
ACSP · Analog Circuits And Signal Processing

Khaled Salah Mohamed

IP Cores
Design from
Speci� cations
to Production
Modeling, Veri� cation, Optimization,
and Protection

 Analog Circuits and Signal Processing

Series editors
Mohammed Ismail
Mohamad Sawan

 More information about this series at http://www.springer.com/series/7381

http://www.springer.com/series/7381

 Khaled Salah Mohamed

 IP Cores Design from
Specifi cations to Production
 Modeling, Verifi cation, Optimization,
and Protection

 ISSN 1872-082X ISSN 2197-1854 (electronic)
 Analog Circuits and Signal Processing
 ISBN 978-3-319-22034-5 ISBN 978-3-319-22035-2 (eBook)
 DOI 10.1007/978-3-319-22035-2

 Library of Congress Control Number: 2015947256

 Springer Cham Heidelberg New York Dordrecht London
 © Springer International Publishing Switzerland 2016
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

 Khaled Salah Mohamed
 Emulation
 Mentor Graphics
 Heliopolis , Egypt

www.springer.com

v

 Pref ace

 This book discusses the life cycle process of IP cores from specifi cation to produc-
tion which includes four major steps: (1) IP modeling, (2) IP verifi cation, (3) IP
optimization, and (4) IP protection. Moreover, the book presents most of the famous
memory cores and controller IPs and analyzes the trade-off between them. In this
book, we give an in-depth introduction to SoC buses and peripheral IPs. We explain
their features and architectures in detail. Moreover, we provide a deep introduction
to Verilog from both implementation and verifi cation points of view. The book pres-
ents a simple methodology in building a reusable RTL verifi cation environment
using UVM. UVM is a culmination of well-known ideas and best practices.
Moreover, it presents simple steps to verify an IP and build an effi cient and smart
verifi cation environment. A SoC case study is presented to compare traditional veri-
fi cation with a UVM-based verifi cation. Bug localization is a process of identifying
specifi c locations or regions of source code that is buggy and needs to be modifi ed
to repair the defect. Bug localization can signifi cantly reduce human effort and
design cost. In this book, a novel automated coverage- based functional bug local-
ization method for complex HDL designs is proposed, which signifi cantly reduces
debugging time. The proposed bug localization methodology takes information
from regression suite as an input and produces a ranked list of suspicious parts of
the code. We present an online RTL-level scan-chain methodology to reduce debug-
ging time and effort for emulation. Run-time modifi cations of the values of any of
the internal signals of the DUT during execution can be easily performed through
the proposed online scan-chain methodology. A utility tool has been developed to
help ease this process.

Heliopolis, Egypt Khaled Salah Mohamed

vii

 Contents

 1 Introduction ... 1
 References ... 11

 2 IP Cores Design from Specifications to Production: Modeling,
Verification, Optimization, and Protection ... 13
 2.1 Introduction .. 13
 2.2 IP Modeling ... 13

 2.2.1 FPGA ... 15
 2.2.2 Processor .. 23
 2.2.3 ASIC .. 25
 2.2.4 PCB .. 27

 2.3 IP Verifi cation .. 27
 2.3.1 FPGA-Based/Processor-Based IP Verifi cation 28
 2.3.2 ASIC-Based IP Verifi cation ... 36
 2.3.3 PCB-Based IP Verifi cation ... 37

 2.4 IP Optimization .. 37
 2.4.1 FPGA-Based IP Optimization.. 37
 2.4.2 Processor-Based IP Optimization .. 44
 2.4.3 ASIC-Based IP Optimization ... 45
 2.4.4 PCB-Based IP Optimization .. 46

 2.5 IP Protection ... 47
 2.5.1 FPGA-Based/Processor-Based IP Protection 47
 2.5.2 ASIC-Based IP Protection ... 47
 2.5.3 PCB-Based IP Protection ... 48

 2.6 Summary .. 48
 References ... 49

 3 Analyzing the Trade-off Between Different Memory Cores
and Controllers .. 51
 3.1 Introduction .. 51
 3.2 Memory Cores ... 52
 3.3 Why Standards? ... 57

viii

 3.4 Memory Controllers ... 58
 3.5 Comparison Between Different Memory Controllers 64
 3.6 New Trends in SoC Memories ... 73
 3.7 Summary .. 73
 References ... 76

 4 SoC Buses and Peripherals: Features and Architectures 77
 4.1 Introduction .. 77
 4.2 SoC Buses and Peripherals Background .. 78
 4.3 SoC Buses: Features and Architectures ... 80

 4.3.1 SoC Bus Topology ... 80
 4.3.2 Arbitration (Mux/Tri-State-Based) .. 83
 4.3.3 Transfers... 86
 4.3.4 Timing .. 89
 4.3.5 Tx Control .. 90
 4.3.6 Tx Type .. 90

 4.4 Bus Architecture Examples .. 91
 4.4.1 I2C Bus .. 91
 4.4.2 Advanced Microcontroller Bus Architecture (AMBA) 93
 4.4.3 Wishbone ... 95

 4.5 Summary .. 95
 References ... 96

 5 Verilog for Implementation and Verification .. 97
 5.1 Introduction .. 97
 5.2 Verilog for Implementation .. 98

 5.2.1 Introduction .. 98
 5.2.2 Data Representation ... 101
 5.2.3 Verilog Coding Style .. 102
 5.2.4 Verilog Operators and Control Constructs 103
 5.2.5 Verilog Design Issues ... 106
 5.2.6 Verilog Template and Reusable Code Tips 106
 5.2.7 Main Digital System Building Blocks 108

 5.3 Verilog for Verifi cation .. 108
 5.4 Logic Simulators .. 111

 5.4.1 Questa Simulation .. 112
 5.4.2 Questa Formal Verifi cation .. 114
 5.4.3 Questa CoverCheck.. 114
 5.4.4 Questa CDC ... 115
 5.4.5 Questa ADMS .. 115
 5.4.6 Questa inFACT... 116
 5.4.7 Questa Power Aware Simulation ... 116
 5.4.8 Questa Verifi cation IP .. 117
 5.4.9 Questa Verifi cation Management ... 117
 5.4.10 Questa CodeLink ... 118

 5.5 Summary .. 118
 References ... 118

Contents

ix

 6 New Trends in SoC Verification: UVM, Bug Localization,
Scan-C0068ain-Based Methodology, GA-Based Test Generation 121
 6.1 Part I: UVM ... 121

 6.1.1 Introduction .. 121
 6.1.2 SystemVerilog .. 123
 6.1.3 TLM ... 126
 6.1.4 UVM .. 127
 6.1.5 Summary .. 133

 6.2 Part II: RTL Bug Localization ... 133
 6.2.1 Introduction .. 133
 6.2.2 RTL Bug Localization.. 135
 6.2.3 Summary .. 138

 6.3 Part III: RTL Scan-Chain ... 141
 6.3.1 Introduction .. 141
 6.3.2 The Proposed RTL-Level Scan-Chain Methodology 141
 6.3.3 Summary .. 143

 6.4 Part IV: Automatic Test Generation Based on Genetic Algorithms .. 144
 6.4.1 Introduction .. 144
 6.4.2 Proposed Methodology .. 146
 6.4.3 Summary .. 150

 References ... 150

 7 Conclusions .. 153

Contents

1© Springer International Publishing Switzerland 2016
K.S. Mohamed, IP Cores Design from Specifi cations to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_1

 Chapter 1
 Introduction

 Technological progress enables more and more functionality to be integrated on a
single chip. Figure 1.1 shows the most important milestones in Very-large-scale
integration (VLSI), it is all about integration. In 1937, Shannon introduces the world
to binary digital electronics. The fi rst bipolar transistor was fabricated at Bell Labs
in 1947 [1]. In 1960, the fi rst MOSFET which contains one transistor was fabricated
followed by the fi rst integrated circuit (IC) which contains two transistors in 1961.
The fi rst DRAM cell was fabricated in 1968. One of the most important VLSI mile-
stones was the fabrication of the fi rst microprocessor which contains 100 transistors
per chip in 1971. VLSI era started in 1980 by fabricating more than 200 K transistor
per chip. FPGA was invented in 1985. System-on-chip (SoC) and intellectual prop-
erty (IP) era started in 1995 by integration of more than 100 M transistor per chip.
Recently in 2004, 3D integration era started. Table 1.1 summarizes the most impor-
tant terms in VLSI. A SoC design is a “product creation process” which starts at
identifying the end-user need and ends at delivering a product with enough func-
tional satisfaction from the end user. A typical SoC contains hardware and software
as depicted in Fig. 1.2 . An example for the SoC architecture is shown in Fig. 1.3 .
Benefi ts of using SoC are reducing overall system cost, increasing performance,
lowering power consumption, and reducing size. The advantages and disadvantages
of SoC are summarized in Table 1.2 [2].

 The early predecessor of a SoC was the Single Board Computer (SBC). All
required logic was integrated on a single board (Fig. 1.4). When it became possible to
integrate more logic into ICs, memory, and some peripherals were integrated into the
microprocessor chip. The result is called “microcontroller.” A single board computer
with microcontrollers contains fewer chips and becomes cheaper. However, still addi-
tional logic and peripherals are necessary, since a microcontroller does not contain all
required peripherals for most applications (Fig. 1.5). With the availability of
 programmable logic, the discrete logic ICs (costly and require board space and several
extra wires) could disappear (Fig. 1.6). The FPGAs of today include microprocessor
core, memories, and enough logic to include all kinds of peripherals (Fig. 1.7) [3].

2

 To conquer the complexity of SoC, predesigned components are used (IP reuse)
[4]. Hardware IP cores have emerged as an integral part of modern SoC designs. IP
cores are predesigned and preverifi ed complex functional blocks. Based on their
properties, IP cores can be distinguished into three types of cores: hard, fi rm, and
soft as depicted in Table 1.3 [5 , 6], where Soft-cores are architectural modules
which are synthesizable and offer the highest degree of modifi cation fl exibility,
Firm-cores are delivered as a mixture of RTL code and a technology-dependent
netlist [7], and are synthesized with the rest of ASIC logic, and Hard-cores are mask
and technology-dependent modules. Mapping of IP cores on VLSI design fl ow is
shown in Fig. 1.8 . IP core categories tradeoffs are summarized in Fig. 1.9 .

1937
• Shannon introduces the world to binary digital electronics

1947
• First bipolar transistor

1960
• First MOSFET (1 transistor)

1961
• First IC (2 transistors)

1968
• Dram cell (1 transistor)

1971
• First microprocessor (100 transistor per chip)

1980
• VLSI (200K transistor per chip) FPGA in 1985

1995
• SoC era (100M transistor per chip) IP Concept and reuse

2004
• 3D Integration era

 Fig. 1.1 The most important milestones in VLSI: it is all about integration

 Table 1.1 Important terms in VLSI

 What is VLSI? Integration improves the performance and reduces the cost
 What is IC ? The VLSI fi nal product
 What is SoC ? It is a VLSI design style. Idea: combine several large blocks into one.
 What is IP? Predesigned component can be reused in different SoC. Protected

through patents or copyrights
 What is EDA tools? Tools provide the design software used to create all of the world’s

electronic systems (VLSI, IC, IP, and SoC)

1 Introduction

3

System
on Chip

Hardware

Analog Digital RF Mixed
Signal Peripherals Storage

Software

OS Applications

AMP FPGA LNA ADC PS2 RAM Linux Communication

 Fig. 1.2 SoC components: it contains hardware and software. Not all software fi ts on hardware,
we have to check the compatibility

Digital

RFMemory

Mixed

Analog

Processors

RTOS

Configurable Hardware Peripherals

BUS

 Fig. 1.3 An example of SoC architecture. Different components in single chip (same piece of Si).
Many of the components have become standard IP

 Table 1.2 Advantages and disadvantages of SOC

 Advantages Disadvantages

 – Lower cost per gate – Increased system complexity
 – Lower power consumption – Increased verifi cation requirements
 – Faster circuit operation – HW/SW co-design
 – More reliable implementation – Integration of analog & RF IPs
 – Smaller physical size/area
 – Greater design security

1 Introduction

4

Peripheral

Peripheral

Peripheral

Logic

Logic

Logic

µP

ROM

RAM

 Fig. 1.4 Single board computer

Peripheral

Peripheral

µC

ROM Logic

Logic
RAM

 Fig. 1.5 Single board computer with microcontroller

Peripheral

Peripheral

FPGA
µC

ROM

RAM

 Fig. 1.6 Single board computer with microcontroller and programmable logic

1 Introduction

5

 The main differences in design between IC and IP are that, in IC number of
input/output (I/O), pins are limited, but in IP it is unlimited. Moreover, in IP we can
parameterize IP Design, i.e., design all the functionality in hardware description
language (HDL) code, but implement desired parts in the silicon (reusability). These
differences are summarized in Table 1.4 .

 The IC design fl ow is shown in Fig. 1.10 . The fi rst step in IC design is design
specifi cation (what customer wants) then we convert the specifi cation to behavioral
description. The behavioral description is then converted to RTL description. Then
we perform functional verifi cation and if there are any bugs we fi x it in the RTL and
then do the verifi cation again. If the functional verifi cation is ok, we start synthesiz-
ing the RTL code and do the gate level verifi cation. By this, the front-end design is
done. The back-end design starts by placement and routing then post- layout verifi -
cation, we may repeat it if there are any errors until we generate the mask and send
it to the fab. After fabrication, chip testing is done.

 There is a lot of SoC applications and corresponding IPs as shown in Table 1.5 ,
where industry segments: including mobile communication, automotive, imaging,
medical, and networking [8].

Peripheral

Peripheral

ROM

RAM

µC

FPGA

 Fig. 1.7 Towards SoC structure

 Table 1.3 Classifi cation of hardware IP

 IP Representation Technology Optimization Reuse Changes

 Soft RTL (HDL) Independent
(Fabless level)

 Low Very high Many

 Firm Gate level netlist Independent Medium High Some placement
and routing

 Hard GDSII (layout) Dependent
(Fab level)

 Very high low No

1 Introduction

6

RTL

Synthesis

Gate Level Netlist

Placement and
Routing

Tape-Out

RTL

Gates

Layout

PLL

Soft

Firm

Hard

Verilog-Code

 Fig. 1.8 IP cores in a typical VLSI design fl ow

Soft
Core

Firm
Core

Hard
Core

Performance, time to market

Flexibility
Reusability

 Fig. 1.9 IP cores categories tradeoffs [5]

1 Introduction

7

 The complete picture for electronic systems is described in Figs. 1.11 and 1.12 .
For System with multiple SoCs, globally asynchronous locally synchronous (GALS)
interconnect concept is used to simplify its design (Fig. 1.13). GALS aims at fi lling
the gap between the purely synchronous and asynchronous domains [9].

 IP cores life cycle process from specifi cation to production includes four major
steps: (1) IP Modeling, (2) IP verifi cation, (3) IP optimization, (4) IP protection.
These steps are elaborated in Fig. 1.14 [11].

 IP life cycle is completed with the help of computer aided design (CAD)/
electronic design automation (EDA) tools. EDA tools provide software to be used
to create all of the world’s electronic systems (VLSI, IC, IP, and SoC). The EDA
tools play a vital rule in converting an IP specifi cation to an IP product [10].

 Table 1.4 Differences
between IP and IC

 IP IC

 I/O Unlimited Limited
 Reusability/parameterization ✓ ✕

 Fig. 1.10 A simplifi ed high-level overview of IC design fl ow. PG stands for pattern generation

1 Introduction

8

Anatomy of EDA Tools: CAD + TCAD. TCAD tools are used for fabrication pro-
cess, where it simulates the electrical characteristics of semiconductor devices. The
EDA tools can be categorized according to the functionality:

 1. Design entry (capture tools)
 2. Synthesis tools
 3. Simulation tools
 4. IC physical design & layout tools
 5. IC verifi cation tools
 6. PCB design & analysis tools

 The most famous EDA companies are SYNOPOSYS, MENTOR GRAPHICS,
and CADENCE.

 Table 1.5 SOC applications
and IPS examples

 Category IP

 Processors ARM
 DSP MPEG4, Viterbi
 I/Os PCI, USB
 Mixed signal ADC, DAC, PLL
 Multimedia HDMI
 Memories DRAM controller, fl ash memory
 SoC Buses AHB
 Miscellaneous UART, Ethernet MAC

Layout
(Rectangles)

Transistors

Gates

Blocks

IPs

SoCs

Board/System
 Fig. 1.11 Electronic
systems level from board
to transistors

1 Introduction

9

B
lo

ck
1

G
at

e

tr
an

si
st

or
1

MUX/DEMUX

G
at

e

M
ux

“N
ot

”
tr

an
si

st
or

-le
ve

l

S
oC

2

S
oC

B
oa

rd

IP
IP

IP

IP

D
ig

ita
l B
lo

ck
2

S
E

R
D

E
S

S
E

R
D

E
S

10
b/

8b

(e
nc

od
e)

10
b/

8b

(e
nc

od
e)

M
em

or
y

B
U

S

P
ro

ce
ss

or
s

R
TO

S

C
on

fig
ur

ab
le

 H
ar

dw
ar

e
P

er
ip

he
ra

ls

A
na

lo
g

D
ig

ita
l

V
dd A

V
ss

IN
1

IN
2

O
U

T

S
E

L

Q

M
ix

ed

R
F

 F
ig

. 1
.1

2
 D

et
ai

le
d

el
ec

tr
on

ic
 s

ys
te

m
s

le
ve

l,
w

he
re

 a
 s

in
gl

e
bo

ar
d

co
nt

ai
ns

 n
um

be
r

of
 S

oC
s

an
d

ea
ch

 S
oC

 c
on

si
st

s
of

 a
 n

um
be

r
of

 I
Ps

, t
he

se
 I

Ps
 c

on
si

st
 o

f
a

nu
m

be
r

of
 b

lo
ck

s
w

hi
ch

 c
on

si
st

 o
f

a
nu

m
be

r
of

 g
at

es
. G

at
es

 c
on

si
st

 o
f

a
nu

m
be

r
of

 tr
an

si
st

or
s

[8
]

1 Introduction

10

 F
ig

. 1
.1

3
 Sy

st
em

 w
ith

 m
ul

tip
le

 S
O

C
s.

 S
yn

ch
ro

no
us

 m
od

ul
es

 o
n

a
ch

ip
 c

om
m

un
ic

at
io

n
as

yn
ch

ro
no

us
ly

 [
 8]

1 Introduction

11

 References

 1. Lojek B (2007) History of semiconductor engineering. Springer, Heidelberg
 2. Rajsuman R (2009) System-on-a-chip. Artech House, London
 3. http://ce.sharif.edu/courses/88-89/1/ce757-1/resources/root/Slides/lec11.pdf . Accessed 2014
 4. dic.csie.ncku.edu.tw/vlsi…/Introduction_to_SOC.pdf . Accessed 2014
 5. Hoon Choi, Myung-Kyoon Yim, Jae-Young Lee, Byeong-Whee Yun, and Yun-Tae Lee (2006)

Formal verifi cation of a system-on-a-chip. ICCD 2000, Austin. pp 453–458
 6. Xu J (2005) Obstacle-avoiding rectilinear minimum-delay Steiner tree construction towards

IP-block-based SOC design. ISQED
 7. Kong Weio Susanto (2003) A verifi cation platform for a system on chip. University of Glasgow,

Glasgow
 8. Wolf M (2013) Computer as components: principles of embedded computing system design,

3rd edn. Morgan Kaufman, Burlington. ISBN 978-0-12-388436-7
 9. Teehan P, Greenstreet M, Lemieux G (2007) A survey and taxonomy of GALS design styles.

IEEE Des Test Comput 24(5):418–428
 10. Mathaikutty DA, Shukla S (2009) Metamodeling-driven IP reuse for SoC integration and

microprocessor design. Artech House, Norwood
 11. Salah K, AbdElSalam M (2013) IP cores design from specifi cations to production. 25th

International Conference on Microelectronics (ICM). IEEE, Beirut

Modeling

Verification

Optimization

Protection

IP Specs

IP product

VLSI CAD TOOLS Fig. 1.14 IP core life
cycle process: includes
four major steps:
(1) IP modeling, (2) IP
verifi cation, (3) IP
optimization, (4) IP
protection. Complete
process from initial
requirements through to
fi nished product. These
cycles or fl ow are done
with the help of VLSI
CAD tools

References

http://ce.sharif.edu/courses/88-89/1/ce757-1/resources/root/Slides/lec11.pdf
http://dic.csie.ncku.edu.tw/vlsi�/Introduction_to_SOC.pdf

13© Springer International Publishing Switzerland 2016
K.S. Mohamed, IP Cores Design from Specifi cations to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_2

 Chapter 2
 IP Cores Design from Specifi cations
to Production: Modeling, Verifi cation,
Optimization, and Protection

2.1 Introduction

 As stated earlier in the previous chapter, plug and play IP in SoC design is the recent
trend in VLSI design (Fig. 2.1). IP cores life cycle process from specifi cation to
production includes four major steps: (1) IP modeling, (2) IP verifi cation, (3) IP
optimization, (4) IP protection. These steps are elaborated in Fig. 2.2 . In the next
sections, we will discuss each step in detail.

2.2 IP Modeling

 To model an IP, we have four design modeling methodologies as depicted in Fig. 2.3
[1 – 6]:

 1. FPGA-based Modeling: defi ned by fi xed functionality and connectivity of
 hardware elements.

 2. Processor-based Modeling: Processor running programs written using a
 predefi ned fi xed set of instructions (ISA).

 3. ASIC-based Modeling: Silicon-level Layout.
 4. PCB-based Modeling: it uses standard ICs such as 74xx (TTL), 40xx (CMOS),

it is not VLSI, it is just discrete components.

 The comparison between theses typical hardware options is shown in Table 2.1 .
Choice of any option depends on application and requirements.

14

 Fig. 2.1 Plug and play
IP in SoC design

Modeling

Verification

Optimization

Protection

IP Specs

IP product

 Fig. 2.2 IP core life
cycle process: includes
four major steps:
(1) IP modeling,
(2) IP verifi cation,
(3) IP optimization,
(4) IP protection

 Table 2.1 Comparison between different types of hardware

 Processor

 ASIC FPGA PCB GPP DSP

 Examples μP, μC MAC, FFT – – –
 Software/hardware Software Software Hardware Hardware Hardware
 Spatial/temporal Temporal Temporal Spatial Spatial Spatial
 Functionality Programmable Programmable Fixed Programmable Fixed
 Time-to-market High High Low High Medium
 Performance Low Medium High Med-high Low
 Cost Low Medium High Low Low
 Power High Medium Low Low-med High
 Memory bandwidth Low Low High High Low
 Companies Intel-ARM TI TSMC Xilinx-

Altera- Actel
 Valor

 Design alternative Digital Digital Digital
analog

 Digital Digital
analog

 RF mixed RF mixed
 Languages C C – Verilog –

 Assembly VHDL

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

15

I/P O/P

Top-Down

Down-Top

IRPC

ACC

Address bus

a

c d

b

Data bus

Control

Memory
ALU

 Fig. 2.3 (a) FPGA-based modeling, (b) processor-based modeling, (c) ASIC-based modeling,
(d) PCB-based modeling

2.2.1 FPGA

 FPGAs are programmable chips, compared to hard-wired chips, FPGAs can be
 customized as per needs of the user by programming. This convenience, coupled
with the option of reprogramming in case of problems, makes the programmable
chips very vital choice. Other benefi ts include instant turnaround, low starting cost,
and low risk. FPGA means “The chip that fl ip-fl ops.” An FPGA is like an electronic
breadboard that is wired together by an automated synthesis tool. An example of a
programmable function using FPGA is shown in Fig. 2.4 . A 3-input lookup table
(LUT) can implement any function of three inputs.

2.2 IP Modeling

16

 Referring to Fig. 2.3a , the general architecture of FPGA is shown where, CLB:
Confi gurable Logic Block, IOB: Input/Output Block, and PSM: Programmable
Switch Matrix. CLBs provide the functional elements for implementing the user’s
logic. IOBs provide the interface between the package pins and internal signal lines.
Routing channels provide paths to interconnect the inputs and outputs of the CLBs
and IOBs. An example for CLB and PSM architecture is shown in Fig. 2.5 [7 – 9].
The confi gurable block can be MUX not only LUT. MUX can implement any
 function, an example for implementing NOT and XOR function is shown in Figs. 2.6
and 2.7 respectively. Also an example for building a latch is shown in Fig. 2.8 .
FPGAs can be also classifi ed according to their routing structure. The three most
common structures are island-style, hierarchical, and row-based [10]. FPGAs are
one-size fi ts all architectures.

 FPGA is considered a top-down methodology (RTL to layout), this methodology
makes design of complex systems more simpler as it focuses on functionality, reduce
time-to-market as it shortens the design verifi cation loop, and makes exploring dif-
ferent design options easier and cheaper for example (latency versus throughput).

 As for modeling languages and the scope of using FPGA-based design, two lev-
els for IP modeling are highlighted register-transfer level (RTL) and transaction
level modeling (TLM) (Table 2.2).

 RTL is the abstraction level between algorithm and logic gates. In RTL descrip-
tion, circuit is described in terms of registers (fl ip-fl ops or latches) and the data is
transferred between them using logical operations (combinational logic, if needed).
That is why the nomenclature: Register-Transfer Level (RTL). Y-chart is shown
in Fig. 2.9 .

 TLM is a technique for describing a system by using function calls that defi ne a
set of transactions over a set of channels. TLM descriptions can be more abstract,
and therefore simulate more quickly than the RTL. TLM separates computation
from communication as depicted in Fig. 2.10 .

 Modeling at the transactional level has several advantages, not only for the IP
provider (designers and verifi cation engineers), but also for the users, which can
evaluate the performances and the behavior of the IP very early in the design fl ow.

Required function Truth table Programmed LUT
a
b

c

y = (a & b)| !c

yl

& a

a b c

0 0 0 1
0

0

1

1
1
1

1
1

0 010
100 1
110 1
101 0
011 0
1011
1111

b c y
000
001
010
011
100
101
110
111

8.
1

M
ul

tip
le

xe
r

y

SRAM cells

 Fig. 2.4 Programmable function using LUT-based FPGA [7]

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

17

B

A

D

C

CLB:LUT

PSM: switch (SRAM)

S
S
S
S

S
SRAM cell

M
U

X

f1 f2 f3 f4

...

 Fig. 2.5 CLB and PSM
architecture example [7]

b
en

0

1

inp

Y=en a+ b,

To build not let:

Inp = ,

b=1,

a=0.

a

y

 Fig. 2.6 Building NOT
function from MUX

The different levels of abstraction and the different modeling languages are shown
in Fig. 2.11 and Table 2.3 .

 System level modeling is widely employed at early stages of system develop-
ment for simplifying design verifi cation and architectural exploration. Raising the
abstraction level results in a faster development of prototypes and the reduction of
implementation details in system level design can increase the simulation speed
and allow a more global view of the system. During the phase of RTL development,
the system level design can serve as a reference model for RTL design and
verifi cation.

2.2 IP Modeling

18

 There are several high-level modeling languages like Systemverilog [11] and
SystemC [12]. TLM does not contain a clock signal. TLMs use function calls for
communication between different modules and events to trigger communication
actions. It allows designers to implement high-level communication protocols for
simulations up to faster than at register-transfer level (RTL). Thus encouraging the
use of virtual platforms for fast simulation prior to the availability of the RTL code.

b
en

2

Inp2

Inp1

Y=en a+ b,

To build not let:

Inp1=en,

Inp2=b,

a= .

a

y

 Fig. 2.7 Building XOR
function from MUX

b
en

D

clk

Y=en a+ b,

To build not let:

clk = ,

b=Q,

a=D.

a

Q

 Fig. 2.8 Building LATCH
function from MUX

 Table 2.2 RTL and TLM comparison

 RTL TLM

 Simulation speed
 Abstraction level
 RTL synthesizable Yes No
 Languages Verilog, VHDL Systemverilog, SystemC
 Accuracy

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

19

 F
ig

. 2
.9

 Y

-c
ha

rt
 f

or
 R

T
L

 d
es

ig
n

re
pr

es
en

ta
tio

n:
 le

ve
ls

 o
f

ab
st

ra
ct

io
n

(s
tr

uc
tu

ra
l,

be
ha

vi
or

al
, p

hy
si

ca
l)

2.2 IP Modeling

20

 Fig. 2.10 TLM and RTL example, where TLM does not take into consideration the details, i.e.,
higher abstraction level. TLM replaces all pin-level events with a single function call. TLM speeds
up verifi cation

Scope of Modeling

Verilog
VHDL

System
Verilog

C/C++

MATLAB

Transistors

Algorithm

Architecture

HW/SW

Behavior

Functional Verification

RTL

Gates

Language Level

SystemC

 Fig. 2.11 Comparison between different modeling languages [4]

 Table 2.3 The modeling languages comparison

 MATLAB SystemC Systemverilog Verilog VHDL

 Requirements Yes YES No No No
 Architecture Yes Yes No No No
 HW/SW No Yes No No No
 Behavior No Yes Yes No Yes
 Functional verifi cation No Yes Yes No No
 Testbench No Yes Yes Yes Yes
 RTL No Yes Yes Yes Yes
 Gates No No Yes Yes Yes
 Transistors No No Yes Yes No

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

21

 Systemverilog suffers from [13]:

 1. It is closed source.
 2. It is not software domain, i.e., does not support HW/SW co-verifi cation.
 3. Single core, no multi-core support.
 4. Incomplete support for OOP, for example there is no const class method.
 5. It does not support function overloading.
 6. No automatic garbage collector.
 7. DPI has a long runtime overhead.

 SystemC suffers from:

 1. Single core, no multi-core support.
 2. No coverage support.
 3. Transaction randomization is limited.

 There is another family of languages called scripting languages like PERL [14],
TCL [15], and Python [16]. Scripting languages are programming languages
designed to make programming tasks easier, for example to run all the test cases
automatically after every RTL change to make sure that it does not affect other test
cases. Scripting languages are dynamic high-level languages with extensive stan-
dard library which enables rapid prototyping and experimentation.

 There are advances in design methods such as using IP-XACT. IP-XACT is a
standard written in an XML fi le format to describe hardware designs at a higher
level [17 , 18]. Also, it provides a standard for component design description
exchange among heterogeneous platforms or among different designers working on
different components or in other words, it helps in IP reuse.

 The XML document is written using XML editors and it contains set of tags
which represent a synthesizable hardware component such as registers and
FIFO. IP-XACT documents the attributes of an IP component such as Interfaces,
signals, parameters, memory, ports, and registers. An XML parser interprets the
document and generates RTL code as XML is just plain text. The parsing process of
an XML is relatively fast. Python is one of the languages used for parsing [19].

 FPGA design fl ow comprises the following steps:

 1. Convert specifi cation to RTL code.
 2. Synthesis the code which means converts the RTL code into generic Boolean

netlist (gates, wires, registers).
 3. Do mapping: map the generic Boolean gates into target technology (LUT or

MUX CLB). The RTL can be mapped into FPGA or ASIC as depicted in Fig. 2.12 .
 4. Placement and routing.
 5. Downloading: the fi le which is generated and downloaded to the FPGA is called

bitstream fi le.

