
Chenxin Zhang · Liang Liu
Viktor Öwall

Heterogeneous
Recon� gurable
Processors for Real-
Time Baseband
Processing
From Algorithm to Architecture

Heterogeneous Reconfigurable Processors
for Real-Time Baseband Processing

Chenxin Zhang • Liang Liu • Viktor Öwall

Heterogeneous
Reconfigurable Processors
for Real-Time Baseband
Processing
From Algorithm to Architecture

123

Chenxin Zhang
Department of Electrical and Information

Technology
Lund University
Lund, Sweden

Viktor Öwall
Department of Electrical and Information

Technology
Lund University
Lund, Sweden

Liang Liu
Department of Electrical and Information

Technology
Lund University
Lund, Sweden

ISBN 978-3-319-24002-2 ISBN 978-3-319-24004-6 (eBook)
DOI 10.1007/978-3-319-24004-6

Library of Congress Control Number: 2015958762

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

Contents

List of Acronyms . ix

List of Definitions . xiii

1 Introduction . 1
1.1 Scope of the Book. 3
1.2 Outline . 4

1.2.1 Chapter 4: The Reconfigurable Cell Array . 4
1.2.2 Chapter 5: Multi-Standard Digital Front-End Processing 5
1.2.3 Chapter 6: Multi-Task MIMO Signal Processing 5
1.2.4 Chapter 7: Future Multi-User MIMO Systems 5

References . 6

2 Digital Hardware Platforms . 9
2.1 Programmable Processors . 10

2.1.1 General-Purpose Processors . 11
2.1.2 Special-Purpose Processors . 12
2.1.3 Application-Specific Instruction Set Processors 12
2.1.4 Configurable Instruction Set Processors . 12

2.2 Application-Specific Integrated Circuits . 13
2.3 Reconfigurable Architectures. 13
2.4 A Comment on Power Efficiency . 14
References . 15

3 Digital Baseband Processing . 17
3.1 Wireless Communication Technologies. 18

3.1.1 Orthogonal Frequency Division Multiplexing. 18
3.1.2 Multiple-Input Multiple-Output . 19

3.2 Overview of Digital Baseband Processing . 20
3.2.1 Channel Encoding/Decoding . 20
3.2.2 Symbol Mapping/Demapping . 21
3.2.3 Domain Transformation . 21
3.2.4 Digital Front-End Processing . 22

v

vi Contents

3.2.5 Channel Estimation . 22
3.2.6 Channel Matrix Pre-processing . 22
3.2.7 Symbol Detection . 23

3.3 Baseband Processing Properties . 24
References . 24

4 The Reconfigurable Cell Array . 27
4.1 Introduction . 27
4.2 Prior Work and State-of-the-Art . 29
4.3 Architecture Overview . 33

4.3.1 Processing Cell . 34
4.3.2 Memory Cell . 36
4.3.3 Network-on-Chip . 37
4.3.4 Resource Configuration . 42

4.4 Design Flow . 43
4.5 Summary . 45
References . 45

5 Multi-Standard Digital Front-End Processing. 49
5.1 Introduction . 49
5.2 Algorithm and Implementation Aspects . 52

5.2.1 Time Synchronization and CFO Estimation 53
5.2.2 Operation Analysis . 54

5.3 Hardware Development . 56
5.3.1 Dataflow Processor . 56
5.3.2 Memory Cell . 59

5.4 Implementation Results and Discussion . 61
5.4.1 Task-Level Pipeline . 62
5.4.2 Memory Interleaving . 62
5.4.3 Context Switching . 63
5.4.4 Configuration Generator . 64
5.4.5 Hardware Flexibility . 65
5.4.6 Implementation Results . 66
5.4.7 Measurement Results . 71

5.5 Summary . 74
References . 74

6 Multi-Task MIMO Signal Processing . 77
6.1 Introduction . 77
6.2 MIMO Signal Processing . 80

6.2.1 Channel Estimation . 81
6.2.2 Channel Matrix Pre-processing . 83
6.2.3 Symbol Detection . 86

6.3 Algorithm Evaluation and Operation Analysis . 92
6.3.1 Simulation Environment. 92
6.3.2 Performance Evaluation . 93

Contents vii

6.3.3 Operation and Complexity Analysis . 98
6.3.4 Processing Flow and Timing Analysis . 99

6.4 Hardware Development . 101
6.4.1 Architecture Overview . 102
6.4.2 Vector Dataflow Processor . 103
6.4.3 Vector Data Memory Tile . 112
6.4.4 Scalar Resource Cells and Accelerators . 116
6.4.5 Concurrent Candidate Evaluation . 120

6.5 Implementation Results and Comparison . 122
6.5.1 Implementation Results . 124
6.5.2 Task Mapping and Timing Analysis . 127
6.5.3 Computation Efficiency . 133
6.5.4 Power and Energy Consumption . 134
6.5.5 Comparison and Discussion . 135

6.6 Adaptive Channel Pre-processor . 142
6.6.1 QR-Update Scheme. 144
6.6.2 Group-Sort Algorithm . 145
6.6.3 Algorithm Evaluation and Operation Analysis 146
6.6.4 Implementation Results and Discussion . 148

6.7 Summary . 150
References . 150

7 Future Multi-User MIMO Systems: A Discussion . 155
7.1 MIMO Goes to Massive . 156

7.1.1 Massive MIMO Basics . 156
7.1.2 From Theory to Practice . 157

7.2 Massive MIMO Baseband Processing . 160
7.2.1 Baseband Processing Overview . 161
7.2.2 Uplink Multi-User Detection . 162
7.2.3 Downlink Beam-Forming Pre-coding . 163

7.3 New Challenges in Reconfigurable Architecture Design 164
7.3.1 Computational Complexity. 164
7.3.2 Processing Distribution . 165
7.3.3 Spatial-Domain Selectivity . 167

7.4 Summary . 167
References . 168

8 Conclusion . 171

Appendix A Dataflow Processor Architecture . 173

Appendix B Vector Dataflow Processor Architecture . 185

List of Acronyms

ADC Analog-to-digital converter.
ALU Arithmetic logic unit.
ASIC Application-specific integrated circuit.
ASIP Application-specific instruction set processor.
AWGN Additive white Gaussian noise.

BPSK Binary phase-shift keying.

CFO Carrier frequency offset.
CGRA Coarse-grained reconfigurable architecture.
CISC Complex instruction set computing.
CMAC Complex-valued multiply-accumulate.
CMOS Complementary metal-oxide-semiconductor.
CORDIC Coordinate rotation digital computer.
CP Cyclic prefix.
CSI Channel state information.
CVG Candidate vector generation.

DAC Digital-to-analog converter.
DFE Digital front-end.
DLP Data-level parallelism.
DMA Direct memory access.
DSP Digital signal processor.
DVB Digital video broadcasting.
DVB-H Digital video broadcasting for handheld.

ix

x Acronyms

ED Euclidean distance.
EPA Extended pedestrian A.
EQD Equally distributed.
ETU Extended typical urban.
EVA Extended vehicular A.

FEC Forward error correction.
FER Frame error rate.
FFT Fast Fourier transform.
FIFO First in first out.
FNE Fast node enumeration.
FPGA Field-programmable gate array.
FSD Fixed-complexity sphere decoder.
FSM Finite-state machine.
FU Function unit.

GALS Globally asynchronous locally synchronous.
GOPS Giga operations per second.
GPC Generic signal processing cell.
GPP General purpose processor.
GPR General purpose register.
GPS Global positioning system.
GPU Graphics processing unit.
GSM Global system for mobile communications.

HDL Hardware description language.

i.i.d. Independent and identically distributed.
ICI Inter-carrier-interference.
IFFT Inverse fast Fourier transform.
ILC Inner loop controller.
ILP Instruction-level parallelism.
IMD IMbalanced distributed.
IP Intellectual property.
ISA Instruction set architecture.
ISI Inter-symbol-interference.

LS Least square.
LSB Least significant bit.
LTE Long term evolution.

Acronyms xi

LTE-A Long term evolution-advanced.
LUT Look-up table.

MAC Multiply-accumulate.
MGS Modified Gram-Schmidt.
MIMO Multiple-input multiple-output.
ML Maximum-likelihood.
MMR Matrix mask register.
MMSE Minimum mean-square error.
MPMC Multi-port memory controller.
MRC Maximum-ratio combining.
MSE Mean squared error.

NFC Near field communication.
NoC Network-on-chip.
NRE Non-recurring engineering.

OFDM Orthogonal frequency division multiplexing.

PDP Power-delay profile.

QAM Quadrature amplitude modulation.
QoS Quality of service.
QPSK Quadrature phase-shift keying.
QRD QR decomposition.

RAM Random access memory.
RC Resource cell.
RISC Reduced instruction set computing.
ROM Read-only memory.
RTL Register transfer level.

SCC Stream configuration controller.
SCENIC SystemC environment with interactive control.
SD Sphere decoder.
SDC Stream data controller.
SDR Software-defined radio.
SIMD Single instruction multiple data.

xii Acronyms

SIMT Single instruction stream multiple tasks.
SNR Signal-to-noise ratio.
SPE Successive partial node expansion.
SQRD Sorted QR decomposition.
STS Short training symbol.
SVD Singular value decomposition.

TDD Time-division duplexing.
TLP Thread-level parallelism.

UART Universal asynchronous receiver/transmitter.
UMTS Universal mobile telecommunications system.

VDP Vector dot product.
VHDL Very high speed integrated circuit (VHSIC) HDL.
VLIW Very long instruction word.
VLSI Very-large-scale integration.
VPR Vector permutation register.

WCDMA Wideband code division multiple access.

ZF Zero-forcing.

List of Definitions

.�/� Complex conjugate.

.�/H Hermitian transpose.

.�/T Vector/matrix transpose.

.�/� Matrix pseudo-inverse.

.�/i Column vector.

.�/i;i .i; i/th matrix element.
k � k Euclidean vector length.
k � k2 `2-norm.
M Constellation size.
NSW Frequency correlation window in R.MMSE-SW.
Nc Number of OFDM subcarriers.
N Number of antennas.
H Complex-valued MIMO channel matrix.
I Identity matrix.
P Permutation matrix in sorted-QR decomposition.
Q Unitary matrix in QR decomposition.
R Upper triangular matrix in QR decomposition.
n i.i.d. complex Gaussian noise vector.
b�c Floor function. Rounds x to nearest integer towards �1.
O Computational complexity.
�2

n Variance of noise vector n.
�f OFDM subcarrier spacing.
sCMOS Technology scaling factor.

� Approximation.

d�e Ceiling function. Rounds x to nearest integer towards C1.

xiii

xiv Glossary

J
Element-wise vector multiplication.

" Fractional carrier frequency offset.
� Post-detection SNR.

2 For x 2 A, the element x belongs to the set A.

� Node perturbation parameter in MMSE-NP.

/ Proportional.

R Real continuous space.

Q Slicing function in symbol detection, returning a nearest constellation
point.

� OFDM symbol start.

Chapter 1
Introduction

This book discusses an interdisciplinary study in wireless communication and
Very-large-scale integration (VLSI) design, more specifically, implementation of
digital baseband processing using reconfigurable architectures. Development of
such kind of systems, sometimes referred to as baseband processors [15] or
Software-defined radio (SDR) platforms [8], is an important and challenging
subject, especially for small-scale base stations (e.g., femtocells) and mobile
terminals that must provide reliable services under various operating scenarios with
low power consumption.

The importance of the subject is driven by two facts. First, there is a huge
demand for wireless communication in the world. The number of devices connected
to the Internet in one way or the other is expected to reach 50 billion by 2020
[3, 9]. In other words, every person on earth will have around six devices on
average. Second, the number of radio standards grows increasingly fast in order
to suffice ever-growing user demands such as data rate. For example, compared to
the world’s first hand-held device demonstrated in 1973, today’s fourth-generation
(4G) mobile terminals are able to process not only voice and text but also data
streaming with the speed of up to gigabit-per-second [7]; the coming 5G wireless
communication network will provide 1000-fold gain in capacity. Moreover, modern
wireless systems need to be backward compatible to support 2G Global system
for mobile communications (GSM) and 3G Universal mobile telecommunications
system (UMTS), as well as to support a range of different radio standards for
improving user experience. Examples of these standards are bluetooth, IEEE 802.11
series, Global positioning system (GPS), and Near field communication (NFC). As
envisioned in [5], a single 4G mobile terminal needs to support more than 10 radio
standards with tens of operation modes in each standard [e.g., 63 for 3GPP Long
term evolution (LTE)]. Using traditional implementation strategies, equipping each
of these standards with an Application-specific integrated circuit (ASIC), becomes
antiquated and unaffordable with regard to area consumption and development time.

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_1

1

2 1 Introduction

Besides, it is unlikely that a user will enable all of these standards at the same time
in a single terminal. Thus, there is a need for a flexible hardware platform capable of
supporting operations among multiple standards and tasks and allocating resources
dynamically to suffice current computational demands.

In addition to the multi-standard multi-task support, flexibility is required to cope
with the rapid evolution of baseband processing algorithms and enable run-time
algorithm adaption to provide better Quality of service (QoS) and maintain robust,
reliable, and seamless connectivity. Furthermore, benefiting from the hardware
reconfigurability, such architectures have the potential to perform system updates
and bug-fixes while the system is in operation. This feature will prolong product
life-time and ensure benefits in terms of time-to-market [13, 15, 16]. Last but not
the least, from an algorithm development perspective, reconfigurable computing
provides a more software-centric programming approach. This allows hardware
platforms to be developed on-demand and potentially in the same language as
used for software development. Unified programming environment enhances pro-
ductivity by simplifying system integration and verification. Besides its importance,
the target subject faces many design challenges in practical implementations, such
as requirements of high computational performance and low energy consumption.
Primary concerns for contemporary system designs are shifting from computational
performance to energy efficiency [2, 17]. This trend becomes more and more
prominent in wireless communication designs. For example, the transition from 3G
to 4G wireless communication systems demands 3 orders of magnitude increase in
computational complexity, whereas the total power budget remains approximately
constant in a single mobile terminal [14, 21]. Reconfigurable architectures, since its
invention in 1960 [10], promise to offer great hardware flexibility and computational
performance. They allow run-time hardware reconfigurations to accelerate arbitrary
algorithms, and thus extend the application domain and versatility of the device.
However, due to huge routing overhead, they cannot match power and area effi-
ciency of ASICs, in spite of their tremendous developments over the past decades.
As an example, fine-grained interconnects in commercial Field-programmable gate
array (FPGA) consume over 75 % of the chip area [20], and cause 17–54 times
area overhead and 5.7–62 times more power consumption in comparison to ASICs
[12]. Moreover, bit-level function blocks of FPGAs incur additional area and
power penalties when implementing word-level computations. The area and power
overhead have restricted the usage of reconfigurable architectures in cost-sensitive
applications such as wireless communication in mobile terminals. To address these
overhead issues, new types of reconfigurable architectures with coarse-grained
function blocks have gained increasing attention in recent years in both academia
and industry [1, 4, 6, 11, 18, 19].

This book presents a coarse-grained dynamically reconfigurable cell array
architecture, which is designed and tailored with a primary focus on digital
baseband processing in wireless communication. By exploiting the computational
characteristics of the target application domain, the presented domain-specific cell
array architecture bridges the gap between ASICs and conventional reconfigurable
platforms. The flexibility, performance, and hardware efficiency of the cell array are
demonstrated through case studies.

1.1 Scope of the Book 3

1.1 Scope of the Book

The goal of this book is to find efficient reconfigurable architectures that can provide
a balance among computational capability, flexibility, and hardware efficiency.
The driving application for hardware developments and performance evaluations
is digital baseband processing in wireless communication. The target platform is
commercially deployed wireless communication equipment and devices, which
need to provide real-time performance with restricted budgets of physical size and
energy dissipation.

The central part of this book is the presentation of a dynamically reconfigurable
cell array architecture. Performance of the cell array is evaluated through two case
studies, which are conducted to address two following questions:

• Can the cell array be used for multi-standard and multi-task processing? Is the
control overhead affordable?

• Can the cell array meet real-time requirements when performing sophisticated
baseband processing tasks? Under such a use case, what is the area and energy
efficiency in comparison to ASICs and conventional reconfigurable architec-
tures?

Throughout the book and by conducting algorithm–architecture co-design, spe-
cial attention is paid to four distinct areas of the cell array design:

• System architecture design, including various processing elements, memory sub-
systems, Network-on-chip (NoC), and dynamic reconfiguration.

• Design flow of the cell array.
• Design trade-offs, including selection of processing elements and accelerators,

task partitioning between hardware and software as well as between processing
elements and memory sub-systems.

• Instruction set and function descriptor design for various processing elements
and memory sub-systems, respectively.

Digital baseband processing in wireless communication systems includes
many tasks such as Orthogonal frequency division multiplexing (OFDM) mod-
ulation/demodulation, Multiple-input multiple-output (MIMO) signal processing,
Forward error correction (FEC), interleaving, scrambling, etc. Among these, this
book focuses on four crucial blocks in a typical baseband processing chain at the
receiver, i.e., Digital front-end (DFE), channel estimation, channel pre-processing,
and symbol detection. However, the same design methodology is applicable for
other baseband processing blocks and applications.

4 1 Introduction

1.2 Outline

Chapters 2 and 3 serve to give an overview of the research field. Chapter 2 discusses
reconfigurable architectures and various processing alternatives. Chapter 3 covers
typical digital baseband processing tasks in contemporary wireless communication
systems. These two introductory chapters are not intended to give detailed descrip-
tions on each of the subject. They are presented to give reference information on
terms and concepts used later in the book.

Chapter 4 introduces the coarse-grained dynamically reconfigurable cell array
architecture, including both system infrastructure and a hardware design flow. Using
the cell array as a baseline architecture, Chaps. 5 and 6 present two case studies to
demonstrate the performance of the presented domain-specific reconfigurable cell
array. The two studies are conducted in accordance to the processing flow of a
typical baseband processing chain at the receiver. In addition, the two case studies
manifest architectural evolution of the cell array, namely from scalar- to vector-
based architecture. Chapter 7 opens up discussion on reconfigurable architecture
design for next-generation wireless communication systems. Signal processing
operations in Massive MIMO and design challenges for reconfigurable platforms
are discussed.

1.2.1 Chapter 4: The Reconfigurable Cell Array

Conventional fine-grained architectures, such as FPGAs, provide great flexibility
by allowing bit-level manipulations in system designs. However, the fine-grained
configurability results in long configuration time and poor area and power efficiency,
and thus restricts the usage of such architectures in time-critical and area/power-
limited applications. To address these issues, recent work focuses on coarse-grained
architectures, aiming to provide a balance between flexibility and hardware effi-
ciency by adopting word-level data processing. In this chapter, a coarse-grained
dynamically reconfigurable cell array architecture is presented. The architecture
is constructed from an array of heterogeneous functional units communicating
via hierarchical network interconnects. The strength of the architecture lies in the
simplified data sharing achieved by decoupled processing and memory cells, the
substantial communication cost reduction obtained by a hierarchical network struc-
ture, and the fast context switching enabled by a unique run-time reconfiguration
mechanism.

1.2 Outline 5

1.2.2 Chapter 5: Multi-Standard Digital Front-End Processing

This chapter aims at demonstrating the flexibility of the reconfigurable cell array
architecture and evaluating the control overhead of hardware reconfigurations, in
terms of clock cycles and area consumption. For this purpose, the cell array is
configured to concurrently process multiple radio standards. Flexibility of the archi-
tecture is demonstrated by performing time synchronization and Carrier frequency
offset (CFO) estimation in a digital front-end receiver for multiple OFDM-based
standards. As a proof-of-concept, this book focuses on three contemporarily widely
used radio standards, 3GPP LTEs, IEEE 802.11n, and Digital video broadcasting
for handheld (DVB-H). The employed reconfigurable cell array, containing 2 � 2
resource cells, supports all three standards and is capable of processing two
concurrent data streams. Dynamic configuration of the cell array enables run-time
switching between different standards and allows adoption of different algorithms
on the same platform. Thanks to the adopted fast configuration scheme, context
switching between different operation scenarios requires at most 11 clock cycles.

1.2.3 Chapter 6: Multi-Task MIMO Signal Processing

This chapter aims at demonstrating the flexibility and real-time processing capa-
bility of the cell array as well as evaluating the area and energy efficiency when
performing sophisticated baseband processing tasks.

Driven by the requirement of multi-dimensional computing in contemporary
wireless communication technologies, reconfigurable platforms have come to the
era of vector-based architectures. In this chapter, the reconfigurable cell array is
extended with extensive vector computing capabilities, aiming for high-throughput
baseband processing in MIMO-OFDM systems. Besides the heterogeneous and
hierarchical resource deployments, a vector-enhanced Single instruction multiple
data (SIMD) structure and various memory access schemes are employed. These
architectural enhancements are designed to suffice stringent computational require-
ments while retaining high flexibility and hardware efficiency. To demonstrate
its performance and flexibility, three computationally intensive blocks, namely
channel estimation, channel pre-processing, and symbol detection, of a 4 � 4 MIMO
processing chain in a 20 MHz 64-QAM 3GPP Long term evolution-advanced (LTE-
A) downlink are mapped and processed in real-time.

1.2.4 Chapter 7: Future Multi-User MIMO Systems

This chapter looks ahead into advanced multi-user Massive MIMO technology
for 5G wireless communication systems and opens up discussion for its baseband

6 1 Introduction

processor design. Wireless communication technology is evolving at a fast pace
to meet requirements of emerging applications. Accordingly, the developed recon-
figurable architecture should be extensible to support signal processing in future
wireless communication systems. In this chapter, the basic concept of the relatively
new MIMO technology, Massive MIMO, is introduced. To facilitate the corre-
sponding hardware architecture design, operations in Massive MIMO baseband
processing are profiled and analyzed. Additionally, we discuss how the new features
in Massive MIMO processing affect the architecture design, in terms of operation
characteristics and processing distribution. This chapter serves as a pre-study and a
design guideline for developing an efficient reconfigurable computing platform for
Massive MIMO systems.

References

1. Z. Abdin, B. Svensson, Evolution in architectures and programming methodologies of coarse-
grained reconfigurable computing. Microprocessors Microsyst. Embed. Hardw. Des. 33,
161–178 (2009)

2. S. Borkar, Thousand core chips - a technology perspective, in 44th Annual Design Automation
Conference (DAC), 2007, pp. 746–749

3. Broadcom, Facts at a glance, Apr 2014. https://www.broadcom.com/docs/company/
BroadcomQuickFacts.pdf

4. A. Chattopadhyay, Ingredients of adaptability: a survey of reconfigurable processors, in VLSI
Design, Jan 2013

5. F. Clermidy, et al., A 477mW NoC-based digital baseband for MIMO 4G SDR. in IEEE
International Solid-State Circuits Conference (ISSCC), Feb 2010, pp. 278–279

6. K. Compton, S. Hauck, Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv. 34, 171–210 (2002)

7. E. Dahlman, S. Parkvall, J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 1st edn.
(Academic, New York, 2011)

8. M. Dillinger, K. Madani, N. Alonistioti, Software Defined Radio: Architectures, Systems and
Functions, 1st edn. (Wiley, New York, 2003)

9. Ericsson, White paper: more than 50 billion connected devices - taking connected devices
to mass market and profitability, Feb 2011. http://www.akos-rs.si/files/Telekomunikacije/
Digitalna_agenda/Internetni_protokol_Ipv6/More-than-50-billion-connected-devices.pdf

10. G. Estrin, Organization of computer systems: the fixed plus variable structure computer, in
Western Joint IRE-AIEE-ACM Computer Conference, May 1960, pp. 33–40

11. R. Hartenstein, A decade of reconfigurable computing: a visionary retrospective, in Design,
Automation Test in Europe Conference Exhibition (DATE), 2001, pp. 642–649

12. I. Kuon, R. Tessier, J. Rose, FPGa architecture: survey and challenges. Found. Trends Electron.
Des. Autom. 2(2), 135–253 (2008)

13. T. Lenart, Design of reconfigurable hardware architectures for real-time applications. Ph.D.
thesis, Department of Electrical and Information Technology, Lund University, May 2008

14. G. Miao, N. Himayat, Y. Li, A. Swami, Cross-layer optimization for energy-efficient wireless
communications: a survey. Wirel. Commun. Mob. Comput. 9(4), 529–542 (2009)

15. A. Nilsson, Design of programmable multi-standard baseband processors. Ph.D. thesis,
Department of Electrical Engineering, Linköping University, 2007

16. H. Svensson, Reconfigurable architectures for embedded systems. Ph.D. thesis, Department
of Electrical and Information Technology, Lund University, Oct 2008

https://www.broadcom.com/docs/company/BroadcomQuickFacts.pdf
https://www.broadcom.com/docs/company/BroadcomQuickFacts.pdf
http://www.akos-rs.si/files/Telekomunikacije/Digitalna_agenda/Internetni_protokol_Ipv6/More-than-50-billion-connected-devices.pdf
http://www.akos-rs.si/files/Telekomunikacije/Digitalna_agenda/Internetni_protokol_Ipv6/More-than-50-billion-connected-devices.pdf

References 7

17. M.B. Taylor, A landscape of the new dark silicon design regime. IEEE Micro 33(5), 8–19
(2013)

18. R. Tessier, W. Burleson, Reconfigurable computing for digital signal processing: a survey.
J. VLSI Signal Process. Syst. 28, 7–27 (2001)

19. T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, P.Y.K. Cheung,
Reconfigurable computing: architectures and design methods. Comput. Digit. Tech. 152,
193–207 (2005)

20. C.C. Wang, F.L. Yuan, H. Chen, D. Marković, A 1.1 GOPS/mW FPGA chip with hierarchical
interconnect fabric, in IEEE Symposium on VLSI Circuits (VLSIC), June 2011, pp. 136–137

21. M. Woh, S. Mahlke, T. Mudge, C. Chakrabarti, Mobile supercomputers for the next-generation
cell phone. IEEE Comput. 43(1), 81–85 (2010)

Chapter 2
Digital Hardware Platforms

Since the invention of the integrated circuit in the 1950s, there has been explosive
developments of electronic circuits. Over the last decades, the amount of transistors,
which are the fundamental elements of digital and analog circuits, fitting on a single
silicon die has increased exponentially, from a few thousands to billions to date. This
trend was already observed in 1965 [15] by Intel’s co-founder Gordon E. Moore and
later came to be known as “Moore’s law” coined by Carver Mead. Moore’s law has
held true since then and is a driving force of the advancements of Very-large-scale
integration (VLSI) design [11].

Enabled by the technology advancements, various forms of hardware plat-
forms emerged to cater to a variety of applications. Depending on design trade-
offs between flexibility and efficiency, these platforms can be broadly divided
into three classes, namely programmable processors, reconfigurable architectures,
and Application-specific integrated circuits (ASICs). Programmable processors
include, for example, General purpose processors (GPPs) and Application-specific
instruction set processors (ASIPs). Reconfigurable architectures differ from the
programmable processors in a way that they expose both data and control path
to the user and are “programmable” through hardware configurations. Field-
programmable gate array (FPGA) is a well-recognized example of this architecture
category. ASICs are customized designs with limited flexibility. Hardware modifi-
cations after chip fabrication for new function adoption is barely possible for this
type of platforms. They are commonly used in time- and power-critical systems,
where flexibility is not a primary concern. Figure 2.1 illustrates a general view
of how these three classes of platforms fare in the flexibility-efficiency design
space. It should be pointed out that comparison of particular architecture instances
among these classes has become increasingly obscure because of huge architecture
varieties and different optimization objectives such as application domains and
speed grades. Thus, Fig. 2.1 only serves to give an overview of how different
platforms trade flexibility for efficiency. Flexibility, including programmability and

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_2

9

10 2 Digital Hardware Platforms

F
le

xi
bi

lit
y

GPP

GPU
DSP

ASIP

FPGA
CGRA

ASIC

Efficiency

Programmable

Reconfigurable This work

Fig. 2.1 Comparison of flexibility and efficiency for various forms of hardware platforms. This
book focuses on the design of Coarse-grained reconfigurable architectures (CGRAs)

versatility, is measured as the ability to adopt a platform into different application
domains and to perform different tasks. For instance, GPPs are highly flexible
platforms since they are designed without having any particular application in mind.
Efficiency relates to both computational performance and energy consumption and
is a measure of how well a platform performs in an application. In this context,
ASICs reveal the highest efficiency because of hardware customizations. This book
focuses on Coarse-grained reconfigurable architectures (CGRAs), aiming to bridge
the flexibility-efficiency gap between ASICs and the other two classes of platforms,
illustrated in Fig. 2.1.

2.1 Programmable Processors

Programmable processors are designed based on instruction sets, which are spec-
ifications of operation codes (opcodes) used to conduct operations of underlying
hardware elements. Depending on design objectives, an instruction set can be
optimized with respect to, for example, application domain and friendliness to high-
level programming constructs [10]. Some examples of Instruction set architecture
(ISA) categories are Complex instruction set computing (CISC), Reduced instruc-
tion set computing (RISC), and Very long instruction word (VLIW).

Based upon the retargetability of the instruction set, programmable processors
can be categorized into fixed and configurable ISAs. Compared to the latter one,
fixed ISAs are easy to design and can be optimized for obtaining high performance
such as high clock frequency by deep pipelining [10]. Examples of fixed ISAs are
GPPs, special-purpose processors, and ASIPs. Configurable ISAs provide the user
flexibilities in selecting appropriate instructions for target applications. This way,
the ISAs can be customized to attain higher efficiency in comparison to fixed ISAs.
However, this instruction set customizability complicates the design of baseline
architecture and software tool chain (e.g., compiler and emulator).

2.1 Programmable Processors 11

2.1.1 General-Purpose Processors

GPPs are highly programmable, capable of supporting any algorithm that can be
compiled to a computer program. Thus, they are dominantly used in personal
computers. Although GPPs have always been implemented with the latest semi-
conductor technology in order to achieve the highest possible processing speed,
they suffer from a performance bottleneck: the sequential nature of program
execution. To address this issue, many design techniques have been proposed,
which range from ISA to microarchitecture design with a goal of increasing the
number of executed instructions per second. Examples of these techniques are
superscalar and VLIW architectures for exploiting Instruction-level parallelism
(ILP), Single instruction multiple data (SIMD) architectures (e.g., Intel’s Pentium
MMX and AMD’s 3DNow! ISA) for enabling Data-level parallelism (DLP), and
multithreading technology (e.g., Intel’s hyper-threading [14]) for providing Thread-
level parallelism (TLP). Furthermore, GPPs have shifted to a multi-core paradigm
due to energy and power constraints on growth in computing performance [7].
Figure 2.2 shows the slowdown in processor performance growth, clock speed, and
power consumption, as well as the continued exponential growth in the number of
transistors per chip [7].

Fig. 2.2 Transistors, frequency, power, performance, and processor cores over time [7]

12 2 Digital Hardware Platforms

2.1.2 Special-Purpose Processors

Special-purpose processors are designed to be used for a particular application
domain. Well-known examples are Digital signal processors (DSPs) and Graph-
ics processing units (GPUs). DSPs are designed for performing digital signal
processing tasks such as filtering and transforms. Commonly used operations in
signal processing algorithms are accelerated in DSPs. An example is multiplication
followed by accumulation, widely used in digital filters [18]. This operation is
performed using dedicated Multiply-accumulate (MAC) units in DSPs and usually
takes one clock cycle to execute. Other commonly used operations include various
addressing modes such as modulo and ring-buffer.

GPUs are specialized computational units dedicated to manipulating computer
graphics. Thanks to their highly parallel structure (e.g., containing hundreds of
processing cores [16]), they are able to process large blocks of data in parallel.
Taking advantage of the high processing capability, General-Purpose computing on
Graphics Processing Unit (GPGPU) has recently gained in popularity. An example
is the CUDA platform [8] from Nvidia, which supports C/CCC and Fortran
programming on GPUs and can also be used for Matlab program accelerations [17].

2.1.3 Application-Specific Instruction Set Processors

Compared to DSPs and GPUs, ASIPs are optimized for a single application or a
small groups of applications [13]. A general design flow is that a baseline processor,
which could be a RISC processor or DSP, is extended with application-specific
instructions. Besides, infrequently used instructions and function units are pruned,
aiming to trade flexibility for energy and cost efficiency.

2.1.4 Configurable Instruction Set Processors

Different from the fixed ISAs, configurable instruction set processors provide users
a collection of instructions and a baseline architecture containing various hardware
features. Depending on target applications, users have the possibility of selecting
appropriate instructions to construct a customized instruction set at design-time.
Meanwhile, the microarchitecture of the processors can be customized by selecting,
for example, different function units and the number of pipeline stages. Once the
instruction set and the microarchitecture are fine tuned, hardware implementation
of the processor is generated. From the hardware’s point of view, the generated
processor is a type of ASIP, however, with on-demand function customizations.
Xtensa configurable cores [3] from Cadence (previously Tensilica) is an example
of the configurable instruction set processor. Thanks to the instruction set and

2.3 Reconfigurable Architectures 13

microarchitecture customizations, this type of processors provides high processing
performance and hardware efficiency. However, design of the baseline architecture
and the corresponding software support are more complicated than fixed ISAs, since
they need to cover a huge set of configurations.

2.2 Application-Specific Integrated Circuits

ASICs are designed to perform specific tasks. Therefore, computational data paths
and control circuits can be optimized for particular use cases. This brings ASICs
to the far right of the design space in Fig. 2.1, indicating that they are the most
efficient (in terms of performance and energy consumption) type of platforms
among the three classes. Therefore, ASICs are commonly used to achieve real-time
performance within the budget for physical size and energy dissipation. However,
the specialized hardware architecture limits the capability of adapting system to
different applications and operation scenarios. This limitation results in reduced
overall area efficiency in terms of hardware reuse and sharing. Additionally, this
type of platforms requires a rather long hardware redesign time (for bug-fixes or
function updates) and exhaustive testing procedures. Furthermore, the exploding
silicon design cost limits the adoption of ASICs, especially in deep sub-micro
semiconductor technology.

2.3 Reconfigurable Architectures

Reconfigurable architectures are the ones having the capability of making sub-
stantial changes to the data path itself in addition to the control flow. This means
that not only the software that runs on a platform is modified, but also how the
hardware architecture operates [1, 5, 6, 9, 21, 22]. With combined control and
data path manipulations, reconfigurable architectures are able to exploit potential
parallelism, enable energy efficient computing, allow extensive hardware reuse, and
reduce system design cycle and cost [12].

Reconfigurable architectures are either homogeneous or heterogeneous. In a
homogeneous architecture, all elements contain the same hardware resources. This
uniform structure simplifies the mapping of user applications, since additional
constraints on function partitions and placements are avoided. However, homoge-
neous structures are inefficient in terms of hardware utilization of logic and routing
resources [12]. In contrast, heterogeneous architectures contain array elements with
different functionality, such as specialized elements for stream data processing or
control-flow handling. Compared to the homogeneous structure, adoption of various
types of array elements reduces hardware overhead and improves power efficiency
at the cost of more complex mapping algorithms.

14 2 Digital Hardware Platforms

The size of the hardware elements inside a reconfigurable architecture is referred
to as granularity. Fine-grained architectures and CGRAs are two variants of
reconfigurable architectures. Fine-grained architectures, such as FPGAs, are usually
built up on small Look-up tables (LUTs). Such architectures have the ability to
map any logic functions at bit-level onto their fine-grained lattice. However, this
bit-oriented architecture results in a large amount of control and routing overhead,
for example, when performing word-level computations. These overheads also
affect power consumption and system configuration time. In contrast, CGRAs
are constructed from larger building blocks in a size ranging from Arithmetic
logic units (ALUs) to full-scale processors. These hardware blocks communicate
through a word-level routing network. The increased granularity in CGRAs reduces
routing area overhead, improves configuration time, and achieves higher power
efficiency despite less mapping flexibility. Besides, CGRAs differ from fine-
grained architectures in design methodology. To map functionality into gates, FPGA
designs rely on a hardware-centric approach, which usually requires programming
in Hardware description language (HDL) such as VHDL. In contrast, CGRAs
provide a more software-centric programming approach to map functionality to,
for example, processing cores using a higher level language like C. Software-
centric design approach enhances productivity and simplifies system integration and
verification.

This book focuses on the development of CGRA, more specifically, domain-
specific CGRA for baseband processing in wireless communication systems.
Detailed architecture of the presented CGRA-based dynamically reconfigurable
cell array is presented in Chap. 4 with case studies in Chaps. 5 and 6.

2.4 A Comment on Power Efficiency

As mentioned in Chap. 1, primary concerns for contemporary system designs are
shifting from computational performance to power efficiency [2, 20]. Attaining high
power efficiency is especially important for the target applications of this book,
namely small-scale base stations and mobile terminals, since they are all constrained
by stringent power requirements. Thus, it is crucial to have a better understanding
of the composition of power consumption.

The total power consumption for a digital circuit built with CMOS transistors
may be expressed as [19]

Ptotal � ˛ � .CL C CSC/ �VDD
2 � f

„ ƒ‚ …
Pdynamic

C .IDC C Ileak/ � VDD„ ƒ‚ …
Pleakage

; (2.1)

where Ptotal, Pdynamic, and Pleakage represent the total, dynamic, and leakage power
consumption, respectively. ˛ is the switching activity of the circuit, CL the load

References 15

capacitance, CSC the short circuit capacitance, VDD the supply voltage, and f the
clock frequency. IDC and Ileak denote the static and leakage current, respectively.

In the design of reconfigurable architectures, Pdynamic is usually a dominating
factor because of high clock frequency and hardware utilization. In comparison,
the leakage power is of less concern for such kind of architectures. However, it
should be pointed out that leakage power is becoming more and more important
with technology scaling and thus needs more attention. One of the well-known
approaches for designing low power circuits is to reduce the quadratic term V2

DD
in (2.1) at the cost of performance sacrifice such as clock frequency. To compensate
for the performance loss, different techniques can be used such as pipelining and
parallel processing [4] but at the expense of area consumption. Thus, it can be seen
that hardware designing is a trade-off between various parameters among the design
space.

References

1. Z. Abdin, B. Svensson, Evolution in architectures and programming methodologies of coarse-
grained reconfigurable computing. Microprocessors Microsyst. Embed. Hardw. Des. 33,
161–178 (2009)

2. S. Borkar, Thousand core chips - a technology perspective, in 44th Annual Design Automation
Conference (DAC), 2007, pp. 746–749

3. J. Byrne, Tensilica DSP targets LTE advanced, Mar 2011. http://www.tensilica.com/uploads/
pdf/MPR_BBE64.pdf

4. A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEEE J.
Solid State Circuits 27(4), 473–484 (1992)

5. A. Chattopadhyay, Ingredients of adaptability: a survey of reconfigurable processors. in VLSI
Design, Jan 2013

6. K. Compton, S. Hauck, Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv. 34, 171–210 (2002)

7. S.H. Fuller, L.I. Millett, Computing performance: game over or next level? Computer 44(1),
31–38 (2011)

8. M. Garland, et al., Parallel computing experiences with CUDA. IEEE Micro 28(4), 13–27
(2008)

9. R. Hartenstein, A decade of reconfigurable computing: a visionary retrospective, in Design,
Automation Test in Europe Conference Exhibition (DATE), 2001, pp. 642–649

10. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 4th edn.
(Morgan Kaufmann Publishers, San Francisco, CA, 2003)

11. R.W. Keyes, The impact of Moore’s law. IEEE Solid State Circuits Soc. Newslett. 11(5),
25–27 (2006)

12. T. Lenart, Design of reconfigurable hardware architectures for real-time applications. Ph.D.
thesis, Department of Electrical and Information Technology, Lund University, May 2008

13. D. Liu, Embedded DSP Processor Design: Application Specific Instruction Set Processors, 1st
edn. (Morgan Kaufmann Publishers, San Francisco, CA, 2008)

14. D. Marr, et al., Hyper-threading technology architecture and microarchitecture: a hypertext
history. Intel Technol. J. 6(1), 4–15 (2002)

15. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8),
114–117 (1965)

16. NVIDIA, Tesla C2050/C2070 GPU Computing Processor, July 2010

http://www.tensilica.com/uploads/pdf/MPR_BBE64.pdf
http://www.tensilica.com/uploads/pdf/MPR_BBE64.pdf

16 2 Digital Hardware Platforms

17. NVIDIA, MATLAB Acceleration on NVIDIA Tesla and Quadro GPUs, 2014
18. K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, 1st edn.

(Wiley, New York, 1999)
19. J. Rabaey, Low Power Design Essentials. 1st edn. (Springer, New York, 2009)
20. M.B. Taylor, A landscape of the new dark silicon design regime. IEEE Micro 33(5), 8–19

(2013)
21. R. Tessier, W. Burleson, Reconfigurable computing for digital signal processing: a survey.

J. VLSI Signal Process. Syst. 28, 7–27 (2001)
22. T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, P.Y.K. Cheung,

Reconfigurable computing: architectures and design methods. Comput. Digit. Tech. 152,
193–207 (2005)

Chapter 3
Digital Baseband Processing

Wireless communication has been experiencing explosive growth since its
invention. The wireless landscape has been broadened by incorporating more than
basic voice services and low data rate transmissions. Taking cellular systems as an
example, the fourth generation (4G) mobile communication technology promises to
provide broadband Internet access in mobile terminals with up to gigabit-per-second
downlink data rate [6]. Compared to the 9.6 kbit/s data services in its 2G predecessor
Global system for mobile communications (GSM), 4G systems enhance the data rate
by 5 orders of magnitude. This data rate boost is a result of innovations in wireless
technology, such as Orthogonal frequency division multiplexing (OFDM) and
Multiple-input multiple-output (MIMO). The high speed data links together with
advancements in mobile terminals (e.g., phones, tablet computers, and wearable
devices) have opened up a whole new world for wireless communication and
changed everyone’s life. Besides conventional usage like Internet streaming and
multimedia playback, interdisciplinary applications like mobile health (mHealth)
[19] are emerging. New applications set new demands on wireless services, pushing
forward technology developments.

This chapter aims to give a brief description of some modern wireless communi-
cation technologies and standards, introduce basic concepts and terminologies used
in the rest of the book, and provide an overview of the digital baseband processing
tasks in modern systems. Moreover, computational properties of baseband process-
ing tasks are extracted in order to guide hardware developments. Basics of wireless
communication, such as symbol modulation and propagation channels, are not
addressed but can be found in [13, 16], since the purpose of the present chapter is to
highlight design challenges and point out baseband processing properties that can be
exploited to achieve efficient hardware implementations. Worth mentioning is that
this book mainly focuses on MIMO-OFDM systems because of their importance
and popularity in contemporary wireless communication systems. However, support
of other wireless technologies is a natural extension and can be easily mapped onto
the presented reconfigurable cell array thanks to its flexible hardware infrastructure.

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_3

17

18 3 Digital Baseband Processing

3.1 Wireless Communication Technologies

To increase the data rate of a wireless system, a straightforward method is to allocate
larger bandwidth for data communication. A wide frequency band allows for more
data to be transferred at any time. This has been used as one of the main techniques
in the transition from 2G to 3G systems, achieving �40 times data rate speed-up by
increasing bandwidth per carrier from 200 kHz to 5 MHz. This trend continues in 4G
systems, which further expands bandwidth to 100 MHz with carrier aggregation.
However, larger bandwidth increases implementation complexity. This is because
multi-path propagation channels are by nature frequency selective [13], and thus
affect signals at different frequency bands differently. OFDM technology [5] has
been proposed to circumvent the issue of frequency selectivity. To further increase
data rate without the expansion of bandwidth, since bandwidth is a limited resource,
spatial resources are utilized in addition to time and frequency. MIMO [15] is one
such technology that provides various ways of utilizing spatial resources. In modern
systems, the two aforementioned technologies are often used together, referred to as
MIMO-OFDM systems.

3.1.1 Orthogonal Frequency Division Multiplexing

The key idea of OFDM is to divide a wideband channel into a number of
narrowband sub-channels, over which the wideband signal is multiplexed. This way,
the frequency response over each of these narrowband sub-channels is flattened, thus
reducing the complexity of channel equalization. To enable parallel transmission
over flat-fading sub-channels without interfering one another, adjacent narrowband
subcarriers need to be separated in frequency (�f) and arranged such that they are
orthogonal to each other. Figure 3.1 illustrates such arrangement. Because of the
frequency overlapping, OFDM achieves high spectral efficiency.

In addition to the frequency selectivity, OFDM systems need to cope
with channel effects as other wireless systems do. Wireless channels are
characterized by multi-path propagation [13]. Signals travelling from one end
to the other are reflected, diffracted, and scattered by obstacles, forming multi-
path components. Depending on the travelled paths, multi-path components may
arrive at the receiver at different time instances. The multi-path propagation will

Fig. 3.1 Orthogonal
subcarriers in OFDM

Δf

3.1 Wireless Communication Technologies 19

incur interferences between adjacent OFDM symbols, generally referred to as
Inter-symbol-interference (ISI). In addition, OFDM systems may suffer from
Inter-carrier-interference (ICI), since the orthogonality of the subcarriers may be
destroyed by multi-path propagation and imperfections in practical implementations
such as carrier-oscillator mismatch.

To avoid both the ISI and ICI, each OFDM symbol is extended with a guard time
interval designed to allow channel’s impulse response to settle. This guard time
interval is filled with a Cyclic prefix (CP), which is a copy of the last part of each
OFDM symbol. By discarding CP at the receiver after each symbol reception, given
that the CP is long enough to cover the impulse response of the channel, the ISI and
ICI can be completely avoided.

3.1.2 Multiple-Input Multiple-Output

MIMO is another important technology in modern wireless communication sys-
tems. Compared to single antenna setup, MIMO exploits resources in the spatial
domain and provides significant improvements in system capacity and link relia-
bility without increasing bandwidth. In MIMO, three main operation modes exist,
namely spatial multiplexing [22], spatial diversity [17], and space division multiple
access (also known as multi-user MIMO) [2]. These modes, illustrated in Fig. 3.2,
are designed to increase average user spectral efficiency, transmission reliability, and
cell spectral efficiency, respectively [11]. To suffice ever-increasing user demands in
Quality of service (QoS) while living with the limited bandwidth resources, current
trend in wireless systems is to adopt large MIMO dimensions. As an example, the
maximum MIMO configuration in the transition from 3GPP Long term evolution
(LTE) to its successor LTE-Advanced (LTE-A) is increasing from 4 � 4 to 8 � 8,
while keeping the bandwidth unchanged.

The benefits of MIMO entail a significant increase in signal processing complex-
ity and power consumption at the receiver, where sophisticated signal processing
is required, especially in a fading and noisy channel. For example, Channel state

Tx Rx Tx Rx Tx

Rx

Rx

Rxa cb

Fig. 3.2 Three operation modes in MIMO, (a) spatial multiplexing, (b) spatial diversity, (c) space
division multiple access (multi-user MIMO)

20 3 Digital Baseband Processing

information (CSI) between each pair of transmit and receive antennas should
be properly estimated and symbol detection is needed to cancel inter-antenna
interferences. As a result, efficient hardware implementation of MIMO receivers
has become a critical challenge. Moreover, when combining MIMO with OFDM,
it is required to perform the corresponding processing at every OFDM subcarrier,
posing even more stringent computational and energy requirements.

3.2 Overview of Digital Baseband Processing

This section introduces baseband processing tasks in MIMO-OFDM systems.
Figure 3.3 shows a simplified diagram of a typical MIMO-OFDM transceiver. Note
that only digital baseband processing blocks are shown in the figure, whereas the
Radio Frequency (RF) front-end and Digital-to-Analog/Analog-to-Digital Convert-
ers (DACs/ADCs) are left out.

The receiver (Rx) chain is essentially the reverse processing of tasks performed
at the transmitter (Tx). However, the receiver is usually more complex than the
transmitter, since it has to reconstruct original data, which may be incomplete and/or
distorted during wireless transmission. Some examples of distortions are noise,
multi-path channel fading, and imperfections in the RF front-end.

Shaded blocks in Fig. 3.3 are selected in this book as use cases for driving the
development of the domain-specific reconfigurable cell array. These blocks are
unique to the receiver chain and are key in determining the performance of the entire
MIMO-OFDM system.

3.2.1 Channel Encoding/Decoding

The channel encoding block at the transmitter has two main tasks. First, binary data
are encoded with error correcting code, such as convolutional codes, which adds
redundant information to help receiver detect and correct a limited number of errors
without retransmission. Second, encoded data are interleaved to make sure that
adjacent bits are not transmitted consecutively in frequency. Interleaving improves
transmission robustness with respect to burst errors. Additionally, scrambling is
often used to turn the bit stream into a pseudo-noise sequence without long runs
of zeros and ones [18].

Opposite to the encoding block, the channel decoder performs data deinterleav-
ing, error correction, and descrambling. Among these, error correction, such as
Low-Density Parity-Check (LDPC) code [8], Viterbi [20], and turbo decoding [3],
are compute-intensive.

3.2 Overview of Digital Baseband Processing 21

Pre-process Channel
Estimation

Sy
m

bo
l
de

te
ct

io
n

Channel

Tx

Rx

D
ig

it
al

 f
ro

nt
 e

ndF
F

T
F

F
TD

ec
od

in
g

IF
F

T
IF

F
T

C
P

C
P

C
P

C
P

Mapping

Mapping

Encoding

Encoding

Source

Source

L
ay

er
 m

ap
pi

ng
&

 p
re

-c
od

in
g

Chapter 5Chapter 6

Fig. 3.3 Block diagram of the MIMO-OFDM transceiver. This book focuses on mapping shaded
blocks onto the dynamically reconfigurable cell array

3.2.2 Symbol Mapping/Demapping

The encoded bit stream is sent for symbol mapping blocks at the transmitter, which
are responsible for two tasks. First, in the symbol mapper, the bit stream is mapped
to a stream of symbols based on the adopted modulation scheme such as Quadrature
amplitude modulation (QAM). Meanwhile, pilots are often added to the symbol
stream. Pilots carry known information to both the transmitter and receiver and
are used to perform, for example, synchronization and channel estimation at the
receiver. Second, the layer mapping block maps the symbol stream onto multiple
antennas.

The demapping block (not shown in Fig. 3.3) demaps the symbol stream from
multiple antennas, removes pilots, and demaps data-carrying symbols back to the
binary bit stream.

3.2.3 Domain Transformation

Before sending data to the analog front-end at the transmitter, symbols from all
narrowband subcarriers are collected and are simultaneously transformed to a time-
domain signal using an Inverse fast Fourier transform (IFFT). Thereafter, CP is
added to each OFDM symbol to protect data transmission from being interfered
by ISI and ICI.

22 3 Digital Baseband Processing

At the receiver, CP is removed from each OFDM symbol. Fast Fourier transform
(FFT) is used to separate received time-domain signal back to their respective
subcarriers.

