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Précis

This book introduces the basic principles of control theory in a concise self-study
tutorial. The chapters build the foundation of control systems design based on
feedback, robustness, tradeoffs, and optimization. The approach focuses on how to
think clearly about control and why the key principles are important. Each principle
is illustrated with examples and graphics developed by software coded in Wolfram
Mathematica. All of the software is freely available for download. The software
provides the starting point for further exploration of the concepts and for devel-
opment of new theoretical studies and applications.
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Preface

I study how natural biological processes shape the design of organisms. Like many
biologists, I have often turned to the rich theory of engineering feedback control to
gain insight into biology.

The task of learning control theory for a biologist or for an outsider from another
scientific field is not easy. I read and reread the classic introductory texts of control
theory. I learned the basic principles and gained the ability to analyze simple
models of control. The core of the engineering theory shares many features with my
own closest interests in design tradeoffs in biology. How much cost is it worth
paying to enhance performance? What is the most efficient investment in improved
design given the inherent limitation on time, energy, and other resources?

Yet, for all of the conceptual similarities to my own research and for all of my
hours of study with the classic introductory texts, I knew that I had not mastered the
broad principles of engineering control theory design. How should I think simply
and clearly about a basic control theory principle such as integral control in terms of
how a biological system actually builds an error-correcting feedback loop? What is
the relation between various adaptive engineering control systems and the ways in
which organisms build hard-wired versus flexible control responses? How do the
classic cost-benefit analyses of engineering quadratic control models relate to the
commonly used notions of costs and benefits in models of organismal design?

After several years of minor raiding around the periphery of engineering control
theory, I decided it was time to settle down and make a carefully planned attack.
I lined up the classic texts, from the basic introductions to the more advanced
treatises on nonlinear control, adaptive control, model predictive control, modern
robust analysis, and the various metrics used to analyze uncertainty. I could already
solve a wide range of problems, but I had never fully internalized the basic prin-
ciples that unified the subject in a simple and natural way.

This book is the tutorial that I developed for myself. This tutorial can guide you
toward broad understanding of the principles of control in a way that cannot be
obtained from the standard introductory books. Those classic texts are brilliant
compilations of knowledge with excellent drills to improve technical skill. But
those texts cannot teach you to understand the principles of control, how to
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internalize the concepts and make them your own. You must ultimately learn to
think simply and clearly about problems of control and how such problems relate to
the broad corpus of existing knowledge.

At every stage of learning, this tutorial provides the next natural step to move
ahead. I present each step in the quickest and most illustrative manner. If that quick
step works for you, then you can move along. If not, then you should turn to the
broad resources provided by the classic texts. In this way, you can build your
understanding rapidly, with emphasis on how the pieces fit together to make a rich
and beautiful conceptual whole. Throughout your study, you can take advantage of
other sources to fill in technical gaps, practical exercises, and basic principles of
applied mathematics.

You will have to build your own course of study, which can be challenging. But
with this tutorial guide, you can do it with the confidence that you are working
toward the broad conceptual understanding that can be applied to a wide range of
real-world problems. Although the size of this tutorial guide is small, it will lead
you toward the key concepts in standard first courses plus many of the principles in
the next tier of advanced topics. For scientists outside of engineering, I cannot think
of another source that can guide your study in such a simple and direct way. For
engineering students, this tutorial supplements the usual courses and books to unify
the conceptual understanding of the individual tools and skills that you learn in your
routine studies.

This tutorial is built around an extensive core of software tools and examples.
I designed that software to illustrate fundamental concepts, to teach you how to do
analyses of your own problems, and to provide tools that can be used to develop
your own research projects. I provide all of the software code used to analyze the
examples in the text and to generate the figures that illustrate the concepts.

The software is written in Wolfram Mathematica. I used Mathematica rather than
the standard MATLAB tools commonly used in engineering courses. Those two
systems are similar for analyzing numerical problems. However, Mathematica provides
much richer tools for symbolic analysis and for graphic presentation of complex results
from numerical analysis. The symbolic tools are particularly valuable, because the
Mathematica code provides clear documentation of assumptions and mathematical
analysis along with the series of steps used in derivations. The symbolic analysis also
allows easy coupling of mathematical derivations to numerical examples and graphical
illustrations. All of the software code used in this tutorial is freely available at
http://extras.springer.com/2018/978-3-319-91707-8.

The US National Science Foundation and the Donald Bren Foundation support
my research.

Irvine, USA Steven A. Frank
March 2018
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Chapter 1
Introduction

I introduce the basic principles of control theory in a concise self-study guide. I wrote
this guide because I could not find a simple, brief introduction to the foundational
concepts. I needed to understand those key concepts before I could read the standard
introductory texts on control or read the more advanced literature. Ultimately, I
wanted to achieve sufficient understanding so that I could develop my own line of
research on control in biological systems.

This tutorial does not replicate the many excellent introductory texts on control
theory. Instead, I present each key principle in a simple and natural progression
through the subject.

The principles build on each other to fill out the basic foundation. I leave all the
detail to those excellent texts and instead focus on how to think clearly about control.
I emphasize why the key principles are important, and how to make them your own
to provide a basis on which to develop your own understanding.

I illustrate each principle with examples and graphics that highlight key aspects. I
include, in a freely available file, all of theWolframMathematica software code that I
used to develop the examples and graphics (see Preface). The code provides the start-
ing point for your own exploration of the concepts and the subsequent development
of your own theoretical studies and applications.

1.1 Control Systems and Design

An incoming gust of wind tips a plane. The plane’s sensors measure orientation. The
measured orientation feeds into the plane’s control systems, which send signals to
the plane’s mechanical components. The mechanics reorient the plane.

© The Author(s) 2018
S. A. Frank, Control Theory Tutorial, SpringerBriefs in Applied Sciences
and Technology, https://doi.org/10.1007/978-3-319-91707-8_1
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2 1 Introduction

An organism’s sensors transform light and temperature into chemical signals.
Those chemical signals become inputs for further chemical reactions. The chain of
chemical reactions feeds into physical systems that regulate motion.

How should components be designed to modulate system response? Different
goals lead to design tradeoffs. For example, a system that responds rapidly to chang-
ing input signals may be prone to overshooting design targets. The tradeoff between
performance and stability forms one key dimension of design.

Control theory provides rich insights into the inevitable tradeoffs in design. Biolo-
gists have long recognized the analogies between engineering design and the analysis
of biological systems. Biology is, in essence, the science of reverse engineering the
design of organisms.

1.2 Overview

I emphasize the broad themes of feedback, robustness, design tradeoffs, and opti-
mization. I weave those themes through the three parts of the presentation.

1.2.1 Part I: Basic Principles

The first part develops the basic principles of dynamics and control. This part begins
with alternative ways in which to study dynamics. A system changes over time, the
standard description of dynamics. One can often describe changes over time as a
combination of the different frequencies at which those changes occur. The duality
between temporal and frequency perspectives sets the classical perspective in the
study of control.

The first part continues by applying the tools of temporal and frequency analysis
to basic control structures. Open-loop control directly alters how a system transforms
inputs into outputs. Prior knowledge of the system’s intrinsic dynamics allows one
to design a control process that modulates the input–output relation to meet one’s
goals.

By contrast, closed-loop feedback control allows a system to correct for lack of
complete knowledge about intrinsic system dynamics and for unpredictable pertur-
bations to the system. Feedback alters the input to be the error difference between
the system’s output and the system’s desired target output.

By feeding back the error into the system, one can modulate the process to move
in the direction that reduces error. Such self-correction by feedback is the single
greatest principle of design in both human-engineered systems and naturally evolved
biological systems.



1.2 Overview 3

I present a full example of feedback control. I emphasize the classic proportional,
integral, derivative (PID) controller. A controller is a designed component of the
system that modulates the system’s intrinsic input–output response dynamics.

In a PID controller, the proportional component reduces or amplifies an input
signal to improve the way in which feedback drives a system toward its target. The
integral component strengthens error correction when moving toward a fixed target
value. The derivative component anticipates how the target moves, providing a more
rapid system response to changing conditions.

The PID example illustrates how to use the basic tools of control analysis and
design, including the frequency interpretation of dynamics. PID control also intro-
duces key tradeoffs in design. For example, a more rapid response toward the target
setpoint often makes a system more susceptible to perturbations and more likely to
become unstable.

This first part concludes by introducing essential measures of performance and
robustness. Performance can be measured by how quickly a systemmoves toward its
target or, over time, how far the system tends to be from its target. The cost of driving
a system toward its target is also a measurable aspect of performance. Robustness
can be measured by how likely it is that a system becomes unstable or how sensitive
a system is to perturbations. With explicit measures of performance and robustness,
one can choose designs that optimally balance tradeoffs.

1.2.2 Part II: Design Tradeoffs

The second part applies measures of performance and robustness to analyze tradeoffs
in various design scenarios.

Regulation concerns howquickly a systemmoves toward a fixed setpoint. I present
techniques that optimize controllers for regulation. Optimal means the best balance
between design tradeoffs. One finds an optimum by minimizing a cost function that
combines the various quantitative measures of performance and robustness.

Stabilization considers controller design for robust stability. A robust system
maintains its stability even when the intrinsic system dynamics differ significantly
from that assumed during analysis. Equivalently, the systemmaintains stability if the
intrinsic dynamics change or if the system experiences various unpredictable pertur-
bations. Changes in system dynamics or unpredicted perturbations can be thought
of as uncertainties in intrinsic dynamics.

The stabilization chapter presents a measure of system stability when a controller
modulates intrinsic system dynamics. The stability measure provides insight into the
set of uncertainties for which the system will remain stable. The stability analysis is
based on a measure of the distance between dynamical systems, a powerful way in
which to compare performance and robustness between systems.



4 1 Introduction

Tracking concerns the ability of a system to follow a changing environmental
setpoint. For example, a system may benefit by altering its response as the environ-
mental temperature changes. How closely can the system track the optimal response
to the changing environmental input? Once again, the analysis of performance and
robustness may be developed by considering explicit measures of system charac-
teristics. With explicit measures, one can analyze the tradeoffs between competing
goals and how alternative assumptions lead to alternative optimal designs.

All of these topics build on the essential benefits of feedback control. The par-
ticular information that can be measured and used for feedback plays a key role in
control design.

1.2.3 Part III: Common Challenges

The third part presents challenges in control design. Challenges include nonlinearity
and uncertainty of system dynamics.

Classical control theory assumes linear dynamics, whereas essentially all pro-
cesses are nonlinear. One defense of linear theory is that it often works for real prob-
lems. Feedback provides powerful error correction, often compensating for unknown
nonlinearities. Robust linear design methods gracefully handle uncertainties in sys-
tem dynamics, including nonlinearities.

One can also consider the nonlinearity explicitly. With assumptions about the
form of nonlinearity, one can develop designs for nonlinear control.

Other general design approaches work well for uncertainties in intrinsic system
dynamics, including nonlinearity.Adaptive control adjusts estimates for the unknown
parameters of intrinsic system dynamics. Feedback gives a measure of error in the
current parameter estimates. That error is used to learn better parameter values.
Adaptive control can often be used to adjust a controller with respect to nonlinear
intrinsic dynamics.

Model predictive control uses the current system state and extrinsic inputs to
calculate an optimal sequence of future control steps. Those future control steps
ideally move the system toward the desired trajectory at the lowest possible cost.
At each control point in time, the first control step in the ideal sequence is applied.
Then, at the next update, the ideal control steps are recalculated, and the first new
step is applied.

By using multiple lines of information and recalculating the optimal response, the
system corrects for perturbations and for uncertainties in system dynamics. Those
uncertainties can include nonlinearities, providing another strong approach for non-
linear control.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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Chapter 2
Control Theory Dynamics

The mathematics of classical control theory depends on linear ordinary differential
equations, which commonly arise in all scientific disciplines. Control theory empha-
sizes a powerful Laplace transform expression of linear differential equations. The
Laplace expression may be less familiar in particular disciplines, such as theoretical
biology.

2.1 Transfer Functions and State Space

Here, I show how and why control applications use the Laplace form. I recommend
an introductory text on control theory for additional background and many example
applications (e.g., Åström and Murray 2008; Ogata 2009; Dorf and Bishop 2016).

Suppose we have a process, P , that transforms a command input, u, into an
output, y. Figure2.1a shows the input–output flow. Typically, we write the process
as a differential equation, for example

ẍ + a1 ẋ + a2x = u̇ + bu, (2.1)

in which x(t) is an internal state variable of the process that depends on time, u(t)
is the forcing command input signal, and overdots denote derivatives with respect to
time. Here, for simplicity, we let the output be equivalent to the internal state, y ≡ x .

The dynamics of the input signal, u, may be described by another differential
equation, driven by reference input, r (Fig. 2.1b). Mathematically, there is no prob-
lem cascading sequences of differential equations in this manner. However, the rapid
growth of various symbols and interactions make such cascades of differential equa-
tions difficult to analyze and impossible to understand intuitively.

© The Author(s) 2018
S. A. Frank, Control Theory Tutorial, SpringerBriefs in Applied Sciences
and Technology, https://doi.org/10.1007/978-3-319-91707-8_2
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10 2 Control Theory Dynamics
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Fig. 2.1 Basic process and control flow. a The input–output flow in Eq.2.2. The input, U (s), is
itself a transfer function. However, for convenience in diagramming, lowercase letters are typically
used along pathways to denote inputs and outputs. For example, in a, u can be used in place ofU (s).
In b, only lowercase letters are used for inputs and outputs. Panel b illustrates the input–output flow
of Eq.2.3. These diagrams represent open-loop pathways because no closed-loop feedback pathway
sends a downstream output back as an input to an earlier step. c A basic closed-loop process and
control flow with negative feedback. The circle between r and e denotes addition of the inputs to
produce the output. In this figure, e = r − y

We can use a much simpler way to trace input–output pathways through a system.
If the dynamics of P follow Eq.2.1, we can transform P from an expression of
temporal dynamics in the variable t to an expression in the complex Laplace variable
s as

P(s) = Y (s)

U (s)
= s + b

s2 + a1s + a2
. (2.2)

The numerator simply uses the coefficients of the differential equation in u from the
right side of Eq.2.1 to make a polynomial in s. Similarly, the denominator uses the
coefficients of the differential equation in x from the left side of Eq.2.1 to make
a polynomial in s. The eigenvalues for the process, P , are the roots of s for the
polynomial in the denominator. Control theory refers to the eigenvalues as the poles
of the system.

From this equation and the matching picture in Fig. 2.1, we may write Y (s) =
U (s)P(s). In words, the output signal, Y (s), is the input signal, U (s), multiplied by
the transformation of the signal by the process, P(s). Because P(s) multiplies the
signal, we may think of P(s) as the signal gain, the ratio of output to input, Y /U . The
signal gain is zero at the roots of the numerator’s polynomial in s. Control theory
refers to those numerator roots as the zeros of the system.
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The simple multiplication of the signal by a process means that we can easily
cascade multiple input–output processes. For example, Fig. 2.1b shows a system
with extended input processing. The cascade begins with an initial reference input,
r , which is transformed into the command input, u, by a preprocessing controller,
C , and then finally into the output, y, by the intrinsic process, P . The input–output
calculation for the entire cascade follows easily by noting that C(s) = U (s)/R(s),
yielding

Y (s) = R(s)C(s)P(s) = R(s)
U (s)

R(s)

Y (s)

U (s)
. (2.3)

These functions of s are called transfer functions.
Each transfer function in a cascade can express any general system of ordinary

linear differential equations for vectors of state variables, x , and inputs, u, with
dynamics given by

x (n) + a1x
(n−1) + · · · + an−1x

(1) + anx

= b0u
(m) + b1u

(m−1) + · · · + bm−1u
(1) + bmu, (2.4)

in which parenthetical superscripts denote the order of differentiation. By analogy
with Eq.2.2, the associated general expression for transfer functions is

P(s) = b0sm + b1sm−1 + · · · + bm−1s + bm
sn + a1sn−1 + · · · + an−1s + an

. (2.5)

The actual biological or physical process does not have to include higher-order
derivatives. Instead, the dynamics of Eq.2.4 and its associated transfer function can
always be expressed by a system of first-order processes of the form

ẋi =
∑

j

ai j x j +
∑

j

bi j u j , (2.6)

which allows for multiple inputs, u j . This system describes the first-order rate of
change in the state variables, ẋi , in terms of the current states and inputs. This state-
space description for the dynamics is usually written in vector notation as

ẋ = Ax + Bu

y = Cx + Du,

which potentially has multiple inputs and outputs, u and y.
For example, the single input–output dynamics in Eq.2.1 translate into the state-

space model
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ẋ1 = −a2x2 + bu

ẋ2 = x1 − a1x2 + u

y = x2,

in which the rates of change in the states depend only on the current states and the
current input.

2.2 Nonlinearity and Other Problems

Classical control theory focuses on transfer functions. Those functions apply only to
linear, time-invariant dynamics. By contrast, state-space models can be extended to
any type of nonlinear, time-varying process.

Real systems are typically nonlinear. Nonetheless, four reasons justify the study
of linear theory.

First, linear analysis clarifies fundamental principles of dynamics and control.
For example, feedback often leads to complex, nonintuitive pathways of causation.
Linear analysis has clarified the costs and benefits of feedback in terms of trade-
offs between performance, stability, and robustness. Those principles carry over to
nonlinear systems, although the quantitative details may differ.

Second, many insights into nonlinear aspects of control come from linear the-
ory (Isidori 1995; Khalil 2002; Astolfi et al. 2008). In addition to feedback, other
principles include how to filter out disturbances at particular frequencies, how time
delays alter dynamics and the potential for control, how to track external setpoints,
and how to evaluate the costs and benefits of adding sensors to monitor state and
adjust dynamics.

Third, linear theory includes methods to analyze departures from model assump-
tions. Those linear methods of robustness often apply to nonlinear departures from
assumed linearity. One can often analyze the bounds on a system’s performance,
stability, and robustness to specific types of nonlinear dynamics.

Fourth, analysis of particular nonlinear systems often comes down to studying
an approximately linearized version of the system. If the system state remains near
an equilibrium point, then the system will be approximately linear near that point.
If the system varies more widely, one can sometimes consider a series of changing
linear models that characterize the system in each region. Alternatively, a rescaling
of a nonlinear system may transform the dynamics into a nearly linear system.

Given a particular nonlinear system, one can always simulate the dynamics explic-
itly. The methods one uses to understand and to control a simulated system arise
mostly from the core linear theory and from the ways that particular nonlinearities
depart from that core theory.
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2.3 Exponential Decay and Oscillations

Two simple examples illustrate the match between standard models of dynamics and
the transfer function expressions. First, the simplest first-order differential equation
in x(t) forced by the input u(t), with initial condition x(0) = 0, is given by

ẋ + ax = u, (2.7)

which has the solution

x(t) =
∫ t

0
e−aτu(t − τ)dτ. (2.8)

This process describes how x accumulates over time, as inputs arrive at each time
point with intensity u, and x decays at rate a.

If the input into this system is the impulse or Dirac delta function, u(t)dt = 1 at
t = 0 and u(t) = 0 for all other times, then

x(t) = e−at .

