cycles before the write command, due to a conflict with an
earlier write command that occupies the desired spot in the schedule. As a result, the
distance between the precharge from a previous pattern incarnation and this activate
shrinks a cycle. Once all commands are scheduled, the heuristic detects that the PRE-
to-ACT constraint for this pair is violated, and it compensates by making the pattern
one cycle longer. An alternative conflict resolution strategy, which postpones both
the write command and the activate, leads to the optimal solution, but this cannot be
determined at the time the heuristic makes the decision without introducing cycles
in the algorithm. Given how exceptional this effect is (2 out of 120 non-DDR4
configurations are affected), and its relatively low cost (<2% length increase), we
do not explore this further.

3.4.2.2 DDR4 Memories

For the DDR4 memories, we generate patterns using both the BS BI and BS PBGI
heuristics and the ILP formulation. Figure 3.13 displays the resulting write pattern
lengths for a DDR4-1866 memory (the trends for the read patterns and the DDR4-
2400 look the same). For access granularities where BI and BC are both larger than
1 (and could hence use bank-group interleaving), BS BI generates patterns that are
on average 8% longer than the optimal length. If we consider both BS BI and BS
PBGI then there are only two configurations left where neither BS BI or BS PBGI
are optimal (the trends look similar for DDR4-2400).

(4, 2) suffers from the same effect as the LPDDR3-1333 pattern that was discussed
earlier. The remaining configuration, (2, 16), uses a complex bank interleaving order
in the ILP’s solution. Consider, for example, the generated interleavings (target bank
id of a burst is given by the number in the list) and pattern lengths for the (2, 16)
write patterns:

BSBI(2,16) → {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 168 cc

BSPBGI(2,16) → {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, 174 cc

ILP(2,16) → {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1}, 153 cc

3.4 Evaluation 81

Fig. 3.13 Comparison of write pattern lengths for DDR4-1866 using bank scheduling (BS BI),
bank scheduling with pairwise bank-group interleaving (BS PBGI), and the ILP formulation (ILP).
Lower is better

The ILP solution behaves almost like a hybrid of the two heuristics, although its exact
properties are dependent on the particular numerical values of the timing constraints
for the memory device under consideration.

Since the run-time of both heuristics is negligible (it takes less than a second to
generate all heuristic-based patterns in Fig. 3.13), it is feasible to execute them both
for configurations where BI and BC are larger than one, and then select the best
result. Cases may exist where the read pattern is smaller in BS PBGI, while the write
pattern is smaller in BS BI or vice versa. We propose to select the pattern set that
delivers most worst-case bandwidth in those cases. Note that the read and the write
patterns have to use the same bank interleaving order to avoid permuting the data
when sequentially reading and writing the same address.

For access granularitieswhereBI andBCare both larger than 1, the average pattern
generated by this procedure is 1.1% larger than optimal. Since the potential gains
of creating a more refined heuristic that mimics the ILP solutions more closely are
quite small, and because it is not straightforward to define it generically, we propose
to use a combination of BS and BS PBGI as a fast way to generate patterns, i.e., run
both algorithms, and select the shortest patterns. This also keeps the heuristic simple
enough to allow online implementations, although pre-computing and storing the
relevant pattern sets instead of the heuristic in the memory controller’s driver would
generally be more space-efficient.

As one might expect, generating a solution through the ILP formulation is signif-
icantly more time consuming than using the heuristics. The number of variables and
constraints in each problem is a function of the number of commands to schedule
(3 ·BI+BI ·BC), and of the upper bound on the optimal length. The largest problem
we generated is the (16, 2) configuration for DDR4-1866, which contains 14780 vari-

82 3 Memory Patterns

ables and 2848 constraints, while the average size for this memory is 3431 variables
and 1083 constraints. It takes about a second to generate one small pattern with
just a single burst, and about an hour for the biggest patterns with 32 bursts. Using
the ILP solution offline may therefore be feasible if the access granularity and thus
the number of bursts are small enough, and the required number of iterations over
different configurations and SDRAM types is limited. The selected read and write
patterns should use the same bank interleaving order, for the same reason mentioned
earlier. Extra constraints may be added to the formulation to force a matching order
once one of the two patterns is generated, although we did not explore this option.
Overall, this experiment shows that efficient patterns can be generated in reasonable
time, either optimally within hours, or near-optimally in a second.

3.4.3 Composable Patterns

This section evaluates the composable pattern conversion that was introduced in
Sect. 3.3.1. Section 3.4.3.1 evaluates the efficiency loss with respect to predictable
pattern sets. Section 3.4.3.2 demonstrates that the VHDL instance of the proposed
controller delivers composable performance to its clients through the application of
composable patterns.

3.4.3.1 Conversion Efficiency

In this experiment, we first generate predictable patterns for the same set of SDRAM
devices we used earlier, using our heuristic approach. We then apply the composable
pattern conversion, and show the conversion efficiencies (epc, Eq. 3.3) in Table 3.4.

Table 3.4 epc (Eq.3.3) for a range of SDRAM ×16 devices

BI 1 1 1 1 2 4 1 2 4 8

BC 1 2 2 4 2 1 8 4 2 1

LPDDR-266 1.00 1.00 1.00 1.00 0.97 0.98 1.00 0.99 0.99 –

LPDDR-400 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 –

DDR2-800 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

DDR2-1066 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DDR3-1066 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

DDR3L-1600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LPDDR2-667 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LPDDR2-1066 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

LPDDR3-1333 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

LPDDR3-1600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

DDR4-1866 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DDR4-2400 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3.4 Evaluation 83

Configurations containing up to 8 bursts per pattern are considered, i.e., themaximum
product of BI and BC is 8. There are no BI 8 results for LPDDR memories since
they only have 4 banks. The maximum efficiency loss is observed for LPDDR-266
(2.6%). Only pattern sets that require switching patterns are susceptible to efficiency
loss. Switching patterns are usually required when the pattern set implements a large
access granularity and, as a result, has a higher inherent efficiency (a more in-depth
discussion on pattern efficiency can be found in Chap.5). The slower the memory,
the smaller the access granularity has to be to reach high efficiency, which explains
why the slower memories are relatively more likely to suffer. However, the timing
constraints on which the patterns are based determine the actual losses. On average,
the efficiency decreases by 0.12% due to the conversion, so the loss is typically
negligible. Including configurations with up to 16 bursts changes this number to
0.14%. We conclude composable patterns are a low-overhead alternative to delay
blocks for real-time clients. The strength of delay blocks is that they can be enabled
or disabled per client (providing predictable performance when switched off), while
composable patterns are by definition used by all clients at once.Composable patterns
are hence best used in use-cases where all clients require composable performance.

3.4.3.2 Composable Memory Operation

Experiments that demonstrate composability usually rely on the repeatability of an
execution trace. First, we discuss how such an experiment is generally structured.
After that, we explain why we need to deviate slightly from this approach in our
experiment.

1. An application A is first executed in isolation, where a complete characterization
of its behavior is recorded.

2. The execution platform is reset for a second run, where application A is combined
with another interfering application B, with which it shares common resources.

3. The platform and application A are assumed to be deterministic, i.e., when the
same code (with the same inputs) executes in the second run, the same outputs
are produced as in the first run, at the same (relative) time.

4. The reset operation of the execution platform is assumed to be perfect, such that
it is in exactly the same state in both the first and the second run when application
A starts.

5. Given these assumptions, a change in the recorded behavior of applicationA in the
second run relative to first run is likely to be caused by applicationB, whichwould
indicate that at least one component in the execution platform is not composable.
When no changes are observed, the platform might be composable.

Note that there are many caveats related to the experiment, and no hard conclu-
sions can be drawn from its outcome alone. For example, the absence of change does
not prove that a repeat of the experiment with a different interfering application will
have the same result. Similarly, delaying the start of application B by as little as one

http://dx.doi.org/10.1007/978-3-319-32094-6_5

84 3 Memory Patterns

Fig. 3.14 Setup of the composability experiment. To simplify the drawing, we combine the atom-
izer, width converter, and atom buffer into a single block called AWB. Three ports on the controller
are not used and grayed out. The (logical) configuration connections are drawn in gray, but their
exact path is not shown for simplicity

cycle could reveal or hide changes in the execution trace of A. A single experiment
is simply not enough to prove that in all reachable system states and for all possi-
ble inputs composability is maintained. Therefore, it can only be supplementary to a
larger argument based on the design of the execution platform, which by construction
should be convincingly composable. Chapter 2 and Sect. 3.3.1 contain that argument
in the form of the description of the memory controller combined with composable
patterns, and we demonstrate its workings here with an experiment that follows the
same principles as described above.

Experimental Setup

The experiment uses a five-port VHDL instance of the Raptor memory controller, as
shown in Fig. 3.14. Two MicroBlaze [18] processors (MB1 and MB2) are connected
to the controller through their private DMAs modules, using the first 2 controller
ports. Both MicroBlazes also have an (unused) Memory Mapped I/O (MMIO) con-
nection to the controller that runs through the NoC, occupying 2more ports. The fifth
port is meant for debugging, and is also not used in the experiment. TheMicroBlazes
run in a single 100MHz clock domain, while the controller front-end uses a 150MHz
clock. An additional monitor MicroBlaze can communicate with the host PC, and
also configures the memory controller through the configuration port. A timeline of
events that happen during each experiment is shown in Fig. 3.15. We now discuss
the experimental procedure in detail.

Each run begins with programming the FPGA (loading bitstream). This acts as
a nearly perfect reset operation, since most hardware the FPGA contains is fully

http://dx.doi.org/10.1007/978-3-319-32094-6_2

3.4 Evaluation 85

Fig. 3.15 Timeline of events during the experiment. The timeline splits when a new parallel group
of hardware components is activated. Timelines end when there are nomore changes in the behavior
of the associated process

re-initialized to a fixed state each time it is reprogrammed. Once programming is
done, the master reset of the FPGA board is raised. At this time, the clock generators
for the controller and MicroBlaze clock domains start their initialization procedure.
This involves locking a PLL to a reference clock, which take a variable amount of
time per generator, and therefore inserts non-determinism into the system. The effect
it has on execution traces is minimized, because a master soft-reset, which is part
of the synthesized architecture, is not released until they are all locked. This reset
signal is synchronized to each individual clock domain through a 1-bitClock Domain
Crossing (CDC), and within each domain only synchronously reset hardware (based
on the domain-specific reset) is used. All clock domains hence start functioning at
approximately the same time, but there is no fixed or enforced phase relation between
their clocks.

86 3 Memory Patterns

The connections between the clock domains use special-purpose CDC compo-
nents (containing an asynchronous FIFO) to ensure coherency of multi-bit values as
they are passed from one domain into the other. Because the phase relation between
the communicating domains can be different for every run, crossing clock domains
is inherently nondeterministic [19], the CDCs act as nondeterministic components.
This violates one of the assumptions (3) required for the experiment to work flaw-
lessly. Even an execution trace of an application running in isolation should hence
not be expected to be repeatable in our experiment. However, as the results will show
later, we can still with reasonable certainty distinguish changes in the execution trace
related to non-composability from this inherent non-determinism, since the former’s
relative amplitude in this specific setup is much larger.

When the per-domain reset is raised, the PHY begins to initialize, and in parallel
theMicroBlazes start executing their code. The monitor MicroBlaze waits for a fixed
number of cycles (much greater than the PHY initialization time), and then configures
the memory controller front-end and back-end. It then posts a message to MB2
throughadebug (Fast Simplex Link (FSL)) link: the contents of themessagedetermine
if MB2 will be actively using the SDRAM in the remainder of the experiment.
Both MB1 and MB2 are equipped with a 64-bit hardware counter. They both wait
until a fixed time after their local reset based on their counter. This time is chosen
to be (much) greater than the PHY initialization time plus the time the monitor
needs to configure the controller. As a result, the connection to the SDRAM is
initialized before these MicroBlazes become active, thus eliminating the influence
of the variable initialization time of the PHY on the experiment.

After its fixed waiting period, MB2 reads the message from the monitor, and
conditionally activates a loop that generates sDMA requests for the SDRAM. Each
iteration generates two 128-byte write requests, followed by two read requests of the
same size. MB1 executes a similar loop, but does this unconditionally. It keeps track
of the completion time of each loop iteration in a local memory, and reports them to
the host of the FPGA (through the monitor) at the end of each experiment. This trace
of timestamps is used as a substitute for the complete behavioral characterization an
ideal experiment would record.

Apattern setwithBI2 andBC2 is used, corresponding to an atom size of 256 bytes.
TheDTL requests that are sent by theDMAs are only half of that size, being 128 bytes
each, which means that atomizer needs to pad them to fill an entire atom. This in
effect exploits the atomizer as a local amplifier of the amount of traffic that each
DMA generates, compensating for the bandwidth gap that exists between the 32-bit
DMA running at 100 MHz and the controller back-end that can process more than
1.2 GB/s in this configuration. This makes it easier to generate contention with MB2
that has a visible effect on MB1’s timestamp trace.

The predictable pattern set with this configuration is write dominant and has read
and write patterns of 22 and 32 cycles, respectively, and 0 cycle switching patterns.
The composable pattern set has read and write patterns of 32 cycles. A non-work-
conserving TDM arbiter determines which port gets access to the memory. Its slot
table size is set to 20. MB1 has 10 slots in the table, while MB2 has only 1 slot, and
9 slots are empty (and cannot be used MB1 or MB2). This creates a bottleneck for

3.4 Evaluation 87

MB2, making it more likely for it to be using its slot while MB1 is also present, and
hence to generate noticeable interference. The time between scheduling decisions
by the arbiter (scheduling interval) is set to 22 cycles if the predictable patterns are
used, and to 32 cycles when the composable patterns are used. Four different types
(k) of runs are performed:

• k = 1: Predictable patterns, only MB1 accesses the SDRAM
• k = 2: Predictable patterns, both MB1 and MB2 access the SDRAM
• k = 3: Composable patterns, only MB1 accesses the SDRAM
• k = 4: Composable patterns, both MB1 and MB2 access the SDRAM

Each type is executed 122 times, for a total of 488 experiments. Each experiment
generates a trace of 100 timestamps expressed in tile clock cycles (at 100 MHz), one
for each loop iteration of MB1. The first timestamp is collected right after the first
read DMA request completes.

Results

To refer to the timestamps that were recorded in the experiments we use the function
S j

k (i). It returns the i th timestamp (i ∈ [1..100]) in run j ∈ [1..122] of type k ∈
[1, 2, 3, 4]. The absolute values of the timestamps relate to the initial time offset by
which we delay the start of the experiment, and are thus relatively uninteresting.
Therefore, we choose the first experiment from run type Sect. 3.4.3.2 as the baseline
trace, and pointwise subtract its results from all traces. To refer to these relative
timestamps we use the function s j

k (i), which is defined as follows:

s j
k (i) = S j

k (i) − S1
4(i) (3.4)

All the composable runs (s j
3 (i) and s j

4 (i)) would contain only zeros if the experi-
ments were run on a deterministic composable platform. However, different runs can
generate different traces, even if they are of the same type, since repeatability is not
guaranteed on our nondeterministic platform.Within our window of 100 timestamps,
we observed two distinct traces for each run type (marked as “gray (x)” and “black”),
present in almost equal numbers, as shown in Table 3.5. To visualize this, Fig. 3.16
plots these two unique traces per type in a graph. Note that the vertical axis ranges
of the top and bottom graphs are different.

Table 3.5 The number of runs of a specific type that follow the gray (x) or black plotted trace

Run type k 1 2 3 4

Gray (x) runs 58 67 57 60

Black runs 64 55 65 62

88 3 Memory Patterns

Fig. 3.16 Difference in the execution trace ofMB1 in different run types k compared to the baseline
trace (S1

4 (i), which corresponds to the gray flatline in graph (4)). In 122 runs, two unique traces are
observed for each scenario, drawn as one gray line with ‘x’-markers, and one black line per graph

Startingwith the graph in the upper-left corner (1), we see two different and slowly
diverging execution traces for MB1 in different runs. WhenMB2 is enabled in graph
(2), the behavior of MB1 is influenced significantly, indicated by the change in
timestamp distribution compared to (1), which again shows two distinct but different
traces. However, when comparing (3) to (4), there is no observable change in the
behavior of MB1 as a result of enabling MB2, hence indicating that the memory
controller is composable when composable patterns are used. Table 3.5 shows slight
differences in the number of traces that take the path with zero difference from
the baseline trace when comparing (3) and (4). This can be attributed to the finite
number of samples we took fromwhat is essentially a random distribution of possible
phase-offsets between the different clock domains.

The timestamps in s j
2 (i) (graph (2)) are smaller than in s j

1 (i) (graph (1)) for most
iterations, which means that the execution time of MB1 in scenario 2 is smaller, even
though the load on the memory controller has increased. This can be explained by
considering that each write request by MB2 shifts the relative alignment between
the TDM slots in the memory controller and the arrival time of requests from MB1,
since writes take longer than the default 22 cycle scheduling interval. These changes
could have a net positive effect on MB1 in this experiment, because it may cause its
requests to capture a slot in an earlier TDM iteration, instead of having to wait for
the next one. Another possible explanation originates from the interaction between
the DMA and the MicroBlaze. The MicroBlaze polls a status register in the DMA
for the completion of requests in a software loop. This loop has a certain length,

3.4 Evaluation 89

and polling thus happens at fixed intervals. Changes in the alignment between this
loop and the arrival of responses from the memory controller caused by MB2 might
again positively or negatively influence the execution time. In short, the actual-case
behavior of the described system is not performance monotonic, i.e., if one event
within the system (like polling the status register) happens sooner compared to a
reference run, it might cause another event (like the completion detection in the
MicroBlaze) to happen later with respect to that same reference. Note that with a
proper analysis model [20], the worst-case behavior is performance monotonic.

What is not visible in the graphs is that the total execution time of the first 100 itera-
tions of the baseline trace, S1

4(100), is 467552 cycles. Thismeans that even the largest
visible deviations from the baseline are still relatively small compared to the absolute
execution time. One might argue that there is hence no significant difference in the
demonstrated results, and predictable performance is sufficient to be able to verify
MB1’s behavior is correct. However, there is a large difference between the con-
clusions that can be drawn from graphs (1) and (2) versus graph (3), because there
is no guarantee or mechanism that limits the impact of interference on MB1 to the
difference between (1) and (2). Changing application MB2 (or its input if was data
dependent) or adding a third application to the system would require additional ver-
ification runs for MB1. The only conclusion that we can draw based on (1) and (2) is
that in the currently tested conditions, the application behaves as shown. In contrast,
(3) provides a snapshot of the behavior of MB1 that is independent of the behavior
of MB2 or other potential applications, and is therefore a much more general and
useful result.

Finally, onemight expect the two observed execution traces in (3) or (4) to diverge
after the initial 20 cycle difference happens. However, the presence of periodically
triggered events, like for example the edges of the TDM slots and the polling loop
in the MicroBlaze, can actually hide the visible effects of these (relatively small)
timing differences in the starting time of an application loop iteration. This happens
because progress halts until such events happen regardless of the precise arrival
time of requests. Therefore, a request from MB1 arriving 20 cycles (200 ns) earlier
could still be processed by the memory controller at the exact same time as a later
request, considering there is a period of 10 slots in the TDM table (2133 ns) where no
service is offered to MB1. Note that there is no guarantee that these two traces will
not diverge when the experiment length is increased, nor that only two traces exist.
However, the set of possible traces in scenarios (3) and (4) will always be the same,
and given enough runs, they should have the same frequency, because the controller
is composable.

3.5 Conclusion

The SDRAM controller that is the central theme of this book uses memory patterns,
both for its worst-case performance analysis, and in its implementation. This chapter
discussed the generation of predictable patterns sets and a conversion method which

90 3 Memory Patterns

turns them into composable pattern sets. Two heuristicmethods that generate patterns
are described, applicable to a wide range of contemporary SDRAM types, including
DDR4. Even though the generation of patterns can be seen as a special case of
the (old) memory command scheduling problem, we innovated on multiple aspects
of its solution in the context of real-time memory controllers. First, we introduce
a notational abstraction that allows us to write down our scheduling algorithms in
a general fashion, that is, without specifically having to target one SDRAM type.
This improves portability, and makes it easier to compare scheduling algorithms
across SDRAM generations. Second, we exploit the available degrees of freedom in
the low-level memory map within the scheduling algorithm, which determines the
distribution of bursts across banks. Both the number of banks a request is interleaved
over (BI) and the number of bursts per bank (BC) are parameterized, generating
a range of possible pattern configurations. By means of an ILP formulation, we
evaluated the quality the pattern-generation heuristics for a range of 12 memory
devices, and concluded that their output is close to optimal, while being orders of
magnitude faster in terms of generation time.

To create a composable memory resource, we introduced a simple method that
turns a predictable pattern set into a composable pattern set. We showed that
this conversion has a negligible impact on the predictable performance bounds.
Experimentally, we demonstrated the timing-isolating effect of using composable
patterns in contrast to using predictable patterns on our FPGA memory controller
instance, even in the presence of nondeterministic hardware components.

References

1. JEDEC (2009) Low power double data rate specification JESD209B
2. JEDEC (2010) DDR3 SDRAM specification JESD79-3E
3. JEDEC (2010) Low power double data rate 2 specification JESD209-2D
4. JEDEC (2012) DDR4 SDRAM specification JESD79-4
5. JEDEC (2013) Low power double data rate 3 specification JESD209-3B
6. JEDEC (2009) DDR2 SDRAM specification JESD79-2F
7. Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization

for predictability and temporal isolation. In: Proceedings of CODES+ISSS, pp 99–108
8. Akesson B, Goossens K (2011) Architectures and modeling of predictable memory controllers

for improved system integration. In: Design, Automation and Test in Europe Conference and
Exhibition (DATE), pp 1–6

9. ShahH,RaabeA,Knoll A (2012) BoundingWCETof applications using SDRAMwith priority
based budget scheduling in MPSOCs. In: Design, Automation and Test in Europe Conference
and Exhibition (DATE), pp 665–670

10. PaolieriM,QuiñonesE,Cazorla FJ (2013)Timing effects ofDDRmemory systems in hard real-
time multicore architectures: issues and solutions. ACM Trans Embed Comput Syst 12(1s):64

11. Krishnapillai Y, Pei Wu Z, Pellizzoni R (2014) ROC: a rank-switching, open-row DRAM con-
troller for time-predictable systems. In: Euromicro conference on real-time systems (ECRTS),
pp 27–38

12. Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar R (2014) Bounding memory
interference delay in COTS-basedmulti-core systems. In: Real-time and embedded technology
and applications symposium (RTAS), pp 145–154

References 91

13. Akesson B, Hayes Jr W, Goossens K (2011) Automatic generation of efficient predictable
memory patterns. In: Embedded and real-time computing systems and applications (RTCSA),
pp 177–184

14. Goossens S (2014) Power/performance trade-offs in real-time SDRAM controllers—code and
datasets. http://www.es.ele.tue.nl/~sgoossens/sdram_trade_offs

15. Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank
privatization and fixed priority scheduling. In: Embedded and real-time computing systems
and applications (RTCSA)

16. Zhang Z, Zhu Z, Zhang X (2000) A permutation-based page interleaving scheme to reduce
row-buffer conflicts and exploit data locality. In: International sympoisum onmicroarchitecture
(MICRO), pp 32–41

17. Chandrasekar K, Weis C, Akesson B, Wehn N, Goossens K (2013) Towards variation-aware
system-level power estimation of DRAMs: an empirical approach. In: Design automation
conference (DAC), pp 23:1–23:8

18. Xilinx (2011) Microblaze processor reference guide. http://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf

19. Vermeulen B, Goossens K (2011) Interactive debugging of systems on chip with multiple
clocks. IEEE Des Test Comput 5

20. Nelson A, Goossens K, Akesson B (2015) Dataflow formalisation of real-time streaming appli-
cations on a composable and predictable multi-processor SOC. J Syst Arch

http://www.es.ele.tue.nl/~sgoossens/sdram_trade_offs
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf

Chapter 4
Cycle-Accurate SDRAM Power Modeling

SDRAM memories contribute significantly to the overall system power and energy
consumption of a system and require effective power management for their energy-
efficient use. The key prerequisite to their efficient power/energy management is
to use accurate SDRAM power and energy consumption estimates. Hence, system
designers require high-precision power models that accurately estimate power and
energy consumption of the different SDRAMoperations, state transitions, and power-
saving modes.

All SDRAM vendors furnish a set of standard current measures corresponding to
different combinations of memory operations specified by JEDEC. These measures
are employed by high-level power models, which break them down into measures
corresponding to individual SDRAMoperations. However, existing high-level power
models lack precision in their modeling of the different SDRAM operations, and
hence do not report accurate power estimates.

Alternatively, circuit-level power models can be employed for power estimation,
since they perform accurate modeling of these operations, transitions, and modes.
However, the underlyingSDRAMarchitectures employed by these circuit-levelmod-
els are very detailed and specific. They require extensive adaptation to model differ-
ent SDRAM architectures, i.e. it is not easy to reuse these models across devices or
generations.

This chapter addresses this issuebyproposing ahigh-level cycle-accurateSDRAM
power model called DRAMPower, which employs JEDEC-specified current mea-
sures and performs high-precision modeling of SDRAM operations to obtain accu-
rate power and energy estimates. We compare and contrast the state of the art in
high-level SDRAM power models against ours, and show how we improve the pre-
cision of the modeling of the different SDRAM operations, state transitions and
power-saving modes.

Section4.1 starts with a high-level description of the approach we use in our
SDRAM power model. Section4.2 continues with background on the various stan-
dard current measures specified by JEDEC. We introduce the various states an
SDRAM can be in with respect to its power consumption in Sect. 4.3, and show
how to calculate the energy cost of each command in Sect. 4.4. We first present equa-

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_4

93

94 4 Cycle-Accurate SDRAM Power Modeling

tions targeting DDR2/3/4 devices and later adapt them to reflect LPDDR/2/3 and
WIDE IO SDRAMs in Sect. 4.5. Section4.6 combines the equations into an algo-
rithm that accurately calculates the total energy cost of a trace of SDRAMcommands.
We contrast our approach with related work in Sect. 4.7, demonstrate its accuracy in
Sect. 4.8, before ending with conclusions in Sect. 4.9.

4.1 High-Level Description of the DRAMPower Model

SDRAMstandards requirememory vendors to specify the currents consumedby their
memories when specific series of commands are executed by it. These measures are
called IDD currents. The executed command sequences are defined in such a way that
there is at least one IDD measure for each possible power state in which the memory
can be.

DRAMPower models the energy usage of a command trace based on these high-
level currents. We discuss what each of the currents represents in Sect. 4.2. From the
IDD currents measures and knowledge of the command sequences that were used to
generate them, we then derive:

• The background energy consumed by the memory in each possible power state
(Sect. 4.3).

• The energy costs of the individual SDRAM commands (Sect. 4.4), sometimes
called the active energy components. The commands that are executed determine
which power state transitions the SDRAM makes.

By adding the energy related to the executed commands to the contributions of
the background energy for each cycle spent in a certain power state, we obtain an
accurate representation of the consumed energy by a trace of SDRAM commands.
Dividing this energy by the trace length gives us a measure for the average power
consumption during the trace.

4.2 Background on SDRAM Currents

In this section, we describe how the different IDD currents are measured. These
currents are also described in detail in [1], and their numerical values for thememories
we use for experiments in this book are given in Appendix B.

1. IDD0 (One Bank Active-Precharge Current): The command sequence consists
of one ACT, and one PRE command to one bank. Other banks are retained in
precharged state.

2. IDD1 (One Bank Active-Read-Precharge Current): The command sequence con-
sists of an ACT, RD and PRE command to one bank, while other banks remain

4.2 Background on SDRAM Currents 95

precharged. This measurement is performed twice, targeting two different mem-
ory locations and toggling of all data bits.

3. IDD2N (Precharge Standby Current): Measured when all banks are closed
(precharged state).

4. IDD2P0 (Precharge Power-Down Current—Slow-Exit): Measured during power-
down mode with Clock Enable (CKE) Low and the Delay Locked Loop (DLL)
lockedbut off,while the external clock is on andall banks are closed (precharged).

5. IDD2P1 (Precharge Power-Down Current—Fast-Exit): Measured during power-
down mode with CKE Low and the DLL locked and on, while the external clock
is on and all banks are closed (precharged).

6. IDD3N (Active Standby Current): Measured while executing NOP or DES com-
mands, when at least one bank is open (activated).

7. IDD3P (Active Power-Down Current): Measured during power-down mode with
CKE Low and the DLL locked, while the external clock is on and at least one
bank is open (activated).

8. IDD4R (Burst Read Current): The command sequence consists of a continuous
series of RD commands, assuming seamless read data bursts with all data bits
toggling between bursts and all banks open, with the RD commands cycling
through all the banks.

9. IDD4W (Burst Write Current): The command sequence consists of a continuous
series of WR commands, assuming seamless write data burst with all data bits
toggling between bursts and all banks open, with the WR commands cycling
through all the banks and the On die termination (ODT) pin stable at high.

10. IDD5B (Refresh Current): The command sequence consists of a continuous series
of REF commands, issued every rfc cycles.

11. IDD6 (Self Refresh Current): Measured during self-refresh mode with CKE Low
and the DLL off and reset, while the external clock is off and all banks are closed
(precharged).

The IDD currents capturemost, but not all of the power consumptionof anSDRAM.
Other auxiliary power components are associatedwith every read andwrite operation.
When a write is issued, the external signal used to drive the data to the memory
needs to be terminated using termination resistors in the memory module to avoid
distortions of other signals in the memory. This termination power is consumed
whenever a write is issued and also considers potential other (idle) SDRAM ranks.

Similarly, when a read is issued the power required to drive the data out through
the device I/O must also be accounted for and is referred to as the I/O power. Note
that the IDD currents found in datasheets have to cover all SDRAM devices that are
sold under that datasheet. This means that the given values are conservative with
respect to process variation, i.e. they contain safety margins (σ) to account for the
worst devices in the produced batch. To obtain accurate IDD currents for a single
device, the JEDEC tests should be run on that specific device.

96 4 Cycle-Accurate SDRAM Power Modeling

4.3 SDRAM Power State Machine

In the previous section, we discussed how IDD currents are measured. Here, we
describe the state machine that models a DDR3 memory in terms of the back-
ground IDD currents it consumes as a function of the commands it executes. This
state machine is very similar for other SDRAM types. In Sect. 4.5 we explain the
differences.

5 different power states can be distinguished for DDR3 memories (see Fig. 4.1):

1. Precharged: When all banks are closed, and the memory is not in any of the
power-down states. This state corresponds to the IDD2N test. The precharged state
is entered from the active state, in the cyclewhere the last open bank is precharged,
either explicitly with a PRE or PREA command, or when the auto-precharge com-
mand triggers. It can also be entered by a PDX command from the precharged
power-down, or a SRX command from the self-refresh state. These are the com-
mands to exit power-down and self-refresh, respectively. Finally, there are two
time-triggered state transitions from an active state to the precharged state, one as
a result of a REF command, and the other as a result of a self-refresh exit (SRX)
command.

2. Active: When at least one bank is open, and the memory is not in any of the
power-down states. The active state is entered in the cycle where the first open
bank is activated. During a refresh, the memory also spends a fraction of its time

Fig. 4.1 DDR3 power state machine

4.3 SDRAM Power State Machine 97

in this state. Finally, it is also visited when an SRX command is given before
rfc cycles have passed since the self-refresh entry (SRE command). This state
corresponds to the IDD3N test.