3.2.4 Digital Front-End Processing

The Digital front-end (DFE) is the first digital processing block in the receiver chain
and is responsible for two main tasks [10]. The first is to detect an incoming signal
by monitoring the amplitude of signal reception. Once a signal is detected, the DFE
wakes up the remaining blocks in the baseband processing chain. Likewise, it puts
other blocks into sleep mode when no signal is detected after a pre-defined time
interval. The second task is to perform symbol synchronization to determine the
exact timing of incoming OFDM symbols.

In addition to the aforementioned tasks, DFE is sometimes used to estimate
and/or compensate some of radio impairments [7, 10], such as Carrier frequency
offset (CFO), Signal-to-noise ratio (SNR), and IQ imbalance. Chapter 5 presents the
mapping of DFE onto the reconfigurable cell array. Target processing tasks include
OFDM time synchronization and CFO estimation.

3.2.5 Channel Estimation

To be able to recover transmitted data from the distorted signal reception, it is crucial
to have the knowledge on how wireless channel “manipulates” (e.g., attenuates and
rotates) the signal transmission. In fact, the performance gain of MIMO-OFDM
systems heavily depends on the accuracy of CSI. Channel estimation is used to
estimate CSI based on either known information such as pilots and preambles or
blind estimation algorithms.

Commonly used channel estimation algorithms are Least square (LS), Min-
imum mean-square error (MMSE) and its derivatives, FFT, and Singular value
decomposition (SVD) estimation. Among these, MMSE estimator provides the
highest performance in terms of estimation accuracy, and LS has the lowest
computational complexity. The work presented in Chap. 6 adopts an MMSE-based
channel estimation algorithm, which provides a balance between performance and
computational complexity.

3.2.6 Channel Matrix Pre-processing

The estimated channel matrix at each subcarrier needs to be further processed before
being sent to the symbol detector. Depending on the adopted symbol detection

3.2 Overview of Digital Baseband Processing 23

algorithm, requirements on channel pre-processing may vary. Commonly used
pre-processing algorithms include matrix inversion for linear detectors and QR
decomposition (QRD) for tree-search based detectors. Both of these algorithms are
used in Chap. 6.

3.2.7 Symbol Detection

In MIMO systems, detection is a joint processing of symbols from all spatial
streams, since the symbols all contain a bit of the information after transmitting
through the wireless channel. Therefore, the larger the MIMO dimension, the higher
the computational complexity is involved in symbol detection. The basic task of a
detection is to locate the transmitted data in a constellation diagram. However, since
received data are contaminated by channel fading and noise, much effort needs to
be spent in the detection process, especially for systems operating at high-order
modulation and large antenna numbers.

From the performance point of view, Maximum-likelihood (ML) detection is
an optimal detector that solves the closest point search problem. However, ML
detector is infeasible to implement due to the exhaustive symbol search that is
known to be NP-complete. Popular practical MIMO signal detection algorithms can
generally be categorized into two classes, linear and tree-search based detectors,
which all have certain performance sacrifice. Linear detection algorithms are pre-
ferred for real-time implementations owing to their low computational complexity.
Additionally, they are characterized by high Data-level parallelism (DLP), since
symbol detection at each spatial stream can be efficiently vectorized and performed
in parallel. However, linear detection suffers from huge performance degradation
compared to the optimal ML detection, especially for high dimensional MIMO
systems. Alternatively, tree-search algorithms are getting much attention because of
their near-ML performance. A tree-search detection formulates a minimum-search
procedure as a N-depth M-ary complex-valued tree-search problem, where N and
M are the number of antennas and constellation size, respectively. Practical sub-
optimal tree-search detectors solve the NP-complete problem of the optimal ML
detection by only traversing through a number of branches. Examples of commonly
used algorithms are sphere decoder, K-Best, and their derivatives [1, 4, 9, 12]. One
fundamental problem with tree-search algorithms is their intrinsic data dependence
between adjacent layers, namely that symbol detection at the ith layer is based on
the results of .iC1/th layer. Therefore, the native vector structure of MIMO systems
is destroyed, resulting in low DLP. In Chap. 6, a vector-level closest point search
algorithm in conjunction with linear detectors is introduced, which is highly vector-
parallelized, like linear detectors, and at the same time, has the performance close
to the level of tree-search detectors.

24 3 Digital Baseband Processing

3.3 Baseband Processing Properties

Based on the analysis of aforementioned digital baseband processing tasks, three
computational properties can be observed: vast complex-valued computing, high
data-level parallelism, and predictable control flow. These properties should be
exploited during the design of domain-specific reconfigurable cell array to ensure
its hardware efficiency.

In the digital baseband processing chain shown in Fig. 3.3, all blocks, except
channel encoding/decoding, operate on IQ pairs, which are represented in complex-
valued data format. Thus, it is essential to design an Instruction set architecture
(ISA) that natively supports complex-valued computing, such as data types, data
paths, instruction set, and memory access patterns.

A large portion of computations are performed using vectors, thanks to the
parallel-structured MIMO streams. Such computations take place in processing
blocks like FFT/IFFT, channel estimation, channel matrix pre-processing, and sym-
bol detection. The abundance of vector processing indicates extensive DLP, which
can be utilized to improve processing throughput and reduce control overhead.
Moreover, in view of the large number of subcarriers in OFDM, multi-subcarrier
processing [21] can be carried out. By performing operations simultaneously on
multiple subcarriers, multi-subcarrier processing further exploits DLP in addition to
the ones obtained on the algorithm-level. This technique is extensively used in work
presented in Chap. 6 and is proven to be useful and effective.

Observed from baseband processing tasks, there is no or little backward depen-
dency between one another [14]. This makes control flow predictable and can
therefore simplify the control path to reduce overhead.

References

1. L.G., Barbero, J.S. Thompson, Fixing the complexity of the sphere decoder for MIMO
detection. IEEE Trans. Wirel. Commun. 7(6), 2131–2142 (2008)

2. G. Bauch, G. Dietl, Multi-user MIMO for achieving IMT-advanced requirements, in
International Conference on Telecommunications (ICT), June 2008, pp. 1–7

3. C. Berrou, A. Glavieux, Near optimum error correcting coding and decoding: turbo-codes.
IEEE Trans. Comput. 44(10), 1261–1271 (1996)

4. A. Burg, et al., VLSI implementation of MIMO detection using the sphere decoding algorithm.
IEEE J. Solid State Circuits 40(7), 1566–1577 (2005)

5. R.W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission.
Bell Syst. Tech. J. 45(10), 1775–1796 (1966)

6. E. Dahlman, S. Parkvall, J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 1st edn.
(Academic, New York, 2011)

7. I. Diaz, Algorithm-architecture co-design for digital front-ends in mobile receivers. Ph.D.
thesis, Department of Electrical and Information Technology, Lund University, 2014

8. R.G. Gallager, Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)
9. Z. Guo, P. Nilsson, Algorithm and implementation of the K-best sphere decoding for MIMO

detection. IEEE J. Sel. Areas Commun. 24(3), 491–503 (2006)

References 25

10. F. Horlin, A. Bourdoux. Digital Compensation for Analog Front-Ends: A New Approach to
Wireless Transceiver Design, 1st edn. (Wiley, 2008)

11. L. Liu, J. Löfgren, P. Nilsson, Area-efficient configurable high-throughput signal detector
supporting multiple MIMO modes. IEEE Trans. Circuits Syst. Regul. Pap. 59(9), 2085–2096
(2012)

12. M. Li, et al., Optimizing near-ML MIMO detector for SDR baseband on parallel programmable
architectures. in Design, Automation and Test in Europe (DATE), Mar 2008, pp. 444–449

13. A.F. Molisch, Wireless Communications, 2nd edn. (Wiley, New York, 2010)
14. A. Nilsson. Design of programmable multi-standard baseband processors. Ph.D. thesis,

Department of Electrical Engineering, Linköping University, 2007
15. A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless Communications, 1st edn.

(Cambridge University Press, Cambridge, 2008)
16. J. Proakis, M. Salehi, Digital Communications, 5th edn. (McGraw-Hill Science, New York,

2007)
17. C. Spiegel, J. Berkmann, Z. Bai, T. Scholand, C. Drewes, MIMO schemes in UTRA LTE,

a Comparison, in IEEE Vehicular Technology Conference (VTC), May 2008, pp. 2228–2232
18. E. Tell, Design of programmable baseband processors. Ph.D. thesis, Department of Electrical

Engineering, Linköping University, 2005
19. United Nations Foundation and The Vodafone Foundation, mHealth for development: the

opportunity of mobile technology for healthcare in the developing world, 2011
20. A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)
21. C. Yang, D. Marković, A flexible DSP architecture for MIMO sphere decoding. IEEE Trans.

Circuits Syst. Regul. Pap. 56(10), 2301–2314 (2009)
22. C. Yuen, B.M. Hochwald, Achieving near-capacity at low SNR on a multiple-antenna multiple-

user channel. IEEE Trans. Commun. 57(1), 69–74 (2009)

Chapter 4
The Reconfigurable Cell Array

Emerging as a prominent technology, reconfigurable architectures have the potential
of combining high hardware flexibility with high performance data processing.
Conventional fine-grained architectures, such as Field-programmable gate arrays
(FPGAs), provide great flexibility by allowing bit-level manipulations in system
designs. However, the fine-grained configurability results in long configuration
time and poor area and power efficiency, and thus restricts the usage of such
architectures in time-critical and area/power-limited applications. To address these
issues, recent work focuses on coarse-grained architectures, aiming to provide a
balance between flexibility and hardware efficiency by adopting word-level data
processing. In this chapter, a coarse-grained dynamically reconfigurable cell array
architecture is introduced. The architecture is constructed from an array of heteroge-
neous functional units communicating via hierarchical network interconnects. The
strength of the architecture lies in simplified data sharing achieved by decoupled
processing and memory cells, substantial communication cost reduction obtained
by a hierarchical network structure, and fast context switching enabled by a unique
run-time reconfiguration mechanism. The presented reconfigurable cell array serves
as a baseline architecture for two case studies presented in Chaps. 5 and 6.

4.1 Introduction

The evolution of user applications and increasingly sophisticated algorithms call
for everincreasing performance of data processing. Meanwhile, to prolong system’s
operating time of battery operated devices, contemporary designs require low
power consumption. A typical example is baseband processing in 4G mobile
communication, which demands a computational performance of up to 100 Giga
operations per second (GOPS) with a power budget of around 500 mW in a single
user terminal [11]. In addition to computational capability and power consumption,

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_4

27

28 4 The Reconfigurable Cell Array

flexibility becomes an important design factor, since system platforms need to cope
with various standards and support multiple tasks simultaneously. Therefore, it is no
longer viable to dedicate a traditional application-specific hardware accelerator to
each desired operation, as the accelerators are rather inflexible and costly in system
development, validation, and maintenance (e.g., bug-fixes and function updates).

To achieve a balance among the aforementioned design requirements, recon-
figurable architectures have gained increasing attention from both industry and
academia. These architectures enable hardware reuse among multiple designs
and are able to dynamically allocate a set of processing, memory, and routing
resources to accomplish current computational demands. Moreover, reconfigurable
architectures allow mapping of future functionality without additional hardware
or manufacturing costs. Therefore, by using platforms containing reconfigurable
architectures it is possible to achieve high hardware flexibility while sufficing the
stringent performance and power demands [35].

Fine-grained and coarse-grained arrays are two main variants of reconfigurable
architectures. While the former has the ability to map any logic functions at bit-
level onto their fine-grained lattice, the latter is constructed from larger building
blocks in a size ranging from Arithmetic logic units (ALUs) to full-scale processors.
Compared to fine-grained architectures, the increased granularity in Coarse-grained
reconfigurable architectures (CGRAs) reduces routing area overhead, improves
configuration time, and achieves higher power efficiency despite less mapping
flexibility.

This chapter introduces a coarse-grained dynamically reconfigurable cell array
architecture, which will be used as a design template in the remaining chapters of
the book. The cell array is a heterogeneous CGRA, containing an array of separated
processing and memory cells, both of which are global resources distributed
throughout the entire network. Array elements communicate with one another
via a combination of local interconnects and a hierarchical routing network. All
array elements are parameterizable at system design-time, and are dynamically
reconfigurable to support run-time application mapping. The following summarizes
distinguished features of the architecture.

• The heterogeneity of the architecture allows integration of various types of
resource cells into the array.

• Separation of processing and memory cells simplifies data sharing among
resource cells.

• A hierarchical Network-on-chip (NoC) structure combines high-bandwidth local
communication with flexible global data routing.

• In-cell resource reconfigurations conducted by distributed processing cells enable
fast run-time context switching.

It should be pointed out that the presented cell array is a general architecture,
which can be, in principle, used to map any algorithms, tasks, and applications.
However, this book mainly focuses on signal processing in wireless communica-
tion, more specifically, digital baseband processing at the receiver. By exploiting
computational properties of the target application domain, various architectural

4.2 Prior Work and State-of-the-Art 29

improvements can be carried out on the baseline architecture to further improve
hardware performance and efficiency. Improvements will be illustrated through case
studies in Chaps. 5 and 6. The present chapter serves to give an overview of the
cell array, including the overall architecture, basic functionality and framework of
each resource cell, network infrastructure, hardware reconfigurability, and design
methodology.

The remainder of this chapter is organized as follows. Section 4.2 discusses
related work with a focus on architectures designed specifically for digital wireless
communication. Section 4.3 introduces the reconfigurable cell array architecture,
presents details of each resource cell, and describes different ways of managing
system configurations. Section 4.4 presents design flow for constructing a reconfig-
urable cell array. Section 4.5 summarizes this chapter.

4.2 Prior Work and State-of-the-Art

A number of reconfigurable architectures have been proposed in open literature for
a variety of application domains [1, 10, 12, 18, 30, 35]. Presented architectures
are characterized with various design parameters, such as granularity, processing
and memory organization, coupling with a host processor, communication fabric,
reconfigurability, and programming methodology. Describing each of the architec-
tures with respect to those parameters is cumbersome and is in fact unnecessary
because of architectural similarities. Instead, previously proposed architectures are
classified into three broad categories based on the coupling between processing
and memory units and their interconnects. In addition, the following discussions
are restricted to architectures designed specifically for digital baseband processing
in wireless communication. These systems are sometimes referred to as baseband
processors [25] or Software-defined radio (SDR) platforms [14]. The three classes
of reconfigurable architectures are illustrated in Fig. 4.1.

M
P

M
P

M
P

M
P

M
P

M
P

M
P

M
P

M
P

Data Memory

PM

Network-on-Chip

M MM
P

M
P

a b c

Fig. 4.1 Three classes of reconfigurable architectures, (a) homogeneous processor array, (b) Func-
tion unit (FU) cluster, (c) heterogeneous resource array

30 4 The Reconfigurable Cell Array

Fig. 4.2 Overview of SODA architecture [23]

The first group of architectures (Fig. 4.1a), such as the PicoArray [4] from
Picochip, the Signal processing On Demand Architecture (SODA) platform [21, 23]
from the University of Michigan, Ann Arbor, Cadence’s ConnX BaseBand Engine
(BBE) [9], and Ninesilica platform [2] are constructed from an array of homo-
geneous processors. Each processor has exclusive access to its own memory. As
an example, Fig. 4.2 shows an instance of SODA architecture. It is made up
of four cores, each containing asymmetric dual pipelines, for scalar and Single
instruction multiple data (SIMD) execution, and scratchpad memories. According
to [1, 6], homogeneous architectures are not cost effective in supporting algorithms
in which the workload cannot be balanced among multiple Processing Elements
(PEs), or algorithms involving hybrid data computations like scalar and various
length vector processing. In these cases, PEs cannot be fully utilized, resulting in
reduced hardware efficiency. Additionally, the approach of integrating data memory
inside PE results in difficulties when sharing data contents between surrounding
elements. This is because PEs at both data source and destination are involved
in data transmissions to load and store data contents from and into their internal
memory. Consequently, these inter-core data transfers may take a significant amount
of processing power, and in some cases may just turn PEs to act as memory
access controllers, reducing hardware usage. Moreover, storage capacities of data
memories inside PEs are fixed after chip fabrication, which may reduce the
flexibility and applicability of platforms.

4.2 Prior Work and State-of-the-Art 31

Fig. 4.3 ADRES instance with 16 Coarse-Grain Array (CGA) Function units (FUs) and three
Very long instruction word (VLIW) FUs [17]

Architectures in Fig. 4.1b are built from atomic Function units (FUs), named
as FU cluster. Examples of this group are the Architecture for Dynamically
Reconfigurable Embedded Systems (ADRES) [8] from IMEC, NXP’s EVP16
processor [36], and the eXtreme Processing Platform (XPP) [5] from PACT
Informationstechnologie. Figure 4.3 illustrates an ADRES instance, which contains
a Coarse-Grain Array (CGA) of FUs and three Very long instruction word (VLIW)
FUs. The VLIW FUs and a limited subset of the CGA FUs are connected to globally
shared data Register Files (RFs), which are used to exchange data between the two
sections. For this group of architectures, memory accesses may suffer from long-
path data transfers, since data memories are accessible only from the border of the
cluster. These long-path transfers may result in high data communication overhead
especially for large-size clusters. Additionally, centralized memory organization
may cause memory contention during concurrent data accesses, which may become
a bottleneck for high dimensional computations (e.g., vector processing).

32 4 The Reconfigurable Cell Array

Fig. 4.4 Overview of Coresonic Single instruction stream multiple tasks (SIMT) DSP [24]

Figure 4.1c shows architectures consisting of heterogeneous units interconnected
through an on-chip network. Examples are the SIMT DSP [24] from Coresonic, the
FlexCore [34], the Transport Triggered Architecture (TTA) [19], the Dynamically
Reconfigurable Resource Array (DRRA) [29], and Adaptive Computing Machine
(ACM) [27] from Quicksilver. The SIMT DSP from Coresonic is shown as an
example in Fig. 4.4, where multiple vector execution units, memory banks, and
application-specific accelerators are connected to a restricted crossbar switch.
Because of the heterogeneity, this type of architectures can be tailored to specific
application domains to achieve efficient computations. However, one potential
problem is the overhead of network interconnects, which increases linearly with
the number of array nodes. This may restrict the usage of architectures in high
dimensional data applications. For instance, the customized network presented in a
16-bit architecture [19] consumes almost the same area as all its arithmetic parts.
Thereby, extensions to vector processing using many more array nodes may be
unaffordable. Additionally, when considering hybrid computing, various-width data
transfers via shared homogeneous network interconnects are not cost effective and
may require frequent data alignment operations. Moreover, architectural scaling
may require redesign of network interconnects, resulting in poor scalability.

In view of the high hardware efficiency owing to heterogeneity, the cell array
is built upon the third architectural category, the heterogeneous resource array. To
tackle the NoC overhead and scalability issue, a hierarchical network topology is
adopted, which contains high-bandwidth local interconnects and flexible global data
routing. Additionally, to ease data sharing between surrounding array elements,
processing and memory cells are separated as two distinct function units which
are shared as global resources and distributed throughout the entire network. The
following sections present the cell array architecture in detail.

4.3 Architecture Overview 33

4.3 Architecture Overview

The reconfigurable cell array is constructed from heterogeneous tiles, containing
any size, type, and combination of resource cells. As an example, a 4-tile cell array
is shown in Fig. 4.5. Besides the cell array, the entire system platform contains a
master processor, a Multi-port memory controller (MPMC), a Stream data controller
(SDC), a Stream configuration controller (SCC), and a number of peripherals. The
master processor schedules tasks to both the cell array and peripherals at run-time.
The MPMC interfaces with external memories, while the SDC and SCC supply the
cell array with data and configurations, respectively. Since the focus of this book is
on the cell array, other system blocks will not be discussed.

Resource cell (RC) is a common name for all types of functional units inside the
cell array, including processing, memory, and network routing cells. Within the cell
array, processing and memory cells are separated as two distinct functional units.
This arrangement has following advantages.

• Easy data sharing: The separation of memory from processing cells signif-
icantly simplifies data sharing, as memory cells can be shared by multiple
processors without physically transferring data. Memory coherence is preserved
by allowing direct data transfers between memory cells without involving
processors.

• Flexible memory usage: Memory cells can be individually configured to provide
different access patterns, such as First in first out (FIFO), stack, and random
access.

• Advanced data access control: Processing cells can be used as Direct memory
access (DMA) controller to accomplish irregular and/or advanced memory
access, e.g., bit-reversal in FFT/IFFT.

P M

M P

R

P

M

P

R

P M

M

R

P M

M

R

R

P

Tile

M

External memory

Data

Control
SCC

SDC

Processor
(Master)

I$ I$

#1 #2 #N

Peripherals

Reconfigurable cell array

Fig. 4.5 Overview of system platform containing a coarse-grained dynamically reconfigurable
cell array. The separated processing (P) and memory cells (M) communicate over a hierarchical
network using both local interconnects and global routing with network routing cells (R)

34 4 The Reconfigurable Cell Array

• Dynamic memory allocation: When larger memory capacity is required than
a single cell can provide, multiple memory cells can be concatenated at system
run-time to provide larger data storage.

• Simplified programming model: The separated data processing and memory
access management naturally supports dataflow programming languages like
CAL [16] and computation models like Kahn process networks [20]. Addition-
ally, changes of execution clock cycles in either processing or memory cells have
no influence on the control flow of the entire cell array architecture, since inter-
cell communication is self-synchronized through NoC data transfers.

• Natural support for future technology: The advantage of processing and mem-
ory separation may be more pronounced when using 3D stacking technology
[26]. With this technology support, processing and memory cells can be placed at
different chip layers and interconnected by using Through-Silicon Vias (TSVs).
This approach may further increase memory access bandwidth, reduce delays of
network interconnects, and ease chip layout and routing process.

To meet the computational and flexibility requirements while keeping a low
control overhead, a variety of functional units are integrated. Communication
between RCs is managed by combing local interconnections for high data rate and a
global routing network for flexibility. Compared to other interconnect topologies,
the hierarchical network provides tighter coupling to heterogeneous RCs. For
instance, connections within each tile can be localized to suffice both bandwidth
and efficiency requirements, while hierarchical links provide flexible routing paths
for inter-tile communication. All RCs in the array are configured dynamically on a
per-clock-cycle basis, in order to efficiently support run-time application mapping.

4.3.1 Processing Cell

Processing cells contain computational units to implement algorithms mapped on
the cell array. Additionally, they can be used to control operations and manage
configurations of other RCs. The heterogeneity of the architecture allows integration
of any type of processors in the array to suffice various computational demands. For
example, processing cells may be built as general-purpose processors or specialized
functional units. Each processing cell is composed of two parts, processing core
and shell, illustrated in Fig. 4.6a. Encapsulated by the processing shell, the core
interfaces with other RCs via network adapters in the shell. Thanks to this modular
structure, processing cell customization is simplified since only the core needs to be
replaced to implement different computational operations. In addition, integration
of customized functional units, either user-defined Register transfer level (RTL)
or licensed Intellectual property (IP) cores, is supported in the cell array without
changing the network interface. The network adapters in the processing shell are
mapped as registers that are directly addressable by the core. The number of adapters

4.3 Architecture Overview 35

IF/ID EXE/WB

Operation
controller

G

Local IO ports

PC

ID/EXE

... A
L
U

Generic signal processing cell

IO bank
Network adapter

Core

Shell

Register

Branch

L0 L1 ... Lx

a

b Global IO port

Fig. 4.6 (a) Block diagram of a processing cell, consisting of a core and a shell. (b) Architecture
of a Generic signal processing cell (GPC)

in a processing cell is parameterizable at system design-time. For illustration, the
following presents a generic signal processing cell, named as GPC for short, which
has been used in a flexible Fast Fourier transform (FFT) core presented in [38].

A GPC is a customized Reduced instruction set computing (RISC) processor
with enhanced functionality for digital signal processing and support for fast
network port access. An overview of processor pipeline stages and internal building
blocks is shown in Fig. 4.6b. Communication I/O ports are mapped as registers,
directly accessible in the same way as General purpose registers (GPRs). An
instruction that accesses I/O port registers is automatically stalled until data become
available. Hence, additional operations to move data between GPRs and I/O ports
are avoided. The GPC performs data memory operations by connecting with one
or more memory cells via communication I/O ports. Using direct I/O addressing,
load-store and computational operations may be combined into one instruction.
Consequently, clock cycles associated with memory operations are eliminated in
contrast to conventional load-store architectures. Moreover, the implicit load-store
operations lead to a compact code size, and make the memory operations possible
in all instructions. Enhanced functionalities for digital signal processing include
multiply-accumulate, radix-2 butterfly, and data swap. To reduce control overhead
in computationally intensive inner loops, the GPC includes a zero-delay Inner loop
controller (ILC). The ILC comprises a special set of registers that are used to
store program loop count and return address. During program execution, the loop
operation is indicated by an end-of-loop flag annotated in the last loop instruction.
The operation mode and status of each processing cell can be controlled and
traced conditionally during run-time. For example, it is possible to halt instruction
execution, step through a program segment, and partially load a program. Because

36 4 The Reconfigurable Cell Array

Fig. 4.7 Architectural block
diagram of a memory cell

Operation
controller

D
SC

 M

D
SC

 1

...D
SC

 0

D
es

cr
ip

to
r

ta
bl

e

#M#1#0

#0
bank

#M
bank

Memory array

...

G

Local IO ports Global IO port

L0 L1 ... Lx

of the simple pipeline structure and enhanced data processing operations, the GPC
may be used for regular data processing and control-flow handling, such as linear
filter, FFT/IFFT, and DMA control.

4.3.2 Memory Cell

The distributed memory cells provide both processing cells and data communication
with shared storage to allow buffering, reordering, and synchronization of data.
Each memory cell contains a memory array, a DeSCriptor (DSC) table, and an
operation controller, as illustrated in Fig. 4.7. The memory array can be dynamically
configured to emulate one or more memory banks, while the DSC table is an array
of configuration registers containing user-defined memory operations. All stored
DSCs are dynamically configurable, and may be traced back for debugging. Each
DSC is 64-bit long, which defines the size and operation mode of a memory bank,
records memory operation status, and specifies I/O ports for stream transfers. The
configuration options of a DSC are listed in Table 4.1. The 64-bit DSC is composed
of two 32-bit parts that are individually configurable. Specifying memory operations
using DSCs relieves processing cells from memory access managements, resulting
in reduced control overhead and improved processing efficiency. The operation
controller manages and schedules DSC execution, monitors data transactions, and
controls the corresponding memory operations.

Using memory DSCs, each memory bank can be configured to emulate either
FIFO or Random access memory (RAM) behavior. In the FIFO mode, the allocated
memory bank operates as a circular buffer. Address pointers are managed by the
operation controller and are automatically increased each time the DSC is executed.

4.3 Architecture Overview 37

Table 4.1 Example of a memory DeSCriptor (DSC)

Field Bits Description

dtype 31-30 Operation mode select

rd_ok/active 29 FIFO reading status/RAM active transfer flag

Pa
rt

I

wr_ok/rnw 28 FIFO writing status/RAM read–write select

src/paddr 27-24 FIFO data source port/RAM address port

dst/pdata 23-20 FIFO data destination port/RAM data port

id 19-10 Global packet destination ID

Base 9-0 Start address

High 31-22 End address

Pa
rt

II rptr/ptr 21-12 Current FIFO reading pointer/RAM data pointer

wptr/tsize 11-2 Current FIFO writing pointer/RAM data transfer size

io_bank_rst 1 I/O port register reset

Reserved 0 Reserved

Multiple memory cells operating in FIFO mode may be cascaded to form one large
data array. This feature provides flexible memory usage, and reduces unit capacity
requirement as well as hardware footprint in a single memory cell. Additionally,
since large storage may lead to an irregular physical memory layout, slicing it into
smaller modules eases hardware placement and routing. When operating memory
cell is in the RAM mode, a data service request (read or write) is required to specify
the start address and data transfer size. The operation controller is responsible for
keeping track of data transfers, managing memory address pointers, and updating
DSCs. Conditions to execute a memory DSC are resolved by inspecting both
incoming and outgoing packet transfers and current memory status. For example,
writing data to a full FIFO will not be executed until at least one data is read.

The length of the DSC table, the size of the memory array, and the number of
local I/O ports are configurable at system design-time, while memory descriptors
are dynamically reconfigurable.

4.3.3 Network-on-Chip

To enable communication between any pair of resource cells, most existing NoCs
are based on flexible interconnect topologies, such as 2D-mesh, spidergon, and their
derivatives [13, 28, 33, 37]. Additionally, various routing algorithms (e.g., static and
dynamic) and switching techniques (e.g., wormhole and Time Division Multiplex-
ing (TDM)) are employed to reduce traffic congestions, provide service guarantees,
and shorten communication latency [7]. Although most NoC implementations can
suffice performance requirements with respect to latency and bandwidth, they often
appear to be area and power consuming. For instance, NoCs used in [15, 19] take
almost the same area as all their logic parts and the one in [15] consumes about 25 %
of total power.

38 4 The Reconfigurable Cell Array

Fig. 4.8 An overview of the
hierarchical NoC arranged in
a 4 � 4 array. Neighboring
RCs are directly
communicated via local
interconnects, while global
transfers, shaded in grey, are
achieved through hierarchical
routing with tree-structured
network router (R)

Local
interconnect

Global
network

RCRC

RCRC

RCRC

RCRC

RCRC

RCRC

RCRC

RCRC

R

RR

RR

This book aims at developing an area and power efficient NoC by fully exploiting
the property of communication locality in reconfigurable architectures [37]: data
traffic is mostly among nearest neighbors (referred to as local communication),
while long distance (global) transfers that require routing supervisions are of a
small portion. Therefore, the primary concern of local network design should be
on high bandwidth and low cost, while simple routing and switching techniques are
sufficient for global transfers to provide adequate flexibility support.

In light of the aforementioned property, a hierarchical network architecture is
adopted that splits local and global communication into two separate networks,
which are handled independently using different network topology and switching
techniques. Figure 4.8 illustrates an overview of the hierarchical NoC deployed
in a 4 � 4 array. Communication between neighboring RCs (local) within each
tile is performed using bi-directional dedicated links, whereas inter-tile global
transfers are realized through a hierarchy of network routers structured in a tree
topology using a static routing strategy, see shaded part in Fig. 4.8. Thanks to the
network separation and hierarchical arrangement, the presented NoC can be easily
scaled by extending tree hierarchies of the global network and neighboring local
interconnects without affecting others. Additionally, in conjunction with the tile-
based architecture, the adopted NoC intrinsically supports Globally asynchronous
locally synchronous (GALS) network construction. For example, synchronous
transfers are performed within each tile and the global network (together with
additional asynchronous FIFOs) is used to bridge between different clock domains.

To connect RCs to the local and global network, adapters are used as a bridge
between high level communication interfaces employed by RCs and network
specific interfaces implemented in the NoC. In this book, AMBA 4 AXI4-stream
protocol [3] is adopted for implementing NoC adapters.

4.3 Architecture Overview 39

cba
R0,0 R1,0

R2,0 R3,0

R4,0 R5,0

R6,0 R7,0

R0,1 R1,1

R0,2

0 − 3 4 − 7

8 − 11 12 − 15

0 − 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Fig. 4.9 A simplified view of the global network in a 4 � 4 array. (a) Each RC is labeled with a
unique network ID. (b) A range of consecutive IDs (base-high) are assigned to each static routing
table. (c) Hierarchical router naming as Rindex;level

Global Network

Global network enables non-neighboring nodes to communicate within the array
and provides an interface to external blocks, e.g., memory and master processor.
Figure 4.9a depicts a simplified view of the global network in a 4 � 4 cell array,
wherein each RC is labeled with a unique network IDentifier (ID) used as a routing
address for global data transfers. Global communication is based on packet switch-
ing and carried out using a hierarchy of tree-structured network routers. Routers
forward data packets based on a static routing lookup table that is generated at
design-time in accordance to physical network connections. For example, the router
in the upper-left tile shown in Fig. 4.9b forwards packets to RCs with IDs ranging
from 0 to 3. In the tree-structured global network, each router is denoted as Ri;l,
where i is the router index number and l is the router hierarchical level, illustrated
in Fig. 4.9c. A link from a router Ri;l to Ri;lC1 is referred to as an uplink. Any packet
received by a router is forwarded to the uplink router if the packet destination ID
falls outside the range of the routing table. Since routing network is static, there is
only one valid path from each source to each destination. This simplifies network
traffic scheduling, reduces hardware complexity, and enables each router instance
to be optimized individually during hardware synthesis. However, a drawback is
network congestion compared to adaptive routing algorithms. Systematic analysis
on network performance at design-time is therefore crucial to avoid traffic overload.
However, considering the high communication locality, this congestion issue is
of less concern and does not hinder the performance of the presented NoC. For
network traffic modeling and performance evaluation, a SystemC-based exploration
environment SCENIC can be used. Details of SCENIC can be found in [22, 31, 32].

40 4 The Reconfigurable Cell Array

Fig. 4.10 (a) Block diagram
of the network router. (b)
Internal building blocks of a
decision unit

GIO(0)

GIO(1)

GIO(2)

GIO(3)

GIO(0)

GIO(1)

GIO(2)

GIO(3)

QueueRouting

G
IO

_R
X

G
IO

_T
X

Decision unit

a

Transaction log table0-3 : GIO(0)
4-7 : GIO(1)
8-11 : GIO(2)
12-15: GIO(3)

...

Routing table

Arbiter

b

O(0) O(1) O(2) O(3) O(4)
In(0) O
In(1) O O O
In(2) X
In(3) O
In(def) X

GIO(def)GIO(def)

PipelinePipeline

Network Routing Cell

Network router forwards data packets over the global routing network. Each router
consists of three main building blocks: a decision unit, a routing structure, and an
output packet queue, see Fig. 4.10a. In each clock cycle, the decision unit monitors
incoming and outgoing packets, looks up the routing path, handles data transfers,
and configures the routing structure to forward data packets accordingly. The routing
structure is made up of a full-connection switch, capable of handling multiple
data requests in each clock cycle. The output packet queue, operating in a FIFO
basis, buffers data packets travelling through the global network. The depth of the
output queue and FIFO type (either synchronous or asynchronous) are design-time
configurable, used to suffice different NoC requirements.

Figure 4.10b shows an overview of the decision unit inside each network router.
It contains a static routing lookup table, a transaction log table, and a packet arbiter.
Every arriving data packet is checked and recorded in a transaction log table, marked
with ‘X’ in Fig. 4.10b. The logged transactions are prioritized and handled based on
different arbitration policies and conditions of output queues. Two simple arbitration
policies are currently supported and are design-time configurable: the fixed and
round-robin scheme. With fixed arbitration, the arbiter always starts from the first
log entry, and traverses column-wise through the entire table until a candidate

4.3 Architecture Overview 41

transaction is found, marked with ‘O’ in Fig. 4.10b. A transaction is considered to
be a candidate when it is recorded in the log table and the corresponding output
packet queue is not full. With this approach, all transactions are assigned with
priorities according to their position in the log table. In contrast, the round-robin
algorithm provides a starvation-free arbitration, which assigns time slices to each
entry in equal portions and handles all transactions in order without priority. After
routing arbitration, selected candidate transactions (marked with ‘O’s in Fig. 4.10b)
are forwarded to the corresponding output queue in the following clock cycle.
Considering delays caused by input I/O register, pipelined routing operations, and
output FIFO, packet forwarding through each network router induces 3 Clock
Cycles (CCs) transport latency (without Tx I/O register).

Local Network

Local network consists of dedicated interconnects between neighboring RCs
(Fig. 4.8). Thus, local transfers require no routing supervision and provide
guaranteed throughput and transport latency. Compared to nearest-neighbor
transfers in conventional mesh-based networks, bandwidth overhead due to
redundant traffic headers is completely avoided in the adopted local communication.
For example, considering the illustrated 4 � 4 array (Fig. 4.8) and a simple XY
routing in mesh networks, it is required to have at least 4 bits in the traffic header
to indicate destination coordinates of both X and Y directions. This overhead
is more pronounced when sophisticated routing algorithms are used, such as
source and adaptive routing. Therefore, avoiding such bandwidth overhead in
every neighboring data transfer contributes to total NoC efficiency.

Communication Flow Control

To assure safe delivery and self-synchronization of each data transfer, flow con-
trol is used in both local and global networks, implemented using a FIFO-like
handshake protocol, illustrated in Fig. 4.11. In addition to conventional valid-
ACKnowledgement (ACK) handshaking, FIFO-like operations are adopted to
reduce communication latency. The basic idea is to use I/O registers as eager trans-
port buffers, which are writable as long as the buffers are not full. A communication
link is suspended only if all buffers are fully used, transmitter has more data to send,
and receiver has not yet responded to previous transfers. As indicated in Fig. 4.11,
the ACK signal in each I/O register has two acknowledgement mechanisms. In the
case of empty buffers, data transfers are automatically acknowledged by the I/O
registers. Otherwise, the ACK signal is driven by the succeeding data receiver. This
way, the ACK signal acts as an empty flag of the transport buffers and reflects the
status of the communication link. Data transmitter can proceed with other operations
immediately the ACK from the succeeding stage is received, without waiting for

42 4 The Reconfigurable Cell Array

Data

Enable

Enable

Interrupt

ACK

ACK
ACK

I/O
RegisterData

generator
Data

consumer

ACK

I/O
Register

Tx Rx

Data Data

Valid

Optional

Fig. 4.11 Data communication flow control with FIFO-like handshake protocol. I/O registers at
the transmitters are design-time configurable

Table 4.2 Summary of the hierarchical NoC

Topology Switching Latency Throughput

Local Direct link Circuit (GS) 1 CC 1 CC

Global Tree Packet (BE) 4 CCs/hierarchy 1 CC/hop

the final destination to respond. Compared to conventional end-to-end handshake
protocols, in which the ACK signal is sent all the way from the final destination and
requires multiple clock cycles to propagate through all I/O registers, the adopted
scheme divides long communication path into smaller segments (hops), each having
1 CC transport latency under the case of eager receiver. As for communication
between neighboring RCs, the FIFO-like handshaking results in at least two times
latency reduction in comparison to the end-to-end scheme.

To sum up, Table 4.2 lists the characteristics of the presented NoC. Benefiting
from the dedicated interconnects, local network provides Guaranteed Services
(GS) and has a transport latency and throughput of 1 CC. The global network
offers Best-Effort (BE) packet switching and induces additional 3 CCs transport
latency (without Tx I/O register) every time a network router is used. However,
the throughput of global transfers via routers is still 1 CC thanks to the pipelined
architecture.

4.3.4 Resource Configuration

Dynamic reconfigurations for all RCs are managed in two ways, either by a master
processor via hierarchical network or by any of the processing cells distributed in
the cell array. When configuring RCs through the master processor, see Fig. 4.5,
an SCC is used to assist network packet transfers. The SCC contains a stream
table programmed by the master processor, and provides information about where
and how network packets should be transmitted. For each configuration, the
SCC loads data from external memory via the MPMC, packs data as network

4.4 Design Flow 43

packets, and transfers the packets to target RC via the hierarchical routing network.
The advantages of configuring RCs from a centralized master processor are twofold.
First, as configurations are loaded from external memories, requirement for the
size of configuration files is reduced. Second, the master processor may utilize
hardware resources efficiently on a system level, based on the needs of application
mapping. After receiving a task, the master processor assesses the computational
workload, checks the status of RCs, and assigns the task to achieve maximum
efficiency. For instance, the master may partition and assign the task to different
RCs or time-multiplex a single RC. A drawback of the centralized configuration is
the communication latency through the global network, as mentioned in Sect. 4.3.3.
As a result, the centralized RC configuration scheme is mainly used for transferring
large configuration files to the cell array during, for example, context switching
between different application mappings.

RC configurations and supervisions can also be conducted inside the cell array
by using distributed processing cells. This is achieved by storing RC configurations
as special instructions locally inside processing cells, which transmit configuration
packets to the corresponding RCs during program execution. With this approach,
run-time configurations are smoothly integrated into the normal processing flow.
For example, configurations are issued immediately the current task is completed
without interrupting and waiting for responses from an external host. Additionally,
configuration packets are transmitted mainly using local interconnects, avoiding
long configuration latency due to global communication. Because RC configurations
are stored as part of the local programs of processing cells, configuration file
size needs to be kept down when using this approach. Therefore, this in-cell
configuration scheme is suitable for small function configurations in the cell array,
such as adapting algorithms for different standards or operating scenarios.

4.4 Design Flow

Constructing a reconfigurable cell array generally involves three design phases
(Fig. 4.12), specification, design, and implementation, and three design method-
ologies, algorithm–architecture, hardware–software, and processing–memory co-
design. In the specification phase, target wireless communication standards and
baseband processing tasks need to be defined first. This is to limit the scope
of the development, in order to enable design-space exploration for creating an
efficient architecture. To this end, the target standards and tasks should have some
common computational characteristics to enable hardware sharing and acceleration,
otherwise diverse operation requirements would lead to a generic architecture
with low hardware efficiency. After defining the standards and tasks to cover as
well as performance specifications, algorithm selection and operation analysis are
carried out to provide a good foundation for the following hardware development.
Examples of selection criteria are computational parallelism, precision requirement,
and regularity of operations. To make use of essential architectural characteristics,

44 4 The Reconfigurable Cell Array

Fig. 4.12 Data flow of constructing a reconfigurable cell array

algorithms often need to be tailored for the target hardware architecture. This is
referred to as algorithm–architecture co-design, which is usually an iterative process
for obtaining an optimum result. It should be pointed out that algorithm selection
is especially important when handling multiple standards and tasks, since it has a
great influence on efficient usage of underlying hardware, such as resource sharing
over time.

The design phase involves two steps, design specification and task scheduling.
After obtaining a rough estimation on computational requirements and memory
usage from the operation analysis, design specifications for constructing the cell
array are elaborated. These include design of resource tiles, RC selections, instruc-
tion set and memory descriptors, and NoC interconnects (see the sub-figure shown
on the right side of Fig. 4.12). First, the number of resource tiles is determined
based on the computational requirements and design constraints such as area and
timing budget. Besides, a rough task scheduling is performed on the tile-level to
partition tasks to resource tiles. Second, RC selection is carried out for each tile
based on the rough task partition. The number of RCs assigned to each tile is
determined again by the computational requirements and design constraints. Third,
instruction set and memory descriptors are specified. The number of instructions
and memory descriptors is a trade-off between the ease of software implementation
and hardware complexity [25]. This is referred to as hardware–software co-design.
Last, network interconnects may be refined to further improve hardware efficiency.
Examples include bandwidth enhancements for heavy-traffic links and pruning of
unused network connections. With the elaborated design specifications, detailed task
partition and scheduling can be carried out, requiring detailed operation analysis to

References 45

better assign tasks to RCs, namely processing and memory cells. This is referred
to as processing–memory co-design. For example, memory address manipulations,
such as stride access and matrix transpose, are better performed in memory cells
by using descriptor specifications, since no physical memory access (read & write)
is needed. Moreover, analysis of network traffic is required to avoid problems like
network congestion.

Once the design specifications and the task scheduling are completed, the cell
array is implemented and target tasks are mapped. Mapping results are evaluated
and fed back to the corresponding design phase for further improvements in case
the design requirements are not met.

4.5 Summary

This chapter introduces the coarse-grained dynamically reconfigurable cell array
architecture, aiming to provide a balance among performance, hardware efficiency,
and flexibility. The presented architecture has three key features. First, processing
and memory cells are separated as two distinct function units for achieving easy
data sharing and flexible memory usage. Second, a hierarchical NoC structure
is adopted for providing high-bandwidth low-latency local communication and
flexible global data routing. Third, in-cell configuration scheme employed in the cell
array enables fast run-time context switching. To achieve a balanced design, three
design methodologies, algorithm–architecture, hardware–software, and processing–
memory co-design, are adopted during the construction of a reconfigurable cell
array. Using the presented cell array as a baseline architecture, the following
chapters present further developments and architectural improvements of the cell
array, especially the processing and memory cells, through two case studies.
Architectural developments are carried out by exploiting computational properties
of the target application domain, namely digital baseband processing in wireless
communication.

References

1. Z. Abdin, B. Svensson, Evolution in architectures and programming methodologies of coarse-
grained reconfigurable computing. Microprocessors Microsyst. Embed. Hardw. Des. 33,
161–178 (2009)

2. R. Airoldi, F. Garzia, O. Anjum, J. Nurmi, Homogeneous MPSoC as baseband signal
processing engine for OFDM systems. in International Symposium on System on Chip (SoC),
Sept 2010, pp. 26–30

3. AMBA 4 AXI4-Stream Protocol Specification v1.0, Mar 2010
4. R. Baines, D. Pulley, A total cost approach to evaluating different reconfigurable architectures

for baseband processing in wireless receivers. IEEE Commun. Mag. 41(1), 105–113 (2003)

46 4 The Reconfigurable Cell Array

5. V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, M. Weinhardt, PACT XPP-a self-
reconfigurable data processing architecture. J. Supercomput. 26, 167–184 (2003)

6. C. Bernard, F. Clermidy, A low-power VLIW processor for 3GPP-LTE complex numbers
processing, in Design, Automation Test in Europe Conference Exhibition (DATE), Mar 2011,
pp. 1–6

7. T. Bjerregaard, S. Mahadevan, A survey of research and practices of network-on-chip. ACM
Comput. Surv. 38(1), 1 (2006)

8. B. Bougard, B. De Sutter, D. Verkest, L. Van der Perre, R. Lauwereins, A coarse-grained array
accelerator for software-defined radio baseband processing. IEEE Micro 28(4), 41–50 (2008)

9. J. Byrne, Tensilica DSP Targets LTE Advanced, Mar 2011. http://www.tensilica.com/uploads/
pdf/MPR_BBE64.pdf

10. A. Chattopadhyay, Ingredients of adaptability: a survey of reconfigurable processors, in VLSI
Design, Jan 2013

11. F. Clermidy, et al., A 477mW NoC-Based Digital Baseband for MIMO 4G SDR. in IEEE
International Solid-State Circuits Conference (ISSCC), Feb 2010, pp. 278–279

12. K. Compton, S. Hauck, Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv. 34, 171–210 (2002)

13. M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, A. Scandurra, Spidergon: a novel on-chip
communication network, in International Symposium on System-on-Chip, 2004, p. 15

14. M. Dillinger, K. Madani, N. Alonistioti, Software Defined Radio: Architectures, Systems and
Functions, 1st edn. (Wiley, New York, 2003)

15. A.Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, D. Atienza, Multi-core architecture design
for ultra-low-power wearable health monitoring systems, in Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, pp. 988–993

16. J. Eker, J.W. Janneck, CAL language report: specification of the CAL actor language. Technical
Report, University of California at Berkeley, Nov 2003

17. R. Fasthuber, et al., Exploration of Soft-Output MIMO detector implementations on Massive
parallel processors. J. Signal Process. Syst. 64, 75–92 (2011)

18. R. Hartenstein, A decade of reconfigurable computing: a visionary retrospective, in Design,
Automation Test in Europe Conference Exhibition (DATE), 2001, pp. 642–649

19. J. Janhunen, T. Pitkanen, O. Silven, M. Juntti, Fixed- and floating-point processor comparison
for MIMO-OFDM detector. IEEE J. Sel. Top. Sign. Proces. 5(8), 1588–1598 (2011)

20. G. Kahn, The semantics of a simple language for parallel programming, in Information
Processing (North-Holland Publishing Company, Amsterdam, 1974), pp. 471–475

21. H. Lee, C. Chakrabarti, T. Mudge, A low-power DSP for wireless communications. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 18(9), 1310–1322 (2010)

22. T. Lenart, Design of reconfigurable hardware architectures for real-time applications. Ph.D.
thesis, Department of Electrical and Information Technology, Lund University, May 2008

23. Y. Lin, et al., SODA: a low-power architecture for software radio, in International Symposium
on Computer Architecture (ISCA), 2006, pp. 89–101

24. A. Nilsson, E. Tell, D. Liu, An 11 mm2, 70 mW fully programmable baseband processor for
mobile WiMAX and DVB-T/H in 0.12�m CMOS. IEEE J. Solid State Circuits 44(1), 90–97
(2009)

25. A. Nilsson, Design of programmable multi-standard baseband processors. Ph.D. thesis,
Department of Electrical Engineering, Linköping University, 2007

26. R.S. Patti, Three-dimensional integrated circuits and the future of system-on-chip designs.
Proc. IEEE 94(6), 1214–1224 (2006)

27. B. Plunkett, J. Watson, Adapt2400 ACM architecture overview. Quicksilver, 2004.
A Technology White Paper

28. A. Rahimi, I. Loi, M. R. Kakoee, L. Benini, A fully-synthesizable single-cycle interconnection
network for shared-L1 processor clusters, in Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pp. 1–6

29. M.A. Shami, A. Hemani, Morphable DPU: smart and efficient data path for signal processing
applications, in IEEE Workshop on Signal Processing Systems (SiPS), Oct 2009, pp. 167–172

http://www.tensilica.com/uploads/pdf/MPR_BBE64.pdf
http://www.tensilica.com/uploads/pdf/MPR_BBE64.pdf

References 47

30. M.A. Shami, A. Hemani, Classification of massively parallel computer architectures, in IEEE
26th International Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), May 2012, pp. 344–351

31. H. Svensson, T. Lenart, V. Öwall, Modelling and exploration of a reconfigurable array using
systemC TLM, in IEEE International Symposium on Parallel and Distributed Processing, Apr
2008, pp. 1–8

32. H. Svensson, Reconfigurable architectures for embedded systems. Ph.D. thesis, Department
of Electrical and Information Technology, Lund University, Oct 2008

33. M.B. Taylor, et al., A 16-issue multiple-program-counter microprocessor with point-to-point
scalar operand network, in IEEE International Solid-State Circuits Conference, vol.1, Feb
2003, pp. 170–171

34. M. Thuresson, et al., FlexCore: utilizing exposed datapath control for efficient computing.
J. Signal Process. Syst. 57(1), 5–19 (2009)

35. T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, P.Y.K. Cheung,
Reconfigurable computing: architectures and design methods. Comput. Digit. Tech. 152,
193–207 (2005)

36. K. van Berkel, F. Heinle, P.P.E. Meuwissen, K. Moerman, M. Weiss, Vector processing as an
enabler for software-defined radio in handheld devices. EURASIP J. Appl. Signal Process.
2005, 2613–2625 (2005)

37. Z. Yu, B.M. Baas, A low-area multi-link interconnect architecture for GALS chip multipro-
cessors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(5), 750–762 (2010)

38. C. Zhang, T. Lenart, H. Svensson, V. Öwall, Design of coarse-grained dynamically recon-
figurable architecture for DSP applications, in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Dec 2009, pp. 338–343

Chapter 5
Multi-Standard Digital Front-End Processing

To demonstrate flexibility and performance of the reconfigurable cell array archi-
tecture introduced in Chap. 4, this chapter presents a case study of the platform
configured for concurrent processing of multiple radio standards. Flexibility of
the architecture is demonstrated by performing time synchronization and Carrier
frequency offset (CFO) estimation for multiple Orthogonal frequency division
multiplexing (OFDM)-based standards. As a proof-of-concept, this study focuses
on three contemporarily widely used radio standards, 3GPP Long term evolution
(LTE), IEEE 802.11n, and Digital video broadcasting for handheld (DVB-H). The
employed reconfigurable cell array, containing 2 � 2 resource cells, supports all
three standards and is capable of processing two concurrent data streams. The cell
array is implemented in a 65 nm CMOS technology, resulting in an area of 0.48 mm2

and a maximum clock frequency of 534 MHz. Dynamic configuration of the cell
array enables run-time switching between different standards and allows adoption
of different algorithms on the same platform. Taking advantage of the in-cell
configuration scheme (described in Chap. 4), context switching between different
operation scenarios requires at most 11 clock cycles. The implemented 2 � 2 cell
array is fabricated as a part of a Digital front-end (DFE) Receiver and is measured as
a standalone module via an on-chip serial debugging interface. Running at 10 MHz
clock frequency and at 1.2 V supply voltage, the array reports a maximum power
consumption of 2.19 mW during the processing of IEEE 802.11n data receptions
and 2 mW during hardware configurations.