 An example for a logic block is shown in Fig. 2.13 . The placement process is
described in Fig. 2.14 and the routing process is described in Fig. 2.15 .

2.2 IP Modeling

22

 Fig. 2.12 RTL to FPGA
or ASIC

cout

x

y

cin

n2

n4

n3

g5

g4

g3

g6

g7

n5

0001

0001

0001

0111

0111

 Fig. 2.13 Computed
values for truth tables (two
input only AND and OR
gates logic network)

MUX

In1 In2

Out Switch
box

Switch
box

Switch
box

MUX

In1 In2

Out Switch
box

Switch
box

Switch
box

MUX

In1 In2

Out
MUX

In1 In2

Out

Switch
box

Switch
box

Switch
box

Switch
box

MUX

In1 In2

Out Switch
box

Switch
box

Switch
box

MUX

In1 In2

Out

g3

0
0
0
1

0
0
0
1

0
0
0
1

g4 g5

0
1
1
1

g7

0
1
1
1

g6

Switch
box

Switch
box

Switch
box

Switch
box

Switch
box

 Fig. 2.14 FPGA placing

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

23

2.2.2 Processor

 Referring to Fig. 2.3b , the general architecture for a very simple processor is shown,
where PC: program counter, ACC: accumulator, ALU: arithmetic logic unit, IR:
instruction register. The PC holds the address of next instruction to be executed,
ACC holds the data to be processed, ALU performs operation on data, IR holds the
current instruction code being executed. The operation can be summarized in the
following steps (Fig. 2.16):

 1. Instruction fetch: The value of PC is outputted on address bus, memory puts the
corresponding instruction on data bus, where it is stored in the IR.

 2. Instruction decode: The stored instruction is decoded to send control signals to
ALU which increment the value of PC after pushing its value to the address bus.

 3. Operand fetch: The IR provides the address of data where the memory outputs it
to ACC or ALU.

 4. Execute instruction: ALU is performing the processing and store the results
in the ACC. The instruction types include: data transfer, data operation
 (arithmetic, logical), and program control such as interrupts.

MUX

In1 In2

Out
Switch

box

Switch
box

Switch
box

MUX

In1 In2

Out
Switch

box

Switch
box

Switch
box

MUX

In1 In2

Out
Switch

box

Switch
box

Switch
box

MUX

In1 In2

Out
Switch

box

Switch
box

Switch
box

MUX

In1 In2

Out
Switch

box

Switch
box

Switch
box

MUX

In1 In2

Out
Switch

box

Switch
box

Switch
box

g3

0

0

0

1

0

0

0

1

0

0

0

1

g4 g5

0

1

1

1

0

1

1

1

g7g6

x

y

cin

 Fig. 2.15 FPGA routing

2.2 IP Modeling

24

 Theses cycles are continuous and called fetch–decode–execute cycle. The pro-
cessors can be programmed using high-level language such as C or mid-level lan-
guage such as assembly [20]. Assembly is used for example in nuclear application
because it is more accurate. At the end the compiler translates this language to the
machine language which contains only ones and zeroes.

 Instruction Set Architecture (ISA) describes a processor from the user’s point of
view and gives enough information to write correct programs. Examples of ISA are
Intel ISA (8086, Pentium).

IR

Step 1

PC

ACC

Address bus

Data bus

Control

Memory
ALU

IR

Step 2

PC=PC+K

ACC

Address bus

Data bus

Control

Memory
ALU

IR

Step 3

PC

ACC

Address bus

Data bus

Control

Memory
ALU

IR
Step 4

PC=PC

ACC

Address bus

Data bus

Control

Memory
ALU

 Fig. 2.16 A simple processor operation

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

25

2.2.3 ASIC

 Physical design converts a circuit description into a geometric description. This
description is used to manufacture a chip. Geometric shapes which correspond to
the patterns of metal, oxide, or semiconductor layers that make up the components
of the integrated circuit. It is top view of the cross-sectional device [21].

 Using ASIC design methodology, it is very hard to fi x bugs and it needs long time
through the fabrication process (Design, Layout, Prototype, Fabrication, and Testing).
It requires expensive tools and requires a very expensive Fab. But, it provides supe-
rior performance [22]. In ASIC, the schematics is converted to stick diagram to fi nd
Euler path which determines the best way to put the devices in the substrate and then
the stick diagram is converted to layout (Fig. 2.17). The layout can be analog, digital,
or mixed signal. An example for a layout of a simple FET transistor is shown in
Fig. 2.18 . The layout has some design rules called design rule check (DRC) [23].

 Since there are different semiconductor processes (with different set of rules and
properties), the designer has to know the specifi cations for the one that is to be used.
This information is stored in a set of fi les called Technology Files. The technology
fi les contain information about:

• Layer defi nitions: Conductors, contacts, transistors.
• Design rules: minimum size, distance to objects.
• Display: Colors and patterns to use on the screen.
• Electrical properties: resistance, capacitance.

S

S

G

Field effect transistor (FET)

D

D

G

Poly crossed over Diffusion

 Fig. 2.18 Layout
of simple FET, where
source and drain are
interchangeable [21]

 Fig. 2.17 Schematics to stick diagram to layout. A stick diagram is a symbolic layout: contains
the basic topology of the circuit. It is always much faster to design layout on paper using stick
diagram fi rst before using the layout CAD tool [21]

Vdd

Vdd
Vdd

short poly
interconnect

GND

GND
GND

2.2 IP Modeling

26

 The process features example:

• p -Type substrate
• n -Well
• n + and p + diffusion implants
• One layer of poly (gate material)
• Two layers of metal for interconnection (metal 1 and metal 2)
• Contact (metal 1 to poly or metal 1 to diffusion)
• Via (metal 1 to metal 2)

 After fi nishing the layout, GDS-II fi le is sent to the fab to be fabricated. This
stage is called “Tape out.”

 Fig. 2.19 Typical PCB: computer motherboard

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

27

Bugs

Electrical

Temp Voltage Process

Functional

Logic Algorithm Timing

 Fig. 2.20 Types of bugs

2.2.4 PCB

 Standard logic ICs provides fi xed function devices which can be connected together
on PCB to implement a system. Standard logic ICs has limited speed and limited
number of pins. Standard ICs such as 74xx (TTL), 40xx (CMOS). Typical PCB is
the computer motherboard as depicted in Fig. 2.19 . PCBs are made of copper and
dielectric. Copper is an excellent electrical conductor and it is inexpensive material.
PCBs can be single-sided, double-sided, or multilayer boards [24].

 For single-sided PCB, components are on one side and conductor pattern on the
other side. Routing is very diffi cult.

 For double-sided PCB, conductor patterns are on both sides of the board and we
connect between the two layers through vias. Via is a hole in the PCB, fi lled or
plated with metal and touches the conductor pattern on both sides. Since routing is
on both sides, double-sided boards are more suitable for complex circuits than
single- sided ones. It is always better to minimize the number of vias.

 For multilayer PCB, these boards have one or more conductor patterns inside the
board. Several double-sided boards are glued together with insulating layers in
between. For interlayer connections, there is blind via to connects an inner layer to
an outer layer and buried via to connects two inner layers. The layers are classifi ed
as: Signal layers, Ground plane, and Power plane. Power planes may have special
restrictions such as wider track widths

2.3 IP Verifi cation

 Verifi cation is a process used to demonstrate the functional correctness of a design
(no bugs). The types of bugs are summarized in Fig. 2.20 . It is called bugs because
in 1942 using the computer to perform calculations, it gave the wrong results. To
fi nd out what was going wrong, they opened the computer and looked inside
(remember, this was in the “good old days,” and an electromechanical computer was
in use). And there they found a moth stuck inside the computer, which had caused
the malfunction. The design/verifi cation matrix is shown in Fig. 2.21 .

2.3 IP Verifi cation

28

2.3.1 FPGA-Based/Processor-Based IP Verifi cation

 To verify an IP, we have two options as depicted in Figs. 2.22 and 2.23 :

 1. Function-based verifi cation

 (a) Simulation-based
 (b) Accelerator-based
 (c) Emulation-based
 (d) FPGA prototyping

 2. Formal-based verifi cation

 (a) Assertion-based

 IPs functional verifi cation is a key to reduce development cost and time-to-
market. Simulation speed is a relevant issue for complex systems with multiple
operational modes and confi gurations since in such cases a slow simulator may
prevent the coverage of a suffi cient number of test cases in the verifi cation phase
[25]. To boost the performance of simulation, a number of platforms have recently
attracted interest as alternatives to software-based simulation: acceleration, emula-
tion, and prototyping platforms. Advantages and disadvantages of each type is sum-
marized in Table 2.4 , where simulation is easy and low cost, but not fast enough for
large IP designs. FPGA prototyping are fast, but has little debugging capability.
 Accelerators can improve the performance to an extent where, the DUT is mapped
into hardware and the testbench is run on the workstation, if we use real host appli-
cation SW and real OS SW to access the device is called virtual accelerators .

 Emulation improves the accelerators performance, where the testbench and
DUT are mapped into hardware; it also provides effi cient debugging capabilities
over the FPGA prototyping. The general architecture for the emulator is shown in
Fig. 2.24 , where many FPGAs are interconnected together for large gate capacity.

 There is another mode of operation for the emulator called (in-circuit emulator)
ICE, the difference between them can be interpreted by Fig. 2.23f , where in ICE
part of the model is a real hardware.

Bad Design

Bad Verification

Many Bugs Exists
Bugs Not discovered

Bad Reputation at
customers

Many Bugs Exists
Bugs discovered

Time-to-market loss

Few Bugs Exists
All bugs are discovered

Customer Happy

Few Bugs Exists
Bugs Not discovered

Bad Reputation at
customers

Good Verification

Good Design

 Fig. 2.21 Design/
verifi cation matrix: the cost
of verifi cation

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

29

 The formal verifi cation complements simulation-based RTL design verifi cation
by analyzing all possible behaviors of the design to detect any reachable error states
using assertion-based verifi cation (ABV) methodology and languages like
SVA. This exhaustive analysis ensures that critical control blocks work correctly in
all cases and locates design errors that may be missed in simulation. Moreover, it is
a static simulator, that is why it takes less time in simulation than dynamic ones.

Prototyping

Emulation

Acceleration

Simulation

Formal

Functional Verification
(Dynamic simulators)

(Faster speed, closer to final product)

Formal Verification
(Static simulators)

Functional Only
Timing Only

STA

 Fig. 2.22 IP cores verifi cation options (platforms)

PrRTLo
be

SIMULATION

SW Simulator

IP
(RTL/TLM)

Testbench
(RTL/TLM)

HW Emulator

IP
(RTL)

SW Simulator

Testbench
(TLM)

TBX-Acceleration

HW Emulator

IP
(RTL)

Testbench
(RTL)

HW EMULATION

HW-FPGA
Prototype

IP
(RTL)

Real
Debugger

(Logic
Analyzer)

FPGA prototyping

Host Computera b

c d

e f

An Array of FPGAs

FPGA Board

TBX

Probe

RTL/TLM

RTL

Virtual Acceleration

IP
(RTL)

In-Circuit EMULATION (ICE)

Data-Cable

HW emulator

Real HW
(works as testbench)

Host Computer

An Array of FPGAs

 Fig. 2.23 Simulation, accelerators, emulation, FPGA prototyping platform comparison, the IP
can be a host or peripheral. (a) Simulation, (b) TBX-acceleration, (c) HW emulation, (d) FPGA
prototyping, (e) virtual acceleration, (f) in-circuit emulation (ICE)

2.3 IP Verifi cation

30

 Ta
bl

e
2.

4
 Si

m
ul

at
io

n,
 a

cc
el

er
at

or
s,

 e
m

ul
at

io
n,

 F
PG

A
 p

ro
to

ty
pi

ng
 c

om
pa

ri
so

n

 Si
m

ul
at

io
n

 A
cc

el
er

at
or

s
 E

m
ul

at
io

n
 FP

G
A

 p
ro

to
ty

pi
ng

 Fi
gu

re

 Fi
g.

 2
.2

3a

 Fi
g.

 2
.2

3b
, e

 Fi

g.
 2

.2
3c

, f

 Fi
g.

 2
.2

3d

 Te
ch

no
lo

gy

 So
ft

w
ar

e
 ✓

 ✓
 ✕

 ✕

 W

or
ks

ta
tio

n
 W

or
ks

ta
tio

n
 H

ar
dw

ar
e

 ✕

 ✓
 ✓

 ✓

 A
n

ar
ra

y
of

 F
PG

A
’s

 A

n
ar

ra
y

of
 F

PG
A

’s

 FP
G

A

 E
xe

cu
tio

n
 D

U
T

 Se

ri
al

ly

 In
 p

ar
al

le
l

 In
 p

ar
al

le
l

 In
 p

ar
al

le
l

 Te
st

be
nc

h
 Se

ri
al

ly

 Se
ri

al
ly

 In

 p
ar

al
le

l
 –

 Sy
nt

he
si

za
bl

e
 ✕

 ✕

 ✓

 –
 Su

pp
or

te
d

la
ng

ua
ge

s
 V

er
ilo

g
 V

er
ilo

g
 V

er
ilo

g
 V

er
ilo

g
 V

H
D

L

 V
H

D
L

 V

H
D

L

 V
H

D
L

 Sy

st
em

C

 Sy
st

em
C

 Sy

st
em

ve
ri

lo
g

 Sy
st

em
ve

ri
lo

g
 C

+
+

 D

eb
ug

gi
ng

 –

Fu
ll

R
T

L
-l

ev
el

 v
is

ib
ili

ty

 –
Fu

ll
R

T
L

-l
ev

el
 v

is
ib

ili
ty

 –

Fu
ll

R
T

L
-l

ev
el

 v
is

ib
ili

ty

 –
L

im
ite

d
vi

si
bi

lit
y

(l
im

ite
d

O
/P

)
 –

W
or

ks
ta

tio
n

 –
W

or
ks

ta
tio

n
 –

W
or

ks
ta

tio
n

 –
L

og
ic

 a
na

ly
ze

r
 –

V
is

ib
ili

ty
 f

or
 p

as
t t

im
e

is

lim
ite

d
to

 th
e

de
pt

hs
 o

f
th

e
em

ul
at

or
’s

 tr
ac

e
m

em
or

y

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

31

 L
og

ic
 s

ta
te

 4

 2
 2

 2
 Sp

ee
d

 ×

 10
 2 ×

 10

 4 ×

 10
 5 ×

 C
om

pi
la

tio
n

tim
e

 B
ut

 le
ss

 th
an

 F
PG

A
-b

as
ed

Pr

ot
ot

yp
in

g
as

 it
 d

oe
s

no
t

m
ak

e
ex

ha
us

tiv
e

op
tim

iz
at

io
n

 Fr
eq

ue
nc

y

 C
os

t

 E
xa

m
pl

e
 Q

U
E

ST
A

 T

B
X

 V

E
L

O
C

E

 X
ill

in
x

2.3 IP Verifi cation

32

 The verifi cation methodologies can be classifi ed into:

 1. Directed testing (traditional verifi cation):
 To ensure that the IP core is 100 % correct in its functionality and timing.

Verifi cation engineer sets goals and writes/generates directed tests for each item
in Test Plan (Fig. 2.25). If the design is complex enough, it is impossible to cover
all features with directed testbenches.

 2. UVM :
 Reduce testbench development and testing as it supports all the building blocks

required to build a test environment as depicted in Fig. 2.26 , and it makes multi-
master multi-slave testing easier. High-level verifi cation languages and environ-
ments such as Systemverilog and e, as used in UVM, may be the state-of- the-art
for writing test bench IP, but they are useless for developing models, transactors,
and testbenches to run in FPGAs for emulation and prototyping. None of these
languages are synthesizable. The component functionalities are as follows:

• Sequencer : Transaction is an instruction from the sequence to the driver
(through the sequencer) to exercise the DUT.

• Driver : UVM component that converts a stream of transactions into pin
wiggles.

FPGA 1

FPGA 4

FPGA 2

FPGA 3

Switch

 Fig. 2.24 The general
architecture for the
emulator, where Many
FPGA’s are interconnected
together for large gate
capacity

 Fig. 2.25 Directed testing. Instantiates design under test (DUT), applies data to DUT, monitors
the output

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

33

• Scoreboard : Gets a copy of the transaction in the monitor through the
Analysis port and use that transaction for analysis purposes.

• Monitor : UVM component that monitors the pins of the DUT.

 3. Checkers (assertions):
 An assertion is a statement about a specifi c functional characteristic or prop-

erty that is expected to hold for a design. The assertion-based methodology is
used to ensure the functionality of the IP, where it monitors the transactions on
an interface and check for any invalid operation and outputs error and/or warning
messing of bus protocol. Self-checking ensures proper DUT response (Fig. 2.27).
Assertions enhance observability coverage, making it easier to spot the source of
an error [26].

 4. Negative testing (error injection):
 Negative testing means “verify that the IP will produce an error report if it

sees illegal traffi c.” The theory on which negative testing is based depending on
the “Assertion-based” methodology [27]. The negative testbenches generate ille-
gal traffi c; the IP is supposed to recognize this traffi c as illegal, and issues the
trace error messages (Fig. 2.28).

TOP

TEST
Test plan Specification Configuration

Results
ENV

Master

slave DUT

Sequences library

Test Test library

Coverage

Monitor

Driver

Interface

Collector

Scoreboard

Sequencer

 Fig. 2.26 UVM environment

 Fig. 2.27 Checkers
(assertions)

2.3 IP Verifi cation

34

 5. Software - driven testing :
 Software-driven testing adds a range of capabilities that promise to redraw the

functional verifi cation landscape. These include virtual host and peripheral mod-
els (called “virtual devices”) and software debug technologies enabled by
transaction- based, co-model channel technology. Virtual devices are an emerg-
ing technology, with products beginning to offer the same functionality as tradi-
tional In-Circuit (ICE) solutions, but without the need for additional cables and
additional hardware units. Generally the function of virtual device architecture is
to package a software stack running on the co-model host workstation with com-
munication protocol IP running on Veloce using a TBX co-model link. This
creates protocol solutions so customers can verify their IP at the device driver
level and verify the DUT with realistic software, which is the device driver itself
as depicted in Fig. 2.29 .

 6. Coverage :
 The main purpose of coverage is to check whether the given property

(functional coverage) or statement (code coverage) is covered during simulation/
emulation. For example, is the sequence shown in (Fig. 2.30) ever followed by
my FSM?

 7. Formal :
 Input: HDL, post-synthesis gate-level netlist. It checks if the RTL description

and the post-synthesis gate-level netlist have the same functionality. It is a static
verifi cation [28].

 8. STA : static timing analysis

 Motivation : How can I ensure my design will work at the target frequency under
all circumstances?

 How : By ensuring any timing path meets the timing requirements.
 Why : always fastest than a simulation!

 Fig. 2.28 Negative
testing [27]

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

35

 Fig. 2.29 A virtual device packages a software stack running on co-model workstation with com-
munication protocol IP running on Veloce using a TBX co-model link, (a) host bus is running on
emulator, (b) device controller is running on emulator

 Fig. 2.30 Property
coverage example

2.3 IP Verifi cation

36

 Concept : Check the data are available at the right time around the clock edge
signal through static timing calculation.

 Technique : Delay Calculation R , C = f (Area).
 Hierarchical analysis is based on timing models for blocks

 Notes : STA does not check functionality.

 9. Linting tools
 Linting tools are widely used to check the HDL syntax before synthesizing it.

The input to the linting tool is HDL source and the output is warning and error
messages. Linting tools do not detect functional bugs. And they do not need
stimulus [29]. They targets:

• Unsynthesizable constructs.
• Unintentional latches.
• Unused declarations.
• Driven and undriven signals.
• Race conditions.
• Incorrect usage of blocking and non-blocking assignments.
• Incomplete assignments in subroutines.
• Case statement style issues.
• Out-of-range indexing.

2.3.2 ASIC-Based IP Verifi cation

 It is called physical verifi cation and it includes [30]:

 1. Design rule checking (DRC):
 DRC checks for if layout complies with foundry rules that is if the layout will

be manufacturable. Typically this will have width check, density check, spacing
checks, overlap checks, extension checks, etc.

 2. Electrical rule check (ERC):
 Checks for no short contacts, no fl oating points, etc.

 3. Layout vs. Schematics (LVS):
 LVS checks if the layout matches with the reference. In case of full-custom,

the reference is spice netlist which is verifi ed for functionality before getting into
layout.

 4. Post-layout simulation:
 Add the parasitics extracted to the model and resimulate it to make sure that

its functionality is still ok.

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

37

2.3.3 PCB-Based IP Verifi cation

 After drawing the schematic of your circuit and verifying its functionality using any
circuit simulator like spice, and after implementing it on PCB, you can verify it
using these tips:

 1. To perform the PCB verifi cation test, compare the PCB with the layout. During
this stage, you might also want to test the connectivity of each traces to ensure
no broken traces by using the diode function in the multimeter especially those
with buzzer sound. This will ease the verifi cation process as once we hear the
buzzer sound, you will know that the trace is connected from one end to another.

 2. To check for shorts, look at any suspicious traces that are too close and test using
diode function in the multimeter as well. This time, if your buzzer sounds, then
you know there is an unwanted shorts [31].

2.4 IP Optimization

 The optimization objective is to reduce area, delay, latency, and power and to
increase performance and speed to meet the requirement.

2.4.1 FPGA-Based IP Optimization

 To optimize an FPGA-based IP, we have three directions [5]:

 1. Compilation time optimization.
 2. Maximum frequency optimization.
 3. Following some RTL design tips.

2.4.1.1 Compilation Time Optimization

 Best practice design methodology

• Do not use long loops.
• Store large data in memory not in a register.
• Reduce the use of power “**” and the division “\”, instead use log and shift right.
• Do not write long ternary statement “()? : () ? : () ? … .” This very Verilog-based

designs.
• Use 2D memory instead of 1D memory as 2-D memory reduce the compile as it

is mapped directly to the memory blocks not to the logic.

2.4 IP Optimization

38

 Use of the latest computer technology

• Parallel (distributed) compilation, use dual or more core feature.

 Place - and - route algorithm improvements

• Improve the place-and-route algorithms in the CAD tool development.

2.4.1.2 Maximum Frequency Optimization

 Best practice design methodology

 1. Make long “Assign” in a clock statement (Pipelining). This is for Verilog-based
designs. Note that removing clk cycle to improve latency is easier than inserting
one to improve pipelining.

 2. Initialization of all uninitialized registers.
 3. Using of linting tools such as 0-IN from Mentor Graphics.
 4. Make the design under test (DUT) works with posedge clock or negedge clock

only, not a mix of them to avoid the half-cycle path. half-cycle path is a path
where the data is launched by a fl ip-fl op (FF) on posedge of a clock and captured
by a FF on negedge, hence the time available is only half a cycle instead of full
cycle where both FF are working on posedge.

2.4.1.3 Follow Some RTL Design Tips

 1. Partition a large memory into several small blocks
 For example, Questa/Modelsim maximum limit is 2G addresses per memory,

so you need to divide the memory if it is higher than 2G as depicted in Fig. 2.31 .
 2. Clock gating

 The concept of clock gating is shown in Fig. 2.32 .
 3. Resetting

 For proper operation we must reset all the registers into the reset process.
 4. FSM coding style

 The explicit, naive style FSM is better than Mealy or Moore machines as
these machines have two distinct disadvantages (Fig. 2.33): (1) they may end
with long combinational paths as they don’t have output registers. (2) Even
worse, if the coding is not done properly latches could be introduced and there
will be mismatches between simulation and emulation. So, we strongly recom-
mend a state machine to use a naive style (Fig. 2.34). This way we will have
registers for the states and the outputs. For granted this ends up with more

4GB

2GB

2GB

 Fig. 2.31 Partition a large
memory into several small
blocks

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

39

 registers but it is much, much safer design and it makes it also run at higher
frequency as the paths between registers are shorter [2].

 Encoding of FSMs including different encoding styles, the most famous one
is binary encoding. There is also gray encoding and one-hot encoding. Binary
encoding implements very less logic. Also it used minimum number of FFs.

always @ (posedge clk)
if (en)
q<=d;

Assign clk1= clk & en;
always @ (posedge clk1)
if (en)
q<=d;

D Q

D Q

CLK

en

en
CLK

 Fig. 2.32 Clock gating

D Q

CLK

Logic
State Register

Outputs

D Q

CLK

Logic
State Register

Outputs

Inputs

Inputs

a

b

 Fig. 2.33 Structures of (a) Moore type FSMs and (b) Mealy type FSMs

2.4 IP Optimization

40

Possible state values for a 4 state binary state machine (00, 01, 10, 11). Gray
 encoding is especially useful when the outputs of the state bits are used
 asynchronously. This kind of state coding avoids intermediate logics. For exam-
ple if a state wants to change its state from “01” to “10.” In Gray coding between
state transitions only one bit will change. Possible state values for a 4 state gray
state machine (00, 01, 11, 10).

 One-hot encoding uses one fl ip-fl op for each state. For example if there are
10 states in logic then it will use 10 fl ip-fl ops. This type of encoding is fast
because only one bit needed to check for each state. It implies complex logic and
more area inside the chip due to more number of fl ip-fl ops. FPGAs are “Flip-fl op
rich,” therefore one-hot state machine encoding is often a good approach. It also
reduces hardware’s logic switching rate. Possible state values for a 4 state one-
hot state machine (0001, 0010, 0100, 1000), also an example of how to write the
one-hot encoding FSM is shown in Table 2.5 .

 Choice of an encoding style is depending of the requirements and performance
goals (Table 2.6). Here, one-hot Finite State Machine (FSM) encoding scheme is
being adopted for HDL model. One-hot state machines are typically faster, where
the logic complexity associated to each state gets decreased. For comparison
between binary, gray, and one-hot encoding scheme, one sample state machine
was taken with n states. Verilog code was developed using binary and one-hot
encoding scheme and then was synthesized to evaluate performance and area.
One-hot encoding is a preferred approach if the timing in the output path is critical.
Conversion from Binary Encoding to Gray Encoding is shown in Fig. 2.35 [32].

 5. Parameterizing
 Use parameters as much as possible instead of hard-coded values, as it makes

verifi cation easier. Parameterization means design all features in HDL code and
choose what you want to fabricate. Fixed IP versus parameterized IP is shown

D Q

CLK

D Q

CLK

Logic

State Register

Outputs

Inputs

 Fig. 2.34 Explicit naive style FSM

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

41

 Table 2.5 One-hot encoding verilog example

 case (1’b1)
 state [S0]:
 if (in == 1)
 next_state [S1] = 1’b1;
 else
 next_state [S2] = 1’b1;
 state [S1]:
 if (in == 1)
 next_state [S0] = 1’b1;
 else begin
 next_state [S2] = 1’b1;
 state [S2]:
 next_state [S0] = 1’b1;

 Table 2.6 Difference between different FSM encodings

 Feature Binary Gray One-hot

 Number
of fl ip-fl ops

 #(fl ip fl ops) = log 2 (#states) #(fl ip fl ops) = log 2 (#states) #(fl ip fl ops) =
#(states) Fewer Fewer

 Speed Slower Slower, only one bit is
changed in state transition

 Faster

 Critical path
searching

 Need more tracking to fi nd
critical path during STA

 Need more tracking to fi nd
critical path during STA

 Easy to fi nd critical
path during STA

 Debug easiness Tedious to debug Tedious to debug Easy to debug
 Low power Higher power Suitable for low-power

design because of low
signal transitions

 Higher power

Real

Input binary Output Gray

B

A

C

D

 Fig. 2.35 Conversion
from binary encoding to
gray encoding

2.4 IP Optimization

42

in Fig. 2.36 . The advantage of parameterization mechanisms over the use of
constants/packages is that parameterization allows the same component to be
used multiple times in a single design with different sets of parameters [33].

 6. Speed and area optimization
 Keep critical path logic in a separate module, optimize the critical path logic

for speed, and optimize the noncritical path logic for area (Fig. 2.37).
 Dynamic Partial Reconfi guration (DPR) is also used to optimize area usage.

With DPR, it is possible to implement different circuits that are not needed at the
same time, and that do not operate simultaneously, on the same FPGA area,
resulting in considerable area savings as depicted in Fig. 2.38 . This area is gener-
ally called the reconfi gurable region (RR). Whenever the designer wants to
change the implemented circuit, an amount of time is needed to rewrite the con-
fi guration memory at runtime and this is called the reconfi guration time [34 – 36].
The subsystem that performs the reconfi guration is called the reconfi guration
manager and is generally implemented in software.

Addr [7:0]

IP

Addr [width-1:0]

IP

Width=16

a b

 Fig. 2.36 (a) Fixed IP versus (b) parameterized IP

D Q

CLK

Critical
Path Logic

D Q

CLK

Non-Critical
Path Logic

a

b

 Fig. 2.37 (a) Speed
optimization, (b) area
optimization

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

43

 The confi guration memory of the reconfi guration region (RR) consists of
SRAM memory cells that control the content of the lookup tables and the state
of the routing switches. To implement a circuit in the RR, a confi guration needs
to be generated that contains the binary values that need to be written in the RR’s
memory cells. Figure 2.39 gives an example that describes the role of confi gura-
tion memory [37 – 40].

 In conventional DPR systems, a confi guration bitstream is generated for every
mode by implementing it separately in the RR, where every RR memory cell
corresponds to a collection of binary values, one value for each mode. When
these binary values are the same, this collection is called a static bit. If they are
not the same, this collection is called a dynamic bit. Memory cells containing a
static bit do not need to be rewritten during runtime.

 The DPR design fl ow methodology framework comprises a set of steps,
which are necessary to implement the proposed multi-mode memory controller’s
applications using DPR as described in Fig. 2.40 .

 (a) During the initial phase, the static modules and the partial reconfi guration
modules (PRM) are described in HDL language.

 (b) The PRMs are synthesized to generate the corresponding netlist for each module.
 (c) Perform placement and routing and generation of the full and partial recon-

fi guration bitstream.
 (d) Merges the full bitstream to generate a fi nal downloadable bitstream.
 (e) The fi nal downloadable bitstream is copied onto the compact fl ash card and the

card is plugged into the FPGA to bring up the design on the next power cycle.
 (f) To switch between the different circuits, the reconfi guration manager writes

the reconfi gurable region with the appropriate bitstream confi guration.

FPGA

 Fig. 2.38 DPR concept, implement different circuits that are not needed at the same time, and that
do not operate simultaneously, on the same FPGA area, resulting in considerable area savings

2.4 IP Optimization

44

 7. Power optimization

• Use gray-coding FSM.
• Use line coding to reduce transitions (8b/10b encoder): reduce α (switching

activity factor).
• Increase data bus width to reduce transfer cycles: reduce α.

2.4.2 Processor-Based IP Optimization

 A. Best practice design methodology

 1. Do not use long loops.
 2. Split logic circuits to shorten the critical path.
 3. Choose faster logic circuit architectures.