3. Precharged power-down: This state is entered if a power-down is issued bymeans
of a PDE command,while thememory is in the precharged state. Based on amode
register setting, the memory enters

• fast-exit mode, consuming IDD2P1.
• slow-exit mode, consuming IDD2P0. This state is also visited as an intermediate
state when entering self-refresh mode, after the SRE command is executed.

4. Active power-down: This state is entered if a power-down entry (PDE) is issued
while the memory is in the active state. This state corresponds to the IDD3P test.

5. Self refresh: The self-refresh state starts rfc cycles after a SRE command is
executed, unless the SRX command is given before that time. The background
current in this state corresponds to the IDD6 test.

With this description of the state machine, we now have the means to determine
which background current is consumed at any given time by simply tracking the
power states a memory visits. Given the duration (t) the SDRAM spends in a specific
power state, the consumed background energy (Ebg) can be calculated bymultiplying
the current drawn in this power state (Ibg) with the operating voltage VDD. So in total,
if the number of cycles in each state is known, using this equation for each state
computes the total background energy:

Ebg = Ibg · VDD · t (4.1)

4.4 Determining the Energy Cost of a Command

The previous section describes how to calculate the background energy. In this
section, we calculate the active component of the energy by considering the energy
cost of each individual command. The general procedure for doing this is as follows:

1. Find an IDD test that executes the relevant command.
2. Determine the total energy cost (E) of one iteration of this test. This can straight-

forwardly be done by taking the current measure (IDD) and multiplying by the
duration of the test (t), and the operating voltage (VDD):

E = IDD · VDD · t (4.2)

3. The energy has an active component (Ea), caused by the logic that toggles as a
result of the commands in the test, and a background component (Ebg). We are
able to subtract the background component from the total energy, since there
are other IDD tests that exclusively measure the background current (Ibg) in each
possible power state. For example, to find the cost of a WR command, we can

98 4 Cycle-Accurate SDRAM Power Modeling

Fig. 4.2 Thefigure showshowEACT andEPRE are determined.The rectangles represent themodeled
distribution of energy during the IDD0 test for a DDR3-1066 (Appendix B), using the following
parameters: VDD = 1.5, IDD0 = 75 mA, IDD2N = 35 mA, IDD3N = 45 mA, rc = 27, ras = 20. An
ACT is executed in cycle 0, and a PRE in cycle 20. Note that the width of the EACT and EPRE bars
is arbitrary, but their combined surface area (representing energy) is not. In reality, the energy of
these commands is distributed over multiple cycles

use take IDD4W test, and subtract the active background current IDD3N. In general,
the equation looks as follows:

Ea = E − Ebg = IDD · VDD · t − Ibg · VDD · t = VDD · t(IDD − Ibg) (4.3)

Ea then represents the energy cost of the commands in the test. In the following
sections, we derive Ea for each SDRAM command.

4.4.1 ACT, PRE, and PREA Commands

IDD0 specifies the average current consumed by the memory when it executes an
ACT command (to transfer the data from the memory array to the row buffer) and a
PRE command (to charge the bit lines and restore the row buffer contents back to the
memory array), within the minimum timing constraints. We model the total energy
spent in one iteration of the test as:

EIDD0 = IDD0 · VDD · t = EACT + EPRE + Ebg (4.4)

Ebg consists of the active background current IDD3N for the minimum period for
which the row is active (ras) and the precharge background current IDD2N for the

4.4 Determining the Energy Cost of a Command 99

minimum period for which the row is precharged (rc − ras), and we can hence
describe the combined energy of an ACT and PRE command (EACT + EPRE) as:

EACT + EPRE = EIDD0 − VDD · (IDD3N · ras + IDD2N · (rc − ras)) (4.5)

No IDD test exists that individually captures the energy of an ACT or PRE com-
mand, respectively, and pairs of relevant tests are linearly dependent. Therefore, it
is impossible to exactly calculate the energy per command (Fig. 4.2). To obtain an
estimate for EACT and EPRE, we split the right hand side of the equation in two, based
on the fraction of time spent in the active and precharge state in the test.

EACT ≈ ras

rc
· (EACT + EPRE) (4.6)

EPRE ≈
(
1 − ras

rc

)
· (EACT + EPRE) (4.7)

Note that a typical trace contains an equal number of activates and precharges, and
is hence not affected by the potential inaccuracy of this split.

Precharge All (PREA) commands are often employed when more than one bank
has an active row. The PREA command is more efficient in its latency and energy
consumption compared to explicit PRE commands to different banks, since it avoids
use of multiple commands and takes less time than a series of PRE commands. The
energy cost of a PREA command (EPREA) depends on the number of open banks
(nopen_banks):

EPREA = nopen_banks · EPRE (4.8)

4.4.2 RD and WR Commands

To determine the energy cost of a RD command (ERD), we use the IDD4R test, which
continuously reads from the memory, each burst taking BL/2 cycles. During the test,
the memory is in the active state, consuming a background current of IDD3N.

In addition to the energy captured in the IDD4R test, we need to consider the I/O
energy, as discussed earlier in Sect. 4.2. For this, we rely on the power estimates
given in Micron’s power model [2]. To calculate the total power for data I/O during
a read operation, the I/O power per data bit, PRDQ

M from Table4 in [2], the number
of data lines, IW, and the number of data (byte) strobes IW/8 (Sect. 2.3.3), must be
multiplied.

ERD = (IDD4R − IDD3N) · VDD · BL/2 + PRDQ
M · (IW + IW/8) · BL/2 (4.9)

Similarly, we use the IDD4W test to derive the energy cost of a write command
(EWR). In order to calculate the total energy for termination during a write operation,

http://dx.doi.org/10.1007/978-3-319-32094-6_2

100 4 Cycle-Accurate SDRAM Power Modeling

the termination power per data bit, PWDQ
M from Table4 in [2] is used. In addition to

the data lines and strobes, a write command also drives IW/4 mask lines.

EWR = (IDD4W − IDD3N) · VDD · BL/2 + PWDQ
M · (IW + IW/4) · BL/2 (4.10)

4.4.3 REF Commands

To determine the energy of a REF command, we use the IDD5B test. The total duration
of the test is rfc, of which the first rfc – rp cycles are spent in the active state, and
the final rp cycles are in the precharged state.

EREF = IDD5B · VDD · rfc − VDD · (
IDD3N · (rfc − rp) − IDD2N · rp) (4.11)

4.5 Adaptation to LPDDR and WIDE I/O Memories

The preceding sections used timings and terminology that is specific to DDR2/3/4
memories. LPDDR/2/3 andWIDE IO 3D-SDRAMs are slightly different, since they
use multiple power supplies and hence have more than one voltage domain, and the
power model has to account for this. Effectively this means that for each IDD test
defined inSect. 4.2, there aremultiple resulting currents in theSDRAMdatasheet, one
for each voltage domain. Table4.1 gives an overview of the domains per memory
type. Unfortunately, the naming scheme leads to confusing situations where for
example IDD0 may refer to two different things, either the command sequence, or the
resulting current measured during this test in the VDD domain. Some domains are
merged during IDD tests if they use the same voltage value, meaning there is only
1 current measure available in the datasheet for the aggregate of both domains. The
IDD measures are suffixed with an identifier for the voltage domain they apply to in
the datasheet. These suffixes are also mentioned in the table.

In Sect. 4.4.2, we used PRDQ
M and PWDQ

M to account for the I/O power that is used in
the VDDQ domain. For memories for which no I/O power numbers are readily avail-
able, the model should calculate the I/O power consumption directly from datasheets
using VDDQ domain current estimates. PRDQ

M and PWDQ
M can be set to 0 in those cases,

and conversely, we can skip the VDDQ domain for the memories for which we have
direct I/O power numbers. In the case of LPDDRs (LPDDR1/2/3 SDRAMs), appro-
priate I/O circuitry must be employed as recommended by the SDRAM vendor [2].
Also note that the distinction between the slow-exit and fast-exit precharged power-
down states does not exist for DDR4 and LPDDR1/2/3, and instead there is only
1 precharged power-down power state.

4.6 Trace-Level Energy and Power Calculation in DRAMPower 101

4.6 Trace-Level Energy and Power Calculation
in DRAMPower

Sections4.3 and 4.4 contain all components required to determine the energy and
average power of a trace of SDRAM commands. The DRAMPower tool automates
this process.

Algorithm 4 DRAMPower pseudo-code
1: function DRAMPowerAnalysis(T, memoryType)
2: // N is a map from a command type to an integer (number of instances)
3: // C is a map from a power state to an integer (number of cycles)
4: N :=countCmds(T)
5: C :=countStateCycles(T)
6: E :=0
7: for all dom ∈ voltageDomains(memoryType) do
8: Edom :=0
9: for all tp ∈ { ACT , PRE, RD, W R, REF } do
10: Edom :=Edom+N(tp)× energyPerCommandInDomain(tp, dom)
11: for all state ∈ allStates(memoryType) do
12: Edom :=Edom+C(state)× energyPerCycleInDomain(state, dom)
13: E :=E+Edom

14: return E

15: function countCmds(T)
16: for all tp ∈ { ACT , PRE, RD, W R, REF } do
17: // Find the cardinality (length) of the set of matching commands
18: N(tp) := |{ cmd | cmd.type = tp∀ cmd ∈ T }|
19: return N

20: function countStateCycles(T, memoryType)
21: // Assumes commands in trace are sorted by timestamp.
22: powerState :=precharged
23: t :=0
24: // Initialize state counters to 0
25: for all tp ∈ { ACT , PRE, RD, W R, REF } do
26: C(powerState) := 0
27: for all cmd ∈ T do
28: // Follow the power state machine from Figure 4.1:
29: ns :=nextState(powerState, cmd.type, memoryType)
30: if ns �= powerState then
31: // Increment number of cycles spent in this power state
32: C(powerState) := C(powerState) + (cmd.cc − t)
33: powerState :=ns
34: t :=cmd.cc
35: return C

DRAMPower begins by identifying the different memory commands in the com-
mand trace (both implicit and explicit), their target bank and issued timestamp. It then
inserts one explicit PRE command in place of the auto-precharges, and nopen_banks

precharges for each PREA command.

102 4 Cycle-Accurate SDRAM Power Modeling

Table 4.1 Voltage domains in various SDRAM types

Memory
type

Voltage domains (current naming scheme)

DDR2 VDD (IDDxx), VDDQ *

DDR3 VDD (IDDxx), VDDQ *

DDR4 VDD (IDDxx), VDDQ (IDDQxx), VPP (IPPxx)

LPDDR VDD (IDDxx), VDDQ *

LPDDR2 VDD1 (IDDxx1), VDD2 (IDDxx2), VDDQ + VDDCA (IDDxxIn)

LPDDR3 VDD1 (IDDxx1), VDD2 (IDDxx2), VDDQ + VDDCA (IDDxxIn)

Domains annotated with (*) are not involved in all IDD tests. The naming scheme of the current
measures corresponding to the voltage domain is mentioned in brackets, where xx needs to be
replaced by the identifier of the test, i.e. the burst read current for DDR4 in the VPP domain is
called IPP4R

The resulting command list (T) is forwarded to the analysis phase of the tool,
shown in Algorithm 4. Commands are encoded using the notation introduced in
Sect. 3.2.1, i.e., each element of T is a 3-tuple representing the type, bank, and
clock cycle (cc) of a command. The DRAMPowerAnalysis function first counts
the number of times each type of command is executed (line 4), and how many
cycles are spent in each power state (line 5) using two helper functions. It then
simply iterates over the available voltage domains for the memory type of interest
(line 7), and sums the contributions of the commands and background power. Both
the energyPerCommandInDomain (line 10) and energyPerCycleInDomain
functions (line 12) make sure the appropriate currents and voltages are substituted in
the energy equations we specified earlier in Sects. 4.3 and 4.4 for the voltage domain
of interest, using the substitution rules from Table4.1.

Algorithm 4 only returns the aggregate energy to keep the algorithm small for the
purpose of this book. However, our open-source DRAMPower tool [3] provides a
detailed overview of all the components that contributed to this number. It is freely
available for download, and has also been integrated into the gem5 simulator [4].

4.7 Related Work

Now we proceed by positioning our model with respect to related approaches. We
first contrast our approach with that of Micron [2], which is the most popular (non-
circuit level) SDRAM power model, in Sect. 4.7.1. Other models are then discussed
in Sect. 4.7.2.

http://dx.doi.org/10.1007/978-3-319-32094-6_3

4.7 Related Work 103

4.7.1 Micron’s Approach

Micron derives power equations for different SDRAM operations using the JEDEC-
specified datasheet current measures. Additionally, it determines the background
power corresponding to the first four power states we showed earlier in Sect. 4.3,
similarly to our approach. However, where DRAMPower uses the exact trace of
executed commands to exactly track the executed commands and state transitions,
Micron takes a more coarse-grained approach. As its input, it requires the page hit
rate, and the number of cycles the SDRAMis outputting read data and acceptingwrite
data. From this, it estimates the average composition of commands the SDRAM exe-
cutes. Additionally it takes the percentage of time the memory is in each power state
to approximate the background power. DRAMPower is more accurate for several
reasons including:

1. Micron does not consider the power consumed during the state transitions from
an arbitrary SDRAM state to the power-down and self-refresh states (and back),
reporting optimistic power-saving numbers for these modes.

2. They also do not include the power expended by the mandatory precharges
required before a power-down or self-refresh states can be entered. Schmidt
et al., empirically verified this shortcoming of Micron’s power model in [5].

3. It does not take into account the power consumed during the pre-refresh clock
cycles used to precharge all banks before executing a Refresh, as a part of Refresh
power.

4. It employs the minimal timing constraints from the SDRAM datasheets [6, 7]
between successive commands, and not the actual duration between them as
issued by a SDRAM controller, which may well be greater than the minimum
constraints. Direct scaling of the power estimates obtained from Micron’s power
model therefore gives pessimistic power consumption values for basic SDRAM
operations, such as reads and writes, if the number of commands is small.

5. It cannot accurately provide power consumption valueswhen an open-page policy
or amulti-bank-interleaved memory access policy [8] is employed. This is because
it assumes uniform behavior of all banks (i.e., the same hit ratio for each of them),
which in reality is generally not the case.

Schmidt et al. empirically measured the power values from an SDRAM in [5, 9],
and showed that Micron’s power model provided approximate and worst-case power
consumption numbers and over-estimated the actual savings of the self-refresh mode
for SDRAMs. They also attributed these discrepancies to the fact thatMicron’s power
model does not cover the state transitions to the self-refresh or the other modes and
verified this using different benchmarks.

These critical issues with Micron’s power model impact the accuracy and the
validity of the power values reported by it. This chapter addresses all of the five afore-
mentioned issues by proposing an improved SDRAM power model (DRAMPower)
for all SDRAMs. The precision of the power model using the JEDEC-specified cur-
rent measures is one of the factors that define the accuracy of the power estimates.

104 4 Cycle-Accurate SDRAM Power Modeling

Fig. 4.3 Indication of the difference between Micron’s and DRAMPower’s way of modeling self-
refresh

The proposed power model takes into account all possible state transitions from any
arbitrary SDRAM state to the power-down and self-refresh states. Our generic power
model accepts a cycle-accurate SDRAM command trace of any length (from a sin-
gle transaction to an application trace) from any memory controller, supporting both
open and close-page policies and any degree of bank-interleaving.

To highlight the improvement in the accuracy of modeling of SDRAM operations
in DRAMPower, in Fig. 4.3, we present the difference in the modeling of the self-
refresh power-saving mode betweenMicron’s power model (indicated by the dashed
line), DRAMPower (indicated by the solid black line) and measurements on a real
SDRAM device. As can be noticed in the figure, Micron’s power model ignores
the internal implicit refresh at the beginning of the self-refresh period, which may
prove critical (in terms of power consumption) for shorter self-refresh periods. This
effect is captured byDRAMPower unlikeMicron’smodel. Similarly, state transitions
to power-down modes or auto-refreshes and use of dynamic command scheduling
policies are captured more accurately by our model.

4.7.2 Other Power Models

Our proposed DRAMPower model employs the actual duration between com-
mands obtained from any such SDRAM command trace together with the JEDEC-
specified current and voltage values. Other existing SDRAM power models, such as
Rawson [10], Joshi et al. [11] and Ji et al. [12], propose SDRAM power mod-
eling similar to Micron, but none of them identified or addressed the issue with
state transitions and hence, do not provide any improved power estimation numbers.
Rawson [10] even simplified Micron’s model further with approximate power equa-
tions,whichwere less precise compared toMicron’smodel. Joshi et al. [11] estimated
energy per read/write transaction and assumed all transactions have a fixed timing
behavior, ignoring that in reality the times between commands vary. Ji et al. [12] did
not model the memory power-saving states or state transitions, and hence, do not
provide better power consumption estimates.

4.8 Evaluation 105

4.8 Evaluation

In this section, we present a set of experiments to highlight the accuracy of the power
and energy estimates of the DRAMPower model. We compare the output of the tool
to measurements on our ML605 [13] FPGA development board, and to the output
of Micron’s model.

4.8.1 Experimental Setup

We use our FPGA-based experimentation platform as described earlier in Chap. 2,
containing an instance of the Raptor controller, to obtain IDD current measurements
for a DDR3-1066memory device (see Appendix B). The measurements are obtained
by mounting the DDR3 DIMMs on a JEDEC MO-268 [14] standard-compatible,
JET-5466 SO-DIMM extender board [15] equipped with a current-sensing shunt
resistor of 100m�. The measurements are done using a high-end LecroyWavesurfer
454 Oscilloscope (2 GS/s) reporting at 500 MHz. We employed two channels on
the scope, with the two probes connected across the resistor and using a common
ground. We used 1× probes for minimal signal loss. The difference between the
voltage measures of the two channels indicates the current flowing through the shunt
resistor. For average current (and by extension, power) measurements, we take the
mean of the voltage drop over more than 100 iterations of the analysis window.

Each experiment we run is effectively a micro-benchmark that executes a certain
command or enters a certain power state. The combination of all experiments exer-
cises a representative set of all possible combinations of SDRAM commands. We
decided to employ these micro-benchmarks instead of a complete application trace,
since this allows us to continuously loop them and obtain an accurate measure of
the average current during each test. The power can be expected to be the same for
the different operations under realistic workloads as well. The 17 tests we execute
perform the following operations:

1. Activates two banks, and then precharges them.
2. Activates four banks, and then precharges them.
3. Activates eight banks, and then precharges them.
4. Activates a bank, precharge it, and then execute a REF command.
5. Activates a bank, precharges it, and then moves to the self-Refresh state.
6. Activates a bank, and then moves to the active power-down state.
7. Activates a bank, precharges it, and then moves to the precharged power-down

state.
8. Execute a BI 1, BC 4 read pattern.
9. Execute a BI 1, BC 8 read pattern.
10. Execute a BI 2, BC 1 read pattern.
11. Execute a BI 4, BC 1 read pattern.
12. Execute a BI 8, BC 1 read pattern.

http://dx.doi.org/10.1007/978-3-319-32094-6_2

106 4 Cycle-Accurate SDRAM Power Modeling

13. Execute a BI 1, BC 8 write pattern.
14. Execute a BI 1, BC 4 write pattern.
15. Execute a BI 2, BC 1 write pattern.
16. Execute a BI 4, BC 1 write pattern.
17. Execute a BI 8, BC 1 write pattern.

DRAMPower is used as described in Sect. 4.6 to derive power estimates. ForMicron,
we rely on the equations in [2].

4.8.2 Results

For each test, we present the power consumption estimates of DRAMPower and
Micron’s model when using the measured IDD currents (from the tested DIMM)
as inputs to both the models for a fair comparison in Table4.2. We also show the
obtained accuracy when the IDD currents from the memory’s datasheet are used as
input for themodels.1 Asmentioned earlier in Sect. 4.2, the datasheet currents contain
safety margins to conservatively cover all devices the datasheet applies to, and hence
using them leads to less accurate results if only a single specific device is considered.
However, DRAMPower should be used with the datasheet numbers if its output has
to be conservative for any manufactured device.

Figure4.4 shows the relative differences of the results the two models provide
with respect to the measured power. As evident from Table4.2 and Fig. 4.4, DRAM-
Power performs much better compared to Micron’s power model in all cases, with
an average accuracy of 97% (calculated as the arithmetic mean of the absolute error
percentages). In comparison, Micron’s model achieves around 82% accuracy. This
highlights the importance of high-precision cycle-accurate modeling of power state
transitions and accurate scaling of power estimates based on actual observed (trace-
level) timings between commands, as performed by DRAMPower.

In case of self-refresh test (#5), the accuracy of DRAMPower drops, and the devi-
ation from the measurements is 8%. This can be attributed to the fact that our model
assumes a digital implementation of the DLL in the DIMM. However, the particular
DIMM tested shows characteristics of an analog implementation of DLL [17], as
evident from the measured gradual drop in power consumption when the clock is
gated or turned-off. The power estimation accuracy improveswith longer self-refresh
periods.

1A more extensive set of test results can be found in [16].

4.8 Evaluation 107

Table 4.2 Comparison of DRAMPower and Micron against measurements

Test # Measured Based on measured IDDs Based on datasheet IDDs

DRAMPower Micron DRAMPower Micron

1 490.0 500 3% 659 35% 689 41% 970 98%

2 646.5 647 1% 874 36% 859 33% 1260 95%

3 658.5 655 1% 885 35% 871 33% 1278 94%

4 687.0 693 1% 705 3% 1184 73% 1206 76%

5 66.5 72 8% 58 13% 135 104% 111 67%

6 73.0 78 7% 91 25% 177 142% 197 170%

6 151.5 154 2% 155 3% 273 80% 275 82%

8 1002.0 980 3% 1050 5% 1191 19% 1316 32%

9 1119.0 1108 2% 1152 3% 1325 19% 1405 26%

10 835.5 847 2% 1000 20% 1060 27% 1330 60%

11 1165.5 1182 2% 1409 21% 1435 24% 1836 58%

12 1446.0 1462 2% 1751 22% 1749 21% 2260 57%

13 631.5 631 1% 669 6% 958 52% 1023 62%

14 562.5 551 3% 604 8% 830 48% 923 64%

15 703.0 672 5% 819 17% 945 35% 1205 72%

16 877.5 870 1% 1074 23% 1197 37% 1557 78%

17 1104.8 1099 1% 1368 24% 1489 35% 1965 78%

Avg. accuracy (%) 97% 82% 52% 26%

The displayed numbers represent power (mW), and the absolute percentual deviation frommeasured
power (%)

Fig. 4.4 Difference between measurements and the output of DRAMPower and Micron’s model,
respectively

108 4 Cycle-Accurate SDRAM Power Modeling

4.9 Conclusion

In this chapter, we proposed DRAMPower, a high-level SDRAM power model that
employs JEDEC-specified current metrics and performs high-precision modeling of
the power consumption of different SDRAMoperations, state transitions, and power-
saving modes at the cycle-accurate level. In order to do this, we derived equations
describing the background energy consumption in each power state, and the energy
cost of each individual SDRAM command. We then described an algorithm that
applies them to a trace of SDRAM commands and thusly calculates the energy
expended by it.

We also highlighted the differences between DRAMPower and other existing
high-level power models like Micron’s and provided updated and new power equa-
tions to achieve more accurate power and energy estimates. Finally, we described the
open-source DRAMPower tool, and how it employs the model for its analysis and
computations.We experimentally showed DRAMPower provides accurate estimates
of SDRAM power usage, and performs better than the de-facto standard model from
Micron using a set of micro-benchmarks.

References

1. JEDEC (2010) DDR3 SDRAM specification JESD79-3E
2. Micron (2007) Calculating memory system power for DDR3. Technical report, Micron Tech-

nology Inc. TN-41-01
3. Chandrasekar K, Weis C, Li Y, Akesson B, Wehn N, Goossens K (2014) Drampower: open-

source DRAM power and energy estimation tool. http://www.drampower.info
4. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR,

Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The
gem5 simulator. SIGARCH Comput Arch News 39(2):1–7

5. Schmidt D, Wehn N (2009) DRAM power management and energy consumption: a critical
assessment. In: Proceedings of the 22’nd annual sympoisum on integrated circuits and system
design: chip on the dunes, pp 32:1–32:5

6. DDR2 SDRAM (2007) Micron, 1GbDDR2.pdf - Rev. Z 03/14 EN edition
7. DDR3 SDRAM (2006) Micron, 1Gb_DDR3_SDRAM.pdf - Rev. L 03/13 EN edition
8. Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory access scheduling. In:

Computer architecture, international sympoisum (ISCA), pp 128–138
9. Schmidt D, Wehn N (2009) A review of common belief on power management and power

consumption. Technical report, Technische Universitt Kaiserslautern
10. Rawson F (2004) MEMPOWER: a simple memory power analysis tool set. Technical report,

IBM Research Division. RC23068 (W0401-091)
11. Joshi A, Sambamurthy S, Kumar S, John L (2004) Power modeling of SDRAMs. Technical

report, The University of Texas at Austin. TR-040126-02
12. Ji J, Wang C, Zhou X (2008) System-level early power estimation for memory subsystem in

embedded systems. In: Fifth IEEE international symposium on embedded computing, SEC’08,
pp 370–375

13. Xilinx (2011) ML605 documentation UG533. http://www.xilinx.com/support/documentation/
boards_and_kits/ug533.pdf

14. JEDEC (2014) 240 pin DDR3 DIMM, 1.00 mm pitch MO-269J

http://www.drampower.info
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf

References 109

15. JUJET (2015) JET-5466 extender. http://www.eztest.com.tw
16. Chandrasekar K (2014) High-level power estimation and optimization of DRAMs. PhD thesis,

Delft University of Technology
17. Kim KY, Choi DM (2006) Delay stage-interweaved analog dll/pll. US Patent 7,149,145

http://www.eztest.com.tw

Chapter 5
Power/Performance Trade-Offs

A range of possible memory patterns can be generated within the design space pro-
vided by the BI and BC parameters that were discussed in Chap.3. This immediately
raises a very obvious question: how should we choose which (BI, BC) to use? Unfor-
tunately, there is no clear-cut answer to this question. This chapter tries to explain
why this is so bymeans of a discussion of the influence of the (BI, BC) parameters on
the worst-case power as calculated based on the model in Chap.4, and the memory
performance calculated with the model from Chap.2. There is not much that can be
said about these metrics analytically; simply looking at the power model or the com-
mand scheduling algorithmswill provide one with very few hints on the sensitivity of
their outputs to the two parameters in question. Once the models are concretized with
the numerical values of the involved currents and timing constraints, it is possible to
evaluate their output, but then generality is lost. Our approach is to evaluate a large
number of different memory devices, and describe the observed trends.

This chapter first describes how the worst-case bandwidth, energy, and power
metrics are calculated in Sect. 5.1. Section5.2 applies these calculations to twelve
memories from six SDRAMgenerations. The observed trends and trade-offs between
different pattern configurations and memory modules, both within and across gener-
ations, are discussed here as well. Section5.3 looks at the influence of (BI, BC) on
the worst-case response time of an atom. Finally, in Sect. 5.4, we apply the worst-
case bandwidth analysis to the Raptor instance of the memory controller, and we
experimentally show that its behavior accurately matches the worst-case model.

5.1 Worst-Case Bandwidth, Energy, and Power Metrics

The worst-case analysis of memory patterns in terms of bandwidth has been exten-
sively discussed in related work [1–3]. We apply the same procedure to derive our
results as described in those works, as discussed earlier in Sect. 2.4.2.2. To determine
the power and energy costs of a pattern set, we rely on the open-source DRAMPower

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_5

111

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2

112 5 Power/Performance Trade-Offs

tool [4], which implements the power model we explained in the previous chapter.
Section5.1.1 explains how it is used in detail.

5.1.1 Calculating Worst-Case Power and Energy Efficiency

To estimate the power and energy associated with each pattern configuration, we
used the DRAMPower tool, as discussed earlier in Sect. 4.6. DRAMPower takes a
trace of SDRAM commands and a description of the modeled memory device as
input. For each pattern set, we generate a write and a read trace by concatenating
1000 read or write patterns, respectively, interleaved with a periodic refresh pattern
according to the refresh period requirement (refi) of the memory device, and then
supply these traces to DRAMPower. It uses these traces to estimate the average
power consumed when continuously serving read and write requests, denoted as
pr

wc and pw
wc, respectively. This procedure generates an upper bound for the average

power, under the assumption that alternating between read and write patterns never
consumes more energy than sticking to a single pattern type. Alternating between
read or write patterns could only introduce more NOPs into the command stream
in the form of switching patterns, and since they do not incur an additional energy
penalty (not larger than read or write commands), this assumption holds. The larger
of the read and write power is selected as our worst-case power metric, pwc:

pwc = max(pr
wc, pw

wc) (5.1)

Dividing the energy consumption of a trace by the amount of data it transports
yields a measure of the memory’s (inverse) energy efficiency for that trace. The
energy efficiency can be arbitrarily small; the more idle time a trace contains, the
lower its utilization is, and the smaller its energy efficiency will be, since there is
a static background power component that is not traffic dependent. To attach any
meaning to an energy efficiency number, we need to exclude, or at least constrain
the amount of idle time, similar to the worst-case bandwidth, where idle patterns
were excluded from the worst-case analysis. Dividing pwc (J/s) by bwc (B/s) yields
a number that also has joule/byte as unit, although the interpretation for it is less
straight-forward. In general, the worst case for bandwidth is not the same as for
power, because the command sequences in the worst case for bandwidth have a
relatively low command and data bus utilization, while the worst case for power has
high utilization. If p′ represents the power consumed by a worst-case bandwidth
trace, and b′ is the bandwidth delivered by a worst-case power trace, the following
relations must hold:

assuming pwc, bwc, p′, b′ > 0

⎧
⎨

⎩

pwc ≥ p′ ∧ bwc ≤ b′ ⇒
pwc

bwc
≥ p′

bwc
∧ pwc

bwc
≥ pwc

b′
(5.2)

http://dx.doi.org/10.1007/978-3-319-32094-6_4

5.1 Worst-Case Bandwidth, Energy, and Power Metrics 113

This means that the value pwc/bwc can underestimate (but not overestimate) the
energy efficiency of both a worst-case power and worst-case bandwidth trace, and
hence we interpret it as a lower bound on the energy efficiency for these two modes
of operation.

In the following sections, we refer to the efficiency metric from Sect. 2.4.2.2
as (memory) efficiency, while energy efficiency is always explicitly called energy
efficiency.

5.2 Worst-Case Bandwidth/Power Trends

This section uses the pattern-generation heuristics from Chap.3 to generate pattern
sets for the 12 memory devices we used earlier (Table3.3). Appendix B contains
their detailed specifications. Based on the generated pattern sets, we determine bwc

and pwc, and plot the results in Fig. 5.1a, b. The vertical axis displays bwc, expressed
in GB/s, with each vertical tick representing a 20% increase in efficiency, such that
the graph covers a range from 0 to 100% memory efficiency. The horizontal axis
represents pwc, expressed in mW, starting at 50 mW for each graph.

Each pattern configuration is identified by two numbers, BI and BC. The data
points in Fig. 5.1 are annotated with these two numbers. Configurations are grouped
by access granularity (using the marker shape), ranging from 8 to 256 bytes per
pattern. The minimum access granularity differs based on the width of the data bus,
and hence certain access granularities are not available for all memories.

The diagonal isolines in Fig. 5.1 connect points with equal pwc/bwc quotients,
indicative of the energy efficiency of a pattern set (with the caveats mentioned in the
previous section). Labels at the top and right of the graphs are associated with the
closest isoline, showing the energy cost per bit in [pJ] (125 divided by these labels
yields gigabytes per joule). Note that this is the only numerical value in the graphs
that can be fairly compared across all memories, since it removes the dependence on
the clock frequency and the data bus width.

