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Preface

Computer models are everywhere in use, and the uncritical acceptance of results
from computer models is also found everywhere. The developers of computer
models are generally aware of the weaknesses and limitations of their models and
frequently also of the influence of various individual uncertainties on model results.
However, the model users and those who have to base their decisions on model
results are unfortunately often less well informed. For those who are informed, it is
often impossible to adequately express this information by grey areas around the
model results obtained or presented to them. Consequently, model results are
frequently taken at face value and are interpreted up to a detail that would only be
justified in the case of precision measurements. This may provoke embarrassing
situations such as the following:

Dr. A is in a conference where he is to compare two design options for a technical
system with respect to their compliance with a safety limit. The audience is made up
of fellow researchers, representatives of a funding organization, government depart-
ments and prospective users of the system. One of his PowerPoint slides shows the
computed evolution of a critical temperature over the planned system operation time.
Above this time history runs a straight line indicating the safety limit that must not be
exceeded. The computed temperature increases from the ambient value at time zero
to the maximum value of 532 �C at 3865 s, which is 78 �C below the limit, and then
decreases to 320 �C where it settles for the rest of the operation time. Everybody
present is satisfied with this result. However, a Mister B, seated in the third row,
wishes to ask a question.

B: How did you arrive at this temperature curve?
A: We ran the computer model XYZ with our case data. It took several hours on

our computer, but, as you can see, the result is worth the wait.
B: Are you sure that XYZ models all relevant phenomena?
A: We take it from the model description that all phenomena relevant to our case

are in the model.
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B: Is it imaginable that those that are not in the model could drive the critical
temperature above the safety limit?

A: This would have to be some weird combination of very improbable
phenomena.

B: What do you mean by “improbable” in this context?
A: That there is very little degree of belief among experts that a combination of

phenomena, such as the one you are thinking of, could be of relevance in
our case.

B: How much degree of belief?
A: Difficult to say.
B: How about the modelling assumptions and their parameter values used by

XYZ? Could they have been chosen differently?
A: Wherever we saw a choice, we used the best estimate assumptions and values.
B: That means, other assumptions and values could have also been possibly true,

but you trusted yours most. How much less do you trust the others? Might
some combinations of those have driven the maximum temperature above the
safety limit?

A: May be, but again, those would be very unlikely combinations of assumptions
and parameter values.

B: What you mean by “unlikely” in this context?
A: The same as for phenomena.
B: Thank you, and I am sure you have an impression of the influence of

measurement errors in your case-specific input data.
A: The situation is much clearer here, as these values are based on our wide

experience in the field and on measurements with very good information as to
their error distribution.

B: Bias of your field data can be excluded, I assume.

In the meantime, Doctor C, the head of Doctor A’s department, has lost patience
with Mister B and wishes to close the discussion.

C: Why are we having this discussion? We are below the safety limit by almost
100 �C. This suggests to me that, if taken into account, none of the possibilities
discussed here at length would have the potential of driving the computed
temperature above the limit.

A: It would be very unlikely.
C: I thought it could be excluded. What do you mean by unlikely? Either we are

below the limit or we are not. Why are we using terms like “improbable” and
“unlikely”?

B: This is also my opinion. Either the maximum temperature is above or below the
limit. Unfortunately, Doctor A cannot answer this question in that clarity. He
has shown us the result from a computer model that does comply with the limit
but he cannot exclude that using other model assumptions and different
combinations of parameter values could drive the computed maximum
temperature above the limit, nor can he tell us how confident he is that such
a combination is not true.
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C: Doctor A, what would you need to bring this discussion to an end? Where
would you need to know more and how confident could you then be that the
limit will not be exceeded?

A: I would have to perform an uncertainty analysis.
C: Well, then why are we wasting our time with this unnecessary discussion, go

ahead with it and let’s talk about your analysis results once you have them.
B: Doctor A, I believe you also applied the computer model to calculate the

maximum temperature for another design of the system. How do those
results compare to the limit?

A: The computed maximum temperature is below the limit by 100 �C.
B: Well, then this is clearly the better design option.
A: Unfortunately, one cannot say “clearly”. For this design we have had to choose

values for parameters that are less well known than those for the first option.
C: But the maximum temperature is significantly further below the safety limit

than in the case of the first design.
A: This is the case in the calculation that uses our best estimate parameter values.
C: What else could you have used?
A: There is quite a range of values for some of these parameters. Any value from

each of these ranges is possibly true. Using these in combination would
certainly give different results. I can’t say by how much but I assume that we
would still be well below the limit.

C: This is all very fine, but which design option is now the better one?
A: To answer this question I would need the results from an uncertainty analysis

of both computations.
C: Just go ahead and do it. After all this discussion I do not understand why we

have bothered to look at the results you showed us today. They are nice but as
we have learned today there is a range of possibly true maximum temperatures.
In other words, there is more to it than just looking at these point results before
we can make a meaningful decision.

Surely, you don’t want to find yourself in Doctor A’s predicament. The subse-
quent chapters will guide you through the steps of an uncertainty analysis. If Doctor
A had performed such an analysis before going public with his model results, he
could have answered the questions of Mister B in a professional manner. More
importantly, he would have gained insight into the combined effect of the various
uncertainties on the model result and thus could have provided information essential
for a robust decision.

It is common knowledge that models

– Try to adequately represent functional relationships
– Introduce simplifications for reasons of computational efficiency
– Employ parameter values that could have been chosen differently
– Use data that are at best subject to measurement error and at worst only vaguely

known
– Apply numerical algorithms to obtain approximate solutions
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Prediction models additionally need to process data that will only be known some
time in the future.

All these ingredients of the model application have in common that they intro-
duce uncertainties due to lack of knowledge, also known as “epistemic uncer-
tainties”. The uncertainty analysis is carried out to assess their combined influence
on the model result. To this end, the state of knowledge is quantified at the level of
scenarios, phenomena, model formulations, parameters, input data and controls of
numerical solution algorithms.

It would be naïve to ignore the epistemic uncertainties and to expect precise
results. It is equally naïve to be satisfied when presented with numbers that look like
“precise” results. Too often are model results discussed as if they were the truth.
Whoever bases his decision on model results that are not supplemented by quanti-
tative statements about their uncertainty runs the risk of making the wrong decision.

The model result obtained with so-called best estimates of all uncertainties may
comply with a safety standard, while quantifying the states of knowledge may show
a non-negligible subjective probability for violation.

On the other hand, the model result obtained with so-called conservative assump-
tions may violate the standard, while quantifying the state of knowledge may show
compliance with the safety standard at a high subjective probability. Not to mention
the fact that what appears to be “conservative” for one result may not be so for
another result of the same model application.

Frequently, the decision is about the preference for one design or action out of a
number of alternative designs or actions. The choice between the alternatives may be
rather straightforward if based on model results obtained with “best estimates” for
the uncertainties. The model application for each of the alternatives may, however,
involve different uncertainties of differing state of knowledge and/or may react
differently to the same uncertainties. It can be of vital importance to know the effect
of these differences.

Of course, quantifying the combined influence of all identified uncertainties is
one aspect of the analysis. The other would be to rank the uncertainties with respect
to their contribution to model result uncertainty. Many model developers and model
users are particularly interested in this by-product of the uncertainty analysis. The
uncertainty importance information is in the form of a ranking of the epistemic
uncertainties. It provides guidance as to where to invest in better measurements,
additional field data collection, supplementary experiments, further theoretical
investigations and elicitation of expert judgement, in order to reduce the uncertainty
of the model result most effectively and most cost-efficiently.

Of course, it is always possible to perform so-called one-at-a-time variations or
scenario studies where

– A single parameter is varied by some amount or
– A single model is varied from its standard formulation or
– A single phenomenon of uncertain relevance is included or excluded or
– The scenario description for the model application is changed.
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This approach is still popular among some model developers although it does not
give an impression of the combined influence of the uncertainties. The effort
involved is often comparable to that of an uncertainty analysis, while the information
gained is far less conclusive. It is simply a matter of efficiency to use well-
established methods and tools from statistics in order to determine a range that
contains the requested percentage of the model result uncertainty at a sufficiently
high level of confidence: in other words, to obtain as much information as is
achievable with the invested budget.

Half a century ago it was tradition among scientists and engineers to perform
“error analysis”. The “errors” were mostly due to small fluctuations around nominal
values and to rounding in moderately complex functional relationships. Today, there
are large uncertainties in complex model formulations that require tens of thousands
of lines of coding and in numerous parameter values and input data. To conduct an
error analysis, or more appropriately an uncertainty analysis, is obviously
mandatory.

To summarize:
Models are applied to obtain input for decisions. Uncertainty analysis shows:

– Whether the pending decision can be meaningfully made at the present state of
knowledge.

– Where the state of knowledge should be primarily improved in order to allow
meaningful decision-making.

– Whether there is a chance to achieve the necessary improvement.
– The subjective probability at which a specific action or design, out of a set of

alternatives, is to be preferred to the rest of the set. This information is not
available without analysis but decides about success or failure.

– The subjective probability for compliance with a safety standard, i.e. limit value.
If this probability is judged to be too low, action is required. Either improving the
state of knowledge may do or a change to the system under investigation is
needed or both. Without the analysis there is no indication as to whether and
where a system change and/or state of knowledge improvement might be most
effective.

In conclusion, the uncertainty analysis is performed in order to arrive at decisions
that are less often regretted than would be the case without analysis.

This book aims to serve as your practical guide through the six steps of an
uncertainty analysis.

Two types of uncertainty, namely epistemic and aleatoric uncertainty, are to be
considered, and Chapter 1 explains their differences and gives practical examples of
the common situation where only epistemic uncertainty is present and of the special
situation where both types of uncertainty are involved and separation is required.
Chapters 2 to 7 guide through the six analysis steps in situations where only
epistemic uncertainty is present. Step 1 consists of a systematic walk through the
computer model in search of the potentially important uncertainties. The task of Step
2 is the quantification of the respective states of knowledge and their expression by
subjective probabilities. Step 3 propagates the states of knowledge through the
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computer model application. In Step 4 one arrives at the state of knowledge that
follows in a logically consistent manner for the model results given the state of
knowledge quantifications at the level of the identified uncertainties. The evaluation
of a set of uncertainty importance measures follows in Step 5. The measures serve to
rank the uncertainties with respect to their contribution to the uncertainty of the
model result. Finally, in Step 6, the analysis and its findings are presented. The
chapter explains how the findings are to be interpreted and communicated in a
manner that is scientifically sound and yet comprehensible for those who need the
computer model result for their decision-making.

Chapter 8 looks at each of the six steps from the viewpoint of their practical
execution and points out how they can be supported by dedicated software. The
specifics of an uncertainty analysis, when separation of uncertainties is required by
the question formulation, are considered in Chapter 9 for each of the six analysis
steps. Finally, two practical examples are presented in Chapter 10. Separation is not
required in the first example where the uncertainty is to be analysed for results that
are functions of the independent variable “time”. Uncertainty and uncertainty impor-
tance are both presented over time.

The model result of the second example is a probability distribution summarizing
variability within a population of values. Of particular interest is the complementary
cumulative probability at a given limit value. The combined effect of all quantified
epistemic uncertainties on the computed complementary cumulative probability and
the corresponding uncertainty importance information are determined and presented.
This example requires the separation of the variability within the population of
values from the epistemic uncertainty involved in their quantification.

Dorfen, Germany Eduard Hofer
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Chapter 1
Introduction and Necessary Distinctions

1.1 The Application of Computer Models

Computer models are everywhere in use. Whether it is the manufacturing industry,
the electricity generating utility, the airways, the railways, financial institutions, the
oil and chemical industry, hospitals or the government, they all use the output from
computer models as input to their decision-making.

At the base of the decisions are problems such as the:

– Prediction of economic growth.
– Assessment of health, technical and monetary risks.
– Reliable supply of electricity and drinking water.
– Reliable operation of waste water treatment plants.
– Maintenance of oil reservoirs for safe and optimum production.
– Preparation of response plans and intervention strategies for infectious diseases.
– Formulation of safety requirements for potentially hazardous industries.
– Choice of sustainable harvesting quotas for natural resources like forests and fish

populations.
– Adequate appreciation of the human influence on global climate.
– Profitable management of investment portfolios.
– Optimum scheduling of aircrafts and aircrews.
– And so forth.

To solve these problems, a number of questions are to be asked. Computer
models are applied to find the answers that are then used in decision-making.
Applying a computer model is the only way of finding the answers since observa-
tions, tests or experiments are often out of the question. This is particularly so if the
decisions are concerned with potentially hazardous events or with predictions far
into the future.

A computer model is an encoded simplified mathematical abstraction of reality.
Simplified, because only those influential measurable quantities are included that are
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deemed important for the answer and so are only those interactions among them that
are judged to influence the answer noticeably. Abstraction, because the simplified
picture of reality is reduced to numbers describing a situation on a grid of a mesh size
judged to be sufficiently fine, and to parameter studded mathematical equations
operating on this description. An application of the computer model provides an
approximation of how the situation evolves due to the modelled interactions and due
to any modelled disturbances. The answers obtained from the output may be single
numbers, sets of numbers, discretized functions of time or space or of both, sets of
such functions, or a combination of some or all of these formats. Some questions will
require answers in the form of probability distributions.

A sequence of modelling steps lead from the question to the answer. First comes
the compilation and representation by numbers of all quantities needed to describe
the situation and all relevant disturbances, i.e. the preparation of the scenario
description. It follows the formulation of the conceptual model consisting of a
compilation of the mechanisms, phenomena and processes driving the interactions
between the components of the scenario description. This may be done in the form of
an influence diagram. The next step is the representation of the conceptual model by
a mathematical model consisting of sets of conditions, governing equations, consti-
tutive relations and logic expressions. The values of its parameters have then to be
chosen in accordance with the intended model application. Numerical algorithms are
needed to represent the mathematical model by a sequence of arithmetic and logic
operations that solve the equations. This numerical model contains controls with
their parameter values often chosen by the user. It needs to be encoded into a
computer program. Application of this program requires the choice of the model
option best suited for the purpose. The computer program is translated into machine
language and executed using the input data chosen for the application of the model
option. Finally, from all the information contained in the model output, those parts
need to be selected and properly interpreted that are suitable to answer the question,
and the answer needs to be unambiguously formulated and communicated.

1.2 Sources of Epistemic Uncertainty

A responsible decision-maker will scrutinize the answer by asking the following
questions:

– Scenario description
Is the choice of scenario suitable for answering the question and is its description
sufficiently accurate and comprehensive?

– Conceptual model
Are all relevant phenomena, mechanisms and processes accounted for and are
they considered in the required detail?
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– Mathematical model
Are the governing equations, constitutive relations and logic expressions the only
proper representation of the conceptual model?

– Parameter values
Are the parameter values uniquely defined or could they have been chosen
differently?

– Numerical model
Was the overall effect of errors that are due to the representation of continuous
quantities on a finite mesh of grid points as well as the effect of errors that are due
to iterative solution processes and rounding controlled and kept within prescribed
limits? Which are these limits and are they chosen such as to guarantee a
sufficiently accurate solution?

– Computer program
What kind of precautions were taken to prevent and detect any programming
errors?

– Model options
The model developers have most likely provided for various options to run the
model on a computer. Is the model option chosen by the user the intended one and
is it appropriate for the purpose of the model application? Are the required input
data provided correctly?

– Computing system
What is the chance that any hardware, operating system or compiler error may
have affected the model results?

– Model output
Was the suitable model output chosen and interpreted correctly in order to
properly answer the question?

Most likely he will learn that:

– Scenario description
The situation is not uniquely defined and even if it were there would still be
incomplete knowledge of the numerical values of the quantities needed in its
description. Furthermore, the relevant disturbances could be different from the
chosen ones with respect to type, number, location, as well as time of occurrence.
The modellers may be of the opinion that they have chosen a set of disturbances
that capture the main effects with regard to the question. They will not be able to
exclude that they might be wrong, nor will they be able to claim that the chosen
set is unique.

– Conceptual model
Inevitably, not all phenomena, mechanisms and processes acting on the quantities
of interest are included in the conceptual model. Some of them might have been
judged as having negligible effect and were therefore excluded. What is relevant
was determined by expert judgment. Other experts may hold a different opinion.
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– Mathematical model
There are different ways of formulating the governing equations depending on
what the modellers want to emphasize and how generously they think they can
allocate computer time to their model runs. Since constitutive relations between
model variables are often based on observations from experiments they too
provide room for discrepancies among modellers.

– Parameter values
For almost every parameter, a value different to the one chosen could be consid-
ered as applicable. For some parameters, the range of such values is large and for
others small, yet it is not known for certain what the variation (and particularly the
simultaneous variation) of their values would do to the model result.

– Numerical model
The numerical solution process is controlled by parameters. Their values are often
default values prescribed by the model developers or are free for the model user to
choose. These parameters are responsible for speed and accuracy of the solution
process. Often a trade-off between the two is made. Obviously, a different set of
parameter values will produce a different solution. It is, however, not quite clear
by how much different.

– Programming
There is no guarantee that the program is free of errors although parts or all of it
may have undergone a more or less elaborate verification process.

– Model option
Again, there is no guarantee that the model option chosen via input is the actually
intended one nor that the intended one is actually appropriate for answering the
question.

– Computing system
The chance of errors to exist and to have an effect on the model results is usually
considered as remote.

– Model output
Other experts may have looked at a different set of output values and may have
drawn somewhat different conclusions leading to different answers.

Obviously, the decision-maker will want to know the overall effect of these
uncertainties on the model result that is provided as an answer to his question and
ultimately as input to his decision. The uncertainties are called epistemic since their
root cause is a lack of knowledge. The term “epistemic” is derived from the Greek
word “episteme” which means knowledge. Epistemic uncertainties could be elimi-
nated given sufficient knowledge. The epistemic uncertainties are also known as
Type B uncertainties,1 and the analysis of their combined effect on the model results
is the subject of Chaps. 2–7.

1Not to be confused with “Type B uncertainty evaluation” in (Joint Committee for Guides in
Metrology 2008).
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1.3 Verification and Validation

Computer models providing input to important decisions should have undergone a
verification and validation process in order to diminish some of the uncertainties
(Weathers et al. 2009). Verification aims at ensuring that the encoded mathematical/
numerical model, i.e. the computer program, is free of programming errors. Valida-
tion, on the other hand, aims at ensuring that the mathematical/numerical model,
including the scenario description and a typical selection from the model options,
does what it should do in order to provide the required answer to the question as
input to the decision-making. Neither verification nor validation of large complex
computer models can ever be complete. Among other techniques and strategies, the
former often tests the program with artificial data selected from the assumed range of
applications while the latter often works with the comparison of results from critical
sub-models and of the complete model to experimental data from a so-called
validation matrix of experiments. Depending on how important the intended appli-
cation of the computer model is, it may even be decided to go the expensive route of
having several teams of programmers encode the same model and compare the
results in order to reduce the chance of programming errors. An equivalent on the
validation side are international benchmarks. In these benchmarks, several institu-
tions or nations finance an experimental facility and the execution of experiments
that are then part of the validation matrix for each institution’s own computer model
development (own choice of scenario description, own conceptual and mathemati-
cal/numerical model).

These efforts greatly diminish the uncertainties mentioned above. They can,
however, not eliminate them completely. There will always remain a range of
alternative scenario descriptions, conceptual models, mathematical model formula-
tions, parameter and data values, numerical solution processes and model options
that cannot be rationally excluded from consideration for the actual practical model
application that has to answer the specific question at hand.

1.4 Why Perform an Analysis of Epistemic Uncertainty?

The model result presented to the decision-maker is often only a so-called point
result obtained with “best estimates” for all uncertainties. In view of the uncertainties
involved, the decision-maker will need to specifically request that an analysis of their
overall effect be done, i.e. he will want to know where within this overall effect the
point result is located. Here are some good reasons why he should want such an
analysis to be done:

– Comparison of alternative designs or actions
Frequently, the decision is about the preference for one design or action out of
a number of alternative designs or actions (Sanchez et al. 2009; Koch et al. 2009).
For each alternative, the model application may be subject to different uncertainties
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and/or may react differently to the same uncertainties. The state of knowledge of
the latter may also be different for each alternative. It can be of vital importance to
know the effect of these differences on the uncertainty ranges. The ranges may,
for instance, hardly overlap or the width of one may be a fraction of that of the
other, while the point results, obtained with so-called best estimates of the
uncertainties, may be very similar. Consequently, a comparison of the point
results, in order to decide about the best alternative, only makes sense together
with the output from the uncertainty analysis. In this way, a measure is obtained
on which to base one’s preference in the face of uncertainty.

– Compliance with safety limits
Many decisions are concerned with limit values in safety standards, guidelines
or business practices. Permission to operate a potentially hazardous industrial
facility or to follow a specific strategy in exploiting a natural resource will depend
on compliance with prescribed limit values. Compliance is often demonstrated by
comparing the result from a computer model application to the limit. While the
point result may comply with the limit, a considerable part of the quantified
uncertainty may indicate violation of the limit. Uncertainty analysis can provide
the necessary insight to decide whether and where the state of knowledge should
be improved or whether and where the design of the technical system or the
strategy should be changed in order to achieve compliance in the most cost-
effective manner.

In some instances, uncertainty analysis may indicate that the decision cannot be
made at the present state of knowledge since the uncertainty of the model result is
simply too large for it to be a meaningful input. Or, on a more positive note, one may
learn that the point result, including its large uncertainty range, is still on the safe side
of the prescribed limit value. In this case, the decision can be safely made despite
large uncertainties. Decisions made on the basis of an uncertainty analysis of model
results are robust and less frequently regretted than those based only on point results.

1.5 Source of Aleatoric Uncertainty

Up to this point, it was assumed that the decision-maker’s question has a single true
answer. However, some questions are such that several different answers are simul-
taneously true (Hoffman and Hammonds 1994; Hofer 1996; Aven 2010). For
instance, the generic question “What is the financial damage caused by an oil
spill?” has a variety of values as true answers. As long as no additional detail is
provided, the question cannot be answered by a single value. However, the question
“What is the financial damage of yesterday’s oil spill in XY bay?” clearly has only
one true value as its answer. This value is most likely not known right now but will
be known once the clean-up operation is completed and all damage claims have been
dealt with.
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Not every detail necessary to narrow down the population of true answers to a
unique answer is given in the formulation of generic questions. In many instances, it
is simply not possible nor intended to provide all the necessary details. The popu-
lation of answers corresponds to the many ways in which the question formulation
could theoretically be made sufficiently specific so that a single answer is true. It is
uncertain which of these specifications the answer should refer to and therefore it is
uncertain which answer to choose from the population. The associated uncertainty is
called aleatoric or Type A uncertainty.2 The term “aleatoric” is derived from the
Latin word for die. It should imply that any sufficient specification of the question
and therefore the true answer arises by chance similar to the outcome of the throw of
a die. Some authors (Glorennec 2006; Ragas et al. 2008; Warren-Hicks and Hart
2010) prefer not to speak of uncertainty but simply of variability that is to be
determined and expressed by a summarizing quantitative expression.

As against epistemic uncertainties, aleatoric uncertainties cannot be eliminated by
acquiring more knowledge. The population of true answers can only be reduced by
increasing the detail of the question, i.e. by making the question more specific as in
the oil spill example given above. The variability of the true answers in the
population is summarized by a frequency distribution or, after normalization, by a
probability distribution. This distribution is the answer to be presented to the
decision-maker. It is a so-called probabilistic answer. In short, the probability
distribution quantifying the aleatoric uncertainty (or summarizing the variability)
is the answer produced by a probabilistic computer model, i.e. one that works with
random variables. The analysis of the epistemic uncertainty of the result from this
computer model produces a quantitative expression of the epistemic uncertainty of
the probabilistic answer that then permits uncertainty statements for distribution
moments like mean value and variance as well as for cumulative or complementary
cumulative probabilities at any values of interest.

In some instances, the question formulation could include enough details so as to
have a single true answer but some of the detail is deliberately left unspecified in
order to learn about the corresponding population of answers and in particular about
the distribution that summarizes it.

The decision-maker may be less interested in the full information about the
distribution quantifying aleatoric uncertainty but may only want to know mean
value and standard deviation or some specific cumulative or complementary cumu-
lative probabilities. The analysis of the epistemic uncertainties provides state of
knowledge expressions for all of these values.

2Not to be confused with “Type A uncertainty evaluation” in (Joint Committee for Guides in
Metrology 2008).
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1.6 Two Different Interpretations of “Probability”

The mathematical concept of probability is used to quantify uncertainty. A different
interpretation of the term “probability” is being used for each of the two types of
uncertainty mentioned above. There is the classical frequentistic interpretation
(probability as the limit of relative frequencies obtained with increasing sample
sizes) and the subjectivistic interpretation (probability as a measure of degree of
belief). With both interpretations, the wealth of well-established concepts and tools
of probability calculus and statistics are at the disposal of the uncertainty analyst.

The aleatoric uncertainty is quantified using the frequentistic interpretation where
one simply speaks of “probability” while the subjectivistic interpretation, where one
speaks of “subjective probability”, is used for the epistemic uncertainty. Aleatoric
uncertainty leads to a population of true answers that is summarized by a probability
distribution. Since anything subject to epistemic uncertainty has only one true
answer, limits of relative frequencies do not make sense. Rather degrees of belief
are held for the validity of an answer. In the case of epistemic uncertainty, there are
several answers that are considered as possibly true while there is only one true
answer.

1.7 Separation of Uncertainties

Some examples are now in place to serve the illustration of the distinctions made
above.

Example 1
There are two dice on the table. One, let us call it A, is being cast continuously. The
other, let us call it B, is covered, left untouched and it is uncertain which side faces
up. At any given time, the number shown by B and the number that will be shown by
A are uncertain, as is their sum. For simplicity, denote these uncertain quantities
by A, B and A + B. The uncertainty about the number shown by die A in any
(unspecified) cast is aleatoric (since the cast is unspecified there is a population of six
simultaneously true answers). It is quantified using the frequentistic interpretation
where one simply speaks of “probability”. The subjectivistic interpretation, where
one speaks of “subjective probability”, is used for B the uncertainty of which is
epistemic. Since B is constant, i.e. has only one true value, limits of relative
frequencies don’t make sense. Rather, degrees of belief are held for each of the six
numbers on the die to be up. They quantify the state of knowledge for B.

Thus, the question “What is the value of the sum A + B?” is incomplete and
causes problems. Firstly, what does the sum refer to? Secondly, if “probability” is
used for A and “subjective probability” for B, which is to be used for A + B?
Tackling the first problem will also resolve the second. Since A is being cast
continuously, the question is ambiguous and needs to be supplemented by a refer-
ence unit. Examples of such supplements are “. . .in the next cast of die A” or “in any
cast of die A”.
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As for the next cast, does it make any difference as to whether die A is being cast
now or has been cast in the past and covered so that one just needs to lift the dice box
to find out? In both cases, there is only one true but unknown value for A. The
uncertainties of A and B, and consequently of A + B, are, therefore, quantified by
subjective probability. Separation of uncertainties is not required.

If the question refers to any cast, A does not have only one true value. Rather, a
population of values applies such that for any cast, A can be thought of as randomly
selected from this population. There is uncertainty as to which value from the
population to use in the sum. The variability of the values, within this population,
is summarized by their proportions. These proportions are given by the respective
limits of relative frequencies. The corresponding probability distribution summa-
rizes the population variability. There is only one true probability distribution of
A. Uncertainty of this distribution (for instance, due to uncertainty of whether die A
is fair) is quantified by subjective probability. What about the sum A + B in the case
where the question refers to any cast? It too has a probability distribution. There is
only one true but unknown value B and only one true probability distribution of
A. Consequently, A + B has only one true but unknown probability distribution. The
uncertainty about the single true distribution of A + B is quantified by subjective
probabilities derived from those for alternative values B and possibly for alternative
probability distributions of A. One has thus naturally arrived at a separation of
uncertainties. Without separation one would say that the population variability of
true answers ranges from 2 to 12, which is clearly wrong as the unknown value B is
constant and only A varies.

This introductory example seeks to illustrate when and how to separate or when
not to separate uncertainties. Does the underlying principle also hold in situations of
practical relevance? An answer to this question will be given with the help of the
next examples.

Example 2
The experiment X was performed by pouring molten metal into a water pool and by
measuring the pressure in the experimental facility at various locations and over
time. Subsequently, as part of the validation process, a calculation is performed
using a computer model to answer the question: “What was the value of the overall
peak pressure increase in the experiment X?” Numerous uncertainties are involved
in this calculation.

The experiment X has a unique description and quantities needed for the calcu-
lation have single, true, but more or less imprecisely known values, i.e. they are all
epistemic uncertainties. This also applies to the functional relationships to be
modelled and to the minimum requirements that need to be asked from numerical
algorithms in order to still have sufficiently accurate numerical solutions of the
underlying equations. Consequently, all uncertainties are quantified by subjective
probability, and the uncertainty of the computed peak pressure increase is expressed
by the resulting subjective probability distribution. Following the argumentation of
the “next cast” case of Example 1, the same applies to a pre-experiment calculation
that may be done as a so-called blind validation test of the model.
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In the post-experiment case, the overall peak pressure increase is known, subject
to measurement error. The corresponding uncertainty is also epistemic and is
expressed by a subjective probability distribution since the actual increase has
only one true but unknown value. This distribution will differ from the one obtained
for the computed peak pressure increase. The reason for this is the difference in the
states of knowledge involved. A substantial overlap of both distributions would be
one criterion for a desirable outcome of the validation experiment. Another would be
an uncertainty range narrow enough to just contain the measured value and all or
most of the measurement error uncertainty (Weathers et al. 2009).

The initial temperature of the melt is one of the quantities needed for the computer
model application. One may ask: “What about the error in the measurement value of
the initial temperature of the melt? Why is the associated uncertainty not to be
separated?” Measurement errors typically exhibit stochastic variability that can be
summarized by a probability distribution. The initial temperature is an uncertain
input of the calculation. Its measurement error has a single, true, but unknown value.
Therefore, there is no need for separation. If it can be thought of as randomly
sampled according to a given distribution of measurement errors, the distribution
details can be used as those of a subjective probability distribution quantifying the
respective state of knowledge of the measurement error.

Example 3
A strategy was developed to reduce the potential for vessel failure under described
conditions in an industrial facility X. The description is of limited detail.

The question “Will vessel failure be prevented by the strategy, whenever the
described conditions apply in facility X?” is answered by a discrete probability
distribution assigning probability p to “prevented” and (1 � p) to “not prevented”.
The value of p quantifies the combined influence of quantities that do assume
different values whenever the described conditions are met in facility X, i.e. the
aleatoric uncertainties. Their variability under the described conditions is summa-
rized by probability distributions and is responsible for the variability between
“prevented” and “not prevented”. The uncertainties due to limited knowledge of
the distribution functions as well as uncertainty of those quantities that have a single,
true, but unknown value, like the parameters of the distributions, are epistemic and
lead to a subjective probability distribution for p. An example of an epistemic
uncertainty would be the failure rate of a pump to run, if running the pump over a
period of time is part of the strategy and the failure rate has the same value whenever
the described conditions apply. On the other hand, the time preceding failure of the
pump, if not included in the described conditions, would be an example of aleatoric
uncertainty, which is to be separated, since this time varies whenever the described
conditions apply.

If there are no quantities that do assume different values whenever the described
conditions are met in facility X, i.e. no aleatoric uncertainties, then the strategy either
always fails or never fails. The corresponding discrete subjective probability distri-
bution tells, for instance, the degree of belief for “prevented”, given the present state
of knowledge. The situation of no variability is, as an approximation, sometimes
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assumed when the aleatoric uncertainty is judged to be negligible compared to the
combined influence of the epistemic uncertainties.

Example 4
A hazardous substance (contaminant) was released some time ago, accidentally or
continuously over a period of time, and the question is: “What is the value of the
dose received by an individual of the exposed population?” There is a single, true,
but more or less imprecisely known, local and temporal pattern of contaminant
concentrations in the air, on the ground, in water as well as in various foodstuffs.
The same applies to the temporal pattern of locations, activities and food consump-
tion habits as well as to the metabolic properties of each of the individuals in the
exposed population. However, the question does not refer to a specific individual.
Therefore, it has a population of answers that are simultaneously true. For instance, it
is uncertain which individual’s data to use from the latter pattern. This uncertainty is
due to variability among the individuals in the population. The question can be
interpreted such that individuals are being drawn at random from the population with
equal probability. This makes the variability of the individual’s data stochastic and
the uncertainty of the aleatoric type. It is to be separated from the epistemic
uncertainty due to lack of knowledge of the local and temporal pattern of contam-
inant concentration in the air, on the ground, in water as well as in all relevant
foodstuffs, i.e. it needs to be separated from the uncertainty of all quantities that have
single true but unknown values applicable to groups of individuals or to the exposed
population in general. Since this latter set contains the local and temporal pattern of
concentrations, it also contains all quantities needed to reconstruct this pattern, such
as the characteristics of the contaminant release.

The answer to the question is a single, true, but unknown probability distribution
summarizing the variability of dose among the individuals of the population. The
quantification of the state of knowledge of both patterns mentioned above leads to a
subjective probability distribution for any distribution quantile. Such quantiles or
percentiles are dose values that are not exceeded by a given percentage of the
exposed population. The subjective probability distribution of the percentile tells
the decision-maker how well this dose value can be determined, given the present
state of knowledge. The same kind of information is available for the percentage of
the exposed population with dose values larger than a given limit. Both pieces of
information, dose, respectively, percentage on one hand and the uncertainty thereof
on the other hand, feed into different decisions.

The question could also be “What is the value of the dose received by each of the
N individuals in a given population?” This question has a single true answer namely
the true set of N dose values and all uncertainty is epistemic. The uncertainty
analysis provides a population of possibly true sets of N dose values each. The
variability of the dose values within each of these sets could be summarized by a
frequency distribution that, if normalized, could serve as the probabilistic answer to
the previous formulation of the question while the population of possibly true
probabilistic answers quantitatively expresses the state of knowledge of the true
probabilistic answer. In either case, variability, no matter whether deterministic as in
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the case of a calculation for N specific individuals, or stochastic, as in the case of a
calculation for a random sample of individuals, needs to be separated from epistemic
uncertainty.

A further question could be “What is the value of the dose received by individual
Z?” This question now refers to a single specific individual and all uncertainty is
epistemic. All of the individual’s details have single, true, but imprecisely known
values. The answer to the question is a single, true, but unknown dose value, and the
combined influence of all uncertainties leads to a subjective probability distribution
as state of knowledge expression for this dose value.

Example 5
In order to avoid stock depletion of a certain fish species, a fishing management
strategy is to be implemented. To provide input for the pertaining decision process, a
computer model was developed and it is applied to answer, among others, the
following question: “How will the harvestable biomass of the fish species evolve
over the next 20 years if no fishing management policy is in place?” Later applica-
tions of the model would include alternative management strategies in order to make
an optimal choice. The question formulated above is analogous to “the next cast”
question of Example 1. It has only one true answer, namely the evolution of the
harvestable biomass over the next 20 years, given no management strategy has been
implemented. All uncertainties are epistemic. This includes also the uncertainty as to
how often and when a certain unpredictable disturbance of the sea current will occur
over the next 20 years and how severely it will affect the population of the fish
species concerned. Since the number of occurrences, their time and severity are
considered to be random variables, one may be inclined to separate them as aleatoric
uncertainties. However, once the specified time period is over, it will be known how
often, when and how severely the disturbance affected the fish species. Then the
single true answer to the question will also be known. For now, however, at the onset
of the specified time period, these data are epistemic uncertainties (see also the
practical application in Sect. 10.1).

The next six chapters lead through the steps of an uncertainty analysis when
separation of uncertainties is not required by the question formulation. The analysis
proceeds in six steps. Specifics of an uncertainty analysis in cases requiring separa-
tion of uncertainties are discussed in Chap. 9. Chapter 10 presents one practical
example each, namely for an analysis that does not require separation as well as for
one that does require separation of uncertainties.
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Chapter 2
STEP 1: Search

2.1 The Scenario Description

The search for potentially important epistemic uncertainties requires a thorough
inspection of all stages on the path from the assessment question to the computer
model result that is used to answer the question. The inspection starts with the
scenario description where a number of simplifications and omissions will most
likely have taken place. Their potential for changing the model result needs to be
discussed and judged.

For instance, a model used to compute the amount of contaminant that might be
transported from an underground waste repository into the upper aquifer tries to
represent the main geological features in and around the repository in sufficient
detail as part of its scenario description. Despite some information obtained from
various boreholes, a large set of possibly true descriptions could be constructed of
which a set of representatives needs to be selected and prepared for use in the
uncertainty analysis of the computer model application. These representatives will
also differ in the number of accidental intrusions into the repository after closure as
well as in their times of occurrence and their locations.

A model, trying to answer the question of the point in time at which the
population of a certain species of fish will be reduced to below a critical number
due to commercial fishing activities, will need to use information from previous
harvests and from survey expeditions. These numbers are subject to errors of
reporting, detection, measurement and interpretation. Alternative possibly true num-
bers will need to be used in alternative scenario descriptions.

In the case of the post-experiment calculation, concerning molten metal being
poured into a water pool, the amount and the temperature of the melt effectively
crossing the water surface may be insufficiently known so as to make it necessary to
consider using alternative pairs of values in the calculation.

It may be the case that the model is not flexible enough to accommodate some of
the possibly true peculiarities of the scenario. If the model user is also the developer,
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it will be possible to supplement the model accordingly. Otherwise, the possibly
applicable features of the scenario description, which cannot be fed into the model,
must be documented. They will need to be included in the discussion of the various
shortcomings when the model results and their uncertainty analysis are presented to
the decision-makers.

2.2 The Conceptual Model

Next one needs to look at the conceptual model. The intentional simplifications and
omissions that might, individually or in combination with others, be of importance to
the model results need to be scrutinized. The model developers would make excel-
lent partners in this effort. Otherwise, the model user depends on the degree of detail
offered by the model documentation. The simplifications and omissions are based on
expert judgement with a view to the intended spectrum of model applications. The
model user needs to judge whether his application is within this spectrum. He is also
left to his own expertise when it comes to the identification of any unintentional
simplifications and omissions of interactions between the quantities of the scenario
description, phenomena, processes or mechanisms that could have an impact on the
model results. Any simplifications and omissions, judged to be of importance, need
to be rectified in the model. It may be that this is not possible due to time and cost
restrictions or simply because the model user does not have access to the source
code. In this case, they need to be documented and included in the list of shortcom-
ings mentioned above for discussion together with the model results. Simplifications
and omissions are, by their very nature, not directly subject of the uncertainty
analysis as it is clear that their elimination would only improve the result. There is,
however, epistemic uncertainty about whether or not the improvement is essential
for the model result to be sufficiently accurate. Supplementing the model will most
likely be reserved for the elimination of severe shortcomings as it is expensive in two
ways. Firstly, there is the effort of modelling, programming and testing and sec-
ondly, the supplement may considerably increase the runtime of the model on the
computer and may therefore hamper its usability. Model supplements will be
outright impossible if the user does not have access to the source code of the
model, and the modellers are not willing to provide the required supplement.
Documenting the uncertainties that might be associated with a particular simplifica-
tion or omission may therefore be the only realistic way to go.

The uncertainty as to whether component ageing needs to be included into a
model computing the reliability of a technical system might serve as an example.
Another example may be the effect that over-fishing the upper-age classes of a
population of fish might have on the maturation time. Particularly, if this effect has
been observed in another fish population. In the context of health effects of some
contaminant in water, it may be uncertain whether one should consider a threshold
value below which there is no effect if such a threshold has been observed in
animals. A model used to study different strategies in the combat of a viral infection
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may contain, as a simplification, the assumption that the medication administered is
equally effective in all parts of the body or it may omit the transmission of the virus
between body cells.

2.3 The Mathematical Model

The next stage to be inspected is the mathematical model. It is a translation of the
conceptual model together with the scenario description into sets of equations and
logic expressions. These prescribe how the descriptive variables evolve from initial
values while observing any limiting or boundary conditions and disturbances. The
question here is whether the equations represent the governing laws in a way that
permits an adequate account of the effect of phenomena and mechanisms important
for the model result and whether the influence of the disturbances on the evolution of
variables is sufficiently accounted for. For instance, the model developers may have,
for the sake of simplicity and of saving runtime on the computer, set up the equations
under the assumption of symmetry in one dimension of the spatial scenario descrip-
tion while it is uncertain as to whether the effect of some phenomenon could have
been better captured without this assumption. It may also be uncertain whether the
equations represent the initial and boundary conditions in sufficient detail. For
example, the mathematical model may divide a complex geometry into compart-
ments and work only with values averaged over each compartment. The set of
equations reflect the number and geometry of the compartments. It may be uncertain
whether a refinement of the division at critical locations would change the model
result significantly. For example, a model predicting the influence of harvesting
practices on a population of fish may divide the population into classes of different
age for setting up the equations. This division would need to be chosen such that the
age-dependent specifics of spawning, commercial harvesting and loss to predators
can be represented in sufficient detail. Again, there may be uncertainty as to whether
a finer subdivision of the fish population may render different results.

In addition to equations representing governing laws as well as initial and
boundary conditions, the model may contain equations that account for the influence
of disturbances. These equations are often approximate relationships derived from
experiments. Consequently, there may be different ways of expressing these rela-
tionships within the mathematical model.

After the inspection of the set of equations, the choice of parameter values for the
model application needs to be questioned. The number of parameters may range
from a few dozens to hundreds or even thousands. Parameters are constants of the
mathematical model. An example would be a flow rate known to be set at a constant
value, while the true flow rate may differ from the set value so that it is uncertain
which value to use in the model. Another example would be the constant volume of a
complex geometry. Its value would need to be calculated from various measure-
ments that are subject to measurement error. Some parameters are constants of
sub-models obtained by fitting the sub-model to observations from tests or other
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sources. Different researchers may have performed their own experiments or may
have used the same experiment to arrive at their own set of constants through their
individual way of judging the quality of fit.

Some parameters are approximate representations of a function, the so-called
effective parameter values. The function is, for simplicity, approximated by a
constant over the range of application. There will most likely be a range of constant
values that could be used, and it may be uncertain which value to use in the specific
model application. An example would be the fecundity rate of a species of fish.
There is a direct relationship between the size of the female and the number of eggs
while there may be no distinction by size within the age classes used by the
mathematical model. Further examples are transfer factors of a contaminant to
human organs, consumption rates of foodstuffs, permeability within a geological
layer, viscosities, specific heat capacities, flammability limits of materials, critical
concentration values of dust for the modelling of dust explosions, friction coeffi-
cients, deposition velocities of airborne contaminants and so forth.

Some effective parameters may be given in form of a table containing parameter
values dependent on variables such as model interim results or on independent
variables like time and spatial coordinates of the model equations. The table contains
a finite number of pairs of values. Determining the parameter value to be used will
require some interpolation between the tabulated values. The tabulated parameter
value at a given variable value may be uncertain and so will be the interpolation error
and the effect of both on the model result. In fact, any application-specific input
value that is to be used by the computer model will give rise to the question “how
well is this value actually known and could the uncertainty have significant influence
on the model result?” Some input values may be the output from the application of
another computer model, a so-called feeder model that feeds into the computer
model application to be analysed. Obviously, a quantification of their uncertainty
is required so that one may take it into account within the analysis of the computer
model application. It would be less of a problem to satisfy this requirement if an
uncertainty analysis had been performed for the application of the feeder model.

2.4 The Numerical Model

Finally, one arrives at the numerical model which is the mathematical model turned
into a numerical algorithm that provides an approximate solution of the set of
equations. In the case of algebraic equations, the solution algorithm will often be
iterative using one or more parameters to control the speed of convergence and the
accuracy of the approximate solution. In the case of differential equations, approx-
imations of the continuous solution variables will be obtained at discrete grid points
of the independent variables. This process may also employ an iteration algorithm.
The choice of the grid decides about accuracy and efficiency of the solution
algorithm. For instance, in a time-advancement procedure for initial value problems
in first-order ordinary differential equations, the accuracy of the advancement from
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one time-step to the next will be controlled by parameters, the so-called local
accuracy requirements that also control the length of the time-step. The local errors
accumulate and it is necessary to know whether the accumulated error is sufficiently
attenuated in each step so that the local error plus the accumulated error remain
controlled. The numerical model will also contain parameters to control the handling
of the solution across discontinuities and to adjust the grid of discrete solution points
to the solution behaviour over time. The choice of values for the parameters of the
numerical model has immediate effect on the solution accuracy as well as on the
runtime of the model on a computer. Therefore, a compromise is often made between
accuracy and runtime requirements. It may be uncertain whether other parameter
values, leading to more stringent accuracy requirements, would need to be chosen in
order to solve the equations of the mathematical model with sufficient accuracy.

2.5 Conclusion

The uncertainties encountered on the way from the scenario description to the
numerical model may be categorized as either data or model uncertainties. The
first category contains uncertain parameter values and uncertain input data while
the second includes uncertainties like:

– How to represent a process by a function of model variables.
– How to incorporate the effect of a disturbance into the model equations.
– The effect of a simplification that is not an omission.
– The effect of omissions (intended or unintended), sometimes called “complete-

ness uncertainty”.

The next chapter discusses ways of quantifying the state of knowledge for
epistemic uncertainties of both categories by subjective probability.
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Chapter 3
STEP 2: Quantify

3.1 Subjective Probability

Subjective probability is a measure of the degree of belief held for the truth of an
answer to a question. It is used in the quantification of uncertainty due to lack of
knowledge, also called epistemic uncertainty. The word epistemic stems from the
Greek word for knowledge. It indicates that this uncertainty has its origin in the
nature and limits of knowledge. In the case of epistemic uncertainty, there are several
answers to a question that are considered as possibly true while there is only one true
answer. The true answer will either be deterministic or probabilistic, depending on
the formulation of the question, i.e. the absence or presence of aleatoric uncertainty.
Aleatoric uncertainty is due to random variability so that there are many true
answers. Their variability is summarized by a probability distribution (Table 3.1).
Both types of answers, i.e. the one true answer or the one true probability distribu-
tion, may be subject to epistemic uncertainty. What is known about an epistemic
uncertainty (i.e. the respective state of knowledge) is probabilistically expressed by a
subjective probability distribution. The state of knowledge may be judged differently
by different experts and even by the same experts after some time has gone by and
additional information has become available.

Subjective probability serves as a mathematical measure of the state of knowl-
edge. Every now and then attempts are made to apply other concepts. One example
is “possibility” from Fuzzy Logic (Ross 1995). Several good reasons speak, how-
ever, for the use of the mathematical measure “probability” in its subjectivistic
interpretation. It is the input expected for decision-making under uncertainty. Fur-
thermore, all well-established methods and tools from probability calculus and
statistics, which are already in use for the quantification of the aleatoric uncertainties
by probability in its frequentistic interpretation, can just as well be employed for the
treatment of epistemic uncertainties by probability in its subjectivistic interpretation.
Among those is the well-known Bayesian method (Bayes 1958; Box and Tiao 1973).
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It is used to update once specified subjective probability distributions by observa-
tions that subsequently became available.

Subjective probabilities (subsequently denoted by “sw”) have to comply with the
same rules as probabilities in their frequentistic interpretation. The main rules are:

R1 Subjective probabilities cannot be negative nor can they be larger than 1.
R2 If A1 is a possibly true answer to question A and B1 is a possibly true answer to

question B, then the subjective probability for both to be true is sw(A1B1)¼ sw
(A1)sw(B1jA1) ¼ sw(B1)sw(A1jB1) where the vertical stroke is to be read as
“under the condition that what is behind the stroke is true”. If the subjective
probability for B1 to be true is the same irrespective of whether A1 is true or
not, then sw(B1jA1)¼ sw(B1) and the subjective probability for both to be true
is sw(A1B1) ¼ sw(A1)sw(B1).

R3 If A1 is a possibly true answer to question A and B1 is a possibly true answer to
question B, then the subjective probability for at least one of them to be true is
sw(A1+B1) ¼ sw(A1) + sw(B1) � sw(A1B1).

1 If A1 and B1 cannot be true
together, then the subjective probability for at least one of them to be true is sw
(A1 + B1) ¼ sw(A1) + sw(B1). Particularly, if sw(A1) is the subjective
probability for answer A1 to be true and sw(not A1) for A1 to be false, then
sw(A1) + sw(not A1) ¼ 1.

R4 If A1, A2, ..., An are possibly true answers to question A, not any two or more of
them can be true together since there is only one true answer. It follows: sw(A1

+ A2 + ... + An) ¼ sw(A1) + sw(A2) + ... + sw(An), for any integer value n.
Particularly, if these are the only answers that are possibly true, then sw(A1 +
A2 + ... + An) ¼ 1.

3.2 Data Versus Model Uncertainty

The previous analysis step produced a compilation of epistemic uncertainties that
may need to be considered in the uncertainty analysis of results from the application
of a computer model. They may be categorized into data and model (or modelling)
uncertainties. This differentiation is important for the state of knowledge quantifi-
cation as can be seen from the following comparison:

Table 3.1 Difference between the classical frequentistic and the subjectivistic interpretation of
“probability”

Subjectivistic interpretation Classical frequentistic interpretation

Probability is the degree of belief (held for the
truth of an answer to a question)

Probability is the limit of relative frequen-
cies (of a random event)

Expresses the state of knowledge Summarizes random variability

Quantifies uncertainty due to lack of knowledge
(epistemic uncertainty)

Quantifies uncertainty due to random vari-
ability (aleatoric uncertainty)

1Since sw(A1B1) is part of sw(A1) and of sw(B1), it needs to be subtracted.
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Data uncertainty:

– A datum is a constant of a computer model. It may have different numerical
values for different applications of the computer model.

– The datum is uncertain if there is lack of knowledge about the true numerical
value to be used in the specific application.

– Minimum and maximum of the possibly true numerical values determine, in
general, the set of alternatives (completeness in the sense of probability calculus).

– Only one numerical value from the set can be true (mutual exclusiveness in the
sense of probability calculus).

– The alternatives are a set with unique total ordering in the sense of set theory
(Lipschutz 1964). This property will be shown to be important for the derivation
of uncertainty importance measures.

Model uncertainty:

– A model is a computer representation of a process or of a state of affairs.
– The representation is an uncertainty of the computer model application if there is

lack of knowledge about the process or the state of affairs or if the representation
is only achieved in an approximate or simplified manner. It may even be that the
process or state of affairs is totally omitted from the computer model so that there
is lack of knowledge about the effect this may have on the result of the model
application.

– Frequently, there is not a “minimal” and “maximal” possibly true representation.
– Usually, there is no unique total ordering of the representations.
– Generally, it will be impossible to specify all possibly true representations

(no completeness).
– In practice, representations will be taken into consideration that are known to be

simplifications or approximations. It will be obvious that none of the representa-
tions is actually true. The representations in the set are assumed to be only
sufficiently adequate. Several representations may be considered as equally
adequate (no exclusiveness like in the case of possibly true representations).

3.3 Ways to Quantify Data Uncertainty

The following categories of data are distinguished:

• Measurable quantities
• The result of functions of measurable quantities
• Values chosen at random according to distributions fitted to measurable quantities
• Sequences of uncertain input data over time, space or interim computer model

results.
• Special cases:
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– Correction factors to results of models fitted to measurable quantities
– Effective parameter values
– Extrapolations of models fitted to measurable quantities
– Feeder model results
– Literature data
– Interview data

3.3.1 Measurable Quantities as Uncertain Data

Measurable quantities are all those quantities that can, sometimes only in principle,
be the subject of a measurement (Joint Committee for Guides in Metrology 2008)
states:

– In 3.2.1:
“In general, a measurement has imperfections that give rise to an error in the

measurement result. Traditionally, an error is viewed as having two components,
namely, a random component and a systematic component”.

– In 3.2.2:
“Random error presumably arises from unpredictable or stochastic temporal

and spatial variations of influence quantities. The effects of such variations,
hereafter termed random effects, give rise to variations in repeated observations
of the measurand. Although it is not possible to compensate for the random error
of a measurement result, it can usually be reduced by increasing the number of
observations; its expectation or expected value is zero”.

– In 3.2.3:
“Systematic error, like random error, cannot be eliminated but it too can often

be reduced. If a systematic error arises from a recognized effect of an influence
quantity on a measurement result, hereafter termed a systematic effect, the effect
can be quantified and, if it is significant in size relative to the required accuracy of
the measurement, a correction or correction factor can be applied to compensate
for the effect. It is assumed that, after correction, the expectation or expected
value of the error arising from a systematic effect is zero”.

– In 3.3.1:
“The uncertainty of the result of a measurement reflects the lack of exact

knowledge of the value of the measurand. The result of a measurement after
correction for recognized systematic effects is still only an estimate of the value of
the measurand because of the uncertainty arising from random effects and from
imperfect correction of the result for systematic effects”.

– In 3.3.2:
“In practice, there are many possible sources of uncertainty in a measurement,

including:

a) Incomplete definition of the measurand.
b) Imperfect realization of the definition of the measurand.
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c) Non-representative sampling—the sample measured may not represent the
defined measurand.

d) Inadequate knowledge of the effects of environmental conditions on the
measurement or imperfect measurement of environmental conditions.

e) Personal bias in reading analogue instruments.
f) Finite instrument resolution or discrimination threshold.
g) Inexact values of measurement standards and reference materials.
h) Inexact values of constants and other parameters obtained from external

sources and used in the data-reduction algorithm.
i) Approximations and assumptions incorporated in the measurement method

and procedure.
j) Variations in repeated observations of the measurand under apparently iden-

tical conditions.

– These sources are not necessarily independent, and some of sources a) to i) may
contribute to source j). Of course, an unrecognized systematic effect cannot be
taken into account in the evaluation of the uncertainty of the result of a measure-
ment but contributes to its error”.

– In 3.1.2:
“In general, the result of a measurement is only an approximation or an

estimate of the value of the measurand and thus is complete only when accom-
panied by a statement of the uncertainty of that estimate”.

– In D.5.2:
“Uncertainty of measurement is thus an expression of the fact that, for a given

measurand and a given result of measurement of it, there is not one value but an
infinite number of values dispersed about the result that are consistent with all of
the observations and data and one’s knowledge of the physical world, and that
with varying degrees of credibility can be attributed to the measurand”.

– End of quotations from (Joint Committee for Guides in Metrology 2008)

Uncertainty quantification, therefore, has the purpose of providing intervals about
the measurement result that encompass, according to a given coverage probability or
confidence level, a large fraction of the distribution of values that could reasonably
be attributed to the quantity subject to measurement.

The following notation will be used:

z value of the measurand (uncertain datum)
x measurement (result) value (approximation for z)
z* value that could be attributed to the measurand, for short also called “possibly

true” (within the definition given for the measurand) value
xi value observed in the i-th repetition of the measurement
εS,i systematic error in xi
εR,i random error in xi

Two types of measurement error models are commonly encountered in practice
(Armstrong 1998):
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In the classical model, there are different measurement results x associated with the
same measurand value z.

In the Berkson model (Berkson 1950), there are different measurand values
z associated with the same measurement result x.

Examples where the Berkson model applies:

– A specific drug is administered to a number of subjects participating in a medical
experiment. The amount to be administered to each subject is set at x. The actual
amounts z, however, vary about the value x.

– A computer model uses values of ground contamination at various locations of
the site of an abandoned chemical factory. The site has been divided into
L subareas and all that is available for use in the model is an estimate of the
average contamination values xl, l ¼ 1, . . ., L. The model requires, however, the
actual values zl. k at k ¼ 1, . . ., K locations within each subarea. They vary about
the corresponding average values.

3.3.1.1 Uncertainty Due to Additive Classical Measurement Error

The measurement error may be made up of two terms:

A constant additive bias term (systematic error) εS (Vasquez and Whiting 2006).
A random additive term (random error) εR.

In the case of an additive classical measurement error, the following relationship
applies:

x ¼ zþ ε ¼ zþ εR þ εS

where x is the measurement result or measurement value, z is the true value of the
measurand and ε is the error. ε is made up of the random error εR and often includes
an unknown constant bias term εS.

The following situations are distinguished:

– The measurement values from N repetitions of the measurement of the same
measurand are available.