5.1 Introduction

Today, there is an increasing number of radio standards, each having different
focuses on mobility and data rate transmission. For example, 3GPP LTE [3] aims
to offer high mobility with moderate data rate; IEEE 802.11n [18] provides a high

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_5

49

50 5 Multi-Standard DFE Processing

data rate alternative for network services under stationary conditions; and DVB-
H [12] specifically addresses multimedia broadcast services for portable devices.
The evolution of radio standards continuously drives the development of under-
lying computational platforms with increased complexity demands. Meanwhile,
requirements on time-to-market and Non-recurring engineering (NRE) cost force
today’s hardware platforms to be able to adopt succeeding amendments of standards.
Doing modifications on dedicated hardware accelerators for each standard update
is not affordable regarding both time and implementation cost. Furthermore, to
obtain a continuous connection or constant data rate transmission, contemporary
user terminals are expected to support more than one standard and to be able to
switch between different networks at any time. Therefore, flexibility has become
an essential design parameter to help computational platforms cope with various
standards and support multiple tasks concurrently.

It is well identified that simultaneous support of multi-standard data receptions
using flexible hardware platforms is a great challenge. Although some early attempts
have been presented in both academia and industry [1, 7], experiments so far have
been limited to the support of a single data stream. Switching between different
standards is only possible through off-line configurations and is conducted by
an external host controller. Despite not being reported, configuration time during
context switching is envisioned to be on a scale of hundreds of clock cycles, since
the host controller has to be interrupted to conduct the loading of appropriate
programs/configurations before getting ready for new data receptions. Evidently,
this off-line switching approach is undesirable from users’ experience point of view,
as terminals are temporarily “disconnected” every time when they enter a new radio
environment. To address this issue, the European Union (EU) project “Scalable
Multi-tasking Baseband for Mobile Communications” [10], or Multibase for short,
is initiated. It aims to support concurrent processing of multiple data streams in
a multi-standard environment and to provide seamless handover between different
radio networks. The support of concurrent data streams improves user experiences,
e.g., having simultaneous voice communication and video streaming. It also ensures
continuous connectivity of user terminals, since an existing network connection can
be maintained while a new network service is being established.

This study is carried out as a part of the EU Multibase project. The primary focus
is on data computations in a DFE-Rx. As a proof-of-concept, three OFDM-based
radio standards are selected: 3GPP LTE, IEEE 802.11n, and DVB-H. Besides, it is
required to process two concurrent data streams from any of the three standards.
Among processing tasks in a DFE-Rx, this study maps time synchronization and
CFO estimation onto the reconfigurable cell array. Given that these tasks are
performed during the (re)establishment of a data link between transmitter (Tx) and
receiver (Rx), the required computational units are active only for a small fraction of
the time when the receiver is on. This motivates the adoption of reconfigurable archi-
tectures in order to reuse hardware resources for other processing tasks. Hardware
reusing can be exploited in two aspects. Firstly, in a multi-standard single-stream
scenario, the same hardware can be reconfigured after OFDM synchronization to
perform other baseband processing in succeeding stages, such as refined frequency

5.1 Introduction 51

on er

on er

Fig. 5.1 Block diagram of the DFE-Rx constructed in the EU Multibase project [10]. This study
focuses on the implementation of the synchronization block, shaded in the figure, by using the
reconfigurable cell array

offset estimation and tracking. Secondly, in a multi-standard multi-stream scenario,
underlying hardware resources can be shared for concurrent processing of multiple
data streams. Figure 5.1 depicts the block diagram of the complete DFE-Rx and
highlights the target processing block “synchronization.” In the following, each
function block of the DFE-Rx is briefly described. Implementation details can be
found in [4, 6].

Taking digitized signals from the analog front-end, the Automatic Gain and
Resource Activity Controller (AGRAC) and the compensation block adjusts the
gain of incoming signals and performs DC-offset and IQ imbalance compensations,
respectively. Besides, the AGRAC is used as a master core in the DFE-Rx to control
the operation of other function blocks. The decimation filter chain contains a farrow
resampler [8] used to adjust the sample rate of input data to that of the corresponding
radio standards. Data resampling is one of the fundamental tasks when dealing
with multiple radio standards, since the elementary sampling frequency varies
between standards and is often not an integer multiple of one another. Since no pre-
knowledge is given on which standard is going to be processed, the DFE-Rx has
to operate at a frequency that is sufficiently high to capture signals of all standards
without aliasing. Among the three standards under analysis, IEEE 802.11n has the
highest sample rate, see Table 5.1, and is thus set as the master sampling frequency
of the DFE-Rx. As a result, data streams of LTE and DVB-H after the decimation
filter chain have an oversampling factor of b40=30:72c1 D 1 and b40=9:14c D 4,
respectively. The data reception buffer is used to store data inputs temporarily
during front-end processing, and the bus interface block adapts the DFE-Rx to the
following baseband processor.

1b�c is the floor function.

52 5 Multi-Standard DFE Processing

Table 5.1 Sampling frequency of the three target radio standards

Bandwidth Number of Sampling frequency

[MHz] subcarriers [MHz]

IEEE 802.11n [18] 40 128 40

3GPP LTE [3] 20 2048 30.72

DVB-H [12] 8 8192, 4096, 2048 9.14

The remainder of this chapter is organized as follows. Section 5.2 formulates
the problem in more detail. Similarities and differences of the OFDM time
synchronization in the target wireless radio standards are analyzed. Computational
operations required by the synchronization process are elaborated. Section 5.3
presents hardware developments of the reconfigurable cell array with focuses on
processing and memory cells. Section 5.4 starts by describing the computational
and memory resource allocations during concurrent multi-standard processing.
A software tool developed for generating hardware configurations of the cell array
is presented. Implementation and silicon measurement results are summarized. The
flexibility of the presented solution is demonstrated by mapping different algorithms
onto the cell array after the chip is fabricated. Benefiting from the new algorithm
mapping, the number of standards supported by the same cell array is further
extended. Finally, Sect. 5.5 concludes this chapter.

5.2 Algorithm and Implementation Aspects

In OFDM, synchronization is needed due to the lack of common time and frequency
references between Tx and Rx. An incorrect symbol timing may result in loss of
orthogonality in the narrow-band subcarriers. Moreover, orthogonality may also be
destroyed in the presence of a frequency mismatch between oscillators in Tx and
Rx. OFDM synchronization makes sure of preserving orthogonality by providing a
reliable start2 of the OFDM symbol and CFO estimation.

The synchronization process is usually performed in time and frequency domain,
commonly referred to as acquisition and tracking stage, respectively [13]. The
acquisition stage aims to find the start of each OFDM symbol and to perform a
rough estimation of CFO. The tracking stage aims to refine the parameters obtained
from the acquisition stage. This study focuses on the acquisition stage and assumes
that the channel impulse response is shorter than the length of CP.

2Orthogonality of narrow-band subcarriers is preserved as long as the estimated start lies within
the Cyclic prefix (CP) of an OFDM symbol.

5.2 Algorithm and Implementation Aspects 53

G12

Short training field Long training field

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 T1 T2

Fig. 5.2 IEEE 802.11n short and long training field [9]

5.2.1 Time Synchronization and CFO Estimation

Maximum-likelihood (ML) estimation [14] is commonly used to perform time syn-
chronization in OFDM systems. The algorithm can be used on either pilots/preamble
or CP. In the three standards under analysis, CP is present. Besides, IEEE 802.11n
contains a preamble, which has specific Short training symbols (STSs) designed for
data detection and time synchronization [18], see Fig. 5.2. Given that all STSs are
identical, the first STS can be considered as the CP of the remaining part in the short
training field (t2–t10 in Fig. 5.2). Based on either CP or preamble, the ML estimation
algorithm is expressed as

O� D
8
<

:

arg max
n

fj�Œn	jg if j�Œn	j � T

No symbol start found otherwise
; (5.1)

where

�Œn	 D
nX

kDn�LC1

rŒk	r�Œk � M	: (5.2)

In (5.1) and (5.2), rŒn	 is the received data vector at sample index n, �Œn	 is the
output of moving-sum, O� indicates the estimated symbol start, and .�/� denotes the
complex conjugate operator. T represents the threshold value, which is used to find
the symbol start by detecting the position of the maximum correlation value. T is
a function of Signal-to-noise ratio (SNR) and is computed off-line and adjusted in
accordance to different standards. L is the length of the moving-sum operation, and
M is the autocorrelation distance, i.e., the number of samples from the start of CP
to its corresponding copy within the OFDM symbol. The values of L and M vary
among standards and also between different synchronization methods, CP-based for
LTE and DVB-H and preamble-based for IEEE 802.11n. Table 5.2 summarizes the
values of L, M, and the number of subcarriers Nc for the three standards. In CP-
based synchronization, the autocorrelation distance M equals to Nc, and the size of
the moving-sum L equals to the length of the CP. LTE and DVB-H fall into this
category. Since better synchronization accuracy is expected when using preambles,
preamble-based approach is used for IEEE 802.11n. In this case, M corresponds to
the size of an STS and L equals to the size of remaining nine STSs (L D 16 � 9 in
Table 5.2). This is equivalent to computing correlation between neighboring STSs
and accumulating results over the entire short training field.

54 5 Multi-Standard DFE Processing

Table 5.2 Comparison for the length of moving-sum L, auto-
correlation distance M, and the number of subcarriers Nc in the
ML-based time synchronization

L M Nc

IEEE 802.11n 16 � 9 16 64

3GPP LTE 144 2048 2048

DVB-H 64 8192, 4096, 2048 8192, 4096, 2048

A common method to estimate CFO is to divide the offset value into two
components, expressed as

�fc D ˛ C "; (5.3)

where ˛ and " represent the integer and fractional part of CFO, respectively. Both
˛ and " are normalized with respect to the subcarrier spacing. " is delimited by
j"j � 0:5. This study focuses on the computation of the fractional CFO. An approach
to estimate " is based on a phase computation of the autocorrelation result at the
estimated symbol start �Œ O�	 [14], i.e.,

" D 1

2

arg

n
�Œ O�	

o
: (5.4)

This is usually performed by using a Coordinate rotation digital computer
(CORDIC) algorithm operating in circular vectoring mode [11].

5.2.2 Operation Analysis

Based on the aforementioned algorithms, Fig. 5.3 shows a conceptual implemen-
tation diagram for performing OFDM acquisition. Operations are partitioned into
three main processing blocks: data correlation, peak detection, and CFO estimation.
Different design parameters in the three radio standards (Table 5.2) set different
hardware requirements for the shaded blocks in Fig. 5.3. For example, the size of
the correlation FIFO (M) changes from 16 to 2048 samples when switching from
IEEE 802.11n to DVB-H 2K.

Input samples in this study are 12-bit complex numbers. To reduce memory
requirements during the correlation computation, data samples in single-stream
mode are truncated down to 4 bits. This relies on an assumption that performance of
the synchronization in the acquisition stage only needs to be sufficiently accurate
such that refined estimation algorithms in the tracking stage will work properly
[5]. During concurrent multi-stream processing, memories are shared between
two data streams and the wordlength of data samples is further reduced by half.
As an example, performance analysis of CFO estimation with respect to different

5.2 Algorithm and Implementation Aspects 55

elation
R

elation

ion

r[n] γ[n]

θ

arg γ[θ]

M L

> T< T

Fig. 5.3 Conceptual implementation diagram of the ML-based time synchronization and CFO
estimation. Shaded blocks have various design parameters required by different radio standards

0 5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

SNR [dB]

M
SE

 o
f e

st
im

at
ed

fr
eq

ue
nc

y
of

fs
et

 [r
ad

]

12-bit precision

4-bit truncated

Multi-stream scenario

Single-stream scenario

2-bit truncated

8-bit truncated

Fig. 5.4 Analysis of input data truncation in CFO estimation for 3GPP LTE with a frequency
offset of
=8

input data truncation is shown in Fig. 5.4. The Mean squared error (MSE) of
estimated frequency offset is simulated for an Additive white Gaussian noise
(AWGN) channel on an LTE transmission with a frequency offset of
=8. Although
higher data wordlength attains higher processing accuracy, larger input truncation
reduces both hardware complexity and memory size. For example, reducing input
wordlength from 12 to 4 bits results in a performance degradation of around
0.66 � 10�3 radians at an SNR of 10 dB. This corresponds to a frequency error of
0:66 � 10�3=.2
/ � �f D 1:58 Hz. Further truncation to 2 bits results in more
than 80 % memory reduction at the cost of 87.26 Hz frequency error at the same
SNR. Since a maximum frequency error of 2 kHz can be tolerated by the receiver

56 5 Multi-Standard DFE Processing

in LTE [15], this wordlength reduction is motivated. The same analysis is applied
to other radio standards, and results show that quantization noise due to wordlength
reduction is negligible.

5.3 Hardware Development

Figure 5.5 shows a block diagram of the reconfigurable cell array deployed in
the DFE-Rx for performing OFDM time synchronization and CFO estimation.
Based on the operation analysis (Fig. 5.3), the cell array is configured to have
two processing and two memory cells. The processing cells are used to perform
data operations shown in Fig. 5.3, while the memory cells serve as correlation
and moving-sum FIFOs as well as communication buffers between processors.
The interface controller, connected to the cell array via hierarchical network
interconnects, manages external data communication to other system blocks in
the DFE-Rx and is responsible for static configurations of Resource cells (RCs).
To cope with multi-standard concurrent data computations, both processing and
memory cells in the baseline architecture described in Chap. 4 are further developed.
The following sections present the detailed architectural improvements.

5.3.1 Dataflow Processor

In multi-standard multi-stream applications, concurrent processing calls for a
processor design that suffices different computational requirements on each indi-
vidual data stream. Processing cells employed in this study, named as dataflow
processors, are Reduced instruction set computing (RISC) cores with improved
dataflow control. In addition to the functions equipped in a generic processing cell
(Chap. 4), the dataflow processor enhances data processing by supporting Single

Fig. 5.5 Block diagram of
the 2 � 2 cell array and the
interface controller deployed
in the synchronization block
of DFE-Rx. Solid and dashed
lines depict local and
hierarchical network
interconnects, respectively.
PC and MC denote for
processing and memory cell,
respectively

PC-0 MC-0

5.3 Hardware Development 57

ge

k-
II

+/-

+/-

+/-

+/-

k-
II

I

0

0

0

0

Fig. 5.6 Computation path of the dataflow processor. Configurations of the shaded blocks are
stored in registers that are run-time accessible

instruction multiple data (SIMD)-like operations. The processor contains multiple
processing lanes capable of performing both complex- and real-valued operations,
illustrated in Fig. 5.6. These operations are required by, for example, ML estimation
and CORDIC computations, respectively. Taking a 16-bit 4-lane processor as
an example, the processing lanes can be grouped into two or four computation
paths, capable of executing 8-bit complex-valued or 16-bit real-valued operations.
Figure 5.7 depicts detailed architecture of the arithmetic part of Arithmetic logic
unit (ALU) in the 16-bit processor. Basic operations of the ALU are controlled by
two mode specifiers, “multiplication” and “vector.” While the former one switches
between addition and multiplication mode, the latter one controls real- or complex-
valued operations. Real-valued output is obtained by concatenating results from
‘O3’ and ‘O4’, while the real and imaginary part of complex-valued output are taken
from ‘O1’ and ‘O4’, respectively.

In addition, computational units are extended to both “instruction decode”
and “write back” stage of the processor. As a result, several consecutive data
manipulations can be accomplished in a single instruction execution without storing
intermediate results. This substantially reduces register accesses. An example of
the consecutive operation execution can be found during the computation of (5.2),
where input data conjugate and result accumulation need to be performed before
and after complex-valued multiplication, respectively. Without this extended com-
putation capability, (5.2) needs to be computed iteratively, requiring three times
more execution clock cycles and register accesses. Moreover, each arithmetic- and
logic-type instruction in the dataflow processor is extended to have two operation
codes (opcodes), which are capable of performing two different operations on the
same input data operands in each clock cycle. The widely used butterfly operation
(simultaneous add and subtract [2]) in Fast Fourier transform (FFT) is a typical
example of the dual-opcode instruction. Another example is input data forwarding

58 5 Multi-Standard DFE Processing

x

x

x

x
8

4

+/-

+/-

8

8
+/-

+/-

8

Multiplication mode

Vector computing mode

lo

lo

hi

hi hi

lo/im.

re.

a

a

b

b c

c

dd

e

e

f

f

g

g

h

h

O1

O2

O3

O4

Fig. 5.7 Arithmetic part of the ALU in the dataflow processor, an example of 16-bit case. Real-
valued output is taken from ‘O3’ and ‘O4’, while complex-valued output is drawn from ‘O1’
and ‘O4’

during computations. This can be used to hide the execution time of data movement
operations. For example, input data samples in (5.2) can be forwarded to other
processing or memory cells while being multiplied and accumulated. The complete
instruction set of the dataflow processor is included in Appendix A, Figs. A.1, A.2,
A.3, and Tables A.1, A.2.

Data Stream Shuffling

For efficient usage of multiple processing lanes, the capability of redirecting input
operands into either lane is vital. In the dataflow processor, data operands in each
computation stage can be shuffled before and after each operation. Internal data
shuffling is carried out by deploying data arrangement blocks at the computation
stages, illustrated in Fig. 5.6. In this study, data arrangement blocks are built from
multiplexers. Control bits of the multiplexers are stored in configuration registers
that are transparently accessible by the user. Different data path configurations
can be preloaded into the registers before executing a program or dynamically
updated via a special instruction. The stored data path configurations can be applied
to any type of instructions, which is accomplished by indexing the configuration
registers in each instruction. As an example, trivial multiplications required in an
FFT may be implicitly executed using data arrangement blocks, as the operations
are equivalent to swapping two input operands without any data manipulation.
Thus, specific operations to compute trivial multiplications are avoided, resulting

5.3 Hardware Development 59

D
at

a
ar

ra
ng

em
en

t
bl

oc
k-

I

+/-

+/-

a

a

b

b

c

c

d

da + jb

c + jd

ac − bd

ad + bc

a

D
at

a
ar

ra
ng

em
en

t
bl

oc
k-

I

+/-

+/-

+/-

a

a

b

b

c

c

d

dab

cd

ab × cd

b

<< 8

<< 4

<< 4

Fig. 5.8 Input data operand arrangements in (a) a 4-bit complex-valued multiplication and (b) an
8-bit real-valued multiplication. These two operations use the same instruction and data inputs but
operate on different data sequences, as highlighted in the figure

in reduced execution clock cycles and program count. Moreover, with the help of
data arrangement blocks, the same instruction can be used to perform different
operations. This is accomplished by shuffling input operands to form different
data patterns. As an example, real- and complex-valued multiplications share the
same instruction but operate on two different data sequences, illustrated in Fig. 5.8.
Detailed architecture of data arrangement blocks and the set of configuration
codewords can be found in Appendix A, Fig. A.4, and Tables A.3, A.4, A.5, A.6.

5.3.2 Memory Cell

Under multi-standard multi-stream scenarios, memory descriptors are shared by
the processing of multiple data streams. To cope with various sample rate of
standards, it is crucial that memory descriptors can be executed in a non-sequential
order. Otherwise, data stream with the slowest sample rate will block entire data
processing.

60 5 Multi-Standard DFE Processing

Descriptor execution sequence
Descriptor table

Stream 1

Stream 1 Stream 1

Stm-1: 802.11n
Stm-2: LTE

Stm-1: 802.11n
Stm-2: DVB-H

Stream 2

Stream 1

Stream 2

0

1

2

3

0 → 1 → 2 → 3

0 → 2 → 0 → 2 → 1 → 0 → 2 → 0 → 2 → 3

Fig. 5.9 Illustration of descriptor execution program during concurrent multi-stream processing

Flexible Descriptor Execution

Based on the aforementioned analysis, memory descriptors are extended in a way
that they can be configured to execute either in non-blocking or blocking mode.
In non-blocking mode, the operation controller of the memory cell sequentially
starts a descriptor execution in each clock cycle, without waiting for response from
data receiver regarding last memory access. Therefore, subsequent descriptors can
still be issued and executed even if the current one is being blocked. Besides used
in multi-stream processing, the non-blocking execution mode is also useful when
one memory cell is shared among several hosts (e.g., processing cells) operating
on different stream transfer rates. In contrast, blocking execution mode guarantees
the completion of each specified memory access before starting a new descriptor
execution. This mode can be used to avoid mixing up stream transfers when an I/O
port is shared among multiple memory descriptors.

To further improve the flexibility of memory cells, the order of the descriptor
execution is run-time programmable. This way, multiple descriptors can be arranged
to reorder or repeat data sequences, or to cope with data streams that have different
transfer rates. Figure 5.9 illustrates the use of descriptor execution program during
concurrent multi-stream processing. Assuming that the memory cell has four
descriptors, which are configured to serve for two different streams in an interleaved
manner, namely 0 and 2 for “stream 1” and 1 and 3 for “stream 2”. During
the processing of IEEE 802.11n and LTE, which both have an oversampling rate
of 1, the four descriptors are executed sequentially. However, when dealing with
IEEE 802.11n and DVB-H, execution sequence needs to be programmed such
that data stream of IEEE 802.11n is processed four times before performing one
DVB-H data reception. This is due to the fact that data stream of DVB-H has an
oversampling rate of 4, as mentioned in Sect. 5.1.

Micro-Block Function

In addition to the flexible descriptor execution, the data access pattern of a memory
cell can be reshaped by using a micro-block function. This enables memory access
with finer wordlength than that a physical memory provides. For example, a 32-
bit wide memory cell can be configurable to behave as two 16-bit wide or four
8-bit wide memory cells. This feature is useful when supporting multi-standard

5.4 Implementation Results and Discussion 61

Table 5.3 Configuration fields of the memory descriptor

Field Bits Description

Part I dtype 31-30 Operation mode select

base 29-20 Start address

high 19-10 End address

rd_ok/active 9 FIFO reading status/RAM active transfer flag

wr_ok/rnw 8 FIFO writing status/RAM read–write select

io_bank_rst 7 I/O port register reset

id 6-1 Global packet destination ID

block_opr 0 Blocking execution enable

Part II rptr/ptr 31-22 Current FIFO reading pointer/RAM data pointer

wptr/tsize 21-12 Current FIFO writing pointer/RAM data transfer size

src/paddr 11-8 FIFO data source port/RAM address port

dst/pdata 7-4 FIFO data destination port/RAM data port

blk_size 3-1 Size of micro-block

blk_en 0 Micro-block enable

Part III blk_stride 31-27 Micro-block step size

blk_rptr 26-22 Current micro-block read pointer

blk_wptr 21-17 Current micro-block write pointer

blk_mask 16-1 Micro-block data mask

blk_mask_sign 0 Data mask sign extension

data processing, as different standards may intrinsically require different processing
wordlength. Detailed usage of the micro-block function is further illustrated in
Sect. 5.4.

A micro-block operation is defined by a block size, stride, read and write pointer,
and data mask. The block size specifies the wordlength of a micro-block, used to
determine the number of data accesses in each memory read and write operation.
For a 32-bit memory cell, options of the micro-block size are 1, 2, 4, 8, 16, and
32 bits. Stride is the distance to the next micro-block, measured in bits. Read/write
pointers are physical memory addresses and are automatically updated after each
operation. Data mask enables bitwise operation on data that is read from or to be
written to the memory. Table 5.3 summarizes configuration fields of the memory
descriptor, which is an extended version of the one used in the baseline memory cell
(Table 4.1 in Sect. 4.3.2).

5.4 Implementation Results and Discussion

Given that the cell array is aimed to be deployed in mobile terminals, a moderate
clock frequency of around 300 MHz is expected. Considering the highest data
sample rate among the three standards (40 MHz in IEEE 802.11n), operations

62 5 Multi-Standard DFE Processing

assigned to each processing cell must be completed within eight clock cycles
(d300 MHz/40 MHze3) in order to suffice the requirement of real-time processing.
In this study, concurrent processing of two data streams is accomplished by time-
multiplexing two streams on the cell array. As a consequence, the required execution
time is further reduced by half.

5.4.1 Task-Level Pipeline

To meet the stringent timing constraint, data computations are partitioned and
mapped onto different processing cells. Specifically, the correlation and the peak
detection in Fig. 5.3 are assigned to PC-0 and PC-1, respectively, while the CFO
estimation is carried out on both processors after determining the position of the
correlation peak. As mentioned in Sect. 5.2.1, the phase computation (5.4) in the
CFO estimation can be performed using a CORDIC algorithm [11]. The concept of
the CORDIC algorithm is to rotate input vector through a series of micro rotations
by applying shift and add operations [19]. These operations can be easily mapped
onto processing cells by using barrel shifters and ALU as well as data arrangement
blocks for intermediate result shuffling. Memory cells interconnected with the two
processors are used as correlation and moving-sum FIFOs. Additionally, MC-1
serves as a CORDIC coefficient Read-only memory (ROM) and communication
buffers between the processors.

Based on the wordlength analysis in Sect. 5.2.2, the two processing cells are
configured as 16-bit cores suitable for handling correlations with 4-bit complex-
valued inputs (see Fig. 5.7). The wordlength of memory macros in both memory
cells is 32 bits wide. Therefore, a pair of 16 bits in-phase and quadrature data inputs
can be stored in the same memory location. Memory capacity of the correlation and
the moving-sum FIFO is configured to suffice the standard with the largest storage
requirement, i.e., DVB-H in this case.

5.4.2 Memory Interleaving

In addition to the task-level pipeline, self-governed FIFO operations in memory
cells relieve processing cells from address manipulations. Moreover, the micro-
block function of memory cells eliminates data alignment operations in processors,
as illustrated in Fig. 5.10. Since the wordlength of memory macros is 32 bits wide
and the complex-valued data inputs are truncated to 4 bits (in single-stream mode),
four truncated data pairs need to be stored at one memory location. With the help
of the micro-block function, PC-0 is exempted from data shifting and masking

3d�e is the ceiling function.

5.4 Implementation Results and Discussion 63

Sign Sign

2(I) 2(Q)

1(I) 1(Q)

3(I) 3(Q)

4(I) 4(Q)

Inphase Quadrature
0111627 31931

PC-0 → MC-0

3(Q) 1(Q)4(Q) 2(Q)3(I) 1(I)4(I) 2(I)

After 4 iterations

a

b

c
Address ‘X’

723

Shift by 0 & mask

Shift by 20 & mask

Shift by 16 & mask

Shift by 4 & maskLogic
OR

d
133 1244 2133 1244 2Address ‘X’

Stream 2Stream 1

I Q

12 bits → 4 bits

Sign Sign

Fig. 5.10 Interleaved data storage in correlation FIFO, MC-0. (a) Received 12 bits data pair in
PC-0. Data pairs are truncated down to 4 bits before being transmitted to MC-0. (b) Exploded
view of data storage in correlation FIFO for a single data stream. (c) Final data storage at address
‘X’ in single-stream mode. (d) Final data storage at address ‘X’ for two concurrent data streams (2
bits data pair of each)

operations, as shown in Fig. 5.10b. The received data pairs are correspondingly left-
shifted, masked to set off unused bits, and added (logic OR) to the write buffer.
A final view of the interleaved data storage at a memory location in the correlation
FIFO is illustrated in Fig. 5.10c. Similarly, when data pairs are truncated to 2 bits
in the multi-stream mode, leading to eight micro-block operations, truncated data
pairs from both streams are interleaved and stored in the same memory location, see
Fig. 5.10d.

5.4.3 Context Switching

During context switching between different radio standards, both processing and
memory cells need to be reconfigured to update parameters such as the threshold
value T in the ML estimation (5.1), the length of the correlation (M), and the
moving-sum FIFO (L). When switching from single- to multi-stream processing
or vice versa, additional configurations are required. These include memory bank
allocations, computational precision adjustments (e.g., from 4 bits down to 2
bits), and corresponding program segment updates in processing cells. Thanks

64 5 Multi-Standard DFE Processing

Fig. 5.11 Overview of the
configuration generation tool.
The memory cell MC-1 is
visualized as “MC 1” and
“MC 2” to ease
configurations in this study

to the adoption of the in-cell configuration scheme presented in Chap. 4, all the
aforementioned context switching tasks are conducted inside the cell array during
system run-time. In the current implementation, PC-0 is used as a local master core
that controls the operations of other RCs and manages all the required resource
configurations.

5.4.4 Configuration Generator

To ease resource configurations of the cell array, a graphical user interface is
developed in-house, shown in Fig. 5.11. This tool visualizes all possible configu-
rations of the processing and the memory cells deployed in the 2 � 2 cell array.
Additionally, it is able to convert resource configurations into binary codes and
generate a final bit stream based on allocated address space of each RC. Moreover,
this tool has the ability of streaming data and configurations into the cell array
(with the help of peripheral circuits, further discussed in Sect. 5.4.7) using a TCP/IP
socket. A detailed view of the tool can be found in Appendix A, Figs. A.5, A.6, and
A.7. Note that the memory cell MC-1 is shown as two separate units in Fig. 5.11,
“MC 1” and “MC 2”, which are used as data memories (moving-sum FIFO and
CORDIC coefficient ROM) and communication buffers, respectively.

5.4 Implementation Results and Discussion 65

Table 5.4 Supported standards and memory utilization of a 2 � 2 cell array

Truncation Memory

Concurrency Standards wordlength utilization [%]

Single-stream 802.11n 4 bits 8.48

LTE 4 bits 65.18

DVB-H 2K 4 bits 85.71

DVB-H 4K 2 or sign bit 85.71

DVB-H 8K Sign bit 85.71

Dual-stream 802.11n & 802.11n 4 bits 16.96

802.11n & LTE 2 bits 45.09

802.11n & DVB-H 2K 2 bits 65.63

LTE & LTE 2 bits 73.21

LTE & DVB-H 2K 2 bits 93.75

5.4.5 Hardware Flexibility

With a fixed memory size, concurrent data processing is achieved by sharing
memory resources between multiple data streams. Memory sharing is usually
accomplished by sacrificing computational precision on all data streams, regard-
less of running standards and channel condition. Although the rigid uniform
wordlength scheduling is easier to implement, higher computational precision is
desired whenever possible. The cell array is capable of dynamically allocating
computational resources to achieve better performance and resource utilization.
Hence, computational precision is scheduled adaptively depending on the current
operating condition. For the target radio standards, input samples are truncated to
either 4 or 2 bits. Table 5.4 lists all the radio standards supported by the employed
2 � 2 cell array with the corresponding truncation wordlengths. Memory utilization,
shown in the last column of Table 5.4, is the data memory used by the correlation
process as a percentage of the total data storage available in all memory cells.
The utilization does not reach 100 %, as parts of the data memories are used as
the CORDIC coefficient ROM, as well as communication buffers between two
processors.

In addition to resource sharing among multiple radio standards, system flexibility
is also demonstrated by mapping different algorithms onto the same platform,
without additional hardware cost. The adoption of different algorithms may either
extend system compatibility by supporting additional standards or improve system
performance by enhancing processing throughput and concurrency. In the con-
ducted experiment, flexibility is illustrated by mapping a novel sign-bit OFDM
synchronization algorithm [5] onto the presented cell array. This leads to the
support of all three OFDM transmission modes (2K, 4K, and 8K subcarriers) in
the DVB-H standard. The initial design choice on memory capacity only supports
4/2-bit synchronization algorithm for DVB-H 2K/4K modes. However, with the
adoption of the sign-bit algorithm, which has dramatic data storage reduction,

66 5 Multi-Standard DFE Processing

0 5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

SNR [dB]

M
SE

 o
f e

st
im

at
ed

fr
eq

ue
nc

y
of

fs
et

 [r
ad

]

12-bit precision
4-bit truncated
Sign-bit
2-bit truncated

Single-stream scenario

Multi-stream scenario

Fig. 5.12 Analysis of sign-bit algorithm [5] in CFO estimation for 3GPP LTE with a frequency
offset of
=8

support for the DVB-H 8K mode becomes possible. Performance analysis of the
sign-bit algorithm, see Fig. 5.12, reveals better computational accuracy than the
2-bit implementation. This is in virtue of specialized arithmetic used in the sign-bit
algorithm, which obtains better immunity to quantization noise [15]. However, sign-
bit implementation involves many bit-level data manipulations, which are difficult
to map efficiently to a coarse-grained reconfigurable architecture without increasing
execution time. Therefore, design complexity in the sign-bit algorithm shifts from
memory capacity to data processing.

Figures 5.13 and 5.14 illustrate the layout of data storage in the correlation FIFO
(MC-0) for various use cases adopted in this study. The considered use cases include
different standards in the single-stream mode and various standard combinations
in the multi-stream mode. Streams marked in red in Figs. 5.13 and 5.14 indicate
the first data stream received by the cell array. Note that concurrent reception of
IEEE 802.11n data streams can be processed in either 4 or 2 bits, because of low
memory requirements, see Table 5.4.

5.4.6 Implementation Results

Fabricated in a 65 nm CMOS technology, the DFE-Rx has a die size of 5 mm2

with 144 I/O pads. According to synthesis results, half of the chip area is taken by
memories, logic cells and I/O pads, while the remaining half is used for power and
signal routing as well as clock tree generation. Figure 5.15 shows a chip layout. As a

5.4 Implementation Results and Discussion 67

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

W
or

dl
en

gt
h

4
bi

ts
4

bi
ts

4
bi

ts
4

bi
ts

4
bi

ts
4

bi
ts

2
bi

ts
2

bi
ts

15
13

11
9

7
5

3
1

15
13

11
9

7
5

3
1

Si
gn

-b
it

16
14

12
10

8
6

4
2

16
14

12
10

8
6

4
2

Si
gn

-b
it

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

W
or

dl
en

gt
h

4
bi

ts
4

bi
ts

4
bi

ts
4

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

1
8

6
4

2
8

6

1

2

1

3
3

1

4
2

7
5

3
1

7
5

3

1

8

2
2

3
2

1

2

1

4
4

3

1
3

1
7

5
7

5
3

1
1

2
4

4
2

2
3

3
1

3
3

4
4

2
2

3

1

4
2

4

4

3
4

6

3
3

1

4
2

2
3

3
1

L
T

E
St

m
1

C
as

e
2

4

St
m

1
W

L
A

N
C

as
e

1

St
m

1
W

L
A

N

D
V

B
-2

K
St

m
2

C
as

e
3a

C
as

e
3b

St
m

2
D

V
B

-4
K

D
V

B
-8

K
St

m
2

C
as

e
3c

4

W
L

A
N

St
m

1

St
m

2
W

L
A

N
C

as
e

4a

L
T

E
St

m
2

C
as

e
5

C
as

e
4b

St
m

1
W

L
A

N

1

4
2

8
6

Single-stream mode Multi-stream mode

1
4

4
2

2
St

m
2

W
L

A
N

3
3

1
1

4
4

2
2

F
ig

.5
.1

3
L

ay
ou

t
of

da
ta

st
or

ag
e

in
th

e
co

rr
el

at
io

n
FI

FO
(M

C
-0

)
fo

r
di

ff
er

en
t

us
e

ca
se

s.
St

re
am

s
m

ar
ke

d
in

re
d

in
di

ca
te

th
e

fir
st

da
ta

st
re

am
re

ce
iv

ed
by

th
e

ce
ll

ar
ra

y

68 5 Multi-Standard DFE Processing

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

W
or

dl
en

gt
h

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

2
bi

ts
2

bi
ts

11

5
3

1
7

5

5
3

6
4

2
6

4
2

7

3

7
5

3 1
1

6
4

2
6

4
2

3
3

7
5

1
7

5
8

8

3
3

8
8

1
1

6
6

1
1

6
6

7
5

3
7

5

7
5

3

4

1
1

3
1

8
6

4
2

8
6

4
2

2
2

1
4

4
3

3

2

3
3

1

7
5

3
3

7

1

4
2

4
2

2

D
V

B
-2

K
St

m
2

C
as

e
6

W
L

A
N

St
m

1

3
3

4
4

4
4

2

3
1

7
5

3
1

8
6

4
2

8
6

St
m

1
L

T
E

St
m

2
W

L
A

N

C
as

e
10

St
m

1
W

L
A

N

St
m

2
D

V
B

-2
K

St
m

1
L

T
E

St
m

2
L

T
E

C
as

e
9

St
m

1
L

T
E

St
m

2
D

V
B

-2
K

C
as

e
8

C
as

e
7

C
as

e
11

St
m

1
L

T
E

St
m

2
D

V
B

-2
K

1
1

2
1

2

4
4

2
2 7

5
3

1

7
5

1
7

5
1

8
4

2
8

4
2

3
3

8
6

4
2

8
6

4
2

Multi-stream mode

8
4

2
8

4
2

F
ig

.5
.1

4
L

ay
ou

to
f

da
ta

st
or

ag
e

in
th

e
co

rr
el

at
io

n
FI

FO
(M

C
-0

)
fo

r
di

ff
er

en
tu

se
ca

se
s,

co
nt

in
ue

d

5.4 Implementation Results and Discussion 69

Fig. 5.15 Chip layout of the
fabricated DFE-Rx

prototype, the design is pad-limited due to the large number of I/O ports required
for individual tests of function blocks. Table 5.5 shows an area breakdown of the
DFE-Rx. As can be seen, I/O pads occupy about 40 % of the area and the remaining
part is evenly distributed among the synchronization block and the two receiving
data paths. In the following, we focus on the implementation of the synchronization
block, namely the 2 � 2 cell array, and present silicon measurement results obtained
from a standalone test.

Shown by the synthesis results in Table 5.6, the cell array is memory dominant,
which consumes about 40 % of the area. This is mainly due to the large amount of
data required to store. Besides, program memories of processing cells are deployed
such that they are large enough to allow further algorithm updates and mapping
of other tasks. The entire cell array, including the interface controller, occupies
0.48 mm2 area and has a maximum clock frequency of 534 MHz. Thanks to the
adopted in-cell configuration scheme, switching between different operation modes,
such as from OFDM time synchronization to CFO estimation, requires only 11 clock
cycles.

The high system flexibility offered by the cell array comes at the cost of area
overhead. For comparison, a hardware accelerator only capable of performing the
target tasks (OFDM time synchronization and CFO estimation) is implemented.
Synthesis result of the accelerator is shown in Table 5.7. Even though a module-
by-module comparison is not possible because of the hardware reusing nature of the
reconfigurable architecture, it is evident that both designs are memory dominant. To
be able to process two concurrent data streams, two accelerators are taken into the
comparison. It shows that the accelerator-based solution uses around four times less
silicon area and runs at a lower clock frequency (40 MHz) for the same throughput.

70 5 Multi-Standard DFE Processing

Table 5.5 Area breakdown
of the DFE-Rx

DFE-Rx Area [�m2] Percentage [%]

I/O pads 991,569 38.37

Synchronization block 479,026 18.54

Rx data path 1 501,894 19.42

Rx data path 2 501,894 19.42

Others 109,851 4.25

Total 2,584,234 100.00

Table 5.6 Area breakdown of the 2 � 2 cell array in the DFE-Rx

Resource cell Memory Area [�m2] Percentage [%]

PC-0 Logic � � 37,567 7.84

Memory 384 � 48b 18 Kb 37,009 7.73

PC-1 Logic � � 37,201 7.77

Memory 512 � 48b 24 Kb 41,318 8.63

MC-0 Logic � � 39,167 8.18

Memory 512 � 32b 16 Kb 66,016 13.78

MC-1 Logic � � 64,810 13.53

Memory 384 � 32b 12 Kb 57,657 12.04

Router cells � � 37,976 7.93

Interface controller � � 60,306 12.59

Total 70 Kb 479,026 100.00

Table 5.7 Synthesis result of
a hardware accelerator, only
capable of performing time
synchronization and CFO
estimation for a single data
stream

Area [�m2] Percentage [%]

Correlator 1296 2.13

Peak detector 2305 3.78

Correlation FIFO 27,232 44.69

Moving-sum FIFO 25,258 41.45

CORDIC (time-multiplexed) 3330 5.46

Control 1521 2.5

Total 60,942 100.00

However, from the entire DFE-Rx point of view, the adoption of the cell array results
in only about 16 % area overhead. In view of the high flexibility provided by the cell
array, as demonstrated in Sect. 5.4.5, this overhead is acceptable. Moreover, it should
be pointed out that the potential usage of the cell array is not fully explored when
only evaluating the mapping of the synchronization algorithms. The architecture
has the ability of being dynamically reconfigured to perform different tasks while a
hard-coded accelerator implements fixed functionality.

5.4 Implementation Results and Discussion 71

5.4.7 Measurement Results

To verify the functionality of the cell array, a standalone test is carried out in the
debugging mode of the DFE-Rx via an on-chip Serial DeBuG (SDBG) interface.
The SDBG interface, developed based on [16], contains a set of light-weight
single-ended serial links capable of operating at 10 Mbps when using ribbon cable
connections. Higher speed, up to 40 Mbps, can be achieved with good signal
termination and PCB board layout.

Debugging Interface

Typical high speed data-recovery circuits require a Phase-Locked Loop (PLL)
module for each serial link to recover data (as well as clock) from an 8b/10b
encoded serial link. However, it has been shown in [16] that data can be recovered
from a serial link by simply using a 4� clock sampling scheme without the 8b/10b
encoding. Additionally, instead of using PLL, the presented data-recovery circuit
employs two local clock signals: ‘clk’ and its 90-degree phase shifted counterpart
‘clk90’. These clock signals can be generated from two independent local oscillators
or clock generation circuits. However, it is important to maintain the phase-
relationship of the two clocks. According to [16], this scheme can recover data from
up to 200 Mbps serial links by using differential signaling for serial transmission and
advanced Delay-Locked Loop (DLL) circuit to maintain the phase-relationship of
clock signals. The current version of DFE-Rx has no differential I/O pads and DLL
circuits equipped. Thereby, these serial links are implemented with single-ended I/O
pads. Both clock signals (‘clk’ and ‘clk90’) are provided from normal clock pads
and are directly used inside the chip without further phase adjustments.

The DFE-Rx SDBG consists of three serial links: ASIC Control Input Link
(AIL-C), ASIC Data Input Link (AIL-D), and ASIC Output Link (AOL). The
AIL-C and AIL-D are used to stream configurations and data into the cell array,
respectively, while AOL is shared for both data and control outputs.

Standalone Cell Array Test

Through the SDBG interface, the cell array is connected to an FPGA platform,
Xilinx XUPV5-LX110T, which implements the control and data streaming logics
for communicating with the cell array. Figures 5.16 and 5.17 illustrate the setup and
the measurement testbed for the standalone test, respectively.

For the system running in FPGA, a 32-bit MicroBlaze soft processor core [17]
is used as a master controller. The SDBG interface adaptor is embedded as a
co-processor connected on a shared Processor Local Bus (PLB). An interrupt
controller is used to notify the master controller to receive control/data from the
cell array. Communication to an external host (PC) is achieved through an Ethernet

72 5 Multi-Standard DFE Processing

Interrupt
controller
v2.01.a

UART Lite
v1.01.a

PLB bus 4.6
v1.04.a

MicroBlaze
v7.30.b

F
ro

m
/t

o
ho

st

Xilinx XUPV5-LX110T Evaluation Platform

Cell array

PL
B

 b
us

 d
ri

ve
r

MC-0PC-0

PC-1MC-1
Data

CtrlSD
B

G
In

te
rf

ac
e

clk

clk90

ail_c

ail_d

aol

debug_sel

reset

status
SD

B
G

 I
nt

er
fa

cerx_intr_ctrl

rx_intr_data

Ethernet Lite
v4.00.a

DFE-Rx

RR

Fig. 5.16 Block diagram of the standalone cell array test setup

Fig. 5.17 Measurement testbed for the standalone cell array test

connection and a UART interface, which stream data/configuration and issue control
commands to the cell array, respectively.

In the standalone test, the embedded system in FPGA operates at 100 MHz,
whereas the cell array is clocked at 10 MHz due to the data rate limitations on
ribbon cable connections and single-ended signaling. Data transmission rate over
the Ethernet connection is set to 100 Mbps, while the UART line adopts a baud rate
of 460.8 Kbps.

5.4 Implementation Results and Discussion 73

Table 5.8 Example of cell array configuration via a UART interface

� @g# (Command input) Command ‘g’, destination RC selection

� 0 (Number input) RC hierarchical IO port ID

� @i# (Command input) Command ‘i’, instruction downloading

� 2 (Number input) Number of instructions (plus one) to transfer

� $00010002# (String input) Header of instruction downloading

� $A8000001# (String input) Instruction “A8000001”

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.7

1.8

1.9

2

2.1

2.2

Time [sample]

Po
w

er
 [m

W
]

One frame Idle

Fig. 5.18 Measured power consumption of the cell array in a standalone test when processing
IEEE 802.11n data receptions

To provide users with an easy way of controlling the embedded system, a user
interface in UART line is developed. Resource cell configurations and control/data
inputs can be streamed into the cell array by issuing different user commands,
see Appendix A, Table A.7. In addition, a few pre-loaded configuration scripts are
provided for fast system demonstrations. Burst data transfers are accomplished by
sending a user-defined script file. As an example, commands shown in Table 5.8
download an instruction into PC-0.

Based on the UART control, a high-level user interface is designed in MATLAB.
The MATLAB interface provides a more advanced and flexible way to control data
streams running into and out from the system. For example, input data sequences
can be generated in MATLAB at run-time and data produced by the cell array
can be collected and plotted graphically. Detailed user commands in the MATLAB
interface are listed in Appendix A, Table A.8.

Figure 5.18 shows the power consumption of the cell array measured under the
processing of an IEEE 802.11n data stream at nominal supply voltage of 1.2 V and at
10 MHz clock frequency. During the reception of 802.11n data frames, the measured
minimum and maximum power consumption is 1.75 and 2.19 mW, respectively.
During the loading of hardware configurations (not shown in Fig. 5.18), the cell
array consumes 1.95–2 mW power.

74 5 Multi-Standard DFE Processing

5.5 Summary

This chapter presents a case study of the reconfigurable cell array suitable to
process multiple radio standards concurrently. The flexibility and performance of
the architecture are demonstrated by performing time synchronization and CFO
estimation in OFDM systems. Using a 2 � 2 cell array, three widely used standards,
IEEE 802.11n, 3GPP LTE, and DVB-H, are supported. Moreover, two independent
data streams from the three standards can be processed concurrently by allocating
and sharing system resources at run-time. During the reception of a single data
stream, the cell array is configured to achieve high computational accuracy by
using all available hardware resources. When two concurrent data streams are being
received, the cell array adjusts its hardware resources such that data memories are
split in two and processing cells are shared over time. Moreover, the potential of
the architecture is further illustrated by mapping different algorithms onto the same
platform without any additional hardware cost. Benefiting from the new algorithm
mapping, the coverage of the standards supported by the cell array is extended.
The employed 2 � 2 cell array is fabricated as a part of a Digital front-end (DFE)
Receiver in the EU Multibase project. Running at 10 MHz clock frequency (in
the standalone test) and at 1.2 V supply voltage, measurement results report a
maximum power consumption of 2.19 mW during the processing of IEEE 802.11n
data receptions.

References

1. A. Baschirotto, et al., Baseband analog front-end and digital back-end for reconfigurable multi-
standard terminals. IEEE Circuits Syst. Mag. 6(1), 8–28 (2006)

2. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series.
IEEE J. Solid-State Circuits 19(90), 297–301 (1965)

3. E. Dahlman, S. Parkvall, J. Sköld, 4G: LTE/LTE-Advanced for Mobile Broadband, 1st edn.
(The Boulevard, Langford Lane, Kidlington, Oxford, UK, 2011)

4. I. Diaz, Algorithm-architecture co-design for digital front-ends in mobile receivers. Ph.D.
thesis, Department of Electrical and Information Technology, Lund University, 2014

5. I. Diaz, L. Wilhelmsson, J. Rodrigues, J. Lofgren, T. Olsson, V. Öwall, A sign-bit auto-
correlation architecture for fractional frequency offset estimation in OFDM, in IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), May 2010, pp. 3765–3768

6. I. Diaz, et al., A new digital front-end for flexible reception in software defined
radio. Microprocess. Microsyst. (2015). http://www.sciencedirect.com/science/article/pii/
S0141933115000186

7. C. Ebeling, C. Fisher, G. Xing, M. Shen, H. Liu, Implementing an OFDM receiver on the
RaPiD reconfigurable architecture. IEEE Trans. Comput. 53(11), 1436–1448 (2004)

8. C.W. Farrow, A continuously variable digital delay element, in IEEE International Symposium
on Circuits and Systems, vol. 3, Jun 1988, pp. 2641–2645

9. IEEE, IEEE P802.11N/D2.00. Technical report, IEEE LAN/MAN Standards Committee (Feb
2007)

http://www.sciencedirect.com/science/article/pii/S0141933115000186
http://www.sciencedirect.com/science/article/pii/S0141933115000186

References 75

10. Multi-base—scalable multi-tasking baseband for mobile communications (Feb 2008).
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/future-networks/projects-multibase-factsheet-
20080206_en.pdf

11. B. Parhami, Computer Arithmetic: Algorithm and Hardware Designs (Oxford University Press,
Oxford, New York, 2000)

12. U.H. Reimers, DVB-the family of international standards for digital video broadcasting. Proc.
IEEE 94(1), 173–182 (2006)

13. M. Speth, S. Fechtel, G. Fock, H. Meyr, Optimum receiver design for OFDM-based broadband
transmission – Part II: a case study. IEEE Trans. Commun. 49(4), 571–578 (2001)

14. J.J. van de Beek, M. Sandell, P.O. Borjesson, ML estimation of time and frequency offset in
OFDM systems. IEEE Trans. Signal Process. 45(7), 1800–1805 (1997)

15. L. Wilhelmsson, I. Diaz, T. Olsson, V. Öwall, Performance analysis of sign-based pre-FFT
synchronization in OFDM systems, in IEEE 71st Vehicular Technology Conference, May 2010,
pp. 1–5

16. Xilinx, Application Note XAPP224: Data Recovery (Jul 2005)
17. Xilinx, MicroBlaze Processor Reference Guide (v14.1) (Apr 2012)
18. X. Yang, IEEE 802.11n: enhancements for higher throughput in wireless LANs. IEEE Wirel.