There are many ways to read this graph. Ideally, a configuration should be as close
to the upper-left corner as possible, i.e., have high bandwidth and energy efficiency,
and low power. Within one graph, comparing configurations with the same access
granularity (marker) shows the effect of trading BI for BC. In the DDR3-1066 graph,
for example, (4, 2) is objectively better than the (8, 1), since they are transparently
interchangeable from the client’s point of view, but (4, 2) is better in the three plotted
performance metrics.

Pairs of graphs that belong to the same SDRAM type have their data points in
approximately the same relative position, but both the power axis and bandwidth
axis are scaled up with frequency. Comparing DDR2-1066 with DDR3-1066 shows
a significant drop in power usage on a configuration-by-configuration basis, while
the bandwidth remains almost constant, indicating that their timing constraints are
very similar.

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3

114 5 Power/Performance Trade-Offs

(a)

Fig. 5.1 Worst-case bandwidth versus worst-case power (part 1). Graph titles contain the type, data
bus width in bits, capacity, and die revision (Appendix B). Labels at the top and right of the graphs
are associated with the closest isoline, showing the energy cost per bit in [pJ] (125 divided by these
labels yields gigabytes per joule)

5.2 Worst-Case Bandwidth/Power Trends 115

(b)

Fig. 5.1 (continued)

The graphs primarily show the trade-offs between worst-case power and worst-
case bandwidth (as will be discussed in the next sections), but can also be interpreted
differently, outside of the worst-case context. Doing so requires considering what
a pattern consists of at the burst level: BI is a measure for the amount of bank
parallelism that is exploited, while BC is a measure for the page hit/miss ratio: there
are (BC−1) hits per BC bursts even in the worst case. Each configuration can thus
be interpreted as an operating point of the memory as a function of the burst-level

116 5 Power/Performance Trade-Offs

bank parallelism and page hit/miss ratio, for which the graphs (coarsely) estimate
the delivered bandwidth and power consumption.

5.2.1 Comparing Pattern Configurations of a Single Memory
Device

In this initial evaluation, we compare the relative performance of the configurations
in Fig. 5.1 on a per-memory basis. Four trends are identified:

1. For all SDRAM types except DDR4: configurations interleaving over more than
four banks (B I > 4) are always worse in terms of bandwidth and energy efficiency
than another configuration with a similar access granularity, and hence B I > 4
should not be used. The inefficiency is caused by the relatively large four activate
window constraints having to be resolved within the pattern instead of across
patterns where it overlaps with other constraints. If BI≥8, then a pattern contains
8 or more ACT commands. Consequently, it needs to be at least 2 · FAW long
to be valid, which is always larger than rc for all defined speed bins, and thus
more restrictive and unnecessarily expensive compared to using smaller BI with
a larger BC instead.

2. For DDR4, a similar effect is visible if BI>8. This can be explained using similar
reasoning, considering that a pattern with 16 ACT commands is at least 4 · FAW
long, which is at least twice as large as rc for the currently defined speed bins.
The FAW timing (in nanoseconds) is slowly reducing as SDRAM technology
progresses [5]. SinceDDR4 sits on themodern endof the spectrum, it is possible to
successfully interleave over more banks in DDR4 compared to the other SDRAM
types.

3. For a constant BI, increasing the access granularity (by increasing BC) improves
the worst-case bandwidth and the energy efficiency, since the energy cost of
opening and closing a page is amortized over a larger number of bytes.

4. For a constant access granularity, interleaving over more banks improves the
worst-case bandwidth at the cost of more power. In most cases, the energy effi-
ciency reduces as a result. The reuse distance per bank increases as bank par-
allelism is exploited, improving memory efficiency because fewer NOPs need
to be added between or within patterns to resolve intra-bank constraints (see
Sect. 3.2.1). Energy efficiency reduces in all but 10 pairs of configurations,
because the relative number of ACT and PRE commands increases, and they
consume energy. In the 10 exceptional cases (DDR3L-1600 (1, 16) and (2, 8)
for example), the bandwidth gain is high enough to compensate for the power
growth. This trend is also overruled by trends 1 and 2.

A consequence of trends 3 and 4 is that for a given access granularity, BI can be
traded for BC, which corresponds to trading off worst-case bandwidth for energy
efficiency.

http://dx.doi.org/10.1007/978-3-319-32094-6_3

5.2 Worst-Case Bandwidth/Power Trends 117

5.2.2 Comparing Multiple Speed Bins and SDRAM Types

By comparing the same configurations across speed bins, we can see that for the
same SDRAM type and access granularity, the faster bins generally have a higher
energy efficiency, because the proportional growth of the worst-case bandwidth when
switching to a higher speed bin is generally bigger than the proportional growth of the
worst-case power within the observed frequency ranges. The (1, 8) configurations for
LPDDR2-667 and LPDDR2-1066 demonstrate this (with data points conveniently
left and right of an isoline in Fig. 5.1), for example, where the slower device requires
more than 17 pJ/bit and the faster device uses less than 16 pJ/bit.

There are three reasons the worst-case bandwidth tends to grow when the fre-
quency increases. The first reason is the most obvious: at a higher frequency, each
data burst requires less time, thus potentially reducing the pattern length if the data
bursts are on the “critical path” through the pattern. The second reason is that man-
ufacturers design the devices in the higher speed bins to run at the higher clock
frequency of that bin, and as a result their analog timings in nanoseconds are also
smaller, reducing the pattern lengths in cycles. The third reason arises from the con-
servative discretization of memory timings that are specified in nanoseconds in the
datasheet into clock cycles that the controller can use. Even though the maximum
error in the cycle-level approximation of the timing monotonically decreases with
an increasing clock frequency (the maximum deviation from the intended delay is
always less than one clock period), the actual error does not, such that a higher
frequency might occasionally result in a bigger approximation error compared to
a smaller frequency that just happens to fit better. The net effect of increasing the
clock frequency on the approximation error rarely impacts the worst-case bandwidth
negatively.1 However, in the exceptional cases where it does, it makes no sense to
run at these higher frequencies from a worst-case performance point of view.

The worst-case power generally increases as well when a higher clock frequency
is used, but because a significant fraction of it is static (related to leakage) and
unaffected by the clock frequency, the energy efficiency generally improves.

Increasing the clock frequency has diminishing returns in terms of memory effi-
ciency. The clock period shrinks faster than the pattern lengths, which implies a
smaller fraction of the time is spent actually transferring data, assuming the number
of bursts (B I · BC) in the pattern remains constant. The fraction of time spentwaiting
for nanosecond-based constraints, for example related to activating and precharging,
increases. This means that the required (BI, BC) product (equivalent to number the
of bursts in a pattern) to reach a certain memory efficiency grows with the clock fre-
quency; this effect is visible in Fig. 5.1, where the same configuration per SDRAM
type has a higher efficiency in the slower speed bin than in the faster speed bin.

1In the set of experiments presented in Fig. 5.1, only the pair of DDR2memories shows a bandwidth
reduction in a higher speed bin, when BC = 1 and B I ∈ {1, 2, 4, 8}. The maximum reduction is
less than 4%.

118 5 Power/Performance Trade-Offs

The effects of increasing the width of the data bus on efficiency mirror those of
increasing the clock frequency, since it also reduces fraction of time spent transferring
data. Increasing the data bus width thus also has diminishing returns in terms of
memory efficiency. If the pin and wiring costs are of key importance in a particular
design, then it may make sense to prefer devices with a smaller data bus width if they
can sustain the required bandwidth and are sufficiently energy efficient.

The SDRAM types that are shown in Fig. 5.1 are not all used in the same appli-
cation area, and some are older than others. Mostly driven by power constraints,
the supply voltage has come down over the years, and specific low-power stan-
dards (LPDDRX) that typically use a wide data bus have emerged. This move is
clearly visible when the memories are ranked by maximum energy efficiency per
access granularity, as shown in Fig. 5.2. For the commonly used access granularity
of 64 bytes for example, the old LPDDR memories perform the worst, followed by
DDR2, DDR3, LPDDR2, DDR4, and LPDDR3. The last four types from this series,
but especially LPDDR3, can theoretically do significantly better both in terms of
energy efficiency and worst-case bandwidth when the access granularity is increased
even further. Without restrictions on the granularity, refresh eventually becomes the
only remaining limitation for efficiency. However, it is questionable if these configu-
rations have any practical application. It makes more sense to consider only a limited
range of granularities, based on realistic request sizes that a memory client like a
cache, Direct Memory Access (DMA), or accelerator, may generate.

Fig. 5.2 Maximum energy efficiency achieved by the considered pattern sets and memories in
Fig. 5.1 at different access granularities

5.3 Worst-Case Response Time of an Atom 119

5.3 Worst-Case Response Time of an Atom

The WCSI of an atom, i.e., the maximum time it occupies the SDRAM command
bus, is solely dependent on the length of the patterns (assuming the size of the request
is not larger than the access granularity of the pattern). TheWCRT, i.e., the difference
between the arrival of a request in the controller and the departure of the response,
depends on more factors, as discussed in Sect. 2.4. It is influenced by the arbitration
policy that selects the order in which clients get to use the memory, the number
of interfering refreshes, and the number of outstanding (posted) requests the client
already has, which is unknown in the general case. An accurate WCRT analysis is
thus always a system-specific point solution, and since this chapter focuses on the
general trends across memory configurations and types, it is out of its scope. The
reader can refer to [1, 6–9] or Sect. 2.4 for a more detailed look into WCRT analysis,
while here we focus on the ingredients that the memory command scheduler inserts
into that analysis in the form of memory patterns.

Figure5.3 shows the execution time of the memory patterns for various SDRAM
types and configurations (ordered by access granularity and BI). The first two groups
of bars represent the entire configuration space for access granularities of 32, 64,
and 128 bytes for the two LPDDR2 memories. The other groups show the 64-byte
configurations of the fastest memories in our set for the remaining SDRAM types.
The offset bar shows the time it takes from the start of a read pattern until the
final data word is put on the data bus by the memory (�r + B I · BC · BL/2). This
may happen after the end of the read pattern, because commands are pipelined in
the memory, and thus the offset bar is sometimes larger than the read bar. The total

Fig. 5.3 Request WCRT components. From bottom to top, the stacked bar order is offset, t p
wtr (zero

in most configurations), t p
w , t p

rtw (zero in most configurations), t p
r , and t p

ref

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2

120 5 Power/Performance Trade-Offs

stacked length of the bars per configuration can be interpreted as the WCRT2 of a
read request that has to wait for a refresh (t p

ref), an interfering read and write pattern
(t p

r and t p
w) and the associated switching patterns (t p

rtw and t p
wtr), and finally its own

data offset.
Comparing the configurations for LPDDR2-667,we can see that the pattern execu-

tion times grow as expected (Fig. 3.3) when the access granularity grows. The length
of the refresh pattern increases as patterns become more efficient. This happens
because a refresh command can only be issued once all banks have been precharged,
andNOPs are inserted at the start of the refresh pattern to ensure this. Efficient pattern
configurations exploit bank parallelism and have their final read or write burst rela-
tively close to the end of the associated pattern, thus increasing the required number
of NOPs before the refresh command. The switching patterns grow with efficiency
for similar reasons; they insert NOPs between the bursts of patterns of opposing
types where they would otherwise be too near each other. At high efficiencies, bursts
are scheduled relatively close to the pattern edges, and the switching patterns grow
as a result. Note that exchanging read and write pattern duration for longer refresh
and switching patterns is not a zero-sum game, because refresh patterns have to be
issued infrequently relative to read or write patterns, and the switching patterns are
not always in the worst-case sequence of patterns that determines the efficiency.3

Comparing similar configurations (same (BI, BC)) across the LPDDR2memories
reveals that increasing the clock frequency reduces the execution time (in seconds) of
the patterns, in line with the bandwidth trends. Switching patterns disappear, because
the data bus timings that dictate their length are specified in clock cycles and thus
shrink in comparison to the analog timings that are based on nanoseconds, which
dominate the read and write pattern length at higher clock frequencies.

The refresh pattern length for DDR3 and DDR4 is roughly twice as big as that of
the LPDDR3 memory, but LPDDR2/3 memories need to be refreshed twice as often
(refi is half as long, as shown in Appendix B), and hence still have approximately
the same refresh efficiency.

Finally, it is interesting to look at the global picture, considering the sensitivity
of the pattern execution times to the clock frequency. For example, when comparing
the LPDDR2-677 and LPDDR3-1600 (2, 2) configuration, the frequency grows with
140%, while the duration of a read–write-offset sequence (t p

r + t p
w + offset) reduces

by only 49 ns or 20%. This highlights that both newmemory technologies and higher
clock frequencies do not give much benefit yet in terms of reducing the WCRT of a
request.

2The pipeline latency of the controller hardware, including the PHY calibration offset (see
Sects. 2.3.3) would also have to be added for completion.
370%of the tested configurations have onlywrite (and refresh) patterns in theirworst-case sequence,
and 30% alternate between read and write (and refresh) patterns.

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_2

5.4 Evaluation 121

5.4 Evaluation

This chapter relies on the correctness of theworst-case bandwidth and power analysis
to predict the performance of variousmemorymodules. Experimentally showing that
this analysis model is accurate for all these modules is impractical, due to the large
variety of specialized (PHY) hardware that would be involved. However, we can
at least show that the analysis holds for our VHDL instance. Power measurement
requires a relatively complex setup, and has been extensively done in [10] with the
same memory modules and FPGA board we use, so we will not repeat that effort.
Instead, we focus on the worst-case bandwidth.

Since this chapter primarily considers back-end performance, this experiment
will do the same: the resource front-end is omitted in the experimental setup, and
all measurements are done directly on the back-end input port. A memory client is
connected to this port, it transmits a fixed workload of requests into the controller,
and wemeasure the amount of time required to process them. If the workload is large
enough, then the artifacts of starting and stopping the experiment are negligible, and
an accurate approximation of the bandwidth can be obtained.

A complicating factor for the experiment is that we can only measure an actual-
case bandwidth to compare with the outcome of a worst-case analysis. We hence
try to approach the assumed worst-case conditions as closely as possible by making
sure that

1. The memory is fully utilized. Not doing so would yield a measured bandwidth
that is too low, simply because the client is not requesting fast enough.

2. The worst-case sequence of requests is executed continuously. This implies
switching between read and write requests for mix-dominant pattern sets, or con-
tinuously reading or writing for read-dominant or write-dominant pattern sets,
respectively.

Satisfying the first condition using a MicroBlaze processor as a client is not viable,
since it does not have the capacity to generate traffic in the required large volumes.
Instead, we use a configurable traffic generator hardware module, similar to the one
that was used in our experiments of [11]. The traffic generator keeps track of the
number of cycles it takes to complete a configurable number of requests. The types
of the generated requests can be configured to exercise the controller with the three
different required sequences of patterns, that is, (1) only writes, (2) only reads, or (3)
alternating writes and reads.

The Raptor memory controller instance in this experiment uses a 400MHz com-
mand clock, and has a 32-bit data bus. We generate memory patterns for its memory
module in this configuration, and run the worst-case bandwidth analysis. The access
granularity that is used by the traffic generator is restricted between its minimum
value of 32 bytes (1 burst per pattern), and 256 bytes, corresponding to 8 bursts
per pattern, to capture a reasonable range of possible request sizes. The controller is
always configured tomatch this access granularity. Refresh patterns are automatically
issued by the controller.

122 5 Power/Performance Trade-Offs

Table 5.1 Raptor worst-case bandwidth (bwc) [MB/s] for an MT4JSF6464H DIMM [12] with
f = 400 MHz and IW = 4 bytes for access granularities up to 256 bytes

↓ BC, BI → 1 2 4 8

1 467 933 1862 2360

2 814 1624 2639 –

4 1294 2575 – –

8 1835 – – –

Table5.1 shows the results of the worst-case bandwidth analysis. The numbers
in the table should be a lower bound on the bandwidth that we measure for all
request-type sequences in the associated experiment, and should match exactly when
the worst-case sequence of requests for a particular pattern set is used. In each
experiment,we transfer 128MBworth of data, such that even the fastest configuration
experiences close to 6000 refresh periods, and hence the effect of refresh patterns is
sufficiently present in the measurements.

Figure5.4 shows the results of the experiment as a collection of bar graphs for each
(BI, BC) configuration. The first bar in each group represents the (analytical) worst-
case bandwidth (bwc), the second, third, and fourth show the measured bandwidth
when continuously reading (bmeasured

r), writing (bmeasured
w), or alternating read and

write requests (bmeasured
rw), respectively. The figure shows that the worst-case bounds

are valid: the measured bandwidth is always slightly larger than predicted (although
this is difficult to see in the graph), while the largest deviation from the bound when a
worst-case request sequence is executed is only 0.09%. Intentionally misconfiguring
the memory controller such that a pattern is one cycle longer than expected leads to

Fig. 5.4 Worst-case and measured bandwidth for different pattern configurations

5.5 Conclusion 123

a violation of the worst-case bound that is at least an order of magnitude larger than
this deviation, supporting this conclusion. The dominance class of each configuration
can also clearly be observed in the graph by finding the bar of the request sequence
that best matches the worst-case bar (the last two sets are mix dominant, the others
are all write dominant).

5.5 Conclusion

This chapter discussed the influence of memory pattern configurations ((BI, BC)
combinations) on the worst-case performance of 12 memory modules from six dif-
ferent memory generations. We have shown that memory efficiency scales with the
access granularity by which it is used. The maximum granularity is limited by the
request size of the clients that use the memory, so there is only a limited range of
configurations that is practically useful.

For a fixed access granularity, we observed that the BI and BC parameters can be
used to trade worst-case bandwidth for energy efficiency. Additionally, we showed
that interleaving over more than four banks (or eight banks for DDR4) is never a
good idea, since there is always a better configuration available in terms of worst-
case bandwidth or energy efficiency at the same granularity. These observations can
be used as rudimentary guidelines for the configuration of a scheduling algorithm or
the selection of a pattern set, although the fine-grained decision will always depend
on the mix of requirements from the memory clients.

Comparing speed bins and different SDRAM types showed that both faster bins
and (not unexpectedly) newer memory generations tend to be more energy efficient.
We also see thatmodernmemorieswithwider interfaces and/or higher clock frequen-
cies require larger access granularities to reach the same level of memory efficiency
(data bus utilization) as slower/narrower memories, respectively. This trend may be a
reason for concern, since it implies that worst-case efficiency will fall even further as
memories get wider and faster, unless structural changes aremade to reduce SDRAM
timings, or clients increase their access granularity to compensate.

Finally, we validated the bound on worst-case bandwidth for our memory con-
troller implementation, and showed that it is tight in the worst case.

References

1. Akesson B, Hayes Jr W, Goossens K (2010) Classification and analysis of predictable memory
patterns. In: Embedded and real-time computing systems and applications (RTCSA), pp 367–
376

2. Akesson B (2010) Predictable and composable system-on-chip memory controllers. Ph.D.
thesis, Eindhoven University of Technology

3. Akesson B, Goossens K (2011)Memory controllers for real-time embedded systems. Springer,
Embedded Systems Series

124 5 Power/Performance Trade-Offs

4. Chandrasekar K, Weis C, Li Y, Akesson B, Wehn N, Goossens K (2014) Drampower: open-
source DRAM power and energy estimation tool. http://www.drampower.info

5. Micron Technology Inc. (2014) DDR4 networking design guide introduction. TN-40-03
6. Shah H, Knoll A, Akesson B (2013) Bounding SDRAM interference: detailed analysis vs.

latency-rate analysis. In: Design, automation and test in Europe conference and exhibition
(DATE), pp 308–313

7. Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar R (2014) Bounding memory
interference delay in COTS-basedmulti-core systems. In: Real-time and embedded technology
and applications symposium (RTAS), pp 145–154

8. PaolieriM,QuiñonesE,Cazorla FJ (2013)Timing effects ofDDRmemory systems in hard real-
time multicore architectures: issues and solutions. ACM Trans Embed Comput Syst 12(1s):64

9. Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank
privatization and fixed priority scheduling. In: Embedded and real-time computing system and
applications (RTCSA)

10. ChandrasekarK (2014)High-level power estimation and optimization ofDRAMs. Ph.D. thesis,
Delft University of Technology

11. Chandrasekar K, Goossens S, Weis C, Koedam M, Akesson B, Wehn N, Goossens K (2014)
Exploiting expendable process-margins in DRAMs for run-time performance optimization. In:
Design, automation and test in Europe conference and exhibition (DATE), pp 1–6

12. DDR3 SDRAM SODIMM - MT4JSF6464H - 512MB JSF4C64_64x64HY.fm - Rev. B 3/08
EN (2007) Micron

http://www.drampower.info

Chapter 6
Conservative Open-Page Policy

The overarching theme in this book is mixed time-criticality memory controllers. So
far, the focus has been mostly on the worst-case aspects of such a controller. This
chapter changes that by introducing a mechanism that improves its average-case
performance.

Memory controllers that use a close-page policy immediately precharge (close) a
page when a request is completed. The alternative to a close-page policy is an open-
page policy that attempts to exploit locality of reference. It keeps the page open after
a request, speculating that a following request wants to access the same page again.
If this bet pays off, then no time is spent precharging and subsequently activating
the same page again (as would be done in a close-page policy), and instead data
can be accessed immediately, improving efficiency. If it does not, then the request
experiences the full precharge and activate penalty once it arrives.Aclose-page policy
could have avoided this penalty at least partially, because it can start precharging the
page before the request arrives. In systems where multiple independent processors
share a single memory resource, requests from different clients are interleaved in an
unpredictable manner, making it impossible to guarantee that any locality remains
to be exploited (without resorting to bank privatization, discussed in Sect. 8.1.2.3).
This is why worst-case oriented controllers in such systems often use a close-page
policy.

In this chapter, we will introduce a version of the open-page policy that does not
compromise on worst-case guarantees, and can hence be freely used by controllers
that care about both worst-case and average-case performance. Section6.1 explains
the intuition behind it, and introduces terminology. Section6.2 discusses the impact of
the policy on the previously introduced controller architecture. The implementation
of the policy is refined in Sect. 6.3, such that the average-case performance gains are
improved. Section6.4 evaluates the effectiveness of the policy through experiments
with the SystemC instance of the memory controller, followed by conclusions in
Sect. 6.5.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_6

125

http://dx.doi.org/10.1007/978-3-319-32094-6_8

126 6 Conservative Open-Page Policy

6.1 Conservative Open-Page Policy

Exploiting locality is beneficial for the average-case performance of a memory
controller, but speculative open-page policies increase worst-case response times.
Figure 6.1 shows exactly why this happens: it can take longer to read all the data of a
request in a speculative open-page policy than in a close-page policy. In amixed-time
criticality system, certain applications may be bound by tight real-time requirements,
and therefore it is undesirable to tamper with the worst-case guarantees. We hence
propose a conservative open-page policy that exploits part of the available locality
without sacrificing worst-case performance. The core idea is to remove the specula-
tion that is normally inherent to the policy by only allowing a page to remain open
after an access when it is certain that the next request targets the same page. This
is conservative with respect to the worst-case guarantees if this decision is made
before the page would traditionally be precharged by the controller in a close-page
policy. The policy can be adopted by all real-time close-page command schedulers,
although the implementation effort may vary based on the (original) scheduler.

When the conservative open-page policy is used, the controller executes the fol-
lowing four steps while it serves a request:

1. Commands are executed as normal, as if it were using a close-page policy, until
the point where a close-page controller would commit to precharging. Assuming
the command schedule is generated by an algorithm similar to those fromChap.3,
this commitment is made when the auto-precharge flag is attached to the last read
or write command of the first bank in the pattern.

2. The target address for the next request is now inspected. If the next request is not
available yet, or if it targets a different row or set of banks, then the execution of
the commands continues as if a close-page policy was used.

Fig. 6.1 Response time of a hit versus a miss. A miss may have a longer response time in a
speculative policy, while the conservative policy behaves similar to a close-page policy

http://dx.doi.org/10.1007/978-3-319-32094-6_3

6.1 Conservative Open-Page Policy 127

Fig. 6.2 Read schedules for the DDR3-1600 memory in four different modes, for BI 2, BC 2.
Each block represents a command, empty blocks represent NOPs. The tinted commands have auto-
precharge flags. The timing constraints that dictate the length of the schedule are shown on the
arrows

3. If the next request targets the same row in the same set of banks, then a hit is
detected. The auto-precharge flags are omitted, as are the NOPs that are normally
scheduled after the RD or WR commands. These NOPs are normally there to
satisfy the PRE-to-ACT and ACT-to-ACT constraints.

4. The command schedule for the next memory access does not incorporate any acti-
vate commands, and the NOPs required to satisfy the ACT-to-RD/WR constraint
are also omitted.

As a motivating example, consider the first schedule in Fig. 6.2, targeted at a 16-
bit DDR3-1600 (Appendix B), the memory that will be used as the running example
throughout this chapter. It shows that for BI 2, BC 2, a read atom needs 39 cycles
in the close-page policy, of which only 16 cycles are used to transfer data. 59%
of the cycles is spent waiting for ACT and PRE related constraints. The average
cost of opening and closing a page (i.e., the time not spent transferring data in the
pattern) in all configurations up to a granularity of 64 bytes for this memory is 71 and
77% for reads and writes, respectively. This shows that our policy (and open-page
policies in general) can have a significant impact on the (average-case) efficiency
with which the memory is used. Note that the proposed mechanism merely creates
the opportunity for locality exploitation, but it does not guarantee that it will actually
happen, because the client is not considered anywhere in our approach, and is hence
an average-case optimization.

The conservative open-page policy can use four different modes to process an
atom. Figure 6.2 shows an example of the read schedules in each possible mode,
applied to the DDR3-1600 memory we used before:

128 6 Conservative Open-Page Policy

Fig. 6.3 Allowed mode
transitions. Schedules in
dotted modes are not always
executed start to finish, but
instead begin where the
connected mode on their
incoming vertex left off
when the hit was detected

1. AP: Activates and Precharges a page. This mode is used if a closed page is
accessed, and the next atom needs different page. A close-page policy always
uses this mode.

2. ANP: contains an Activate, but No-Precharge. A transition from AP to this mode
is made while the schedule is being executed, if the next access is a page hit and
it is detected in time.

3. NAP: No-Activate, and Precharge. This mode is used if the current atom was a
hit, but the next atom is not known to be a hit.

4. NANP: No-Activate, No-Precharge. A mode that contains only RD or WR com-
mands. A transition from NAP to this mode is made while the schedule is being
executed, if the previous and next atom are both page hits.

Figure 6.3 shows the relation between the modes graphically. A transition to a dotted
mode can be regarded as the memory controller equivalent of a conditional jump
instruction to a different schedule, based on the detection of a page hit. The transition
is made instantly when the transition condition is satisfied. For example, if the nth
command from a pattern is executed in AP mode and a hit is detected in cycle x ,
then the n + 1th command of the same type of pattern in ANP mode is executed in
cycle x + 1.

The memory controller has to inspect the address of the next atom that is selected
by the resource arbiter to detect hits. This address has to be known before the first
precharge would be executed in the AP or NAP schedules. If the address for the next
access is not known by that time, then the controller has to assume a miss to prevent
sacrificing worst-case guarantees. This implies that there is a limited time-window
in which locality can be exploited. In a naive implementation, based on a close-page
schedule with auto-precharge commands, the size of this window depends on the
time required to activate a row, plus the time required to access all bursts from the
first bank in the access. The greater the BC is, the more time exists between the start
of an access and the decision moment. Section6.3 describes a method to increase the
size of the window by exchanging auto-precharge commands for explicit precharges
that are scheduled as late as possible.

6.1 Conservative Open-Page Policy 129

Similarly, there also exists an address window in which locality can be exploited,
the size of which depends on BI. Each bank has its own row buffer, so the number of
bits that is activated by a pattern is BI times the size of the row buffer per bank. The
number of distinct atoms that might be a hit is equal to the total number of activated
bits, divided by the access granularity, which for a constant access granularity grows
linearly with BI.

6.2 Impact on Pattern-Based Controller

The conservative open-page policy impacts both the memory patterns and the sup-
porting architecture of our controller. At first sight, the introduction of different
modes for each of the patterns leads to four-fold expansion of the number of patterns
that need to be stored. Fortunately, the differences between patterns in each mode
are small by definition: to allow seamless transitions from AP to ANP, and from
NAP to NANP, the respective schedule-pairs have to be the same at least until the
precharge decision is made. After the decision-point, they differ in terms of length,
and in whether or not they execute precharge commands. The differences compared
to the template architecture in Chap.2 (Fig. 2.8) are limited. We take advantage of
this in the pattern memory encoding, limiting the required space at the cost of a
slightly more complex controller.

Two versions of each original pattern are stored in the pattern memory instead of
one. The first version contains commands shared by AP and ANP, while the second
version is shared by NAP and NANP. Figure6.4 shows what the pattern memory
and its entry and exit points look like when the conservative open-page policy is
used. When deciding on which pattern to execute next, the pattern selector indexes
an entry in the pattern LUT. In addition to the incoming atom type and the previously
executed pattern type, it now also needs to consider the mode in which the previous
pattern was executed (the LUT gets more entries). For misses, the previous modewas
either AP or NAP. In that case, it selects the entry containing a base address in the

Fig. 6.4 Mapping of patterns to the pattern memory

http://dx.doi.org/10.1007/978-3-319-32094-6_2

130 6 Conservative Open-Page Policy

Fig. 6.5 Example of the relation betweenmodes, executed patterns and the predication of precharge
commands. Detected hits only change the mode if they are detected before the time-window closes

(gray) AP/ANP range for the next atom. For hits, the previous mode was either ANP
or NANP, which means the next atom needs a pattern from the (white) NAP/NANP
base address range.

If a hit is detected during the execution of a pattern and before the first precharge,
then its active mode changes. The command player is notified, such that it can update
the pattern’s exit point to reflect the length of the pattern in the appropriate (NP)
mode. The possible exit points per active mode are shown in Fig. 6.4. The execution
of precharge commands, either explicitly (Sect. 6.3) or in the form of auto-precharge
flags, is predicated by the active mode in which the pattern is executed: in ANP or
NANPmode, they are not forwarded to the SDRAM. Figure6.5 shows the transitions
between modes for an example with three write and two read atoms. The example
starts off with all banks closed. A write atom arrives, and is serviced by the gray
write pattern in AP mode from Fig. 6.4. While it is executing, but before the first
precharge, the next write atom arrives. It is a hit, so the active mode changes to ANP.
The exit point changes correspondingly to ANP, allowing for an earlier termination
of the pattern, as shown in Fig. 6.4. Since the mode at the end of the first write was
ANP, the second write pattern uses the ANP/NANP entry point in the white pattern
range.

The refresh pattern always follows a mode that precharges (AP or NAP). The
number of required leading NOPs before the REF command may vary depending on
the preceding mode, and hence the entry point changes based on it.

Figures6.2 and 6.4 suggest that patterns in modes containing no precharges are
shorter than those that do, but this is not necessarily the case, as shown in Fig. 6.6.
Read and write patterns in ANP or NANP mode have to contain trailing NOPs to
resolve the RD-to-RD or WR-to-WR (data bus) constraints across patterns. In AP or
ANP mode, these constraints overlap with the start of the following patterns, which
generally contain no additional data bus activity, and hence no NOPs are required.
Note that for the presented storage scheme and pattern transition mechanism, it does
not matter which of the modes contains the longest pattern, as long as the entry and
exit points in the pattern LUT are configured accordingly.