– Only one measurement value is available for each of K measurands.
A procedure is now described, for each of these situations, that permits state of

knowledge quantifications for the true value(s) of the measurand(s). If the error
terms are multiplicative, the following procedures are applied to the logarithms of
true values and measurement values, provided all values are positive.

a) N measurement values for the same measurand
The N measurement values xn, n¼ 1, . . ., N, for the uncertain datum z, are subject to
the same unknown value εS of the bias term and to random error terms εR, n so that

xn ¼ zþ εS þ εR,n, n ¼ 1, . . . ,N ð3:1Þ

26 3 STEP 2: Quantify



The values of the N random error terms are assumed to be a random sample drawn
according to the same probability distribution (usually normal) of the random error2

ΕR with mean value 0 and unknown standard deviation σR.
A best estimate of z, if εS ¼ 0, is obtained from

�x ¼ 1
N

XN

n¼1
xn ¼ 1

N
Nzþ

XN

n¼1
εR,n

� �
¼ zþ 1

N

XN

n¼1
εR,n ð3:2Þ

where the last term is approximately equal to 0. It is called an unbiased estimate since
�x approaches z with N increasing. The term

s2R ¼ 1
N � 1

XN
n¼1

�
xn � �x

�2 ¼ 1
N � 1

XN
n¼1

εR,n � 1
N

XN
n¼1

εR,n

" #2
ð3:3Þ

is an unbiased estimate of the variance σR of the random error ΕR.
If one talks of any N repetitions of the measurement of z then their results are

aleatoric uncertainties (see Chap. 1). Each of the N measurement values Xn, n ¼ 1,
. . ., N is a random variable because of the error terms ΕR, n. Since each random
variable ΕR, nmay be thought of as a sum of independently distributed contributions,
the random variables Xn ¼ z + εS + ΕR, n can be thought of as following a normal
distribution with mean value z + εS and standard deviation σR, according to the

central limit theorem. The distribution of �X ¼ 1
N

� �XN
n¼1

Xn is then normal with mean

value z + εS and standard deviation σR/N
1/2. Furthermore,

S2R ¼ 1
N � 1

XN
n¼1

�
Xn � �X

�2
is a random variable and s2R (Eq. 3.3) is a realization thereof. Following Cochran’s
Theorem, the term

N � 1ð ÞS2R=σ2R ¼
XN
n¼1

Xn � �X

σR

� 	2
ð3:4Þ

is Chi2-distributed with N�1 degrees of freedom (Heinhold and Gaede 1968). From
this one obtains that, with

Y ¼
�X � zþ εSð Þ½ �

σR

N
1
2

ð3:5Þ

following a standard normal distribution, the quotient

2Random variables are denoted by capital letters and their realizations by lower case letters.
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Y
SR
σR

¼


�X � z� εS

�
SR

N
1
2
¼ W

ð3:6Þ

follows a Student or t-distribution with N�1 degrees of freedom.
If one now talks of N specific repetitions of the measurement, providing

N measurement values x1, . . ., xN, then

w ¼ 
�x� z� εS
�
= sR=N

1=2
� �

is a realization of the Student distributed random variable with N � 1 degrees of
freedom. The value of the realization w is, however, unknown due to lack of
knowledge (epistemic uncertainties) of z and of εS. Since w is sampled at random,
the Student or t-distribution can be used to quantify the state of knowledge of w. The
t-distribution is symmetric about zero; it follows, therefore, that

sw w � t N�1ð Þ,Q%
� � ¼ Q=100

sw w > t N�1ð Þ, 100�Qð Þ%
� � ¼ Q=100

sw �w � �t N�1ð Þ, 100�Qð Þ%
� � ¼ Q=100

and

sw zþ εS � �x� t N�1ð Þ, 100�Q%ð Þ
sR

N
1
2

� �� �
¼ sw zþ εS � �xþ t N�1ð Þ, Q%ð Þ

sR

N
1
2

� �� �
¼ Q=100: ð3:7Þ

Given a subjective probability distribution that quantifies the state of knowledge
of εS, a sample of possibly true values z* for z is obtained as

z∗J ¼ �x� ε∗S, j þ t N�1ð Þ, jsRN�1=2, j ¼ 1, . . . , J ð3:8Þ

with t(N � 1), j sampled according to the t-distribution with N�1 degrees of freedom
and ε∗S, j sampled according to the subjective probability distribution quantifying the
state of knowledge of the bias term. sR is obtained from Eq. (3.3) and �x according to
Eq. (3.2).

b) One measurement each for K measurands
Computer models often use a set of values zk, k ¼ 1, . . ., K sampled from a
population with variance σ2Z and mean value μZ. Their sample mean and variance
are denoted by mZ and s2Z . Available are, however, not the z values but one
measurement value each, i.e. xk, k ¼ 1, . . ., K. Suppose, the measurement values
are subject to the unknown systematic error εS and to a random error εR,k indepen-
dently sampled according to the same normal distribution for k¼ 1, . . ., Kwith mean
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value 0 and unknown standard deviation σ
R
. If the error terms are additive then, with

mR and s
2
R denoting the sample mean and variance of the random error, sample mean

and variance of the measurement values xk ¼ zk + εS + εR, k ¼ zk + εk are
3

mx ¼ 1
K

� �XK
k¼1

xk ¼ 1
K

� �XK
k¼1

zk þ εkð Þ ¼ mz þ mε ð3:9Þ

s2x ¼
1
K

� �XK
k¼1

x2k�
1
K

� �XK
k¼1

xk

 !2

¼ 1
K

� �XK
k¼1

zkþεkð Þ2� 1
K

� �XK
k¼1

zkþεkð Þ
 !2

¼ 1
K

� �XK
k¼1

z2k�
1
K

� �XK
k¼1

zk

 !2

þ 1
K

� �XK
k¼1

εkð Þ2� 1
K

� �XK
k¼1

εkð Þ
 !2

þ 2
K

� �XK
k¼1

zkεk� 2

K2

� �XK
k¼1

zk
XK
k¼1

εk¼ s2z þ s2εþ2r z;εð Þszsε

ð3:10Þ
mz, s

2
z and mε, s

2
ε are the sample mean and variance of the K true values and errors, r

(z,ε) is the sample correlation coefficient of the pairs of values (zk, εk), k ¼ 1, . . .,
K while z0 ¼ (z1, . . ., zK) and ε0 ¼ (ε1, ..., εK) are the vectors of the true values and
errors. Since the populations of Z and Ε are statistically independent, the population
correlation coefficient satisfies ρ(Z,Ε) ¼ 0. The sample correlation coefficient r(z,ε)
will most likely differ from zero. The smaller the number K of measurement values,
the more likely it is that this difference will be significant. As can be seen from
Eqs. (3.9) and (3.10), the sample mean and variance of the measurement values
differ from those of the true values.

Suppose, the distribution of Ε is known to have mean value εS and standard
deviation σR. The state of knowledge for each of the errors εkmay then be quantified,
independently for every measurement value xk, by a subjective probability distribu-
tion of the same type with mean value εS and standard deviation σR. If values ak,
k ¼ 1, . . ., K are sampled independently according to this subjective probability
distribution and are subtracted from the measurement values, one arrives at a set of
values

yk ¼ xk � akjk ¼ 1; . . . ;Kf g: ð3:11Þ
Sample mean and variance are

3Vectors of random variables are denoted by bold capital letters and their realizations by bold lower
case letters.
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my¼ 1
K

� �XK
k¼1

yk¼
1
K

� �XK
k¼1

zkþ 1
K

� �XK
k¼1

εk�akð Þ¼mzþ mε�mað Þ ð3:12Þ

s2y ¼ s2x þ s2a � 2r x; að Þsxsa ¼ s2z þ s2ε þ 2r z; εð Þszsε þ s2a � 2r x; að Þsxsa ð3:13Þ

where s2x , s
2
a and s2z are the sample variances of the measurement values, of the

sampled values that are considered to be possibly true errors and of the true values,
and r(x,a) is the sample correlation coefficient of the pairs of values (xk, ak), k ¼ 1,
. . ., K. As Eq. (3.13) shows, the sample variance of the set of values {yk | k ¼ 1, . . .,
K} clearly differs from s2z . The set in (3.11) can therefore not be considered a
possibly true set of input values suitable for a Monte Carlo simulation run of the
uncertainty analysis.

It seems reasonable to require that the values yk, k ¼ 1, . . ., K should have the
same sample mean and variance as the true values zk in order to qualify as a set of
input values for the uncertainty analysis. For the variance, this can be achieved by
introducing statistical dependence between the measured values and the ak, k ¼ 1,
. . ., K such that r(x,a) satisfies the requirement

s2z ¼ s2z þ s2ε þ 2r z; εð Þszsε þ s2a � 2r x; að Þsxsa ð3:14Þ
or

r x; að Þ ¼ s2ε þ s2a þ 2r z; εð Þszsε
� �

=2sxsa: ð3:15Þ
Unfortunately, there are some terms on the right-hand side of Eq. (3.15) that are

subject to uncertainty. This makes the value required for r(x,a) an uncertain quantity.
The sample correlation coefficient r(z,ε) is unknown and so are the sample standard
deviations sz and sε. The sample correlation coefficient is a random variable distrib-
uted as follows (Rosner 1995):

R z; εjKð Þ � TK�2= K � 2þ T2
K�2

� �1=2 ð3:16Þ
where TK�2 is Student distributed with (K � 2) degrees of freedom. Consequently,
the state of knowledge of the sample correlation coefficient r(z,ε) in Eq. (3.15) can be
quantified by a subjective probability distribution as indicated in Eq. (3.16) where
the population distributions of Z and Ε are assumed to be of the normal type. It is,
however, also a useful state of knowledge expression for r(z,ε) in situations where
the distributions of Z and Ε are continuous but other than normal. If the sample size
K satisfies K� 30, then the standard normal distribution may be used to approximate
the Student distribution.

The state of knowledge quantifications for the sample mean mε and for the
variance s2ε of the true errors follow from the subjective probability distribution for
the error values εk mentioned above. From Eq. (3.12), we have for the sample mean
mz of the true values
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mz ¼ my � mε � mað Þ: ð3:17Þ
Using Eq. (3.10) and assuming s2x > s2ε , one obtains, by solving the quadratic

equation,

sz ¼ �r z; εð Þsε þ r2 z; εð Þs2ε þ s2x � s2ε
� �1=2 ð3:18Þ

where only the positive square root renders a solution. From Eq. (3.15), it therefore
follows for the desired sample correlation coefficient r(x,a)

r x; að Þ ¼
s2ε þ s2a þ 2r z; εð Þ �r z; εð Þsε þ s2ε r2 z; εð Þ � 1ð Þ þ s2x

� �1
2

� �
sε

2sxsa
: ð3:19Þ

Since there are subjective probability distributions expressing the state of knowl-
edge for each of the imprecisely known terms mε, sε and r(z,ε) on the right-hand side
of Eqs. (3.17)–(3.19), a subjective probability distribution results for mz, sz and for r
(x, a).

In an uncertainty analysis, using Monte Carlo simulation for the propagation of
the states of knowledge through the computer model, values aj, j ¼ 1, . . ., K are first
sampled according to the subjective probability distribution for the errors εk. From
this sample, the values ma and sa are obtained. They are considered as possibly true
values for mε and sε as they are indirectly sampled according to the subjective
probability distributions for mε and sε. Then a value r∗(z,ε) is sampled for r(z,ε)
according to Eq. (3.16) and together with the given value for sx, a value r∗(x,a),
indirectly sampled according to the subjective probability distribution for r(x, a) in
Eq. (3.19), is obtained. From these values, and using Eqs. (3.17) and (3.19), the
corresponding values m∗

z and s∗z are also obtained, i.e. indirectly sampled according
to the subjective probability distributions for the sample mean mz and standard
deviation sz of the true values. It is guaranteed that the value r∗(x,a) satisfies the
necessary condition �1 � r∗(x,a) � +1. The proof is given in (Hofer 2008). For the
uncertainty analysis, Eqs. (3.17)–(3.19) therefore take the following form:

m∗
z ¼ my � ma � mað Þ ¼ my ð3:17aÞ

s∗z ¼ �r∗ z; εð Þsa þ s2a r∗
2 z; εð Þ � 1

� �
þ s2x

� �1
2 ð3:18aÞ

r∗ x; að Þ ¼
sa þ r∗ z; εð Þ �r∗ z; εð Þsa þ s2a r∗2 z; εð Þ � 1

� �
þ s2x

� �1
2

� �
sx

: ð3:19aÞ

A set of input values {z∗k | k¼ 1, . . .,K}, which can be considered as possibly true,
is, therefore, obtained by combining the sampled errors aj, j ¼ 1, . . ., K with the
measurement values xk, k ¼ 1, . . ., K to pairs (xk,aj(k)) and by computing

z∗k ¼ xk � aj kð Þ, k ¼ 1, . . . ,K: ð3:20Þ
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Here, the components of the vector a0 ¼ (a1, . . ., aK) are permuted such as to have
a vector ~a ‘ ¼ (aj(1),..., aj(K )) with the sample correlation coefficient r(x, ~a ) equal to
the value r*(x,a) obtained from Eq. (3.19a). The sample standard deviation sZ∗ of
the sample values z∗k equals then the value s∗Z from Eq. (3.18a) which is indirectly
sampled according to the subjective probability distribution for sZ. The index j(k)
stands for the component index j of a that was combined with the component index
k of x. To find such a combination, one may transform the xk and the aj to standard
normal values and apply the method described in (Iman and Conover 1982). This is
done in an iterative fashion until the sample correlation coefficient r(x,~a ) is close
enough to r*(x,a).

The method can, therefore, be summarized as follows:

Step 1: Sample a set of values {aj| j ¼ 1, . . ., K}. They are considered as possibly
true error values since they are sampled according to the subjective
probability distribution that quantifies the state of knowledge for the
errors εk, k ¼ 1, . . ., K.

Step 2: Compute the value sa. It is considered a possibly true value for sε since it is
indirectly sampled according to the subjective probability distribution for
sε.

Step 3: Sample a value r*(z,ε) for r(z,ε) according to the subjective probability
distribution indicated in expression (3.16).

Step 4: Compute the value s∗Z from Eq. (3.18a) using the results from Steps 2 and 3.
Step 5: Compute the value r*(x,a) from Eq. (3.19a).
Step 6: Find the index permutation {j(k) | k ¼ 1, . . ., K}, using the value r*(x,a)

and applying the method in (Iman and Conover 1982) iteratively.

Return to Step 1 if convergence of r(x,~a ) to r*(x,a) cannot be achieved for the
prescribed accuracy requirement and within the prescribed maximum number of
iteration cycles.

Step 7: Compute the set of input values {z∗k ¼ xk � aj(k) | k¼ 1, . . ., K} to be used
in a Monte Carlo simulation run of the uncertainty analysis of the model
application.

Depending on their type of distribution, not every value between �1 and +1 may
be possible for the correlation coefficient of two random variables. The algorithm
will return to Step 1 should the value r*(x,a), computed in Step 5 of the algorithm,
not be achievable within a preset number of iteration cycles. Thereby, it effects a
truncation of the subjective probability distribution for r*(x,a), if necessary.

If N is the sample size of the Monte Carlo simulation of the uncertainty analysis,
then these seven steps are repeated N-times giving N sets of input values {z∗k | k ¼ 1,
. . ., K}, each being considered as possibly true. The sample mean and standard
deviation of each set are indirectly sampled according to the subjective probability
distributions that quantify the state of knowledge for the sample mean mz and
standard deviation sz of the true values, and the values aj(k) subtracted from the
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measured values xk are sampled according to the subjective probability distribution
that quantifies the state of knowledge of the true errors εk.

3.3.1.2 Uncertainty Due to Multiplicative Classical Measurement Error

In the case of a multiplicative classical measurement error, the measurement value
x is the product of the true value z and of the error factor (1 + ε):

x ¼ z 1þ εð Þ ¼ z 1þ εR þ εSð Þ:
Let {xk| k ¼ 1, . . ., K} be again the set of measurement values and let {εk| k ¼ 1,

. . ., K} be the set of error factors in the equation xk ¼ zk(1 + εk). It is reasonable to
require that the sampling procedure produces a set {z∗k | k ¼ 1, . . ., K} with the same
geometric mean and standard deviation as the true values. If X, Z and Ε can only
assume positive values, then the equations derived for the additive classical mea-
surement error can be applied to the natural logarithms and ln(xk) ¼ ln(zk) + ln(1 +
εk). The values

ln z∗k
� � ¼ ln xkð Þ � ln aj kð Þ

� �
, k ¼ 1, . . . ,K

are then a set of natural logarithms that can be considered as possibly true, with the
sample mean mlnz∗ and variance s2lnz∗ indirectly sampled according to the subjective
probability distributions for mlnz and s2lnz. This approach provides input values

z∗k ¼ xk=aj kð Þ, k ¼ 1, . . . ,K

with exp(mlnz∗) and exp(slnz∗) sampled according to the subjective probability
distribution for the geometric mean exp(mlnz) and for the standard deviation exp
(slnz) of the true values.

3.3.1.3 Uncertainty Due to Additive Berkson Measurement Error

In instances where the value x, taken from:

– A construction plan
– An experimental design
– A medical prescription
– A technical specification
– A compilation of averages
– etc.,

is considered to be the measurement value, the corresponding true value z will be
scattered around x. The corresponding error is of the Berkson type and

z ¼ xþ εS þ εR: ð3:21Þ
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The notation is the same as for the classical error above. Again, subjective
probability distributions are needed to quantify the state of knowledge of εS (if εS 6¼ 0
cannot be excluded) and of εR. These distributions may be based on expert judgment.
The random error variable ER will most likely follow a normal distribution with
mean value 0 and standard deviation σR.

A possibly true value for z is then obtained as

z∗ ¼ xþ ε∗S þ υσ∗R ð3:22Þ
where ε∗S is sampled according to the subjective probability distribution, σ∗R is the
standard deviation of the subjective probability distribution specified for ER by
expert judgment and v is sampled according to the standard normal distribution.

A set of J possibly true values z∗j , j ¼ 1, . . ., J for uncertainty analysis by Monte
Carlo simulation may be obtained as

z∗j ¼ xþ ε∗S, j þ vjσ
∗
R , j ¼ 1, . . . , J

where x is the given average or prescribed or specified value.

3.3.1.4 Uncertainty Due to Multiplicative Berkson Measurement Error

In the case of a multiplicative Berkson measurement error, the true value z is the
product of the measurement value x and of the error factor (1 + ε):

z ¼ x 1þ εð Þ ¼ x 1þ εR þ εSð Þ:
As in the case of the additive Berkson error, subjective probability distributions

are needed to quantify the state of knowledge of εS (if εS 6¼ 0 cannot be excluded)
and of εR. These distributions may be based on expert judgment. The random error
variable ER will most likely follow a normal distribution with mean value 0 and
standard deviation σR.

A possibly true value for z is then obtained as

z∗ ¼ x 1þ ε∗S þ vσ∗R
� �

where ε∗S is sampled according to the subjective probability distribution, σ∗R is the
standard deviation of the subjective probability distribution specified for ER by
expert judgment and v is sampled according to the standard normal distribution.

A set of J possibly true values z∗j , j ¼ 1, . . ., J for uncertainty analysis by Monte
Carlo simulation may be obtained as

z∗j ¼ x 1þ ε∗S, j þ vjσ
∗
R

� �
, j ¼ 1, . . . , J

where x is the given average or prescribed or specified value.
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Modelling this type of error for a set of values zk, k¼ 1, . . ., K does not lead to the
variance inflation observed in subsection 1 for the classical error type. Reason is that
x is not a random variable that could depend on ER.

3.3.2 Results of Functions of Measurable Quantities

Computer models often use input that is the value of a function of one or more
quantities that are in principle measurable (for short “measurables”). The function
values are either provided by the model user or are obtained from so-called feeder
models that feed input into the computer model application. For instance, if y¼ f(x1,
. . ., xK) is obtained from K measurables, their uncertainty is propagated through the
function f thereby leading to the uncertainty of y. The state of knowledge of the
measurables is expressed by subjective probability distributions each (as discussed
above and in Sect. 3.6) and a subjective probability distribution for y follows in a
mathematically consistent way. The method of variance propagation works for
simple functions f. Even then it is straightforward only if there is no state of
knowledge dependence (see Sect. 3.5) between the xk, k¼ 1, . . ., K. In what follows,
it is, therefore, assumed that the uncertainty propagation through the function f is
done via Monte Carlo simulation (see Chap. 4) whereby state of knowledge depen-
dence may be treated conveniently to arrive at J possibly true values for y

y∗j ¼ f x∗1, j; . . . ; x
∗
K, j

� �
, j ¼ 1, . . . , J

where {x∗k, j j k ¼ 1, . . . ,K
�
is a possibly true set of values of the K measurables. If

some or all of the xk enter L functions f1, . . ., fL, then there is state of knowledge
dependence among the results yl, l ¼ 1, . . ., L which is automatically accounted for
in the Monte Carlo simulation since the yl, j are computed using the same set of
values {x∗k, j j k ¼ 1, . . . ,K

�
.

3.3.3 Distributions Fitted to Measurable Quantities

All that is known about an uncertain datum may be the fact that it was chosen at
random according to a probability distribution that summarizes the variability within
a population. Consequently, its state of knowledge is expressed by using the
population distribution as subjective probability distribution. Often, very little is
known about this distribution. Some values drawn at random according to the
population distribution may be known and, once a decision is made about the
distribution type, may be used in a Bayesian analysis (see Sect. 9.2) to derive a
joint subjective probability distribution for the distribution parameters. The state of
knowledge for the uncertain datum may now be expressed by a random sample of
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size J of possibly true values by first choosing a set of parameter values for the
population distribution according to their joint subjective probability distribution
and then choosing a possibly true value of the uncertain datum according to the
population distribution with the set of parameter values just obtained and by
repeating this process J times.

If the computer model application uses sets of values from the population
(as uncertain data), it must be made sure that all values in the set are obtained
using the same set of parameter values for the population distribution.

3.3.4 Sequences of Uncertain Input Data

The uncertain input data, given as a discrete function of an interim model result or of
independent variables like time and/or space, may be state of knowledge indepen-
dent. They may, however, also be state of knowledge dependent. This may, for
instance, be due to some integral constraint that has to be satisfied by their set of
values over all points of time and/or space or over all interim result values. In the first
case, each input datum could be treated as a separate data uncertainty with the state
of knowledge obtained as discussed in Sects. 3.6.1 and 3.6.3. In the case of
dependence, however, the data may be treated simultaneously for all values of the
independent variable as one “single model” uncertainty, using the most appropriate
option from among the possibilities of state of knowledge elicitation considered in
Sect. 3.6.2.

In some instances, this “single model” is the output from another computer model
(feeder model) that provides input for the computer model application. In this
situation, it will be appropriate to expect that the application of the feeder model
has been subjected to an uncertainty analysis by Monte Carlo simulation providing a
random sample of “single models”. This sample is then an adequate expression of
the state of knowledge. The random sample may be considered as a set of alternative
model formulations of equal subjective probability and may be used as discussed in
Sect. 3.4.1.

3.3.5 Special Cases

– Adjustment constant

A model was fitted to measurables under certain (i.e. experimental) conditions. It
may be intended to use this model over the same range of values of the independent
variables but under different conditions. The assumption is that a suitably chosen
adjustment constant (multiplicative and/or additive) to the model output is capable of
accounting for the change in conditions. There is uncertainty about the value of the
constant that would best achieve this goal. The corresponding state of knowledge
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will be based on expert judgment and needs to be expressed by a subjective
probability distribution. To incorporate this state of knowledge into the state of
knowledge for the value of the dependent variable obtained in the fitting process, one
would multiply each value obtained for the dependent variable by a value for the
adjustment constant chosen at random according to the specified subjective proba-
bility distribution. If the computer model application makes multiple uses of results
of the fitted model under identical conditions, it must be made sure that the same
value chosen for the adjustment constant is applied.

– Effective parameter value

This parameter value is a constant serving as an approximation to a dependent
variable over a suitably small domain in the space spanned by the independent
variables. Usually, it is supposed to be the average value of the dependent variable
over this domain. In principle, this average could be obtained from sufficiently many
measurements or calculations (if there were a model) at random points within the
domain, and its state of knowledge could be quantified as shown in Sect. 3.3.1. In
practice, however, there are often none or too few measurements. Lacking a model
that could provide the value of the dependent variable at any point within the
considered domain, the state of knowledge for the effective parameter value will
then be largely based on expert judgment.

– Uncertainty factor

If a model, fitted to measurement values, is to be used beyond the range of
measured values of the independent variables used in the fitting process then there is
additional uncertainty about the validity of the model result. This additional uncer-
tainty could be accounted for by an uncertainty factor. The state of knowledge for
this factor would most likely be based on expert judgment. Use of the factor is just as
for the adjustment constant mentioned above. If the computer model application
makes multiple uses of results of the fitted model over the same range, it will be
necessary to make sure that the same value chosen for the uncertainty factor is
applied.

– Feeder model results as uncertain data

Input to the computer model may come from an external model (see Sect. 3.3.2).
Uncertainty analysis of its output by Monte Carlo simulation provides sets of model
output values. The uncertainty analysis of the results of the computer model appli-
cation may sample at random from these sets or use them one to one if the number of
model runs of both Monte Carlo simulations is the same. If the computer model
application makes multiple calls to the feeder model (e.g. for various interim results),
then it will be necessary to run the uncertainty analysis of the feeder model
simultaneously with that of the computer model application. This way it is made
sure that the feeder model results from all calls are obtained with the same values of
the feeder model uncertainties.
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– Literature data

Literature data are often just single values with no indication as to how well this
datum is known. In this case, expert judgment would be needed to arrive at a
subjective probability distribution as state of knowledge expression.

In some instances, the datum is published together with its underlying database
and with the numerical procedure of its calculation. In this case, it may be possible to
arrive at a state of knowledge quantification by one of the procedures described in
this subchapter.

Some literature data are reported together with either a (+/� kσ) range (k¼ 1, 2 or
3) or a symmetrical u% subjective probability range. Expert judgment will be
required to decide about the type of subjective probability distribution, and the
uncertainty information given may be used to derive the values of the distribution
parameters.

In the ideal case, not only the best estimate value of the datum but also a
subjective probability distribution quantifying its state of knowledge is given in
the literature.

– Interview data

It may be assumed that the interviewed individuals have sufficient expertise with
respect to the required data. The interview should then follow the elicitation process
outlined in Sect. 3.6.1. Data concerning events far in the past may be prone to large
recall errors. Their state of knowledge quantifications would have to account for this.
Experts familiar with this error phenomenon may have to participate in the
interviews.

3.4 Ways to Quantify Model Uncertainty

Because of the differences between data and model (or modelling) uncertainties (see
Sect. 3.2), the influence of data uncertainties is often analyzed in a methodologically
closed form while the influence of model uncertainties is only investigated roughly
by what is often called a sensitivity study. In the simplest case, this study uses the
best estimate values for the uncertain data and runs the computer model for sepa-
rately selected variations of each uncertain model. On the other extreme, a complete
data uncertainty analysis is performed for each of a set of selected model variations.
Both ways of treating model uncertainty do not permit a comprehensive uncertainty
statement that includes the combined influence of data and model uncertainties. Both
approaches will often be impossible to realize in practice considering the many
model uncertainties of computer models that are of practical relevance. This section
shows ways of how to account for all data and all model uncertainties simulta-
neously and thus to permit a comprehensive uncertainty quantification of the result
of the computer model application. Contrary to data uncertainties, model uncer-
tainties are a very inhomogeneous group. Consequently, the selection of an approach
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for state of knowledge quantification requires some preparatory investigations. It
will be necessary to ask questions like:

– Are phenomenological uncertainties involved?
– Is there a model for the representation of the phenomenon, process or state of

affairs within the computer model? Or is the state of knowledge sufficiently
advanced to develop a model? Or is the representation still subject to scientific
controversy and there are only work hypotheses?

– Do several models exist in addition to the one already implemented in the
computer model?

– Did the model(s) undergo a validation process, specifically over the relevant
domain of the intended application?

– Are there any significant differences between the models with regard to model
structure, discretization strategies, database used for model development and
validation process?

The choice from the approaches mentioned below will be guided by the answers
to these questions. In what follows, the various possibly adequate computer repre-
sentations of a process or state of affairs are called model alternatives or alternative
model formulations.

3.4.1 Sets of Alternative Model Formulations

There may exist a set {ri | i ¼ 1, . . ., I} of different computer representations of the
process or state of affairs in question. The representation implemented in the
computer model is an element of this set. It will most likely not be possible to
exclude all but one as inadequate for the purpose of the computer model application.
Consequently, subjective probabilities need to be assigned to each element in the set.
For this task, there is an ideal and a general case.

In the ideal case, the I elements in the set satisfy the following criteria:

– Each element is possibly the true representation.
– There are no other representations that are possibly true (completeness).
– If the element with index i is the true representation, then none of the other

elements can be true (mutual exclusiveness).

With sw(ri) the subjective probability (degree of belief) for element i to be the true
representation, it follows

XI
i¼1

sw rið Þ ¼ 1:

In the general case, however, the following applies:
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– Each element of the set is possibly an adequate representation, i.e. it possibly
comes sufficiently close to the truth. It is known, however, that none is
actually true.

– There are infinitely many more representations that could be claimed to be
possibly adequate (no completeness). However, the I elements of the set cover
their population well enough in the sense that they produce a spectrum of model
results that can be considered as sufficiently close to the spectrum of model
results obtained by the full population.

– If the element with index i is an adequate representation, it cannot be excluded
that other elements of the set are also adequate (no mutual exclusiveness).

In these situations, it will be necessary to change the interpretation of the
subjective probability to “degree of belief for element i to come sufficiently close
to the truth” where the meaning of “sufficiently” is often not explained in mathe-
matical terms. If sw(ri) is the subjective probability for element i to come sufficiently
close to the true representation, then ΣI

i¼1sw rið Þ will most likely be larger than 1 as
mutual exclusiveness is no longer given. The probabilities will then need to be
normalized so that their sum is 1.

In some situations, it will be possible to interpret sw(ri) as the subjective
probability for element i, from a sufficiently covering set (completeness), to come
closest to the true representation (be best among the set of elements such that mutual
exclusiveness applies in this respect) so that ΣI

i¼1sw rið Þ ¼ 1:
The interpretation of the subjective probability has now changed from “degree of

belief for element i to be true” to the weaker “degree of belief for element i to be best
among a set of adequate representations where none is actually true”.

These changes of the interpretation of “subjective probability”, should they have
been made use of for some model uncertainties, would need to be mentioned in the
caveats accompanying the analysis results.

In practice, the set of model alternatives will have to be kept rather small since
each element of the set needs to be implemented as a supplement to the computer
model and will need to be made accessible through the input file. The implemented
set of model alternatives will quantify the state of knowledge only approximately
since each model in the set is most likely not a true but only a possibly adequate
representation of the process or state of affairs in question, and the set is not
completely but only approximately covering the population of possibly adequate
models. Each element of the set is given an index value, and the elements of the set
of index values are now the “possibly true values” of a new data uncertainty that
takes the place of the model uncertainty in the input file. A run of the computer
model uses the model alternative that corresponds to the index value that is given in
the input file for the new uncertain datum representing the model uncertainty. Each
model alternative may have its own set of uncertain parameters with values that are
specific for the particular computer model application. Their state of knowledge
needs to be quantified and expressed by subjective probability if they are potentially
important contributors to uncertainty.
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For many model uncertainties, it is quite natural to express the state of knowledge
by subjective probabilities for a set of model alternatives. Some of these model
uncertainties are due to:

– The choice of the degree of complexity
The existence of a complex model does not in general render a simpler model

obsolete. Complex models usually increase the runtime on the computer and
often require additional assumptions and introduce new data uncertainties. It is
uncertain whether the complex model is necessary for the intended application of
the computer model or whether the implemented simpler model provides already
sufficiently accurate results. If the implemented model is a complex one, it may
be of interest for future applications of the computer model whether a simpler
model would have been sufficient. The subjective probability assigned to differ-
ing degrees of complexity i ¼ 1, . . ., I is to be interpreted as the degree of belief
that the model with index i represents the minimum complexity needed in order to
have sufficiently accurate results. The analysis may show that the uncertainty
about the degree of complexity required does not contribute significantly to the
uncertainty of the results. Or the analysis shows that the difference in complexity
does lead to significantly different model results. It may then sometimes be clear
in retrospect that the more complex models would need to be used. This kind of
uncertainty differs therefore from all others, as there may now be reason to base
the uncertainty statement for the model result on only that subsample of values,
provided by the uncertainty analysis for the computer model result, that was
obtained with model alternatives of sufficient complexity.

For example, it may not always be obvious whether 3D modelling of certain
parts of a system is required in order to improve the computer model results over
those obtained from the use of a 2D model exploiting symmetries or even a
“lumped parameter” model where parameter values and values of descriptive
variables are averaged over spatial compartments. Another example may be the
uncertainty whether the modelling of the behaviour of airborne contaminant
particles in a vessel requires the detailed modelling of the water film on the vessel
walls or whether global consideration of this film is sufficient.

– The selection of the scenario
The uncertainty about how to model the scenario lends itself directly to a

quantification of the state of knowledge by a set of different possibly true or
adequate scenario descriptions. For instance, the application of a computer model
predicting the evolution of an investment portfolio over the next year requires the
consideration of a sequence of possible advantageous but also of disadvantageous
events that might occur during this time. This sequence will be uncertain with
respect to the type of events and their timing. A set of different representations of
the sequence may be a natural choice for the quantification of the respective state
of knowledge.

A computer model application that is to answer the question of profitability of
the exploitation of a certain oil reservoir requires a sufficiently accurate descrip-
tion of the geology as well as a forecast of the evolution of the oil price over the
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time period in question. Again, a set of alternative possibly adequate descriptions
may be a natural choice for the quantification of the respective state of
knowledge.

In other instances, the model alternatives may differ by their assumptions
about the unknown spatial or temporal distribution of airborne contaminants, or
of the population density around a potentially hazardous industrial site or of the
agricultural usage of an area in the coming years or far back in the past.

A computer model application that is to answer the question of how the global
climate will develop over the coming decades will need to consider a variety of
possible evolutions of the worldwide population and of its industrial and agricul-
tural activities.

– The selection of the relevant phenomena
The uncertainty of whether or not a certain phenomenon is relevant for the

question that is to be answered by the computer model application would be an
example of the ideal case of representing model uncertainty by a set of model
alternatives. There are only two alternatives namely “the phenomenon is rele-
vant”, which means the computer model runs in a version that does include a
model of this phenomenon, and “the phenomenon is not relevant”, i.e. it runs in a
version without a model of the phenomenon. The new uncertain datum in the
input file has, therefore, only two possibly true values. An example would be the
uncertainty whether a computer model application that is to evaluate the reliabil-
ity of a technical system needs to consider component ageing or not. This type of
uncertainty is also called a “zero, one” uncertainty.

– Functions fitted to observational data
The model alternatives may be derived from different sets of observations. Or

they may be derived from the same set of observations but different researchers
fitted different functions. Each researcher may have possibly applied different
criteria to judge the fit. It may be uncertain which of the alternatives is to be
preferred for the intended application of the computer model.

– Discretizations, categorizations, groupings
The model alternatives may differ by assumptions of how one should

discretize a complex technical system, categorize a large set of actions or group
the members of a population in order to be sufficiently accurate within the budget
available for the application of the computer model. For instance, a computer
model application that is to answer the question of how a system of pressurized
piping and vessels will react to a sudden loss of pressure will work with a
discretized representation of the system and it may be uncertain how best to
discretize. A computer model that is applied to answer the question of how a
population of an endangered species of animals will evolve over time may use a
grouping into age classes. It may be uncertain how the grouping needs to be
chosen in order to capture all relevant age dependent effects with sufficient
accuracy. A suitably chosen set of discretizations or groupings will be used in
the uncertainty analysis together with assigned subjective probabilities. The
probabilities express the state of knowledge about which element in the set is
thought of providing the minimum of detail required in order to have sufficiently
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accurate results of the computer model application. If the elements in the set
represent increasing levels of refinement, then the remarks made above in con-
nection with differing degrees of complexity will apply.

– Representatives of populations
Representatives need to be selected from subpopulations, categories, groups,

etc. for computational efficiency since it will not be possible to consider all of
their members individually in the application of the computer model. Clearly,
there are degrees of freedom in the choice of representatives. Each choice may
lead to different results, and it will be uncertain by how much these results will
differ. The state of knowledge will, therefore, need to be expressed by a suitably
chosen variety of different sets of representatives. For instance, the population of
events of sudden loss of pressure mentioned above will need to be divided into
categories characterized by opening diameter, initial pressure, roughness of the
flow path and so forth. A representative needs to be chosen from each category for
the computer model application. The uncertainty analysis may need to consider
various sets of representatives.

3.4.2 Two Extreme Models

It will not always be feasible to express a model uncertainty by a set of model
alternatives. In this case, two extreme models may be developed that delimit the
population of possibly true computer representations of the process or state of affairs
concerned. None of the two models is considered to be possibly adequate or even
true since it is known that they always produce results from beyond the extreme
upper and lower end of the range of possibly true results. The model uncertainty may
then be represented by an additional uncertain parameter s and the computer model
application uses

m ¼ smu þ 1� sð Þmo

m is a possibly true model result
mu, mo is the pair of results obtained from the extreme models
s is an uncertain datum.

The expert expresses his state of knowledge for the position of the true result
relative to mu and mo by a subjective probability distribution for s over the interval
(0, 1). In case the computer model needs to make multiple uses of the uncertain
model during its application, the question arises whether s should always have the
same value or whether the value of s should vary. In the latter case, the expert needs
to decide whether the subjective probability distribution should also be different in
these instances. He would also need to judge whether there is state of knowledge
dependence (see Sect. 3.5) among the various values of s to be used during the
computer model application.
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3.4.3 Corrections to the Result from the Preferred Model

In many instances, the uncertainty about the difference between the true computer
representation and the representation by the preferred model can be expressed by an
uncertain correction to the results from the preferred model. The state of knowledge
for the needed correction will be expressed by a subjective probability distribution.
The preference for a specific model may be founded in a qualitative judgment on
model features like structure of the model, discretization strategy used (if any),
developmental database, applicability (ease of use), availability (it may be the
model presently implemented). Other factors may be the relevance and scope of its
validation process or the simple fact that there is no alternative to the model presently
implemented. The most commonly used correction terms are additive and/or multi-
plicative, i.e. in the form

m ¼ amp þ b

m is used in the uncertainty analysis as a possibly true model result
mp is the output from the preferred model
a, b are uncertain data.

The state of knowledge for the values of a and b needed in order to have a model
result that can be considered as possibly true will have to be expressed by a bivariate
subjective probability distribution. This distribution will be based on validation
experience, if applicable. If the model is applied at various instances within the
computer model application, then it will be necessary to judge whether there is state
of knowledge dependence between the pairs of values needed in those instances. It
will also be required to judge whether the state of knowledge varies from instance to
instance (Siu et al. 1992; Park et al. 2010) and therefore has to be expressed by
different subjective probability distributions for the values of the uncertain data
a and b. Even if a set of model alternatives is used to express the state of knowledge,
it may be necessary to assign correction terms to each. With respect to the elicitation
of the state of knowledge for the data a and b, see Sect. 3.6.1.

Figure 3.1 compares the measurement values from validation experiments to the
corresponding model results. Least squares linear regression of the measurement
value on the computed value may be suitable in order to obtain estimates for the
correction parameters. If the measurement errors are negligible, the regression
coefficients may be used directly as the correction parameters. Sometimes, the
number of validation experiments is rather small. In this case, the confidence interval
information from the regression analysis will be needed to derive state of knowledge
quantifications for the correction terms.
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3.4.4 Issues

Issues are processes or states of affair that have not yet been subjected to successful
modelling attempts. They may even be subject to scientific controversy and all that is
available are hypotheses to work with. Frequently, the respective state of knowledge
is not sufficiently advanced to develop a model. In this case, the state of knowledge
is directly elicited for the quantities in question. To this end, the range of application
(of the non-existing model) is divided into a set of representative cases, the so-called
case structure, and the state of knowledge is elicited from the expert for the value of
the quantity of interest in each of the cases of this structure. The expert quantifies his
state of knowledge by a subjective probability distribution for the value in question.
As before, state of knowledge dependence between the cases will need to be
quantified. Often the subjective probability distributions are obtained from a decom-
position of the issue into a sequence of sub-issues that may be more amenable to
state of knowledge quantification. The state of knowledge for the actual issue result
is then obtained by propagation of the states of knowledge for the sub-issues through
this decomposition. Different experts may choose different issue decompositions.

3.4.5 Some Final Remarks

There are no methodological limits to the consideration of model (or modelling)
uncertainty within the uncertainty analysis of the results from a computer model
application. There may, however, be practical limits. For instance, it will not always
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Fig. 3.1 Comparison of measurement values from validation experiments to the corresponding
model results
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be affordable to have all possibly adequate model alternatives implemented in the
computer model. Furthermore, within the budget available for the application of the
computer model, the number of uncertain data and models for which the state of
knowledge can be expressed by subjective probability distributions will be limited.
Rather it will be attempted to concentrate the resources on those that are considered
potentially important contributors to the uncertainty.

The identification of model alternatives and the specification of subjective prob-
abilities for these alternatives require expert judgment. The elicitation of this judg-
ment needs to follow a structured approach to reduce the influence of various sources
of bias (Vick 2002), to generate adequate documentation and thus to have sufficient
traceability of the analysis results (see Sect. 3.7).

As has been shown above, approaches do exist that permit the inclusion of the
effect of model uncertainties into a combined quantitative uncertainty statement as is
necessary for decision-making and for comparisons of computer model results with
safety standards and limit values. Some of these approaches can be followed without
significantly increasing the actual analysis effort. Among the additional benefits of a
combined treatment of model and data uncertainties are answers to questions
concerning the relative importance of phenomenological uncertainties, the relevance
of uncertainties in numerical solution processes, the decision as to whether the state
of knowledge needs to be improved primarily on the side of parameters and input
data (data gathering) or on the modelling side (model development).

3.4.6 Completeness Uncertainty

Uncertainty about the completeness of the computer model is actually a model
uncertainty. Accordingly, the uncertainty contribution from intentional model sim-
plifications, omissions of phenomena, the simplifying use of representatives instead
of all members of a category, class or group is already treated in the respective
sections above.

Completeness uncertainty that is due to unintentional simplifications and omis-
sions can naturally not be subject of the uncertainty analysis. Quantitative conclu-
sions could possibly be drawn from learning processes in some fields where
computer models have been applied for quite a while.

It can also not be the subject of the uncertainty analysis to consider the influence
of programming and input errors (like erroneous encoding of the model, typing the
wrong input number, using the wrong physical unit, choosing the wrong model
option, etc.) In some cases, the uncertainty importance analysis (see Chap. 6),
performed in combination with the uncertainty analysis, may hint at such errors
(see Sect. 6.5) as practical experience from a number of uncertainty analyses has
shown.
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3.5 Ways to Quantify State of Knowledge Dependence

The epistemic uncertainties have been categorized into uncertain data and modelling
uncertainties in Sect. 3.2. In Sect. 3.4 the latter have been represented by uncertain
data. The uncertainty analysis investigates the computer model application for
different values of these data. They may, therefore, be called uncertain parameters
of the computer model application. Consequently, this section uses the term “uncer-
tain parameter” for simplicity and without loss of generality. In other subchapters, it
will, for the sake of convenience, be preferred to use the term “uncertain data”
which, as has been explained above, amounts to the same.

The state of knowledge of each uncertain parameter Pm, m ¼ 1, . . ., M is
expressed by a subjective probability distribution Fm( pm) with density function
fm( pm). These distribution and density functions quantify the unconditional state
of knowledge, i.e. the state of knowledge that is not conditioned on any specific
value of any of the other uncertain parameters. These individual subjective proba-
bility distributions are called the marginal subjective probability distributions and
their density functions are the marginal subjective probability density functions. The
joint subjective probability density for any combination of possibly true values of the
M uncertain parameters is the product of the corresponding M marginal density
values provided the M uncertain parameters are state of knowledge independent,
i.e. the state of knowledge of none of the parameters depends on the value thought to
be true for anyone of the other M � 1 parameters. If any two of the parameters have
contributors (not necessarily additive) to their uncertainty in common, their states of
knowledge are dependent and the joint density is no longer the product of the
individual densities.

If the uncertainty analysis of a computer model application uses sets of parameter
values drawn independently according to their marginal distributions, the inherent
assumption is that any value combination selected according to the marginal distri-
butions makes sense and its subjective probability density equals the product of the
corresponding individual density values, i.e. the states of knowledge are indepen-
dent. However, quite often the assumption of state of knowledge independence does
not adequately reflect the available information. For example, if xi and xj are
measurement values of the unknown true values zi and zj, required in a computer
model application, εS is a positive measurement bias and (εR,i, εR,j) is the pair of
independent additive random measurement errors so that

zi ¼ xi � εS � εR, i and zj ¼ xj � εS � εR, j

then zi and zj are uncertain parameters (say: Pi and Pj) since the bias term and the
random measurement errors are unknown. The marginal subjective probability
distributions express the state of knowledge independently for Pi and for Pj. The
uncertainty of Pi and of Pj is, however, partly due to a common contributor, the
measurement bias. Knowledge of the bias improves the state of knowledge of Pi and
of Pj, i.e. the uncertain bias term makes Pi and Pj state of knowledge dependent.
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Another example:
Let the total intake of a dairy cow be made up of four different categories of dry
matter. Their fractions of the total intake are represented in a computer model
application by the uncertain parameters P1, P2, P3, P4. The following uniform
subjective probability distributions express the state of knowledge for each fraction
independently:

State of knowledge of is quantified by a
uniform distribution
over the interval

P1

P2

P3

P4

[0.1, 0.3]
[0.1, 0.5]
[0.3, 0.7]
[0.05, 0.25]

i.e. values below or above the interval enclosed by the brackets are considered as not
possibly true while all others are thought to be equally possibly true.

Choosing a set of values {p1, p2, p3, p4} independently according to these four
marginal distributions would most likely violate the condition that fractions of the
total intake have to add up to 1. This condition introduces state of knowledge
dependence since

Pi ¼ 1 �
X

k 6¼i
Pk,

i.e. the state of knowledge of any pair of fractions has not only the remaining
fractions as common uncertainty contributor but also the value of the other parameter
in the pair.

3.5.1 How to Identify State of Knowledge Dependence?

Any two or more output quantities Y of the computer model will be state of
knowledge dependent provided they have at least one uncertain parameter or
model formulation in common. The same applies to any pair of interim results
Z of the computer model.

While modelling ends at the level of the uncertain parameters, P1, . . ., PM, they
frequently share uncertainty contributors Q as shown in Fig. 3.2. Any pair of
uncertain parameters sharing uncertainty contributors is state of knowledge depen-
dent and so are any interim model results that share any of the M uncertain
parameters, and so forth.

Identification of state of knowledge dependence requires a systematic search for
any information that could lead to the abandoning of the assumption of state of
knowledge independence. Consequently, in order to identify reasons for state of
knowledge dependence, the following question is to be asked: “Does the parameter
pair (Pi, Pj) have any contributors to their uncertainty in common?” or “Would the
state of knowledge for Pi change if more became known about Pj or vice versa?”
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With the uncertainty contributors Q1, Q2, . . ., QK assumed to be state of knowledge
independent, one may specifically ask:

• Are there state of knowledge independent uncertainty contributors Q1, Q2, Q3

such that
Pi ¼ hi(Q1, Q2) and Pj ¼ hj(Q1, Q3)?
The relationships hi and hj may only be vaguely known.
Examples for Pi and Pj:

– The concentration of a contaminant in two different species of fish living in the
same environment.

– The effective porosity of two adjacent spatial compartments in the same
geological formation.

– Measurements of concentrations of a contaminant in two samples measured
with the same device, following the same procedure.

Y1 YJ model 
results

Z1 Z2 ZK interim 
results

P1 P2 P3 . . . PM uncertain 
parameters

modelling ends at 
this level

Q1 Q2 . . QL uncertainty 
contributors
that are not
modeled

Fig. 3.2 Influence diagram of uncertainty contributions
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• Are there relationships hi, hj such that
Pi ¼ hi(Q2)
Pj ¼ hj(Pi, Q3)
whereQ2 andQ3 are state of knowledge independent uncertainty contributors?
Examples for Pi and Pj:

– Food intake and body mass of a specific individual.
– Body mass and skin surface.
– Mass median diameter of particles and total particle mass in the atmosphere.
– Contaminant concentration in prey and predator.
– Biomass and interception factor.

• Are there relationships hi and hj such that
Pi ¼ hi(Q2)
Pj ¼ hj(Pi)
hj may not exactly but predominantly be a function in the argument Pi alone?

• Are there relationships hi and hj such that
Pi ¼ hi(Qk, k ¼ 1, . . ., i), i ¼ 1, . . ., I
Pj ¼ hj(P1, . . ., PI)

Pj ¼ 1 �
X I

i¼1
Pi, 0 � Pi, Pj � 1?

Examples for Pi and Pj:

– Fractions of intake of dry matter (in a dairy cow diet) from each of an
exhaustive set of non-overlapping categories i, i ¼ 1, ..., I.

– Fraction of predator diet consisting of each of an exhaustive set of
non-overlapping categories of prey i, i ¼ 1, . . ., I.

• Is stochastic (statistical) dependence involved?
Statistical dependence of stochastic variables X1 and X2 is due to shared

contributors to their stochastic variability. If a pair of values (x1, x2) is required
as input to a computer model application while all that is known about these
values is that the pair was drawn at random according to the joint probability
distribution quantifying the stochastic variability of (X1, X2), then (x1, x2) is a pair
of state of knowledge dependent uncertain parameters (say: Pi and Pj) of the
model application. The state of knowledge dependence of Pi and Pj is due to
shared contributors to their uncertainty namely the shared contributors to the
stochastic variability of X1 and X2.

With the help of some analysis, it is usually possible to identify the uncertainty
contributors shared by two or more uncertain parameters. For many pairs of param-
eters, it may be immediately clear that they do not share contributors to their
uncertainty. For many of the remaining pairs shared contributors may safely be
judged as negligible. Several of the still remaining pairs of uncertain parameters may
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share major uncertainty contributors, but the influence of these parameters on the
uncertainty of the computer model result may be judged as minor, i.e. they are
potentially important but will definitely not rank among the main uncertainties. State
of knowledge dependences will only be of importance if both uncertain parameters
of the state of knowledge dependent pair are main contributors to the uncertainty of
the model result due to the shared uncertainty contributors. Often this possibility
cannot be safely excluded prior to the uncertainty analysis. Neglect of state of
knowledge dependence may be uncritical (Smith et al. 1992) but may also cause
substantial over- or underestimation of the model result uncertainty and may even
lead to a shift of the state of knowledge expression for the model result to safe or
unsafe values (if compared to safety limits).

The following example illustrates the effect of significant state of knowledge
dependence between two uncertain parameters. Uncertainty analysis using Monte
Carlo simulation provided the empirical subjective probability distribution for the
model result shown in Fig. 3.3a. The two main uncertainty contributors Pi and Pj are
state of knowledge dependent. The dependence is quantified by a correlation coef-
ficient of 0.8. This coefficient says that a shared contributor to uncertainty leads to a
positive almost linear relationship between the values thought to be true for Pi and
Pj. Consequently, there is reason to think that large (small) values of Pj tend to be
true if a large (small) value is true for Pi (and vice versa). The little square box on the
abscissa indicates the model result value R ¼ 118 that is not exceeded by at least
95% of the possibly true values at a confidence level of at least 95%, i.e. an upper
(95%, 95%) tolerance confidence limit (see Chap. 5) of the model result. Figure 3.3b
shows the same model result for the same marginal subjective probability distribu-
tions of the uncertain parameters but this time Pi and Pj are known not to share an
uncertainty contributor, i.e. their states of knowledge are independent and the upper
(95%, 95%) tolerance confidence limit of the model result is now R ¼ 103. Finally,
in Fig. 3.3c, Pi and Pj are state of knowledge dependent; however, this time the
dependence is quantified by a correlation coefficient of �0.8. This coefficient says
that a shared contributor to uncertainty leads to a negative almost linear relationship
between the values thought to be true for Pi and Pj. Consequently, there is reason to
think that large (small) values of Pj tend to be true if a small (large) value is true for
Pi (and vice versa). The upper (95%, 95%) tolerance confidence limit of the model
result is now R ¼ 80.

3.5.2 How to Express State of Knowledge Dependence
Quantitatively?

Saying that the uncertain parameters Pi and Pj are state of knowledge dependent
means that the state of knowledge of Pj depends on the value thought to be true for Pi

and vice versa. State of knowledge dependence is quantitatively expressed by a joint
subjective probability density function. Its marginal densities are the individual state
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Fig. 3.3 (a–c) Three empirical (e.g. obtained by Monte Carlo simulation) subjective probability
(sw) distributions quantifying the uncertainty for the same computer model result. The states of
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of knowledge expressions for Pi and Pj. The value of the joint density function at the
point Pi ¼ pi and Pj ¼ pj is given by fij( pi, pj). It can be written as

fij pi; pj
� � ¼ fi pið Þfjji pjjPi ¼ pi

� � ¼ fj pj
� �

fijj pijPj ¼ pj
� � ð3:23Þ

fi( pi) is the value of the marginal subjective probability density function for Pi at the
point Pi¼ pi, and fjji( pjjPi¼ pi) is the value of the conditional subjective probability
density function for Pj at the point Pj ¼ pj, given Pi ¼ pi. Quantifying state of
knowledge dependence for two uncertain parameters therefore requires either the
joint density function or the marginal density function for one parameter and the
conditional density function for the other parameter.

The subjective probability for Pj � pj, given Pi ¼ pi, follows as

sw Pj � pjjPi ¼ pi
� � ¼ Z pj

pj,min

fjji p0jjPi ¼ pi
� �

dp0j

while in the case of state of knowledge independence

sw Pj � pjjPi ¼ pi
� � ¼ sw Pj � pj

� � ¼ Z pj

pj,min

fj p0j
� �

dp0j:

The joint subjective probability density of three state of knowledge dependent
uncertain parameters Pi, Pj and Pk may be written as

fijk pi; pj; pk
� � ¼ fi pið Þfjji pjjPi ¼ pi

� �
fkjij pkjPi ¼ pi;Pj ¼ pj
� � ð3:24Þ

fkjij( pk|Pi¼ pi, Pj¼ pj) is the state of knowledge expression for Pk given pi and pj are
the values thought to be true for Pi and Pj, respectively. In the case of pairwise state
of knowledge independence, the joint density value is simply the product of the
marginal density values.

3.5.2.1 Conditional Subjective Probability Density Functions

Specifying a conditional subjective probability density function for Pj to each and
every value thought to be true for Piwill be too much of a challenge in most practical
situations. It will often be sufficient to divide the value range of Pi into a small

⁄�

Fig. 3.3 (continued) knowledge of the uncertain parameters are expressed by the same marginal
subjective probability distributions, but the states of knowledge of the two main contributors to
model result uncertainty are: (a) dependent, with the dependence quantified by a correlation
coefficient of 0.8; (b) independent; (c) dependent, with the dependence quantified by a correlation
coefficient of – 0.8. A (95%, 95%) one-sided upper statistical tolerance limit (or tolerance confi-
dence limit, see Chap. 5) for the model result is indicated on the abscissa. This limit would most
likely be the value to be compared to a release limit laid down in a regulatory standard
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number (L ) of exhaustive non-overlapping intervals (see Fig. 3.4) and to specify the
conditional subjective probability density function for Pj given the value thought to
be true for Pi is from the respective interval.

The corresponding approximate expressions for the joint subjective probability
density function fij of Pi and Pj are

fij pi; pj
� � � fjji lð Þ pj

� �
fi pið Þ for pi2 il, l ¼ 1, . . . , L ð3:25Þ

fj|i(l)( pj) is the specified conditional density function for Pj given the value of Pi is
from the interval il.

Figures 3.5 and 3.6 show random samples obtained according to this simplified
quantitative expression of state of knowledge dependence while Fig. 3.4 is a
schematic illustration of the conditional density functions with the intervals for Pi

delimited as follows:

mini < b1 < b2 < . . . < bL-1 < maxi ¼ bL and [mini, maxi] is the interval of possibly
true values for Pi.

This way it is possible to account for varying degrees of linear, nonlinear but
monotone and even non-monotone relationships that are judged to exist between the
values thought to be true for Pi and Pj. This population expression for state of
knowledge dependence is versatile enough to be of practical use also in situations
where the state of knowledge of Pj depends on the value thought to be true for an
interim result of the computer model application. It is also suitable for modelling the
state of knowledge dependence between successive elements of a sequence of
uncertain data over time or any other independent variable. For instance, if time is
the independent variable then Pi corresponds to the value of the uncertain parameter
P at time t � 1 and Pj corresponds to the value of P at time t.

fj|i(l)(pj)

Pi

maxi

l = 4

l = 3 

l = 2

l = 1

mini

Pj

Fig. 3.4 Schematic illustration of state of knowledge dependence between Pi and Pj expressed by
five conditional subjective probability density functions for Pj to given intervals for the value of Pi
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The quantification of state of knowledge dependence by conditional density
functions specified for intervals of the conditioning uncertain parameter(s) is, for
practical reasons, limited to small numbers of state of knowledge dependent uncer-
tain parameters. For instance, if L ¼ 3 is chosen and the number K of pairwise state

of knowledge dependent uncertain parameters is 4 then
XK�1

k¼1

Lk ¼ 39 conditional
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Fig. 3.5 The effect of state of knowledge dependence quantified by five conditional subjective
probability distributions for Pj with a (0, 1) uniform marginal subjective probability distribution
specified for Pi. The value range of Pi is divided into five intervals of equal subjective probability
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Fig. 3.6 The effect of state of knowledge dependence quantified by five conditional uniform
subjective probability distributions for Pj with a (1.125, 0.557) lognormal marginal subjective
probability distribution specified for Pi. The value range of Pi is divided into five intervals of equal
subjective probability
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Fig. 3.7 (a–c) Three examples of state of knowledge dependence quantified by conditional
subjective probability distributions for Pj with their parameters given as a continuous function of
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subjective probability density functions would need to be specified, namely 3 for P2

(given P1), 9 for P3 (given P2 and P1) and 27 for P4 (given P1, P2, P3).
Specifying the state of knowledge by a finite number of conditional subjective

probability distributions for Pjmay be sufficient in a number of situations. However,
in some cases, it will be necessary to define the parameters of the conditional
distribution as continuous functions of the value thought to be true for Pi.
Figure 3.7a–c shows random samples drawn according to three examples of state
of knowledge dependence. The dependence is quantified by conditional subjective
probability density functions for Pj with their distribution parameters given as
continuous functions of the value thought to be true for Pi. The state of knowledge
of Pi is expressed by a [0, 1] uniform subjective probability distribution in these three
examples.

Figure 3.7a–c serve to illustrate the flexibility of state of knowledge dependence
modelling offered by conditional distributions, particularly if the distribution param-
eters of Pj are continuous functions of Pi.

The quantification of state of knowledge dependence by conditional density
functions, with their distribution parameters given as functions of the conditioning
uncertain parameter(s), has practical limits. The number of arguments of the func-
tions that are to be specified for the distribution parameters grows with every
uncertain parameter that is included in the conditioning set. If each conditional
density function has two distribution parameters and K is the number of pairwise
state of knowledge dependent uncertain parameters, then K � 1 conditional density
functions are required and therefore 2(K � 1) functions for their parameters with a
minimum of 1 argument value and a maximum of K � 1 argument values (i.e. one
value each of the uncertain parameter(s) in the conditioning set of the conditional
density function).