 B. Use of the latest computer technology

 1. Parallel (distributed) compilation, use dual or more core feature.

Programmable LUT
Truth table for
Y= (a & b) ! C

a b c

SRAM cells

1

0

1

1

1

0

1

1

000 1

001

010

011

0

1

1

100

101

110

111

000

001

010

011

100

101

110

111

1

0

1

1

y

y

 Fig. 2.39 An example describes the role of confi guration memory [37]

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

45

2.4.3 ASIC-Based IP Optimization

 1. Keep n -devices near n -devices and p -devices near p -devices [1].
 2. Keep n MOS near ground and p MOS near V dd .
 3. Layout of large transistor: large transistors can be viewed as number of parallel

small transistors because as the gate width increases beyond certain limit, the
effi ciency of the transistors decreases as poly resistance increases.

 4. Metal line bending: use 45° bending not 90° as the effective area of the current
fl ow through 90° bending is reduced to 50 %.

Configuration
Manager

Configure

Download

Merge

Configuration 3Configuration 2Configuration 1

Route

Place

Technology
Mapping

Synthesis

HDL 3HDL 2HDL 1

SynthesisSynthesis

Technology
Mapping

Technology
Mapping

PlacePlace

RouteRoute

 Fig. 2.40 DPR design fl ow methodology framework. It comprises a set of steps, which are neces-
sary to implement the proposed multi-mode memory controller’s applications using DPR

2.4 IP Optimization

46

 5. Put guard rings around differential pairs, n -well, and p -well.
 6. If we leave the differential pairs on the edges without dummies, they will see

different surroundings and mechanical stress than the middle ones; with dum-
mies we can avoid this.

 7. Use interleaving between transistors so that if a fabrication error happened in a
die, it does not affect the remaining transistors and the chip can remain working
correctly.

 8. Global signals should be routed on the top and bottom of layout blocks. Local
signals should be routed through the center of layout blocks.

2.4.4 PCB-Based IP Optimization

 1. Separate the digital and analog portions of the circuits (Fig. 2.41).
 2. High frequency components should be placed near the connectors (Fig. 2.42).

Digital

Analog

 Fig. 2.41 Separate the
digital and analog portions
of the circuits

Frequency

Connector

 Fig. 2.42 High-frequency components should be placed near the connectors

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

47

2.5 IP Protection

 Without IP protection, companies can lose revenue and market share.

2.5.1 FPGA-Based/Processor-Based IP Protection

 IP vendors are facing major challenges to protect hardware IPs from IP-piracy as,
unfortunately, recent trends in IP-piracy and reverse engineering efforts to produce
counterfeit ICs have raised serious concerns in the IC design community. IP-piracy
can take several forms, as illustrated by the following scenarios:

 1. A chip design house buys an IP core from an IP vendor and makes an illegal copy
or “clone” of the IP. The IC design house then sells it to another chip design
house (after minor modifi cations) claiming the IP to be its own.

 2. An untrusted fabrication house makes an illegal copy of the GDS-II database
supplied by a chip design house and then illegally sells them as hard IP.

 3. An untrusted foundry manufactures and sells counterfeit copies of the IC under
a different brand name.

 4. An adversary performs post-silicon reverse engineering on an IC to manufacture
its illegal clone.

 These scenarios demonstrate that all parties involved in the IC design fl ow are
vulnerable to different forms of IP infringement which can result in loss of revenue
and market share. Hence, there is a critical need of a piracy-proof design fl ow that
equally benefi ts the IP vendor, the chip designer, as well as the system designer. A
desirable characteristic of such a secure design fl ow is that it should be transparent
to the end-user, i.e., it should not impose any constraint on the end-user with regard
to its usage, cost, or performance.

 To secure an IP, we need to obfuscate it then encrypt the contents before sending it
to the customer. Obfuscation is a technique that transforms an application or a design
into one that is functionally equivalent to the original but is signifi cantly more diffi cult
to reverse engineer. So, Obfuscation changes the name of all signals to numbers and
characters combination. The second level is to encrypt the whole fi les [41 , 42].
Although encryption is effective, code obfuscation is an effective enhancement that
further deters code understanding for attackers [43]. Moreover, Watermarking can
be used to protect Soft-IPs [44]. It includes modules duplication or module splitting.

2.5.2 ASIC-Based IP Protection

 1. Circuit camoufl age : let individual logic cells appear identical at each mask
layer, when in fact subtle changes are present to differentiate logic functions.
Changes are designed so that the reverse engineer is unable to automate cell
recognition [45]. Figure 2.43 Shows an example of unprotected layout and
Fig. 2.44 shows a protected one.

2.5 IP Protection

48

2.5.3 PCB-Based IP Protection

 1. Remove the markings from all the major ICs and mark them with in-house part
numbers.

 2. Encapsulate the PCB into epoxy (black blobs) as depicted in Fig. 2.45 [46].
 3. Add a few fake layers for complexity.

2.6 Summary

 This chapter discusses the IP cores life cycle process from specifi cation to produc-
tion which includes four major steps: (1) IP Modeling, (2) IP verifi cation, (3) IP
optimization, (4) IP protection. For IP modeling, four major methodologies are

 Fig. 2.43 Unprotected
standard cell layouts the
metal layers are different
and hence it is easy to
differentiate them by just
looking at the top metal
layer [45]

 Fig. 2.44 Camoufl aged
standard cell layouts. The
metal layers are identical
and hence it is diffi cult to
differentiate them by just
looking at the top metal
layer [45]

 Fig. 2.45 Encapsulate the
PCB into epoxy (black
blobs)

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

49

introduced which includes: FPGA-based modeling, processor-based modeling,
ASIC-based modeling, and PCB-based modeling. For IP verifi cation, different plat-
forms are presented and analyzed such as simulation, acceleration, emulation, and
prototyping. Moreover, different verifi cation methodologies are introduced such as:
UVM, direct testing, negative testing, software-driven testing, and formal testing. We
presented different methods for IP optimization for the main design methodologies
to improve area, speed, and power. For IP protection, we analyzed different strategies
to perform protection not to make companies lose revenue and market share.

 References

 1. www.cs.clemson.edu/~mark/464/fab.pdf
 2. Rafl a NI, Davis, Brett LaVoy (2006) A study of fi nite state machine coding styles for imple-

mentation in FPGAs. 49th IEEE International Midwest Symposium on Circuits and Systems,
San Juan

 3. Roudier T, Moussa I, di Crescenzo P (2003) IP modelling and reuse for system level design.
Published for DATE

 4. http://www.esa.int/TEC/Microelectronics/SEM6Z0AMT7G_0.html
 5. Simpson P, Jagtiani A (2007) How to achieve faster compile times in high-density FPGA.

EE Times
 6. Ricardo R, Marcelo L, Jochen J (2010) Design of systems on chip: design and test. Springer,

Dordrecht
 7. Clive M (ed) (2007) FPGAs: world class design. Newness, Burlington
 8. Hauck S, DeHon A (2008) Reconfi gurable computing: the theory and practice of FPGA-based

computation. Morgan Kaufmann, Burlington
 9. Maxfi eld CM (2004) The design warrior’s guide to FPGAs. Newnes, Burlington
 10. Betz V, Rose J, Marquardt A (1999) Architecture and CAD for deep-submicron FPGAs.

Kluwer, Boston
 11. Sutherland S, Davidmann S, Flake P (2003) Systemverilog for design: a guide to using

 systemverilog for hardware design and modeling. Kluwer, Norwell
 12. Black D, Donovan J, Bunton B, Keist A (2010) SystemC: from the ground up, 2nd edn.

Springer, New York. ISBN 978-0-387-69957-8
 13. Goel P, Adhikari S (2014) Introduction to next generation verifi cation language—Vlang.

DVCON Conference and Exhibition, Munich
 14. Schwartz RL, Phoenix T (2008) Learning PERL. O’Reilly Media, Sebastopol
 15. www.ActiveState.com
 16. Ucoluk G, Kalkan S (2007) Introduction to programming concepts with case studies in python.

Springer, London
 17. http://www.accellera.org/activities/committees/ip-xact
 18. IEEE 1685-2009 IPXACT. Accessed 18 Feb 2010
 19. Kulkarni R (2013) Automated RTL generator. M.Sc. Thesis, San Jose State University
 20. Axelson J (1997) The microcontroller idea book. Lakeview Research, Madison
 21. Sherwani NA (1999) Algorithms for VLSI physical design automation, 3rd edn. Kluwer,

Boston
 22. Sung Kyu L (2008) Practical problems in VLSI physical design automation. Springer,

New York
 23. Clein D (2000) CMOS IC layout concepts, methodologies, and tools. Butterworth–Heinemann,

Newton
 24. Coombs CF Jr (2001) Printed circuits handbook. McGraw-Hill, New York

References

http://www.cs.clemson.edu/~mark/464/fab.pdf
http://www.esa.int/TEC/Microelectronics/SEM6Z0AMT7G_0.html
http://www.activestate.com/
http://www.accellera.org/activities/committees/ip-xact

50

 25. Masahiro F, Indradeep G, Mukul P (2008) Verifi cation techniques for system-level design.
Morgan Kaufmann, San Francisco

 26. Khan MA, Pittman RN, Forin A (2010) gNOSIS: a board-level debugging and verifi cation
tool. Proceedings of the IEEE Conference on ReConFigurable Computing and FPGAs
(ReConFig), Microsoft Research, Redmond. pp 43–48

 27. http://www.guru99.com/positive-vs-negative-testing.html
 28. Pradhan DK, Harris IG (2009) Practical design verifi cation. Cambridge University Press,

Cambridge
 29. Singh L, Drucker L, Khan N (2004) Advanced verifi cation techniques: a SystemC based

approach for successful. Kluwer, Boston
 30. Scheffer L, Lavagno L, Martin G (2006) EDA for IC system design, verifi cation, and testing.

CRC, Boca Raton
 31. https://zentronics.wordpress.com/tag/pcb-design-2/
 32. Cassel M, Kastensmidt FL (2006) Evaluating one-hot encoding fi nite state machines for SEU

reliability in SRAM-based FPGAs. Proceedings of 12th IEEE International On-Line Testing
Symposium (IOLTS 2006), IEEE, Washington, p 6

 33. http://www.arm.com/files/pdf/New_Whitepaper_Layout_Solving_Next_Generation_IP_
Confi gurability.pdf . Accessed 2015

 34. Bhuvaneswari K, Srinivasa Rao V (2013) Dynamic partial reconfi guration in low-cost FPGAs.
Int J Sci Eng Res 4(9):1410–1413

 35. Drahonovsky T, Rozkovec M, Novak O (2013) Relocation of reconfi gurable modules on
Xilinx FPGA. Proceedings of the 2013 IEEE 16th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), IEEE, Karlovy Vary, pp 175–180

 36. Partial reconfi guration user guide, Ug702 (v12.3) ed., Xilinx Corporation, October 2012
 37. Partial reconfi guration of Xilinx FPGAs using ISE design suite, Xilinx Corporation, July 2012
 38. Dunkley R (2012) Supporting a wide variety of communication protocols using partial

dynamic reconfi guration. Proc IEEE Autotestcon 2012:120–125
 39. Marques N, Rabah H, Dabellani E, Weber S (2011) Partially reconfi gurable entropy encoder

for multi standards video adaptation. 2011 IEEE 15th International Symposium on Consumer
Electronics (ISCE), June 2011, pp 492–496

 40. Wang Lie, Wu Fengyan (2009) Dynamic partial reconfi guration in FPGA. Third International
Symposium on Intelligent Information Technology Application, IEEE Computer Society,
Nanchang, pp 445–448

 41. Chakraborty RS, Bhunia S (2008) Hardware protection and authentication through netlist level
obfuscation. Proceedings of the 2008 IEEE/ACM International Conference on Computer-
Aided Design, San Jose, 10–13 November 2008

 42. Chakraborty RS, Bhunia S (2009) HARPOON: an obfuscation-based SoC design methodol-
ogy for hardware protection. IEEE Trans Comput Aided Des Integr Circuits Syst
28(10):1493–1502

 43. Kainth M, Krishnan L, Narayana C, Virupaksha SG, Tessier R (2015) Hardware-assisted code
obfuscation for FPGA soft microprocessors. Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, DATE, EDA Consortium, San Jose

 44. Tehranipoor MM, Guin U, Forte D (2015) Counterfeit integrated circuits detection and avoid-
ance. Springer, Cham

 45. http://www.smi.tv/SMI_Circuit_Camo_Data_Sheet.pdf
 46. http://www.eetimes.com/electronics-news/4212418/Standard-issued-for-PCB-IP-protection

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…

http://www.guru99.com/positive-vs-negative-testing.html
https://zentronics.wordpress.com/tag/pcb-design-2/
http://www.arm.com/files/pdf/New_Whitepaper_Layout_Solving_Next_Generation_IP_Configurability.pdf
http://www.arm.com/files/pdf/New_Whitepaper_Layout_Solving_Next_Generation_IP_Configurability.pdf
http://www.smi.tv/SMI_Circuit_Camo_Data_Sheet.pdf
http://www.eetimes.com/electronics-news/4212418/Standard-issued-for-PCB-IP-protection

51© Springer International Publishing Switzerland 2016
K.S. Mohamed, IP Cores Design from Specifi cations to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_3

 Chapter 3
 Analyzing the Trade-off Between Different
Memory Cores and Controllers

3.1 Introduction

 With the move to multicore computing, the demand for memory bandwidth grows
with the number of cores. It is predicted that multicore computers will need 1 TBps
of memory bandwidth. However, memory device scaling is facing increasing chal-
lenges due to the limited number of read and write cycles in fl ash memories and
capacitor-scaling limitations for DRAM cells. Therefore, memory bottleneck is one
of the main challenges in modern VLSI design. Microprocessors communicate with
memory cores through memory controllers (Fig. 3.1). A detailed fi gure is shown in
Fig. 3.2 [1 – 6].

 Modern systems have complex memory hierarchies with diverse types of volatile
and nonvolatile memories such as DRAM and fl ash. It is the task of the memory
controller to manage these devices. To improve this communication as a solution for
the memory bottleneck, the memory cores and memory controllers can be improved.
The most famous existing memory cores–based solutions are to increase the amount
of on-chip memory elements. However, this solution is expensive, and the most
famous existing memory controllers–based solutions are to improve the controller
architectures and scheduling algorithms.

 Designing memory controllers is challenging in terms of performance, area,
power consumption, and reliability. Since DRAM and NAND Flash scaling will
be at risk as technology scales down to 20 nm, various technological innovations
will be required to fulfi ll technological demands [7]. To address these challenges,
different new memory cores architectures and protocols are analyzed in this
chapter.

52

3.2 Memory Cores

 Memory cores and most famous memory controllers are summarized in Fig. 3.3 ,
where memories are classifi ed into two main categories [8]:

 1. HDD : Hard disk driver (HDD) utilizes ultrasophisticated magnetic recording
and playback technologies. They are used as the primary data storage compo-
nents in notebooks, desktops, servers, and dedicated storage systems.

 2. SSD : Solid-state driver (SSD) is a data storage device that uses nonvolatile
memory (ROM, EEPROM, and Flash) and volatile memory (SDRAM, DRAM)
to store data.

 Comparison between HDD and SDD are shown in Table 3.1 , where SSD are
showing better performance. HDD maximizes GB, not performance. In addition,
the difference is shown in Fig. 3.4 . Noting that, the fl ash-based memories are based
on fl oating-gate technology as depicted in Fig. 3.5 , how it works is shown in the
following steps:

 1. A large voltage difference between the drain and the source creates a large elec-
tric fi eld between the drain and the source.

Memory
Cores

(DRAM,Flash)

Memory Controller
(ONFI, eMMC, DDR2)

Multi-Core
SoC

 Fig. 3.1 Memory cores interfaces with microprocessors

MEM controller

MEM Core

BRIDGE

µP CODEC

On-chip peripheral

System bus

SoC
 Fig. 3.2 Memory
cores interfaces with
microprocessors through
bridge

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

53

 2. The electric fi eld converts the previously nonconductive poly-Si material to a
conductive channel, which allows electrons to fl ow between the source to the
drain.

 3. The electric fi eld caused by a large gate voltage is used to bump electrons up
from the channel onto the fl oating gate.

 4. The number of electrons on the fl oating gate affects the threshold voltage of the
cell (Vt). This effect is measured to determine the state of the cell.

 5. The threshold voltage can be manipulated by the amount of charge put on the
fl oating gate of the Flash cell.

 6. Placing charge on the fl oating gate will increase the threshold voltage of the cell.
When the threshold voltage is high enough, around 4.0 V, the cell will be read as
programmed. No charge, or threshold voltage <4.0 V, will cause the cell to be
sensed as erased.

Memories

HDD SSD

Volatile

SRAM DRAM

SDRAM DDR2,3,4 LPDDR2,3

Non-
Volatile

ROM EEPROM Flash

NAND
Flash

OneNAND eMMC ONFI USB SATA

NOR
Flash

Memory Cores

Memory
controllers

(How to read,
write, erase)?

 Fig. 3.3 Memory cores and memory interface, for example eMMC is NAND fl ash-based storage
chip that features eMMC interface instead of the typical NAND fl ash or ONFI interface

 Table 3.1 Comparison
between SSD and HDD

 SSD HDD

 Capacity ✓
 Performance ✓
 Reliability ✓
 Endurance ✓
 Power ✓
 Size ✓
 Weight ✓
 Shock ✓
 Temperature ✓
 Cost per bit ✓
 Moving parts ✓

3.2 Memory Cores

54

 A comparison between different memories cores is shown in Table 3.2 [9]. The
fl ash cell can be classifi ed into (Fig. 3.6) [10]:

 1. Multi-level cell NAND (MLC): stores four states per memory cell and enables
two bits programmed/read per memory cell.

 2. Single-level cell NAND (SLC): stores two states per memory cell and enables
one bit programmed/read per memory cell.

 A computer system contains a hierarchy of storage devices with different costs,
capacities, and access times. With a memory hierarchy, a faster storage device
at one level of the hierarchy acts as a staging area for a slower storage device at
the next lower level. Software that is well written takes advantage of the hierar-
chy accessing the faster storage device at a particular level more frequently than
the storage at the next level. Understanding the memory hierarchy will result in

 Fig. 3.4 Hard disk drive versus solid-state drive

 Fig. 3.5 (a) Floating-gate memory cell and (b) its schematic symbol

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

55

 Ta
bl

e
3.

2
 C

om
pa

ri
so

n
be

tw
ee

n
di

ff
er

en
t m

em
or

y
co

re
s

 E
E

PR
O

M

 N
O

R
 fl

as
h

 N
A

N
D

 fl
as

h
 D

R
A

M

 SR
A

M

 C
el

l s
tr

uc
tu

re

F.
G

B
L

W
L

 B
L

W
L

1 W
L

0

 B
L

W
L

1 W
L

0B
L

 S
el

G
N

D
 S

el

B

L

W
L

C
ap

ac
ito

r

L
oa

d

B
L

W
L

B
L

V
C

C

V
SS

 D
en

si
ty

 a
ve

ra
ge

 12

8
K

b
 12

8
M

b
 2–

16
 G

b
 1

G
b

 12
8

M
b

 C
os

t
 W

or
st

 M

od
er

at
e

 C
he

ap

 C
he

ap

 H
ig

h
 N

on
vo

la
til

e
 Y

es

 Y
es

 Y

es

 N
o

 N
o

 So
ft

w
ar

e
 E

as
y

 C
om

pl
ex

 C

om
pl

ex

 E
as

y
 E

as
y

 W
ri

te
 b

an
dw

id
th

 U

p
to

 3
0

K
B

/s

 2
M

B
/s

 10

 M
B

/s

 10
0

M
B

/s

 50
0

M
B

/s

 R
ea

d
la

te
nc

y
(n

s)

 20
0

 10
0

 50

 80

 30

 R
ea

d
pe

rf
or

m
an

ce

 A
sy

nc
hr

on
ou

s
 16

6
M

H
z

 40
 M

H
z

 40
0

M
H

z
 60

0
M

H
z

 W
ri

te
 p

er
fo

rm
an

ce

 A
sy

nc
hr

on
ou

s
 L

ow

 H
ig

h
 M

ed
iu

m

 H
ig

h
 E

nd
ur

an
ce

 10

5
 10

5
 10

4
 U

nl
im

ite
d

 U
nl

im
ite

d
 Sp

ee
d

 Sl
ow

 (
1×

)
 Sl

ow
 (

10
0×

)
 Sl

ow
 (

50
0×

)
 Sl

ow
 (

50
00

×
)

 Fa
st

 (
25

,0
00

×
)

 Se
ns

e
am

pl
ifi

er

 N
ot

 m
an

da
to

ry

 N
ot

 m
an

da
to

ry

 N
ot

 m
an

da
to

ry

 M
an

da
to

ry

 N
ot

 m
an

da
to

ry

 R
ef

re
sh

 N

ot
 r

eq
ui

re
d

 N
ot

 r
eq

ui
re

d
 N

ot
 r

eq
ui

re
d

 Pe
ri

od
ic

al

 N
ot

 r
eq

ui
re

d
 M

an
uf

ac
tu

re
r

 To
sh

ib
a

 To
sh

ib
a

 C
el

l s
tr

uc
tu

re

 1
Fl

oa
tin

g-
ga

te
 tr

an
si

st
or

 n -

T
ra

ns
is

to
rs

 in
 p

ar
al

le
l

 n -
T

ra
ns

is
to

rs
 in

 s
er

ie
s

 1
T

ra
ns

is
to

r
an

d
1

ca
pa

ci
to

r
 6

T
ra

ns
is

to
rs

3.2 Memory Cores

56

better performance of applications. The memory hierarchy can be summarized in
Fig. 3.7 . It starts with register fi le, SRAM, DRAM, then main memory or hard disk.
Moreover, the comparison is shown in Table 3.3 .

 Fig. 3.6 (a) MLC, (b) SLC

Registers

SRAM (Cache)

DRAM

HARD Disk

Faster
Larger

 Fig. 3.7 An example of memory hierarchy

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

57

3.3 Why Standards?

 SoC components (IPs) have an interface to the outside world consisting of a set of
pins; it is responsible for sending/receiving addresses, data, and control. Number
and functionality of pins must adhere to a specifi c interface standard. Standardization
is important for seamless integration of SoC IPs—helps avoid integration
 mismatches [11]:

 – E.g., 1—connecting IP with 32 data pins to a 16 bit data bus.
 – E.g., 2—connecting IP supporting data bursts to a bus with no burst support.

 It is also important because mismatches require development of “logic
wrappers” at IP interfaces.

 – To ensure correct data transfers.
 – Time consuming to create, reduce performance, take up area.

 Interface standards defi ne a specifi c data transfer protocol to decide number and
functionality of pins at IP interfaces and make it easy to connect diverse IPs quickly.

 There are two categories of standards for SoC communication:

• Standard bus architectures

 – Defi ne interface between IPs and bus architecture.
 – Defi ne at least some specifi cs of bus architecture that implements data trans-

fer protocol.

• Socket-based bus interface standards

 – Defi ne interface between IPs and bus architecture.
 – Freedom w.r.t choice and implementation of bus architecture.

 Ideally, designers want one standard to interconnect all IPs. In reality, several
competing standards have emerged.

 JEDEC : is an organization works as a Leading developer of standards for the solid-
state industry [12].

 Table 3.3 Memory technology comparison

 Access delay Cell area (μm 2) Cells/mm 2 (Mb)

 Register <1 Cycle 0.7 1.5
 SRAM 1 Cycle 0.4 2.5
 DRAM 20–50 Cycle 0.04 15
 Flash Read: 50 cycles 0.02 50

 Write: 500 cycles
 Hard disk 5 × 10 6 Cycles 0.004 250

3.3 Why Standards?

58

3.4 Memory Controllers

 There is a great variety of interfaces and protocols, which provide access to the
internal memory cores in different ways to read, write, or erase. Referring to
Fig. 3.3 , examples of Flash-based Memory controllers are EMMC, OneNAND, and
ONFI. Examples of DRAM-based memory controllers are DDRx, LPDDx.

 The main aim of the memory controller is to provide the most suitable interface
and protocol between the host and the memories and to effi ciently handle data,
maximizing transfer speed, data integrity and information retention (conservation
of data with time). The main features are summarized in Table 3.4 . If we compare
the architecture of these different controllers, we realize that their architecture is
common in many things. They mainly differ in the performance and the features.
The following section will describe the most common memory controllers.

 1. eMMC
 The eMMC is a managed memory capable of storing code and data. It is spe-

cifi cally designed for mobile devices. The eMMC is intended to offer the perfor-
mance and features required by mobile devices while maintaining low power
consumption. The eMMC device contains features that support high throughput
for large data transfers and performance for small random data more commonly
found in code usage. It also contains many security features. eMMC
 communication is based on an advanced 10-signal bus. An example of eMMC
architecture is shown in Fig. 3.8 [13].

 2. OneNAND
 Samsung’s OneNAND meets the memory-hungry needs of next-generation

devices by providing a single-chip fl ash that offers the ultrahigh density of NAND
with the simplifi ed interface neither of NOR at very attractive price points.
OneNAND can achieve up to 108 MB/s read performance to optimize application

 Table 3.4 Memory controller features

 Features Explanation

 Topology Point to point, or multi-master/multi-slave
 Physical interface (#pins) The physical interface with other circuits
 Memory organization The min unit for erase, write protection, read, write
 Memory partitions Single partition or multiple
 Initialization process How to start the memory controller operation? Negotiate different

speeds, voltages and single/dual data rates, booting or/not
 Command sets To read, write, multiple read, multiple write, erase, write

protection, partition, secure
 Responses How the card response to the host commands
 Internal registers Contains the initializations and the memory features
 Data rate The data can be DDR or SDR
 Timing The time between commands, responses, and data
 Performance Max clock
 Reliability ECC or not

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

59

functionality. It is available in densities from 256 Mb to 8 GB. With OneNAND,
designers can use their existing chipset’s NOR interface to communicate directly
with the NAND fl ash memory, obviating the need for a separate NAND device.
In addition, OneNAND’s fast write-speed increases performance, which is
extremely diffi cult to attain with NOR fl ash alone. OneNAND’s compact size and
range of features make it the ideal choice for: Handset, digital cameras, embed-
ded solutions. An example of OneNAND architecture is shown in Fig. 3.9 [14].

 3. DDR3
 The third generation of Dual Data Rate (DDR) Synchronous DRAM memory

delivers signifi cant performance and capacity improvements over older DDR2
memory. HP introduced DDR3 memory with the G6 and G7 ProLiant servers,
coinciding with the transition to server architectures that use distributed memory
and on-processor memory controllers. DDR3 continues to evolve in terms of
speed and memory channel capacity, and the new HP ProLiant Gen8 servers
fully support these improvements. An example of DDR3 architecture is shown
in Fig. 3.10 [15].

 4. HMC
 HMC uses 3D single packaging of 4 or 8 DRAM memory dies and one logic

die collected together using through-silicon vias (TSV) and microbumps with
smaller physical footprints. HMC exponentially is more power effi ciency and

 Fig. 3.8 eMMC architecture

3.4 Memory Controllers

60

energy savings, utilizing 70 % less energy per bit than DDR3 DRAM technology.
A single HMC can provide more than 15× the performance of DDR3 module,
which increases bandwidth. HMC reduced latency with lower queue delays and
higher bank availability. It can keep up with the advancements of CPUs and
GPUs. HMC uses standard DRAM cells but its interface is incompatible with
current DDR2 or DDR3 implementations. It has more data banks than classic
DRAM of the same size. HMC memory controller is integrated into memory
package as a separate logic die. The logic base manages multiple functions for
HMC, like all HMC I/O, mode and confi guration registers and data routing and
buffering between I/O links and vault. A crossbar switch is an implementation
example to connect the vaults with I/O links. The external I/O links consist

 Fig. 3.9 OneNAND architecture

 Fig. 3.10 DDR3 architecture

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

61

of multiple serialized 4 or 8 links, each link with a default of 16 input lanes and
16 output lanes for full width confi guration, or 8 input lanes and 8 output lanes
for half width confi guration as shown in Fig. 3.11 [16].

 5. WideIO
 WideIO mobile DRAM uses chip-level dimensional (3D) stacking with

through-silicon vias (TSV) interconnects and memory chips directly stacked
upon a system on a chip (SOC). WideIO DRAM major advantage over its prede-
cessors (such as LPDDR DRAM) is that, it offers more bandwidth at lower
power. WideIO is the fi rst interface standard for 3D die stacks and offering a
compelling bandwidth and power benefi t. WideIO is particularly suited for
applications requiring increased memory bandwidth UP to 17 GBps Such as 3D
Gaming, HD video etc. WideIO will provide the ultimate in performance, energy
effi ciency and small size for smart phones, tablets, handheld gaming consoles,
and other high-performance mobile devices. Given the ever-growing hunger for
memory bandwidth and the need to reduce memory power in many applications;
WideIO is the fi rst standard for stackable WideIO DRAMs. This standard widens
the conventional 32 bit DRAM interface to 512 bits. Memory diagram for
WideIO is shown in Fig. 3.12 [17].

 6. ONFI
 ONFI stands for Open NAND Flash Interface. Early NAND Flash devices

from different manufacturers use similar interface but an open standard did not
exist. As a result, subtle differences exist among devices from different vendors.
ONFI standard aims to provide a common standard, so different device can
be used interchangeably and sets the stage for future standard NAND Flash
development as shown in Fig. 3.13 . The lack of a standard caused serious design
problems like host systems had to accommodate differences between vendors’

 Fig. 3.11 HMC architecture

3.4 Memory Controllers

62

devices and adapt to generational changes in parts from a single vendor. All of
this made incorporating new or updated NAND Flash components extremely
costly, often requiring extensive hardware, fi rmware, and/or software changes
and additional testing which slowed time to market. ONFI works to solve all
these issues by standardizing the NAND Flash interface-reducing vendor and
generational incompatibilities and accelerating the adoption of new NAND
products [18].

 7. UFS
 UFS is most advanced specifi cation for embedded and removable fl ash

memory- based storage because it includes the feature set of eMMC specifi cation
as a subset. It also references several other standard specifi cations by MIPI

 Fig. 3.12 WideIO architecture

 Fig. 3.13 ONFI architecture

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

63

(M-PHY and UniPro specifi cations) and INCITS T10 (SBC, SPC, and SAM
specifi cations) organizations. The UFS interface is a universal serial communi-
cation bus, based on MIPI M-PHY standard as physical layer for optimized per-
formance and power. UFS references the INCITS T10 SAM model for ease of
adoption. The UFS Top level Architecture Consists of three main layers as shown
in Fig. 3.14 . First layer is called application layer which consists of UFS com-
mand set layer (UCS) which handles normal commands, device manager which
has two jobs which are device level operations such as sleep, and power-down
management, and device-level confi gurations such as set of descriptors and han-
dling query request. Task manager handles command queue control. UCS estab-
lishes the method of data exchange between host and device and also provides
device management capability. Second layer is UFS transport protocol layer
(UTP) which services the higher layers and its mission is to encapsulate the
 protocol into appropriate frame structure for the lower layer. Third layer is UFS
interconnect layer (UIC) [19].