6.3 Using Explicit Precharge Commands 131

Fig. 6.6 Example where an ANP pattern is longer than an AP pattern. Note that each individual
read burst still completes at the same time or earlier when the NP patterns are used

6.3 Using Explicit Precharge Commands

The conservative open-page patterns have a limited time window in which they
can transition to a NP mode. The time-window size has to be as large as possible
to maximize the exploited locality. To maximize the window size, the decision to
precharge must be made as late as possible. For this purpose, we propose to replace
the auto-precharge flags with explicit precharges that happen later in the schedule,
effectively postponing the decision. To maintain the same worst-case guarantees,
we do not allow the read and write schedule lengths to increase as a result of the
replacement. This section presents a greedy heuristic that generates schedules that
use this principle for our pattern-based memory controller, based on the existing
patterns that use auto-precharges. After applying the heuristic, the size of the time-
window is larger than or equal to the original window size, with no influence on
the read or write pattern length. Therefore, it is always recommended to apply this
heuristic when using the policy.

Algorithm 5 shows the heuristic, reusing the semantics and some of the functions
that were used earlier to describeAlgorithm2 inChap.3. The top-level function in the
heuristic is increaseWindowSize. As its inputs, it needs the read orwrite pattern for
which the time-window should be extended (P), its length including trailing NOPs
(pattLen), and the pattern that should be schedulable after this pattern (nextP). The
AP and NAP pattern should be processed separately, and hence P can be either of
these patterns. nextP can either be an AP or ANP pattern (it has to start with an
activate). In practice, running the heuristic with either of these patterns as nextP
yields the same result, since they both contain the same commands except for the
precharges, (as can be seen in Fig. 6.2), and no PRE-to-PRE-command constraints
exist for the considered SDRAM types.

http://dx.doi.org/10.1007/978-3-319-32094-6_3

132 6 Conservative Open-Page Policy

Algorithm 5 Heuristic to increase the time window size
1: function increaseWindowSize(pattLen, nextP, P)
2: while true do
3: P’ :=P // A copy, to restore the pattern if this iteration fails
4: firstPre :=getFirstPre(P) // Returned by reference
5: if firstPre.autoPrechargeFlag == true then
6: startAt :=earliest((type: PRE, bank: firstPre.bank, cc: 0), P)
7: preCc :=firstFreeCycle(startAt, P)
8: P :=P ∪ { (type: PRE, bank: firstPre.bank, cc: preCc) }
9: firstPre.autoPrechargeFlag := false
10: else
11: preCc :=firstFreeCycle(firstPre.cc + 1, P)
12: firstPre.cc :=preCc
13: if preCc >= pattLen or minPatternDistance(pattLen, nextP, P) > 0 then
14: return P’

15: function firstFreeCycle(startAt, P)
16: // Determine the first free cycle in P starting at and including startAt.
17: while { cmd ∈ P | cmd.cc == startAt } �= ∅ do
18: startAt := startAt + 1
19: return startAt

The heuristics iteratively increases the size of the window, considering one
precharge at a time. The first auto or explicit precharge in the schedule is greed-
ily selected as a conversion or move candidate, since it is the critical command
that determines the window size. The getFirstPre function returns a reference to
this command (line 4). Note that it is always possible to uniquely identify the first
precharge, since there is only one command per cycle, which could either be a RD
or WR with an auto-precharge flag, or an explicit precharge.

In each iteration, the heuristic can either (1) convert an auto-precharge into an
explicit precharge (lines 5–9), or (2) move an earlier converted explicit precharge
command to a later cycle in the schedule (lines 10–12). The initial conversion results
in a relatively large jump of the precharge decision for a bank, since it needs to satisfy
the RD/WR-to-PRE constraint (Table3.2). We attempt to move explicit precharge
commands one cycle per iteration of the heuristic.

Adding or moving a PRE command is only possible if the cycle we try to place it
in is not already taken, which is ensured by the firstFreeCycle function. If a cycle
is already occupied, then this function will consider all following cycles, until it finds
an empty one.We do not consider the option ofmoving other commands (ACTs, RDs
or WRs) to make room for the PRE command, since this would require reevaluation
of all other constraints related to these commands, and the result is likely to affect
the pattern length and worst-case performance negatively.

Lines 13 and 14 evaluate the result of a conversion ormove. TheminPatternDis-
tance function, defined earlier in Algorithm 1 (Sect. 3.2.1), is used to determine the
minimal distance between nextP and P. If the modified precharge command is not
scheduled within the pattern, or if the next pattern cannot be scheduled immediately
after the current pattern anymore as a result of the modification, then the heuristic

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3

6.3 Using Explicit Precharge Commands 133

Fig. 6.7 Resulting patterns after converting auto-precharges to explicit precharges (DDR3-1600,
(2,2))

terminates returning P′, the last successfully modified copy of the pattern. In all other
cases, we select a new candidate precharge (line 4), and repeat the procedure.

Algorithm 5 is greedy in its selection of which precharge to move first. It might
place this precharge in a cycle that makes future moves of other precharges impos-
sible, terminating at a non-optimal solution, in the sense that a larger window would
have been possible if another order was chosen. In Sect. 6.4.1, we bound the differ-
ence between the heuristic’s output and the optimal window size.

Figure6.7 shows the results of the heuristic when applied to the example from
Fig. 6.2. A more extensive evaluation of the heuristic can be found in Sect. 6.4.1.
The precharge decision is postponed by 14 and 6 cycles in the AP and NAP modes,
respectively. Another way to put this is to say the window size increased by 100 and
150%, although that probably paints a more dramatic picture than warranted by the
absolute numbers. The windows in NAP patterns are relatively small compared to
the AP pattern, since they immediately start with RD or WR commands, leaving out
the initial ACT-to-RD/WR cycles that add to the window size in an AP pattern.

Note that a time-window of 10 cycles does not imply that a client’s atoms have
to arrive at 10 cycle intervals to successfully exploit locality. Instead, it means that
the arbiter in the resource bus has 10 additional cycles before it needs to settle on
the next atom to send to the back-end, while the atoms themselves are can already
be queued up in the client’s atom queue in the front-end.

The heuristic ensures that the sizes of the read and write patterns do not increase
as a result of moving the precharge commands, but it has no guards preventing
the auxiliary patterns from growing. Switching patterns are not impacted by the
location of PRE commands, since there are no PRE-to-RD/WR constraints (see
Tables3.1 and 3.2). Refresh commands, however, need to respect a non-zero PRE-
to-REF constraint, and their patterns may thus be impacted. There are multiple ways
to approach this issue

1. The refresh pattern can be regenerated based on the modified read and write
patterns. After evaluating the impact on the worst-case guarantees, a decision to
accept the change or to use option 6.2 or 6.3 can be made.

2. A fairly trivial modification to line 13 of the heuristic, adding the refresh pattern
as an additionalminPatternDistance check, could terminate it once the refresh
pattern starts to be affected.

3. Manual refresh schemes like shown in [1, 2] can avoid refresh patterns and the
associated issue completely.

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3

134 6 Conservative Open-Page Policy

6.4 Evaluation

The evaluation of the conservative open-page policy is done in two steps. First, we
generate conservative open-page patterns for our test memories, apply Algorithm 5,
and discuss its effectiveness in Sect. 6.4.1. Second, Sect. 6.4.2 shows the average-case
performance improvement the policy offers in various scenarios.

6.4.1 Time-Window Size

Table6.1 focuses on the 16-bit DDR3-1600 device from before, containing results
for pattern configurations up to an access granularity of 64 bytes. Read and write
pattern related numbers are shown on separate lines, in both the AP and NAP mode.
For each configuration, it shows three columns per pattern:

1. PS, the pattern size.
2. WS, representing the time-window size after applying Algorithm 5.
3. A, representing the number of cycles added to the time-window by Algorithm 5

relative to the naive solution that only uses auto-precharge flags.

Postponing the precharge-decision by increasing BC increases the size of the
time-window as predicted earlier in Sect. 6.1, and hence the largest window sizes
at a specific access granularity are found at the largest BC value. The table also
shows Algorithm 5 usually increases the window size by 50% in this result set. The
time-window in a write pattern is always at least as large as in the corresponding
read pattern, because the WR-to-PRE constraints are greater than the RD-to-PRE
constraints for this memory (and for all other memories in Appendix B as well). This
causes write patterns in general to be larger than read patterns, and hence there are

Table 6.1 Time-window sizes using the conservative open-page policy and the number of cycles
contributed by the heuristic for the schedules containing precharges (DDR3-1600)

BI 1 1 2 1 2 4

BC 1 2 1 4 2 1

AG (bytes) 16 32 32 64 64 64

PS WS A PS WS A PS WS A PS WS A PS WS A PS WS A

AP-RD
[cc]

39 28 17 39 28 13 39 28 17 40 29 6 39 28 13 40 23 12

AP-WR
[cc]

46 35 24 50 39 24 46 35 24 58 47 24 50 39 24 46 23 12

NAP-RD
[cc]

24 13 13 21 10 6 18 7 7 29 18 6 21 10 6 17 6 6

NAP-WR
[cc]

35 24 24 39 28 24 35 24 24 47 36 24 39 28 24 35 12 12

6.4 Evaluation 135

Fig. 6.8 Relative time-window size histogram (the height of a bar represents the fraction of patterns
in the result set having a time-window in the bin corresponding to the value on the x-axis)

more potential locations for explicit PRE commands, while at the same time they
are forced to be scheduled relatively late due to the same constraint. NAP patterns
have smaller time windows than AP patterns in the same configuration, since they
are simply smaller (which is the whole point of creating them), and immediately
start with read or write bursts. The accessed banks in NAP patterns can typically
be precharged earlier, because the ACT-to-PRE constraints are (partially) resolved
during the preceding ANP pattern.

Next, the scope is expanded to configurations up to an access granularity of
256 bytes, and we also include all the other test memories (Appendix B). In this
result set (visualized in Fig. 6.8), the time-window spans on average 39% of the AP
pattern and 35%of theNAP pattern before applyingAlgorithm 5, versus 76 and 65%
after, respectively. We also observe that none of the refresh patterns are affected by
the moved precharge commands, so we do not have to select a method to deal with
this.

Figure 6.8 contains histograms of the relative time-window sizewith respect to the
pattern size for the same result set, both before (left graphs) and after (right graphs)
Algorithm 5 is used, for patterns in AP (top graphs) and NAP (bottom graphs) mode.
The y-axis is normalized and represents the fraction of patterns that fit in a certain
bin (there are 316 patterns and 50 bins in each graph). The graphs shows that the
heuristic shifts the distribution significantly to the right, in line with the growth of
the average window size we saw earlier.

136 6 Conservative Open-Page Policy

Fig. 6.9 We use an upper
bound on the optimal
window size to determine
how far Algorithm 5 can
maximally be from the real
optimum

To bound the difference between the heuristic output and the global optimum,
we sabotage the firstFreeCycle function such that it regards cycles containing
explicit precharge commands as empty. As a result, multiple precharge commands
are allowed to happen within the same cycle, which eliminates the effect of the
greediness of the heuristic, although it does potentially introduce command conflicts.
Thewindowsize producedby thismodifiedheuristic is anupper bound for the optimal
window size (Fig. 6.9).

We apply the modified heuristic to our set of test memories (Appendix B) and
take note of the differences in window sizes compared to our previous result. The
results show that Algorithm 5 generates the optimal result for at least 90% of the
tested patterns. On average, the optimal window size is not more than 1% larger than
the size produced by the heuristic. The largest percentual difference from the upper
bound in a single configuration is 29%, although a manual (not generally applicable)
inspection shows that in this case the bound is not tight, and Algorithm 5 actually
produced the optimal window size. Given these results, we conclude that the heuristic
is effective in achieving its goal.

6.4.2 Stall Time Reduction

The conservative open-page policy theoretically improves the average-case perfor-
mance of memory clients. To evaluate this claim, we set up an experiment with the
SystemC model of our memory controller, connected to a model of the DDR3-1600
SDRAM (Appendix B). We compare the performance of a set of memory traces,
first using a close-page policy, and later using the conservative open-page policy.
The corresponding applications are drawn from the CHStone benchmark set [3], and
traces are generated using the SimpleScalar 3.0 processor simulator [4].

The selection of a benchmark set is often a compromise between (arguably) con-
flicting requirements, this experiment being no exception. Code and the associated
input sets need to be available, the effort involved in porting and compilation should
be limited, the mix of applications has to be relevant with respect to the application
area of the research, run-time on the target architecture needs to be reasonable, and
the functional correctness of the applications should be maintained, while the over-
arching goal is to prove a point based on the results of the experiments. CHStone
meets most of these requirements, as it comes with integrated input data and refer-
ence output, while being mostly compatible with the target processor. Eight out of

6.4 Evaluation 137

Table 6.2 CHStone trace characteristics

Trace adpcm aes bf gsm jpeg mips motion sha

Avg. bandwidth
(MB/s)

846 878 253 1910 100 1577 2426 236

Number of
requests

645 742 873 644 1685 541 617 791

the twelve applications in the benchmark are used, the four applications that are left
out use 64-bit floating-point operations that are not supported by the SimpleScalar
compiler. What remains is the set shown in Table6.2. It consists of various audio and
image coding/decoding applications (adpcm, gsm, jpeg, motion), cryptographic
algorithms (aes, bf, sha) and a small mips simulator, all of which (except for per-
haps the mips simulator) could plausibly run on a mixed time-criticality embedded
system.

For each application in the benchmark, a memory-trace file is generated using
a slightly modified version of the SimpleScalar simulator. It records the time and
address of each L2 cache miss, resulting in a trace file containing all requests that go
to the SDRAM.We use the out-of-order execution engine (sim-outorder) with default
settings except for the cache setup, for which we select half the size compared to its
defaults. We use a unified 128 KB L2 cache with 64-byte cache lines, 512 sets and
an associativity of 4. Each request in the trace thus corresponds to a cache miss of
64 bytes. There are two reasons to reduce the cache size: (1) the traces are later used
to model traffic in a 4 core system with partitioned L2 caches, and hence we limit
the total cache size to more realistic proportions for an embedded system. (2) The
smaller cache size increases the load on the SDRAM, and biases the applications’
performance toward beingmore memory bound. Applications that are not influenced
by thememory performance, do not benefit from improvementsmade on the SDRAM
side, and would generate valid but trivial results, and hence we try to avoid them.
The reader should keep this in mind when evaluating the results of the experiment.

The memory controller front-end is included such that the SDRAM can be
shared amongst multiple clients. Its arbiter configuration only matters in the multi-
application experiment Sect. 6.4.2.3, and will be introduced there. We use a setup
with four input ports, each of which is connected to a trace-based traffic player by
means of a (composable) NoC [5], as shown in Fig. 6.10. A traffic player generates
requests at the times (clock cycles) indicated by the trace file assigned to it. Each
player emulates a processor running at 1400 MHz, which means that a clock cycle
in the trace corresponds to 0.71 ns. Table6.2 shows the resulting average requested
bandwidth, i.e., the total amount of data requested in the trace, divided by the time
of the last request. Note that the actual traffic intensity varies over time during the
trace execution. Each application has its own memory range, such that they do not
share rows in the memory. The controller is configured with pattern sets that offers
a 64-byte granularity (atom size) to match the request size of the traces.

138 6 Conservative Open-Page Policy

Fig. 6.10 Setup of the conservative open-page experiments

A traffic player allows a maximum of four outstanding read-requests before it
stalls. When this happens, it stops executing, i.e., halts its cycle counter, and does not
issue anymore requests until a response arrives. It further assumes that all requests are
independent. Note that a real processor could potentially stall due to dependencies,
but that it is not uncommon formultiple cachemisses to arrive at amemory controller
in a relatively short interval [6], and that techniques exist to improve the available
memory parallelism [7, 8]. Support for multiple outstanding requests is a feature
found in the higher-end embedded processors, for example, the PowerPC e500v2 [9]
supports five outstanding load misses.

Three factors determine the number of page hits for an application. In the following
sections, the consequences of each of these factors are evaluated for the proposed
policy.

1. Spatial locality has to be present within an application (Sect. 6.4.2.1). If a request
targets the same row and bank as its predecessor, then it is a potential hit, otherwise
it is a guaranteed miss.

2. Temporal locality (Sect. 6.4.2.2): a request containing spatial locality has to arrive
at the memory controller before the time window closes.

3. Interference from requests by other clients (Sect. 6.4.2.3). Requests streams from
different clients might be interleaved, destroying their locality.

6.4.2.1 Spatial Locality

The spatial locality of a trace, i.e., the fraction of consecutive requests that target
the same page, can be determined by analyzing the sequence of accessed addresses.
Which bits from the address are used to determine the bank and row addresses
depends on the address decoder configuration (Sect. 3.2.5), which is a result of the
selected pattern configuration. The likelihood of two consecutive requests targeting
the same banks increaseswith a growingBI, as discussed earlier in Sect. 6.1, resulting
in more hits.

http://dx.doi.org/10.1007/978-3-319-32094-6_3

6.4 Evaluation 139

Fig. 6.11 Available spatial locality per trace for three pattern configurations, from left to right:
(BI 1, BC 4), (BI 2, BC 2) and (BI 4, BC 1)

We analyze the traces for the three different pattern configurations that offer a
64-byte access granularity. Figure 6.11 shows the spatial locality per trace. At least
57% of the requests in each trace can potentially benefit from an open-page policy,
with a variation of at most 8% points caused by the different configurations.

6.4.2.2 Single-Application Performance

In the single-application experiment, only one of the four traffic players is active,
running each of the application traces independently. This implies that both spatial
and temporal locality play a role, but interference is still left out of the equation.

We run each trace two times, first using a close-page policy and then using the
conservative open-page policy in the BI 2, BC 2 configuration. The results of these
experiments are shown in Fig. 6.12, through 4 bars per experiment, which we now
discuss one by one.

First, we determine the fraction of requests containing spatial locality (identified
in Fig. 6.11) that is captured within the time-window by simply counting the number
of hits in the memory controller. This is plotted on the first bar in the graph as
a percentage of the maximum number of hits identified in Fig. 6.11. 70% of the
requests which contained spatial locality actually result in a hit on average.

The execution time of a trace consists of two parts, (1) the time spent on com-
putation, which is memory performance independent, and (2) the time spent stalled
waiting for a response from the SDRAM. Optimizations on the memory side can
only reduce the stall time. The percentage by which the stall time is reduced by the
conservative open-page policy is plotted on the second bar in Fig. 6.12. Results vary
between 58% (bf) and 86% (sha) reduction. These numbers may appear relatively

140 6 Conservative Open-Page Policy

Fig. 6.12 Single-application experiment results. Bar 1 represents the exploited locality during the
conservative open-page run, bars 2 and 4 are relative numbers given the close-page and conservative
open-page runs, and 3 is the fraction of time the traffic generator was stalled during the close-page
run. All runs use (BI 2, BC 2)

high at first, considering that in the best case, the conservative open-page policy
replaces an AP pattern by an NANP pattern compared to the close-page policy,
resulting in “only” a 59% time saving (see Fig. 6.2). However, the traffic generator
only stalls once it reaches its maximum outstanding request limit, and hence there is
not a one-to-one translation of memory response time to stall time. A small reduc-
tion of the memory response time can thus reduce the stall time by a relatively larger
factor.

Bar three in Fig. 6.12 shows the ratio between the stall time and the computation
time for the trace while using the close-page policy. The higher this ratio is, the
more the execution time of an trace will reduce as a result of a stall-time reduction.
This number is directly correlated to the average requested bandwidth for a trace,
previously shown in Table6.2. Based on this statistic, motion is expected to receive
most benefit, while jpeg benefits the least.

Next, we look at the execution-time difference, shown in the fourth bar. Here,
results vary wildly based on the used application: jpeg’s execution time is reduced
by only 1%, while that of motion is reduced by 33%, as expected based on the pre-
viously discussed ratio. The average execution-time reduction across all applications
is 17%, so we conclude that our proposed technique works well given the stall-time
reduction, and that the benefit for an application scales with how memory intensive
it is.

6.4 Evaluation 141

Table 6.3 Pattern configuration influence on single application performance when using the con-
servative open-page policy

Banks interleaving (BI) 1 2 4

Burst count (BC) 4 2 1

Worst-case bandwidth (bwc) (MB/s) 901 1050 1144

Average exploited locality (%) 78.7 70.6 70.1

Average exec. time reduction (%) 16.1 17.2 17.0

Pattern Configuration Influence

The pattern configuration has a large impact on the worst-case guarantees, as dis-
cussed in Chap.5. To quantify its interaction with the conservative open-page policy,
we repeat the single-application experiment for different configurations.

The considered configurations in this experiment all have a granularity of 64 bytes:
interleaving over either 1, 2 or 4 banks, while doing 4, 2 or 1 burst per bank, respec-
tively. Table6.3 shows the worst-case bandwidth delivered by those configurations,
calculated as described in Sect. 2.4.2.2. It increases with BI, with a 21% difference
between BI 1 and BI 4. Figure 6.11 shows a trend in the same direction; the higher BI,
the higher the spatial locality. A trend in the opposite direction is visible for the win-
dow size (see Table6.1). This leads to the observation that for an increasing BI, both
worst-case bandwidth and spatial locality increase, but the size of the time-window
decreases.

Table6.3 also shows the (measured) average fraction of exploited locality and
the average execution time for the eight benchmark applications. The conservative
open-page policy captures the largest fraction of potential locality in the configuration
with the largest window-size (BI 1, BC 4). However, the execution-time reduction is
largest for the (BI 2, BC 2) configuration. In absolute numbers, the average execution
time for (BI 2, BC 2) is only 0.3% smaller than that of (BI 1, BC 4). We conclude
that the (open-page related) performance differences across configurations are so
small that they are insignificant, so the selection of a configuration can be made
based on the real-time guarantees (and power consumption) that it offers, without
significantly impacting the effectiveness of the conservative open-page policy.

6.4.2.3 Multi-application Performance

To show the effect of multi-application interference on locality exploitation, we run
an experiment with four simultaneously active applications on four separate traffic
players. Two high-load and two low-load applications (mips, motion, jpeg and bf)
compete for the memory resource. Work-conserving TDM is used as the arbitration
scheme in the front-end, which means that unclaimed slots from one application can
be used by another application. If a slot is not used by its designated owner, then the
arbiter simply selects the next application in the table that has a request available. A

http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_2

142 6 Conservative Open-Page Policy

Fig. 6.13 Multi-application experiment results

(BI 2, BC 2) configuration is used. Two variations of this experiment with different
arbiter settings are performed, annotated with multi-tdm-1 and multi-tdm-2.

In the multi-tdm-1 experiment, each application is allocated one out of four
slots in the TDM table (effectively creating a round-robin arbiter). This means each
application can get at least a quarter of the memory bandwidth. The downside of
this scheme is that it allows for fine-grained interleaving of requests from different
applications, which destroys locality that was present in the original memory trace.
This effect is visible in Fig. 6.13: only 25% of the potential locality is captured
(bar 1), which is significantly lower than the average captured locality in the single
application case. The reduction of the sum of the stall cycles of all applications when
the conservative open-page policy is switched on, shown in the second bar, is 6%,
and consequently the total execution-time reduction (third bar) is also small.

Looking at the stall-time reduction for the individual applications (bar 4–7),
motion and mips hardly benefit at all, with mips even showing a small increase of its
stall time. An explanation for this is that both of these traces are short with respect
to the other two, and require a relatively large amount of bandwidth (Table6.2). As
a result, they interfere with all other applications and with each other during the
short period where they are active, almost nullifying the benefits of the conservative
open-page policy. bf and jpeg run significantly longer, and produce fewer requests
while doing so, which means they rarely actually try to use the memory at the same
time, and hence manage to obtain some benefit from the policy once motion and
mips are done.

To retain more of the locality in the request stream, the arbiter in themulti-tdm-2
experiment ismodified: each application gets two consecutive slots in a TDM table of
eight slots in total. Note that this has implications for the worst-case response time; in

6.4 Evaluation 143

the first TDM-schedule there were at most three interfering slots for an application,
while in the second there are at most six interfering slots, and hence �arb grows.

Figure 6.13 shows that giving each application two consecutive slots has a large
impact on the fraction of exploited locality: 54% of it is captured, more than 2 times
asmuch as in themulti-tdm-1 experiment, resulting in a total stall-time reduction of
35%. The individual stall time drop is between 31% (motion) and 40% (jpeg). We
can conclude that successfully applying the conservative open-page policy in a multi-
application use-case is possible, under the condition that the arbiter allows at least
part of the consecutive requests from an application to be scheduled consecutively,
potentially at the cost of a larger WCRT, but equal throughput.

MRT Performance

The previous experiments used a setup in which the tested applications themselves
had an inherent degree of memory parallelism: each could issue 4 requests before
stalling. In this experiment, we demonstrate that all applications benefit from the
conservative open-page policy even if they do not all have this property, based on
the notion that the policy improves the overall memory performance by exploiting
locality. This is a relevant scenario, especially in a mixed-time criticality context,
where real-time streaming applications co-run with best-effort applications.

Two traffic players are active in the experiment: the first one runs one of the
benchmark applications and is configured to block immediately when a request is
issued, and unblock once the response arrives. As a result, the application cannot
benefit from any of its own locality. This models what happens in case an in-order
processor is used to execute the application. The second traffic player generates
a synthetic traffic stream that models a (fictional) real-time video IP. It requires
a bandwidth of 270 MB/s, which is the combined read and write rate required to
transport 60 frames per second of 1024 · 786 pixels fromand to thememory, assuming
3 bytes/pixel. We assume all of its requests are independent, such that a high degree
of locality is available in this stream, i.e., the IP running the application is fully
pipelined.

16 runs are performed in total: two for each benchmark applications, first with the
close-page policy, and later with the conservative open-page policy. The objective of
this experiment is twofold: (1) it allows us to experimentally verify that the real-time
bandwidth constraint of the video IP is always satisfied, regardless of the used page
policy, and (2) it quantifies the impact of the locality exploitation by the pipelined
video application on the execution time of the non-pipelined application.

Compared to a close-page policy, the average execution time of the benchmark
applications is reduced by 7.9% when using the conservative open-page, while still
satisfying the constraints of the video IP. Using the policy, the controller manages to
serve the video application faster, allowing more time to be spent on the benchmark
application which hence benefits indirectly. The motion benchmark again gains
most in terms of execution-time reduction (13.4%), while jpeg shows the smallest
improvement (1.9%). Based on these results, we conclude that if there is at least
one application that exploits locality, then all the other applications that share the
memory can benefit and the overall average-case performance increases.

144 6 Conservative Open-Page Policy

6.5 Conclusion

This chapter deals with the problem of mixed time-criticality workloads for SDRAM
controllers. Existing controllers typically optimize for either worst-case or average-
case performance, but not for the combination of the two.We proposed a conservative
open-page policy that improves the average-case performance without sacrificing
real-time guarantees. It exploits a portion of the locality in the request stream, reduc-
ing the average-case response time. We showed how existing close-page patterns
can be converted to their conservative open-page counterparts, and presented an
algorithm that replaces auto-precharge flags by explicit precharge commands, which
improves the effectiveness of the policy.

The stall-time and execution-time reduction in single- and multi-application use-
cases are quantified for a set of benchmark traces. The average-case performance is
improved by the conservative open-page policy in both of these scenarios. Interfer-
ence between applications largely determines the degree to which locality is success-
fully exploited. Arbiter configurations that encourage requests of the same applica-
tion to be scheduled consecutively by the back-end are significantly more effective
than those that do not. It thereforemakes sense to try and use those if the (unavoidable)
impact on the worst-case performance can be tolerated. Fortunately, the average-case
performance benefits obtained by using the policy is not controller configuration, and
hence BI and BC can be selected based on their effect on the worst-case properties of
the memory only. Finally, we showed that as long as least one of the memory clients
benefits from the policy, the overall memory performance for all clients improves.

References

1. Bhat B, Mueller F (2011) Making DRAM refresh predictable. Real-Time Syst 47(5):430–453
2. Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization

for predictability and temporal isolation. In: Proceedings of the CODES+ISSS, pp 99–108
3. HaraY,TomiyamaH,HondaS,TakadaH (2009)Proposal andquantitative analysis of the chstone

benchmark program suite for practical C-based high-level synthesis. J Inf Process 17:242–254
4. Austin T, Larson E, Ernst D (2002) SimpleScalar: an infrastructure for computer system mod-

eling. Computer 35(2):59–67
5. Goossens K, Hansson A (2010) The Aethereal network on chip after ten years: goals, evolution,

lessons, and future. In: Design automation conference (DAC)
6. Zhu Z, Zhang Z (2005) A performance comparison of DRAMmemory system optimizations for

SMT processors. In: 11th International symposium on high-performance computer architecture,
2005. HPCA-11, pp 213–224

7. Pai V, Adve S (1999) Code transformations to improve memory parallelism. In: International
symposium on micro-architecture, pp 147–155

8. Ding W, Guttman D, Kandemir M (2014) Compiler support for optimizing memory bank-level
parallelism. In: International symposium on microarchitecture (MICRO), pp 571–582

9. PowerPC e500 Core Family Reference Manual Reference Manual (2005) Freescale Semicon-
ductor

Chapter 7
Reconfiguration

This chapter deals with the topic of reconfiguration. It has been alluded to in several
places already, most prominently in Chap. 2, where the reconfiguration infrastructure
was shown from an architectural point of view. The focus in this current chapter lies
more on the process of memory controller reconfiguration, its merits and limitations
in the context of a predictable and composable SoC, and the effects it has on the
associated performance guarantees.

So far, the controller runs we have shown used the same configuration from boot
time until finish, merely using the reconfiguration infrastructure for initialization.
The value of this software-based programmability is the flexibility it offers: the
same hardware may be deployed with multiple different configurations. This enables
customization of its behavior to (1) the memory device, (2) the power/performance
trade-off provided by the patterns, and (3) different sets of clients. However, systems
generally operate in dynamic environments where the mix of active applications
or use-case is not constant during the execution. As a result, the requirements of
the controller’s clients change, and it is unlikely that a single configuration fits all
use-cases perfectly, creating a need for reconfiguration during operation.

This chapter starts with an overview of the reconfiguration options offered by
our architecture in Sect. 7.1. Section7.2 describes how predictable and composable
performance guarantees are defined for clients that remain active during reconfigu-
ration, and Sect. 7.3 discusses the implication this has on the reconfiguration options
we can safely use for these clients. Reconfiguring an arbiter while retaining pre-
dictable performance guarantees is not trivial: Sect. 7.4 shows how to construct and
use a TDM arbiter that has this property. Section 7.5 evaluates the contributions in
this chapter through experiments with our SystemC model and the VHDL instance
of our controller.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_7

145

http://dx.doi.org/10.1007/978-3-319-32094-6_2

146 7 Reconfiguration

7.1 Reconfiguration Options

The controller architecture template from Chap. 2 contains multiple components
that are reconfigurable at run time. They are configured at least once, at boot time,
to setup the controller for its first use-case, i.e., the initial set of clients. The memory
controller’s configuration determines how theSDRAMis used (i.e.,which commands
it executes), and what the memory performance looks like from the viewpoint of a
client. Later reconfiguration might be desired as a result of a use-case switch: clients
may be started or stopped, or the application behind a client might change. This leads
to a change in the system state that is typically coordinated by a resource manager
[1, 2], which could be either part of an operating system running on a processor
in the SoC, or a dedicated hardware module, depending on the required flexibility.
The requirements that the memory controller has to satisfy in this new state may be
different from what they were earlier. A use-case switch leads to reconfiguration if
the required configuration changes with the use-case.