3.5.2.2 Restricting Inequalities

Quite frequently, the value thought to be true for Pj has to comply with specific
constraints that are formulated as a function of the value thought to be true for Pi and
possibly additional uncertain parameters. For instance, in the example of Fig. 3.8, the
range of possibly true values of Pj is delimited by gj( pi) where pi is the value thought
to be true for Pi. The conditional subjective probability density function for Pj can be
specified such that it complies with this constraint.

In many practical situations, however, both marginal subjective probability
distributions (for Pi and for Pj) are given together with constraints such as

⁄�

Fig. 3.7 (continued) the value of Pi and the state of knowledge of Pi quantified by a [0, 1] uniform
subjective probability distribution
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Pj � gj Pið Þ and gj pið Þ � pj � pj,max ð3:26Þ

or

Pj � gj Pið Þ and gj pið Þ � pj � pj,min

for all values pi from [pi,min, pi,max] instead of the marginal density function for Pi

and the conditional density function for Pj.
These restricting inequalities, with the function gj specified in addition to the

marginal distributions for Pi and for Pj, introduce state of knowledge dependence.
The given information may be used to define a joint subjective probability density
function in the following way:

fij pi; pj
� � ¼ fi pið Þfjji pjjpi

� � ¼ fi pið Þfj pj
� �

=Ajji ð3:27Þ
Ajji ¼

Z pjmax

gj pið Þ
fj pj
� �

dpj ¼ 1� Fj gj pið Þ
� �

for pj > gj pið Þ

Ajji ¼
Z gj pið Þ

pjmin

fj pj
� �

dpj ¼ Fj gj pið Þ
� �

for pj � gj pið Þ

Random sampling according to the joint density function is explained in Chap. 4.
Figure 3.9 shows a random sample that complies with the constraint Pj� gj(Pi)¼ Pi.

Pj

pjmax

fj|i(pj|pi) = fj(pj) / Aj|i

gj(pi)

fj|i(pj|pi) = 0

pjmin

pimin pimax Pi

Fig. 3.8 Construction of a
joint subjective probability
density function for Pi and
Pj that applies the specified
marginal distributions and
complies with the constraint
Pj >(�) gj(Pi). It is obvious
that, due to the restriction,
the resulting marginal
distribution for Pj may have
to differ from the specified
marginal distribution
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3.5.2.3 Known Functional Relationships

Sometimes, there is a known functional relationship between Pj and Pi as well as
other uncertain parameters Pk, k ¼ 1,. . .,K

Pj ¼ gj Pi;P1;P2; . . . ;PKð Þ

that is not part of the computer model and the model is not supposed to be amended
by this relationship or it cannot be amended because the source code is not available
(see Figs. 3.10 and 3.11a–c). If gj is uncertain, it may need to be treated as a model
uncertainty. Subjective probability distributions are specified only for the so-called
free uncertain parameters Pi, P1, P2, . . ., PK. Some or all of the parameters in the
argument list of gj may be state of knowledge dependent.

If K uncertain parameters P1, P2, . . ., PK are uncertain fractions of a total C and
ΣK
k¼1Pk ¼ 1while 0� Pk � 1, k¼ 1, . . ., K so thatC ¼ ΣK

k¼1CPk , then they are state
of knowledge dependent due to this constraint for the sum. This type of dependence
is modelled with the help of K � 1 state of knowledge independent uncertain
parameters, namely the conditional fractions Q1, Q2, . . ., QK-1. Qk

�
C � Σk�1

j¼1CPj )
equals PkC, i.e. Qk is the fraction under the condition that P1C, . . ., Pk�1C have
already been subtracted from the total C. This requires to express the state of
knowledge by a subjective probability density function for each of the data Qk,
k ¼ 1, . . ., K�1 instead of a density function for each of the Pk. The following
relationships apply

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pa
ra

m
et

er
 P

j

Parameter Pi

Pearson = 0.690, Spearman = 0.715

Fig. 3.9 The effect of state of knowledge dependence due to the requirement that the value thought
to be true for Pj always has to be smaller or equal to the value thought to be true for Pi
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P1 ¼ Q1

P2 ¼ 1� Q1ð ÞQ2

:
:
:
PK�1 ¼ 1� Q1ð Þ . . . 1� QK�2ð ÞQK�1

PK ¼ 1�
XK�1

k¼1

Pk

ð3:28Þ

with
XK

k¼1
Pk ¼ 1; 0�Pk � 1, k ¼ 1, . . ., K; 0 � Qk � 1, k ¼ 1, . . ., K � 1.

Examples:

– Fractions of the total dry matter intake in a dairy cow diet consisting of K different
kinds of dry matter.

– Fractions of the total prey intake in a predator diet consisting of K species of prey.
– Branch point probabilities of an event tree with K branches.

Figure 3.12a, b illustrates the state of knowledge dependence between P1 and P2

as well as between P1 and P3 that is due to the functional relationship P1 + P2 +
P3 ¼ 1; 0 � Pk � 1, k ¼ 1, 2, 3 with a [0.3, 0.5] and a [0.2, 0.4] uniform subjective
probability distribution specified as state of knowledge expressions for the state of
knowledge independent parameters Q1 and Q2.
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Fig. 3.10 The effect of state of knowledge dependence due to the functional relationship Pj ¼ Pi +
Pk with the state of knowledge of Pi quantified by a uniform subjective probability distribution over
[0, 1] and that of Pk by a uniform subjective probability distribution over [0, 0.2]. Pi and Pk are state
of knowledge independent
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Fig. 3.11 (a–c) The effect of state of knowledge dependence due to the functional relationships. (a)
Pj¼ (Pi)

1/2 + Pk, (b) Pj¼ (Pi)
2 + Pk, (c) Pj¼ (Pi)(1� Pi) + Pkwith the states of knowledge of Pi and

of Pk specified as for Fig. 3.10
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Often state of knowledge dependence is judged to exist between Pj and Pi while
only the marginal subjective probability densities are given and neither a constraint
nor a functional relationship is specified. In this case, the dependence is frequently
quantified by a measure of association like Pearson’s or Spearman’s correlation
coefficient.

3.5.2.4 State of Knowledge Dependence Expressed by Pearson’s
Correlation Coefficient

Any functional relationship Pj ¼ gj(Pi) between uncertain parameters Pj and Pi

causes state of knowledge dependence. The function gj may have additional
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Fig. 3.12 (a, b) The effect of state of knowledge dependence that results for the pairs (P1, P2) and
(P1, P3) from the functional relationship P1 + P2 + P3 ¼ 1 with 0 � Pk � 1, k ¼ 1, 2, 3
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uncertain data Qk in its argument list, and it may also be a model uncertainty
introducing state of knowledge dependence of Pj not only with the arguments of gj
but also with its functional form. Suspecting a functional relationship but lacking
knowledge of its functional form, an approximate linear relationship

Pj � ai þ biPi ¼ bPj ð3:29Þ
is frequently assumed in order to arrive at a quantitative expression for the state of
knowledge dependence. Subtracting the mean values in Eq. (3.29) gives

Wi ¼ Pi � E Pif g and Wj ¼ Pj � E Pj

 �
and therefore

Wj þ E Pj

 � � ai þ bi Wi þ E Pif gð Þ:
Setting ai ¼ E{Pj} � biE{Pi} leads to Wj � biWi.
bi is chosen such that the variance Var{Wj � biWi} of the approximation error is

minimal. The solution for bi is obtained from the requirement that

d
dbi

� �Z Z
wj � biwi

� �2
fij pi; pj
� �

dpidpj ¼ 0

or Z Z
wj � biwi

� �
wifij pi; pj

� �
dpidpj ¼ 0

so that

bi ¼
Z Z

wjwi

� �
fij pi; pj
� �

dpidpj

� 	
=Var Wif g ¼ Cov Pi;Pj

 �
=Var Pif g ð3:30Þ

where Cov{.,.} denotes the covariance operator.
On the other hand, from

Pi � aj þ bjPj

follows

bj ¼
Z Z

wjwi

� �
fij pi; pj
� �

dpidpj

� 	
=Var Wj

 � ¼ Cov Pi;Pj

 �
=Var Pj

 �
Since Pearson’s correlation coefficient (also called “ordinary correlation coeffi-

cient” or simply “correlation coefficient”) is defined as (mean values and variances
assumed to exist)
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ρij ¼ ρ Pi;Pj

� � ¼ E Pi � E Pif gð Þ Pj � E Pj

 �� � �
= Var Pif gVar Pj

 �� �1
2

¼ Cov Pi;Pj

 �
= Var Pif gVar Pj

 �� �1=2
¼ E PiPj

 �� E Pif gE Pj

 �� �
= Var Pif gVar Pj

 �� �1
2,

ð3:31Þ

it follows for the correlation coefficient

ρi, j ¼ sign Cov Pi;Pj

 �� �
bibj
� �1=2

i.e. ρij is the geometric mean value of the product of the least squares linear
regression coefficients bi and bj from the regression (see Chap. 6) of Pj on Pi and
from the regression of Pi on Pj.

ρ2ij ¼
Cov Pi;Pj

 �� �2
Var Pif gVar Pj

 � ¼ b2i
Var Pif g
Var Pj

 � ¼ b∗2
i

where bi
∗ is the standardized regression coefficient of the least squares linear

regression of Pj on Pi.
The extent of the assumed linear relationship is expressed by |ρij| while the sign of

ρij gives the direction of it (i.e. positive, if a change in the value thought to be true for
Pi tends to change the value thought to be true for Pj in the same direction and
negative if it tends to change it in the opposite direction). Consequently, ρij is an
expression of the extent and direction of an approximate (in the least squares sense)
linear relationship between the values thought to be true for Pj and for Pi. ρ2ij
quantifies the fraction of the uncertainty of Pj (as measured by the variance of its
subjective probability distribution) that can be explained by the approximate linear
relationship with Pi

Var bPj

n o
Var Pj

 � ¼ b2i Var Pif g
Var Pj

 � ¼ Cov Pi;Pj

 �� �2
Var Pif gVar Pj

 � ¼ ρ2ij: ð3:32Þ

From Eqs. (3.29) and (3.32) follows that ρ(., .) can only assume values from [�1,
+1] and from Eq. (3.31) it is evident that, with b ¼ sign(b)|b| and b2 ¼ |b|2,

ρ(Pj, a + bPi) ¼ sign(b)ρ(Pi,Pj) (a,b 2 R) where R is the set of all real
numbers and

ρ(Pi,Pj) ¼ 1 if Pj ¼ a + bPi i.e. the linear relationship is exact and positive.
Furthermore, if

P0
i ¼ aþ bPi, P0

j ¼ cþ dPj, a, b, c, d2R,

then

ρ P0
i;P

0
j

� �
¼ sign bdð Þρ Pi;Pj

� �
since
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ρ P0
i;P

0
j

� �
¼ E bPi þ a� bE Pif g � að Þ dPj þ c� dE Pj

 �� c
� � �

= Var bPi þ af gVar dPj þ c
 �
 �1

2 ¼ sign bdð ÞE Pi � E Pif gð Þ Pj � E Pj

 �� � �
= Var Pif gVar Pj

 �
 �1=2
Correlation coefficients are frequently used as quantitative measures of state of

knowledge dependence. Instead of a set of conditional distributions, there is only one
number to be provided namely ρij. The two marginal subjective probability distri-
butions and the covariance (as defined by the correlation coefficient) will, however,
not suffice to fully determine the joint subjective probability distribution for Pi and
Pj, not even in the case where both marginal distributions are of the normal type4

unless it is assumed that the joint distribution is normal. In the general case, however,
there is room for interpretation left, i.e. there is a choice of joint distributions that
have the same specified marginal distributions and the same specified value of the
correlation coefficient. If the subjective probability distribution for the computer
model result is sensitive to characteristics of the joint distribution of Pi and Pj, other
than those expressed by the marginal distributions and by the covariance, then a joint
subjective probability distribution with minimum additional information should be
chosen (see Sect. 3.5.2.7 on copulas).

The following properties need to be kept in mind when specifying values for ρij
as quantitative expressions of state of knowledge dependence:

a) ρ(., .) can only assume values from the interval [–1, +1].
b) If Pi and Pj are judged to be state of knowledge independent, then ρij ¼ 0 is the

appropriate choice since

Cov Pi;Pj

 � ¼ E Pi � E Pif gð Þ Pj � E Pj

 �� � � ¼ E Pi � E Pif gf gE Pj � E Pj

 � �
¼ 0

However, specifying ρij ¼ 0 does not necessarily imply state of knowledge
independence. It only says that Cov{Pi,Pj}¼ 0. The specification of the marginal
distributions and of the covariance does not uniquely determine the joint subjec-
tive probability distribution (see above for exceptions). ρij ¼ 0 is a necessary but
not a sufficient condition for state of knowledge independence.

c) If the value that is thought to be true for Pj is suspected to be a linear increasing
(or decreasing) function of the value that is thought to be true for Pi then ρij ¼ +1
(–1) needs to be specified.

d) Values other than 0, +1 or �1 specified for ρij are a quantitative judgment of the
extent of linear relationship that is suspected to exist between the values thought
to be true for Pi and for Pj. The larger the chosen absolute value of ρij,the more the
relationship is judged to be linear, i.e. the larger is the fraction of the variance

4If the joint distribution is normal, then both marginals are normal but the joint distribution is not
necessarily normal if both marginals are normal.
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(as measure of uncertainty) of Pj that is explained by a least squares approxima-
tion of Pj in Pi (and vice versa).

If, for example, it is assumed that

Pi ¼ Q1 þ Q2

Pj ¼ Q1 þ Q3

withQ1,Q2,Q3 pairwise state of knowledge independent uncertainty contributors
and Q1 representing the shared contributor to uncertainty, it follows

ρij ¼ ρ Pi;Pj

� � ¼ Var Q1f g= Var Q1 þ Q2f gVar Q1 þ Q3f gð Þ1=2 ð3:33Þ

while for

Pi ¼ �Q1 þ Q2

Pj ¼ Q1 þ Q3

ρij ¼ �Var Q1f g= Var Q1 þ Q2f gVar Q1 þ Q3f gð Þ12:

ρij will be the closer to +1 (–1) the smaller Var{Q2} and Var{Q3} are relative to
Var{Q1}. In particular, if the subjective probability distributions for Q1, Q2 and
Q3 are of equal variance, then

ρij ¼ 0:5 �0:5ð Þ:

The type of distributions specified for Q1, Q2 and Q3 does not matter.
For

Pi ¼ Q1 þ Q2 þ Q3

Pj ¼ Q1 þ Q2 þ Q4

ρij ¼ 2=3

given that Q1, Q2, Q3, Q4 are pairwise state of knowledge independent and of
equal variance.
If kc is the number of uncertainty contributors shared by Pi and Pj while ksi is the
number of uncertainty contributors specific to Pi and ksj is the number of those
specific to Pj and the contributors are pairwise state of knowledge independent
and their subjective probability distributions are of equal variance then,
irrespective of their types of subjective probability distribution,

ρij ¼ cij= kc þ ksið Þ kc þ ksj
� �
 �1=2 ð3:34Þ

cij ¼
Xkc
m¼1

cm
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with cm¼�1 if the shared contributor is subtracted for either Pi or Pj only and +1
otherwise
For example, if all shared contributors are of positive sign then

kc ksi ¼ ksj ρij
0 1 0
1 1 1=2
1 2 1=3
2 1 2=3
1 3 1=4
1 0 1

e) Depending on the distributions specified as state of knowledge expressions for Pi

and Pj not every value from [�1, +1] can be specified as value of the correlation
coefficient ρij. This follows from solving Eq. (3.35) for ρZ (it has to satisfy
�1 � ρZ � + 1) (Krzykacz 1993). The cumulative distribution functions Fi and
Fj are assumed to be strictly monotone.

ρij ¼ Cov Pi;Pj

 �
= Var Pif gVar Pj

 �� �1
2 ¼ E PiPj

 �� E Pif gE Pj

 �� �
= Var Pif gVar Pj

 �� �1
2

¼ R R
F�1
i ϕ zið Þð ÞF�1

j ϕ zj
� �� �

fij zi; zj; ρZ
� �

dzidzj � E Pið gE Pj

 �h i
= Var Pif gVar Pj

 �� �1
2

ð3:35Þ

Φ(zi) is the cumulative standard normal probability at zi, F
�1(Φ(zi)) is the value pi

of Pi with cumulative subjective probability Φ(zi), fij(zi,zj; ρZ) is the bivariate
normal probability density at (zi,zj) and ρZ is its correlation coefficient.
If normal distributions are specified as state of knowledge expressions for Pi and
for Pj, any value from [�1, +1] can be specified for the correlation coefficient ρij.
For instance, if subjective probability distributions of the lognormal type are
specified for Pi and Pj with distribution parameters (μi, σi) and (μj, σj), then the
specified value ρij has to satisfy the following inequality

�1 � ρZ ¼ ln 1þ ρij exp σ2i
� �� 1

� �
exp σ2j
� �

� 1
� �h i1=2� �

=σiσj � þ1:

The bivariate normal distribution with the normal distributions of lnPi and lnPj as
marginal distributions and with ρ(lnPi, lnPj)¼ ρZ is after transformation to Pi and
Pj a bivariate distribution with the given lognormal distributions of Pi and Pj as
marginal distributions and with the given correlation coefficient ρij. It follows
from Eq. (3.35) that, depending on σi and σj of the two lognormal distributions,
ρij cannot have every value from the interval [�1, +1].
The following relationships between ρij and ρZ for additional combinations of
marginal distributions are also given in (Krzykacz 1993):
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Both marginal distributions are arbitrary uniform distributions:

ρZ ¼ 2 sin
ρijπ

6

� �
i.e. every value from [�1, +1] can be specified for ρij.
One marginal distribution is an arbitrary normal distribution and one is an
arbitrary uniform distribution:

ρZ ¼ ρij
π

3

� �1=2
An arbitrary normal distribution is specified for Pi and an arbitrary lognormal
distribution with parameters (μj, σj) for Pj:

ρZ ¼ ρij exp σ2j

� �
� 1

� �1
2
=σj

f) If there is state of knowledge dependence of Pi with two or more uncertain
parameters (Pj, Pk, etc.), an additional requirement is to be observed also in the
case of normal distributions, namely: The symmetric matrix of specified correla-
tion coefficients

1      

R =   1    

1

must be positive definite in order to be a correlation matrix.
In general: If R is a K � K symmetric matrix of specified correlation coefficients,
then the product a’Ra, where a’ ¼ (a1, . . ., aK) is a row vector with not all of its
components equal to zero, must be greater than zero for R to be a correlation
matrix. Reason is that any linear combination of K state of knowledge dependent
uncertain parameters with coefficients (a1, . . ., aK) has positive variance. The
variance equals

Var
XK

k¼1
akPk

n o
¼
XK

k¼1
a2kVar Pkf g þ 2

XK

k¼1

�
XK

j¼kþ1
ajakCov PjPk

 �
¼
XK

k¼1

XK

j¼1
ajakρjk Var Pj

 �
Var Pkf g
 �1=2 ¼ d’Rd ð3:36Þ

d’ is the row vector (a1(Var{P1})
1/2, . . ., aK(Var{PK})

1/2).
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The likelihood that a matrix of correlation values, specified by expert judgment,
will be positive definite, decreases rapidly with growing number K of state of
knowledge dependent uncertain parameters.

Figures 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18 show pairs of values sampled at
random for the uncertain parameters Pi and Pj according to a joint subjective
probability distribution that complies with the specified marginal distributions and
with the correlation coefficient provided as a measure of state of knowledge depen-
dence. Each dot has the value sampled for Pi as its ordinate and the value sampled for
Pj as its abscissa. The figures are intended to give an impression of the effect that:

– Different correlation coefficients may have on a random sample of N pairs of
values given the same marginal subjective probability distributions.

– Different marginal subjective probability distributions may have on a random
sample of N pairs of values given the same value for the correlation coefficient.

– The same value for Pearson’s and Spearman’s (see Sect. 3.5.2.5) correlation
coefficient may have on a random sample of N pairs of values given the same
marginal subjective probability distributions.

In an uncertainty analysis using Monte Carlo simulation, each of the sampled
pairs of values will be used in a replication of the model application (see Chap. 4).
The correlation coefficients are specified as population expressions of state of
knowledge dependence. The figures show that the sample values of the correlation
coefficients (given in the headline of each Figure) differ more or less from the
specified population values due to the sampling error. If the sample is required to
have exactly the specified correlation, then the latter would need to be defined as a
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Fig. 3.13 The effect of state of knowledge dependence quantified by Pearson’s ρij ¼ 0.5 for
uncertain parameters Pi and Pj with a (0, 1) and a (0, 2) uniform subjective probability distribution
as state of knowledge expressions
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sample expression of state of knowledge dependence and a sampling procedure such
as the one presented in Sect. 4.4.1.14 would need to be followed.
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Fig. 3.14 The effect of state of knowledge dependence quantified by Pearson’s ρij ¼ 0.5 for
uncertain parameters Pi and Pj with a (1.11, 0.86) and a (1.91, 0.86) lognormal subjective
probability distribution as state of knowledge expressions
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Fig. 3.15 The effect of state of knowledge dependence quantified by Pearson’s ρij ¼ �0.7 for
uncertain parameters Pi and Pj with a (0, 1) and a (0, 2) uniform subjective probability distribution as
state of knowledge expressions
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This Figure is blank as the value specified for 

Pearson’s correlation coefficient is inadmissible for the two marginal 

distributions 

(i.e. equation 3.35 has no solution for = - 0.7 with within [-1, +1]) .z

Fig. 3.16 The effect of state of knowledge dependence quantified by Pearson’s ρij ¼ �0.7 for
uncertain parameters Pi and Pj with a (1.11, 0.86) and a (1.91, 0.86) lognormal subjective
probability distribution as state of knowledge expressions
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Fig. 3.17 The effect of state of knowledge dependence quantified by Pearson’s ρij ¼ 0.9 for
uncertain parameters Pi and Pj with a (0, 1) and (0, 2) uniform subjective probability distribution as
state of knowledge expressions
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Fig. 3.18 The effect of state of knowledge dependence quantified by Pearson’s ρij ¼ 0.9 for
uncertain parameters Pi and Pj with a (1.11, 0.86) and a (1.91, 0.86) lognormal subjective
probability distribution as state of knowledge expressions
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Summary:
While it is tempting to express state of knowledge dependence by a single number,
such as the correlation coefficient, there are limitations to the usefulness of this
approach when using Pearson’s correlation coefficient ρ.

1. Pearson’s correlation coefficient quantifies the pairwise state of knowledge
dependence only in so far as it can be expressed by a least squares linear
(approximate) relationship of the value thought to be true for one uncertain
parameter with the value thought to be true for the other parameter. There are
many joint subjective probability distributions with the same marginal distribu-
tions and the same value of the correlation coefficient, i.e. the joint subjective
probability distribution is not uniquely specified by the marginal distributions and
the correlation coefficient except in the case of a bivariate normal distribution.

2. How would one justify the specified value of the correlation coefficient? In other
words: Which reasons could one give for the assumed extent of linear relationship
between the two states of knowledge?

A representation of the uncertain parameters by sums of shared and unshared
state of knowledge independent uncertainty contributors of equal variance leads
to a correlation coefficient that would then be justified by this representation (see
Eq. 3.34).

Quite frequently, a distribution that summarizes stochastic variability in a
population is used as quantitative expression of the state of knowledge for an
epistemic uncertainty. Given the probability distributions of two stochastic vari-
ables Xi and Xj and assuming that the unknown true values of the uncertain
parameters Pi and Pj can be thought of as sampled at random from their popula-
tion of values, then it is quite natural to use the probability distributions of Xi and
Xj as subjective probability distributions (i.e. as state of knowledge expressions)
for Pi and Pj unless additional knowledge suggests otherwise. Any population
expression for the stochastic dependence between Xi and Xj becomes then the
population expression for the state of knowledge dependence between Pi and Pj.

3. The range of correlation coefficient values that may be specified for Pi and Pj

depends on the types of marginal distributions chosen to quantify the state of
knowledge of each, i.e. the specified correlation coefficient must satisfy
Eq. (3.35) for a value ρZ from [�1, +1]. If both marginal distributions are of
the normal type, then any value from [�1, +1] is admissible as correlation
coefficient for Pi and Pj.

4. If there is state of knowledge dependence among several uncertain parameters
and correlation coefficients are specified for all affected pairwise combinations,
then the coefficients are elements of a symmetric matrix R
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1   …   

1   …  

.

R = .

.

…      1

This matrix is a correlation matrix only if it is positive definite. The elements of
the correlation matrix R are the variances and co-variances of the standardized

uncertain parameters P∗
j ¼ Pj � E PJf g� �

= Var Pj

 �� �1=2
, j ¼ 1, . . ., M. Any

linear combination of the Pj
∗ with coefficients aj, j ¼ 1, . . ., M (not all aj ¼ 0)

has positive variance, namely

Var
XM

j¼1
ajP

∗
j

n o
¼ a’Ra > 0, a > 0, where a is the column vector of coefficients

of the linear combination. This property of the correlation matrix R is called
positive definiteness. The correlation coefficients quantifying state of knowledge
dependence are often specified by expert judgment. The chance of specifying the
M(M � 1)/2 elements ρij, j > i, of the symmetric matrix R such that the matrix is
positive definite decreases rapidly with increasing M. If the matrix R is not
positive definite some of the non-zero elements must be corrected and/or some
of the zero elements may need to be non-zero. There is unfortunately no guidance
as to which elements of R need to be corrected and by how much unless
additional information is provided. Section 3.5.2.8 presents a method of
expressing state of knowledge dependence quantitatively without the direct
specification of correlation coefficients. The matrix R that results from the
application of this method is guaranteed to be positive definite.

3.5.2.5 Spearman’s (Rank) Correlation Coefficient

Using Spearman’s instead of Pearson’s correlation coefficient for state of knowledge
dependence quantification improves on point 2 and eliminates the limitation men-
tioned under point 3 of the summary given above for Pearson’s correlation
coefficient.

Let the state of knowledge of the uncertain parameter Pj be expressed by a
subjective probability density function fj with cumulative subjective probability
function Fj. If Fj is continuous and strictly monotone on [pj,min, pj,max], then the
subjective probability Gj¼ Fj(Pj) varies according to a uniform distribution on [0,1].
To show this, let vj(gj) be the density function of Gj then
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vj gj
� � ¼ fj F�1

j gj
� �� �

dF�1
j gj
� �

=dgj with 0 � gj � 1

andR gj
0 vj g0j

� �
dg0j ¼

R pj
pj,min

fj F�1
j g0j
� �� �

dF�1
j g0j
� �

with pj ¼ Fj
�1 gj
� �

¼ Fj F�1
j gj
� �� �

� Fj pj,min
� � ¼ gj

ð3:37Þ

Gj is the probability integral transformed Pj (see Fig. 3.19),
i.e. Gj ¼ Fj(Pj) and Pj ¼ Fj

�1(Gj).
With

Gi ¼ Fi Pið Þ
Gj ¼ Fj Pj

� �
Spearman’s correlation coefficient ρS(Pi,Pj) is defined as

ρS
ij ¼ ρS Pi;Pj

� � ¼ ρ Gi;Gj

� � ð3:38Þ

where ρ denotes Pearson’s correlation coefficient. In other words: Spearman’s
correlation coefficient equals Pearson’s correlation coefficient of the probability
integral transformed pair of uncertain parameters.

Since Gi and Gj are distributed according to a uniform distribution over [0, 1]
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Fig. 3.19 Illustration of the probability integral transformation of Pj
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ρS Pi;Pj

� � ¼ ρ Gi;Gj

� � ¼ 12E Gi � 0:5ð Þ Gj � 0:5
� � �

1/12 is the variance of the uniform distribution over [0, 1].
If the u% quantile of the subjective probability distribution for Pj is thought to be

the true value of Pj whenever the u% (or (100 � u)%) quantile of the subjective
probability distribution for Pi is thought to be the true value of Pi, then Spearman’s
correlation coefficient is an appropriate measure of the corresponding state of
knowledge dependence and its value is +1 (�1). ρS(Pi,Pj) ¼ + 1 (�1) indicates
complete positive (negative) state of knowledge dependence.

Gi and Gj are symmetrically distributed on [0,1] and therefore ρ(Gi,Gj) (¼ ρS(Pi,
Pj)) can assume any value from [�1, +1] irrespective of the type of marginal
distribution function specified for the uncertain parameters.

The following properties need to be observed when specifying values for ρS(., .):

a) ρS(., .) can only assume values from the interval [�1, +1].
b) If the pair of uncertain data Pi and Pj are judged to be state of knowledge

independent, then ρ(Gi,Gj) ¼ 0 and therefore ρS
ij ¼ 0 is the appropriate choice.

However, specifying ρS
ij ¼ 0 does not necessarily imply state of knowledge

independence. It only says that

Cov Gi;Gj

 � ¼ E Fi Pið Þ � 0:5ð Þ Fj Pj

� �� 0:5
� � � ¼ 0:

ρS
ij ¼ 0 is a necessary but not a sufficient condition for state of knowledge

independence.

c) If the value thought to be true for Pj is suspected to be a strictly monotone
increasing (or decreasing) function of the value thought to be true for Pi, thenρ

S
ij¼

+1 (�1).
d) Values other than 0, +1 or �1, specified for ρS

ij , are quantitative judgments about
the extent to which a strictly monotone relationship is suspected to exist between
the values thought to be true for Pi and Pj.

e) An estimate r Sij of ρ
S
ij is obtained from a random sample {( pi,n, pj,n))|n¼ 1, . . ., N}

as

r Sij ¼
XN
n¼1

Fi pi,n
� �� 0:5


 �
Fj pj,n
� �� 0:5


 �
=

XN
n¼1

Fi pi,n
� �� 0:5


 �2 ! XN
n¼1

Fj pj,n
� �� 0:5


 �2 !( )1=2

and observing that the standard deviation of a [0,1] uniform distribution is (1/12)1/2
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r Sij ¼
1
N

� �XN
n¼1

Fi pi,n
� �

Fj pj,n
� �� 0:25

" #
12:

Following the least squares linear approximation interpretation given for Pearson’s
ρ, Spearman’s ρS

ij quantifies the suspected state of knowledge dependence
between Pj and Pi in so far as the dependence can be expressed by a least squares
linear approximation of Fj(Pj) in Fi(Pi).

However, if only the set {(pi,n, pj,n) | n¼ 1, . . ., N} of possibly true pairs of values of
Pi and Pj is known but not the probability integral transforms of the individual
values, then rank transformed values are used as an empirical approximation to
the probability integral transformed values times N. The rank transformation
arranges the sample values in each of the two sets of random values {( pi,n)|
n¼ 1, . . ., N} and {( pj,n)| n¼ 1, . . ., N} in ascending order and assigns an ordinal
number (the rank among the N sample values) to each.

Ranks are integer numbers with rank 1 given to the smallest value and rank N given
to the largest value in the sample. Exception: Equal sample values receive the
arithmetic mean of the ranks they would have been given had they been only
slightly different.

Example:

n pi rk pið Þ pj rk pj
� �

1 0:76 4 12:16 10
2 0:01 1 8:05 6
3 1:34 7 6:03 4
4 2:46 10 9:16 7
5 0:05 2 11:73 9
6 0:56 3 5:95 3
7 1:03 6 7:03 5
8 2:05 9 10:25 8
9 1:76 8 1:68 1
10 0:95 5 2:35 2

r Sij is then computed as

r Sij ¼
XN
n¼1

rk pi,n
� �

rk pj,n
� �� N

N þ 1
2

� �2
" #

=

XN
n¼1

rk pi,n
� �� �2 � N

N þ 1
2

� �2
" #1

2 XN
n¼1

rk pj,n
� �� �2 � N

N þ 1
2

� �2
" #1

2

8<:
9=;

where rk( pi, n) and rk( pj, n) are the ranks of the n-th sampled values of Pi and Pj

among the bivariate sample of size N and (N+1)/2 is the arithmetic mean value of
the N ranks.
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For the case of no ties (Spearman 1904)

r Sij ¼
XN
n¼1

rk pi,n
� �� N þ 1ð Þ=2
 �

rk pj,n
� �� N þ 1ð Þ=2
 �( )

= N N2 � 1
� �

=12

 �

:

An equivalent but computationally easier form (Conover 1980) is

r Sij ¼ 1� 6
XN
n¼1

rk pi,n
� �� rk pj,n

� �� �2" #
= N N2 � 1

� �� �
:

f) From Eq. (3.38), it is clear that a symmetric matrix of specified pairwise Spear-
man correlation values is a correlation matrix only if it is positive definite.

In an uncertainty analysis, using Monte Carlo simulation, each of the sampled
pairs of values will be used in a replication of the computer model application (see
Chap. 4). The Spearman’s (rank) correlation coefficients are specified as population
expressions of state of knowledge dependence. Figures 3.20, 3.21 and 3.22 show
that the sample values of the correlation coefficients (given in the headline of each
Figure) differ more or less from the specified population values due to the sampling
error. If the sample is required to have exactly the specified rank correlation, then the
latter would need to be defined as a sample expression of state of knowledge
dependence and a sampling procedure, such as the one presented in Sect. 4.4.1.14,
would need to be followed.

For uniform distributions Fi(Pi) and Fj(Pj)
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Fig. 3.20 The effect of state of knowledge dependence quantified by Spearman’s ρS
ij ¼ 0.5 for

uncertain parameters Pi and Pj with a (1.11, 0.86) and a (1.91, 0.86) lognormal subjective
probability distribution as state of knowledge expressions
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Gi ¼ Pi � pi,min
� �

= pi,max � pi,min
� �

Gj ¼ Pj � pj,min
� �

= pj,max � pj,min
� �

:

It has been shown in Sect. 3.5.2.4 that Pearson’s correlation coefficient is
unchanged by linear transformations and therefore

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

Pa
ra

m
et

er
 P

i

Parameter Pj

Pearson = -0.463, Spearman = -0.742

Fig. 3.21 The effect of state of knowledge dependence quantified by Spearman’s ρS
ij ¼ �0.7 for

uncertain parameters Pi and Pj with a (1.11, 0.86) and a (1.91, 0.86) lognormal subjective
probability distribution as state of knowledge expressions
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Fig. 3.22 The effect of state of knowledge dependence quantified by Spearman’s ρS
ij ¼ 0.9 for

uncertain parameters Pi and Pj with a (1.11, 0.86) and a (1.91, 0.86) lognormal subjective
probability distribution as state of knowledge expressions
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ρ Pi;Pj

� � ¼ ρ Gi;Gj

� � ¼ ρ Fi Pið Þ; Fj Pj

� �� � ¼ ρS Pi;Pj

� �
:

Consequently, the scatterplots for cases with uniform marginal distributions for Pi

and Pj and ρS
ij specified are essentially the same as shown for the same value of

Pearson’s ρij in Sect. 3.5.2.4.

Comparison of Pearson’s ρ and Spearman’s ρS

1. Spearman’s correlation coefficient quantifies the pairwise state of knowledge
dependence only in so far as it can be expressed by a least squares linear
approximation of the probability integral transform of one uncertain parameter
in the probability integral transform of the other parameter. Since the linear
approximation is operating with probability integral transforms instead of the
parameter values (as in the case of Pearson’s ρ), it quantifies not only the extent of
a linear relationship but also of nonlinear strictly monotone relationships.

There are many joint subjective probability distributions with the same mar-
ginal distributions and the same value of Spearman’s correlation coefficient. The
marginal and Spearman’s ρS do not uniquely specify the joint subjective proba-
bility distribution just as is the case with Pearson’s ρ.

2. How would one justify the specified value of the correlation coefficient ρS? In
other words: Which reasons could one give for the assumed extent of linear
relationship between the two states of knowledge? Instead of specifying a value
for Spearman’s ρS

ij directly, one could try to give the degree of belief for the true
value of Pj to lie below the median value Fj( pj, 50%) ¼ 0.5 of the subjective
probability distribution specified for Pj, under the condition that the true value of
Pi lies below the median value pi, 50% of the subjective probability distribution
specified for Pi. The value given for sw(Pj < pj, 50% | Pi < pi, 50%) may then be used
to find the corresponding value of ρS

ij using the relationships given in Sect. 3.6.3.
3. Different to Pearson’s ρ, the range of values that may be specified for Spearman’s

ρS is always [�1, +1] irrespective of the type of the subjective probability
distribution specified for each of the uncertain parameters.

4. Since ρS(Pi,Pj) ¼ ρ(Fi(Pi), Fj(Pj)), the matrix of specified Spearman’s correlation
coefficients needs to be positive definite just as the matrix of specified Pearson’s
correlation coefficients, and all remarks made under point 4 of the summary of
Sect. 3.5.2.4 apply here accordingly.

5. If the joint subjective probability distribution specified for Pi and Pj is normal,
then the following relationship between Pearson’s ρ and Spearman’s ρS applies
(Kruskal 1958)

ρ Pi;Pj

� � ¼ 2 sin
π

6

� �
ρS Pi;Pj

� �h i
ð3:39Þ

where the argument of the sinus function is in radians (multiply by 360/2π to have
degrees).
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6. Spearman’s ρS is invariant under nonlinear strictly monotone transformations of
Pi and/or Pj as these transformations do not change the cumulative subjective
probabilities.

3.5.2.6 Unknown Functional Relationship

State of knowledge dependence needs to be quantified also in the case of an
unknown functional relationship hj that is judged to exist between the values thought
to be true for Pj and Pi (see Fig. 3.23)

Pj ¼ hj Pið Þ:
If hj is strictly monotone increasing (decreasing), then ρS(Pi,Pj) ¼ + 1 (–1) and

the same applies to ρ(Gi,Gj) since Gj ¼ Gi (Gj ¼ 1 � Gi). Specifying that the
unknown functional relationship hj is strictly monotone increasing or decreasing
indicates complete state of knowledge dependence and suffices therefore as a
population expression for state of knowledge dependence quantification.

For a strictly monotone increasing function Pj ¼ hj(Pi), the following applies

Fj pj
� � ¼ Fj hj pið Þ� � ¼ Fi pið Þ and therefore ρS Pi;Pj

� � ¼ 1:

In the case of a strictly monotone decreasing function Pj ¼ hj(Pi), it follows

Fj pj
� � ¼ Fj hj pið Þ� � ¼ 1� Fi pið Þ and therefore ρS Pi;Pj

� � ¼ �1:
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Fig. 3.23 The effect of negative complete state of knowledge dependence (i.e. due to a suspected
strictly monotone decreasing relationship) specified for two uncertain parameters with their state of
knowledge expressed by a (0, 15) uniform subjective probability distribution for Pi and a (1.11,
0.86) lognormal subjective probability distribution for Pj
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3.5.2.7 Copulas

Section 3.5.2.5 introduced the probability integral transformation for uncertain
parameters. The use of probability integral transformed values leads directly to the
concept of copulas.

If the state of knowledge of the uncertain parameters Pi and Pj is quantified by
continuous marginal subjective probability distributions with the joint subjective
probability distribution Fij, then the probability integral transformed parameters Gi

and Gj follow a joint subjective probability distribution Cij over the unit square with
gi ¼ Fi( pi) and gj ¼ Fj( pj). Cij together with the continuous marginal distributions Fi
and Fj fully determines the joint distribution for Pi and Pj since

Cij gi; gj
� � ¼ Cij Fi pið Þ; Fj pj

� �� � ¼ Fij pi; pj
� �

: ð3:40Þ

Cij is called the copula distribution that joins Pi and Pj. It contains all the
information about the state of knowledge dependence of Pi and Pj needed in order
to know their joint distribution.

The density function of the copula is connected to the joint density of Pi and Pj via

fij pi; pj
� � ¼ ∂2Fij pi; pj

� �
=∂pi∂pj

¼ ∂2Cij Fi pið Þ; Fj pj
� �� �

=∂Fi pið Þ;∂Fj pj
� �h i

dFi pið Þ=dpi½ � dFj pj
� �

=dpj

 �

¼ cij Fi pið Þ; Fj pj
� �� �

f i pið Þf j pj
� �

and therefore

cij Fi pið Þ; Fj pj
� �� � ¼ fij pi; pj

� �
=fi pið Þfj pj

� �
: ð3:41Þ

Equation (3.41) shows that the copula density is, at every point ( pi, pj), the factor
by which the joint density in the case of state of knowledge independence is to be
multiplied to obtain the joint density in the case of state of knowledge dependence.
From this it follows for the conditional density

fjji pjjpi
� � ¼ fij pi; pj

� �
=fi pið Þ ¼ cij Fi pið Þ; Fj pj

� �� �
fj pj
� �

: ð3:42Þ

Any multivariate subjective probability distribution

F1...K p1; . . . ; pKð Þ ¼ sw P1 � p1; . . . ;PK � pKð Þ
with continuous marginals

Fk pkð Þ ¼ gk ¼ sw Pk � pkð Þ
can be written as C1. . .K(g1, . . ., gK) with C1. . .K as a unique copula (Sklar 1959;
Nelsen 2006). However, there are many families of copulas (Nelsen 2006) that can
be used to join P1, . . ., PK as long as only their marginal distributions and their
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pairwise (rank) correlation coefficients are given (i.e. the K-variate subjective prob-
ability distribution is not uniquely specified).

In uncertainty analysis, the available (expert elicited) information often only
consists of the marginal distributions and pairwise Pearson’s ρ or Spearman’s ρS.
In this case, the normal copula distribution C1. . .K(g1, . . ., gK) ¼ ϕ(ϕ�1(g1), . . .,ϕ�1

(gK)); RZ) is a popular choice. It is the multivariate normal distribution with
correlation matrix RZ, and ϕ�1 is the inverse of the standard normal distribution
function.

With zi ¼ ϕ�1(Fi( pi)), zj ¼ ϕ�1(Fj( pj)) and ρS(Pi,Pj)given, ρZ ¼ ρ(Zi,Zj) is
obtained from

ρZ ¼ 2 sin
π

6

� �
ρS Pi;Pj

� �h i
since ρS Zi; Zj

� � ¼ ρS Pi;Pj

� �
:

1    

RZ =   

1

and the density function of the normal copula distribution

Cij Fi pið Þ; Fj pj
� �� � ¼ ϕ ϕ�1 Fi pið Þð Þ;ϕ�1 Fj pj

� �� �� �
;RZ

� ¼ ϕ zi; zj;RZ
� �

is obtained as

cij Fi pið Þ; Fj pj
� �

;RZ
� � ¼ ∂2ϕ zi; zj;RZ

� �
∂zi∂zj

" #
dzidzj

dFi pið ÞdFj pj
� �" #

which gives with

dF pð Þ
dz

¼ dϕ zð Þ
dz

¼ φ zð Þ ¼ 2πð Þ�1
2exp �z2

2

� �
cij Fi pið Þ; Fj pj

� �
;RZ

� � ¼ 2πð Þ�1 RZj j�1
2exp

2 z0RZ
2 1z

2

� �� 	
=



2π
��1exp

�z0z
2

� �� 	
¼ RZj j�1

2exp
�z0 RZ

�1 2 I
� �

z

2

� �
:

ð3:43Þ
With dF( p)/dp ¼ f( p)
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fij pi; pj
� � ¼ cij Fi pið Þ; Fj pj

� �
;RZ

� �
fi pið Þfj pj

� �
¼ RZj j�1

2exp
�z0 RZ

�1 2 I
� �

z

2

� �
fi pið Þfj pj

� � ð3:44Þ

and

fjji pjjpi
� � ¼ RZj j�1

2exp
�z0 RZ

�1 2 I
� �

z

2

� �
fj pj
� �

:

If the state of knowledge of (Pi, Pj) may be expressed by a joint normal
distribution, then the marginal distributions and ρZ ¼ ρ(Zi,Zj) are sufficient to
uniquely specify the joint density function as

fij pi; pj
� � ¼ cij Fi pið Þ; Fj pj

� �
;RZ

� � dFi pið ÞdFj pj
� �

dzidzj

" #
dzidzj
dpidpj

" #

with

1/(1 – ) - /(1 – )

=

- /(1 – ) 1/(1 – )

z0 ¼ pi � μi
σi

;
pj � μj
σj

� 	
, RZj j ¼ 1� ρ2Z

and since

dF pð Þ
dz

¼ 2πð Þ�1
2exp �z2

2

� �
and dz

dp

� �
¼ 1=σ

fij pi; pj
� � ¼ 2πσiσj

� ��1
RZj j�1

2exp
�z0RZ

�1z
2

� �
If Fij(Pi,Pj) is a bivariate normal distribution function with Pearson’s correlation

coefficient ρZ then

Cij gi; gj
� � ¼ ϕ ϕ�1 gið Þ;ϕ�1 gj

� �
;RZ

� �
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is the unique copula with ϕ�1(gi) ¼ zi, ϕ�1(gj) ¼ zj and pi ¼ ziσi þ μi ¼ F�1
i ϕ zið Þð Þ,

pj ¼ zjσj þ μj ¼ F�1
j ϕ zj

� �� �
, (gi, gj) 2 (0, 1)2.

If Fij(Pi,Pj) is a non-normal bivariate distribution function with continuous
marginals and correlation coefficient ρ(Pi,Pj), then with

zi ¼ ϕ�1 Fi pið Þð Þ, zj ¼ ϕ�1 Fj pj
� �� �

Cij gi; gj
� � ¼ ϕ zi; zj;RZ

� � ¼ ϕ ϕ�1 gið Þ;ϕ�1 gj
� �

;RZ
� �

is a copula of Pi and Pj with correlation coefficient ρZ ¼ ρ(Zi,Zj). The correlation
coefficient ρZ needs to be chosen such that

Fij

�
F�1
i ϕ zið Þð Þ,F�1

j ϕ zj
� �� �

has correlation ρ(Pi,Pj).
The value of ρZ is obtained either analytically, using Eq. (3.35), or via iteration.

Otherwise, if ρS(Pi,Pj) is provided instead of ρ(Pi,Pj), the correlation coefficient ρZ
needs to be (Kruskal 1958)

ρZ ¼ 2 sin
π

6

� �
ρS Pi;Pj

� �h i
:

Spearman’s correlation coefficient ρS(Pi,Pj) equals ρS(Fi(Pi), Fj(Pj)) which in turn
equals Pearson’s correlation coefficient ρ(Fi(Pi), Fj(Pj)) while ρ(Fi(Pi),
Fj(Pj)) 6¼ ρ(Pi,Pj) except for the case where the state of knowledge of both uncertain
parameters is expressed by a uniform distribution. On the other hand, ρS(Fi(Pi),
Fj(Pj)) equals ρS(Zi,Zj) and the latter can be transformed into ρ(Zi,Zj) using
Eq. (3.39).

Obviously, Cij(gi, gj) ¼ ϕ(zi, zj;RZ) is not the only copula that may be used if
instead of Fij only the marginal distributions Fi and Fj are specified together with ρS

(Pi,Pj). Any bivariate distribution on the unit square with uniform marginal distri-
butions and correlation coefficient ρ(Fi(Pi), Fj(Pj)) ¼ ρS(Pi,Pj) is a copula distribu-
tion for Fij under these conditions. If only the marginal distributions and the (rank)
correlation coefficient are provided as state of knowledge expression for Pi and Pj

then, for the purpose of uncertainty analysis, the copula should be chosen such that
its information contents, relative to the case of state of knowledge independence, are
minimal.

In Kurowicka and Cooke (2006), the relative information of the minimum
information copula is given for various rank correlation values and it is compared
to that of four other copulas. Among the four copulas compared, Frank’s copula is
shown to have the smallest increase of the relative information over the minimum
information copula. In Schirmacher and Schirmacher (2008), five copulas are
compared for different correlation coefficients, namely the Clayton, Frank,
Galambos, Gumbel and bivariate normal copulas. The comparison of Frank’s copula
and the bivariate normal copula via scatterplots seems to suggest that the increase of
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the relative information contents over the minimum information copula is even
lower for the bivariate normal than for Frank’s copula.

The fact, that rank correlations are not changed by the probability integral
transformation as well as by the distribution function inversions, suggests (among
other reasons given at the end of Sect. 3.5.2.5) to specify Spearman’s ρS instead of
Pearson’s ρ when quantifying state of knowledge dependence. In case Pearson’s ρ
was specified, an iterative approach is often required to find a correlation coefficient
ρZ of the copula such that after reversion of the probability integral transformation
the resulting correlation agrees with the correlation value originally specified for
state of knowledge dependence quantification.

If the state of knowledge dependence between Pi and Pj was not quantified by
correlation coefficient but by conditional distributions for Pj with parameters that are
a function of the value given for Pi, then the density function of the corresponding
copula follows from Eq. (3.42) as

cij Fi pið Þ;Fj pj
� �� � ¼ fjji pjjpi

� �
fj pj
� � :

A multivariate joint density function can be specified as the product of the
marginal densities and an expression using pairwise copulas with given (conditional)
rank correlation coefficients.

A bivariate density function can, for instance, be decomposed as follows:

f ij pi; pj
� � ¼ f i pið Þfjji pjjpi

� �
and in the trivariate case

f ijk pi; pj; pk
� � ¼ f i pið Þfjji pjjpi

� �
f kjij pkjpi; pj
� �

and so forth to higher dimensions.
Using copulas, one gets

fjji pjjpi
� � ¼ cij Fi pið Þ; Fj pj

� �� �
fj pj
� �

and choosing pj for conditioning

f kjij pkjpi, pj
� � ¼ ckijj Fijj pijpj

� �
;Fkjj pkjpj

� �� �
f kjj pkjpj
� � ð3:45Þ

f kijj pk, pijpj
� � ¼ ckijj Fijj pijpj

� �
;Fkjj pkjpj

� �� �
f kjj pkjpj
� �

f ijj pijpj
� �

f kjij pkjpi, pj
� � ¼ f kijj pk, pijpj

� �
=f ijj pijpj
� �

which leads to

3.5 Ways to Quantify State of Knowledge Dependence 85



f ijk pi; pj; pk
� � ¼ f i pið Þcij Fi pið Þ; Fj pj

� �� �
fj pj
� �

ckijj Fijj pijpj
� �

;Fkjj pkjpj
� �� �

�cjk Fj pj
� �

; Fk pkð Þ� �
fk pkð Þ

ð3:46Þ
where one copula has to be evaluated at values of conditional distributions. If pi had
been chosen for conditioning in fk j ij, then the corresponding copula densities would
have been ckj j i and cik instead of cki j j and cjk. The decomposition of a quadruple-
variate density function involves already six copulas, three of which are to be
evaluated at values of conditional distributions.

Graphical means like dependence trees and vines on these trees are in use in order
to visualize the decomposition of the multivariate joint density function into copulas
and marginal density functions. The trees are made up of nodes that are connected by
edges. For instance, in the context of uncertainty analysis, the tree in Fig. 3.24 shows
that P2, P3 and P4 each have an uncertainty contributor in common with P1 so that
there is state of knowledge dependence with P1.

If this common contributor is the same for P2, P3, P4, then these uncertain
parameters have an uncertainty contributor in common and are therefore pairwise
state of knowledge dependent. If the only uncertainty contributor that P2, P3, P4 have
in common is the one they share with P1, then they are conditionally independent
given P1. If P2, P3, P4 each share a different uncertainty contributor with P1, then
they are state of knowledge dependent with P1 but are pairwise state of knowledge
independent.

In the second degree tree of Fig. 3.25, the edges of the original tree are now nodes
connected by conditional edges. There is a choice: The conditional edge 2,4|1 could
have been chosen instead of 2,3|1. Finally, there is the third degree tree shown in
Fig. 3.26.

From this follows the decomposition of the quadruple-variate density function
into

2

1,2

1 3

1,3

4

1,4

Fig. 3.24 Dependence tree

1,2

2,3|1

1,3

3,4|1

1,4

Fig. 3.25 Second degree
tree to the dependence tree
of Fig. 3.24
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f1234 p1; p2; p3; p4ð Þ ¼ f1 p1ð Þ
c12 F2 p2ð Þ; F1 p1ð Þð Þ f2 p2ð Þ
c13 F3 p3ð Þ; F1 p1ð Þð Þ f3 p3ð Þ
c14 F4 p4ð Þ; F1 p1ð Þð Þ f4 p4ð Þ
c23j1 F2j1 p2jp1ð Þ; F3j1 p3jp1ð Þ� �
c24j1 F2j1 p2jp1ð Þ; F4j1 p4jp1ð Þ� �
c34j12

�
F3j12 p3jp1; p2ð Þ; F4j12 p4jp1; p2ð Þ� �

:

The edges of the second and third degree trees are called the vines.
Any dependence tree can be represented by entering the primary edges into a K by

K array where K is the number of state of knowledge dependent uncertain param-
eters, i.e. the nodes of the tree. A tree has branches and no loops. Several branches
may start in the same node but only one branch can end in a node. The branches are
the primary edges. The start number of the edge serves as the row number of its entry
in the array and the end number serves as the column number. The array is
symmetric; therefore, it is sufficient to have entries only in the upper triangle
(excluding the diagonal), given the start numbers are always chosen lower than the
end numbers of the edges. There is only one entry in each column. This leads to the
array in Table 3.2.

In order to find the additional parameter pairs that need to have a copula assigned
to, one first builds all those secondary entries that can be formed from primary ones
with one number in common. This gives the array in Table 3.3:

The tertiary entries, shown in Table 3.4, are built from the secondary ones that
have two numbers in common.

Finally, Table 3.5 shows the array supplemented by the entry 45|123 which was
built from the tertiary entries with three numbers in common.

The array in Table 3.5 shows the pair copulas needed to construct the multivariate
density function according to which a random sample of parameter values would
need to be taken in Step 3 of the uncertainty analysis (see Chap. 4).

The (de)composition of the 5-variate density function is therefore

2,3|1 2,4|1,3 3,4|1 

Fig. 3.26 Third degree tree
to the dependence tree of
Fig. 3.24

1 2 3 4 5

Fig. 3.27 Dependence tree
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Table 3.2 The edges of the tree in Fig. 3.27 are the primary array entries

12 14

23 25

Table 3.3 The array in Table 3.2 supplemented by the secondary entries (i.e. the edges of the
second degree tree)

12 13|2 14 15|2

23 24|1 25
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Table 3.4 The array in Table 3.3 supplemented by the tertiary entries (i.e. the edges of the third
degree tree)

12 13|2 14 15|2

23 24|1 25

34|12 35|12

Table 3.5 The array in Table 3.4 supplemented by the edge of the fourth degree tree

12 13|2 14 15|2

23 24|1 25

34|12 35|12

45|123
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f12345 p1; p2; p3; p4; p5ð Þ ¼ f1 p1ð Þf2 p2ð Þf3 p3ð Þf4 p4ð Þf5 p5ð Þ
c12 F1 p1ð Þ; F2 p2ð Þð Þ
c13j2 F1j2 p1jp2ð Þ; F3j2 p3jp2ð Þ� �
c14 F1 p1ð Þ; F4 p4ð Þð Þ
c15j2 F1j2 p1jp2ð Þ; F5j2 p5jp2ð Þ� �
c23 F2 p2ð Þ; F3 p3ð Þð Þ
c24j1 F2j1 p2jp1ð Þ; F4j1 p4jp1ð Þ� �
c25 F2 p2ð Þ; F5 p5ð Þð Þ
c34j12

�
F3j12 p3jp1; p2ð Þ; F4j12 p4jp1; p2ð Þ� �

c35j12
�
F3j12 p3jp1; p2ð Þ; F5j12 p5jp1; p2ð Þ� �

c45j123
�
F4j123 p4jp1; p2; p3ð Þ; F5j123 p5jp1; p2; p3ð Þ� �

:

ð3:47Þ
f12345 ¼ f1 f2|1 f3|12 f4|123 f5|1234
with
c12 f12 / (f1f2) ¼ f2|1 / f2 ) f2|1 ¼ c12 f2
c14 ¼ f14 / (f1f4) ¼ f4|1 / f4 ) f4|1 ¼ c14 f4
c23 ¼ f23 / (f2f3) ¼ f3|2 / f3 ) f3|2 ¼ c23 f3
c24|1 ¼ f24|1 / (f2|1f4|1) ¼ f4|12 / f4|1 ) f4,12 ¼ c24|1 f4|1
c13|2 ¼ f13|2 / (f1|2f3|2) ¼ f3|12 / f3|2 ) f3|12 ¼ c13|2 f3|2
c34|12 ¼ f34|12 / (f3|12f4|12) ¼ f4|123 / f4|12 ) f4|123 ¼ c34|12 f4|12
c25 ¼ f25 / (f2f5) ¼ f5|2 / f5 ) f5|2 ¼ c25 f5
c15|2 ¼ f15|2 / (f1|2f5|2) ¼ f5|12 / f5|2 ) f5|12 ¼ c15|2 f5|2
c35|12 ¼ f35|12 / (f3|12f5|12) ¼ f5|123 / f5|12 ) f5|123 ¼ c35|12 f5|12
c45|123 ¼ f45|123 / (f4|123f5|123) ¼ f5|1234 / f5|123 ) f5|1234 ¼ c45|123 f5|123

The final array for a so-called C-vine tree (see Fig. 3.28) with five uncertain
parameters looks as shown in Table 3.6, where all primary entries are in the top row

The (de)composition of the corresponding 5-variate density function is therefore

f12345 p1; p2; p3; p4; p5ð Þ ¼ f1 p1ð Þf2 p2ð Þf3 p3ð Þf4 p4ð Þf5 p5ð Þ
c12 F1 p1ð Þ; F2 p2ð Þð Þ
c13 F1 p1ð Þ; F3 p3ð Þð Þ
c14 F1 p1ð Þ; F4 p4ð Þð Þ
c15 F1 p1ð Þ; F5 p5ð Þð Þ
c23j1 F2j1 p2jp1ð Þ; F3j1 p3jp1ð Þ� �
c24j1 F2j1 p2jp1ð Þ; F4j1 p4jp1ð Þ� �
c25j1 F2j1 p2jp1ð Þ; F5j1 p5jp1ð Þ� �
c34j12

�
F3j12 p3jp1; p2ð Þ; F4j12 p4jp1; p2ð Þ� �

c35j12
�
F3j12 p3jp1; p2ð Þ; F5j12 p5jp1; p2ð Þ� �

c45j123
�
F4j123 p4jp1; p2; p3ð Þ;F5j123 p5jp1; p2; p3ð Þ� �

:

ð3:48Þ
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For a so-called D-vine tree (see Fig. 3.29), all primary entries of the array in
Table 3.7 are in the first upper sub-diagonal and the corresponding (de)composition
of the 5-variate density function is

1        2 3      4 5
Fig. 3.29 A D-vine
dependence tree

2

5 1 3

4

Fig. 3.28 A C-vine
dependence tree

Table 3.6 Array to the dependence tree in Fig. 3.28

12 13 14 15

23|1 24|1 25|1

34|12 35|12

45|123
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f12345 p1; p2; p3; p4; p5ð Þ ¼ f1 p1ð Þf2 p2ð Þf3 p3ð Þf4 p4ð Þf5 p5ð Þ
c12 F1 p1ð Þ; F2 p2ð Þð Þ
c13j2 F1j2 p1jp2ð Þ; F3j2 p3jp2ð Þ� �
c14j23

�
F1j23 p1jp2; p3ð Þ; F4j23 p4jp2; p3ð Þ� �

c15j234
�
F1j234 p1jp2; p3; p4ð Þ; F5j234 p5jp2; p3; p4ð Þ� �

c23 F2 p2ð Þ; F3 p3ð Þð Þ
c24j3 F2j3 p2jp3ð Þ; F4j3 p4jp3ð Þ� �
c25j34

�
F2j34 p2jp3; p4ð Þ; F5j34 p5jp3; p4ð Þ� �

c34 F3 p3ð Þ; F4 p4ð Þð Þ
c35j4 F3j4 p3jp4ð Þ; F5j4 p5jp4ð Þ� �

c45 F4 p4ð Þ; F5 p5ð Þð Þ:
ð3:49Þ

Given the primary entries, the construction of the set of pairs requiring specifi-
cation of the copula densities can be readily performed by computer program
following the instructions given above.