If the input is the unit step function, u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0, then

x(t) = 1

a

(
1 − e−at

)
.

Many processes follow the basic exponential decay in Eq.2.8. For example, a
quantity u of a molecule may arrive in a compartment at each point in time and then
decay at rate a within the compartment. At any time, the total amount of themolecule
in the compartment is the sum of the amounts that arrived at each time in the past,
u(t − τ), weighted by the fraction that remains after decay, e−aτ .

The process in Eq.2.7 corresponds exactly to the transfer function

P(s) = 1

s + a
, (2.9)

in which the output is equivalent to the internal state, y ≡ x .
In the second example, an intrinsic process may oscillate at a particular frequency,

ω0, described by
ẍ + ω2

0x = u.

This system produces output x = sin(ω0t) for u = 0 and an initial condition along
the sine curve. The corresponding transfer function is

P(s) = ω0

s2 + ω2
0

.
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We can combine processes by simply multiplying the transfer functions. For
example, supposewe have an intrinsic exponential decay process, P(s), that is driven
by oscillating inputs, U (s). That combination produces an output

Y (s) = U (s)P(s) = ω0

(s + a)(s2 + ω2
0)

, (2.10)

which describes a third-order differential equation, because the polynomial of s in
the denominator has a highest power of three.

We could have easily obtained that third-order process by combining the two
systems of differential equations given above. However, when systems include many
processes in cascades, including feedback loops, it becomes difficult to combine the
differential equations into very high-order systems.Multiplying the transfer functions
through the system cascade remains easy. That advantage was nicely summarized
by Bode (1964), one of the founders of classical control theory

The typical regulator system can frequently be described, in essentials, by differential equa-
tions of no more than perhaps the second, third or fourth order. … In contrast, the order of
the set of differential equations describing the typical negative feedback amplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to
find out what the order of the set of equations in an amplifier I had just designed would have
been, if I had worked with the differential equations directly. It turned out to be 55.

2.4 Frequency, Gain, and Phase

How do systems perform when parameters vary or when there are external environ-
mental perturbations? We can analyze robustness by using the differential equations
to calculate the dynamics for many combinations of parameters and perturbations.
However, such calculations are tedious and difficult to evaluate for more than a cou-
ple of parameters. Using transfer functions, we can study a wide range of conditions
by evaluating a function’s output response to various inputs.

This chapter uses the Bode plot method. That method provides an easy and rapid
way in which to analyze a system over various inputs. We can apply this method to
individual transfer functions or to cascades of transfer functions that comprise entire
systems.

This section illustrates the method with an example. The following section
describes the general concepts and benefits.

Consider the transfer function

G(s) = a

s + a
, (2.11)

which matches the function for exponential decay in Eq.2.9. Here, I multiplied the
function by a so that the value would be one when s = 0.
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(a) (d)

(b) (e)

(c) (f)

Fig. 2.2 Dynamics, gain, and phase of the low-pass filter in Eq.2.11 in response to sine wave inputs
at varying frequencies, ω. Details provided in the text. a–c Dynamics given by a multiplied by the
transfer function on the right-hand side of Eq.2.10. d Response of Eq.2.11 to unit step input. e
The scaling of the Bode gain plot is 20 log10(gain). That scaling arises from the relation between
the magnitude, M = |G( jω)|, and power, P = M2, of a signal at a particular frequency, ω, or
equivalently M = √

P . If we consider gain as the magnitude of the output signal, then the scale
for the gain is given as 20 log10(

√
P) = 10 log10(P), the standard decibel scaling for the relative

power of a signal. f Bode phase plot

We can learn about a system by studying how it responds to different kinds of
fluctuating environmental inputs. In particular, howdoes a system respond to different
frequencies of sine wave inputs?

Figure2.2 shows the response of the transfer function in Eq.2.11 to sine wave
inputs of frequency, ω. The left column of panels illustrates the fluctuating output
in response to the green sine wave input. The blue (slow) and gold (fast) responses
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correspond to parameter values in Eq.2.11 of a = 1 and a = 10. All calculations and
plots in this book are available in the accompanying Mathematica code (Wolfram
Research 2017) at the site listed in the Preface.

In the top-left panel, at input frequency ω = 1, the fast (gold) response output
closely tracks the input. The slow (blue) response reduces the input by

√
2 ≈ 0.7.

This output–input ratio is called the transfer function’s gain. The slow response
output also lags the input by approximately 0.11 of one complete sine wave cycle of
2π = 6.28 radians, thus the shift to the right of 0.11 × 6.28 ≈ 0.7 radians along the
x-axis.

We may also consider the lagging shift in angular units, in which 2π radians is
equivalent to 360◦. The lag in angular units is called the phase. In this case, the phase
is written as −0.11 × 360◦ ≈ −40◦, in which the negative sign refers to a lagging
response.

A transfer function always transforms a sine wave input into a sine wave output
modulated by the gain and phase. Thus, the values of gain and phase completely
describe the transfer function response.

Figure2.2b shows the same process but driven at a higher input frequency of
ω = 10. The fast response is equivalent to the slow response of the upper panel.
The slow response has been reduced to a gain of approximately 0.1, with a phase
of approximately −80◦. At the higher frequency of ω = 100 in the bottom panel,
the fast response again matches the slow response of the panel above, and the slow
response’s gain is reduced to approximately 0.01.

Both the slow and fast transfer functions pass low-frequency inputs into nearly
unchanged outputs. At higher frequencies, they filter the inputs to produce greatly
reduced, phase-shifted outputs. The transfer function form of Eq.2.11 is therefore
called a low-pass filter, passing low frequencies and blocking high frequencies. The
two filters in this example differ in the frequencies at which they switch from passing
low-frequency inputs to blocking high-frequency inputs.

2.5 Bode Plots of Gain and Phase

A Bode plot shows a transfer function’s gain and phase at various input frequencies.
The Bode gain plot in Fig. 2.2e presents the gain on a log scale, so that a value of
zero corresponds to a gain of one, log(1) = 0.

For the system with the slower response, a = 1 in blue, the gain is nearly one
for frequencies less than a and then drops off quickly for frequencies greater than
a. Similarly, the system with faster response, a = 10, transitions from a system that
passes low frequencies to one that blocks high frequencies at a point near its a value.
Figure2.2f shows the phase changes for these two low-pass filters. The slower blue
system begins to lag at lower input frequencies.
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Low-pass filters are very important because low-frequency inputs are often exter-
nal signals that the system benefits by tracking, whereas high-frequency inputs are
often noisy disturbances that the system benefits by ignoring.

In engineering, a designer can attach a low-pass filter with a particular transition
parameter a to obtain the benefits of filtering an input signal. In biology, natural
selection must often favor appending biochemical processes or physical responses
that act as low-pass filters. In this example, the low-pass filter is simply a basic
exponential decay process.

Figure2.2d shows a key tradeoff between the fast and slow responses. In that panel,
the system input is increased in a step from zero to one at time zero. The fast system
responds quickly by increasing its state to a matching value of one, whereas the slow
system takes much longer to increase to a matching value. Thus, the fast system
may benefit from its quick response to environmental changes, but it may lose by
its greater sensitivity to high-frequency noise. That tradeoff between responsiveness
and noise rejection forms a common theme in the overall performance of systems.

Tomake theBodeplot,wemust calculate the gain andphaseof a transfer function’s
response to a sinusoidal input of frequency ω. Most control theory textbooks show
the details (e.g.,Ogata 2009). Here, I briefly describe the calculations, which will be
helpful later.

Transfer functions express linear dynamical systems in terms of the complex
Laplace variable s = σ + jω. I use j for the imaginary number to match the control
theory literature.

The gain of a transfer function describes how much the function multiplies its
input to produce its output. The gain of a transfer function G(s) varies with the input
value, s. For complex-valued numbers, we use magnitudes to analyze gain, in which
the magnitude of a complex value is |s| = √

σ 2 + ω2.
It turns out that the gain of a transfer function in response to a sinusoidal input

at frequency ω is simply |G( jω)|, the magnitude of the transfer function at s = jω.
The phase angle is the arctangent of the ratio of the imaginary to the real parts of
G( jω).

For the exponential decay dynamics that form the low-pass filter of Eq.2.11, the
gain magnitude, M , and phase angle, φ, are

M = |G( jω)| = a√
ω2 + a2

φ = ∠G( jω) = − tan−1 ω

a
.

Any stable transfer function’s long-term steady-state response to a sine wave input
at frequency ω is a sine wave output at the same frequency, multiplied by the gain
magnitude, M , and shifted by the phase angle, φ, as
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sin(ωt)
G−−→ M sin(ωt + φ), (2.12)

in which the angle is given in radians. For example, if the phase lags by one-half of
a cycle, φ = −π ≡ −180◦, then M sin(ωt + φ) = −M sin(ωt).
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Chapter 3
Basic Control Architecture

3.1 Open-Loop Control

Suppose a system benefits by tracking relatively slow oscillatory environmental fluc-
tuations at frequency ωe and ignoring much faster noisy environmental fluctuations
at frequency ωn . Assume that the system has an intrinsic daily oscillator at frequency
ω0 = 1, with time measured in days. How can a system build a control circuit that
uses its intrinsic daily oscillator to track slower environmental signals and ignore
faster noisy signals?

We can begin by considering circuit designs that follow the cascade in Fig. 2.1b.
That cascade is a single direct path from input to output, matching the cascade in
Eq.2.3. That path is an open loop because there is no closed-loop feedback.

Using the components in Fig. 2.1b, the internal oscillator is given by

P(s) = ω0

s2 + ω2
0

,

and the external reference signal is given by

R(s) = ωe

s2 + ω2
e

+ ωn

s2 + ω2
n

,

the sum of one low- and one high-frequency sine wave. From Fig. 2.1b, the design
goal seeks to create a preprocess controlling filter, C(s), that combines with the
intrinsic internal oscillator, P(s), to transform the reference input, R(s), into an
output, Y (s) ≈ ωe/(s2 + ω2

e ), that fluctuates at ωe and ignores ωn .
In this case, we know exactly the intrinsic dynamics, P(s). Thus, we can use the

open-loop path in Fig. 2.1b to find a controller, C(s), such that the transfer function
C(s)P(s) gives approximately the input–output relation that we seek between R(s)
and Y (s). For example, by using the controller

© The Author(s) 2018
S. A. Frank, Control Theory Tutorial, SpringerBriefs in Applied Sciences
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Fig. 3.1 Bode plot of an
intrinsic oscillator, P(s),
modulated by a controller,
C(s), in an open loop
L(s) = C(s)P(s). The gold
curves follow Eq.3.3, in
which the actual frequency
of the internal oscillator is
ω̃0 = 1.2 rather than the
value ω0 = 1 that set the
design of the controller. The
underlying blue curves show
the outcome when the
internal oscillator frequency
matches the design
frequency, ω̃0 = ω0 = 1
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C(s) =
(

ω0

s + ω0

)3 (
s2 + ω2

0

ω0

)
, (3.1)

the open-loop system becomes

L(s) = C(s)P(s) =
(

ω0

s + ω0

)3

, (3.2)

because the second term in C(s) cancels P(s). The system L(s) is the low-pass filter
in Eq.2.11 raised the third power. With ω0 = 1, this system has a Bode plot similar
to the blue curve in Fig. 2.2e, f, but because of the exponent in L(s), the gain falls
more quickly at high frequencies and the phase lag is greater.

As with the low-pass filter illustrated in Fig. 2.2, this open-loop system, L(s),
tracks environmental signals at frequency ωe � ω0 and suppresses noisy signals at
frequencyωn � ω0.However, even ifwe could create this controller over the required
range of frequencies, it might turn out that this system is fragile to variations in the
parameters.

We could study robustness by using the differential equations to calculate the
dynamics for many combinations of parameters. However, such calculations are
tedious, and the analysis can be difficult to evaluate for more than a couple of param-
eters. Using Bode plots provides amuch easier way to analyze system response under
various conditions.

Suppose, for example, that in the absence of inputs, the internal oscillator, P(s),
actually fluctuates at the frequency ω̃0 �= ω0. Then, the open-loop system becomes
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L(s) = ω̃0

ω0

(
ω0

s + ω0

)3 (
s2 + ω2

0

ω0

) (
ω̃0

s2 + ω̃2
0

)
, (3.3)

in which the first term adjusts the gain to be one at s = 0.
The gold curves in Fig. 3.1 show the Bode plot for this open loop, using ω0 = 1

and ω̃0 = 1.2. Note the resonant peak in the upper magnitude plot. That peak occurs
when the input frequency matches the natural frequency of the intrinsic oscillator,
ω̃0. Near that resonant frequency, the system “blows up,” because the denominator
in the last term, s2 + ω̃2

0, goes to zero as s = jω → jω̃0 and s2 → −ω̃2
0.

In summary, open-loop control works well when one has accurate information.
Successful open-loop control is simple and has relatively low cost. However, small
variations in the intrinsic process or the modulating controller can cause poor per-
formance or instabilities, leading to system failure.

3.2 Feedback Control

Feedback and feedforward have different properties. Feedforward action is obtained by
matching two transfer functions, requiring precise knowledge of the process dynamics, while
feedback attempts to make the error small by dividing it by a large quantity.

—Åström and Murray (2008, p. 320)

Feedback often solves problems of uncertainty or noise. Human-designed systems
and natural biological systems frequently use feedback control.

Figure2.1c shows a common form of negative feedback. The output, y, is returned
to the input. The output is then subtracted from the environmental reference signal,
r . The new system input becomes the error between the reference signal and the
output, e = r − y.

In closed-loop feedback, the system tracks its target reference signal by reduc-
ing the error. Any perturbations or uncertainties can often be corrected by system
dynamics that tend to move the error toward zero. By contrast, a feedforward open
loop has no opportunity for correction. Feedforward perturbations or uncertainties
lead to uncorrected errors.

In the simple negative feedback of Fig. 2.1c, the key relation between the open-
loop system, L(s) = C(s)P(s), and the full closed-loop system, G(s), is

G(s) = L(s)

1 + L(s)
. (3.4)

This relation can be derived from Fig. 2.1c by noting that, from the error input, E(s),
to the output, Y (s), we have Y = LE and that E = R − Y . Substituting the second
equation into the first yields Y = L (R − Y ). Solving for the output Y relative to the
input R, which is G = Y/R, yields Eq.3.4.
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The error, E , in response to the environmental reference input, R, can be obtained
by a similar approach, yielding

E(s) = 1

1 + L(s)
R(s). (3.5)

If the open loop, L(s), has a large gain, that gain will divide the error by a large
number and cause the system to track closely to the reference signal. A large gain
for L = CP can be achieved by multiplying the controller, C , by a large constant, k.
The large gain causes the system to respond rapidly to deviations from the reference
signal.

Feedback, with its powerful error correction, typically provides good performance
even when the actual system process, P , or controller, C , differs from the assumed
dynamics. Feedback also tends to correct for various types of disturbances and noise,
and can also stabilize an unstable open-loop system.

Feedback has two potential drawbacks. First, implementing feedbackmay require
significant costs for the sensors to detect the output and for the processes that effec-
tively subtract the output value from the reference signal. In electronics, the imple-
mentation may be relatively simple. In biology, feedback may require various addi-
tional molecules and biochemical reactions to implement sensors and the flow of
information through the system. Simple open-loop feedforward systems may be
more efficient for some problems.

Second, feedback can create instabilities. For example, when L(s) → −1, the
denominator of the closed-loop system in Eq.3.4 approaches zero, and the system
blows up. For a sinusoidal input, if there is a frequency, ω, at which the magnitude,
|L( jω)|, is one and the phase is shifted by one-half of a cycle, φ = ±π = ±180◦,
then L( jω) = −1.

The problem of phase arises from the time lag (or lead) between input and feed-
back. When the sinusoidal input is at a peak value of one, the output is shifted to
a sinusoidal trough value of minus one. The difference between input and output
combines in an additive, expansionary way rather than providing an error signal that
can shrink toward an accurate tracking process. In general, time delays in feedback
can create instabilities.

Instabilities do not require an exact half cycle phase shift. Suppose, for example,
that the open loop is

L(s) = k

(s + 1)3
.

This system is stable, because its eigenvalues are the roots of the polynomial in the
denominator, in this case s = −1, corresponding to a strongly stable system. The
closed loop has the transfer function

G(s) = L(s)

1 + L(s)
= k

k + (s + 1)3
,
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which has an eigenvalue with real part greater than zero for k > 8, causing the system
to be unstable. An unstable system tends to explode in magnitude, leading to system
failure or death.

3.3 Proportional, Integral, and Derivative Control

Open loop systems cannot use information about the error difference between the
target reference input and the actual output. Controllers must be designed based on
information about the intrinsic process and the likely inputs.

By contrast, feedback provides information about errors, and controller design
focuses primarily on using the error input. Given the error, the controller outputs a
new command reference input to the intrinsic system process. Precise knowledge
about the intrinsic system dynamics is much less important with feedback because
the feedback loop can self-correct.

This section discusses controller design for feedback systems. A controller is
a process that modulates system dynamics. For the simplest feedback shown in
Fig. 2.1c, we start with an intrinsic process, P(s), and end up with feedback system
dynamics

G(s) = C(s)P(s)

1 + C(s)P(s)
= L(s)

1 + L(s)
,

in which C(s) is the controller. The problem is how to choose a process, C(s), that
balances the tradeoffs between various measures of success, such as tracking the
reference input and robustness to perturbations and uncertainties.

Figure3.2a includes two kinds of perturbations. The input d describes the load
disturbance, representing uncertainties about the internal process, P(s), and distur-
bances to that internal process. Traditionally, one thinks of d as a relatively low-
frequency perturbation that alters the intrinsic process. The input n describes pertur-
bations that add noise to the sensor that measures the process output, η, to yield the
final output, y. That measured output, y, is used for feedback into the system.

To analyze alternative controller designs, it is useful to consider how different
controllers alter the open-loop dynamics, L(s) = C(s)P(s). How does a particular
change in the controller, C(s), modulate the intrinsic dynamics, P(s)?