Commun. 12(6), 82–91 (2005)
19. C. Zhang, T. Lenart, H. Svensson, V. Öwall, Design of coarse-grained dynamically recon-

figurable architecture for DSP applications, in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Dec 2009, pp. 338–343

ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/future-networks/projects-multibase-factsheet-20080206_en.pdf
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/future-networks/projects-multibase-factsheet-20080206_en.pdf

Chapter 6
Multi-Task MIMO Signal Processing

Driven by the requirement of multi-dimensional computing in contemporary
wireless communication technologies, reconfigurable platforms have come to
the era of vector-based architectures. In this chapter, the reconfigurable cell
array developed in Chaps. 4 and 5 is extended with extensive vector computing
capabilities, aiming for high-throughput baseband processing in MIMO-OFDM
systems. Besides the heterogeneous and hierarchical resource deployments,
a vector-enhanced SIMD structure and various memory access schemes are
employed. These architectural enhancements are designed to suffice stringent
computational requirements while retaining high flexibility and hardware efficiency.
Implemented in a 65 nm CMOS technology, the cell array occupies 8.88 mm2 core
area. To illustrate its performance and flexibility, three computationally intensive
blocks, namely channel estimation, channel matrix pre-processing, and symbol
detection, of a 4 � 4 MIMO processing chain in a 20 MHz 64-QAM Long
term evolution-advanced (LTE-A) downlink are mapped and processed in real-
time. Operating at 500 MHz and 1.2 V voltage supply, the achieved throughput is
367.88 Mb/s and the average power consumption is 548.78 mW. The corresponding
energy consumption for processing one information bit is 1.49 nJ. Comparing
to state-of-the-art implementations, the presented solution outperforms related
programmable platforms by several orders of magnitude in energy efficiency, and
achieves similar level of area and energy efficiency to that of ASICs.

6.1 Introduction

Given data receptions processed in DFE-Rx (Chap. 5) and transformed back to the
frequency domain via FFT [54], this chapter focuses on succeeding blocks in the
baseband processing chain of the receiver and considers systems employing MIMO
and OFDM technologies. In addition, 3GPP LTE-A is used as a case study to

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_6

77

78 6 Multi-Task MIMO Signal Processing

illustrate architectural development of the reconfigurable cell array. Support for
other or multiple radio standards can be developed using the similar approach.
However, the focus of this study is on vector enhancements of the cell array and
concurrent processing of multiple tasks.

Compared to single antenna systems, MIMO technology exploits design-of-
freedom in the spatial domain in addition to time and frequency. Therefore, it
provides significant improvements in system capacity and link reliability without
increasing bandwidth. However, the price-to-pay is higher complexity and energy
consumption due to increased computational dimensions, i.e., in proportion to the
antenna size, and required sophisticated signal processing, such as symbol detection
for inter-antenna interference cancellations. Moreover, when combining MIMO
with OFDM, it is required to perform the corresponding processing at every OFDM
subcarrier, posing even more stringent computational and energy requirements.
Under such circumstances, building architectures solely on scalar-based function
units requires a large number of resource deployments. Although the adoption of
massive scalar units provides high flexibility, it reveals poor hardware efficiency
in view of the parallel-structured MIMO-OFDM processing, since a large portion
of resource controls (e.g., processor instructions and memory configurations) are
identical and thus redundant. To achieve efficient computing, it is crucial to extend
architectures with vector processing capabilities by fully utilizing the extensive
Data-level parallelism (DLP) available in MIMO-OFDM systems.

In this chapter, the reconfigurable cell array presented in Chaps. 4 and 5 is
further developed, aiming at achieving a balance between processing performance,
flexibility, and hardware efficiency. Specifically, the architecture is partitioned into
distinct vector and scalar processing domains for efficient hybrid-format data com-
puting. In the vector domain, processing cells are deployed with vector-enhanced
SIMD cores and VLIW-style multi-stage computation chains to attain low-latency
high-throughput vector computing [55]. Memory cells are equipped with flexible
vector access schemes for relieving non-computational address manipulations
from processing cells. For performance evaluation, three tightly coupled baseband
processing blocks, which are unique and crucial in MIMO for exploiting its full
superiorities, are mapped onto the cell array in a time-multiplexed manner. The
three processing blocks are:

• Estimation of the channel state information using pilot tones,
• Channel matrix pre-processing that is an indispensable step for all kinds of

detection algorithms,
• Symbol detection that recovers the transmitted vector.

Figure 6.1 shows a simplified diagram of the MIMO-OFDM transceiver and
highlights the target processing blocks in this study. In addition to the vector
extension and task-level multiplexing, hardware efficiency of the cell array is further
improved by algorithm-level exploitation, in which more than 98 % of the total
operations involved in all three tasks are vectorized and unified, enabling extensive
parallel processing and hardware reuse.

6.1 Introduction 79

Pre-process

Sy
m

bo
l
de

te
ct

io
n

Channel

Tx

Rx

D
ig

it
al

 f
ro

nt
 e

ndF
F

T
F

F
TD

ec
od

in
g

IF
F

T
IF

F
T

C
P

C
P

C
P

C
P

Mapping

Mapping

Encoding

Encoding

Source

Source

This study

Channel
Estimation

L
ay

er
 m

ap
pi

ng
&

 p
re

-c
od

in
g

x1

xN

H

n1

nN

y1

yN

x̂

Fig. 6.1 Block diagram of the MIMO-OFDM transceiver. This study maps all three shaded blocks
onto the reconfigurable cell array

In Sect. 6.2, algorithm development for the MIMO processing tasks are
presented, including Minimum mean-square error (MMSE)-based channel
estimation, QR decomposition (QRD)-based channel matrix pre-processing, and
node-perturbation-enhanced MMSE symbol detection. In Sect. 6.3, performance,
computational complexity, and hardware friendliness of the adopted algorithms
are evaluated and analyzed in comparison with conventional approaches. Based on
the operation profile and the LTE-A specification, data processing flow and timing
analysis are conducted to provide guidance for succeeding hardware development.
Section 6.4 describes the detailed array architecture configured for MIMO-OFDM
signal processing. The focus is on vector extension, including heterogeneous
resource arrangement, processing cell enhancements, and various vector memory
access schemes. Section 6.5 summarizes implementation results and compares
performance with that of state-of-the-art platforms. Moreover, the flexibility of
the presented solution is further illustrated in Sect. 6.6 through a mapping of
an adaptive channel matrix pre-processor. The mapping makes use of dynamic
resource allocations to adopt appropriate pre-processing algorithms at run-time,
which provides a wide range of performance-complexity trade-offs. Section 6.7
concludes this chapter.

80 6 Multi-Task MIMO Signal Processing

6.2 MIMO Signal Processing

This study considers a MIMO-OFDM system with N transmit and receive antennas.
Without loss of generality, the following discussions are based on the consideration
of 20 MHz LTE-A downlink operating in normal Cyclic prefix (CP) mode with
4 � 4 antenna setup and 64-QAM modulation. Similar to the previous chapter, the
maximum excess delay of the propagation channel is assumed to be within the CP
of each OFDM symbol. Before presenting the target MIMO processing algorithms,
the LTE-A data structure is introduced and the system model described in Chap. 3
is briefly revisited.

Figure 6.2 shows the structure of a resource block in LTE-A. Each resource
block contains 12 consecutive subcarriers and 7 OFDM symbols over a time slot of
0.5 ms. To support operations such as synchronization and channel estimation, pilot
tones are distributed over the time-frequency grid. Under the common assumption
of quasi-static1 channel modeling [23], the accuracy of channel estimates can be
improved by inserting pilot tones in the middle of each time slot (symbol 4) into
the pilot vector at symbol 0 [45]. This way, channel estimation is performed only
once in each time slot, followed by channel matrix pre-processing, while symbol
detection is required on every data-carrying subcarrier.

Assuming perfect synchronization and front-end processing, the received vector
y after CP removal and FFT can be expressed as

y D Hx C n; (6.1)

P

P

P

PP

P

P

Pilot toneData tone

P

P

P

P

P

P

Time Time slot
(tslot = 0.5 ms)

Fig. 6.2 Pilot pattern for four antenna ports in one LTE-A resource block

1Channel coefficients of each subcarrier are stationary over time within one time slot, i.e., 0.5 ms
in LTE-A.

6.2 MIMO Signal Processing 81

where H denotes the complex-valued channel matrix, x is the transmitted vector
obtained by mapping a set of encoded information bits onto a Gray-labeled complex
constellation, and n is the Independent and identically distributed (i.i.d.) complex
Gaussian noise vector with zero mean and variance �2

n . The average transmit power
of each antenna is normalized to one, such that EfxxHg D IN , where IN is an identity
matrix of size N and .�/H denotes a Hermitian transpose.

In the following, algorithms adopted for the three processing tasks are presented
in detail. It should be pointed out that algorithm selections are not the main scope of
this chapter. They are selected to make use of essential architectural characteristics
and to illustrate the performance of the hardware platform.

6.2.1 Channel Estimation

Based on the scattered pilot arrangement (Fig. 6.2), pilot-aided comb-type channel
estimation scheme [25] is employed. It consists of two computation steps. First,
channel coefficients at pilot positions (denoted by subscript p) are computed by
using Least square (LS) algorithm,

hp;LS D ypx�1
p : (6.2)

Second, channel coefficients at data-carrying subcarriers are estimated by interpo-
lating and extrapolating hp;LS in the frequency domain. This process may be seen as
a linear filtering of the LS estimation

h D Whp;LS; (6.3)

where the filter function W varies with different algorithms (mentioned in
Chap. 3.2). Among them, Linear MMSE (LMMSE) estimation algorithm aims
to approach the optimal result by using second-order statistics of the channel
conditions and noise power. It is defined as

hMMSE D Whp;LS D Rhdhp

�

Rhphp C ˇ

SNR
IN

��1

hp;LS; (6.4)

where Rhdhp is the channel cross-correlation between pilot and data-carrying
subcarriers, Rhphp represents the channel auto-correlation between pilot subcarriers,
SNR denotes the average signal-to-noise ratio of received signals, and ˇ is a
constellation dependent constant, e.g., 180

67
for 64-QAM.

82 6 Multi-Task MIMO Signal Processing

Robust MMSE Estimator

A major drawback of the LMMSE estimator is its high computational complexity.
One reason for this is the need for re-computation of W every time SNR and/or
the correlation matrices change. This is infeasible for practical implementations,
especially when the number of subcarriers is large. Instead, the Robust MMSE
(R.MMSE) algorithm [14] is adopted in this study. The R.MMSE estimator
completely removes the need for run-time W calculations by employing a static
function, designed to safely tolerate various channel scenarios and rapid channel
variations. The static W is generated by using underestimated correlation matrices
and an overestimated SNR value. Specifically, the correlation matrices are pre-
computed based on two assumptions. First, the propagation channel obeys a uniform
PDP. Second, the maximum excess delay of the channel is equal to the length
of CP. This is illustrated in Fig. 6.3a. For comparisons, PDPs defined for some
typical channel scenarios in LTE-A are included. As shown, they are all covered
by the envelope of the uniform PDP used in R.MMSE, revealing the underestimated
design strategy. Regarding SNR, a high value is preferable. This can intuitively be
explained by considering a high-pass filtering process, where the value of SNR acts
as the cut-off frequency of the filter. Channel estimation errors are concealed in
noise with low SNR (i.e., being attenuated in the stop-band region), but tend to
be pronounced with high SNR. Hence, it is better to push SNR towards a high
value region to keep the channel estimation error low for a large SNR range. Using
these static parameters, W becomes a constant scaling matrix that may be prepared
off-line. To sum up, compared to LMMSE, the R.MMSE approach reduces the
complexity at the cost of increased estimation error. Nevertheless, it performs better
than the LS estimator, because of the use of second-order channel statistics and the
reduction of noise enhancements.

0 200 400 600 800 1000 12000

0.2

0.4

0.6

0.8

1

Frequency subcarrier

Co
rr

el
at

io
n

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1
Length of CP

0 1 2 3 4 5 6
-20

-15

-10

-5

0

Delay [µS]

a b

PD
P

[d
B]

3GPP EPA
3GPP EVA
3GPP ETU
Uniform

Fig. 6.3 (a) The uniform PDP used in the R.MMSE estimator. PDPs of some typical channel
scenarios in LTE-A [1] are included for comparisons. (b) An illustration of the frequency-domain
correlation between subcarriers in 20 MHz LTE-A, under the case of uniform PDP

6.2 MIMO Signal Processing 83

Modified Robust MMSE Estimator

Although (6.4) in R.MMSE is reduced to a constant matrix multiplication, it
is still computationally intensive when considering the dimension of hp;LS. For
example, the vector has a size of 400 � 1 for 20 MHz LTE-A. To further reduce
the complexity, a sliding window approach is applied to the R.MMSE algorithm,
named as R.MMSE-SW for short. The key is to apply low-rank approximations
[14] on Rhdhp and Rhphp based on the fact that adjacent subcarriers generally
have dominant contribution to correlation coefficients. Figure 6.3b illustrates the
correlation between the first frequency subcarrier and all remaining ones under the
case of the uniform PDP. As an example, the first 100 subcarriers contribute to
more than 95 % of the total correlation value. Therefore, a frequency correlation
window (NSW) containing only a number of neighboring pilots is applied to each
estimation. As a consequence, the size of the matrix multiplication in (6.4) is
dramatically reduced compared to the full-window case, i.e., when the correlation
of all subcarriers are considered. In R.MMSE-SW, the size of NSW is a performance-
complexity trade-off parameter, which may be adjusted depending on the channel
condition and performance demand.

6.2.2 Channel Matrix Pre-processing

Each estimated channel matrix OH needs to be further processed before being sent to
the succeeding symbol detector. There are two commonly used channel matrix pre-
processing methods, inversion and QRD of the channel matrix, required in linear
and tree-search based detectors, respectively. For matrices of size 4 � 4 or larger, it
has been shown in [15] that matrix inversion can be efficiently computed by means
of QRD. Hence, the QRD-based channel matrix pre-processing method is adopted.
In addition, sorting is applied to the channel matrix during the QRD process, aiming
to improve the detection performance. This is commonly referred to as Sorted QR
decomposition (SQRD) [49].

SQRD starts by column-wise permuting OH based on the post-detection SNR [24]
of each spatial stream. Thereafter, OH is decomposed into an unitary matrix Q and
an upper triangular matrix R with real-valued non-negative elements on the main
diagonal. With these, the QRD-based channel matrix pre-processing is expressed as

OH D OHpPT D QRPT ; (6.5)

where the N � N-dimensional permutation matrix P contains the corresponding
sorting sequence and the operator .�/T denotes a matrix transpose.

84 6 Multi-Task MIMO Signal Processing

MMSE-SQRD Algorithm

Considering the use of MMSE criterion during the adopted symbol detection,
presented further in Sect. 6.2.3, MMSE-SQRD algorithm [50] is employed to pre-
process OH. The basic idea is to reduce the probability of ill-conditioned channel
matrix by taking the additive noise into account. This is equivalent to performing
SQRD of an augmented matrix of size 2N � N,

OH D
� OH

�nIN

�

D OHpPT D QRPT D
�

Qa

Qb

�

RPT ; (6.6)

where Qa, Qb, and R have the same size as OH, i.e., N � N. One interesting property
of (6.6) is that R�1 is obtained as a by-product of the matrix decomposition process,
i.e.,

R�1 D 1

�n
Qb: (6.7)

Therefore, no explicit matrix inversion is needed when computing OH�
, where .�/�

denotes a matrix pseudo-inverse. With the augmented matrix OH, the system model
in (6.1) can be rewritten as

Qy D Rxp C Qnp; (6.8)

where

Qy D QH

�
y

0N�1

�

D QH
a y; (6.9)

xp D PTx is the row-wise permuted x, and Qnp D QH
a n is the noise vector that has

the same statistics as n.
Compared to (6.5), the decomposition of OH results in an increased computational

complexity, by roughly 50 %, because of the doubled matrix dimension. However,
MMSE-SQRD improves the performance of linear detectors and achieves a signifi-
cant complexity reduction in tree-search based detection algorithms [36].

Iterative Sorting and MGS-QRD Algorithm

The sorting of OH involves a matrix inversion, required for evaluating the post-
detection SNR (�i) of each spatial stream. Under the assumption of EfxxHg D IN ,
�i is defined as [24]

6.2 MIMO Signal Processing 85

�i D 1

�2
n

� OHH OH
��1

i;i

; (6.10)

where .�/i denotes the column vector and .�/i;i is the .i; i/th matrix element. For
practical implementations, approximation of (6.10) is commonly used for reducing
the computational complexity, such as the one suggested in [49]

�i �
�
�
� Ohi

�
�
�

2

2
; (6.11)

with k � k2 denoting `2-norm. Based on (6.11), various sorting strategies exist.
Commonly used ones are one-time and iterative sorting [49]. Different from the
former one, the iterative sorting approach keeps track of column changes in OH
during the decomposition process, which leads to a better sorting result. The
iterative sorting steps are shown in Algorithm 1 on lines 3, 5, and 12.

For QRD computations, several well-known methods exist, such as Gram-
Schmidt orthogonalization, Householder transformation, Givens rotation, and their
derivatives [19]. The Gram-Schmidt process obtains the orthogonal basis spanning
the column space of the matrix by the orthogonality principle [27]. The Householder
transformation handles column vectors of the matrix by reflection operations [19].
Givens rotation operates on one element at a time by using a sequence of unitary
transformations [36]. Considering the accuracy and numerical stability, computa-
tional complexity, and hardware reusability, Modified Gram-Schmidt (MGS) [19]
method is used for implementing the QRD in this study. The MGS-QRD algorithm
iteratively computes the Q and the R matrix in N steps. Core operations of MGS-
QRD per iteration i are summarized in Algorithm 1 from lines 7 to 12.

Algorithm 1 MGS-based MMSE-SQRD algorithm

1: OH D Œ OH; �nIN 	T

2: Q D OH; R D 0N�N ; P D IN

3: � D
h
kq

1
k2

2; kq
2
k2

2; : : : ; kq
N

k2
2

iT

4: for i D 1; 2; : : : ; N do
5: j D arg minlDi;iC1;:::;N �l % Iterative sorting
6: Exchange columns/elements i and j in Q, R, P, and �

7: ri;i D p
�i

8: q
i
D q

i
=ri;i

9: for k D i C 1; i C 2; : : : ; N do
10: ri;k D qH

i
q

k
11: q

k
D q

k
� ri;kq

i

12: �k D kq
k
k2

2 % Column-norm updating
13: end for
14: end for

86 6 Multi-Task MIMO Signal Processing

6.2.3 Symbol Detection

With the received signal y and pre-processed channel matrix OH, transmitted vector
x is recovered by using a MIMO symbol detector. As described in Chap. 3.2,
there are two commonly used detection schemes. Linear detection algorithms,
such as Zero-forcing (ZF) and MMSE, mainly consist of vector operations and
thus are architecture-friendly to vector-based platforms. However, they suffer from
significant performance degradation compared to the optimal Maximum-likelihood
(ML) detection, especially in frequency-selective fading channels. On the other
hand, near-ML tree-search algorithms, e.g., Sphere decoder (SD), K-Best, and their
derivatives [7, 22], do not map efficiently to vector-based architectures. This comes
from the fact that the tree-search procedure deals with one spatial layer at a time
and involves massive sequential scalar operations, which are frequently switched
between node expansion, partial Euclidean distance sorting, and branch pruning.
Therefore, the native vector structure of MIMO data streams is destroyed. To
tackle this problem, detection algorithms, such as Fixed-complexity sphere decoder
(FSD) [4] and Selective Spanning with Fast Enumeration (SSFE) [37], are used
to bring in vectorized operations that may be performed independently at each
layer. However, they do not solve the essential problem of tree-structured detection
schemes. Data dependency between spatial layers still restrains the full potential of
parallel architectures.

To bridge the algorithm–architecture gap, illustrated in Fig. 6.4, a highly paral-
lelized symbol detection algorithm is developed. It provides near-ML performance,
like tree-search algorithms, while retaining the inherent vectorized operations of
linear detection schemes. This is achieved by employing a vector-level closest
point search scheme in conjunction with linear detectors. In this study, the adopted
algorithm is built upon a linear MMSE detector and is named as Node-Perturbation-
enhanced MMSE (MMSE-NP). As a proof-of-concept, this study focuses on the
hard-output symbol detection.

Fig. 6.4 An illustration of
the algorithm–architecture
gap between linear and
tree-search based detection
schemes

18 20 22 24 26

10
-2

10
-1

10
0

SNR [dB]

Fr
am

e
Er

ro
r R

at
e

(F
ER

)

K-Best, K=10
FSD
MMSE

Tr
ee

-s
ea

rc
h

ba
se

d
de

te
ct

io
n

Linear
detection

Parallelism &
Complexity

Performance

6.2 MIMO Signal Processing 87

Parallel Node Perturbation

MMSE-NP starts by obtaining an initial result using a linear MMSE detection

xMMSE
p D R�1 Qy D 1

�n
QbQH

a y: (6.12)

Hard-output detection result OxMMSE
p is generated by slicing xMMSE

p to the nearest

constellation point, i.e., OxMMSE
p D Q 	

xMMSE
p

. Thereafter, a detection search space

is defined by expanding each scalar MMSE symbol with a number of neighbors.
Specifically, for the ith symbol of the N-length MMSE vector (OxMMSE

p.i/), a set of
.i � 1/ locally nearest sibling symbols is found:

xNB
p.i/ D Œx1

p.i/; � � � ; x!
p.i/; � � � ; x.i�1/

p.i/ 	; (6.13)

with their distances to OxMMSE
p.i/ sorted in ascending order, as

jx1
p.i/ � OxMMSE

p.i/ j2 � � � � � jx!
p.i/ � OxMMSE

p.i/ j2 � � � � (6.14)

Figure 6.5a and b illustrate the initial detection and search space delimitation for a
case of 2 � 2 MIMO and 16-QAM modulation.

Once the search space is delimited, detection search paths are defined by
generating a list S of candidate vectors using symbols drawn from the search space.
Two methods exist for Candidate vector generation (CVG). First, occurrence of only

Tx symbol
MMSE output
Initial detection
Neighbor node
Search space

ba

dc

Fig. 6.5 An illustration of the MMSE-NP detection for a 2 � 2 MIMO setup and 16-QAM
modulation. (a) Initial detection by slicing MMSE symbols to nearest constellation points.
(b) Parallel node extension to include nearest neighbors into a search space. (c) Single-error
candidate vector generation (SE-CVG). (d) Full-error candidate vector generation (FE-CVG)

88 6 Multi-Task MIMO Signal Processing

one error is assumed during the initial detection. Accordingly, candidate vectors are
generated by replacing only one symbol in OxMMSE

p at a time, while keeping others
unchanged, i.e., for the expanded xNB

p.i/, .i � 1/ candidate vectors are generated as

s1
i D ŒOxMMSE

p.1/ ; � � � ; x1
p.i/; � � � ; OxMMSE

p.N/ 	;

s2
i D ŒOxMMSE

p.1/ ; � � � ; x2
p.i/; � � � ; OxMMSE

p.N/ 	;

:::

s.i�1/
i D ŒOxMMSE

p.1/ ; � � � ; x.i�1/

p.i/ ; � � � ; OxMMSE
p.N/ 	:

(6.15)

After (6.15) being applied to all xNB
p.i/ (i 2 Œ1; N), L D PN

iD1 i candidate vectors are

obtained in the list S including the initial MMSE result OxMMSE
p . In low-dimensional

MIMO systems, such as 2 � 2, single-error dominates error events in the MMSE
detection. However, for 4 � 4 or larger MIMO configurations, considering only one
error in the initial detection is far from sufficient to cover most of the error events due
to the increased degree of spatial selectivity. Hence, the second method considers
a full-error scenario, i.e., assuming all symbols in xp are erroneously detected. In
consequence, all combinations of expended symbols xNB

p.i/ in S have to be included,

resulting in totally L D QN
iD1 i candidate vectors to be searched. Figure 6.5c and

d illustrate the Single-Error (SE-CVG) and Full-Error (FE-CVG) candidate vector
generation schemes. Performance of symbol detection, in terms of Frame error rate
(FER), using these two methods are compared in both 2 � 2 and 4�4 MIMO systems
with 64-QAM modulation, see Fig. 6.6. As expected, performance of the SE-CVG
scheme approaches to its full-error counterpart in the 2 � 2 MIMO system, whereas
a large performance degradation is observed in the 4 � 4 case. In comparison, the
FE-CVG scheme substantially improves the detection performance, i.e., by �2 dB
at FER D 10�2 (see Fig. 6.6). Hence, this study adopts the FE-CVG scheme.

The final detection result is generated by searching within S and finding the
vector with the smallest squared Euclidean distance (ED), i.e.,

Oxp D arg min
xp2S

�
�
�Qy � Rxp

�
�
�

2

2
: (6.16)

The recovered transmitted vector Ox with its original symbol sequence is obtained by
reordering the rows of Oxp with the permutation matrix P, i.e.,

Ox D POxp: (6.17)

Compared to conventional tree-search based algorithms, MMSE-NP eliminates
scalar and data dependent operations, as symbol expansions, candidate generations,
and evaluations are carried out in parallel on all spatial layers. As a result, it provides
extensive DLP for efficient implementations on vector-based architectures.

6.2 MIMO Signal Processing 89

Fig. 6.6 Performance comparisons of different Candidate vector generation (CVG) and symbol
expansion schemes

Imbalanced Node Perturbation

The perturbation parameter i in (6.13) needs to be adjusted to achieve a good
performance-complexity trade-off. Basically there are two strategies to deter-
mine i. The first approach, referred to as Equally distributed (EQD) expansion,
is to consider the same number of neighbors around each scalar symbol OxMMSE

p.i/ ,
i.e., i D . However, EQD expansion may not be cost effective from a complexity
point of view, as channel properties of each antenna port is not utilized when
determining the search space. Consequently, search paths in S may be over-selected,
which increases computational complexity in (6.16) without any improvement in
performance. Therefore, an IMbalanced distributed (IMD) expansion scheme is
introduced to treat symbol expansion in OxMMSE

p.i/ differently and assign i depending
on the channel condition. The idea is to include more neighbors for symbols located
in spatial layers with lower post-detection SNRs (� in (6.10)), i.e., i > j if
�i < �j. These two expansion schemes are illustrated in Fig. 6.7 using the previous
2 � 2 MIMO setup.

Recall that OH is column-wise permuted during MMSE-SQRD with their corre-
sponding �i sorted in ascending order, i.e., � D Œ�min; � � � ; �max	, the assignments
of i are simplified by arranging the vector � in descending order, namely � D
Œmax; � � � ; min	.

Thanks to the use of channel properties, the IMD expansion scheme provides
better performance than EQD while using fewer number of candidate vectors. As
demonstrated in Fig. 6.6, detection using IMD with an expansion vector � D
Œ5; 4; 3; 2	 is 0:6 dB better than the case of EQD with D 4 at FER D 10�2,

90 6 Multi-Task MIMO Signal Processing

ba

Lower SNR

Higher SNR

Fig. 6.7 Symbol expansion schemes, (a) Equally distributed (EQD) and (b) IMbalanced dis-
tributed (IMD)

even though the latter one uses two times more candidate vectors. Hence, the IMD
expansion scheme is employed in this study. The exact � assignment is a design
parameter, which should be fine tuned at run-time.

Successive Partial Node Expansion (SPE)

The average error rate in a MIMO system is generally dominated by the spatial
stream that suffers from the worst channel condition. Hence, node expansion for
symbol with the smallest � value, i.e., OxMMSE

p.1/ , needs to be handled with special

care. According to the IMD expansion scheme, OxMMSE
p.1/ needs to be expanded with

more neighbors to mitigate the high error probability. This strategy results in larger
search space, which considerably increases the total number of candidate vectors,
incurring huge computational complexity for the minimum-search process in (6.16).

To tackle this issue, a Successive partial node expansion (SPE) scheme is
developed. It reduces the search space for OxMMSE

p.1/ without sacrificing detection
performance. The basic idea is to utilize the property of the upper triangular matrix
R and the fact that the symbol with �min has been moved to the first layer after
MMSE-SQRD. With rj;1 (j D Œ2; � � � ; N) being zeros, the detection of xp.1/ is
solely dependent on Qy1. Thereby, an optimal expansion of xp.1/ can be obtained
by simply solving a linear equation, given that other symbols have been expanded
prior to xp.1/. More specifically, SPE starts by expanding “stronger” symbols

(i.e., ŒOxMMSE
p.N/ ; � � � ; OxMMSE

p.2/) and then generates partial candidate vectors xŒ1	
p of size

.N � 1/. Here, xŒ1	
p D Œxp.2/; � � � ; xp.N/	

T denotes the sub-vector of xp with the 1st

symbol xp.1/ being omitted. Thereafter, xp.1/ is obtained by substituting xŒ1	
p into the

1st row of the system model (6.8):

Qy1 D
NX

jD1

r1;jxp.j/ D r1;1xp.1/ C
NX

jD2

r1;jxp.j/ D r1;1xp.1/ C rŒ1	
1 xŒ1	

p

xp.1/ D Q
��

Qy1 � rŒ1	
1 xŒ1	

p

�.
r1;1

�
; (6.18)

6.2 MIMO Signal Processing 91

where rŒ1	
1 D Œr1;2; � � � ; r1;N 	. For all L possible xŒ1	

p candidates, L number of xp.1/

are found. This way, the search space for OxMMSE
p.1/ is reduced to only include symbols

that, in conjunction with xŒ1	
p , generate the most likely search paths, i.e., symbols

that result in the smallest ED for the given xŒ1	
p vectors. Thus, the SPE scheme

dramatically reduces the number of candidate vectors and thus the complexity
of (6.16), while providing an equivalent performance as if all possible xp.1/ symbols
were included in the candidate vectors.

Due to the successive expansion of symbol OxMMSE
p.1/ , the SPE scheme partially

breaks the structure of the N-length vector OxMMSE
p . However, this adverse effect

is substantially outweighed by the reduction of costly ED calculations and the
efficiency of the optimal OxMMSE

p.1/ expansion.

Summary and Discussion

Figure 6.8 summarizes the computation procedure of the MMSE-NP algorithm. It
contains four main processing stages: initial linear MMSE detection, IMD symbol
expansion, ED calculation, and final detection. In Fig. 6.8, shaded boxes depict
vector operations and layered boxes indicate parallel processing. ˚ .l/ represents
loops with count l, while V and M denote vector and matrix operations, respectively.
As shown, most of the boxes are shaded in the figure, indicating a highly vectorized
algorithm. Besides, the overall dataflow is regular, even though one loop structure
is found in an inner block, i.e., symbol expansions of ŒOxMMSE

p.2/ ; � � � ; OxMMSE
p.N/ 	.

Fig. 6.8 Computation procedure of the MMSE-NP algorithm

92 6 Multi-Task MIMO Signal Processing

6.3 Algorithm Evaluation and Operation Analysis

This section evaluates the adopted algorithms in terms of processing performance
and computational complexity. As a metric for measuring performance, FER is used
to show the effectiveness of the algorithms. Regarding computational complexity,
the number of arithmetic operations is analyzed for data processing within one LTE-
A time slot. Hardware friendliness is evaluated by analyzing the DLP and operation
sharing of the three algorithms. Besides the operation analysis, task planning is
conducted according to the timing specification of LTE-A.

6.3.1 Simulation Environment

Based on the structure of the MIMO-OFDM transceiver (Fig. 6.1), a simplified sys-
tem setup is implemented in MATLAB with a special focus on the LTE-A system.
Figure 6.9 shows the block diagram of the employed simulation environment. In
the current setup, data are transmitted through a baseband spatially uncorrelated
MIMO channel, where the maximum excess delay is smaller than the length of CP.
Accordingly, domain (time-frequency) transformations and CP insertion/removing
blocks are omitted. In addition, no pre-coding is implemented at the transmitter and
MIMO systems are assumed to operate in a spatial-multiplexing mode. Moreover,
the front-end block is omitted under assumptions of perfect front-end processing at
the receiver, e.g., perfect synchronization and IQ-imbalance compensation.

Despite the system-level simplifications, the simulation setup is flexible as each
block in Fig. 6.9 can be configured with various parameters. Based on the error
correcting code specified in [2], a parallel concatenated turbo code [6] is adopted
at the transmitter. Input parameters for this block are the coding rate and the
interleaver block size. The generator polynomials are g0.D/ D 1 C D2 C D3 and
g1.D/ D 1 C D C D3. The modulation (mapping) block supports constellation
sizes from BPSK to 64-QAM. Before inserting data and pilot tones into the LTE-A
time-frequency grid, the layer mapping block maps encoded and modulated source
data onto multiple antennas. Currently supported antenna sizes are 2 � 2 and 4 � 4.

P
re

-p
ro

ce
ss

Sy
m

bo
l
de

te
ct

io
n

Tx Rx

D
ec

od
in

gMapping

Mapping

Encoding

Encoding

L
ay

er
 m

ap
pi

ng

M
ul

ti
-p

at
h

fa
di

ng

C
ha

nn
el

E
st

im
at

.

Channel

n1

nN

Fig. 6.9 Block diagram of the employed simulation environment

6.3 Algorithm Evaluation and Operation Analysis 93

Table 6.1 Parameters for
performance simulations in a
LTE-A downlink

Block Parameter Value

Encode Coding rate 1/2

Interleaver block size 5376

Mapping Constellation size 64-QAM

Channel Antenna size 4 � 4

Bandwidth 20 MHz

Multi-path fading propagation 3GPP EVA

Maximum Doppler frequency 70 Hz

Time-variant/invariant Quasi-static

Decode Iteration number 6

The size of the time-frequency grid is determined by the allocated bandwidth.
All bandwidth configurations specified in LTE-A are included, varying from 1.4
to 20 MHz. The propagation channel is modeled as a frequency-selective fading
channel, in which its multi-path delay profile complies with the ones defined in the
3GPP specification [1]. Three channel models are supported, Extended pedestrian
A (EPA), Extended vehicular A (EVA), and Extended typical urban (ETU). Besides,
the maximum Doppler frequency is used for channel generations. Moreover, both
time-invariant (i.e., quasi-static) and variant channel modeling are implemented.
The former one assumes that channel coefficients remain unchanged within one
LTE-A time slot, whereas the latter one emulates the scenario of constantly
changing channels. The decoder at the receiver adopts the Bahl–Cocke–Jelinek–
Raviv (BCJR) [3] algorithm with a configurable iteration number.

Detailed parameters used in the following performance simulations are summa-
rized in Table 6.1. For each simulation, Ns LTE-A subframes (14 OFDM symbols)
are transmitted, where Ns is dynamically adjusted to take account of different FERs
with respect to SNR values. With a target of FER D 10�2 that is a commonly used
design criterion, Ns varies from 500 to 6000.

6.3.2 Performance Evaluation

Using the presented simulation environment, performance of the adopted MIMO
processing algorithms are evaluated. It starts with analyzing the frequency cor-
relation window (NSW) in the R.MMSE-SW estimator and the node perturbation
parameter (�) in the MMSE-NP detector. Off-line decisions on exact NSW and
� values are not required, as they can be fine-tuned at run-time thanks to the
hardware flexibilities (Sect. 6.4). Therefore, the focus of the following analysis is
to compare these algorithms to other alternatives. One example is to see whether
the MMSE-NP approach bridges the algorithm–architecture gap between linear
and tree-search based detectors. Additionally, the analysis also serves to make
better design trade-offs, for example, by studying both positive- and side-effects
of parameter variations.

94 6 Multi-Task MIMO Signal Processing

a b

Fig. 6.10 Evaluation of channel estimator, (a) R.MMSE in comparison to LMMSE and LS
algorithms, (b) comparison of different correlation window size NSW in R.MMSE-SW

Channel Estimation

To minimize performance impacts from other processing tasks, the R.MMSE
algorithm is firstly compared with LMMSE and LS estimator without involving
channel matrix pre-processing and symbol detection. Figure 6.10a shows the
performance comparison of the three estimation algorithms in terms of Mean
squared error (MSE). It demonstrates that R.MMSE achieves a better estimation
result than the LS approach, e.g., by 4.7 dB under this simulation setup, thanks to
the reduction of noise enhancements and the use of second-order channel statistics.
Compared to the LMMSE estimator, some performance degradation is observed,
mainly due to the use of the underestimated function W (6.4). However, when
considering its performance robustness and a huge complexity gain to the LMMSE
method (i.e., more than two orders of magnitude as shown further in Sect. 6.3.3),
the R.MMSE approach is more attractive to implement in practice, especially for
resource- and energy-limited devices.

Using the same simulation setup, Fig. 6.10b compares R.MMSE-SW and
R.MMSE with respect to different NSW values. Numbers at the vertical axis denotes
the minimum SNR required to reach the level of MSE D 10�3, normalized to
the full-window case R.MMSE. Large values of NSW, as expected, lead to small
performance degradation in comparison to the R.MMSE case, but result in high
computational complexity.

Based on these analysis, the adopted R.MMSE-SW estimator is further evaluated
on a system-level, namely by including succeeding channel matrix pre-processing
and symbol detection and measuring the output FER. Meanwhile, required
coefficient ROM sizes are calculated to illustrate (to some extent) hardware costs
with respect to different NSW values. A more detailed operation analysis is further
presented in Sect. 6.3.3. To avoid any influence between R.MMSE-SW and MMSE-
NP detector, the conventional near-ML FSD algorithm is used. Figure 6.11 shows
the achieved FERs versus (ROM) sizes for various NSW values. Both coordinates

6.3 Algorithm Evaluation and Operation Analysis 95

Fig. 6.11 Performance versus coefficient ROM size for different NSW values in the R.MMSE-SW
estimator. Metrics are normalized to that of the full-window case—R.MMSE, which has 100 %
ROM size and zero required SNR at FER D 10�2

are normalized to the reference case R.MMSE. It clearly shows that small values
of NSW reduce ROM size substantially while retaining a good system performance.
As an example, with NSW D 24, the required ROM size is reduced by 99.64 %
compared to that of the R.MMSE, at the cost of less than 1 dB FER degradation.
These differences in FER diminish with increasing NSW values. To conclude, NSW

should be fine-tuned at run-time to achieve on-demand performance-complexity
trade-offs.

Symbol Detection

In this section, the node perturbation parameter � in the MMSE-NP detector is
evaluated in comparison to conventional linear and tree-search based detection
algorithms, e.g., “linear MMSE” and “K-Best and FSD”, respectively. To mini-
mize performance impacts, these detectors are evaluated without performing other
processing tasks. In other words, it is assumed that channel knowledge is perfectly
estimated at the receiver and that channel matrices are properly processed by
performing inversion (with the MMSE criterion) for the linear MMSE detector and
QRD for the K-Best and FSD cases.

Figure 6.12 shows simulated FERs of different detection algorithms. For the
MMSE-NP detector, the notation � D ŒF; � � � 	 represents the employed SPE
scheme (Sect. 6.2.3). Thanks to the developed techniques in MMSE-NP, i.e., node
perturbation, IMD, and SPE, the performance of the linear MMSE detector is
enhanced substantially. More importantly, an FER performance close to that of the

96 6 Multi-Task MIMO Signal Processing

Fig. 6.12 Comparison between linear, tree-search based, and the employed detection algorithms

K-Best detector and FSD is achieved. For � D ŒF; 5; 4; 3	, performance degradation
to both K-Best decoder (with K D 10) and FSD is less than 1 dB at FER D 10�2.
Better performance is obtained by including more candidate vectors in the symbol
expansion at the expense of implementation complexity. This is similar to the tree-
search based detectors with different number of branch traversals, e.g., K-Best
algorithm with different K values. Figure 6.12 also compares the FER of different �

assignments. Comparing the cases � D ŒF; 5; 4; 3	 and � D ŒF; 5; 3; 1	, the former
one is 1 dB better than the latter case, but with four times more candidate vectors
involved in detection, thus demands more computational power.

Using the number of visited nodes as a first-order complexity analysis, Table 6.2
summaries the performance metrics for the four algorithms. Based on the node
perturbation scheme, the node expansion number of the MMSE-NP detection is
formulated as

NMMSE-NP D
NX

iD1

iNiC1 D
NX

iD1

i

0

@
NY

jDiC1

j

1

A ; (6.19)

where N denotes the number of antennas, Ni is the number of nodes at the ith spatial
stream, and N1 D 1 D 1 when using the SPE scheme. The total number of visited
nodes in the K-Best algorithm [33] is calculated as

NK-Best D M
NX

iD1

NiC1
F ; (6.20)

6.3 Algorithm Evaluation and Operation Analysis 97

Table 6.2 Comparison of visited nodes and required SNR at FER D 10�2

Parameter Nvisited SNR [dB] @FER D 10�2

K-best K D 10 1984 � (ref.) 19.39 0

FSD P D 1 256 7.75� 19.47 C0:08

MMSE-NP �D ŒF; 5; 4; 3	 135 14.70� 20.20 C0:81

�D ŒF; 5; 3; 1	 34 58.35� 21.34 C1:95

MMSE N/A N/A N/A 25.48 C6:09

where Ni
F D min.K; MNiC1

F / denotes the number of parent nodes at the ith layer
with M being the constellation size. For the FSD [4], the number of visited nodes is

NFSD D
NX

iD1

NY

jDi

pi: (6.21)

It shows in Table 6.2 that the number of nodes visited in the MMSE-NP algorithm
with � D ŒF; 5; 4; 3	 is 15 and 1.9 times fewer than that of the K-Best detector
and FSD, respectively, which demonstrates the cost effectiveness of the MMSE-NP.
In summary, the presented MMSE-NP algorithm bridges the algorithm–architecture
gap between linear and tree-structured detection schemes. In addition, with imbal-
anced � assignments, the algorithm is highly scalable, since the symbol detection
of each spatial stream can be tuned dynamically to adapt to instantaneous channel
condition or currently available computational resources.

MIMO Signal Processing

After the analysis of individual algorithms, the MIMO processing tasks are eval-
uated together by using different combinations of algorithms. This is aimed to
compare the employed processing scheme, “R.MMSE-SW+MMSE-NP,” with other
approaches with respect to performance and computational complexity. For the
following analysis, parameters of NSW D 24 and � D ŒF; 4; 3; 2	 are used
for R.MMSE-SW and MMSE-NP, respectively. Figure 6.13 gives a full picture
of the performance-complexity trade-offs for different algorithm sets. For better
illustration, they are grouped into three clusters based on the involved channel
estimation method. In Fig. 6.13, numbers at the vertical axis denotes the minimum
SNR required to achieve the target 10�2 FER, while the computational complexity
measured in the number of operations required in one LTE-A time slot is shown
along the horizontal axis. In addition, both coordinates are normalized to a
reference case, “LMMSE+FSD”, which provides the best performance among these
algorithms. According to this setup, algorithms whose coordinates are closed to the
bottom-left corner are desired.

98 6 Multi-Task MIMO Signal Processing

Lower complexity

Be
tt

er
 p

er
fo

rm
an

ce

10
-3

10
-2

10
-1

10
0

0

2

4

6

8

10

Normalized complexity

FSD
MMSE-NP
MMSE

LMMSE
Ch. Est.

Cl
os

e
to

FS
D

 d
et

ec
tio

n

Performance Gain
vs. LS Ch. Est.

Complexity gain
vs. R.MMSE+FSD

Reference
case

Similar complexity
vs. LS Ch. Est.

N
or

m
al

iz
ed

 S
N

R
re

qu
ire

m
en

t @
 F

ER
=1

0-2
 [d

B]

R.MMSE-SW
+ MMSE-NP
(This work)

Detection:

Fig. 6.13 Analysis of processing performance and computational complexity. Metrics are normal-
ized to that of the reference case “LMMSE+FSD” which has unit computational complexity and
zero required SNR at FER D 10�2

It shows in Fig. 6.13 that the adopted scheme “R.MMSE-SW+MMSE-NP”
achieves a good design trade-off between performance and complexity. For instance,
it provides more than 7 dB performance gain to the “LS+MMSE” method (upper-left
corner) and achieves more than two orders of magnitude complexity reduction to the
“LMMSE+FSD” case (bottom-right corner). It should be re-emphasized that NSW

and � are tunable parameters and should be optimized at run-time. In the following
section, DLP, operation sharing, and computational complexity of the three tasks
are analyzed in detail.

6.3.3 Operation and Complexity Analysis

With the presented algorithms, primitive operations required by the R.MMSE-SW
estimator, MMSE-SQRD pre-processor, and MMSE-NP detector are characterized.
Table 6.3 summarizes required vector and scalar operations and their proportion
in each task. Two meaningful properties can be observed. First, most of the
operations are at vector-level thanks to the development of algorithm vectorization.
Specifically, vector operations occupy more than 98 % of the total workload in
all three tasks, indicating high DLP. This is an important design criterion for
attaining efficient implementations with respect to processing throughput and
energy consumption. Second, most of the primitive operations are shared among

6.3 Algorithm Evaluation and Operation Analysis 99

Table 6.3 Algorithm profiling for primitive vector (V) and scalar (s) operations in the adopted
MIMO signal processing

Primitive Operation dimension and proportion in each task Total
operation R.MMSE-SW MMSE-SQRD MMSE-NP proportion [%]

Vector A
J

Ba � � V.N�1/ 35 % � � 4.30

A � B V.Nsw�1/ 91 % V.N�1/ 35 % V.N�1/ 84 % 80.98

A ˙ B � � V.N�1/ 15 % V.N�1/ 15 % 13.36

Scalar xa � xb s.xa � xb/ 9 % � � � � 0.29

Sorting � � s.xi/ 5 % s.xi/ �0 % 0.07

1=
p

x � � s.x/ 10 % � � 0.14

Pert.b � � � � s.i/ 1 % 0.86
a

J
Element-wise vector multiplication

b Node perturbation in symbol detection

these algorithms, implying the potential of extensive hardware reuse. Moreover,
when considering a vector dot product as an element-wise vector multiplication
followed by a vector addition, all vector operations are common to all three tasks.

Based on the operation profiling, computational complexity of the algorithms is
analyzed. To simplify the analysis, same precision is assumed for all calculations
and a W-bit complex-valued addition is used as a baseline operation. This way, a
W-bit complex-valued multiplication has the complexity of W; a W-bit real-valued
division and square root operation has a complexity of KW with K being a scaling
factor, e.g., iteration number in Newton–Raphson method [16], and is set to 2 in
this study.

Given these assumptions, complexity of “R.MMSE-SW+MMSE-NP” is com-
pared with other algorithms in Fig. 6.13. As for the three cases inside the LMMSE
group, the complexity of the LMMSE algorithm is so dominating that it almost con-
ceals any difference between different channel matrix pre-processing and symbol
detection algorithms. By comparison, the adopted R.MMSE-SW algorithm shows
a similar level of complexity to that of the LS estimator, while providing much
better processing performance. In terms of symbol detection, the employed MMSE-
NP algorithm demonstrates 2.7 times complexity reduction compared to FSD. The
combination of R.MMSE-SW and MMSE-NP is 8.6 times less complex than the
“R.MMSE+FSD” case, at the price of less than 1 dB performance degradation.
In summary, the employed processing scheme provides a good performance-
complexity trade-off and is hardware friendly to vector-based architectures.

6.3.4 Processing Flow and Timing Analysis

In this chapter, dataflow and timing analysis is presented according to the LTE-
A specification. Table 6.4 summaries resource allocations in the 20 MHz LTE-A.
Within one time slot (0.5 mS), 7 OFDM symbols are transmitted, including 46.88 %

100 6 Multi-Task MIMO Signal Processing

Table 6.4 Resource allocations in one LTE-A time slot

Time slot (tslot) 0.5 ms

Bandwidth 20 MHz

Sampling frequency 30.72 MHz

Number of subcarriers/symbol 2048

Total number of subcarriers 14,336 466.67 �s 93.33 %

Total length of CP 1024 33.33 �s 6.67 %

Data-carrying subcarriers 7200 234.38 �s 46.88 %

Pilot tones 1200 39.06 �s 7.81 %

Guard band subcarriers 5936 193.23 �s 38.65 %

of data, 7.81 % of pilots, 38.65 % of guard-band subcarriers, and 6.67 % of cyclic
prefix. Figure 6.14a shows the structure of a 4�4 MIMO LTE-A data frame and the
flow of target baseband processing. As illustrated, the LS computation in (6.2) can
be initiated as soon as the pilot data has been received, followed by the frequency-
domain interpolation (6.4). However, channel matrix pre-processing and subsequent
symbol detection cannot start until the second OFDM symbol is received due to
pilot receptions for antenna ports 2 and 3 (Fig. 6.2). As a consequence of this
sequential processing flow, one can see from Fig. 6.14a that processing gaps widely
exist in between neighboring OFDM symbols as well as consecutive time slots.
Thus, implementations using task-dedicated hardware will result in poor resource
utilization. Moreover, the cyclic prefix and guard band interval between adjacent
OFDM symbols further enlarge those processing gaps.

To attain efficient hardware usage, this study maps three tasks on one recon-
figurable platform by utilizing the sequential nature of processing and non-data-
carrying time intervals. Figure 6.14b illustrates a task-oriented processing flow,
which performs one task on all subcarriers before switching to the subsequent one.
This is different from a subcarrier-oriented scheme (i.e., handling one subcarrier at
a time), which requires much more power to carry out frequent context switching.
According to [30], dynamic configurations may take up to 40 % of the overall power
consumption in reconfigurable platforms. Thereby, reducing the number of context
switching is an efficient way to achieve power efficient implementation. Note that
every processing iteration shown in Fig. 6.14 starts immediately the last pilot tone
in OFDM symbol 1 is received. This is arranged to prevent processing gaps due to
data awaiting by making sure that all required pilot tones have been buffered.

Baseband processing in LTE-A systems requires data buffering of several OFDM
symbols [11] to, for example, cope with the orthogonal pilot pattern and processing
latency of control channels [53]. Thus, additional buffers are not required in the
adopted solution if all the three processing tasks can be handled within the specified
time interval. In this study, processing is scheduled on a basis of one LTE-A
time slot, see Fig. 6.14. Therefore, the computation time of each iteration (titer) is
constrained by tslot, such that titer � tslot D 0:5 mS. This is used as a design constraint
to guide hardware development.