There are K(K�1)/2 copulas to be chosen together with the same number of
correlation values for the probability integral transformed uncertain parameters
involved (rank correlations for the primary array entries and conditional rank
correlations for all others). Probability integral transformation does not change the
rank correlations specified for the state of knowledge dependent uncertain parame-
ters. The copulas are defined on the unit cube of dimension K with their pairs of
probability integral transformed uncertain parameters having uniform marginal
distributions. The values of the rank correlations are, therefore, equal to those of
Pearson’s correlation.

Table 3.7 Array to the dependence tree in Fig. 3.29

12 13|2 14|23 15|234

23 24|3 25|34

34 35|4

45
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Discussion
Apart from the specification of the marginal subjective probability distributions for
the uncertain parameters P1, . . ., PK, the copula approach to random sampling
requires the following steps:

1. The specification of rank correlation values for pairs of uncertain parameters with
their indices given as the primary entries of the array. The rank correlation values
simultaneously apply to the pairs of probability integral transformed uncertain
parameters over the unit square where they are equal to the value of Pearson’s
correlation coefficient.

2. The specification of conditional rank correlation values for the secondary, ter-
tiary, etc. entries of the tree array. However, the dimension K is limited by the fact
that it will become increasingly more difficult for the expert to specify a condi-
tional rank correlation value the larger the number of uncertain parameters behind
the condition stroke.

Conditional correlations may vary with the values of the conditioning vari-
ables. The latter values do vary in the course of the sampling process. As a
simplifying step, it is assumed that the conditional correlations are constant over
the range of values of the conditioning uncertain parameters.

3. Copula functions need to be chosen for the entries of the tree array with their
parameters determined according to the rank correlation and conditional rank
correlation values specified in steps 1 and 2.

4. Random sampling needs to be done in stages as determined by the decomposition
of the K-variate subjective probability density function.

The advantage of the use of copulas lies in the fact that a multivariate or joint
subjective probability density function is defined for the uncertain parameters
according to which the sampling of sets of values is carried out. The resulting matrix
of correlations is, therefore, guaranteed to be positive definite.

How to sample at random sets of values for the state of knowledge dependent
uncertain parameters using the fully specified set of pair copulas?

The normal copula distribution is of great advantage for this task because:

– Given a K-variate normal distribution any conditional distribution is also a
normal distribution (Kurowicka and Cooke 2006, page 54—proof for K ¼ 3).

– The given conditional rank correlation coefficients can be transformed into
conditional correlation coefficients via Eq. (3.39).

– Furthermore, the conditional correlation coefficients (they are assumed to be
constant over the full value range of the conditioning uncertain parameters)
equal partial correlation coefficients. Consequently, the well-known recursive
formulae (Freund and Minton 1979), connecting partial correlation coefficients
to correlation coefficients, can be used to replace the conditional correlation
coefficients in the tree array by correlation coefficients. In this way, the repre-
sentation of the K-variate density by K(K�1)/2 pairwise copulas can be replaced
by one K-dimensional copula density with the correlation matrix RZ. The matrix
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RZ is guaranteed to be positive definite since it is derived from a K-variate density
function.

– Sampling according to the K-variate normal copula distribution is now done as
follows:

From a random sample (u1, . . ., uK), each uk independently sampled according
to the uniform distribution over (0, 1), a random sample (x1, . . ., xK) is obtained
through xk ¼ ϕ�1(uk) and the K-dimensional vector x is transformed into a K-
dimensional vector z according to z ¼ Dx where D is the lower triangular matrix
from the decomposition of RZ ¼ DD’ (Cholesky Decomposition). Sample values
( p1, . . ., pK) are then obtained through the inversion pk ¼ F�1(Φ(zk)), k ¼
1, . . ., K.

3.5.2.8 State of Knowledge Dependence Modelling with Elementary
Uncertainty Contributors

State of knowledge dependence of uncertain parameters Pi and Pj is due to uncer-
tainty contributors that are shared by Pi and Pj. An approach to state of knowledge
dependence quantification is suggested in this subsection that starts out with a
countable set of state of knowledge independent elementary uncertainty contributors
with subjective probability distributions of equal variance. Let them be denoted by
Q1, Q2, . . . .

Instead of asking experts for rank correlation coefficients and conditional rank
correlation coefficients, as in the approach with copulas described in Sect. 3.5.2.7,
they are asked to symbolically assign elementary uncertainty contributors to each
uncertain parameter. The stronger the state of knowledge dependence is perceived to
be, the larger the number of elementary uncertainty contributors that Pi and Pj share
among those assigned to Pi and Pj together. Since the elementary uncertainty
contributors shared are identified, the expert is enabled to traceably account for
interrelationships of parameter uncertainties as he conceives them to exist. This is
not possible with the information contained in correlation coefficients. For instance,
the uncertainty contributors that are pairwise shared by Pi, Pj and Pk may all be
different or Pk, Pj and Pi may share the same uncertainty contributor. Yet the latter
case may not look any different from the first if the resulting state of knowledge
dependence is quantified by pairwise correlation coefficients.

The assignment of elementary uncertainty contributors to K uncertain parameters
is documented in a K by K symmetric assignment array A. An example is given in
Table 3.8 where only the entries in the diagonal and in the upper triangle are shown.

The indices of all the elementary uncertainty contributors, that have symbolically
been assigned to the uncertain parameter P1, are entered into the diagonal field a1,1.
The off-diagonal field a1,j with row number 1 and column number j > 1 carries the
indices of those contributors that P1 shares with the uncertain parameter Pj. The
index of a shared contributor is entered with a minus sign in the off-diagonal field a1,j
if its contribution to the uncertainty of P1 and of Pj is in opposite directions.
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The diagonal field a1,1 must contain all elementary contributors that have been
assigned to P1. Therefore, it must also include all elements that are contained in the
off-diagonal fields.

A standard normal subjective probability distribution is assigned as state of
knowledge expression to each of the elementary uncertainty contributors. From this
follows a normal distribution with mean value zero and standard deviation tk,k

1/2,
where tk,k is the number of elementary contributors contained in the diagonal field
ak,k, k ¼ 1, . . ., K, as symbolic uncertainty expression for each uncertain
parameter. The K-variate subjective probability distribution is a joint normal
distribution, and the resulting pairwise correlations of the uncertain parameters
are given as

ρij ¼ hi, j= ti, itj, j
� �1=2

, hi, j ¼
X

mEai, j
cm ð3:50Þ

with cm ¼�1 if the sign of the element index in the array field ai,j is negative and +1
otherwise. The upper triangle of the correlation matrix that results from the assign-
ment array in Table 3.8 is shown below.

Table 3.8 Example of an assignment of 16 state of knowledge independent uncertainty contrib-
utors to 4 pairwise state of knowledge dependent uncertain parameters

Assignment array A= 

1 2 3 4

1

Q1, Q2, Q3, Q4, 

Q5, Q6, Q7, Q8, 

Q9, Q10

Q3, Q4, Q6, -Q7 Q1, Q2, Q5 -Q3, Q6, Q5

2

Q3, Q4, Q6, -Q7, 

Q11, Q12, Q13, 

Q14
Q11, Q12

-Q3, Q6, 

-Q11

3
Q1, Q2, Q5, Q11, 

Q12
Q5, -Q11

4
-Q3, Q5, Q6, 

-Q11, Q15, Q16
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ρ12 ¼
2ffiffiffiffiffi
80

p ¼ 0:224 ρ13 ¼
3ffiffiffiffiffi
50

p ¼ 0:424 ρ14 ¼
1ffiffiffiffiffi
60

p ¼ 0:129

ρ23 ¼
2ffiffiffiffiffi
40

p ¼ 0:316 ρ24 ¼ � 1ffiffiffiffiffi
48

p ¼ �0:144

ρ34 ¼
0ffiffiffiffiffi
30

p ¼ 0

The expert may want to differentiate the uncertainty contribution of Q to the
uncertain parameters Pi and Pj by its strength. For instance, the contribution of Q to
the uncertainty of Pi may be judged to be twice as strong if compared to its
contribution to the uncertainty of Pj. Table 3.9 shows elementary contributors with
coefficients differing from unity. They account for multiples or fractions of their
strength.

Table 3.9 Example of an assignment of 16 state of knowledge independent elementary uncertainty
contributors to 4 pairwise state of knowledge dependent uncertain parameters using a strength factor
for Q6

Assignment array A= 

1 2 3 4

1

Q1, Q2, Q3, Q4, 

Q5, 1.5 Q6, Q7, 

Q8, Q9, Q10

Q3, Q4, Q6, -Q7 Q1, Q2, Q5 -Q3, 1.5 Q6, Q5

2

Q3, Q4, Q6, -Q7, 

Q11, Q12, Q13, 

Q14
Q11, Q12

-Q3, 1.5 Q6,

-Q11

3
Q1, Q2, Q5, Q11, 

Q12
Q5, -Q11

4
-Q3, Q5, 1.5 Q6, 

-Q11, Q15, Q16
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The corresponding correlation coefficients are obtained as
ρij ¼ hi, j/(ti, itj, j)

1/2, hi, j ¼
P

mEai, j cmwith cm ¼ di,mdj,m and di,m is the factor of Qm

in the field ai,i and dj,m is the factor of Qm in the field aj, j while ti, i ¼
X

mEai, i
d2i,m and

tj, j ¼
X

mEaj, j
d2j,m.

The correlation coefficients resulting from the assignments in Table 3.9 are
shown below.

ρ12 ¼
2:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8∗11:25
p ¼ 0:264 ρ13 ¼

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5∗11:25

p ¼ 0:400 ρ14 ¼
2:25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7:25∗11:25
p ¼ 0:249

ρ23 ¼
2ffiffiffiffiffiffiffiffiffi
8∗5

p ¼ 0:316 ρ24 ¼� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8∗7:25

p ¼�0:066 ρ34 ¼
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5∗7:25
p ¼ 0

The K-variate normal distribution is a joint normal distribution with correlation
matrix determined as explained above. Consequently, the correlation values can be
converted into the corresponding Spearman (rank) correlation values ρS

ij as follows:

ρS
ij ¼ 6=πð Þarcsin ρij

2

� �
: ð3:51Þ

These rank correlation values are not changed by the probability integral trans-
formation and the subsequent back transformation into the specified marginal
subjective probability distributions of the uncertain parameters.

The experts who specified the entries in the assignment matrix may want to check
the resulting (rank) correlation values at this stage and decide whether they are
sufficiently compatible with values they might have in mind. If the difference is
judged to be too large, a decision has to be made as to whether to prefer the existing
value (given the considerations that have gone into building the assignment array A)
or to perform changes to A in order to reduce the difference. These changes will not
only affect the correlation value in question but also others. The array A shows
which correlation values are affected and by how much.

The next step is the actual sampling of the parameter values. Sampling at random
a set of values p1, . . ., pK of the uncertain parameters is straightforward:

1. Independently, sample one value each according to the standard normal distribu-
tion for each of the elementary uncertainty contributors in the assignment array A.

2. To obtain a value pk for the uncertain parameter Pk, add the values sampled in step
1 for all elements in the diagonal field of row k of the assignment array thereby
observing the sign (and, if given, the strength factor) of the element index.

3. Probability integral transform the values of the sums obtained in step 2 according
to the marginal normal distributions assigned to the uncertain parameters through
the assignment array A.

4. Back transformation of the values obtained in the previous step for each uncertain
parameter according to the inverse of the specified marginal subjective probabil-
ity distribution.
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Repeat steps 1–4 N times if N is the sample size required.
How can the special cases of state of knowledge dependence quantification,

discussed in Sects. 3.5.2.1–3.5.2.3, be embedded into this approach?

– Conditional distributions for Pj given Pi:
Pi goes into the assignment array while the sampling for Pj is done after the

random sampling for all uncertain parameters in the assignment array.
– Constraint for Pj as function of Pi:

Pi goes into the assignment array while the sampling for Pj is done after the
random sampling for all uncertain parameters in the assignment array.

– Functional relationship like Pk ¼ g(Pi,Pj) between uncertain parameters:
All uncertain parameters in the argument list of the functional relationship go

into the assignment array while the sampling for Pk is done after the random
sampling for all uncertain parameters in the assignment array. It is obvious how to
proceed if conditional distributions or constraints are defined for some of the
parameters in the argument list.

– Proportions like Pk ¼ 1 � Pi � Pj, 0 � Pi, Pj, Pk � 1:
The pairwise state of knowledge independent uncertain parameters Qi, Qj go

into the assignment array (as individual uncertain parameters and not as elemen-
tary uncertainty contributors) only if they are state of knowledge dependent on
other uncertain parameters. The values for Pi, Pj, Pk are computed, using their
relationships to Qi, Qj (see Sect. 3.5.2.3), after the random sampling for all
uncertain parameters in the assignment array has been completed.

Comments

– This approach encourages the experts to investigate the reasons and nature of the
state of knowledge dependence and thereby the interrelationships of parameter
uncertainties.

– The experts do not need to specify (rank) correlation coefficients and conditional
(rank) correlation coefficients.

– A multivariate normal distribution is obtained according to the assignment array
A. Using the inverses of the specified marginal subjective probability distribution
functions, it translates into a joint subjective probability distribution for the
uncertain parameters.

– The pairwise correlation values are known for the multivariate normal distribu-
tion. The corresponding matrix is positive definite. The pairwise correlations can
be transformed into rank correlations using Eq. (3.51). Probability integral
transformation provides a multivariate distribution over the unit hypercube. Its
correlation matrix equals the matrix of the rank correlations as these are
unchanged by the transformation. Their matrix is, therefore, positive definite.
Transformation into the specified marginal subjective probability distributions
does not change this matrix.

– The resulting (rank) correlations may be checked whether they are sufficiently
compatible with values the experts might have in mind. If the difference is judged
to be too large, a decision has to be made as to whether to prefer the existing value
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(given the considerations that have gone into the building of the assignment array
A) or to perform changes to A in order to reduce the difference. These changes
will not only affect the correlation value in question but also others. The array A
shows which correlation values are affected and by how much.

– Random sampling of parameter values as explained in steps 1–4 above is
straightforward.

3.5.3 Sample Expressions of State of Knowledge Dependence

The correlation coefficients discussed in the previous section are population mea-
sures of association. They apply to the whole population of all possibly true pairs of
values for Pi and Pj. A random sample taken according to a joint distribution for Pi

and Pj, that satisfies the specified marginal distributions and the population measure
for state of knowledge dependence, will provide a sample correlation value that
differs from the value specified for the population. Sometimes, the measure of
association is given as a sample measure, i.e. it is specifically required that the
sample correlation value is as specified. In this case, the sampling process is carried
out such that the sample satisfies this requirement. The disadvantage is, however,
that the sample is no longer purely random but has the specified sample measure of
association as a deterministic component. Some useful uncertainty statements,
derived in Chap. 5 for computer model results, require that the sample be random.
They can, therefore, not be obtained if sampling is done according to sample
measures of association.

In the next analysis step (Step 3), a joint subjective probability distribution
satisfying the state of knowledge quantifications as well as the state of knowledge
dependence expression for all uncertainties is propagated through the model. This is
done by Monte Carlo simulation, i.e. a random sample of size N is drawn according
to this joint distribution. The sample consists of N sets of M values each where M is
the number of uncertain parameters. The model is then evaluated for each of the
N sets. With this procedure in mind, it is quite natural to hope for a random sample
that has (rank) correlation values sufficiently close to those specified.

Since the sample (rank) correlations are specified as a property of the random
sample, the description of how to achieve the specified sample (rank) correlations is
given in Sect. 4.4.1.14 of the subchapter dealing with sampling methods.

3.5.4 A Multivariate Sample

In some cases, probability distributions, summarizing stochastic variability, are used
as state of knowledge expressions for the epistemic uncertainties P1, . . ., PK. A
sufficiently large multivariate sample obtained according to their joint probability
distribution would be the best way to quantify state of knowledge dependence. For
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instance, p1,l, . . ., pK,l could be the coefficients of a model fitted to experimental data
provided by expert l. If such sets of data are provided by L experts, each fitting the
model to his own experiments, the L sets of values p1,l, . . ., pK,l, l ¼ 1,. . ., L, may be
thought of as a random sample and may therefore be used directly for the purpose of
uncertainty analysis. In this special case, the sample size will be considerably smaller
than the size N that is to be drawn for the purpose of uncertainty propagation in Step
3 of the analysis. Sampling with replacement from the L sets of K values each may
still be better than estimating values of population measures of association for the
K parameters.

Table 3.10 shows eight sets of values for the uncertain parameters P1, P2, P3 and
P4. Once a subjective probability has been assigned to each set, state of knowledge
dependence of P1, P2, P3, P4 is inherently taken into account. The probabilities have
to add up to unity.

A typical example would be the following: If the computer model receives several
results from another model (feeder model) as input, the N sets of output values
(scalar values, sequences, arrays and/or tables of values) from a Monte Carlo
uncertainty analysis of the application of the feeder model are a multivariate sample
for the Monte Carlo uncertainty analysis of the computer model application. Any
state of knowledge dependence is automatically taken into account (within the
accuracy bounds that may be achieved with the given sample size) by using this
sample.

3.5.5 Summary of Sect. 3.5

– State of knowledge dependence is due to shared (not necessarily additive)
contributors to uncertainty.

Table 3.10 Eight sets of
parameter values derived from
experiments

Parameters of the model

Source (year)a b c d

4.32 1.35 2.35 4.33 Expert(group) 1 (1991)

6.98 1.98 2.45 3.03 Expert(group) 2 (1993)

5.74 2.76 2.64 3.12 Expert(group) 3 (1994)

3.79 3.25 3.94 3.36 Expert(group) 4 (2000)

4.26 2.98 2.03 4.73 Expert(group) 5 (1999)

5.93 1.75 3.65 2.74 Expert(group) 6 (2001)

6.32 2.03 2.02 1.98 Expert(group) 7 (2003)

4.58 1.95 2.76 4.03 Expert(group) 8 (1995)

4.32 0.278 1.98 4.27 Expert(group) 9 (1997)

They may serve as joint state of knowledge expression for the four
uncertain parameters P1 ¼ a, P2 ¼ b, P3 ¼ c and P4 ¼ d once a
subjective probability sw(l ) has been assigned to each of the L¼ 8

sets such that
XL

l¼1
sw lð Þ ¼ 1
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– State of knowledge dependence can have a significant effect on the results of the
uncertainty analysis and must, therefore, be identified and quantified with care
(see Sect. 3.5.1).

– State of knowledge dependence can be quantitatively expressed in many ways
depending on what is known about its cause (see Sect. 3.5.2).

– The approximation of the joint subjective probability distribution of a pair of state
of knowledge dependent parameters by a small set of conditional distributions for
one parameter (given the value of the other parameter) has great potential for
expressing state of knowledge dependence. It is the most natural approach both
for expert judgment elicitation as well as for the Monte Carlo simulation. The
practical use is, however, limited to very small sets of state of knowledge
dependent uncertain parameters.

– Correlation coefficients have to satisfy a number of restrictions (see the summary
of Sect. 3.5.2.4 and the comparison in Sect. 3.5.2.5) and are not always easy to
elicit from experts. The larger the number K of state of knowledge dependent
uncertain parameters, the less likely it is that the matrix of specified correlation
coefficients will satisfy the condition of positive definiteness.

– The copula approach (see Sect. 3.5.2.7) defines a multivariate subjective proba-
bility distribution for the state of knowledge dependent uncertain parameters and
thereby guarantees a positive definite (rank) correlation matrix. However, the
number of copula functions as well as rank correlations and conditional rank
correlations that need to be specified grows rapidly with the number K of state of
knowledge dependent uncertain parameters and so does the number of uncertain
parameters behind the condition stroke. The copula approach is, therefore, limited
to small sets of state of knowledge dependent uncertain parameters.

– The approach using the symbolic assignment of elementary uncertainty contrib-
utors (see Sect. 3.5.2.8) also defines a multivariate subjective probability distri-
bution for the state of knowledge dependent uncertain parameters and thereby
guarantees a positive definite (rank) correlation matrix. Neither does it require the
specification of copula functions nor are the values of (rank) correlation or
conditional (rank) correlation coefficients to be provided. The expert is encour-
aged to identify cause, communalities and strength of the shared uncertainty
contributions. The random sampling of sets of parameter values is straightforward
for this approach.

– Scatterplots greatly aid the expert in deciding about the suitability of the specified
state of knowledge dependence expression.

The next subchapter deals with the practical aspects of the elicitation of expert
judgment. The judgment is required for the specification of the marginal subjective
probability distributions that quantify the state of knowledge for each of the uncer-
tain parameters. It also deals with the elicitation of expressions quantifying state of
knowledge dependence.
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3.6 State of Knowledge Elicitation and Probabilistic
Modelling

The state of knowledge is elicited from experts familiar (or individuals quite
familiar) with the respective uncertain parameter, model formulation or input
datum of the computer model application. These so-called substantive experts are
characterized in Council on Environmental Quality (1980) as follows:

“EXPERT–You should consider yourself an expert if you belong to that small
community of people who currently study, work on and dedicate themselves to the
subject matter. Typically, you know who else works in this area; you know the
relevant domestic and probably the foreign literature; you attend conferences and
seminars on the subject, sometimes reading a paper and sometimes chairing the
sessions; you are most likely to have written up and/or published the results of your
work. If a leading national or international institution were to convene a seminar on
this subject, you would expect to be invited. Other experts in this field may disagree
with your views but invariably respect your judgment; comments such as “this is an
excellent person on this subject” would be typical when inquiring about you.

QUITE FAMILIAR—You are quite familiar with the subject matter either if you
were an expert some time ago but feel somewhat rusty now because other assign-
ments have intervened (even though, because of the previous interest, you have kept
reasonably abreast of current developments in the field); or if you are in the process
of becoming an expert but still have some way to go to achieve mastery of the
subject; or if your concern is with integrating detailed developments in the area, thus
trading breadth of understanding for depth of specialization”.

An uncertainty analyst (also called “normative expert”) organizes the elicitation
sessions. He needs to know how to conduct an elicitation so as to be able to assist the
substantive experts in providing the necessary information while keeping the influ-
ence of bias as small as possible. Furthermore, it is essential that he be familiar with
the ways of quantitatively expressing state of knowledge by subjective probability.
He also needs to be familiar with the concepts and tools from probability calculus
and statistics used to propagate the quantified states of knowledge through the
computer model. It is his task to also interpret the resulting state of knowledge
quantification for the model result with respect to uncertainty ranges and uncertainty
importance. Last but not least, the uncertainty analyst needs to be familiar with the
question to be answered by the application of the computer model and with the
intended use of the answer in any decision-making process. This background
information may, however, also be contributed by a third person (it may be called
“the client”) involved in the elicitation sessions. The client writes the session
minutes that would otherwise need to be produced by the analyst. The minutes
should carry the names and signatures of the three individuals involved (expert,
analyst and client) and should be filed together with the documentation sheet for the
respective uncertain parameter, model formulation or input datum. A detailed
description of the contents of the documentation sheet is given below in Sect.
3.6.1.5.
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Obviously, not every uncertainty analysis of a computer model application
permits or requires this separation of responsibilities. Quite often the other extreme
will be the case, namely substantive expert, analyst and client united in one person.

3.6.1 State of Knowledge Elicitation and Probabilistic
Modelling for Data

Model uncertainties are represented by uncertain parameters (see Sect. 3.4), and
uncertain parameters are categorized as uncertain data in order to simplify matters.
Therefore, without loss of generality, this section only uses the term “data”.

The elicitation process is described for the following two extreme situations:

– No separation of responsibilities, i.e. only one substantive expert who also acts as
analyst and client;

– Total separation of responsibilities, i.e. a team consisting of an analyst, a client
and one substantive expert per uncertain parameter, model formulation or input
datum.

The state of knowledge elicitation involving several substantive experts for the
same uncertain parameter, model formulation or input datum is discussed in Sect.
3.7.

3.6.1.1 No Separation of Responsibilities

It is the (substantive) expert’s task to provide a subjective probability distribution
that expresses his state of knowledge for the uncertain datum P. To perform this task,
the expert executes a work plan. The steps of this plan are as follows:

1. Search for information on P or similar data by asking:

1.1 Are there directly applicable and sufficient observations that would enable a
statistical approach?

1.2 Are there only observations that are not directly applicable or that are
insufficient and therefore need to be supplemented by theoretical
considerations?

1.3 Are there no observations so that the state of knowledge is based solely on
theoretical and/or plausibility considerations?

1.4 Can P be represented as a function of two or more uncertain data that are
more readily amenable to state of knowledge quantification (Hora et al.
1993)? If yes, go back to the top for each of these data.

1.5 Has the state of knowledge already been expressed by a subjective probabil-
ity distribution for a similar, related datum or can the state of knowledge be
more readily quantified for a similar datum that does not quite correspond to
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the description of P, and is it possible to perform the required adjustments
(taking their uncertainty into account in turn)?

2. Quantify your state of knowledge by asking:

2.1 Which is the range of all possibly true values?
2.2 Which are the endpoints of a range such that the subjective probability (your

degree of belief) is 0.9 for the true value to be within this range? Or in other
words: You see only 5% chance for values below this range and 5% chance
for values above this range to be true.

2.3 Which is the value that is most likely true?
2.4 Is there any information that would suggest a specific shape of the subjective

probability density function towards the endpoints of the range given in 2.1
or that would suggest even one of the customary distribution types?

3. Use the information given in steps 1 and 2 to specify a subjective probability
distribution for the uncertain datum P. Apply the maximum entropy principle
(Buckley 1985) if the information does not uniquely determine the distribution.

Finally, the expert needs to check his quantifications by verifying whether all the
information available to him is adequately reflected with respect to its strength and
weight for the assessment task of the computer model application. While executing
the work plan, bias of the state of knowledge quantifications may creep in at every
step. The search for information in step 1 may subconsciously be limited to those
observations, state of knowledge quantifications for similar data, theoretical and
plausibility considerations that are most readily available or retrieved from memory
(availability bias). The use of observations and/or information on data similar to
P may be flawed by overemphasizing certain similarity aspects while neglecting
features that would suggest to give this information less weight in the state of
knowledge quantification for P (representativeness bias). When choosing the range
of all possibly true values in step 2, one might subconsciously first think of a most
likely value (that accounts for only part of the information) and then allow for too
little deviation from the latter in order to account for all of the information (anchor-
ing bias). The endpoints of a range of values that is supposed to contain the true
value with subjective probability 0.9 may exhibit a tendency of being chosen too
close to the most likely value (overconfidence bias). A thorough description and
discussion of biases and their sources can be found in Vick (2002) and Kahneman
(2011) together with illustrative and practical examples.

3.6.1.2 Total Separation of Responsibilities

The elicitation is carried out with a team consisting of an analyst, a client and one
substantive expert per uncertain datum P. The analyst elicits the state of knowledge
in individual sessions with each substantive expert after all substantive experts
participated in a “background” session and in a training session.
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– The background session
The client supplies all substantive experts with sufficient information about the

computer model and about the purpose of its application. The analyst provides all
necessary background information about how an uncertainty analysis is
conducted, what kind of information is required from the experts and in which
format the expert’s answers will be expected.

– The training session
All substantive experts identified for the uncertain data are invited to a training

session that is conducted by the analyst (Hora and Hora 1992) prior to the actual
elicitation sessions. The main purpose of the training session is the “hands-on”
preparation of the experts for the format in which the elicitation questions will be
presented to them and in which the answers are expected. Additionally, the
session is to make them aware of the sources of bias along the path to state of
knowledge quantification. The training session should conclude with a set of
10 questions the answers of which are not likely to be known by the experts but
are known to the analyst. The statistical yearbook or statistical annual is usually a
good information source for the formulation of such questions. They should be
chosen such that there is potential for all of the types of bias mentioned above.
Since the questions are most likely from outside their expertise, the experts must
allow for wide uncertainty ranges if they do not want to fall prey to
overconfidence bias. The questions should ask for the range of all possibly true
values and for the endpoints of an interval that contains the true value with
subjective probability 0.9. An expert may be called well calibrated if his intervals
contain the true value for 9 out of 10 questions (see also the remarks on “training”
under point 5 of Sect. 3.7).

– The elicitation session
Participants of the session are the expert, the analyst and the client. In what

follows it is assumed that there is only one expert per uncertain datum. The case
where several experts are questioned with respect to the same datum is discussed
in Sect. 3.7.

Basically, the same work plan as in Sect. 3.6.1.1 has to be executed by the expert.
Different to Sect. 3.6.1.1, the expert is now supported by the analyst. At the
beginning of the session, the analyst shows the expert a summary of the outcome
from the training session and in particular the answers given by the expert himself
and how they relate to the true answers. Any influence of bias is pointed out and it is
explained how it could have been avoided.

The analyst gives the uncertain data consecutive numbers and opens a documen-
tation sheet for each. The documentation sheet contains the number of the uncertain
datum and its name in the encoded computer model. Together with the expert, the
analyst enters a short description of the meaning of the datum. This is followed by
the symbol used for the datum in the mathematical model and by the physical unit
(if any) in which the computer model expects the numbers for this datum to be
provided. The best estimate value (see Sect. 3.6.1.4) used for a point result of the
computer model application and a reference value (see Sect. 3.6.1.4) are also entered
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but should only be chosen once the state of knowledge has been quantified in order
to avoid anchoring bias.

The actual state of knowledge quantification starts with the analyst first asking the
expert for the endpoints of the range of all possibly true values for the uncertain
datum. The question goes as follows:

1. “Which is the smallest value at which you are 100% sure that the true value does
not lie above?”

“Which is the largest value at which you are 100% sure that the true value does
not lie below?”

The analyst points out that these two endpoints must be chosen such that any
values above (respectively below) can be excluded, i.e. these endpoints delimit the
range of possibly true values and the expert must see no possibility for values
beyond these endpoints to be true. The expert is asked to provide his arguments
for the exclusion of these values. To support him in his argumentation, the analyst
challenges the expert:

“Suppose, tomorrow you read in a report that a value beyond the endpoints of your
100% range was shown to be true. What could be the reason for this?”

Experts from engineering often associate a different meaning with the terms
“minimum” and “maximum”. They tend to think of “reasonably possible” ranges
meaning that they still see a chance, albeit small, for values beyond the endpoints of
the range to be true. If an expert can think of a reason why a value outside his 100%
range could have turned out to be true, he is asked to adjust the two endpoints
accordingly. Asking for a most likely value first is not recommended as it is seen as a
source of anchoring bias.

Next, the expert is asked to provide a value for the uncertain datum such that his
subjective probability is 0.1 (0.05) for values below to be true and another value such
that his subjective probability is 0.1 (0.05) for values above to be true. The question
goes as follows:

2. “At which value do you see 10% (5%) chance for the true value to lie above and at
which value 10% (5%) chance for the true value to lie below?”

Again, these values need to be accompanied by supporting argumentation. Later,
the analyst may ask the same question using the complementary probability values,
i.e. by replacing the 10% (5%) by 90% (95%) to see whether there is any
contradiction.

Next, the analyst asks for a value such that the expert has no preference with
respect to the true value lying either above or below. The question goes as follows:

3. “At which value is it impossible for you to say whether the true value is more
likely to lie above or below?”

This value constitutes the 50% quantile (or median) of the subjective probability
distribution. Supporting argumentation would be appreciated.
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It might be even possible to go one step further and to ask the following
questions:

4. “Let us consider only values from the range below the value given under (3). At
which value from this sub-range is it impossible for you to say whether the true
value is more likely to lie above or below?”

and analogously:

5. “Let us consider only values from the range above the value given under (3). At
which value from this sub-range is it impossible for you to say whether the true
value is more likely to lie above or below?”

These latter two values would now constitute 25% and 75% quantiles of the
subjective probability distribution, i.e. a quartile range.

As a last question, the analyst may ask:

6. It may be that not every value below your 10% (5%) quantile (above your 90%
(95%) quantile) can be considered as equally likely true. Values closer to those
quantiles may be more likely true than those further away. If that is the case, can
you give an impression (graphically) of how your degree of belief changes
between the 10% (5%) quantile and the lower endpoint and again between the
90% (95%) quantile and the upper endpoint of the range of possibly true values?

Again, argumentation for the depicted changes in degree of belief would be
appreciated.

While the expert provided answers to the above questions the analyst made a
graphical representation (possibly using a suitable software package) showing how
the degree of belief is distributed according to the answers given under (1)–(6). This
graphical representation is now presented to the expert and the expert is asked to
check whether it is an adequate expression of his state of knowledge. This inspection
may give rise to some adjustments that need to be accompanied by supporting
argumentation. A subjective probability distribution needs to be chosen that contains
a minimum of information in addition to the information contained in the expert’s
answers to question (1)–(6). This task is supported by the maximum entropy
principle (Buckley 1985). According to this principle, the following distributions
may, for instance, be used in the uncertainty analysis:

Expert’s quantifications
Distribution type according to the maximum
entropy principle

– Only minimum and maximum possibly
true values

Uniform

– Minimum, maximum and quantiles Piecewise uniform

– Mean value and variance Normal.

The following is a presentation of the distribution types that are most commonly
used in uncertainty analysis. The presentation of each type starts with an explanation
why an expert might opt to use the distribution type as the probabilistic expression of
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his state of knowledge. This is followed by the formulae for the probability density
function (pdf) and the cumulative distribution function (cdf) as well as by the mean
value, variance and median value. Last but not least, it is indicated how random
samples might be generated according to each of the distributions specified as state
of knowledge expression.

3.6.1.3 Subjective Probability Distributions Frequently Used as State
of Knowledge Expressions

Most elicited state of knowledge quantifications may be satisfactorily represented by
one of the following types of subjective probability distributions:

– Uniform
– Triangular
– Trapezoidal
– Piecewise uniform
– Polygonal line
– Truncated normal
– t- or Student
– Beta
– Logarithmic uniform (loguniform)
– Logarithmic normal (lognormal)
– Discrete.

Each of these distributions is presented below together with an illustrative
example of the density graph. The mathematical expressions for mean value,
variance and median value are also given, followed by instructions for the generation
of a random sample of values drawn according to the distribution in a Monte Carlo
simulation.

Subjective probability density functions fitted to elicited state of knowledge
quantifications need to be inspected by the expert in order to decide whether any
modifications to his state of knowledge quantifications are suggested by the density
graph.

– Uniform distribution

The uniform subjective probability distribution (see Fig. 3.30) assigns equal
degree of belief to any value between the elicited minimum ( pmin) and maximum
( pmax) possibly true value of the uncertain datum P. It says that the expert does not
see any reason nor is he aware of any information that would enable him to prefer
any value between the minimum and the maximum possibly true value.

Pdf: Cdf:
f( p) ¼ 1/( pmax � pmin) F( p) ¼ ( p � pmin)/( pmax � pmin)
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for pmin � p � pmax

Mean value: E{P} ¼ ( pmin + pmax)/2
Variance: Var{P} ¼ ( pmax � pmin)

2/12
Median value: p50% ¼ E{P}.
Monte Carlo
simulation:

Sample a value u from the (0, 1) uniform distribution (standard
subroutine) and transform it into a value p using the transfor-
mation p ¼ F�1 (u) where F�1 denotes the inverse of the
distribution function. In other words, p is that value for P that
satisfies F( p) ¼ u, i.e. that solves the equation
u ¼ ( p � pmin)/( pmax � pmin)
and therefore
p ¼ u( pmax � pmin) + pmin.

– Triangular distribution

This subjective probability distribution is the simplest state of knowledge expres-
sion in cases where the expert restricts the range of possibly true values for P to a
finite interval delimited by pmin and pmax and where there is information that suggests
one value pmod as most likely true while values below and above are to receive
degrees of belief that decrease linearly to zero towards both endpoints (see
Fig. 3.31).

Pdf: Cdf:
f( p) ¼ h( p � pmin)/( pmod � pmin) F( p) ¼ h( p � pmin)

2/2( pmod � pmin)
for pmin � p < pmod
and
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Fig. 3.30 Density function of a uniform distribution
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f( p) ¼ h( pmax � p)/( pmax � pmod) F( p)¼ 1� h( pmax� p)2/2( pmax� pmod)
for pmod < p � pmax
h ¼ 2/( pmax � pmin) ¼ f( pmod) F( pmod) ¼ ( pmod � pmin)/( pmax � pmin).

Note, that pmod may be equal to pmin or pmax.

Mean value: E{P} ¼ ( pmin + pmod + pmax)/3 if pmin < pmod < pmax
E{P} ¼ (2pmin + pmax)/3 if pmin ¼ pmod < pmax
E{P} ¼ ( pmin + 2pmax)/3 if pmin < pmod ¼ pmax

Variance: Var Pf g¼ p2minþp2modþp2max�pminpmod�pminpmax�pmodpmax
� �

=18
Median
value:

See “Monte Carlo simulation” for u ¼ 0.5.

Monte Carlo
simulation:

Sample a value u from the (0, 1) uniform distribution (standard
subroutine) and transform it into a value p using the transformation
p ¼ F�1 (u) where F�1 denotes the inverse of the distribution
function. In other words, p is that value for P that satisfies F( p) ¼ u.
For u � F( pmod):
Solve u ¼ ( p � pmin)

2/[( pmod � pmin)( pmax � pmin)] for p;
For u � F( pmod):
Solve u ¼ 1 � ( pmax � p)2/[( pmax � pmod)( pmax � pmin)] for p.

– Trapezoidal distribution

This subjective probability distribution (see Fig. 3.32) is the simplest state of
knowledge expression in cases where the expert restricts the range of possibly true
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Fig. 3.31 Density function of a triangular distribution; h is the maximum density value
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values for P to a finite interval delimited by pmin and pmax and where there is not
enough information to suggest only one value as most likely true. Each value
between pmod1 and pmod2, with pmin � pmod1 < pmod2 � pmax, receives the highest
and equal degrees of belief while values below pmod1 and values above pmod2 receive
degrees of belief that decrease linearly to zero towards both endpoints.

Pdf: Cdf:
f( p) ¼ h( p � pmin)/( pmod1 � pmin) F( p) ¼ h( p � pmin)

2/2( pmod1 � pmin)
for pmin � p < pmod1
f( p) ¼ h F( p) ¼ h( p � pmod1) + F( pmod1)
for pmod1 � p � pmod2
f( p) ¼ h( pmax � p)/( pmax � pmod2) F( p)¼ 1� h( pmax� p)2/2( pmax� pmod2)
for pmod2 < p � pmax

F( pmod1) ¼ ( pmod1 � pmin)/
( pmax � pmin + pmod2 � pmod1)
F( pmod2) ¼ F( pmod1) + ( pmod2 � pmod1)h

h ¼ 2/( pmax � pmin + pmod2 � pmod1)

To compute mean value and variance, it is assumed that P is a mixture of three
state of knowledge independent uncertain data, namely

P1 ~ triangular over ( pmin, pmod1)
P2 ~ uniform over ( pmod1, pmod2)
P3 ~ triangular over ( pmod2, pmax)

pmin pmod1 pmod2 pmax
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Fig. 3.32 Density function of a trapezoidal distribution; h is the maximum density value
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with the nonnegative mixture coefficients c1, c2, c3 where c1 + c2 + c3 ¼ 1 and

c1 ¼
Z pmod1

pmin

f pð Þdp ¼ F pmod1ð Þ, c2 ¼
Z pmod2

pmod1

f pð Þdp ¼ F pmod2ð Þ � F pmod1ð Þ,

c3 ¼
Z pmax

pmod2

f pð Þdp ¼ 1� F pmod2ð Þ

Mean value: E Pf g ¼
X3

i¼1
ciE Pif g

Variance: Var Pf g ¼
X3

i¼1
ciVar Pif g þ

X3

i¼1
ci E Pif g � E Pf gð Þ2

This follows from the relationship Var{P} ¼ E{Var{P|P¼Pi}} + Var{E{P|
P¼Pi}} with E{Pi} and Var{Pi} as given above for the uniform and the triangular
distribution.

Median value: See “Monte Carlo simulation” for u ¼ 0.5.
Monte Carlo
simulation:

Sample a value u from the (0, 1) uniform distribution (standard
subroutine) and transform it into a value p using the transfor-
mation
p ¼ F�1 (u) where F�1 denotes the inverse of the distribution
function. In other words, p is that value for P that satisfies
F( p) ¼ u.
For u � F( pmod1):
Solve u ¼ h( p � pmin)

2/2( pmod1 � pmin) for p;
For F( pmod1) � u � F( pmod2):
Solve u � F( pmod1) ¼ h( p � pmod1) for p;
For u � F( pmod2):
Solve u ¼ 1 � h( pmax � p)2/2(pmax � pmod2) for p.

– Piecewise uniform distribution

The piecewise uniform or stepwise uniform subjective probability distribution
(see Fig. 3.33) assigns equal degrees of belief to the values between two successive
elicited quantiles. The value pmin is the 0%-quantile denoted by p1 and pmax is the
100%-quantile denoted by pK if the elicitation provided K�2 quantiles in addition to
pmin and pmax. The distribution says that the expert does not see any reason nor is he
aware of any information that would enable him to prefer any value from those
between two successive elicited quantiles. The values qk, k ¼ 1, . . ., K are the
corresponding quantile percentages divided by 100, with q1 ¼ 0 and qK ¼ 1.

Pdf: Cdf:
f( p)¼ (qk � qk � 1)/( pk � pk � 1) F( p) ¼ qk � 1 + (qk � qk � 1)( p � pk � 1)/

( pk � pk � 1)
for pk � 1 � p � pk, k ¼ 2, . . ., K

where qk is the quantile percentage divided by 100 of the quantile pk
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Just as for the trapezoidal distribution, it is assumed that P is a mixture of K�1
state of knowledge independent uncertain data P1,. . .,PK�1, each with a uniform
distribution over the respective interval. The mixture coefficient ci is the integral of
f( p) over the i-th interval, i ¼ 1, . . ., K�1.

Mean value: E Pf g ¼
XK�1

i¼1
ciE Pif g

Variance: Var Pf g ¼
XK�1

i¼1
ciVar Pif g þ

XK�1

i¼1
ci E Pif g � E Pf gð Þ2

This follows from the relationship Var{P} ¼ E{Var{P|P¼Pi}} + Var{E{P|
P¼Pi}} where E{Pi} and Var{Pi} are the mean value and variance of the datum
Pi over the i-th interval as given above for the uniform distribution.

Median value: See “Monte Carlo simulation” for u ¼ 0.5
Monte Carlo
simulation:

Sample a value u from the (0, 1) uniform distribution (standard
subroutine) and transform it into a value p using the transfor-
mation p ¼ F�1 (u) where F�1 denotes the inverse of the
distribution function. In other words, p is that value for P that
satisfies F( p) ¼ u.
Find k such that qk � 1 � u � qk,
p ¼ pk � 1 + (u � qk � 1)( pk � pk � 1)/(qk � qk � 1).

It is essential to inspect a graphical representation of the density function in order
to judge its suitability as state of knowledge expression. For instance, Fig. 3.34 may
suggest that the expert’s state of knowledge quantification needs to be modified if

pmin p2 p3 p4 p5 pmax

Piecewise uniform

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8
p

D
en

si
ty

 F
un

ct
io

n

Fig. 3.33 Density function of a piecewise uniform distribution with the heights h1 ¼ q2/( p2 �
pmin), h2 ¼ (q3 � q2)/( p3 � p2) and so forth
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there is no reason to assume that the values of the third interval should receive a
lower degree of belief than those of the two neighbouring intervals.

– Polygonal line

Sometimes the expert may find it a more adequate expression of his state of
knowledge if the density function were sloping linearly between two successive
quantiles. This and similar state of knowledge expressions can be modelled by using
the polygonal line distribution (see Fig. 3.35).

If the elicitation provided K�2 quantiles in addition to pmin and pmax and with
pmin the 0% quantile denoted by p1 and pmax the 100% quantile denoted by pK, the
heights h2, . . ., hK�1 at p2, . . ., pK�1 are determined from qk, k¼ 1, . . ., K, with qk the
quantile percentages divided by 100.

h1 ¼ 0

h2 ¼ 2q2= p2 � pminð Þ
hk ¼ 2 qk � qk�1ð Þ= pk � pk�1ð Þ � hk�1 for k ¼ 3, . . . , K� 1

hK¼ 0:

Pdf: Cdf:
– If k ¼ 2 then
f( p) ¼ h2( p � pmin)/( p2 � pmin) F( p) ¼ h2( p � pmin)

2/2( p2 � pmin)

pmin p2 p3 p4 p5 pmax
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Fig. 3.34 Density function of a piecewise uniform distribution possibly needing modification
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for pmin � p � p2;
– If K > k > 2 and hk � 1 < hk then
f( p) ¼ (hk � hk � 1)( p � pk � 1)/

( pk � pk � 1) + hk � 1

F( p) ¼ (hk � hk � 1)( p � pk � 1)
2/

2( pk � pk � 1) + hk � 1( p � pk � 1)+
F( pk � 1)

for pk � 1 � p � pk;
– If K > k > 2 and hk � 1 ¼ hk then
f( p) ¼ hk F( p) ¼ hk( p � pk � 1) + F( pk � 1)
for pk � 1 � p � pk;
– If K > k > 2 and hk � 1 > hk then
f( p) ¼ (hk � 1 � hk)( pk � p)/
( pk � pk � 1) + hk

F( p) ¼ (hk � 1 � hk)( pk � pk � 1)/
2� (hk � 1� hk)(pk� p)2/2(pk� pk � 1)+
hk(p � pk � 1) + F(pk � 1)

for pk � 1 � p � pk;
– If k ¼ K then
f( p)¼ hK � 1( pmax� p)/( pmax � pK � 1) F( p) ¼ 1 � hK � 1( pmax � p)2/

2( pmax � pK � 1)
for pK � 1 � p � pmax.

Just as for the trapezoidal distribution, it is assumed that P is a mixture of K�1
state of knowledge independent uncertain data P1,. . ., PK�1. The mean value and

pmin p2 p3 p4 p5 pmax
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Fig. 3.35 Density function of a polygonal line distribution
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variance for the datum P with the state of knowledge expressed by a polygonal line
distribution can then be obtained as

Mean value: E Pf g ¼
XK�1

i¼1
ciE Pif g

Variance: Var Pf g ¼
XK�1

i¼1
ciVar Pif g þ

XK�1

i¼1
ci E Pif g � E Pf gð Þ2

This follows from the relationship Var{P} ¼ E{Var{P|P¼Pi}} + Var{E{P|
P¼Pi}}.

The coefficient ci is the integral of f( p) over the interval ( pi, pi+1), i ¼ 1,. . ., K–1.
In the illustrative example of Fig. 3.35, P2 and P4 are themselves considered to be
mixtures of two state of knowledge independent uncertain data. For example, P2 is a
mixture of P2,1 with triangular distribution ( p2,1mod ¼ p3) and of P2,2 with a uniform
distribution, both over the interval ( p2, p3) and therefore E{P2}¼ d2, 1E{P2, 1} + d2,
2E{P2, 2} with d2, 1 and d2, 2 the mixture coefficients for P2 alone such that d2, 1 + d2,
2 ¼ 1. The coefficient d2, 1 is the area of the upper triangular part divided by d while
d2, 2 is the area of the lower rectangular part divided by d and d is the sum of both
areas so that

Var P2f g ¼
X2

i¼1
d2, iVar P2, if g þ

X2

i¼1
d2, i E P2, if g � E P2f gð Þ2:

P4 is a mixture of P4,1with triangular distribution ( p4,1mod¼ p4) and of P4,2with a
uniform distribution, both over the interval ( p4, p5) and therefore

Var P4f g ¼
X2

i¼1
d4, iVar P4, if g þ

X2

i¼1
d4, i E P4, if g � E P4f gð Þ2:

For the remaining mixture components, E{Pi} and Var{Pi} are as given above for
the uniform and triangular distribution;

Mean value: See “Monte Carlo simulation” for u ¼ 0.5.
Monte Carlo
simulation:

Sample a value u from the (0, 1) uniform distribution (standard
subroutine) and transform it into a value p using the transfor-
mation p ¼ F�1 (u) where F�1 denotes the inverse of the
distribution function. In other words, p is that value for P that
satisfies F( p) ¼ u.
1) Find the two quantile values qk � 1 and qk such that
qk � 1 < u � qk;
2) Solve for p from the interval [pk � 1, pk]:
– If hk � 1 ¼ 0
u ¼ hk( p � pk � 1)

2/2( pk � pk � 1) + F( pk � 1);
– If hk � 1 < hk
u ¼ (hk � hk � 1)( p � pk � 1)

2/2( pk � pk � 1)+
hk � 1( p � pk � 1) + F( pk � 1);
– If hk � 1 ¼ hk
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u ¼ hk( p � pk � 1) + F( pk � 1);
– If hk � 1 > hk
u ¼ (hk � 1 � hk)( pk � pk � 1)/2�
(hk � 1 � hk)( pk � p)2/2( pk � pk � 1)+
hk( p � pk � 1) + F( pk � 1);
– If hk ¼ 0
u ¼ (hk � 1( pk � pk � 1)/2 � hk � 1( pk � p)2/
2( pk � pk � 1) + F( pk � 1).

– Normal or Gaussian distribution

This state of knowledge expression says that the expert considers the uncertainty
of P to be due to a number of independent additive uncertainty contributors. The
central limit theorem suggests the well-known bell shape (see Fig. 3.36) for state of
knowledge quantification. The shape is symmetrical about the specified mean value
μ and is spread out according to the specified variance σ2. If two quantiles are
specified in the elicitation session, instead of mean value and variance, the
corresponding values of mean and variance are computed from these quantiles as
shown below.

Pdf: Cdf:

f pð Þ ¼ 1=
ffiffiffiffiffi
2π

p
σ

� �
exp � p� μð Þ2=2σ2
h i

F( p) ¼ ϕ(z) with z ¼ ( p � μ)/σ and
ϕ(z)

for �1 < p < 1 and with μ and σ2 the
specified mean value and variance.

the value of the tabulated standard
normal distribution (mean value is
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Fig. 3.36 Density function of a normal distribution. The density is shown only over a portion of its
carrier
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0 and standard deviation is 1) function
at z.

Mean value: E{P} ¼ μ
Variance: Var{P} ¼ σ2

Median value: p50% ¼ E{P}.

Instead of mean value and variance, the expert may have provided his state of
knowledge quantification in the form of two quantiles p1 < p2, with q1 and q2 the
quantile percentages and with “normal” as the specified distribution type. Mean
value and variance may then be obtained from the quantiles as

μ ¼ p1 � z1 p2 � p1ð Þ= z2 � z1ð Þ and σ ¼ p2 � p1ð Þ= z2 � z1ð Þ
where z1 and z2 are the q1% and the q2% quantiles of the standard normal distribu-
tion. The latter are available from standard subroutines or tables.

Note, that the sum of K state of knowledge independent uncertain data, with
normal distribution as their state of knowledge expression, has a normal distribution
with mean value μs ¼ ΣK

k¼1μk and variance σ2s ¼ ΣK
k¼1σ

2
k as its state of knowledge

expression.

Monte Carlo
simulation:

Sample a value z from the standard normal distribution (stan-
dard subroutine) and transform it into a value p using the
transformation p ¼ μ + zσ.

The set of possibly true values for P will in most practical situations not extend to
infinity but will rather be limited from below at a value pmin and from above at a
value pmax, both specified in the elicitation session. The normal distribution will,
therefore, need to be truncated at these values.

Figure 3.37 shows the density function of the normal distribution in Fig. 3.36
after truncation at pmin ¼ 2.0 and pmax ¼ 8.0:

Monte Carlo
simulation:

Sample a value z from the standard normal distribution (stan-
dard subroutine) and transform it into a value p using the
transformation p¼ μ + zσ and discard any values p outside the
specified limits. The variance and, if the truncation is not
symmetric, the mean value of the truncated distribution will
differ from σ and μ. The quantiles after truncation will not
agree with those specified and used in the calculation of μ and
σ. The software for uncertainty analysis (Kloos 2015) searches
for a normal distribution that is truncated at pmin and at pmax
and complies, after truncation, with the pair of specified
quantiles or, as closely as requested by the user, with the
specified mean value and variance.
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– t- (or Student) distribution

If the uncertain datum P is the mean value of a population of values and a set of
values p1, . . ., pK, sampled at random from this population, is available, then

�p ¼ 1
K

� �XK

k¼1
pk

is an unbiased estimate of P and the state of knowledge of P can be quantified with
the help of the t-distribution with K�1 degrees of freedom (see Fig. 3.38a) as was
shown in Sect. 3.3.1.1.

Pdf: Cdf:
(for K degrees of freedom): F( p) from Tables
f pð Þ ¼ Γ Kþ1

2

� �
= 1þ p2=Kð ÞKþ1

2 Kπð Þ12Γ K
2

� �n o Γ(x) is the value of the Gamma
function at x.

for �1 < p < 1.

Mean value: E{P} ¼ 0
(does not exist for K ¼ 1)

Variance: Var{P} ¼ K/(K � 2)
(exists only for K > 2)

Median value: p50% ¼ E{P}.

Monte Carlo
simulation:

A straightforward but possibly not the most efficient way
would be to sample independently K+1 values z according to
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Fig. 3.37 Density function of the normal distribution in Fig. 3.36 after truncation
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the standard normal distribution (standard subroutine). Multi-
ply the first by the square root of K and divide the result by the
square root of the sum of the squares of the K others to obtain a
sample value from the t-distribution of K degrees of freedom.
For other ways of generating random samples according to a
Student distribution, see Fishman (2000).

Figure 3.38b shows a Normal distribution fitted to the t-distribution in Fig. 3.38a.

– Beta distribution

The family of beta distributions offers a wide variety of probabilistic expressions
for the state of knowledge of an uncertain datum P with the range of possibly true
values restricted to a finite interval.

a)

b)

-6 -4 -2 0 2 4 6 8

-6 -4 -2 0 2 4 6 8

Fig. 3.38 (a) Cumulative distribution function of the t-distribution with 13 degrees of freedom.
(b) Normal distribution fitted to the t-distribution in (a)
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The density function of the Beta distribution is defined over the interval (0, 1) as

g yð Þ ¼ 1
B α; βð Þ
� �

yα�1 1� yð Þβ�1 with α, β > 0 and 0 < y < 1:

B(α, β) ¼ Γ(α)Γ(β)/Γ(α + β) and Γ(x) is the value of the Gamma function at x.
To use the probabilistic modelling flexibility of the Beta distribution for the state

of knowledge of P over ( pmin, pmax), the following linear transformation is
performed:

P¼ pmin + ( pmax� pmin)Ywith 0� pmin < p < pmax which leads to the density and
distribution function given below.

Pdf: Cdf:
f( p) ¼ [( p � pmin)

α � 1

( pmax � p)β � 1]
/[B(α, β)( pmax � pmin)

α + β � 1]

F( p) ¼ G[( p � pmin)/( pmax � pmin)]
¼G( y)
where G( y) is the Beta distribution with the same
values of α and β but over the interval (0, 1). G( y)
is taken from tables possibly using the relationship
Y ¼ mVm, n/(n + mVm, n) with Vm, n following the
F-distribution with (m, n) degrees of freedom and
α ¼ m/2, β ¼ n/2.
pmin < p < pmax

Mean value: E{P} ¼ pmin + ( pmax � pmin)α/(α + β)
Variance: Var{P} ¼ ( pmax � pmin)

2αβ/[(α + β)2(α + β + 1)]
Median value: p50% ¼ pmin + ( pmax � pmin)y50% with y50% from ables for G( y).
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Fig. 3.39 Density functions for P with β ¼ 3.0 and varying values of α
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Fig. 3.40 Density functions for P with β ¼ 2.0 and varying values of α
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Fig. 3.41 Density functions for P with β ¼ 1.0 and varying values of α
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Monte Carlo simulation: See Fishman (2000)

The Figs. 3.39, 3.40, 3.41 and 3.42 show some of the infinitely many shapes
offered by the family of beta density functions after the linear transformation
P ¼ pmin + ( pmax � pmin)Y of the Beta-distributed Y and with pmin ¼ 2, pmax ¼ 8.