First, we can simply increase the gain by letting C(s) = kp > 1, a method called
proportional control. The system becomes G = kp P/(1 + kp P). For large kp and
positive P(s), the system transfer function is G(s) → 1, which means that the sys-
tem output tracks very closely to the system input. Proportional control can greatly
improve tracking at all frequencies. However, best performance often requires track-
ing low-frequency environmental inputs and ignoring noisy high-frequency inputs
from the reference signal. In addition, large kp values can cause instabilities, and it
may be that P(s) < 0 for some inputs.
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Fig. 3.2 Closed-loop feedback. a An extended feedback loop with inputs for disturbance, d, and
noise, n. The function F(s) may be used to filter the reference input, providing a second degree of
freedom in addition to the main controller, C(s). The system can be divided into intrinsic processes
that cannot be adjusted directly and designed processes of control that can be adjusted. Note the
inputs for each block: r and y for the controller, and u, d, and n for the process. b In this panel, the
blocks P and C represent the multicomponent process and control blocks from the upper panel.
The reference signal is assumed to be zero, allowing one to focus on the roles of disturbance and
noise in relation to system stability. c An abstraction of the feedback process, in which the vector y
includes all the signals from the process to the controller, u includes all the control input signals to
the process, w includes all the extrinsic inputs, and z includes any additional signal outputs from
the process. Redrawn from Åström and Murray (2008), © Princeton University Press

Second,we can add integral control by including the term ki/s to the controller.We
can understand why this term is an integrator by considering a few steps of analysis
that extend earlier equations. Multiplying Eq.2.5 by 1/s increases the denominator’s
order of its polynomial in s. That increase in the exponents of s corresponds to an
increase in the order of differentiation for each term on the left side of Eq. 2.4, which
is equivalent to integrating each term on the right side of that equation. For example,
if we start with ẋ = u and then increase the order of differentiation on the left side,
ẍ = u, this new expression corresponds to the original expression with integration
of the input signal, ẋ = ∫

udt .
Integrating the input smooths out high-frequencyfluctuations, acting as a filter that

passes low-frequency inputs and blocks high-frequency inputs. Integration causes a
slower, smoother, and often more accurate adjustment to the input signal. A term
such as a/(s + a) is an integrator for large s and a pass-through transfer function
with value approaching one for small s.
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Perfect tracking of a constant reference signal requires a pure integrator term, 1/s.
A constant signal has zero frequency, s = 0. To track a signal perfectly, the system
transfer function’s gainmust be one so that the output equals the input. For the simple
closed loop in Eq.3.4, at zero frequency, G(0) must be one. The tracking error is
1 − G = 1/(1 + L). The error goes to zero as the gain of the open loop goes to
infinity, L(0) → ∞. A transfer function requires a term 1/s to approach infinity as
s goes to zero. In general, high open loop gain leads to low tracking error.

Third, we can add derivative control by including the term kds. We can understand
why this term differentiates the input term by following the same steps as for the
analysis of integration. Multiplying Eq.2.5 by s increases the numerator’s order of
its polynomial in s. That increase in the exponents of s corresponds to an increase
in the order of differentiation for each term on the right side of Eq. 2.4. Thus, the
original input term, u(t), becomes the derivative with respect to time, u̇(t).

Differentiating the input causes the system to respond to the current rate of change
in the input. Thus, the system responds to a prediction of the future input, based on
a linear extrapolation of the recent trend.

This leading, predictive response enhances sensitivity to short-term, high-
frequency fluctuations and tends to block slow, low-frequency input signals. Thus,
differentiation acts as a high-pass filter of the input signal. A term such as s + a mul-
tiplies signals by a for low-frequency inputs and multiplies signals by the increasing
value of s + a for increasingly high-frequency inputs. Differentiators make systems
very responsive, but also enhance sensitivity to noisy high-frequency perturbations
and increase the tendency for instability.

A basic proportional, integral, and derivative (PID) controller has the form

C(s) = kp + ki
s

+ kds = kds2 + kps + ki
s

. (3.6)

PID controllers are widely used across all engineering applications. They work rea-
sonably well for many cases, they are relatively easy to understand, and their param-
eters are relatively easy to tune for various tradeoffs in performance.

3.4 Sensitivities and Design Tradeoffs

Figure3.2a shows a basic feedback loop with three inputs: the reference signal, r , the
load disturbance, d, and the sensor noise, n. How do these different signals influence
the error between the reference signal and the system output? In other words, how
sensitive is the system to these various inputs?

To derive the sensitivities, define the error in Fig. 3.2a as r − η, the difference
between the reference input, r , and the process output, η (Åström and Murray 2008,
Sect. 11.1). To obtain the transfer function between each input and output, we use the
rule for negative feedback: The transfer function between the input and output is the
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open loop directly from the input to the output, L , divided by one plus the pathway
around the feedback loop, 1 + L .

If we assume in Fig. 3.2a that there is no feedforward filter, so that F = 1, and
we define the main open loop as L = CP , then the output η in response to the three
inputs is

η = L

1 + L
r + P

1 + L
d − L

1 + L
n, (3.7)

in which each term is the open loop between the input signal and the output, η,
divided by one plus the pathway around the full loop, L . If we define

S = 1

1 + L
T = L

1 + L
S + T = 1, (3.8)

with S as the sensitivity function and T as the complementary sensitivity function,
then the error is

r − η = Sr − PSd + Tn. (3.9)

This expression highlights the fundamental design tradeoffs in control that arise
because S + T = 1. If we reduce T and the sensitivity to noise, we increase S. An
increase in S raises the error in relation to the reference signal, r , and the error in
relation to the load disturbance, d. If we reduce S, we increase T and the sensitivity
to noise, n. These sensitivity tradeoffs suggest two approaches to design.

First, the sensitivities S(s) and T (s) depend on the input, s. Thus, we may adjust
the tradeoff at different inputs. For example, we may consider inputs, s = jω, at
various frequencies, ω. Sensor noise, n, often arises as a high frequency disturbance,
whereas the reference input, r , and the load disturbance, d, often follow a low fre-
quency signal. If so, then we can adjust the sensitivity tradeoff to match the common
input frequencies of the signals. In particular, at low frequency for which r and d
dominate, we may choose low S values whereas, at high frequency for which n
dominates, we may choose low T values.

Second, we may add an additional control process that alters the sensitivity trade-
off. For example, we may use the feedforward filter, F , in Fig. 3.2a, to modulate
the reference input signal. With that filter, the transfer function from the input, r , to
the error output, r − η, becomes 1 − FT . If we know the form of T with sufficient
precision, we can choose FT ≈ 1, and thus we can remove the sensitivity of the
error to the reference input.

Note that adjusting the tradeoff between S and T only requires an adjustment
to the loop gain, L , which usually does not require precise knowledge about the
system processes. By contrast, choosing F to cancel the reference input requires
precise information about the form of T and the associated system processes. In
other words, feedback is relatively easy and robust because it depends primarily on
adjusting gain magnitude, whereas feedforward requires precise knowledge and is
not robust to misinformation or perturbation.



3.4 Sensitivities and Design Tradeoffs 27
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Chapter 4
PID Design Example

I illustrate the principles of feedback control with an example. We start with an
intrinsic process

P(s) =
(

a

s + a

) (
b

s + b

)
= ab

(s + a)(s + b)
.

This process cascades two exponential decay systems, each with dynamics as in
Eq.2.8 and associated transfer function as in Eq.2.9. For example, if the input into
this system is a unit impulse at time zero, then the system output is

y(t) = ab

b − a

(
e−at − e−bt

)
,

expressing the cascade of two exponentially decaying processes.
For this example, we use

P(s) = 1

(s + 0.1)(s + 10)
(4.1)

as the process. We also consider an alternative process

P̃(s) = 1

(s + 0.01)(s + 100)
. (4.2)

We assume during system analysis and design that Eq. 4.1 describes the process, but
in fact Eq.4.2 is actually the true process. Put another way, the difference between the
two processes may reflect uncertain information about the true process or unknown
disturbances that alter the process. Thus, we may consider how a system performs

© The Author(s) 2018
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Fig. 4.1 Response of the system output, η = y, to a sudden unit step increase in the reference input,
r , in the absence of disturbance and noise inputs, d and n. The x-axis shows the time, and the y-axis
shows the system output. a Response of the original process, P(s), in Eq.4.1 (blue curve) and of
the process with altered parameters, P̃(s) in Eq.4.2 (gold curve). b System with the PID controller
embedded in a negative feedback loop, with no feedforward filter, F(s) = 1, as in Fig. 3.2a. c PID
feedback loop with feedforward filter, F , in Eq.4.4

when it was designed, or evolved, in response to a process, P , and the underlying
system becomes P̃ .

In this example, the problem concerns the design of a negative feedback loop, as
in Fig. 3.2a, that uses a controller with proportional, integral, and derivative (PID)
action. Many methods derive PID controllers by tuning the various sensitivity and
performance tradeoffs (Åström and Hägglund 2006; Garpinger et al. 2014).

I obtained the parameters for the PID controller in Eq.3.6 by using the Ziegler–
Nichols method in Mathematica, yielding

C(s) = 6s2 + 121s + 606

s
. (4.3)

I also used Mathematica to calculate the feedforward filter in Fig. 3.2a, yielding

F(s) = s2 + 10.4s + 101

s2 + 20.2s + 101
. (4.4)

4.1 Output Response to Step Input

Figure4.1 illustrates various system responses to a unit step increase from zero to one
in the reference input signal, r . Panel (a) shows the response of the base process, P , by
itself. The blue curve is the double exponential decay process of Eq.4.1. That process
responds slowly because of the first exponential process with time decay a = 0.1,
which averages inputs over a time horizon with decay time 1/a = 10, as in Eq.2.8.
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The gold curve, based on Eq.4.2, rises even more slowly, because that alternative
process, P̃ , has an even longer time horizon for averaging inputs of 1/a = 100.

Panel (b) shows the response of the full feedback loop of Fig. 3.2a with the PID
controller in Eq.4.3 and no feedforward filter, F = 1. Note that the system responds
much more rapidly, with a much shorter time span over the x-axis than in (a). The
rapid response follows from the very high gain of the PID controller, which strongly
amplifies low-frequency inputs.

The PID controller was designed to match the base process P in Eq.4.1, with
response in blue. When the actual base process deviates as in P̃ of Eq.4.2, the
response is still reasonably good, although the system has a greater overshoot upon
first response and takes longer to settle down and match the reference input. The
reasonably good response in the gold curve shows the robustness of the PID feedback
loop to variations in the underlying process.

Panel (c) shows the response of the system with a feedforward filter, F , from
Eq.4.4. Note that the system in blue with the base process, P , improves significantly,
with lower overshoot and less oscillation when settling to match the reference input.
By contrast, the system in gold with the alternative base process, P̃ , changes its
response very little with the additional feedforward filter. This difference reflects the
fact that feedforward works well only when one has very good knowledge of the
underlying process, whereas feedback works broadly and robustly with respect to
many kinds of perturbations.

4.2 Error Response to Noise and Disturbance

Figure4.2 illustrates the system error in response to sensor noise, n, and process
disturbance, d. Panel (a) shows the error in response to a unit step change in n, the
input noise to the sensor. That step input to the sensor creates a biased measurement,
y, of the system output, η. The biased measured value of y is fed back into the
control loop. A biased sensor produces an error response that is equivalent to the
output response for a reference signal. Thus, Fig. 4.2a matches Fig. 4.1b.

Panel (b) shows the error response to an impulse input at the sensor. An impulse
causes a brief jolt to the system. The system briefly responds by a large deviation
from its setpoint, but then returns quickly to stable zero error, at which the output
matches the reference input. An impulse to the reference signal produces an equiv-
alent deviation in the system output but with opposite sign.

The error response to process disturbance in panels (c) and (d) demonstrates
that the system strongly rejects disturbances or uncertainties to the intrinsic system
process.
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Fig. 4.2 Error response, r − η, of the PID feedback loop to sensor noise, n, or process disturbance,
d, from Eq.3.9. Blue curve for the process, P , in Eq.4.1 and gold curve for the altered process, P̃ ,
in Eq.4.2. a Error response to sensor noise input, n, for a unit step input and b for an impulse input.
c Error response to process disturbance input, d, for a unit step input and d for an impulse input.
An impulse is u(t)dt = 1 at t = 0 and u(t) = 0 at all other times. The system responses in gold
curves reflect the slower dynamics of the altered process. If the altered process had faster intrinsic
dynamics, then the altered process would likely be more sensitive to noise and disturbance

Fig. 4.3 System response output, η = y, to sine wave reference signal inputs, r . Each column
shows a different frequency, ω. The rows are (Pr) for reference inputs into the original process,
P or P̃ , without a modifying controller or feedback loop, and (Rf) for reference inputs into the
closed-loop feedback system with the PID controller in Eq.4.3. The green curve shows the sine
wave input. The blue curve shows systems with the base process, P , from Eq.4.1. The gold curve
shows systems with the altered process, P̃ , from Eq.4.2. In the lower left panel, all curves overlap.
In the lower panel at ω = 1, the green and blue curves overlap. In the two upper right panels, the
blue and gold curves overlap near zero
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4.3 Output Response to Fluctuating Input

Figure4.3 illustrates the system output in response to fluctuating input (green). The
top row shows the output of the system process, either P (blue) or P̃ (gold), alone
in an open loop. The system process is a cascade of two low-pass filters, which pass
low-frequency inputs and do not respond to high-frequency inputs.

The upper left panel shows the response to the (green) low-frequency input,
ω = 0.1, in which the base system P (blue) passes through the input with a slight
reduction in amplitude and lag in phase. The altered system P̃ (gold) responds only
weakly to the low frequency of ω = 0.1, because the altered system has slower
response characteristics than the base system. At a reduced input frequency of
ω = 0.01 (not shown), the gold curve would match the blue curve atω = 0.1. As fre-
quency increases along the top row, the processes P and P̃ block the higher-frequency
inputs.

The lower row shows the response of the full PID feedback loop system. At a
low frequency of ω ≤ 0.1, the output tracks the input nearly perfectly. That close
tracking arises because of the very high gain amplification of the PID controller at
low frequency, which reduces the system tracking error to zero, as in Eq.3.5.

At a higher frequency ofω = 10, the systemwith the base process P respondswith
a resonant increase in amplitude and a lag in phase. The slower altered process, P̃ ,
responds only weakly to input at this frequency. As frequency continues to increase,
both systems respond weakly or not at all.

The system response to sensor noise would be of equal magnitude but altered sign
and phase, as shown in Eq.3.7.

Low-frequency tracking and high-frequency rejection typically provide the great-
est performance benefit. The environmental references that it pays to track often
change relatively slowly, whereas the noisy inputs in both the reference signal and
in the sensors often fluctuate relatively rapidly.

4.4 Insights from Bode Gain and Phase Plots

Figure4.4 provides more general insight into the ways in which PID control, feed-
back, and input filtering alter system response.

Panels (a) and (b) show the Bode gain and phase responses for the intrinsic system
process, P (blue), and the altered process, P̃ (gold). Low-frequency inputs pass
through. High-frequency inputs cause little response. The phase plot shows that
these processes respond slowly, lagging the input. The lag increases with frequency.

Panels (c) and (d) show the responses for the open loop with the PID controller,
C , combined with the process, P or P̃ , as in Fig. 2.1b. Note the very high gain in
panel (c) at lower frequencies and the low gain at high frequencies.
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Fig. 4.4 Bode gain (top) and phase (bottom) plots for system output, η = y, in response to reference
input, r , in the absence of load disturbance and sensor noise. Blue curves for systems with the base
process, P , in Eq.4.1. Gold curves for systems with the altered process, P̃ , in Eq.4.2. a, b The
original unmodified process, P or P̃ , with no controller or feedback. c, d The open loop with no
feedback,CP orC P̃ , with the PID controller,C , in Eq.4.3. e, f The closed loopwith no feedforward
filter, F = 1. g, h The closed loop with the feedforward filter, F , in Eq.4.4

PID controllers are typically designed to be used in closed-loop feedback systems,
as in Fig. 2.1c. Panels (e) and (f) illustrate the closed-loop response. The high open-
loop gain of the PID controller at low frequency causes the feedback system to track
the reference input closely. That close tracking matches the log(1) = 0 gain at low
frequency in panel (e). Note also the low-frequency phase matching, or zero phase
lag, shown in panel (f), further demonstrating the close tracking of reference inputs.
At high frequency, the low gain of the open-loop PID controller shown in panel (c)
results in the closed-loop rejection of high-frequency inputs, shown as the low gain
at high frequency in panel (e).

Note the resonant peak of the closed-loop system in panel (e) near ω = 10 for the
blue curve and at a lower frequency for the altered process in the gold curve. Note
also that the altered process, P̃ , in gold, retains the excellent low-frequency tracking
and high-frequency input rejection, even though the controller was designed for the
base process, P , shown in blue. The PID feedback loop is robust to differences in
the underlying process that varies from the assumed form of P .

Panels (g) and (h) show the PID closed-loop systemwith a feedforward filter, F , as
in Fig. 3.2a. The feedforward filter smooths out the resonant peak for the blue curve,
so that system does not amplify inputs at resonant frequencies. Amplified resonant
inputsmay lead to instabilities or poor systemperformance.Note that the feedforward
filter does not havemuch effect on the altered process in gold. Feedforwardmodifiers
of a process typically work well only for a specific process. They often do not work
robustly over a variant range of processes.
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4.5 Sensitivities in Bode Gain Plots

Figure4.5 illustrates the sensitivities of the system error output, r − η, to inputs from
the reference, r , sensor noise, n, and load disturbance, d, signals, calculated from
Eq.3.9. Figure 3.2a shows the inputs and loop structure.

The blue curve of panel (a) shows the error sensitivity to the reference input. That
sensitivity is approximately the mirror image of the system output response to the
reference input, as shown in Fig. 4.4e (note the different scale). The duality of the
error response and the system response arises from the fact that the error is r − η,
and the system response is η.

Perfect tracking means that the output matches the input, r = η. Thus, a small
error corresponds to a low gain of the error in response to input, as occurs at low
frequency for the blue curve of Fig. 4.5a. In the same way, a small error corresponds
to a gain of one for the relation between the reference input, r , and the system output,
η, as occurs at low frequency for the blue curve of Fig. 4.4e.

The noise sensitivity in the green curve of Fig. 4.5a shows that the system error is
sensitive to low-frequencybias in the sensormeasurements, y, of the systemoutput,η.
When the sensor produces a low-frequency bias, that bias feeds back into the system
and creates a bias in the error estimate, thus causing an error mismatch between
the reference input and the system output. In other words, the system is sensitive to
errors when the sensor suffers low-frequency perturbations. The PID system rejects
high-frequency sensor noise, leading to the reduced gain at high frequency illustrated
by the green curve.

The disturbance load sensitivity in the red curve of Fig. 4.5a shows the low sen-
sitivity of this PID feedback system to process variations.

This PID feedback system is very robust to an altered underlying process, as
shown in earlier figures. Here, Fig. 4.5b illustrates that robustness by showing the
relativelyminor changes in system sensitivities when the underlying process changes
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Fig. 4.5 Bode gain plots for the error output, r − η, in response to reference input, r (blue), sensor
noise, n (green), and load disturbance, d (red), from Eq.3.9. The systems are the full PID-controlled
feedback loops as in Fig. 3.2a, with no feedforward filter. The PID controller is given in Eq.4.3. a
System with the base process, P , from Eq.4.1. b System with the altered process, P̃ , from Eq.4.2
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from P to P̃ . However, other types of change to the underlying process may cause
greater changes in system performance. Robustness depends on both the amount of
change and the kinds of change to a system.
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Chapter 5
Performance and Robustness Measures

A theory of design tradeoffs requires broadly applicable measures of cost, per-
formance, stability, and robustness. For example, the PID controller in the pre-
vious example performs reasonably well, but we ignored costs. That PID con-
troller achieved good tracking performance by using high gain amplification of low-
frequency input signals. High gain in a negative feedback loop quickly drives the
error to zero.

High gain has two potential problems. First, high signal amplificationmay require
excessive energy in physical or biological systems. We must consider those costs for
a high gain controller.

Second, high gain can cause system instability, with potential for system failure.
We must consider the tradeoff between the benefits of high gain and the loss of
robustness against perturbations or uncertainties in system dynamics.