6.4 Hardware Development 101

Pilot tone

Detection
NextPrevious

Current iteration

LS

Interpolation

Pre-process (QRD)

Detection

3

2

1

0

a

b

A
nt

en
na

 p
or

t
tslot

(titer)

Fig. 6.14 Timing diagram of the MIMO signal processing, (a) an LTE-A frame structure and data
dependency between processing tasks, (b) adopted task-oriented processing flow

6.4 Hardware Development

Using the reconfigurable cell array developed in Chaps. 4 and 5 as a baseline
architecture, this section presents a number of hardware enhancements for attaining
efficient implementation of MIMO signal processing. The focus here is on vector
computing using heterogeneous Resource cells (RCs) and various memory access
schemes. In addition, a technique for further improving processing throughput and
hardware efficiency is elaborated.

Before presenting the architectural development, three main properties of MIMO
signal processing are extracted from the aforementioned operation analysis. Cor-
respondingly, hardware requirements are identified with respect to computation,
memory access, and data transfer.

• Massive vector operations: in view of the massive vector operations, i.e., more
than 98 % of the total workload in Table 6.3, efficient vector computing and
high bandwidth memory access are essential. Besides, it is beneficial to reduce
the number of register/memory accesses and data transfers to keep processing

102 6 Multi-Task MIMO Signal Processing

overhead low, since the control (regarded as a part of control overhead) required
for performing those operations may consume a large portion of time and
power [32].

• Hybrid data-widths and formats: the coexistence of scalar and vector oper-
ations requires a hybrid computational data path. Additionally, efficient com-
munication mechanisms are expected to offload processing units from non-
computational operations, e.g., data alignments, during data transfers of various
data-widths and formats.

• Multi-subcarrier processing: as a scheduling technique for further exploiting
DLP (Chap. 3.3), multi-subcarrier processing requires various data access pat-
terns to perform operations simultaneously at multiple subcarriers. Therefore,
flexible memory access schemes are required, e.g., concurrent access of vectors
from different channel matrices.

These requirements pose design challenges for hardware development and need
to be addressed during the architectural design to ensure implementation efficiency.

6.4.1 Architecture Overview

Built upon the baseline architecture (Fig. 6.15a), the baseband processor is com-
posed of four heterogeneous tiles, which are partitioned into scalar- and vector-
processing domains to cope with hybrid data computing, see Fig. 6.15b. In the vector
domain, Tile-0 handles vector processing while Tile-1 provides data storage and
various forms of vector and matrix accesses. In the scalar domain, Tile-3 controls
other RCs during run-time and handles scalar and irregular operations with memory
supports from Tile-2. Data transfers between the two domains are bridged by
memory cells using the micro-block function (Sect. 5.3.2). This feature efficiently
supports hybrid data transfers without additional controls from processing cells. For
example, memory cells in Tile-1 provide vector data accesses to RCs in Tile-0 while
exchanging data in a scalar form with RCs in Tile-2.

Besides the heterogeneous resource deployments, communication to an external
host for both data transfers and off-line configurations are carried out using the
hierarchical network. Run-time configurations for all RCs are issued on a per-clock-
cycle basis, performed hierarchically within the cell array, and managed jointly by
a task manager (i.e., a processing cell in Tile-3) and local controllers distributed
in RCs. Specifically, the task manager tracks the overall processing flow, controls
context switching (e.g., changing from channel estimation to pre-processing), and
handles configuration updating (e.g., parameter updates for NSW and �). Local
controllers are responsible for applying configurations onto processing data- and
memory access-paths to, for example, switch between operations listed in Table 6.3.

6.4 Hardware Development 103

Fig. 6.15 (a) Baseline architecture of the reconfigurable cell array, an example of four tiles. (b)
Block diagram of the employed heterogeneous baseband processor. Distributed controllers within
Resource cells (RCs) are omitted in the figure for simplicity

6.4.2 Vector Dataflow Processor

Figure 6.16 shows the architecture of Tile-0, a vector dataflow processor, consisting
of three processing cells (pre-, core-, and post-processing), one memory cell
(register bank), and a sequencer. The three processing cells, shown on the upper
half of Fig. 6.16, are deployed for vector computations. The register bank provides
data accesses from both internal registers and other tiles through register-mapped IO
ports. The sequencer controls operations of the other cells via a control bus, drawn
in dashed lines in Fig. 6.16.

Atomic operations of Tile-0 are built upon N-length vectors which is the most
common data type of the vector processing in Table 6.3. Vectors exceeding this
length are processed by folding, i.e., they are decomposed into data segments
suitable for atomic operations. Local data transfers within Tile-0 are carried out on
two N � N matrix and one N � 1 vector bus, arranged both to suffice computational
requirements and to improve processing efficiency. The two matrix buses are used
to support data intensive operations such as data-tone MMSE interpolation in (6.4)
and Euclidean norm (k � k) of augmented channel matrix OH in (Algorithm 1 lines
3 and 12), both requiring two N � N matrix inputs. The vector bus, on the other
hand, is used to accelerate three-input operations such as column vector update in
(Algorithm 1 line 11), which would otherwise require twice of the clock cycles with
additional operations for loading and storing intermediate results.

In the following sections, the adopted configurable Instruction set architecture
(ISA) and two vector processing enhancements are presented.

104 6 Multi-Task MIMO Signal Processing

Fig. 6.16 Microarchitecture of the vector dataflow processor (Tile-0). A VLIW-style multi-stage
computation chain consists of three processing cells: pre-, SIMD vector core-, and post-processing

Configurable Instruction Set Architecture

Conventionally, processors are implemented based on fixed ISAs, e.g., the generic
and dataflow processors presented in Chaps. 4 and 5. Depending on target appli-
cations, the ISAs contain different specifications of, for example, instructions and
addressing modes, and cannot be changed once they have been implemented. As
a consequence, tasks outside the set originally intended may not benefit from
the available computing capability, since underlying data- and control-path are
hidden inside the fixed ISAs. Therefore, this design strategy often results in either
limited flexibility (the case of application-specific) or poor performance (the case
of general-purpose). In addition, it may require a deep study of target applications,
which may not always be possible, concerning time-to-market, adoption of new
algorithms, etc.

Some processors adopt configurable ISAs, which can be customized for different
use. Configurations can be performed either during the chip synthesis [8] or at
run-time using a similar approach to FPGAs [29, 47]. In view of the run-time
configurability, the latter approach is desired. However, it is commonly implemented
using a centralized control scheme, which incurs high control overhead with
regard to configuration time, hardware complexity, and storage requirements. As an
example, Fig. 6.17 shows the configurable ISA of a FlexCore [47]. The processor
exposes its entire data- and control-path to the user via a long instruction word,
91 bits in this example. A controller controls dataflow and operations of each

6.4 Hardware Development 105

Fig. 6.17 Illustration of a fine-grained centralized control scheme in a configurable ISA, an
example of FlexCore [47]

Fig. 6.18 Illustration of the employed distributed micro-code execution scheme in the vector
dataflow processor

hardware unit based on instructions fetched from a program memory. It is inefficient
that configurations of all RCs are centralized in one instruction, since any change
among those configurations requires loading of a whole new instruction, resulting
in unnecessary program storage and memory access for unchanged parts. Many
code size reduction schemes exist which have reported a maximum compression
ratio of about 70 % on a Very long instruction word (VLIW) processor [51].
However, this reduction comes at an area cost of up to 30 % for run-time instruction
decompression.

To tackle the aforementioned overhead issue, two control techniques are
employed in the adopted run-time configurable ISA.

Distributed Micro-Code Execution Figure 6.18 illustrates a distributed control
scheme employed in this study to reduce the overhead of the long instruction word.
The idea is to divide an instruction into a number of smaller ones, termed as micro-
codes, each getting dispatched to an RC. For storing the micro-codes, each RC is
deployed with a configuration memory, which can be accessed individually without
affecting others. The size of these memories can be kept small, since the number of
operations required from each RC in an application is often limited. In addition, new
micro-codes can be prepared and loaded to memories while current instructions are

106 6 Multi-Task MIMO Signal Processing

being executed. This further reduces the storage requirement of the configuration
memories. Using this distributed control scheme, fetching an instruction only
involves address managements of the configuration memories. The required list of
memory addresses is referred to as a micro-code sequence. Compared to the size of
a micro-code, a memory address has much smaller wordlength, thus reducing the
control overhead.

To demonstrate the gain of this scheme, a numerical example is given as
follows. Considering a case where each configuration memory in Fig. 6.18 is of
size 32bit � 16. The corresponding wordlength required for fetching an instruction
when using the conventional approach is 32 bits � 4 D 128 bits. With the presented
scheme, a micro-code sequence requires only 4 bits � 4 D 16 bits, reducing the
wordlength of the program memory by eight times. In the case of storing D D 256

instructions, the reduced wordlength leads to a further memory reduction of 5.3
times, since only .16 bits � D C .32 bits � 16/ � 4/ bits are required instead of
.128 bits � D/ bits.

Using the distributed micro-code execution scheme, ISA configuration contains
two steps. First, micro-codes of individual RCs need to be defined and loaded to
the distributed configuration memories. Second, micro-code sequences need to be
specified and stored in the program memory. The complete micro-code set for each
processing cell in Tile-0 is presented in Appendix B. Worth mentioning is that no
branching instructions (except loops which are treated differently, see the following
section) are implemented in the vector dataflow processor, since the processor is
intended to be used for data-centric stream processing that often has exposed data
dependencies and deterministic processing structure. Computation tasks mapped
onto the processor are performed by invoking a series of kernel functions, such
as matrix multiplication and QR decomposition. Switching between these functions
are conducted by the generic processing cell in Tile-3. This way, program branching
and the execution of conditional operations are mimicked. The assisted instruction
branching is illustrated in Fig. 6.19.

Fig. 6.19 Assisted instruction branching in the vector dataflow processor

6.4 Hardware Development 107

Multi-Level Zero-Delay Inner Loop Control To further reduce control overhead
during loop operations, a multi-level inner loop control scheme is adopted. Sec-
tion 4.3.1 presents an inner loop controller designed to conduct loop operations with
a zero execution latency. However, it supports only one loop level, far from sufficient
for performing baseband processing in MIMO-OFDM systems. Multi-level loops
are widely used to process multiple subcarriers per OFDM symbol, multiple spatial
layers per subcarrier, and multiple iterations per spatial layer. Hence, the zero-delay
one-level loop control scheme is extended to efficiently process loop operations
without limit on the loop hierarchy.

To achieve the multi-level loop control, a stack-based architecture is employed,
illustrated in Fig. 6.20a. As shown, the loop controller contains a configuration stack
used to store the address of the first instruction in a loop (link address) and the
corresponding loop count. Compared to other memory structures, the stack has a
simple control mechanism. It natively supports the execution order of multi-level
loops. With the help of a Finite-state machine (FSM), link addresses of loops
are pushed into the stack in a “last-in-first-out” manner during the execution of a
program. Figure 6.20b shows a snapshot of the stack when the entire loop hierarchy
of the enclosed code fragment is pushed into the stack. Each instruction contains
a flag used to indicate end-of-loop, similar to the one used in the one-level loop
controller (Sect. 4.3.1). Upon the completion of a loop iteration, the controller
updates the program counter with the link address drawn from the top of the stack
in order to jump back to the start of the loop. Meanwhile, the stored loop count
decreases by 1. When the counter value reaches 0, a loop operation is completed
and automatically popped out, the stack pointer decreases by 1, and the link address
stored at the new stack top is fetched. When the bottom of the stack is reached,
loop controller releases the control of the program counter and the subsequent
instruction stored in the program memory is fetched for execution. As can be seen,
this enhanced loop control scheme requires no loop management operations from
the user. Therefore, it eases program writing, speeds up loop processing, and reduces
program size and control overhead.

Based on the configurable ISA, the following sections focus on data path of
Tile-0 and present architectural improvements for attaining efficient processing.

Pop

PushF
SM

Count

Pop

for ii = 1 : Nii

for jj = 1 : Njj

for kk = 1 : Nkk

<Inst. 1>

<Inst. 2>

end
end

end
addr.{for jj = 1 : Njj}
addr.{<Inst. 1>}
addr.{<Inst. 2>}

Nii

Njj

Nkk

a b

Fig. 6.20 (a) Multi-level inner loop control. (b) A snapshot of the configuration stack and an
example of a code fragment

108 6 Multi-Task MIMO Signal Processing

+/- +/-

+/- +/-

Pipelined real-value multiplier

Inter-cell
connection

Inter-cell
connection

a

b

c

e

ol1

ol2

oe

ar

ar

ar

ai

ai

ai

br

br

bi

bi

cr

cr

ci

ci

er ei
(ol1)r
(ol2)r

(ol1)i
(ol2)i

Fig. 6.21 Architectural diagram of a CMAC unit

Vector-Enhanced SIMD Core

In wireless baseband processing, Single instruction multiple data (SIMD) is com-
monly used as a baseline architecture to exploit inherent DLP. Similarly, a SIMD-
based architecture is adopted in the core-processing cell, containing N � N
homogeneous Complex-valued multiply-accumulate (CMAC) units (Fig. 6.16). The
two-dimensional CMAC bank is deployed to handle parallel MIMO data streams
and perform all vector operations in Table 6.3. Figure 6.21 shows a detailed
architecture of the CMAC unit, containing four data inputs, three levels of arithmetic
elements, and an input operand arrangement unit. With data inputs fa; bg and fcg
coming from the matrix and vector data bus respectively, arithmetic elements in the
first two levels are used to conduct complex-valued multiplication and addition. Two
adders in level-2 sum up level-1 outputs with different data operands, such as a, c
and e, depending on data path configurations.

Concerning the execution latency of vector operations, conventional SIMD
architectures (e.g., [8, 32]) are inefficient, since they are designed to handle parallel
independent scalar data operands and their function units between processing
lanes cannot operate collaboratively during instruction execution. For example, the
computation of Vector dot product (VDP), which takes more than 80 % of entire
vector processing in Table 6.3, requires multiple clock cycles (depending on vector
length), since each efficiently mapped VDP operation is performed in a folded
fashion using at most one CMAC unit. This not only increases execution latency
but also causes a large number of suspended computational resources. Although
concurrent operations on multiple data sets may alleviate the latency issue to some
extent, they require additional data buffers for storing intermediate results and a

6.4 Hardware Development 109

+/-

R

+/- +/-

R

L
an

e

+/- +/- +/-

Lane

a

b

+
/-

R
0

Inter-cell connection

C
M

A
C

C
or

e-
pr

oc
es

si
ng

Post-processing

R

Inter-lane connection

Fig. 6.22 (a) Conventional scalar-based SIMD architecture [31]. (b) Illustration of a processing
lane in the vector-enhanced SIMD core

more sophisticated sequence control. Figure 6.22a shows a typical scalar-based
SIMD architecture, where data transfers between processing lanes are only possible
through internal registers.

In contrast, this study tackles the latency issue by adopting an effective low-
complexity vectorization technique in the conventional SIMD architecture. This
vector enhancement enables single-clock-cycle execution for all vector operations
of length N. Specifically, each processing lane is expanded to have N CMAC units,
each of which is equipped with an inter-cell connection (e-path in Fig. 6.21) to
link up with neighboring CMACs during instruction execution. For example, the
e input in Fig. 6.21 is connected to the level-2 output (Oe) of the previous CMAC
unit. Using this simple connection, level-2 adders of CMACs in every processing
lane can be concatenated to form an adder-tree capable of computing one N-length
vector in every clock cycle, e.g., a VDP with an atomic operation of ‘ab C e’.
Figure 6.22b illustrates the construction of the adder-tree using the vector-enhanced
processing lane. For practical implementations, a balanced tree structure (not shown
in Fig. 6.22b) is used to reduce the critical path of the SIMD core. Vectors exceeding
the length N are processed by folding. In other words, they are decomposed into data
segments suitable for atomic operations. The net results of this vector enhancement
are significantly reduced execution latency and simplified sequence control.

Besides the efficient VDP computing, numerous vector operations are supported
by the SIMD core, e.g., vector addition/subtraction ‘a ˙ b’ (6.16) and multiply-add
‘a ˙ bc’ (Algorithm 1 line 11). This is achieved by utilizing the flexible structure of

110 6 Multi-Task MIMO Signal Processing

NegationSwap
Shuffle

a

b

ar

ar

ar

ar

ai

ai

ai

ai

br

br

br

br

br

bi

bi

bi

bi

bi

ar/ai

-ar/-ai

ai/ar

-ai/-ar

br/bi
-br/-bi
bi/br

-bi/-br

(-) ar

(-) ai

(-) br/ar

(-) br/ar

(-) bi/ai

(-) ai/bi

(-) bi/br

(-) br/bi
1

1

1

1

Fig. 6.23 Block diagram of the input operand arrangement unit

Table 6.5 Some commonly used operations and the corresponding data sequences generated
by the input operand arrangement unit

Operation Expression Data sequence

Complex-MUL .ar C jai/ � .br C jbi/ ar; br; ai; bi; ar; bi; ai; br

Complex-MUL with j .j.ar C jai// � .j.br C jbi// �ai; �bi; ar; br; �ai; br; ar; �bi

Complex-MUL with �j .�j.ar C jai// � .�j.br C jbi// ai; bi; �ar; �br; ai; �br; �ar; bi

Complex-squared norm .ar C jai/ � .ar C jai/
H ar; ar; ai; ai; br; br; bi; bi

.br C jbi/ � .br C jbi/
H

Real-MUL arbr; aibi ar; br; ai; bi

Real-square a2
r ; a2

i ; b2
r ; b2

i ar; ar; ai; ai; br; br; bi; bi

CMAC units, in which each level of the arithmetic elements can be used individually
or operated with different combinations of data operands. To further extend the
operation set, an operand arrangement unit is deployed at input of each CMAC unit,
see Fig. 6.23. It contains three main function blocks, capable of swapping, negating,
and shuffling the real and imaginary part of input operands a and b, respectively.
Giving this flexibility, various data sequences are provided to the following CMAC
unit for performing complex- and real-valued operations. Using ar, ai, br, and bi to
denote the real and imaginary part of operands a and b respectively, Table 6.5 lists
some of the data sequences required by the commonly used operations.

VLIW-Style Multi-Stage Computing

Another important observation from the algorithm analysis (Sect. 6.3) is that most
of the vector processing involve several tightly coupled operations, such as complex

6.4 Hardware Development 111

conjugate (Algorithm 1 line 10) and result sorting (6.16) performed, respectively,
before and after vector computations. Mapping of such “long” processing solely
on the SIMD core requires multiple atomic operations, causing not only increased
execution time but also redundant register file accesses for intermediate result
buffering. Moreover, execution of some operations, such as complex conjugate, only
uses a small part of the function units, resulting in poor resource utilization. Hence,
the SIMD core is extended by adopting a VLIW-style multi-stage computation chain
to accomplish several consecutive data manipulations in one single instruction.
Specifically, two distinct processing cells are arranged around the core-processor to
pre- and post-process data respectively, see Fig. 6.16. Benefiting from this arrange-
ment, more than 60 % of register accesses are avoided, as the combination of pre-
and post-processing takes about two-thirds of the total vector computations. As an
example, Table 6.6 summarizes operations required for implementing the MMSE-
SQRD algorithm. A similar technique named operation chaining for reducing
register accesses can be found in [32].

Implementation of the pre- and post-processing cells depends on the operation
profile of target applications. In the case of MIMO signal processing, the pre-
processing cell consists of two function units that, respectively, work with matrix
and vector data. Data negation and absolute calculation are examples of the pre-
processing operations, which can be applied individually to each part (real and
imaginary) of complex-valued data operands. For matrix inputs, a matrix data mask
function is adopted to ease the run-time generation of regular and frequently used
data access patterns, e.g., construction of the identity matrix required by OH (6.6).
Matrix data masks are stored in Matrix mask register (MMR), see Fig. 6.16. Each
mask contains a boolean data map, used to indicate the “existence” of the matrix ele-
ment at the corresponding position. The masking operation is realized by logically
ANDing the matrix input with the data mask, real and imaginary part separately,
illustrated in Fig. 6.24. Examples of some commonly used masks are identity-,

Table 6.6 An example of the multi-stage computing in MIMO channel
matrix pre-processing (MMSE-SQRD, Algorithm 1)

Pre-processing Pre-1: complex conjugate

Pre-2: vector shuffling & broadcast

Pre-3: matrix data masking

Post-processing Post-1: barrel shifting

Post-2: sorting

Operation Pre-processing Core-processing Post-processing

�i D kq
i
k2

2 & sort Pre-3 VDP (ab C e) Post-1, 2

ri;i D p
�i � VDP (ab C e) Post-1

q
i
D q

i
=ri;i Pre-2 bc Post-1

ri;k D qH
i

q
k

Pre-1 VDP (ab C e) Post-1

q
k

D q
k

� ri;kq
i

Pre-2 a � bc Post-1

R�1 D 1=�nQb Pre-2 bc Post-1

112 6 Multi-Task MIMO Signal Processing

(x14)r

x11 x12

x21 x22

x31 x32 x33 x34

x41 x42 x43 x44

x11

x33

x44

0

0

0

0

0

0

0

0

0

0

0

0

0 0

x22

(x14)i

Fig. 6.24 Illustration of matrix masking operation, an example of the diagonal matrix construction

diagonal-, and upper triangular-matrix, and real/imaginary part addressing. For
vector inputs, data operands can be permuted based on permutation indexes stored
in Vector permutation register (VPR). Both the MMR and VPR can be pre-loaded
during resource configurations or dynamically updated with values taken from the
vector data bus. In addition to the permutation function, vector operands can be
broadcast both horizontally and vertically to the SIMD core to support parallel
computing, e.g., broadcasting q

i
in ‘Algorithm 1 line 10’ to all processing lanes

to compute multiple ri;k in parallel.
The post-processing cell works with level-1, level-2, and accumulated (e-path)

results from the SIMD core. It consists of two function units. With employed barrel
shifters, the first unit is mainly used to dynamically adjust data precision of core-
processing outputs. This is a useful function in vector processing especially for
iterative and cumulative operations. Additionally, e-path output of each processing
lane can be accumulated individually, which is required in supporting over-
dimensioned vector operations (e.g., (6.4) for NSW > N), where a folding technique
performs data accumulations on partial data outputs. The second function unit
provides capability of permuting vector outputs in ascending, descending, or user-
defined order. For example, this feature can be used to perform sorting operations in
MMSE-SQRD (Sect. 6.2.2).

6.4.3 Vector Data Memory Tile

Besides vector enhancements and multi-stage computation, the efficiency of the vec-
tor processor is contingent on memory access with regard to accessing bandwidth
and flexibility. By inspection of algorithms discussed in Sect. 6.2, it is required that
the SIMD core has access to multiple matrices and/or vectors in each operation, so

6.4 Hardware Development 113

as to avoid poor resource utilization and low throughput. As an example, efficient
mapping of (Algorithm 1 line 3) requires two N � N matrix inputs, equivalent
to having a 2 � .4 � 4/ � .16 C 16/ D 1024 bits/cycle memory bandwidth for
a 16-bit 4 � 4 MIMO system. In addition to the bandwidth requirement, various
forms of data accesses are needed, such as row- and column-wise addressing
in matrix transposition. Moreover, to exploit additional DLP from independent
data streams, accesses of vectors in different matrices are required by the multi-
subcarrier processing. To meet these requirements, a hybrid memory organization
and a flexible matrix access mechanism are adopted in the vector data memory tile
(Tile-1).

Hybrid Memory Organization

To suffice the high memory accessing bandwidth, Tile-1 consists of vector and
matrix access partitions, allowing simultaneous access of both vectors and matrices,
see Fig. 6.25a. The basic element in both partitions is a dual-port memory cell,
which provides a vector-level data storage and allows simultaneous read and write
operations to ease memory access and improve processing throughput at the price
of a larger memory footprint. In addition, the matrix partition provides direct matrix
data access, which is realized by concurrently accessing a group of memory cells
using only one set of address control. This arrangement is referred to as a memory
page, shown in Fig. 6.25a. The vector accessing wordlength and the number of cells
in a memory page are designed to match the processing capacity of the SIMD core in
Tile-0, i.e., N scalar elements and N memory cells, respectively. On the other hand,
the number of memory cells and pages are application dependent and should be
optimized with respect to the bandwidth requirement and hardware cost. To ensure
a sufficient memory storage required for the MIMO signal processing, Tile-1 in this
study is deployed with two memory cells, for buffering data and storing R.MMSE-
SW coefficients W in (6.4), and five pages, for storing OH (Fig. 6.26a) and R. Details
of these memory usages are further discussed in Sect. 6.5.

Memory operations and accessing modes of each cell and page are managed
by a local controller with configurations stored in a descriptor (DSC) table, see
Fig. 6.25b. To communicate with other tiles, memory accesses are multiplexed
using a crossbar network and interfaced through IO ports. For the array shown in
Fig. 6.15b, Tile-1 contains four IO ports, allowing simultaneous access of two N �1

vectors and two N � N matrices for providing accesses to both Tile-0 and Tile-2.
Referring to the aforementioned example, this corresponds to a memory bandwidth
of 1280 bits/cycle.

Flexible Matrix Data Access

The presented multi-page memory arrangement and the crossbar network allow for
the flexible data access required by the multi-subcarrier processing. For instance, by

114 6 Multi-Task MIMO Signal Processing

A
cc

es
s

in
de

x
re

g.

Transpose

Access
index reg.

Vertical
access

Horizontal
access

Descriptor table

M
em

or
y

ce
ll

D
es

cr
ip

to
r

ta
bl

e

Memory macro(s)

D
S
C

 0
0 1

D
S
C

 1

Memory cell/page

N

a

b c

Fig. 6.25 Block diagram of the vector data memory tile (Tile-1), (a) a hybrid memory organi-
zation, (b) operation and accessing control, (c) data loading path of a memory page, supporting
matrix access indexing and transposition

storing matrices of successive subcarriers in different memory pages, multiple data
sets can be concurrently accessed and multiplexed based on arrangement indexes
specified in memory configurations.

To better explain the necessity of the flexible memory access in supporting multi-
subcarrier processing, the following shows a case study of various memory access
patterns required for computing MMSE-SQRD (Algorithm 1). Figure 6.26a shows a
memory layout of OH storage, where OH at even- and odd-indexed subcarriers (labeled
as Œ0	, Œ1	, etc.) are stored in different memory pages. Because of the 2N � N
dimension, every OH is stored column-wise in two memory pages. In Fig. 6.26a,
“Œ0	c1a” denotes column 1 of the upper half matrix (N � N) of OH at subcarrier
0, and “Œ0	c1b” represents the lower half. Figure 6.26b shows a timing diagram
of multi-subcarrier processing in Tile-0 for the computation of the first iteration

6.4 Hardware Development 115

0

T0 T1

1

2

3

b T8 T10

a

Mem.
access

(0)
(1)

(2)
(3)

T2 T3

(8)
(10

(11)

(12)
(13)

Time

[0]c1a

[2]c1a

[4]c1a

[0]c1b

[2]c1b

[4]c1b

[1]c1a

[3]c1a

[5]c1a

[1]c1b

[3]c1b
[5]c1b

c2a

c2a
c2a

c2a

c2a
c2a

c3a

c3a
c3a

c3a

c3a
c3a

c4a

c4a
c4a

c4a

c4a
c4a

c2b

c2b
c2b

c2b

c2b
c2b

c3b

c3b
c3b

c3b

c3b
c3b

c4b

c4b
c4b

c4b

c4b
c4b

Ĥ at even subcarriers (i) Ĥ at odd subcarriers (i + 1)

Ĥ
i

2 2

Ĥ
i+

1
2 2

Ĥ
i+

2
2 2

Ĥ
i+

3
2 2 q

0 r1,2 r1,3 r1,4 q
1 q

2
q

3

q
0 r1,2 r1,3 r1,4 q

1 q
2

q
3

0-70-7 8-158-15 0, 14 , 51, 5 2, 62, 6 3, 73, 7
8, 12 9, 139, 13 10, 1410, 14 11, 1511, 15

Square-root latency (an example of 2 clock cycles)
for computing r1,1 at subcarrier i and i + 1

Fig. 6.26 Example of some memory access patterns required for computing MGS-based MMSE-
SQRD in a 4 � 4 MIMO system. (a) Odd and even indexed OH are stored separately in different
memory pages. (b) Timing diagram of the multi-subcarrier processing in the SIMD core with
N D 4 processing lanes

of MMSE-SQRD. Together with the operations performed in each time interval,
required memory access patterns are listed. For example, 0–7 indicates concurrent
access of memory cells with index from .0/ to .7/. During the time interval T0–T3,
multiple matrix accesses are needed for computing the squared Euclidean norm
of OH. Multiple vector readings from different memory pages are required during
T4–T10. Supported by the flexible memory access schemes, multiple subcarriers
can be processed in parallel to efficiently utilize processing gaps caused by data-
dependent operations and computation latency. Without this support, processing
lanes during the time intervals of shaded computations in Fig. 6.26b would be
idle. Therefore, flexible memory access schemes are important for achieving high
processing efficiency.

To further improve matrix access flexibility, a data arrangement circuit, illus-
trated in Fig. 6.25c, is implemented in each memory page. Specifically, data loaded
from each memory page are buffered in a local register bank and are capable
of being rearranged vector-wise in a vertical direction, based on an access index
associated with each matrix storage. Benefiting from this setup, vector readouts
from a matrix can be accessed freely in any order without physically exchanging
data. This is useful, for example, in supporting sorted matrix accesses in MMSE-
SQRD (Algorithm 1 line 5). The vector access indexes are stored in special registers

116 6 Multi-Task MIMO Signal Processing

that are transparent to the users and are configurable during every matrix data
transfer. In addition to these index manipulations, the presented architecture is
capable of outputting matrices in a transposed form (used, for example, in (6.12))
by selecting either the row or column output. As a result, processing cells are
relieved from such data arrangement operations, which would otherwise result
in enormous underused processing power. Moreover, physical data exchange and
redundant memory accesses (due to read and write of the same data contents) are
completely eliminated.

6.4.4 Scalar Resource Cells and Accelerators

In the scalar domain, Tile-2 and 3 perform scalar and conditional operations as well
as dynamic configurations of other tiles in the array. Among them, Tile-2 consists
of two scalar memories for storing data and configurations respectively. Tile-3
contains one memory for data buffering and three processing cells for computations.
Figure 6.27 shows the three scalar processing cells in Tile-3, a generic signal
processor and two acceleration units. The generic processor is a customized RISC
with optimized conditional instructions and specialized functionality for dynamic
RC configurations, similar to the one presented in Chap. 4. The two accelerators
behave like co-processors of the generic processing cell for performing irregular
operations, i.e., the inverse square root in MMSE-SQRD and the node perturbation
in MMSE-NP, respectively.

A
L

U

Co-processors

1/
√

x

Fig. 6.27 Block diagram of the scalar processing cells in Tile-3, containing a generic RISC-
structured processor and two accelerators

6.4 Hardware Development 117

Inverse Square-Root Unit

To compute the inverse square root of x, where x 2 R and x > 0, Newton’s method
is adopted in this study. Newton’s method iteratively computes approximations to
the root of a real-valued function f .y/ [16]. In the case of inverse square root, f .y/

is defined as,

f .y/ D 1

y2
� x; (6.22)

where y D 1=
p

x. A general expression of Newton’s method for iteration i is
written as

yiC1 D yi � f .yi/

f 0.yi/
; (6.23)

where the whole process starts off with some arbitrary initial value y0. Substitut-
ing (6.22) into (6.23), the output of each iteration can be expressed as

yiC1 D 2�1yi
	
3 � xy2

i

: (6.24)

After K iterations, the value of yiC1 converges to 1=
p

x. The number of iterations
required depends on the accuracy requirement of the application and how close
the initial value y0 is to 1=

p
x. Fixed-point simulations show that K D 2 is

sufficient in this study to obtain a near floating-point performance in terms of FER of
the presented system setup (Sect. 6.3.1). It is worth mentioning that calculation
of the square root can be obtained by multiplying the final result yK by the input x.

Figure 6.28 shows the block diagram of the inverse square root unit, which is
capable of computing both 1=

p
x and

p
x. It consists of three main building blocks,

Pipeline

Initial

en

2 iteration1stiteration

x

x

x y0

yi yi+1

3

√
x

1/
√

x

Fig. 6.28 Block diagram of the inverse square root unit using Newton’ method with 2 iterations

118 6 Multi-Task MIMO Signal Processing

an initial value approximation block and two function units. Given an input data x,
the first block generates an initial value y0 by looking up in a coefficient table. To
reduce the table size while providing a good initial value, only three Most Significant
Bits (MSBs) of x are used as inputs. The position of the MSB is dynamically
detected for each input x. The basic principle of the adopted method is to share
the same coefficients stored in the table for different initial value approximations.
For example, y0 D 1=4 for x D 16, where the coefficient 1=4 (“01000000” in a
unsigned radix-2 ‘0.8’ format) can be used to generate the initial value for x D 256

by shifting it 2 bits to the right, that is, y0 D 1=16 with the radix-2 representation of
“00010000”. Benefiting from the coefficient sharing, only 8 entries are required in
the look-up table.

The two function units in Fig. 6.28 are used to compute (6.24), one per iteration.
Each unit contains three real-valued multipliers, a subtracter, and a one-bit logical
left shifter for realizing the ‘divide by 2’ operation. To increase the processing
throughput, both units and their connections are pipelined, shown in the bold vertical
lines in Fig. 6.28. Along with the square root and its reciprocal, a flow control signal
‘ready’ is provided on the output for indicating the computation status.

Node Perturbation Unit

In the adopted MIMO symbol detector MMSE-NP, one of the important steps is
to find the nearest sibling symbols to the initial MMSE result xMMSE

p (6.12) based
on the criterion of (6.14). The entire perturbation process involves enormous fine-
grained data manipulations, since xp consists of normalized constellation points that
are drawn from a finite set of integers, e.g.,

p
42xp.i/ 2 Œ˙1; ˙3; ˙5; ˙7	 for 64-

QAM. Therefore, the node perturbation process is implemented as an accelerator
for attaining high implementation efficiency.

One way to find i closest symbols for each spatial layer is to compute distance
between all possible M-QAM constellation points to xMMSE

p.i/ , sort them in ascending
order, and pick the first i points that have the smallest distance values. However,
this brute-force method has high complexity, requiring two multiplications and three
additions per constellation point and an M-point exhaustive search at the end. In
contrast, this study adopts a Fast node enumeration (FNE) scheme [21], aiming to
reduce the computational complexity by exploiting the geometric and symmetric
properties of M-QAM. To better explain this, the following discussion focuses on
64-QAM and assumes maxfig D 5. Other system configurations can be processed
by using the same concept.

Figure 6.29 illustrates the basic principle of the presented FNE scheme. The
horizontal and vertical axis represent distance (ı) between the constellation points
and the initial hard-output MMSE result OxMMSE

p.i/ , for real and imaginary part,

respectively. In this example, Ne is the closest symbol to xMMSE
p.i/ , assuming xMMSE

p.i/

lies within the dashed box in Fig. 6.29. The distance between xMMSE
p.i/ and Ne is

expressed as

6.4 Hardware Development 119

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 Na Nb Nc

Nd Ne Nf

Ng Nh Nj

A1A2

A3

A4 A5

A6

δre

δ i
m

δre > δim
δim > 1 − 2δre
δre > 1 − 2δim

Fig. 6.29 Illustration of the fast node enumeration scheme

Table 6.7 Symbol sequences
with respect to the position of
xMMSE

p.i/

Position of xMMSE
p.i/ A1 A2 A3 A4 A5 A6

Symbol sequence Ne Ne Ne Ne Ne Ne

Nb Nb Nb Nf Nf Nf

Nf Nf Nf Nb Nb Nb

Nc Nd Nd Nh Nh Nc

Nd Nc Nh Nd Nc Nh

ı D xMMSE
p.i/ � Ne D a C jb: (6.25)

Utilizing the symmetric and equidistant property of M-QAM, a and b in (6.25) can
be shifted around Ne to reduce the search space to the first quadrant. As a result,
fa; bg 2 Œ0; 1	. To find the remaining neighboring symbols, distances between xMMSE

p.i/
and other constellation points in Fig. 6.29 are computed and sorted in ascending
order. By analyzing the resulting order of those symbols with respect to the position
of xMMSE

p.i/ , the search space can be divided into six unique zones that cover all
possible symbol sequences. These zones are labeled with A1 to A6, see Fig. 6.29.
The corresponding symbol sequences are listed in Table 6.7.

To determine the zone in which xMMSE
p.i/ resides, the real and imaginary value of ı

in (6.25) are compared using the following criteria:

1. ıre > ıim,
2. ıim > 1 � 2ıre,
3. ıre > 1 � 2ıim.

These comparisons correspond to three boundary lines inside the dashed box in
Fig. 6.29. Once xMMSE

p.i/ is positioned, all the required nearest sibling symbols are
obtained. This is realized with the help of a look-up table, which stores all symbol
sequences listed in Table 6.7 with different boundary check. Worth mentioning is

120 6 Multi-Task MIMO Signal Processing

Slicing

Position

Demap

Q1
shift

LUT

Demap

Demap

FE-CVGFNE

Layer-1

xMMSE
p(i)

x̂MMSE
p(i)

x1
p(i)

x
(Ωi−1)
p(i)

xMMSE
p

xp

Fig. 6.30 Block diagram of the node perturbation unit

that the adopted FNE scheme can be applied to other cases, where the search space
is not at the center of the constellation map, for example, at corners or borders [21].

Figure 6.30 shows the block diagram of the node perturbation unit. It consists
of N FNE units, one for each spatial layer, and a candidate vector generation unit
for constructing candidate vectors by using the FE-CVG method (6.2.3). The FNE
process starts by shifting the input xMMSE

p.i/ into the first quadrant. The initial hard-

output symbol OxMMSE
p.i/ , i.e., the closest symbol, is found by slicing xMMSE

p.i/ to the

nearest constellation point. After calculating the distance (ı) between OxMMSE
p.i/ and

xMMSE
p.i/ , the position block carries out all comparisons of ı in parallel to determine

the position of xMMSE
p.i/ . The resulting zone number, ranging from A1 to A6, is used

as an input to the following Look-up table (LUT) to obtain the remaining symbols.
The FNE process is completed by shifting the expanded symbols back to the original
quadrant, performed by de-mapping units.

6.4.5 Concurrent Candidate Evaluation

In this section, a technique to further improve the implementation efficiency is
presented. Among the MIMO signal processing, the ED calculation (k � k) in (6.16)
is the most compute-intensive operation, which needs to be performed at every
data-carrying subcarrier and for each of the L candidate vectors, e.g., L D 24

for � D ŒF; 4; 3; 2	. A straightforward mapping of this on the SIMD core tends to
incur low hardware utilization, at most 50 % when computing Rxp, since R is an

6.4 Hardware Development 121

upper triangular matrix with real-valued diagonal elements. This is impermissible
from the hardware efficiency point of view. To tackle this problem, the property of R
is utilized in such a way that two candidate vectors are concurrently evaluated, with
the second Rxp operation mapped to the lower triangular part of the SIMD core. In
the following, computation of Rxp in a 2 � 2 MIMO system using a 2 � 2 SIMD
core is given as an example to better illustrate the concurrent candidate evaluation.

To fully utilize the N � N CMAC units in the SIMD core, R is duplicated
to process two different xp vectors at the same time. This matrix duplication is
achieved by mirroring the R matrix in both vertical and horizontal directions, such
that the two matrices (R and its counterpart R0) together compose a full square
matrix, as illustrated at the bottom of Fig. 6.31. The required input vectors xp0 and
xp1 are fed to the SIMD core via the matrix path MA and the vector path VC,

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

+/- +/-

L2 outputs

L2 outputs

Core-processing cell

MA

MB

VC

MA: VC:

C
M

A
C

MB:

m
irror

mirror

r0,0 r0,1

r1,1
r0,0

r0,1

r1,1

xp0(0)

xp0(1)

xp0(1)

xp1(0)xp1(1)

xp1(1)

xp0 = xp0(0), xp0(1)
T

xp1 = xp1(1), xp1(0)
T

e
pa

th
e

pa
th

composed R

r 0
,0

r 0
,0r0,1 r0,1

r 1
,1

r 1
,1

r 0
, 0r0,1

r 1
,1

R

R

Fig. 6.31 Concurrent candidate evaluation using the SIMD-based core-processing cell, an exam-
ple of a 2 � 2 MIMO system. Internal data multiplexers are omitted for simplicity. Shaded blocks
and dashed lines illustrate the computation of the second Rxp operation, denoted as R0xp1

122 6 Multi-Task MIMO Signal Processing

respectively. Note that reverse-order permutation is required for the vector input
xp1 to match with the matrix orientation of R0 (flipped upside down). Figure 6.31
illustrates input data arrangement and internal data processing flow of the SIMD
core. The ones associated with R0xp1 computation are depicted in shaded blocks
and dashed lines. In the diagonal CMAC units, processing of both xp0 and xp1 co-
exist because of the real-valued diagonal elements in R. Additionally, both level-1
and level-2 adders are bypassed in these CMACs, shaded in light grey in Fig. 6.31,
since only real-valued multiplications are performed. Final vector outputs of both
computations are conveyed to the following processing cell via level-2 outputs.
As a result of this concurrent candidate evaluation, both hardware utilization and
processing throughput are doubled for Rxp computations.

It is worth mentioning that various techniques have been presented in literature
for improving the hardware efficiency of ED computations. For example, utilizing
the property of the candidate vectors xp (i.e., constellation points), [34, 52] simplify
the computation of Rxp by performing finite alphabet multiplications. However,
applying those accelerator-based design techniques on vector processors may be
infeasible or cost ineffective, as they require either fine-grained data manipulations
(e.g., to realize finite alphabet multiplications) or increased data path width
(e.g., to hold multiple Rxp outputs). In contrast, the adopted scheme utilizes the
existing structure of the SIMD core and only requires a few specialized signals for
controlling diagonal CMAC units. Thus, it provides a balance between hardware
efficiency and complexity.

6.5 Implementation Results and Comparison

To cope with different system configurations and design constraints on, for example,
antenna size and processing throughput, the heterogeneous cell array is fully
parameterizable at system design-time. Figure 6.32 shows the detailed architecture
of the cell array configured for the target 20 MHz 4 � 4 MIMO LTE-A downlink.
Processing and memory cells in the vector domain are labeled with ‘VPC-X ’ and
‘VMC-X ’ respectively, while those in the scalar domain are denoted as ‘SPC-X ’
and ‘SMC-X ’. All data computations are performed in 16 bits fixed-point arithmetic
with 8 guard bits for accumulations. In Tile-0, the core-processing cell is configured
to have 4�4 CMAC units. The post-processing cell contains two 3-bit barrel shifters
deployed for handling data from matrix and vector bus respectively. The register
bank consists of 16 general-purpose vector registers, 16 VPRs, and 16 MMRs. Each
distributed configuration memory can store up to 16 hardware configurations, and
the program memory is capable of storing 256 micro-code sequences.

The generic processor in Tile-3 is configured to have a 3-bit barrel shifter, 11-
bit one-level inner loop controller, 16 general-purpose scalar registers, and a 18 Kb
program memory. The node perturbation unit in SPC-1 is able to extend each symbol
with up to five nearest neighbors and generate one candidate vector in every clock
cycle.

6.5 Implementation Results and Comparison 123

256x32b
Pilot

256x32b

SMC-1SMC-0

256x32b

SMC-2SPC-0

RISC

SP
C

-1

SQ
R

T

T
ile

-3
T

ile
-2

Pre-
Process

VPC-1VMC-0

VPC-3

Core-

VPC-2

V
P
C

-0

T
ile

-0

Se
qu

en
ce

r

256x32b
Candicate

VMC-1 VMC-2 VMC-3
Matrix partitionVector partition

VMC-7

S2V

S2VMUXMUX R

R

R

T
ile

-1

R H
Config

ZP

512x128b
RMMSE

Coeff

1280x128b 768x128b
Buffer Buffer

Reg.
Bank

Buffer

MUX

Post-
Process Process

R

N
od

e
P
er

t.
R MUX

Fig. 6.32 Architecture diagram of the heterogeneous cell array configured for baseband process-
ing in a 20 MHz 4 � 4 MIMO LTE-A downlink

As for memory cells, each is configured to have 4 DSCs. In VMC-2, SMC-
0, and SMC-2, the micro-block function (Sect. 5.3.2) is enabled. Data memories
are deployed mainly to suffice the storage requirement of the target LTE-A setup.
In the current design, the array contains 2.34 Mb of memory, in which 88 % are
data buffers for keeping data required in one LTE-A time slot (e.g., channel
and decomposed matrices), 2 % are control memories for storing instructions
and resource configurations, and 10 % are reserved space for facilitating flexible
algorithm mappings and future system updates. Detailed memory configurations of
all RCs are summarized in Table 6.8. Data transfers from vector to scalar RCs are
bridged by memory cells using the micro-block function, whereas the reverse paths
are handled by dedicated scalar-to-vector adapters, shown as ‘S2V’ in Fig. 6.32.
Each adapter contains a vector register and a FSM, capable of transmitting N
scalar data packets in a vector form to the receiving end. Moreover, it should be
mentioned that VMC-1 in Tile-1 is dedicated to storing candidate vectors xp in
symbol detection. Therefore, the wordlength of the memory is substantially reduced
by only storing M-QAM values. For 64-QAM modulation, each symbol in xp

requires 2 � 4 bits instead of 2 � 16, reducing the memory requirements by 4 times.
During memory reading, the M-QAM values are extended to the vector format by
padding zeros. This QAM-to-vector converter is denoted as ‘ZP’ in Fig. 6.32.

124 6 Multi-Task MIMO Signal Processing

Table 6.8 Memory configurations and usages

Resource cell Memory Reserved Usage

Tile-0 VPC-0 256 � 32b 8 Kb N/Aa Program memory

VPC-1–3 (16 � 32b) � 7 3.5 Kb N/Aa Configuration memory

VMC-0

Tile-1 VMC-1 (256 � 32b) � 2 16 Kb 43.75 % Candidate vector buffer

VMC-2 512 � 128b 64 Kb 43.75 % R.MMSE-SW W ROM

VMC-3 (1280 � 128b) � 4 640 Kb 6.25 % R buffer

1280 � 8b 10 Kb 6.25 % Access index

VMC-4–7 (768 � 128b) � 16 1536 Kb 8.85 % H buffer

(768 � 8b) � 4 24 Kb 8.85 % Access index

Tile-2 SMC-0 256 � 32b 8 Kb 42.38 % Pilot ROM & data buffer

SMC-1 256 � 32b 8 Kb N/Aa Configuration memory

Tile-3 SPC-0 384 � 48b 18 Kb N/Aa Program memory

SPC-1 N/A N/A N/A N/A

SMC-2 256 � 32b 8 Kb N/Aa Data buffer

Network N/A N/A N/A N/A
a Reserved space is not assessed for control and configuration memories

6.5.1 Implementation Results

The cell array is modeled in VHDL, synthesized using Synopsys Design Compiler
with a 65 nm CMOS standard digital cell library, and routed using Cadence SoC
Encounter. Counting a two-input NAND gate as one equivalent gate, the whole array
contains 2.76 M gates and has a core area of 8.88 mm2 at 74 % cell density in chip
layout. Data buffers (Table 6.8) occupy more than 60 % of the area, while the logic
blocks, including control memories and the hierarchical network, share the rest.
Excluding those data buffers, it shows in Table 6.9 that most of the logic gates
are devoted to the vector processing domain (i.e., Tile-0 and 1) and the on-chip
network takes less than 5 %. At 1.2 V nominal core voltage supply, a maximum
clock frequency of 500 MHz is obtained from post-layout simulations with back
annotated timing information. At this frequency, the array is capable of performing
8.5 G CMACs per second, considering the 4 � 4 CMAC bank in Tile-0 and the
CMAC unit in the generic processor in Tile-3.

Vector Dataflow Processor

Figure 6.33a shows the area breakdown of Tile-0, the vector dataflow processor. The
control logic of the processor, including the sequencer and the program memory,
occupy 22 % of the total area, while the processing cells take 51 % and the register
bank consumes 27 %. Note that the distributed configuration memories are counted
as part of the sequencing control in Fig. 6.33a. The relatively low area consumption

6.5 Implementation Results and Comparison 125

Table 6.9 Area and power breakdown of the cell array without data
buffers

Resource cell Gate count [KG] Power [mW]

Tile-0 367 34.77 % 164.93 53.75 %

Tile-1 Vector partition 96 9.12 % 5.99 1.95 %

Matrix partition 365 34.60 % 68.06 22.18 %

Tile-2 47 4.44 % 3.20 1.04 %

Tile-3 Generic processor 70 6.60 % 44.10 14.37 %

Others 61 5.83 % 16.98 5.53 %

Network 49 4.65 % 3.56 1.16 %

Total 1055 100.00 % 306.84 100.00 %

of the control logic reveals the low control overhead of the processor, thanks
to the adopted distributed micro-code execution scheme. Among the multi-stage
computation path, the core-processing cell consumes most of the area due to the
deployed homogeneous CMAC bank.

Vector Data Memory Tile

Tile-1 consists of two memory cells, VMC-1 to 2, and five memory pages, VMC-3
to 7. Because of the large storage requirements of the application, e.g., to store
channel matrices H and R for all 1200 subcarriers and coefficients W for the
R.MMSE-SW estimator, most of the area in Tile-1 is consumed by memory macros,
see Fig. 6.33b. Among the control logic, memory pages consume 80 % of the area,
due to the employed flexible access schemes such as matrix data transposition
and access indexing. It is worth mentioning that VMC-2 is configured to have the
micro-block function used to interface with RCs in the scalar processing domain.
Therefore, it can be seen from Fig. 6.33b that the control logic of VMC-2 consumes
slightly more area than that of the VMC-1.

Resource Cells in Scalar Processing Domain

In the scalar processing domain, the generic processor and accelerators occupy
around 45 % of the area, see Fig. 6.33c. Compared to the vector dataflow processor
in Tile-0, the generic processor is equipped with a larger program memory and a
simpler data path, since it is designed to mainly perform control related operations,
such as conditional instruction execution and configuration of other RCs. This can
be seen from the area partition in Fig. 6.33c, where the control logic of the processor
takes almost the same area as its logic part, i.e., 11.83 % versus 14.27 %.