– Loguniform distribution

This type of distribution (see Figs. 3.43 and 3.44) is chosen if the expert considers
only positive values as possibly true for P and the uncertainty to be so large that he is
only able to quantify his state of knowledge for orders of magnitude between a
lowest order of magnitude log10( pmin) and a largest order of magnitude log10( pmax)
while the degrees of belief are equally spread between these limits.

Pdf: Cdf:
f(log10( p)) ¼ 1 / [log10( pmax) �
log10( pmin)]

F(log10( p)) ¼ [log10( p) �
log10( pmin)]/
[log10( pmax) � log10( pmin)]

Using the relationship log10(x)ln(10) ¼ ln(x):

Pdf: Cdf:
f( p) ¼ 1 / log10( pmax / pmin)p ln(10) F( p)¼ log10( p / pmin) / log10( pmax / pmin)
0 < pmin � p � pmax
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Fig. 3.42 Density functions for P with β ¼ 0.5 and varying values of α
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Mean value: E{P} ¼ ( pmax � pmin) / log10( pmax / pmin)ln(10)
Variance: Var{P} ¼ ( pmax

2 � pmin
2) / 2log10( pmax / pmin)ln(10) –

( pmax � pmin)
2 / [log10( pmax / pmin)ln(10)]
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Fig. 3.43 Density function over log10(P) of a loguniform distribution for P
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Fig. 3.44 Density function of a loguniform distribution for P shown over part of its carrier
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Median value: p50% ¼ ( pminpmax)
1/2.

Monte Carlo
simulation:

Sample a value u from the (0, 1) uniform distribution (standard
subroutine) and transform it into a value p using the transformation
p ¼ exp{[log10(pmin) +ulog10(pmax/pmin)]ln(10)}.

Note that a uniform distribution for P over the range of values (0, 1000] would
assign subjective probability 0.01 to the range of values (0, 10] and subjective
probability 0.9 to the range of values (100, 1000]. If there is no information that
would justify this preference for the upper order of magnitude, i.e. if the state of
knowledge is only such that each of the three ranges (0, 10], (10, 100] and
(100, 1000] are considered to equally likely contain the true value of P, the uniform
distribution would favour the upper magnitude out of proportion.

– Lognormal distribution

Choosing this distribution as state of knowledge expression says that the expert
considers only positive values to be possibly true for the uncertain datum P and that
the uncertainty is due to a number of independent multiplicative uncertainty con-
tributors all of which have only positive values. Following the central limit theorem,
the state of knowledge of ln(P) is then approximately expressed by the normal
distribution (see Fig. 3.45) with specified mean value μ and according to the
specified variance σ2. The state of knowledge expression for P is a lognormal
distribution (see Fig. 3.46). If instead of μ and σ of the normal distribution of
ln(P) two quantiles of the lognormal distribution for P are specified in the elicitation
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Fig. 3.45 Normal density function of ln(P) shown over part of its carrier
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session, then the corresponding values of μ and σ are computed from these quantiles
as shown below.

Pdf: Cdf:

f ln pð Þð Þ ¼ 1ffiffiffiffi
2π

p
σ

� �
exp � ln pð Þ � μð Þ2=2σ2
h i

F(ln(p))¼ ϕ(z) with z¼ (ln(p)� μ)/σ
and ϕ(z) is the value of the tabulated
standard normal distribution function
at z.

for 0 < p < 1.

With μ the mean value and σ the standard deviation of the normal distribution for
ln(P), the density and distribution function for P are

Pdf: Cdf:

f pð Þ ¼ 1=
ffiffiffiffiffi
2π

p
σp

� �
exp

� ln pð Þ � μð Þ2=2σ2� F( p)¼ ϕ(z) with z¼ (ln( p)� μ)/σ

and ϕ(z) is the value of the tabu-
lated standard normal distribution
function at z.

for 0 < p < 1
f( p) ¼ 0 for p � 0.

Mean value: E{P} ¼ exp (μ + σ2/2)
Variance: Var{P} ¼ exp (2μ + σ2)(exp(σ2) � 1)
Median value: p50% ¼ exp (μ)
Modal value: exp(μ � σ2)

The density function assumes its maximum at the modal value.
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Fig. 3.46 Density function of a lognormal distribution for P shown over part of its carrier
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The term exp(μ) is called the geometric mean and exp(σ) the geometric standard
deviation of the state of knowledge expression for P.

If the elicitation session provided pq, the q% quantile, and p(100 � q), the (100 �
q)% quantile, then parameter values μ and σ are obtained from the two symmetrical
(in percentage) quantiles as:

μ ¼ ln
�
pqÞ þ ln p100�q

� ��
=2 and σ ¼ 
 ln �p100�q � μ

�
=z100�q



where z100 � q is the (100 � q)% quantile of the standard normal distribution. The
value of z100 � q is available from standard subroutines and tables.

The product of K uncertain state of knowledge independent uncertain data with
their states of knowledge expressed by lognormal distributions has again a lognor-
mal distribution as its state of knowledge expression. The parameters μ and σ of the
lognormal distribution for the product are obtained as μ ¼ ΣK

k¼1μk and

σ ¼ ΣK
k¼1σ

2
k

� �1
2:

Monte Carlo
simulation:

Sample a value z from the standard normal distribution (stan-
dard subroutine) and transform it into a value p using the
transformation p ¼ exp (μ + zσ).

– Discrete distribution

If there are only K discrete values (see Fig. 3.47) that could be possibly true for
the uncertain datum P, then the expert’s state of knowledge quantification needs to
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Fig. 3.47 Density function of a discrete distribution for P with K ¼ 6 possibly true values
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specify the set of K values p1, . . ., pK considered as possibly true together with the
associated subjective probabilities q1, . . ., qK.

Pdf: Cdf:
f( p1) ¼ q1 F pð Þ ¼

X k

i¼1
qi

for pk � p < pk + 1

. k ¼ 1, . . ., K�1

. F( p) ¼ 0 for p < p1
f( pK) ¼ qK F( p) ¼ 1 for p � pK.
p1 < p2 < . . . < pK.

Note, that the density function could be a discrete approximation to any contin-
uous distribution with the number and positions of the discrete values chosen such
that the approximation is satisfactory.

Mean value: E Pf g ¼
XK

k¼1
pkqk

Variance: Var Pf g ¼
XK

k¼1
pk � E Pf gð Þ2qk

Median value: See “Monte Carlo simulation” for u ¼ 0.5. However, the value
F( p) at the obtained value p will be larger than 0.5 in most
situations.

Monte Carlo
simulation:

Sample a value u from the (0, 1) uniform distribution (standard
subroutine) and find k such that
F( pk � 1) < u � F( pk), p ¼ pk.

Guidance for the probabilistic modelling of the state of knowledge of uncertain
data may also be found in Stephens et al. (1993) and Joint Committee for Guides in
Metrology (2008).

3.6.1.4 Specific Values for Uncertain Data

Any single value p of P with subjective probability density f( p) > 0 is called a “point
value” for P. This is to emphasize the fact that it is only one value out of a population
of possibly true values. Specific point values are:

– Best estimate value

The mean value of the subjective probability distribution is usually considered to
be the best estimate for P. The integral of the product “p times the density value f( p)”
taken over the values of P below the mean value is equal to the integral of this
product taken over the values of P above the mean value. In this sense, the mean
value is balanced with respect to the subjective probability weighted contents of
possibly true values on either side.
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– Reference value

The median value of the subjective probability distribution is usually considered
to be the reference value for P. The integrals of the density function f( p) taken over
the values of P on either side of the median value are equal. The median is balanced
with respect to the subjective probability content on either side.

– Most likely or preferred value

The modal value of the subjective probability density function is the value for
P that is believed to be most likely true. The subjective probability density function
has its maximum at the modal value. Quite frequently, the specified subjective
probability density function does not have a single modal value but is flat on top
with all values from a finite interval receiving the highest subjective probability
density.

– q% value

This is the q%-quantile of the subjective probability distribution. The true value
of P is believed to be below or equal to this value with subjective probability q/100.

– Extreme values

The specified smallest possibly true value and the specified largest possibly true
value delimit the range of all values of P that are thought to be possibly true. The
subjective probability for values outside this range is zero.

3.6.1.5 The Documentation Sheet

The state of knowledge document is discussed for data uncertainties only since
model uncertainties are represented by uncertain parameters (see Sect. 3.4), and
uncertain parameters are categorized as uncertain data in order to simplify matters.

There is one document each per uncertain datum. Each document consists of three
parts:

– Cover sheet
– State of knowledge quantification and probabilistic modelling sheet
– State of knowledge dependence information sheet

The cover sheet contains:

• Number of the uncertain datum.
The uncertain data are successively numbered from 1 toM whereM is the total

number of uncertain data considered in the uncertainty analysis of the application
of the computer model.

• Full name of the uncertain datum.
This is a verbal explanatory description of the datum.

• Is the uncertain datum already part of the encoded computer model (yes/no)?
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• Is the uncertain datum already part of the input file of the computer model
(yes/no)?

• Short name of the uncertain datum.
This is the name (to be) used in the encoded computer model.

• Symbol for the uncertain datum.
This is the symbol used in the equations of the mathematical model.

• Unit of the uncertain datum (if any).
This is the physical (or other) unit of the uncertain datum used in the encoded

computer model.
• Probabilistic state of knowledge (sok) model for the uncertain datum.

– The type of the subjective probability distribution.
– The values of the distribution parameters.
– Values at which the distribution is truncated (if any).

• State of knowledge dependence with
Numbers of the uncertain data that are found to be state of knowledge

dependent with the uncertain datum of this sheet.
• Notes.

– Caveats to be remembered when interpreting the analysis results.
– Any additional explanatory and supplementary remarks provided by the

substantive expert.
– Any additional explanatory and supplementary remarks provided by the

analyst.
– Status of the state of knowledge quantification (preliminary/exploratory/state

of the art)?

The state of knowledge quantification and probabilistic modelling sheet
contains:

• Number of the uncertain datum
(as on the cover sheet)

• Short name of the uncertain datum
(as on the cover sheet)

• Unit of the uncertain datum
(as on the cover sheet)

• Name and affiliation of the substantive expert
• Detailed description of the uncertain datum and of its role in the application of the

computer model (provided by the client)
• Full text of the elicitation questions (provided by the analyst)
• The state of knowledge quantifications elicited from the substantive expert
• The substantive expert’s arguments in support of his quantifications including

any computations and caveats
• The subjective probability distribution fitted to the substantive expert’s state of

knowledge quantifications
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– Type, parameters and truncations (if any)
– Plot of the density and of the distribution function

• References (supporting documents)
The references should contain a list of all the information sources used by the

expert in the course of the state of knowledge quantification. These may range
from observations permitting a statistical estimate of the uncertain datum to the
fitting of a model to experimental results, or to common sense plausibility
considerations. Within this range are: Practical experience, literature studies,
extrapolations from related fields, laboratory experiments, field tests, theoretical
models and interview data from other experts or persons intimately familiar with
the uncertain datum

• Notes

– Caveats
– Status of the state of knowledge quantification (preliminary/exploratory/state

of the art)?

• Date and signatures of the substantive expert, the analyst and the client.

The state of knowledge dependence information sheet contains:

• Number of the uncertain datum
(as on the cover sheet)

• Short name of the uncertain datum
(as on the cover sheet)

• Unit of the uncertain datum
(as on the cover sheet)

• Name and affiliation of the substantive expert
• Full text of the explanation of state of knowledge dependence provided by the

analyst;
• Numbers of the uncertain data that are found to be state of knowledge dependent

to the uncertain datum of this sheet
• For each datum listed above:

Either

– the number where state of knowledge dependence is already specified

or

– full text of the elicitation question posed by the analyst in order to identify and
quantify state of knowledge dependence between the pair of uncertain data

– Source of the state of knowledge dependence as seen by the substantive expert
– Type and details of the dependence modelling chosen
– Scatterplot of the dependence modelling chosen

• References (supporting documents)
• Notes

– Caveats
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– Status of the state of knowledge dependence quantifications (preliminary/
exploratory/state of the art)?

• Date and signatures of the involved substantive expert, the analyst and the client
(Tables 3.11, 3.12 and 3.13).

3.6.2 State of Knowledge Elicitation and Probabilistic
Modelling for Model Uncertainties

It is the substantive expert’s task to provide a subjective probability distribution that
expresses his state of knowledge for the computational representation of a process or
state of affairs. To perform this task, the expert first needs to determine the category
of the model uncertainty. Four categories may be distinguished:

– Category 1

It is uncertain how to represent the process or state of affairs because it is
unknown which representation out of a finite and exhaustive set of mutually
exclusive possibly true alternatives is actually true. Specifically, there are only two
alternatives if it is uncertain whether to include or exclude a known phenomenon.

– Category 2

There are infinitely many different ways of simplifying the representation of a
continuum or of a very large set of data that cannot practically be represented in full.

– Category 3

Table 3.11 Example of a cover sheet

COVER SHEET

Number 4

Full name Loss from cohort 1 due to predation by non-bird-enemiesa,
given as fraction of the total loss L (see no. 10)

Datum is part of the model Yes

Datum is part of the input file Yes

Short name LOSS1

Symbol l1
Unit L

Probabilistic state of knowl-
edge model

(0.7, 0.9) uniform

State of knowledge dependent
with number(s)

5, 6, 7, 8, 9

Notes Preliminary state of knowledge quantification
aExcluding fishing activities
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There are an infinite number of different ways of fitting a function to observations
or there are an infinite number of different mathematical expressions based on
theoretical and/or plausibility considerations that could serve as an approximate
representation.

– Category 4

The process or state of affairs is declared an issue with no model existing.

3.6.2.1 Elicitation for Category 1

The model uncertainty reduces to a parameter uncertainty. The parameter P can
assume only a finite number of integer values. These values are the index numbers
assigned to the alternatives. In the case of a phenomenon, the relevance of which is

Table 3.12 Example of a state of knowledge quantification and probabilistic modelling sheet

STATE OF KNOWLEDGE QUANTIFICATION AND PROBABILISTIC MODELLING
SHEET

Number 4

Short name LOSS1

Unit L

Name and affiliation of the
expert

A. Fisher, Fisheries Board

Detailed description of the
datum

Quantifies the loss (per period of 4 months), of the youngest
anchovies as fraction of the total loss (see no. 10), due to
enemies other than guano-birds and fishing activities.

Elicitation questions a)
Which is the smallest value at which you are 100% sure that
the true value of this fraction does not lie above?
Which is the largest value at which you are 100% sure that the
true value of this fraction does not lie below?
b)
Do you see any reason, or are you aware of any information,
that would enable you to prefer any value between the mini-
mum and the maximum possibly true value (given under a)) of
this fraction?

State of knowledge quantifica-
tions by the expert

The fraction is not less than 0.7 and not more than 0.9 of the
total loss (measured in MTs of biomass)—no preference for
any values between these limits.

Expert’s argumentation The Youngest are highly vulnerable to predation by non-bird
enemies—limits are preliminary.

Fitted subjective probability
distribution

(0.7, 0.9) uniform

References None

Notes Preliminary state of knowledge quantification

Date and signatures Oct. 21, 2011
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uncertain, P can assume only two index numbers, namely “one” for inclusion of the
phenomenon and “zero” for exclusion from the computer model application.

The first step of the work plan for state of knowledge quantification is analogous
to the description given in Sect. 3.6.1.1 for an uncertain datum P. In the second step,
the expert is asked to give his subjective probabilities for the truth of each of the
alternatives. For each of the alternatives, the expert is asked as follows:

“Considering the information identified in the first step, which is your subjective probability
for this alternative to be true?”

The expert is asked to supplement his answer by his arguments for the choice of
probability values. His arguments are to be documented together with the result of
the elicitation. The probability values given by the expert have to add up to 1 given
the alternatives are mutually exclusive and the set of alternatives is exhaustive. If
they do not add up to 1, normalization may help unless the expert comes up with a
correction supported by arguments that are to be documented. The third step of the
work plan, as described for an uncertain datum, is obsolete as the subjective
probability distribution for P is discrete. The subjective probabilities for the elements
of the finite set of index values (assigned to the alternatives) are already specifying
the subjective probability distribution.

3.6.2.2 Elicitation for Category 2

The model uncertainty reduces to a parameter uncertainty. The parameter P can
assume only a finite number of integer values. These values are the index numbers
assigned to the finite number of alternatives considered.

Table 3.13 Example of a state of knowledge dependence information sheet

STATE OF KNOWLEDGE DEPENDENCE INFORMATION SHEET

Number 4

Short name LOSS1

Unit L

Name and affiliation of expert A. Fisher, Fisheries Board

Meaning of state of knowledge
dependence

The state of knowledge for no. 4 is dependent if it is
different for different values thought to be true for any of
the other uncertain data.

Numbers of state of knowledge
dependent uncertain data

5, 6, 7, 8, 9

Details of dependence:
a) Reason or source of dependence Fractions of the total loss have to add up to 1.

b) Type of dependence modelling State of knowledge for conditional fractions

References None

Notes “State of the art” dependence modelling

Date and signatures Oct. 25, 2011
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The expert has to make a decision as to how many and which representations to
include in the set. After this decision is made, the search for information on the
alternative simplified representations proceeds very much as described in Sect.
3.6.1.1 for an uncertain datum P. In the first step, the expert has to specify the set
of simplified representations. All the information available about the elements of this
set needs to be collected. This includes the experience gained with simplified
representations, in particular their success in representing the continuum or large
set sufficiently well for problems to be solved by the computer model. In the second
step, the expert is asked to give his subjective probability for each of the chosen
representations to come sufficiently close to the full representation of the continuum
or large set. For each of the representations, the expert is asked:

“Considering the information identified in the first step, which is your subjective probability
for this simplified representation to come sufficiently close to the full representation?”

The expert is asked to supplement his answer by his arguments for the choice of
probability values. His arguments are to be documented together with the result of
the elicitation. The subjective probabilities will most likely not add up to 1. Normal-
ization will in this case be required. Again, the third step is obsolete as the subjective
probability distribution for P is discrete. The probability values for the elements in
the finite set of index values (assigned to the representations) are already specifying
the distribution. This model uncertainty needs to be earmarked for a caveat that is in
place when interpreting the analysis results. Reason is that the question could not ask
for possibly true alternatives but for alternatives that come sufficiently close to the
truth.

3.6.2.3 Elicitation for Category 3

The model uncertainty reduces to a parameter uncertainty in either of three ways:

– There is either only one model formulation available or the alternative that is
judged to come closest to the true representation is chosen. An uncertain param-
eter (or a set of parameters) is defined as the value(s) of a correction term that is
possibly needed so that the output of the model formulation may be used in the
computer model application. The elicitation of the state of knowledge for the
correction parameter(s) follows then the procedure described in Sect. 3.6.1.1 for
an uncertain datum P.

– There are two extreme models, and the uncertainty is expressed by forming a
weighted average of the output from both models with the weight now being a
new uncertain parameter P. Elicitation proceeds as described in Sect. 3.6.1.1 for
an uncertain datum P.

– There is a finite number of alternative functions fitted to observations or a finite
number of alternative mathematical expressions based on theoretical and/or
plausibility considerations that could be thought of as coming sufficiently close
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to the true representation. P assumes then only a finite number of integer values,
namely the index numbers assigned to the alternatives.

The second step is as for category 2 and the third step is again obsolete as the
subjective probability distribution for P is discrete with the subjective probabil-
ities for the elements of the finite set of index values already specifying the
subjective probability distribution.

3.6.2.4 Elicitation for Category 4

In this case, the state of knowledge is directly elicited for the value of the quantity
required in the computer model application. To this end, it may be appropriate to
consider an exhaustive set of cases, the so-called case structure, and to elicit the state
of knowledge from the substantive expert in each of the cases. State of knowledge
dependence across cases may need to be considered. For each case, the elicitation
proceeds as described in Sect. 3.6.1.1 for an uncertain datum P. The expert quantifies
his state of knowledge by a subjective probability distribution for the value in
question. Often the subjective probability distributions are obtained from a decom-
position of the issue into a sequence of sub-issues that may be more amenable to
state of knowledge quantification. The state of knowledge for the actual issue result
is then obtained by propagation of the states of knowledge for the sub-issues through
this decomposition. The argumentation for the chosen case structure as well as for
any decomposition into sub-issues and for the state of knowledge quantifications
needs to be documented. Different experts may choose different issue decomposi-
tions and may arrive at different state of knowledge quantifications (see Sect. 3.7).

3.6.3 Elicitation for State of Knowledge Dependence

The elicitation session closes with the question whether state of knowledge depen-
dence needs to be taken into account. If the expert has provided his state of
knowledge quantifications for two or more uncertain data (model uncertainties are
represented by uncertain parameters, as was shown in Sect. 3.4, and uncertain
parameters are categorized as data uncertainties for the sake of simplicity), the
analyst needs to explain the concept of state of knowledge dependence. He will do
so with the help of an example of two uncertain data Pi and Pj. The explanation will
show that in the case of dependence, the state of knowledge of Pj will vary with the
value that is thought to be true for Pi. He will then go through all pairs of uncertain
data for which the expert provided his state of knowledge and will ask whether the
state of knowledge quantification given for one member of the pair remains valid
irrespective of the value that is thought to be true for the other member. If the expert
indicates for one such pair that the assumption of independence is not justified, the
analyst will explain the ways available for state of knowledge dependence quanti-
fication. This explanation will include the many possibilities presented in Sect. 3.5
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except for Sect. 3.5.2.3 since any known functional relationship will have most
likely been specified already.

For any unknown monotone functional relationship (Sect. 3.5.2.6), that the expert
might think exists between the two uncertain data, he needs to indicate the direction
namely whether it is increasing (large values are true for Pj together with large values
for Pi) or decreasing (large values are true for Pj together with small values for Pi).

If the range of values, that are possibly true for Pj, is restricted by a function of the
value that is thought to be true for Pi (Sect. 3.5.2.2), then the expert needs to specify
this function.

If none of these clear-cut situations apply, then the expert is shown how to
represent state of knowledge dependence by conditional subjective probability
distributions (Sect. 3.5.2.1). Should he choose to use this means of quantification,
then the expert has to decide about an exhaustive set of disjoint intervals covering the
range of possibly true values of the so-called free datum Pi. The elicitation continues
with the conditional state of knowledge quantification (as described in Sect. 3.6.1)
for Pj under the condition that the true value of Pi lies in the respective interval.
Instead of conditional distributions for Pj to each of the finite number of intervals for
Pi, the expert may be able to specify a distribution type for the conditional state of
knowledge of Pj and to express the values of its parameters as continuous functions
of the value that is thought to be true for Pi (see Fig. 3.6).

If none of the above options apply or are feasible, then the expert may specify a
measure of association (Sects. 3.5.2.4 and 3.5.2.5) as quantitative expression of state
of knowledge dependence, rather than conditional distributions. In this case, the
analyst will put the following question to the expert:

Given the true value pi of Pi lies somewhere below pi, 50% (i.e. Fi( pi) < 0.5), what
would be your subjective probability for the true value pj of Pj to also lie below
pj,50% (i.e. Fj( pj) < 0.5)?5

The provided subjective probability is

sw Pj < pj, 50%jPi < pi, 50%
� � ¼ bij þ 1

� �
=2

with bij known as Blomquist’s quadrant measure (Kruskal 1958).
If Pi and Pj are transformed as follows:

Zi ¼ ϕ�1 Fi Pið Þð Þ and Zj ¼ ϕ�1 Fj Pj

� �� �
where ϕ�1 is the inverse of the standard normal distribution function, then bij also
applies to Zi and Zj and may be transformed into the Pearson correlation coefficient
ρij of Zi and Zj as follows (Kruskal 1958)

5If his judgment is such that there is no state of knowledge dependence, then he should give 0.5 as
his subjective probability. If he judges the data to be completely state of knowledge dependent, then
his subjective probability should be 1 (positive complete dependence) or 0 (negative complete
dependence).
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ρij ¼ sin bijπ=2
� �

:

The corresponding Spearman rank correlation coefficient is obtained through the
relationship (Kruskal 1958)

ρS
ij ¼ 6=πð Þ arcsin ρij=2

� �
:

Back transformation of Zi and Zj into Pi and Pj leaves ρ
S
ij unchanged so that the

expert has indirectly specified a Spearman rank correlation coefficient as association
measure quantifying his judgment of the state of knowledge dependence between Pi

and Pj.
If Spearman rank correlation coefficients are specified for more than two pairwise

state of knowledge dependent data, then the corresponding matrix needs to be
positive definite (see Sect. 3.5.2.5). The difficulty of specifying a positive definite
matrix of pairwise correlations grows rapidly with the dimension of this matrix.
Besides, the subjective probability distributions specified for the uncertain data
individually (the so-called marginal distributions) together with the correlation
coefficients do not define a unique multivariate distribution. However, a multivariate
normal distribution is uniquely defined by the marginal distributions and the corre-
lation matrix.

The copula approach (Sect. 3.5.2.7) defines a multivariate subjective probability
density function and thereby yields a positive definite correlation matrix. The expert
needs to provide the dependence tree and to fill in the corresponding fields of the
dependence array, i.e. he has to provide the values of rank correlation coefficients
and of conditional rank correlation coefficients. The elicitation of these values runs
as explained above for measures of association. However, the larger the number of
uncertain data in the condition (of the conditional correlation coefficients) the more
difficult it will be for the expert to arrive at a judgment for the conditional subjective
probabilities needed for the Blomquist measure of association and therefore to arrive
at a value for the conditional rank correlation coefficient.

The approach described in Sect. 3.5.2.8 gives the expert the opportunity to build
the dependence structure using elementary uncertainty contributors that are additive
at the multivariate normal level. This way the expert is led to investigate the reasons
and nature of the state of knowledge dependence and thereby the interrelationship of
state of knowledge dependent uncertain data. All the expert has to provide is the
array assigning elementary contributors to the various state of knowledge dependent
pairs of uncertain data. The elicitation is only concerned with the rather simple yet
intuitive step of consistently assigning elementary uncertainty contributors to the
fields in the diagonal and the upper triangle of the assignment array. No correlation
coefficients or conditional correlation coefficients need to be specified. The correla-
tion matrix that results from this approach is guaranteed to be positive definite and
there is no limitation to its dimension. The following is an example how the analyst
would guide the expert through the elicitation for this approach:

Given an arbitrarily large set {Q1, Q2, . . . } of state of knowledge independent
elementary uncertainty contributors, let the state of knowledge of each be expressed
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by a standard normal distribution. Consider now the first uncertain datum P1 among
the set of four state of knowledge dependent uncertain data in the example of Sect.
3.5.2.8 and assign the contributorQ1 to it, i.e. enterQ1 in the diagonal field a1,1 of the
assignment array A. Think of an explanation for this contributor (e.g. the uncertainty
about the ambient temperature) and consider now the other uncertain data P2, P3, P4

whether Q1 could also contribute to their uncertainty. If Q1 is judged to be also a
contributor to the uncertainty of P3, then enter Q1 in the field a1,3 of the array A. If
there is no other uncertain datum that could be seen as a recipient of the contributor
Q1 and if there is more uncertainty of P1 to be explained, then take Q2 and enter it in
the field a1,1. Does Q2 also contribute to any of the other uncertain data? If so, enter
Q2 in the respective off-diagonal field of row 1 of the array A. Q3 may be able to
account for some of the remaining uncertainty of P1 but may act on P4 in the
negative direction (i.e. a positive value of Q3 acting on the value of P1 in the positive
direction would act on the value of P4 in the negative direction and vice versa);
therefore, Q3 is to be entered into the field a1,1 with the plus sign and into the field
a1,4 with the minus sign. Once all conceivable causes of uncertainty of P1 have been
taken care of by elementary uncertainty contributors (there are 10 contributors in the
example of Table 3.8), the elicitation continues with the uncertain datum P2. All
entries in the field a1,2 need to be copied into the field a2,2. Are there any further
causes of the uncertainty of P2 that need to be taken care off by an elementary
uncertainty contributor? If so, enter Q11 and possibly others into the field a2,2 and see
whether any of these are shared with P3 and/or P4. Proceed as for P1, and so forth.

Table 3.9 shows an assignment array with multiples or fractions of uncertainty
contributors assigned to uncertain data. This is to account for any knowledge the
expert might have of different strengths of the same contributor for different
uncertain data (for instance, the contribution of the uncertainty about the ambient
temperature to the uncertainty of P1 may be half or double as strong as to the
uncertainty of P3). The elicitation of these multiples or fractions is self-evident.

After the individual elicitation sessions with each substantive expert have been
completed, there still remains the question whether there is state of knowledge
dependence among uncertainties with state of knowledge quantifications provided
by different experts. To answer this question, all substantive experts are invited to
join into a final session where these additional dependences are identified and jointly
quantified by the involved experts.

In every instance of state of knowledge dependence quantification, the expert’s
argumentation is to be documented. He is presented with a graphical representation
of the consequences of his quantification for the sample of pairs of values that will be
used in the Monte Carlo simulation for uncertainty propagation. This is done with
the help of scatterplots. His dependence quantification is finalized and documented
for use in the uncertainty analysis only once his agreement has been obtained.
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3.7 Survey of Expert Judgment

It is the aim of the uncertainty analysis to compute the combined influence of all
possibly important epistemic uncertainties on the result of the computer model
application. Thereby a subjective probability distribution is obtained for the model
result. It is understood that this distribution expresses the state of knowledge of the
team of experts involved in the analysis. Other teams of experts may arrive at a
different subjective probability distribution. It may, therefore, be necessary to base
the state of knowledge quantifications for data and model uncertainties on the
judgment of several experts, depending on the importance of the model result.
This chapter, therefore, closes with a discussion of structured approaches to expert
judgment elicitation and with recommendations of how to conduct a survey of expert
judgment. As was already emphasized at the beginning, “state of knowledge quan-
tification by subjective probability” is the most laborious step of the uncertainty
analysis and the quality of the analysis result depends primarily on its outcome.

A properly conducted survey of expert judgment is time consuming and expen-
sive. For this reason it will be an option only in those situations where the results
from the application of the computer model are intended to serve as input to
sufficiently important decisions. The following description is based on Hora and
Iman (1989) and Ortiz et al. (1991).

While expert judgment is part and parcel of most computer models, a structured
formal survey of expert judgment is not justified in every instance. Instances that
require a formal procedure need to be identified by the project team that develops
and/or applies the computer model. They are characterized by:

– Lack of observations.
– Observations that allow for a wide range of interpretations.
– Models that are far from being validated or are severely simplified or may even be

called fragmentary.
– A state of knowledge riddled with gaps.
– Modelling attempts that are subject to controversy.
– High complexity.
– Reasoning that is still in the state of work hypotheses.

In these situations (also called “Issues”), use of the judgment of a single expert
may be insufficient. The spectrum of possible judgments will most likely lead to
significantly different results of the computer model application. Consequently, a
quantitative expression of the state of knowledge among experts is required. It is the
aim of a survey of expert judgment to obtain this quantitative expression. Elicitation
and application of so-called point values without quantification of the state of
knowledge is the most common misuse of expert judgment. It gives the impression
of precision that is obviously never attainable.

A structured formal survey of expert judgment needs to proceed according to a
protocol that is composed of consistently defined, well planned, and carefully
documented steps. It must be ensured that the experts do not disassociate themselves
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from the quantitative statements that are derived from their judgments or from the
use of their judgments in the computer model application and its uncertainty
analysis. Quite frequently, expert judgment is elicited in an informal way and/or is
implicitly used. The disadvantage of this approach is that the results from the model
application and from its uncertainty analysis are not repeatable by interested parties
and are therefore not defendable.

3.7.1 The Structured Formal Survey of Expert Judgment

A survey of expert judgment is laborious if executed according to the standard that is
required for model results that are intended to support far-reaching decisions.
Therefore, it has to follow a procedure that is tightly organized, carefully
documented (like a scientific experiment) and conclusively structured.

The essential tasks are shown in Table 3.14 and are described in detail below.
Practical examples are documented in Merkhofer (1987), Hora and Iman (1989),
Keeney and von Winterfeldt (1991), Ortiz et al. (1991), Hora (1992), Hora and Hora
(1992), Otway and von Winterfeldt (1992), Reliability Engineering and System
Safety (1997), Goossens and Harper (1998) and Cojazzi et al. (2001). Guidelines
and a justification for the use of expert judgment in technical problems are given, for
instance, in Keeney and von Winterfeldt (1989), Cooke and Goossens (2000) and
Vick (2002).

Task 1: Selection of the Issues
The criteria may be summarized as follows:

– There is disagreement among experts with respect to a quantitative assessment of
the issue and possibly also with respect to the importance of the issue for the
results of the computer model application.

– Either there are no observations from experiments, tests, operation experience
and results from validated computer models or their suitability is subject to
controversy.

– Preliminary sensitivity analyses show that the issue may contribute significantly
to important results from the computer model application and/or to their
uncertainty.

The project team needs to compile all issues that are found to necessitate a survey
of expert judgment. The experts, that are to be included in the survey, must be given
the opportunity to modify this list if they see the need to do so.

Task 2: Selection of the Experts
The literature (Council on Environmental Quality 1980) provides a rather compre-
hensive and useful definition of the term “expert” with respect to an issue and a
corresponding ranking of expertise into the categories “expert”, “quite familiar”,
“familiar”, “casually acquainted” and “unfamiliar”. The description of the first two
ranks is quoted in Sect. 3.6. The relevant scientific literature, lists of participants of
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conferences, membership lists of scientific societies active in the field, etc. will be
valuable sources of information that may be used in an attempt to identify experts for
a specific issue. The experts should come from consultancies, research centres,
government organizations, universities and other organizations and institutions that
are known to be active in the field. The aim is to cover as much as possible of the
associated scientific background and of the available expertise. It will be recom-
mendable to employ a more or less formal nomination procedure depending on the
degree to which the model results and their uncertainty analysis will have to strive
for acceptance among peers. The nomination procedure must be designed in a way
that excludes partiality. The selection criteria need to be specific and thoroughly
documented. They must include:

– Proof of expertise.
– Reputation in the trade.
– Indication of availability and willingness to participate in the survey.
– Assurance of impartiality, i.e. no personal or economical interests in the model

results and especially in the decision they are intended to support.
– Achievement of a balanced representation of the spectrum of existing viewpoints.

Similar criteria must also be satisfied by the selection procedure for the members
of the elicitation team. Experts that, for reasons of their professional involvement,
cannot satisfy the second last criterion above may present their “insider” information
to the expert panel in task 4 below.

Task 3: Grouping of the Experts
Usually, there is an expert panel for each issue. Every expert in the panel deals with
the complete issue. Such panels should comprise not less than five and not more than
nine experts.

Issues are frequently decomposed and the judgment is elicited at the level of the
components of the decomposition. This is, for instance, necessary in the case of
issues that extend over several specialized fields. Each expert of the panel contrib-
utes his expertise in the field and to the component he is most familiar with. For each
component of the decomposition, there are possibly several experts that are provid-
ing their judgment. Another approach would be to form several teams with one
expert each per component. This approach is, however, only feasible if the number
of available experts is sufficiently large for most of the components so that several
teams can be put together.

Task 4: Description of the Issue
The project team (represented by the client—see Task 9) has to provide a correct,
logically conclusive, comprehensive and unequivocal formulation of the issue that is
free of any unmentioned assumptions. This formulation or issue description is to be
supplemented by:

– A compilation of the background information including references to the perti-
nent literature, experimental data, models, computer model results, etc.
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– A description of where the issue is going to play a role in the application of the
computer model as well as how and where the expert judgment will be made use
of (the actual position within the computer model) and also how the issue is to be
seen in relation to other issues identified in Task 1.

– A case structure that accounts for the different boundary conditions under which
the issue plays a role in the application of the computer model.

When presenting this information to the expert panel in task 6, it will be of
advantage to give those experts that could not be included in the panel for various
reasons, like possible partiality (see Task 2), an opportunity to also present their
information to the panel.

Task 5: Training
The actual elicitation will profit qualitatively from a preparatory, conceptually well-
designed training session. As far as this has not been done up to now, this session is
to familiarize the experts with:

– The differentiation between aleatoric and epistemic uncertainty.
– The sources of epistemic uncertainty.
– The possible ways of quantifying model uncertainty.
– The difference between “subjective probability” and the classical interpretation of

“probability” as the limit of relative frequencies.
– The quantification of the state of knowledge by subjective probability

distributions.
– The causes for state of knowledge dependence and the possible ways of its

quantification.
– The causes for bias and their effect on expert judgment as well as possible

countermeasures.
– The possibilities for and advantages of issue decomposition.

Task 6: Detailed Discussion of the Issue
The project team has to discuss the issue with the experts in sufficient detail in order
to:

– Eliminate any latitude of the issue interpretation.
– Achieve broad communality of the background knowledge about the issue and of

the appreciation of the issue importance.
– Avoid misunderstandings about the expected format of the answers. Ultimately,

subjective probability distributions are to be specified and misunderstandings
about what these distributions should quantify are to be avoided.

These discussions should also serve the identification of any necessary extensions
of the issue formulation and should help to supplement the issue description
accordingly. In addition they will be useful in the identification of further documents
that might be required by the experts and in making sure that they are distributed
among all experts of the panel in good time.
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Task 7: Experts Prepare Their Analyses
The experts prepare their analyses individually in their usual working environment
where they have access to all necessary facilities. The exchange of information
among experts is not only permitted but is even desirable. The time allotted to this
step must be sufficient in order to allow for the issue to be treated in the necessary
depth.

In the case of issues that do not allow the preparation of analyses due to the
limited state of knowledge, the expert is expected to provide at least a protocol of the
scientific or plausibility considerations that led to his judgment. These protocols are
then presented and discussed in Task 8.

Task 8: Discussion of the Individual Analyses or Protocols by the Expert Panel
Each expert presents his analyses or considerations that led to his judgment to the
panel. In doing so, they use the given case structure (see Task 4) or modifications
thereof if found necessary. The presentations do not include the experts’ detailed
numerical conclusions but only the way and means by which he has arrived at the
answers. This includes the information sources (literature references, experiments,
model calculations, etc.) they are based upon. The presentations also include any
issue decompositions the expert might have used. The decomposition could be a
computer model. The purpose of these discussions is to show how the expert arrived
at his answer and not the actual judgment itself.

Task 9: Elicitation of the Expert Judgment
The expert judgment is elicited in individual sessions. The only participants in these
sessions are the expert, the analyst and the client. The client is a member of the
project team, the project being the intended development and/or application of the
computer model to derive the input needed for decision-making. He knows how the
expert judgment is used in the computer model, and he is familiar with the
corresponding boundary conditions and how the model result is used in the
decision-making process. Furthermore, the client documents the scientific consider-
ations, issue decompositions and arguments of the experts together with their
conclusions and he checks for consistency.

Again, it is recommended to conduct these sessions in the working environment
of the expert. Standardized formulations of the questions ensure that the same
wording is used with all experts. Consequently, it is of advantage if the elicitation
team (client and analyst) is the same for all experts. The analyst is familiar with the
concept of subjective probability, with probability calculus and with the require-
ments of the elicitation of probability statements. He is expected to support the
experts in their state of knowledge quantifications by subjective probability distri-
butions, to assist them in avoiding bias, to check the consistency of their probability
statements and to document them suitably for later use in the propagation of the state
of knowledge through the computer model application.

Task 10: Recombination
The expert may have decomposed the issue in order to quantify his state of
knowledge at the level of the components of the decomposition. The time has now
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come to recombine these quantifications to the issue assessment, i.e. his judgment for
the issue. If the decomposition was in the form of a computer model the recombi-
nation is straightforward. In all other situations, the recombination will most likely
need to be performed by the elicitation team possibly supported by suitable software.
The result of the recombination will then be presented to the expert for his final
approval. He needs to judge whether it is an adequate expression of his state of
knowledge. The reason for any discrepancies must be found and eliminated in
cooperation with the expert. A review of the issue decomposition and of the expert’s
state of knowledge quantifications will enable the elicitation team together with the
expert to discover misunderstandings and any documentation or processing errors or
any flaws in the expert’s reasoning. Any changes to the expert’s answers that might
have been carried out upon the expert’s request, after he was presented with the
result of the recombination, need to be backed by sufficient reasoning. Reasoning
and the performed changes need to be documented.

Task 11: Aggregation
The assessments of the individual experts or expert teams must now be aggregated to
the issue assessment. This is achieved by mixing the corresponding subjective
probability distributions provided by the experts (or expert teams). Usually, the
individual distributions receive equal mixing weights 1/K with K being the number
of experts or teams providing distributions. At any value of the quantity in question,
the value of the mixture distribution is the arithmetic mean of the cumulative
probabilities read from the individual distributions at this value. In Council on
Environmental Quality (1980), unequal weights, derived from self and colleague
ratings of the experts, were used. The sum of the weights has to add up to 1.

Within the framework of uncertainty analysis by Monte Carlo simulation,
N replications of the computer model evaluation (for short “ N model runs”) are
performed, each using a new set of values for the epistemic uncertainties chosen at
random according to their state of knowledge quantifications. The K subjective
probability distributions provided by the experts (or expert teams) may be seen as
those obtained using alternative “model formulations”. It seems, therefore, prefera-
ble not to use the mixture distributions mentioned above for sampling but to assign
an index value to each of the K experts or expert teams and for the n-th model run,
n¼ 1, . . ., N, to first sample from the set of K index values using the mixing weights
as subjective probabilities. Then a value for the uncertain datum in question is
sampled according to the subjective probability distribution provided by the expert
(or expert team) that corresponds to the sampled index value. This value of the
uncertain datum is then used in the nth replication of the computer model evaluation.

Task 12: Documentation
The documentation of the issue assessment ideally contains:

– The reasons why the issue was selected for a survey of expert judgment.
– The procedure used to select the experts.
– The issue description given to the experts.
– The contents of the training session.
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– The session minutes to Task 6.
– The analyses (or protocols) produced by the experts in Task 7 together with a

compilation of the information sources used.
– The session minutes to Task 8.
– The session minutes to Task 9, in particular the formulation of the questions

presented to the expert, the expert’s answers, the expert’s argumentation to
support his answers and the way and result of the processing of his answers by
the elicitation team.

– The recombination procedure, the results of the recombination and the
corresponding documentation as well as the documentation of any corrections
of the recombined results that might have been initiated by the experts.

– The individual issue assessments and the results of their aggregation over the
experts, including the procedure used, the choice of the aggregation weights,
reasons for the use of unequal weights (if any) and the information source used
for their specification.

3.7.2 The Structured Formal Survey of Expert Judgment by
Questionnaire

The approach described in the previous section involves two meetings of the experts.
Apart from the time and financial resources needed for travel, these meetings require
the availability of all experts over the same period of time and on two occasions. This
requirement can often not be met. A structured formal survey of expert judgment by
questionnaire would be a way out of this dilemma. In this approach, Tasks 1–3 of
Table 3.14 would be performed as in Sect. 3.7.1 but Tasks 4, 5 and 9 would need to

Table 3.14 Structured approach to the survey of expert judgment

No. Task

1 Selection of the issue

2 Selection of the experts

3 Grouping of the experts

4 Description of the issue

5 Training

Tasks 5 and 6 are the subject of the first meeting of all panel experts

6 Discussion of the issue

7 Experts prepare their analyses

8 Discussion of the analyses

Second meeting of all experts

9 Elicitation

10 Recombination

11 Aggregation

12 Documentation
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be covered by the questionnaire. The client, in cooperation with the analyst, will
design the questionnaire. The client then travels to each of the experts and presents
the questionnaire. He performs Task 6 together with each expert individually. Task
7 is performed as in Sect. 3.7.1 and Task 8 requires some interaction between the
experts via the usual communication channels. This interaction may need to be
encouraged by the client. There will be ample time for communication between the
experts, as the calendar time allotted to the completion of the questionnaire needs to
be chosen such that all experts can fit the involved workload into their individual
schedules. The experts send their completed questionnaires to the elicitation team,
and Tasks 10–12 are then performed the same way as in the previous section.
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Chapter 4
STEP 3: Propagate

4.1 Introduction

The computer model maps the possibly true values of the uncertain data1 into values
of the model results. This is illustrated in Fig. 4.1 for the case of a model h(P1, P2)
that maps each pair of possibly true values of (P1, P2) into one model result value.

For M uncertain data and J model results, the mapping is given as

h: PM ! YJ: ð4:1Þ
PM is the space of possibly trueM-tuples of the uncertain data, and YJ is the space

of the corresponding J-tuples of model result values. According to Eq. (4.1), there is
one and only one J-tuple for each M-tuple while in the case of

h: PM $ YJ ð4:2Þ
there is also one and only one M-tuple for each J-tuple, i.e. the mapping performed
by h is reversible

h�1: YJ ! PM: ð4:3Þ
Many computer models do not represent a reversible mapping, i.e. there is more

than one M-tuple for some or all J-tuples.
In Fig. 4.2, the states of knowledge of the two uncertain data of Fig. 4.1 are

quantified by the joint subjective probability density function f1,2 of P1 and P2. This
state of knowledge expression at the data level is now included in the mapping of
Fig. 4.1.

1To simplify matters, this and the following chapters only use the term “uncertain data” since model
uncertainties are represented by uncertain parameters and the latter are, together with uncertain
input data, categorized as uncertain data.
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Figure 4.2 shows how the computer model translates the joint state of knowledge
expression for the uncertain data into the state of knowledge expressed by the
cumulative subjective probability distribution function FY for the model result.
The use of capital letters for data and model results indicates that their values are
associated with state of knowledge expressed by subjective probability.

An analytical approach to propagation is usually out of the question due to the
complexity of most computer models of practical relevance. Consequently, the
subjective probability distributions that follow for the model results remain
unknown. A statistical approach needs to be taken in this situation. It generates a
random sample of size N that is drawn according to these unknown distributions.
This is achieved by drawing a random sample of size N according to the subjective
probability distributions and state of knowledge dependence expressions specified

P2

p2max

p2min (p1, p2)  

h(p1, p2) = y                                             Y

p1min y                                

p1max

P1

Fig. 4.1 Mapping of pairs of parameter values into one model result value

Fig. 4.2 The degrees of belief of all possibly true pairs of parameter values that are mapped, using
the model h, into a value smaller or equal to y are accumulated and presented as the cumulative
subjective probability FY( y). The cumulative distribution function FY quantifies the state of
knowledge that follows for the model result
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for the M uncertain data and by evaluating the model for each of the N sets of
M sample values. The corresponding N sets of J model result values are a random
sample drawn according to their unknown joint subjective probability distribution.
This sample can then be processed using standard statistical techniques to quantify
the uncertainty of the model results in Step 4 and to rank the uncertain data with
respect to their contribution to the uncertainty of each of the model results in Step 5.

4.2 Random Sampling

Random sampling makes use of the inverse transform method. For an uncertain
datum P, it starts out with drawing a value at random according to the uniform
distribution over the unit interval. With the help of the inverse of the subjective
probability distribution function specified for P, this value is then transformed into a
value sampled according to the specified distribution. If a value for the uncertain
datum P is to be drawn according to the cumulative subjective probability distribu-
tion function FP specified as state of knowledge expression for P, then

FP pð Þ ¼ sw P � pð Þ ¼ u

and the inverse FP
�1 of the distribution function provides FP

�1 uð Þ ¼ p:

“sw” stands for “subjective probability”, and u is drawn at random according to the
uniform distribution over the interval (0, 1). From the relationship FP

�1(u) ¼ p, the
sample value p of P is found. Random sampling according to truncated distributions
as well as discrete distributions can also be achieved by this method. Section 3.6.1.3
explains how to derive p from u for each of the subjective probability distributions
commonly used in uncertainty analysis.

The statistical approach to state of knowledge propagation involves taking a
sample of N M-tuples and mapping each M-tuple into the corresponding J-tuple by
evaluating the model for the M-tuple.

For example, if the uncertain data P1 and P2 are not state of knowledge depen-
dent, a pair of values (u1, u2) is chosen independently at random according to the
uniform distribution over the U2 space (i.e. the unit square). The corresponding pair
of values ( p1, p2) for the uncertain data is obtained via the inverses of the distribution
functions specified for P1 and P2, namely p1 ¼ F1

�1(u1) and p2 ¼ F2
�1(u2).

Evaluation of the model h for ( p1, p2) provides the corresponding model result
value y’. The chance of drawing a pair of values (u1, u2) such that h(F1

�1(u1),
F2

�1(u2)) � y is equal to the chance of drawing a value u according to the uniform
distribution over the unit interval such that FY

�1(u)� y. Due to this equivalence, one
can obtain sample values of Y according to FY although FY is unknown. This opens
the door to the estimation of distribution characteristics of FY, like mean value,
variance, the value y to any given value u ¼ FY(y), the subjective probability u for
Y to exceed any given value y (i.e. u ¼ 1 � FY( y)) and so forth, from a sufficiently
large sample of values drawn at random according to the joint subjective probability
distribution specified for the uncertain data.
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The inverse distribution function always exists, but it is not always readily
available in analytical form. Fishman (2000) presents a table containing inverse
functions for some commonly used distributions. Approximations are given for
those not in the table. The reference also describes other approaches, in addition to
the inverse transform method, particularly with a view to efficiency and accuracy.
Algorithms are provided for a number of distribution functions that can be turned
into computer programs for sampling. Commercially available subroutine libraries
provide ready-to-use subroutines for a number of commonly used distribution
functions. They generally start off with drawing a value at random according to
the uniform distribution over the unit interval. “At random”means that each number
on the unit interval has the same chance of being drawn. How can one draw numbers
from the unit interval truly at random? Radioactive decay is, among other natural
phenomena, considered to be a source of true randomness. Numbers from the unit
interval, generated this way and stored on the computer, could be used as arguments
of the inverse distribution functions. For most applications of random numbers, like
in the propagation of states of knowledge in uncertainty analysis, the use of
computerized pseudorandom number generators is preferred for obvious reasons.
The properties of such generators play a crucial role. Fishman (2000) discusses and
compares several pseudo-random number generators. The sequences of sample
values generated are called “pseudo-random” as there is no real randomness
involved in their generation. A sequence of N pseudo-random numbers has to satisfy
certain criteria in order to qualify as statistically random, i.e. as a satisfactory
realization of a sequence of N numbers drawn at random according to the uniform
distribution over the unit interval. For instance, any sequence of N digits from the
string of digits of π is a statistically random sample of numbers drawn according to
the discrete uniform distribution of the digits 0, 1, . . ., 9. To have a (statistically)
random sample of size N from the unit interval, one might take a sequence of kN
digits with k ¼ 4 (or any other suitable integer), separate them into N sets of k digits
each and divide each by 10k.

The suitability of the pseudo-random number generator for the intended use is
determined by the degree to which the criteria for statistical randomness are met.
Probability theory defines the characteristics of real randomness. Based on this
definition, it is possible to formulate criteria (Fishman 2000) that have to be met
by pseudorandom number generators in order to produce sufficiently long sequences
of numbers that are statistically random.

The suitability of the pseudorandom number generator for uncertainty analysis
depends on how the length of statistically random sequences compares to the number
M of uncertain data and to the number N of computer model evaluations to be
performed in the course of the Monte Carlo simulation. A sequence of at least MN
pseudorandom numbers is to be generated. Chapter 9 introduces the nested Monte
Carlo simulation concept for the separation of M epistemic and K aleatoric uncer-
tainties. This concept may require N2 evaluations of the model and therefore the
generation of sequences of at least (M + KN)N pseudorandom numbers. The
suitability of the pseudo-random number generator for uncertainty analyses with
large values of M, N and K should therefore be assessed. Fishman (2000) provides
some assistance in this effort.
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4.3 Monte Carlo Simulation

The cumulative subjective probability distribution function FY summarizes the
population of values of the model result Y that follows from the propagation of
the state of knowledge for the uncertain data through the model. The statistical
approach does not sample directly model result values y according to FY since this
distribution function is usually unknown. Rather, it simulates possibly true values of
Y via the mapping of sets of M values chosen at random from the PM space of the
uncertain data into the YJ space of the model results through evaluation of the model
for each set. This process is known as Monte Carlo simulation as it combines the
chance element of random sampling with simulation according to the instructions of
the encoded computer model.

Monte Carlo simulation generates a sample of size N (the input sample of the
analysis), drawn according to a joint subjective probability distribution for the
M uncertain data. This joint distribution complies with the individually specified
marginal subjective probability distributions and with the state of knowledge depen-
dence quantifications. Correlation coefficients specified in Step 2 as quantitative
expressions of state of knowledge dependence will not generally determine a unique
joint subjective probability distribution. There are usually other joint subjective
probability distributions that comply with the same marginal distributions and the
same correlation coefficient. This ambiguity is, however, not considered to be a
handicap for uncertainty analysis as long as the generated joint distribution has
(nearly) minimal information contents in addition to the information provided by the
state of knowledge quantifications (see also Sect. 3.5.2.7).

Random (input) samples of small-to-moderate size N for M uncertain data, with
M close to or even larger than N, will exhibit non-negligible spurious correlations.
These correlations are a product of the chance element of random sampling. They
fake state of knowledge dependence among the uncertain data thereby ‘contaminat-
ing’ the sample. Spurious correlations contribute to the relatively large variability of
estimates of mean value, variance and percentiles of the model results derived from
small (output) sample sizes N. Section 4.4.1.14 presents a procedure (Iman and
Conover 1982) to induce specified sample rank correlations. It may also be used
(in an iterative fashion) to eliminate (or reduce) spurious correlations ifM < N. In the
case ofM > N, it may still be applied to subsets ofM’ < N uncertain data. This matrix
procedure does not change the actual (input) sample values of individual data but
their combination into N sets of M values each.

An element of the input sample is a data set that carries one value for each of the
M uncertain data at the prescribed position. The Monte Carlo simulation generates an
input sample of size N consisting of N such data sets and evaluates the computer
model for each. To this end, it will be necessary to supplement the input data file of
the computer model by those data that are not yet represented in the file. This applies
particularly to model uncertainties expressed by a set of alternative model formula-
tions or by uncertain correction factors.
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For each of the N model evaluations (called “runs” for short), the values of the
M uncertain data in the input file need to be changed into those of the sample element
that is to be used by the run. The changes are, for reliability reasons, best done by a
computer program that generates the N needed copies of the input data file, i.e. it
adjusts each copy according to the set of values in the corresponding sample
element. Data that have been augmented to the file will require changes to the
computer model so that their values can be read and used as intended.

At the end of the Monte Carlo simulation, there are N sets of values. Each set
contains one value each for the J results Y1, . . ., YJ. These N sets of J values each are
a random sample of size N (the output sample of the analysis) drawn according to the
unknown joint subjective probability distribution that logically results for Y1, . . ., YJ
from the state of knowledge quantifications at the level of the uncertain data and
from the sequence of logic and arithmetic instructions of the encoded model.
Generally, the state of knowledge for any pair of model results is dependent since
they most likely share many of the uncertain data. Consequently, the output sample
is rich in information on functional relationships among the model results. The N sets
are ready for use in the subsequent analysis steps to derive measures of uncertainty
and uncertainty importance for any of the model results Yj. Suitable uncertainty
measures are either a value range of Yj with a specified subjective probability content
or the subjective probability content of a specified value range of Yj.

The value ranges with specified subjective probability content are either defined
by two limiting values or by only one value, the other end of the range being the
minimum or the maximum value in the population of values that follows for the
model result from the state of knowledge propagation. The one-sided limits are
quantile values to the specified subjective probability (upper limit) or to its comple-
mentary value (lower limit). A frequently specified subjective probability value is
0.95. The limiting values are estimated from a random sample of model result
values. Since sample sizes are usually small due to processor time and cost consid-
erations the estimates need to be supplemented by confidence intervals to specified
confidence levels. A frequently specified level is 95%.

Well-established methods from statistics may be applied, using the sample of
model results in combination with the corresponding sample values of the uncertain
data, in order to obtain the uncertainty measures and to rank the data with respect to
their uncertainty importance for each of the model results. This does not require a
sample size N in the order of several thousands or even millions, as is often claimed.
A moderate sample size in the order of N ¼ 100 (i.e. 100 runs of the computer
model) or several hundreds is frequently sufficient to obtain the necessary uncer-
tainty measures and uncertainty importance measures for any of the model results.
For instance, the minimum sample size N needed for the estimation of two limiting
values such that the subjective probability content is at least 0.95 at a confidence
level of at least 95% (a so-called (95%, 95%) statistical tolerance interval) is N¼ 93,
independent of the number M of uncertain data involved in the analysis (see
Chap. 5). Uncertainty statements like these require the sample to be a simple random
sample, i.e. to be purely (pseudo) random as described above. For these relatively
small sample sizes, it will be affordable to evaluate the full computer model
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including all of its feeder models. The use of a simplified model or of a so-called
meta-model (Storlie et al. 2009) for the purpose of the uncertainty analysis, as is
sometimes suggested, is not recommendable and is unnecessary. Better 100 runs of
the full model than a million runs of a so-called meta-model. The influence of such
simplifications is itself uncertain and generally difficult to judge especially if a set of
model results of extremely small subjective probability is of particular interest.
Sampling methods that address ranges of model result values of small to very
small subjective probability are discussed in Sects. 4.4.3 and 4.4.4.

4.4 Sampling Techniques

The sampling techniques most frequently used in uncertainty analysis are simple
(sometimes also called “pure” or somewhat derogatory “crude”) random sampling
(SRS) and Latin Hypercube sampling (LHS). SRS is discussed in Sect. 4.4.1, and the
discussion of LHS follows in Sect. 4.4.2. The state of knowledge for some uncertain
data may depend on the values obtained for interim model results. The discussion of
the sampling techniques will have to pay specific attention to how these situations
are handled and particularly how the techniques fare in the case of the state of
knowledge dependence models presented in Sect. 3.5.2.