Beyond the simple PID example, we must consider a variety of tradeoffs in per-
formance and robustness (Zhou and Doyle 1998; Qiu and Zhou 2010). Earlier, I
discussed tradeoffs in system sensitivities to disturbance and noise. I also presented
qualitative descriptions of systemperformance in terms of response time and tracking
performance.

To advance the theory, we need specific measures of cost, performance, stability
and robustness. We also need techniques to find optimal designs in relation to those
conflicting measures of system attributes.

We will never find a perfect universal approach. There are too many dimensions
of costs and benefits, and too many alternative ways to measure system attributes.
Nonetheless, basic measures and simple optimization methods provide consider-
able insight into the nature of design. Those insights apply both to the building
of human-designed systems to achieve engineering goals and to the interpretation
and understanding of naturally designed biological systems built by evolutionary
processes.
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5.1 Performance and Cost: J

To analyze performance, we must measure the costs and benefits associated with a
particular system.We often measure those costs and benefits by the distance between
a system’s trajectory and some idealized trajectory with zero cost and perfect per-
formance.

Squared deviations provide a distance measure between the actual trajectory and
the idealized trajectory. Consider, for example, the control signal, u(t), which the
controller produces to feed into the system process, as in Fig. 2.1c.

The value of |u(t)|2 = u2 measures the magnitude of the signal as a squared
distance from zero. We can think of u2 as the instantaneous power of the control
signal. Typically, the power requirements for control are a cost to be minimized.

The square of the error output signal, |e(t)|2 = e2, measures the distance of the
system from the ideal performance of e = 0.Minimizing the squared errormaximizes
performance. Thus, wemay think of performance at any particular instant, t , in terms
of the cost function

J (t) = u2 + ρ2e2,

for which minimum cost corresponds to maximum performance. Here, ρ is a weight-
ing factor that determines the relative value of minimizing the control signal power,
u2, versus minimizing the tracking error, e2.

Typically, we measure the cost function over a time interval. Summing up J (t)
continuously from t = 0 to T yields

J =
∫ T

0
(u2 + ρ2e2)dt. (5.1)

Most squared distance or quadratic performance analyses arise from extensions of
this basic equation. Given this measure, optimal design trades off minimizing the
energy cost to drive the system versus maximizing the benefit of tracking a target
goal.

5.2 Performance Metrics: Energy and H2

The cost measure in Eq. 5.1 analyzes signals with respect to time. It is natural to think
of inputs and outputs as changing over time. With temporal dynamics, we can easily
incorporate multivariate signals and nonlinearities. In spite of those advantages, we
often obtain greater insight by switching to a frequency analysis of signals, as in the
previous chapters.

In this section, I present alternative measures of cost and performance in terms
of transfer functions and complex signals. Those alternative measures emphasize
frequencies of fluctuations rather than changes through time. Frequency and complex
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analysis allow us to take advantage of transfer functions, Bode plots, and other
powerful analytical tools that arise when we assume linear dynamics.

The assumption of linearity does not mean that we think the actual dynamics of
physical and biological processes are linear. Instead, starting with the linear case
provides a powerful way in which to gain insight about dynamics.

In the previous section, we considered how to measure the magnitude of fluctu-
ating control and error signals. A magnitude that summarizes some key measure is
often called a norm. In the prior section, we chose the sum of squared deviations
from zero, which is related to the 2–norm of a signal

‖u(t)‖2 =
(∫ ∞

0
|u(t)|2dt

)1/2

. (5.2)

The energy of the signal is the square of the 2–norm, ‖u(t)‖22. When the time period
in the cost function of Eq. 5.1 goes to infinity, T → ∞, we canwrite the cost function
as

J = ‖u(t)‖22 + ρ2‖e(t)‖22. (5.3)

The signal u(t) is a function of time. The associated transfer functionU (s) describes
exactly the same signal, but as a function of the complex number, s, rather than of
time, t .

It is often much easier to work with the transfer function for analysis, noting that
we can go back and forth between time and transfer function descriptions. For the
analysis of squared distance metrics, the 2–norm of the transfer function expression
is

‖U (s)‖2 =
(

1

2π

∫ ∞

−∞
|U ( jω)|2dω

)1/2

. (5.4)

This transfer function 2–norm is often referred to as theH2 norm. The term |U ( jω)|2
is the square of the Bode gain or magnitude, as in Fig. 2.2e. That gain describes the
amplification of a sinusoidal input at frequencyω. TheH2 norm expresses the average
amplification of input signals over all input frequencies.

If the goal is to minimize the control input signal, u, or the error deviation from
zero, e, then the greater the amplification of a signal, the greater the cost. Thus, we
can use the H2 norm to define an alternative cost function as

J = ‖U (s)‖22 + ρ2‖E(s)‖22, (5.5)

which leads to methods that are often called H2 analysis. This cost describes the
amplification of input signals with respect to control and error outputs when averaged
overall input frequencies. Minimizing this cost reduces the average amplification of
input signals.
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If the energy 2–norm in Eq. 5.2 is finite, then the energy 2–norm and the H2 norm
are equivalent, ‖u(t)‖2 = ‖U (s)‖2, and we can use Eqs. 5.3 and 5.5 interchangeably.
Often, it is more convenient to work with the transfer function form of the H2 norm.

We can use any combination of signals in the cost functions. And we can use
different weightings for the relative importance of various signals. Thus, the cost
functions provide a method to analyze a variety of tradeoffs.

5.3 Technical Aspects of Energy and H2 Norms

I have given three different cost functions. The first in Eq 5.1 analyzes temporal
changes in signals, such as u(t), over a finite time interval. That cost function is the
most general, in the sense that we can apply it to any finite signals. We do not require
assumptions about linearity or other special attributes of the processes that create the
signals.

The second function in Eq. 5.3 measures cost over an infinite time interval and is
otherwise identical to the first measure. Why consider the unrealistic case of infinite
time?

Often, analysis focuses on a perturbation that moves a stable system away from its
equilibrium state. As the system returns to equilibrium, the error and control signals
go to zero. Thus, the signals have positive magnitude only over a finite time period,
and the signal energy remains finite. As noted above, if the energy 2–norm is finite,
then the energy 2–norm and the H2 norm are equivalent, and the third cost function
in Eq. 5.5 is equivalent to the second cost function in Eq. 5.3.

If the signal energy of the second cost function in Eq. 5.3 is infinite, then that cost
function is not useful. In an unstable system, the error often grows with time, leading
to infinite energy of the error signal. For example, the transfer function 1/(s − 1)
has temporal dynamics given by y(t) = y(0)et , growing exponentially with time.
The system continuously amplifies an input signal, creating instability and an output
signal with infinite energy.

When the energy is infinite, the H2 norm may remain finite. For the transfer func-
tion 1/(s − 1), the H2 norm is 1/

√
2. The average amplification of signals remains

finite. In general, for a transfer function, G(s), the H2 norm remains finite as long
as G( jω) does not go to infinity for any value of ω, and G( jω) → 0 as ω → ±∞.
Thus, the H2 norm cost in Eq. 5.5 can be used in a wider range of applications.

The H2 norm is related to many common aspects of signal processing and time
series analysis, such as Fourier analysis, spectral density, and autocorrelation.
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5.4 Robustness and Stability: H∞

A transfer function for a system, G(s), defines the system’s amplification of input
signals. For a sinusoidal input at frequency ω, the amplification, or gain, is the
absolute value of the transfer function at that frequency, |G( jω)|.

Often, the smaller a system’s amplification of inputs, the more robust the system
is against perturbations. Thus, one common optimization method for designing con-
trollers seeks to minimize a system’s greatest amplification of inputs. Minimizing
the greatest amplification guarantees a certain level of protection against the worst
case perturbation. In some situations, one can also guarantee that a system is stable
if its maximum signal amplification is held below a key threshold.

A system’smaximumamplification of sinusoidal inputs over all input frequencies,
ω, is called its H∞ norm. For a system G(s), the H∞ norm is written as ‖G(s)‖∞.
The norm describes the maximum of |G( jω)| over all ω. The maximum is also the
peak gain on a Bode magnitude plot, which is equivalent to the resonance peak.

System stability and protection against perturbations set two fundamental criteria
for system design. Thus, H∞ methods are widely used in the engineering design of
controllers and system architectures (Zhou and Doyle 1998).
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Part II
Design Tradeoffs

Many performance tradeoffs occur. A system that responds quickly to control signals
often suffers from sensitivity to perturbations. A more rapid response also associates
with a greater tendency toward instability.

Design of a control system by an engineermust balance the competing dimensions
of performance. Similarly, design of biological systems by evolutionary processes
implicitly balances the different dimensions of success. In engineering, we can spec-
ify performance criteria. In biology, we must figure out how natural processes set
the relative importance of different performance measures.

Once we have a set of performance criteria, how do we find the control architec-
tures and parameters that perform well? If we do not have formal design methods,
then we end up with ad hoc solutions. Such solutions may perform well. But we do
not have any way to know if there are better solutions or better ways to formulate
the design criteria.

Ideally, we would have an optimization method that provided the best solution
for a given problem and a given set of performance criteria. Optimization forces us
to specify the problem with clarity. We must write down exactly the performance
criteria, the nature of the problem, and all associated assumptions. We then get an
answer about whether there is a best design for the given assumptions or a set of
comparable alternative designs.

Optimization is, of course, only as good as the assumptions that we make. In
engineering, we may be able to specify design criteria clearly. Or, at least, we can
experiment with various criteria and examine the alternative optimal designs.

In biology, figuring out the appropriate assumptions and constraints that express
natural evolutionary processes can be very difficult. We may make some progress by
trying different assumptions as hypotheses about the natural design process. We can
then test the match between the optimal solutions and what we actually see in nature
(Parker and Maynard Smith 1990).

Design by optimization must begin with performance criteria. Three kinds of
performance criteria dominate in typical engineering applications.

Regulation, or homeostasis, concerns aspects of design that return a system to
its setpoint. Good regulation requires insensitivity to perturbations. If the system
does get pushed away from its setpoint, a well regulated system rapidly returns to its
equilibrium.Tradeoffs arise between the responses to different kinds of perturbations.
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Stabilization concerns aspects of design that protect against instability. An unsta-
ble system may lead to failure or death. Often, the primary design goal is to protect
against instability.

Tracking concerns how well the system follows changes in environmental or
reference input signals. A system that rapidly adjusts to changes may track closely
to reference inputs but may suffer from sensitivity to perturbations or instability.

The next sections briefly illustrate these concepts. I use modified examples from
the excellent article by Qiu and Zhou (2013).



Chapter 6
Regulation

The regulation problem analyzes how quickly a perturbed system returns to its equi-
librium setpoint. For this problem, we assume that the setpoint does not change. We
can, without loss of generality, assume that the external reference signal is r = 0.

Withno external reference signal,we can express thegeneral formof the regulation
problem as in Fig. 6.1. We take the process, P , as given, subject to uncertainties or
disturbances represented by the input, d. We seek an optimal controller, C , with
respect to particular design tradeoffs.

6.1 Cost Function

The cost function summarizes the design tradeoffs. We use a cost function based on
the H2 norm, similar to Eq.5.5. The H2 norm describes the response of the system
to perturbations when averaged over all input frequencies. Minimizing theH2 norm
minimizes the extent to which the system responds to perturbations. Recall that the
H2 norm is often equivalent to the signal energy, which is the total squared deviation
of a signal from zero when measured from the time of an initial perturbation until
the time when the signal returns to zero.

From Fig. 6.1, the two inputs are the load disturbance, d, and the sensor noise, n.
The two outputs are the process output, η, and the control signal, u. We can write
the outputs as transfer functions, η(s) and U (s), and the cost function in Eq. 5.5 as

J = ||U (s)||22 + ρ2||η(s)||22.

In this case, we need to relate each of the two outputs to each of the two inputs.
We require four transfer functions to describe all of the input–output connections.
For the transfer function between the input d and the output η, we write Gηd(s), for
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P
d

C
u y n

Fig. 6.1 Classic regulation problem illustrated by closed-loop feedback with a constant reference
input signal, r = 0. The disturbance input, d, perturbs the system process. Such perturbations can be
considered as stochasticity in the process, or as uncertainty with regard to the true process dynamics
relative to the assumed dynamics. The noise input, n, perturbs the sensor that produces the output
measurement, y, based on the actual process output, η. See Fig. 3.2 for context

which we assume that the other input, n, is zero. Using our usual rule for the transfer
functions of a closed loop, the four functions are

Gud = −PC

1 + PC
Gηd = P

1 + PC

Gun = −C

1 + PC
Gηn = −PC

1 + PC
. (6.1)

We can express these transfer functions in terms of the sensitivities in Eq. 3.8 by
defining the open loop as L = PC , the sensitivity as S = 1/(1 + L), and the com-
plementary sensitivity as T = L/(1 + L), yielding

Gud = −T Gηd = PS

Gun = −CS Gηn = −T . (6.2)

Because S + T = 1 at any input, s, these transfer functions highlight the intrinsic
design tradeoffs.

We can now consider the total cost as the sum of the response with respect to the
input d, holding n at zero, plus the response with respect to the input n, holding d at
zero

J = ||Gud(s)||22 + ρ2||Gηd(s)||22
+ ||Gun(s)||22 + ρ2||Gηn(s)||22. (6.3)

For this example, we use impulse function inputs, δ(t), which provide a strong
instantaneous shock to the system, as defined in the caption of Fig. 4.2.We can design
the system to be relativelymore or less sensitive to disturbance inputs relative to noise
inputs byweighting the disturbance input byμ, so that d(t) = μδ(t) and n(t) = δ(t).
Larger μ causes design by optimization to yield better disturbance regulation at the
expense of worse noise regulation.
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The transfer function for an impulse is equal to one. Thus, the transfer functions for
disturbance and noise inputs are, respectively, D(s) = μ and N (s) = 1. A system’s
response to an input is simply the product of the input and the system transfer function.
For example, the first term in Eq. 6.3 becomes

||D(s)Gud(s)||22 = μ2||Gud(s)||22,

and the full cost function becomes

J = μ2||Gud(s)||22 + μ2ρ2||Gηd(s)||22
+ ||Gun(s)||22 + ρ2||Gηn(s)||22. (6.4)

Using the sensitivity expressions in Eq. 6.2, we canwrite this expressionmore simply
as

J = ||CS||22 + (μ2 + ρ2)||T ||22 + μ2ρ2||PS||22. (6.5)

6.2 Optimization Method

This section follows Qiu and Zhou’s (2013) optimization algorithm. Their cost func-
tion in the final equation on page 31 of their book is equivalent to my cost function
in Eq. 6.4.

Optimization finds the controller, C(s), that minimizes the cost function. We
search for optimal controllers subject to the constraint that all transfer functions
in Eq. 6.1 are stable. Stability requires that the real component be negative for all
eigenvalues of each transfer function.

A transfer function’s eigenvalues are the roots of the denominator’s polynomial in
s. For each transfer function in Eq. 6.1, the eigenvalues, s, are obtained by solution
of 1 + P(s)C(s) = 0.

We assume a fixed process, P , and weighting coefficients, μ and ρ. To find the
optimal controller, we begin with a general form for the controller, such as

C(s) = q1s + q2
p0s2 + p1s + p2

. (6.6)

We seek the coefficients p and q that minimize the cost function.
Qiu andZhou (2013) solve the example inwhich P(s) = 1/s2, for arbitrary values

of μ and ρ. The accompanying Mathematica code describes the steps in the solution
algorithm. Here, I simply state the solution. Check the article by Qiu and Zhou
(2013) and my Mathematica code for the details and for a starting point to apply the
optimization algorithm to other problems. The following section applies this method
to another example and illustrates the optimized system’s response to various inputs.

For P = 1/s2, Qiu and Zhou (2013) give the optimal controller
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C(s) =
√
2ρμ

(√
ρ + √

μ
)
s + ρμ

s2 + √
2

(√
ρ + √

μ
)
s + (√

ρ + √
μ

)2 ,

with associated minimized cost,

J ∗ = √
2

[
μ2√ρ + ρ2√μ + 2ρμ

(√
μ + √

ρ
)]

.

For ρ = 1, the controller becomes

C(s) =
√
2μ

(
1 + √

μ
)
s + μ

s2 + √
2

(
1 + √

μ
)
s + (

1 + √
μ

)2 , (6.7)

with associated minimized cost,

J ∗ = √
2

[
μ2 + √

μ + 2μ(
√

μ + 1)
]
.

We can see the tradeoffs in design most clearly from the controller with ρ = 1.When
μ is small, load disturbance inputs are smaller than sensor noise inputs. An optimal
system should therefore tolerate greater sensitivity to load disturbances in return for
reduced sensitivity to sensor noise.

In the optimal controller described by Eq. 6.7, a small value of μ produces low
gain, because C(s) becomes smaller as μ declines. We can see from Eq. 6.1 that a
small gain for the controller, C , reduces the sensitivity to noise inputs by lowering
Gun and Gηn . Similarly, a small gain forC raises the sensitivity of the system output,
η, to disturbance inputs by raising Gηd .

The optimal system achieves the prescribed rise in sensitivity to disturbance in
order to achieve lower sensitivity to noise.

6.3 Resonance Peak Example

This section applies the previous section’s H2 optimization method to the process

P(s) = 1

s2 + 0.1s + 1
. (6.8)

This process has a resonance peak near ω = 1.
My supplemental Mathematica code derives the optimal controller of the form in

Eq. 6.6. The optimal controller is expressed in terms of the cost weightings μ and ρ.
The solution has many terms, so there is no benefit in showing it here.
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Fig. 6.2 Relative H2 values for the transfer functions in Eq. 6.1, with Gud = Gηn in red, Gηd in
gold, and Gun in green. The H2 value for each transfer function is divided by the total H2 values
over all four functions. The transfer functions were derived from the process in Eq. 6.8 and the
associated optimal controller. The weighting parameters in the cost function of Eq. 6.4 are μ = 1
and ρ varying along the x-axis of the plot. Swapping values of μ and ρ gives identical results,
because of the symmetries in Eqs. 6.1 and 6.4

The general solution in terms of μ and ρ provides a simple way in which to
obtain the optimal controller for particular values of μ and ρ. For example, when
μ = ρ = 1, the optimal controller is

C(s) ≈ 0.609(s − 0.81)

s2 + 1.73s + 2.49
.

Similar controller expressions arise for other values of μ and ρ. Those controllers
may be used in the closed loop of Fig. 6.1 to form a complete system.

Figure6.2 shows the relativeH2 values of the four input–output transfer functions
in Eq. 6.1. The H2 values express sensitivity over all frequencies.

To interpret this figure, look at Eq. 6.4. As the product of the weightings, μρ,
increases, the output of Gηd (gold curve) plays an increasingly important role in the
total cost relative to the output of Gun (green curve).

As the relative cost weighting of Gηd increases, its H2 value declines. Similarly,
as the relative cost weighting of Gun decreases, its H2 value increases. Once again,
we see the sensitivity tradeoffs in response to the relative importance of different
perturbations.