 8. HBM
 HBM (High-Bandwidth Memory) is a new type of DRAM-based memory chip

with low power consumption, ultrawide communication lanes and a revolutionary
new stacked confi guration. HBM uses 128-bit wide channels. It can stack up to
eight of them for a 1024-bit interface. The total bandwidth ranges from 128 to
256 GB/s. Each memory controller is independently timed and controlled. Future
GPUs built with HBM might reach 1 TB/s of main memory bandwidth. HBM
designed for high-performance GPU environments as it is cheaper than HMC [20].

 Fig. 3.14 UFS architecture

3.4 Memory Controllers

64

3.5 Comparison Between Different Memory Controllers

 There are completely different memory organizations which develop different
 protocols to enable the designer to pick up the most effi cient and suitable one for
his application.

 For Flex-OneNAND, the building block unit is 4 KB page, which has main area
and spare area. The 4 KB page is divided into eight sectors each of which is 512
bytes for main and 16 bytes for spare. ONFI has eight targets, each target has arbi-
trary multiple Logic units (LUNs). Each LUN consists of arbitrary number of
blocks. Each block consists of number of pages. Each page consists of optional
partial pages which are the smallest unit to program or read. LUN is minimum
unit to execute command and report status. Block is the smallest erasable unit.
eMMC is divided into write protect groups, each one consists of erase groups, and
each erase group has write blocks with 512 bits for each. HMC is organized into
vaults; each vault has 4 or 8 partitions according to the number of memory dies.
One partition is multiple of 16 MB banks. Each four vaults called quadrant. WideIO
consists of four memory dies which are called stack. Each die consists of four inde-
pendent channels of 128 bidirectional data bits. Each channel has four Banks, each
bank is 512 MB. The interface consists of 300 (microbump) pads per channel. UFS
is consists of eight confi gurable Logic Units (LU) and four well-known logical
units. LU is an externally independent addressable entity processes the commands
and performs task management functions. Each LU can be confi gured as boot LU
with maximum of two. The well-known logic units are: Boot which is virtual refer-
ence to the actual LU containing boot code, REPORT LUNs which provides the LU
inventory, UFS device which provides UFS device level interaction (i.e., power
management control), and RPMB supports RPMB function with its own indepen-
dent processes and memory space.

 HMC and WideIO are 3D protocols. The 3D design provides 15 % performance
improvements due to eliminated pipeline stages and 15 % power saving due to elim-
inated repeaters and reduced wiring compared to 2D. The stacked security structure
complicates attempts to reverse the circuitry.

 The protocols support two main types of memory cells which are fl ash and
DRAM. Flash memory cells have no power for storing data and hold a lot more data
than DRAM but it is slower than DRAM. For fl ash type, SLC and MLC are both
NAND-based nonvolatile memory technologies. MLC offers a larger capacity twice
the density of SLC, but SLC provides an enhanced level of performance in the form
of faster write speeds. The most powerful feature in Flex-OneNAND and ONFI is
the combination between SLC and MLC.

 Partitioning the memory array is playing a major role in specifying the functional-
ity of each part of memory. Flex-OneNAND supports three memory partitions which
are one-time programmable partition (OTP), fi rst block OTP, and boot partition.
eMMC is divided into two boot area partitions which are used to access and modifying
boot data, one RPMB partition to store data in an authenticated and replay protected
manner through HMAC-SHA algorithm which supports protection that requires pass-
words and keys for access, four general purpose partitions to store sensitive data or for

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

65

other host usage models and enhanced user data area. Boot and RPMB partitions are
read only programming, but general purpose area and enhanced user data area parti-
tions are one-time programmable. In UFS, each LU can be differentiated over the
others with many types during the system integration. The memory types are default
type for regular memory characteristics, system code type for a logical unit that is
rarely updated (e.g., system fi les or binary code executable fi les, …, etc.), Nonpersistent
type is used for temporary information and enhanced memory type is left open in
order to accomplish different needs and vendor-specifi c implementations.

 Flex-OneNAND supports only three simple modes. Limited-based command
mode which is used for booting operation. Register-based mode which is used for
command execution. Idle mode is used when the device is waiting for host request.
ONFI simply supports only two modes, active mode which is used for commands and
operations execution and the other is idle mode which immediately entered after
power on. eMMC cycle life time is divided into modes. First, eMMC optionally
passes through boot mode, then passes through identifi cation mode to validate opera-
tion voltage range and access mode, identifi es the device and assigns a relative device
address (RCA) on the bus and fi nally passes through data transfer mode executing any
commands forwarded from the CPU. eMMC supports optional interrupt mode by
specifi c command. Interrupt mode reduces the polling load for CPU hence the power
consumption. HMC life cycle consists of multiple modes as initialization mode to
prepare HMC for any request or data transfer, active mode where the HMC device is
preparing to execute any request and transfer any data, sleep mode where it sets each
link into lower power state by inverting its power state management pin from high to
low. Then HMC enters down mode which is lower power state than sleep mode by
disabling both serializer and deserializer circuitry and the link’s PLLs. WideIO has
fi ve modes. First mode is idle mode in which the banks have been precharged.
Precharge is to deactivate an open row in one or all banks. Banks cannot be used again
after certain time. After precharging a bank in idle state requires an active command
before any read or write commands forwarded to the bank. Second, active mode is to
activate row of a given bank to read or write data. Power-down mode is supported for
each channel circuit except for clock (CK) and clock enable (CKE), where they are
gated off to reduce power consumption. The device enters power-down mode when
CKE is low and exits when CKE is high. In deep power-down, all channels on that
slice will exit deep power-down mode. The reset signal is used because reset signal is
per memory die not per channel. UFS Device supports seven power modes which are
controlled by the START STOP UNIT command and some attributes.

 In order to minimize power consumption in a variety of operating environments,
UFS supports four basic power modes which are Active, Sleep, idle, and power-
Down. Also, it supports three transitional modes to facilitate the change from one
mode to the next. UFS can support up to 16 active confi gurations. Each one has its
own current profi le. The host can choose from either predefi ned or user defi ned cur-
rents profi les to deliver the highest performance.

 In Flex-OneNAND, after boot code is loaded, Boot buffer is always locked. For
NAND Flash array protection, device has hardware and software write protection.
Hardware write protection is implemented by executing a “Cold” or “Warm” reset.

3.5 Comparison Between Different Memory Controllers

66

Software write protection is implemented by specifi c commands. The write protect
signal in ONFI disables Flash array program and erase operations. To allow eMMC
to protect data against erase and write; the eMMC supports three levels of write pro-
tection commands such as permanent or temporary or power-on protection applying
for the entire device or for specifi c segments. In WideIO, Input data mask (DM) is
the input mask signal for write data. Input data is masked when DM is sampled high.

 Flex-OneNAND supports 31 registers which are utilized by the device mainly
for confi guration of the device and status of the operations done by the device. In
ONFI, parameter pages are used to describe NAND capabilities. Parameter page
solves inconsistencies among devices by describing revision info, features, and
organization timing. eMMC has six different registers with different sizes. These
registers include confi guration bytes and status bytes. The UFS software uses 37
registers that exist in the host side to control the device through HCI interface. HMC
has 15 registers that consist of confi guration registers and status registers with the
same size of 32 bits.

 Commands of these protocols indicate the major features. So in ONFI, the major-
ity of commands are optional because all NAND Flash devices are not created
equal, differences include architectural, performance, and command set, so ONFI
helps to address many of these through optional commands and optional parameter
pages. In eMMC, there are major 43 usable commands including read commands,
write commands, erase commands, sleep command, and interrupt command. HMC
uses 23 different commands concentrating on read and write commands only. The
command or request is sent in shape of packet (multiple of 128 bits) associated with
the data; the same as the response. Commands and responses are serialized and
transmitted across the lanes of links. Every command and response contains header
and tail which indicates important fi elds for example: address, command number,
and CRC.

 To know the echo of commands, there must be a response or status register to be
checked. In Flex-OneNAND, response is checked from status registers after execu-
tion of command. ONFI Reads status and retrieves the status value for the last oper-
ation issued. In eMMC there are fi ve responses vary from command to another by
their included fi elds. eMMC includes some status bits like error switch bit. HMC
has also a response packets and status register for CPU to check the situation of
HMC. For WideIO, status register read (SRR) can only be issued after power up and
initialization sequence are completed. SRR provides a method to read registers from
WideIO DRAM. But, in UFS, UTP delivers commands, data and responses as stan-
dard packets over the UniPro network. The UFS transactions will be grouped into
data structures called UFS protocol information unit (UPIU). There are UPIUs
defi ned for commands, responses, and data in and data out. A response UPIU con-
tains a command-specifi c operation status and other response information. This rep-
resents the status phase of the command.

 The main comparison between the six memory controller architectures, which is
based on the most important features that microelectronics designers are interested
in, is summarized in Tables 3.5 and 3.6 .

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

67
 Ta

bl
e

3.
5

 C
om

pa
ri

so
n

be
tw

ee
n

di
ff

er
en

t m
em

or
y

co
nt

ro
lle

rs

 Fl
ex

-O
ne

N
A

N
D

 O

N
FI

 3
.0

 eM

M
C

 v
. 4

.5
1

 H
M

C

 W
id

eI
O

 U

FS

 M
em

or
y

or
ga

ni
za

tio
n

 1.
 S

ec
to

r
(5

28
 B

)
 1.

 P
ar

tia
l p

ag
es

 1.

 W
ri

te
 b

lo
ck

 1.

 8
/1

6
B

an
ks

pe

r
va

ul
t

 1.
 B

an
ks

 1.

 8
 I

nd
ep

en
de

nt
 c

on
fi g

ur
ab

le

L
og

ic
 U

ni
ts

 (
L

U
)

 2.
 4

 K
B

 p
ag

e
(8

-s
ec

to
rs

)
 2.

 P
ag

es

 2.
 E

ra
se

 g
ro

up

 2.
 P

ar
tit

io
n

 2.
 C

ha
nn

el
s:

4

ba
nk

s
 2.

 4
 W

el
l-

kn
ow

n
L

U
s

(B
oo

t,
D

ev
ic

e,
 R

PM
B

,
R

ep
or

t L
U

N
s)

 (
Fi

g.
 3

.2
0)

 3.

 1
02

4
B

lo
ck

(6

4
pa

ge
 S

L
C

,
12

8
pa

ge
 M

L
C

)
(F

ig
. 3

.1
5)

 3.
 B

lo
ck

s
 3.

 W
ri

te
 p

ro
te

ct
 g

ro
up

(F

ig
. 3

.1
7)

 3.

 V
au

lt
:

4
Pa

rt
iti

on
s

 3.
 M

em
or

y
di

e:

4
ch

an
ne

ls

 4.
 L

og
ic

 u
ni

ts

 4.
 Q

ua
dr

an
t:

4
va

ul
ts

(F

ig
. 3

.1
8)

 4.
 S

ta
ck

: 4

m
em

or
y

di
es

(F

ig
. 3

.1
9)

 5.

 T
ar

ge
ts

(F

ig
. 3

.1
6)

 Te
ch

no
lo

gy

 2D

 2D

 2D

 3D

 3D

 2D

 M
em

or
y

ce
lls

 Fl

as
h

(c
on

ve
rt

ib
le

SL

C
 a

nd
 M

L
C

)
 Fl

as
h

(S
L

C
 o

r
M

L
C

 o
r

bo
th

)
 Fl

as
h

(S
L

C
)

 D
R

A
M

 D

R
A

M

 Fl
as

h
(S

L
C

)

 M
em

or
y

pa
rt

iti
on

s
 1.

 O
T

P
bl

oc
k

 O
nl

y
1

pa
rt

iti
on

 1.

 2
 B

oo
t a

re
a

pa
rt

iti
on

s
(×

.1
28

 K
B

)
 O

nl
y

1
pa

rt
iti

on

 O
nl

y
1

pa
rt

iti
on

 1.

 M
ul

tip
le

 u
se

r
da

ta

pa
rt

iti
on

 2.
 1

st
 B

lo
ck

 O
T

P
 2.

 1
 R

PM
B

 p
ar

tit
io

n
(1

28
 K

B
)

 2.
 B

oo
t p

ar
tit

io
ns

 3.
 P

ar
tit

io
n

in
fo

rm
at

io
n

bl
oc

ks
 (

PI
)

 3.
 4

 G
en

er
al

 p
ur

po
se

pa

rt
iti

on
s

an
d

en
ha

nc
ed

us

er
 d

at
a

ar
ea

s
(×

.W
Ps

)

 3.
 R

PM
B

 p
ar

tit
io

n

 M
od

es
 o

f
op

er
at

io
ns

 1.

 L
im

ite
d-

co
m

m
an

d-
 ba

se
d

(f
or

 b
oo

t o
nl

y)

 1.
 I

dl
e

m
od

e
 1.

 B
oo

t m
od

e
 1.

 I
ni

tia
liz

at
io

n
 1.

 I
dl

e
 1.

 A
ct

iv
e

 2.
 R

eg
is

te
r-

ba
se

d
(A

ct
iv

e)

 2.
 A

ct
iv

e
m

od
e

 2.
 I

de
nt

ifi
ca

tio
n

M
od

e
 2.

 A
ct

iv
e

 2.

A
ct

iv
e

 2.
 I

dl
e

 3.
 I

dl
e

 3.
 I

nt
er

ru
pt

 m
od

e
 3.

 S
le

ep

 3.
 P

ow
er

 d
ow

n
 3.

 S
le

ep

 4.
 D

at
a

tr
an

sf
er

 m
od

e
 4.

 P
ow

er
 d

ow
n

 4.
 D

ee
p

po
w

er

do
w

n
 4.

 P
ow

er
 d

ow
n

 5.
 P

re
 a

ct
iv

e

 6.
 P

re
 s

le
ep

 7.
 P

re
 p

ow
er

 d
ow

n (c
on

tin
ue

d)

3.5 Comparison Between Different Memory Controllers

68

Ta
bl

e
3.

5
(c

on
tin

ue
d) Fl

ex
-O

ne
N

A
N

D

 O
N

FI
 3

.0

 eM
M

C
 v

. 4
.5

1
 H

M
C

 W

id
eI

O

 U
FS

 D
at

a
pr

ot
ec

tio
n

 1.
 W

ri
te

 p
ro

te
ct

io
n

 W
ri

te
 p

ro
te

ct
 p

in

 1.
 P

er
m

an
en

t W
P

 N
o

Pr
ot

ec
tio

n
 W

ri
te

 d
at

a
m

as
k

pi
n

 1.
 P

er
m

an
en

t W
P

 2.
 D

at
a

pr
ot

ec
tio

n
du

ri
ng

 p
ow

er

do
w

n

 2.
 T

em
po

ra
ri

ly
 W

P
 2.

 P
ow

er
-o

n
W

P

 3.
 P

ow
er

-o
n

W
P

 E
nc

ry
pt

io
n

 –
 –

 H
M

A
C

 (
R

PM
B

)
 Sc

ra
m

bl
er

 &

de
-s

cr
am

bl
er

 –

 H
M

A
C

 (
R

PM
B

)

 N
um

be
r

of

re
gi

st
er

s
 31

 1

 6
 15

 8

 37

 Si
ze

 o
f

re
gi

st
er

s
 16

 B
its

 76

8
B

yt
es

pa

ra
m

et
er

 p
ag

e
de

fi n
iti

on
s

 D
if

fe
r

fr
om

 r
eg

is
te

r
to

 a
no

th
er

 32

 B
its

 19

 B
its

 32

 B
its

 N
um

be
r

of
 p

in
s

 39

 48

 13

 29

 48

 14

 T
ra

ns
m

is
si

on
 ty

pe

 Sy
nc

h.
/A

sy
nc

h.

 Sy
nc

h.
/A

sy
nc

h.

 Sy
nc

hr
on

ou
s

on
ly

 Sy

nc
hr

on
ou

s
on

ly

 Sy
nc

hr
on

ou
s

on
ly

 Sy

nc
h.

/A
sy

nc
h.

 N
um

be
r

of

co
m

m
an

ds

 16

 32
 (

9
M

an
da

to
ry

)
 64

 (
21

 R
es

er
ve

d)

 23

 32

 27

 C
om

m
an

d
le

ng
th

(b

its
)

 16

 8
or

 1
6

 48

 ×
.1

28

 4
 12

8

 R
es

po
ns

es

 St
at

us
 r

eg
is

te
rs

ch

ec
ke

d
 St

at
us

 r
eg

is
te

rs

ch
ec

ke
d

 5
R

es
po

ns
es

 d
if

fe
r

fr
om

 c
om

m
an

d
to

 a
no

th
er

 R
es

po
ns

e
(×

.1
28

 b
its

)
&

st

at
us

 r
eg

is
te

rs

 St
at

us
 r

eg
is

te
r

 U
PI

U
 r

es
po

ns
e

(2
3

by
te

s)

 C
om

m
an

d/
da

ta

bu
s

 C
om

m
an

d
an

d
da

ta
 a

re
 s

en
t o

n
th

e
sa

m
e

bu
s

 C
om

m
an

d
an

d
da

ta
 a

re
 s

en
t

on
 th

e
sa

m
e

bu
s

 C
om

m
an

d
an

d
da

ta

ar
e

se
nt

 o
n

di
ff

er
en

t
bu

se
s

 C
om

m
an

d
an

d
da

ta
 a

re
 s

en
t o

n
th

e
sa

m
e

L
in

ks

 C
om

m
an

d
an

d
da

ta
 a

re
 s

en
t o

n
di

ff
er

en
t b

us
es

 C
om

m
an

d
se

nt

on
 U

ps
tr

ea
m

 li
nk

 D
ev

ic
e

m
ay

 s
up

po
rt

2

in
de

pe
nd

en
t d

at
a

bu
se

s

 D
at

a
se

nt
 o

n
ei

th
er

 u
p

or
 D

ow
n

st
re

am
 li

nk

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

69
 Fl

ex
-O

ne
N

A
N

D

 O
N

FI
 3

.0

 eM
M

C
 v

. 4
.5

1
 H

M
C

 W

id
eI

O

 U
FS

 In
te

rf
ac

e
 1.

 C
L

K

 1.
 C

L
K

/
(w

ri
te

 e
na

bl
e)

 1.

 C
L

K

 1.
 C

L
K

 1.

 C
L

K

 1.
 C

L
K

 2.
 C

M
D

 &

da
ta

 li
ne

 2.

 C
M

D
 e

na
bl

e
 2.

 R
es

et

 2.
 R

es
et

 2.

 C
om

m
an

d
bu

s
 2.

 R
es

et

 3.
 I

nt
er

ru
pt

 3.

 A
dd

re
ss

 e
na

bl
e

 3.
 1

-B
it

C
M

D
 li

ne

(b
id

ir
ec

tio
na

l)

 3.
 8

/1
6

la
ne

s
da

ta
 (

I/
O

)
 3.

 A
dd

re
ss

 b
us

 3.

 D
ow

ns
tr

ea
m

/u
ps

tr
ea

m

la
ne

 in
pu

t/o
ut

pu
t

 4.
 R

D
Y

 4.

 D
at

a/
C

M
D

 li
ne

 4.

 8
-B

its
 d

at
a

lin
es

(b

id
ir

ec
tio

na
l)

 4.

 J
TA

G

 4.
 D

at
a

bu
s

 4.
 D

if
fe

re
nt

ia
l i

np
ut

/o
ut

pu
t

tr
ue

 a
nd

 c
om

pl
em

en
t

si
gn

al
 p

ai
r

 5.
 W

ri
te

 e
na

bl
e

 5.
 D

at
a

st
ro

be

 5.
 I

 2 C

 5.
 D

at
a

m
as

k

 6.
 A

dd
re

ss

va
lid

 d
at

a
 6.

 R
ea

dy
/b

us
y

 6.
 R

es
et

 7.
 R

es
et

 7.

 R
ea

d
en

ab
le

/
(W

R
/R

D
)

 8.
 R

es
et

 In
te

rf
ac

e
ty

pe

 Pa
ra

lle
l

 Pa
ra

lle
l

 Pa
ra

lle
l

 Se
ri

al

 Pa
ra

lle
l

 Se
ri

al

 B
oo

tin
g

 M
an

da
to

ry

 N
o

bo
ot

in
g

 O
pt

io
na

l
 N

o
bo

ot
in

g
 N

o
bo

ot
in

g
 O

pt
io

na
l

 C
lo

ck
 (

M
H

z)

 66
/8

3
 U

p
to

 2
00

 20

0
 12

5/
15

6.
25

/1
66

.6
7

 20
0

 19
.2

/2
6/

38
.4

/5
2

 Sp
ee

d
 66

/8
3

M
B

/s

 40
0

M
B

/s

 20
0

M
B

/s

 10
/1

2.
5/

15
 G

b/
s

 20
0

M
B

/s

 30
0

M
B

/s

 R
el

ia
bi

lit
y

 E
C

C

 E
C

C

 C
R

C

 C
R

C
 /

E
C

C

 E
C

C

 C
R

C

 D
at

a
ra

te

 SD
R

 SD

R
/D

D
R

 SD

R
/D

D
R

 D

D
R

 SD

R

 D
D

R

 T
im

in
g

 O
ne

 ti
m

in
g

m
od

e
 5

T
im

in
g

m
od

es

 O
ne

 ti
m

in
g

m
od

e
 O

ne
 ti

m
in

g
m

od
e

 O
ne

 ti
m

in
g

m
od

e
 O

ne
 ti

m
in

g
m

od
e

 To
po

lo
gy

 Po

in
t t

o
po

in
t

 Po
in

t t
o

po
in

t
 Po

in
t t

o
po

in
t

 Po
in

t t
o

m
ul

ti
 Po

in
t t

o
po

in
t

 Po
in

t t
o

po
in

t

 B
an

dw
id

th
 (

G
b/

s)

 N
ot

 m
en

tio
n

 N
ot

 m
en

tio
n

 N
ot

 m
en

tio
n

 16
0/

20
0/

24
0/

32
0

 12
.8

 3

Pe
r

la
ne

 Po
w

er
 s

av
in

g
m

an
ag

em
en

t
 –

 –
 Sl

ee
p

m
od

e
on

ly

 1.
 S

le
ep

 m
od

e
 1.

 P
ow

er
-

do
w

n
m

od
e

 1.
 S

le
ep

 m
od

e

 2.
 D

ow
n

m
od

e
 2.

 D
ee

p
po

w
er

-
do

w
n

m
od

e
 2.

 P
ow

er
-d

ow
n

m
od

e

3.5 Comparison Between Different Memory Controllers

70

 Fig. 3.15 Flex-OneNAND memory organization

 Fig. 3.16 ONFI memory organization

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

71

 Fig. 3.17 eMMC Memory Organization

 Fig. 3.18 UFS memory organization

3.5 Comparison Between Different Memory Controllers

72

 Fig. 3.19 HMC memory
organization

Memory Die 1

Logi
c B

ase

Ch
ann

el

A

Ch
ann

el

C

Ch
ann

el

D

Ch
ann

el

B

 Fig. 3.20 WideIO
memory organization

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

73

3.6 New Trends in SoC Memories

 SRAM/DRAM is fast but has large leakage of power and is volatile. Floating-
gate- based Flash is nonvolatile but exhibits low write speed and limited write endur-
ance. Therefore, recent research focuses on hybrid memory structures to get the
advantages of both. From the prospective of system level, 3D integration can be
employed to integrate hybrid memory components with high density, where it can
also reduce the distance between components to few micrometers instead of few
centimeters. Emerging memory technologies are making steady progress towards
product introductions, including phase-change memory (PCRAM), resistive memory
(ReRAM), and magnetic memory (MRAM). The new trends in memories are sum-
marized in Table 3.7 . They provide higher density, lower latency, lower power per bit
for both read and write operation, and high read/write/erase processing speed [21].

 Memristor is built from titanium dioxide (TiO 2) and platinum (Pt) as depicted in
Fig. 3.22 . When the charge fl ows in one direction through a circuit, the resistance of
the memristor increases. The resistance decreases when the charge fl ows in the
opposite direction in the circuit. If the applied voltage is turned off, thus stopping
the fl ow of charge, the memristor remembers the last resistance that it had.
When the fl ow of charge is started again, the resistance of the circuit will be what it
was when it was last active. Its main advantage is that program power is low and its
main disadvantage is that platinum is expensive [22].

 FeRAM replaces dielectric by ferroelectric material. Its performance is close to
DRAMs and it does not need refreshing process [23].

 Memory hierarchy requires new architecture and technology due to increasing
demand of bandwidth and low power consumption. 3D Memory is an emerging
memory technology, compared to existing memory interface (Fig. 3.23), TSV-based
3D technology provides better bandwidth and less power consumption. Lower
power consumption is achieved by lower capacitance of TSV [24].

3.7 Summary

 In this chapter, we present most famous memory cores and controllers and analyze
the trade-off between them. The importance of standards is discussed. A descriptive
comparison between various on-chip memory protocols is made. Comparing the
architecture of these different controllers, it is realized that their architecture is com-
mon in many things. They mainly differ in the performance and the features.
Moreover, we introduce new trends in SoC memories such as PCRAM, ReRAM,
MRAM, and 3D memory.

3.7 Summary

74

 Table 3.6 Comparison between the most common architecture and the most famous memory
controller protocols

 Features Flex-OneNAND ONFI eMMC HMC WideIO UFS

 Read ✓ ✓ ✓ ✓ ✓ ✓
 Write ✓ ✓ ✓ ✓ ✓ ✓
 Write protection ✓ ✓ ✓ ✓ ✓
 Erase ✓ ✓ ✓ ✓ ✓ ✓
 Background operations ✓ ✓
 High-priority interrupt ✓ ✓
 Context management ✓ ✓ ✓
 Data tag mechanism ✓ ✓
 Power off notifi cation ✓ ✓
 Hibernate
 Lock/unlock ✓
 Encryption ✓ ✓ ✓
 Packed operations ✓
 Command queuing ✓
 Retry ✓
 Partition ✓ ✓
 Copy-back ✓ ✓
 Log
 Boot ✓ ✓ ✓ ✓
 Reset ✓ ✓ ✓ ✓ ✓ ✓
 Inquiry ✓
 Power management
 Sleep ✓ ✓ ✓
 Power down ✓ ✓ ✓
 Deep power-down ✓
 Interrupt ✓
 Auto refresh ✓
 Precharge ✓
 Partial array self-refresh ✓
 Parallel operation ✓ ✓

 Table 3.7 New trends in SoC memories

 CBRAM Conductive bridge
 ReRAM Resistive
 PCRAM Phase change
 FeRAM Ferroelectric
 ST-MRAM Spin-torque magnet
 Memristor It is called the fourth element (change of fl ux with charge) as depicted in Fig. 3.21

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

75

 Fig. 3.22 Memristor structure

TSV
Wire-Bond

DRAM DRAM

3D-DRAM 2.5D/ eDRAM 2D-DRAM

uP

DRAM

CacheCache

mp mp

 Fig. 3.23 3D DRAM as compared to 2D and 2.5 D DRAM

 Fig. 3.21 The fourth element

3.7 Summary

76

 References

 1. Akesson B, Huang P, Clermidy F, Dutoit D (2011) Memory controllers for high-performance
and real-time MPSoCs. In: Proceedings of the seventh IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, ACM, New York

 2. Clermidy F, Darve F, Dutoit D (2011) 3D Embedded multi-core: some perspectives. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, Grenoble

 3. Weis C, Wehn N, Igor L, Benini L (2011) Design space exploration for 3D-stacked DRAMs.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, Grenoble,
pp 1–6

 4. Min S, Nam E (2006) Current trends in fl ash memory technology. In: Asia and South Pacifi c
Conference on Design Automation (ASPDAC), IEEE, Yokohama

 5. Loi L, Benini L (2010) An effi cient distributed memory interface for many-core platform with
3D stacked DRAM. In: Proceedings of Design, Automation Test in Europe Conference
Exhibition (DATE), Germany, pp 99-104

 6. Zhang T, Wang K, Feng Y, Song X (2010) A customized design of DRAM controller for on-
chip 3D DRAM stacking. In: IEEE Custom Integrated Circuits Conference (CICC), San Jose

 7. Jacob B (2008) Memory systems cache, DRAM, disk. Morgan Kaufmann, Burlington
 8. http://www.micron.com/~/media/Documents/Products/Presentation/WinHEC_Cooke.pdf
 9. Zhang Y, Swanson S (2015) A study of application performance with non-volatile main mem-

ory. In: Proceedings of the 31st IEEE Conference on Massive Data Storage, IEEE
 10. http://download.microsoft.com/download/d/f/6/df6accd5-4bf2-4984-8285-f4f23b7b1f37/

winhec2007_micron_nand_fl ashmemory.doc
 11. Pasricha S, Dutt N (2008) On-chip communication architectures: system on chip intercon-

nects. Morgan Kaufmann, Burlington
 12. https://www.jedec.org/
 13. http://www.jedec.org/sites/default/fi les/docs/JESD84-B42.pdf
 14. http://www.datasheetcatalog.org/datasheets2/12/1248447_1.pdf
 15. http://www.jedec.org/standards-documents/docs/jesd-79-3d
 16. Hybrid memory cube (2013) Technical Report Revision 1.0, HMC. www.hybridmemorycube.

org . Accessed January 2013
 17. Wide I/O single data rate, Technical Report Revision 1.0, Wide IO. Accessed December 2011
 18. www.onfi .org
 19. http://www.jedec.org/standards-documents/focus/fl ash/universal-fl ash-storage-ufs
 20. https://www.jedec.org/standards-documents/docs/jesd235
 21. Xie Y (2014) Emerging memory technologies. Springer, New York
 22. Kavehei O, Iqbal A, Kim YS, Eshraghian K, AL-Sarawi SF, Abbott D (2010) The fourth ele-

ment: characteristics, modelling, and electromagnetic theory of the memristor. Proc Roy Soc
A Math Phys Eng Sci 466:2175–2202

 23. Lacaze P-C, Lacroix J-C (2014) Non-volatile memories. Wiley, Hoboken
 24. Kim C, Lee H-W, Song J (2014) High-bandwidth memory interface. Springer, New York

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

http://www.micron.com/~/media/Documents/Products/Presentation/WinHEC_Cooke.pdf
http://download.microsoft.com/download/d/f/6/df6accd5-4bf2-4984-8285-f4f23b7b1f37/winhec2007_micron_nand_flashmemory.doc
http://download.microsoft.com/download/d/f/6/df6accd5-4bf2-4984-8285-f4f23b7b1f37/winhec2007_micron_nand_flashmemory.doc
https://www.jedec.org/
http://www.jedec.org/sites/default/files/docs/JESD84-B42.pdf
http://www.datasheetcatalog.org/datasheets2/12/1248447_1.pdf
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.hybridmemorycube.org/
http://www.hybridmemorycube.org/
http://www.onfi.org/
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://www.jedec.org/standards-documents/docs/jesd235

77© Springer International Publishing Switzerland 2016
K.S. Mohamed, IP Cores Design from Specifi cations to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_4

 Chapter 4
 SoC Buses and Peripherals: Features
and Architectures

4.1 Introduction

 Components connected on a Printed Circuit Board (PCB) or System-on-Board
(SoB) can now be integrated onto single chip, hence the development of System-on-
Chip (SoC) design as depicted in Fig. 4.1 [1]. SoC improves the bandwidth. The
leveraged internal/on-chip bandwidth versus external/off-chip bandwidth as shown
in Fig. 4.2 .