The subjective probability content of specified critical value ranges is usually
small. For moderately small probability content (10�1 to 10�3), the sampling
techniques of Sects. 4.4.1 and 4.4.2 will be affordable. For very small probability
content, the necessary SRS or LHS sizes will most likely be unaffordable although
upper confidence limits are always available from an affordable SRS but may often
be judged as too coarse. Therefore, a number of techniques have been developed to
arrive at an estimate for very small (10�4 and lower) subjective probability content
of specified value ranges of the model result. Among these techniques are impor-
tance sampling (discussed in Sect. 4.4.3) and subset sampling (discussed in Sect.
4.4.4).

4.4.1 Simple Random Sampling (SRS)

The adjective “simple” stands for “not tampered with”. The pseudorandom numbers
are generated without constraints imposed and are used as they come (no reordering
or unequal weighting, for instance). Constraints would be, among others, instruc-
tions like “Only one number per interval of probability content 1/N” or “preference
for specific subspaces of the value space of the uncertain datum” or “measures taken
to achieve even coverage of the value space”. None of these interferences that
introduce a deterministic element into the sample are made. This is one reason
why Monte Carlo simulation using SRS is sometimes in a somewhat derogatory
manner called “crude Monte Carlo”. The other reason is that no attempts are being
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made to reduce the computational simulation effort by replacing the original model
by a simplification (meta-model) thereof or by restricting the model evaluation to
sequences of sub-models that are thought to be responsible for the model result
values from the range of particular interest. All of these steps are thought to enhance
efficiency but simultaneously introduce additional uncertainty that is often not
quantifiable in a satisfactory manner.

SRS is in essence the sampling procedure described in Sects. 4.2 and 4.3. The
following subsections are an extension of the description with a view on some
desirable features of a sampling technique and on the case of state of knowledge
dependence.

4.4.1.1 Statistics for the Estimation of Distribution Characteristics

If the estimates of uncertainty measures are derived from an SRS, confidence
statements (limits and intervals with specified confidence level percentage) for the
true values (see Chap. 5) can be obtained. This feature cannot be appreciated enough.
It is due to the fact that the model result values obtained with simple random
sampling are independently sampled according to their subjective probability distri-
bution. Since computer models of practical relevance are usually processor time
intensive, the number of affordable model runs is only moderate. This makes
confidence statements a necessary supplement for the estimates of uncertainty
measures.

4.4.1.2 Easy Extension of the Sample Size

An uncertainty analysis using an SRS of sample size N may suggest that tighter
confidence limits would be desirable for the estimates derived for some of the
uncertainty measures. A sample size N’ > N should therefore have been used. This
does not require another Monte Carlo simulation of sample size N’ since the existing
sample can simply be extended by an additional SRS of size N’ � N, and the
estimates and confidence statements can be derived from the output sample that is
extended by the results of the additional N’ � N model runs.

4.4.1.3 State of Knowledge Dependence on Interim Results

Frequently, all N sets of M values (the input sample) can be obtained before the
N runs of the model are started. There are, however, model applications that require
the sampling of some of theM values to be done dynamically, i.e. when needed. This
might, by the way, not be the case in each of the N model runs. This ‘just on time’
sampling may be necessitated by information that is required for the state of
knowledge quantification but becomes available only in the course of the model
run. It is simply the only economical way since sampling in advance would mean to
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keep megabytes of sampled values ready for a model run in order to cover every
eventuality that might occur during the run, while at the end of it only a small
fraction of this data deluge turns out to have been actually made use of. The
following situations are considered:

– The state of knowledge depends on the value of an interim result

If the state of knowledge of the datum Pj depends on the value of the model interim
result Q then the N sets ofM values would initially contain sample values uj,n, drawn
according to the uniform distribution over the unit interval, in place of the actual
values pj,n, n¼ 1, . . ., N. Once the value qn of the interim result has been determined,
the subjective probability distribution Fj|q( pj) is either read from a table giving Fj|q for
discrete values ofQ or obtained from a function relating the parameter values of Fj|q to
the value of Q (the table or the function would need to be part of the state of
knowledge specifications provided as input to the uncertainty analysis). The sample
value pj,n is found from the inverse relationship pj,n ¼ Fj|q

�1(uj,n). The value pj,n
replaces uj,n in the n-th set of M sample values.

In some computer models, the solution path, followed during the n-th model run,
may branch off before the interim resultQ has been determined, i.e. qn is not required
and therefore the value uj,n is not replaced by a value pj,n. In this case, uj,n needs to be
replaced by a default value that is recognized as such by Step 5 (determines
uncertainty importance measures). Pj could, for instance, be the correction factor
to an uncertain model formulation. It would be needed only if the respective model
formulation is applied during the model run.Q could be an interim result that is input
to the model formulation such that the state of knowledge of Pj depends on its value.

– The state of knowledge depends on the value of an interim result that is function
of an independent model variable like time or space.

With time t being the independent variable, the N sets ofM values would initially
contain a sample value uj,n, drawn according to the uniform distribution over the unit
interval, in place of the actual datum value pj,n(t), n ¼ 1, . . ., N for all times t. Once
the value qn(t) of the interim result has been determined, the value Fj|q( pj(t)) of the
conditional subjective probability distribution is either read from a table giving Fj|q
for discrete values of Q or obtained from a function relating the parameters of Fj|q to
the value of Q (the table or the function would need to be part of the state of
knowledge specifications provided as input to the uncertainty analysis). The sample
value pj,n(t) is found from the inverse relationship pj,n(t) ¼ Fj|q

�1(uj,n). Here, the
datum value pj,n(t) is used in the model evaluation only while uj,n is retained in the n-
th set of sample values for subsequent analysis steps. Obviously, this is a case of
complete state of knowledge dependence between the uncertain data Pj(t) at all times
t. If this assumption of complete dependence is deemed unjustified, then the uncer-
tain datum Pj would have to be treated as a model uncertainty. The correct sequence
of values over time would be the relationship to be modeled. It is not always possible
to sample a set of N alternative sequences beforehand. Rather, each of the
N sequences is created during the respective model run. Not everyone of the
N model runs may need a sequence pj,n(t) as some of the model runs may follow a
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solution path that does not require the values of Pj(t) for any of the times t used in the
sequence. If this is the case for the n-th model run, a default value, recognizable as
such by subsequent analysis steps, will need to replace uj,n in the n-th set of sample
values.

How does SRS fare in situations where uncertain data are state of knowledge
dependent on the values of interim model results? Since these results are only
available in the course of the model run, sampling of these data values has to be
done during the run, i.e. whenever the interim result is actually computed. This may
be more or less frequently during a run and not necessarily in each of the N model
runs. There is no problem with this requirement since the sample elements of an SRS
do not need to be fully set up before the start of the N model runs.

4.4.1.4 State of Knowledge Dependence on Previously Sampled Values

The computer model may make use of a time (or space) advancement procedure that
uses equal or unequal step lengths, the sequence of which becomes known only
during the model run. The corresponding advancement of the values of some
uncertain data may need to be determined. The state of knowledge of the value of
their advancement (i.e. their value for the new step) depends on the value(s) they had
in the previous step(s) and on the length of the new step. Clearly, this is a case of the
‘just on time’ sampling situation mentioned above. It does not cause any problems
for the simple random sampling method.

How does SRS fare in the cases of state of knowledge dependence modeling
discussed in Sect. 3.5.2?

4.4.1.5 Conditional Distributions

If the state of knowledge dependence between uncertain data Pi and Pj was
expressed by conditional distributions, the value pi,n is sampled for the so-called
free uncertain datum Pi according to its marginal distribution. For Pj, a value uj,n is
sampled at random according to the uniform distribution over (0, 1). The value pj,n is
obtained from the inverse of the conditional distribution for Pj that was specified
given Pi ¼ pi,n (the parameters of the conditional distribution may be a function of
the value pi,n) or for the interval of Pi that contains pi,n (see Sect. 3.5.2.1).

4.4.1.6 Constraints

How to account for state of knowledge dependence that is due to constraints on the
range of possibly true values for the uncertain datum Pj, given a possibly true value
for Pi? In practice, there is a choice between two procedures:
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a) Sampling from the marginal distributions of Pi and Pj is done independently but
any pair of values ( pi,n, pj,n) that does not satisfy the inequality is discarded. The
sampling proceeds as long as necessary to have the desired sample size. This
can, in some instances, take a long time depending on how stringent the
constraint is.

b) The relationships presented in Sect. 3.5.2.2 are used. This is, in essence, an
approach using conditional distributions for Pj given the value for Pi. It is the
equivalent of the procedure under a) but without the sampling of pairs that do
not satisfy the inequality.

For the constraint pj � gj( pi), it proceeds as follows:

1) Sample pi,n according to Fi;
2) Sample pj,n according to fj|i( pj|pi) ¼ fj( pj) / Aj|i as follows:
2a) Sample uj,n according to the uniform distribution over (0, 1)
2b) Compute Aj|i ¼ Fj(gj( pi,n)) and set

uj,n ¼
Zpj,n

pjmin

f j p0j
� �

=Ajji
h i

dp0j ¼
1
Ajji

� �
Fj pj,n
� � ð4:4Þ

and pj,n ¼ Fj
�1 uj,nAjji
� � ¼ Fj

�1 Fj gj pi,n
� �� �

uj,n
� �

:

For the constraint pj > gj( pi), it proceeds as follows:

1) Sample pi,n according to Fi;
2) Sample pj,n � gj( pi,n) according to fj|i( pj|pi) ¼ fj( pj) / Aj|i as follows:
2a) Sample uj,n according to the uniform distribution over (0, 1)
2b) Compute Aj|i ¼ 1 � Fj(gj( pi,n)) and set

uj,n ¼
Zpj,n

gj pi,nð Þ
f j p0j
� �

=Ajji
h i

dp0j ¼
1
Ajji

� ��
Fj pj,n
� �� Fj

�
gj pi,n
� �	

and pj,n ¼ Fj
�1
�
uj,nAjji þ Fj gj pi,n

� �� �
:

4.4.1.7 Unknown Monotone Increasing or Decreasing Functional
Relationship

If the state of knowledge dependence is due to an unknown functional relationship
(see Sect. 3.5.2.6) between the uncertain data Pj and Pi, simple random sampling
according to the marginal distribution of the so-called free datum Pi involves the
random sampling of a value ui,n according to the uniform distribution over the unit
interval and the subsequent transformation of the sampled value by the inverse of the
cumulative distribution function.
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In the case of an unknown monotone increasing relationship

pj,n ¼ Fj
�1 ui,nð Þ

and in the case of an unknown monotone decreasing relationship

pj,n ¼ Fj
�1 1� ui,nð Þ:

4.4.1.8 Known Functional Relationship

In the case of state of knowledge dependence due to a known functional relationship
Pj ¼ gj(Pi), a value pi,n is sampled according to the marginal distribution for Pi, and
the corresponding value pj,n is found through evaluation of the relationship using pi,n.

For instance, in the case of uncertain data that are fractions Pl, l ¼ 1, . . ., L with
the functional relationship

XL

l¼1
Pl ¼ 1, 0 � Pl � 1,Pj ¼ 1�

XL�1

l¼1
Pl ¼ PL

a simple random sample of values ul,n, l ¼ 1, . . ., (L�1) is taken independently
according to the uniform distribution over (0, 1) and is turned into sample values qj,n
by using the inverse functions of the marginal distributions specified for the uncer-
tain conditional fractions Ql, l ¼ 1, . . ., (L�1) that are state of knowledge indepen-
dent (see Sect. 3.5.2.3). The actual sample values pl,n, l ¼ 1, . . ., (L�1), are derived
for the uncertain fractions Pl by post-processing the sampled conditional fractions
according to

p1,n ¼ q1,n
p2,n ¼ 1� q1,n

� �
q2,n

�
�
�

pL�1,n ¼ 1� q1,n
� �

. . . 1� qL�2,n

� �
qL�1,n

ð4:5Þ

and the known functional relationship between the L uncertain data is used in

pj,n ¼ pL,n ¼ 1�
XL�1

l¼1
pl,n:

4.4.1.9 Correlation Coefficients (Pearson)

Necessary condition is–as explained in Sect. 3.5.2.4–that the symmetric matrix R of
specified correlations is positive definite.
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To account for state of knowledge dependence expressed by the matrix R of
Pearson’s correlations, a procedure may be adopted that is based on its property to
completely characterize the dependence structure of the multivariate normal distri-
bution. In the case of K state of knowledge dependent uncertain data, with L the set
of their indices, the procedure finds a K-variate distribution such that its marginal
distributions are the given marginal subjective probability distributions Fl, l 2 L, and
the correlation coefficients are the given values ri,j, j > i with j, i 2 L. This problem is
solved as follows. First the Pl, l 2 L, are transformed into standard normal distributed
variates

Zl ¼ Φ�1 Fl Plð Þð Þ, l2L

using the inverse Φ�1 of the standard normal distribution function. Secondly, it
searches for a value r(Zi,Zj) such that

Pi ¼ Fi
�1 Φ Zið Þð Þ and Pj ¼ Fj

�1 Φ Zj

� �� �

satisfy r(Pi,Pj) ¼ ri,j as specified. The symmetric (K � K ) correlation matrix Rz with
elements r(Zi,Zj), i,j 2 L is required to be positive definite. r(Zi,Zj) can be obtained
analytically for some types of marginal distributions Fi, Fj. For others, an iterative
procedure will be required. As is explained in Sect. 3.5.2.4, the procedure will not
have a solution for any combination of (Fi, Fj, ri,j). Failure to find a solution indicates
that an improper triplet (Fi, Fj, ri,j) has been specified in Step 2 of the analysis.

After the above procedure was performed for all pairs of the K, uncertain data
sampling is easily done as follows:

1. Take a simple random sample of values uk,n (k ¼ 1, . . ., K; n ¼ 1, . . ., N )
independently drawn according to the uniform distribution over (0, 1) and
transform each value into a sample value xk,n, from the standard normal distribu-
tion, i.e. xk,n ¼ Φ�1(uk,n). Decompose Rz into DD’ where D is a lower triangular
matrix (standard software packages are available) and obtain the vector zn¼ Dxn,
n ¼ 1, . . ., N. The components zk,n are a random sample from the K-dimensional
multivariate normal distribution with the K by K (K rows and K columns)
correlation matrix Rz. The multivariate normal distribution serves as a so-called
normal copula C(u, Rz) ¼ Φ(Φ�1(u);Rz) (see Sect. 3.5.2.7) for the joint distri-
bution of the uncertain data Pl, l 2 L.

2. Obtain values pl,n, l 2 L, of the uncertain data Pl through element-wise transfor-
mation pl,n ¼ Fl

�1(Φ(zk,n)) where l is the k-th index in the set L. The values pl,n,
l 2 L, may be considered as randomly sampled according to a multivariate
distribution with the marginal distributions and pairwise Pearson’s correlations
as specified. Their joint density function is f pð Þ ¼ c u;RZð ÞQlELf l plð Þ, and
c(u, Rz) is the derivative of the normal copula.
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4.4.1.10 Rank Correlation Coefficients (Spearman)

The procedure for the specified Spearman’s correlation coefficients rs(Pi,Pj) is very
much the same as for Pearson’s correlation coefficients. Once r(Zi,Zj) is found from
Eq. (4.6) such that rs(Zi,Zj) is as specified for Pi, Pj, the K-variate normal distribution
to be used in the sampling process described above is fully determined. As r(Zi,Zj)
may have any value from (�1, +1) and the relationship (Kruskal 1958)

rS Zi; Zj

� � ¼ 6=πð Þ arcsin r Zi; Zj

� �
=2

� � ð4:6Þ
holds for all values r(Zi,Zj), there are no restrictions for the specified values rs(Pi,Pj)
other than �1 < rs(Pi,Pj) < 1. The symmetric K � K matrix Rs of rank correlations
needs to be positive definite and so does the symmetric matrix Rz of Pearson’s
correlation coefficients for the reasons given in Sect. 3.5.2.4. The decomposition of
Rz into the product DD’ (Cholesky decomposition—standard software packages
available) will fail if the matrix is not positive definite.

Since rs is invariant under monotone transformations, the operations Fl
�1(Φ(Zk))

(l is the k-th index in the set L ) do not change its value.

4.4.1.11 Copulas

The copula approach for K state of knowledge dependent uncertain data involves the
independent random sampling of K values uk,n, k ¼ 1, . . ., K according to a uniform
distribution over the unit interval. How these values are processed into sample values
of the K state of knowledge dependent uncertain data is explained in Sect. 4.4.1.9
above for the normal copula and in the discussion of Sect. 3.5.2.7 for the use of pair
copulas.

4.4.1.12 Dependence Modeling with Elementary Uncertainty
Contributors

Random sampling is performed at the level of the I state of knowledge independent
elementary uncertainty contributors, of the set L of state of knowledge dependent
uncertain data, by obtaining a random sample of values ui,n, i ¼ 1, . . ., I indepen-
dently drawn according to the uniform distribution over the unit interval and by
transforming it into a sample of values zi,n, i ¼ 1, . . ., I independently drawn
according to the standard normal distribution. See Sect. 3.5.2.8 for a description of
the subsequent steps to sample values for the state of knowledge dependent
uncertain data.
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4.4.1.13 A Multivariate Simple Random Sample

If J sets of values pl,j, j¼ 1, . . ., J; l 2 L, are available as K-variate sample of the state
of knowledge dependent uncertain data Pl, l 2 L, the K-tuples are numbered
arbitrarily as 1 to J, and the K data are represented by a quantity Q uniformly
(or otherwise if there is reason to give preference to some of the sets) distributed
over the interval (0, J ). Let FQ be the distribution function of Q over the interval
(0, J ). The simple random sampling method then deals with Q instead of Pl, l 2 L.
A value qn is drawn at random according to the distribution FQ, and the value qn is
rounded to qn0, the nearest integer that is larger than qn, and qn0 is replaced in the
sample by the K-tuple of sample values pl,j, l 2 L, with j ¼ qn0.

Note, that some of these K uncertain data could be sets of table entries, matrices,
vectors or function values to a sequence of values of an independent variable like
time and/or space.

4.4.1.14 Pearson’s and Spearman’s Correlation Coefficients Defined
as Sample Measures of Association

The correlation coefficients discussed in the previous subsections were defined as
population measures of association. They apply to the whole population of all
possibly true pairs of values for Pi and Pj. A random sample taken according to a
joint distribution for Pi and Pj, that satisfies the specified marginal distributions and
the population measure for state of knowledge dependence, will exhibit a sample
correlation value that differs from the correlation value specified for the population.
Sometimes, the measure of association is, therefore, specified as a sample measure,
i.e. it is specifically required that the sample correlation value is as specified. In this
case, the sampling process is carried out such that the sample satisfies this require-
ment. The disadvantage is, however, that the sample is no longer a simple random
sample but has a deterministic component—the specified sample measure of asso-
ciation. Some useful uncertainty statements derived in Chap. 5 for model results
require the sample to be random. They can, therefore, not be obtained if sampling is
done according to sample measures of association.

Pearson’s sample correlation:
Instead of steps 1 and 2 of Sect. 4.4.1.9, the following steps are executed:

1. Take a simple random sample of values uk,n, k ¼ 1, . . ., K; n ¼ 1, . . ., N inde-
pendently drawn according to the uniform distribution over (0, 1) and transform
each value into a sample value xk,n, from the standard normal distribution. The
resulting (K � N ) matrix is denoted by X(0).

2. Compute the sample correlation matrix R(0) of the rows in the K � N matrix X(0).
3. Decompose R(0) and Rz (see Sect. 4.4.1.9) into the products R

(0) ¼ QQ’ and Rz¼
DD’ of the lower triangular (K � K ) matrix Q (resp. D) and its transpose Q’

(resp. D’) (Cholesky decomposition).
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4. Determine the (K � N ) matrix Z ¼ DQ�1X(0). Z will have the desired correlation
structure.

5. Obtain values pl,n, l 2 L, of the uncertain data Pl through element-wise transfor-
mation pl,n ¼ Fl

�1(Φ(zk,n)). The index l is the k-th index in the set L and Φ is the
standard normal distribution function.

The values pl,n, l 2 L, may be considered as sampled according to a multivar-
iate distribution with the marginal distributions and pairwise Pearson’s sample
correlations as specified.

Spearman’s sample correlation:
If Spearman’s sample rank correlation coefficient r Si, j is specified for the uncertain
data Pi and Pj, then pairs of values ( pi,1,pj,1),( pi,2,pj,2), . . ., ( pi,N,pj,N) should be
drawn such that the resulting empirical or sample rank correlation coefficient is as
specified. The desired sample rank correlation structure, for any set L of K � 2 state
of knowledge dependent uncertain data, is given by the symmetric rank correlation
matrix Rs with r Si, i ¼ 1 and the specified elements r Si, j, j > i; j, i 2 L. It is achieved
through the following steps (Iman and Conover 1982):

1. Draw a random sample (uk,n, k ¼ 1, ..., K; n ¼ 1, . . ., N ), i.e. N sets of K values
each, independently according to the uniform distribution over the unit interval.
Transform the NK values by using the inverse functions of the marginal distri-
butions that express the state of knowledge for each of the K data independently.
The resulting (K � N ) matrix is denoted by X(0).

2. Express the state of knowledge dependence between any pair of the K uncertain
data by the respective sample rank correlation coefficient r Si, j , j > iwith j, i 2 L and

r Sj, i ¼ r Si, j;
3. Set up the (K � K ) matrix Rs of rank correlation values; Rs is required to be

positive definite in order to be a correlation matrix.
4. Set up an (K � N ) random rank matrix W(0), where every one of the K rows is an

independent random permutation of the integer numbers 1 to N, and determine
the corresponding (K � K ) sample rank correlation matrix R(0).

5. Decompose R(0) into the product R(0) ¼ QQ’ of the lower triangular (K � K )
matrix Q and its transpose Q’ (Cholesky decomposition).

6. Decompose Rs into the product Rs ¼ DD’ with D a lower triangular (K � K )
matrix (Cholesky decomposition).

7. Determine the (L � N ) matrixW(1) ¼ DQ�1W(0).W(1) will have the desired rank
correlation structure. Its elements will not be integer.

8. Determine the (K � N ) rank matrix W(2) of W(1).
9. Order the N sample values of Pl, l 2 L in X(0) according to the ranking given by

the kth row (the index l is the k-th index in the set L ) of the rank matrixW(2). The
resulting matrix X(1) is obtained from X(0) through this permutation of the
numbers within each row of X(0). The matrix R(1) of sample rank correlation
coefficients of the rows of X(1) will be almost equal to Rs. The N columns of
K sample values each, of the matrix X(1),may then be used for state of knowledge
propagation through the model.
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4.4.2 Latin Hypercube Sampling (LHS)

Latin Hypercube Sampling (LHS) (McKay et al. 1979) is not a purely random
sampling technique. It is partly deterministic. Instead of drawing N values at random
according to the uniform distribution over the unit interval (0, 1), as in Simple
Random Sampling, LHS divides the unit interval into N sections of equal length. In
one version of LHS, the values at the center of each section (the conditional median
values) are taken as sample values u1, . . ., uN. These sample values cover the unit
interval equally. The set of sample values

pm,n ¼ Fm
�1 unð Þ� �j m ¼ 1; . . . ;M; n ¼ 1; . . . ;N


 �

is then used in the Monte Carlo simulation. The function Fm is the cumulative
subjective probability distribution function specified as state of knowledge expres-
sion for the uncertain datum Pm. In another version, exactly one value is sampled
at random from each of the N sections for each of the M uncertain data and
according to the uniform distribution over the section. The set of sample values
{( pm,n ¼ Fm

�1(um,n))| m ¼ 1, . . ., M; n ¼ 1, . . ., N} is then used in the Monte Carlo
simulation.

This procedure, applied for two state of knowledge independent uncertain data,
divides the unit square in a chessboard like manner into N rows and N columns. LHS
requires the two sets of values {u1,n|n ¼ 1, . . ., N} and {u2,n|n ¼ 1, . . ., N} to be
combined at random to pairs of values (u1,in,u2,jn). The index sets {in|n ¼ 1, . . ., N}
and {jn|n ¼ 1, . . ., N} are random permutations of the set of index values {n|n ¼ 1,
. . ., N}. The permutations are obtained by choosing for each datum N values at
random according to the uniform distribution over (0, 1) and by taking their ranks as
index sets. The pairs of values (u1,in,u2,jn) are entered into the corresponding field of
the unit square, with the index in as the row index and the index jn as the column
index. There is exactly one pair of values in each row and in each column of the
square. This is called a “Latin Square” sample. The name “Latin Square” is attrib-
uted to the mathematician Euler who entered letters from the Latin and Greek
alphabets, paired at random, into each field of a checkered array of equal numbers
of rows and columns such that each letter of each alphabet appeared exactly once in
each row and each column. In the case of three uncertain data, one would have to
speak of a “Latin Cube” sample, while for all dimensions higher than three the
sample may be rightfully called a “Latin Hypercube” sample.

4.4.2.1 Estimates of Measures of Uncertainty for Model Results

The N sample values {yj,n| j ¼ 1, . . ., J}, n ¼ 1, . . ., N, for J model results, obtained
using an LHS of the uncertain data, neither constitute an LHS nor an SRS. It follows
from the construction principle of an LHS that they are not probabilistically inde-
pendent (Hora 2003). Therefore, the distributions of estimates of measures of model
result uncertainty are not known. For instance, the uncertainty measure could be the
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subjective probability content between two possibly true values a and b of the model
result. The estimate would then be

ê ¼ 1
N

� �XN
n¼1

I a<y<bð Þ ynð Þ

with the value of I(a < y < b)(yn) equal to 1 if a < yn < b and zero otherwise.
The distribution of the estimate is unknown because the N model result values yn

are, due to the construction principle of an LHS, not independently sampled.
Specifically, it is not known how to arrive at the probability for the r-th ordered
sample value of a model result to be above the u% quantile of the subjective
probability distribution for that model result. This precludes the computation of
statistical tolerance limits and intervals. Confidence statements (confidence intervals
with specified confidence level percentage) for the true mean value, variance,
subjective probability content of specified intervals and two-sided or one-sided
upper or lower intervals with specified subjective probability content are conse-
quently not available for the subjective probability distributions of the model results.
This is a serious drawback for uncertainty analysis using LHS since typically
affordable sample sizes are only moderate making confidence statements a desirable
feature of the analysis results. It has been suggested (Hansen et al. 2012) to obtain a
sample of K estimates of the uncertainty measure where each estimate in the sample
is derived from an LHS of size N/K independently chosen at random. The
K estimates may then be used to derive confidence statements for the true value of
the uncertainty measure in question.

4.4.2.2 Extensions of the Sample Size

Since confidence statements are not possible, one might want to study the conver-
gence of estimates of uncertainty measures of the model result with increasing
sample size. However, different to SRS, it is not possible to extend an LHS of
sample size N to one of size N’ > N. The construction principle of an LHS makes it
necessary to start a new sample of size N’.

4.4.2.3 LHS and State of Knowledge Dependence

Sections 4.4.1.3–4.4.1.14 discuss SRS in various situations of state of knowledge
dependence and for various ways of state of knowledge dependence modeling. The
same situations and ways of modeling are now discussed with reference to drawing
an LHS.

– State of knowledge dependence on interim results

The set of sample values uj,n, n ¼ 1, . . ., N is drawn as part of the LHS.
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– State of knowledge dependence on previously sampled values

The set of sample values uj,n, n ¼ 1, . . ., N is drawn as part of the LHS.

– Conditional distributions

Sample values uj,n, n ¼ 1, . . ., N are drawn for Pj as part of the LHS and pj,n ¼
Fj|i

�1(uj,n). Fj|i is the conditional distribution for Pj given the sample value of Pi.

– Constraints

The first option is, for obvious reasons, not available for LHS. LHS for the second
option proceeds just as with SRS except that the sample values uj,n, n ¼ 1, . . ., N are
drawn for Pj as part of the LHS.

– Unknown monotone increasing or decreasing functional relationship

The set of sample values ui,n, n ¼ 1, . . ., N is drawn as part of the LHS.

– Known functional relationship

Sample values ul,n, l ¼ 1, . . ., L�1, n ¼ 1, . . ., N are independently drawn for Ql,
l ¼ 1, . . ., L�1 as part of the LHS and ql,n ¼ Fl

�1(ul,n). The function Fl
�1 is the

inverse of the distribution function for Ql.

– Correlation coefficients (Pearson) and rank correlation coefficients (Spearman)

Sample values uk,n, k ¼ 1, . . ., K, n ¼ 1, . . ., N are independently drawn for zk,n,
k ¼ 1, . . ., K as part of the LHS and the subsequent steps are just as with simple
random sampling (SRS).

– Copulas

The copula approach for K state of knowledge dependent uncertain data involves
the independent random sampling of K values uk,n, k ¼ 1, . . ., K as part of the LHS.
How these values are processed into sample values of the K state of knowledge
dependent uncertain data is explained in Sect. 4.4.1.9 for the normal copula and in
the discussion of Sect. 3.5.2.7 for the use of pair-copulas.

– Dependence modeling with elementary uncertainty contributors

The sample values ui,n, i¼ 1, . . ., I, n¼ 1, ..., N (see Sect. 4.4.1.12—where I is the
total number of elementary uncertainty contributors used in the dependence model-
ing) are drawn independently as part of the LHS.

– A multivariate simple random sample

The sample values qn, n ¼ 1, ..., N (see Sect. 4.4.1.13) are drawn as part of the
LHS.

– Spearman’s and Pearson’s correlation coefficients defined as sample measures of
association

The sample values uk,n, k¼ 1, ..., K; n¼ 1, ..., N are drawn independently for each
index k as part of the LHS.
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4.4.3 Importance Sampling

Some uncertainty analyses are performed to estimate the subjective probability
content of a critical value range CY of the model result. If the probability content
is very small (10�3 or lower) large, often unaffordable sample sizes will be needed
for a probability estimate with sufficiently narrow confidence interval.

The range CY could comprise all values that

– exceed a specified value ylim

or

– do not exceed ylim

or

– are not smaller than yl and not larger than yu.

The latter criterion can be converted to

all values y* that do not exceed ylim*
with y* ¼ | y � (yu + yl)/2| and ylim* ¼ (yu � yl)/2.

It should be noted that the limiting values could themselves be functions of some
of the uncertain data.

An estimate for the subjective probability content u ¼ sw(Y � CY) is obtained as

û ¼ 1
N

� �XN

n¼1
I yECYð Þ ynð Þ ð4:7Þ

I yECYð Þ ynð Þ ¼ 1 if yn 2 CY and is 0 otherwise,
N is the size of a simple random sample, and “sw” stands for “subjective

probability”.
An upper v% confidence limit for u is given as (Heinhold and Gaede 1968)

Lþ 1ð Þa= Lþ 1ð Þaþ N � Lð Þ
while a lower v% confidence limit for u is given as

L= Lþ N � Lþ 1ð Þbð Þ
and a v% confidence interval is given as

L= Lþ N � Lþ 1ð Þcð Þ, Lþ 1ð Þd= Lþ 1ð Þdþ N � Lð Þ
L ¼

XN

n¼1
I yECYð Þ ynð Þ and
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a ¼ qv,k1,k2 with k1 ¼ 2 Lþ 1ð Þ, k2 ¼ 2 N � Lð Þ
b ¼ qv,k1,k2 with k1 ¼ 2 N � Lþ 1ð Þ, k2 ¼ 2L

c ¼ q 100þvð Þ=2,k1,k2 with k1 ¼ 2 N � Lþ 1ð Þ, k2 ¼ 2L

d ¼ q 100þvð Þ=2,k1,k2 with k1 ¼ 2 Lþ 1ð Þ, k2 ¼ 2 N � Lð Þ:

Typical values for v are 95 or larger, and qv,k1,k2 is the v% quantile of the F
distribution with k1 and k2 degrees of freedom. Tables of F distribution quantiles can
be found in most textbooks on statistics (e.g. in Winkler and Hays 1975).

For instance, if N¼ 100 and none of the sample values yn are in the critical region
CY, then an upper 95% confidence limit for the subjective probability content
u ¼ sw(Y � CY) is obtained as

a= aþ Nð Þ ¼ 2:9957=102, 9957 ¼ 0:029:

The probability is � 0.905 to have none of the sample values yn in CY if the
subjective probability content of CY is 10

�4 and the sample size is N ¼ 1.000. For
N ¼ 10,000, this probability is still � 0.368, i.e. on average one would have to be
satisfied with 0.00029 as upper confidence limit for about every third sample of size
10,000. This upper limit might be satisfactory; however, a sample of size 10,000 is
out of the question for most computer models of practical relevance.

A basic importance sampling procedure:
The idea behind importance sampling (Fishman 2000, Robert and Casella 2010) is to
sample at random disproportionally much (in subjective probability) from the
subspace PM

crit of the value space PM of the epistemic uncertainties and to correct
the obtained probability estimate for the introduced disproportionality. Two ques-
tions come immediately to mind:

– How to find the subspace PM
crit where disproportionally more should be sampled

than the state of knowledge would suggest?
– How to correct the resulting subjective probability estimate for the introduced

disproportionality?

The simple importance sampling procedure presented below may serve as an
illustration of the principle. It is based on SRS, and the discussion considers the case
of no state of knowledge dependence among the involved uncertain data. The
presented procedure may be adapted to account for the various state of knowledge
dependence models of Sect. 3.5. As before and without loss of generality, the
epistemic uncertainties (parameter values, model formulations and input data) are
subsequently simply called “uncertain data”.

To answer the first question, it is suggested to draw a first SRS of size N0

(according to the subjective probability distribution specified over PM) as described
in Sect. 4.4.1 and to evaluate the model for each of the N0 sample elements. The N0

model result values y1, . . ., yN0
are then arranged in ascending order. The sample may

contain none or at best one value from the critical value range CY, depending on how
small the subjective probability content of that range is. If CY is the range of values
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exceeding ylim, then the statistical test in Sect. 6.4 may be used to identify the
uncertain data that are mostly responsible for the top w% of sample values yn
where w may be chosen to be 10. The smallest value of the top w% (with none or
only few values >ylim) defines the lower boundary of a value range CY0 with CY

� CY0 . The procedure is analogous for the other two types of critical value ranges
mentioned above. Not only does this test identify the uncertain data mostly respon-
sible, but it also suggests for each identified datum a value range that should be
sampled disproportionally more often than the specified subjective probability
distribution would suggest. Let the set of indices of the identified uncertain data be
L. A new random sample of size N1 is drawn according to a joint subjective
probability density function that particularly emphasizes the value ranges identified
by the test as mostly responsible for the w% of model result values contained in
the value range CY0 . To this end, the importance sampling density functions h1,l( pl),
l 2 L, are specified for the identified uncertain data. These density functions may be
chosen such that random samples are easily drawn. Piecewise uniform density
functions with 1� w

100

� �
probability for the range of data values identified by the

test and w
100 for their complement may, for instance, serve the purpose. For all other

uncertain data, the sample values are drawn according to the subjective probability
distributions specified as their state of knowledge expressions, i.e. h1,m( pm) ¼
fm( pm). Should the test have identified two disconnected value ranges for an
uncertain datum with the distance between these ranges larger than a chosen value
(e.g. larger than the largest of the two ranges), then the probability 1� w

100

� �
will be

proportionally shared between the two ranges. Otherwise, the smallest range that
contains the two ranges receives the probability 1� w

100

� �
.

A simple random sample of size N1 is drawn according to the chosen importance

sampling density function h1 pð Þ ¼
YM

m¼1
h1,m pmð Þ. The new set of N1 model result

values is again ordered by increasing magnitude andCY1 is defined. Again, there may
be none or at best a few sample values yn from the critical value range CY, and,
consequently, a further iteration step is needed, i.e. the test is performed and h2( p) is
built according to the data and their value ranges found by the test and a sample of
size N2 is drawn according to h2( p). After K iterations, with sample sizes N1, N2, ...,
NK very much smaller than 1/u, hopefully many of the values in the sample of size
NK are from CY.

An estimate of u ¼ sw(Y�CY) can be obtained as

u � û K ¼ 1
NK

� �XNK

n¼1
I YECYð Þ y Kð Þ

n

� �
f p Kð Þ

1,n ; . . . ; p
Kð Þ
M,n

� �
=hK p Kð Þ

1,n ; . . . ; p
Kð Þ
M,n

� �

ð4:8Þ
with f( p) the joint density function specified as state of knowledge expression and
hK( p) the joint density function emphasizing the value ranges of the uncertain data

mostly responsible for the model result values in the value range CY K�1ð Þ while y
Kð Þ
n

¼ r p Kð Þ
1,n ; . . . ; p

Kð Þ
M,n

� �
are the model result values obtained with the sample of size NK.
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The correction term c Kð Þ
n ¼ f p Kð Þ

1,n ; . . . ; p
Kð Þ
M,n

� �
=hK p Kð Þ

1,n ; . . . ; p
Kð Þ
M,n

� �
is the answer to

the second question posed above. In the case of no state of knowledge dependence
among the uncertain data, the correction term becomes

c Kð Þ
n ¼

YM

m¼1
fm p Kð Þ

m,n

� �
=hK,m p Kð Þ

m,n

� �
ð4:9Þ

or rather

c Kð Þ
n ¼ Πl2Lf l p Kð Þ

l,n

� �
=hK, l p Kð Þ

l,n

� �

where l runs over the index set L of all uncertain data identified by the K-th test.
û K is an estimate of

u ¼ sw Y � CYð Þ ¼Z p1,max

p1,min

. . .

Z pM,max

pM,min

I Y2CYð Þ yð Þf p1; . . . ;pMð Þ=hK p1; . . . ;pMð Þ� 	
hK p1; . . . ;pMð Þdp1 . . .dpM :

ð4:10Þ
With

x y Kð Þ
n

� �
¼ I YECYð Þ y Kð Þ

n

� �
f p Kð Þ

1,n ; . . . ; p
Kð Þ
M,n

� �
=hK p Kð Þ

1,n ; . . . ; p
Kð Þ
M,n

� �

û K ¼ 1
NK

� � XNK

n¼1
x y Kð Þ

n

� �
and s Kð Þ2

x ¼ 1= NK � 1ð Þð Þ
XNK

n¼1
x y Kð Þ

n

� �
� û K

� �2

an upper v% confidence limit for the subjective probability content u of the critical
range of model result values is obtained as

û K þ t NK�1ð Þ,vs Kð Þ
x =N1=2

K

and a lower v% confidence limit is obtained as

û K � t NK�1ð Þ,vs Kð Þ
x =N1=2

K

while a v% confidence interval is obtained as

ûK � t NK�1ð Þ, 100þvð Þ=2s Kð Þ
x =N1=2

K ; ûK þ t NK�1ð Þ, 100þvð Þ=2s Kð Þ
x =N1=2

K

� �

with NK � 30 and t NK�1ð Þ, 100þvð Þ=2 the [(100 + v)/2]% quantile of the Student or t
distribution of NK � 1 degrees of freedom.

Importance sampling will not only be of interest to estimate the very small
probability content of a critical value range CY but also to estimate the mean value
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of Y if it is predominantly determined by very large values from a range of very small
subjective probability content.

The importance sampling densities used by this approach are easy to specify and
to implement. However, the number of iterations needed to have a sufficient number
of sample values yn from CY may still be large. The literature (Ang et al. 1992; Au
and Beck 2001; Morio 2011; Dai et al. 2012) therefore discusses methods that try to
approximate the conditional probability density function over PM

crit using a relatively
small number of sample values from this subspace of PM. The true conditional
density function would have the values h*( p)¼ f( p)/u for p with y¼ r( p) 2 CY and
zero otherwise. It is called the optimal importance sampling density function since

Z
f pð Þ=h∗ pð Þ½ 	h∗ pð Þdp ¼ u:

The integration runs over all r( p) ¼ y 2 CY and the estimate obtained with this
importance sampling density function

û ¼ 1
N

� �XN

n¼1
f pnð Þ=h∗ pnð Þ ¼ u

would have zero variance.
Morio (2011) assumes that an initial importance sampling density function h0( p)

is available and provides a first number of sample values from PM
crit, while Au and

Beck (2001) applies a Metropolis algorithm (Metropolis et al. 1953) [see (Au and
Beck 2001) for application and modification] in order to populate PM

crit with sample
values drawn according to the conditional density function (provided the limiting
distribution of the sample is in fact the conditional distribution mentioned above). A
Gaussian kernel is centred at each of these sample values, and the weighted mixture
is formed with the weights determined either by f( p) and h0( p) (Morio 2011) or by
density function estimation using support vectors (Dai et al. 2012; Rocco and
Moreno 2002) to approximate the conditional density function over PM

crit.This
approximation is then used as importance sampling density function to obtain a
sample rich in model result values yn from CY for the estimation of the probability
content u of CY.

The application of a Metropolis algorithm and that of estimates of the conditional
density function preclude the computation of confidence statements for u.

A general drawback of importance sampling is the danger that sampling will be
locked into a once found critical region within PM while PM

crit is made up of several
such regions. The estimate of the conditional subjective probability density function
over CY will be limited to the once found region and will therefore provide only an
estimate of part of the subjective probability content of CY.
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4.4.4 Subset Sampling

The motivation for this sampling technique is the same as for importance sampling.
However, instead of the iterative direct estimation of the subjective probability
content u of the critical value range CY, subset sampling obtains this probability
from a sequence of subsets

CY0 
 CY1 
 CY2 
 . . . 
 CYK 
 CY

as a product of estimates of the (conditional) subjective probabilities in the following
expression

u¼ sw Y �CYð Þ � sw Y �CY0ð Þ
YK

k¼1
sw

�
Y �CYk Y �CY k�1ð Þ

���
�
¼ u0

YK

k¼1
ukjk�1:

ð4:11Þ
The simple subset sampling procedure presented below may serve as an illustra-

tion of the principle. It is based on SRS, and the discussion considers the case of no
state of knowledge dependence among the involved uncertain data. The presented
procedure may be adapted to account for the various state of knowledge dependence
models of Sect. 3.5. As before and without loss of generality, the epistemic uncer-
tainties (parameter values, model formulations and input data) are subsequently
simply called “uncertain data”.

Subset sampling is standard practice in risk assessments for technical facilities.
Here, the sequence of subsets follows naturally from the technical context. The risk
assessment starts with the estimation of the probability of an initiating event. This is
followed by the estimation of the probability of safety system failure, given the
initiating event. Next the probabilities of various sequences of accident progression
within the facility, given the initiating event and the safety system failure, are
estimated. Finally, an estimate is obtained of the probability of release of hazardous
substances to the environment, given the considered accident progression sequence,
system failure and initiating event. This way it is possible to estimate the very small
probabilities of rare events as a product of the probability of the initiating event and
of conditional probabilities.

A basic subset sampling procedure: The importance sampling procedure
described in Sect. 4.4.3 is combined with subset sampling. To this end, sample
values outside the value rangeCY k�1ð Þ are discarded from each of the random samples
of size Nk, k ¼ 1, . . ., K. A sequence of sets is successively defined in the course of
the subset sampling process

CY �1ð Þ 
 CY0 
 CY1 
 . . . 
 CY K�1ð Þ 
 CYK 
 CY :

If CY is defined by an upper limit value ylim for Y, that must not be exceeded, then
CY contains all values y of Y with y > ylim.
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The model assigns the value y¼ r( p) to every vector p 2 P of possibly true values
of the M uncertain data, and P is the carrier of the M-dimensional joint subjective
probability distribution quantifying their state of knowledge. The set of all model
result values, that are obtained this way, is denoted by CY �1ð Þ .

A first random sample of size N0 is drawn according to the joint subjective
probability distribution over P. The N0 model results are ordered by increasing
value, and the smallest value of the top w% (with none or only few values > ylim)
defines the lower boundary of the subset CY0 . This provides the estimate

û 0 ¼ w

100

of the subjective probability sw Y � CY0ð Þ. The statistical test of Sect. 6.4 may be
used to identify the uncertain data that are mostly responsible for the top w% of
sample values yn, n ¼ 1, 2, . . ., N0. The procedure is analogous for the other two
types of critical value ranges mentioned in Sect. 4.3.

The test also suggests, for each identified datum, a value range that should be
sampled disproportionally more often than the subjective probability distribution
specified as state of knowledge expression would suggest. Let the set of indices of
the identified uncertain data be L. A new random sample of size N1 is drawn
according to a joint subjective probability density function that particularly empha-
sizes the value ranges identified by the test as mostly responsible for the w% of
model result values contained in the value range CY0 . To this end, the importance
sampling density functions h1,l ( pl), l 2 L, are specified for the identified uncertain
data. These density functions may be chosen such that random samples are easily
drawn. Piecewise uniform density functions with 1� w

100

� �
probability for the range

of data values identified by the test and w/100 for their complement may serve the
purpose. For all other uncertain data Pk, k =2 L, h1,k ( pk) ¼ fk( pk), i. e.the sample
values are drawn according to their state of knowledge expressions. Should the test
have identified two disconnected value ranges for one or more uncertain data with
the distance between these ranges being larger than a chosen value (e.g. larger than
the largest of the two ranges) then the probability 1� w

100

� �
may be proportionally

shared between the two ranges.
A simple random sample of size N1 is drawn according to the chosen importance

sampling density function h1( p). Different to the importance sampling procedure of
Sect. 4.4.3, all model result values outsideCY0 are discarded. The remaining number
of sample values is N1

0 � N1. The new set of N1
0 values is ordered by increasing

magnitude. Again, there may be none or at best a few sample values yn from the
critical value range CY, and, consequently, a further iteration step is needed. The test
is performed to identify those uncertain data that are mostly responsible for the top
w% of the N1

0 results inCY0 where the smallest of such values now defines the lower
boundary of CY1 .
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u1 ¼ sw Y � CY1ð Þ ¼ sw Y � CY1 jY � CY0ð Þsw Y � CY0ð Þ ¼ u1j0u0

u1j0 ¼ sw Y �CY1 jY �CY0ð Þ ¼
Z p1,max

p1,min

. . .

Z pM,max

pM,min

��
I y2CY1ð Þ yð Þf p1; . . . ;pM jY �CY0ð Þ

=h1 p1; . . . ;pM jY �CY0ð Þ	h1 p1; . . . ;pM jY �CY0ð Þdp1 . . .dpM
and

y ¼ r ( p1, . . ., pM) is the model result.

u1j0 ¼ E I Y2CY1ð Þ Yð ÞjY � CY0

� �n o
¼ sw Y � CY1 jY � CY0ð Þ,

f p1, . . . , pM jY � CY0ð Þ ¼ f p1; . . . ; pMð Þ=u0 and u0 ¼ sw Y � CY0ð Þ:
An estimate û 1j0 of u1j0 is obtained from

~u 1j0¼ 1
N 0

1

� �XN 0
1

n¼1
I y2CY1ð Þ y 1ð Þ

n

� �
f p 1ð Þ

1,n; .. . ;p
1ð Þ
M,njY�CY0

� �� �
=h1 p 1ð Þ

1,n; . . . ;p
1ð Þ
M,njY�CY0

� �

with f p 1ð Þ
1,n; . . . ;p

1ð Þ
M,njY �CY0

� �
¼ f p 1ð Þ

1,n; . . . ;p
1ð Þ
M,n

� �
=u0 and h1 p 1ð Þ

1,n, . . . ,p
1ð Þ
M,njY �CY0

� �

¼ h1 p 1ð Þ
1,n; . . . ;p

1ð Þ
M,n

� �
=

Z
. . .

Z
h1 p1; . . . ;pMð Þdp1 . . .dpM where the integration runs over

all ( p1, . . .,pM) with y ¼ r p1; . . . ;pMð Þ2CY0 :

Using u0 � û 0 ¼ w=100,
Z

. . .

Z
h1 p1; . . . ; pMð Þdp1 . . . dpM � N 0

1=N1

û1j0¼ 1
N 0

1

� �XN 0
1

n¼1

�
I y2CY1ð Þ y 1ð Þ

n

� �
f p 1ð Þ

1,n; . . . ;p
1ð Þ
M,n

� �
=û0

h i
= h1 p 1ð Þ

1,n; . . . ;p
1ð Þ
M,n

� �
= N 0

1=N1
� �h i

u1 � û 1≔û 1j0û 0: ð4:12Þ
The importance sampling density function h2( p) is built according to the uncer-

tain data and their value ranges found by the test as mostly responsible for the top
w%model result values inCY1 . 1� w

100

� �
is the probability content assigned over the

identified ranges while their complement receives w/100. A sample of size N2 is
drawn according to h2( p). All model result values outside CY1 are discarded, and an
estimate û 2 of u2 is obtained from

u2 ¼ sw Y � CY2ð Þ ¼ sw Y � CY2 jY � CY1ð Þsw Y � CY1 jY � CY0ð Þsw Y � CY0ð Þ
¼ u2j1u1j0u0

as

û 2≔û 0

Y2
k¼1

û kjk�1

¼ û0

Y2
k¼1

1=N 0
k

� �XN 0
k

n¼1

I y2CYkð Þ y kð Þ
n

� �
f p kð Þ

1,n; . . . ;p
kð Þ
M,n

� �
=û k�1

h i
= hk p kð Þ

1,n; . . . ;p
kð Þ
M,n

� �
= N 0

k=Nk

� �h i
:
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After K iterations, with each of the sample sizes N0, N1, N2, ..., NK very much
smaller than 1/u and with CY0 
 CY1 
 . . . 
 CY K�1ð Þ 
 CY , hopefully many of the
values in the sample of size NK’ are from CY. Defining CYK≔CY (i.e. all values that
are larger than ylim), an estimate of u ¼ sw(Y � CY) can be obtained from

u ¼ sw Y � CYð Þ ¼ u0
YK

k¼1
ukjk�1 � û K ¼ û 0

YK

k¼1
û kjk�1 with

ûkjk�1¼ 1
N 0

k

� �XN 0
k

n¼1

�
I y2CYkð Þ y kð Þ

n

� � f p kð Þ
1,n; . . . ;p

kð Þ
M,n

� �

û0
Qk�1

j¼1 û jj j�1

2
4

3
5= hk p kð Þ

1,n; . . . ;p
kð Þ
M,n

� �
= N 0

k=Nk

� �h i

ð4:13Þ

ûK≔û0

YK

k¼1

�
1=Nkû k�1

�XN 0
k

n¼1
I y2CYkð Þ y kð Þ

n

� �
f p kð Þ

1,n; . . . ;p
kð Þ
M,n

� �
=hk p kð Þ

1,n; . . . ;p
kð Þ
M,n

� �h i

Approaches to subset sampling are, for instance, presented in Au and Beck (2001)
and Song et al. (2009). In both papers, the estimate û 0 of the probability content of
CY0 is derived from the initial simple random sample of size N0 and the definition of
CY0 . In order to generate sample values y kð Þ

n from subset CY k�1ð Þ , k ¼ 1, . . ., K,
additional to those contained in the sample of size Nk (Au and Beck 2001), apply a
modified Metropolis algorithm (Metropolis et al. 1953; Calvetti and Somersalo
2007). The distribution of the sample values (original plus those generated by the
Metropolis algorithm) will tend (with increasing number of Markov Chain steps of
the algorithm) towards the conditional probability distribution over CY k�1ð Þ . Due to
the generation of additional sample values by the Metropolis algorithm (using
already existing sample values), the samples are not independent and confidence
statements for uk are not available. Song et al. (2009), on the other hand, generate
additional sample values from subset CY k�1ð Þ by locating the centre of an importance

sampling density function at the sample value y kð Þ
n in CY k�1ð Þ that has the highest

probability density value among those from CY k�1ð Þ . The computation in Song et al.
(2009) of the variance of the estimate û K of uK assumes independence of the
estimates û k , k ¼ 1, . . ., K�1. Both (Au and Beck 2001; Song et al. 2009) do
without probability density function estimation. Song et al. (2009) compares the
subset/Metropolis and the subset/importance sampling combination for three sample
problems. In these problems, the efficiency (total sample size required for acceptable
accuracy) is shown to be high for both with the combination subset/importance
sampling being slightly more efficient.
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Chapter 5
Step 4: Estimate Uncertainty

5.1 Introduction

Step 2 quantified and probabilistically expressed the states of knowledge at the level
of parameter values, models and input data,1 and Step 3 propagated this probabilistic
expression through the arithmetic and logic instructions of the computer model.
From this propagation follows a joint subjective probability distribution for the
model results in a logically consistent way. It is the aim of Step 4 to derive, from
this distribution, quantitative uncertainty statements for individual model results. If
the joint subjective probability distribution is known, the marginal distribution can
be obtained for each model result and uncertainty statements can be read directly
from it. The marginal subjective probability distribution for a model result Yj shall
subsequently be simply called the subjective probability distribution for Yj. It
quantifies the combined effect of all uncertain data taken into account by the
uncertainty analysis. The following analysis results are of specific interest:

(a) The u% quantile yj, u% or the (100 – u)% quantile yj, (100 � u)% of the subjective
probability distribution for Yj;
The u% quantile says that yj, u% is not exceeded by Yj with subjective probability
u/100 or, in other words, u% of the population of model result values, which
follow from the state of knowledge quantifications at the level of the uncertain
data, do not exceed yj, u% . The (100 – u)% quantile says that Yj exceeds yj,
(100 � u)% with subjective probability u/100.

(b) A u% subjective probability interval, delimited by two values such that u% of the
population of model result values for Yj, do neither exceed the upper value nor
fall below the lower value (i.e. are contained).

1In what follows, uncertain parameters, models and input data are simply referred to as uncertain
data since model uncertainties are represented by uncertain parameters and uncertain parameters are
categorized as uncertain data.
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(c) The percentage of the population of model result values for Yj that exceed (do not
exceed) a given upper (lower) limit value, i.e. do not comply with the limit.

(d) The subjective probability for a model result Yj to be larger (smaller) than
another model result Yk (comparison of two or more model results).

The previous chapters used the term “possibly true” in connection with uncertain
data of the computer model application. “Possibly true” stands for “cannot be
excluded at the present state of knowledge”. The purpose of the application of the
model is to use the result (for instance, Yj) as an answer to an assessment question.
The population of model result values for Yj, which follow from the combined effect
of the state of knowledge quantifications at the level of the uncertain data, is a
population of possibly true answers to the assessment question under the condition
that the following assumptions hold:

– The (encoded) computer model is not seriously flawed.
– The most important contributors to the uncertainty of its results have been

accounted for by the analysis (the combined effect of all those not accounted
for may be neglected).

– The states of knowledge, at the level of the uncertain data, have been appropri-
ately expressed by a joint subjective probability distribution.

– Any changes to the interpretation of “subjective probability” (see Sect. 3.4.1) are
of only minor consequence.

If these assumptions hold, according to the judgement of the analyst, then the
analysis results discussed above may be interpreted as follows:

– The u% quantile yj, u% of the subjective probability distribution of the model
result Yj says that u% of the population of possibly true values for Yj (i.e. u% of
the population of possibly true answers to the assessment question) do not exceed
this quantile value or, in other words, the true answer does not exceed yj, u% with
subjective probability u/100.

– A u% subjective probability interval, delimited by two values of the model result,
is an interval that contains u% of the population of possibly true values for Yj
(i.e. u% of the population of possibly true answers to the assessment question).

– The percentage of the population of possibly true values for Yj (i.e. of the
population of possibly true answers to the assessment question) that exceed
(do not exceed) the limit value, i.e. that do not comply with the upper (lower)
limit.

So far it was assumed that the subjective probability distribution for Yj is known.
However, the methods of uncertainty propagation presented in the previous chapter
do not provide the subjective probability distributions of the model results. They
provide sets of model result values permitting only the estimation of some or all of
the uncertainty statements mentioned above. Section 5.2 explains how these esti-
mates are derived from the sets of model result values obtained by uncertainty
propagation using simple random sampling (SRS), while those based on uncertainty
propagation using Latin Hypercube sampling (LHS) are discussed in Sect. 5.3.
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Estimates of the very small subjective probability content of a critical value range of
the model result Yj are discussed in Sects. 4.4.3 and 4.4.4.

5.2 Uncertainty Statements Available from Uncertainty
Propagation Using SRS

An uncertainty analysis, using Monte Carlo simulation with SRS, provides in Step
3 a random input sample with each sample element independently drawn according
to the joint subjective probability distribution of the uncertain data. Each input
sample element is then transformed into the corresponding output sample element
by the model. This way each element of the output sample is independently drawn at
random according to the unknown joint subjective probability distribution of the
model results (Table 5.1).

A random sample drawn according to the unknown subjective probability distri-
bution of any individual model result Yj is therefore immediately available as (yj,1,
yj,2, . . . , yj,N) and can be used to estimate mean value, variance, quantile values,
intervals of given subjective probability content as well as subjective probabilities of
violation of limit values. All of these estimates can be supplemented by confidence
intervals and confidence limits. They quantify the possible influence of the sampling
error on the estimates. This error is due to the random variation from sample to
sample which is pronounced by the limited sample size affordable in practice. The
following Sect. 5.2.1 explains the meaning of the confidence as well as tolerance
confidence limits and intervals. Sections 5.2.2 to 5.2.5 derive estimates of mean
value, quantile values, intervals of given subjective probability content as well as
subjective probabilities of violation of limit values and supplement them with
confidence limits and intervals to specified confidence levels. Section 5.2.6 investi-
gates the variability of statistical tolerance limits. Sections 5.2.7 and 5.2.8 show how
to compare different model results on the basis of their random output sample values.
Finally, ways of graphical presentation of uncertainty estimates are shown in
subsection 1 of Sect. 5.4.1 for single value model results and in subsection 2 of

Table 5.1 Output of the uncertainty propagation by Monte Carlo simulation using SRS

Computer
model run
no.

Input
sample
element no.

Uncertainty no. Output
sample
element no.

Model result no.

1 2 . . . M 1 2 . . . J

Sample values Sample

1 1 p1,1 p2,1 . . . pM,1 1 y1,1 y2,1 . . . yJ,1
2 2 p1,2 p2,2 . . . pM,2 2 y1,2 y2,2 . . . yJ,2
. . . . .

. . . . .

. . . . .

N N p1,N p2,N . . . pM,N N y1,N y2,N . . . yJ,N
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Sect. 5.4.1 for model results that are a function of some independent variable such as
time or space.