The individual reconfigurable components of the controller are connected by
dependencies, limiting how they may be configured. Figure7.1 visualizes these
dependencies. A continuous arrow between two nodes means that if the source node
changes its value, then the destination node has to change accordingly. A dotted
arrow means a change in the source node might warrant a change in the destination
node, although this is not always necessary. The controller front-end contains the
following reconfigurable components:

Fig. 7.1 Overview of reconfigurable components and their interdependencies

http://dx.doi.org/10.1007/978-3-319-32094-6_2

7.1 Reconfiguration Options 147

1. Atomizers: the atom size should be set equal to access granularity of the back-end.
2. Delay blocks: when composable performance for the client is required, a set of

timing registers has to be configured in the delay block, such that can emulate a
client’s worst-case latency-rate curve (Sect. 2.4.1).

3. Arbiter: the arbiter has to be programmed with the allocated resource budget for
an application.

Even though the delay blocks and the arbiter may use different configurations per
client, the atomizermaynot, since the atomsizehas tomatchwith the back-end.There
is hence a distinction between configuration parameters that are shared by (and the
same for) all clients, and those that are private. The back-end solely contains shared
configurable components:

4. Patterns: the contents of the pattern memory, the pattern LUT, refresh timer and
the pattern set offset need to be configured.

5. Address generator: the masks and shift amounts should be set, such that memory
mapping corresponds to the pattern configuration, as discussed in Sect. 3.2.5.

When reconfiguring, two scenarios can be distinguished. (1) In the first scenario,
no clients remain active during reconfiguration, and no data has to be retained. This
is essentially the same as the initial configuration after reset, and we can hence
trivially change all settings in this scenario. (2) In the second scenario, at least one
client remains active while the controller is reconfigured. We will call such clients
persistent.

If we consider changing BI and BC while persistent clients continue to use the
controller, then two structural problems appear:

• Modifications of BI and BC that retain a constant access granularity permute
the relative burst order before and after reconfiguration, both within and across
atoms, as shown in Fig. 7.2. Bursts that were written by a single atom before

Fig. 7.2 An example of the placement of bursts in the memory using two different pattern sets with
the same access granularity. Consecutive bursts have consecutive numbers/characters, and each cell
contains a burst. Retrieving the data that was written using (BI 4, BC 2) would require two atoms
and reordering when using (BI 2, BC 4)

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_3

148 7 Reconfiguration

reconfiguration are spread across multiple atoms after BI and BC are changed.1

This makes it impossible to (transparently) retrieve the original data for persistent
clients.

• Changing the access granularity requires cooperation of the atomizers of persistent
clients, since they all have to start using the new atom size before the patterns can
actually be changed. This cooperation generally cannot be guaranteed, a client
may for example, delay the completion of one of its old-sized atoms by not deliv-
ering the required data to its atom buffer, potentially delaying the reconfiguration
indefinitely.

These issues make it infeasible to change BI and BC in this scenario, and thus
the entire shared configuration cannot be reconfigured in the presence of persis-
tent applications, because all its components are dependent on these parameters.
However, reconfiguration of the private configuration per client is not hindered by
structural issues, and hence, modifying the delay block or arbiter configuration is
possible. The next section bounds the extent to which we can use these options,
depending on the performance guarantee of the associated client.

7.2 Performance Guarantees During a Use-Case Switch

In this section, we describe how predictable and composable performance for persis-
tent clients is defined, and we outline how the use-case switching process is orches-
trated for the different types of clients in the system (Fig. 7.3).

Nonpersistent clients receive no performance guarantees during reconfiguration,
because they are switched off before it happens. During a use-case switch, this type
of client is handled first. The resource manager stops the flow of requests for these
clients at the source side (processor or peripheral). This can be done forcefully, or
in cooperation with the source. It then triggers a final dummy-read request on the
client’s front-end port and waits for the response to ensure that no requests for the
client are left in the controller. Alternatively, the client’s WCRT bound could be
used to determine when the final request that the client made is fully processed.
Since requests are never reordered per client, quiescence is thus ensured [3] before
reconfiguration is initiated.

Next, we consider persistent clients that require predictable or composable per-
formance, and have the same requirements before and after the use-case switch.
Their configuration might have to change as a side-effect of other reconfiguration
actions. If a TDM arbiter is used, for example, then we might want to move their
slots to a different position in the TDM table to make room for another (new) client
that requires a large contiguous allocation. Reconfiguration of this type of client can

1We recognize that it may be beneficial to apply such permutations for certain applications with
regular but nonlinear addressing strides, but in general the data that a client reads should match the
data that it wrote earlier.

7.2 Performance Guarantees During a Use-Case Switch 149

Fig. 7.3 Client type
hierarchy

start once all nonpersistent clients have been stopped. Our goal is to not change the
guarantees that are given to persistent clients as a result of reconfiguration, so we
define them as follows:

• The worst-case requirements of a persistent predictable client should always be
satisfied, i.e., its guaranteed performance before, during and after a use-case
switch is always equal to or higher than its required performance.

• The (actual-case) behavior of a persistent composable client should not be influ-
enced by the use-case switch in any way, i.e., for the client, it is impossible to
determine whether or not reconfiguration took place by observing data, timings
or a combination of the two.

These definitions allow the verification process of these types of clients to remain
unchanged, regardless of the possible reconfigurations they might experience during
their lifetime. Note that it is possible to combine the two guarantees for clients that
need to be both predictable and composable. However, the composable guarantee is
stronger and enforces predictability during reconfiguration, assuming the client was
receiving predictable performance before the use-case switch.

Finally, the newly starting clients in the use-case we transitioned to can be enabled
to complete the reconfiguration process.

7.3 Delay Block/Arbiter Reconfiguration
with Persistent Clients

Delay blocks and the arbiter are reconfigurable in the presence of persistent clients,
as discussed in Sect. 7.1. We now evaluate under which conditions we actually can
reconfigure, given the effect it has on the performance guarantees defined in Sect. 7.2.

Clients receiving predictable performance do not require a delay block. Themem-
ory controller may use composable patterns and TDM arbitration to provide com-
posable performance, or it can use predictable patterns and delay blocks. In the latter
case, the delay block may not be reconfigured by definition, since that alters the
actual-case behavior of the client. Instead, their delay blocks should always be con-
figured to emulate theworst-case performance across all use-cases inwhich the client

150 7 Reconfiguration

Table 7.1 Components we can reconfigure for persistent clients

Client type Delay block Arbiter

Persistent predictable clients

Not used Yes, if transition is safe (shown for
TDM in Sect. 7.4)

Persistent composable clients

Composable patterns + TDM Not used No (composability)

Predictable patterns + delay
block

No (composability) Yes, if transition is safe (shown for
TDM in Sect. 7.4)

is active. We conclude that even though reconfiguring the delay blocks for persistent
clients is not structurally impossible, it is never allowed or useful.

A client’s predictable performance guarantees depend on the configuration of
the arbiter. The arbiter may therefore only be reconfigured if the guaranteed perfor-
mance for all persistent clients is higher than or equal to their respective requirement
before, during and after reconfiguration. If we assume the arbiter is only recon-
figured to switch between valid configurations that individually satisfy the client’s
requirements, then we only have to ensure that the transition, i.e., the process of
reconfiguration itself does not cause requirement violations. If this is the case, then
we call the reconfiguration process safe. Composable clients that use delay blocks
need the same assertion to assure their (single) delay block configuration is conser-
vative. Proving this assertion holds for an arbiter, even if we restrict ourselves to
predictable arbiters, is not trivial. Section7.4 discusses the challenges, and how it
can be done for a TDM arbiter.

Finally, we consider the options for persistent composable clients using compos-
able patterns with TDM arbitration. Their private arbiter configuration, i.e., their
slots in the slot-table, may not be changed, since they rely on these to be constant for
composability (Sect. 3.3.1). However, the other slots that are not owned by clients
of this kind are still reconfigurable.
The results of this section are summarized in Table7.1.

7.4 Reconfigurable TDM Arbiter

Arbiters make run-time scheduling decisions based on their state variables, their con-
figuration, and the availability of new requests from clients. When the configuration
is changed through reconfiguration, it has to remain consistent with the state vari-
ables at the time of reconfiguration. What consistent means in this context depends
on the arbiter type: for example, if a TDM arbiter is reconfigured from a slot-table
size of 10 to a size of 5, then the state is only consistent if the current slot-table
pointer lies within the new slot-table range. The more of these variables there are
to consider, the tougher this becomes, and hence, it is easier to safely reconfigure

http://dx.doi.org/10.1007/978-3-319-32094-6_3

7.4 Reconfigurable TDM Arbiter 151

for example a TDM arbiter, which only holds its slot-table position as state variable,
compared to a CCSP arbiter [4], which has individual credit counters for each client.

In this section, we focus on (work-conserving and non-work-conserving) TDM
arbiters, and limit reconfiguration to the allocation of slots to clients, leaving the
table size untouched to avoid consistency issues. Reconfiguration might change a
predictable persistent client’s allocation by adding, removing, or moving its slots.
Adding slots is always safe, since it can only improve the performance of a client.
Removing slots is also safe within our performance guarantee definitions (Sect. 7.2):
a transition to a configuration with fewer slots is only allowed if this configuration
also satisfies the client’s requirements, and hence the slots that are removed can be
considered overallocation. This only leaves the case where slots are moved within
the table.

Section7.4.1 first describes how a slot allocation can be translated into a (latency-
rate) performance guarantee. Section 7.4.2 explores the slot-moving scenario further
by first showing how an (atomic) move operation leads to temporarily reduced per-
formance. It then derives a reconfiguration protocol for TDM arbiters that preserves
the guaranteed performance of persistent predictable clients during reconfiguration.
Section7.4.3 shows the architecture of a TDM arbiter that satisfies the protocol con-
straints. Section7.4.4 formalizes our approach to prove its correctness.

7.4.1 Latency-Rate Parameters for TDM Arbiters

A TDM arbiter divides the resource time into slots that are distributed to multiple
clients. Each slot represents a time slice in which one client can use the resource. A
slot is nonpreemptive, but its duration can be bounded by the WCIAT (Sect. 2.4.3).
We assume allocation of slots to clients is done at design time, yielding a slot table
thatmaps each slot to a certain client. The length of the slot table (or frame) T , defines
the period of the arbiter in number of slots. Each slot corresponds to a fraction 1/T
of the worst-case bandwidth (bwc), such that a client c that receives φc slots has a
(normalized) allocated rate of:

ρc
tdm = φc

T (7.1)

Intuitively, the service latency for a client c using a TDM arbiter expressed in
slots

(
�c

tdm

)
is the worst-case number of slots this client has to wait until the arbiter

reaches one of its slots. If a TDM arbiter uses contiguous (greedy) allocation, this is
equal to T times the rate not allocated to this client

(
1 − ρc

tdm

)
, plus one, as shown in

Eq. (7.2). The plus one accounts for the misalignment of the arrival of a atomwith the
arbitration moments. In the worst case, a decision has been made one cycle before
the arrival, and the client is too late to claim its slot.

�c
tdm = T · (1 − ρc

tdm) + 1 = T − φc + 1 (7.2)

http://dx.doi.org/10.1007/978-3-319-32094-6_2

152 7 Reconfiguration

We only discuss the arbiter’s LR abstraction in the remainder of this chapter. To
simplify our notation, we use

(
�,ρ

)
to represent

(
�c

tdm, ρc
tdm

)
.

7.4.2 Safe TDM Arbiter Reconfiguration protocol

Each memory controller client receives a LR performance guarantee based on its
allocated slots in the TDMarbiter.When the arbiter is reconfigured to switch between
different slot allocations, the number of slots the client receives over a period of
T slots may reduce temporarily, even if the number of allocated slots within each
table iteration remains constant, as shown by example in Fig. 7.4. Three of such table
iterations are shown in the figure. A letter in a slot indicates the slots belongs to the
client corresponding to that letter, and that it can claim that slot, if it has a request
available. In this example, we consider the case where the request from A arrives
just after its slot in the first iteration has started, which means it is too late to claim
it. If the same slot allocation had been used in the second iteration of the table, then
A’s response time would have been 6 slots. However, the arbiter is reconfigured, and
A’s slot is moved to the end of the table. Instead of 6 slots, it now sees a response
time of 10 slots. This could mean its LR guarantees are violated, depending on the
tightness of its service bound. This section discusses a reconfiguration protocol that
prevents bound violations.

Coffee Machine Analogy

Consider a simple filter coffeemachine in a university kitchen. The first Ph.D. student
who arrives in the morning finds the machine in a nonoperational state. This is not
unexpected, and the student knows how to deal with this problem. After a certain
initial service latency (adding the filter, water, and ground coffee), the machine
produces a stream of coffee at a steady rate. Once the water is depleted, the machine
no longer provides the service until someone replenishes its resources, reconfiguring
it for continued operation. A caffeine seeker arriving right after this reconfiguration
takes place will be unexpectedly disappointed by the provided service of the coffee
machine. Not being the first one in the office, he or she would expect to get coffee
immediately, but this is not the case now. Clearly something must be done to fix this
issue.

Fig. 7.4 Example of potentially violated LR guarantees for client A during reconfiguration. The
figure shows 3 TDM-table iterations of 5 slots each. A letter in a slot indicates the slots belongs to
the client corresponding to that letter

7.4 Reconfigurable TDM Arbiter 153

Adding a second coffee machine intuitively provides a solution to this problem,
since the additional capacity can compensate for the temporary loss of service. A
reconfiguration protocol is quickly established: a set time before the first machine
runs out of resources, the second machine needs to be prepared for operation. Once
the first runs out of coffee, the second is ready to take over, such that a steady rate of
coffee is guaranteed.

Our TDM arbiter uses the same principle that the coffee drinkers applied in the
analogy to ensure that moving slots does not lead to a reduction of the service
guarantee. It knows that slots will be removed at some time in the future due to
reconfiguration, and compensates by activating the slots that will replace them early
enough. The key insights are that moving slots should not be an atomic action, but
should instead be broken up in the removal and subsequent addition of slots, and that
these operations can be reversed. Section 7.4.4 derives what the minimum amount of
time between these operations has to be in order to retain the originalLR guarantees
during reconfiguration.

7.4.3 Arbiter Architecture

A schematic representation of the TDM arbiter architecture we propose is shown in
Fig. 7.5. It contains of a set of registers that represents the active TDM slot table.
Each slot contains the bus-port id of the client to which the slot belongs. An incre-
menting wrapping index counter selects the next client to be scheduled from the slot
table. The wrap-around value is configurable, such that multiple table lengths can be
implemented by the same hardware.

A copy of the slot table is kept in the shadow table, which can be reprogrammed
through a (DTL) configuration port. All slot reconfigurations are first applied to the
shadow table. One configuration message can reassign a contiguous slot range in the
shadow table to a different client. The shadow table is locked from further updates
after each configuration message until its contents is copied to the slot table. While it
is locked, the reconfiguration module does not accept new reconfiguration messages.

Fig. 7.5 Reconfigurable
TDM arbiter architecture

154 7 Reconfiguration

Fig. 7.6 Splitting the reconfiguration in two steps that take place in separate table iterations guar-
antees that the provided service is always greater than the guaranteed service

The purpose of the reconfiguration module is to implement our safe reconfigu-
ration protocol. It delays the actual reconfiguration of the slot table until the index
counter wraps around. Only then is the content of the shadow table copied to the slot
table, and hence, the new configuration immediately takes effect. If a predictable
client is reconfigured to a different set of contiguous slots, then two configuration
messages are used: the first one enables the new slots, while the second one disables
the old slots. As a result, the module forces the transition phase where both the new
and old allocation are given to be at least one table iteration. Figure7.6 shows what
this mechanism looks like in an example. For arbitrary allocations, two configuration
messages are required to add and remove each contiguous block of slots.

7.4.4 Latency-Rate Guarantees During Reconfiguration

We evaluate reconfiguration effects at the slot granularity. We formally prove that
the LR guarantees at this level of abstraction are not invalidated if our reconfigura-
tion protocol is used. This is a sufficient condition to guarantee that the LR bound
expressed in clock cycles is also valid, since the transformation function from slots
to clock cycles is monotonically increasing [5].

A LR server offers a linear lower bound on the provided service within a busy
period [6], and is defined as follows:

Definition 7.1 (LR server) Let τ be the starting time of a busy period [τ , τ ′] for
server si with a service latency �i and allocated rate ρi. For all times t during this
busy period, a lower bound on the provided service by si is given by:

wi(t) = max (0, ρi · (t − τ − �i)) ∀t ∈ [τ , τ ′] (7.3)

The lower bound on provided service by a LR server is maximal if the client
keeps the server continuously busy. If reconfiguration does not lead to a violation of
the bound under this condition, then it is also safe in all other cases. If a LR server
is reconfigured, for example by changing the underlying TDM slot allocation, its �

and ρ may change. We assume the allocations before and after reconfiguration are

7.4 Reconfigurable TDM Arbiter 155

chosen such that they satisfy the LR requirements of the client, as mentioned earlier
in Sect. 7.3.

Definition 7.2 The required LR service bound of the client , wr(t), in a busy period
[τ , τ ′] is given by:

wr(t) = max(0, ρr · (t − τ − �r)) ∀t ∈ [τ , τ ′] (7.4)

where (�r, ρr) represent the client’s LR requirements.

We model reconfiguration as the handover of a client between two independent
LR servers. The first and second server are characterized by the allocation before
and after reconfiguration, respectively.

Definition 7.3 Let c1 and c2 be two independent and distinct allocations for a client.
The corresponding LR parameters for allocation c1 and c2 are denoted by (�1, ρ1)

and (�2, ρ2), respectively. Both of these parameter sets satisfy the client’s LR
requirements, such that ρr ≤ min(ρ1, ρ2) and �r ≥ max(�1,�2).

The important words in this definition are independent and distinct: it should be
possible to enable or disable one of theLR servers corresponding to these allocations
without affecting the other’s service bound (their respective worst-case performance
guarantees should be independent). For a TDM arbiter this implies that c1 and c2
may not have overlapping slots. We will relax this requirement later.

We assume that c1 is initially active, and through reconfiguration, the client is
handed over to c2. To model this behavior, we define two time instances: tA is the
time at which allocation c2 is fully enabled in the slot table, and tR is the time at
which allocation c1 is fully disabled in the slot table.

The total service guaranteed to a TDM client is conservatively bounded by the
sum of the service provided by each slot that is allocated to it, because ρ and �

monotonically increase and decrease, respectively, with the number of allocated slots
(see Eqs. (7.1) and (7.2)). This property allows us to (lower) bound the guaranteed
service during reconfiguration as the sum of the service provided by allocations c1
and c2 (because there are no overlapping slots). Combining Definitions 7.1 and 7.3
yields:

Definition 7.4 For a time t during a busy period [τ , τ ′], the service guarantee wg(t)
of a server that is reconfigured from c1 to c2 is given by:

wg(t) ≥max(0, ρ1 · (min(t, tR) − τ − �1))

+max(0, ρ2 · (t − max(τ, tA) − �2)) ∀t ∈ [τ , τ ′]

The required LR service bound may not be violated before, during or after
reconfiguration. In other words, wg(t) has to be larger than or equal to wr(t) for
all t ∈ [τ , τ ′]. This is formally proven in Theorem 7.1.

Theorem 7.1 If tR − tA ≥ max(�1,�2) then ∀t ∈ [τ , τ ′], wg(t) ≥ wr(t).

156 7 Reconfiguration

Proof We have to conservatively assume there is no overallocation, such that ρ1 =
ρ2 = ρr . We can also conservatively substitute �1 and �2 by �′ = max(�1,�2).
This means that:

max
(
0, ρr · (

min(t, tR) − τ − �′)) + (7.5)

max
(
0, ρr · (

t − max(τ, tA) − �′)) ≥ (7.6)

max
(
0, ρr · (

t − τ − �′)) (7.7)

has to hold for all t. There are four cases that can be distinguished. Case 1, 3, and 4
are visualized in Fig. 7.7:

1. τ ≤ t ≤ tR:
As long as c1 is not disabled, then Eqs. (7.5–7.7) is satisfied by c1’s contribution
to the total service, expressed by Eq. (7.5). In Fig. 7.7, the requirement line wr(t)
overlaps with c1’s contribution while t ≤ tR.

2. tA ≤ τ :
Similarly, if the busy period starts after allocation c2 is enabled, thenEqs. (7.5–7.7)
is satisfied by c2’s contribution, expressed by Eq. (7.6).

3. τ ≤ t ≤ τ + �′:
As long aswr(t) is 0, i.e., before the rate phase of the server begins, then Eqs. (7.5–
7.7) is also trivially satisfied. In Fig. 7.7, this corresponds to the flat line portion
of wr(t) marked with �1.

4. t > τ and t > tR and tA > τ and t > τ + �′:
This only leaves the complement of the union of the previous three cases: c1 has
been removed, c2 is activated after the start of the busy period, and the rate phase
of the server has started. Applying these case constraints to Eq. (7.5–7.7), and
dividing by ρr yields:

max
(
0, tR − τ − �′) + max

(
0, t − tA − �′) ≥ t − τ − �′ (7.8)

Fig. 7.7 Example of the latency-rate guarantees during reconfiguration

7.4 Reconfigurable TDM Arbiter 157

Because t > tR in this case, the firstmax-term alone does not satisfy the inequality,
and hence, the second max-term needs to contribute, so we additionally require:

t > tA + �′ (7.9)

to hold. Eliminating common terms in Eq. (7.8) given Eq. (7.9) yields:

max
(
0, tR − τ − �′) ≥ tA − τ (7.10)

Because tA > τ in this case, we now know the left-hand side should yield a
nonzero result and hence:

tR > τ + �′ (7.11)

has to hold. Removing the common terms from Eq. (7.10) and rearranging leaves:

tR − tA ≥ �′ = max(�1,�2) (7.12)

If we assert that Eq. (7.12) holds, then wg(t) ≥ wr(t) holds in Case 4 given that
(7.9) and (7.11) are true. Combining Eq. (7.12) with case constraint t > tR yields
(7.9), and combining Eq. (7.12) with case constraint tA > τ yields (7.11), con-
firming these assumptions.

This means that if Eq. (7.12) holds, then wg(t) ≥ wr(t) holds for all t ∈ [τ , τ ′]which
concludes the proof. �

Equation (7.12) enforces a minimum interval of max(�1,�2) where both the c1
and c2 have to be provided by the server. During that transition period, the server
temporarily assigns both slot allocations to the client. Figures7.6 and 7.7 illustrate
this. Considering what happens when tR moves further to the left (i.e., removing
the original allocation earlier), we see the interval in which wg is larger than wr get
smaller until tR − tA = max(�1,�2), where the guarantee completely overlaps the
requirement.

7.4.4.1 Overlapping Slots

Definition 7.3 stated that c1 and c2 had to be distinct allocations, and reusing slots
in the TDM table across the corresponding configurations was hence not allowed.
The reason for this limitation is that we sum the contribution of c1 (Eq. (7.5)) and
c2 (Eq. (7.6)) in Eq. (7.7). If we relax this requirement, and allow c1 and c2 to have
overlapping slots, then we need to make sure we only count each slot once in all
cases. At tR, we now only remove the nonoverlapping slots of c1.

Definition 7.5 Let φol be the number of overlapping slots in allocation c1 and c2.
The corresponding rate of those slots is denoted with ρol.

158 7 Reconfiguration

Theorem 7.2 If c1 and c2 contain φol overlapping slots, then tR − tA ≥ �′ + ρol

ρr
·

(tR − tA − �′) should be satisfied to assert that ∀t ∈ [τ , τ ′], wg(t) ≥ wr(t).

Proof The first three cases of Theorem 7.1 remain unmodified, since only c1 or c2
is active in those cases, leaving only Case 4. We can narrow down Case 4 further by
using tR > tA, as required by Theorem 7.1 for safe reconfiguration when there are
no overlapping slots. Case 4 then turns into: t > tR > tA > τ and t > τ + �′. The
contribution of the overlapping slots is counted twice in the interval [tA, tR], and for
that we need to compensate by subtracting ρol · (tR − tA − �′) service units from
wg(t). Adding this term to Eqs. (7.5–7.7) yields:

ρr · (
tR − τ − �′) + ρr · (

t − tA − �′) − ρol · (
tR − tA − �′) ≥ ρr · (

t − τ − �′)

(7.13)

Dividing both sides of Eq. (7.13) by ρr and removing common terms yields:

tR − tA ≥ �′ + ρol

ρr
· (

tR − tA − �′) (7.14)

�

This result is similar to Eq. (7.12), although it constrains tR − tA further, since there
is an extra term on the right-hand side accounting for the overlap.

7.4.4.2 Application to Our Arbiter

The arbiter we introduced in Sect. 7.4.3 forces the transition phase where both the
new and old allocation are given to be at least one table iteration, so tR − tA ≥ T .

Theorem 7.3 If tR − tA ≥ T , then reconfiguration is guaranteed not to violate the
latency-rate guarantees of the client for our TDM arbiter.

Proof Reconfiguration is guaranteed to not violate the latency-rate guarantees of
the client if tR − tA ≥ �′ + ρol

ρr
· (tR − tA − �′), satisfying Eq. (7.14). Substituting

�′ with the service latency equation for TDM arbiters (Eq. (7.2)), and tR − tA with
T in this equation yields:

T ≥ T − min (φ1, φ2) + 1 + ρol

min (ρ1, ρ2)
· (T − (T − min (φ1, φ2) + 1))

(7.15)

After removing the common terms and rearranging, we have:

min (φ1, φ2) ≥ 1 + ρol

min (ρ1, ρ2)
· (min (φ1, φ2) − 1) (7.16)

7.4 Reconfigurable TDM Arbiter 159

The allocated rate in a slot-based TDM arbiter is equal to the number of allocated
slots divided by the table length, ρc

tdm = φc

T (Eq. (7.1)). Applying this to Eq. (7.16):

min (φ1, φ2) ≥ 1 + φol

min (φ1, φ2)
· (min (φ1, φ2) − 1) = 1 + φol − φol

min (φ1, φ2)

(7.17)

We distinguish three cases:

1. φol = 0:
In cases where φol = 0, we use the fact that the minimum allocation is 1 slot, so
min (φ1, φ2) ≥ 1, which satisfies Eq. (7.17).

2. φol = min (φ1, φ2):
In this case, all slots from the first configuration are also used in the second,
meaning we are removing or adding over-allocated slots, since ρr ≤ min (ρ1, ρ2)

(Definition 7.3). This can not violate the latency-rate guarantees of the client.
Applying this case constraint in Eq. (7.17) confirms this.

3. min (φ1, φ2) > φol > 0:
The number of allocated slots cannot be negative, and the overlap can at most be
as large as the minimum number of allocated slots, so for the rightmost term of
Eq. (7.17) we know:

0 ≤ φol

min (φ1, φ2)
≤ 1 (7.18)

In cases not captured by case 1 and 2, min (φ1, φ2) is at least one slot larger than
φol, satisfying Eq. (7.17).

�
With this proof, we have shown that the LR guarantees of the arbiter are unaffected
when it is reconfigured, and therefore, theWCRT guarantees derived in Sect. 2.4 that
are based on these guarantees remain valid.

7.5 Evaluation

This chapter presented the various reconfiguration options offered by our memory
controller and showed in which context they can be used. It also presented a TDM
reconfiguration protocol and associated arbiter architecture that enable to moving the
slots of persistent predictable clients, while asserting their performance guarantees
are not violated. The cost of the reconfiguration-related hardware has been evaluated
in Sect. 2.6, which showed the relative overhead is negligible. In the current section,
we evaluate the performance guarantees offered during reconfiguration by means of
two experiments. The first experiment, Sect. 7.5.1, uses the SystemC model of the
controller, while the second experiment, Sect. 7.5.2, uses the VHDL instance.

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2

160 7 Reconfiguration

Fig. 7.8 Experimental setup for Sect. 7.5.1. Labels on the arrows correspond to the client name(s)
that use the connection

7.5.1 Predictable Performance During Reconfiguration

In this experiment, we demonstrate that the controller offers predictable performance
to its clients during reconfiguration through simulations with the SystemC model.
The experimental setup is shown in Fig. 7.8. A four-port instance of the controller is
used, connected to a model of a 32-bit DDR3-800 device using a (default) 400 MHz
command clock.

Seven synthetic clients (denoted A–G) share the SDRAM resource in this experi-
ment. Figure7.9 shows the compositions of active clients and their properties over the
course of the experiment. Each bar represents a client and is annotated with its name,
bandwidth requirement, and the type of performance it requires (either predictable,
or predictable and composable). The controller uses composable patterns and TDM
arbitration to provide composable performance. For simplicity of the example, we
assume all clients have a relaxed WCRT requirement of 2000 ns. Clients generate
requests of 128 bytes, half of these are reads, and half are writes.

Fig. 7.9 Active clients over time. Three use-cases are visited: U1 (A, B, C, D), U2 (A, D, F, G),
and U3 (A, E, F, G)

7.5 Evaluation 161

Four synthetic traffic generators represent the clients. Each is connected to sepa-
rate ports on the memory controller. The generators can have an unlimited number of
outstanding requests, and will hence issue requests at the rate dictated by their band-
width requirement, as long as no back pressure is applied by the memory controller.
The atom buffers in the controller are over-dimensioned, such that they do not cause
back-pressure during normal operation, and hence, the arrival times of requests are
independent from the memory controller’s behavior. This allows us to focus purely
on the variations in the response time of each individual atom, without having to take
the effect on the arrival times of later requests into account.

Clients on the same horizontal line in Fig. 7.9 are mutually exclusive and share a
port and traffic generator. Clients on the same vertical line are active simultaneously,
resulting in three distinct use-cases, annotatedwithU1 (A, B, C, D),U2 (A, D, F, G)
and U3 (A, E, F, G). At T1 and T2, use-case transitions take place.

The controller uses a (BI 1, BC 4) pattern configuration with a worst-case band-
width (bwc) of 1862MB/s. The conversion to composable patterns does not impact the
memory efficiency for this configuration, because it is write-dominant (Sect. 3.3.2).
The slot-table size T in the arbiter is set to 20 slots, such that each slot corresponds
to 1862/20 = 93 MB/s.

Slots are assigned to clients in contiguous blocks using a greedy allocation algo-
rithm, considering one use-case at a time. Because clients A and D require compos-
able performance, they require the same slot allocation in all use-cases where they
are active, and are allocated first, similar to [7]. This is reflected in the allocation
algorithms’ output, which is shown in Fig. 7.10. Note that without reconfiguration
support, the slots for client F and G would not be movable and client E would be
unmappable due to fragmentation, although one could argue this is a limitation of the
allocation algorithm. Several more advanced slot allocation strategies that consider
real-time constraints exist [8–10]. The flexibility to move slots, as offered by our
arbiter, enables the use of such algorithms in case they are not capable of consider-
ing multiple use-cases at once. In general, it reduces the number of constraints they
have to take into account, which may lead to more successful allocations. However,
for the purpose of this experiment, we stick to our basic greedy algorithm.

Figure7.11 shows the temporal behavior of read requests at the atom buffers for
clientsB andF. The position on the x-axis of the bars corresponds to the time atwhich
a read atom arrives in the atom buffer of the client. The height of the bar corresponds
to the measured response time, i.e., the time until the data corresponding to the atom
is fully received by the atom buffer. Two runs of the experiment are shown, drawn

Fig. 7.10 Slot allocation results

http://dx.doi.org/10.1007/978-3-319-32094-6_3

162 7 Reconfiguration

Fig. 7.11 Response times with and without predictable reconfiguration, generated by the SystemC
simulation

with black and white bars, respectively. The white bars are mostly hidden behind the
black bars, and equal in size in those cases. Based on theLR guarantee resulting from
the slot allocation (Eqs. (7.1) and (7.2)), we determine a WCRT bound per request,
which is drawn as x-markers in the graph. It varies slightly due to self-interference
(i.e., the client having to wait on its own previous request(s)).