 SoC is not only a chip it is a system, where, SoC = Hardware + Software as
depicted in Fig. 4.3 .

 The SoC Hardware includes:

 – Embedded processor
 – ASIC Logics and analog circuitry
 – Embedded memory
 – Peripherals

 The SoC Software includes:

 – OS/RTOS (Middleware, Device Drivers)
 – Applications (C/C++, assembly)

 One solution to the design productivity gap is to make ASIC designs more stan-
dardized by reusing segments of previously manufactured chips. These segments
are known as “blocks,” “macros,” “cores,” or “cells.” The blocks can either be devel-
oped in-house or licensed from an IP company. Cores are the basic building blocks.
The cores are communicating with each other through buses and with the outer
world through peripherals [2 – 6].

78

4.2 SoC Buses and Peripherals Background

 The SoC consists of buses and peripherals as depicted in Fig. 4.4 , where buses are
for communication between different blocks inside the chip and peripherals for
communications with outer world. Buses are the simplest and most widely used
SoC interconnection networks to connect between different IPs in the SoC [7].

Digital

RFMemory

Mixed

Analog

Processor

RTOS

Configurable Hardware Peripheral

B
U
S

PCB

a b

IC

IC

IC

 Fig. 4.1 (a) SoB versus (b) SoC

ASIC

a b

DRAM
Off-chip bus

32-bits

ASIC DRAM
On-chip bus

512-bits

 Fig. 4.2 (a) SoB bandwidth versus (b) SoC bandwidth

Digital

RFMemory

Mixed

Analog

Processors

RTOS

Configurable Hardware Peripherals

BUS

 Fig. 4.3 An example of SoC architecture

4 SoC Buses and Peripherals: Features and Architectures

79

 The bus is a collection of signals (wires) to which one or more IP components
(which need to communicate data with each other) are connected. Only one IP
 component can transfer data on the shared bus at any given time. The most impor-
tant bus terminologies are summarized in Table 4.1 . A bus typically consists of three
types of signal lines summarized in Table 4.2 .

MIPS MEM BIOS

BRIDGE

CCD CODEC

On-chip peripheral
bus

System bus

Digital Camera Fig. 4.4 SoC buses and
peripherals

 Table 4.1 Buses terminology

 Bus terminology Explanation

 Master (or initiator) IP component that initiates a read or write data transfer
 Slave (or target) IP component that does not initiate transfers and only responds

to incoming transfer requests
 Arbiter Controls access to the shared bus

 Uses arbitration scheme to select master to grant access to bus
 Decoder Determines which component a transfer is intended for
 Bridge Connects two buses

 Acts as slave on one side and master on the other

 Table 4.2 Bus signals

 Signal Explanation

 Address Carry address of destination for which transfer is initiated
 Can be shared or separate for read, write data

 Data Carry information between source and destination components
 Can be shared or separate for read, write data
 Choice of data width critical for application performance

 Control Requests and acknowledgements
 Specify more information about type of data transfer

4.2 SoC Buses and Peripherals Background

80

 To implement SoC buses we need standards to make it easy to connect diverse
IPs quickly, where standards important for seamless integration of SoC IPs—helps
avoid integration mismatches, where mismatches require development of “logic
wrappers” at IP interfaces to ensure correct data transfers and it consumes time to
be created, reduces performance, and takes up area.

 – E.g., 1—connecting IP with 32 data pins to a 30 bit data bus.
 – E.g., 2—connecting IP supporting data bursts to a bus with no burst support.

 Two categories of standards for SoC communication are existing:

 1. Standard bus architectures :

• Defi ne interface between IPs and bus architecture.
• Defi ne at least some specifi cs of bus architecture that implements data trans-

fer protocol.

 2. Socket-based bus interface standards :

• Defi ne interface between IPs and bus architecture.
• Freedom w.r.t choice and implementation of bus architecture.

4.3 SoC Buses: Features and Architectures

 The most famous features and architectures of SoCs are summarized in Table 4.3
and the details are below [1 , 8 , 9].

4.3.1 SoC Bus Topology

 1. Point to point :

• Only one master connected to one slave (Fig. 4.5).
• Simple in design.
• Optimal in terms of bandwidth, latency, and power.
• If number of links increases, the area increases and faces routing problems.

 2. Unilevel shared bus :

• All masters and slaves share the same bus as depicted in Fig. 4.6 .

 3. Hierarchical bus :

• Improves system throughput.
• Multiple ongoing transfers on different buses as depicted in Fig. 4.7 .

 4. Ring :
 All masters and slaves are connected in a ring manner as depicted in Fig. 4.8 .

4 SoC Buses and Peripherals: Features and Architectures

 Ta
bl

e
4.

3
 A

n
ov

er
vi

ew
 o

f
bu

s
fe

at
ur

es
 a

nd
 a

rc
hi

te
ct

ur
es

 a
nd

 A
H

B
 a

nd
 A

X
I

as
 a

n
ex

am
pl

e

 To
po

lo
gy

 (
in

te
rc

on
ne

ct
 a

rc
hi

te
ct

ur
es

)
(b

us
)

 A
rb

itr
at

io
n

(M
ux

/T
ri

-s
ta

te
 b

as
ed

)
 B

us
 w

id
th

 T

ra
ns

fe
rs

 T

im
in

g
 T

x
co

nt
ro

l
 T

x
ty

pe

 Fr
eq

/
D

at
a

ra
te

 A

pp
lic

at
io

ns

 N
am

e
 Po

in
t

to

po
in

t

 R
in

g
 U

ni
le

ve
l

sh
ar

ed
 b

us

 H
ie

r-
ar

ch
al

bu

s

 In
te

rc
on

-
ne

ct
io

n
ne

tw
or

k
(c

ro
ss

-b
ar

sw

itc
h)

 N
O

C

(r
ou

te
r)

 St

at
ic

pr

io
ri

ty

 T
D

M
A

 L

O
T

T
E

R
Y

 R

ou
nd

-
ro

bi
n

 To
ke

n-

pa
ss

in
g

 D
at

a
bu

s
w

id
th

[b

it]

 A
dd

re
ss

bu

s
w

id
th

[b

its
]

 C
on

tr
ol

bu

s
w

id
th

[b

it]

 Sp
lit

tr

an
sf

er

 Pi
pe

lin
ed

tr

an
sf

er

 B
ur

st

tr
an

sf
er

 Sy

nc
hr

on
ou

s
(S

D
R

|D
D

R
)

 A
sy

nc
hr

o-
no

us

 H
an

d-
sh

ak
in

g
 Pr

e-
am

bl
e

 Po
in

t
to

po

in
t

 M
ul

ti-
ca

st

 B
ro

ad
-

ca
st

 M

ax

fr
eq

 M

ul
ti-

m
ed

ia

 St
or

-
ag

e
 O

th
er

s

 A
H

B

 ✓
 A

pp
lic

at
io

n-
sp

ec
ifi

c
 32

 32

 ✓

 ✓

 ✓

 ✓

 ✓

 ✓

 U

se
r

de
fi n

ed

 ✓

 A
X

I
 ✓

 A
pp

lic
at

io
n-

sp
ec

ifi
c

 ~1
02

4
 32

 ✓

 ✓

 ✓

 ✓

 ✓

 U

se
r

de
fi n

e

82

 5. Interconnection network (cross - bar switch):

• Every master/slave is connected to the remaining masters/slaves via point-to-
point topology as depicted in Fig. 4.9 .

 6. NOC (router):

• Each on-chip component connected by an intelligent switch to particular
communication wires as depicted in Fig. 4.10 .

• Improvement over standard bus-based interconnections for SoC architectures
in terms of throughput and bandwidth [10].

Master1 Slave1

 Fig. 4.5 Point to point

Master1 Master2

Master3 Master4

Slave2Slave1

Slave3 Slave4

 Fig. 4.6 Unilevel shared bus

Master1

Master2

Master3

Master4

Slave1

Slave4

Slave3

Slave2

B
ridge1

Bridge2

 Fig. 4.7 Hierarchical bus

4 SoC Buses and Peripherals: Features and Architectures

83

4.3.2 Arbitration (Mux/Tri-State-Based)

 The arbitration is Tri-state topology (Fig. 4.11) or mux-based topology (Fig. 4.12)
to avoid collision.

 The arbitration algorithms are as follows and they are summarized in Table 4.4 :

 1. Static priority

• Masters assigned static priorities.
• Higher priority master request always serviced fi rst.
• Can be preemptive or nonpreemptive.
• May lead to starvation of low-priority masters.

Master1

Master2

Master3

Master4

Slave1 Slave2

Slave3 Slave4

 Fig. 4.8 Ring topology

Master1

Master2

Master3

Master4

Slave1 Slave2

Slave3 Slave4

 Fig. 4.9 Cross-bar switch (no collision), it sends request to the required slave only

4.3 SoC Buses: Features and Architectures

84

 2. TDMA

• Uses time division multiple access.
• Assign slots to masters based on BW requirements.
• If a master does not have anything to read/write during its time slots, this

leads to low performance.
• Choice of time slot length and number is critical.

 3. LOTTERY (random)

• Randomly select master to grant bus access.

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

IP

NoC

 Fig. 4.10 NoC (smarter), select the best path

Master1 Master2 Slave2Slave1

En
Buffer

En
Buffer

En
Buffer

En
Buffer

 Fig. 4.11 Tri-state arbitration topology

4 SoC Buses and Peripherals: Features and Architectures

85

Master1

Master2 Slave2

Slave1

MUX

MUX

EN

EN

 Fig. 4.12 Mux-based arbitration topology

 Table 4.4 The arbitration algorithms comparison

 Scheme Description Advantages Disadvantages

 Static priority Masters assigned static priorities Simple It may lead to starvation
of low-priority masters Higher priority master request

always serviced fi rst
 It can be preemptive (task can
be interrupted) or nonpreemptive
(task cannot be interrupted)

 TDMA Assign slots to masters based
on BW requirements

 No starvation If a master does not
have anything to read/
write during its time
slots, leads to low
performance
 Choice of time slot
length and number is
critical

 LOTTERY
(Random)

 Randomly select master
to grant bus access

 Simple Depends on probability
 Starvation

 Round-robin Masters allowed to access
bus in a round-robin manner

 No starvation—
every master
guaranteed bus
access

 High latency for critical
data streams

 TDMA but If a master does
not have anything to read/write
during its time slots the grant
moves to another master and
so on

 Token-passing Each master waits for a special
token to have a control of the
bus, after fi nishing its operation,
it releases the token

 Simple Starvation
 Ineffi cient if masters
have vastly different
data injection rates

4.3 SoC Buses: Features and Architectures

86

 Fig. 4.13 Nonpipelined transfer [11]

 4. Round - robin
 Tasks are usually assigned with priorities. At times it is necessary to run a

certain task that has a higher priority before another task although it is running.
Therefore, the running task is interrupted for some time and resumed later when
the priority task has fi nished its execution. This is called preemptive scheduling.
E.g., round-robin in nonpreemptive scheduling, a running task is executed till
completion. It cannot be interrupted. E.g., First In First Out.

• Masters allowed to access bus in a round-robin manner.
• No starvation—every master guaranteed bus access.
• Ineffi cient if masters have vastly different data injection rates.
• High latency for critical data streams.

 5. Token - passing

• Each master wait for a special token to have a control of the bus, after fi nish-
ing its operation, it releases the token.

4.3.3 Transfers

 1. Nonpipelined transfer

• Simplest transfer mode.
• First request for access to bus from arbiter.
• On being granted access, set address and control signals.
• Send/receive data in subsequent cycles.

4 SoC Buses and Peripherals: Features and Architectures

87

• The operation is summarized in Fig. 4.13 . It should receive data of address
A1, before sending data of address A2.

 2. Split transfer

• If slaves take a long time to read/write data, it can prevent other masters from
using the bus. Split transfers improve performance by “splitting” a transaction.
Master sends read request to slave. Slave relinquishes control of bus as it pre-
pares data. Arbiter can grant bus access to another waiting master. Allows
utilizing otherwise idle cycles on the bus. When slave is ready, it requests bus
access from arbiter. On being granted access, it sends data to master (Fig. 4.14).

 3. Pipelined transfer

• Overlap address and data phases.
• Only works if separate address and data buses are present.
• The operation is summarized in Fig. 4.15 , It can send address A2, before

receiving data of address A1.

 4. Burst transfer

• Send multiple data items, with only a single arbitration for entire
transaction.

• Master must indicate to arbiter it intends to perform burst transfer.

Slave
signals

split

NONSEQ

A A + 4

SEQ IDLE NONSEQ

B

Control (B)Control (A)

SPLIT SPLIT OKAY

HCLK

HGRANT

HTRAN[1:0]

HADDR[31:0]

HBURST[2:0]
HWRITE

HSIZE[2:0]
HPROT[3:0]

HREADY

HRESP[1:0]

T1 T2 T3 T4 T5

Arbiter
changes

grant

New master
drives

address

 Fig. 4.14 Split transfer [11]

4.3 SoC Buses: Features and Architectures

88

 Fig. 4.15 Pipelined transfer [11]

 Fig. 4.16 Burst transfer [11]

4 SoC Buses and Peripherals: Features and Architectures

89

• Saves time spent requesting for arbitration.

 The operation is summarized in Fig. 4.16 .

4.3.4 Timing

 1. Synchronous

• Includes a clock in control lines.
• Fixed protocol for communication that is relative to clock.
• Involves very little logic and can run very fast.
• Require frequency converters across frequency domains.
• It suffers from clock skew.
• An example is shown in Fig. 4.17 [12].

 2. Asynchronous

 Fig. 4.17 Synchronous timing [12]

 Fig. 4.18 Asynchronous timing [12]

4.3 SoC Buses: Features and Architectures

90

• Not clocked (data is transmitted and received without accompanying of a
clock).

• Requires a handshaking protocol.
• Performance not as good as that of synchronous bus.
• No need for frequency converters, but does need extra lines (pins).
• Does not suffer from clock skew like the synchronous bus.
• An example is shown in Fig. 4.18 .

4.3.5 Tx Control

 Tx control means: “someone is about to transmit data.”

 1. Handshaking

• It is based on request/response method as depicted in Fig. 4.19 .

 2. Preamble

• The role of the preamble is to defi ne a specifi c series of transmission criteria
that is understood to mean “someone is about to transmit data.” It is a constant
pattern.

• It is a constant pattern or at beginning the bus is high, when it goes low it
means I will start communication. It is like a fl ag.

• Example is shown in Table 4.5 .

4.3.6 Tx Type

Initiator Target

Response

Request

Handshake

 Fig. 4.19 Handshaking Tx
control

 Table 4.5 Preamble example Start of data block pattern 1011

 Start of frame pattern 0101

4 SoC Buses and Peripherals: Features and Architectures

91

 Tx types are summarized in Fig. 4.20 .

 1. Point to point (unicast)

• Data is sent from one point to another point.

 2. Multicast

• Data is sent from one point to all other points.

 3. Broadcast

• Data sent from one or more points to a set of other points.

4.4 Bus Architecture Examples

 In this section, we will discuss and defi ne some common IC bus architectures cur-
rently in use and on the market

4.4.1 I2C Bus

 I2C eliminates the need for address decoders and glue logic, and it reduces space
requirements, which keeps designs simple and fl exible. It also supports simple con-
structions and enables easy upgrades. I2C buses are popular in the marketplace for
low-speed peripheral devices such as radios, televisions, and personal digital assis-
tants (PDA).

 I2C has a physical layout of two bidirectional wires, Serial Data Line (SDA), and
Serial Clock Line (SCL), which transmit information between devices. Each device
connected to the bus has a unique address assigned to it and can operate in receive
and/or transmit mode with a designation as a master or slave. I2C offers the possi-
bility of having multiple masters; however, only one master can transmit data over
the bus at a time [13].

 Fig. 4.20 Tx types

4.4 Bus Architecture Examples

92

 Figure 4.21 exhibits the topology of I2C. Figure 4.22 depicts high and low states
that initiate and terminate transmissions on the bus. I2C requires each byte of data
to be eight bits in length before it is placed on the SDA line. Figure 4.23 depicts an
I2C sequence.

 Fig. 4.21 I2C bus topology [13]

 Fig. 4.22 I2C START and STOP conditions [13]

 Fig. 4.23 I2C byte format [13]

4 SoC Buses and Peripherals: Features and Architectures

93

4.4.2 Advanced Microcontroller Bus Architecture (AMBA)

 AMBA is unique in that is it has many distinctly different specifi cations, versions,
bus types, etc. The fi rst is the Advanced High-Performance Bus (AHB), which is
used as the backbone for high-performance systems and supports connections
between processors, on-chip communications, and off-chip communications. The

 Fig. 4.24 AMBA architecture [14]

 Fig. 4.25 AHB interconnection [14]

4.4 Bus Architecture Examples

94

second type is the Advanced System Bus (ASB), which is a less complex alternative
to AHB. The third is the Advanced Peripheral Bus (APB), which is optimized for
minimal power consumption and is used for interfacing peripheral devices that do
not require high performance or high bandwidth. Figure 4.24 depicts the standard
AMBA topology [14].

 Figure 4.25 shows a standard AHB interconnection for a standard bus sequence.
A typical operational scenario of AHB would involve a master requesting access to
a slave to perform a write operation. The arbiter will receive the request signal and
determine whether the requesting master device has permission to access the slave
device and whether the slave is available (i.e., not performing another operation).
Assuming the master device has the appropriate access and the slave device is free
from use, the arbiter then transfers the address and control signals to the slave device.
The control signals provide the information, direction, and width of the transfer and
indicate whether a burst transfer is required. During the transfer, the slave shows the
status using response signals (i.e., OKAY, ERROR, RETRY, and SPLIT) [15].

 ASB is similar to AHB except that it cannot perform SPLIT transactions. Its bus
protocol can be used with a central multiplexor interconnection scheme. Using the
interconnection scheme, the bus master will send address and control signals to indi-
cate the desired operation to the central arbiter. The central arbiter reviews the bus
master’s address and control signals and determines whether the bus master has the
appropriate access to the desired slave device (i.e., the master may have read access,
but no write access). Data read and response signals from the multiplexor require a
central decoder, which will select the appropriate signals from the slave device.

 Similar to I2C, the APB is designed for minimal power consumption and reduced
complexity. APBs interface with low power, low bandwidth, and low-performance
peripherals. The bridge interface between APB and ASB/AHB is the only bus mas-
ter for APB, but is a slave device on the high-performance ASB/AHB. An APB
slave has a simple and fl exible interface. Its exact implementation details depend on
individual design requirements. Typical operations of an APB slave connected to an
ASB bus are read-and-write transfers; however, an APB slave interfacing with an
AHB performs the same operations as an APB slave connected to an ASB, but also
can perform back-to-back transfers and utilize multiplexing data bus implementa-
tions. Multiplexing supports combining read-and-write data buses into a single bus
in which read-and-write operations never occur simultaneously.

WISHBONE
SLAVE

WISHBONE
SLAVE

WISHBONE
MASTER

WISHBONE
MASTER

 Fig. 4.26 Shared bus interconnection [16]

4 SoC Buses and Peripherals: Features and Architectures

95

4.4.3 Wishbone

 Wishbone is a SoC bus for portable IP cores and offers perhaps the greatest fl exibil-
ity in design methodology with semiconductor IP cores. Wishbone is a product of
OpenCores, which is an open-source hardware community for professionals and
hardware design enthusiasts. Similar to AMBA, the purpose of Wishbone is to ease
the integration of SoC components through design reuse. There are three common
architectures associated with Wishbone: Shared Bus (Fig. 4.26), Pipeline, and
Crossbar (Fig. 4.27) [16].

 Designers will choose a shared bus interconnection when there are two or more
masters that need to be connected to one or more slaves. The master initiates a bus
cycle to a target slave, and then the target slave participates in one or more bus
cycles with the master. An arbiter determines when a master may gain access to the
shared bus. An arbiter acts like a traffi c cop and dictates how shared resources can
be accessed.

 A crossbar connects two or more masters so that each can access two or more
slaves. In this confi guration, a master initiates an addressable bus cycle to a target
slave. An arbiter determines when each master may gain access to that slave.

 The simplest topology is a pipelined topology, in which data is processed in a
sequential manner. Data fl ow architecture exploits parallelism, which speeds up
execution time.

4.5 Summary

 In this chapter, we introduce a deep introduction for SoC buses and peripherals. We
explain in detail their features and architectures. Different SoC bus topologies are
discussed such as point to point, unilevel shared bus, hierarchical bus, ring, cross-
bar bus, NoC. The arbitration algorithms are explored. Moreover, SoC buses exam-
ples are explained in detail. We give a methodology for extraction of any SoC bus

IP CORE
MASTER

IP CORE

SLAVE ˙SA˙
IP CORE

SLAVE ‘SB’
IP CORE

SLAVE ‘SC’

IP CORE
MASTER

CROSSBAR SWITCH

 Fig. 4.27 Cross-bar switch interconnection [16]

4.5 Summary

96

features from its standard. The different features include topology, arbitration, bus
width, transfers, timing, transmission control and type.

 References

 1. http://eecs.wsu.edu/~pande/Journal_Papers/Paper_IEEE_Proceedings.pdf
 2. Stallings W (2003) Computer architecture and organization, 6th edn, Eastern economy edition.

PHI Learning, New Delhi
 3. Tanenbaum AS (2000) Structured computer organization, 4th edn. Prentice Hall, Upper Saddle

River
 4. Hamacher VC, Vranesic Z, Zaky S (1996) Computer organization, 4th edn. McGraw Hill,

New York
 5. Mano MM (2001) Computer system architecture. Prentice Hall, New Delhi
 6. Hayes JP (2002) Computer architecture and organization, 3rd edn. McGraw Hill, New York
 7. Mitic M, Stojčev M (2006) An overview of on-chip buses. Ser Elec Energy 19(3):405–428
 8. http://www.engr.colostate.edu/~sudeep/teaching/ppt/lec06_communication1.pdf . (Accessed 2015)
 9. http://facta.junis.ni.ac.rs/eae/fu2k63/stojcev.pdf . (Accessed 2015)
 10. Ahmed AB (2015) High-throughput architecture and routing algorithms towards the design of

reliable mesh-based many-core network-on-chip systems. Ph.D. dissertation, The University
of Aizu

 11. Pasricha S, Dutt N (2008) On chip communication architecture: system on chip interconnect,
Computer architecture. Morgan Kaufmann, Burlington

 12. Murdocca M, Heuring V (2007) Computer architecture and organization
 13. Paret D (1997) The I2C bus: from theory to practice. Wiley, Chichester
 14. ARM (1999) AMBA specifi cation revision 2.0
 15. Patil RP, Sangamkar PV (2015) A review of system-on-chip bus protocols. Int J Adv Res Electr

Electron Instrum Eng 4(1):271–281
 16. OpenCores (2011) Wishbone B4: WISHBONE system-on-chip (SOC) interconnection

 architecture for portable IP cores, 4th ed. cdn.opencores.org/downloads/wbspec_b4.pdf.
Accessed 5 November 2011

4 SoC Buses and Peripherals: Features and Architectures

http://eecs.wsu.edu/~pande/Journal_Papers/Paper_IEEE_Proceedings.pdf
http://www.engr.colostate.edu/~sudeep/teaching/ppt/lec06_communication1.pdf
http://facta.junis.ni.ac.rs/eae/fu2k63/stojcev.pdf

97© Springer International Publishing Switzerland 2016
K.S. Mohamed, IP Cores Design from Specifi cations to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_5

 Chapter 5
 Verilog for Implementation and Verifi cation

5.1 Introduction

 Hardware Description Language (HDL) is widely used as it is easier to explore dif-
ferent design options (e.g., throughput vs. latency), reduce design time and cost
signifi cantly, allows larger designs, can reuse design to target different technologies
as it is technology-independent language.

 The HDL description can be synthesized into a gate-level description of a chosen
technology. Two popular HDLs in the IC design: VHDL which is similar to Ada/
Pascal in software programming and case insensitive, Verilog which is similar to C
language, case sensitive (CLOCK, clock, and Clock are different), a bit easier to
learn. The differences are shown in Table 5.1 . Disadvantages of HDL are that quality
of synthesis varies from tool to tool and synthesis is not standard [1].

 Verilog hardware language is used to simulate RTL. Verilog and C bear a lot of
similarities in both syntaxes and semantics. Of course, Verilog incorporates features
specifi cally designed for hardware modeling. For instance, Verilog can directly
manipulate vectors and support a larger set of bit-level operations such as concatena-
tion and reduction. Such disparities can be handled by adding new functions in C. The
most important difference, however, is that Verilog allows two types of assignments,
blocking and nonblocking, while C only has blocking assignments. A blocking
assignment has to fi nish before its next statement can be executed, but a nonblocking
statement allows its succeeding statements to run concurrently [2]. Figure 5.1 shows
a comparison between software and hardware from execution- time point of view
[3 – 10]. Verilog is hardware language not a programming language like C.

 Verilog can be used for design and for verifi cation. When trying to write Verilog
you should think hardware not software. The main difference from software is time
notation, Bit/vector data type, and parallelism.

 Poorly written HDL code will either be synthesizable, functionally incorrect, or
lead to poor performance/area/power results.

98

5.2 Verilog for Implementation

5.2.1 Introduction

 A complete Verilog description consists of a module in which the interface signals
are declared and the functionality of the component is described. Verilog provides
constructs and mechanisms for describing the structure of components which may
be constructed from simpler subsystems. Verilog also provides some high-level
description language constructs (e.g., loops, conditionals) to model complex
 behavior easily. Finally, the underlying timing model in Verilog supports both the
concurrency and delay observed in digital electronic systems.

 Table 5.1 Differences between VHDL and verilog

 VHDL Verilog

 Like ADA Like C
 Verbose Concise
 Harder to learn Easier to learn
 Not case sensitive Case sensitive
 Better in high-level behavior modeling Doesn’t have the ability to defi ne new data types
 Level of abstraction (3) Level of abstraction (4), includes switch level

 Fig. 5.1 Software versus
hardware [3]

5 Verilog for Implementation and Verifi cation

99

 In Verilog, a circuit is a module. Module encapsulates structural and functional
details. To model any IP using Verilog, you should follow the following steps:

 1. Declare a module (Fig. 5.2 shows “hello world” example).
 2. Declare the ports type (connectivity).

 (a) Input
 (b) Output
 (c) Inout (bidirectional)

 3. Declare the ports size (connectivity).

 (a) Scalar (single bit) input A;
 (b) Vector (multiple bits) input [0:4] A;
 (c) Array input A [0:4];
 (d) Memory input [7:0] A [0:7]; // multidimensional arrays are not allowed.

 4. Declare the module contents.

 An example for declaration is shown in Fig. 5.3 .

 Fig. 5.2 Verilog “hello world” example. It starts with the keyword module followed by the name
of the module. The keyword “initial” marks the beginning of the operation of the component. The
keyword “endmodule” marks the end of the module

 Fig. 5.3 Declaration example

5.2 Verilog for Implementation

100

 RTL description usually consists of a hierarchy of concurrently (order-
independent) running processes (e.g., always, initial blocks, and assign statements),
each with arbitrary internal behavior. At the register transfer level, circuit behaviors
are represented as a set of interacting processes running concurrently. The minimal
unit of parallel execution in Verilog is a process. The verilog hierarchy is shown in
Fig. 5.4 , where it captures the main features of a complete Verilog model.

 Initial block is executed only once, at the beginning of the simulation, and it is
useful for verifi cation, for example, to initialize ROM (Fig. 5.5).

module

Assign Always

Sequential
statements

Concurrent
statements

Functions/tasks
call

Initial Instance

 Fig. 5.4 Verilog hierarchy. Putting it all together

 Fig. 5.5 Initial block usage example

5 Verilog for Implementation and Verifi cation

101

5.2.2 Data Representation

 Verilog data types are shown in Table 5.2 . Verilog supports built-in data type not
user-defi ned data types. To defi ne an internal signal which is not input nor output we
use “wire” for combinational circuits as depicted in Fig. 5.6 or we use “reg” for
asynchronous sequential circuits as depicted in Fig. 5.7 or for synchronous sequen-
tial circuits as depicted in Fig. 5.8 . Note that if the circuit contains sequential and
combinational logic, we should separate them. Assign for combinational logic and
always for sequential logic.

 Table 5.2 Verilog datatypes

 Data type Description

 Reg Store data
 Wire Physical connection
 Tri1 A net in verilog that pull-up the output if it is not driven
 Tri0 A net in verilog that pull-down the output if it is not driven
 Parameter To ease confi guration. If not overwritten, they keep their default value
 Localparam Like parameters, but cannot be modifi ed hierarchically during the

instantiation
 Array reg [7:0] ram [0:7];

 // to reset it use for loop
 for (i = 0; i < 8; i++) begin ram[i] < = 0; end

 Preprocessor directive ‘defi ne CMD0 4’b0100
 like a global parameter
 ‘defi ne INRANGE(x) ((x) > 2 && (x) < 5) // parameterized macro

 ifdef Used to enable or disable some features
 Enum enum integer {step1 = 0, step2 = 1, tep3 = 2} state;

 Make debugging easy using waveforms
 ‘include ‘include “timing.vh”

 Fig. 5.6 Wire usage in verilog

5.2 Verilog for Implementation

102

5.2.3 Verilog Coding Style

 Verilog is one language, but it contains many coding Styles. Verilog description can
be structural or behavioral. Behavior means what does it do? (Boolean Expressions
or FSM). Structure means what is it composed of? (Blocks, gates). An example to
show the difference between the behavioral and structural implementation is
shown in Fig. 5.9 .

 For complex design we partition the modules into submodules as depicted in
Fig. 5.10 and use generate statement to reduce the manual coding effort (Fig. 5.11),
generate statement is written parallel to always not inside it. Another example which
is useful to show the importance of generate statement is n-stage FIR fi lter design.

 Fig. 5.7 Reg usage in verilog for asynchronous sequential circuits. Always is triggered when it
has fi nished executing and one of the events in the sensitivity list happens. Use always @(*)
instead of writing the whole sensitivity list

 Fig. 5.8 Reg usage in verilog for synchronous sequential circuits

5 Verilog for Implementation and Verifi cation

103

5.2.4 Verilog Operators and Control Constructs

 Verilog HDL operators are summarized in Table 5.3 .
 The fundamental control constructs are shown in Fig. 5.12 . If statement is used

only in always block (Fig. 5.13). Same for “case” statement (Fig. 5.14). The itera-
tion examples are shown in Fig. 5.15 .