5.2.1 The Meaning of Confidence and Tolerance Confidence
Limits and Intervals

– Confidence Limits, Intervals and Levels
It often does not suffice to provide just a single estimate (a so-called point value)
for a fixed but unknown quantity θ. Intervals [g1, g2] are preferred, particularly if
it is possible to provide the degree of belief for θ to be in the interval [g1, g2].

In statistics, θ is generally a characteristic value (like a parameter value) of the
distribution FX of a random variable X and is to be estimated from a simple
random sample of size N, i.e. from a realization of the sample variables (X1, X2,
. . ., XN) where each Xn (n ¼ 1, 2 . . . , N ) is independently and identically
distributed according to FX. In other words: The sample variables Xn will vary
from sample to sample of size N according to the distribution FX, and therefore,
the estimate θ will also vary from sample to sample. Because of this variability,
the value G of a function h(X1, X2, . . ., XN) is also a random variable. If there are
functions h1(X1, X2, . . ., XN) ¼ G1 and h2(X1, X2, . . ., XN) ¼ G2, such that G1

� θ � G2 with probability v/100, then [G1, G2] is a confidence interval at a
confidence level of v% (a v% confidence interval).G3 is an upper confidence limit
at a level of v% (an upper v% confidence limit) if there is a function h3(X1, X2, . . .,
XN) ¼ G3 such that θ � G3 with probability v/100. The confidence interval and
limit at a given level of v% are random variables because (X1, X2, . . ., XN) is not a
specific simple random sample but an N-dimensional random variable. This is
why there is a probability v/100 for the fixed value θ to be within [G1, G2]. The
practical meaning of this probability v/100 is that there is a chance of v% to draw a
simple random sample (x1, x2, . . ., xN) such that g1 � θ � g2 where g1 ¼ h1(x1, x2,
. . ., xN) and g2 ¼ h2(x1, x2, . . ., xN). So, once a simple random sample of size N is
drawn and g1 and g2 are computed, the interval [g1, g2] may or may not contain θ.
However, because of what has been said above about the practical meaning of the
associated confidence level, the degree of belief is v% that the interval [g1, g2]
does in fact contain θ. The argumentation is analogous for confidence limits. The
interval [g1, g2] is only a realization of the confidence interval [G1, G2] but is also
called confidence interval in practice. Clearly, if k simple random samples of size
N are to be drawn and the corresponding k intervals [g1, g2] computed, it is to be
expected that kv/100 of these intervals will in fact contain the fixed but unknown
value θ.

– Tolerance Confidence Limits, Intervals and Levels
The confidence statements given above are concerned with an unknown fixed
value. Tolerance confidence statements, on the other hand, are concerned with
a random variable X and in particular with the unknown limiting value(s) of a
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one- (or two-) sided interval of values of X the probability content of which is at
least as large as specified.

If there are functions h1(X1, X2, . . ., XN) ¼ G1 and h2(X1, X2, . . ., XN) ¼ G2, such
that at a confidence level of v% G1 � X � G2 with at least probability u/100, then
[G1, G2] is a (u%, v%) tolerance confidence interval for X. G3 is an upper (u%, v%)
tolerance confidence limit if there is a function h3(X1, X2, . . ., XN)¼ G3 such that at a
confidence level of v% X � G3 with at least probability u/100. The tolerance
confidence interval and limit are random variables because (X1, X2, . . ., XN) is not
a specific simple random sample but an N-dimensional random variable. This is why
there is a probability v/100 for X to be within [G1, G2] with at least probability u/100.
The practical meaning of the probability v/100 is that there is a chance of v% to draw
a simple random sample (x1, x2, . . . , xN) such that g1 � X � g2 with at least
probability u/100 where g1 ¼ h1(x1, x2, . . . , xN) and g2 ¼ h2(x1, x2, . . . , xN). So,
once a simple random sample of size N is drawn and g1 and g2 are computed, the
interval [g1, g2] may or may not contain X with at least probability u/100 (may or
may not contain at least u% of the population of values of X). However, because of
what has been said above about the practical meaning of the associated confidence
level of v%, the degree of belief is v/100 that the interval [g1, g2] does in fact contain
X with at least probability u/100. The argumentation is analogous for tolerance
confidence limits. The interval [g1, g2] is only a realization of the tolerance confi-
dence interval [G1, G2] but, in practice, is also called tolerance confidence interval or
more precisely statistical tolerance interval. Clearly, if k simple random samples of
size N are to be drawn and the corresponding k intervals [g1, g2] computed, it is to be
expected that kv/100 of these intervals will in fact contain X with at least probability
u/100 (or in other words, kv/100 of these intervals will in fact contain at least u% of
the population of values of X).

An upper (u%, v%) statistical tolerance limit is also an upper v% confidence limit
for the u% quantile of X, and a lower (u%, v%) statistical tolerance limit is a lower v
% confidence limit for the (100 – u)% quantile of X. A two-sided (u%, v%) statistical
tolerance limit is a v% confidence interval delimiting a value range that contains
X with at least probability u/100 (the range contains at least u% of the population of
values of X at a confidence level of v%).

5.2.2 The Mean Value of the Model Result

The mean value of the subjective probability distribution of a model result Yj is
estimated from a simple random sample (SRS) of size N as

mN,Yj ¼
1
N

� �XN
n¼1

yj,n:
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The values yj, n are those in the output sample of the uncertainty propagation by
Monte Carlo simulation. The vector (yj, 1, yj, 2, . . . , yj, N) of sample values is a
realization of the random vector (Yj, 1, Yj, 2, . . . , Yj, N). Each component of the
random vector has the subjective probability distribution of the model result Yj. The
larger the sample size N, the closer comes the distribution of the sum

MN,Yj ¼
1
N

� �XN
n¼1

Yj,n

to a normal distribution with mean value E{Yj} and variance σ2Yj
/N. This follows

from the central limit theorem. As a rule of thumb, this approximation by the normal
distribution is considered satisfactory for sample sizes N� 30, provided the variance
σ2Yj

of the subjective probability distribution of the model result Yj exists. Given the

variance σ2Yj
is known, an approximate v% confidence interval for the mean value of

the model result is delimited by

mN,Yj � a
� �

and mN,Yj þ a
� �

with

a ¼ z 100þvð Þ=2σYj=N
1=2:

z(100 + v)/2 is the [(100+v)/2]% quantile of the standard normal distribution. In
practice however, σYj needs to be estimated from the sample values and the estimate
is given by

sN,Yj ¼
1

N � 1

� �XN
n¼1

yj,n � mN,Yj

� �2" #1
2

:

As a consequence of the replacement of σYj by sN,Yj , an approximate v%
confidence interval for the mean value of Yj is given by

mN,Yj � b
� �

and mN,Yj þ b
� �

with

b ¼ t N�1ð Þ, 100þvð Þ=2 sN,YjN
�1=2

t(N–1),(100+v)/2 the [(100 + v)/2]% quantile of the Student or t-distribution with
(N � 1) degrees of freedom [see Eqs. (3.4) to (3.6)].

The mean value of the subjective probability distribution of the model result Yj is
the so-called best estimate (see subsection 4 of Sect. 3.6.1). It is generally different
from the model result value obtained with the mean values (“best estimates”) of the
subjective probability distributions for the uncertain data. The rare case where the
model result is a linear function of the latter is an exception.

The mean value is not suitable as an uncertainty measure for Yj. However, mean
values of the relative frequencies of sample elements above, below or between
specified values of Yj are suitable as uncertainty measures. For this reason, the
following sections deal with the estimation of quantile values of the subjective
probability distribution of the model result.
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5.2.3 A Quantile Value of the Model Result

The u% quantile yj, u% of the subjective probability distribution of the model result Yj
is a quantitative expression of the uncertainty of Yj (see also the interpretation under
a) in the introduction to this chapter). The model result does not exceed yj, u% with
subjective probability u/100, and it exceeds yj, u%with subjective probability
1 � u/100.

To obtain an estimate of the u% quantile, the values in the simple random sample
(yj, 1, yj, 2, . . . , yj, N) are ordered by increasing magnitude and the i-th ordered value is
used as an estimate. The index i is the smallest integer value larger than or equal to
Nu/100. Confidence statements are required for estimates of distribution quantiles if
the sample size N is relatively small and particularily if u is large (90, 95, etc.) or
small (10, 5, etc.). These quantiles are in the tail ends of the distributions where
sample values tend to be spread out over wide ranges and estimates exhibit consid-
erable variability from sample to sample of size N. Confidence statements are given
in the form of (u%, v%) tolerance confidence limits (see Sect. 5.2.1). They are known
in the literature (Wilks 1941; Wald 1943; Conover 1980; Guenther 1985) as
one-sided (lower or upper) or two-sided (u%, v%) tolerance confidence or statistical
tolerance limits and intervals.

Tolerance confidence limits are obtained from the order statistics of the sample
variables. The order statistic of a given rank is the sample variable with the value of
that rank in the ordered sample. The order statistic of rank 1 is the sample variable
with the smallest, and the order statistic of rank N is the sample variable with the
largest value in the sample of size N. The probability that at most mu � 1 sample
values lie above yj, u% is given by the binomial distribution expression:

Xmu�1

j¼0

N!

j! N � jð Þ! 1� u

100

� �j u

100

� �N�j
:

Consequently, if mu satisfies

Xmu�1

j¼0

N!

j! N � jð Þ! 1� u

100

� �j u

100

� �N�j
� 1� v=100 ð5:1Þ

then the probability that at least mu sample values are larger than yj, u% is given by

1�
Xmu�1

j¼0

N!

j! N � jð Þ! 1� u

100

� �j u

100

� �N�j
� v=100: ð5:2Þ

From (5.2), one concludes that the probability to have mu or more sample values
above yj, u% is at least v/100. Consequently, the smallest of the mu sample values
from the top, i.e. the (N + 1 � mu)-th order statistic, is an upper (u%, v%) tolerance
confidence limit saying: “The value of the model result Yj lies below the
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(N + 1 � mu)-th order statistic at least with subjective probability u/100 at a
confidence level of at least v%.”

The binomial distribution is discrete, and therefore, it is unlikely to have equality
in (5.1) and (5.2).

Two situations are of interest:

1. N, u and v are given and

(a) mu is to be determined such that the (N + 1 � mu)-th ordered sample value
(i.e. the mu-th value from the top of the ordered sample) is an upper (u%, v%)
statistical tolerance limit

or
(b) ml is to be determined such that theml-th value from the bottom of the ordered

sample is a lower (u%, v%) statistical tolerance limit.

The solutions are found as follows:

(1a) Find the largest integer mu that satisfies inequality (5.1). To simplify matters,
the following approximate relationship (Scheffé and Tukey 1944) may be used:

N � 0:25χ22mu;v%ð Þ 1þ u

100

� �
= 1� u

100

� �
þ 0:5 mu � 1ð Þ ð5:3Þ

χ22mu;v%ð Þ is the v% quantile of the χ2 distribution with degree of freedom 2mu

(Table III in Winkler and Hays (1975)). The largest value obtained for mu, for which
the right-hand side of (5.3) does not exceed N, may be used in (5.1) to check whether
it is the largest integer satisfying the inequality. The mu-th value from the top of the
ordered sample is then an upper (u%, v%) statistical tolerance limit.

(1b) Find the largest integer ml that satisfies

Xml�1

j¼0

N!

j! N � jð Þ! 1� u

100

� �j u

100

� �N�j
� 1� v=100: ð5:4Þ

The largest value found for ml, such that in

N � 0:25χ22ml;v%ð Þ 1þ u

100

� �
= 1� u

100

� �
þ 0:5 ml � 1ð Þ ð5:5Þ

the right-hand side does not exceed N, may be used in (5.4) to check whether it is
the largest integer satisfying the inequality. The ml-th value from the bottom of the
ordered sample is then a lower (u%, v%) statistical tolerance limit.

If N, u and v are the same for (a) and (b), then mu¼ ml and the difference lies only
in the rank of the order statistic that is to be used as limit. There may be no solution in
situation (1) if N is not large enough. This leads to the second situation:

2. u, v andml ormu are given and the smallest sample size N is to be determined such
that in the ordered sample
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(a) the mu-th value from the top is an upper (u%, v%) statistical tolerance limit
or

(b) the ml-th value from the bottom is a lower (u%, v%) statistical tolerance limit.

The solutions are found as follows:

(2a) Use the approximate formula (5.3) and find the smallest value for N that is
larger or equal to the right-hand side of (5.3) and check with the inequality
(5.1).

(2b) Use the approximate formula (5.5) and find the smallest value for N that is
larger or equal to the right-hand side of (5.5) and check with the inequality
(5.4).

Clearly, if u and v are the same and ml ¼ mu, then N is the same for (2a) and (2b).
For instance, if the sample is of size N ¼ 59, then the maximum model result

value in this sample (mu ¼ 1) is already a one-sided upper (95%, 95%) statistical
tolerance limit [see Table A5 in Conover (1980)]. It says: At a confidence level of at
least 95% the model result value lies below this limit at least with subjective
probability 0.95.

N ¼ 45 is the minimum sample size for a one-sided (95%, 90%) statistical
tolerance limit (i.e. at a confidence level of at least 90%). The largest sample value
of the model result is then a one-sided upper (95%, 90%) statistical tolerance limit,
i.e. at a confidence level of at least 90% the model result lies at least with subjective
probability 95/100 below this limit. The minimum required sample sizes are
obtained as the smallest integer number N such that for mu ¼ 1, the inequality

u

100

� �N
� 1� v=100 ð5:6Þ

is just satisfied (u is the quantile percentage and v the confidence level percent-
age). The term (u/100)N is the probability that none of the N model result values
exceed the u% quantile of the unknown subjective probability distribution. This
probability should not exceed 1 – v/100. The probability that at least one of the
Nmodel result values exceeds the u% quantile is then� v/100. The largest value (mu

¼ 1) will always be among those that do exceed the u% quantile.
The required sample size N is obviously independent of the number of uncertain

data considered in the Monte Carlo simulation and depends only on the values
chosen for the two percentages u and v.

If one can afford more than the minimum sample size, then one may be able to use
a value below the maximum value in the sample as upper statistical tolerance limit.
The approximate formula (5.3) tells which of the ordered values in the sample can
then serve as the one-sided upper (u%, v%) statistical tolerance limit.

N is the given sample size and the largest integermu is to be determined from (5.3)
such that the right-hand side is still smaller or equal to N. The mu-th (from the top)
ordered (by increasing magnitude) element in the sample of model result values is
then an upper (u%, v%) statistical tolerance limit. For instance, if N ¼ 100 and u ¼
v ¼ 95, then mu ¼ 2, i.e. the second largest value in the sample is an upper (95%,
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95%) statistical tolerance limit. The subjective probability for model result values to
lie below this value is at least 0.95 at a confidence level of at least 95%. At least 95%
of the population of possibly true values of the model result lie below this value at a
confidence level of at least 95% (given the assumptions mentioned in the introduc-
tion to this chapter hold).

5.2.4 A Subjective Probability Interval for the Model Result

Again, two situations are of interest:

1. N, u and v are given and
ml and mu are to be determined such that the ml-th value from the bottom and the
mu-th value from the top of the ordered sample delimit a two-sided (u%, v%)
statistical tolerance interval.

or
2. u, v, ml and mu are given and the smallest sample size N is to be determined such

that in the ordered sample the ml-th value from the bottom and the mu-th value
from the top delimit a two-sided (u%, v%) statistical tolerance interval.

The solutions are found as follows:

1. Find the largest integer m that satisfies

Xm�1

j¼0

N!

j! N � jð Þ! 1� u

100

� �j u

100

� �N�j
� 1� v=100: ð5:7Þ

The approximate relationship

N � 0:25χ22m;v%ð Þ 1þ u

100

� �
= 1� u

100

� �
þ 0:5 m� 1ð Þ ð5:8Þ

may be used (χ22m;v%ð Þ is the v% quantile of the χ2 distribution with degree of

freedom 2m) to find the largest integer m for which the right-hand side of (5.8) does
not exceed N. This value may then be checked whether it is the largest integer
satisfying the inequality (5.7). Any pair of values (ml, mu) with ml + mu ¼ m has the
following property: The ml-th value from the bottom and the mu-th value from the
top of the ordered sample delimit a two-sided (u%, v%) statistical tolerance interval.
The difference between inequalities (5.1), (5.4) and (5.7) lies only in the ranks of the
order statistics that are to be used as the statistical tolerance limit.There may be no
solution in situation (1) if N is not large enough. This leads to the second situation
with the following solution:

2. Use the approximate formula (5.8) with m ¼ ml + mu and find the smallest value
for N that is larger or equal to the right-hand side of (5.8) and check with the
inequality (5.7).
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Inequality (5.7) says that with probability of at least v/100 at least m of the
N sample values are outside an interval that is not explicitly specified and that
contains Yj with probability u/100. The order statistics of rank ml and of rank (N +
1 � mu) with ml + mu ¼ m delimit an interval such that, at a confidence level of at
least v%, Yj lies in the interval with at least subjective probability u/100. Different to
(5.1) and (5.4), this interval is only implicitly specified, namely through the condi-
tion ml + mu ¼ m.

Uncertainty is often to be quantified in the form of an interval that contains the
model result value at least with subjective probability u ¼ 0.9, for instance. The
smallest and the largest value in a sample of size N ¼ 46 [see Table A6 in Conover
(1980)] enclose a value range of at least 0.9 subjective probability at a confidence
level of at least 95%. This interval is called a two-sided (90%, 95%) statistical
tolerance limit. It contains at least 90% of the population of possibly true model
result values at a confidence level of at least 95% (given the assumptions in the
introduction to this chapter hold).

If a sample size larger than N ¼ 46 can be afforded, then the approximate
relationship

N � 0:25χ22 mlþmuð Þ;v%ð Þ 1þ u

100

� �
= 1� u

100

� �
þ 0:5 ml þ mu � 1ð Þ

where N is the given sample size and χ22 mlþmuð Þ;v%ð Þ is the v% quantile of the χ2

distribution with degree of freedom 2(ml +mu) [see Table A2 in Conover (1980)] can
be used to determine sample values such that they define an approximate two-sided
(u%, v%) statistical tolerance limit. The integer numbers ml and mu are to be
determined such that the right-hand side of the above approximate relationship is
just smaller or equal to N. The ml-th value from the bottom and mu-th value from the
top of the ordered (by increasing magnitude) sample determine an approximate (u%,
v%) statistical tolerance interval. The subjective probability for the model result to
lie within this interval is at least u/100 at a confidence level of at least v%. This
interval is also called a two-sided (u%, v%) statistical tolerance limit. It contains at
least u% of the population of possibly true values of the model result at a confidence
level of at least v% (given the assumptions in the introduction to this chapter hold).

5.2.5 Compliance of the Model Result with a Limit Value

Let ylim be the limit value, Yj the model result to be compared to ylim, N the sample
size (i.e. the total number of replications of the computer model application), m the
number of model result values yj, n, n ¼ 1, . . ., N, in the sample with yj, n>(<) ylim, v
% the confidence level and
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a ¼ Fv,k1,k2 the v% quantile of the F-distribution with k1 ¼ 2(m + 1), k2 ¼
2(N – m) degrees of freedom [tabulated, for instance, in
Winkler and Hays (1975)]

b ¼ Fv,k1,k2 the v% quantile of the F-distribution with k1 ¼ 2(N–m + 1),
k2 ¼ 2m degrees of freedom

c ¼ F(100 + v)/2,k1,k2 the (100 + v)/2% quantile of the F-distribution with k1¼ 2(N –

m + 1), k2 ¼ 2m degrees of freedom
d ¼ F(100 + v)/2,k1,k2 the (100 + v)/2% quantile of the F-distribution with k1¼ 2(m +

1), k2 ¼ 2(N – m) degrees of freedom

then (Heinhold 1968):

– a v% confidence interval for the subjective probability sw(Yj >(<) ylim) is given
as:

m

mþ N � mþ 1ð Þc½ � � sw Yj > <ð Þylim
� � � mþ 1ð Þd

mþ 1ð Þd þ N � m½ � ;

– an upper confidence limit for sw(Yj >(<) ylim) is given as:

sw Yj > <ð Þylim
� � � mþ 1ð Þa

mþ 1ð Þaþ N � m½ � ;

– a lower confidence limit for sw(Yj >(<) ylim) is given as:

m

mþ N � mþ 1ð Þb½ � � sw Yj > <ð Þylim
� �

:

5.2.6 The Sample Variability of Statistical Tolerance Limits

How variable are statistical tolerance limits? In other words: Would replicated
sampling with equal sample size N provide widely differing statistical tolerance
limits? The maximum value of a simple random sample of size N is distributed
according to [FY( y)]

N since none of the sample values exceed y. In the context of
uncertainty analysis, FY denotes the unknown subjective probability distribution for
the model result Y. The minimum sample size for an upper (95%, 95%) statistical
tolerance limit is 59 as can be seen from (5.6) or from Table A5 in Conover (1980).
The statistical tolerance limit is the maximum model result value in the sample of
size N ¼ 59. If many samples of size N ¼ 59 are drawn according to a continuous
distribution FY, roughly 45% of the maximum values will lie between the 95.05%
and the 98.85% quantile of the subjective probability distribution for the model
result and roughly another 45% between the 98.85% and the 99.92% quantile. If the
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subjective probability distribution for the model result has a long tail, extending to
large values, the latter range may be quite wide, implying considerable variability of
the statistical tolerance limits and therefore possibly considerable conservatism if the
statistical tolerance limit is compared to an upper safety limit. This is the price to be
paid for trying to infer relatively extreme quantiles from a small sample drawn
according to a distribution that is only indirectly specified. If the matter is important
enough to justify some effort in reducing the chance for a considerably conservative
compliance check, then it will be important enough to justify a larger sample size N.
If the sample size is 100, for instance, the 99th ordered value is an upper (95%, 95%)
statistical tolerance limit, as can be seen from (5.2) with mu ¼ 2. The 99th order
statistic is distributed according to

FY yð Þð Þ100 þ 100 FY yð Þð Þ99 1� FY yð Þð Þ ð5:9Þ
The expression (5.9) gives the probability that either all N¼ 100 model results do

not exceed y or that at most one result does exceed y. Consequently,

1� FY yð Þð Þ100 þ 100 FY yð Þð Þ99 1� FY yð Þð Þ
n o

is the probability that at least two model results in the sample of size N ¼ 100 do
exceed the value y. Among those two results is the 99th ordered sample value
(i.e. the second largest value).

Roughly 45% of the 99th ordered values from many simple random samples of
size N ¼ 100 will lie between the 95.05% and the 98.35% quantile since (5.9) says
that the two top ranked model results are with probability of about 0.95 above the
95.05% quantile of the model results and with probability of about 0.493 above the
98.35% quantile. Roughly another 45% of the 99th ordered values are between the
98.35% and the 99.65% quantile, while they are above the 99.65% quantile with
probability of about 0.05. Therefore, this limit exhibits already less variability if
compared to the statistical tolerance limit obtained from samples of size N ¼ 59.

5.2.7 Comparison of Two Model Results

The comparison can only be probabilistic, i.e. the subjective probability is deter-
mined for model result Yj to be larger (smaller) than model result Yi, j 6¼ i, j, i 2
(1, . . ., J ). An estimate of this subjective probability is available from the number of
pairs of values (yj, n, yi, n) in the sample of size N with yj, n> (<) yi, n, i.e.

swest Yj > <ð ÞYi

� � ¼ N�1m
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with m ¼
XN
n¼1

mn

and

mn ¼ 1 if yj,n > <ð Þ yi,n and 0 otherwise:

A v% confidence interval for sw(Yj > Yi) is obtained as (Heinhold and Gaede
1968):

m

mþ N � mþ 1ð Þc½ � � sw Yj > <ð ÞYi

� � � mþ 1ð Þd
mþ 1ð Þd þ N � m½ �

c is the (100 + v)/2% quantile of the F-distribution (tabulated in, for instance,
Winkler and Hays 1975) with degrees of freedom 2(N – m + 1) and 2m while d is the
(100 + v)/2% quantile of the F-distribution with degrees of freedom 2(m + 1) and 2
(N – m).

5.2.8 Comparison of More than Two Model Results

If L > 2 model results are to be compared, the following approach may be useful:
For l ¼ 1, . . ., L determine how often (out of the N model runs) model result Yl

was the largest (smallest) among the L results and set

gl ¼ nl, 1

nl, 1 is the number of model runs with Yl largest (smallest) among the L results.
Then set

gl ¼ gl þ 2nl, 2

nl, 2 is the number of runs with Yl second largest (smallest), and so forth. Finally,

gl ¼ N�1
XL
j¼1

jnl, j

is compared for l ¼ 1, . . ., L and the model results are ranked according to gl for
l ¼ 1, . . ., L, i.e. the result Yl with the smallest gl receives the top rank. Since the gl
are estimates of mean values, an approximate 90% confidence interval can be
derived as follows from random samples (SRS) of size N > 30:

lower endpoint: gl � b
upper endpoint: gl + b
with
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b ¼ t N�1ð Þ, 100þvð Þ=2 s=N1=2

t(N � 1), (100 + v)/2 is the [(100+v)/2]% quantile of the Student or t-distribution with
(N � 1) degrees of freedom [see Eqs. (3.4) to (3.6)] and

s ¼ 1
N � 1

� �XN
n¼1

jn � glð Þ2
" #1=2

:

The value of jn is either 1, 2, . . ., L depending on whether the n-th sample value
for Yl is the largest (smallest), second largest (smallest) and so forth among the n-th
set of sample values of the L model results.

5.3 Uncertainty Statements Available from Uncertainty
Propagation Using LHS

An uncertainty analysis, using Monte Carlo simulation with LHS, provides in Step
3 an input sample that is partly deterministic (see Sect. 4.4.2). The M-dimensional
unit hypercube IM is divided into NM M-dimensional elemental hypercubes or cells
Cn1,n2,. . .,nM , nm ¼ 1, . . ., N, m ¼ 1, . . ., M each of probability content 1/NM. Once
the first input sample element e1 ¼ ( p1,1(1), p2,1(2), . . . , pM,1(M)) has been drawn,
where pm,1(m) ¼ Fm

�1(um,1(m)), m ¼ 1, . . ., M, and the numbers 1(1), 1(2), ..., 1(M )
are the first elements in M random permutations of the numbers 1, 2, ..., N, the next
sample element can only be drawn from (N � 1)M of the elemental hypercubes
namely from all of those that do not have any of the numbers 1(m), m ¼ 1, . . .,M, as
their m-th index (and so forth). The input sample variables E1, . . ., EN are therefore
dependent but identically distributed.

Each input sample element en ¼ ( p1,n(1), p2,n(2), . . ., pM,n(M)), n ¼ 1, ..., N, is
converted into the corresponding output sample element an ¼ (y1,n, y2,n, . . ., yJ,n) by
the computer model. While the first output sample element a1 is drawn according to
the mixture of the conditional joint distributions of the model results over each of the
NM elemental hypercubes, the second sample element a2 is drawn according to the
mixture over only (N � 1)M elemental hypercubes (they depend on the elemental
hypercube of the first sample element), the third sample element a3 is drawn
according to the mixture over each of (N � 2)M elemental hypercubes (they depend
on the elemental hypercubes of the first and the second sample element) and so forth.
It follows that the output sample variables A1, . . ., AN are not independent but
identically distributed according to the unknown joint subjective probability distri-
bution of the model results.

A sample drawn according to the unknown subjective probability distribution of any
individual model result Yj is therefore immediately available as (yj, 1, yj, 2, . . . , yj, N).
The value of the density function is given as (Table 5.2)
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fj yj, 1; yj, 2; . . . ; yj,N
� � ¼ fj yj, 1

� �
fjj1 yj, 2

� �
. . . fjj1, ...,N�1 yj,N

� �
: ð5:10Þ

The indices j|1, j|1,2 and so forth denote the mixture density function under the
condition of the elemental hypercube of the first, the first and the second sample
element and so forth. In the simple random sampling case

fj yj, 1; yj, 2; . . . ; yj,N
� � ¼ YN

n¼1

fj yj,n
� �

:

5.3.1 Estimates of Mean Values of Functions of the Model
Result

The mean value of a sum of dependent variables equals the sum of the mean values
of the individual variables. The sample can therefore be used to estimate mean
values. Mean values of interest are those of functions g(Yj), such as

– The mean value of Yj (with g(Yj) ¼ Yj)
– The variance as the difference of the mean value of Yj

2 and the square of the mean
value of Yj (with g(Yj) ¼ Yj

2)
– The subjective probability of violation of a limit value (g(Yj) ¼ 1 if Yj > (<)ylim

and is 0 otherwise).

However, all of these estimates, due to the dependence of the sample values,
cannot be supplemented by confidence intervals and confidence limits.

The variances of the estimates of mean values of functions g(Yj) are those of

Mg Yjð Þ,SRS ¼ N�1
XN
n¼1

g Yj,n
� �

in the case of simple random sampling andMg Yjð Þ,LHS

¼ N�1
Xf Nð Þ

i¼1

Wig Yj, i
� �

in the case of Latin Hypercube sampling.

Table 5.2 Output of the uncertainty propagation by Monte Carlo simulation using LHS

Computer
model run
no.

Input
sample
element no.

Uncertainty no. Output
sample
element no.

Model result no.

1 2 . . . M 1 2 . . . J

Sample values Sample

1 1 p1,1(1) p2,1(2) . . . pM,1

(M)

1 y1,1 y2,1 . . . yJ,1

2 2 p1,2(1) p2,2(2) . . . pM,2

(M)

2 y1,2 y2,2 . . . yJ,2

. . . . .

. . . . .

. . . . .

N N p1,
N(1)

p2,
N(2)

. . . pM,

N(M)

N y1,N y2,N . . . yJ,N
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f(N ) ¼ NM the number of elemental hypercubes or cells and Wi ¼ 1 if the cell
number i has been chosen by the Latin Hypercube sampling andWi¼ 0 otherwise. If
all uncertain data P1, . . ., PM are state of knowledge independent, then the variances
relate to each other as shown in McKay et al. (1979).

Sections 5.3.2 to 5.3.5 derive estimates of mean value, quantile values, intervals
of given subjective probability content as well as of the subjective probability of
violation of a limit value from sample values of Yj obtained with a Latin Hypercube
sample of the uncertain data. Section 5.3.8 discusses the use of K replicated Latin
Hypercube samples to obtain estimates with confidence statements. Sections 5.3.6
and 5.3.7 show how to compare different model results on the basis of their random
output sample values. Finally, ways of graphical presentation of uncertainty esti-
mates are discussed in Sect. 5.4.2.

5.3.2 The Mean Value of the Model Result

The mean value of the subjective probability distribution of a model result Yj can be
estimated from a sample of model output values yj, n obtained using an LHS of size
N of the uncertain data, as

mYj ¼
1
N

� �XN
n¼1

yj,n:

The vector (yj, 1, yj, 2, . . ., yj, N) of sample values is a realization of the random
vector (Yj, 1,Yj, 2, . . ., Yj, N). Each component of the random vector has the subjective
probability distribution of the model result Yj. The sample variables (Yj, 1, Yj, 2, . . .,Yj,
N) are, however, not independent, and the central limit theorem can therefore not be
applied. Consequently, the distribution of MYj cannot be approximated by a normal
distribution. Confidence limits and intervals for the mean value of Yj are therefore
not available. See Sect. 5.3.8 for an attempt to circumvent this handicap.

5.3.3 A Quantile Value

The u% quantile yj, u% of the subjective probability distribution of the model result Yj
is a quantitative expression of the uncertainty of Yj. The model result does not exceed
yj, u% with subjective probability u/100, and it exceeds yj, u% with subjective
probability 1 – u/100.

To obtain an estimate of the u% quantile, the values in the model output sample
(yj, 1, yj, 2, . . . , yj, N) are ordered by increasing magnitude and the i-th ordered value is
used as an estimate. The index i is the smallest integer value larger than or equal to
Nu/100. Confidence statements are required for estimates of distribution quantiles if
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the sample size N is relatively small and particularily if u is large (90, 95, etc.) or
small (10, 5, etc.). These quantiles are in the tail ends of the distributions where
sample values tend to be spread out over wide ranges and estimates exhibit consid-
erable variability from sample to sample of size N. While confidence statements are
given in the form of (u%, v%) tolerance confidence limits (see Sect. 5.2.1) in the case
of simple random sampling (SRS), they are not available from the model output
sample obtained with an LHS of the uncertain data due to the dependence of the
sample variables. See Sect. 5.3.8 for an attempt to circumvent this handicap.

5.3.4 A Subjective Probability Interval

An estimate of an interval containing q% subjective probability of Yj is delimited by
two quantile value estimates byj,u% and byj,w% such that (w – u) ¼ q. Confidence
statements are not available for this interval estimate since the sample variables are
not independent. For the same reason, a two-sided (q%,v%) statistical tolerance limit
is also not available. See Sect. 5.3.8 for an attempt to circumvent this handicap.

5.3.5 Compliance with a Limit Value

Let ylim be an upper limit value, Yj the model result to be compared to ylim, N the
sample size and i the number of model output values yj,n in the sample with yj, n �
ylim. The mean value estimate

m Yj�ylimð Þ ¼
i

N
with i ¼

XN
n¼1

I Yj�ylimð Þ yj,n
� �

I Yj�ylimð Þ yj,n
� � ¼ 1 if yj,n � ylim and I Yj�ylimð Þ yj,n

� � ¼ 0 otherwise

is an estimate of the subjective probability that the model result Yj does not violate
the limit value ylim. Again, confidence intervals and limits, as in the case of simple
random sampling (SRS) (see Sect. 5.2.5), are not available since the sample variables
are not independent. See, however, Sect. 5.3.8 for an attempt to circumvent this
handicap.

5.3.6 Comparison of Two Model Results

The comparison can only be probabilistic, i.e. the subjective probability is deter-
mined for model result Yj to be larger (smaller) than model result Yi, j 6¼ i, j, i 2
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(1, . . ., J ). An estimate of this subjective probability is given by the number of pairs
of values (yj, n, yi, n) in the sample of size N with yj, n > (<) yi, n, i.e.

swest Yj > <ð ÞYi

� � ¼ N�1m

with m ¼
XN
n¼1

mn,mn ¼ 1 if yj,n > <ð Þ yi,n and 0 otherwise:

Confidence intervals for sw(Yj > (<)Yi) are not available unless K replicated LH
samples of size N/K are used (see Sect. 5.3.8) instead of only one sample of size N.

5.3.7 Comparison of More than Two Model Results

If L > 2 model results are to be compared, the following approach may be useful:
For l ¼ 1, . . ., L determine how often (out of the N model runs) model result Yl

was the largest (smallest) among the L results and set

gl ¼ nl, 1

nl, 1 is the number of model runs with Yl largest (smallest) among the L results.
Then set

gl ¼ gl þ 2nl, 2

nl, 2 is the number of runs with Yl second largest (smallest), and so forth. Finally,
the estimated mean ranks

gl ¼ N�1
XL
j¼1

jnl, j

are compared for l ¼ 1,. . .,L and the model results are ordered accordingly.

5.3.8 Estimates from Replicated Latin Hypercube Samples

The model output sample variables (Yj, 1, Yj, 2, . . .,Yj, N) are identically distributed
but are not independent. This fact precludes the computation of confidence limits
and intervals for estimates using model output values from a Latin Hypercube
sample (LH sample) of the uncertain data. In order to circumvent this handicap, it
was suggested (McKay et al. 1979; Hansen et al. 2012) to use K independently
drawn LH samples of size N/K instead of one sample of size N. The K estimate
variables are independent and identically distributed, and their sample values can
therefore be used to obtain approximate confidence limits and intervals relying on
the central limit theorem. Condition is, however, that the LH samples are drawn at
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random from within the equal subjective probability intervals of the uncertain data,
as opposed to using the conditional mean or median values. The approximation is
considered satisfactory for K � 30.

– The mean value of Yj
The mean value estimates mYj,k , k ¼ 1, . . . ,K, from K replicated LH samples of
size N/K are used as follows:

eYj ¼ K�1
XK
k¼1

mYj,k with mYj,k ¼ KN�1
XN

K

i¼1

yj,k, i:

The vector of mean value estimates mYj,1 ;mYj,2 ; . . . ;mYj,K

� �
is a realization of

the random vector MYj,1 ;MYj,2 ; . . . ;MYj,K

� �
:The components of this vector are

independent and identically distributed with mean value E{Yj}. Consequently, an
approximate v% confidence interval for the mean value of Yj is obtainable as

eYj � b; eYj þ b
� �

b¼ t K�1ð Þ, 100þvð Þ=2 sK,YjK
�1=2 and sK,Yj ¼

1
K� 1

� �XK
k¼1

mYj,k � eYj

� �2" #1=2

with t(K � 1), (100 + v)/2 the [(100 + v)/2]% quantile of the Student or
t-distribution with (K – 1) degrees of freedom [see Eqs. (3.4) to (3.6)]. The
approximation is considered satisfactory for K � 30.

– A quantile value of Yj
The quantile estimatesbyj,u%,k , k¼ 1, . . ., K, from K replicated LH samples of size
N/K are used as follows:

eYj,u% ¼ K�1
XK
k¼1

byj,u%,k with byj,u%,k ¼ yj,k, i and i is the smallest integer larger

than or equal to NK-1u/100.
The vector of quantile estimates

�byj,u%, 1;byj,u%, 2; . . . ;byj,u%,K

�
is a realization of

a random vector, the components of which are independent and identically
distributed with mean value larger than yj, u%. This may be avoided by taking
for every second index k the yj, k, i with i the largest integer smaller than or equal
to NK�1u/100.

An approximate v% confidence interval for the quantile value yj, u% is obtained
as

eYj,u% � b; eYj,u% þ b
� �

b ¼ t K�1ð Þ, 100þvð Þ=2 sK,Yj,u%K
�1=2 and sK,Yj,u%

¼ 1
K � 1

� �XK
k¼1

�byj,u%,k � eYj,u%
�2" #1=2
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with t(K � 1),(100+v)/2 the [(100 + v)/2]% quantile of the Student or t-distribution
with (K-1) degrees of freedom [see Eqs. (3.4) to (3.6)] and K � 30.

– A subjective probability interval of Yj
From quantile value estimates eYj,u% and eYj,w%, obtained as shown above with
(w – u) ¼ q, the interval

eYj,u% � t K�1ð Þ, 100þv
2

sK,Yj,u% K�1
2 and eYj,w% þ t K�1ð Þ, 100þv

2
sK,Yj,w% K�1

2

is obtained. It delimits an approximate v% confidence interval for a q% subjective
probability interval of Yj.

– Compliance with a limit value
Let ylim be the limit value, Yj the model result to be compared to ylim, K the

number of sample replicates, N/K their sample size and ik, k ¼ 1, .., K, the
numbers of the model output values in each sample with yj � ylim. The mean
value estimate

e Yj�ylimð Þ ¼ K�1
XK
k¼1

m Yj�ylimð Þ,k
m Yj�ylimð Þ,k ¼ KN�1ik

is an estimate of the subjective probability that the model result Yj does not
violate the limit value ylim.

The vector of mean value estimates m Yj�ylimð Þ, 1;m Yj�ylimð Þ, 2; . . . ;m Yj�ylimð Þ,K
� �

is a realization of a random vector. The components of this random vector are
independent and identically distributed with the subjective probability of compli-
ance as mean value. Consequently, given K � 30, an approximate v% confidence
interval for this probability is available using the central limit theorem

e Yj�ylimð Þ � b; e Yj�ylimð Þ þ b
� �

b ¼ t K�1ð Þ, 100þvð Þ=2 sK, Yj�ylimð ÞK�1=2

and sK, Yj�ylimð Þ ¼
1

K � 1

� �XK
k¼1

m Yj�ylimð Þ,k � e Yj�ylimð Þ
� �2

" #1
2

with t(K � 1), (100 + v)/2 the [(100 + v)/2]% quantile of the Student or
t-distribution with (K � 1) degrees of freedom [see Eqs. (3.4) to (3.6)].
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5.4 Graphical Presentation of Uncertainty Analysis Results

Computer model results may be scalar values, such as table entries, matrix elements,
vector components and so forth, or functions of some independent variables like
time and/or space. The uncertainty information discussed above together with
information on state of knowledge dependence between model results is contained
in the sample from the unknown joint subjective probability distribution of the
model results. Various ways of presenting this information are useful for differing
reasons.

5.4.1 Graphical Presentation of Uncertainty Analysis Results
Obtained Using SRS

Subsection 1 discusses the graphical presentation of scalar model results. The
various forms of illustration shown in this subsection are suitable for individual
table entries, matrix elements, vector components and even for function values at
selected points in time and/or space. Forms of graphical presentation of analysis
results for function values over a sequence of argument values (time, space, etc.) are
presented in subsection 2.

1. Graphical Presentation for Scalar Model Results

– The empirical cumulative distribution function (cdf) of sample values
The empirical cdf (see Fig. 5.1) shows immediately an estimate of the subjec-
tive probability for the model result Y to be smaller or equal to y. This format is
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Fig. 5.1 Empirical cumulative subjective probability distribution function (cdf) of the sample
values yn, n ¼ 1,. . ., N, of a computer model result Y; sample size N is 200
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of particular interest for the comparison of the model result Y to a lower limit
value, i.e. a safety limit that the true value must exceed. The subjective
probability for violation of the limit ylim is the cumulative subjective proba-
bility of Y at ylim.

– The empirical complementary cumulative distribution function (ccdf)
The empirical ccdf (see Fig. 5.2) shows immediately an estimate of the
subjective probability for the model result Y to exceed y. This format is of
particular interest for the comparison of the model result Y to an upper limit
value, i.e. a safety limit that the true value must not exceed. The subjective
probability for violation of the limit ylim is the complementary cumulative
subjective probability of Y at ylim.
Figure 5.3 shows the usual way of how the uncertainty information from a
subjective probability distribution for a model result is presented including
point values and statistical tolerance limits.
Figures 5.4, 5.5 and 5.6 compare the uncertainty information from the sub-
jective probability distributions for two model results.

– The histogram of sample values
The histogram gives immediately an impression of the range of values of the
model result Y with the highest subjective probability. In other words, it
depicts the range where the estimated subjective probability is concentrated.
This way it also facilitates the comparison in one graph of the uncertainty of
several model results Y1, . . ., YK that may have similar 90% intervals or 90%
quantile values, while the subjective probability within these ranges is con-
centrated at significantly different locations.

– The “bar code”
This representation shows each individual sample value of the model result
Y by a horizontal stroke within a vertical box that contains 90% of the sample
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Fig. 5.2 Empirical complementary cumulative subjective probability distribution function (ccdf)
of the sample values yn, n ¼ 1,. . ., N, of a computer model result Y; sample size N is 200

5.4 Graphical Presentation of Uncertainty Analysis Results 201



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 100 200 300 400 500 600 
Y 

sw(Y <= y) 

y 

mean value:   
190.5 

point value (obtained with best 
estimate values):   112.6 

Fig. 5.3 Empirical cumulative subjective probability distribution function of the sample values yn,
n¼ 1,. . ., N, of a computer model result Y; sample size N is 200; a two-sided (90%, 95%) statistical
tolerance limit is indicated on the abscissa; an estimate of the mean value and the point result
obtained with best estimate values of the uncertain data are given in the legend

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 20 40 60 80 100 120 140 

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

sw(Y1 <= y)

sw(Y2 <= y) 

y

Fig. 5.4 Comparison of the cumulative subjective probability distribution functions for two
computer model results
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values. It needs less space than a histogram and still allows the identification of
those ranges where the subjective probability is concentrated.

– Box and Whisker plot
Figures 5.7 and 5.8 show another way of facilitating the comparison of the
subjective probability distributions for several model results Y1, . . ., YJ. It is
often most informative to compare estimates of the inner quartile ranges (the
boxes), i.e. the ranges between the 25% and 75% quantile values of the

a)

b)
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Fig. 5.5 (a, b) Comparison of the (90%, 95%) two-sided statistical tolerance limits shows that, at a
confidence level of at least 95%, the (symmetric in probability) range that contains at least 90% of
the population of possibly true values of model result Y1 is shifted to higher values if compared to
that of Y2 in figure (b)
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subjective probability distribution while simultaneously looking at estimates
of the inner 90% ranges (between the 5% and 95% quantile values) and while
not ignoring the extreme sample values (usually indicated by a dot) at both
ends as well as the positions of the sample median and mean value relative to
the limits of the inner quartile range.

a)

Fig. 5.6 (a, b) The relative frequencies of sample values within the classes indicated on the
abscissa are shown for two computer model results. The comparison of Figures 5.5 and 5.6 says
that although the (90%, 95%) two-sided statistical tolerance limit for Y1 is shifted to larger values,
the estimated subjective probability is concentrated at smaller values than in the case of Y2. The
relative frequency of sample values in class l, l ¼ 1, . . ., 10, is shown on the vertical axis
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A comparison of uncertainties of model results at 11 different locations and
for 3 case specifications by Box and Whisker plots is shown in Hanna et al.
(1998); A thin line, which extends from the box to the estimates of the 97.5%

Fig. 5.7 Box and Whisker
plot; the largest sample
value could be indicated by
a dot above the top end of
the vertical bar, while the
smallest sample value could
be shown by a dot below the
bottom end of the
vertical bar

Fig. 5.8 Comparison of
uncertainty analysis results
for J ¼ 5 different computer
model results where the
horizontal lines indicate the
location of the mean value
(M) and of the median value
(50%)
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and 2.5% quantile values, indicates the largest and smallest sample values in
this example.

– Scatter plot of sample values
The presentation format of Fig. 5.9 helps to depict state of knowledge depen-
dences between pairs of model results.

2. Graphical Presentation for Functions
Figures 5.10 and 5.11 illustrate the presentation, over a sequence of discrete

points in time, of estimated subjective probability quantile values and of
two-sided statistical tolerance limits of a model result that is a function of the
independent variable “time”.

The temporal evolution of the mean value of the locally (at the given points in
time) obtained subjective probability distributions of the model result “population of
guano-birds” as well as of the model result value obtained with the reference or best
estimate values of the uncertain data could also be shown in Figures 5.10 and 5.11.

Figure 5.10 shows continuous connections of the quantile estimates of local
subjective probability distributions of the model result, i.e. obtained at the specified
points in time.

Figure 5.11 presents continuous connections of the local statistical tolerance
limits. Since these limits are obtained locally, it cannot be said that, at a confidence
level of at least v%, at least u% of the population of temporal evolutions do not cross
the two lines connecting the endpoints of the local statistical tolerance limits.
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0 100 200 300 400 500 600

Y2

Y1

Fig. 5.9 Scatter diagram of a pair of computer model results. The plot indicates that the values
computed for the model result Y2 tend to be high if high values are computed for model result Y1,
and they tend to be low in the case of low values for Y1. It may be informative to use the number of
the corresponding run of the computer model as marker, instead of the diamond
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Fig. 5.10 The continuous connections of selected quantile values of the locally (at the endpoints of
60 intervals of four months each) obtained subjective probability distributions for the model result
“population of guano-birds”; the quantile values are estimated using a random sample of size N ¼
1000 (1000 model runs each over 60 periods of four months)
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Fig. 5.11 The continuous connections of the locally (at the endpoints of 60 intervals of four
months each) computed (90%, 95%) two-sided statistical tolerance limits of the model result
“population of guano-birds”; the tolerance limits are obtained using a random sample of size N ¼
1000. The limits contain at least 90% subjective probability at a confidence level of at least 95% at
each of the discrete points of time (time interval endpoints)
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Locally, at least u% run between the two endpoints at a confidence level of at least
v% . However, they need not be the same temporal evolutions at every point in time.

For more ways of graphical presentation see also Ibrekk and Morgan (1987) and
Morgan and Henrion (1990).

5.4.2 Graphical Presentation of Uncertainty Analysis Results
Obtained Using LHS

The output sample values obtained with the values of a Latin Hypercube input
sample may be used for graphical presentation in the same way as those obtained
using SRS. The only exception is that confidence and statistical tolerance limits and
intervals are not available for the uncertainty measures of the model results.

Confidence limits and intervals may, however, be derived from the estimates
computed with the output sample values obtained using K replicated Latin Hyper-
cube input samples (see Sect. 5.3.8).
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Chapter 6
Step 5: Rank Uncertainties

6.1 Introduction

The primary goal is the quantification of the uncertainty of results from the applica-
tion of a computer model. The analysis therefore focuses on the combined influence
of all potentially important uncertain data1 on the model results. To this end, the state
of knowledge with respect to model formulations, model parameters, application-
specific input data and parameters of numerical solution algorithms (in short: for all
potentially important uncertain data) is quantified and expressed by subjective
probability distributions. State of knowledge dependences, which might be influen-
tial, are suitably quantified and modelled (see Sect. 3.5).

As a consequence of these quantifications and of the logic encoded in the
computer model, a subjective probability distribution follows for each of the model
results. Quantitative uncertainty statements in the form of, for instance, 5% and 95%
quantiles of these distributions could be immediately obtained if the distributions
were known. In practice, they are not known and quantile values have to be estimated
from a random sample drawn according to the unknown distributions.

To obtain such a random sample of size N (output sample), Monte Carlo
simulation is performed (see Chap. 4). It proceeds by drawing a random sample
(input sample) according to the marginal subjective probability distributions and
state of knowledge dependence quantifications specified for the uncertain data and
by subsequently performing a model run with each set of sampled values. N such sets
are drawn, where all uncertain data are varied simultaneously, and the computer
model is evaluated for each of these N sets. Since models are often computationally
demanding (several hours or tens of hours on a modern processor), one can only
afford samples of relatively small to moderate size N. The N sets of model results,
obtained through running the model for each of the N sets of sampled input values,

1As in previous chapters, the term “uncertain data” is used since model uncertainties are represented
by uncertain parameters and uncertain parameters are categorized as uncertain data.
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constitute a random sample (output sample) drawn according to their unknown joint
subjective probability distribution. The desired quantile values can be estimated
from this sample by standard statistical techniques.

For almost all practically relevant model applications, uncertainty analysis pro-
ceeds by Monte Carlo simulation. It grants the analyst all the freedom needed in the
quantification and probabilistic modelling of the states of knowledge as well as of any
state of knowledge dependences. The affordable sample size, i.e. the number of
evaluations of the model (for short called “model runs”), is usually small for compu-
tationally demanding models. Consequently, confidence intervals or limits are to be
determined together with the estimates of model result uncertainty (see Chap. 5).

For consistency and efficiency reasons, uncertainty importance analysis cannot
afford a separate set of model runs, performed with specifically chosen sets of values
for the uncertain data, but has to use those executed for the purpose of uncertainty
analysis. Consequently, correlation coefficients, correlation ratios (square root of the
approximate first-order importance indices from variance decomposition) and stan-
dardized regression coefficients, the latter often obtained from stepwise regression,
are with or without transformation into ranks, a reasonable choice of importance
measures. They are available from the output sample of the Monte Carlo simulation
in combination with the input sample.

Of course, if the subjective probability distribution of a model result is long-
tailed, which may frequently be the case, estimates of quantile values situated in the
tail regions will be highly variable from sample to sample of size N. Therefore, one
needs to quantify the possible impact of the estimation error (also called “sampling
error”) by computing one-sided or two-sided (u%, v%) statistical tolerance limits.
With, for instance, u¼ 90 and v¼ 95, a two-sided statistical tolerance limit contains,
at a confidence level of at least 95%, at least 90% of the population of model result
values that follow from the combined effect of the state of knowledge quantifications
for all uncertain data considered by the uncertainty analysis.

Quantile value estimates from a Latin Hypercube sample (LHS) can be expected
to show less variability from sample to sample of size N, yet statistical tolerance
limits cannot be computed from an LHS as was explained in Chap. 4. The sample
estimates of the 95% quantile, for instance, may still be significantly below the true
95% quantile for long-tailed distributions. Without statistical tolerance limits, there
is no indication of how likely this shortcoming is. This constitutes a handicap, if
quantile value estimates are to be compared to limit values in order to check
compliance with safety standards. As a consequence of this, either replicated LHS
(see Sects. 4.4.2.1 and 5.2.8) or simple random sampling (SRS) needs to be used.

Usually, the model application is to provide input to some important decision.
Once the quantitative uncertainty statements are derived, the question arises whether
uncertainties are too large for meaningful decision-making. If the uncertainty is
judged to be too large, one needs to know its main contributors. To this end,
uncertainty importance analysis is performed. It tells where to improve the state of
knowledge in order to reduce the uncertainty of the model result most effectively. In
other words, it provides guidance as to whether further model development is
primarily needed or improved knowledge of parameter and input data values. This
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is a choice between two very different directions of further activities with differing
costs and chances for success. For instance, the importance analysis may suggest that
additional tests, experiments and theoretical investigations leading to improved
model development are required or that further data collection has priority.

The multivariate random (input) sample ofN sets of values, each set consisting of one
value each for the M uncertain data, will show the effects of the specified state of
knowledge dependences and most likely those of spurious correlations. Due to the
presence of correlations within the multivariate sample, it will not be sufficient to look
at the uncertainty importance ranking derived from correlation coefficients alone. Dif-
ferences between this ranking and one obtained from standardized regression coefficients
need to be understood if significant. The correlation ratio (square root of the first-order
uncertainty importance measure from variance decomposition) is an indispensable mea-
sure whenever model uncertainty is expressed by more than two alternatives with their
indices used as values of a substitute uncertain datum (see Sect. 3.4.1) or whenmeasures,
quantifying the extent of linear ormonotone relationship between an uncertain datum and
a model result, are not adequate. Due to the small sample size, the computation of the
sample correlation ratio is affordable only in approximate form.An excellent compilation
of additional uncertainty importance measures is to be found in Helton et al. (2006).

Figure 6.1 presents results from an uncertainty analysis of the damage index
associated with a planned potentially hazardous industrial operation, computed as a
function of the distance. The uncertainty is quantified by intervals obtained as
two-sided (95%, 95%) statistical tolerance limits from an SRS with N ¼ 1000
model runs. The figure shows the continuous connections of the upper (and lower)
endpoints of these intervals computed at various distances from the operation. Close
to the facility, the uncertainty of the model result “damage index” is too large to
permit meaningful decision-making.

Importance measures from correlation and regression (see Sect. 6.3), derived
from an SRS of relatively small size N, may still exhibit considerable variability
from sample to sample of size N. This variability can be expected to be smaller in the
case of an LHS of the same size. However, because of what was said above, an LHS
is often not an option and using a separate random sample for uncertainty importance
analysis is usually unaffordable because of processor-time (and calendar time)
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Fig. 6.1 Continuous
connections of the upper
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two-sided (95%, 95%)
statistical tolerance limits for
the damage index computed
at various distances from the
location of the planned
potentially hazardous
operation; importance
measures to this example are
discussed in Sect. 3.3.
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requirements. It is not only cost-effective (and in fact the only practically feasible
way) but also natural and mathematically consistent, to exploit the same random
sample used in uncertainty analysis for the purpose of identifying the main contrib-
utors to model result uncertainty. The effort involved in determining the importance
measures of Sect. 6.3 is comparatively low. These measures are almost a by-product
of the uncertainty analysis.

6.2 Differential Sensitivity and “One-at-a-Time” Analysis

Difference or differential quotients of the model result with respect to each of the
uncertain data tell by how much the model result changes if the uncertain datum is
changed from nominal by a small amount. It will be impossible to compute these
quotients with respect to uncertain data that can have only a finite number of possibly
true values and in particular for those that are indices of alternatives like alternative
model formulations used to express the state of knowledge for model uncertainties.

The best estimate or reference values (see Sect. 3.6.1.4), or any values chosen at
random according to the marginal subjective probability distribution specified as
state of knowledge expression, may be used as the nominal values of the uncertain
data. With Y denoting the model result, P1, . . ., PM the uncertain data and f the
encoded logic of the computer model, the relationship between model result and
uncertain data is formally represented by Y ¼ f(P1, . . .,PM).

At the point p0 ¼ p0,1, . . ., p0,M of nominal values in the space spanned by the M
uncertain data, the first-order Taylor series expansion of the model result is

bY ¼ y0 þ
XM

m¼1

�
∂f=∂pmð Þ

���
p0

�
PM � p0,m
� � ð6:1Þ

with y0 ¼ f(p0) and provided the function f is differentiable with respect to Pm,
m ¼ 1, . . .,M. As is indicated by j p0 , the partial derivatives are taken at p0. They are
the differential quotients at this point.

The mean value and variance of the subjective probability distribution of the first-
order Taylor series expansion of Y about p0 are

E bYn o
¼ y0 þ

XM

m¼1

�
∂f=∂pmð Þ

���
p0

�
E PMf g � p0,m
� � ð6:2Þ

and

Var bYn o
¼
XM
m¼1

�
∂f=∂pmð Þ p0

�
2Var PMf g��

þ2
XM

m¼1

XM

l¼mþ1
ρm, l VarPmf gVar Plf gð Þ12 ∂f=∂pmð Þ ∂f=∂plð Þ½ �j p0 : ð6:3Þ

A correlation coefficient ρm, l 6¼ 0 between Pm and Pl is due to state of knowledge
dependence between these uncertain data.
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Equation (6.3) can be used to judge the uncertainty contribution of each of the
uncertain data to the uncertainty of bY as measured by the variance. However, the
representation of Var{Y} by Var{ bY } for the purpose of uncertainty importance
ranking suffers from a number of shortcomings:

– The derivatives are local (at p0) and often apply only in a small neighbourhood
about the selected nominal point, i.e. the ranking will not be suitable in the case of:

Moderate to strong non-linearities of the function f over the carrier of the joint
subjective probability distribution of the uncertain data;

Thresholds for Y (discontinuities);
Contributions to model result uncertainty that are large in absolute value only if

the values of two or more of the uncertain data are changed simultaneously
from nominal.

– The ranking ignores the state of knowledge, as expressed by the full marginal
subjective probability distributions for the uncertain data.

– It will be very expensive to compute the partial derivatives [even if automatic
differentiation tools are applied (Bischof et al. 2008)] for functions f represented
by computationally demanding complex models and for realistic numbers M of
uncertain data.