126 6 Multi-Task MIMO Signal Processing

Sequencer
16%

Program mem.
6%

Register bank
27%

Pre-process
7%

Core-process
38%

Post-process
6%

VMC-4~7 ctrl,
13.66%

VMC-4~7
mem., 55.30%

VMC-3 ctrl,
3.40%

VMC-3 mem.,
20.30%

VMC-2 ctrl,
2.52%

VMC-2 mem.,
2.03%

VMC-1 ctrl,
1.98% VMC-1 mem.,

0.81%

SMC-0~2
ctrl, 43.12%

SMC-0~2
mem.,
12.78%

RISC logic,
14.27%

RISC ctrl,
11.83%

RISC reg.
Bank, 8.04%

Accelerator,
9.97%

a

b

c

Fig. 6.33 Area breakdown of RCs in the reconfigurable cell array. (a) Vector dataflow processor
(Tile-0). (b) Vector data memory tile (Tile-1). (c) Tile-2 and 3 in the scalar processing domain

6.5 Implementation Results and Comparison 127

6.5.2 Task Mapping and Timing Analysis

The MIMO processing tasks, i.e., channel estimation, pre-processing, and symbol
detection, are manually mapped onto the cell array with a primary focus on sufficing
the stringent timing constraint and achieving high processing throughput. To this
end, multi-subcarrier processing is adopted in all tasks and is scheduled based on
the LTE-A resource block, i.e., 12 consecutive subcarriers. The number of blocks to
process in each computation step is determined manually based on the computation
and communication latency and available hardware resources. For example, MMSE-
SQRD is programmed to operate on 2 LTE-A resource blocks in each step due to
its high data dependency and the long latency involved in obtaining results from the
inverse square root unit. In contrast, the other two tasks work with 1 resource block
at a time. In addition to the multi-subcarrier processing, most of the data transfers are
scheduled to utilize the low-latency high-bandwidth local interconnects, while the
hierarchical network is mainly used for resource configurations and the streaming
of external data such as receiving vector y and decoded Ox. In the following, detailed
mapping of the MIMO processing tasks is described.

Channel Estimation

Recall that channel estimation contains two computation steps, LS estimation at
pilot tones and H interpolation for data-carrying subcarriers. In this study, the LS
computation is performed by the generic processor in Tile-3 and results are stored in
an LS buffer (VMC4–7) in Tile-1. The computation starts immediately data at pilot
positions have been received. Data transfers between SPC-0 and memory pages in
Tile-1 are carried out through the hierarchical network. In Tile-1, the received scalar
data packets are converted to the vector format before writing to the memory. This is
accomplished by using the S2V unit deployed in the matrix partition of Tile-1. Steps
1 to 7 in Fig. 6.34 illustrate the processing flow of the LS computation. Using LS

estimated channel coefficients, the data-tone H interpolation is performed by the
vector dataflow processor. To fully utilize the 4 � 4 CMAC bank, four Rx spatial
layers (i.e., rows of H) are computed in parallel, one per processing lane, in each
clock cycle. For NSW D 24, each interpolation process requires 24=4 D 6 iterations
to complete. The intermediate results are accumulated in the post-processing cell
in Tile-0. Since the pilot tones reside in every third subcarrier in an OFDM symbol
(Fig. 6.2), processing of each LTE-A resource block is divided into four groups, each
containing one pilot and two data tones. Table 6.10 shows the pseudo-code of the
data-tone H interpolation. Taking advantage of the adopted multi-level zero-delay
inner loop controller, loop operations are used whenever possible, aiming to attain
a modular program structure and to ease parameter updates.

128 6 Multi-Task MIMO Signal Processing

Tile-2

SMC-0 SPC-0

Tile-3

Tile-1

Tile-0

yp

x−1
p

hp,LS

hp,LS

W

hMMSE

HH

1

2
2

3

4 5

6

7

889
1 − 7 : LS estimation
8 − 9 : Data-tone H interpolation

R

R

R

256x32b

768x128b 768x128b 512x128b
RMMSE
Coeff.

VMC-4 VMC-7

S2V MUX

VMC-2

Buffer Buffer

RISCPilot

Fig. 6.34 Processing flow of the channel estimation, performed by the generic processor in Tile-3
and the vector dataflow processor (Tile-0)

Table 6.10 Pseudo-code of the data-tone H interpolation performed in Tile-0

for i D 1 W 100 do % Loop for 100 LTE-A resource blocks

for j D 1 W 4 do % 4 groups per LTE-A resource blocks

Copy H @ pilot position from “LS buffer” to “H buffer”

for k D 1 W 2 do % 2 data tones per group per resource block

for l D 1 W 6 do % 6 iterations per data tone for NSW D 24

for n D 1 W 4 do % 4 Tx spatial layers, i.e., 4 columns of H
‘VDP(ab C e)’ to compute hMMSE D Whp;LS

end for
end for

end for
end for

end for

Channel Matrix Pre-processing

The MMSE-SQRD based channel matrix pre-processing is mainly performed by
the vector dataflow processor, except that 1=

p
x and

p
x operations are outsourced

to the inverse square root unit in Tile-3. Taking the augmented channel matrix
H as an input, the MGS-based MMSE-SQRD performs matrix orthogonalization
iteratively based on Algorithm 1. The corresponding task mapping on the vector
dataflow processor and the layout of data storage in Tile-1 are illustrated in
Fig. 6.26. It should be pointed out that, among numerous task mapping schemes,
the adopted approach focuses on the utilization of hardware resources in Tile-0
and the modularity of the program structure. Briefly, the processor works with
one subcarrier in each clock cycle during the norm computation of Q, whereas

6.5 Implementation Results and Comparison 129

Tile-3

SPC-1 SMC-2

Tile-1

r q Q

√
x

1/
√

x

R H

1

2
3

4
5

5
67

Tile-0

MUX

SQ
R

T S2V

256x32b
Buffer

1280x128b 768x128b
Buffer Buffer

VMC-3 VMC-7

Fig. 6.35 Processing flow of the MMSE-SQRD based channel matrix pre-processing performed
by the vector dataflow processor (Tile-0)

two subcarriers are processed in parallel during other operations, i.e., column
vector updates in Q and the computation of R . Upon the completion of the matrix

orthogonalization process, H�1 D 1=�nQbQH
a is computed as a post-processing,

required in the following symbol detection (6.12). Considering the latency of the
inverse square root operation, i.e., 3 clock cycles computation latency (Sect. 6.4.4)
plus 4 clock cycles communication latency illustrated in Fig. 6.35, two resource
blocks are processed in each computation step of MMSE-SQRD. Table 6.11 shows
the pseudo-code of the task mapping. Note that column permutations of matrices
Q and R are realized by manipulating the accessing indexes (Sect. 6.4.3) of matrix
pages in Tile-1, thus requiring no physical data exchanging.

Symbol Detection

The MMSE-NP based symbol detection contains three main computation steps:
initial MMSE detection, symbol expansion and candidate vector generation, and
candidate evaluation. Among these, the second operation is performed by the node
perturbation unit in Tile-3, while the other two are handled by the vector dataflow
processor. Table 6.12 shows the pseudo-code of the computations performed in
the vector processor. In view of the latency of communication between the vector
processor and the node perturbation unit in Tile-3, see Fig. 6.36, 12 adjacent data-
carrying subcarriers are processed in each computation step of MMSE-NP. For the
target 20 MHz LTE-A, each time slot has 7200 data-carrying subcarriers (Table 6.4),
resulting in 7200=12 D 450 blocks to be processed. To achieve high utilization of
the CMAC bank in Tile-0, each ED computation (6.16) during the evaluation of

130 6 Multi-Task MIMO Signal Processing

Table 6.11 Pseudo-code of MMSE-SQRD, computations performed in Tile-0

for i D 1 W 50 do % Loop for 50 pairs of LTE-A resource blocks

for j D 1 W 4 do % 4 columns of H
for k D 1 W 2 � 12 do % Processing one subcarrier per clock cycle

‘VDP(ab C e)’ to compute � D
h
kq

jC1
k2

2; kq
jC2

k2
2; : : : ; kq

N
k2

2

iT

Sorting to obtain �min

end for
for k D 1 W 12 do % Processing two subcarriers per clock cycle

‘bc’ to compute q
j
D q

j
=rj;j

end for
for k D 1 W 12 do % Processing two subcarriers per clock cycle

for l D j C 1 W 4 do
‘VDP(ab C e)’ to compute rj;l D qH

j
q

l

end for
end for
for k D 1 W 12 do % Processing two subcarriers per clock cycle

for l D j C 1 W 4 do
‘a � bc’ to compute q

l
D q

l
� rj;lqj

end for
end for

end for
for j D 1 W 2 � 12 do % Post-processing

‘VDP(ab C e)’ & ‘bc’ to compute H�1 D 1=�nQbQH
a

end for
end for

candidate vectors is performed in three sub-steps: ˛ D Rxp, ˇ D Qy � ˛, and vector

norm kˇk2
2. In each clock cycle, the computation of Rxp operates on two candidate

vectors by using the concurrent candidate evaluation scheme (Sect. 6.4.5), while
the other two vector-based operations work with four candidates at a time. Upon
the completion of each vector norm computation kˇk2

2, the four candidate vectors
under evaluation are sorted in the post-processing cell in Tile-0. The one with the
smallest ED value is temporarily stored in the register bank for further comparisons
with other candidates. For � D ŒF; 4; 3; 2	, there are in total 24 candidate vectors in
each symbol detection, implying 24=4 D 6 temporarily stored candidates at the end
of the ED computation. The final detection output is obtained by comparing these 6
candidates, finding the one with the smallest value, and loading the corresponding
candidate vector from VMC-1 together with the permutation matrix (P in (6.5))
from VMC4. Finally, the recovered transmitted vector Ox with its original symbol
sequence is sent out through the hierarchical network.

6.5 Implementation Results and Comparison 131

Table 6.12 Pseudo-code of symbol detection, computations performed in
Tile-0

for i D 1 W 7200=12 do % Loop for 7200/12 blocks

for j D 1 W 12 do % Loop for 12 subcarriers

‘VDP(ab C e)’ to compute xMMSE
p D H�1y

end for
for j D 1 W 12 do

‘VDP(ab C e)’ to compute Qy D QH
a y

end for
for j D 1 W 12 do

for k D 1 W 24=2 do % Processing two Rxp per clock cycle

‘VDP(ab C e)’ to compute Rxp

end for
end for
for j D 1 W 12 do

for k D 1 W 24=4 do % Processing four Qy � Rxp per clock cycle

‘a � b’ to compute Qy � Rxp

end for
end for
for j D 1 W 12 do

for k D 1 W 24=4 do % Processing four k�k2
2 per clock cycle

‘VDP(ab C e)’ to compute
�
�
�Qy � Rxp

�
�
�

2

2
& sorting

end for
end for
for j D 1 W 12 do

for k D 1 W d24=4=4e do % Post-processing

Sorting to find Oxp D arg min
xp2S

�
�
�Qy � Rxp

�
�
�

2

2

end for
Ox D POxp % Final detection output

end for
end for

Miscellaneous Operations

Besides the aforementioned MIMO processing tasks, various miscellaneous oper-
ations are required, e.g., memory initialization for the permutation matrix P (6.5)
and the augmented channel matrix OH (6.6). These operations occupy only a fraction
of the total processing time and are performed in the beginning of each processing
iteration (i.e., time slot).

132 6 Multi-Task MIMO Signal Processing

er

VMC-3 VMC-7

er

SPC-1

256x32b

VMC-1

y

x̂

H−1

R |Rxp | ỹ − Rxp

Rxp | ỹ − Rxp

xpxp

xMMSE
p

R H

1

1

2

3
4 4 | 6 | 8

4 | 6 | 8 :

5 | 7

5 | 7 :

9

Fig. 6.36 Processing flow of the MMSE-NP based symbol detection performed by the vector
dataflow processor (Tile-0)

Table 6.13 Overhead analysis for computing MIMO processing tasks

Execution time Control time

[Clock cycle] [Clock cycle] Control overhead [%]

Ch. estimation 20,801 1201 5.77

QRD 22,451 851 3.79

QRDa 15,101 701 4.64

Detection 190,201 3001 1.58

Total 232,203 5003 2.16

a Without post-processing

Results and Discussions

To assess the efficiency of the task mapping, control overhead is analyzed for
program executions on the vector dataflow processor. Here the control is defined
as non-computational operations, such as loop initialization and run-time program
updates. Table 6.13 lists the total execution time and the number of control opera-
tions required for accomplishing three MIMO processing tasks. As can be seen, the
total control overhead measured on the vector dataflow processor is only about 2 %
of the total execution time, thanks to the algorithm–architecture co-design. On the
algorithm side, benefiting from the adopted streaming-based processing flow in each
individual task, branch operations are completely eliminated, see Tables 6.10, 6.11,
and 6.12. On the architecture side, with the employed configurable ISA, the number
of hardware configurations (micro-codes) and program updates is substantially
reduced, since the data path of the processor can be dynamically configured to better

6.5 Implementation Results and Comparison 133

Table 6.14 Performance summary of the MIMO signal processing

Clock Time Powerb

Cycle/Op [�s] Throughput [mW] Energyb

Ch. estimation 17.33 41.60 28.84 MEst/s 276.24 9.58 nJ/Est

QRD 18.71 44.90 26.72 MQRD/s 314.05 11.75 nJ/QRD

QRDa 12.63 30.30 39.60 MQRD/s 315.36 7.96 nJ/QRD

Detection 26.42 380.40 454.26 Mb/s 280.82 0.62 nJ/b

Miscellaneous 2.34 2.82 N/A 269.99 0.81 nJ/op

Total/average 32.62 469.72 367.88 Mb/s 306.84 0.83 nJ/b
a Without post-processing
b With data buffers excluded

suit target applications. Additionally, loop operations are assisted by the multi-level
zero-delay inner loop controller, thus requiring no loop manipulations from the user.

Table 6.14 summaries achieved performance of the three task mappings. Oper-
ating at 500 MHz, the total processing time for one LTE-A time slot is 469.72 �s.
This fulfills the real-time requirement of the target LTE-A setup, i.e., titer � tslot D
0:5 mS (see Sect. 6.3.4), and results in about 6 % spare time that can be used to map
more advanced algorithms or upgrade system parameters such as the � assignment
in symbol detection. Based on the processing time and the number of tones/bits
required to compute, Table 6.14 presents the corresponding throughput achieved in
each task. On average, recovering one transmitted vector Ox, with all three processing
tasks involved, requires 32.62 clock cycles, which is equivalent to a throughput of
367.88 Mb/s.

6.5.3 Computation Efficiency

To evaluate the computation efficiency of the array, resource utilization of the
SIMD core in Tile-0 is measured as a representative, since it contributes to
more than 90 % of the total computation capacity. Thanks to the vector enhanced
SIMD structure (Sect. 6.4.2) and the multi-stage computation chain (Sect. 6.4.2), an
average utilization of 77 % is achieved during the whole MIMO signal processing.
Figure 6.37 reports a detailed utilization graph during the computation of two
LTE-A resource blocks. Among these tasks, the miscellaneous processing shows
the lowest utilization value, as the vector processor during that time interval only
performs simple operations, such as vector scaling and data masking used for
initializing registers and memory cells.

134 6 Multi-Task MIMO Signal Processing

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

Clock cycle

Re
so

ur
ce

 u
til

iz
at

io
n

[%
]

Misc.
39.87%

Ch. Est.
92.3%

QRD
78.57%

Detection
75.71%

Fig. 6.37 Utilization of the SIMD core in Tile-0 during MIMO signal processing of two LTE-A
resource blocks (24 subcarriers). Horizontal lines in the figure show the average utilization of the
corresponding task

6.5.4 Power and Energy Consumption

Power consumption of the cell array is obtained from Synopsys PrimeTime using
the post-layout design annotated with switching activities. At 500 MHz with 1.2 V
supply voltage, the average power consumption for processing one data-carrying
tone is 548.78 mW, including 306.84 mW from logic blocks and 241.94 mW from
data buffers. The corresponding energy consumption for processing one information
bit is 0.83 nJ/b and 1.49 nJ/b, without and with data buffers respectively. Table 6.14
summaries average power and energy consumption of different tasks with data
buffers excluded. As can be seen, power consumption of different task mappings
is quite balanced because of the high computation efficiency achieved by the
algorithm–architecture co-design.

To acquire a more comprehensive understanding of the power distribution, a tile-
level power breakdown of the array is listed in Table 6.9 and plotted in a pie-diagram
in Fig. 6.38a. Among all, Tile-0 is the most power consuming block, because of the
large area occupation and high resource utilization throughout the whole processing
period. Further, the power distribution in Tile-0 is presented in Fig. 6.38b. The
SIMD core accounts for 50 % of the power. The register bank consumes only
16 % thanks to that the developed multi-stage computation chain substantially
reduces intermediate result buffering. Moreover, the hierarchical network of the
array consumes only �1% of the total power (Fig. 6.38a), due to the high allocation
of local data transfers. Worth mentioning is that no special low power design
techniques, such as clock and power gating and multiple power islands, are adopted
in the current array. Therefore, further power savings are possible with a more
advanced back-end design. Additionally, it should be pointed out that simulated
power figures from the post-layout design may be different from chip measurement
results.

6.5 Implementation Results and Comparison 135

Tile-0,
53.75%

Tile-1 Vector,
1.95%

Tile-1
Matrix,
22.18%

Tile-2,
1.04%

Tile-3
Processor,

14.37%

Tile-3
Others,
5.53%

Network,
1.16%

a

Sequencer
20.68%

Program mem.
17.93%

Register bank,
15.42%

Pre-process,
2.54%

Core-process,
49.39%

Post-process,
2.93%

b

Fig. 6.38 Power breakdown of (a) the reconfigurable cell array and (b) the vector dataflow
processor (Tile-0)

6.5.5 Comparison and Discussion

In this section, implementation results and various performance metrics of the
cell array are summarized and compared with previously reported designs in open
literature. In fact, a fair quantitative comparison with related work is not an easy task
due to many different design factors, such as flexibility, algorithm selection, per-
formance, and operating scenario. Which platform/technology to choose is highly
dependent on design specifications such as system setup, area and power budget,
Quality of service (QoS), and scalability requirements. Therefore, the following
discussion only serves to give an overview of the design efficiency for related
implementations and aims to position the cell array with respect to different perfor-
mance measures. To ease the discussion, related hardware architectures are divided

136 6 Multi-Task MIMO Signal Processing

into three broad categories: task specific accelerators (ASICs), programmable and
reconfigurable platforms (e.g., DSPs, FPGAs, and GPUs), and domain-specific
reconfigurable platforms (e.g., baseband processors).

To ensure a fair enough comparison, technology scaling is considered. Taking the
employed setup “65 nm CMOS technology and 1.2 V supply voltage” as a reference,
implementation results of all related work are normalized using a process scaling
factor sCMOS [42]. The definition of sCMOS and the normalization of frequency, area,
and power consumption are

sCMOS D Technology

65 nm
;

Frequencynorm � Frequency � sCMOS;

Areanorm � Area � 1

s2
CMOS

;

Powernorm � Power � 1

sCMOS

�
1:2 V

Voltage

�2

:

(6.26)

In Tables 6.15, 6.16, and 6.17, the cell array is compared with three aforemen-
tioned architecture categories, respectively. Performance is evaluated by assessing
area and power efficiency as well as hardware flexibility.

Area Efficiency

Area efficiency is calculated by normalizing the throughput of each processing task
to the corresponding hardware consumption. The presented solution accomplishes
three tasks within the tight timing constraint of the 20 MHz 4 � 4 MIMO 64-
QAM LTE-A downlink, thanks to the algorithm–architecture co-design, which
has more than 98 % of the total operations mapped onto the vector processor for
exploiting extensive DLP and attaining high resource sharing. Compared to other
implementations in Table 6.15, which adopt either lower-dimensions of MIMO
configurations or mapping of a single task, the cell array achieves the highest
throughput and shows superior area efficiency. Note that [40] and [32] in Table 6.15
are employed in single-antenna systems, Digital video broadcasting (DVB) and
Wideband code division multiple access (WCDMA), respectively. According to [5],
the performance required for WCDMA is less than 10 % of the one needed for
4�2 MIMO 3GPP LTE delivering 10 Mbps. Thereby, their results cannot be directly
compared with those of the baseband processing in MIMO systems. Here, they are
included for references only.

Compared to programmable and reconfigurable platforms in Table 6.16, the
processing throughput of the cell array is 2.8 and 45 times higher than that of
the FPGA and the DSP solution [26], respectively. Besides, its area efficiency
outperforms the GPU and CPU approaches by 3–5 orders of magnitude. It is

6.5 Implementation Results and Comparison 137

Ta
bl

e
6.

15
C

om
pa

ri
so

n
of

th
e

ce
ll

ar
ra

y
w

ith
re

co
nfi

gu
ra

bl
e

ba
se

ba
nd

pr
oc

es
so

rs

09
[4

0]
10

[3
2]

10
[3

9]
08

[2
8]

11
[2

9]
10

[1
1]

09
[1

2]
T

hi
s

w
or

k

A
nt

en
na

�
�

4
�4

2�
2

4
�4

4�
2

2�
2

4
�4

M
od

ul
at

io
n

(Q
A

M
)

64
N

/A
�

64
64

N
/A

N
/A

64

M
ap

pi
ng

(C
E

jQ
R

D
jD

T
)

X
j�

jX
X

j�
jX

�j
X

j�
�j

�
jX

�j
�

jX
X

jX
jX

X
jX

jX
X

jX
jX

Te
ch

no
lo

gy
[n

m
]

12
0

13
0

65
90

13
0

65
90

65

A
re

a
[m

m
2
]

11
11

N
/A

N
/A

N
/A

16
.0

6c
32

8.
88

G
at

e
co

un
t[

K
G

]
20

0a
N

/A
82

4a
12

00
71

a
59

69
c

N
/A

27
60

10
55

a

Fr
eq

ue
nc

y
[M

H
z]

70
30

0
23

4
60

0
27

7
40

0
40

0
50

0

Po
w

er
b

[m
W

]
37

.9
2

86
.4

0
16

9a
64

2
20

.4
8a

21
9c

24
0

54
9

30
7a

Throughputb

C
h.

E
st

.[
M

E
st

/s
]

N
/A

N
/A

�
�

�
N

/A
N

/A
28

.8
4

Q
R

D
[M

Q
R

D
/s

]
�

�
10

.6
4

�
�

39
.6

0

D
et

ec
tio

n
[M

b/
s]

N
/A

N
/A

�
49

.6
0

13
4

45
4.

26

To
ta

l[
M

b/
s]

58
.4

7
4

�
�

�
10

.8
15

0
36

7.
88

Area.eff.b

C
h.

es
t.

[K
E

st
/s

/K
G

]
N

/A
N

/A
�

�
�

N
/A

N
/A

10
.4

5
27

.3
4a

Q
R

D
[K

Q
R

D
/s

/K
G

]
�

�
12

.9
1a

�
�

14
.3

5
37

.5
4a

D
et

ec
tio

n
[K

b/
s/

K
G

]
N

/A
N

/A
�

41
.3

3
18

90
a

16
5

43
1a

To
ta

l[
K

b/
s/

K
G

]
29

2.
34

a
N

/A
�

�
�

1.
81

N
/A

13
3

34
9a

Energyb

C
h.

es
t.

[n
J/

E
st

]
N

/A
N

/A
�

�
�

N
/A

N
/A

12
.7

0
9.

58
a

Q
R

D
[n

J/
Q

R
D

]
�

�
15

.8
5a

�
�

15
.2

7
7.

96
a

D
et

ec
tio

n
[n

J/
b]

N
/A

N
/A

�
1.

49
0.

3a
0.

99
0.

62
a

To
ta

l[
nJ

/b
]

1.
2

43
.2

�
�

�
N

/A
2.

23
1.

49
0.

83
a

a
W

ith
da

ta
bu

ff
er

s
ex

cl
ud

ed
b

N
or

m
al

iz
ed

to
65

nm
w

ith
1.

2
V

co
re

vo
lta

ge
c

O
nl

y
co

un
te

d
re

le
va

nt
pa

rt
s

of
th

e
ch

ip

138 6 Multi-Task MIMO Signal Processing

Ta
bl

e
6.

16
C

om
pa

ri
so

n
of

th
e

ce
ll

ar
ra

y
w

ith
pr

og
ra

m
m

ab
le

pl
at

fo
rm

s

08
[2

6]
12

[4
6]

09
[4

8]
10

[4
1]

12
[4

3]
T

hi
s

w
or

k

Pl
at

fo
rm

FP
G

A
D

SP
C

PU
G

PU
G

PU
G

PU
G

PU
R

ec
on

fig
.

A
nt

en
na

4
�4

4
�4

4
�4

2�
2

4
�4

4
�4

M
od

ul
at

io
n

(Q
A

M
)

16
64

64
16

64
64

M
ap

pi
ng

(C
E

jQ
R

D
jD

T
)

�j
�

jX
�j

�
jX

�j
�

jX
�j

�
jX

�j
X

jX
X

jX
jX

Te
ch

no
lo

gy
[n

m
]

13
0

18
0

45
40

65
80

40
65

A
re

a
[m

m
2
]

26
c

96
c

29
6

52
9

19
6

N
/A

30
6.

82
c

8.
88

G
at

e
co

un
t[

K
G

]
N

/A
N

/A
1.

94
e5

7.
75

e5
1.

26
e5

2.
39

e5
c

4.
5e

5c
27

60
10

55
a

Fr
eq

ue
nc

y
[M

H
z]

25
1

20
0

30
70

11
50

19
00

92
0

11
50

50
0

Po
w

er
b

[m
W

]
62

4c
31

1c
10

1e
3

55
7e

3
13

7e
3

96
00

c
32

3e
3c

54
9

30
7a

Throughputb

C
h.

es
t.

[M
E

st
/s

]
�

�
�

�
�

�
�

28
.8

4

Q
R

D
[M

Q
R

D
/s

]
�

�
�

�
�

�
N

/A
39

.6
0

D
et

ec
tio

n
[M

b/
s]

16
3

10
.1

4
0.

18
66

.0
9

12
.6

8
44

.3
8

10
.5

8
45

4.
26

To
ta

l[
M

b/
s]

�
�

�
�

�
�

�
36

7.
88

Area.eff.b

C
h.

es
t.

[K
E

st
/s

/K
G

]
�

�
�

�
�

�
�

10
.4

5
27

.3
4a

Q
R

D
[K

Q
R

D
/s

/K
G

]
�

�
�

�
�

�
N

/A
14

.3
5

37
.5

4a

D
et

ec
tio

n
[K

b/
s/

K
G

]
N

/A
N

/A
9.

29
e-

4
0.

08
53

0.
1

0.
18

6c
0.

02
35

c
16

5
43

1a

To
ta

l[
K

b/
s/

K
G

]
�

�
�

�
�

�
�

13
3

34
9a

Energyb

C
h.

E
st

.[
nJ

/E
st

]
�

�
�

�
�

�
�

12
.7

0
9.

58
a

Q
R

D
[n

J/
Q

R
D

]
�

�
�

�
�

�
N

/A
15

.2
7

7.
96

a

D
et

ec
tio

n
[n

J/
b]

1.
32

c
9.

15
c

3.
88

e5
1.

24
e5

2.
47

e5
2.

13
e3

c
3.

79
e6

c
0.

99
0.

62
a

To
ta

l[
nJ

/b
]

�
�

�
�

�
�

�
1.

49
0.

83
a

a
W

ith
da

ta
bu

ff
er

s
ex

cl
ud

ed
b

N
or

m
al

iz
ed

to
65

nm
w

ith
1.

2
V

co
re

vo
lta

ge
c

O
nl

y
co

un
te

d
re

le
va

nt
pa

rt
s

of
th

e
ch

ip

6.5 Implementation Results and Comparison 139

Ta
bl

e
6.

17
C

om
pa

ri
so

n
of

th
e

ce
ll

ar
ra

y
w

ith
A

SI
C

im
pl

em
en

ta
tio

ns
.

11
[1

3]
13

[3
5]

10
[9

]
13

[4
4]

10
[3

3]
13

[3
8]

11
[1

0]
T

hi
s

w
or

k

Pl
at

fo
rm

A
SI

C
R

ec
on

fig
.

A
nt

en
na

�
�

4
�4

4
�4

4
�4

4
�4

4
�4

4
�4

M
od

ul
at

io
n

(Q
A

M
)

�
�

�
�

64
64

64
64

M
ap

pi
ng

(C
E

jQ
R

D
jD

T
)

X
j�

j�
X

j�
j�

�j
X

j�
�j

X
j�

�j
�

jX
�j

�
jX

X
jX

jX
X

jX
jX

Te
ch

no
lo

gy
[n

m
]

65
65

18
0

13
0

13
0

13
0

90
65

A
re

a
[m

m
2
]

0.
68

a;
c

2.
56

a;
c

N
/A

0.
3a

3.
9a

N
/A

2.
02

a
8.

88

G
at

e
co

un
t[

K
G

]
32

5a;
c

56
3a;

c
12

7.
5a

36
a

49
1a

34
0a

50
5a

27
60

10
55

a

Fr
eq

ue
nc

y
[M

H
z]

25
0

70
40

0
27

8
13

7.
5

41
7

11
4

50
0

Po
w

er
b

[m
W

]
15

4a;
c

73
.1

6a;
c

6.
1a

19
.9

2a
63

.6
a

55
a

59
.0

7a
54

9
30

7a

Throughputb

C
h.

E
st

.[
M

E
st

/s
]

78
11

.8
8

�
�

�
�

N
/A

28
.8

4

Q
R

D
[M

Q
R

D
/s

]
�

�
7.

91
13

.9
�

�
39

.4
6

39
.6

0

D
et

ec
tio

n
[M

b/
s]

�
�

�
�

22
00

20
00

N
/A

45
4.

26

To
ta

l[
M

b/
s]

�
�

�
�

�
�

94
7

36
7.

88

Area.eff.b

C
h.

es
t.

[K
E

st
/s

/K
G

]
24

0a;
c

21
.0

9a;
c

�
�

�
�

N
/A

10
.4

5
27

.3
4a

Q
R

D
[K

Q
R

D
/s

/K
G

]
�

�
62

.0
6a

38
6a

�
�

78
.1

4a
14

.3
5

37
.5

4a

D
et

ec
tio

n
[K

b/
s/

K
G

]
�

�
�

�
44

80
a

58
82

a
N

/A
16

5
43

1a

To
ta

l[
K

b/
s/

K
G

]
�

�
�

�
�

�
18

75
a

13
3

34
9a

Energyb

C
h.

es
t.

[n
J/

E
st

]
1.

97
a;

c
6.

84
a;

c
�

�
�

�
N

/A
12

.7
0

9.
58

a

Q
R

D
[n

J/
Q

R
D

]
�

�
0.

53
a

2.
87

a
�

�
N

/A
15

.2
7

7.
96

a

D
et

ec
tio

n
[n

J/
b]

�
�

�
�

0.
05

8a
0.

05
5a

N
/A

0.
99

0.
62

a

To
ta

l[
nJ

/b
]

�
�

�
�

�
�

2.
07

a
1.

49
0.

83
a

a
W

ith
da

ta
bu

ff
er

s
ex

cl
ud

ed
b

N
or

m
al

iz
ed

to
65

nm
w

ith
1.

2
V

co
re

vo
lta

ge
c

Sc
al

ed
up

to
4

�4
M

IM
O

co
nfi

gu
ra

tio
n:

far
ea

;p
ow

er
g/

d,
w

he
re

d
D

4
=
#R

x-
an

te
nn

a

140 6 Multi-Task MIMO Signal Processing

interesting to note that GPU implementations only achieve a maximum of 66 Mb/s
detection throughput, even though they are equipped with enormous parallel
computing capacity. For example, the Nvidia Tesla C2070 GPU used in [43] consists
of 14 stream multiprocessors, each containing 32 CUDA cores running at 1.15 GHz,
and 6 GB of global memory. The low throughput of GPU implementations is
mainly caused by the essential difference between wireless baseband processing
and graphic computing. GPUs are competent for the latter one. In the wireless
communication millions of vectors/matrices with small size have to be handled in
parallel, whereas in the graphic computing a large matrix needs to be processed
just once in a single application. According to [41, 43, 48], bottlenecks in their
design are the limited register resources and memory access bandwidth for each
thread processing. In consequence, it is hard to get even half of the CUDA cores
utilized for the mapped processing tasks. These show the importance of architectural
customization for intended application domains, although algorithm selections and
mapping optimization may affect implementation results.

Furthermore, compared to ASIC solutions in Table 6.17, 1:7–13:6 times of
difference in area efficiency is observed for each individual task mapping. The
result of Löfgren et al. [35] reveals a slightly lower efficiency value than that
of the cell array, since it performs data-tone channel estimation in time-domain
by reconstructing channel impulse response. Compared to the adopted frequency-
domain H interpolation that relies on the correlation properties between neighboring
subcarriers, time-domain channel reconstruction leads to better estimation results
especially when cyclic prefix is long. However, this performance gain comes at the
cost of higher computational complexity and lower throughput, due to involved
time-frequency-domain transformations and iterative processing during channel
reconstruction.

Energy Efficiency

Besides the area and throughput evaluation, energy consumption per operation
is another important measure for baseband processing. In comparison to related
implementations in Table 6.15, similar energy figures are observed. However, it
should be mentioned that the cell array operates in a more complicated system
(4 � 4 MIMO vs. 2 � 2 in [12, 28] and 4 � 2 in [11]) and has more tasks assigned
at the same time. Compared to ASICs, the cell array consumes 1:4–15 times more
energy for performing each individual task, whereas a 1.3 and 9 times energy gain
is obtained in comparison to FPGA and DSP solutions, which support only up to
16-QAM detection. Moreover, its energy efficiency outperforms GPU and CPU
approaches by more than 5 orders of magnitude. Such high energy efficiency is
achieved mainly by three key hardware developments in the array: architecture
partitioning for attaining efficient vector and scalar processing without frequent
data alignments, vector enhancements in Tile-0 for reducing register access, and
flexible memory access schemes in memory cells for relieving most of the non-
computational operations from processing cores.

6.5 Implementation Results and Comparison 141

10
-4

10
-2

10
0

10
2

10
4

10
0

10
5

10
10

Area efficiency [Kb/s/KG]

En
er

gy
 e

ff
ic

ie
nc

y
[p

J/
b]

CPU
GPU
Baseband processor
ASIC
Cell array

This work

More area efficient

M
or

e
en

er
gy

 e
ff

ic
ie

nt

Fig. 6.39 Area and energy efficiency of the cell array in comparison to other hardware platforms

To better visualize the position of the cell array in comparison to other hardware
platforms, implementations presented in Tables 6.15, 6.16 and 6.17 are plotted in
an area-energy chart, see Fig. 6.39. It clearly shows that the cell array is superior
to programmable platforms and achieves an ASIC-like area and energy efficiency.
It is worthwhile to re-emphasize here that the presented solution, contrasts to other
works, is capable of performing all three MIMO processing tasks in the target 4 � 4

MIMO 64-QAM 20 MHz LTE-A system.

Hardware Flexibility

In addition to the efficiency analysis, this section discusses the flexibility of the
cell array. Among the three architecture categories, programmable platforms offer
the greatest flexibility, while ASICs are designed for specific system setups but
reveal the highest hardware efficiency. The baseband processors provide palatable
flexibility-efficiency trade-offs between the two aforementioned platforms. On
one hand, they offer good flexibility as programmable platforms do, but often
require more sophisticated software developments, such as low-level program-
ming in domain-specific languages and manual algorithm mappings [29, 40, 47].
On the other hand, their hardware efficiency is largely improved compared to
programmable platforms, thanks to their architecture customization and instruction-
level acceleration [17]. In this study, the flexibility is demonstrated by time-
multiplexing three different tasks onto a reconfigurable cell array. Additionally, by
making use of the dynamic resource allocations, such as loading different programs
and configurations to processing and memory cells respectively, the platform has
the potential to support other system configurations. Examples include processing of

142 6 Multi-Task MIMO Signal Processing

different modulation and antenna setups; supporting of different standards; mapping
of different algorithms, e.g., non-sorted or iterative-sorted QRD and linear MMSE
or SSFE [37] detection; run-time adaption of system performance, e.g., adjusting
the frequency of channel estimation and detection parameters. Furthermore, the
platform is extensible, thanks to the tile-based heterogeneous and hierarchical
resource deployments. For example, larger antenna setups can be supported by
extending resource cells and the bandwidth of local links, higher throughput can be
achieved by doubling the number of tiles, and system performance can be improved
by extending the scalar processing tile (Tile-3) with Log Likelihood Ratio (LLR)
unit to perform soft-output data detection [17]. Based on the list of candidate vectors
generated in the adopted detection algorithm, a searching unit is needed to find bit-
level vectors required in LLR computations. Other scalar operations can be mapped
onto the generic processor in Tile-3.

In the following section, the flexibility of the cell array is further illustrated
by mapping a hybrid decomposition scheme for performing channel matrix pre-
processing. It is aimed to provide a wide range of performance-complexity trade-
offs for coping with constantly changing wireless channels. Briefly, the presented
scheme dynamically switches between the brute-force SQRD (Sect. 6.2.2) and a
low-complexity group-sort QR-update scheme, based on the instantaneous channel
condition.

6.6 Adaptive Channel Pre-processor

For the discussions in the previous sections, the propagation channel was assumed
to be quasi-static within one LTE-A time slot (0.5 ms). However, Channel state
information (CSI) of real-world radio channels are rarely constant because of
Doppler induced channel changes and multi-path propagation. Outdated CSI intro-
duces additional interference to the following symbol detection, resulting in drastic
degradation of MIMO performance. Thus, frequent CSI update and the correspond-
ing channel matrix pre-processing are highly desirable in wireless communication
systems to provide symbol detectors with adequate channel knowledge.

Using the channel’s time correlation, tracking of CSI changes can be achieved
using low-complexity decision-directed algorithms such as Least Mean Square
(LMS), Recursive Least Square (RLS), and Kalman filtering [18, 20]. Nevertheless,
continuous CSI tracking has not been widely adopted in practical systems. This
is due to the fact that each CSI update requires compute-intensive channel matrix
pre-processing, either QRD or channel matrix inversion, which has computational
complexity of O.N3/ for an N � N MIMO system and consumes more energy
than that of symbol detectors (see Table 6.17). To address the complexity and
energy issue, [20] proposed an approximated QRD method to avoid exact tone-by-
tone QRD computations during successive channel matrix updates. The presented
method is based on the assumptions that (1) the orthogonality of column vectors in
Q remains unchanged during successive CSI updates; and (2) any change in channel

6.6 Adaptive Channel Pre-processor 143

P

P

P

PP

P

PP

P

P

P

P

PData tone Pilot tone

Fig. 6.40 Scattered pilot pattern of LTE-A for four antenna ports. Symbol positions of half-H
renewals are circled in dashed lines

matrix may be represented as norm value variations in R. Although this tracking-R
(hold-Q) scheme achieves a substantial complexity reduction, it results in a huge
performance loss due to the out-of-date Q information, especially in fast-changing
channels. Additionally, channel sorting was not considered in [20].

In this section, an adaptive channel matrix pre-processor using a hybrid decom-
position scheme with group-sort QR-update strategy [56] is presented and mapped
onto the cell array. By fully exploiting the property of the LTE-A pilot pattern,
i.e., CSI of only antenna ports 0 and 1 are changed during half-H renewals
(Fig. 6.40), the presented QR-update scheme computes exact Q and R matrices
using only one Givens rotation. Compared to brute-force QRDs, this update strategy
significantly reduces the computational complexity, while preserving the accuracy
by avoiding approximations as in the aforementioned tracking algorithms. To obtain
the low-complexity benefit of the introduced update scheme in the context of
SQRD, an effective group-sort algorithm is introduced for channel reordering. The
underlying idea is to restrict the sorting into groups of antenna ports, wherein a two-
step (intra- and inter-group) sorting is applied to approximate the optimal detection
order. Using the group-sort method, applicability of the QR-update is significantly
expanded with negligible performance degradation compared to the precise sorting
counterpart.

To ease the discussion, the SQRD algorithm is used as a case study in the
following sections. However, the presented methods can be applied to the MMSE-
SQRD case by working with the augmented matrix OH instead of OH.

144 6 Multi-Task MIMO Signal Processing

6.6.1 QR-Update Scheme

If only parts of the matrix columns alter over time, QRD of the new matrix can
be performed in a more efficient way than a brute-force computation (referred to
as Case-I), i.e., starting from scratch using Algorithm 1. Inspired by this, a low-
complexity QR-update scheme is adopted during half-H renewals. Specifically,
the presented scheme starts with the brute-force SQRD during full-H renewals,
expressed with a subscript “old” as

OHp;old D QoldRold; (6.27)

where OHp is the permuted channel matrix (6.5). During half-H renewals, OHp;new is
obtained by updating two columns of OHp;old. Although orthogonal vectors in Qold

may no longer triangularize OHp;new, it may still have vectors pointing in the correct
directions. As a consequence, the new R matrix, denoted as QRnew, can be expressed
using OHp;new and Qold as

QRnew D QH
old

OHp;new: (6.28)

Due to the outdated Qold, QRnew is no longer an upper-triangular matrix but may
still reveal some upper-triangular properties depending on the positions of the two
renewed columns. Specifically, if column changes take place at the right-most of
OHp;new, only one element in the lower triangular part of QRnew (i.e., Qrnew.4;3/ for
4 � 4 MIMO) becomes non-zero. This implies that triangularization of QRnew can be
significantly simplified by nulling the single non-zero element rather than operating
on all columns afresh. Defining G as a complex-valued nulling matrix

G D

2

6
6
4

1 0 0 0

0 1 0 0

0 0 c s�
0 0 �s� c�

3

7
7
5 ; (6.29)

QRnew can be triangularized by computing G QRnew. In (6.29), .�/� denotes the complex
conjugate. c and s are defined as

c D Qr�
new.3;3/=z;

s D Qr�
new.4;3/=z;

z D 	jQrnew.3;3/j2 C jQrnew.4;3/j2

1=2

:

(6.30)

This nulling process is commonly referred to as Givens rotation [19]. After
triangularizing QRnew, exact Qnew and Rnew are obtained, expressed as

6.6 Adaptive Channel Pre-processor 145

Qnew D 	
GQH

old

H
;

Rnew D G QRnew D G
�

QH
old

OHp;new

�
:

(6.31)

It should be pointed out that the lower-right diagonal element of Rnew in (6.31),
i.e., rnew.4;4/, has been transformed from real to complex-valued domain during the
QR updates. This can be easily resolved by performing an additional real-valued
domain-transformation using another nulling matrix G0 [36], if real-valued diagonal
elements are required. The matrix G0 is defined as

G0 D

2

6
6
4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 c0

3

7
7
5 ; (6.32)

where

c0 D Qr�
new.4;4/=jQrnew.4;4/j: (6.33)

By combining the traditional brute-force approach and the QR-update scheme,
a hybrid decomposition algorithm is formed. Depending on the run-time condition
of the channel reordering, the two schemes can be dynamically switched to reduce
the computational complexity. Obviously, the complexity reduction depends on the
applicability of the QR-update. Intuitively, the position of antenna ports 0 and
1 can be fixed to the right-most part of OHp;new in order to obtain a maximum
complexity gain, since it completely avoids brute-force computation during half-
H renewals. However, the advantage of channel reordering, for improving detection
performance, is lost. This approach is referred to as Case-II. On the other hand
(Case-III), the applicability of the QR-update is dramatically reduced if channel
columns are permuted based on the optimal detection order without considering
the position of renewed channel columns. For example, considering the 4 � 4

MIMO LTE-A, only .2Š2Š/=4Š D 1=6 of sorting combinations meet the required
update condition, thus limiting the complexity reduction. As a consequence, a smart
scheduling strategy is needed to explore the low-complexity potential of the QR-
update, while still retaining the performance gain of the optimal channel reordering.

6.6.2 Group-Sort Algorithm

To fulfill the aforementioned requirement, an effective group-sort algorithm is
introduced for channel reordering. Instead of operating on individual columns,
sorting of OH is applied on two virtual groups, wherein columns associated with
antenna ports 0 and 1 are tied together. This way, the number of combinations of

146 6 Multi-Task MIMO Signal Processing

Table 6.18 Case-I–IV of the presented hybrid decomposition algorithm

Channel reordering Brute-force [%] QR-update [%]

Case-I Optimal ordering with precise sorting 100 0

Case-II Fixed order for antenna ports 0 and 1 0 100

Case-III Optimal ordering with precise sorting 83.33 16.67

Case-IV Group-sort 50 50

“columns” is reduced from 4Š to 2Š. Consequently, the probability of having both
altered columns at the right-most part of OHp;new is increased by 3 times, from 1=6 to
1=2. To reduce errors caused by sub-optimal sorting sequences, a two-step sorting
scheme is adopted. First, the sorting between groups is based on the total energy of
bundled columns as

I D arg maxiDf0;1g;f2;3g
X

i
k Ohp.i/k2; (6.34)

where I contains inter-sorted group indexes, e.g., I D f0; 1g if antenna ports 0
and 1 correspond to the strongest channels. Second, the two columns within each
group, e.g., indexes within I, are intra-sorted based on the energy of individual
columns. To summarize, Table 6.18 lists applicability of all four cases of the hybrid
decomposition algorithm. The presented group-sort method is denoted by Case-IV.

6.6.3 Algorithm Evaluation and Operation Analysis

To illustrate the effectiveness of the presented algorithm, the same simulation setup
as the one presented in Sect. 6.3.1 with parameters in Table 6.1 is employed, except
that the variant channel modeling is used in this case for emulating time-variations
of radio channels. At 2.6 GHz carrier frequency, the maximum Doppler frequency
of 70 Hz corresponds to a speed of 29 km/h. Channel models with higher mobility,
such as ETU model with 300 Hz Doppler frequency, are not considered in this
study, as smaller MIMO configurations (e.g., 2 � 2) or lower modulation schemes
(e.g., QPSK) are expected to be used to mitigate serious interference induced by fast
channel variations. To minimize performance influences from channel estimation
and symbol detection, perfect channel knowledge is assumed at the receiver and the
near-ML FSD algorithm is used for symbol detection.

Performance of the presented group-sort QR-update and aforementioned cases
are shown in Fig. 6.41. Note that Case-III has the same performance as the brute-
force approach and is used as a reference for FER measurements. The difference
in performance is remarkable between Case-III and the case where no QRDs are
performed during half-H renewals (the upper curve in Fig. 6.41), indicating the
importance of performing CSI and QR updates even for channels with moderate
Doppler shifts. Additionally, adoption of channel reordering during QR decom-

6.6 Adaptive Channel Pre-processor 147

18 20 22 24 26
10-3

10-2

10-1

100

SNR [dB]

FE
R

Case-III (I), precise-sort
Case-IV, group-sort
Case-II, fixed-order
No QR updates

With QR-updates
during half-H renewal

No QR updates
during half-H renewal

Gain to
fixed-order

Fig. 6.41 Simulated FERs in a 4�4 MIMO LTE-A downlink using 3GPP EVA-70 channel model
with 64-QAM modulation

Table 6.19 Complexity of computations in the hybrid decomposition algorithm

Complexity Computation Multiplication 1=
p

x

C1 QRD (6.27) N3 C 2N2 N

C2 QH
old

OHp;new (6.28) 1
2
N3 0

C3 Triangularization (6.29)�(6.31) N2 C 2N 1

C4 Sorting (Algorithm 1 lines 3 and 12) 6N 0

C5 Sorting (6.34) 4N 0

position improves performance to that of the fixed-order approach, e.g., 1.1 dB
difference between Case-II and III at FER D 10�2. Furthermore, the group-sort
approach has only small performance degradation of about 0.2 dB compared to
Case-III, however, with a large complexity reduction as analyzed in the following.

Table 6.19 summaries complexity (C) of computations (6.27)–(6.31) and (6.34)
for an N �N MIMO system. To perform the brute-force decomposition (6.27), MGS
algorithm (Algorithm 1) is considered which has a complexity of C1. Computations
required for both (6.28) and (6.31) have a total complexity of C2 C C3, which is
significantly lower than C1, e.g., by about 42 % for N D 4. Note that the product
of QH

old
OHp;new in (6.28) requires only half of the matrix computations during QR

updates, since only two columns change in OHp;new. The complexity of the precise-
iterative-sort and the group-sort approach is denoted as C4 and C5, respectively.
Based on this analysis and in reference to Case-I, Table 6.20 shows the complexity
reduction versus performance degradation of Case-II–IV for a 4 � 4 MIMO system.
It shows that Case-II reduces the computational complexity by 53 %. Additionally,

148 6 Multi-Task MIMO Signal Processing

Table 6.20 Complexity and performance comparisons of Case-I–IV

Complexity Complexity reduction SNR degradation

Case-I C1 C C4 � (ref.) � (ref.)

Case-II C2 C C3 53 % 1:1 dB

Case-III 5
6
C1 C 1

6
.C2 C C3/ C C4 6 % 0 dB

Case-IV 1
2
C1 C 1

2
.C2 C C3/ C C5 23 % 0:2 dB

combining the group-sort and the QR-update scheme results in more palatable trade-
offs, i.e., 23 % complexity reduction for only 0.2 dB performance degradation.

To further evaluate hardware friendliness of the presented algorithm and the
possibility of being mapped onto the cell array, operations required in the four
computations (Table 6.19) are profiled, see Table 6.21. It clearly shows that all
operations required in the group-sort QR-update algorithm are shared with that
of the brute-force method. This implies that extensive hardware reuse is possible.
Additionally, over 95 % of the operations are at vector-level, representing a high
degree of DLP that can be exploited to achieve high processing throughput.

6.6.4 Implementation Results and Discussion

It is straightforward to implement the adaptive channel matrix pre-processor onto
the cell array using the hybrid decomposition scheme, Case-I–IV in Table 6.18,
since all the required operations (Table 6.21) have already been mapped for the
SQRD computation. Similar to the task mapping scheme presented in the previous
section, multi-subcarrier processing is adopted for attaining high throughput and
is scheduled based on the LTE-A resource block. Worth mentioning is that Givens
rotation (6.31) can be implemented in different ways, such as using conventional
arithmetic or through a series of CORDIC operations [36]. In Chap. 5, the CORDIC
algorithm is mapped onto the scalar processing cell for computing the phase value
of received symbols. However, each computation requires several clock cycles to
complete because of the iterative nature of the CORDIC. Evidently, adopting the
CORDIC approach in the QR-update computation would make the triangularization
process an implementation bottleneck. Hence, Givens rotation is realized by using
conventional arithmetic, where c and s in (6.30) are computed by the dedicated
inverse square root unit available in Tile-3.

Table 6.22 summaries implementation results for the brute-force and the
QR-update computations. Operating at 500 MHz, processing throughput of
the QR-update is 2.6 times higher than that of the brute-force approach. Moreover,
it reduces the energy consumption by 1.9 times. It should be pointed out that
further energy reduction is possible if fine-grained low power design techniques are
employed. For example, the computation of Qnew (6.31) can be performed more
efficiently if half of the SIMD core in Tile-0 could be clock gated, because of the
zero elements in the nulling matrix G.