The top row of Fig. 6.3 compares the Bode plots for the process, P , and the input–
output transfer functions in Eq. 6.1. As ρ increases in the columns from left to right,
the rise in the green curve for Gun is the strongest change. We can understand that
change by examining the cost function in Eq. 6.4. Because Gud = Gηn , a rise in ρ

reduces the weighting of Gun relative to all other terms.
The strongest increase in relative weighting as ρ rises occurs for Gηd , shown in

gold. The mild decline in the gold curve with increasing ρ is consistent with the
increased relative cost weighting of that signal.
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Fig. 6.3 Response of the process in Eq. 6.8 in blue and the transfer functions in Eq. 6.1, with
Gud = Gηn in red, Gηd in gold, and Gun in green. Top row shows Bode magnitude plots. Bottom
row shows impulse responses. The input signal weights in Eq. 6.4 are μ = 1 and, for the three
columns from left to right, ρ = 0.25, 1, 4. Swapping values of μ and ρ gives identical results,
because of the symmetries in Eq. 6.1 and 6.4

The bottom row shows the impulse responses. As with the Bode plots, an increase
in ρ favors reduced response of Gηd , in gold, causing a smaller impulse response in
the right plot with high ρ relative to the left plot with low ρ. Similarly, an increase
in ρ weakens the pressure on the Gun transfer function in green, causing a larger
impulse response with increasing ρ.

6.4 Frequency Weighting

The H2 norm sums a system’s gain over all input frequencies, as in Eq. 5.4. That
sum weights all input frequencies equally.

Often, we wish to protect against perturbations that occur primarily in a limited
band of frequencies. For example, disturbance loads, d, typically occur at low fre-
quency, reflecting long-termfluctuations ormisspecifications in the system’s intrinsic
processes. In that case, our optimization method should emphasize reducing a sys-
tem’s gain at low frequency with respect to disturbance load inputs and accepting
a tradeoff that allows a greater gain at high frequency. By reducing the gain at low
frequency, we protect against the common frequencies for load disturbances.

Tradeoffs between low- and high-frequency bands are common. If we start with
a process transfer function

G(s) = 10(s + 1)

s + 10
,

then at zero frequency, s = jω = 0, the gain is one. As frequency increases, the gain
approaches ten.
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If we weight this process transfer function by W (s) = 1/(s + 1), then the new
system becomes WG = 10/(s + 10). Now, the gain declines with increasing fre-
quency, from a maximum of one at zero frequency to a minimum of zero at infinite
frequency.

By weighting the original system, G, by the weighting function, W , we cause
the H2 norm of the combined system, WG, to be relatively more sensitive to low-
frequency disturbances. When we design a controller by minimizing the H2 norm
associated with WG, we will typically find a system that is better at rejecting low-
frequency load disturbances than a design minimizing theH2 norm associated with
G. For the weighted system, optimization will avoid controllers that reject high-
frequency load disturbances, because theweighted system already rejects those high-
frequency inputs.

Roughly speaking, a weighting function instructs the optimization method to
reduce the gain and sensitivity for certain frequencies and to ignore the gain for other
frequencies. The weighting functions do not alter the actual system. The weighting
functions are only used to alter the cost function and optimization method that deter-
mine the optimal controller.

Figure6.4 shows the regulation feedback system of Fig. 6.1 with additional
weightings for the disturbance and noise inputs. The weightings modify the four sys-
tem transfer functions and associated sensitivities in Eq. 6.2 to be WdGud , WdGηd ,
WnGun , and WnGηn . The cost function in Eq. 6.5 becomes

J = μ2||WdT ||22 + μ2ρ2||Wd PS||22
+||WnCS||22 + ρ2||WnT ||22. (6.9)

Consider an example in which we begin with the process, P , in Eq. 6.8. To
emphasize low-frequency load disturbances, set Wd = 1/(s + 0.1) to be a low-pass
filter. That weighting filters out disturbances that are significantly greater than ω =
0.1. To emphasize high-frequency sensor noise, setWn = s/(s + 10). Thatweighting
filters out noise that is significantly less than ω = 10. By using these two filters,
the optimization method puts very low weight on any disturbances in midrange
frequencies of ω = (0.1, 10).

n

P
d

C
u y n

Wd
d
~

Wn

~

Fig. 6.4 Basic regulation feedback loop in Fig. 6.1 with additional weightings for disturbance and
noise inputs. The weightings alter the cost function to emphasize particular frequency bands for
disturbance and noise, yielding a modified optimal controller
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Fig. 6.5 Role of frequency weighted inputs in the design of optimal H2 controllers for system
regulation, illustrated by Bode magnitude plots. a Plot for the unweighted case, matching the plot
in Fig. 6.3c. b Plot for the frequency weighted example in the text, which emphasizes the regulation
of low-frequency load disturbances, d, and high-frequency sensor noise, n

By minimizing the weightedH2 cost in Eq. 6.9, we obtain the optimal controller

C(s) = 2.02(s + 1.52)

s2 + 1.17s + 6.3
.

I calculated the values for this controller by using the numerical minimization func-
tion inMathematica tominimize theH2 cost, subject to the constraint that all transfer
functions in Eq. 6.1 are stable. See the supplemental Mathematica code.

Figure6.5 compares the optimized system response for the unweighted and
weighted cases. Panel a shows the Bode magnitude response of the optimized sys-
tem for the unweighted case, equivalent to the plot in Fig. 6.3c. Panel b shows the
response of the optimized system for the weighted case in this section.

The weighted case emphasizes low-frequency load disturbances and high-
frequency sensor noise, with low weight on midrange frequencies. Comparing the
unweighted case in (a) with the weighted case in (b), we see two key differences.

First, theweighted case allows a large rise inmagnitudes and associated sensitivity
to perturbations for midrange frequencies. That rise occurs because the particular
weighting functions in this example discount midrange perturbations.

Second, the gold curve shows that the weighted case significantly reduces the
low-frequency sensitivity of system outputs, η, to load disturbances, d. The gold
curve describes the response of the transfer function, Gηd . Note that, because of the
log scaling for magnitude, almost all of the costs arise in the upper part of the plot.
The low relative magnitude for the lower part contributes little to the overall cost.
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Chapter 7
Stabilization

The previous chapter assumed that the intrinsic process, P , has a given unvarying
form. The actual process may differ from the given form or may fluctuate over time.
If a system is designed with respect to a particular form of P , then variation in P
away from the assumed form may cause the system to become unstable.

We can take into account the potential variation in P by altering the optimal
design problem. The new design problem includes enhanced stability guarantees
against certain kinds of variation in P .

Variation in an intrinsic process is an inevitable aspect of design problems. In
engineering, the process may differ from the assumed form because of limited infor-
mation, variability in manufacturing, or fluctuating aspects of the environment.

In biology, a particular set of chemical reactions within an individual may vary
stochastically over short time periods. That reaction set may also vary between indi-
viduals because of genetic and environmental fluctuations. In all cases, actual pro-
cesses typically follow nonlinear, time-varying dynamics that often differ from the
assumed form.

Wemay also have variation in the controller or other system processes. In general,
how much variability can be tolerated before a stable system becomes unstable? In
other words, how robust is a given system’s stability to perturbations?

We cannot answer those question for all types of systems and all types of perturba-
tions. However, theH∞ norm introduced earlier provides insight for many problems.
Recall that theH∞ norm is the peak gain in a Bode plot, which is a transfer function’s
maximum gain over all frequencies of sinusoidal inputs. The small gain theorem pro-
vides an example application of the H∞ norm.
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7.1 Small Gain Theorem

Suppose we have a stable system transfer function, G. That system may represent a
process, a controller, or a complex cascade with various feedback loops. To express
the mathematical form of G, we must know exactly the dynamical processes of the
system.

How much may the system deviate from our assumptions about dynamics and
still remain stable? For example, if the uncertainties may be expressed by a positive
feedback loop, as in Fig. 7.1, then we can analyze whether a particular system, G, is
stably robust against those uncertainties.

In Fig. 7.1, the stable transfer function, Δ, may represent the upper bound on
our uncertainty. The feedback loop shows how the nominal unperturbed system, G,
responds to an input and becomes a new system, G̃, that accounts for the perturba-
tions. The system, G̃, represents the entire loop shown in Fig. 7.1.

The small gain theorem states that the new system, G̃, is stable if the product of
the H∞ norms of the original system, G, and the perturbations, Δ, is less than one

||G||∞||Δ||∞ < 1. (7.1)

Here, we interpret G as a given system with a known H∞ norm. By contrast, we
assume that Δ represents the set of all stable systems that have an H∞ norm below
some upper bound, ||Δ||∞. For the perturbed system, G̃, to be stable, the upper bound
for the H∞ norm of Δ must satisfy

||Δ||∞ <
1

||G||∞ . (7.2)

If G is a system that we can design or control, then the smaller we can make ||G||∞,
the greater the upper bound on uncertainty, ||Δ||∞, that can be tolerated by the
perturbed system. Put another way, smaller ||G||∞ corresponds to greater robust
stability.

Gw

Fig. 7.1 System uncertainty represented by a feedback loop. The transfer function, Δ, describes
an upper bound on the extent to which the actual system, G̃ = G/(1 − GΔ), deviates from the
nominal system, G. Here, G may represent a process, a controller, or an entire feedback system
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A full discussion of the small gain theorem can be found in textbooks (e.g., Zhou
and Doyle 1998; Liu and Yao 2016). I present a brief intuitive summary.

The positive feedback loop in Fig. 7.1 has transfer function

G̃ = G

1 − GΔ
. (7.3)

We derive that result by the following steps. Assume that the input to G is w + ν,
which is the sum of the external input,w, and the feedback input, ν. Thus, the system
output is η = G(w + ν).

We can write the feedback input as the output of the uncertainty process, ν = Δη.
Substituting into the system output expression, we have

η = G(w + ν) = Gw + GΔη.

The new system transfer function is the ratio of its output to its external input,
G̃ = η/w, which we can solve for to obtain Eq. 7.3.

The new system, G̃, is unstable if any eigenvalue has real part greater than or
equal to zero, in which the eigenvalues are the roots of s of the denominator, 1 −
G(s)Δ(s) = 0.

Intuitively, we can see that G̃(s) blows up unstably if the denominator becomes
zero at some input frequency, ω, for s = jω. The denominator will be greater than
zero as long as the product of the maximum values of G( jω) and Δ( jω) are less
than one, as in Eq. 7.1. That condition expresses the key idea. The mathematical pre-
sentations in the textbooks show that Eq. 7.1 is necessary and sufficient for stability.

Reducing the H∞ norm of G increases its robustness with respect to stability. In
Eq. 7.2, a smaller ||G||∞ corresponds to a larger upper bound on the perturbations
that can be tolerated.

A lower maximum gain also associates with a smaller response to perturbations,
improving the robust performance of the system with respect to disturbances and
noise. Thus, robust design methods often consider reduction of the H∞ norm.

7.2 Uncertainty: Distance Between Systems

Suppose we assume a nominal form for a process, P . We can design a controller, C ,
in a feedback loop to improve system stability and performance. If we design our
controller for the process, P , then how robust is the feedback system to alternative
forms of P?

The real process, P ′, may differ from P because of inherent stochasticity, or
because of our simple model for P misspecified the true underlying process.

What is the appropriate set of alternative forms to describe uncertaintywith respect
to P? Suppose we defined a distance between P and an alternative process, P ′. Then
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a set of alternatives could be specified as all processes, P ′, for which the distance
from the nominal process, P , is less than some upper bound.

We will write the distance between two processes when measured at input fre-
quency ω as

δ[P( jω), P ′( jω)] = distance at frequencyω, (7.4)

for which δ is defined below. The maximum distance between processes over all
frequencies is

δν(P, P ′) = max
ω

δ[P( jω), P ′( jω)], (7.5)

subject to conditions that definewhether P and P ′ are comparable (Vinnicombe2001;
Qiu and Zhou 2013). This distance has values 0 ≤ δν ≤ 1, providing a standardized
measure of separation.

To develop measures of distance, we focus on how perturbations may alter system
stability. Suppose we start with a process, P , and controller,C , in a feedback system.
How far can an alternative process, P ′, be from P and still maintain stability in the
feedback loop with C? In other words, what is the stability margin of safety for a
feedback system with P and C?

Robust control theory provides an extensive analysis of the distances between
systems with respect to stability margins (Vinnicombe 2001; Zhou and Doyle 1998;
Qiu and Zhou 2010, 2013). Here, I present a rough intuitive description of the key
ideas.

For a negative feedback loop with P and C , the various input–output pathways
all have transfer functions with denominator 1 + PC , as in Eq. 6.1. These systems
become unstable when the denominator goes to zero, which happens if P = −1/C .
Thus, the stability margin is the distance between P and −1/C .

The values of these transfer functions, P( jω) and C( jω), vary with frequency,
ω. The worst case with regard to stability occurs when P and −1/C are closest; that
is, when the distance between these functions is a minimum with respect to varying
frequency. Thus, we may define the stability margin as the minimum distance over
frequency

bP,C = min
ω

δ[P( jω),−1/C( jω)]. (7.6)

Here is the key idea. Start with a nominal process, P1, and a controller, C . If an
alternative or perturbed process, P2, is close to P1, then the stability margin for P2
should not be much worse than for P1.

In other words, a controller that stabilizes P1 should also stabilize all processes
that are reasonably close to P1. Thus, by designing a good stability margin for P1,
we guarantee robust stabilization for all processes sufficiently near P1.

We can express these ideas quantitatively, allowing the potential to design for a
targeted level of robustness. For example,

bP2,C ≥ bP1,C − δν(P1, P2).
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Read this as the guaranteed stability margin for the alternative process is at least as
good as the stabilitymargin for nominal processminus the distance between the nom-
inal and alternative processes. A small distance between processes, δν , guarantees
that the alternative process is nearly as robustly stable as the original process.

The definitions in this section depend on the distance measure, expressed as

δ(c1, c2) = |c1 − c2|√
1 + |c1|2

√
1 + |c2|2

.

Here, c1 and c2 are complex numbers. Transfer functions return complex numbers.
Thus, we can use this function to evaluate δ[P1( jω), P2( jω)].

7.3 Robust Stability and Robust Performance

The stability margin bP,C measures the amount by which P may be altered and still
allow the system to remain stable. Note that bP,C in Eq. 7.6 expresses a minimum
value of δ over all frequencies. Thus, we may also think of bP,C as the maximum
value of 1/δ over all frequencies.

The maximum value of magnitude over all frequencies matches the definition
of the H∞ norm, suggesting that maximizing the stability margin corresponds to
minimizing some expression for an H∞ norm. Indeed, there is such an H∞ norm
expression for bP,C . However, the particular form is beyond our scope. The point
here is that robust stability via maximization of bP,C falls within theH∞ norm theory,
as in the small gain theorem.

Stability is just one aspect of design. Typically, a stable system must also meet
other objectives, such as rejection of disturbance and noise perturbations. This section
shows that increasing the stability margin has the associated benefit of improving a
system’s rejection of disturbance and noise. Often, a design that targets reduction of
the H∞ norm gains the benefits of an increased stability margin and better regulation
through rejection of disturbance and noise.

The previous section on regulation showed that a feedback loop reduces its
response to perturbations by lowering its various sensitivities, as in Eqs. 6.2 and
6.5. A feedback loop’s sensitivity is S = 1/(1 + PC) and its complementary sensi-
tivity is T = PC/(1 + PC).

Increasing the stability margin, bP,C , reduces a system’s overall sensitivity. We
can see the relation between stability and sensitivity by rewriting the expression for
bP,C as

bP,C =
[
max

ω

√
|S|2 + |CS|2 + |PS|2 + |T |2

]−1

This expression shows that increasing bP,C reduces the total magnitude of the four
key sensitivity measures for negative feedback loops.
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Fig. 7.2 Comparison between the responses of two systems to a unit step input, r = 1. The blue
curves show P1 and the gold curves show P2. a, b Systems in Eq. 7.7, with k = 100 and T = 0.025.
The top plot shows the open-loop response for each system. The bottom plot shows the closed-loop
feedback response with unit feedback, P/(1 + P), in which the error signal into the system, P ,
is 1 − y for system output, y. c, d Open (top) and closed (bottom) loop responses for the systems
in Eq. 7.8, with k = 100. Redrawn from Fig. 12.3 of Åström and Murray (2008), ©Princeton
University Press

7.4 Examples of Distance and Stability

The measure, δν(P1, P2), describes the distance between processes with respect to
their response characteristics in a negative feedback loop. The idea is that P1 and
P2 may have different response characteristics when by themselves in an open loop,
yet have very similar responses in a feedback loop. Or P1 and P2 may have similar
response characteristics when by themselves, yet have very different responses in a
feedback loop.

Thus, we cannot simply use the response characteristics among a set of alternative
systems to understand how variations in a process influence stability or performance.
Instead, wemust use a measure, such as δν , that expresses how variations in a process
affect feedback loop characteristics.

This section presents two examples from Sect. 12.1 of Åström andMurray (2008).
In the first case, the following two systems have very similar response characteristics
by themselves in an open loop, yet have very different responses in a closed feedback
loop
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P1 = k

s + 1
P2 = k

(s + 1)(T s + 1)2
, (7.7)

when evaluated at k = 100 and T = 0.025, as shown in Fig. 7.2a, b. The distance
between these systems is δν(P1, P2) = 0.89. That large distance corresponds to the
very different response characteristics of the two systems when in a closed feedback
loop. (Åström and Murray (2008) report a value of δν = 0.98. The reason for the
discrepancy is not clear. See the supplementalMathematica code formy calculations,
derivations, and graphics here and throughout the book.)

In the second case, the following two systems have very different response char-
acteristics by themselves in an open loop, yet have very similar responses in a closed
feedback loop

P1 = k

s + 1
P2 = k

s − 1
, (7.8)

when evaluated at k = 100, as shown in Fig. 7.2c, d. The distance between these
systems is δν(P1, P2) = 0.02. That small distance corresponds to the very similar
response characteristics of the two systems when in a closed feedback loop.

7.5 Controller Design for Robust Stabilization

The measure bP,C describes the stability margin for a feedback loop with process P
and controller C . A larger margin means that the system remains robustly stable to
variant processes, P ′, with greater distance from the nominal process, P . In other
words, a larger margin corresponds to robust stability against a broader range of
uncertainty.

For a given process, we can often calculate the controller that provides the greatest
stability margin. That optimal controller minimizes an H∞ norm, so in this case we
may consider controller design to be an H∞ optimization method.

Often, we also wish to keep the H2 norm small. Minimizing that norm improves
a system’s regulation by reducing response to perturbations. Jointly optimizing the
stability margin and rejection of disturbances leads to mixed H∞ and H2 design.

Mixed H∞ and H2 optimization is an active area of research (Chen and Zhou
2001; Chang 2017). Here, I briefly summarize an example presented in Qiu and
Zhou (2013). That article provides an algorithm for mixed optimization that can be
applied to other systems.