 Tasks and functions are used in HDL languages. Data is passed to the task or
function, processing is done, and the result is returned to the main procedure.
Functions are very much similar to tasks, with very little difference, e.g., a function
cannot drive more than one output and, also, it cannot contain delays. The differ-
ences between tasks and functions are summarized in Table 5.4 .

 Fig. 5.9 Structural versus behavioral implementation

 Fig. 5.10 Submodules example

 Fig. 5.11 Generate statement example

5.2 Verilog for Implementation

104

 Table 5.3 Verilog HDL
operators

 + Binary addition
 − Binary subtraction
 & Bit-wise AND
 | Bit-wise OR
 ̂ Bit-wise XOR
 ~ Bit-wise NOT
 == Equality assign s = (op == ADD) ? a + b : a−b;
 > Greater than
 < Smaller than
 {} Concatenation assign s = {a, b};
 ? : Conditional
 ! logical NOT
 && Logical AND
 || Logical OR
 ! = Logical inequality
 << Shift left
 >> Shift right

Statement i+1

Statement i+1

IF, Casea b c Loops: For, while, repeat, forever

Statement i+1 Statement i+2

Statement i Statement i

Statement i

[condition 1] [condition 2]

[condition 1] [condition 2]

Sequence Selection Iteration

 Fig. 5.12 Verilog fundamental control construct

 Fig. 5.13 If statement
example

5 Verilog for Implementation and Verifi cation

105

 Fig. 5.14 Case statement
example, if 2’b00 and
2’b01 are in the same state,
we use “,” to separate
between them

 Fig. 5.15 Iteration statements (loops): for, while, repeat

5.2 Verilog for Implementation

106

5.2.5 Verilog Design Issues

 Race condition happens when two different processes try to write the same signal
during the same time step. To avoid it, don’t write the same signal in different pro-
cesses, unless you really know what you do (you know that the two processes will
never write the signal in the same time step) and do not make assignments to the
same signal in more than one always statement or continuous assign statement.
Also, to avoid race condition, always use nonblocking assignments (<=) for sequen-
tial circuits and blocking (=) assignments for combinational.

 For clock, avoid combinational feedback clock, internally generated clocks, and
avoid mixed cock edges. For Resetting, asynchronous RST is preferred, avoid inter-
nally generated resets, and for proper operation, all the registers should be resetted into
the reset process. Non-Synthesizable Verilog Statements are described in Table 5.5 .

5.2.6 Verilog Template and Reusable Code Tips

 A Verilog template is suggested in Fig. 5.16 . The design should start with defi ning
declarations, then module declarations, then parameters declarations, then inputs/
outputs declarations, then wire declarations, then registers declarations, then wire
assignments, then sequential logics, and then instances declarations.

 If you want to write a Verilog reusable code, you may follow the following tips [11]:

 1. Don’t write code that isn’t needed.
 2. Don’t duplicate code.

 Table 5.4 Differences between functions and tasks

 Functions Tasks

 • Can call just another function (not task) • Can enable other tasks and functions
 • Execute in 0 simulation time • May execute in nonzero simulation time
 • No timing control statements allowed • May contain any timing control statements
 • At least one input • May have arbitrary input, output, or inouts
 • Return only a single value • Do not return any value
 • Are defi ned in a module
 • Do not contain initial or always statements
 • Are called from initial or always statements or other tasks or functions
 task convert;
 input [7:0] temp_in;
 output [7:0] temp_out;
 begin
 temp_out = (9/5) *(temp_in + 32);
 end
 endtask

 function myfunction;
 input a, b, c, d;
 begin
 myfunction = ((a + b) + (c−d));
 end
 endfunction

5 Verilog for Implementation and Verifi cation

107

 3. Naming conventions: use meaningful names for modules, ports, regs, and
wires.

 4. Make a task/function do just one thing.
 5. Try to reduce coupling.
 6. Make your code more modular.
 7. Comment, in detail , everything that seems like it might be confusing when you

come back to the code next time.

 Table 5.5 Constructs not
supported in synthesis

 # Constructs not supported in synthesis

 1 “Hierarchical name reference not supported”
 card.resp_gen.device_reg

 2 Time:
 # 580ns

 3 Assign on reg not allowed (but it is ok for wire)
 reg [15:0] block_cnt = 2

 8 “Mixed blocking and nonblocking assignment
is not supported.”
 X = 1;
 X < =1;

 9 Real datatype
 10 Initial statement
 11 Repeat, while, forever statements
 12 Division and modulus operators for variables
 13 Nonfi xed size for loops

// define declarations ===

// Module declarations ==

// Parameters declarations ==

// Inputs/Outputs declarations ==

// Wire declarations ==

// Register declarations ===

// Wire assignments==

// Sequential logic ===

// Instances==

 Fig. 5.16 Verilog template

5.2 Verilog for Implementation

108

 8. Include a header mentioning.

 (a) Filename
 (b) Author
 (c) Date
 (d) Time
 (e) Abstract

 9. Use indentation.
 10. Before a code can been reusable, it has to be usable.

5.2.7 Main Digital System Building Blocks

 The main building blocks in any digital system can be summarized in Table 5.6 .
These building blocks can be used to implement or architect any IP.

5.3 Verilog for Verifi cation

 How DUV responses can be displayed and checked or monitored. Verilog simula-
tion environments provide two kinds of display of simulation results:

• Graphical (waveforms editors): suitable for small design as you can check by eye
or by using system tasks such as $display, $strobe, $monitor. These system tasks
are summarized in Table 5.7 .

• Text-based: writing or reading to/from a fi le, suitable for large designs like video
streaming.

 To check the DUT behavior, we simply drive the inputs and monitor the outputs as
depicted in Fig. 5.17 . In some cases, the verifi cation should wait a response from the
DUT before it can send the next trigger (DUT outputting status indicators to testbench).
Verilog can test both combinational (Fig. 5.18) and sequential circuits (Fig. 5.19).

 Table 5.6 The main building blocks in any digital system

 Task Hardware examples

 Arithmetic +, −, *, %, >>, 2’s compliment, CORDIC, ALU
 Multiplexing Arbitration
 Comparison Comparator
 Storage RAM (random access), FIFO (non random access)
 Counter Counter
 Communication Channel encoding, scrambler
 Error detection and correction ECC, CRC
 Randomization LFSR
 Encryption DES
 Synchronization Clocking

5 Verilog for Implementation and Verifi cation

109

 To write testbench, it is important to have the design specifi cations of the DUT.
Specifi cations need to be understood clearly and test-plan should be done accordingly.
The test-plan documents the testbench architecture and the test scenarios in detail.

 To reduce the verifi cation time, we can call C code inside Verilog as depicted
in Fig. 5.20 . Verilog PLI (Programming Language Interface) is a mechanism to
invoke C or C++ functions from Verilog code. Use these Functions in Verilog code

 Table 5.7 Verilog system tasks

 System task Description

 $display Display strings, expression, or values to standard output
 $monitor Same as display but displays when any of the values change
 $stop Suspend simulation, put in interactive mode
 $fi nish Stop simulation altogether

 Fig. 5.17 Testbench structure

 Fig. 5.18 Verifi cation example of half adder. # Means delay

5.3 Verilog for Verifi cation

110

 Fig. 5.19 Verifi cation example of fl ip-fl op

 Fig. 5.20 Call C code inside verilog

 Fig. 5.21 Call VHDL-code inside verilog

(Mostly Verilog Testbench). Compile C++ to generate shared libs Based on simulator ,
pass the C/C++ function details to simulator during compile process of Verilog
Code [12].

 We can also call VHDL-code inside Verilog to reduce verifi cation time, if you
have a preexisting VHDL-code (Fig. 5.21). To instantiate a VHDL module inside a
Verilog design, make sure the two fi les are in the same directory and that they have
been added to the project for compilation.

 For Text-based verifi cation, writing or reading to/from a fi le example is shown
below (Fig. 5.22):

5 Verilog for Implementation and Verifi cation

111

5.4 Logic Simulators

 Logic simulation is one of the most intensively studied problems in the fi eld of
electronic design automation. Existing sequential logic simulators virtually fall into
two categories, oblivious simulation and event-driven simulation.

 1. The oblivious (cycle-based) simulation takes a straightforward approach in
which all logic elements are evaluated at every simulation step, no matter they
undergo logic transitions or not [13].

 2. Event - driven simulation was proposed to improve the effi ciency of oblivious
simulation. An event-driven simulator only evaluates logic modules whose input
ports receive new values. Due to its higher effi ciency, event-driven simulation
has become the workhorse of virtually all commercial and research logic
simulators.

 From an implementation point of view, a logic simulator could be either interpre-
tive or compiled.

 1. Interpretive maps the simulated circuit into an internal representation. The
response to input patterns can then be evaluated on the representation.

 2. Compiled translates the circuit into machine code for direct execution. The
underlying idea is to take advantage of the similarity between logic operations
and CPU instructions.

 Parallel logic simulation has attracted considerable research efforts in the past 40
years for its strong potential. An intuitive approach is to use multiple processors to
evaluate simultaneously happened events in parallel. However, it has been proved
that such parallelism is not suffi cient to maintain a decent speed-up due to the fol-
lowing two reasons: (1) generally only a small percentage (e.g., ~1 %) of all circuit
elements have active events, and (2) not all elements with active events can be han-
dled simultaneously because the logic dependency actually implies a partial order-
ing in which the events have to be processed.

 Many parallel simulation protocols have been proposed to extract a higher level
of inherent parallelism. Basically, these protocols can be classifi ed into two catego-
ries, conservative and optimistic.

 Fig. 5.22 Writing or reading to/from a fi le example

5.4 Logic Simulators

112

 1. The conservative protocol enforces the causal relation during simulation in the
sense that events happened earlier are always simulated ahead of later events.

 2. The optimistic protocol allows the causal relation to be temporarily violated for
higher parallelism. However, a roll-back is necessary if a later evaluation invalidates
earlier simulation results. Figure 5.23 summarizes these types of logic simulators.

 Questa™ is a CPU-based sequential simulator; there is a GPU - based parallel
simulator for acceleration [14]. A GPU includes a number of multiprocessors which
communicate through a small shared memory bank. Questa platform is shown in
Fig. 5.24 and their detailed usages are shown in the next subsections [15].

5.4.1 Questa Simulation

 The Questa Simulator combines high performance and capacity simulation with
unifi ed advanced debug capabilities for the most complete native support of Verilog,
SystemVerilog, VHDL, SystemC, PSL, and UPF (power aware).

 The Questa Advanced Simulator is the core simulation and debug engine of the
Questa Verifi cation Platform; the comprehensive advanced verifi cation platform
capable of reducing the risk of validating complex FPGA and SoC designs.

 Questa spans the levels of abstraction required for complex SoC and FPGA
design and verifi cation from TLM (Transaction Level Modeling) through RTL,
gates, and transistors and has superior support of multiple verifi cation methodolo-
gies including Assertion-Based Verifi cation (ABV), the Open Verifi cation
Methodology (OVM), and the Universal Verifi cation Methodology (UVM) to
increase testbench productivity, automation, and reusability.

RTL Logic
Simulation

Parallel

Conservative Optimistic

Sequential

Oblivious Event-
driven

Interpretive Compiled

 Fig. 5.23 Logic simulation classifi cations

5 Verilog for Implementation and Verifi cation

113

 The Questa Advanced Simulator achieves industry-leading performance and
capacity through very aggressive global compile and simulation optimization
algorithms of SystemVerilog and VHDL, improving SystemVerilog and mixed
VHDL/SystemVerilog RTL simulation performance by up to 10×.

 Questa also supports very fast time-to-next simulation and effective library man-
agement while maintaining high performance with unique capabilities to preopti-
mize and defi ne debug visibility on a block-by-block basis enabling dramatic
regression throughput improvements of up to 3× when running a large suite of tests.

 To increase simulation performance for large designs with long simulation times,
Questa also has a multi-core option. Questa Multi - Core takes advantage of modern
compute systems by partitioning the design to run in parallel on multiple CPUs or
computers using either automatic or manually driven partitions.

 To achieve even greater performance, Questa supports TBX ; the highest perfor-
mance Transaction Level link to the Veloce platform enabling a 100× increase in
performance with debug visibility and a common testbench.

Q
ue

st
a

Questa Simulation

Questa Formal Verification

Questa CoverCheck

Questa CDC

Questa ADMS

Questa inFACT

Questa PowerAware
Simulation

Questa Verification IP

Questa Verification
Management

Questa CodeLink

 Fig. 5.24 Questa
platforms

5.4 Logic Simulators

114

5.4.2 Questa Formal Verifi cation

 It complements simulation - based RTL design verifi cation . The Questa Formal
Verifi cation tool complements simulation-based RTL design verifi cation by ana-
lyzing all possible behaviors of the design to detect any reachable error states. This
exhaustive analysis ensures that critical control blocks work correctly in all cases
and locates design errors that may be missed in simulation.

 Questa Formal Verifi cation can be used as soon as the design is complete to
debug blocks before integration, and to fi nd potential errors long before simulation
test environments are available. Sharing a common language front end with the
Questa Simulator and leveraging the integration with the Unifi ed Coverage Database
(UCDB), Questa Formal Verifi cation is the perfect tool to accelerate bug detection,
error correction, and coverage closure.

 Questa Formal Verifi cation analyzes the behavior of the design to identify all
design states that are reachable from the initial state. This analysis allows Questa
Formal Verifi cation to explore the whole state space in a breadth-fi rst manner, in
contrast to the depth-fi rst approach used in simulation.

 Questa Formal Verifi cation is therefore able to discover any design errors that
can occur, without needing specifi c stimulus to detect the bug. This ensures that the
verifi ed design is bug-free in all legal input scenarios. At the same time, this
approach inherently identifi es unreachable coverage points, which helps accelerate
coverage closure.

 Questa Formal Verifi cation provides easy-to-use automatic checking for many
common design errors. With Questa Formal Verifi cation, designers can easily check
out new code to look for functional issues such as fl oating or multiply - driven buses ,
combinational loops, arithmetic errors, and initialization problems . Finding and fi x-
ing these errors before integrating new code into the design avoids injecting diffi cult-
to-fi nd bugs into the larger system, and accelerates downstream verifi cation. Since
these checks are based on exact analysis of the reachable state space, the errors detected
are real errors, not the noisy results that are often generated by simple lint checkers .

 Questa Formal Verifi cation also supports general assertion - based formal verifi ca-
tion to ensure that the design meets its specifi c functional requirements. With support
for PSL, SVA, and OVL, including multiclocked assertions, Questa Formal Verifi cation
easily verifi es even very large designs with many assertions. Its multiple high-capacity
formal engines cooperate to complete verifi cation faster. Questa Formal Verifi cation is
integrated with the Questa Simulator for easy debug of assertion failures.

5.4.3 Questa CoverCheck

 Questa CoverCheck reads code coverage results from simulation in the Unifi ed
Coverage Database (UCDB) and then leverages AutoCheck technology to do vari-
ous useful verifi cation tasks with regard to the coverage holes. The most obvious:
prove that the code can be safely ignored. That is, the tool might mathematically

5 Verilog for Implementation and Verifi cation

115

prove that no stimulus could ever activate the code in question. In such cases,
 waivers are automatically generated to refi ne the code coverage results.

 Secondly, the tool can also identify segments of code that, though diffi cult to
reach, might someday be exercised in silicon. In such cases, CoverCheck helps
point the way to testbench enhancements to better reach these parts of the design.
Finally, CoverCheck fl ags code coverage items that are diffi cult to reach by formal
techniques and haven’t been hit in simulation, and thus provides a valuable measure
of verifi cation complexity.

 Automates code coverage closure —achieve 100 % coverage with automatic
formal reachability analysis.

 Improved fi delity of code coverage results —eliminate code that is never meant
to be exercised.

 Mode-sensitive analysis —tune the code coverage reporting considering only
the relevant modes of operation.

 Guide testbench enhancement —waveforms show how uncovered but formally
reachable coverage bins can be hit in simulation.

5.4.4 Questa CDC

 It stands for Questa Clock - Domain Crossing (CDC) Verifi cation . It Performs
clock-domain crossing verifi cation with Questa CDC is straightforward. The CDC
compiler analyzes the RTL code, identifi es all clocks and clock-domain crossings,
and offers a rich, intuitive debugging environment to resolve all types of CDC issues.
Once these issues are resolved, it automatically generates a set of protocol assertions
and metastability models that are linked in to the simulation of the RTL code

 Questa CDC addresses a number of critical verifi cation issues that simply cannot
be dealt with by simulation-based verifi cation techniques.

 An RTL or gate-level simulation of a design that has multiple clock domains
does not accurately capture the timing related to the transfer of data between clock
domains. As a consequence, simulation does not accurately predict silicon behavior,
and critical bugs may escape the verifi cation process. The Questa CDC Verifi cation
solution solves this problem. It is also used for metastability check.

5.4.5 Questa ADMS

 It is used for Complex Analog / Mixed - Signal System - on - Chip Designs. Questa
ADMS gives designers a comprehensive environment for verifying complex ana-
log/mixed-signal System-on-Chip designs. ADMS combines four high- performance
simulation engines in one effi cient tool: Eldo ® for general purpose analog simula-
tions, Questa ® for digital simulations, ADiT™ for fast transistor-level simulations
and Eldo RF for modulated steady state simulation.

5.4 Logic Simulators

116

 Universally accepts IP written in any of the standard design languages for easy
migration. Builds on previous design investments through its design fl ow integration
with Mentor Graphics Design Architect IC and Cadence Analog Design Environment.

 ADMS integrates into the Cadence Virtuoso Analog Design Environment with
the same look and feel as any simulator inside the environment, but gives designers
the advantage of ADMS analysis, commands, and options. An enhanced symbol
library providing specifi c Eldo devices is compatible with the Cadence library.

 ADMS is the simulation engine underlying Mentor Graphics HyperLynx Analog
for functional verifi cation of complete printed circuit boards. A single schematic
supports both PCB layout and functional analysis. HyperLynx Analog combines
with HyperLynx Signal Integrity to extract parasitic PCB trace models for compre-
hensive board-level functional analysis.

5.4.6 Questa inFACT

 It is an intelligent Testbench Automation . Recently announced, intelligent
software- driven verifi cation (“iSDV”) has been added to the Questa inFact function-
ality to automatically generate embedded C test programs for both single-core and
multi-core SoC design verifi cation. iSDV bridges the gap between IP block and full
system level verifi cation by applying intelligent testbench automation to hardware/
software verifi cation at the system level. While writing directed tests in C to verify
single-core designs at the system level was challenging, today’s multi-core multi-
threaded designs has made this process virtually impossible. Questa iSDV auto-
mates this process.

 Questa ® inFact is the industry’s most advanced testbench automation solution.
It targets as much functionality as traditional constrained random testing , but
achieves coverage goals 10–100× faster.

5.4.7 Questa Power Aware Simulation

 It verifi es active power management . The Questa ® Power Aware Simulator
enables design teams to verify the architecture and behavior of active power manage-
men t planned for the implementation, but starting much earlier in the design process.

 Verifi cation of active power management at the RTL stage makes it possible to
explore alternative power management approaches long before implementation
begins, to achieve the greatest power reduction at the least cost.

 Verifi cation of active power management in the post-synthesis Gate - Level netlist
stages makes it possible to ensure that synthesis and manual transformations have
correctly preserved the active power management architecture and its behavior.

5 Verilog for Implementation and Verifi cation

117

 How Questa Power Aware Simulation Works

 – Given a description of power intent expressed in the industry-standard Unifi ed
Power Format (UPF), the Questa Power Aware Simulator.

 – Partitions the HDL design into power domains.
 – Adds isolation, level-shifting, and retention cells.
 – Integrates the power supply network into the design to power each domain
 – The augmented HDL design can then be simulated with full control over the

power state of each domain, for accurate modeling of the effects of active power
management on the design’s functionality.

5.4.8 Questa Verifi cation IP

 Verifi cation IP (VIP) improves quality and reduces schedule times by building
Mentor’s protocol and methodology expertise into a library of reusable compo-
nents that support many industry-standard interfaces. This frees up engineering
resources from having to spend time developing BFMs, verifi cation components,
or VIP themselves, enabling them to focus on the unique and high-value aspects of
their design.

 VIP integrates seamlessly into advanced verifi cation environments, including
testbenches built using UVM , OVM, Verilog, VHDL, and SystemC. It is the
industry’s only VIP with a native SystemVerilog UVM and OVM architecture
across all protocols, ensuring maximum productivity and fl exibility. Transaction-
level score boarding, analysis, and debug. Synthesizable memory models for use
with simulation acceleration and emulation.

5.4.9 Questa Verifi cation Management

 Questa’s verifi cation management capabilities are built upon the Unifi ed Coverage
Database (UCDB). The UCDB captures any source of coverage data generated by
verifi cation tools and processes; Questa and ModelSim use this format natively to
store code coverage, functionality coverage, and assertion data in all supported lan-
guages. It is used for Test- plan tracking .

 Projects are tracked in spreadsheets or documents created by a range of applica-
tions, from Microsoft Excel and Word to OpenOffi ce Calc and Write. So it’s critical
that a verifi cation management tool be open to a range of fi le formats, a basic fea-
ture of Questa, which is built on the premise that a user should be able to use any
capture tool to record and manage the plan.

5.4 Logic Simulators

118

5.4.10 Questa CodeLink

 It is software - driven hardware verifi cation. Questa ® Codelink is the industry’s
leading software-driven hardware verifi cation solution. It makes every verifi cation
engineer an instant “CPU expert” by providing 100 % accurate processor views for
system level testing.

 Everything is fully synchronized and easily viewed, including logic simulation
waveforms, processor states , source code, internal memory, registers, stacks , and
output. Questa Codelink then presents only the important information needed to
quickly debug software-driven tests.

 As a result, companies using Questa Codelink have been able to reduce their
system level debugging time from months to days . Complex simulation failures
that used to require extensive analysis of multiple fi les and databases, can now be
diagnosed within one robust multi-viewing debugging environment called Questa
Codelink.

5.5 Summary

 In this chapter, we introduce a deep introduction for Verilog for both implementa-
tion and verifi cation point of view. The chapter used design examples for showing
ways in which Verilog could be used in a design for both implementation and veri-
fi cation. This chapter did not cover all of Verilog, but only some important topics.
Moreover, a survey on the current existing logic simulators is presented.

 References

 1. Mehler R (2015) Digital integrated circuit design using verilog and systemverilog. Elsevier,
Oxford

 2. Williams JM (2014) Digital VLSI design with verilog. Springer, Cham
 3. Dubey R (2007) Introduction to embedded system design using fi eld programmable gate

arrays. Springer, London
 4. Kilts S (2007) Advanced FPGA design architecture, implementation, and optimization. Wiley,

Hoboken
 5. Chu PP (2008) FPGA prototyping by verilog examples Xilinx SpartanTM-3 version. Wiley,

Hoboken
 6. Ciletti MD (2003) Advanced digital design with the verilog HDL. Prentice Hall, Upper Saddle

River
 7. Ciletti IMD (2003) Starter’s guide to verilog 2001. Prentice Hall, Upper Saddle River
 8. Ashenden PJ (2008) Digital design: an embedded systems approach using verilog. Morgan

Kaufmann, Burlington
 9. Lilja DJ, Sapatnekar SS (2005) Designing digital computer systems with verilog. Cambridge

University Press, New York
 10. Navabi Z (2005) Digital design and implementation with fi eld programmable devices. Kluwer,

Boston

5 Verilog for Implementation and Verifi cation

119

 11. http://www.verilogcourseteam.com
 12. http://www.asic-world.com/verilog/pli2.html
 13. Yuan J, Pixley C, Aziz A (2006) Constraint-based verifi cation. Springer, New York
 14. Qian H, Deng Y (2011) Accelerating RTL simulation with GPUs. In: 2011 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), IEEE, San Jose, pp 687–693
 15. http://www.mentor.com/products/fv/questa-verifi cation-platform

References

http://www.verilogcourseteam.com/
http://www.asic-world.com/verilog/pli2.html
http://www.mentor.com/products/fv/questa-verification-platform

121© Springer International Publishing Switzerland 2016
K.S. Mohamed, IP Cores Design from Specifications to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_6

Chapter 6
New Trends in SoC Verification: UVM,
Bug Localization, Scan-C0068ain-Based
Methodology, GA-Based Test Generation

6.1 Part I: UVM

6.1.1 Introduction

Now, SystemVerilog (SV)/UVM gradually dominate the verification landscape. SV
does not support MACROS and the language alone was insufficient to enable wide-
spread adoption of the best-practice verification techniques that inspired its devel-
opment that is why we need UVM [1, 2]. UVM is a methodology for SoC functional
verification that uses TLM standard for communication between blocks and
SystemVerilog for its languages, or in other words, it uses SV for creating compo-
nents and TLM for interconnects between components.

Methodology is a systematic way of doing things with a rich set of standard rules
and guidelines. Methodology provides the necessary infrastructure to build a robust,
reliable, and complete verification environment. Methodology shrinks verification
efforts with its predefined libraries. It makes life easier by preventing the designer
from making mistakes or poor decisions. It also helps make sure that whatever you
do will mesh nicely with what others do (reusability). Methodology is basically a
set of base class library which we can use to build our testbenches.

UVM main goals are: reusability to reduce time to market and it is targeted to
verify systems from small to large concept (Fig. 6.1), speed verification: it helps the
designers to find more bugs earlier in the design process, so it provides practical and
efficient SoC verification flow by reusing IP testcase and testbench, standardization:
vendor independent, dynamic not static like traditional testing (Table 6.1),
 randomization, and automation [3, 4]. UVM makes multi-master multi-slave
 systems verification easier as it separates tests from testbench.

Table 6.2 summarizes the companies, simulators, and versions related to UVM
[5, 6], it is noted that UVM is supported by all major simulator vendors, which is not
the case with earlier methodologies [7]. Various IPs are connected to and controlled
through a bus, so the functional verification uses BFM (bus functional model).

122

The rest of this chapter is organized as follows. In Sect. 6.1.2, SystemVerilog
features are proposed. In Sect. 6.1.3, TLM features are proposed. In Sect. 6.1.4,
UVM features are introduced. Summary is given in Sect. 6.1.5.

System/Board

SoCs

IPs

Blocks

Fig. 6.1 Levels of
verification: UVM verifies
systems from small to
large concept. SoC is a
collection of IPs

Table 6.1 Comparison between UVM and traditional testing

Traditional testing UVM

Stimulus structure Procedural code Constrained random variable

Type Static Dynamic

Reusability Nonreusable Reusable (customization)

Scalability Nonscalable Scalable

Test redundancy None Yes

Simulation overhead None 10 ~ 40 % to solve constraints

Controllability Coarse-grained Fine-grained (smoother)

Observability lower Higher (assertion, coverage)

Maintainability Hard Easy

Table 6.2 Companies, simulators, and versions related to UVM

Companies

UVM =

OVM AVM Mentor

URM Cadence

VMM synopsys

, ()
()
()

ì

í
ï

î
ï

Simulators UVM supports all simulators {Questa, IUS, and VCS}

Releases

UVM =

UVM Released

UVM a,b,c,d Released

UVM Released

1 0

1 1

1 2

.

.

.

®

() ®
®

ì

í
ï

î
ïï

6 New Trends in SoC Verification…

123

6.1.2 SystemVerilog

Initially, Verilog is used for verification. But, for complex design, developing a veri-
fication environment in Verilog is tedious process and consumes a lot of time. So,
SystemVerilog is used to create verification environment which reduces effort to
develop testbench. SystemVerilog is an extensive set of enhancements to Verilog
and it is called hardware description verification language (HDVL), the important
features of it are summarized in Fig. 6.2. SystemVerilog supports constrained ran-
dom stimulus generation and coverage analysis, and object-oriented programming
(OOP) structure which contributes to transaction-level verification and providing
the reusability of verification. Object-oriented programming can greatly enhance
the reusability of testbench components [8–11]. It has C-like control constructs
such as foreach, and VHDL-like package and import features. In this section, we
discuss the main features of SV, where OOP is introduced in Sect. 6.1.2.1, easy call
of C programs (direct programming interface) is introduced in Sect. 6.1.2.2, con-
strained randomization is introduced in Sect. 6.1.2.3, functional coverage is intro-
duced in Sect. 6.1.2.4, assertion is introduced in Sect. 6.1.2.5, other constructs such
as: interface, modport, clocking, fork_join, and always are introduced in Sect. 6.1.2.6,
and new data types are introduced in Sect. 6.1.2.7.

6.1.2.1 Object-Oriented Programming

Object-oriented programming is used for code reusability (inheritance), where
object = entity (hold the data) + method (operate on the data). It is packing data and
function in one structure, moving functions inside data structure is for consistency.
Comparison between instantiation of class in SystemVerilog and instantiation of mod-
ule in Verilog is shown in Table 6.3. Moreover, comparison between procedural code
and OOP is shown in Table 6.4. The main features of OOP are summarized in Table 6.5.
The OOP in SV has some restrictions as it supports only single inheritance [11].

UVM

Classes Encapsulation Inheritance
Polymorphism

New data types
(Logic, bit)

SV HDL

Constrained Random
Object Oriented Programming

Easy call of C programs (DPI)

Assertions

Coverage

TLM

Interface+ modport +clocking
+fork_join+ always

(comb_ff_latch)

ComputationCommunication

Coordination

Fig. 6.2 UVM consists of TLM and SV

6.1 Part I: UVM

124

6.1.2.2 Easy Call of C Programs (Direct Programming Interface)

In Verilog, calling C programs is called PLI and it is complicated, In SV it is called
direct programming interface (DPI) and it makes C program calls easier [11]. SV func-
tions can be called in C using export and C functions can be called in SV using import.

6.1.2.3 Constrained Randomization

Constrained random verification applies stimuli to the device under test (DUT) that
are solutions of constraints. These solutions are determined by a constraint solver.
Thereby, the generated stimulus is much more likely to hit corner cases which make
discovering unexpected bugs easier. Randomizing the stimulus also makes reaching
the verification coverage easier. We put some constraints on that stimulus in order
to generate legal or interesting scenarios. Make sure that there is no conflict or
 contradict between constraints. Constraints are like control knobs. Weighted
 constraints are very important to hit boundary values. In a nutshell, constrained
random should be an intelligent process. You can disable constrains using
constrain_mode (0) method.

Table 6.3 Comparison between instantiation of class in SystemVerilog and
instantiation of module in verilog

Instantiation of class in SystemVerilog Instantiation of module in Verilog

Dynamic @ run time, parameterized class Static

Table 6.4 Comparison between procedural code and OOP by example

Procedural code OOP

Struct driver { wire A,B}
Void init {};
Void send_data {};
Begin
Driver driver;
Init ();
Send_data ();
end

Struct driver{
wire A,B;
void init {};
Void send_data {};}
Begin
Driver driver;
Driver.Init ();
Driver.Send_data ();
end

Table 6.5 Main features of OOP

Class Defines set of properties and behavior of object, and it is a data type

Object Is an instant of the class and defined inside program/module

Inheritance “Extends” for code reusability

Encapsulation Bind data and method together for consistency

Polymorphism It means to have many forms. Bind data and method at run time.
“Virtual” keyword

6 New Trends in SoC Verification…

125

6.1.2.4 Functional Coverage

Functional coverage is a user-defined metric that measures how many percentages
of the verification objectives are met by the testplan [2]. Quality of verification
depends upon the quality of testplan. Actually, coverage answers the question “did
we do enough randomization?” For coverage closure, we may need to write direct
testing, enhance stimulus generator, or randomize seeds {vsim –sv_seed}.