Initially, clientB is active, shown in the interval from20 to 30µs.At approximately
31 µs (T1), the first use-case transition and associated reconfiguration takes place.
Client F, becomes active now, which requests at a lower rate, and hence, the bars are
spaced further apart from here on.

In the first experiment (white bars), the safe reconfiguration mechanism in the
TDM arbiter is switched off, and transitions between different configurations happen
instantaneously, i.e., new slots are added and old slots are removed at the same time.
At 68 µs (T2), the transition from U2 to U3 takes place. The WCRT bounds of
some requests are violated as a consequence of reconfiguring the arbiter, which is
unacceptable. It shows that unconstrained reconfiguration is not safe.

A second run (black bars) is performed with the safe reconfiguration mechanism
switched on.Here theWCRTbound is valid during reconfiguration, and themeasured
response times are slightly lower, since the client temporarily gets more slots. This
experiment suggests that our reconfiguration protocol is safe.

7.5.2 Composable Performance During Reconfiguration

The second experiment demonstrates that the controller offers composable per-
formance using composable patterns and TDM arbitration to clients that require

7.5 Evaluation 163

this, even while the arbiter is reconfigured. This is contrasted to a run where pre-
dictable patterns are used, where we demonstrate that the interapplication interfer-
ence changes as a result of reconfiguration.

We use a two-port VHDL instance of the (Raptor) controller, and hence, perform
the experiments on our FPGA. A pattern set with (BI 1, BC 2) is used, which guar-
antees a worst-case bandwidth (bwc) of 933 MB/s. The TDM slot-table size is set to
8 slots.

Two MicroBlaze processors (MB1 and MB2) are connected to our memory con-
troller through a DMA. Each MicroBlaze runs one application, referred to by the
name of the MicroBlaze. The applications consist of a simple loop that generates
bursts of memory requests at an average rate of 90 MB/s. Each application maps to
a single client and thus single port on the memory controller.

The atom buffers are instrumented with timers that keep track of the arrival and
response times of the requests, similar to the SystemC setup from the previous exper-
iment. These timestamps are recorded and read out after the experiment. For each
experiment, we wait until the PHY finishes its initialization, and then program the
initial configuration in the memory controller. For the purpose of this experiment,
the start of the refresh timer and the first arbiter iteration are synchronized, making
behavior across multiple runs more likely to be repeatable, although some nonde-
terminism remains, as discussed earlier in detail in Sect. 3.4.3.2. We plot the most
commonly observed timestamp series per run.

Six different runs are performed, divided into two groups, one using predictable
patterns and the other using composable patterns, doing three runs per group. In all
runs, MB1 gets 4 slots in the table.

1. Reference run: Only MB1 runs its application, while MB2 remains idle.
2. Interference run: Both MB1 and MB2 are active. MB2 generates an interfering

stream of write requests and gets 4 slots in the TDM table.
3. Reconfiguration run: Both MB1 and MB2 are active. MB2 initially has 1 slot in

the TDM table, but is reconfigured to 2 slots after 32 µs.

Figure7.12 shows the measured arrival and response times of the MicroBlazes in
the first three runs. Predictable patterns are used, i.e., the slot length varies with the
request that is executed. Even though application MB1 is not changed across the
three runs, practically none of its timestamps overlap. Its behavior is hence affected
by the interference from MB2. In the reconfiguration run, there is a difference in the
behavior of MB1, even though we only change the allocation of MB2.

The second group of runs uses composable patterns (Fig. 7.13) to effectively
eliminate all interference across the two applications in a use-case, and during use-
case switches. The figure illustrates that MB1 is not affected by any of the actions
of MB2, nor by the reconfiguration of the arbiter, and its behavior is constant. The
reference run is thus representative for the behavior after integration, thus enabling
independent verification of the application in isolation.

http://dx.doi.org/10.1007/978-3-319-32094-6_3

164 7 Reconfiguration

Fig. 7.12 Predictable patterns runs. Note how the response times in the MB1 interference and
reconfiguration runs are different with respect to the reference run, indicating MB2 influences the
(actual-case) performance of MB1

Fig. 7.13 Composable patterns runs

7.6 Conclusion

This chapter showed that our memory controller has a flexible architecture with
various reconfigurable components. There is, however, a crucial difference between
its configuration options at boot time, and its reconfigurability at run time. In the latter

7.6 Conclusion 165

case, we need to make sure that state that was built up in the SDRAM and controller
by persistent clients is retained, and that the new configuration is consistent with it,
which limits the options. Resisting timing variations is an inherent part of predictable
and composable performance guarantees. Reconfiguring the very components that
facilitate these guarantees is hence often not possible in the presence of persistent
clients, although the resource arbiter remains reconfigurable under certain conditions.
We showed how a TDM arbiter can satisfy these conditions, and prove that safely
reconfiguring it between valid configurations without degrading its LR guarantees
is possible. An implementation of this arbiter and reconfiguration scheme, both in
SystemC and VHDL, demonstrated its effectiveness.

References

1. Sinha S, KoedamM, Breaban G, Nelson A, Nejad AB, GeilenM, Goossens K (2015) Compos-
able and predictable dynamic loading for time-critical partitioned systems on multiprocessor
architectures. Microprocess Microsyst

2. Goossens K, KoedamM, Sinha S, Nelson A, GeilenM (2015) Run-timemiddleware to support
real-time system scenarios. In: Proceedings of the European conference on circuit theory and
design (ECCTD)

3. Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management.
IEEE Trans Softw Eng 16(11):1293–1306

4. Akesson B, Steffens L, Strooisma S, Goossens K (2008) Real-time scheduling using credit-
controlled static-priority arbitration. In: Embedded and real-time computing systems and appli-
cations (RTCSA)

5. Akesson B, Goossens K (2011) Architectures and modeling of predictable memory controllers
for improved system integration. In: Design, automation and test in Europe conference and
exhibition (DATE), pp 1–6

6. StiliadisD,VarmaA (1998)Latency-rate servers: a generalmodel for analysis of traffic schedul-
ing algorithms. IEEE/ACM Trans Netw 6(5)

7. Hansson A, Coenen M, Goossens K (2007) Undisrupted quality-of-service during reconfigu-
ration of multiple applications in networks on chip. In: Design, automation and test in Europe
conference and exhibition (DATE)

8. Akesson B, Minaeva A, Sucha P, Nelson A, Hanzalek Z (2015) An efficient configuration
methodology for time-divisionmultiplexed single resources. In: Real-time and embedded tech-
nology and applications symposium (RTAS)

9. Stuijk S, Basten T, Geilen M, Ghamarian AH, Theelen B (2008) Resource-efficient routing
and scheduling of time-constrained streaming communication on networks-on-chip. J Syst
Architect 54(3):411–426

10. Stefan R, Goossens K (2011) An improved algorithm for slot selection in the æthereal network-
on-chip. In: Proceedings of the fifth international workshop on interconnection network archi-
tecture: on-chip, multi-chip (INA-OCMC), pp 7–10

Chapter 8
Related Work

This related work chapter is split into three main sections. The first one, Sect. 8.1,
discusses various approaches toward the construction and analysis of SDRAM con-
trollers. Section8.2 considers performance-overviews for SDRAMmemories, while
Sect. 8.3 discusses other approaches towards run-time reconfiguration of (shared)
resources under real-time constraints.

8.1 SDRAM Controllers

ManySDRAMcommand schedulers and/or controllers have been proposed in related
work, employing a range of methods to improve different performance aspects. First,
we discuss the works that focus on average-case performance in Sect. 8.1.1. We
distinguish papers that introduce new techniques or hardware, and those that analyze
existing (COTS) memory controllers. Later, in Sect. 8.1.2, we show an extensive
overview of controllers that are specifically constructed to be analyzable, or are
otherwise meant to be used in a (mixed-)real-time application area.

8.1.1 Average-Case-Oriented Controllers

Methods that improve average-case performance of SDRAM are abundant, exploit-
ing locality [1, 2], grouping requests per thread [3], exchanging more information
with the cache [4] and even using reinforcement learning to adapt the scheduling pol-
icy at run-time [5]. These techniques interact with the command scheduling in com-
plex ways, relying on unpredictable request reordering schemes that are effectively
impossible to analyze, which means no useful bounds on the real-time performance
can be derived. This makes it very challenging to use them in a real-time context.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_8

167

168 8 Related Work

Certain works analyze COTS memory controllers, in order to derive the worst-
case performance estimates for them. These approaches are by design fairly coarse-
grained in terms of the guarantees they can satisfy, since the visibility on the cycle-
by-cycle hardware behavior is limited. Shah et al. [6] shows a technique to bound
theWCET of applications that use the SDRAM. The technique is tested on an Altera
FPGA platform, where the worst-case parameters of the associated memory con-
troller are empirically determined. Each request is interleaved over all banks in the
memory device. Yun et al. [7] first measures the worst-case bandwidth, and then
applies an OS-based bandwidth reservation system to distribute it amongst different
cores. The focus of [8] is First-Ready First-Come First-Served (FR-FCFS) arbi-
tration, where the authors perform a WCRT analysis based on a parameterizable
system model. The model requires assumptions on the per-bank arbitration policy,
the command scheduler, and a maximum number of outstanding requests per core.
It furthermore assumes each request maps to only a single memory burst, and that
the number of re-orderings by the “first ready” mechanism is known and finite. If the
used COTS cores are timing compositional [9], and used for sporadic tasks with con-
strained deadlines, then it may be possible to calculate conservative WCRT bounds.
As a necessary requirement, the right numbers should be fed into the system model
such that it corresponds to the actual hardware implementation in the investigated
COTS system. Often this may not possible, since the exact properties of a COTS
component are generally not disclosed by the manufacturers.

8.1.2 Real-Time-Oriented Controllers

In this section, we take a closer look at the works on real-time and mixed-time-
criticality SDRAM controllers. First, we focus mostly on the back-ends of these
controller. We identify the Sect. 8.1.2 basic properties that are shared by practically
all of them. These traits are then used as a coarse-grained characterization system,
shown in Table8.1. We consider the following properties in its columns:

1. The target memory or target-SDRAM type of the work: The authors of the publica-
tion usually have a certain type of memory in mind when they design or evaluate
a memory controller. Although the differences between SDRAM generations are
usually small, they are relevant when it comes to the quantification of the per-
formance of the proposed controllers. For example, the designer of a controller
that is focused on slow devices is less concerned about write-read switching over-
head compared to someone considering fast devices. The reason being that the
relative size of the WR-to-RD timing constraint compared to one data burst is
much smaller.1 These kinds of differences influence design decisions which are
reasonable.

1WR-to-RD in the same bank requires 11 cycles forDDR2-800, or the equivalent time of 2.75 bursts,
versus 29 cycles or 7.25 bursts for a DDR4-2400 (Sect. 3.1, Appendix B), assuming a data burst
takes 4 cycles.

http://dx.doi.org/10.1007/978-3-319-32094-6_3

8.1 SDRAM Controllers 169

2. Page policy: A memory controller may use a close-page policy, an open-page
policy, or a hybrid policy, like a conservative open-page policy (Chap.6) for
example. The values in this column of Table8.1 refer to the implementation of
the controllers, but not necessarily their worst-case analysis. Jalle et al. [10] for
example uses an open-page policy, but assumes all requests are misses in its
analysis.

3. Device or DIMM focused: Some works on memory controllers use individual
SDRAM devices. The interface width of the SDRAM is then relatively small,
equal to the data bus width of a one or two devices, as discussed in Sect. 2.1.4.
As a result, the amount of data per burst is also relatively small compared to the
size of the requests they process. This allows them to work at access granularities
larger than one burst. Works that focus on DIMMs assume that the interface
width is much wider. As a result, they can usually fit an entire request into just
one burst. This makes it practically impossible to exploit bank-level parallelism
within requests for such controllers in the worst case, which impacts the design
of their command and request-level schedulers.

4. Command scheduler granularity: A memory controller has a component that
schedules commands. In our work, the smallest granularity at which commands
are scheduled at run-time is a pattern. Some related controllers also use presched-
uled sequences in the implementation or analysis of their scheduler. Other con-
trollers make all scheduling decisions at run-time, on a per-command basis. We
refer to such controllers as being dynamically scheduled.

5. Burst order: Some controllers limit or enforce to which banks consecutive bursts
are directed to improve the memory efficiency, as discussed conceptually in
Sect. 2.2.1. Other controllers direct bursts to distinct ranks [11–13], improving
efficiency when read and write bursts are interleaved at a small granularity.

6. Refresh mechanism: SDRAM controllers need a way to handle refresh. In this
book, refresh is assumed to be triggered automatically by an internal refresh
timer, which inserts a refresh pattern in the schedule when required. Variations
on this scheme [11, 14] aimed at reducing the costs of refresh within a worst-case
analysis are used by some of the mentioned controllers.

7. Predictable and/or composable performance: A memory controller can be built
to offer predictable and/or composable performance. Note that the addition of
a delay block [15] can make most predictable controllers composable under the
assumption that a suitable latency-rate abstraction of their performance can be
derived.
Note that when we label a memory controller “non-composable”, it sometimes
contradictwhat is stated in the related paper, due to differences in the interpretation
of what composability means. In particular, many papers use isolation of WCETs
(compositionality) rather than the definition we described in Sect. 1.4.4 [16],
which implies isolation of actual-case execution times.

8. (Smallest) spatial mapping granularity: When the SDRAM is shared amongst
multiple clients, they are each assigned a certain fraction of the memory space.
The memory controller design influences the minimum granularity at which this
space can be distributed. We assume assignment of space is done in multiples of

http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_1

170 8 Related Work

memory rows (1–2KiB), i.e., column-level distribution is not considered. Taking
our Raptor controller as an example, we interleave a request over BI banks, and
hence the smallest possible mapping granularity is a single row in BI banks.

The following sections discuss the controllers in mentioned in Table8.1 in more
detail. We categorize these controllers further by the command scheduler granularity
they use, starting with very coarse-grained static command schedulers, and ending
with dynamically scheduled solutions.

8.1.2.1 Static Command Schedulers

Bayliss

Within the group of real-time oriented controllers we consider, the amount of a
priori information that is assumed to be available and exploitable by the command
scheduler varies. Bayliss [20] requires every single request to be known at design
time to compute a static command schedule at design time. It is hence completely
analyzable, but has limited flexibility, since obtaining this information in a multi-
core system is not possible in the general case due to non-determinism (Sect. 3.4.3.2)
and dynamism in use-cases, leading to unpredictable interleaving of request from
independent applications.

SMC

The Streaming Memory Controller (SMC) [17] focuses on real-time steaming traffic,
which allows the memory controller to deal with relatively large requests, up to the
size of an entire page (1 KB for their device). This is equivalent to choosing BC
such that the access granularity is 1 page, with BI 1. Their target device is a DDR1
memory, which we did not consider in this book, but their results relating a larger
access granularity to lower power usage are in line with the trends we observed in
Chap.5. Arbitration across streams is done through a credit-based system, which
guarantees a certain number of requests within a fixed period is processed for each
client. This suggest that the controller is predictable, although a detailed analysis
is not provided. It is grouped here with [20] since its large scheduling granularity
effectively also gives it a static command schedule, even though it is not precomputed.

8.1.2.2 Semi-Static (Pattern-Like) Command Schedulers

Predator

The Predator controller [18] dynamically schedules precomputed sequences of
SDRAM commands (patterns) according to a fixed set of scheduling rules, creating
a predictable pattern-based memory controller, implementing a close-page policy.
Through a design-time analysis, a latency-rate bound [28] on the performance pro-
vided to each application is determined. Akesson and Goossens [19] combines the

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_5

8.1 SDRAM Controllers 171

Ta
bl

e
8.

1
R
el
at
ed

m
em

or
y
co
nt
ro
lle

rs
(i
n
ch
ro
no

lo
gi
ca
lo

rd
er

of
pu

bl
ic
at
io
n)

N
am

e
1.

Ta
rg
et

2.
Pa
ge

po
lic
y

3.
D
ev
ic
e/

D
IM

M
4.

Sc
he
du
le

gr
an
ul
ar
ity

5.
B
ur
st
or
de
r

6.
R
ef
re
sh

m
ec
ha
ni
sm

7.
Pr
ed
ic
ta
bl
e/

co
m
po
sa
bl
e

8.
M
ap
pi
ng

gr
an
ul
ar
ity

[1
7]

SM
C

D
D
R
(1
)

C
lo
se

D
ev
ic
e

St
at
ic
,1

pa
ge

C
on

se
cu
tiv

e
co
lu
m
ns

in
a
ro
w

N
ot

pu
bl
is
he
d

Pr
ed
ic
ta
bl
e

(a
na
ly
si
s
is

su
pe
rfi
ci
al
)

1
ro
w

[1
8,

19
]
Pr
ed
at
or

D
D
R
2/
D
D
R
3

C
lo
se

D
ev
ic
e

Se
m
i-
st
at
ic
,1
-n

bu
rs
ts
to

al
l

ba
nk
s

In
te
rl
ea
ve

al
l

ba
nk
s,
n-
bu
rs
ts

pe
r
ba
nk

In
te
rn
al
tim

er
Pr
ed
ic
ta
bl
e,

co
m
po

sa
bl
e
w
ith

de
la
y
bl
oc
k

1
ro
w
in

al
lb

an
ks

B
ay
lis
s
et
al
.[
20

]
D
D
R
2-
53
3

–
N
ot

pu
bl
is
he
d

St
at
ic
,

1
ap
pl
ic
at
io
n

Fu
lly

st
at
ic

sc
he
du
le

N
ot

pu
bl
is
he
d

Pr
ed
ic
ta
bl
e
an
d

co
m
po
sa
bl
e

N
ot

ap
pl
ic
ab
le

[2
1,

22
]
A
M
C
,

R
T
C
M
C

D
D
R
2/
D
D
R
3

C
lo
se

D
ev
ic
e

Se
m
i-
st
at
ic
,

1
bu
rs
tt
o
al
l

ba
nk
s

In
te
rl
ea
ve

al
l

ba
nk
s

In
te
rn
al
tim

er
Pr
ed
ic
ta
bl
e

1
ro
w
in

al
lb

an
ks

[1
1]

PR
E
T

D
D
R
2-
40
0

C
lo
se

D
IM

M
Se

m
i-
st
at
ic
,

1
bu
rs
tt
o
ha
lf
th
e

ba
nk
s

In
te
rl
ea
ve

in
de
pe
nd
en
t

re
so
ur
ce
s,

in
te
rl
ea
ve

ra
nk

s

M
an
ua
l

Pr
ed
ic
ta
bl
e

w
ith

in
,a
nd

co
m
po
sa
bl
e

ac
ro
ss

in
de
pe
nd
en
t

re
so
ur
ce
s

1
ro
w
in

an
in
de
pe
nd
en
t

re
so
ur
ce

(2
ba
nk
s)

W
u
et
al
.[
23

]
D
D
R
2/
D
D
R
3

O
pe
n

D
IM

M
D
yn
am

ic
N
o
en
fo
rc
em

en
t

In
te
rn
al
tim

er
Pr
ed
ic
ta
bl
e

1
ba
nk

[1
2]

M
C
M
C

D
D
R
3-
13
33
H

C
lo
se

D
IM

M
Se

m
i-
st
at
ic
,

1
bu
rs
tt
o
ha
lf
of

al
lb

an
ks

In
te
rl
ea
ve

vi
rt
ua
l

de
vi
ce
s,

in
te
rl
ea
ve

ra
nk

s

M
an
ua
l(
lik

e
[1
1]
)

C
om

po
sa
bl
e

ac
ro
ss

vi
rt
ua
l

de
vi
ce
s

1
ro
w
in

a
vi
rt
ua
l

de
vi
ce

(2
ba
nk
s)

[1
0]

D
C
m
c

D
D
R
2-
66
7

O
pe
n

D
IM

M
D
yn
am

ic
N
o
en
fo
rc
em

en
t

N
ot

fu
lly

sp
ec
ifi
ed
.R

ef
er
s

to
[1
4]

Pr
ed
ic
ta
bl
e

1
ro
w
in

a
ba
nk

[1
3]

R
O
C

D
D
R
2/
D
D
R
3

O
pe
n

D
IM

M
D
yn
am

ic
In
te
rl
ea
ve

ra
nk
s

R
ef
er
s
to

[2
3]

Pr
ed
ic
ta
bl
e

1
ba
nk

(c
on
tin

ue
d)

172 8 Related Work

Ta
bl

e
8.

1
(c
on
tin

ue
d)

N
am

e
1.

Ta
rg
et

2.
Pa
ge

po
lic
y

3.
D
ev
ic
e/

D
IM

M
4.

Sc
he
du
le

gr
an
ul
ar
ity

5.
B
ur
st
or
de
r

6.
R
ef
re
sh

m
ec
ha
ni
sm

7.
Pr
ed
ic
ta
bl
e/

co
m
po
sa
bl
e

8.
M
ap
pi
ng

gr
an
ul
ar
ity

[2
4,

25
]

R
T
M
em

C
on
-

tr
ol
le
r

D
D
R
3

C
lo
se

D
ev
ic
e

D
yn
am

ic
(s
in
gl
e

re
qu

es
tg

et
s

co
ns
ec
ut
iv
e

bu
rs
ts
)

In
te
rl
ea
ve

ov
er

B
I
ba
nk

s
w
ith

B
C
bu
rs
ts
pe
r

ba
nk
.B

I
an
d
B
C

m
ay

va
ry

pe
r

re
qu
es
t

In
te
rn
al
tim

er
Pr
ed
ic
ta
bl
e

1
ro
w
in

B
I
ba
nk

s

[2
6]

PM
C

D
D
R
3-
13
33

H
yb
ri
d

D
ev
ic
e

Se
m
i-
st
at
ic

(s
in
gl
e
re
qu
es
t

ge
ts
co
ns
ec
ut
iv
e

bu
rs
ts
)

In
te
rl
ea
ve

ov
er

al
lb

an
ks
,1

bu
rs
t

pe
r
ba
nk

R
ef
er
s
to

[8
]

Pr
ed
ic
ta
bl
e

1
ro
w
in

al
lb

an
ks

[2
7]

(c
m
d-
pr
io
ri
ty
)

D
D
R
2/
L
PD

D
R
2

O
pe
n

D
IM

M
D
yn
am

ic
N
o
en
fo
rc
em

en
t

In
te
rn
al
tim

er
Pr
ed
ic
ta
bl
e

2K
ir
ow

s
fo
r

cr
iti
ca
lt
as
ks
,1

ro
w
in

a
ba
nk

fo
r

no
n-
cr
iti
ca
lt
as
ks

T
hi
s
w
or
k

(R
ap
to
r)

D
D
R
2/
3/
4

L
PD

D
R
1/
2/
3

H
yb
ri
d

D
ev
ic
e

Se
m
i-
st
at
ic
,B

C
bu
rs
ts
to

B
I

ba
nk
s

Pr
og
ra
m
m
ab
le

B
I,
B
C

In
te
rn
al
tim

er
Pr
ed
ic
ta
bl
e,

co
m
po

sa
bl
e
w
ith

de
la
y
bl
oc
k
or

co
m
po
sa
bl
e

pa
tte

rn
s

1
ro
w
in

B
I
ba
nk

s

8.1 SDRAM Controllers 173

controller with a front-end containing delay blocks [15], turning it into composable
controller. The combined template is documented in [29], and forms the jumping-off
point of the controller presented in this book, as mentioned earlier in Sect. 2.2.

AMC and RTCMC

TheAnalyzable Memory Controller (AMC) [21] or, by its newname,Real-time Capa-
ble Memory Controller (RTCMC) controller [22] dynamically schedules commands
at run-time, but is effectively semi-static in its worst-case analysis. It interleaves
requests over all (4) banks in the devices it considers, issuing one burst per bank (i.e.,
like a (4, 1) configuration). The work distinguishes HRT and Non Hard Real-time
Tasks (NHRT) (tasks map to clients in our terminology, and NHRT maps to SRT
or best-effort). Arbitration across tasks is done through a round-robin arbiter, which
first considers all HRTs before the NHRTs. A request from a HRTs can preempt an
executing NHRT request by taking over its remaining bursts. The NHRT request is
continued once the HRT’s request is completed. Both the arbiter type (round-robin)
and this preemption mechanismmake the controller non-composable, since the pres-
ence or absence of requests from competing clients influences the timings of other
clients.

The worst-case behavior of the controller is bounded by evaluating what com-
mand schedules it uses in the worst case. This analysis is very similar to the pattern-
based analysis that we applied in this work, since it essentially involves scheduling
access patterns and switching patterns, and then using their (worst-case) concatenated
lengths. The controller in [21] has a special mode where request of a task running
in isolation can be delayed until their (analytical) worst-case starting time. This
mode is used when estimating the WCET of a task by simulation, under the assump-
tion that the processing platform is performance monotonic. However, as illustrated
in Sects. 3.4.3.2 and 7.5.2, real applications and systems are not (by default) perfor-
mancemonotonic. It can only be guaranteed by adhering tomany restrictions in terms
of programming model and system architecture such as done in CompSOC [30], for
example.

PRET and MCMC

The PREcision Timed (PRET) memory controller [11] partitions the SDRAM into
pairs of banks which they call independent resources, each consisting of two banks in
the same rank. The controller executes a static periodic command schedule, in which
banks are accessed with one burst at a time (i.e., with a BC of 1), and all independent
resources are visited once. Consecutive bursts are guaranteed to be interleaved across
different independent resources and ranks, and a close-page policy is used. This
paper effectively introduces the concept of bank privatization (partitioning), where
the independent resources offer composable performance as long as they are not
shared.

Another novel feature in [11] is the application of a manual refresh scheme. The
controller periodically uses its regular command schedule to activate and precharge
a row in each bank, which refreshes those rows, as described in Sect. 2.4.2.1.

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_2

174 8 Related Work

PRET uses a relatively slow DDR2 device that has a relatively small read-write
switching timing constraint. When combined with rank interleaving, it allows read
and write burst to be alternated every 2 bursts without prohibitively large penalties.
This does not scale well to faster memories as the read-to-write and write-to-read
constraints grow and start to dominate the schedule length. The rrd (ACT-to-ACT)
constraint for these memories is also small enough, such that even with BC = 1
the efficiency is still reasonable, but this again changes when faster memories are
considered. An implementation of the PRET controller on a Xilinx Virtex 5 FPGA
is shown in [31].

The Mixed Critical Memory Controller (MCMC) [12] is similar to PRET in
almost every aspect, although the independent resources have been renamed to vir-
tual devices. PRET allowed its independent resources to be optionally shared through
round-robin arbitration, while MCMC allows two clients, one critical and the other
noncritical, to share one of its virtual devices through a fixed-priority arbiter. The
critical client is prioritized over the other noncritical client as it shares a virtual device
with. This allows the critical client to have a relatively lowWCRT, while slack can be
used by the noncritical client. The noncritical client receives non-predictable perfor-
mance, since it can be blocked by the critical client indefinitely, causing starvation.
The critical client receives composable performance.

PMC

The Programmable Memory Controller (PMC) [26] uses a variation on the conser-
vative open-page patterns we introduced in Chap.6. The controller generates sta-
tically scheduled command sequences, which are very similar to the conservative
open-page patterns. In the terminology of [26], patterns are called bundles. Bun-
dles effectively implement the access patterns2 corresponding to the four modes we
defined in Chap.6. Each bundle always interleaves bursts over 8 banks (an (8, 1)
equivalent). Our patterns implement just 1 fixed granularity under the assumption
all clients produce the same size requests, or are atomized down to this fixed size.
Large request from different clients may thus be chopped up and interleaved by the
arbiter, destroying their inherent locality, and hence the worst-case analysis has to
assume no locality is present. PMC allows large requests to stay mostly intact even
after arbitration (up to a certain threshold), preserving the locality. It issues a con-
catenation of bundles to execute the required commands for such a variable-sized
request.

The effect this has is comparable to themulti- tdm- 2 experiment in Sect. 6.4.2.3,
where we provide more than one consecutive TDM slot to a client, assuming clients
generate requests that are larger than an atom. The difference is that, in order to
guarantee a request is served as consecutive patterns, it should be fully buffered before
the arbiter may schedule it, where previously we only had to buffer an atom worth
of data. PMC (presumably) guarantees this behavior, and can hence use the reduced
request WCRT this creates in its analysis. The trade-off is that each interfering client

2Data bus switches are taken into account separately in their worst-case analysis, but it not clear
from [26] if there are bundle counterparts of switching patterns.

http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_6

8.1 SDRAM Controllers 175

potentially occupies the back-end for a longer time in this scheme, proportional
to the maximum request size instead of a fixed (typically smaller) atom size. The
experiments in [26] show improved bandwidth and reduced latency when requests
are very large (512 B and up), while the gains for typical requests (64 B) are modest
compared to a solution with close-page patterns.

The name PMC refers to the programmability of its TDM arbiter. Programming
is done at boot time, and reconfiguration is not considered. It is combined with a slot-
allocation algorithm that guarantees periodicity within the TDM table it generates,
allowing them to be stored efficiently, while still implementing a relatively large
frame size.

8.1.2.3 Dynamic Command Schedulers

Statically or semi-statically scheduled controllers reduce the number of variables on
which the (run-time) command schedule depends. This acts as an abstraction layer
for the worst-case analysis, simplifying it. Dynamically scheduled controllers do
not do this. Instead, the sequences of commands they can execute emerge directly
from the interaction of the SDRAM timing constraints with the incoming request
streams. Their worst-case analyses rely purely on knowledge of the behavior that the
controller is capable of exhibiting based on its architecture.

Wu and ROC

Wu et al. [23] propose an analysis model for a dynamically scheduled memory
controller. The focus is on analysis and not on architecture, but the paper does explain
the hardware structure of the memory controller it assumes. Its main feature is that
it is an open-page controller using bank privatization. When multiple clients share
a bank, their requests are interleaved in an (at design time) unpredictable manner,
due to the interaction between the client arbiter and the arrival times of requests, as
discussed earlier in Chap.6. When an open-page policy is used in such a system,
each new request finds its bank(s) in a potentially different state than the client left it
in, since another client might have used it in the mean time. Any locality information
obtained at the client side is hence not usable in a worst-case analysis. However,
private banks have consistent state from the client’s point of view, which allows [23]
to incorporate hit/miss information in the worst-case analysis, when it is available.
Benefiting from the use of an open-page policy in terms of lower worst-case bounds
is only possible when bank privatization is used, as far as we are aware. RTCMC [22]
analyses a similar privatization-based open-page approach, but concludes that giving
a complete bank to each application (or thread) leads to scalability issues (the number
of banks is limited), and therefore drops the idea in favor of a close-page (4, 1)
configuration.

The Rank-switching Open-row Controller (ROC) [13] builds upon the work in
[23], adding an enforced rank-interleaving mechanism. Similar to [11, 12], this (par-
tially) hides the data bus direction-switching overhead of one rank with accesses to
another rank.

http://dx.doi.org/10.1007/978-3-319-32094-6_6

176 8 Related Work

The underlying assumption in [13, 23] is that hit/miss information can be
derived for a client’s traffic stream. This requires a bank-aware mapping of data for
clients [32], and static analysis or measurements of the request address sequences
after address mapping. This analysis may not always be possible, especially if the
application is dependent on inputs that are unknown at design time. Another assump-
tion is that distributing the memory capacity (space) across cores at the granularity
of banks is feasible, i.e., that over-allocation is limited. Sharing data across cores is
also nontrivial in this privatized scheme: when two clients communicate through a
shared bank, the worst-case analysis problem for a general open-page policy emerges
again. The authors suggest designating a separate set of banks for shared data might
be an option.