Qiu and Zhou (2013) start with the process, P = 1/s2. They consider three cases.
First, what controller provides the minimum H∞ norm and associated maximum
stability margin, b, while ignoring the H2 norm? Second, what controller provides
the minimum H2 norm, while ignoring the stability margin and H∞ norm? Third,
what controller optimizes a combination of the H∞ and H2 norms?
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For the first case, the controller

C(s) =
(
1 + √

2
)
s + 1

s + 1 + √
2

has the maximum stability margin

b∗
P,C =

(
4 + 2

√
2
)−1/2 = 0.38.

The cost associated with the H2 norm from Eq. 6.5 is J = ∞, because the sensitivity
function CS has nonzero gain at infinite frequency.

For the second case, the controller

C(s) = 2
√
2s + 1

s2 + 2
√
2s + 4

has theminimumH2 cost, J ∗ = 6
√
2 = 8.49,with associated stabilitymargin bP,C =

0.24. This controller and associated cost match the earlier example of H2 norm
minimization in Eq. 6.7 with μ = 1.

For the third case, we constrain theminimum stability margin to be at least bP,C >

1/
√
10 = 0.316, and then find the controller that minimizes theH2 norm cost subject

to the minimum stability margin constraint, yielding the controller

C(s) = 2.5456s + 1

0.28s2 + 1.5274s + 2.88
,

which has the cost J = 13.9 and stability margin bP,C = 0.327.
In these examples, a larger stability margin corresponds to a greater H2 cost. That

relation illustrates the tradeoff between robust stability and performance measured
by the rejection of disturbance and noise perturbations.
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Chapter 8
Tracking

The previous chapters on regulation and stabilization ignored the reference input, r .
In those cases, we focused on a system’s ability to reject perturbations and to remain
stable with respect to uncertainties. However, a system’s performance often depends
strongly on its ability to track external environmental or reference signals.

To study tracking of a reference input, let us return to the basic feedback loop
structure in Fig. 2.1c, shown again in Fig. 8.1. Good tracking performance means
minimizing the error, e = r − y, the difference between the reference input and the
system output.

Typically, we can reduce tracking error by increasing the control signal, u, which
increases the speed at which the system changes its output to be closer to the input.
However, in a real system, a larger control signal requires more energy. Thus, we
must consider the tradeoff between minimizing the error and reducing the cost of
control.

I previously introduced a cost function that combines the control and error signals
in Eq. 5.1 as

J =
∫ T

0
(u2 + ρ2e2)dt, (8.1)

in which u(t) and e(t) are functions of time, and ρ is a weighting for the relative
importance of the error signal relative to the control signal.

I noted in Eq. 5.2 that the square of the H2 norm is equal to the energy of a signal,
for example,

‖e(t)‖22 =
∫ ∞

0
|e(t)|2dt.

In this chapter, we will consider reference signals that change over time. A system
will typically not track a changing reference perfectly. Thus, the error will not go
to zero over time, and the energy will be infinite. For infinite energy, we typically
cannot use the H2 norm. Instead, we may consider the average of the squared signal
per unit time, which is the power. Or we may analyze the error over a finite time
period, as in Eq. 8.1.

© The Author(s) 2018
S. A. Frank, Control Theory Tutorial, SpringerBriefs in Applied Sciences
and Technology, https://doi.org/10.1007/978-3-319-91707-8_8

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91707-8_8&domain=pdf


64 8 Tracking

Fig. 8.1 System with a basic
feedback loop in response to
a reference input, r

C(s)
y

P(s)
ur e

To analyze particular problems, we begin by expressing the transfer function for
the error from Eq. 3.5 as

E(s) = R(s) − Y (s) = 1

1 + C(s)P(s)
R(s).

We may write the transfer function for the control signal as

U (s) = C(s)E(s) = C(s)

1 + C(s)P(s)
R(s).

These equations express the key tradeoff between the error signal and the control
signal. A controller, C , that outputs a large control signal reduces the error, E , and
increases the control signal, U . The following example illustrates this tradeoff and
the potential consequences for instability.

8.1 Varying Input Frequencies

To analyze the cost over a particular time period, as in Eq. 8.1, we must express the
transfer functions as differential equations that describe change over time. We can
use the basic relation between transfer functions in Eq. 2.5 and differential equations
in Eq. 2.6.

In this example, I use the process in Eq. 4.1 that I analyzed in earlier chapters

P(s) = 1

(s + 0.1)(s + 10)
.

I use the controller

C(s) = q0s2 + q1s + q2
p0s2 + p1s + p2

. (8.2)

Our goal is to find a controller of this form that minimizes the cost function in Eq. 8.1.
I use a reference signal that is the sum of three sine waves with frequencies

ωi = (
ψ−1, 1, ψ

)
. I weight each frequency by κi = (1, 1, 0.2), such that the high

frequency may be considered a rapid, relatively low-amplitude disturbance. Thus,
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Fig. 8.2 Reference signal, r , in gold, from Eq. 8.3, and the filtered signal, rw , in blue, from the
filter in Eq. 8.4 applied to the reference signal. The blue curves in Fig. 8.3 show the filtered signal
more clearly

R(s) =
∑
i

κiωi

s2 + ω2
i

, (8.3)

in which each of the three terms in the sum expresses a sine wave with frequency ωi .
Here, I use ψ = 10.

Often, low-frequency signals represent true changes in the external environment.
By contrast, high-frequency inputs represent noise or signals that change too rapidly
to track effectively. Thus, we may wish to optimize the system with respect to low-
frequency inputs and to ignore high-frequency inputs.

We can accomplish frequency weighting by using a filtered error signal in the cost
function, EW (s) = R(s)W (s) − Y (s), for a weighting function W that passes low
frequencies and reduces the gain of high frequencies. The weighted error signal as a
function of time is ew(t).

In our example, the function

W (s) =
( √

ψ

s + √
ψ

)3

(8.4)

will reduce the relative weighting of the high-frequency input at frequency ψ . I use
the filtered error signal, ew, for the cost function in Eq. 8.1, yielding

J =
∫ T

0
(u2 + ρ2e2w)dt. (8.5)

The gold curve in Fig. 8.2 shows the environmental reference signal, r , for the asso-
ciated transfer function, R(s). The blue curve shows the filtered reference signal, rw,
for the filtered system, R(s)W (s). The filtered curve removes the high-frequency
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Fig. 8.3 Optimization of the cost function in Eq. 8.5 for the controller in Eq. 8.2. The left column
shows the tracking performance. The blue curve traces the filtered reference signal, rw , associated
with R(s)W (s). The gold curve traces the system output, y, associated with Y (s). The difference
between the curves is the error, ew = rw − y. The right column shows the error, ew , in red, and the
control signal, u for U (s), in green. The rows show, from top to bottom, an increased weighting of
the error versus the control signal in the cost, J , in Eq. 8.5, with ρ = (1, 10, 100). The optimized
controllers may represent local rather than global optima. See the supplemental Mathematica code

noise of the reference signal and closely matches the fluctuations from the two lower
frequency sine wave inputs.

Figure8.3 illustrates the tradeoff between the tracking performance and the cost
of the control signal energy to drive the system. The cost function in Eq. 8.5 describes
the tradeoff between tracking, measured by the squared error between the filtered
reference signal and the system output, e2w, and the control signal energy, u2.

The parameter ρ sets the relative balance between these opposing costs. A higher
ρ value favors closer tracking and smaller error because a high value of ρ puts less
weight on the cost of the control signal. With a lower cost for control, the controller
can output a stronger signal to drive the system toward a closer match with the target
reference signal.
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8.2 Stability Margins

Minimizing a quadratic cost function or an H2 norm may lead to a poor stability
margin. For example, close tracking of a reference signal may require a large control
signal from the controller. Such high gain feedback creates rapidly responding system
dynamics, which can be sensitive to uncertainties.

InFig. 8.3, the stabilitymargins for the three rows associatedwithρ = (1, 10, 100)
are bP,C = (0.285, 0.023, 0.038). A robust stabilitymargin typically requires a value
greater than approximately 1/3 or perhaps 1/4.

In this case, the system associated with ρ = 1 has a reasonable stability margin,
whereas the systems associated with higher ρ have very poor stability margins. The
poor stability margins suggest that those systems could easily be destabilized by
perturbations of the underlying process or controller dynamics.

We could minimize the cost function subject to a constraint on the lower bound
of the stability margin. However, numerical minimization for that problem can be
challenging. See the supplemental Mathematica code for an example.
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Chapter 9
State Feedback

A transfer function corresponds to a time-invariant, linear system of ordinary dif-
ferential equations. In an earlier chapter, I showed the general form of a transfer
function in Eq.2.5 and the underlying differential equations in Eq.2.6.

For example, the transfer function P(s) = 1/(s + a) with input u and output y
corresponds to the differential equation ẋ = −ax + u, with output y = x . Here, x
is the internal state of the process. Models that work directly with internal states are
called state-space models.

Transfer functions provide significant conceptual and analytical advantages. For
example, the multiplication of transfer functions and the simple rules for creating
feedback loops allow easy creation of complex process cascades. With regard to
system response, a Bode plot summarizes many aspects in a simple, visual way.

However, it often makes sense to analyze the underlying states directly. Consider,
for example, the regulation of an organism’s body temperature. We could model
performance and cost in terms of body temperature. Alternatively, the underlying
states may include the burning of stored energy, the rise and fall of various signaling
molecules, the dilation of blood vessels, and so on.

Direct analysis of those internal states provides advantages. The individual states
may have associated costs, which we could study directly in our cost function. We
could consider the regulatory control of the individual states rather than temperature
because temperature is an aggregate outcome of the underlying states. For example,
each state could be regulated through feedback, in which the feedback into one state
may depend on the values of all of the states, allowing more refined control of costs
and performance.

When we use a state-space analysis, we do not have to give up all of the tools
of frequency analysis that we developed for transfer functions. For example, we can
consider the response of a system to different input frequencies.

State-space models can also describe time-varying, nonlinear dynamics. The
response of a nonlinear systemwill changewith its underlying state, whereas transfer
function systems have a constant frequency response.

© The Author(s) 2018
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9.1 Regulation Example

In the prior chapter on regulation, I analyzed the process in Eq.6.8 as

P(s) = 1

s2 + αs + β
, (9.1)

with α = 0.1 and β = 1. This process has a resonance peak near ω = 1. The state-
space model for this process is

ẋ1 = x2
ẋ2 = −βx1 − αx2 + u (9.2)

y = x1,

in which the dynamics are equivalent to a second-order differential equation, ẍ +
α ẋ + βx = u, with y = x .

For a state-space regulation problem, the design seeks to keep the states close
to their equilibrium values. We can use equilibrium values of zero without loss of
generality. When the states are perturbed away from their equilibrium, we adjust the
input control signal, u, to drive the states back to their equilibrium.

The cost function combines the distance from equilibrium with regard to the state
vector, x, and the energy required for the control signal, u. Distances and energies
are squared deviations from zero, which we can write in a general way in vector
notation as

J =
∫ T

0

(
u′Ru + x′Qx

)
dt, (9.3)

in which R and Q are matrices that give the cost weightings for components of the
state vector, x = x1, x2, . . . , and components of the input vector, u = u1, u2, . . . . In
the example here, there is only one input. However, state-space models easily extend
to handle multiple inputs.

For the regulation problem in Fig. 9.1, the goal is to find the feedback gains for the
states given in the matrix K that minimize the cost function. The full specification
of the problem requires the state equation matrices for use in Eq.2.6, which we have
from Eq.9.2 as

A =
(

0 1
−β −α

)
B =

(
0
1

)
C = (

1 0
)
, (9.4)

and the cost matrices,R andQ. In this case, we have a single input, so the cost matrix
for inputs, R, can be set to one, yielding an input cost term, u2.

For the state costs, we could ignore the second state, x2, leaving only x1 = y, so
that the state cost would be proportional to the squared output, y2 = e2. Here, y is
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x = Ax + Bu y
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.

Fig. 9.1 State feedback model of regulation. The process and output describe the state equations in
Eq.2.6. The control input signal, u∗ = Kx, is obtained by minimizing the cost function in Eq.9.3
to derive the optimal state gains. A disturbance, d, is added to the input signal

equivalent to the error, e = y − r , because the reference input is r = 0. A cost based
on u2 and e2 matches the earlier cost function in Eq.8.1.

In this case, I weight the costs for each state equally by lettingQ = ρ2I2, in which
In is the identity matrix of dimension n, and ρ is the cost weighting for states relative
to inputs. With those definitions, the cost becomes

J =
∫ T

0

[
u2 + ρ2

(
x21 + x22

)]
dt,

in which x21 + x22 measures the distance of the state vector from the target equilibrium
of zero.

We obtain the gain matrix for state feedback models, K, by solving a matrix
Riccati equation. Introductory texts on control theory derive the Riccati equation.
For our purposes, we can simply use a software package, such as Mathematica, to
obtain the solution for particular problems. See the supplemental software code for
an example.

Figure9.2 shows the response of the state feedback system in Fig. 9.1 with the
Riccati solution for the feedback gain values, K. Within each panel, the different
curves show different values of ρ, the ratio of the state costs for x relative to the input
costs for u. In the figure, the blue curves show ρ = 1/4, which penalizes the input
costs four times more than the state costs. In that case, the control inputs tend to be
costly and weaker, allowing the state values to be larger.

At the other extreme, the green curves show ρ = 4. That value penalizes states
more heavily and allows greater control input values. The larger input controls drive
the states back toward zero much more quickly. The figure caption provides details
about each panel.

In this example, the underlying equations for the dynamics do not vary with time.
Time-invariant dynamics correspond to constant values in the state matrices, A, B,
andC. A time-invariant system typically leads to constant values in the optimal gain
matrix, K, obtained by solving the Riccati equation.

TheRiccati solution alsoworkswhen those coefficientmatrices have time-varying
values, leading to time-varying control inputs in the optimal gain matrix, K. The
general approach can also be extended to nonlinear systems. However, the Riccati
equation is not sufficient to solve nonlinear problems.
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Fig. 9.2 Response to impulse perturbations of systems with state feedback, as in Fig. 9.1. a
Response of the state-space system in Eq.9.2. Curves show x1 = y for cost ratio ρ = (0.25, 1, 4) in
blue, gold, and green, respectively. In this case, the impulse perturbation enters the system through
u in Eq.9.2, affecting ẋ2. b Modified state-space model that has two inputs, one each into ẋ1 and
ẋ2, associated with the state matrix B = I2. Impulse perturbation comes into ẋ2 as in the original
model. In this case, there are two control inputs for feedback via the gain matrix, K. The opti-
mization uses both inputs, allowing the feedback to control each state separately. That extension of
control directly to all states allows the feedback system to bring the state responses back to zero
more quickly than in the original system with only one state feedback. c and d Response of the
second state, x2. Systems for each panel match to the corresponding panels above. Note in d that
the second input for feedback drives the state to zero more quickly than in c, which has only one
input

Methods that minimize quadratic costs or H2 norms can produce systems with
poor stability margins. To obtain guaranteed stability margins, one can minimize
costs subject to a constraint on the minimum stability margin.

9.2 Tracking Example

Consider the tracking example from the previous chapter. That example began with
the process in Eq.4.1 as

P(s) = 1

(s + a)(s + b)
= 1

s2 + αs + β
,
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with α = a + b = 10.1 and β = ab = 1. The state-space model is given in Eq.9.2,
expressed in matrix form in Eq.9.4. The state-space model describes the process
output over time, y(t), which we abbreviate as y.

Here, I describe a state-space design of tracking control for this process. For
this example, I use the tracking reference signal in Eq.8.3, ignoring high-frequency
noise (κ2 = 0). The reference signal is the sum of low-frequency (ω0 = 0.1) and
mid-frequency (ω1 = 1) sine waves. The transfer function for the reference signal is

R(s) = ω0

s2 + ω2
0

+ ω1

s2 + ω2
1

.

In state-space form, the reference signal, r(t), is

Ar =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−ω2
0ω

2
1 0 −ω2

0 − ω2
1 0

⎞
⎟⎟⎠

Br = (
0 0 0 1

)T
Cr = (

ω2
0ω1 + ω0ω

2
1 0 ω0 + ω1 0

)
.

We can transform a tracking problem into a regulator problem and then use the
methods from the previous chapter (Anderson and Moore 1989). In the regulator
problem,weminimized a combination of the squared inputs and states. For a tracking
problem, we use the error, e = y − r , instead of the state values, and express the cost
as

J =
∫ T

0

(
u′Ru + e2

)
dt. (9.5)

We can combine the state-space expressions for y and r into a single state-space
model with output e. That combined model allows us to apply the regulator theory
to solve the tracking problem with state feedback.

The combined model for the tracking problem is

At =
(
A 0
0 Ar

)

Bt =
(
B 0
0 Br

)

Ct = (
C −Cr

)
,

which has output determined byCt as e = y − r (Anderson andMoore 1989). In this
form, we can apply the regulator theory to find the optimal state feedback matrix,K,
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Fig. 9.3 Tracking a reference input signal with state feedback. The blue curve shows the input
signal, r(t), which is the sum of two sine waves with frequencies ω0 = 0.1 and ω1 = 1. The system
responds to the input by producing an output, y(t). The output is determined by the process, P(s),
and the optimal state feedback, K, as presented in the text. The gold curves show the system error,
which is e = y − r , the difference between the output and the reference signal. a Squared input
values are weighted byR = wIn , with w = 0.1 and n as the number of inputs to the process. In this
case, we fix the input to the embedded reference signal in the state-space model to zero and have one
input into the process given by B in Eq.9.4. The error curve shows that this system closely tracks
the low-frequency reference sine wave but does not track the high-frequency reference component.
b This case allows feedback inputs into both states of the process, augmenting ẋ1 in Eq.9.2 with
a separate input and letting B = I2. Other aspects as in the prior panel. c As in panel a, with
w = 0.01. The weaker cost for inputs allows stronger feedback inputs and closer tracking of the
high-frequency component of the reference signal, thus shrinking the tracking error in the gold
curve. d Nearly perfect tracking with w = 0.01 and inputs directly into both process states. See
supplemental Mathematica code for details about assumptions and calculations

that minimizes the costs, J , in Eq.9.5. Figure9.3 presents an example and mentions
some technical issues in the caption.

The example illustrates two key points. First, as the relative cost weighting of the
inputs declines, the system applies stronger feedback inputs and improves tracking
performance.

Second, the state equations for the intrinsic process, P(s), in Eq.9.4 provide input
only into the second state of the process, as can be seen in the equation for ẋ2 in
Eq.9.2. When we allow a second input into the intrinsic process, P(s), by allowing
feedback directly into both ẋ1 and ẋ2, we obtain much better tracking performance,
as shown in Fig. 9.3.
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Part III
Common Challenges

Parts I and II presented the fundamental principles of linear control theory. Part III
extends the core theory. The extensions introduce common problems in application
and potential solutions. These problems are active topics in current research.



Chapter 10
Nonlinearity

Real systems are nonlinear. Before discussing nonlinear theory, I review three reasons
why the core theory of control focuses on linear analysis.

First, feedback compensates for model uncertainty. Suppose we analyze a feed-
back system based on a linear model of dynamics, and the true model is nonlinear.
If the linear model captures essential aspects of the dynamics sufficiently, the true
nonlinear feedback system will often have the same qualitative response characteris-
tics as the modeled linear system. As Vinnicombe (2001, p. xvii) emphasized: “One
of the key aims of using feedback is to minimize the effects of lack of knowledge
about a system which is to be controlled.”