6.1.2.5 Assertion

Assertion acts as constraints that determine and define legal and expected behavior
when blocks interact with each other [2]. Complex protocol checks are often imple-
mented using SystemVerilog Assertions. Assertions could be tool independent:
used with both static and dynamic tools. SV has two types of assertions: immediate
(clock-independent) and concurrent (clock-dependent) [9]. Assertion improves
observability and debug ability.

6.1.2.6 Other Constructs: Interface + Modport + Clocking + Fork_Join
(Any None) + Always (comb_ff_latch)

One of the problems of direct DUT signal access is that driver and monitor are
dependent on signal name of DUT, and duplicate efforts. So, using interface as a
signal-map makes it easy to add or remove wire, reduce errors which occur during
model connections, remove redundancy in wires (Fig. 6.3). Modport: for direction
which is input/output/inout. Clocking block is highly recommended usage in test-
bench to avoid race conditions. Fork-join acts like simply begin–end but inside fork-
join all statements are taken as concurrent. Classic fork-join is a “join all” construct.
That’s if you fork two threads, then both of them need to finish for the join to end.
With join_none, one can spawn threads and continue, this is useful in launching
multiple input data streams for example.

To assist synthesis, there are some extra keywords. The always_comb, always_
latch, and always_ff keywords identify the intent of the process, so that a synthesis
tool can detect user errors [6], i.e., the synthesis compiler can tell us when we have
the wrong type of logic in our RTL models.

Test-bench DUT

Test-bench DUT Interface

Fig. 6.3 Interface versus conventional connections

6.1 Part I: UVM

126

6.1.2.7 New Data Types

Bit (2-valued) and logic (4-valued) are new data types introduced by SV to allow
continuous assignments to logic variables. Using a 2-valued data type will speed up
simulation of the code. We no longer need to worry about when to declare module
ports or local signals as wire or reg. With SV, we can declare all module ports and
local signals as logic, and software tools will correctly infer nets or variables for you
[10]. SV also offers dynamic and associative array and queue.

6.1.3 TLM

Transaction-Level Modeling (TLM) provides abstraction level description for the IP
which means lack of details (Fig. 6.4). Advantages: simulation speed increases,
observation of traffic is easier, debugging on TLM level is easier than debugging on
RTL. Disadvantages: accuracy decreases. TLM separates communication from
computation and it is unidirectional put/get interface that works as a bridge to enable
UVM verifies multilanguages like SystemC. TLM is a library built on top of
SystemC which itself is a class library of C++. It encapsulates the communication
between different modules to separate communication from computation.
Translation of TLM2.0 from SystemC to SystemVerilog is needed, because it is
written at the beginning in SystemC. Connect () method using TLM analysis port is
the most famous method for TLM in UVM. We have three types for TLM commu-
nications: port, export, and analysis_port.

System Level (TLM, ESL)

RTL

Gate

Physical
Accuracy

Abstraction

Fig. 6.4 Abstraction level versus accuracy, ESL is electronic system level

6 New Trends in SoC Verification…

127

6.1.4 UVM

In this section we discuss the main features of UVM, where UVM infrastructure is
introduced in Sect. 6.1.2.1, Steps to verify an IP using UVM is introduced in
Sect. 6.1.2.2, and Drawbacks of UVM is introduced in Sect. 6.1.2.3, Opportunities
for UVM are discussed in Sect. 6.1.2.4. A case study is introduced in Sect. 6.1.2.5.

6.1.4.1 UVM Infrastructure

UVM testbench is composed of reusable verification component, which consists of
a complete set of elements for stimulating, checking, and collecting coverage infor-
mation for a specific protocol or design. These verification components are applied
to the DUT to verify it [12]. The testbench should be layered to break the problem
into manageable pieces to help in controlling the complexity.

The UVM main infrastructure, components, and all the terminology related to
UVM is introduced and summarized in Table 6.6, and the general architecture is shown
in Fig. 6.5. Master sequencer generates the data and it is sent to the DUT through the
driver. The data received by the slave are feed back to the scoreboard via collector for
comparison then here the sent and received data item are compared in the scoreboard.
The monitor samples the stimulus and responses. The configuration parameters are
used to configure these components. All these components can be reused. The driver,
monitor, and responder are called transactors/translators/adaptors.

Table 6.6 UVM infrastructure description

Component Description

Interface For communication between classes and modules

Transaction Representation of arbitrary activity in a device which has attributes
and bounded by time

Driver = BFM Apply stimulus to DUT (protocol specific). Also, Convert TLM to
RTL (pin wiggles). BFM = bus functional model

Think in the driver as a normal testbench
Monitor Monitor traffic, collect coverage, and send them to the various

analysis ports such as coverage and scoreboard

It looks like duplication of driver, but without triggering DUT wires
(passive)

Collector = receiver =
responder

Detects signal level activity, convert RTL to TLM and send it to
monitor

Sequencer = producer =
generator

Execution of traffic, coordinate what to do. Running different streams
without the need to change the component instantiation. It is like
arbitration logic

Sequences = scenarios Generate stimulus. Protocol dependent and consists of multiple of
sequence items. It is generated from test class

Sequence item Low level representation like address, data. A transaction object from
the sequencer that stimulates the driver

(continued)

6.1 Part I: UVM

128

Table 6.6 (continued)

Component Description

Virtual interface Inside driver to connect to RTL, like pointer to enable configuration
at runtime. It is a reference to the actual interface

Sequence library Different sequences used by sequencer

TLM port To connect between sequencer and driver

Agent = component =
module = UVC

Instantiate, configure subcomponents like {driver, sequencer,
monitor, collector}. Agent for TX, agent for RX

Agent type Tx, Rx, Master, Slave, Arbiter

Virtual sequencer Coordinate traffic between different UVCs, does not have a sequence
item. It is protocol independent. It starts sequences on sequencer.
Virtual sequences mean that sequences are calling other sequences

Scoreboard/checker Self-checking mechanism. Check that the design is doing what we
expect. Need abstract reference model which can be MATLAB or
Python. Golden model and RTL must be developed by different
teams, errors might be in both. Compare (received, expected). It is a
TLM-based checking. It is preferred to separate protocol checking
from data checking for reusability. We can build the assertions inside
the scoreboard. Scoreboard checks that if the DUT and the reference
model have the same stimulus, they should have the same response

Functional coverage For completeness as it measures important behavior, covers
operation, dimension (as buffer size). Did we exercise the whole
testplan? To stress the device if not. We need to know what all the
tests have accomplished and this is done by storing the data in a
database and merging it all together. So, basically we should
implement a regression environment for functional coverage
measurement. Regressions are the continuous running of the tests
preciously defined in the testplan [13]

Illegal bins should be analyzed to check if any test case is out of the
design specifications

Code coverage Did we exercise the whole code?

Testbench Contains all subcomponents, connections

Test Call testbench, configure traffic, and can be {directed, random
constrained, intelligent: driven random constrained to remove
redundancy}. Coverage-driven testing - > continue randomization
until coverage = 100 %

Configuration To change the behavior of an already instantiated component to
provide flexibility. Such as #slaves, #masters

It provides configuration information to all parts of
TB. Configuration database is like parameters in Verilog

Factory For class override at runtime, this helps making modifications to an
existing testbench. Create () method

Phases Synchronization of UVM components. UVM components have
different phases that operate in a particular sequence:

 Build (new ())- > connect (TLM 2.0)- > end of elaboration (Config)
- > strt_sim- > run- > extract- > check- > report

 *elaboration = @compile time

 *on the fly = @ run time

 Build and connect are functions as they consume zero time. Run is
task as it consumes some time

(continued)

6 New Trends in SoC Verification…

129

Table 6.6 (continued)

Component Description

Class library The UVM comes with a bunch of classes which are used to
implement the verification environment

UVM packages:

1. UVM_components (structural)

2. UVM_objects (configuration)

3. UVM_transaction (stimulus)

Objections Any component that is busy should raise an objection to ending the
test, and then drop the objection when it is finished

For example, you can raise objection until coverage is 100 %
(get_coverage ()) and then drop the objection

UVM register layer Mechanism to setup and access DUT internal registers and memory. It
extends from UVM_reg. IP-XACT format is very useful for this feature.

Verification Plan It is a roadmap that summarizes test function points according to IP
specification (Failing to plan = planning to fail). It should be smart
testplan which effectively and efficiently tests the DUT

Macros Macro is a construct that enables user to extend the language. Macros
implement some useful methods in classes as it can be used for
shorthand notation of complex implement. They are optional, but
recommended. The most common ones are:

‘UVM_component_utils—This macro registers the new class type.
It’s usually used when deriving new classes like a new agent, driver,
monitor, and so on

‘UVM_object_utils—This macro registers the objects like sequences

‘UVM_field_int—This macro registers a variable in the UVM factory
and implements some functions like copy (), compare (), and print ()

‘UVM_object_param_utils—This macro registers the
parameterized objects

‘UVM_component_param_utils—This macro registers the
parameterized components

‘UVM_info—This is a very useful macro to print messages
from the UVM environment during simulation time

‘UVM_fatal—This is a very useful macro to print fatal error
messages from the UVM environment during simulation time

‘UVM_error—This is a very useful macro to print error messages
from the UVM environment during simulation time

‘UVM_warning—This is a very useful macro to print warning
messages from the UVM environment during simulation time

+Plusarg = command
line processing

Some of the famous UVM + plusarg are:

 +UVM_TESTNAME
 +UVM_VERBOSITY
 +UVM_TIMEOUT

The UVM library defines a set of base classes and utilities that facilitate the
design of scalable, reusable verification environments as depicted in Fig. 6.6. The
basic building blocks for all environments are components and the transactions they
use to communicate which are called objects [7, 12, 14].

6.1 Part I: UVM

130

TOP

TEST

Test Plan Specification

Master

Slave
DUT

Configuration

Results

Scoreboard Coverage

Monitor

CollectorDriver

Interface

Sequencer

Sequences library

Test Test library

ENV

Fig. 6.5 UVM architecture and skeleton: the big picture

uvm_monitor

uvm_void

uvm_object

uvm_configuration

uvm_phaseuvm_report_objectuvm_transaction

uvm_sequence_item

uvm_sequence

uvm_component

uvm_test

uvm_env

uvm_scoreboard

uvm_agentuvm_driver

uvm_sequencer

uvm_root

uvm_callback

uvm_reg

Fig. 6.6 Partial UVM class tree (UVM_pkg), we can inherit from any class

6 New Trends in SoC Verification…

131

UVM_Void

The UVM_void class is the base class for all UVM classes. It is an abstract class
with no data members or functions. It allows for generic containers of objects to be
created. It works similar to a void pointer in the C programming language.

UVM_Object

All components and transactions derive from UVM_object, which defines an inter-
face of core class-based operations: create, copy, compare, print, and record. It also
defines interfaces for instance identification (name, type name, unique id, etc.) and
the random seeding.

UVM_Component

The UVM_component class is the root base class for all UVM components.
Components are objects that exist throughout simulation. Every component is
uniquely addressable using hierarchical path name.

UVM_Transaction

The UVM_transaction is the root base class for UVM transactions. It extends
UVM_object to include timing and recording interface. Simple transactions can
derive directly from UVM_transaction.

UVM_Root

The UVM_root class is special UVM_component that serves as the top level
 component for all UVM components, provides phasing control for all UVM
 components, and other global services. UVM_TOP is a singleton of it.

UVM_Callback

The UVM_callback class is the base class for user-defined callback classes.
We define an application-specific callback class that extends from this class. In that,
we will define one or more virtual methods, called a callback interface that represent
the hooks available for user override.

6.1 Part I: UVM

132

6.1.4.2 Steps to Verify an IP Smartly Using UVM

The steps to verify an IP smartly using UVM can be summarized as follows:

 1. Understand the specification: implement the DUT.
 2. Prepare verification plan: feature extraction, specifies how design will be veri-

fied, constrained random coverage driven, written in excel sheet, link it to cover-
point in coverage code written in SystemVerilog. You should expose your DUT
to stress testing.

 3. Build verification environment in the following order: interface, configuration,
scoreboard, and monitors, generate sequences based on verification plan, Env
Class + simple testcase and simulate it. Debug from the generated UVM report
summary.

 4. Measuring coverage progress against the testplan, run regressions, and add test-
cases for coverage holes. For closing coverage you start to run with multiple
seeds, but sometimes certain scenarios can never be covered by the randomness
and we need a directed test case.

 5. Error handling and debugging: when you find a bug, before debugging it ask
yourself the following questions: Is this mistake somewhere else also? What next
bug is hidden behind this one? What should I do to prevent bugs like this? Then,
you can start debugging using waveforms, tracing, or logging. Use built-in
watchdog timer class to handle testcase hanging.

 6. When all tests in the testplan have been tested and no bugs were found, then the
verification task is over.

6.1.4.3 Drawbacks of UVM

Synthesis tool for SV is limited. This is a major drawback which is restricting
designers to accept SV as a design language. Also, there are limitations for using
UVM with emulators. Moreover, UVM is very complicated, so it does not make
sense with small projects. Besides, there are challenges in using UVM at SoC Level.
Also, debugging Macros is difficult. UVM provides no links between testbenches
and code running in the embedded processors.

6.1.4.4 Opportunities for UVM

UVM methodology can be enhanced to offer a flexible framework for the virtual
prototyping of multidiscipline testbenches that supports both digital and Analog
Mixed-Signal (AMS) at the architectural level [15]. The extension of UVM for
mixed-signal verification of analog models is reported in literature [15]. Moreover,
UVM is a promising solution in verifying 3D-SoC which has many IPs and hetero-
geneous systems.

6 New Trends in SoC Verification…

133

6.1.4.5 A Case Study: WISHBONE

A SoC case study is presented to illustrate the pros and cons of the UVM and to
compare traditional verification with UVM-based verification. WISHBONE SoC
interconnect architecture for portable IP cores are used as a case study [16]. The
results can be shown in Table 6.7, where the UVM-based approach improves the
coverage time by 12 times.

6.1.5 Summary

This chapter presents an overview on building a reusable RTL verification environ-
ment using the UVM verification methodology. UVM is a culmination of well-
known ideas and best practices. This chapter also presents a survey on the features
of UVM. It presents its pros, cons, challenges, and opportunities. Moreover, it pres-
ents simple steps to verify an IP and build an efficient and smart verification envi-
ronment. A SoC case study was presented to compare traditional verification with
UVM-based verification.

6.2 Part II: RTL Bug Localization

6.2.1 Introduction

In VLSI, design flow functional verification is a required process to ensure that the
implementation of the design is in accordance with the specification. Due to the
increasing design complexity of VLSI circuits, the cost of verification and debug-
ging has significantly increased.

According to ITRS [17], Verification process is now considered a bottleneck as
it consumes up to 60 % of the design cost.

Verification tools check the correctness of a design against its specification.
Register Transfer Level (RTL) is still the dominant description level for the hard-
ware design.

There are two types of bugs: (1) electrical bugs caused by interaction between the
design and physical effects such as cross-talk, supply noise, temperature, process varia-
tion, and signal integrity. (2) Design or functional bugs at RTL which are classified into
three major classes: logic bugs, algorithmic bugs, and timing/synchronization bugs [18].

Table 6.7 Comparison
between direct testing and
UVM

WISHBONE metric Direct testing UVM

Tests to reach 100 % coverage 30 120

Regression time (h) 3 0.25

Benefits – 12× faster

6.2 Part II: RTL Bug Localization

134

The logic bug is characterized by erroneous logic in combinational circuits. A logic bug
occurs because the designer formed an erroneous logic block.

The algorithmic bug covers major design bugs related to the algorithmic imple-
mentation of the design. These design bugs exhibit algorithmic deviations from the
design specification and they usually require major modifications to be fixed.

The timing bug is associated with the timing correctness of the implementation,
where a signal needed to be latched a cycle earlier or a cycle later in order to keep the
timing of signals correct in the design. These types of bugs are summarized in Fig. 6.7.

In order to keep the production costs low, it is required to detect bugs as soon as
possible. This chapter targets localization of functional errors.

While there are a lot of verification methodologies for error detection in RTL
design, there is fewer work for debugging the error which includes localization and
correction stages. Moreover, most of the related works are concentrating on gate-
level error localization [19–21], and are applied to small designs.

For gate-level bug localization, there are basically two approaches: symbolic and
simulation-based. Symbolic approaches are accurate but suffer from combinatorial
explosion, whereas simulation-based approaches, although scalable with design
size, require numerous test vectors for sufficient accuracy. A SAT-based automated
bug localization is used for gate-level [22, 23].

Other work is focusing on formal methods and failed properties which are not
suitable for large designs [24, 25].

Here, we are focusing on the RTL-level and large designs. Detecting and locating
the source of erroneous behavior in large and complex RTL design is challenging.
In this chapter, we present a novel approach for bug localization methodology to
address this challenge using information from regression suit results about failed
and passed testcases and number of statements executed by each test. The idea is
inherited from software domain [26–28]. We present a proof of concept for this idea
using Verilog-based case studies.

This chapter is organized as follows: In Sect. 6.2.2, the proposed methodology
for bug localization error is presented and discussed. Moreover, the experimental
results are analyzed. In Sect. 6.2.3, summary is given.

Bugs

Electrical

Temp Voltage Process

Functional

Logic Algorithm Timing

Fig. 6.7 There are two types of bugs: (1) electrical bugs caused by interaction between the design
and physical effects such as cross-talk, supply noise, temperature, process variation, and signal
integrity. (2) Design or functional bugs at RTL which are classified into three major classes: logic
bugs, algorithmic bugs, and timing/synchronization bugs

6 New Trends in SoC Verification…

135

6.2.2 RTL Bug Localization

In this section, proposed methodology is given in Sect. 6.2.2.1. Results are dis-
cussed in Sect. 6.2.2.2.

6.2.2.1 Proposed Methodology

Given a set of statements (S) for which an HDL design exhibits an incorrect behavior,
the objective of design debugging is to find the highly candidate statement that may
be responsible for this incorrect behavior. The failing and passing testcases are used to
find the bug location. If a statement is executed by more than two failing testcases, so
this statement is more likely to have the bug. So, run the complete regression suite
until the coverage is 100 %, then extract the needed information about the passed and
failed testcases and obtain a list of design statements executed by each test.

An example to show how our proposed method works is shown in Fig. 6.8, where
we assume that our DUT has only one bug due to only one incorrect statement and
we have ten testcases to test its behavior.

From Table 6.8, the left columns shows how each RTL statement is executed by
each testcase either it is failing or passing. An entry 1 indicates that the statement is
executed by the corresponding test case and an entry 0 means it is not executed. The
most right column shows the execution result with an entry 1 for a failed testcase
and an entry 0 for a passing testcase. If a statement is executed by a successful test
case, its likelihood of containing a bug is reduced.

The suspiciousness of each statement = the number of failed tests that execute
it—the number of successful tests that execute it. But, this way cannot distinguish a
statement executed by one successful and one failed test from another statement
executed by 10 successful and 10 failed tests.

So, we will use weighted probability to indicate that more successful executions
imply less likely to contain the bug. So the suspiciousness of each statement = the
number of failed tests that execute it/the number of successful tests. And we will
choose the maximum value to start with, i.e., the large rank. The proposed method-
ology for automated bug localization is shown in Fig. 6.9.

6.2.2.2 Experimental Results

Experimental results show that our method can detect errors in large designs up to
several thousand lines of RTL code in few minutes with high accuracy compared to
time consumed in hours using manual bug localization. Here, we only localize the
error not correcting it. Other experiments are done on more bugs to observe the
effectiveness of our methodology. We insert errors into some other parts of the code
for the complex RTL design then we applied our methodology to locate the error.
Table 6.9 reveals some results, where it is clear that our methodology reduces the
time needed to localize the bug significantly.

6.2 Part II: RTL Bug Localization

136

/***

* Verilog code for a part of design contains a bug *

**/

always @ (negedge CLK or negedge RST_N)

begin

if (~RST_N) //s0

begin

rd_cnt <= 16'h0000; //s1

cnt8_1 <= 3'b000; //s2

end

else if (~incr_rd_user_addr) //s3

begin

rd_cnt <= 16'h0000; //s4

cnt8_1 <= 3'b000; //s5

end

else if (incr_rd_user_addr) //s6

begin

cnt8_1 <= cnt8_1 + 3'b001; //s7

if (BUS_WIDTH == 3'h2) //s8

begin

cnt8_1 <= 3'h0; //s9

rd_cnt <= rd_cnt + 2; //s10

end

else if (BUS_WIDTH == 3'h0) //s11

begin

cnt8_1 <= 3'h0; //s12

rd_cnt <= rd_cnt + 1; //s13

end

end

end

Fig. 6.8 A case study: a
behavior Verilog code for a
part of complex design
contains a bug in s10. The
design is more than 5000
lines of RTL code

6 New Trends in SoC Verification…

137

Ta
bl

e
6.

8
A

 m
ot

iv
at

io
na

l
ex

am
pl

e
to

 d
es

cr
ib

e
th

e
pr

op
os

ed
 m

et
ho

do
lo

gy

T
es

t
su

it
e

S
ta

te
m

en
ts

T
es

t
st

at
us

 (
T

)

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
13

P
(0

)/
F

(1
)

T
es

t
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

T
es

t
2

1
1

1
1

1
1

1
1

0
0

0
0

1
1

0
0

T
es

t
3

1
1

1
1

1
1

1
1

0
0

0
0

1
1

0
0

T
es

t
4

1
1

1
1

1
1

1
1

1
0

0
0

1
1

1
0

T
es

t
5

1
1

1
1

1
1

1
1

1
0

0
0

1
1

1
0

T
es

t
6

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

T
es

t
7

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

T
es

t
8

1
1

1
1

1
1

1
1

1
0

0
0

1
1

1
0

T
es

t
9

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

T
es

t
10

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

F
ai

le
d

te
st

s
pe

r
st

at
em

en
ts

4
4

4
4

4
4

4
4

4
4

4
4

1
1

1

P
as

se
d

te
st

s
pe

r
st

at
em

en
ts

6
6

6
6

6
6

5
5

3
0

0
0

5
5

3

S
us

pi
ci

ou
s

pe
r

st
at

em
en

t
−

2
−

2
−

2
−

2
−

2
−

2
−

1
−

1
1

4
4

4
−

4
−

4
−

2

W
ei

gh
te

d
S

us
pi

ci
ou

s
pe

r
st

at
em

en
t

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

0.
8

0.
8

1.
3

In
f

In
f

In
f

0.
2

0.
2

0.
3

M
ul

ti
pl

y
ea

ch
 s

ta
te

m
en

t
(S

)
co

lu
m

n
w

it
h

th
e

(T
)

co
lu

m
n

to
 o

bt
ai

n
th

e
nu

m
be

r
of

 f
ai

le
d

te
st

s
th

at
 e

xe
cu

te
 e

ac
h

st
at

em
en

t.
 M

ul
ti

pl
y

st
at

em
en

t
(S

)
w

hi
ch

 c
on

ta
in

s
on

es
 w

it
h

th
e

(T
)

co
lu

m
n

w
hi

ch
 c

on
ta

in
s

ze
ro

s
to

 o
bt

ai
n

th
e

nu
m

be
r

of
 s

uc
ce

ss
fu

l
te

st
s

th
at

 e
xe

cu
te

 e
ac

h
st

at
em

en
t.

 t
he

 s
us

pi
ci

ou
sn

es
s

of
 e

ac
h

st
at

em
en

t =
 th

e
nu

m
be

r
of

 f
ai

le
d

te
st

s
th

at
 e

xe
cu

te
 i

t/
th

e
nu

m
be

r
of

 s
uc

ce
ss

fu
l

te
st

s.
 “

0”
 B

et
w

ee
n

te
st

 n
um

be
r

an
d

S
x

m
ea

ns
 s

ta
te

m
en

t
no

t
ex

ec
ut

ed

6.2 Part II: RTL Bug Localization

138

If the testcase fails in the regression although it passes alone, we should merge it
with the previous testcase to create only one testcase as the previous testcase does
not reset a certain variable which caused the followed testcase to fail. The effective-
ness of this methodology varies for different designs, bugs, and testcases. Here, we
assume that we have a rich and correct testcases.

6.2.3 Summary

Bug localization is a process of identifying the specific locations or regions of
source code that is buggy and needs to be modified to repair the defect. Bug local-
ization can significantly reduce human effort and design cost.

Rank generation for suspicious part of code

Extract information about pass/fail tests

Extract information about execution of statements in
each test

Calculate failed tests per statements

Calculate passed tests per statements

Calculate Suspicious per statement

Run Regression suiteStep1

Step2

Step3

Step4

Step5

Step6

Step7

DUT+TESTCASES

Error Localization

Fig. 6.9 The proposed
methodology for
automated bug localization

6 New Trends in SoC Verification…

139

Ta
bl

e
6.

9
B

ug
 lo

ca
li

za
ti

on
 ti

m
e

us
in

g
th

e
pr

op
os

ed
 m

et
ho

do
lo

gy
 v

er
su

s
m

an
ua

l d
eb

ug
 in

 a
 c

om
pl

ex
 d

es
ig

n,
 w

hi
ch

 c
on

ta
in

s
m

or
e

th
an

 5
00

0
li

ne
s

of
 R

T
L

 c
od

e

B
ug

 I
D

T
im

e

W
ro

ng
 b

eh
av

io
r

C
or

re
ct

 b
eh

av
io

r
T

he
 p

ro
po

se
d

m
et

ho
do

lo
gy

 (
m

in
)

M
an

ua
l

de

bu
g

(h
)

B
ug

 1
3

1
x1

 =
 x

2
+

 x
3

+
 x

4
+

 x
5

x1
 =

 x
2−

x3
 +

 x
4

+
 x

5

B
ug

 2
4

2
If

 (
 y

1)
If

 (
 ~

y1
)

B
ug

 3
7

2
If

 (
~

y2
)

If
 (

y2
)

B
ug

 4
5

2
cn

t =
 c

nt
 +

 2
;

cn
t =

 c
nt

 +
 3

;

B
ug

 5
2

1
if

 (
 ~

bt
st

_c
ar

d_
en

 &
 ~

 s
tr

t_
cm

d_
da

ta
_d

ly
)

if
 (

 ~
bt

st
_c

ar
d_

en
 &

 s
tr

t_
cm

d_
da

ta
_d

ly
)

B
ug

 6
3

3
T

S
T

_D
A

T
A

 <
 =

 8
’h

00
;

T
S

T
_D

A
T

A
 <

 =
 8

’h
01

;

B
ug

 7
10

2
M

F
S

M
_B

U
S

 <
 =

M
F

S
M

_B
U

S
_R

E
G

;
M

F
S

M
_B

U
S

 <
 =

M
F

S
M

_B
U

S
_R

E
G

/2
;

B
ug

 8
6

2
if

 (
 C

M
D

6_
A

R
G

 [
31

]
=

=
1)

if
 (

 C
M

D
6_

A
R

G
 [

31
]

=
=

0)

B
ug

 9
7

1
cu

rr
en

t_
st

at
e

<
 =

 D
at

a
cu

rr
en

t_
st

at
e

<
 =

 R
cv

;

B
ug

 1
0

4
3

M
F

S
M

_O
U

T
_E

N
A

B
L

E
 <

 =
 4

’h
f;

M
F

S
M

_O
U

T
_E

N
A

B
L

E
 <

 =
 4

’h
e;

B
ug

 1
1

2
1

If
 (

O
P

_M
O

D
E

 =
=

2)
If

 (
O

P
_M

O
D

E
 =

=
1)

B
ug

 1
2

9
1

M
F

S
M

_S
T

R
T

_D
A

T
A

_P
2S

 <
 =

 1
’b

1;
M

F
S

M
_S

T
R

T
_D

A
T

A
_P

2S
 <

 =
 1

’b
0;

B
ug

 1
3

4
2

bu
s_

w
id

th
_p

re
v

<
 =

 M
F

S
M

 _
W

ID
T

H
;

bu
s_

w
id

th
_p

re
v

 <
 =

 M
F

S
M

 _
W

ID
T

H
/2

;

B
ug

 1
4

5
1

M
F

S
M

_B
U

S
_W

ID
T

H
 <

 =
 4

’h
0;

M
F

S
M

_B
U

S
_W

ID
T

H
 <

 =
 4

’h
1;

B
ug

 1
5

2
1

M
F

S
M

_L
E

N
 <

 =
 3

2’
h0

;
M

F
S

M
_L

E
N

 <
 =

 3
2’

h2
00

;

B
ug

 1
6

3
1

st
rt

_c
m

d_
da

ta
_d

ly
 <

 =
 1

’b
0;

st
rt

_c
m

d_
da

ta
_d

ly
 <

 =
 1

’b
1;

(c
on

ti
nu

ed
)

6.2 Part II: RTL Bug Localization

140

B
ug

 I
D

T
im

e

W
ro

ng
 b

eh
av

io
r

C
or

re
ct

 b
eh

av
io

r
T

he
 p

ro
po

se
d

m
et

ho
do

lo
gy

 (
m

in
)

M
an

ua
l

de

bu
g

(h
)

B
ug

 1
7

2
2

If
 (

(1
’b

1
<

 <
W

R
IT

E
_B

L
_L

E
N

) +
 1

’b
1)

)
If

 (
(1

’b
1

<
 <

W
R

IT
E

_B
L

_L
E

N
)-

 1
’b

1)
)

B
ug

 1
8

2
1

If
 (

(b
lk

_d
is

 =
=

 1
’h

1)
If

 (
(b

lk
_d

is
 =

=
 1

’h
0)

B
ug

 1
9

5
1

cr
c_

di
s

<
 =

(c
nt

_c
rc

=
=

16
-N

C
)?

 1
’h

1:
1’

h1
;

cr
c_

di
s

<
 =

(c
nt

_c
rc

=
=

16
-N

C
)?