6.6 Adaptive Channel Pre-processor 149

Table 6.21 Operation profile for N D 4

Vector operations

A � B A
J

B A ˙ B 1=
p

x

QRD (6.27) 17 4 6 4

QH
old

OHp;new (6.28) 8 0 0 0

Triangularization (6.29)�(6.31) 10 0 0 1

Sorting (6.34) 4 0 0 0

Table 6.22 Performance
summary

Clock Throughput Energya

Cycle/Op [MQRD/s] [nJ/QRD]

Brute-force SQRD 12.63 39.60 7.96

Group-sort QR-update 4.83 103.45 4.29
a With data buffers excluded

M
or

e
en

er
gy

 e
ffi

ci
en

t

Better performance

0 0.5 1 1.5

0

10

20

30

40

50

SNR degradation [dB] @ FER=10-2

En
er

gy
 re

du
ct

io
n

[%
]

Case-I
Case-III
Case-IV
Case-II

[E]: 46.07 %
[P]: 1.1 dB

[E]: 23.04 %
[P]: 0.2 dB

[E]: 7.68 %
[P]: 0 dB

Fig. 6.42 Energy (E) and performance (P) trade-off for Case-I–IV of the hybrid decomposition
scheme

Figure 6.42 presents design trade-offs between energy and performance for Case-
I–IV of the hybrid decomposition scheme. Taking the brute-force QRD (Case-I)
as a reference, numbers on the horizontal axis measures the SNR degradation for
reaching the target 10�2 FER, while the percentage of energy reduction is shown
on the vertical axis. Accordingly, algorithms having their coordinates towards the
bottom-left corner are desired. Figure 6.42 clearly shows that the presented group-
sort QR-update scheme (Case-IV) achieves a good compromise, i.e., trading 0.2 dB
performance for 23 % energy reduction. In the case of energy-constrained systems,
the fixed-order scheme (Case-II) can be adopted to further reduce the energy
consumption, i.e., by 46 % in total, whereas the precise-sort scheme (Case-III) can

150 6 Multi-Task MIMO Signal Processing

be used if high performance is demanded. Benefiting from the flexibility of the cell
array, the selection of the algorithm can be made at system run-time, depending on
instantaneous channel condition, performance requirement, and power budget.

6.7 Summary

This chapter presents a reconfigurable baseband processor designed based on
the heterogeneous cell array architecture. The performance and flexibility of the
presented solution is exhibited by mapping three crucial baseband processing
blocks onto the processor, while the capability of real-time processing in an
LTE-A downlink is demonstrated. Such high processing performance is achieved
by algorithm–architecture co-design. On the algorithm side, more than 98 % of
total operations in all three tasks are unified to a vector-level, enabling extensive
parallel processing and resource sharing for attaining high hardware efficiency.
Further achievements in area and energy efficiency are enabled by architectural
developments, including the heterogeneous resource deployments, vector enhance-
ments of the processing core, and flexible self-governed memory data access
schemes. Implementation results show that the presented processor bridges the
gap between conventional platforms. The processor provides enormous design
flexibility and scalability like programmable platforms, while approaching the area
and energy efficiency of task specific ASIC solutions. In addition to the multi-task
MIMO processing, the flexibility of the cell array is demonstrated by mapping
an adaptive channel matrix pre-processor. Taking advantage of dynamic resource
allocations, a wide range of performance-complexity trade-offs are provided, so
that an appropriate pre-processing algorithm can be selected at run-time based on
instantaneous channel condition.

References

1. 3GPP TS 36.101 V11.4.0: user equipment (UE) radio transmission and reception (Release 11),
Mar 2013. http://www.3gpp.org/ftp/Specs/archive/36_series/36.101/36101-b40.zip

2. 3GPP TS 36.212 V11.2.0: multiplexing and channel coding (Release 11), Feb 2013. http://
www.3gpp.org/ftp/Specs/archive/36_series/36.212/36212-b20.zip

3. L. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol
error rate. IEEE Trans. Inf. Theory 20(2), 284–287 (1974)

4. L.G. Barbero, J.S. Thompson, Fixing the complexity of the sphere decoder for MIMO
detection. IEEE Trans. Wirel. Commun. 7(6), 2131–2142 (2008)

5. C. Bernard, F. Clermidy, A low-power VLIW processor for 3GPP-LTE complex numbers
processing, in Design, Automation Test in Europe Conference Exhibition (DATE), Mar 2011,
pp. 1–6

6. C. Berrou, A. Glavieux, Near optimum error correcting coding and decoding: turbo-codes.
IEEE Trans. Commun. 44(10), 1261–1271 (1996)

http://www.3gpp.org/ftp/Specs/archive/36_series/36.101/36101-b40.zip
http://www.3gpp.org/ftp/Specs/archive/36_series/36.212/36212-b20.zip
http://www.3gpp.org/ftp/Specs/archive/36_series/36.212/36212-b20.zip

References 151

7. A. Burg, et al., VLSI implementation of MIMO detection using the sphere decoding algorithm.
IEEE J. Solid State Circuits 40(7), 1566–1577 (2005)

8. J. Byrne, Tensilica DSP targets LTE advanced, Mar 2011. http://www.tensilica.com/uploads/
pdf/MPR_BBE64.pdf

9. R.C.H. Chang, C.H. Lin, K.H. Lin, C.L. Huang, F.C. Chen, Iterative QR decomposition
architecture using the modified Gram-Schmidt algorithm for MIMO systems. IEEE Trans.
Circuits Syst. Regul. Pap. 57(5), 1095–1102 (2010)

10. P.L. Chiu, L.Z. Huang, L.W. Chai, C.F. Liao, Y.H. Huang, A 684Mbps 57mW Joint QR
decomposition and MIMO processor for 4�4 MIMO-OFDM systems, in IEEE Asian Solid
State Circuits Conference (ASSCC), Nov 2011, pp. 309–312

11. F. Clermidy, et al., A 477mW NoC-based digital baseband for MIMO 4G SDR, in IEEE
International Solid-State Circuits Conference (ISSCC), Feb 2010, pp. 278–279

12. V. Derudder, et al., A 200Mbps+ 2.14nJ/b digital baseband multi processor system-on-chip for
SDRs, in IEEE Symposium on VLSI Circuits (VLSIC), 2009, pp. 292–293

13. I. Diaz, B. Sathyanarayanan, A. Malek, F. Foroughi, J.N. Rodrigues, Highly scalable
implementation of a robust MMSE channel estimator for OFDM multi-standard environment,
in IEEE Workshop on Signal Processing Systems (SiPS), 2011, pp. 311–315

14. O. Edfors, M. Sandell, J.J. van de Beek, S.K. Wilson, P.O. Börjesson, OFDM channel
estimation by singular value decomposition. IEEE Trans. Commun. 46(7), 931–939 (1998)

15. F. Edman, V. Öwall, A scalable pipelined complex valued matrix inversion architecture. in
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, 2005, pp. 4489–4492

16. M.D. Ercegovac, L. Imbert, D.W. Matula, J.M. Muller, G. Wei, Improving Goldschmidt
division, square root, and square root reciprocal. IEEE Trans. Comput. 49(7), 759–763 (2000)

17. R. Fasthuber, et al., Exploration of soft-output MIMO detector implementations on Massive
parallel processors. J. Signal Process. Syst. 64, 75–92 (2011)
J. Signal Process. Syst. 64, 75–92 (2011)

18. S. Gifford, C. Bergstrom, S. Chuprun, Adaptive and linear prediction channel tracking
algorithms for mobile OFDM-MIMO applications, in IEEE Military Communications
Conference (MILCOM), vol. 2, Oct 2005, pp. 1298–1302

19. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press,
Baltimore, Maryland, 1996)

20. L. Gor, M. Faulkner, Power reduction through upper triangular matrix tracking in QR detection
MIMO receivers, in IEEE 64th Vehicular Technology Conference (VTC), Sept 2006, pp. 1–5

21. S. Granlund, L. Liu, C. Zhang, V. Öwall, A low-latency high-throughput soft-output signal
detector for spatial multiplexing MIMO systems. Microprocess. Microsyst. 2015. http://www.
sciencedirect.com/science/article/pii/S0141933115000034

22. Z. Guo, P. Nilsson, Algorithm and implementation of the K-best sphere decoding for MIMO
detection. IEEE J. Sel. Areas Commun. 24(3), 491–503 (2006)

23. S. Haene, D. Perels, A. Burg, A real-time 4-Stream MIMO-OFDM transceiver: system design,
FPGA implementation, and characterization. IEEE J. Sel. Areas Commun. 26(6), 877–889
(2008)

24. R.W. Heath, A. Paulraj, Antenna selection for spatial multiplexing systems based on minimum
error rate, in IEEE International Conference on Communications (ICC), vol. 7, 2001, pp.
2276–2280

25. M.H. Hsieh, C.H. Wei, Channel estimation for OFDM systems based on comb-type pilot
arrangement in frequency selective fading channels. IEEE Trans. Consum. Electron. 44(1),
217–225 (1998)

26. X. Huang, C. Liang, J. Ma, System architecture and implementation of MIMO sphere decoders
on FPGA. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(2), 188–197 (2008)

27. Z.-Y. Huang, P.-Y. Tsai, Efficient implementation of QR decomposition for gigabit MIMO-
OFDM systems. IEEE Trans. Circuits Syst. Regul. Pap. 58(10), 2531–2542 (2011)

28. J. Janhunen, O. Silven, M. Juntti, M. Myllyla, Software defined radio implementation of K-best
list sphere detector algorithm, in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), July 2008, pp. 100–107

http://www.tensilica.com/uploads/pdf/MPR_BBE64.pdf
http://www.tensilica.com/uploads/pdf/MPR_BBE64.pdf
http://www.sciencedirect.com/science/article/pii/S0141933115000034
http://www.sciencedirect.com/science/article/pii/S0141933115000034

152 6 Multi-Task MIMO Signal Processing

29. J. Janhunen, T. Pitkanen, O. Silven, M. Juntti, Fixed- and floating-point processor comparison
for MIMO-OFDM detector. IEEE J. Sel. Top. Sign. Proces. 5(8), 1588–1598 (2011)

30. Y. Kim, R.N. Mahapatra, I. Park, K. Choi, Low power reconfiguration technique for coarse-
grained reconfigurable architecture. IEEE Trans. Very Large Scale Integr. VLSI Syst. 17(5),
593–603 (2009)

31. C. Kozyrakis, D. Patterson, Vector vs. superscalar and VLIW architectures for embedded
multimedia benchmarks, in 35th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2002, pp. 283–293

32. H. Lee, C. Chakrabarti, T. Mudge, A low-power DSP for wireless communications. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 18(9), 1310–1322 (2010)

33. L. Liu, F. Ye, X. Ma, T. Zhang, J. Ren, A 1.1-Gb/s 115-pJ/bit configurable MIMO detector
using 0.13-�CMOS technology. IEEE Trans. Circuits Syst. Express Briefs 57(9), 701–705
(2010)

34. L. Liu, J. Löfgren, P. Nilsson, Area-efficient configurable high-throughput signal detector
supporting multiple MIMO modes. IEEE Trans. Circuits Syst. Regul. Pap. 59(9), 2085–2096
(2012)

35. J. Löfgren, L. Liu, O. Edfors, P. Nilsson, Improved matching-pursuit implementation for LTE
channel estimation. IEEE Trans. Circuits Syst. Regul. Pap. 61(1), 226–237 (2014)

36. P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, W. Fichtner, VLSI implementation of a
high-speed iterative sorted MMSE QR decomposition, in IEEE International Symposium on
Circuits and Systems (ISCAS), 2007, pp. 1421–1424

37. M. Li, et al., Optimizing near-ML MIMO detector for SDR baseband on parallel programmable
architectures, in Design, Automation and Test in Europe (DATE), Mar 2008, pp. 444–449

38. M. Mahdavi, M. Shabany, Novel MIMO detection algorithm for high-order constellations in
the complex domain. IEEE Trans. Very Large Scale Integr. VLSI Syst. 21(5), 834–847 (2013)

39. K. Mohammed, B. Daneshrad, A MIMO decoder accelerator for next generation wireless
communications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(11), 1544–1555 (2010)

40. A. Nilsson, E. Tell, D. Liu, An 11 mm2, 70 mW fully programmable baseband processor for
mobile WiMAX and DVB-T/H in 0.12�m CMOS. IEEE J. Solid-State Circuits 44(1), 90–97
(2009)

41. T. Nylanden, J. Janhunen, O. Silven, M. Juntti, A GPU implementation for two MIMO-
OFDM detectors, in International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), July 2010, pp. 293–300

42. J.M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits - A Design Perspective,
2nd edn. (Prentice Hall, Englewood Cliffs, 2002)

43. S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A.M. Vidal, Fully parallel GPU implemen-
tation of a fixed-complexity soft-output MIMO detector. IEEE Trans. Veh. Technol. 61(8),
3796–3800 (2012)

44. M. Shabany, D. Patel, P.G. Gulak, A low-latency low-power QR-decomposition ASIC
implementation in 0.13 �m CMOS. IEEE Trans. Circuits Syst. Regul. Pap. 60(2), 327–340
(2013)

45. M. Šimko, D. Wu, C. Mehlfüehrer, J. Eilert, D. Liu, Implementation aspects of channel
estimation for 3GPP LTE terminals, in 11th European Wireless Conference, Apr 2011, pp.
1–5

46. D. Sui, Y. Li, J. Wang, P. Wang, B. Zhou, High throughput MIMO-OFDM detection with
graphics processing units, in IEEE International Conference on Computer Science and
Automation Engineering (CSAE), vol. 2, May 2012, pp. 176–179

47. M. Thuresson, et al., FlexCore: utilizing exposed datapath control for efficient computing.
J. Signal Process. Syst. 57(1), 5–19 (2009)

48. M. Wu, S. Gupta, Y. Sun, J.R. Cavallaro, A GPU implementation of a real-time MIMO
detector, in IEEE Workshop on Signal Processing Systems (SiPS), Oct 2009, pp. 303–308

49. D. Wübben, J. Rinas, R. Böhnke, V. Kühn, K.D. Kammeyer, Efficient algorithm for detecting
layered space-time codes, in 4th International ITG Conference on Source and Channel Coding
(SCC), Jan 2002, pp. 399–405

References 153

50. D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer, MMSE extension of V-BLAST based on
sorted QR decomposition, in IEEE 58th Vehicular Technology Conference (VTC), vol. 1, 2003,
pp. 508–512

51. Y. Xie, W. Wolf, H. Lekatsas, Code compression for embedded VLIW processors using
variable-to-fixed coding. IEEE Trans. Very Large Scale Integr. VLSI Syst. 14(5), 525–536
(2006)

52. C. Yang, D. Marković, A flexible DSP architecture for MIMO sphere decoding. IEEE Trans.
Circuits Syst. Regul. Pap. 56(10), 2301–2314 (2009)

53. S. Ye, S. H. Wong, C. Worrall, Enhanced physical downlink control channel in LTE advanced
release 11. IEEE Commun. Mag. 51(2), 82–89 (2013)

54. C. Zhang, T. Lenart, H. Svensson, V. Öwall, Design of coarse-grained dynamically recon-
figurable architecture for DSP applications, in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Dec 2009, pp. 338–343

55. C. Zhang, L. Liu, D. Marković, V. Öwall, A heterogeneous reconfigurable cell array for
MIMO signal processing. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(3),
733–742 (2015)

56. C. Zhang, H. Prabhu, Y. Liu, L. Liu, O. Edfors, V. Öwall, Energy efficient group-sort QRD
processor with on-line update for MIMO channel pre-processing. IEEE Trans. Circuits Syst.
Regul. Pap. 62(5), 1220–1229 (2015)

Chapter 7
Future Multi-User MIMO Systems:
A Discussion

Wireless communication technology is evolving at a fast pace to meet requirements
of emerging applications, such as ultra-high resolution video, cloud computing,
internet of things, etc. For example, it took only 2 years for cellular systems
to evolve from LTE to LTE-A, delivering a 10 � increase in data rates. Almost
at the same time that the first LTE-A service was launched, people are talking
about next-generation (5G) wireless communication systems [3]. The coming 5G
communication aims to connect tens of billions of devices with some reaching
several gigabit-per-second data rates and milliseconds service latency. On the
other hand, bandwidth is a scare resource, demanding revolution in wireless
communication technologies to achieve these aggressive targets. Technologies being
discussed include small-cell networks [7], millimeter wave communication [14],
interference cancellation (e.g., full-duplex transmission [2]), advanced wave-
forms [6] (e.g., Generalized Frequency Division Multiplexing, Universal Filtered
Multi-carrier, Filter-Bank based Multi-Carrier, Bi-orthogonal Frequency Division
Multiplexing), Massive MIMO [4, 16], etc. Among those, Massive MIMO has been
widely accepted, both in academia and industry, as one of the promising candidates
for 5G. 3GPP is developing 3D channel models for this new MIMO technique.
Studies for the Time-division duplexing (TDD) Massive MIMO have been initiated
for 3GPP Release 13. In this chapter, we will focus on the Massive MIMO
technology, discussing its basic concepts, state-of-the-art research progress, key
signal processing in the digital baseband, as well as new challenges for designing
reconfigurable architectures for its baseband implementation.

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_7

155

156 7 Future Multi-User MIMO Systems

7.1 MIMO Goes to Massive

7.1.1 Massive MIMO Basics

In 5G era, multi-user support is crucial since the number of linked devices will grow
explosively. Currently, this has been achieved by multiplexing users in resource
domains such as time, frequency, and code. However, the contradiction between the
growth in number of mobile devices and ever more precious spectrum poses a fun-
damental limit. Traditional multi-antenna technology exploits the spatial domain,
opening an opportunity to support more users. Unfortunately, the physical size and
energy source limitations on portable devices prevent from adding significantly
more antennas. To make a clean break with traditional MIMO, a new multi-user
multi-antenna scheme, commonly referred to as Massive MIMO (also known as
large-scale MIMO, full-dimension MIMO [8]), has been introduced.

As illustrated in Fig. 7.1, the concept of Massive MIMO includes the deployment
of antenna array at the base station, having much more elements than in systems
being built today, say 100 or more. The base station simultaneously serves a
relatively smaller number of User Equipment (UE), e.g., K << M in Fig. 7.1.
The physically large array with many antenna elements provides huge degree-of-
freedom in spatial domain and has some special channel properties that may not be
observed in “traditional” multi-antenna systems:

• The large antenna array has large Rayleigh distance, making it possible to focus
transmission energy into smaller space to multiplex more users in the same time-
frequency resource. For instance, it can separate users not only in direction but
also in “depth.”

• Large-scale fading can be experienced across the large antenna array, providing
diversity in radio signal propagation.

Fig. 7.1 Illustration of a
Massive MIMO system with
M base station antennas and
K single-antenna user
equipment

7.1 MIMO Goes to Massive 157

• Under favorable propagation environments, channels between base station and
different users become orthogonal as the number of base station antenna elements
grows.

• Some channel (or equivalent channel) variations, like small-scale fading, can be
averaged out even with simple processing schemes.

As a result, Massive MIMO (with multiple users being served simultaneously in the
same time-frequency resource) is capable of delivering orders of magnitude increase
in both spectral efficiency and radiated energy efficiency. Furthermore, Massive
MIMO has the potential to relax the design requirement for analog front-end circuits
by allowing extensive use of low-cost components. For instance the combination
of large number of signal paths averages out non-ideal phenomenon in analog
components, e.g., phase noise and fabrication variations. Another example of using
low-cost analog components is the deployment of hundreds of power amplifiers
with output power in the milli-Watt range, instead of those expensive ultra-linear
power amplifiers (generally in tens-of-Watt range) used in current systems [4].
Another benefit of multi-user Massive MIMO systems is the reduced latency, since
it inherently reduces deep fading that may require complicated retransmission. The
scheduling of multiple users can be simplified since the multi-user multiplexing can
be performed at the spatial domain only. From the baseband processing perspective,
the computational complexity can also be moderated, to a certain extent. Because
of the huge degree-of-freedom in service antennas, linear MIMO pre-coding and
detection are able to achieve near-optimal performance. Finally, UE are significantly
simplified since all the computational-demanding processing will be performed at
the base station side.

7.1.2 From Theory to Practice

Because of its promising improvement in system capacity, Massive MIMO has
attracted lots of research activities. In the following, we give a brief overview
of Massive MIMO related research activities, both in theoretical exploration and
practical implementation. The purpose of this overview is to identify critical
research problems for the new Massive MIMO systems and to introduce the
corresponding digital signal processing techniques. These are important aspects
and are the prerequisite for designing high-performance processor architectures for
baseband processing.

Theoretical Research

In the level of theoretical analysis and development, substantial research progress
has been achieved and reported. Interesting and important topics include perfor-
mance analysis, spectral and energy efficiency optimization, and resource allocation.

158 7 Future Multi-User MIMO Systems

In [10], the uplink performance of a single-cell Massive MIMO system (with M
base station antennas) has been analyzed. Utilizing the array and spatial-diversity
gain, the transmitted power of each user can be reduced proportional to 1

M without
obvious performance degradation. The information-theoretical analysis reported
that Massive MIMO is able to provide 100 times improvement in power efficiency
and ten times in spectrum efficiency [9].

To harvest this promising performance enhancement in real-life prorogation
environment, channel feature and modeling in the context of Massive MIMO
transmission has to be studied. In [1], channel measurement has been conducted for
a 128-antenna Massive MIMO system using both large linear array and a compact
cylindrical array. Equipped with low-complexity linear ZF pre-coding, close-to-
optimal performance (i.e., performance with i.i.d. channel) can be approached in
measured channels.

Another important research aspect is key signal processing algorithms in Massive
MIMO systems, including synchronization and calibration, channel estimation,
antenna selection, uplink MIMO detection, and downlink beam-forming pre-coding.
Currently, the most popular Massive MIMO transmission is based on TDD, where
the channel reciprocity is utilized to construct downlink beam-forming with uplink
channel estimation. In this case, accurate CSI acquisition becomes crucial to system
performance. Other critical issues to be tackled to achieve good overall system
performance is the reduction of inter-cell interference, e.g., pilot contamination
problems [4]. On the other side, the main research objective in the area of
MIMO pre-coding and detection has been approaching optimal performance with
low computational complexity [11, 18]. In addition, how to relieve the design
requirements for analog components using digital signal processing technology has
also received many attentions, e.g., the low Peak-to-Average Power Ratio (PAPR)
or constant-envelope pre-coding [13].

Implementation-Related Research

On the other hand, research dedicated to the hardware implementation perspective
is still in its infancy. Currently published implementations have been focused on
key signal processing blocks in Massive MIMO baseband processing. For instance,
researchers at Rice University and Cornell University are working together with the
focus on uplink multi-user signal detectors. In [19], they reported an implementation
of a Neumann Series expansion-based MMSE detector for a 128-antenna 8-UE sys-
tem. The achieved detection throughput is 600 Mb/s. Researches at Lund University
are investigating efficient implementation of beam-forming pre-coders. The feature
of Massive MIMO, i.e., the Gramian of the channel matrix is diagonally dominated,
has been explored to develop low-complexity large-size matrix inversion using
a Neumann Series approximation [11]. Moreover, the performance-complexity
optimization has been performed to find the trade-off between the iteration number
and the pre-condition matrix in Neumann Series algorithm. The pre-coder is
evaluated using a 65 nm CMOS technology and consumes 125 K gates. Running

7.1 MIMO Goes to Massive 159

Table 7.1 Reported Massive MIMO test-beds

Operating No. BS No. Hardware

Test-bed band (GHz) antennas users platform

LuMaMi 1.2–6 100 10 NI USRP with

(planar array) Xilinx FPGA

Argos 2.4 64 15 WARP v3 Node

(planar array) with Xilinx FPGA

Samsung 1–28 64 N/A N/A

(planar array)

Ngara 0.8 32 18 APU with

(circular array) Xilinx FPGA

at 420 MHz clock frequency, it takes only 4 �s to finish the pre-coding for a 100-
antenna 16-UE system. This low latency is important, in addition to the traditional
throughput requirement, for a TDD Massive MIMO system. In [12, 13], Lund
researchers reported pre-coders based on antenna reservation and constant envelop
techniques that lead to low PAPRs for transmitting signals, while being efficient in
terms of complexity, enabling the use of low-cost power amplifiers.

To proof the concept of new wireless communication techniques, it is important
to build up test-beds to conduct verification with over-the-air transmission. For
Massive MIMO it is even more important, since it heavily relies on propagation
environment. However, building up a Massive MIMO test-bed is a challenging task,
which consumes lots of resources and requires experienced engineering in both
wireless communication and hardware design. Thereby, limited groups (including
companies) took this path, despite of its importance. Table 7.1 lists existing Massive
MIMO test-beds that have been reported in public. Their corresponding main
features are tabulated as well. LuMaMi test-bed [17] developed at Lund University
(Fig. 7.2) is the first 100-antenna test-bed that demonstrates real-time 20 MHz
bandwidth transmission.

In summary, many critical open problems have to be investigated and addressed
from view points of circuit-and-system design, in order to bring the Massive
MIMO technology from theory to practice. This is important for efficient real-life
implementation, standardization, and future commercial deployment. These new
implementation-related challenges that have been uncovered by Massive MIMO
include, but not limited to

• The challenge of dealing with large amount of low-precision analog front-end
components, e.g., the solution for time-frequency synchronization and phase
coherence of base station RF chains.

• Low-latency and low-power signal processing that supports high mobility (espe-
cially for TDD systems) and achieves high total energy efficiency.

• Efficient baseband architecture with optimized processing distribution and inter-
connection for handling huge amount of data that has to be processed in real-time.

160 7 Future Multi-User MIMO Systems

Fig. 7.2 LuMaMi: Lund Massive MIMO Test-bed [17]

The remainder of this chapter discusses challenges in efficient implementation
of digital baseband processing, especially in the frame of the reconfigurable
architecture for sufficing flexibility requirement in multi-mode operation, multi-
algorithm switching, and future system evolution.

7.2 Massive MIMO Baseband Processing

Despite its potential to revolutionize 5G wireless communication networks, Massive
MIMO poses critical challenges on hardware realizations, especially on the efficient
VLSI implementation of baseband systems (at the base station side). In Massive
MIMO, the amount of computations needed has been tremendously scaled up with
the number of base station antennas. For instance, the number of elements in a

7.2 Massive MIMO Baseband Processing 161

channel matrix is 1000 for a 100-antenna 10-UE setup, i.e., 100� of existing MIMO
systems. This change in quantity may lead to quality change in implementation
strategies. Combined with 5G requirements of much higher processing throughput
and lower latency, much research effort has to be invested on hardware realization
issues to achieve efficiency in both silicon area and power consumption. To
assistant efficient hardware architecture design, it is crucial to understand the
computational operations to be mapped. In this section, we give an overview of
the required baseband signal processing in Massive MIMO systems and profile the
corresponding processing characteristics.

7.2.1 Baseband Processing Overview

Figure 7.3 shows a simplified block diagram of an OFDM-based TDD Massive
MIMO system (at the base station side). With OFDM, system provides good
compatibility to existing wireless standards, like 3GPP LTE and LTE-A. TDD
is currently the most promising (at least with reasonable implementation costs)
technique for realizing duplex Massive MIMO. Nevertheless, the key signal pro-
cessing techniques discussed here can be extended and applied to other Massive
MIMO formats. For each Rx chain in the system, the received RF signals are
digitized, followed by analog front-end calibration and time-frequency synchro-
nization, where imperfections in analog components like frequency offset and I/Q
imbalance are compensated. From the synchronized data, the Cyclic prefix (CP) is
removed, followed by OFDM (using FFT) demodulation and guard-band removal.
These OFDM symbols contain the superposition of transmitted signals of all users.

Channel
Encoding

Beam-
forming

Precoding

Interle
aving

Symbol
Mapping

OFDM
Modulation

Resampling
Filtering

Channel
Encoding

Interle
aving OFDM

Modulation
Resampling

Filtering

1

K

Analog
TX

Analog
TX

Channel
Decoding Channel

Estimation
+

Multi-user
Detection

Deinte
rleav

Symbol
Demap

Channel
Decoding

Deinte
rleav

Symbol
Demap OFDM

Demod.
Digital

Front-end

1

K
Analog

RX

OFDM
Demod.

Digital
Front-end

Analog
RX

Reciprocity
Calibration

Symbol
Mapping

1

M

1

M

1

M

Fig. 7.3 Simplified block diagram of an OFDM-based Massive MIMO system, with M base
station antennas and K UE

162 7 Future Multi-User MIMO Systems

The frequency-domain signal of each chain is combined and processed by the
MIMO detector. Using the channel matrix estimated from uplink pilots, the MIMO
detector cancels interference and detects frequency-domain symbols from each UE.
The detected symbols are sent to bit-level processing, including de-interleaving and
decoding. The downlink baseband processing is basically the reverse processing to
uplink, with a unique TDD channel calibration and beam-forming pre-coding. In the
following, tree key signal processing blocks in Massive MIMO, i.e., uplink multi-
user detection, downlink beam-forming pre-coding, and reciprocity calibration, are
introduced.

7.2.2 Uplink Multi-User Detection

Considering an uplink Massive MIMO system with M base station antennas and K
single-antenna UE, the received M � 1 complex signal vector is given by

r D Hs C n; (7.1)

where s is the K � 1 transmitted vector, given that UE are perfectly synchronized.
The component in s is taken independently from a set of Gray mapped constellation
points. n is the vector of i.i.d. Gaussian noise samples with mean zero and variance
N0 per complex entry, and H denotes the M � K uplink channel matrix.

The task of uplink multi-user detection is to recover the transmitted vector s given
the channel matrix estimation OH and received vector r. In traditional MIMO sys-
tems, many detection algorithms have been discussed, including ZF, MMSE, sphere
decoder [5], Markov chain Monte Carlo simulation, etc. As aforementioned, the
physically large array in Massive MIMO system experiences different prorogation
properties than existing MIMO systems. One of the properties that can be leveraged
is that, with massive service antennas, column vectors of the channel matrix H are
asymptotically orthogonal, i.e., HHH becomes diagonally dominated. As a result,
linear detection is good enough to provide near-optimal performance, e.g.,

Os D Dr; (7.2)

where

D D HH (7.3)

for Maximum-ratio combining (MRC) detection (also known as matched filtering)
and

D D .HHH C ˛I/�1HH (7.4)

for regularized ZF detection. Here ˛ is the parameter considering the impact of
background noise and unknown user interference.

7.2 Massive MIMO Baseband Processing 163

Worth mentioning is that linear processing in Massive MIMO is not necessarily
low-complexity. For instance, the complexity of direct channel matrix inversion for
ZF detection is in the order of O.104/ for M D 100 and K D 10.

7.2.3 Downlink Beam-Forming Pre-coding

The equivalent complex-valued baseband model for a Massive MIMO downlink can
be expressed as

s D Gz C w; (7.5)

where s is the K � 1 received vector with each element corresponding to a UE, z is
the M �1 transmitted vector, generated by beam-forming pre-coding, w is the vector
of i.i.d. Gaussian noise samples, and G denotes the K �M downlink channel matrix.

It is generally agreed that wireless propagation channel is reciprocal, e.g.,

GT D H: (7.6)

Thereby, uplink channel estimation can be used for downlink beam-forming given
that analog impairments can be calibrated out of the system. The task of downlink
pre-coding is to “beam-form” the transmitted signal in a way that each user is able
to receive almost interference-free signal. As a consequence, signal processing at
the UE side can be significantly simplified. Many schemes exist for pre-coding the
downlink signal x, including linear and non-linear techniques. Similar to uplink
detection, linear processing is generally good enough given the huge degree-of-
freedom in service antennas. Linear pre-coding generates z as

z D Cx; (7.7)

where x is the K � 1 signal vector, corresponding to K users. The pre-coding matrix
C has the form of

C D GH (7.8)

and

C D GH.GGH C ˛I/�1 (7.9)

for Maximum Ratio Transmission (MRT) and regularized ZF pre-coding,
respectively.

Other techniques like Constant Envelope (CE) pre-coding are being investigated
to relax the requirement of RF front-end in Massive MIMO systems. The motivation
behind the strict constraint on the amplitude of radiated signals (change only in

164 7 Future Multi-User MIMO Systems

phase) is the use of power-efficient linear power amplifiers, which can reduce
hardware cost significantly in comparison to those used in existing cellular systems.

It should be pointed out that responses of analog components need to be
taken into account in practical system design, since they may destroy the nice
reciprocal property due to circuit variations, manufacturing process, voltage supply,
environment temperature, etc. Thereby, differences in analog chains between uplink
and downlink have to be estimated and compensated, commonly referred to as TDD
channel reciprocity calibration [15].

7.3 New Challenges in Reconfigurable Architecture Design

In this section, we look into the reconfigurable baseband processor for Massive
MIMO systems, based on the introduction in Sect. 7.2. Designing an efficient
reconfigurable architecture for Massive MIMO is a new and challenging task. The
orders-of-magnitude increase in the number of data paths requires revolutionary re-
thinking beyond existing architectures. The purpose of this section is not to describe
or propose an architecture. Instead, we would like to open up discussion on this
interesting topic, by first analyzing unique features in Massive MIMO baseband
processing and then looking into architecture design challenges corresponding
to these new features. We believe the discussion in this session will serve as a
design guideline for efficient reconfigurable architecture design in Massive MIMO
applications.

7.3.1 Computational Complexity

To facilitate the design of baseband processor, it is important to analyze and
profile computational complexity. Table 7.2 lists the number of operations involved
in each processing block in a typical OFDM-based Massive MIMO baseband
system (Fig. 7.3). In baseband processors, multipliers are commonly the dominating
arithmetic function units, in terms of both silicon area and power consumption.
Thereby, the presented complexity analysis only includes the number of complex-
valued multiplications. Other complicated but rare operations, like division and
square-root, can be accelerated and attached as co-processors (similar to the case
study presented in Chap. 6).

The number of operations in Table 7.2 is parameterized based on the number of
base station antennas M, the number of single-antenna UE K, and system bandwidth
(affecting the number of data subcarriers Nc and FFT/IFFT size NFFT). As can be
seen, the number of operations is in the order of O.107/ for a 100-antenna 10-UE
Massive MIMO system with 20 MHz bandwidth. Moreover, this large number of
operations have to be performed with high throughput and low latency, especially
in TDD systems. One potential technique to meet this critical design requirement

7.3 New Challenges in Reconfigurable Architecture Design 165

Table 7.2 Computational complexity for Massive MIMO baseband processing

Processing block Algorithm Multiplication

FFT M � NFFT � log2.NFFT/

Channel estimation M � Nc

Channel interpolation Linear interpolation 2M � Nc

Data detection ZF 2 � Nc � K2 � M + 2 � K3

pre-processing
MRC Nc � K � M

Data detection Nc � K � M

Reciprocity calibration Nc � K � M

Data pre-coding ZF 2 � Nc � K2 � M + 2 � K3

pre-processing
MRC 3 � Nc � K � M

Data pre-coding Nc � K � M

IFFT M � NFFT � log2.NFFT/

Total for minimum MRC (uplink)+MRC (downlink) M � .5NFFT � log2.NFFT/C
requirement

3Nc C 8KNc/ � 2:1 � 107

Total for maximum ZF (uplink)+ZF (downlink) M � .5NFFT � log2.NFFT/ C 3Nc
requirement C5KNc C 4K2Nc/ � 6:7 � 107

is massive parallel computing, e.g., using SIMD architecture. In the context of
Massive MIMO, Data-level parallelism (DLP) can be exploited in both spatial and
frequency domain, e.g., operations for different receiver chains and data subcarriers.

7.3.2 Processing Distribution

In addition to DLP, processing distribution is another important design aspect
in Massive MIMO systems. With orders-of-magnitude increase in data paths,
processing distribution can be used to reduce overhead in data shuffling network
and memory sub-system. Moreover, with newly emerged wireless communication
technologies, e.g., distributed antenna system, this aspect will become even more
important.

Basically, there are two types of processing distributions, centralized and dis-
tributed processing. In centralized systems, data from/to all RF chains are aggre-
gated into one main processor, which handles all the required computations. The
advantage of centralized processing is the capability of performing advanced
algorithms for achieving better system performance. The price to pay is the overhead
of data transmission and shuffling. In contrast, distributed processing localizes
operations close to data producer/consumer, aiming to reduce data movements.
Comparing the two distribution strategies, it is difficult to say which one is better.
The optimal decision is highly dependent on algorithm selections and design
specification.

166 7 Future Multi-User MIMO Systems

Fig. 7.4 Processing
distribution for Massive
MIMO pre-coding

Central processing
Channel Est.

Distribute processing

Channel Est.

Figure 7.4 shows an example of processing distribution strategy for Massive
MIMO downlink beam-forming pre-coding. For MRC pre-coding,

z D HHx; (7.10)

channel estimation and pre-coding may be localized close to antennas, i.e., using
distributed processing, in order to reduce the amount of data shuffling and on-chip
network bandwidth. On the other side, hybrid strategy may be adopted for ZF pre-
coding,

z D HH.HHH/�1x: (7.11)

For instance, ZF process can be divided into two steps:

Qx D .HHH/�1x (7.12)

and

z D HH Qx; (7.13)

where Qx is computed centrally and z D HH Qx is performed in a distributed manner.

7.4 Summary 167

7.3.3 Spatial-Domain Selectivity

Radio systems experience highly dynamic operating conditions, where both propa-
gation environments and QoS requirements vary within huge ranges. Conventional
circuits for radio communication applications are conservative and are often
designed to guarantee reliable worst-case processing, thus consuming more power
than necessary in most situations. On the other side, adaptive computing is a
promising approach that significantly reduces power consumption by performing
power-efficient and good-enough processing, based on the current channel condition
and application-specified QoS requirements. This smartness in processing requires
flexible hardware support.

Generally, wireless channel is selective in three dimensions, namely time,
frequency, and space. Many studies have been conducted to exploit the selectivity in
time and frequency domain, while the diversity in spatial domain has not been well
studied until the invention of MIMO technology. Equipped with a large number of
service antennas, Massive MIMO systems potentially provide much more spatial
selectivity in the propagation channel. The scenario can be either different number
of users being served or variable geographical distributions of connected users. For
example, a large number of users are close to each other in a stadium, while users
are separated in rural areas. In the latter case, the channel of each user is close-to-
orthogonal. Therefore, linear processing (e.g., matched filter, ZF, and MMSE) is
good enough to provide near-optimal performance. While in the former scenario,
the equivalent channels are highly correlated in spatial domain, requiring more
advanced non-linear processing to maintain system performance. Other examples
include the different number of served users between day-time and night. In
this case, adaptive and reconfigurable computing can be utilized to enable power
reduction. For instance, the antenna selection technique can be applied to reduce the
number of active antennas when less users are connected, while preserving system
performance at a certain required level. By switching off antennas, signal processing
can be simplified because of the reduced number of data paths.

We believe much more adaptive signal processing algorithms will be introduced
to fully harvesting the available spatial-domain selectivity in Massive MIMO, which
in turn poses tremendous flexibility requirements and design challenges to baseband
processors.

7.4 Summary

This chapter introduces an emerging wireless communication technology, Massive
MIMO, for the coming 5G network. Besides the basic concept of the Massive
MIMO, its main advantages over existing systems are discussed, including the
prorogation feature with large antenna array, the capability of improving both
spectral and transmitted energy efficiency, and the benefit of extensive use of low-

168 7 Future Multi-User MIMO Systems

cost electric components. To bring this promising technique from theory to practice,
state-of-the-art research progress in the area of Massive MIMO is recapped.
Additionally, unique operations required for digital signal processing in Massive
MIMO baseband (at the base station side) are profiled and analyzed. In Massive
MIMO, beam-forming pre-coding and multi-user detection are conducted with
large-scale channel matrices. Channel reciprocity calibration is crucial to enable
practice TDD Massive MIMO transmission. Based on the operation analysis, we
identify tree key features in Massive MIMO baseband processing that have critical
impacts on reconfigurable hardware design. Besides orders of magnitudes increase
in computational complexity, system architects may consider optimal processing
distribution to relax the requirement of on-chip network and memory sub-system.
Moreover, more flexibility is needed to explore the spatial-domain selectivity in
Massive MIMO systems.

References

1. X. Gao, F. Tufvesson, O. Edfors, F. Rusek, Measured propagation characteristics for very-
large MIMO at 2.6 GHz, in Asilomar Conference on Signals, Systems and Computers (2012),
pp. 295–299

2. S. Hong et al., Applications of self-interference cancellation in 5G and beyond. IEEE Commun.
Mag. 52(2), 114–121 (2014)

3. Huawei, 5G, a technology vision, 2013. http://www.huawei.com/5gwhitepaper
4. E.G. Larsson, O. Edfors, F. Tufvesson, T.L Marzetta, Massive MIMO for next generation

wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)
5. L. Liu, F. Ye, X. Ma, T. Zhang, J. Ren, A 1.1-Gb/s 115-pJ/bit configurable MIMO detector

using 0.13-�CMOS technology. IEEE Trans. Circuits Syst. Express Briefs 57(9), 701–705
(2010)

6. N. Michailow, et al., Generalized frequency division multiplexing: a flexible multi-carrier
modulation scheme for 5th generation cellular networks, in German Microwave Conference
(GeMiC), 2012

7. P. Mogensen, et al., 5G small cell optimized radio design, in IEEE Globecom Workshops
(2013), pp. 111–116

8. Y.H. Nam, et al., Full-dimension MIMO (FD-MIMO) for next generation cellular technology.
IEEE Commun. Mag. 51(6), 172–179 (2013)

9. H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser
MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

10. H.Q. Ngo, et al., Uplink performance analysis of multicell MU-SIMO systems with ZF
receivers. IEEE Trans. Veh. Technol. 62(9), 4471–4483 (2013)

11. H. Prabhu, J. Rodrigues, O. Edfors, F. Rusek, Approximative matrix inverse computations
for very-large MIMO and applications to linear pre-coding systems, in IEEE Wireless
Communications and Networking Conference (WCNC) (2013), pp. 2710–2715

12. H. Prabhu, et al., A low-complex peak-to-average power reduction scheme for OFDM based
Massive MIMO systems, in IEEE International Symposium on Communications, Control and
Signal Processing (ISCCSP) (2014), pp. 114–117

13. H. Prabhu, F. Rusek, J. Rodrigues, O. Edfors, High throughput constant envelope pre-coder for
Massive MIMO systems, in IEEE International Symposium on Circuits and Systems (ISCAS)
(2015), pp. 1502–1505

http://www.huawei.com/5gwhitepaper

References 169

14. T. Rappaport, et al., Millimeter wave mobile communications for 5G cellular: it will work!
IEEE Access 1, 335–349 (2013)

15. R. Rogalin, et al., Scalable synchronization and reciprocity calibration for distributed multiuser
MIMO. IEEE Trans. Wireless Commun. 13(4), 1815–1831 (2015)

16. F. Rusek, et al., Scaling up MIMO: opportunities and challenges with very large arrays. IEEE
Signal Process. Mag. 30(1), 40–60 (2013)

17. J. Vieira, et al., A flexible 100-antenna testbed for Massive MIMO, in IEEE Globecom
Workshop-Massive MIMO: From Theory to Practice, 2014, pp. 287–293

18. B. Yin, et al., Implementation trade-offs for linear detection in large-scale MIMO systems, in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013),
pp. 2679–2683

19. B. Yin, et al., A 3.8 Gb/s large-scale MIMO detector for 3GPP LTE-advanced, in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp.
3879–3883

Chapter 8
Conclusion

Coarse-grained reconfigurable architectures (CGRAs) emerge as a new class of
hardware platforms, designed to bridge the gap of computational performance,
hardware efficiency, and flexibility among conventional architectures such as
Application-specific integrated circuits (ASICs), Field-programmable gate arrays
(FPGAs), and Digital signal processors (DSPs). The strength of CGRAs lies in
the capability of allocating hardware resources dynamically to accomplish current
computational demands. In addition, hardware efficiency with respect to area and
power consumption is substantially improved in comparison to FPGAs, thanks to
the word-level data manipulations.

In this book, a dynamically reconfigurable cell array architecture is introduced,
developed, and verified in silicon with a primary focus on digital baseband process-
ing in wireless communication. The presented cell array architecture is constructed
from an array of processing and memory cells interconnected through a hierarchical
easily-scalable on-chip network. High hardware efficiency is attained by conducting
algorithm-architecture, hardware-software, and processing–memory co-design. The
performance and flexibility of the cell array are demonstrated through two case
studies.

In the first study, the cell array is designed to process multiple radio standards
concurrently, aiming to demonstrate the flexibility of the architecture and evaluate
the control overhead, in terms of clock cycles and area consumption, of hardware
reconfigurations. With a 2 � 2 cell array, three contemporary wireless communica-
tion standards are supported and two independent data streams from any of the three
standards can be processed concurrently. Depending on the number of receiving
data streams, the cell array dynamically adjusts its underlying hardware resources
to maximize hardware usage for achieving either high computational accuracy or
processing concurrence. In addition to resource sharing among multiple radio stan-
dards, hardware flexibility is demonstrated by mapping different algorithms onto the
same platform after chip fabrication. The adoption of a newly developed algorithm

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6_8

171

172 8 Conclusion

extends the coverage of standards to be supported. Thanks to the employed in-
cell configuration scheme, run-time context switching between different operation
scenarios requires at most 11 clock cycles, which correspond to the configuration
time of �34 nS at 320 MHz. Implementation results show that the adoption of the
cell array in a digital front-end receiver requires only about 16 % area overhead in
comparison to its ASIC counterpart.

The second study deals with multi-task processing, aiming to demonstrate
the flexibility and real-time processing capability of the cell array as well as to
evaluate the area and energy efficiency. To this end, three crucial and compute-
intensive baseband processing blocks in 4 � 4 MIMO-OFDM systems, namely
channel estimation, pre-processing, and symbol detection, are mapped onto the cell
array. Benefiting from algorithm-architecture co-design, the cell array is capable of
processing all the target tasks in real-time for a 20 MHz 64-QAM 3GPP LTE-A
downlink. On the algorithm side, most of the operations are unified to vector-
level, which enables extensive parallel processing and resource sharing for attaining
high hardware efficiency. On the architecture side, the cell array is extended
with extensive vector computing capabilities, including vector-enhanced SIMD
cores and VLIW-style multi-stage computation chain. This is done in order to
achieve low-latency high-throughput vector computing and reduce register/memory
access for loading and storing intermediate results. In addition, flexible memory
access schemes are adopted to relieve processing cores from non-computational
address manipulations. Implementation results show that the presented cell array
outperforms related programmable platforms by up to 6 orders of magnitude in
energy efficiency, and achieves similar level of efficiency to that of ASICs in terms
of area and energy.

This book also initiates the study and discussion on reconfigurable architec-
ture design for Massive MIMO baseband processing applications. The orders-of-
magnitude increase in data path in Massive MIMO systems requires extension
and modification to the cell array and (SIMD) architecture to support its baseband
processing. How to further explore the concept of Data-level parallelism (DLP) in
both frequency- and spatial-domain is one of the key design topics.

In conclusion, the CGRA-based cell array demonstrates a good design trade-off
between the contradictory requirements of flexibility, performance, and hardware
efficiency. Thus, it is a promising and feasible solution to bridge the huge gap
between conventional platforms. Looking forward, adopting the cell array in a
wide range of applications is a natural continuation. However, this requires a series
of system-level exploration tools to model, simulate and evaluate the use of the
platform as well as application mapping tools to automate task profiling, scheduling,
mapping, and compilation process. Despite the system-level developments to be
explored, the future of the reconfigurable architecture is certainly bright.

Appendix A
Dataflow Processor Architecture

This appendix includes some detailed hardware development of the 2 � 2 cell
array presented in Chap. 5. The cell array consists of two dataflow processors and
two memory cells. The dataflow processors are Reduced instruction set computing
(RISC) cores with extended computational units in both “instruction decode” and
“write back” stage. Each processor contains 19 general-purpose 16-bit registers
and uses a 48-bit fixed-length instruction set. Some of the key features of the
processors are:

• Single instruction multiple data (SIMD)-like operation
• Run-time control and data path configuration
• Conditional instruction execution
• Single-cycle delayed branch
• Zero-delay inner loop control
• Direct I/O port addressing and multi-port data streaming
• In-cell Resource cell (RC) supervision and configuration

Figures A.1, A.2, and A.3 and Tables A.1 and A.2 present the instruction set
of the dataflow processor. Figure A.4 and Tables A.3, A.4, A.5, and A.6 illustrate
the data arrangement blocks and list the configuration set of each pipeline stage.
Figures A.5, A.6, and A.7 present the configuration generation tool developed
in-house for the 2 � 2 cell array. Tables A.7 and A.8 describe user commands in
the UART and the MATLAB interface, respectively, for controlling the cell array at
run-time.

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6

173

174 A Dataflow Processor Architecture

47
46

45
44

43
42

41
40

39
38

37
36

35
34

33
32

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

A
I

P
B

I
P

C
I

P
D

I
P

E
I

P

setadpu

noitaru gi fn o
C/n oi tarep o

o
N

D
P

O
N

0
0

0
0

0
0

P
G

ID
Im

m
E

G
lo

ba
l I

O
 T

X
 p

or
t d

es
tin

at
io

n
ID

 w
rit

e
$G

0.
ds

t <
-

Im
m

0
0

0
0

1
1

P
E

N
D

Im
m

E
S

to
p

ex
ec

ut
io

n
an

d
re

tu
rn

 e
nd

in
g

co
de

$E
N

D
_C

O
P

1
0

1
0

0
0

m
m I

-<
E

D

IL
C

S
1,

 D
1

D
In

ne
r

lo
op

 c
on

tr
ol

 w
ith

 r
eg

is
te

r
$I

LP
 <

-
$P

C
 +

 1
;

D
1

<
=

 $
IL

C
;

$I
LC

 <
-

S
1

0
0

0
1

1
0

P

IL
C

I
Im

m
E

In
ne

r
lo

op
 c

on
tr

ol
 w

ith
 im

m
.

In
fin

ite
 lo

op
 c

on
tr

ol
 w

he
n

im
m

. i
s

al
l "

1"
$I

LP
 <

-
$P

C
 +

 1
;

$I
LC

 <
-

Im
m

0
0

0
1

1
1

P

LD
R

D
0,

 D
1,

 S
0,

 S
1

A
D

0
<

-
S

0
&

 S
1

0
0

1
0

0
0

0
LD

R
I

D
0,

 Im
m

C
D

0
<

-
Im

m
0

0
1

0
0

1
0

S
T

R
D

0,
 D

1,
 S

0,
 S

1
A

D
0

<
-

S
0

&
 S

1
0

0
1

0
1

0
0

S
T

R
I

D
0,

 Im
m

C
D

0
<

-
Im

m
0

0
1

0
1

1
0

C
O

N
F

I
D

0,
 Im

m
C

R
es

ou
rc

e
ce

ll
co

nf
ig

ur
at

io
n

D
0

<-
 Im

m
0

0
1

1
0

1
0

knil _
R $

-
<

C
P$

) nru te r
e ru deco r p(

re ts ige r
hc nar

B
D

R
B

0
1

0
0

0
0

P
B

S
0,

 S
1,

 Im
m

B
B

ra
nc

h
re

la
tiv

e
on

 c
on

di
tio

n
$P

C
 <

-
$P

C
U

0
0

1
0

0
1

0
)

m
mI(

T
X

S
+

B
L

S
0,

 S
1,

 Im
m

B
B

ra
nc

h
an

d
Li

nk
 (

pr
oc

ed
ur

e
ca

ll)
 o

n
co

nd
iti

on
$P

C
 <

-
$P

C
 +

 S
X

T
(I

m
m

);
$R

_l
in

k
<-

 $
P

C
 +

 1
U

0
0

0
1

0
1

0

M
C

 (
R

A
M

)
da

ta
 r

ea
d

re
qu

es
t

M
C

 (
R

A
M

)
da

ta
 w

rit
e

re
qu

es
t

F
ie

ld

S
0

A
dd

.
A

dd
.