Rank interleaving is used in [11–13] to limit read-write switching overhead. A
hypothetical extension of our controller could apply rank interleaving, for example
by ensuring the first burst in a pattern maps to a different rank than the last burst.
This would make it easier to satisfy read-write switching constraints across patterns.
However, we estimate the benefits of such a scheme would be limited. The reason
is that switching patterns do not contribute to the worst-case pattern sequence when
a close-page policy is used in 70% of the configurations that were evaluated in
Sect. 5.2, and is hence not relevant for worst-case performance in those cases. In the
remaining 30% of the configurations, the average overhead (in terms of worst-case
bandwidth) is 5%, with a maximum of 16% for the slowest LPDDRmemory. Taking
into account that switching ranks has a penalty of about 2 cycles, which replaces a
switching pattern with a length of the same order of magnitude, we estimate the
efficiency improvement obtained from applying rank interleaving is only 2–3% on
average, within the 30% of the configurations that would benefit at all. The main
reason [11–13] derive benefit from rank-interleaving is their focus on DIMMs. Using
more than one burst per request in such controllers is not possible, since a single
burst typically fulfills the data needs of a (reasonable sized, i.e. 64 byte) request.
Consecutive bursts hence potentially originate from different clients for them, and
swap the bus direction every other burst in the worst case, which is very expensive.

RTMemController

The memory controller proposed by [24, 25] uses a close-page policy and uses
dynamic command scheduling. The flexibility this offers is used to efficiently serve
requests of variable sizes.A (BI,BC) combination for a range of request sizes is stored
in a LUT, which is used at run-time to steer the bursts into banks. The selection of
BI and BC is based on our work in [33]. Li et al. [24] focuses only on the back-end,
while [25] also describes the interaction with a TDM arbiter in the front-end.

Similarly to Predator, RTCMC, PMC, and our work, the RTMemController keeps
the bursts that belong to one request (or atom) together as one scheduling unit.
However, it works actively toward completing multiple requests at the same time
using bank parallelism to pipeline ACT and PRE commands across requests.

The controller is characterized in great detail, and the appropriate worst-case
situations are derived in a traceable manner. This forms the basis of the (analytical)
WCRT analysis. Li et al. [25] compares the performance of RTMemController with a

http://dx.doi.org/10.1007/978-3-319-32094-6_5

8.1 SDRAM Controllers 177

(BI, BC)-aware version of Predator, which is comparable to our work. When serving
requests of fixed size, the execution times of Predator and RTMemController are
found to be identical, while RTMemController deals better with variable request
sizes.

DCmc and CMD-Priority

TheDual-Criticality Memory Controller (DCmc) [10] aims tooffer highperformance
to some clients, while giving real-time guarantees to others. It uses an open-page
policy, but when deriving worst-case bounds, it assumes all requests are misses.
Banks privatization separates the high-performance clients from the real-time clients.
Multiple clients of the same class can share a bank. For high-performance banks, the
inter-client arbitration is based on FR-FCFS, while the real-time banks are shared
through round-robin arbitration. Commands are generated per bank and forwarded to
the memory in a round-robin-like fashion, although commands from real-time banks
get priority over the high-performance banks. TheWCRT of requests from real-time
clients is analytically determined.

The most recent work we discuss here is the CMD-Priority controller from [27],
which hasmany similarities withDCmc. Requests are first split into per-bank queues.
As the name suggests, this controller incorporates a priority-based arbitration mech-
anism. Request that are critical, can always take a priority slot at the head of the
bank queues. Noncritical requests are reordered using a FR-FCFS arbiter, just like
in DCmc. Commands in [27] are generated for the requests that are at the head of
the queue for each bank. Critical request can overtake noncritical requests midway
through their service, for example after their ACT command already has been sched-
uled but before the associated RD orWR command (the then useless ACT command
of the noncritical request has to be repeated later). Banks forward their command to
the SDRAM when they are selected by a round-robin-like arbiter, which prioritizes
commands from critical requests above noncritical request, just like DCmc does.
Both [10, 27] potentially starve their respective high-performance and non-critical
clients due to this mechanism. The WCRT analysis for critical requests involves a
full search of the possible interfering command combinations and their associated
latency as a function of the number of critical clients. Scalability may be an issue,
but at least up until 8 critical clients the run-time is reasonable (several hours), as
shown in their paper.

Kim et al. [27] compare their work with a version of our pattern-based back-end
paired with both a nonwork-conserving and work-conserving TDM arbiter, loosely
based on [34]. Since composability is not considered, the work-conserving version is
the most appropriate comparison. The patterns that are used have a (8, 1) configura-
tion.3 WCRT bounds of the two approaches are derived. Kim et al. [27] does slightly
better in cases with 1-3 critical clients, while our approach produces slightly smaller
bounds for 4-8 critical clients (each client receives 1 slot in the TDMarbiter, and there
is a single slot for all non-critical clients). In a trace-based experiment, the average

3Based on Chap.5, a (4, 2) or (2, 4) configuration would be preferable for the DDR2-800 memory
that is used.

http://dx.doi.org/10.1007/978-3-319-32094-6_5

178 8 Related Work

response time for high-performance clients is smaller for [27]’s controller, which is
mainly attributed to use of an open-page policy and the associated FR-FCFS arbi-
tration. We estimate that the conservative open-page version of our controller would
be more competitive, although it might still struggle to keep up. The limiting factor
is the finite time-window in which locality can be exploited, and the single address
windows in which hits can be found. In contrast, [27] has 8 individual windows (one
for each bank) and a (practically4) unlimited time-window that has at its disposal.

8.1.2.4 Distinguishing Aspects of Our Work

None of the related memory controller we discussed (except [17]) take power into
account, despite it being an important design constraint [35]. Also, the (BI, BC)
trade-off is usually not explored ([24, 25] of our colleagues is the exception), and
the analysis in each of the papers is limited to one or two memory generations,
while we show a much broader range of memories and a suitable abstraction to deal
with their relative differences. The real-time implications of the introduction of bank
groups in DDR4 have also not been evaluated in related work. The conservative
open-page policy predates the other works in Table8.1 that apply open-page policies
in a mixed-real-time context.

Furthermore, we have demonstrated our controller in a full system implementa-
tion through our FPGA prototype, in contrast to the works in Table8.1 (except for
PRET [11]), which at most show VHDL simulation results. Our controller is inte-
grated into the CompSOC platform [30] and the associated design flow [36], where
it offers predictable and composable performance to its clients.

8.2 SDRAM Performance Overviews

A few memory-generation overview papers, comparable to Chap.5 exist. Micron
Technology Inc [37] discusses some of the differences in memory timings across
DDR2/3/4, but does not show the effect on worst-case performance. The authors
in [38] show the bandwidth/energy efficiency trade-offs for different SDRAM when
applied in data centers, but it considers a smaller set ofmemory generations compared
to Chap.5, and does not focus on worst-case performance. Power is estimated based
on Micron’s power model, which is less accurate than the DRAMPower model we
use [39]. However, they show DIMM level power usage and thus include I/O power
in their comparison. We show power at the device level. Cuppu et al. [40] compares
several (asynchronous) DRAM architectures and considers SDRAM as one special
casewithin this family, but does not zoom in further. In [41], the focus lies on selecting
a suitable memory for a design rather than giving a general performance overview,
and it only considers LPDDRx and pre-datasheet WIDE I/O memories.

4Banks have to close occasionally for refresh.

http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_5

8.3 Reconfiguration 179

8.3 Reconfiguration

Related work on the reconfigurability of memory controllers is scarce. Even though
it is quite common for COTS [42] and custom [43] memory controllers to have
configurable registers that control SDRAM timings, they are generally only meant
to be programmed at boot time, and offer limited control over the behavior of the
controller.

The PARDIS programmable memory controller [44] is reconfigurable in several
respects. Two small processors with custom instruction set architectures take the role
of memory controller, their firmware determining the command scheduling policy,
address mapping, refresh scheduling and power management. However, no bounds
on performance are given, so it is not clear how to apply it in a real-time system.
This holds for most best-effort memory controllers.

Focusing on high-level problemof reconfiguration of resourceswith real-time per-
formance guarantees, two strategies can be distinguished. The first strategy requires
knowledge of the frequency of reconfiguration events to analytically bound their
interference [45, 46]. The second strategy constrains the reconfiguration process
such that the guaranteed performance during reconfiguration is not worse than dur-
ing regular operation [47].

In [45], task-levelWCRT analysis formultimode applications that share resources
in multi-core systems is discussed. Mode changes are defined as changes in the set of
active tasks or applications, which we refer to as use-cases switches in this book. The
resource arbitration mechanism that is used involves software-based critical sections
combined with priorities. Interference due to reconfiguration is bounded by limiting
the number of simultaneous mode changes to one.

Garcia-Valls et al. [46] presents a reconfiguration method for soft real-time appli-
cations. Reconfiguration is interpreted as a change of the active set of tasks, or a
change in their configuration in the resources they are using. The hardware offers
no performance during reconfiguration, but the reconfiguration time is bounded at
design time. This suggests that predictable performance bounds can be derived based
on this technique, but it can not be composable, since reconfiguration influences all
running applications.

The work presented in [47] describes reconfiguration algorithms for TDM-based
servers while guaranteeing schedulability of the client applications. The algorithms
assume that server time can be continuously allocated, and by carefully choosing the
location of the unallocated server time and the length of transition periods, predictable
performance bounds are given. The algorithms are not applicable to composable
resources that rely on constant slot times, because the starting time of all slots varies
as a result of reconfiguration.

The reconfigurable TDM-based network-on-chip proposed in [48] provides com-
posable performance to selected clients during reconfiguration, basically by not
changing their time-slots and the frame size, similar to our approach in Chap. 7.
However, the notion of predictable (but not composable) performance during recon-
figuration does not exist in [48]. Our TDM arbiter reconfiguration strategy provides

http://dx.doi.org/10.1007/978-3-319-32094-6_7

180 8 Related Work

an additional predictable performance level with worst-case bounds even during
reconfiguration.

In contrast to related work, this book presented a reconfigurable SDRAM con-
troller suitable for mixed time-criticality systems. By programming new patterns into
the pattern memory, a suitable (BI, BC) combination can be selected based on the
active use-case. We analyzed which configuration parameters can be adapted under
the assumption that some clients continuously use the memory controller. Both pre-
dictable and composable performance can be offered during reconfiguration when
a TDM arbiter is used. The SDRAM resource is modeled as a latency-rate server,
and we formally prove that behavior during reconfiguration is not worse than during
regular operation.

References

1. Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory access scheduling. In:
International symposium on computer architecture (ISCA), pp 128–138

2. Dodd J (2006) Adaptive page management. US Patent 7,076,617
3. Mutlu O, Moscibroda T (2008) Parallelism-aware batch scheduling: enhancing both perfor-

mance and fairness of shared DRAM systems. SIGARCH Comput Architect News 36(3)
4. Stuecheli J, Kaseridis D, Daly D, Hunter HC, John LK (2010) The virtual write queue: coordi-

nating DRAM and last-level cache policies. SIGARCH Comput Architect News 38(3):72–82
5. Ipek E, Mutlu O, Martinez J, Caruana R (2008) Self-optimizing memory controllers: a rein-

forcement learning approach. In: International symposium on computer architecture (ISCA),
pp 39–50

6. ShahH,RaabeA,Knoll A (2012) BoundingWCETof applications using SDRAMwith priority
based budget scheduling in MPSOCs. In: Design, automation and test in Europe conference
and exhibition (DATE), pp 665–670

7. Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2013) Memguard: mnemory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In: Real-time
and embedded technology and application symposium (RTAS), pp 55–64

8. Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar R (2014) Bounding memory
interference delay in COTS-basedmulti-core systems. In: Real-time and embedded technology
and application symposium (RTAS), pp 145–154

9. Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Memory hier-
archies, pipelines, and buses for future architectures in time-critical embedded systems. IEEE
Trans Comput Aided Des Integr Circuits Syst 28(7)

10. Jalle J, Quinones E, Abella J, Fossati L, Zulianello M, Cazorla F (2014) A dual-criticality
memory controller (DCmc): proposal and evaluation of a space case study. In: Real-time
systems symposium, pp 207–217

11. Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization
for predictability and temporal isolation. In: Proceedings of CODES+ISSS, pp 99–108

12. Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank
privatization and fixed priority scheduling. In: Embedded and real-time computing systems
and applications (RTCSA)

13. Krishnapillai Y, Pei Wu Z, Pellizzoni R (2014) ROC: a rank-switching, open-row DRAM con-
troller for time-predictable systems. In: Euromicro conference on real-time systems (ECRTS),
pp 27–38

14. Bhat B, Mueller F (2011) Making DRAM refresh predictable. Real-Time Syst 47(5):430–453

References 181

15. AkessonB,HanssonA,GoossensK (2009) Composable resource sharing based on latency-rate
servers. In: Digital system design (DSD)

16. Akesson B, Molnos A, Hansson A, Ambrose Angelo J, Goossens K (2010) Composability and
predictability for independent application development, verification, and execution. In: Hübner
M, Becker J (eds). Multiprocessor system-on-chip — hardware design and tool integration,
Circuits and systems, chapter 2. Springer. ISBN 978-1-4419-6459-5

17. BurchardtA,Hekstra-NowackaE,ChauhanA (2005)A real-time streamingmemory controller.
In: Design, automation and test in Europe conference and exhibition (DATE), pp 20–25

18. Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM memory con-
troller. In: Proceedings of CODES+ISSS

19. Akesson B, Goossens K (2011) Architectures and modeling of predictable memory controllers
for improved system integration. In: Design, automation and test in Europe conference and
exhibition (DATE), pp 1–6

20. Bayliss S,ConstantinidesG (2009)Methodology for designing statically scheduled application-
specific SDRAM controllers using constrained local search. In: International conference on
field-programmable technology, pp 304–307

21. Paolieri M, Quiñones E, Cazorla F, ValeroM (2009) An analyzable memory controller for hard
real-time CMPs. Embed Syst Lett IEEE 1(4)

22. PaolieriM,QuiñonesE,Cazorla FJ (2013)Timing effects ofDDRmemory systems in hard real-
time multicore architectures: issues and solutions. ACM Trans Embed Comput Syst 12(1s):64

23. Wu ZP, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor
systems. In: Real-time systems symposium, pp 372–383

24. Li Y, Akesson B, Goossens K (2014) Dynamic command scheduling for real-time memory
controllers. In: Euromicro conference on real-time systems (ECRTS), pp 3–14

25. Li Y, Akesson B, Goossens K (2015) Architecture and analysis of a dynamically-scheduled
real-time memory controller. Real-Time Syst 1–55

26. Hassan M, Patel H, Pellizzoni R (2015) A framework for scheduling DRAMmemory accesses
for multi-core mixed-time critical systems. In: Real-time and embedded technology and appli-
cation symposium (RTAS), pp 307–316

27. Kim H, Broman D, Lee EA, Zimmer M, Shrivastava A, Oh J (2015) A predictable and
command-level priority-based DRAM controller for mixed-criticality systems. In: Real-time
and embedded technology and application symposium (RTAS)

28. StiliadisD,VarmaA (1998)Latency-rate servers: a generalmodel for analysis of traffic schedul-
ing algorithms. IEEE/ACM Trans Netw 6(5)

29. Akesson B, Goossens K (2011b)Memory controllers for real-time embedded systems, Embed-
ded systems series. Springer

30. Goossens K, Azevedo A, Chandrasekar K, Gomony MD, Goossens S, Koedam M, Li Y, Mir-
zoyan D, Molnos A, Nejad AB, Nelson A, Sinha S (2013a) Virtual execution platforms for
mixed-time-criticality systems: the CompSOC architecture and design flow. SIGBED Rev
10(3):23–34

31. Liu I, Reineke J, Broman D, Zimmer M, Lee E (2014) A PRET microarchitecture implemen-
tation with repeatable timing and competitive performance. In: 2012 IEEE 30th international
conference on computer design (ICCD), pp 87–93

32. Yun H,Mancuso R,Wu Z-P, Pellizzoni R (2014) Palloc: DRAM bank-aware memory allocator
for performance isolation on multicore platforms. In: Real-time and embedded technology and
application symposium (RTAS), pp 155–166

33. Goossens S, Kouters T, Akesson B, Goossens K (2014) Memory-map selection for firm real-
time SDRAM controllers. In: Design, automation and test in Europe conference and exhibition
(DATE), pp 828–831

34. Goossens S, Kuijsten J, Akesson B, Goossens K (2013) A reconfigurable real-time SDRAM
controller for mixed time-criticality systems. In: 2013 international conference on hard-
ware/software codesign and system synthesis (CODES+ISSS), pp 1–10

35. ITRS (2011) International technology roadmap for semiconductors (ITRS) - system drivers.
http://www.itrs.net/reports.html

http://www.itrs.net/reports.html

182 8 Related Work

36. Goossens S, Akesson B, KoedamM, Nejad AB, Nelson A, Goossens K (2013) The CompSOC
design flow for virtual execution platforms. In: Proceedings of the 10th FPGAworld conference,
pp 7:1–7:6

37. Micron Technology Inc (2014) DDR4 networking design guide introduction. TN-40-03
38. Malladi K, Nothaft F, Periyathambi K, Lee B, Kozyrakis C, Horowitz M (2012) Towards

energy-proportional datacenter memory with mobile DRAM. In: International symposium on
computer architecture(ISCA), pp 37–48

39. ChandrasekarK (2014)High-level power estimation and optimization ofDRAMs. Ph.D. thesis,
Delft University of Technology

40. Cuppu V, Jacob B, Davis B, Mudge T (1999) A performance comparison of contemporary
DRAM architectures. SIGARCH Comput Architect News 27(2):222–233

41. Gomony M, Weis C, Akesson B, Wehn N, Goossens K (2012) DRAM selection and configu-
ration for real-time mobile systems. In: Design, automation and test in Europe conference and
exhibition (DATE), pp 51–56

42. PowerQUICC and QorIQ DDR3 SDRAM controller register setting considerations AN4039
Rev. 4 (2014) Freescale semiconductor

43. Whitty S, Ernst R (2008) A bandwidth optimized SDRAM controller for the morpheus recon-
figurable architecture. In: Proceedings of the parallel and distributed processing symposium
(IPDPS)

44. BojnordiM, IpekE (2012) Pardis: a programmablememory controller for theDDRx interfacing
standards. In: International symposium on computer architecture (ISCA), pp 13–24

45. Negrean M, Klawitter S, Ernst R (2013) Timing analysis of multi-mode applications on
AUTOSAR conform multi-core systems. In: Design, automation and test in Europe confer-
ence and exhibition (DATE)

46. Garcia-VallsM,Basanta-Val P, Estevez-Ayres I (2011)Real-time reconfiguration inmultimedia
embedded systems. IEEE Trans Consum Electron 57(3):1280–1287

47. Stoimenov N, Thiele L, Santinelli L, Buttazzo G (2010) Resource adaptations with servers
for hard real-time systems. In: Proceedings of the tenth ACM international conference on
embedded software, pp 269–278

48. Hansson A, Coenen M, Goossens K (2007) Undisrupted quality-of-service during reconfigu-
ration of multiple applications in networks on chip. In: Design, automation and test in Europe
conference and exhibition (DATE)

Chapter 9
Conclusions and Future Work

In this chapter, we look back at what we have done in this book. Section9.1 briefly
discussed the motivation behind the work, and lists the main contributions from
Chaps. 2–7. Additionally, we provide a slightly broader perspective on the presented
content and its relation to the research field in which we operate. This leads to
suggestions for future research directions in Sect. 9.2.

9.1 Conclusions

The improvements in CMOS technology enabled the creation of large, and
typically power-constrained SoCs that host many different applications. Typically,
these applications load and store data on an SDRAM. Since the SDRAM interface
is a scarce resource that cannot be replicated without significant expenses, more
and more applications share the same SDRAM controller. Resource sharing leads
to undesired interaction between otherwise unrelated applications in the form of
interference, which changes their performance in unpredictable ways. This is prob-
lematic for real-time applications, that require their timing constraints to always
be satisfied, regardless of the co-running applications. At the same time, there are
applications that use the (same) SDRAM, and benefit from improved average-case
(typical) performance. Therefore, a memory controller should deliver sufficient real-
time performance, while improving the average case as much as possible.

The mix of active applications using the memory controller changes over time,
as they are started and stopped. To effectively deal with these varying requirements,
the controller’s configuration needs to be adaptable to the different use-cases it is
subjected to. At a relatively larger timescale, we observe another type of variation,
as SDRAM technology rapidly evolves with the development of new standards. A
memory controller should be flexible enough to keep up with these changes, such
that the best SDRAM for a specific products can be selected. This book showed what
a mixed-time-criticality controller that satisfies these requirements could look like.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_9

183

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_7

184 9 Conclusions and Future Work

Chapter 2 presented an SDRAM controller architecture template, capable of
delivering predictable and composable performance. It can hence guarantee that the
worst-case or actual-case behavior of real-time applications is unaffected by inter-
ference. In some sense, this controller is a major update of the pattern-based memory
controller from [1], with a strong focus on enabling reconfigurability and the design
of the controller’s back-end, which was previously unexplored.

The development of Raptor, the instance of the controller which is currently a part
of the CompSOCplatform [2] and design flow [3], provided valuable insights into the
inner workings of SDRAM controllers. Some of these reflected back onto its worst-
case performance analysis. For example, the realization that the parallel read/write
port on the back-end, in combination with non-equal read and write latencies may
lead to cases where service accumulates non-intuitively fast, as shown in Fig. 2.15,
is obvious when considering a real implementation, but easily missed in an analysis
model. As another example, consider that the PHY introduces a variable latency
component as a consequence of the calibration process that ensures byte-alignment
at boot-time, and we should take into account in the WCRT. As a memory controller
that offers very fine-grained software-controlled configurability of the commands it
schedules, Raptor has been used to research SDRAMpower consumption [4], timing
process variation [5], and retention time [6].

Chapter 3 discussed memory patterns, which are prescheduled sequences of
SDRAMcommands. These patterns are programmed into in the back-end, and sched-
uled at run-time by the controller. Patterns serve as an abstraction layer, both at the
(worst-case) analysis level, and within the hardware architecture. Both become less
complex, since they do not have to consider the low-level command-to-command
constraints, but instead deal with (far fewer) pattern-to-pattern constraints.

Chapter 3 introduced a pattern generation heuristic that is straight-forwardly
applicable to a large range of contemporary SDRAM generations. To achieve this
generality, we proposed a new abstraction layer that can sit before any command
scheduling algorithm. It converts SDRAM timings and timing constraints, which
are generation specific, into command-to-command constraints, which are not. The
scheduling algorithm only has to refer back to these high-level constraints, and can
hence remain generation-agnostic. DDR4 is exceptional, in the sense that an archi-
tectural changewith respect to the other considered SDRAMgenerations, in the form
of bank groups, impacts the command scheduling process. A small modification of
our heuristic allows us to exploit this new feature to generate more efficient patterns.

The pattern generation heuristic is parameterized with Bank Interleaving (BI) and
Burst Count (BC), which describe the mapping of consecutive bursts to the different
banks in the memory. Especially the notion that BI is not necessarily either “one” or
“all banks of the SDRAM” is innovative with respect to related work. Varying both
BI and BC reveals a spectrum of possible command scheduler configurations, and
we found that both parameters are useful in describing the behavior of both our own
controller and (perhaps unexpectedly) those of others, as demonstrated in Chap.8.
A comparison with an ILP pattern generator showed that our heuristic creates near-
optimal results.

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_8

9.1 Conclusions 185

In Chap.4, we introduced DRAMPower, a high-level power model that uses
JEDEC-specified current metrics as it input to estimate the power usage of an
SDRAM. Like the pattern generation heuristic, the model is generic and can be
applied to a wide range of different SDRAM generations. We validated DRAM-
Power through measurements on a real SDRAM device, and found it to be more
accurate than the commonly used model from Micron [7].

Chapter 5 puts the pattern generation heuristic to work on 12 different memories
from 6 SDRAM generations. Combined with DRAMPower, it shows the configu-
ration trade-offs in terms of worst-case bandwidth, power (energy efficiency), and
(indirectly) the WCRT as a function of BI and BC for each of these memories.
Figure5.1, which plots worst-case power versus worst-case bandwidth, shows that
the shapes of the plotted constellations across different generations are very similar.
This indicates that an understanding of the influence of BI and BC on the relative
performance of an SDRAM device is useful and generally applicable to identify
efficient command scheduler configurations.

We observed that newer memory generations typically use less power and deliver
higher worst-case bandwidth. These effects can be attributed to the growth of their
data bus width and the increase in operating frequency. The latency components that
feed into the WCRT analysis are affected to a much smaller degree. This underlines
thememory-wall problem in the context ofworst-case performance: handling a series
of page misses simply has not gotten much faster over the years.

In Chap.6, we introduced the conservative open-page policy. From a worst-case
perspective, it is a close-page policy, but with a twist: the controller can change its
mind about precharging when it is certainly beneficial to keep the row open. Where
possible, we substitute auto-precharges by explicit precharge commands to postpone
the precharge decision, increasing the size of the time-window in which locality can
be exploited. The presented policy ensures that worst-case guarantees are unaffected.

The conservativeness of this approach comes at a price: the latency (stall-time)
reduction the policy achieves is modest, and relies on non-blocking processors and
cooperation from the client-level arbiter inmulti-application scenarios to be effective.
When a slight WCRT penalty is tolerable, a speculative policy might be significantly
more effective at improving average-case performance, as explored more recently
by [8–10], for example.

Finally, in Chap.7, we investigated how the memory controller’s behavior can be
adapted when its set of active clients changes, by reconfiguring the various recon-
figurable components its architecture exposes. At boot-time, when no clients are
active yet, its flexibility definitely pays off in the sense that both the patterns and all
arbiter settings can be freely customized for the use-case in which the controller will
be used. This means it can be customized for different memories, and for different
power/performance operating points (in the form of (BI, BC) configurations) and
application sets.

Maintaining predictability and composability for running clients while reconfig-
uring to accommodate others is significantly harder, and hence only possible in a
more restricted fashion. The direct link between the patterns and the memory-map
prohibits (useful) changes in the patterns, since they would scramble the data clients

http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_7

186 9 Conclusions and Future Work

stored before reconfiguration. This means we are limited to reconfiguration of the
arbiter.We demonstrated a TDMarbiter and associated safe reconfiguration protocol,
allowing us to move slots of an active application without violating its Latency-rate
(LR) guarantees. The memory controller provides predictable performance before,
during, and after reconfiguration to the target of the reconfiguration as a result, while
composable clients are completely unaffected by the process. Repeating this effort
for different (more stateful) arbiters, like CCSP for example, does not seem to be
fundamentally impossible, but could be significantly harder.

9.2 Future Work

This section highlights three concrete opportunities for extensions of the pattern-
based controller concept, based on the lessons learned in this book.

Dealing with Large Interface Widths

The request size limits the range of usable (BI, BC) configurations, and with that,
the attainable memory efficiency, as shown in Chap.5. If the SDRAM has a large
interface width, in cases where a DIMM is used for example, one request may only
be big enough to fill a single burst, limiting BI and BC to 1, which is not desirable.
Subdividing the interface width of a DIMM into smaller ranks has been considered in
the context of power saving [11], andwould help to alleviate the issue. Unfortunately,
this requires changes in the SDRAM architecture, and is hence not much more than
fiction at the moment, so we consider a different solution at the controller level.

A viable strategy could be to share a single pattern amongst multiple atoms at
the granularity of banks, for example by scheduling (4, 1) patterns, but filling each
burst with a different request (from potentially a different client). This leads to a
scheduling scheme that looks somewhat similar to PRET [12] or MCMC [13], the
difference being that commands for different banks can still be interleaved within
the pattern, as opposed to PRET and MCMC which use a strict TDM arbitration
of the command bus across banks. One of the challenges in this scheme is dealing
read-write switches, which preferably should happen per pattern as opposed to per
burst to reduce their overhead [9].

Conservative Open-Page Policy with Improved Slack Exploitation

The conservative open-page policy might be too conservative for the reasons we
highlighted earlier. It is possible to leave banks in an open state at the end of a pattern,
if we accept an increase in WCRT. Page hits would result in NANP patterns, while
misses would require a new Precharge and Activate (PA) pattern. The PA pattern is
potentially longer than the AP patterns we currently use, since the precharges are
no longer executed in a pipelined fashion across pattern boundaries. Other than the
effects on the worst-case performance, operation should be relatively similar to the
current approach.

http://dx.doi.org/10.1007/978-3-319-32094-6_5

9.2 Future Work 187

The conservative open-page policy tried to improve average-case performance
while retaining a clean separation between the front-end and back-end. Letting go of
this restriction can result in better average-case performance by borrowing ideas from
FR-FCFS arbiters. Pattern lengths are known at design time, so we know exactly how
many cycles are saved when a NANP pattern is issued, compared to a PA pattern.
This (proven) slack can be used to schedule additional atoms that are also page hits
from best-effort clients, as long as the arbiter is made aware of the amount of time
that is available.

Verification of the Raptor Instance to the WCRT Model, CompSOC Integration

TheLR-basedWCRTmodel thatwas presented in Sect. 2.5 covers the presented con-
troller architecture template. However, the verification of the model with respect to
theRaptor instance of the controller only covers theworst-case bandwidth (Sect. 5.4),
but not theWCRT.A logical next step is to characterize theRaptor instance, to extract
the various parameters that the model requires, and then experimentally check that
the delivered performance is bounded by it. The model can then be integrated in the
larger CompSOC platform model [14] to derive (more) accurate application-level
WCRT guarantees.

References

1. Akesson B, Goossens K (2011) Memory controllers for real-time embedded systems. Embed-
ded systems series. Springer, New York

2. Goossens K, Azevedo A, Chandrasekar K, Gomony MD, Goossens S, Koedam M, Li Y,
Mirzoyan D, Molnos A, Nejad AB, Nelson A, Sinha S (2013) Virtual execution platforms
for mixed-time-criticality systems: the CompSOC architecture and design flow. SIGBED Rev
10(3):23–34

3. Goossens S, Akesson B, KoedamM, Nejad AB, Nelson A, Goossens K (2013) The CompSOC
design flow for virtual execution platforms. In: Proceedings of the 10th FPGAworld conference,
pp 7:1–7:6

4. ChandrasekarK (2014)High-level power estimation and optimization ofDRAMs. Ph.D. thesis,
Delft University of Technology

5. Chandrasekar K, Goossens S, Weis C, Koedam M, Akesson B, Wehn N, Goossens K (2014)
Exploiting expendable process-margins in DRAMs for run-time performance optimization. In:
Design, automation and test in Europe conference and exhibition (DATE), pp 1–6

6. Weis C, JungM, Ehses P, Santos C, Vivet P, Goossens S, KoedamM,Wehn N (2015) Retention
timemeasurements andmodelling of bit error rates ofwide I/ODRAM inMPSOCs. In: Design,
automation and test in Europe conference and exhibition (DATE), pp 495–500

7. Micron (2007) Calculating memory system power for DDR3. Technical report, Micron Tech-
nology Inc. TN-41-01

8. Jalle J, Quinones E, Abella J, Fossati L, Zulianello M, Cazorla F (2014) A dual-criticality
memory controller (DCmc): Proposal and evaluation of a space case study. In: Real-time
systems symposium, pp 207–217

9. Krishnapillai Y, Pei Wu Z, Pellizzoni R (2014) ROC: a rank-switching, open-row DRAM con-
troller for time-predictable systems. In: Euromicro conference on real-time systems (ECRTS),
pp 27–38

http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_5

188 9 Conclusions and Future Work

10. Kim H, Broman D, Lee EA, Zimmer M, Shrivastava A, Oh J (2015) A predictable and
command-level priority-based DRAM controller for mixed-criticality systems. In: Real-time
and embedded technology and application symposium (RTAS)

11. Fang K, Zheng H, Lin J, Zhang Z, Zhu Z (2014) Mini-rank: a power-efficient DDRx DRAM
memory architecture. IEEE Trans Comput 63(6):1500–1512

12. Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization
for predictability and temporal isolation. In: Proceedings of CODES+ISSS, pp 99–108

13. Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank
privatization and fixed priority scheduling. In: Embedded and real-time computing systems
and applications (RTCSA)

14. Nelson A, Goossens K, Akesson B (2015) Dataflow formalisation of real-time streaming appli-
cations on a composable and predictable multi-processor SOC. J Syst Archit

Appendix A
ILP Problem Formulation

Chapter 3 describes a parameterized ILP formulation that can generate read andwrite
patterns. This appendix formalizes the ILP formulation.