 1
’h

0:
1’

h1
;

B
ug

 2
0

3
2

if
 (

bl
k_

no
1

! =
 b

lk
_c

ou
nt

)
if

 (
bl

k_
no

1
=

=
 b

lk
_c

ou
nt

)

B
ug

 2
1

2
1

W
_O

R
_R

 <
 =

 0
 ;

W
_O

R
_R

 <
 =

 1
 ;

B
ug

 2
2

1
1

If
 (

bl
k_

le
n_

cm
d1

6
<

 b
lk

_l
en

)
If

 (
bl

k_
le

n_
cm

d1
6

>
 b

lk
_l

en
)

B
ug

 2
3

3
2

cn
t4

 <
 =

 c
nt

4
+

 1
;

cn
t4

 <
 =

 c
nt

4–
1;

B
ug

 2
4

1
3

el
se

 i
f

(~
in

cr
_r

d_
us

er
_a

dd
r)

el
se

 i
f

(i
nc

r_
rd

_u
se

r_
ad

dr
)

B
ug

 2
5

5
1

E
ls

e
(W

R
IT

E
_B

L
K

_M
IS

A
L

IG
N

)
E

ls
e

(~
 W

R
IT

E
_

B
L

K
_M

IS
A

L
IG

N
)

B
ug

 2
6

1
1

er
as

e_
st

ar
t_

ad
dr

 <
 (

E
R

A
S

E
_S

IZ
E

)*
51

2
er

as
e_

st
ar

t_
ad

dr
 <

 (
E

R
A

S
E

_S
IZ

E
 +

 1
)*

51
2

B
ug

 2
7

2
2

da
ta

_c
nt

_c
m

d2
5

 <
 =

 3
2’

h0
;

da
ta

_c
nt

_c
m

d2
5

 <
 =

 3
2’

h1
;

B
ug

 2
8

4
1

da
ta

_c
nt

_c
m

d2
5_

en
 <

 =
 1

’b
0;

da
ta

_c
nt

_c
m

d2
5

_e
n

<
 =

 1
’b

1;

B
ug

 2
9

1
2

T
S

T
_D

A
T

A
 <

 =
 8

’h
00

;
T

S
T

_D
A

T
A

 <
 =

 8
’h

80
;

Ta
bl

e
6.

9
(c

on
ti

nu
ed

)

6 New Trends in SoC Verification…

141

In this chapter, a novel automated coverage-based functional bug localization
method for complex HDL designs is proposed which significantly reduces debug-
ging time. The proposed bug localization methodology takes information from
regression suite as an input and produces a ranked list of suspicious part of code.
Our methodology is a promising solution to reduce required time to localize RTL
bugs significantly.

6.3 Part III: RTL Scan-Chain

6.3.1 Introduction

Simulation-based verification scheme of large sophisticated intellectual property
(IPs) is considered a time consuming process. Mainly, there are two famous meth-
ods to help accelerate simulation process and reduce verification time: hardware
acceleration, and hardware RTL emulation. The RTL hardware accelerator solu-
tions are based on using application-specific ASICs, each contains special-
application processors and memories [29–32]. The RTL hardware emulators are
based on using FPGAs, where the design is synthesized into a gate-level netlist.
However, most hardware emulator does not provide easy debugging capability at
runtime. In this chapter, a scan-chain scheme is proposed to reduce debugging time.
Runtime changes of the values of the signals of the IP during execution-time can be
done through the proposed scan-chain methodology.

The proposed method provides internal glue-block which automatically replaces
any signal with a mux and extra input, so that at run time if we enable this method
we can replace any internal signal by a forced one.

The rest of this chapter is organized as follows. In Sect. 6.3.2, the proposed RTL-
level scan-chain methodology is presented. Summary is given in Sect. 6.3.3.

6.3.2 The Proposed RTL-Level Scan-Chain Methodology

RTL simulation provides system-on-chip (SoC) verification with full debugging
capabilities, but its disadvantages are the low-speed simulation for complicated RTL
design. By using FPGA-based RTL emulation, we can have high-speed simulation.
But, it is not easy to debug it because it has poor-capabilities visibility. Other solu-
tions provide full debug capabilities such as RTL emulators, but the offline debugging
method needs to recompile the whole design, which slows the verification process. In
this chapter, we propose an online RTL-level scan-chain-based methodology for
accelerating IP emulation debugging time at Runtime. This method provides internal
glue-block which automatically replaces any signal with a mux and extra input, so
that at runtime if we enable this method we can replace any internal signal by a forced
one. Our experiment shows that, the area overhead is neglected compared to the
gained performance benefits. The conventional emulation flow versus the proposed
scan-chain based emulation flow is shown in Figs. 6.10 and 6.11 respectively.

Part III: RTL Scan-Chain

142

To illustrate the proposed method, we assume the example shown in Fig. 6.12a,
where: out ≤ (A + B) × C; where C is predetermined value that we want to change it
in runtime, we compile the design and run emulation. If we want to change value of
C, we have to recompile the whole design. Sometimes, it takes very large time
depending on the complexity of the design. So, here we propose to use the online
RTL-level scan-chain methodology to be able to change the value of C at run time
without recompiling the whole design which accelerates the emulation debugging
time. We will create a utility tool that instantiates glue logic and a mux with each
“reg” definition in the VERILOG file, the glue logic is a null connection which puts
the input into the output as depicted in Fig. 6.12b. So, the designer can change the
value at runtime. It will be automatically auto-generated for all the registers defined
in the design. Our experiment shows that, the area overhead is neglected compared
to the gained performance benefits.

(TB+DUT)

TestBench

a

b

DUT
Embedded logic

Analyzer

Synthesize

Placement and Routing

Compile

SW/CPU

PLI

HW Emulator

Memory Traces

Waveform Tool

Debug

TracesEmulation

Modify HDL

CompileDesign

Specify Traces

Rerun test

Design

Fig. 6.10 Conventional emulation flow (offline debug) (a) detailed, (b) simplified [32]

6 New Trends in SoC Verification…

143

6.3.3 Summary

An online RTL-level scan-chain methodology is proposed to reduce debugging time
and effort for emulation. Runtime modifications of the values of any of the internal
signals of the DUT during execution can be easily performed through the proposed

PLI

Compile

Synthesize

Placement and Routing

SW/CPU
(TB) HW Emulator

(TB+DUT)

Memory

Embedded
logic

Analyzer
DUT

(HDL)
TestBench
(C+HDL)

Traces

Specify
Traces

Design

Rerun test

Synthesize

Scan-Chain

Split

Observability

Controllability

Design
+

New
glue
logic

Waveform Tool

Debug

Emulation TracesCompile

b

a

Fig. 6.11 Proposed emulation flow (online flow), synthesizable testbench methodology, scan-
chain methodology, (a) detailed, (b) simplified

Part III: RTL Scan-Chain

144

online scan-chain methodology. A utility tool was developed to help ease this
 process. Our experiment shows that the area overhead is neglected compared to the
gained performance benefits. But, IP design requires more compilation time.

6.4 Part IV: Automatic Test Generation Based
on Genetic Algorithms

6.4.1 Introduction

Verification is the bottleneck in the SoC life cycle. Moreover, the coverage space is
very huge. Code coverage cannot cover the functional coverage. The efficiency of the
verification is proportional to achieving the coverage goals in less simulation time.

hverification

Coverage goals

Simulation time
µ

(6.1)

The verification process problems will be considered as an optimization problem.
GA is used to solve it. Genetic Algorithms (GA) are the heuristic (experience-
based) search and time-efficient learning and optimization techniques that mimic
the process of natural evolution based on Darwinian Paradigm (Fig. 6.13). Thus
genetic algorithms implement the optimization strategies by simulating evolution of
species through natural selection. The nature to computer mapping is shown in
Table 6.10, where each cell of a living thing contains chromosomes (strings of
DNA), each chromosome contains a set of genes (blocks of DNA), and each gene
determines some aspect of the organism (like eye color). In other words, parameters
of the solution (genes) are concatenated to form a string (chromosome). In a
 chromosome, each gene controls a particular characteristic of the individual.
The population evolves towards the optimal solution (Fig. 6.14). Evolution based on

+

c

A

B

OUT

GLUE
LOGIC

Enable_Scan
MUX C_RUNTIME

A

B

+

C

OUT

a b

Fig. 6.12 (a) Normal design example, (b) proposed scan-chain methodology for the design
 example in (a)

6 New Trends in SoC Verification…

145

“survival of the fittest.” Genetic algorithms are well suited for hard problems where
little is known about the underlying search space. So, it is considered a robust search
and optimization mechanism. The genetic algorithm used in this work consists of
the following steps or operations [33–38], and can be seen in Fig. 6.15:

 1. Initialization and encoding:
The GA starts with the creation of random strings, which represent each member
in the population.

 2. Evaluation (Fitness):
The fitness used as a measure to reflect the degree of goodness of the individual,
is calculated for each individual in the population.

 3. Selection
In the selection process, individuals are chosen from the current population to
enter a mating pool devoted to the creation of new individuals for the next gen-
eration such that the chance of a given individual to be selected to mate is pro-
portional to its relative fitness. This means that best individuals receive more
copies in subsequent generations so that their desirable traits may be passed onto
their offspring. This step ensures that the overall quality of the population
increases from one generation to the next.

 4. Crossover:
Crossover provides the means by which valuable information is shared among the
population. It combines the features of two parent individuals to form two children
individuals that may have new patterns compared to those of their parents and
plays a central role in Gas. The crossover operator takes two chromosomes and
interchanges part of their genetic information to produce two new chromosomes.

 5. Mutation:
Mutation is often introduced to guard against premature convergence. Generally,
over a period of several generations, the gene pool tends to become more and

Reproduction
(Crossover, Mutation) Competition

SelectionSurvive
(Replacement)

Fig. 6.13 Darwinian
paradigm

Table 6.10 The nature to
computer mapping

Nature Computer

Population Set of solutions

Individual Solution to a problem

Fitness Quality of a solution

Chromosome Encoding for a solution

Gene Part of the encoding solution

Reproduction Crossover

Part IV: Automatic Test Generation Based on Genetic Algorithms

146

more homogeneous. The purpose of mutation is to introduce occasional pertur-
bations to the parameters to maintain genetic diversity within the population.

 6. Replacement:
After generating the offspring’s population through the application of the genetic
operators to the parents “population, the parents” population is totally replaced
by the offspring’s population. This is known as no overlapping, generational,
replacement. This completes the “life cycle” of the population.

 7. Termination
The GA is terminated when some convergence criterion is met. Possible conver-
gence criteria are: the fitness of the best individual so far found exceeds a thresh-
old value; the maximum number of generations is reached. An example for the
parameter used in GA is shown in Table 6.11.

Many different test data generation methods like random test data generator have
been proposed in the literature [33–35].
In this chapter, artificial intelligence algorithms, such as genetic algorithm, are

proposed as a novel method for test generation.

6.4.2 Proposed Methodology

The verification process problems will be considered as an optimization problem.
GA is used to solve it. The methodology is as follows: generate stimulus based on
the feedback from previously generated stimulus to cover areas which were not
explored by previously applied tests. During each stimulus cycle, coverage results
are collected and sent as an input to the genetic algorithm and used as a guideline
for next stimulus. The next stimulus will be more effective compared to randomly
generated one (Fig. 6.16). The fitness function here is chosen to maximize the func-
tional coverage percentage, where:

Fitness Functional coverage ratio=

 (6.2)

Global

Local

Fig. 6.14 GA searches the optimal solution in the entire search space. We chose random solutions
and move around it, until we reach global optimal not local one

6 New Trends in SoC Verification…

147

End

New Generation

10000000

10001|000
01010|100

10001|100
01010|000

10001000

Parents

Start

Initialize population
(Gen=0, n, m, Pc, Pm)

Encoding (representation)

Fitness: Evaluate
of fitness function

Y

N

Population
Memory
(n x m)

Random
number

generator

Fitness Function

Offspring

Seed

Bitwise bit-flipping

Gen > max
Gen or

Fit > 0.99

Selection

Crossover

Mutation

Gen++;

Replacement

Fig. 6.15 Genetic
algorithm chart: A GA
typically operates
iteratively through a simple
cycle of stages: (1) creation
of a population of strings,
(2) evaluation of each
string, (3) selection of the
best strings, and (4) genetic
manipulation to create a
new population of strings.
The fitness function is
problem-dependent. The
used encoding is binary
encoding

Part IV: Automatic Test Generation Based on Genetic Algorithms

Table 6.11 Parameters used by the GA, the parameters are not fixed and may be changed
according to the situation

Name Symbol Value (type)

Number of generations gen 200

Population size n 50

Chromosome length m 80 bits

Crossover probability Pc 0.9

Mutation probability Pm 0.01

Type of selection – Normal geometric, rank-based selection, Roulette wheel

Type of crossover – Arithmetic, multipoint

Type of mutation – Nonuniform, flip

Termination method – Maximum generation, fitness >0.99

Start simulation

Coverage 100 %

Analyze Coverage
holes

Generate Stimulus
manually

Generate Stimulus
randomly

Generate GA-
based Guided

random stimulus

End

N

Option1Option2Option3

Fig. 6.16 The proposed GA methodology to speedup coverage closure. Using genetic algorithms,
there is no test redundancy

149

Simulation results show that:

 1. Coverage holes can be hit automatically with less effort and less time (Fig. 6.17).
 2. Computational resources should be low.

The results for some designs are reported in Table 6.12, where it is clear that
using GA, we can reach 100 % coverage in less time with less number of stimulus.

Coverage 100%

Manual

Time

GA

Random

Fig. 6.17 The GA
performance

Table 6.12 GA-based test generation results to get 100 % coverage

Method Random testing Our GA approach

Design
Scenarios
(100 % coverage) # Stimulus Runtime (s) # Stimulus Runtime (s)

#1 4 120 3 100 2

#2 16 200 4 150 2.6

#3 6 130 3.2 90 1

#4 12 180 3.5 110 1.3

#5 8 190 3.7 120 1.5

#6 10 195 3.8 124 2.1

#7 6 130 3 120 2.2

#8 18 210 4 155 2.6

#9 8 180 3.7 96 1.6

#10 14 190 3.5 114 1.5

#11 10 170 3.2 111 1.7

#12 12 215 3.2 144 2.4

Part IV: Automatic Test Generation Based on Genetic Algorithms

150

6.4.3 Summary

The main challenge in using constraint random testing (CRT) is that manual analy-
sis for the coverage report is needed to find the untested scenarios and modify the
testcases to achieve 100 % coverage. We need to replace the manual effort by an
automatic method or a tool that will be able to extract the coverage report, identify
the untested scenarios, add new constraints, and iterate this process until 100 %
coverage is attained. In other words, we need an automated technique to automate
the feedback from coverage report analysis to test generation process. In this chap-
ter, the implementation of this automatic feedback loop is presented. The verifica-
tion environment is created using universal verification methodology (UVM) for
reusability. The automatic feedback loop is based on artificial intelligence technique
called genetic algorithm (GA). This technique accelerates coverage-driven func-
tional verification and achieves coverage closure rapidly by covering uncovered
scenarios in the coverage report (coverage holes).

References

 1. Bromley J (2013) If systemverilog is so good, why do we need the UVM? Sharing responsi-
bilities between libraries and the core language. In: 2013 Forum on Specification & Design
Languages (FDL), IEEE, Paris

 2. Oliveira FS, Haedicke F, Drechsler R, Kuznik C, Le HM, Ecker W, Mueller W, Große D, Esen
V (2012) The system verification methodology for advanced TLM verification. In: Proceedings
of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, ACM, New York, pp 313–322

 3. Zhaohui H, Pierres A, Shiqing H, Fang C, Royannez P, See EP, Hoon YL (2012) Practical and
efficient SOC verification flow by reusing IP testcase and testbench. In: 2012 International
SoC Design Conference (ISOCC), IEEE, Jeju Island, pp 175–178

 4. Raghuvanshi S, Singh V (2014) Review on universal verification methodology (UVM) con-
cepts for functional verification. Int J Electr Electron Data Commun 2(3):101–107

 5. Young-Nam Yun (2011) Beyond UVM for practical SoC verification. In: International SoC
design conference (ISOCC), IEEE, Jeju, pp 158–162

 6. Sutherland S, Mills D (2013) Synthesizing systemverilog: busting the myth that systemverilog
is only for verification. SNUG Silicon Valley 2013. http://www.sutherland-hdl.com/
papers/2013-SNUG-SV_Synthesizable-SystemVerilog_paper.pdf

 7. Vaidya B, Pithadiya N (2013) An introduction to universal verification methodology. J Inf
Knowl Res Electron Commun Eng 2(02):420–424

 8. Spear C, Tumbush G (2012) Systemverilog for verification—a guide to learning the testbench
language features, 2nd edn. Springer, New York

 9. Sohofi H, Navabi Z (2014) Assertion-based verification for system-level designs. In:
Proceedings of 15th International Symposium on Quality Electronic Design (ISQED), IEEE,
Santa Clara, pp 582–588

 10. Sutherland S, Mills D (2014) Can my synthesis compiler do that? What ASIC and FPGA syn-
thesis compilers support in the systemverilog-2012 standard. In: Presented at DVCon- 2014,
San Jose

 11. Oh Y-J, Song G-Y (2014) System-level verification platform using systemverilog layered tes-
tbench & systemC OOP. Int J Control Autom Syst 7(2):221–230

6 New Trends in SoC Verification…

http://www.sutherland-hdl.com/papers/2013-SNUG-SV_Synthesizable-SystemVerilog_paper.pdf
http://www.sutherland-hdl.com/papers/2013-SNUG-SV_Synthesizable-SystemVerilog_paper.pdf

151

 12. Vijayan U, Anjo CA, Vignesh Raja B, Arun Kumar N (2013) Development of basic template
environment for functional verification of VLSI design using UVM. Int J Emerg Technol Adv
Eng 3(12):214–216

 13. Wile B, Goss JC, Roesne W (2005) Comprehensive functional verification the complete indus-
try cycle. Elsevier, San Francisco

 14. Accellera (2011) Universal verification methodology (UVM) 1.1 user’s guide. Cedence
Design System, San Jose

 15. Vörtler T, Klotz T, Einwich K, et al. (2014) Enriching UVM in systemC with AMS extensions
for randomization ad functional coverage. In: Conference—Design and Verification
Conference & Exhibition Europe (DVCon Europe), Munich

 16. www.opencores.org
 17. http://www.itrs.net/
 18. Constantinides K, Mutlu O, Austin TM (2008) Online design bug detection: RTL analysis,

flexible mechanisms, and evaluation. In: International Symposium on Microarchitecture
(MICRO), IEEE, Lake Como, pp 282–293

 19. Park SB, Mitra S (2009) IFRA: Post-silicon bug localization in processors. In: Proceedings of
IEEE International High Level Design Validation and Test Workshop, 2007. HLVDT 2007,
IEEE, Irvine, pp 154–159

 20. Chang K, Wagner I, Bertacco V, Markov I (2007) Automatic error diagnosis and correction for
RTL designs. In: Proceedings of IEEE International High Level Design Validation and Test
Workshop, 2007. HLVDT 2007, IEEE, Irvine, pp 65–72

 21. Mirzaeian S, Zheng F, Cheng K (2008) RTL error diagnosis using a word-level SAT-solver. In:
International Test Conference (ITC), IEEE, Santa Clara, pp 1–8

 22. Brummayer R, Biere A (2009) Boolector: an efficient SMT solver for bit-vectors and arrays.
In: Proceedings of 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, York, pp 174–177

 23. Safarpour S, Veneris A (2009) Automated design debugging with abstraction and refinement.
IEEE Trans Comput Aided Des Integr Circuits Syst 28(10):1597–1608

 24. Peischl B, Wotawa F (2006) Automated source-level error localization in hardware designs.
IEEE Des Test Comput 23(1):8–19

 25. Matsumoto T, Ono S, Fujita M (2012) An efficient method to localize and correct bugs in high-
level designs using counterexamples and potential dependence. In: 20th IEEE/IFIP
International Conference on VLSI and System-on-Chip (VLSI-SoC), IEEE, Santa Cruz

 26. Wong WE, Debroy V, Choi B (2010) A family of code coverage-based heuristics for effective
fault localization. J Syst Softw 83(2):188–208

 27. Wong WE, Wei T (2008) A crosstab-based statistical method for effective fault localization.
In: Proceedings of the First International Conference on Software Testing, Verification and
Validation (ICST), Lillehammer, pp 42–51

 28. Jones JA, Harrold MJ (2005) Empirical evaluation of the Tarantula automatic fault-localiza-
tion technique. In: Proceedings of International Conference on Automated Software
Engineering, New York, pp 273–283

 29. Rau J, Chien C, Ma J (2005) Reconfigurable multiple scan-chains for reducing test application
time of SOCs. In: IEEE International Symposium on Circuits and Systems (ISCAS),
pp 5846–5849

 30. Mavroidis I, Papaefstathiou I (2009) Accelerating emulation and providing full chip observ-
ability and controllability. IEEE Des Test Comput 26(6):84–94

 31. Mavroidis I, Papaefstathiou I (2007) Efficient testbench code synthesis for a hardware emula-
tor system. Design, Automation & Test in Europe Conference & Exhibition (DATE 2007),
Nice, pp 1–6

 32. Banerjee S, Gupta T (2012) Efficient online RTL debugging methodology for logic emulation
systems. In: 25th International Conference on VLSI Design, IEEE, Hyderabad, pp 298–303

References

http://www.opencores.org/
http://www.itrs.net/

152

 33. Yingpan Wu, Lixin Yu, Wei Zhuang and Jianyong Wang (2009) A coverage-driven constraint
random-based functional verification method of pipeline unit. ACIS International Conference
on Computer and Information Science, IEEE, Shanghai, pp 1049–1054

 34. Benjamin M, Geist D, Hartman A, Wolfsthal Y, Mas G, Smeets R (1999) A study in coverage-
driven test generation. Proceedings of 36th Issue Design Automation Conference, IEEE, New
Orleans, pp 970–975

 35. Fine S, Ziv A (2003) Coverage directed test generation for functional verification using
Bayesian networks. In: Proceedings of Design Automation Conference, IEEE, pp 286–291,
2–6 June 2003

 36. Abo-Hammour ZS, Alsmadi OMK, Al-Smadi AM (2011) Frequency-based model order
reduction via genetic algorithm approach. In: 7th International Workshop on Systems, Signal
Processing and their Applications (WOSSPA), IEEE, Tipaza, pp 91–94

 37. Yun I, Carastro LA, Poddar R, Brooke MA, May GS, Hyun K-S, Pyun KE (2000) Extraction
of passive device model parameters using genetic algorithms. ETRI J 22(1):38–46

 38. Thirugnanam K, Reena E, Singh M, Kumar P (2014) Mathematical modeling of Li-ion battery
using genetic algorithm approach for V2G applications. IEEE Trans Energy Convers 29(2):
332–343

6 New Trends in SoC Verification…

153© Springer International Publishing Switzerland 2016
K.S. Mohamed, IP Cores Design from Specifi cations to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_7

 Chapter 7
 Conclusions

 This book discusses the IP cores life cycle process from specifi cation to production
which includes four major steps: (1) IP Modeling, (2) IP verifi cation, (3) IP optimi-
zation, (4) IP protection. For IP modeling, four major methodologies are introduced
which includes: FPGA-based modeling, processor-based modeling, ASIC-based
modeling, and PCB-based modeling. For IP verifi cation, different platforms are pre-
sented and analyzed such as simulation, acceleration, emulation, and prototyping.
Moreover, different verifi cation methodologies are introduced such as: UVM, direct
testing, negative testing, software-driven testing, and formal testing. We presented
different methods for IP optimization for the main design methodologies to improve
area, speed, and power. For IP protection, we analyzed different strategies to
perform protection not to make companies lose revenue and market share.

 In this book, we present most famous memory cores and controllers and analyze
the trade-off between them. A descriptive comparison between various on-chip
memory protocols is made. Comparing the architecture of these different control-
lers, it is realized that their architecture is common in many things. They mainly
differ in the performance and the features. Moreover, we introduce new trends in
SoC memories such as PCRAM, ReRAM, MRAM, and 3D memory.

 Moreover, in this book, we introduce a deep introduction for SoC buses and
peripherals. We explain in detail their features and architectures. Moreover, SoC
buses examples are explained in detail. Different SoC bus topologies are discussed
such as point to point, unilevel shared bus, hierarchical bus, ring, cross-bar bus,
NoC. The arbitration algorithms are explored. We give a methodology for extraction
of any SoC bus features from its standard. The different features include topology,
arbitration, bus width, transfers, timing, transmission control, and type.

 In this book, we introduce a deep introduction for Verilog for both implementation
and verifi cation point of view. The chapter used design examples for showing ways
in which Verilog could be used in a design for both implementation and verifi cation.
This chapter did not cover all of Verilog, but only some important topics. Moreover,
a survey on the current existing logic simulators is presented.

154

 This book presents an overview on building a reusable RTL verifi cation environ-
ment using the UVM verifi cation methodology. UVM is a culmination of well-
known ideas and best practices. This book also presents a survey on the features of
UVM. It presents its pros, cons, challenges, and opportunities. Moreover, it presents
simple steps to verify an IP and build an effi cient and smart verifi cation environment.
A SoC case study was presented to compare traditional verifi cation with UVM-based
verifi cation.

 Bug localization is a process of identifying the specifi c locations or regions
of source code that is buggy and needs to be modifi ed to repair the defect. Bug
localization can signifi cantly reduce human effort and design cost.

 In this book, a novel automated coverage-based functional bug localization
method for complex HDL designs is proposed which signifi cantly reduces debug-
ging time. The proposed bug localization methodology takes information from
regression suite as an input and produces a ranked list of suspicious part of code.
Our methodology is a promising solution to reduce required time to localize bugs
signifi cantly.

 An online RTL-level scan-chain methodology is proposed to reduce debugging
time and effort for emulation. Runtime modifi cations of the values of any of the
internal signals of the DUT during execution can be easily performed through the
proposed online scan-chain methodology. A utility tool was developed to help ease
this process. Our experiment shows that, the area overhead is neglected compared
to the gained performance benefi ts. But, IP design requires more compilation time.

 The main challenge in using constraint random testing (CRT) is that manual anal-
ysis for the coverage report is needed to fi nd the untested scenarios and modify the
test cases to achieve 100 % coverage. We need to replace the manual effort by an
automatic method or a tool that will be able to extract the coverage report, identify
the untested scenarios, add new constraints, and iterate this process until 100 % cov-
erage is attained. In other words, we need an automated technique to automate the
feedback from coverage report analysis to test generation process. In this chapter,
the implementation of this automatic feedback loop is presented. The verifi cation
environment is created using universal verifi cation methodology (UVM) for
 reusability. The automatic feedback loop is based on artifi cial intelligence technique
called genetic algorithm (GA). This technique accelerates coverage-driven func-
tional verifi cation and achieves coverage closure rapidly by covering uncovered
 scenarios in the coverage report (coverage holes).

7 Conclusions

	Preface
	Contents
	Chapter 1: Introduction
	References

	Chapter 2: IP Cores Design from Specifications to Production: Modeling, Verification, Optimization, and Protection
	2.1 Introduction
	2.2 IP Modeling
	2.2.1 FPGA
	2.2.2 Processor
	2.2.3 ASIC
	2.2.4 PCB

	2.3 IP Verification
	2.3.1 FPGA-Based/Processor-Based IP Verification
	2.3.2 ASIC-Based IP Verification
	2.3.3 PCB-Based IP Verification

	2.4 IP Optimization
	2.4.1 FPGA-Based IP Optimization
	2.4.1.1 Compilation Time Optimization
	2.4.1.2 Maximum Frequency Optimization
	2.4.1.3 Follow Some RTL Design Tips

	2.4.2 Processor-Based IP Optimization
	2.4.3 ASIC-Based IP Optimization
	2.4.4 PCB-Based IP Optimization

	2.5 IP Protection
	2.5.1 FPGA-Based/Processor-Based IP Protection
	2.5.2 ASIC-Based IP Protection
	2.5.3 PCB-Based IP Protection

	2.6 Summary
	References

	Chapter 3: Analyzing the Trade-off Between Different Memory Cores and Controllers
	3.1 Introduction
	3.2 Memory Cores
	3.3 Why Standards?
	3.4 Memory Controllers
	3.5 Comparison Between Different Memory Controllers
	3.6 New Trends in SoC Memories
	3.7 Summary
	References

	Chapter 4: SoC Buses and Peripherals: Features and Architectures
	4.1 Introduction
	4.2 SoC Buses and Peripherals Background
	4.3 SoC Buses: Features and Architectures
	4.3.1 SoC Bus Topology
	4.3.2 Arbitration (Mux/Tri-State-Based)
	4.3.3 Transfers
	4.3.4 Timing
	4.3.5 Tx Control
	4.3.6 Tx Type

	4.4 Bus Architecture Examples
	4.4.1 I2C Bus
	4.4.2 Advanced Microcontroller Bus Architecture (AMBA)
	4.4.3 Wishbone

	4.5 Summary
	References

	Chapter 5: Verilog for Implementation and Verification
	5.1 Introduction
	5.2 Verilog for Implementation
	5.2.1 Introduction
	5.2.2 Data Representation
	5.2.3 Verilog Coding Style
	5.2.4 Verilog Operators and Control Constructs
	5.2.5 Verilog Design Issues
	5.2.6 Verilog Template and Reusable Code Tips
	5.2.7 Main Digital System Building Blocks

	5.3 Verilog for Verification
	5.4 Logic Simulators
	5.4.1 Questa Simulation
	5.4.2 Questa Formal Verification
	5.4.3 Questa CoverCheck
	5.4.4 Questa CDC
	5.4.5 Questa ADMS
	5.4.6 Questa inFACT
	5.4.7 Questa Power Aware Simulation
	5.4.8 Questa Verification IP
	5.4.9 Questa Verification Management
	5.4.10 Questa CodeLink

	5.5 Summary
	References

	Chapter 6: New Trends in SoC Verification: UVM, Bug Localization, Scan-C0068ain-Based Methodology, GA-Based Test Generation
	6.1 Part I: UVM
	6.1.1 Introduction
	6.1.2 SystemVerilog
	6.1.2.1 Object-Oriented Programming
	6.1.2.2 Easy Call of C Programs (Direct Programming Interface)
	6.1.2.3 Constrained Randomization
	6.1.2.4 Functional Coverage
	6.1.2.5 Assertion
	6.1.2.6 Other Constructs: Interface + Modport + Clocking + Fork_Join (Any None) + Always (comb_ff_latch)
	6.1.2.7 New Data Types

	6.1.3 TLM
	6.1.4 UVM
	6.1.4.1 UVM Infrastructure
	UVM_Void
	UVM_Object
	UVM_Component
	UVM_Transaction
	UVM_Root
	UVM_Callback

	6.1.4.2 Steps to Verify an IP Smartly Using UVM
	6.1.4.3 Drawbacks of UVM
	6.1.4.4 Opportunities for UVM
	6.1.4.5 A Case Study: WISHBONE

	6.1.5 Summary

	6.2 Part II: RTL Bug Localization
	6.2.1 Introduction
	6.2.2 RTL Bug Localization
	6.2.2.1 Proposed Methodology
	6.2.2.2 Experimental Results

	6.2.3 Summary

	6.3 Part III: RTL Scan-Chain
	6.3.1 Introduction
	6.3.2 The Proposed RTL-Level Scan-Chain Methodology
	6.3.3 Summary

	6.4 Part IV: Automatic Test Generation Based on Genetic Algorithms
	6.4.1 Introduction
	6.4.2 Proposed Methodology
	6.4.3 Summary

	References

	Chapter 7: Conclusions