Second, the fundamental principles of control systems apply to both linear and
nonlinear dynamics. The comprehensive theory for linear systems provides insight
into nonlinear systems. For example, strong feedback signals often help to minimize
error but can create instabilities. Controllers can be added at different points in a
system to filter signals or modulate inputs that drive processes. Primary goals of
analysis and design often emphasize stability, disturbance rejection, regulation or
tracking. Certain tradeoffs inevitably arise. Integral control smooths response toward
a long-term target. Derivative control improves the speed of response by using a
simple prediction.

Third, the main tools for the analysis and design of nonlinear systems typically
extend the tools developed for linear systems. For example, nonlinear systems are
approximately linear near a particular operating point. One can study the linear
approximation around that point, and then switch to an alternative linear approxi-
mation as the system moves to another operating domain. By piecing together the
different linear approximations in neighboring domains, one develops a sequence
of linear systems that together capture much of the nonlinear characteristics. Other
tools of nonlinear analysis typically leverage the deep insights and methods of linear
analysis (Slotine and Li 1991; Isidori 1995; Khalil 2002).

This chapter presents a few brief illustrations of nonlinear control systems.

© The Author(s) 2018
S. A. Frank, Control Theory Tutorial, SpringerBriefs in Applied Sciences
and Technology, https://doi.org/10.1007/978-3-319-91707-8_10

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91707-8_10&domain=pdf


80 10 Nonlinearity

10.1 Linear Approximation

In cellular biology, the concentration of amolecule,m, often responds an input signal,
φ, by the Hill equation

m = k
( φn

1 + φn

)
,

with parameters k and n. In this example, I let k = 1.
The nonlinear reaction system

ẋ1 = 1 − x1 + u
(10.1)

ẋ2 = xn1
1 + xn1

− γ x2

describes the change in the output, y = x2, as driven by a Hill equation response to
x1 and an intrinsic decay of x2 at a rate γ . In the absence of external input, u, the
internal dynamics hold the concentration of x1 at the equilibrium value of x∗

1 = 1,
which in turn sets the equilibrium of the output at x∗

2 = 1/2γ . The system responds
to external control signals or perturbations through u, which drives the concentration
of x1, which in turn drives the concentration of x2.

We can study the dynamics and control of this system by linearizing the dynamics
near a particular operating point,

(
x̂1, x̂2

)
. In this example, we use as the operating

point the equilibrium,
(
x∗
1 , x

∗
2

)
, in the absence of external input, u = 0. The linearized

system expresses the deviations from the equilibrium point as

ẋ1 = −x1 + u
(10.2)

ẋ2 = nx1/4 − γ x2.

Figure10.1 shows the response to an impulse perturbation by the nonlinear system
and the linear approximation. In the left panel, with a weak impulse and small devi-
ation from the equilibrium, the nonlinear and linear dynamics are nearly identical.
As the impulse becomes stronger in the right panels, the deviation from equilibrium
increases and the dynamics of the linear approximation diverge from the original
linear system.

10.2 Regulation

We can analyze the benefits of feedback for regulating nonlinear dynamics. One
approach analyzes feedback for the linear approximation near the target equilibrium.
The feedback for the linear approximation should provide good regulation when
applied to the nonlinear system near the equilibrium.
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Fig. 10.1 Response to an impulse perturbation by a nonlinear system and a linearized approxi-
mation, shown as the deviation from equilibrium. The nonlinear response in blue arises from the
system in Eq.10.1. The linearized response in gold arises from the system in Eq.10.2. The panels
from left to right show increasing magnitudes of the Dirac delta impulse perturbation at time zero,
with the impulse weighted by 0.1, 0.1

√
10, 1, respectively. Larger impulses cause greater deviations

from the equilibrium point. The greater the deviation from the equilibrium, the less accurate the
linearized approximation of the dynamics

This section applies the linear state feedback regulation approach. I used that
approach in a previous chapter, in which the cost function in Eq.9.3, repeated here,

J =
∫ T

0

(
u′Ru + x′Qx

)
dt,

balances the tradeoff between the cost of control inputs and the cost of state deviation
from equilibrium. The model is written so that the equilibrium states are x∗ = 0. We
obtain the optimal state feedback by applying the methods described in the prior
chapter (see also the supplemental Mathematica code).

Consider the linear approximation in Eq.10.2. That system has one input, for
which we letR = 1 and scale the state costs accordingly. For each state, assume that
the cost is ρ2, so that the integrand of the cost becomes u2 + ρ2

(
x21 + x22

)
.

We can calculate the feedback input that minimizes the cost for the linearized
approximation. Using the optimal feedback, we can form a closed-loop system for
both the linearized system and the original nonlinear system.

Figure10.2 shows the response to an impulse perturbation for the closed-loop
systems. In each panel, the nonlinear (blue) and linear (gold) responses are similar,
showing that the design for the linear system works well for the nonlinear system.

The panels from left to right show a decreasing cost weighting on the inputs
relative to the states. As the relative input costs become less heavily weighted, the
optimal feedback uses stronger inputs to regulate the response, driving the system
back to equilibrium more quickly.

Minimizing a cost function by state feedback may lead to systems that become
unstable with respect to variations in the model dynamics. Previous chapters dis-
cussed alternative robust techniques, including integral control and combinations
of H2 and H∞ methods. We may apply those alternative methods to the linearized
approximation in Eq.10.2. The linearized system corresponds to the transfer function

P(s) = n/4

s2 + (1 + γ )s + γ
.
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Fig. 10.2 State feedback increases the rate of return to equilibrium for the original nonlinear
system (blue) and a linear approximation (gold). The optimal state feedback was calculated from
the linearized system in Eq.10.2. Each panel shows the closed-loop response to perturbation using
state feedback. The perturbation is an impulse function with weighting of one, corresponding to the
right panel of Fig. 10.1. The weightings of the state deviations in the cost function are, from left to
right, ρ2 = 1, 10, 100

Robust feedback based on this transfer function may be applied to the original non-
linear system.

10.3 Piecewise Linear Analysis and Gain Scheduling

Linear approximations at a particular operating point provide nearly exact descrip-
tions of nonlinear dynamics near the operating point. As the system moves further
from the operating point, the linear approximation becomes less accurate.

In some cases, significant divergence from the operating point causes the quali-
tative nature of the nonlinear dynamics to differ from the linear approximation. In
other cases, such as in Fig. 10.1, the qualitative dynamics remain the same, but the
quantitative responses differ.

The distance from an operating point at which the linear approximation breaks
down depends on the particular nonlinear system. By considering the region over
which the linear approximation holds, one can approximate a nonlinear system by a
sequence of linear approximations.

Starting from an initial operating point, the first linear approximation holds near
that point. Then, as the approximation breaks down away from the initial operating
point, one can use a new approximation around a second operating point.

By repeatedly updating the approximation as needed for new regions, the series
of linear approximations describes the nonlinear system. Each linear approximation
holds in its own region or “piece.” That approach leads to the piecewise linear
approximation method (Rantzer and Johansson 2000).

For each piece, linear methods specify the design of feedback control. The overall
control becomes a sequence of individual controllers based on linear analysis, with
each particular control regime applied when the system is in the associated oper-
ating region. Alternative control in different operating regions is often called gain
scheduling.
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10.4 Feedback Linearization

Consider the simple nonlinear system with an input

ẋ = x2 + u,

in which the output is equal to the single state, y = x (Khalil 2002, p. 473). The
equilibrium x∗ = 0 is unstable because any perturbation from the equilibrium leads
to uncontrolled growth.

The error deviation from equilibrium is x . Classical negative linear feedback
would apply the control input u = −kx , in which the feedback is weighted by the
gain, k. The closed-loop system becomes

ẋ = −kx + x2.

This system has a locally stable equilibrium at zero and an unstable equilibrium at
k. For a perturbation that leaves x < k, the system returns to its stable equilibrium.
For a perturbation that pushes x beyond k, the system grows without bound. Thus,
linear feedback provides local stability. The stronger the feedback, with larger k, the
broader the local region of stability.

In this case, linear feedback transforms an unstable open-loop system into a locally
stable closed-loop system. However, the closed-loop system remains nonlinear and
prone to instability.

If we choose feedback to cancel the nonlinearity, u = −kx − x2, then we obtain
the linearly stable closed-loop system, ẋ = −kx .

Once we have a linear closed-loop system, we can treat that system as a linear
open-loop subsystem, and use linear techniques to design controllers and feedback
to achieve performance goals.

For example, we could consider the feedback linearized dynamics as ẋ = −kx +
v, in which v is an input into this new linearized subsystem. We could then design
feedback control through the input v to achieve various performance goals, such as
improved regulation to disturbance or improved tracking of an input signal.

A nonlinear system can be linearized by feedback if the states can be written in
the form

ẋ = f (x) + g(x)u. (10.3)

Such systems are called input linear, because the dynamics are linear in the input, u.
These systems are also called affine in input, because a transformation of the form
a + bu is an affine transformation of the input, u. Here, f and g may be nonlinear
functions of x , but do not depend on u.

In the example ẋ = x2 + u, we easily found the required feedback to can-
cel the nonlinearity. For more complex nonlinearities, geometric techniques have
been developed to find the linearizing feedback (Slotine and Li 1991; Isidori 1995;



84 10 Nonlinearity

Khalil 2002). Once the linearized system is obtained, one may apply linear design
and analysis techniques to study or to alter the system dynamics.

Feedback linearization depends on an accurate model of the dynamics. For exam-
ple, if the actual model is

ẋ = ax2 + u,

and the feedback linearization is taken as u = −kx − x2 under the assumption that
a = 1, then the closed-loop system is

ẋ = −kx + (a − 1)x2.

If the true value of the parameter is a = 2, then the feedback system has dynamics
ẋ = −kx + x2, which is unstable for x > k.

This example shows that feedback linearization is not robust to model uncertain-
ties. The following chapter discusses an alternative method that can provide robust
feedback control for nonlinear systems.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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Chapter 11
Adaptive Control

The parameters of a process may be unknown or may change slowly over time. How
can one control a process with unknown parameters?

Earlier chapters discussed robust methods. Those methods provide good response
to a broad set of alternative process dynamics.

This chapter presents adaptive control, inwhich the control systemadjusts itself by
using measurements of the system’s response. I follow the example from Sect. 6.2.4
of Ioannou and Sun (2012).

In adaptive control, the system repeatedly updates the controller parameters to
reduce the error between the system’s actual output and the output of an ideal target
response model. Figure11.1 shows the structure of a common approach known as
model reference adaptive control.

Suppose the process dynamics are given by the affine form in Eq.10.3 as

ẏ = a f (y) + bg(y)u, (11.1)

which describes linear systems and also a wide variety of nonlinear systems. In this
example, we know the functions f and g, but do not know the parameter values for
a and b. The goal is to design a control input, u, that causes the system output, y, to
match the output of a specified model.

11.1 General Model

Typically, one chooses a simple linear model for the design target. In this example,
we use

ẏm = −am ym + bmr. (11.2)

Here, the parameters am and bm are known aspects of the target model specification,
and r is the reference or external environmental input. For a constant reference
input, this model converges to the reference exponentially at rate am , with amplitude
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Fig. 11.1 Model reference adaptive control. The goal is to construct a controller so that the system
output, y, matches the output of a specifiedmodel, ym . To achieve that goal, the lower feedback loop
with controller and process must together form a system that has the same dynamics as the model.
If parameters of the process are unknown, one can use measurement of the error, e = y − ym ,
to adaptively adjust the parameters of the controller in response to the error. Ideally, the system
learns controller parameters such that the output, y, converges to match the target model output, ym .
Redrawn from Fig. 5.1 of Åström and Wittenmark (2008), © Karl J. Åström and Björn Wittenmark

of the response relative to the input of bm/am . Figure11.2 illustrates the design target
response for a sinusoidal input, r .

For given values of a and b, the control input

u = 1

g(y)

[
k∗
1 f (y) + k∗

2 y + w∗r
]

k∗
1 = −a

b
k∗
2 = −am

b
w∗ = bm

b
(11.3)

transforms the process model in Eq.11.1 into the target model in Eq.11.2.
If the parameters a and b are unknown, then the input, u, must be based on the

estimates for k1(t), k2(t), andw(t). The estimates are updated by an adaptive process
in response to the error difference between system and model output, e = y − ym .
The dynamics of the error are ė = ẏ − ẏm .

To obtain an expression for ė, we need a modified form of ẏ that contains only the
known parameters am and bm and the estimates k1, k2, and w. The first step expresses
the process dynamics in Eq.11.1 by adding and subtracting b

[
k∗
1 f (y) + k∗

2 y + w∗r
]

and using the identities bk∗
1 = −a and bk∗

2 = −am and bw∗ = bm , yielding

ẏ = −am y + bmr

+ b
[ − k∗

1 f (y) − k∗
2 y − w∗r + ug(y)

]
.

Write the tracking errors as k̃1 = k1 − k∗
1 and k̃2 = k2 − k∗

2 and w̃ = w − w∗. The
error dynamics can then be written as
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Fig. 11.2 Illustrations of the model response (gold curve) in Eq.11.2 for reference input (blue
curve) given by r(t) = sin(t/10) + sin(t). The speed of the tracking response increases with the
parameter am , and the amplitude of the response increases with bm/am . a A slow, lagging response
with am = 0.3 and a twofold amplitude enhancement with bm/am = 2. b A fast tracking response
with am = 3 and a twofold amplitude enhancement with bm/am = 2. c A fast tracking response
with am = 3 and a twofold amplitude reduction with bm/am = 1/2

ė = −ame + b
[
k̃1 f (y) + k̃2y + w̃r

]
.

To analyze the error dynamics, we need expressions for the processes used to update
the parameter estimates. A common choice is

k̇1 = −γ1e f (y)

k̇2 = −γ2ey

ẇ = −γ3er,

in which I have assumed that b > 0.

11.2 Example of Nonlinear Process Dynamics

The general results of the prior section can be applied to any linear process or to any
nonlinear process that can be approximated by the affine form of Eq.11.1. For this
nonlinear example, let

ẏ = ay2 + bu, (11.4)

with f (y) = y2 and g(y) = 1.
Figure11.3 illustrates the rate of adaptation for various parameters. As the adap-

tation parameters, γ , increase, the system output converges increasingly rapidly to
the target model output.
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Fig. 11.3 Rate of adaptation for the parameters that set u, the control input into the system process,
as given in Eq.11.3. The controller parameters adapt so that the system output tracks the output of
a reference model that expresses the design goal. The equations in the text describe the system and
adaptation dynamics. The top row shows the system’s output in blue and the target model’s output
in gold. The middle row is the system’s error, which is the difference between the system and model
responses in the upper row.Thebottom rowshows the adaptation of the control parameters k1, k2, and
w, in blue, gold, and green, respectively. This figure uses the reference model parameters am = 3,
bm = 6, and the true underlying system process parameters, a = 4, and b = 2. The controller
parameters that adapt are k1, k2, and w, which are the system’s estimates for the underlying process
parameters in relation to the model parameters. The rate of adaptation is set by γ1 = γ2 = γ3, which
are, for the columns from left to right, 0.01, 0.1, 1, respectively. The faster the rate of adaptation,
the more quickly the system converges to the reference model

11.3 Unknown Process Dynamics

The previous section assumed a particular form for the process dynamics in Eq.11.4,
with unknown parameters a and b. How could we handle a process with unknown
dynamics?

One simple approach is to assume a very general form for the process dynamics,
such as a polynomial

ẏ = a0 + a1y + a2y
2 + · · · + an y

n + bu,

and then run the adaptation process on the parameters (a0, a1, . . . , an, b). One could
use other generic forms for the dynamics and estimate the parameters accordingly.
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This approach provides a way for the system output to mimic the model output,
without the system necessarily converging to use the same mathematical description
of dynamics as in the model.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 12
Model Predictive Control

Control design often seeks the best trajectory along which to move a system from
its current state to a target state. Most control methods approximate this goal by
using the current inputs and system state to calculate the next control signal to drive
system dynamics. That standard approach considers only the first step of the full
trajectory toward the target state. The idea is that estimating a good first step in
the right direction is sufficient, without consideration of the full trajectory from the
current location to the final target.

Model predictive control considers the full sequence of input steps required to
move the system optimally from its current state to a future target. The control
system then applies the first inputs to start the system along that optimal trajectory
(Rossiter 2004; Camacho and Bordons 2007; Ellis et al. 2014; Rawlings and Mayne
2015).

After applying the initial inputs, the system does not use the additional sequence
of calculated inputs to continue along the planned trajectory. Instead, the system takes
updated measures of the external target and the internal state. The new information
is used to recalculate an updated optimal trajectory. Using the updated trajectory, the
newly calculated first inputs are then applied to the system. The process repeats with
each new round of updated external and internal signals.

This approach considers a receding future horizon. At each point in time, the
system calculates the optimal trajectory to a particular time point in the future—the
horizon. Then, after a small amount of time passes relative to the future horizon, the
system recalculates by taking current inputs and advancing the future horizon by the
time elapsed.

Intuitively, this approach seems similar to many decisions made by humans. We
estimate how we will get to a goal, start off in the best direction, then update our
plan as new information arrives.

Our estimate of how we will get to a goal depends on an internal model of our
dynamics and on themodulating control signals thatwewill use to alter our dynamics.
The self-correcting process of recalculating the planned trajectory means that we do
not need an accuratemodel of our internal dynamics to performwell. An approximate
or misspecified model of dynamics often works well, even for nonlinear processes.
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Model predictive control may be enhanced by adaptive feedback that modifies the
parameters or the form for the model of internal dynamics. The general approaches
of model predictive control and adaptive control provide benefits of robustness with
respect to the model of internal dynamics.

12.1 Tracking a Chaotic Reference

Figure12.1 shows the performance of a simplemodel predictive control systemwhen
tracking a chaotic reference signal. The figure caption describes the calculation of
the chaotic input signal (blue curve). In this example, the model predictive control
system begins with an internal process given by

ẍ = u (12.1)

for control input, u. The input can be thought of as a force that alters the acceleration
of the system state.

In this example, the cost function is summed over a series of discrete time points
from the present until a future horizon at time T , yielding

J =
T∑

t=0

[
x(t) − r(t)

]2 + ρu(t)2.

The first term is the squared tracking error. The second term is the squared control
input signal, weighted by ρ, which is the relative cost of the input signal to the
tracking error. The sum includes a series of input controls and tracking deviations
over a finite period from the present to the future horizon, T . As time passes, the
time window (0, T ) moves so that t = 0 is always the present time.

The system has sensors to measure the current locations and time derivatives
(velocities) for the system state and the reference signal, given as x0, ẋ0, r0, and

ρ = 1 ρ = 10 ρ = 100

Time
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e

Fig. 12.1 Tracking an environmental reference signal by model predictive control. The blue
curves show the environmental signal, a chaotic form of Duffing’s equation, r̈ + 0.15ṙ − r + r3 =
0.3 cos(t), with initial conditions ṙ = 1.001 and r = −1. The gold curves show the tracking per-
formance for different values for the cost, ρ, of control input signals relative to the tracking error.
A higher control input cost favors weaker control inputs and greater tracking error
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ṙ0. From those measurements, and from the projected set of inputs, u(t), over the
interval t = 0, 1, . . . , T , the system can project the values of x(t) and r(t) and thus
estimate the tracking errors and the total cost, J . In particular,

x(t) = x0 + ẋ0t +
t−1∑

α=0

(t − α)u(α)

r(t) = r0 + ṙ0t.