C
on

d.

C
on

d.
32

-b
it

re
ad

 r
eq

ue
st

Im
m

.

Im
m

.

In
de

x
C

on
d.

A
dd

.

S
1

D
1

D
0

21
-b

it
co

nf
ig

ur
at

io
n

D
0

32
-b

it
w

rit
e

re
qu

es
t

Im
m

.

D
0

S
0

D
0

S
1

S
1

$R
_l

in
k

21
-b

it
co

nf
ig

ur
at

io
n

21
-b

it
co

nf
ig

ur
at

io
n

21
-b

it
co

nf
ig

ur
at

io
n

Im
m

.
21

-b
it

co
nf

ig
ur

at
io

n

D
1

S
0

21
-b

it
co

nf
ig

ur
at

io
n

S
1

D
1

21
-b

it
co

nf
ig

ur
at

io
n

S
1

Im
m

.
S

1
D

1
In

de
x

In
de

x
In

de
x

A
dd

.
A

dd
.

In
de

x
In

de
x

In
de

x
Im

m
.

S
1

C
on

d.
C

on
d.

A
dd

.

In
de

x
A

dd
.

A
dd

.
D

0
32

-b
it

m
em

or
y

da
ta

 r
ea

d/
w

rit
e

re
qu

es
t

C
on

d.
D

0
32

-b
it

w
rit

e
re

qu
es

t

In
de

x
A

dd
.

In
de

x
A

dd
.

D
1

D
0

S
1

Im
m

.
21

-b
it

co
nf

ig
ur

at
io

n

S
0

M
n

em
-

o
n

ic
s

n
oi ta re

p
O

n
oit

p ircse
D

e
py

T
s

d
na r e

p
O

C
on

d.

C
on

d.

O
pC

od
e

O
pC

od
e

C
on

d.

C
on

d.

C
on

d.
O

pC
od

e

C
on

d.

C
on

d.

C
on

d.
O

pC
od

e

C
on

d.
O

pC
od

e

C
on

d.

C
on

d.

S
0

S
0

C
on

d.
$R

_l
in

k

F
ig

.A
.1

In
st

ru
ct

io
n

se
to

f
th

e
da

ta
flo

w
pr

oc
es

so
r,

co
nt

ro
l-

re
la

te
d

op
er

at
io

ns

A Dataflow Processor Architecture 175

47
46

45
44

43
42

41
40

39
38

37
36

35
34

33
32

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

F
I

U
L

V
0

V
1

A
0

A
1

R
0

R
1

G
I

U
L

V
0

V
1

A
0

A
1

R
0

R
1

A
D

D
D

0,
 D

1,
 S

0,
 S

1
F

D
at

a
ad

d
be

tw
ee

n
re

gi
st

er
s

D
0

<
-

S
0

+
 S

1
1

0
0

0
0

0
U

L
V

0
V

1
A

0
A

1
R

0
R

1
A

D
D

I
D

0,
 S

0,
 Im

m
G

A
dd

 r
eg

is
te

r
da

ta
 a

nd
 im

m
.

D
0

<
-

S
0

1
R

0
R

1
A

0
A

1
V

0
V

L
U

1
0

0
0

0
1

)
m

m I(
T

X
S

+
A

D
C

D
0,

 D
1,

 S
0,

 S
1

F
D

at
a

ad
d

be
tw

ee
n

re
gi

st
er

s
D

0
<

-
S

0
+

 S
1

+
 C

ar
ry

1
0

0
0

1
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

A
D

C
I

D
0,

 S
0,

 Im
m

G
A

dd
 r

eg
is

te
r

da
ta

 a
nd

 im
m

.
D

0
<

-
S

0
+

 S
X

T
(I

m
m

)
+

 C
ar

ry
1

0
0

0
1

1
U

L
V

0
V

1
A

0
A

1
R

0
R

1
S

U
B

D
0,

 D
1,

 S
0,

 S
1

F
D

at
a

su
bt

ra
ct

 b
et

w
ee

n
re

gi
st

er
s

D
0

 <
-

S
0

-
S

1
1

0
0

1
0

0
U

L
V

0
V

1
A

0
A

1
R

0
R

1
S

B
C

D
0,

 D
1,

 S
0,

 S
1

F
D

at
a

su
bt

ra
ct

 b
et

w
ee

n
re

gi
st

er
s

D
0

1
R

0
R

1
A

0
A

1
V

0
V

L
U

0
1

1
0

0
1

yr ra
C

-
1

S
-

0
S

-
<

A
D

S
D

0,
 D

1,
 S

0,
 S

1
F

D
at

a
ad

d
an

d
su

bt
ra

ct
 b

et
w

ee
n

re
gi

st
er

s
D

0.
lo

 <
-

S
0.

lo
 +

 S
1.

lo
;

D
0.

hi
 <

-
S

0.
hi

 -
 S

1.
hi

1
0

1
0

0
0

U
L

1
1

A
0

A
1

R
0

R
1

A
D

S
C

D
0,

 D
1,

 S
0,

 S
1

F
D

at
a

ad
d

an
d

su
bt

ra
ct

 b
et

w
ee

n
re

gi
st

er
s

D
0.

lo
 <

-
S

0.
lo

 +
 S

1.
lo

 +
 C

ar
ry

;
D

0.
hi

 <
-

S
0.

hi
 -

 S
1.

hi
 -

 C
ar

ry
1

0
1

0
1

0
U

L
1

1
A

0
A

1
R

0
R

1

M
U

L
D

0,
 D

1,
 S

0,
 S

1
F

D
at

a
m

ul
tip

lic
at

io
n

be
tw

ee
n

re
gi

s
te

rs
D

0
<

-
S

0
*

S
1

1
0

1
1

0
0

0
0

0
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

M
U

LI
D

0,
 S

0,
 Im

m
G

M
ul

tip
ly

 r
eg

is
te

r
da

ta
 a

nd
 im

m
.

D
0

<
1

R
0

R
1

A
0

A
1

V
0

V
L

U
1

0
0

0
0

0
1

1
0

1
)

m
mI (

T
X

S
*

0
S

-
C

M
P

D
0,

 D
1,

 S
0,

 S
1

F
C

om
pa

re
 d

at
e

be
tw

ee
n

re
gi

st
er

s
A

s
S

U
B

 w
ith

ou
t w

rit
in

g
re

su
lt(

s)
1

1
0

1
0

0
1

L
V

0
V

1
A

0
A

1
R

0
R

1
C

M
P

I
D

0,
 S

0,
 Im

m
G

C
om

pa
re

 r
eg

is
te

r
da

ta
 a

nd
 im

m
.

A
s

A
D

D
I w

ith
ou

t w
rit

in
g

re
su

lt
1

1
0

0
0

1
1

L
V

0
V

1
A

0
A

1
R

0
R

1
tuohti

w
D

N
A

s
A

tset
atad

r etsige
R

F
1

S,0
S,1

D,0
D

T
S

T
w

rit
in

g
re

su
lt(

s)
1

1
0

0
1

0
1

L
V

0
V

1
A

0
A

1
R

0
R

1
it ir

wtu ohti
wI

D
N

A
s

A
tset

atad.
m

m I
G

m
mI,0

S,0
D

I
T

S
T

ng
 r

es
ul

t
1

1
0

0
1

1
1

L
T

E
Q

D
0,

 D
1,

 S
0,

 S
1

F
R

eg
is

te
r

da
ta

 e
qu

al
ity

 te
st

A
s

X
O

R
 w

ith
ou

t w
rit

in
g

re
su

lt(
s)

1
1

0
1

1
0

1
L

V
0

V
1

A
0

A
1

R
0

R
1

T
E

Q
I

D
0,

 S
0,

 Im
m

G
im

m
. d

at
a

eq
ua

lit
y

te
st

A
s

X
O

R
I w

ith
ou

t w
rit

in
g

re
su

lt
1

1
0

1
1

1
1

L
A

N
D

D
0,

 D
1,

 S
0,

 S
1

F
Lo

gi
ca

l A
N

D
 tw

o
re

gi
st

er
 d

at
a

D
0

<
-

S
0

&
 S

1
1

1
1

0
0

0
U

L
V

0
V

1
A

0
A

1
R

0
R

1
A

N
D

I
D

0,
 S

0,
 Im

m
G

Lo
gi

ca
l A

N
D

 r
eg

is
te

r
da

ta
 w

ith
 im

m
.

L
U

1
0

0
1

1
1

m
mI

&
0

S
-<

0
D

O
R

D
0,

 D
1,

 S
0,

 S
1

F
Lo

gi
ca

l O
R

 tw
o

re
gi

st
er

 d
at

a
D

0
<-

 S
0

| S
1

1
1

1
0

1
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

O
R

I
D

0,
 S

0,
 Im

m
G

Lo
gi

ca
l O

R
 r

eg
is

te
r

da
ta

 w
ith

 im
m

.
D

0
 <

-
S

0
| I

m
m

1
1

1
0

1
1

U
L

X
O

R
D

0,
 D

1,
 S

0,
 S

1
F

Lo
gi

ca
l X

O
R

 tw
o

re
gi

st
er

 d
at

a
D

0
<

-
S

0
⊕

 S
1

1
1

1
1

1
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

X
O

R
I

D
0,

 S
0,

 Im
m

G
Lo

gi
ca

l X
O

R
 r

eg
is

te
r

da
ta

 w
ith

 im
m

.
D

0
<

-
S

0
⊕

L
U

1
1

1
1

1
1

m
mI

M
O

V
D

0,
 D

1,
 S

0,
 S

1
F

D
at

a
m

ov
e

be
tw

ee
n

re
gi

st
er

s
D

0
<-

 S
0

1
1

1
1

0
0

U
L

V
0

V
1

A
0

A
1

R
0

R
1

M
O

V
I

D
0,

 S
0/

D
1,

 Im
m

G
M

ov
e

im
m

. t
o

a
re

gi
st

er
D

0,
 D

1
<-

 Im
m

1
1

1
1

0
1

1
1

0
1

U
L

F
ie

ld E
X

E
W

D

ID
E

X
E

D
0

S
0

S
0

ID
E

X
E

W
D

ID
E

X
E

W
D

W
D

ID
E

X
E

W
D

IDID
E

X
E

W
D

ID
E

X
E

S
1

D
1

D
1

Im
m

.
S

0

ID

D
0

S
0

D
0

D
0

0
S

D
W

ID

D
0

E
X

E
W

D

ID
E

X
E

S
1

S
1

S
0

C
on

d.
ID

O
pC

od
e1

O
pC

od
e1

O
pC

od
e2

O
pC

od
e2

C
on

d.
DI

E
X

EE
X

E

D
W

DI
E

X
E E

X
E

W
D

E
X

E
W

D

W
D

IDID

D
0

S
0

ID
E

X
E

W
D

D
0

D
0

S
0

D
0

ID

S
0

D
0

W
D

D
0

S
0

D
0

D
0

W
D

C
on

d.
C

on
d.

C
on

d.

C
on

d.

C
on

d.

C
on

d.

C
on

d.
C

on
d.

C
on

d.
C

on
d.

C
on

d.

C
on

d.

C
on

d.
C

on
d.

C
on

d.

C
on

d.
C

on
d.

C
on

d.
C

on
d.

C
on

d.
C

on
d.

S
0

M
n

em
-

o
n

ic
s

E
X

E
W

D

ID
E

X
E

C
on

d.

E
X

E
W

D

W
D

O
pC

od
e2

ID

W
D

E
X

E

S
1

S
0

n
oitar e

p
O

n
oi t

pi rc se
D

e
py

T
s

d
n ar e

p
O

O
pC

od
e2

ID
E

X
E

W
D

ID
E

X
E

W
D

ID

E
X

E
W

D
IDID

E
X

E
W

D
D

0
S

0
E

X
E

W
D

D
0

D
0

D
1

Im
m

.

Im
m

.
S

1
D

1

S
1

D
1

S
1

D
1

S
0

D
0

S
0

D
0

D
0

S
0

S
0

S
0

S
1

D
1

Im
m

. -
 L

ow

Im
m

.
S

1
D

1
Im

m
.

D
0

S
0

Im
m

. -
 L

ow

Im
m

. -
 L

ow

Im
m

. -
 L

ow
S

1
D

1

D
1

S
1

D
0

S
0

D
0

D
0

S
0

Im
m

. -
 L

ow
S

1
D

1

Im
m

. -
 L

ow
D

0
D

1

Im
m

. -
 H

ig
h

Im
m

. -
 H

ig
h

Im
m

. -
 H

ig
h

Im
m

. -
 H

ig
h

Im
m

. -
 H

ig
h

D
0

S
0

S
0

S
1

D
1

S
0

S
1

D
1

S
1

D
1

S
0

E
X

E
W

D
C

on
d.

ID
Im

m
. -

 H
ig

h
D

0
C

on
d.

ID
E

X
E

W
D

F
ig

.A
.2

In
st

ru
ct

io
n

se
to

f
th

e
da

ta
flo

w
pr

oc
es

so
r,

ar
ith

m
et

ic
an

d
lo

gi
c

op
er

at
io

ns

176 A Dataflow Processor Architecture

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9-
3

2
1

0

P
ro

gr
am

 d
ow

nl
oa

d
H

ea
de

r

P
ac

ka
ge

 h
ea

de
r

fo
r

do
w

nl
oa

di
ng

 p
ro

gr
am

 in
to

P

ro
G

ra
m

 M
em

or
y

(P
G

M
).

 A
dd

re
ss

 0
 is

 r
es

er
ve

d
fo

r
th

e
C

on
tr

ol
 r

eg
is

te
r,

 th
er

ef
or

e
in

st
ru

ct
io

ns
 s

ta
rt

 f
ro

m

ad
dr

es
s

1.

H
os

t -
>

 P
C

C
C

P
W

rit
e

P
ro

gr
am

 d
ow

nl
oa

d
In

st
ru

ct
io

n
to

 b
e

do
w

nl
oa

de
d

in
to

 P
ro

G
ra

m
 M

em
or

y.

T
hi

s
is

 a
 c

on
se

cu
tiv

e
op

er
at

io
n

of
 th

e
"P

ro
gr

am

do
w

nl
oa

d
he

ad
er

".
H

os
t -

>
 P

C

P
C

 c
ou

nt
er

 u
pd

at
e

U
pd

at
e

P
C

 c
ou

nt
er

 s
ta

rt
in

g
ad

dr
es

s,
 to

 s
el

ec
t

pr
og

ra
m

 s
ec

tio
n

in
si

de
 P

ro
G

ra
m

 M
em

or
y

(P
G

M
).

H
os

t -
>

 P
C

C
C

P
W

rit
e

C
on

tr
ol

 r
eg

is
te

r
up

da
te

U
pd

at
e

C
on

tr
ol

 r
eg

is
te

r
to

 c
on

tr
ol

 th
e

op
er

at
io

ns
 o

f t
he

P

ro
ce

ss
or

 C
el

l.
H

os
t -

>
 P

C
S

to
p

R
un to

S
te

p
R

es
et

P
au

se
S

ta
rt

C
C

C
W

rit
e

C
on

tr
ol

 r
eg

is
te

r
re

ad
 r

eq
ue

st
C

on
tr

ol
 r

eg
is

te
r

st
at

u
s

re
ad

in
g

re
qu

es
t.

H
os

t -
>

P
C

C
C

C
R

ea
d

C
on

tr
ol

 r
eg

is
te

r
re

ad
 d

at
a

1
S

en
di

ng
 b

ac
k

C
on

tr
ol

 r
eg

is
te

r
st

at
us

, d
at

a
pa

ck
ag

e
1.

T

hi
s

is
 a

 c
on

se
cu

tiv
e

op
er

at
io

n
of

 "
C

on
tr

ol
 r

eg
is

te
r

re
ad

 r
eq

ue
st

".
P

C
 -

>
 H

os
t

S
to

p
R

un to
S

te
p

R
es

et
P

au
se

S
ta

rt

C
on

tr
ol

 r
eg

is
te

r
re

ad
 d

at
a

2
S

en
di

ng
 b

ac
k

C
on

tr
ol

 r
eg

is
te

r
st

at
us

, d
at

a
pa

ck
ag

e
2.

T

hi
s

is
 a

 c
on

se
cu

tiv
e

op
er

at
io

n
of

 "
C

on
tr

ol
 r

eg
is

te
r

re
ad

 d
at

a
1"

.
P

C
 -

>
 H

os
t

In
st

ru
ct

io
n

E
N

D
 c

od
e

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

==
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

==
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

==
=

=
=

=
=

=
=

=
=

=
=

=
=

E
nd

in
g

ad
dr

es
s

C
ur

re
nt

P
C

 c
ou

nt
er

In
st

ru
ct

io
n

s serdda
g nit rat

S
0

C
on

di
tio

na
l

co
nf

ig
ur

at
io

n
ad

dr
es

s

E
nd

in
g

ad
dr

es
s

C
on

di
tio

na
l

co
nf

ig
ur

at
io

n
ad

dr
es

s

D
ir

ec
ti

o
n

D
es

cr
ip

ti
o

n
n

oi tare
p

O
D

at
a

p
ac

ka
g

e

s serdda
gnit rat

S
tnuo

C
C

on
di

tio
na

l
co

nf
ig

ur
at

io
n

ad
dr

es
s

F
ig

.A
.3

C
on

tr
ol

in
st

ru
ct

io
n

se
to

f
th

e
da

ta
flo

w
pr

oc
es

so
r

A Dataflow Processor Architecture 177

Table A.1 Conditional field
of the instruction set

Opcode ALU-based condition Co-ALU-based condition

0000 Equal Equal

0001 Not equal Not equal

0010 Negative Less than

0011 Non-negative Less than or equal

0100 Carry out Greater than

0101 Non-carry out Greater than or equal

0110 Overflow Positive operand “a”

0111 Non-overflow Negative operand “a”

1000 Less than Positive operand “b”

1001 Less than or equal Negative operand “b”

1010 Greater than Positive operand “c”

1011 Greater than or equal Negative operand “c”

1100 Reserved Positive operand “d”

1101 Reserved Negative operand “d”

1110 Reserved Branch not taken

1111 Always Always

Table A.2 Summary of
register address

Register Address Register Address

General-purpose registers Special purpose registers

$1 00100 ZERO 00000

$2 00101 PC 00001

$3 00110 Link 00010

$4 00111 Stack 00011

$5 01000

$6 01001 Hierarchical IO registers

$7 01010 G0 10111

$8 01011

$9 01100 Local IO registers

$10 01101 L0 11000

$11 01110 L1 11001

$12 01111 L2 11010

$13 10000 L3 11011

$14 10001 L4 11100

$15 10010 L5 11101

$16 10011 L6 11110

$17 10100 L7 11111

$18 10101

$19 10110

178 A Dataflow Processor Architecture

a
b

c

F
ig

.A
.4

A
rc

hi
te

ct
ur

e
of

da
ta

ar
ra

ng
em

en
tb

lo
ck

s,
(a

)
bl

oc
k-

I,
(b

)
bl

oc
k-

II
,(

c)
bl

oc
k-

II
I

A Dataflow Processor Architecture 179

Table A.3 Configuration set for function units in instruction decoding stage

Bit Field Description

20-19 opcode_a Operation code (Table A.4) for Barrel shifting, operand A

18-17 opcode_b Operation code (Table A.4) for Barrel shifting, operand B

16 bs_inc_en_a Enable of automatic shifting increment, operand A

15 bs_en_a Barrel shifting enable for operand A

14-12 bs_imm_a Shifting bit count for operand A

11 bs_inc_en_b Enable of automatic shifting increment, operand B

10 bs_en_b Barrel shifting enable for operand B

9-7 bs_imm_b Shifting bit count for operand B

6-3 neg_en Enable of input data negation (d, c, b, a)

2 sel_alu ALU status register selection, 0: Co-ALU; 1: ALU

1-0 sel_lane Processing lane selection

Table A.4 Operation code
for barrel shifter

Opcode Operation

00 Logical shift left (LSL)

01 Logical shift right (LSR)

10 Arithmetic shift right (ASR)

11 ROtate right (ROR)

Table A.5 Configuration set for function units in execution stage

Bit Field Description

20-13 mux_1_s0 Control bits for data arrangement block-I, stage 0

12 mux_1_s1 Control bits for data arrangement block-I, stage 1

11-10 mux_1_s2 Control bits for data arrangement block-I, stage 2

9-2 mux_2_s0 Control bits for data arrangement block-II, stage 0

1-0 mux_2_s1 Control bits for data arrangement block-II, stage 1

Table A.6 Configuration set for function units in write back stage

Bit Field Description

14-11 add_sub Accumulator ADD/SUB select (d, c, b, a), 0: addition; 1: subtraction

10-7 mux_3_s0 Control bits for data arrangement block-III, stage 0

6 mux_3_s1 Control bits for data arrangement block-III, stage 1

5-2 mux_3_s2 Control bits for data arrangement block-III, stage 2

1-0 mux_3_s3 Control bits for data arrangement block-III, stage 3

180 A Dataflow Processor Architecture

Fig. A.5 Configuration generation tool, (a) bit stream generation, (b) configuration of a process-
ing cell

A Dataflow Processor Architecture 181

Fig. A.6 Configuration generation tool, descriptor configuration of a memory cell

182 A Dataflow Processor Architecture

Fig. A.7 Configuration generation tool, configuration header, and descriptor execution program
of a memory cell

A Dataflow Processor Architecture 183

Table A.7 User commands in UART interface

CMD Description Parameter

g Destination cell ID for hierarchical I/O
communication

Resource cell destination ID (number
input): 0–4

d Send data inputs via UART to (a) Data count (number input)

the selected cell (b) Data inputs (string input)

D Send data inputs via Ethernet to the
selected cell

None

i Send inst./config. packages via (a) Inst. count (number input)

UART to the selected cell (b) Inst./config. inputs (string input)

I Send inst./config. packages via Ethernet
to the selected cell

None

s Send “start” command to the selected
processing cell

None

p Send “pause” command to the selected
processing cell

None

r Send “reset” command to the selected
processing cell

None

e Send “step” command to the selected
processing cell

None

u Send “run to” command to the selected
processing cell

Destination instruction to run to (num-
ber input)

o Send “stop” command to the selected
processing cell

None

t Status tracing of the selected cell None

c Send user command to the selected cell User command (string input)

f Memory data initialization (zero filling) Memory cell destination ID (number
input): 1, 2

q Processing cell initialization Processing cell destination ID (number
input): 0, 3

z Test data set input None

0 Demo full config. script None

1 Demo partial config. script None

h Command help printout None

Table A.8 User commands in MATLAB interface

CMD Description Parameter

cmd User command input in UART interface UART commands

config Send inst./config. packages from a script file None

data Send data inputs from a script file None

demo Run a script demo, IEEE 802.11n Sync. None

rxbuf Flush UART Rx buffer of the host None

help Command help printout None

exit Exit user interface in MATLAB None

Appendix B
Vector Dataflow Processor Architecture

This appendix includes detailed micro-code and instruction set of the vector
dataflow processor (Tile-0) in the reconfigurable cell array presented in Chap. 6.
The processor is composed of three processing cells for data computations, one
memory cell for local data buffering, and a sequencer for control-flow managements.
Figure B.1 illustrates seven-stage pipeline of the processor. Note that operations
mapped onto two function units in the pre-processing stage can be executed
concurrently. Tables B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12,
and B.13 present the micro-code set for each processing and memory cell and
Table B.13 describes the instruction set of the sequencer.

Core-process

Pipeline
stage

Fig. B.1 Microarchitecture of the vector dataflow processor, a view of pipeline stages

© Springer International Publishing Switzerland 2016
C. Zhang et al., Heterogeneous Reconfigurable Processors for Real-Time
Baseband Processing, DOI 10.1007/978-3-319-24004-6

185

186 B Vector Dataflow Processor Architecture

Ta
bl

e
B

.1
M

ic
ro

-c
od

e
se

tf
or

th
e

da
ta

lo
ad

in
g

st
ag

e
of

re
gi

st
er

ba
nk

B
it

D
iv

is
io

n
Fi

el
d

D
es

cr
ip

tio
n

31
-2

2
R

es
er

ve
d

21
M

at
ri

x
da

ta
op

er
an

d
re

g_
m

op
a_

en
I/

O
po

rt
en

ab
le

fo
r

op
er

an
d

A
re

ad
in

g,
0:

di
sa

bl
e;

1:
en

ab
le

20
re

g_
m

op
a_

sr
c

D
at

a
so

ur
ce

fo
r

op
er

an
d

A
re

ad
in

g,
0:

G
PR

;1
:I

/O

19
-1

8
re

g_
m

op
a_

id
xa

I/
O

po
rt

nu
m

be
r/

G
PR

in
de

x
fo

r
op

er
an

d
A

re
ad

in
g

17
re

g_
m

op
b_

en
I/

O
po

rt
en

ab
le

fo
r

op
er

an
d

B
re

ad
in

g

16
re

g_
m

op
b_

sr
c

D
at

a
so

ur
ce

fo
r

op
er

an
d

B
re

ad
in

g,
0:

G
PR

;1
:I

/O

15
-1

4
re

g_
m

op
b_

id
xa

I/
O

po
rt

nu
m

be
r/

G
PR

in
de

x
fo

r
op

er
an

d
B

re
ad

in
g

13
V

ec
to

r
da

ta
op

er
an

d
re

g_
vo

p_
en

I/
O

po
rt

en
ab

le
fo

r
ve

ct
or

op
er

an
d

re
ad

in
g

12
re

g_
vo

p_
sr

c
D

at
a

so
ur

ce
fo

r
ve

ct
or

op
er

an
d

re
ad

in
g,

0:
G

PR
;1

:I
/O

11
-8

re
g_

vo
p_

id
x

I/
O

po
rt

nu
m

be
r/

G
PR

in
de

x
fo

r
ve

ct
or

op
er

an
d

re
ad

in
g

7-
4

V
PR

vp
r_

id
x

In
de

x
of

V
ec

to
r

pe
rm

ut
at

io
n

re
gi

st
er

(V
PR

)

3-
0

M
M

R
m

m
r_

id
x

In
de

x
of

M
at

ri
x

m
as

k
re

gi
st

er
(M

M
R

)
a “M

ul
tip

le
-o

f-
fo

ur
”

ad
dr

es
si

ng
(2

L
SB

s
ar

e
di

sc
ar

de
d)

fo
rl

oa
di

ng
m

at
ri

x
da

ta
fr

om
G

PR
,e

.g
.,

ac
ce

ss
in

g
$0

,$
4,

$8
,e

tc
.

B Vector Dataflow Processor Architecture 187

Ta
bl

e
B

.2
M

ic
ro

-c
od

e
se

tf
or

pr
e-

pr
oc

es
si

ng
ce

ll
I

(m
at

ri
x

da
ta

)

B
it

D
iv

is
io

n
Fi

el
d

D
es

cr
ip

tio
n

31
-2

2
R

es
er

ve
d

21
-2

0
L

an
e

0
sr

c_
l0

So
ur

ce
op

er
an

d
fo

r
pr

oc
es

si
ng

la
ne

0,
0:

op
er

an
d

A
;1

:o
pe

ra
nd

B

19
-1

7
op

co
de

_l
0

O
pe

ra
tio

n
co

de
(T

ab
le

B
.3

)
fo

r
da

ta
pr

e-
pr

oc
es

si
ng

in
la

ne
0

16
-1

5
L

an
e

1
sr

c_
l1

So
ur

ce
op

er
an

d
fo

r
pr

oc
es

si
ng

la
ne

1,
0:

op
er

an
d

A
;1

:o
pe

ra
nd

B

14
-1

2
op

co
de

_l
1

O
pe

ra
tio

n
co

de
(T

ab
le

B
.3

)
fo

r
da

ta
pr

e-
pr

oc
es

si
ng

in
la

ne
1

11
-1

0
L

an
e

2
sr

c_
l2

So
ur

ce
op

er
an

d
fo

r
pr

oc
es

si
ng

la
ne

2,
0:

op
er

an
d

A
;1

:o
pe

ra
nd

B

9-
7

op
co

de
_l

2
O

pe
ra

tio
n

co
de

(T
ab

le
B

.3
)

fo
r

da
ta

pr
e-

pr
oc

es
si

ng
in

la
ne

2

6-
5

L
an

e
3

sr
c_

l3
So

ur
ce

op
er

an
d

fo
r

pr
oc

es
si

ng
la

ne
3,

0:
op

er
an

d
A

;1
:o

pe
ra

nd
B

4-
2

op
co

de
_l

3
O

pe
ra

tio
n

co
de

(T
ab

le
B

.3
)

fo
r

da
ta

pr
e-

pr
oc

es
si

ng
in

la
ne

3

1-
0

M
as

k
m

as
k_

sr
c

So
ur

ce
op

er
an

d
fo

r
da

ta
m

as
ki

ng
,0

:o
pe

ra
nd

A
;1

:o
pe

ra
nd

B

188 B Vector Dataflow Processor Architecture

Table B.3 Operation code for matrix data pre-processing

Opcode Function Operand

000 None �
001 Negation The real part of the complex-valued input

010 The imaginary part of the complex-valued input

011 Both real and imaginary part of the complex-valued input

100 Reserved

101 Absolute The real part of the complex-valued input

110 The imaginary part of the complex-valued input

111 Both real and imaginary part of the complex-valued input

B Vector Dataflow Processor Architecture 189

Ta
bl

e
B

.4
M

ic
ro

-c
od

e
se

tf
or

pr
e-

pr
oc

es
si

ng
ce

ll
II

(v
ec

to
r

da
ta

)

B
it

D
iv

is
io

n
Fi

el
d

D
es

cr
ip

tio
n

31
-1

4
R

es
er

ve
d

13
Pe

rm
ut

at
io

n
pe

rm
_e

n
Pe

rm
ut

at
io

n
en

ab
le

12
-1

1
im

m
_l

0
Im

m
ed

ia
te

va
lu

e
in

pu
tf

or
pe

rm
ut

at
io

n
se

qu
en

ce
,p

ro
ce

ss
in

g
la

ne
0

10
-9

im
m

_l
1

Im
m

ed
ia

te
va

lu
e

in
pu

tf
or

pe
rm

ut
at

io
n

se
qu

en
ce

,p
ro

ce
ss

in
g

la
ne

1

8-
7

im
m

_l
2

Im
m

ed
ia

te
va

lu
e

in
pu

tf
or

pe
rm

ut
at

io
n

se
qu

en
ce

,p
ro

ce
ss

in
g

la
ne

2

6-
5

im
m

_l
3

Im
m

ed
ia

te
va

lu
e

in
pu

tf
or

pe
rm

ut
at

io
n

se
qu

en
ce

,p
ro

ce
ss

in
g

la
ne

3

4
Sw

ap
sw

ap
_e

n
E

na
bl

e
fo

r
sw

ap
pi

ng
th

e
re

al
an

d
im

ag
in

ar
y

pa
rt

of
ea

ch
da

ta
op

er
an

d

3-
1

Pr
e-

pr
oc

es
s

op
co

de
O

pe
ra

tio
n

co
de

(T
ab

le
B

.3
)

fo
r

ve
ct

or
da

ta
pr

e-
pr

oc
es

si
ng

0
M

as
k

m
as

k_
en

V
ec

to
r

da
ta

m
as

k
en

ab
le

190 B Vector Dataflow Processor Architecture

Ta
bl

e
B

.5
M

ic
ro

-c
od

e
se

tf
or

co
re

-p
ro

ce
ss

in
g

ce
ll

B
it

D
iv

is
io

n
Fi

el
d

D
es

cr
ip

tio
n

31
-1

7
R

es
er

ve
d

16
-1

5
Sh

uf
fle

op
co

de
_s

hu
f

O
pe

ra
tio

n
co

de
(T

ab
le

B
.9

)
fo

r
in

pu
td

at
a

sh
uf

fli
ng

14
sw

ap
_e

n_
op

a
E

na
bl

e
fo

r
sw

ap
pi

ng
th

e
re

al
an

d
im

ag
in

ar
y

pa
rt

of
m

at
ri

x
op

er
an

d
A

13
sw

ap
_e

n_
op

b
E

na
bl

e
fo

r
sw

ap
pi

ng
th

e
re

al
an

d
im

ag
in

ar
y

pa
rt

of
m

at
ri

x
op

er
an

d
B

12
SI

M
D

m
ul

_e
n

E
na

bl
e

fo
r

co
m

pl
ex

-v
al

ue
d

m
ul

tip
lic

at
io

n

11
m

ul
_s

ig
n

Si
gn

ed
/u

ns
ig

ne
d

m
ul

tip
lic

at
io

n,
0:

si
gn

ed
;1

:u
ns

ig
ne

d

10
ad

d_
en

_l
1

E
na

bl
e

fo
r

ad
di

tio
n,

le
ve

l-
1

ad
de

rs

9
ad

d_
en

_l
2

E
na

bl
e

fo
r

ad
di

tio
n,

le
ve

l-
2

ad
de

rs

8
ad

d_
si

gn
_l

1
Si

gn
ed

/u
ns

ig
ne

d
ad

di
tio

n,
le

ve
l-

1
ad

de
rs

,0
:s

ig
ne

d;
1:

un
si

gn
ed

7
ad

d_
si

gn
_l

2
Si

gn
ed

/u
ns

ig
ne

d
ad

di
tio

n,
le

ve
l-

2
ad

de
rs

6
ad

d_
su

b_
l1

a
A

dd
iti

on
/s

ub
tr

ac
tio

n
se

le
ct

io
n,

le
ve

l-
1

ad
de

r
A

,0
:a

dd
iti

on
;1

:s
ub

tr
ac

tio
n

5
ad

d_
su

b_
l1

b
A

dd
iti

on
/s

ub
tr

ac
tio

n
se

le
ct

io
n,

le
ve

l-
1

ad
de

r
B

4
ad

d_
su

b_
l2

a
A

dd
iti

on
/s

ub
tr

ac
tio

n
se

le
ct

io
n,

le
ve

l-
2

ad
de

r
A

3
ad

d_
su

b_
l2

b
A

dd
iti

on
/s

ub
tr

ac
tio

n
se

le
ct

io
n,

le
ve

l-
2

ad
de

r
B

2-
1

op
co

de
_v

O
pe

ra
tio

n
co

de
(T

ab
le

B
.1

0)
fo

r
ve

ct
or

da
ta

op
er

an
d

0
v_

du
pl

ic
at

e
D

up
lic

at
io

n
of

ve
ct

or
da

ta
op

er
an

d,
0:

co
lu

m
n-

w
is

e;
1:

ro
w

-w
is

e

B Vector Dataflow Processor Architecture 191

Ta
bl

e
B

.6
M

ic
ro

-c
od

e
se

tf
or

po
st

-p
ro

ce
ss

in
g

ce
ll

I

B
it

D
iv

is
io

n
Fi

el
d

D
es

cr
ip

tio
n

31
-1

8
R

es
er

ve
d

17
A

cc
um

ul
at

io
n

ac
c_

en
_l

3
E

na
bl

e
fo

r
da

ta
ac

cu
m

ul
at

io
n,

pr
oc

es
si

ng
la

ne
3

16
ac

c_
en

_l
2

E
na

bl
e

fo
r

da
ta

ac
cu

m
ul

at
io

n,
pr

oc
es

si
ng

la
ne

2

15
ac

c_
en

_l
1

E
na

bl
e

fo
r

da
ta

ac
cu

m
ul

at
io

n,
pr

oc
es

si
ng

la
ne

1

14
ac

c_
en

_l
0

E
na

bl
e

fo
r

da
ta

ac
cu

m
ul

at
io

n,
pr

oc
es

si
ng

la
ne

0

13
ac

c_
in

it_
l3

R
eg

is
te

r
in

iti
al

iz
at

io
n,

pr
oc

es
si

ng
la

ne
3,

0:
in

it.
;1

:a
cc

.

12
ac

c_
in

it_
l2

R
eg

is
te

r
in

iti
al

iz
at

io
n,

pr
oc

es
si

ng
la

ne
2

11
ac

c_
in

it_
l1

R
eg

is
te

r
in

iti
al

iz
at

io
n,

pr
oc

es
si

ng
la

ne
1

10
ac

c_
in

it_
l0

R
eg

is
te

r
in

iti
al

iz
at

io
n,

pr
oc

es
si

ng
la

ne
0

9
Su

m
m

at
io

n
m

ux
_s

um
_i

n
In

pu
tm

ul
tip

le
xi

ng
fo

r
la

ne
3

&
2,

0:
st

ra
ig

ht
;1

:s
w

ap
pe

d.

8
m

ux
_s

um
_i

n
In

pu
tm

ul
tip

le
xi

ng
fo

r
la

ne
1

&
0

7
m

ux
_s

um
_o

ut
O

ut
pu

tm
ul

tip
le

xi
ng

fo
r

la
ne

3
&

2,
0:

ac
c.

;1
:s

um

6
m

ux
_s

um
_o

ut
O

ut
pu

tm
ul

tip
le

xi
ng

fo
r

la
ne

1
&

0

5-
4

B
ar

re
l

bs
_o

pc
od

e
O

pe
ra

tio
n

co
de

(T
ab

le
B

.1
1)

fo
r

ba
rr

el
sh

if
tin

g

3-
0

sh
if

tin
g

bs
_i

m
m

Sh
if

tin
g

bi
tc

ou
nt

192 B Vector Dataflow Processor Architecture

Ta
bl

e
B

.7
M

ic
ro

-c
od

e
se

tf
or

po
st

-p
ro

ce
ss

in
g

ce
ll

II

B
it

D
iv

is
io

n
Fi

el
d

D
es

cr
ip

tio
n

31
-1

4
R

es
er

ve
d

13
So

rt
in

g
so

rt
_e

n
E

na
bl

e
fo

r
ve

ct
or

da
ta

so
rt

in
g

12
so

rt
_o

rd
er

So
rt

in
g

or
de

r,
0:

as
ce

nd
in

g;
1:

de
sc

en
di

ng

11
so

rt
_s

ig
n

Si
gn

ed
/u

ns
ig

ne
d

so
rt

in
g,

0:
si

gn
ed

;1
:u

ns
ig

ne
d

10
-9

Pe
rm

ut
at

io
n

pe
rm

_s
rc

Pe
rm

ut
at

io
n

se
qu

en
ce

in
pu

t,
co

nt
ro

lc
od

e
in

Ta
bl

e
B

.1
2

8-
7

pe
rm

_i
m

m
_l

0
Im

m
ed

ia
te

va
lu

e
in

pu
tf

or
pe

rm
ut

at
io

n
se

qu
en

ce
,p

ro
ce

ss
in

g
la

ne
0

6-
5

pe
rm

_i
m

m
_l

1
Im

m
ed

ia
te

va
lu

e
in

pu
tf

or
pe

rm
ut

at
io

n
se

qu
en

ce
,p

ro
ce

ss
in

g
la

ne
1

4-
3

pe
rm

_i
m

m
_l

2
Im

m
ed

ia
te

va
lu

e
in

pu
tf

or
pe

rm
ut

at
io

n
se

qu
en

ce
,p

ro
ce

ss
in

g
la

ne
2

2-
1

pe
rm

_i
m

m
_l

3
Im

m
ed

ia
te

va
lu

e
in

pu
tf

or
pe

rm
ut

at
io

n
se

qu
en

ce
,p

ro
ce

ss
in

g
la

ne
3

0
M

as
k

m
as

k_
en

E
na

bl
e

fo
r

ve
ct

or
da

ta
m

as
k

B Vector Dataflow Processor Architecture 193

Ta
bl

e
B

.8
M

ic
ro

-c
od

e
se

tf
or

th
e

w
ri

te
-b

ac
k

st
ag

e
of

re
gi

st
er

ba
nk

B
it

D
iv

is
io

n
Fi

el
d

D
es

cr
ip

tio
n

31
-1

9
R

es
er

ve
d

18
M

at
ri

x
da

ta
w

ri
tin

g
re

g_
m

_w
en

E
na

bl
e

fo
r

m
at

ri
x

da
ta

w
ri

tin
g

17
re

g_
m

_s
rc

D
at

a
so

ur
ce

fo
r

re
gi

st
er

w
ri

tin
g,

0:
m

at
ri

x
bu

s;
1:

ve
ct

or
bu

s

16
re

g_
m

_v
du

p
D

up
lic

at
io

n
of

ve
ct

or
da

ta
ou

tp
ut

,0
:r

ow
-w

is
e;

1:
co

lu
m

n-
w

is
e

15
re

g_
m

_d
st

D
es

tin
at

io
n

fo
r

m
at

ri
x

da
ta

w
ri

tin
g,

0:
G

PR
;1

:I
/O

14
-1

3
re

g_
m

_i
dx

a
I/

O
po

rt
nu

m
be

r/
G

PR
in

de
x

fo
r

m
at

ri
x

da
ta

w
ri

tin
g

12
V

ec
to

r
da

ta
w

ri
tin

g
re

g_
v_

w
en

E
na

bl
e

fo
r

ve
ct

or
da

ta
w

ri
tin

g

11
re

g_
v_

ds
t

D
es

tin
at

io
n

fo
r

re
gi

st
er

w
ri

tin
g,

0:
G

PR
;1

:I
/O

10
-7

re
g_

v_
id

x
I/

O
po

rt
nu

m
be

r/
G

PR
in

de
x

fo
r

ve
ct

or
da

ta
w

ri
tin

g

6
V

PR
/

re
g_

s_
w

en
R

eg
is

te
r

w
ri

te
en

ab
le

5
M

M
R

re
g_

s_
ds

t
D

es
tin

at
io

n
fo

r
da

ta
w

ri
tin

g,
0:

V
PR

;1
:M

M
R

4
re

g_
s_

sr
c

D
at

a
so

ur
ce

fo
r

re
gi

st
er

w
ri

tin
g,

0:
so

rt
ed

da
ta

;1
:v

ec
to

r
da

ta

3-
0

re
g_

s_
id

x
R

eg
is

te
r

in
de

x
a “M

ul
tip

le
-o

f-
fo

ur
”

ad
dr

es
si

ng
(2

L
SB

s
ar

e
di

sc
ar

de
d)

fo
rw

ri
tin

g
m

at
ri

x
da

ta
to

G
PR

,e
.g

.,
ac

ce
ss

in
g

$0
,

$4
,$

8,
et

c.

194 B Vector Dataflow Processor Architecture

Table B.9 Operation code
for input data shuffling in the
SIMD core

Opcode Operation

00 Complex-valued arithmetic

01 Real-valued arithmetic

10 Complex- & real-valued square operation

11 Reserved

Table B.10 Operation code
for vector data operand in the
SIMD core

Opcode Operation

00 None

01 Constant multiplication

10 Constant addition

11 Reserved

Table B.11 Operation code
for barrel shifter

Opcode Operation

00 None

01 Arithmetic shift right (ASR)

10 Logical shift left (LSL)

11 Logical shift right (LSR)

Table B.12 Data source for permutation sequence

Opcode Operation

00 No permutation

01 Using sorting output as a permutation sequence

10 Using sequence loaded from VPR

11 Using an immediate value input as a permutation sequence

B Vector Dataflow Processor Architecture 195

Ta
bl

e
B

.1
3

In
st

ru
ct

io
n

se
tf

or
se

qu
en

ce
r

31
-2

9
28

27
-2

4
23

-2
0

19
-1

6
15

-1
2

11
-8

7-
4

3-
0

In
st

ru
ct

io
n

O
pc

od
e

Fi
el

d

N
O

P
00

0
L

a
�

N
or

m
al

b
00

1
L

of
fs

et
_1

of
fs

et
_2

of
fs

et
_3

of
fs

et
_4

of
fs

et
_5

of
fs

et
_6

of
fs

et
_7

L
oo

p
pu

sh
c

01
0

�
L

oo
p

co
un

t
�

B
as

e
co

nfi
g.

d
01

1
�

ba
se

_1
ba

se
_2

ba
se

_3
ba

se
_4

ba
se

_5
ba

se
_6

ba
se

_7

E
nd

of
pr

og
ra

m
10

0
�

�
ID

R
es

er
ve

d
10

1
�

11
0

�
11

1
�

a “E
nd

-o
f-

lo
op

”
fla

g
b
N

or
m

al
in

st
ru

ct
io

n,
co

nt
ro

ls
th

e
ad

dr
es

s
(“

ad
dr

es
s

=
ba

se
+

of
fs

et
”)

of
di

st
ri

bu
te

d
co

nfi
gu

ra
tio

n
m

em
or

ie
s

c
Pu

sh
in

g
a

lo
op

in
to

th
e

st
ac

k
of

th
e

in
ne

r
lo

op
co

nt
ro

lle
r,

in
cl

ud
in

g
lin

k
ad

dr
es

s
an

d
lo

op
co

un
t

d
B

as
e

ad
dr

es
s

co
nfi

gu
ra

tio
n

fo
r

th
e

di
st

ri
bu

te
d

co
nfi

gu
ra

tio
n

m
em

or
ie

s

	Contents
	List of Acronyms
	List of Definitions
	1 Introduction
	1.1 Scope of the Book
	1.2 Outline
	1.2.1 Chapter 4: The Reconfigurable Cell Array
	1.2.2 Chapter 5: Multi-Standard Digital Front-End Processing
	1.2.3 Chapter 6: Multi-Task MIMO Signal Processing
	1.2.4 Chapter 7: Future Multi-User MIMO Systems

	References

	2 Digital Hardware Platforms
	2.1 Programmable Processors
	2.1.1 General-Purpose Processors
	2.1.2 Special-Purpose Processors
	2.1.3 Application-Specific Instruction Set Processors
	2.1.4 Configurable Instruction Set Processors

	2.2 Application-Specific Integrated Circuits
	2.3 Reconfigurable Architectures
	2.4 A Comment on Power Efficiency
	References

	3 Digital Baseband Processing
	3.1 Wireless Communication Technologies
	3.1.1 Orthogonal Frequency Division Multiplexing
	3.1.2 Multiple-Input Multiple-Output

	3.2 Overview of Digital Baseband Processing
	3.2.1 Channel Encoding/Decoding
	3.2.2 Symbol Mapping/Demapping
	3.2.3 Domain Transformation
	3.2.4 Digital Front-End Processing
	3.2.5 Channel Estimation
	3.2.6 Channel Matrix Pre-processing
	3.2.7 Symbol Detection

	3.3 Baseband Processing Properties
	References

	4 The Reconfigurable Cell Array
	4.1 Introduction
	4.2 Prior Work and State-of-the-Art
	4.3 Architecture Overview
	4.3.1 Processing Cell
	4.3.2 Memory Cell
	4.3.3 Network-on-Chip
	Global Network
	Network Routing Cell
	Local Network
	Communication Flow Control

	4.3.4 Resource Configuration

	4.4 Design Flow
	4.5 Summary
	References

	5 Multi-Standard Digital Front-End Processing
	5.1 Introduction
	5.2 Algorithm and Implementation Aspects
	5.2.1 Time Synchronization and CFO Estimation
	5.2.2 Operation Analysis

	5.3 Hardware Development
	5.3.1 Dataflow Processor
	Data Stream Shuffling

	5.3.2 Memory Cell
	Flexible Descriptor Execution
	Micro-Block Function

	5.4 Implementation Results and Discussion
	5.4.1 Task-Level Pipeline
	5.4.2 Memory Interleaving
	5.4.3 Context Switching
	5.4.4 Configuration Generator
	5.4.5 Hardware Flexibility
	5.4.6 Implementation Results
	5.4.7 Measurement Results
	Debugging Interface
	Standalone Cell Array Test

	5.5 Summary
	References

	6 Multi-Task MIMO Signal Processing
	6.1 Introduction
	6.2 MIMO Signal Processing
	6.2.1 Channel Estimation
	Robust MMSE Estimator
	Modified Robust MMSE Estimator

	6.2.2 Channel Matrix Pre-processing
	MMSE-SQRD Algorithm
	Iterative Sorting and MGS-QRD Algorithm

	6.2.3 Symbol Detection
	Parallel Node Perturbation
	Imbalanced Node Perturbation
	Successive Partial Node Expansion (SPE)
	Summary and Discussion

	6.3 Algorithm Evaluation and Operation Analysis
	6.3.1 Simulation Environment
	6.3.2 Performance Evaluation
	Channel Estimation
	Symbol Detection
	MIMO Signal Processing

	6.3.3 Operation and Complexity Analysis
	6.3.4 Processing Flow and Timing Analysis

	6.4 Hardware Development
	6.4.1 Architecture Overview
	6.4.2 Vector Dataflow Processor
	Configurable Instruction Set Architecture
	Vector-Enhanced SIMD Core
	VLIW-Style Multi-Stage Computing

	6.4.3 Vector Data Memory Tile
	Hybrid Memory Organization
	Flexible Matrix Data Access

	6.4.4 Scalar Resource Cells and Accelerators
	Inverse Square-Root Unit
	Node Perturbation Unit

	6.4.5 Concurrent Candidate Evaluation

	6.5 Implementation Results and Comparison
	6.5.1 Implementation Results
	Vector Dataflow Processor
	Vector Data Memory Tile
	Resource Cells in Scalar Processing Domain

	6.5.2 Task Mapping and Timing Analysis
	Channel Estimation
	Channel Matrix Pre-processing
	Symbol Detection
	Miscellaneous Operations
	Results and Discussions

	6.5.3 Computation Efficiency
	6.5.4 Power and Energy Consumption
	6.5.5 Comparison and Discussion
	Area Efficiency
	Energy Efficiency
	Hardware Flexibility

	6.6 Adaptive Channel Pre-processor
	6.6.1 QR-Update Scheme
	6.6.2 Group-Sort Algorithm
	6.6.3 Algorithm Evaluation and Operation Analysis
	6.6.4 Implementation Results and Discussion

	6.7 Summary
	References

	7 Future Multi-User MIMO Systems: A Discussion
	7.1 MIMO Goes to Massive
	7.1.1 Massive MIMO Basics
	7.1.2 From Theory to Practice
	Theoretical Research
	Implementation-Related Research

	7.2 Massive MIMO Baseband Processing
	7.2.1 Baseband Processing Overview
	7.2.2 Uplink Multi-User Detection
	7.2.3 Downlink Beam-Forming Pre-coding

	7.3 New Challenges in Reconfigurable Architecture Design
	7.3.1 Computational Complexity
	7.3.2 Processing Distribution
	7.3.3 Spatial-Domain Selectivity

	7.4 Summary
	References

	8 Conclusion
	Appendix A Dataflow Processor Architecture
	Appendix B Vector Dataflow Processor Architecture