A.1 High-Level Goal

The ILP formulation should generate a command schedule that satisfies the following
high-level constraints:

1. the schedule is a valid SDRAM command schedule for the memory device under
consideration, i.e., it follows the basic SDRAM state machine (first ACT, then
RD/WR, then PRE), and the timing constraints within this schedule are not vio-
lated, and

2. the schedule can be repeated after itself without violating timing constraints.

We make a distinction between ILP constraints, i.e., the linear equations that are
part of the ILP description, and timing constraints, which are defined by JEDEC
and specify the minimum distance between pairs of SDRAM commands [1–6], as
introduced earlier in Sect. 2.1.2.

A.2 Variables

Which commands are included in a memory pattern is defined by

1. the type of the pattern, i.e., either read or write. Refresh and switching patterns
can be derived later based on the read andwrite pattern, as described in Sect. 3.2.3.

2. the number of banks interleaved, BI.
3. the number of bursts per bank, BC.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6

189

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_2
http://dx.doi.org/10.1007/978-3-319-32094-6_3

190 Appendix A: ILP Problem Formulation

Each pattern contains BI activates, BI precharges, and BI · BC read or write com-
mands, for read and write patterns, respectively. The ILP problem schedules two
incarnations of the pattern, of which the first is complete, and the second is not.
The second incarnation consists only of ACT commands and is used to express con-
straints regarding activate and precharge commands that span across patterns. We
use this partial pattern to simplify the formulation. Note that by doing this, we ignore
potential constraints related to read and write commands in the first incarnation that
influence the second incarnation. This only works if the following two assumptions
hold:

• The ACT-to-RD/WR constraint is always greater than or equal to the RD-to-RD
andWR-to-WR constraints, which has been true for all memories introduced up to
now.

• Switching patterns resolve all remaining constraints across read-to-write andwrite-
to-read patterns boundaries. This assumption also holds since we construct switch-
ing patterns for this purpose.

For the purpose of this description, we regard commands as 3-tuples (ct , cb, cn),
consisting of a type ct ∈ {ACT,RD,WR,PRE}, a bank cb ∈ {0...BI − 1}, and an
incarnation id cn ∈ {0, 1}. The set of all commands in the pattern is called C . All
commands have cn set to 0, except for the extra ACT commands representing the
start of the second incarnation of the pattern. For those commands cn = 1.

CACT = {(ACT, cb, cn) | cb ∈ {0...BI − 1}, cn ∈ {0, 1}}
CPRE = {(PRE, cb, 0) | cb ∈ {0...BI − 1}}
Crw =

⋃

0≤i<BC

{(RD/WR, cb, 0) | cb ∈ {0...BI − 1}}

C = CACT ∪ CPRE ∪ Crw

The algorithm that generates the ILP formulation determines a conservative lower
bound (Lc) and upper bound (Uc) on the position of each command c in the pattern,
as further explained in Sect.A.3. A set of ILP variables (Vc) is created for each
command. It contains one boolean variable Xc

i for each integer position i in the
interval [Lc,Uc). If the variable Xc

i is true, then this means that the command c is
scheduled in position or cycle i :

∀c ∈ C, Vc = {Xc
i | i ∈ Z, Lc ≤ i < Uc}

One way to visualize this set of variables is like a matrix, where each column corre-
sponds to a command, and each row to a position in the pattern (see Fig.A.1). The
goal of the ILP formulation is to mark exactly one variable in each column as true.
After ‘graying out’ the options we know are invalid based on the lower and upper
bounds, all remaining variables in a command column are contained in the Vc set of
that command.

Appendix A: ILP Problem Formulation 191

Fig. A.1 Visualization of
the ILP variables in matrix
form. Gray boxes represent
variables that cannot be true
in a valid solution of the
problem

The ILP constraints and objective function are constructed as linear equations
based on these variables. For ease of notation, we define a function pos (Vc), which
returns a sub-expression representing the position of a command c in the pattern.
The pos () function works based on the assumption that only one of the variables in
each set Vc can be true in a valid solution. In Sect.A.4, we show how this is enforced
with additional constraints:

pos (Vc) =
∑

Xc
i ∈Vc

i · Xc
i i ∈ Z, Lc ≤ i < Uc

A.3 Determining Lower and Upper Bounds

It is essential to bound the number of possible positions for each command to rea-
sonable ranges to limit the problem size, and with that, the computation time of the
ILP solver. FigureA.2 shows how the bounds of a command are determined. Based
on Algorithm 2, an upper bound Nheuristic on the optimal pattern length can be found.
The ILP problem schedules two incarnations of the pattern (one complete, one partial
consisting only of ACT commands), and hence the range of command positions that
has to be considered is twice as large as Nheuristic.

Fig. A.2 Finding lower and upper bounds on the position of a command

192 Appendix A: ILP Problem Formulation

We further limit the range on a per-command basis by considering which other
commands have to precede it based on the pattern-generation rules and the SDRAM
state machine, and which commands directed toward the same bank still need to be
scheduled after it. Lower bounds on how many cycles it takes to schedule a series of
commands are determined based on a very simplistic As Soon As Possible (ASAP)
scheduler. Considering just two commands at a time, it sums the SDRAM timing
constraints between each command pair, until it reaches the end of the series. The
scheduler fails to spot constraints between commands separated by other commands,
and is hence too optimistic, but it is sufficient to quickly find a lower bound on
the duration of a sub-schedule. Note that these bounds do not have to be tight for
correctness of the solution, although the tighter they are, the smaller the computation
time of the solver will be.

Tighter lower and upper bounds could be potentially be found by improving this
ASAP scheduler, and using Nheuristic as a secondary reference point for commands
that necessarily happen in the first incarnation of the pattern, further reducing the
computation time of the solver. However, the bounds that are currently derived limit
the problem size sufficiently such that the largest problems we consider (32 bursts
to 8 different banks) are solved within an hour.

A.4 Constraints

This section reiterates the list of constraints from Sect. 3.2.4, and describes how each
of them translates into an ILP constraint.

1. An ACT to bank 0 is scheduled in cycle 0.

Xc
0 = 1 | c = (ACT, 0, 0)

2. At most one command may be scheduled in each cycle. Precharge commands are
exempted from this rule, since they are executed using auto-precharge flags and
do not require a slot in the schedule:

∀i ∈ Z,
∑

Xc
i ∈Vc

Xc
i ≤ 1 | c ∈ C, c /∈ CPRE

3. Each command is scheduled exactly once:

∀c ∈ C,∀i ∈ Z,
∑

Xc
i ∈Vc

Xc
i = 1

Based on these constraints, all sets Vc are Special Ordered Sets (SOS) of type 1 [7],
i.e., a set of variables of which at most one can take the value true. These con-
straints are explicitly described as an SOS in the ILP formulation, since this helps

http://dx.doi.org/10.1007/978-3-319-32094-6_3

Appendix A: ILP Problem Formulation 193

guide the ILP solver in finding a solutionmore quickly. Each variable in such a set
needs a relative weight that represents its costs.We assign weights to the elements
according to the position (i) within the pattern the element corresponds to.

4. Two of the constraints in Sect. 3.2.4 are related to timing constraints:

(a) The relative delays between any pair of commands are at least as large as
prescribed by the timing constraints of the SDRAM.

(b) There are at most four ACT commands in each FAW window.

The ILP constraints required to implement 4a can be split into two categories:
those for which the ordering of the commands involved is irrelevant for the timing
constraint, and those for which the order matters. Starting with the first category,
the possible command combinations are limited to (1) two activate, (2) two read,
or (3) two write commands. Since commands for the same bank are required to
happen in a fixed order according to the bank state machine (i.e., activate, then
read/write bursts, followed by a precharge), we discard constraints that only apply
when the associated commands target the same bank for now, and treat them later
when we enforce the command ordering at Constraint 5.
This only leaves the three previously mentioned pairs, directed at different banks
and potentially different bank groups, i.e., six different timing constraints.
Each timing constraint related to (pairs of) commands of the same type can be
interpreted as a window in which only a specific number K of those commands
may be scheduled. We use this interpretation to capture both the FAW constraint
(where K = 4) and the narrow set of order-agnostic constraints (K = 1) within
the same ILP constraint template. The window sizes are equal to the values in the
constraint Tables3.1 and 3.2.
First, we deal with timing constraints for which the bank group to which the com-
mand is sent does not influence the constraint value. For all considered memory
types except DDR4, no constraints care about the bank group. For DDR4, in the
constraints with an _x postfix, _x is substituted by _L, since the long constraints
have to be satisfied across all bank groups. The values of the timing constraints
between two commands of type tp, tp ∈ {ACT,RD,WR}, are denoted as T Ctp.
Each T Ctp is an integer number of clock cycles, T Ctp ∈ Z.
A constraint has to be added for all windows of size T Ctp in the valid command
range, i.e., between 0 and 2 · Nheuristic:

∀ j ∈ {0..2 · Nheuristic − 1} ,∀ tp ∈ {ACT,RD,WR},
∑

Xc
i ∈Vc

Xc
i ≤ K | c ∈ C, ct = tp, j ≤ i < j + T Ctp (A.1)

ForDDR4, certain timing constraints only need to be satisfiedwhen the associated
commands target the same bank group. We refer to them as T C ′

tp, and to the total
number of bank groups as nbg. We again iterate over all possible windows, but
additionally limit the commands we include in the ILP constraints by their bank
group, which is given by their bank id cb modulo nbg:

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3

194 Appendix A: ILP Problem Formulation

∀ j ∈ {0..2 · Nheuristic − 1},∀ bg ∈ {0..nbg − 1},∀ tp ∈ {ACT,RD,WR},
∑

Xc
i ∈Vc

Xc
i ≤ K | c ∈ C, ct = tp, mod (cb, nbg) = bg, j ≤ i < j + T C ′

tp

(A.2)

In the implementation, constraints that are trivially satisfied because the number of
selected Xc

i variables in the equation is smaller than K are not added to the problem
description. Figure A.3 shows an example of the variables that are selected for
each window based on Eqs. (A.1) or (A.2).

5. The commands for each bank are executed in the proper order, i.e., start with
an activate, followed by BC read or write commands, followed by a precharge,
followed by the activate in the second pattern instance.For each pair of commands
c0 and c1 ∈ C , which are constrained by a timing constraint T ∈ Z, and for which
the required order is known, such that pos

(
Vc1

)
> pos

(
Vc0

)
in a valid solution

of the ILP problem, we add the following ILP constraints:

pos
(
Vc1

) − pos
(
Vc0

) ≥ T (A.3)

6. The relative order of commands across pattern incarnations is constrained by the
following rules:

(a) Commands for the second instance of the pattern cannot be scheduled before
the extra activate to bank 0. This constraint only refers to the activate com-
mands in the second pattern incarnation. They are dealt with in Constraint
7.

(b) Commands for the first instance need to be scheduled before the extra activate
to bank 0.

Since Constraint 5 enforces commands per bank to be ordered, it is sufficient to
enforce that the last read or write command to each bank happens before the extra
activate command to bank 0. BecauseConstraint 5 already asserts this property for
bank 0, we further limit the set of commands by only including read or writes to
banks> 0. We then simply use the template given by Eq. (A.3) on all commands
fitting these criteria, substituting them for c1, and using c0 = (ACT, 0, 1) and
T = 0.

7. The first and second incarnation of the pattern should be the same. A set of
constraints enforces that the distance between the extra activate command to a
bank larger than 0, pos

(
V(ACT,cb,1)

)
, and the start of the second pattern incarnation

pos
(
V(ACT,0,1)

)
, is equal to the distance between the first activate command to

that bank (V(ACT,cb,0)) and cycle 0.

∀ cb ∈ {1...BI−1}, pos
(
V(ACT,cb,1)

) − pos
(
V(ACT,0,1)

) = pos
(
V(ACT,cb,0)

) − 0

Appendix A: ILP Problem Formulation 195

Fig. A.3 Visualization of
window-based constraints.
Only the white boxes in each
window are included in the
sum in Eq. (A.2)

Note that this constraint is stronger than Constraint 6 since pos
(
V(ACT,cb,0)

)
is

guaranteed to be greater than 0, and hence it forces all (remaining) commands of
the second instance of the pattern to happen after the second activate to bank 0.

A.5 Objective Function

The objective of the ILP formulation is to minimize the pattern length. This can
be achieved by minimizing pos

(
V(ACT,0,1)

)
. There may be more than one possible

optimal pattern; all commands in the pattern could be postponed as long as the pattern
length is not influenced by it. To eliminate some equivalent optimal solutions, we add
an extra element to the objective functionwhich attempts tominimize the unnecessary
postponement of commands by adding the position of the last precharge in the pattern
to the cost function. This makes it easier to visually compare the output to that of
Algorithm 2. A helper variable ˆPRE is introduced to represent the position of the last
precharge in the pattern. We force it to be greater than or equal to the position of the
last precharge in the pattern:

∀c ∈ CPRE, ˆPRE − pos (Vc) ≥ 0

A sufficiently large scaling factor s is applied to make sure the pattern length remains
the primary optimization goal. The optimization goal is then set to

minimize s · pos
(
V(ACT,0,1)

) + ˆPRE

196 Appendix A: ILP Problem Formulation

References

1. JEDEC (2009) DDR2 SDRAM specification JESD79-2F
2. JEDEC (2009) Low power double data rate specification JESD209B
3. JEDEC (2010) DDR3 SDRAM specification JESD79-3E
4. JEDEC (2010) Low power double data rate 2 specification JESD209-2D
5. JEDEC (2012) DDR4 SDRAM specification JESD79-4
6. JEDEC (2013) Low power double data rate 3 specification JESD209-3B
7. Beale EML, Tomlin JA (1969) Special facilities in a general mathematical pro-

gramming system for non-convex problems using ordered sets of variables. In:
Proceedings of the 5th international conference on operations research

Appendix B
Memory Specifications

The following three tables describe the properties of the memories that are used in
this book. All the devices we used are made by Micron. The final row in TableB.1
refers to the SO-DIMM of the ML605 development board. The associated timings in
TableB.2 for this memory are derived based on a 400MHz clock. The same timings
are also used in experiments when the memory operates at the (lower) 300 MHz
frequency in Sect. 3.4.3.2, even though some of them could technically be reduced
then. Finally, TableB.3 shows the IDD currents used as input for DRAMPower.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6

197

http://dx.doi.org/10.1007/978-3-319-32094-6_3

198 Appendix B: Memory Specifications

Ta
bl

e
B

.1
M
em

or
y
de
vi
ce

da
ta
sh
ee
ts

N
am

e
Pa
rt
nu
m
be
r

D
at
as
he
et

L
PD

D
R
-4
00

M
T
46
H
64
M
16
L
F–

5
t6
8m

_a
ut
o_
lp
dd
r.p

df
–R

ev
.E

2
14

E
N
.p
df

L
PD

D
R
-2
66

M
T
46
H
64
M
16
L
F–

75
t6
8m

_a
ut
o_
lp
dd
r.p

df
–R

ev
.E

2
14

E
N
.p
df

D
D
R
2-
80
0

M
T
47
H
64
M
16
–2
5E

1G
bD

D
R
2.
pd
f–
R
ev
.Z

03
14

E
N
.p
df

D
D
R
2-
10
66

M
T
47
H
64
M
16
–1
78
E

1G
bD

D
R
2.
pd
f–
R
ev
.Z

03
14

E
N
.p
df

D
D
R
3-
10
66

M
T
41
J6
4M

16
–1
78
E

1G
b_
D
D
R
3_
SD

R
A
M
.p
df
–R

ev
.L

03
13

E
N
.p
df

D
D
R
3L

-1
60
0

M
T
41
K
25
6M

16
–1
25

4G
b_
D
D
R
3L

.p
df
–R

ev
.I

9
13

E
N
.p
df

L
PD

D
R
2-
66
7

M
T
42
L
64
M
32
D
1–
3

2g
b_
m
ob
ile
_l
pd
dr
2_
s4
_g
69
a–
R
ev
.N

3
12

E
N
.p
df

L
PD

D
R
2-
10
66

M
T
42
L
64
M
32
D
1–
18

2g
b_
m
ob
ile
_l
pd
dr
2_
s4
_g
69
a–
R
ev
.N

3
12

E
N
.p
df

L
PD

D
R
3-
13
33

E
D
F8

13
2A

1M
C
–1
5

17
8b
_3
0n
m
_m

ob
ile
_l
pd
dr
3–
R
ev
.A

3
14

E
N
.p
df

L
PD

D
R
3-
16
00

E
D
F8

13
2A

1M
C
–1
25

17
8b
_3
0n
m
_m

ob
ile
_l
pd
dr
3–
R
ev
.A

3
14

E
N
.p
df

D
D
R
4-
18
66

M
T
40
A
51
2M

8–
10
7E

4g
b_
dd
r4
_d
ra
m
–R

ev
.B

10
/1
4
E
N
.p
df

D
D
R
4-
24
00

M
T
40
A
51
2M

8–
08
3E

4g
b_
dd
r4
_d
ra
m
–R

ev
.B

10
/1
4
E
N
.p
df

M
L
60
5
SO

-D
IM

M
(D

D
R
3-
10
66
)

M
T
4J
SF

64
64
H
–5
12
M
B
(1
G
1)

JS
F4

C
64
_6
4x
64
H
Y
.f
m
–R

ev
.B

3/
08

E
N
.p
df

Appendix B: Memory Specifications 199

Ta
bl

e
B

.2
M
em

or
y
de
vi
ce

tim
in
gs

in
cl
oc
k
cy
cl
es

N
am

e
cc

d
cl

cw
l

d
q
ss

d
q
sc
k

fa
w

ra
s

rc
rc

d
re

fi
rf
c

rp
rl

rr
d

rt
p

w
l

w
r

w
tr

L
PD

D
R
-2
66

–
3

–
1

–
1

6
9

3
10
40

10
3

–
2

–
–

2
1

L
PD

D
R
-4
00

–
3

–
1

–
1

8
11

3
15
60

15
3

–
2

–
–

3
2

D
D
R
2-
80
0

–
5

–
–

–
18

16
22

5
31
20

51
5

–
4

3
4

6
3

D
D
R
2-
10
66

–
7

–
–

–
24

22
29

7
41
60

68
7

–
6

4
6

8
4

D
D
R
3-
10
66

–
7

6
–

–
27

20
27

7
41
60

59
7

–
6

4
–

8
4

D
D
R
3L

-1
60
0

–
11

8
–

–
40

28
39

11
62
40

20
8

11
–

6
6

–
12

6

L
PD

D
R
2-
66
7

–
–

–
–

2
17

14
20

6
13
00

44
6

5
4

3
2

5
3

L
PD

D
R
2-
10
66

–
–

–
–

3
27

23
32

10
20
80

70
10

8
6

4
4

8
4

L
PD

D
R
3-
13
33

–
–

–
–

4
34

28
40

12
26
00

87
12

10
7

5
6

10
5

L
PD

D
R
3-
16
00

–
–

–
–

5
40

34
48

15
31
20

10
4

15
12

8
6

6
12

6

D
D
R
4-
18
66

(4
,5

)
13

10
–

–
22

32
45

13
72
83

24
3

13
–

(4
,5

)
7

–
14

(3
,7

)

D
D
R
4-
24
00

(4
,6

)
16

12
–

–
26

39
55

16
93
64

31
3

16
–

(4
,6

)
9

–
18

(3
,9

)

M
L
60
5

–
6

5
–

–
20

15
21

6
31
20

44
6

–
4

4
–

6
4

Fo
r
D
D
R
4,

th
e
sh
or
ta
nd

lo
ng

tim
in
gs

ar
e
sh
ow

n
as

a
pa
ir
(s

ho
rt
,l

on
g)

200 Appendix B: Memory Specifications

Ta
bl

e
B

.3
ID

D
[m

A
]
/V

D
D
[V

]
pa
ra
m
et
er
s
fo
r
D
R
A
M
Po

w
er

N
am

e
L
PD

D
R

L
PD

D
R

D
D
R
2

D
D
R
2

D
D
R
3

D
D
R
3L

L
PD

D
R
2

L
PD

D
R
2

L
PD

D
R
3

L
PD

D
R
3

D
D
R
4

D
D
R
4

26
6

40
0

80
0

10
66

10
66

16
00

66
7

10
66

13
33

16
00

18
66

24
00

I D
D

0
70

95
80

90
75

66
20

20
8

8
58

64

I D
D

02
0

0
0

0
0

0
53

71
63

63
4

4

I D
D

2N
12

18
30

36
35

32
1.
7

1.
7

0.
8

0.
8

44
50

I D
D

2N
2

0
0

0
0

0
0

21
22

28
32

0
0

I D
D

2P
0

0.
6

0.
6

7
7

12
18

0.
5

0.
5

0.
8

0.
8

30
32

I D
D

2P
02

0
0

0
0

0
0

1.
7

1.
7

2
2

0
0

I D
D

2P
1

0.
6

0.
6

7
7

25
32

0.
5

0.
5

0.
8

0.
8

30
32

I D
D

2P
12

0
0

0
0

0
0

1.
7

1.
7

2
2

0
0

I D
D

3N
16

20
35

42
45

47
1.
2

1.
2

2
2

61
67

I D
D

3N
2

0
0

0
0

0
0

29
30

36
40

0
0

I D
D

3P
0

3.
6

3.
6

10
10

30
38

1.
2

1.
2

1.
4

1.
4

44
44

I D
D

3P
02

0
0

0
0

0
0

4.
12

4.
12

11
.2

11
.2

0
0

I D
D

3P
1

3.
6

3.
6

20
23

30
38

1.
2

1.
2

1.
4

1.
4

44
44

I D
D

3P
12

0
0

0
0

0
0

4.
12

4.
12

11
.2

11
.2

0
0

I D
D

4R
11
0

13
5

15
0

18
0

14
0

23
5

5
5

2
2

14
0

16
0

I D
D

4R
2

0
0

0
0

0
0

20
6

22
6

20
3

23
0

0
0

I D
D

4W
11
0

13
5

16
0

18
5

15
5

17
1

10
10

2
2

15
6

19
6

I D
D

4W
2

0
0

0
0

0
0

20
3

21
3

21
3

24
3

0
0

I D
D

5
10
0

10
0

15
0

16
0

16
0

23
5

15
15

28
28

19
0

19
2

I D
D

52
0

0
0

0
0

0
13
6

13
6

15
3

15
3

0
0

I D
D

6
0.
45

0.
45

7
7

8
20

1.
2

1.
2

0.
46
0

0.
46
0

20
20

I D
D

62
0

0
0

0
0

0
2.
6

2.
6

1.
78
0

1.
78
0

0
0

V
D

D
1.
8

1.
8

1.
8

1.
8

1.
5

1.
35

1.
8

1.
8

1.
8

1.
8

1.
2

1.
2

V
D

D
2

0
0

0
0

0
0

1.
2

1.
2

1.
2

1.
2

2.
5

2.
5

Appendix C
Code Listings

Algorithm 6 Pattern-generation helper functions
1: function actCycles(P)
2: // Returns a set of cycles at which ACT commands happen in P
3: return { cmd.cc | cmd.type == ACT ∀ cmd ∈ P }
4: function remainingFawCyclesAt(i, P)
5: actCycles :=actCycles(P)
6: if |actCycles| >= 4 then
7: // The current FAW started at the 4’th biggest ACT cycle.
8: return max(0,FAW − (i−4thBiggest(actCycles)))
9: return 0

10: function fawSatisfiedAcross(pattLen, P)
11: // Returns true if the FAW constraint is satisfied across multiple
12: // iterations of P. FAW is a constant in clock cycles, its value depends
13: // on the memory device.
14: if FAW == 0 or pattLen == 0 then
15: return true
16: if FAW < pattLen then
17: // Check the FAW windows that span the end of the pattern and
18: // the start of its next incarnation.
19: lbRng := { pattLen - FAW, pattLen }
20: else
21: // Check 1 single FAW window, filled with a wrapping pattern.
22: lbRng := { 0 }
23: actCycles :=actCycles(P)
24: for all lb ∈ lbRng do
25: if actsInWindow(pattLen, lb, lb + FAW, actCycles) > 4 then
26: return false
27: return true

The pattern generation algorithms from Chap.3 have been implemented in a Python
tool. The source code for this tool can be downloaded here:
https://git.ics.ele.tue.nl/Public/pypatterngen.

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6

201

http://dx.doi.org/10.1007/978-3-319-32094-6_3
https://git.ics.ele.tue.nl/Public/pypatterngen

202 Appendix C: Code Listings

Algorithm 7 Pattern generation helper functions, cont.
1: function actsInWindow(wrapAt, lb, ub, actCycles)
2: // Return the number of act commands in the window [lb .. up].
3: // The pattern repeats itself every wrapAt cycles.
4: nAct :=0
5: for all i ∈ { lb...ub } do
6: for all actCycle ∈ actCycles do
7: if actCycle == (i % wrapAt) then
8: nAct :=nAct + 1
9: return nAct

Algorithm 8 Conservative open-page functions
1: function getFirstPre(P)
2: cc :=∞
3: first :=None
4: for all cmd ∈ P do
5: if (cmd.autoPrechargeFlag or cmd.type == PRE) and cmd.cc < cc then
6: cc :=cmd.cc
7: first :=cmd
8: return first

the DRAMPower tool described in Chap.4 is available at this url:
https://github.com/ravenrd/DRAMPower.

The data-sets and scripts we used to create Chap.5 can be downloaded here:
https://git.ics.ele.tue.nl/Public/real-time-sdram-trade-offs.

http://dx.doi.org/10.1007/978-3-319-32094-6_4
https://github.com/ravenrd/DRAMPower
http://dx.doi.org/10.1007/978-3-319-32094-6_5
https://git.ics.ele.tue.nl/Public/real-time-sdram-trade-offs

	Preface
	Contents
	About the Authors
	List of Figures
	List of Tables
	Acronyms
	Symbols
	1 Introduction
	1.1 The SoC---SDRAM Interface
	1.2 SDRAM Controllers
	1.3 Cramming More Applications onto (Power-Constrained) SoCs
	1.4 Performance
	1.4.1 Application Requirements
	1.4.2 Interference
	1.4.3 Predictable Performance
	1.4.4 Composable Performance

	1.5 Requirements for SDRAM Controllers in Modern SoCs
	1.6 Problem Statement and Contributions
	1.6.1 Multi-generation Power-Aware Command Scheduling
	1.6.2 Improving Average-Case Performance Without Affecting Worst-Case Performance
	1.6.3 Reconfigurable Architecture

	1.7 Outline
	References

	2 Reconfigurable Real-Time Memory Controller Architecture
	2.1 SDRAM
	2.1.1 SDRAM Commands
	2.1.2 Timings and Timing Constraints
	2.1.3 Memory Generations
	2.1.4 Memory Hierarchies

	2.2 Pattern-Based SDRAM Controllers
	2.2.1 Burst Grouping

	2.3 Controller Architecture
	2.3.1 Resource Front-End
	2.3.2 SDRAM Back-End
	2.3.3 PHY
	2.3.4 Reconfiguration Infrastructure

	2.4 Worst-Case Performance Analysis
	2.4.1 Latency-Rate Servers
	2.4.2 Back-End Performance
	2.4.3 Front-End Performance
	2.4.4 Worst-Case Response Times

	2.5 CompSOC Controller Instance
	2.6 Evaluation
	2.6.1 Synthesis Setup
	2.6.2 Synthesis Results

	2.7 Conclusion
	References

	3 Memory Patterns
	3.1 Generalized Command Scheduling Rules
	3.2 Predictable Patterns
	3.2.1 Pattern Generation with Variable Bank Interleaving
	3.2.2 BS PBGI Heuristic for DDR4 Pattern Generation
	3.2.3 Auxiliary Patterns
	3.2.4 ILP-Based Pattern Generation
	3.2.5 Memory Map Implications

	3.3 Composable Pattern Conversion
	3.3.1 Composable Memory Pattern Generation
	3.3.2 Impact on Memory Efficiency

	3.4 Evaluation
	3.4.1 Test Memories
	3.4.2 Evaluation of Pattern-Generation Heuristics
	3.4.3 Composable Patterns

	3.5 Conclusion
	References

	4 Cycle-Accurate SDRAM Power Modeling
	4.1 High-Level Description of the DRAMPower Model
	4.2 Background on SDRAM Currents
	4.3 SDRAM Power State Machine
	4.4 Determining the Energy Cost of a Command
	4.4.1 ACT, PRE, and PREA Commands
	4.4.2 RD and WR Commands
	4.4.3 REF Commands

	4.5 Adaptation to LPDDR and WIDE I/O Memories
	4.6 Trace-Level Energy and Power Calculation in DRAMPower
	4.7 Related Work
	4.7.1 Micron's Approach
	4.7.2 Other Power Models

	4.8 Evaluation
	4.8.1 Experimental Setup
	4.8.2 Results

	4.9 Conclusion
	References

	5 Power/Performance Trade-Offs
	5.1 Worst-Case Bandwidth, Energy, and Power Metrics
	5.1.1 Calculating Worst-Case Power and Energy Efficiency

	5.2 Worst-Case Bandwidth/Power Trends
	5.2.1 Comparing Pattern Configurations of a Single Memory Device
	5.2.2 Comparing Multiple Speed Bins and SDRAM Types

	5.3 Worst-Case Response Time of an Atom
	5.4 Evaluation
	5.5 Conclusion
	References

	6 Conservative Open-Page Policy
	6.1 Conservative Open-Page Policy
	6.2 Impact on Pattern-Based Controller
	6.3 Using Explicit Precharge Commands
	6.4 Evaluation
	6.4.1 Time-Window Size
	6.4.2 Stall Time Reduction

	6.5 Conclusion
	References

	7 Reconfiguration
	7.1 Reconfiguration Options
	7.2 Performance Guarantees During a Use-Case Switch
	7.3 Delay Block/Arbiter Reconfiguration with Persistent Clients
	7.4 Reconfigurable TDM Arbiter
	7.4.1 Latency-Rate Parameters for TDM Arbiters
	7.4.2 Safe TDM Arbiter Reconfiguration protocol
	7.4.3 Arbiter Architecture
	7.4.4 Latency-Rate Guarantees During Reconfiguration

	7.5 Evaluation
	7.5.1 Predictable Performance During Reconfiguration
	7.5.2 Composable Performance During Reconfiguration

	7.6 Conclusion
	References

	8 Related Work
	8.1 SDRAM Controllers
	8.1.1 Average-Case-Oriented Controllers
	8.1.2 Real-Time-Oriented Controllers

	8.2 SDRAM Performance Overviews
	8.3 Reconfiguration
	References

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work
	References

	Appendix AILP Problem Formulation
	Appendix BMemory Specifications
	Appendix CCode Listings