Here, u(α) is interpreted as an impulse that acts at the continuous time offset, α,
relative to the current time. Because the system has dynamics ẍ = u, an impulse at
α causes an instantaneous increase in velocity by u(α), which then acts to change
the future predicted value at time t by (t − α)u(α).

These predicted values for x and r allow calculation of the sequence of control
inputs u(t) over the interval t = 0, 1, . . . , T that minimize the cost, J .

The plots in Fig. 12.1 show the system trajectory that reflects the minimization
of J . At each time step, the system calculates the sequence u to minimize J , then
applies u(0) as the control input. The remaining u values for t = 1, 2, . . . , T are
ignored. In the next time step, the same procedure gives the new control input for
that time period, and the future inputs for the optimal trajectory are again ignored.
The process continues for each time period as the future horizon recedes.

12.2 Quick Calculation Heuristics

The solution for the input u(0) typically depends on the full sequence of inputs over
t = 0, 1, . . . , T . In some cases, a relatively simple explicit solution for u(0) can be
obtained that requires only the current measured inputs for x0, ẋ0, r0, and ṙ0.

If a system applies only the first input, u(0), before recalculating in the next time
step, then that system only needs the explicit solution for u(0) to update the control
inputs in each time step.

For example, with T = 2, the exact solution for the above case is

u(0) = Δ + ρ
[
3Δ + 2

(
ṙ0 − ẋ0

)]

1+ 6ρ + ρ2
,

withΔ = (
r0 + ṙ0

) − (
x0 + ẋ0

)
. With larger T , the solution has more terms as pow-

ers of ρ, but nonetheless remains a relatively simple ratio of polynomials in ρ that
could be approximated by a quick heuristic calculation.
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12.3 Mixed Feedforward and Feedback

In some cases, the sensor and calculation costs of updating in each time step may
not provide sufficient benefit. Instead, the system could apply the first few control
inputs of the sequence, u(0), u(1), . . . , u(τ ), and then update the sequence at time
τ < T .

A system that uses feedback inputs at one time point to calculate and then apply
a future sequence of control inputs is running in partial feedforward mode. The
feedback inputs arrive, and then the system runs forward from those inputs without
the feedback correction obtained by comparing the changing system output to the
potentially changing target reference signal.

After a while, the system may take new input readings and update the projected
sequence of future control signals. Each measurement and recalculation acts as a
feedback correction process. Thus, systems may combine the simplicity and rela-
tively low cost of feedforward control with the correction and robustness benefits of
feedback.

12.4 Nonlinearity or Unknown Parameters

This section’s example used a simple model of internal dynamics, ẍ = u, given in
Eq.12.1. That expression, equating acceleration and force, provided a simple way in
which to analyze trajectories. That internal model may often perform well even if the
true model is nonlinear because the first move along the calculated trajectory often
depends on how the force of the applied input alters the acceleration of the system.

Alternatively, one could use a more general expression for the internal model
dynamics, with a set of unknown parameters. One could then add an adaptive control
layer to the system to provide updated parameter estimates. In some cases, this
combination of model predictive control and adaptive control may perform well.
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Chapter 13
Time Delays

You suddenly notice a ball flying toward your head. Your first reaction happens after
a delay. To avoid the ball, youmust consider where your head will be after its delayed
response in relation to where the ball will be.

This chapter presents models for delay dynamics and discusses a control method
that compensates for delays.

13.1 Background

Delays often occur in the signals that flow between components of a control system.
An uncompensated delay may reduce system performance. Suppose, for example,
that the sensor measuring the system output, y, requires δ time units to process and
pass on its measured value as a feedback signal.

The delayed feedback signal reports the system output δ time units before the
current time, which we write as y(t − δ). The calculated error between the current
reference input and the delayed feedback, r(t) − y(t − δ), may not accurately reflect
the true error between the target value and the current systemoutput value, r(t) − y(t).

Delays may destabilize a system. If the calculated error overestimates the true
error, then the system may overcompensate, pushing the system output away from
the target reference value rather than toward it.

The robust control methods discussed in earlier chapters can reduce the insta-
bilities created by delays. Robust control creates a significant stability margin. A
large stability margin means that factors not directly included in the design, such as
unknown delays, will usually not destabilize the system.
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Fig. 13.1 Time delays in feedback loops. a Sensor delay. The sensor that measures system output
and passes that value as feedback has a delay of δ time units between the system input and the
measured output. The transfer function e−δs passes its input unmodified but with a delay of δ time
units. b Process delay. The system process, Pe−δs, has a lag of δ time units between the time at
which a control input signal, u, is received and the associated system output signal, y, is produced

In addition to general robust approaches, many specific design methods deal
explicitly with delays. The delays are often called dead time or transport lag (Åström
and Hägglund 2006; Normey-Rico and Camacho 2007; Visioli and Zhong 2011).

The design methods typically use a prediction model. A prediction allows the
system to use measured signal values at time t − δ to estimate the signal values at
time t.

13.2 Sensor Delay

Figure13.1a shows a standard feedback loop with a sensor delay. The sensor that
measures the process output, y, delays passing on the measured value by δ time units.

In Fig. 13.1a, the transfer function e−δs describes the delay. That transfer function
passes its input unmodified, but with a delay of δ. Thus, the measured output that
is passed by the sensor as feedback is given by the transfer function Ye−δs, which
transforms inputs, y(t), into the time-delayed outputs, y(t − δ).

We can derive how the delay influences the closed-loop system response in
Fig. 13.1a. Define the open loop of the system as L = CP, as in Eq.3.4. Then we can
write the system output as Y = LE, the error input, E, multiplied by the open-loop
system process, L.

The error is the difference between the reference input and the feedback output
from the sensor, E = R − Ye−δs. Substituting this expression for the error into Y =
LE, we obtain the transfer function expression for the closed-loop system response,
G = Y /R, as

G(s) = L(s)

1 + L(s)e−δs
. (13.1)
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13.3 Process Delay

Figure13.1b illustrates a feedback system with a process delay. The full process,
Pe−δs, requires δ time units to transform its input to its output. Thus, the process
output lags behind the associated control input to the process by δ time units.

The open loop in Fig. 13.1b is Le−δs = CPe−δs. We can derive the closed-loop
system response by the method used to derive Eqs. 3.4 and 13.1, yielding

G(s) = L(s)e−δs

1 + L(s)e−δs
. (13.2)

The simple transfer function description for signal delays allows one to trace the con-
sequences of delays through a system with many components that are each approx-
imately linear.

13.4 Delays Destabilize Simple Exponential Decay

This section illustrates how delays can destabilize a system. I analyze a simple open-
loop integrator, L(s) = k/s. That transfer function corresponds to dynamics given by
ẋ(t) = kr(t), for reference input r, which has solution x(t) = k

∫ t
0 r(τ )dτ for initial

condition x0 = 0. Thus, the output of L is the integral of its input multiplied by the
gain, k. I assume throughout this section that the output equals the system state,
y(t) = x(t).

A standard negative feedback system has transfer function G = L/(1 + L), which
for L = k/s is

G(s) = k

k + s
,

which has dynamics

ẋ(t) = −kx(t) + kr(t) = k[r(t) − x(t)].

The error signal is r(t) − x(t). The solution is the integral of the error signal.
For constant input, r̂ = r(t), the solution is a constant exponential decay toward

the equilibrium setpoint at rate k. Without loss of generality, we can take the setpoint
as r̂ = 0 and write the solution as

x(t) = x0e−kt .

We can apply the same approach for the sensor delay system in Eq.13.1. For
L = k/s, the system transfer function is
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Fig. 13.2 Feedback delay destabilizes a simple integrator process. a Temporal dynamics from
Eq.13.4, with gain k = 5 and unit step input r(t) = 1. The feedback delays are δ = 0, 0.25, 0.33
shown in the blue, gold, and green curves, respectively. b Bode gain plot of the associated transfer
function in Eq.13.3. Greater feedback lag increases the resonant peak. c Bode phase plot. Note how
the destabilizing feedback lag (green curve) creates a large phase lag in the frequency response

G(s) = k

ke−δs + s
, (13.3)

in which the term e−δs expresses the delay by δ. The differential equation for this
system is

ẋ(t) = k[r(t) − x(t − δ)], (13.4)

which, for reference input r̂ = 0, is

ẋ(t) = −kx(t − δ).

This system expresses a delay differential process. Although this delay differential
system is very simple in structure, there is no general solution. A sufficiently large
delay, δ, destabilizes the system because the rate of change toward the equilibrium
setpoint remains too high when that rate depends on a past value of the system state.

In particular, the dynamics in Eq.13.4 describe a simple lagged feedback system.
At each time, t, the error between the target value and the system state from δ time
units ago is r̂ − x(t − δ). That lagged error, multiplied by the feedback gain, k, sets
the rate at which the system moves toward the setpoint.

Because the system state used for the feedback calculation comes from a lagged
time period, the feedback may not accurately reflect the true system error at time t.
That miscalculation can destabilize the system.

Figure13.2a shows how feedback lag can destabilize simple exponential decay
toward an equilibrium setpoint.With no time lag, the blue curve moves smoothly and
exponentially toward the setpoint. The gold curve illustrates how a relatively small
feedback lag causes this system tomove toward the setpointwith dampedoscillations.
The green curve shows how a larger feedback lag destabilizes the system. The Bode
plots in Fig. 13.2b, c illustrate how feedback delay alters the frequency and phase
response of the system in destabilizing ways.
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Fig. 13.3 Greater process gain, k, can be destabilized by smaller feedback lag, δ. Combinations
of gain and lag below the curve are stable. Combinations above the curve are unstable. Stability is
determined by the maximum real part of the eigenvalues for Eq.13.4 with constant reference input

In earlier chapters, I showed that high gain feedback systemsmove rapidly toward
their setpoint butmay suffer sensitivity to destabilizing perturbations or uncertainties.
Feedback lag may be thought of as a kind of perturbation or uncertainty.

Figure13.3 shows how the system gain, k, enhances the destabilizing effect of
feedback lag, δ. Combinations of gain and lag below the curve are stable. Combina-
tions above the line are unstable. Systems with greater gain can be destabilized by
smaller feedback lag.

Process delays differ from feedback delays only in the extra lag associated with
the reference input. For the process delay system given by the transfer function in
Eq.13.2, the dynamics are

ẋ(t) = k[r(t − δ) − x(t − δ)],

which describe an error integrator lagged by t − δ. For constant reference input,
r(t) = r̂, the process delay dynamics are the same as for the feedback delay dynamics
in Eq.13.4.

13.5 Smith Predictor

Compensating for a time delay requires prediction. Suppose, for example, that there
is a process delay between input and output, as in Fig. 13.1b. The Smith predictor
provides one way to compensate for the delay. To understand the Smith predictor,
we first review the process delay problem and how we might solve it.

In Fig. 13.1b, the time-delay transfer function in the process, e−δs, maps an input
signal at time t to an output that is the input signal at t − δ. Thus, the open loopCPe−δs

transforms the current input, r(t), to the output, y(t − δ). Themeasured error between
input and output, r(t) − y(t − δ), gives an incorrect signal for the feedback required
to push the tracking error, r(t) − y(t), toward zero.

One way to obtain an accurate measure of the tracking error is to predict the
output, y(t), caused by the current input, r(t). The true system process, Pe−δs, has
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Fig. 13.4 Smith predictor to compensate for time delay in the process output. Redrawn from
Fig. 5.1 of Normey-Rico and Camacho (2007), © Springer-Verlag

a lag, and the unlagged process, P, may be unknown. If we could model the way in
which the process would act without a lag, P∗, then we could generate an estimate,
y∗(t), to predict the output, y(t).

Figure13.4 shows the feedback pathway through P∗. If P∗ is an accurate model of
P, then the feedback through P∗ should provide a good estimate of the tracking error.
However, our goal is to control the actual output, y, rather than to consider output
estimates and feedback accuracy. The Smith predictor control design in Fig. 13.4
provides additional feedbacks that correct for potential errors in our model of the
process, P∗, and in our model of the delay, δ∗.

In Fig. 13.4, the pathway through P∗ and then eδ∗s provides our model estimate,
ym, of the actual output, y. The error between the true output and the model output,
y − ym, is added to the estimated output, y∗, to provide the value fed back into the
system to calculate the error. By using both the estimated output and the modeling
error in the feedback, the system can potentially correct discrepancies between the
model and the actual process.

The system transfer function clarifies the components of the Smith predictor
system. The system transfer function is G = Y /R, from input, R, to output, Y . We
can write the system transfer function of the Smith predictor in Fig. 13.4 as

G =
( CP

1 + C (P∗ + �M )

)
e−δs, (13.5)

in which the modeling error is

�M = Pe−δs − P∗e−δ∗s.

The Derivation at the end of this chapter shows the steps to Eq.13.5.
The stability of a transfer function system depends on the form of the denominator.

In the case of Eq.13.5, the eigenvalues are the roots of s obtained from 1 + C(P∗ +
�M ) = 0. We know the process, P∗, because that is our model to estimate the
unknown system, P.
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To obtain robust stability, we can design a controller, C, under the assumption
that the modeling error is zero,�M = 0. For example, we can use the methods from
the earlier chapter Stabilization to obtain a good stability margin for C relative to P∗.
Then we can explicitly analyze the set of modeling errors,�M , for which our robust
controller will remain stable. A design with a good stability margin also typically
provides good performance.

13.6 Derivation of the Smith Predictor

The derivation of Eq.13.5 begins with the transfer functions obtained directly from
Fig. 13.4 for various outputs

Y = ECPe−δs

Y ∗ = ECP∗ = Y
P∗

Pe−δs

Ym = ECP∗e−δ∗s = Y
P∗e−δ∗s

Pe−δs

with error input

E = R − Y − Y ∗ + Ym

= R − Y
(
1 + P∗

Pe−δs
− P∗e−δ∗s

Pe−δs

)

= R − Y
1

Pe−δs

(
P∗ + �M )

with
�M = Pe−δs − P∗e−δ∗s.

Substituting the expression for E into the expression for Y yields

Y = CPe−δs[R − Y
1

Pe−δs

(
P∗ + �M

)].

The system response, Y , to an input, R, is G = Y /R, which we obtain by dividing
both sides of the prior equation by R, yielding

G = CPe−δs − GC
(
P∗ + �M

)
,

from which we obtain

G =
(

CP

1 + C (P∗ + �M )

)

e−δs,
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which matches Eq.13.5. When the model is accurate, P = P∗ and �M = 0, the
system reduces to

G =
(

CP∗

1 + CP∗

)

e−δs

for known model P∗. This transfer function has the standard form of a negative
feedback system with open loop L = CP∗.
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Chapter 14
Summary

Many other control approaches and applications have been developed (Baillieul and
Samad 2015). Those extensions build on the foundational principles emphasized in
this tutorial. Three key principles recur.

14.1 Feedback

There are two, and only two, reasons for using feedback. The first is to reduce the effect of
any unmeasured disturbances acting on the system. The second is to reduce the effect of any
uncertainty about systems dynamics.

—Vinnicombe (2001, p. xvii)

Feedback is unnecessary if one has a complete, accurate model of system dynamics.
With an accurate model, one can map any input to the desired output. A direct
feedforward open loop does the job.

However, unpredictable perturbations occur. Models of dynamics almost always
incorrectly specify the true underlying process.

Correcting errors by feedback provides the single most powerful design method.
Natural systems that control biological function often use feedback. Human-
engineered systems typically correct errors through feedback.

14.2 Robust Control

[H]ow much do we need to know about a system in order to design a feedback compensator
that leaves the closed loop behaviour insensitive to that which we don’t know?

—Vinnicombe (2001, p. xvii)

Robustness means reduced sensitivity to disturbance or modeling error. Feedback
improves robustness. However, feedback only describes a broad approach.
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Many specific methods refine the deployment of feedback. For example, filters
reduce the resonant peaks in system response. Controllers modulate dynamics to
improve stability margin.

A large stability margin means that the system can maintain stability even if the
true process dynamics depart significantly from the simple linear model used to
describe the dynamics.

14.3 Design Tradeoffs and Optimization

Awell-performing systemmoves rapidly toward the desired setpoint. However, rapid
response can reduce stability. For example, a strong response to error can cause a
system to overshoot its setpoint. If each overshoot increases the error, then the system
diverges from the target.

The fast response of a high-performing system may destabilize the system or
make it more sensitive to disturbances. A tradeoff occurs between performance and
robustness.

Many other tradeoffs occur. For example, control signalsmodulate systemdynam-
ics. The energy required to produce control signals may be expensive. The costs of
control signals trade off against the benefits of modulating the system response.

The sensitivity of a system to perturbations varies with the frequency at which the
signal disturbs the system. Often, reduced sensitivity to one set of frequencies raises
sensitivity to another set of frequencies.

Optimization provides a rigorous design approach to tradeoffs. One may assign
costs and benefits to various aspects of performance and robustness or to the response
at different frequencies. One can then consider how changes in system design alter
the total balance of the various costs and benefits. Ideally, one finds the optimal
balance.

14.4 Future Directions

Control theory remains a very active subject (Baillieul and Samad 2015). Methods
such as robust H∞ analysis and model predictive control are recent developments.

Computational neural networks have been discussed for several decades as a
method for the control of systems (Antsaklis 1990). Computational networks are
loosely modeled after biological neural networks. A set of nodes takes inputs from
the environment. Each input node connects to another set of nodes. Each of those
intermediate nodes combines its inputs to produce an output that connects to yet
another set of nodes, and so on. The final nodes classify the environmental state,
possibly taking action based on that classification (Nielsen 2015; Goodfellow et al.
2016).
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For many years, neural networks seemed like a promising approach for control
design and for many other applications. However, that approach typically faced
various practical challenges in implementation. Until recently, the practical problems
meant that other methods often worked better in applications.

New methods and increased computational power have made neural networks
the most promising approach for major advances in control system design. Spec-
tacular examples include self-driving cars, real-time computer translation between
languages, and the reshaping of modern financial markets. At a simpler level, we
may soon see many of the control systems in basic daily devices driven by embed-
ded neural networks instead of the traditional kinds of controllers.

The rise of neural networks also foreshadows a potential convergence between
our understanding of human-designed engineering systems and naturally designed
biological systems (Frank 2017).

In a human-designed system, an engineer may build a controller to improve the
total benefits that arise from tradeoffs between cost, performance, and robustness. In
biology, natural selection tends to build biochemical or physical systems that improve
the tradeoffs between various dimensions of biological success. Those biological
dimensions of success often can be expressed in terms of cost, performance, and
robustness.

The similarities and differences between human-designed systems and naturally
designed systems will provide many insights in the coming years. An understanding
of the basic concepts of control design will be required to follow future progress and
to contribute to that progress.
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