The partial derivatives of a model result with respect to the uncertain data,
computed at selected points in the parameter space, are local sensitivity measures
in the usual interpretation. They are independent of the subjective probability
distributions expressing the state of knowledge for the uncertain data. The selected
points may be those of the multivariate sample generated by the Monte Carlo
simulation for the purpose of uncertainty analysis. The mean value of the partial
derivatives taken over these points could then be used as a global sensitivity measure
that is indeed dependent on the subjective probability distributions (Kucherenko
et al. 2009). Computing those derivatives at all N points for allM, uncertain data will,
however, prove to be unaffordable for practically relevant model applications even if
commercially available software for automatic differentiation (Bischof et al. 2008)
can be applied or adjoint methods are used (Cacuci 2003).

Model developers often resort to so-called one-at-a-time variations in order to get
an impression of how sensitive a model result is to individual uncertain data. They
proceed as follows:

– Instead of a small change, as in the case of differential or difference quotients,
each uncertain datum is individually changed from nominal by � one or two
standard deviations of its marginal subjective probability distribution.

– An uncertain model is varied from its standard formulation (an alternative model
formulation is used).

– A phenomenon of uncertain relevance is included or excluded from the computer
model application.

– The description of an uncertain scenario is modified (an alternative scenario is
considered).
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A model run is then performed with each individual change.
These “one-at-a-time” changes are not satisfactory because:

– They require model runs in addition to those needed for the uncertainty analysis.
– They provide sensitivity information that depends on the chosen nominal values

and on the magnitudes of the chosen value changes.
– The selected changes of the uncertain data are somewhat arbitrary and do not

account for the range of possibly applicable values.
– The states of knowledge, expressed by the subjective probability distributions of

the uncertain data, are not fully accounted for and state of knowledge depen-
dences are ignored.

– The effect of thresholds of the model result and of strong model non-linearities
may not be captured.

– The procedure is unaffordable for moderate to large numbers of uncertain data
unless it is restricted to a small subset selected by expert judgement.

6.3 Affordable Measures for Uncertainty Importance
Ranking

The objective of an uncertainty importance analysis is to rank uncertain data with
respect to their contribution to the uncertainty of the model result. To this end, the
analysis must be global and not local, i.e. the validity of the provided ranking must
not be limited to a small neighbourhood around a specific point in the value space of
the uncertain data. Furthermore, the importance analysis must account for the state of
knowledge as expressed by the subjective probability distributions specified for the
uncertain data and it must observe state of knowledge dependences. Finally, the
analysis must have the potential of accounting for discontinuities of the model result
and for effects of varying uncertain data simultaneously and over their full uncer-
tainty range. Last but not least, the computational effort of evaluating the uncertainty
importance measures must be affordable.

Affordable measures are those that can be derived from the same data that were
used for the uncertainty analysis. These data are the random sample of N times
M values of the uncertain data (input sample) and the corresponding random sample
of N values of the model result (output sample). The latter sample having been
obtained from the first through evaluation of the computer model for each of the
N sets of M data values, i.e.

y1 ¼ f p1,1; . . . ; pM, 1

� �
y2 ¼ f p1,2; . . . ; pM, 2

� �
⋮

yN ¼ f p1,N ; . . . ; pM,N

� �
ð6:4Þ
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6.3.1 Uncertainty Importance Measures Computed from
Raw Data

This section deals with uncertainty importance measures that are obtained directly
from the data in the input sample and in the output sample of the Monte Carlo
uncertainty analysis. In particular, measures from regression (Sects. 6.3.1.1 and
6.3.1.3), correlation (Sect. 6.3.1.2) and variance decomposition (Sects. 6.3.1.4 and
6.3.1.5) are discussed. This discussion is followed by recommendations and neces-
sary checks in Sect. 6.3.1.6.

6.3.1.1 Uncertainty Importance Measures from Regression Analysis

The clearest picture of the uncertainty importance of the individual uncertain data
can be obtained from a function g that is linear in these data and approximates the
model result Y ¼ f(P1, . . .,PM) sufficiently well. The meaning of “sufficiently” will
be explained later. The coefficients β0, β1, . . .βM of

β0 þ
XM

m¼1
βmPm þE ¼ g P1; . . . ;PMð Þ þE ¼ bY þE ¼ f P1; . . . ;PMð Þ ¼ Y , ð6:5Þ

where bY denotes the linear approximation to Y and E is the approximation error,
are estimated from the random sample (6.4) by fitting the following expressions:

byn ¼ bg p1,n; . . . ; pM,n

� � ¼ b0 þ
XM

m¼1
bm pm,n, n ¼ 1, . . . ,N ð6:6Þ

to the sample values yn such that the approximation error satisfies a prescribed
condition. The aim is to derive uncertainty importance measures. Uncertainty is here
measured by the variance of the subjective probability distribution quantifying the
state of knowledge of the model result. Therefore, it seems only reasonable to
compute the estimates b0, b1, . . . , bM such that the portion of the sample variance
of the model result, which is not explained by the approximation (6.6), is minimal.
To this end, b0, b1, . . . ,bM are obtained according to the following condition:

XN

n¼1

�
yn � byn�2 ¼XN

n¼1
yn � b0 �

XM

m¼1
bm pm,n

� �2
¼! minimal ð6:7Þ

The optimization problem (6.7) is solved through setting the partial derivatives of

h b0; b1; . . . ; bMð Þ ¼
XN

n¼1
yn � b0 �

XM

m¼1
bm pm,n

� �2
ð6:8Þ

to zero with respect to b0, b1, . . ., bM:

∂h=∂b0 ¼ �2
XN

n¼1
yn � b0 �

XM

m¼1
bm pm,n

� �
¼ 0 ð6:9Þ

and for k ¼ 1, . . ., M
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∂h=∂bk ¼ �2
XN

n¼1
yn � b0 �

XM

m¼1
bm pm,n

� �
pk,n ¼ 0: ð6:10Þ

From (6.9) follows

b0 ¼
XN

n¼1
yn �

XN

n¼1

XM

m¼1
bm pm,n

h i
=N ¼ my �

XM

m¼1
bmmm ð6:11Þ

mm ¼ 1
N

	 
XN
n¼1

pm,n

is the sample mean of the uncertain datum Pm.
From (6.6) and (6.11) follows

mŶ ¼ b0 þ
XM

m¼1
bmmm ¼ mY ð6:12Þ

with mY the sample mean of Y.
To simplify the presentation of the following calculations, the customary matrix

and vector notation is being used. Matrices are denoted by bold capital letters and
vectors by bold lower case letters. Without this notation, it would be very cumber-
some and awkward to follow through, and concisely present, the multitude of
arithmetic operations involved. For those readers who are not familiar with this
notation, the main operations are briefly explained. For a more detailed explanation,
Bowerman et al. (2005) may be consulted.

The N timesM sample values of the uncertain data (input sample) are arranged in an
N � M array. This array is extended by a column vector carrying the coefficient value
1 of b0 from the system of equations (6.6). The result is an N � (M + 1) array called
matrix P with N rows and M + 1 columns. The N sample values of the model result
(output sample) are arranged in an N � 1 array, called column vector y, while the
estimates b0, b1, . . ., bM are arranged in an (M + 1)� 1 array called column vector b.

P ¼

1p1,1 p2,1 . . . pM,1
1p1,2 p1,2 . . . pM,2

�
�
�

1p1,N p2,N . . . pM,N

26666664

37777775, y¼

y1
y2
�
�
�
yN

26666664

37777775, b¼

b0
b1
b1
�
�
bM

26666664

37777775 ð6:13Þ

The (M + 1) � N matrix P0 has the columns of P as rows and the rows of P as
columns.
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P0¼

1 1 ... 1
p1,1 p1,2 ... p1,N
p2,1 p2,2 ... p2,N

�
�
�

pM,1 pM,2 ... pM,N

2666666664

3777777775
,P0P¼

N
XN
n¼1

p1,n
XN
n¼1

p2,n ...
XN
n¼1

pM,nXN
n¼1

p1,n
XN
n¼1

p1,np1,n
XN
n¼1

p1,np2,n ...
XN
n¼1

p1,npM,nXN
n¼1

p2,n
XN
n¼1

p2,np1,n
XN
n¼1

p2,np2,n ...
XN
n¼1

p2,npM,n

�
�
�XN
n¼1

pM,n

XN
n¼1

pM,np1,n
XN
n¼1

pM,np2,n ...
XN
n¼1

pM,npM,n

266666666666666666664

377777777777777777775
ð6:14Þ

The (M + 1) � (M + 1) matrix P'P results as the product of the matrices P' and P.
The element in row i and column j of P'P is the sum of the products of the elements
in row i of P0 with those in column j of Pwhere the summation runs from 1 to N. This
product immediately demonstrates the convenience of the matrix/vector notation as
do the products of matrix P' and vector y as well as of matrix P'P and vector b, both
providing a column vector with M + 1 components. The elements of these products
are obtained as explained for those of P'P, the only difference being that there is only
one column to be multiplied with the matrix rows.

P0y¼

XN
n¼1

ynXN
n¼1

p1,nynXN
n¼1

p2,nyn

�
�
�XN
n¼1

pM,nyn

266666666666666666664

377777777777777777775

¼ y0Pð Þ0, P0Pb¼

Nb0 þ
XM
m¼1

bm
XN
n¼1

pm,n

b0
XN
n¼1

p1,n þ
XM
m¼1

bm
XN
n¼1

p1,npm,n

b0
XN
n¼1

p2,n þ
XM
m¼1

bm
XN
n¼1

p2,npm,n

�
�
b0
XN
n¼1

pM,n þ
XM
m¼1

bm
XN
n¼1

pM,npm,n

2666666666666666664

3777777777777777775

ð6:15Þ

y0 ¼ y1; y2; . . . ; yNð Þ
the product of the row vector y0 and the column vector y is a single number

y0y ¼
XN

n¼1
y2n: ð6:16Þ
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Using the above notation, the operations in (6.10) and (6.9) can simply be written
as

P0y-P0Pb¼0 ð6:17Þ
and therefore

b ¼ P0Pð Þ�1P0y: ð6:18Þ
(P'P)–1 is the inverse of the matrix product P'P. It too is an (M + 1) � (M + 1)

matrix, and its elements are determined (standard subroutines are available) such that

P0Pð Þ�1 P0Pð Þ ¼ I ¼

1 0: . . . : 0
0 1 0 . . . 0

�
�

0 :: . . . 0 1

266664
377775

i.e. the unit matrix with all elements outside the diagonal equal to 0, while the
values along the diagonal are 1.

The elements of the vector b are sample estimates of the coefficients β0, β1, . . .,
βM. They are obtained from a least squares linear approximation (6.6) of the sample
values y1, . . ., yN in the uncertain data. bm is the amount of units by which the linear
approximation

bY ¼ b0 þ
XM
m¼1

bmPm

changes per unit change of the uncertain datum Pm, all other uncertain data
remaining constant.

Some cautionary remarks are in place at this point:

– The sample size N must not be smaller thanM + 1. For smaller N, condition (6.7)
would mean fitting a function linear in M + 1 variables (i.e. the components of
vector b) to N � M points in the (M + 1)-dimensional space. This problem has
infinitely many solutions (i.e. not a unique one).

– The system of linear equations

b0 þ
XM

m¼1
bm pm,n ¼ yn, n ¼ 1, . . . ,N

in M + 1 unknowns can be solved exactly if N ¼ M + 1 and P'P is invertible.
The linear function in the uncertain data therefore reproduces the N sample values
of the model result Y, i.e. byn ¼ yn for n¼ 1, . . .,N. Values yN + 1, . . ., yN + K of Y for
furtherK sampled sets of data values p1, N + k , . . ., pM, N + k, k¼ 1, . . .,K can then be
predicted exactly by the linear function if Y¼ f(P1, . . ., PM) is indeed linear in the
uncertain data. byn ¼ yn, for n¼ 1, . . ., N, means over-fitting the sample values y1,
. . ., yN if Y ¼ f(P1, . . .,PM) is non-linear in one or more of the M uncertain data.
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In this case, nothing can be said about the errors in the predictions byNþ1, . . . ,byNþK obtained from the linear function. However, ifN is larger thanM + 1, the least
squares linear approximations byn will not be equal to the sample values y1, . . ., yN
and the N error terms will, under certain assumptions, permit quantitative state-
ments about the possible error in the predictionsbyNþ1, . . .byNþK . There may still be
over-fitting of the sample data to some extent as long asN is not significantly larger
than M + 1.

– A column k of sample values of an uncertain datum, which is a linear combination
of the columns of sample values of other uncertain data, must not be included in
the matrix P, i.e. the corresponding datum Pk must not be part of the list of
arguments of the approximating function in (6.5) because this linear combination
property carries over to the matrix P'P. In other words: In P'P the column k is also
a linear combination of P'P-columns with the same numbers as those columns in
P that are combined in column k of P. Consequently, the columns of P'P span
only an M-dimensional space. However, solving the equation

P0Pð Þb ¼ P0y ð6:19Þ
means to attempt finding M + 1 coefficient values b0, b1, . . ., bM such that the

vector P'y in the (M + 1)-dimensional space can be assembled as a linear combina-
tion of theM + 1 columns of P'P. Since the latter span only anM-dimensional space,
this task cannot be accomplished [see “multicollinearity” in Draper and Smith
(1998), Freund and Minton (1979)], i.e. P'P is not invertible. If the column, which
is a linear combination of others, is left out of matrix P, then the columns of P'P still
span only an M-dimensional space but P'y is then also only of dimension M and
Eq. (6.19) can be solved. Obviously, there will be no coefficient bk if the column of
the sample values of Pk is left out. A practical case is given by K uncertain data that
are fractions of a total (see Sect. 3.5.2.3). The sample value of Pk, with k ¼ K, is
determined as 1 minus the sum of the sample values of the other K – 1 uncertain data
and PK must therefore not be in the argument list of the approximating function in
(6.5). The same applies to pairs of uncertain data that are completely state of
knowledge dependent (see Sect. 3.5.2.6). Only the so-called free uncertain datum
of such a pair may be among the arguments of the approximating function.

– A column of P may, by chance, be almost equal to a linear combination of other
columns (near multicollinearity). The situation is close to the one discussed
above. The information on some of the M + 1 dimensions of the solution space
will only be weak in P'P and will be almost overridden by rounding effects during
the attempt to solve (6.19) for b. The solution vector obtained for b will be
severely contaminated by the effect of rounding errors.

– If (M + 1) < N but still close to N, one or more pairs of columns of the matrix P
may have a sample correlation coefficient of above 0.5 or below �0.5 that is not
due to specified state of knowledge dependence but due to chance (spurious
correlation). The effect of these correlations on the solution of (6.19) is less
pronounced yet closely related to near multicollinearity. To reduce the probability
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of a spurious correlation > 0.5 and < �0.5 in the sample of MN data values, a
sample size significantly larger thanM would need to be drawn (see, for instance,
Tables 6.4 and 6.5).

– The formulae used for the computation of the estimates b0, b1, . . ., bM are those of
least squares linear regression. Yet, this section has so far avoided the term
“regression coefficients”. The reason lies in the different situation of uncertainty
importance analysis as compared to the usual problem setting of applied regres-
sion analysis. In the case of uncertainty importance analysis, there is only one
unique value yn to each set of data values p1, n, . . ., pM, n since Y¼ f(P1, . . .,PM) is
deterministic while in regression analysis the value of Y at p0n ¼ p1,n; . . . ; pM,n

� �
is a random variable for n ¼ 1, . . ., N. In uncertainty importance analysis, the
error term E of (6.5) is therefore deterministic at every point in theM-dimensional
space of the uncertain data, while in applied regression analysis it is assumed to
follow a normal distribution with zero mean value and equal standard deviation.

Further in this section, approximating functions are considered that have onlyM0

< M uncertain data in their argument list. In this case, the value of Y is indeed a
random variable at p0n ¼ p1,n; . . . ; pM0,n

� �
, n¼ 1, . . .,N due to the variability of the

uncertain data that are not in the list (not counting those that are left out due to
complete state of knowledge dependence). It may therefore be rightfully considered
to call b0, b1, . . . , bM0 estimates of regression coefficients. For this reason and as a
matter of simplicity, the components of the vector b shall from now on be called
estimates of regression coefficients. The regression coefficients, obtained from the
sample values (input and output sample of the uncertainty analysis), are influenced
by the states of knowledge specified for the uncertain data, as onewould expect from
uncertainty importance measures. The subjective probability distributions deter-
mine the region in the M-dimensional space where most sample values will be
concentrated and the slopes of the approximating plane will accordingly change if
the state of knowledge changes for some of the uncertain data.

The aim of uncertainty importance analysis is not to exactly represent the
computer model result over the value space of the uncertain data but to place
emphasis on that range in the value space where the state of knowledge is concen-
trated. The estimates of the regression coefficients and therefore the slopes of the
least squares approximation plane are influenced by the states of knowledge of the
uncertain data and consequently also by the resulting state of knowledge of the
model result. Unfortunately, they are not yet uncertainty importance measures
suitable for ranking. The reasons are:

– The value of the estimate bm of the regression coefficient is the amount of units by

which the linear approximation bY changes per unit change of the uncertain datum
Pm, all other uncertain data Pl, l 6¼m, remaining constant. The sign of bm indicates

the direction of the change of bY . Positive sign indicates that Pm and Y tend to
change in the same direction (both increase or both decrease), while negative sign
means that they tend to change in opposite directions. The value of bm depends on
the units used in measuring the model result and the uncertain datum Pm. For
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instance, bm will be different if Pm is measured in grams instead of kilograms. In
the case of grams, the range of units of Pm will be expanded by orders of
magnitude, if compared to Pm measured in kg, and the slope along the Pm-axis
will therefore be far less pronounced (bm will be much smaller) than in the case
where Pm is measured in kg. If Pj, j 6¼ m, is measured in kg and Pm in grams, then
the comparison of bm to bj for ranking purposes will be misleading.

– Even if the uncertain data were transformed into unit-less quantities (for instance,
by dividing their value by the mean value of their subjective probability distri-
bution), a change of their unit-less value by one could still mean very different
changes in terms of the variance of the subjective probability distributions of the
unit-less uncertain data.

These shortcomings suggest using the sample values in their standardized form
and to compute estimates of the so-called standardized regression coefficients for
ranking. To this end, the sample values yn, pm, n, n ¼1, . . ., N; m ¼ 1, . . ., M are
transformed into

y∗n ¼ yn � mYð Þ=sY
p∗m,n ¼ pm,n � mm

� �
=sm ð6:20Þ

with

s2Y ¼ 1
N � 1

XN
n¼1

yn � mYð Þ2

s2m ¼ 1
N � 1

XN
n¼1

pm,n � mm

� �2
and sY, sm denoting the sample standard deviations of Y and Pm.
Estimates of standardized least squares linear regression coefficients β∗0 , β

∗
1 , . . . ,

β∗M of the regression model

Y∗ ¼ β∗0 þ
XM

m¼1
β∗mP

∗
m þ D

are then obtained by using the transformed values instead of the original sample
values. The condition to be satisfied by the estimates of the standardized regression
coefficients is

hs b∗0 ; . . . ; b
∗
M

� � ¼XN

n¼1
y∗n � b∗0 �

XM

m¼1
b∗mp

∗
m,n

� �2
¼ minimal! ð6:21Þ

or

∂hs=∂b
∗
0 ¼ �2

XN

n¼1
y∗n � b∗0 �

XM

m¼1
b∗mp

∗
m,n

� �
¼ 0 ð6:22Þ

and for k ¼ 1, . . ., M
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∂hs=∂b
∗
k ¼ �2

XN

n¼1
y∗n � b∗0 �

XM

m¼1
b∗mp

∗
m,n

� �
p∗k,n ¼ 0 ð6:23Þ

From (6.22) follows the condition:XN

n¼1
yn � mYð Þ=sY � Nb∗0 �

XN

n¼1

XM

m¼1
b∗m pm,n � mm

� �
=sm ¼ 0: ð6:24Þ

It is satisfied by

b∗0 ¼ 1
N

	 
 XN
n¼1

yn � mY

 !
=sY �

XM
m�1

b∗m
1
N

	 
 XN
n¼1

pm,n � mm

 !
=sm

and since all sums over sample values vanish, it follows that

b∗0 ¼ 0:

The same matrix and vector notation as before is used in the computation of
b∗1 , . . ., b

∗
M but with

ys ¼

y1
∗

y2
∗

�
�
�
yN

∗

26666664

37777775 bs ¼

b1
∗

b2
∗

�
�
bM

∗

266664
377775 Ps ¼

p1,1
∗ p2,1

∗ . . . pM,1
∗

p1,2
∗ p2,2

∗ . . . pM,2
∗

�
�
�
p1,N

∗ p2,N
∗ . . . pM,N

∗

26666664

37777775 ð6:25Þ

From (6.23), (6.25) and with b∗0 ¼ 0 it follows

Ps
0Psbs ¼ Ps

0ys ð6:26Þ
which gives in analogy to (6.18)

bs ¼ Ps
0Psð Þ�1Ps

0ys:

The components b∗1 , . . . b
∗
M of bs are called estimates of standardized regression

coefficients. Positive sign of b∗m indicates that Pm and Y tend to change in the same
direction (both increase or both decrease), while negative sign means that they tend
to change in opposite directions. b∗m is the amount of standard deviations sY by which
the linear approximation bY changes per standard deviation change of the uncertain
datum Pm, all other uncertain data Pl, l 6¼ m, remaining constant.

This follows from

bY ¼ b0 þ
XM

m¼1
bmPm and bY kð Þ ¼ b0 þ

XM

m¼1
bmPm þ bksk

so that bY kð Þ � bY ¼ ΔbY ¼ bksk ¼ b∗k sY since b∗k ¼ bksk=sY . This relationship
between bk and b∗k will be shown using (6.16) and the following notation:
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W ¼

p1,1 �m1
� �

p2,1 �m2
� �

. . . pM,1 �mM
� �

p1,2 �m1

� �
p2,2 �m2

� �
. . . pM,2 �mM

� �
�
�
�
p1,N �m1
� �

p2,N �m2
� �

. . . pM,N �mM
� �

26666666664

37777777775
v ¼

y1 �my

y2 �my

�
�
�
yN �my

2666666664

3777777775

S ¼

s10 . . . 0

0 s2 0 :: 0

�
�
0 . . . 0 sM

26666664

37777775

ð6:27Þ

Condition (6.7) can be written as

F b;W; vð Þ ¼
XN

n¼1
vn �

XM

m¼1
bmwm,n

� �2
¼ minimal! ð6:28Þ

For k ¼ 1, . . ., M the condition

∂F=∂bk ¼ �2
XN

n¼1
vn �

XM

m¼1
bmwm,n

� �
wk,n¼! 0 ð6:29Þ

or, in matrix and vector notation,

v�Wbð Þ0W¼!0 ð6:30Þ
or

W 0 v�Wbð Þ¼!0 ð6:31Þ
leads to

W 0v ¼ W
0
Wb ð6:32Þ

and therefore

b ¼ W 0Wð Þ�1W 0v: ð6:33Þ
v¼Wb cannot be used in (6.31) to compute b sinceW is an N�Mmatrix (i.e. the

coefficient matrix of N linear equations in M < N unknowns) and therefore W is not
invertible.

With

Ps ¼ WS�1, ys ¼ s�1
Y v

and following (6.26)
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bs ¼ S�1W 0WS�1
� ��1

S�1W 0 s�1
Y v

� � ð6:34Þ
or

bs ¼ S W 0Wð Þ�1W 0 s�1
Y v

� �
: ð6:35Þ

Using (6.33), the components of bs are

bs ¼ Sbs�1
Y ¼

b1s1=sy
b2s2=sy
�
�
bMsM=sy

266664
377775: ð6:36Þ

The estimate b∗m of the standardized regression coefficient equals the estimate bm
of the regression coefficient times the sample standard deviation of the uncertain
datum Pm and divided by the sample standard deviation of the computer model
result.

The standardized regression coefficients are suitable for ranking the uncertain
data with respect to their contribution to the uncertainty of the least squares linear
approximation bY . Is this ranking also useful with respect to their uncertainty
importance for the model result Y ? To answer this question, one needs to find the
fraction of the sample variance s2Y of the model result that is represented by the
sample variance of the linear approximation bY . This fraction is called “coefficient of
determination”. It is the square of the multiple correlation coefficient, i.e. the square
of the correlation coefficient ρ

�
Y ; bY� between the model result and its least squares

linear approximation.
The so-called empirical coefficient of determination R2 is the square of the sample

value ofρ
�
Y ; bY �. The sample value r

Y ,bY is computed from the sample values of Y andbY as follows:

rY , Ŷ ¼
XN

n¼1

�byn � mŶ

�
yn � mYð Þ

h i
=
XN

n¼1

�byn � mŶ

�2XN

n¼1
yn � mYð Þ2

h i
1=2:

ð6:37Þ
Using (6.12) and the notation (6.27):XN

n¼1

�byn�mŶ

�
yn�mYð Þ¼

XN

n¼1

XM

m¼1
bmwm,n

� �
yn�mYð Þ¼ Wbð Þ0v ð6:38Þ

rY , Ŷ
2 ¼ Wbð Þ0v Wbð Þ0v=Wb0 Wbð Þv0

v ð6:39Þ

or

rY , Ŷ
2 ¼ b0W 0vð Þ2=b0W 0Wb v0vð Þ:

From (6.32) follows
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rY , Ŷ
2 ¼ b0W 0vð Þ2

b0W 0v v0vð Þ ¼
b0W 0v
v0vð Þ ¼ b0W 0Wb

v0v
ð6:40Þ

1
N � 1

b0W 0Wb ¼ 1
N � 1

XN

n¼1

�byn � mY

�2 ð6:41Þ

Equation (6.41) uses (6.12) and represents that portion of the sample variance of
the model result that is represented by the sample variance of the linear approxima-
tion bY , while

1
N � 1

v0v ¼ 1
N � 1

XN

n¼1
yn � mYð Þ2

is the sample variance of the model result Y.
Since

XN
n¼1

yn � mYð Þ2 ¼
XN
n¼1

�
yn � byn�þ �byn � mY

�� �2
¼
XN

n¼1

�
yn � byn�2 � 2

XN

n¼1

�
yn � byn�� byn � mY

�þXN

n¼1

�byn � mY

�2
¼ v�Wbð Þ2 � 2 v�Wbð Þ0Wbþ Wbð Þ0Wb

and with (v � Wb)
0
W the null vector of (6.30), it follows that

N � 1ð Þs2Y ¼
XN

n¼1
yn �mYð Þ2 ¼

XN

n¼1

�
yn �byn�2 þ XN

n¼1

�byn �mY

�2 ð6:42Þ

The sums in (6.42) are known in regression analysis as “total sum of squares”
(SST), “residual sum of squares” (SSE) and “regression sum of squares” (SSR) so
that

SST ¼ SSEþ SSR:

It follows from (6.40)

rY , Ŷ
2 ¼

XN

n¼1

�byn � mY

�2
=
XN

n¼1
yn � mYð Þ2 ¼ SSR=SST: ð6:43Þ

R2 is the fraction of the sample variance of the model result Y that is represented
by the sample variance of the least squares linear approximation bY .

The closer the value of R2 is to 1, the smaller is SSE/SST, i.e. the variability of the
yn about the regression hyperplane, relative to their total variability, since

SSR=SST ¼ 1� SSE=SST ð6:44Þ
and SSE measures the variability that is not explained by the linear least squares

approximation in the uncertain data.
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If Y is a linear function in the uncertain data Pm (m¼ 1, . . .,M ) only and all Pm are
in the regression model, then R2 ¼ 1 since SSE ¼ 0.

The value of R2 will be equal to 1 even in the case of a non-linear function
Y ¼ f(P1, . . .,PM) if the sample size N is equal to M + 1 and M is the number of
uncertain data in the linear least squares approximation. The sample values of the
model result are reproduced exactly in this case because the linear least squares
approximation is over-fitting the sample data.

The ranking, obtained from the estimates b∗m of the standardized regression
coefficients, refers to the fraction R2 of the sample variance of the model result Y. R2

< 0.5 means that the ranking of the uncertain data refers to less than half of the variance
of the sample values yn and may therefore not be suitable to indicate where the main
contributions to the uncertainty of the model result come from.

The variance of the estimate bm of the regression coefficient βm stems from the
variance of the difference between Y and its least squares linear approximation and is
computed as (Heinhold and Gaede 1968; Freund and Minton 1979; Draper and
Smith 1998):

S2bm ¼ 1

1� R2
m

	 

1� R2

N �M � 1

	 

s2Y
s2m

	 

: ð6:45Þ

Rm
2 is the empirical coefficient of determination of a least squares linear approx-

imation for Pm in the other (M – 1) uncertain data and 1/(1 – Rm
2) is known as the

“variance inflation factor”. Obviously, strong sample correlations of Pm with other
uncertain data (no matter whether intended or spurious) increase the variance
inflation factor as the value of Rm will be close to 1 in this case. R2 is the empirical
coefficient of determination of the least squares linear approximation of Y in the
M uncertain data. Clearly, the more N exceeds M the smaller the variance of the
estimate of the regression coefficient. Following (6.36), the variance of the estimate
of the standardized regression coefficient is then given as

S2b∗m ¼ S2bms
2
m=s

2
Y :

6.3.1.2 Uncertainty Importance Measures from Correlation

Could the sample correlations rY,m,m¼ 1, . . .,M, be used for uncertainty importance
ranking? The sample correlation coefficient rY,m of Y and Pm is computed as

rY ,m ¼
XN

n¼1

�
yn�mY

�
pm,n�mm

� �h i
=hXN

n¼1
yn�mYð Þ2

XN

n¼1
pm,n�mm

� �2i1=2 ð6:46Þ

while the sample correlation coefficient between the uncertain data Pm and Pl is
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rm, l ¼
XN

n¼1

�
pm,n�mm

�
pl,n�ml

� �h i
=hXN

n¼1
pm,n�mm

� �2XN

n¼1
pl,n�ml

� �2i1=2: ð6:47Þ

The correlation coefficient rY,m measures the extent of linear relationship between
the sample values of the model result Y and those of the uncertain datum Pm.

However, using (6.20) and the matrix/vector notation (6.25) together with (6.26)

Ps
0Ps ¼ R¼

1 r1,2 . . . r1,M
r2,1 1 r2,3 . . . r2,M
�
�
rM,1rM,2 . . . 1

266664
377775 Ps

0ys ¼ Ps
0Psbs ¼ rY ¼

rY,1
rY,2
�
�
rY,M

266664
377775

and therefore

rY ,m ¼
XM

l¼1
rm, lb

∗
l , m ¼ 1, . . . ,M: ð6:48Þ

The sample correlation coefficient rY, m is not only an estimate of the amount of
standard deviation changes sY of bY due to one standard deviation change sm of Pm, all
Pl, l 6¼ m, remaining constant. It also includes estimates of the amounts of standard
deviation changes sY of bY that are due to the fractions rm, l of standard deviation
changes of those uncertain data Pl, l 6¼ m, which are correlated with Pm and are
therefore affected by the standard deviation change of Pm. The sign of rY, m indicates
the direction of the change of bY (positive: same direction as the change of Pm;
negative: opposite direction).

In the case of zero correlation (specified and spurious) between the sample values
( pl,n, pm,n), n ¼ 1, . . ., N; m ¼ 1, . . ., M, l 6¼ m

rY , Ŷ
2 ¼

XM

m¼1
b∗2
m ð6:49Þ

and following (6.48)

rY , Ŷ
2 ¼

XM

m¼1
r2Y ,m: ð6:50Þ

(6.49) and (6.50) follow from (6.40) and (6.36) since, in the case of zero
correlation, the off-diagonal elements of Ps'Ps and of W'W are zero and therefore

b0sbs ¼ b0S0Sb=sy2 ¼ b0W 0Wb=v0v ¼ Wbð Þ0Wb=v0v ¼ rY , Ŷ
2

W 0W ¼ N � 1ð Þ S2, v0v ¼ N � 1ð Þsy2 and
PM

m¼1 b
∗2
m ¼ b0sbs:

The matrix R ¼ Ps'Ps is the sample correlation matrix of the uncertain data. Its
diagonal elements rm, m have the value 1, and its off-diagonal elements rm,l¼ rl,m,m 6¼ l,
m,l ¼ 1, . . ., M are the sample correlation coefficients of the data pairs (Pm, Pl). If all
off-diagonal elements are zero, then R¼ I, the unit matrix, and the estimates b∗m of the
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standardized regression coefficients are equal to the sample correlation coefficients rY,m
since

Rbs ¼ rY : ð6:51Þ
However, if rm,l 6¼ 0 for some indices m and l, then (6.48) shows the relationship

between rY,m and the involved sample correlation coefficients rm,l 6¼ 0. The estimates
b∗m , m ¼ 1, . . ., M are obtained from

bs ¼ Ps
0Psð Þ�1Ps

0ys ¼ R�1rY ð6:52Þ
A non-zero sample correlation coefficient rm, lmay be intended, i.e. due to state of

knowledge dependence specified between the uncertain data Pm and Pl. It may,
however, also be non-zero due to the chance mechanism of the sampling process. In
this case, the sample correlation between Pm and Pl is unintended and is called
“spurious correlation”.

Spurious correlation “contaminates” the value rY,m as can be concluded from
(6.48). Even if b∗m is zero, rY,m may be non-zero either justifiably so because of state
of knowledge dependence between uncertain data or unjustifiably since contami-
nated by spurious correlation among the sample values of the uncertain data. The
closer M is to N and in particular the more M exceeds N, the larger the spurious
correlations will be in magnitude and in number. For instance, if the states of
knowledge of Pm and Pl are independent and quantified by a normal probability
distribution, then the empirical correlation coefficient Rm,l is distributed according to
Rosner (1995):

Rm, l � TN�2= N � 2þ TN�2
2

� �1=2
TN – 2 is Student distributed with degree of freedom N – 2.
The probability to have a spurious correlation rm,l > 0.5 or rm,l < - 0.5 between at

least two ofM state of knowledge independent uncertain data is the larger the smaller
N and the larger M is. Table 6.1 shows the entries of the matrix Ps'Ps for a small
number M of state of knowledge independent uncertain data and for a small sample
size N (Tables 6.2, 6.3, 6.4, and 6.5).

In situations where the state of knowledge expressions are not standard normal
distributions, the sample sizes in the tables may be taken as an indication of those
required so that spurious correlations larger or equal to rlim occur with sufficiently
low probability.

Spurious correlations as well as unacceptable differences between the specified
correlations and actual sample correlations can, however, be eliminated before
evaluation of the model for each set of values in the input file of the uncertain
data. This may be achieved by an iterative application of the method mentioned in
Sect. 4.4.1.14. The resulting matrix has the same column entries as matrix P, but they
are permuted such that the sample correlations are as specified. Unfortunately, the
input sample and consequently also the output sample of the uncertainty analysis are
then no longer simple random samples. The confidence statements derived for
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Table 6.1 Sample correlation coefficients of a sample of size N ¼ 100 with M ¼ 6 and no state of
knowledge dependence specified

1 2 3 4 5 6

1 1.0000E+00 �3.2249E-02 4.3691E-02 4.4895E-02 2.6887E-02 �1.7620E-01

2 �3.2249E-02 1.0000E+00 1.2624E-01 �1.7446E-02 �1.2475E-01 1.1281E-01

3 4.3691E-02 1.2624E-01 1.0000E+00 4.5395E-02 �6.8870E-02 2.1102E-01

4 4.4895E-02 �1.7446E-02 4.5395E-02 1.0000E+00 �7.3201E-02 4.4130E-02

5 2.6887E-02 �1.2475E-01 �6.8870E-02 �7.3201E-02 1.0000E+00 �1.1567E-01

6 �1.7620E-01 1.1281E-01 2.1102E-01 4.4130E-02 �1.1567E-01 1.0000E+00

All off-diagonal values are spurious correlations with r6,3 ¼ r3,6 the largest

Table 6.2 Minimum sample size N required so that the probability is at least 0.9 for the maximum
sample correlation value rY,m to be less than rlim

rlim

M

10 20 30 40 50 60 90 120

0.2 165 195 215 220 230 245 255 265

0.3 75 90 90 100 105 105 115 120

The states of knowledge of Y and of the M uncertain data are expressed by standard normal
distributions and are specified as independent (i.e. Y is not a function of any of the uncertain data)

Table 6.3 Minimum sample size N required so that the probability is at least 0.95 for the maximum
sample correlation value rY,m to be less than rlim

rlim

M

10 20 30 40 50 60 90 120

0.2 195 220 240 255 260 280 295 305

0.3 85 100 110 115 120 120 125 135

The states of knowledge of Y and of the M uncertain data are expressed by standard normal
distributions and are specified as independent (i.e. Y is not a function of any of theM uncertain data)

Table 6.4 Minimum sample
size N required so that the
probability is at least 0.9 for
the maximum sample
correlation value rm,l to be less
than rlim

rlim

M

10 20 30 40 50 60 90 120

0.2 225 295 345 355 385 410 445 460

0.3 105 130 150 165 165 175 200 200

0.4 60 75 80 85 90 100 105 110

The states of knowledge of the M uncertain data are expressed by
standard normal distributions and are specified as independent

Table 6.5 Minimum sample
size N required so that the
probability is at least 0.95 for
the maximum sample
correlation value rm,l to be less
than rlim

rlim

M

10 20 30 40 50 60 90 120

0.2 255 330 370 390 425 435 470 490

0.3 115 145 160 175 185 195 205 215

0.4 65 80 90 95 100 105 110 115

The states of knowledge of the M uncertain data are expressed by
standard normal distributions and are specified as independent
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computer model results in Chap. 5 require that the output sample be a simple random
sample.

The partial correlation coefficient (Freund and Minton 1979) is not suggested as
an uncertainty importance measure. The square of the estimate of the partial corre-
lation coefficient of Y and Pm is the square of the correlation coefficient between the
residuals of the least squares linear regressions of Y and Pm on the Pk, k ¼ 1, . . .,M,
k 6¼ m. The reason why the partial correlation coefficient is not suggested for
uncertainty importance ranking is best understood in the case where Y is a linear
function of state of knowledge independent uncertain data. In this case, all partial
correlation coefficients have unity as their absolute value although uncertainty
contributions to Y can be substantially different. If that part of the variability of the
pm,n, which is not explained by the pl,n, l 6¼ m, explains all the variability of the
residuals of a linear regression model constructed from the yn and the pl,n l 6¼ m, then
the absolute value of the estimated partial correlation coefficient for Pm will be at its
maximum (unity) although the variability of the residuals may only be a minute
fraction of the total variability of the yn and other individual parameters may explain
a much larger fraction. This shortcoming of the partial correlation coefficient is also
observed in Janssen (1994).

The question remains whether one should use the sample correlation coefficients
rY, m or the estimates b∗m , m¼ 1, . . .,M of the standardized regression coefficients for
ranking. The rY,m are much easier to obtain as their computation requires only the
product Ps'ys, and they are available even if M > N – 1. The computation of the b∗m
necessitates the inversion of Ps'Ps, and a unique solution to Ps'Psbs ¼ Ps'ys is only
available for M � N – 1.

The decision between the two measures for ranking will depend on whether N >
M can be afforded and whether the uncertain data Pm are to be ranked by the
uncertainty contribution of Pm alone, all Pl, l 6¼ m, remaining constant, or whether
those uncertainty contributions that are due to state of knowledge dependence
between Pm and any of the other uncertain data should be included. In the latter
case, it should be noted that even if the model result Y does not functionally depend
on Pm (Pm is not an argument of the function that provides the value of Y ), rY,m may
be non-zero. It may assign a significant rank to Pm due to non-zero correlation
coefficients rm,l brought about by state of knowledge dependence between Pm and
any of the other uncertain data Pl,l 6¼ m, and/or by spurious correlations as (6.48)
shows.

If spurious correlations were negligible, and an uncertainty importance measure
for Pm that includes the effect of those uncertain data that are state of knowledge
dependent with Pmwere sufficient, then the sample correlation coefficient rY,mwould
certainly be a computationally cheap option. However, in practical situations spuri-
ous correlations are rarely negligible, and therefore, the standardized regression
coefficients will need to be used as uncertainty importance measures not forgetting
to also compute their variance inflation factors [the first quotient in (6.45)].
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6.3.1.3 Uncertainty Importance Measures from Stepwise Regression
Analysis

But what to do, ifM is so large that sample sizes N, which keep spurious correlations
and variance inflation factors small, are simply unaffordable? The solution is to
perform the regression in a stepwise fashion following, for instance, a so-called
forward selection method. In this method, least squares linear regression starts with a
model in only one uncertain datum, namely the Pm with the largest coefficient of
determination R2

1ð Þ (see (6.43)) for

bY 1ð Þ ¼ b 1ð Þ
0 þ b 1ð Þ

m Pm:

The index in brackets indicates the number of uncertain data included in the least
squares linear approximation. The next step selects the Pl,l 6¼ m, with the largest
difference ΔR2

1;2ð Þ ¼ R2
2ð Þ � R2

1ð Þ among the M – 1 uncertain data left. R2
2ð Þ is the

coefficient of determination for

bY 2ð Þ ¼ b 2ð Þ
0 þ b 2ð Þ

m Pm þ b 2ð Þ
l Pl

and so forth until after j steps the maximum achievable ΔR2
j; jþ1ð Þ is below a

chosen threshold value.
The ΔR2

k;kþ1ð Þ values, k ¼ 1, . . ., j�1, might be used as measures of uncertainty

importance for the j uncertain data included in the model although they do not tell the
direction of their influence on the uncertainty of the model result. The latter is given
by the signs of the corresponding j standardized regression coefficients. (Near)
multicollinearity, i.e. its influence on the variance of the estimates b∗m , is less of a
problem in stepwise regression. Extending the matrix Pk (k+1 columns of matrix P)
by a column that is (nearly) a linear combination of some of the columns already in
the matrix will often not provide a sufficiently large ΔR2

k;kþ1ð Þ to also include the

corresponding parameter into the least squares linear approximation.

6.3.1.4 The Correlation Ratio as Uncertainty Importance Measure

The ranking derived from standardized regression coefficients will not be satisfac-
tory if the R2 value of the least squares linear approximation is too low, i.e. R2 � 0.5.
The reason for the low R2 value could be that:

– Some uncertain data represent model uncertainties that are major contributors to
the uncertainty of the model result. The data values used in the uncertainty
analysis are indices, arbitrarily assigned to alternative model formulations. Cor-
relation between the sample index numbers and the sample values of the model
result Y will most likely not be suitable to measure the uncertainty importance nor
will the estimates of standardized regression coefficients for these uncertain data.
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The R2 value will generally be rather low in this case, thereby indicating that a
significant fraction of the sample variance of Y might be due to model uncer-

tainties but is not represented by the linear least squares approximation bY .
Among those important model uncertainties may be uncertain input functions

over interim model results or over independent variables like time and/or space
(see Sect. 3.3.4). A sample of possibly true input functions may have been used in
the analysis, and their index values will be used as the values of a substitute
uncertain datum in the sampling process and uncertainty importance analysis.

The correlation ratio discussed below could be used for ranking in these cases
provided the sample size is sufficiently smaller (for instance, �N1/2) than the
sample size N of the uncertainty analysis, so that several model runs use the same
possibly true model formulation or input function.

– Some of the uncertainties may be the output from a model (feeder model) that
provides input to the computer model application. This output may consist of a
mixture of single numbers (scalar values) and sequences, arrays or tables of
values. An uncertainty analysis of the feeder model application by Monte Carlo
simulation provides a state of knowledge expression for these results in the form
of a multivariate sample, drawn according to their joint subjective probability
distribution (see Sect. 4.4.1.13 for the treatment of this sample in the uncertainty
analysis of the computer model application). Obviously, standardized regression
coefficients are not a suitable importance measure for those uncertainties that are
mixtures of sequences, arrays or tables of values. Again, the correlation ratio
discussed below could be used for ranking in this case provided the sample size of
the feeder model analysis is sufficiently smaller (for instance �N1/2) than the
sample size N of the uncertainty analysis of the computer model result so that
several computer model runs use the same model output set from the feeder
model as input. However, uncertainty importance measures computed for the
input from the feeder model would not permit to differentiate between the
uncertainty importance of individual sequences, arrays or tables that are part of
the mixture. If the substitute uncertain datum, used for the input from the feeder
model, is found to be of sufficient importance, the ranking will have to be redone,
this time, however, based on the sample of the underlying uncertain data of the
feeder model in order to decide about state of knowledge improvements. The
sample values of the uncertain data (input sample) of the feeder model may be
combined with those of the uncertainty analysis of the computer model and
importance measures may be computed for the combined set of uncertain data.

A low R2 value may, however, also be due to the fact that an approximation bY ,
linear in the uncertain data, is not capable of explaining the contributions to the
sample variance of Y from strongly non-linear (particularly non-monotone) relation-
ships between Y and some of the uncertain data. Hora (2003) suggests a method for
the detection of non-monotone relationships.

The measure to be computed in these situations is the so-called correlation ratio
(Iman and Hora 1990; McKay et al. 1992; Manteufel 1996; McKay 1997; Kruskal
1958; Kendall and Stuart 1973). It is not meant to substitute the correlation
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coefficients or the standardized regression coefficients but to enable a correction of
their uncertainty importance ranking particularly in those cases where model uncer-
tainty is represented by uncertain data with indices of alternative model formulations
as data values. A scatter plot of the model result versus the uncertain datum should
be investigated wherever the correlation ratio assigns a significantly higher rank than
the correlation coefficient or the standardized regression coefficient. This may help
to explain the difference.

The correlation ratio (Kruskal 1958; Kendall and Stuart 1973; Iman and Hora
1990) makes use of the approximation

bY ¼ E Y jPmf g ¼ hY Pmð Þ ð6:53Þ
of the computer model result Y. E{Y |Pm} is the conditional mean value of Y,

i.e. conditioned on the value of Pm. In the least squares sense, hY(Pm) is the best
approximation of Y by a function of Pm alone, i.e. any value different to hY(Pm)
would give a larger squared error sum (Steiner’s Theorem; see Heinhold and Gaede
1968).

The squared value of the correlation ratio δm is obtained as

δ2m ¼ Var E Y jPmf gf g
Var Yf g ¼ 1� E Var Y jPmf gf g

Var Yf g : ð6:54Þ

from the relationship

Var Yf g ¼ E Var YjPmf gf g þ Var E YjPmf gf g ð6:55Þ
which applies since

Var E Y jPmf gf g¼E E Y jPmf gð Þ2
n o

�E2 E Y jPmf gf g¼E E2 YjPmf g� ��E2 Yf g
E Var Y jPmf gf g¼E E

�
Y jPmð Þ2��E2 Y jPmf g

n o
¼E E

�
Y jPmð Þ2�n o

�E E2 YjPmf g� �
¼E Y2
� ��E E2 Y jPmf g� �

and therefore

E Var YjPmf gf g þ Var E Y jPmf gf g ¼ E Y2
� �� E2 Yf g ¼ Var Yf g:

From (6.54) and (6.55) follows that the smallest value that can be assumed by δm
is zero and its largest value is 1. Therefore, δm cannot carry directional information
(i.e. whether Y tends to react in the same or in the opposite direction of a change of
Pm). Direction would not make sense anyway in the cases discussed above, namely
non-monotone relationships between Y and Pm or indices of model alternatives as
values of Pm.

E{Var{Y |Pm}} is a measure of the variability of Y due to uncertain data other
than Pm. It is zero if Y is a function of Pm alone.
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Var{E{Y |Pm}} is the variance of the mean values of Y conditioned on the values
of Pm. It is zero if Y is independent of Pm.

The square of the correlation ratio measures the fraction of the variance of the
model result Y that is explained by the variance of the mean values of Y conditioned
on Pm. Obviously, the correlation ratio will be influenced by contributions to Var{E
{Y |Pm}} that are due to state of knowledge dependence of Pm and any Pl, l 6¼ m.
This can be seen from the following simple example:

Y ¼ a1P1 þ a2P2

Var Yf g ¼ a21Var P1f g þ a22Var P2f g þ 2a1a2Cov P1;P2f g
E Y jP1f g ¼ a1P1 þ a2E P2jP1f g
E E YjP1f gf g ¼ a1E P1f g þ a2E P2f g ¼ E Yf g
Var E Y jP1f gf g ¼ Var a1P1 þ a2E P2jP1f gf g
¼ E a1P1 þ a2E P2jP1f g � E Yf gð Þ2

n o
¼ E a1 P1 � E P1f gð Þ þ a2 E P2jP1f g � E P2f gð Þð Þ2

n o
¼ E

�
a21 P1 � E P1f gð Þ2 þ a22 E P2jP1f g � E P2f gð Þ2

þ2a1a2 P1 � E P1f gð Þ E P2jP1f g � E P2f gð Þ�
and since

E E P2jP1f gP1f g ¼ E P2P1f g ¼ E P2f gE P1f g þ Cov P1;P2f g
Var E YjP1f gf g ¼ a21Var P1f g þ a22Var E P2jP1f gf g þ 2a1a2Cov P1;P2f g ð6:56Þ

δ21 ¼ a21Var P1f g þ a22Var E P2jP1f gf g þ 2a1a2Cov P1;P2f g� �
=

a21Var P1f g þ a22Var P2f g þ 2a1a2Cov P1;P2f g� �
Y is functionally independent of P1 if a1 ¼ 0. In this case, the second terms of the

denominator and of the numerator remain with Var{E{P2|P1}} 6¼ 0 due to state of
knowledge dependence. In the case of a1 6¼ 0 and no state of knowledge dependence
between P1 and P2, the first term of the numerator and the first and second terms of
the denominator remain.

A sample value of the correlation ratio for Y with respect to Pm is obtained from
the approximation

hY pmð Þ ¼ 1
v

XN

n¼1
wnyn ð6:57Þ

wn ¼ 0 if pm,n 6¼ pm
wn ¼ 1 otherwise

and v is the number of indices n with wn ¼ 1.
In other words, hY( pm) is the average over all yn to the same value of Pm in the

sample (see Fig. 6.2).
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In the context of uncertainty analysis by Monte Carlo simulation, all values pm, n
are random samples. The probability for two or more identical sample values of Pm is
zero if the state of knowledge of Pm is expressed not by a discrete subjective
probability distribution as in Fig. 6.2 but by a continuous one as in Fig. 6.3.
Figure 6.2 would be representative of model uncertainties, quantified by a small
set of alternative model formulations, or of multivariate samples used as joint state of
knowledge expression (see Sect. 3.5.4). In other words, it illustrates the situation for
uncertain data with only a small set of possibly applicable values.

To obtain sample values of the approximate correlation ratio in the continuous
case, the set {(pm,n), n ¼ 1, . . ., N} is ordered by increasing magnitude and the
ordered set is divided into L non-overlapping classes with equally many (K ) values
in each class (N¼ LK). The mean values are taken over each class, and hY( pm, n)¼
E{Y |Pm ¼ pm,n} is approximated by

hY pm,n
� � ¼ �yl ð6:58Þ

for each sample value pm,n from class l

with �yl ¼
1
K

	 
X
class l

yn.

s2Y ¼ 1
N � 1

	 
XL

l¼1

XK

k¼1

�
yl,k � �y

�2 corresponds to [1/(N – 1)] SST
(estimate of Var{Y})

1
N � 1

	 
XL

l¼1
K
�
�yl � �y

�2 corresponds to [1/(N – 1)] SSR
(estimate of Var{E{Y |Pm}})

1
L

	 
XL

l¼1

1
K � 1

	 
XK

k¼1

�
yl,k � �yl

�2 corresponds to [1/(N – L )] SSE
(estimate of E{Var{Y |Pm}}).

It follows for the square value of the sample value dm of the correlation ratio δm

Fig. 6.2 Model results to
values of the uncertain
datum Pi with discrete
subjective probability
distribution; the horizontal
bars indicate the conditional
mean values
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d2m ¼
XL

l¼1
K
�
�yl � �y

�2
=
XL

l¼1

XK

k¼1

�
yl:k � �y

�2h i
ð6:59Þ

where L classes of K sample values each are assumed (N ¼ LK) and yl,k is the kth
sample value of the computer model result Y that is in class l of Pm. As a rule of
thumb, the square root of N may be chosen for the number L of classes.

The approximation
hY pm,n
� � ¼ �yl, for each sample value pm,n from class l,l ¼ 1, . . ., L

uses only the class averages of Y. Therefore, it cannot explain the intraclass
variability.

Indexing of model alternatives (i.e. their representation by an uncertain datum
with the model indices as possibly true values) is and can be rarely done with respect
to their influence on the results of the computer model. Regression of Y on the index
set would therefore not make sense. Computer models usually provide a set of
J model results (Y1, . . ., YJ), and the influence of a model alternative may be very
different for each of the J different model results and may even change over an
independent variable (like time or space) of the model result Yj. The approximate
correlation ratio uses the variability of the class means �yl, l ¼ 1, . . ., L. Numbering

Fig. 6.3 Model results to 10 classes of values of the uncertain datum Pi with continuous subjective
probability distribution; the horizontal bars indicate the conditional mean values
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and sequential order of the classes is therefore irrelevant. This feature makes the
correlation ratio the only uncertainty importance measure (of those discussed)
suitable for model uncertainties quantified by a set of L > 2 alternatives.

Examples, which demonstrate the capabilities of the correlation ratio as uncer-
tainty importance measure, are provided in Sect. 6.3.3. Some limitations and their
remediation are presented in Ratto et al. (2009).

6.3.1.5 Variance Decomposition

Variance decomposition provides uncertainty importance measures as fractions of
the total variance of the model result Y ¼ h(P1, . . ., PM). In what follows, P denotes
the vector of uncertain data P1, . . ., PM and p a realization thereof. A complete
decomposition of Var{Y} (Sobol 1993; Saltelli et al. 1999, 2010; Jansen 1999;
Saltelli 2002) is achieved by defining the following terms:

h0 ≔E Yf g
hi ≔E Y jPif g�h0 i¼1, ... ,M
hi,j ≔E YjPi;Pj

� ��h0�hi�hj i¼1, ... ,M;j> i
hi,j,k≔E Y jPi;Pj;Pk

� ��h0�hi�hj�hk�hi,j�hi,k�hj,k i¼1, ... ,M;j> i;k> j

⋮

h1,..., M≔E YjP1;...;PMf g�h0�
XM
i¼1

hi�
XM
i¼1

XM
j>i

hi,j�
XM
i¼1

XM
j>i

XM
k>j

hi,j,k� ...�
XM
i¼1

h�i:

ð6:60Þ
The index “�i” indicates all indices except index i.

h P1; . . . ;PMð Þ ¼ h0 þ
XM
i¼1

hi þ
XM
i¼1

XM
j>i

hi, j þ
XM
i¼1

XM
j>i

XM
k>j

hi, j,k þ . . .

þ
XM
i¼1

h�i þ h1, ...,M ð6:61Þ

since all that remains from adding up the right-hand sides of the definitions in
(6.60) is E{Y |P1, . . .,PM} which equals h(P).

(6.60) defines a decomposition of h(P) into a constant h0, CM
1 terms (hi)

quantifying the difference between the local least squares approximation of Y at
each value of Pi and the mean value of Y, CM

2 terms (hi, j) quantifying the difference
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between the local least squares approximation of Y at each pair of values of Pi and Pj

and the mean value of Y minus hi and hj and so forth. CM
k is the number of all

combinations of M elements into groups of k different elements. Following the
definition of the conditional mean values, the integrals of each of the expressions
hi, hi, j, . . ., h1,. . .,M of (6.60), multiplied by the joint density function of the uncertain
data in the conditions, equal zero.

Squaring both sides of (6.61), subtracting h0
2 on both sides, multiplying each term

of the squared right-hand side by the joint density function of the uncertain data in
the conditions and integrating with respect to these data equals the squared term on
the left-hand side multiplied by the joint density function f(p) and integrated with
respect to p. Assuming that the latter integral exists, one arrives atR

h2 pð Þf pð Þd p� h20 ¼ Var Yf g ¼PM
i¼1

R
h2i f i pið Þdpi

þPM
i¼1

PM
j>i

R R
h2i, jf i, j pi; pj

� �
dpidpj þ . . .þPM

i¼1

R
. . .
R
h2�if�i p�ið Þd p�i

þ R . . . R h21, ...,Mf pð Þd p
ð6:62Þ

The right-hand side of (6.62) may be written as

Var Yf g ¼
XM

i¼1
Vi þ

XM

i¼1

XM

j>i
V i, j þ

XM

i¼1

XM

j>i

XM

k>j
V i, j,k

þ . . .þ
XM

i¼1
V�i þ V1, ...,M ð6:63Þ

Vi ≔Var E YjPif gf g i¼1, ...,M

Vi,j ≔Var E YjPi;Pj

� �� ��Vi�Vj i¼1, ...,M;j> i

V i,j,k≔Var E Y jPi;Pj;Pk

� �� ��Vi�Vj�Vk�Vi,j�Vi,k�Vj,k i¼1, ...,M;j> i; k> j

⋮
V1,...,M≔Var E YjPf gf g�PM

i¼1Vi�
PM

i¼1

PM
j>iV i,j�

PM
i¼1

PM
j>iPM

k>jV i,j,k� ...�PM
i¼1V�i

ð6:64Þ
since the integrals of all mixed terms h0(E{Y|. . .} – h0) are zero and all other

mixed terms cancel out and Var{E{Y |P}} ¼ Var{Y}.
Some of the terms in (6.64), involving two or more uncertain data in the

condition, may be negative in the case of state of knowledge dependence.

V T
i ¼ Vi þ

XM

j>i
V i, j þ

XM

j>i

XM

k>j
V i, j,k þ . . . for i ¼ 1, . . . ,M ð6:65Þ

is the individual total contribution of each of the uncertain data to Var{Y}.
Vi

T/Var{Y} is called the total uncertainty importance index of the uncertain datum
Pi, while Vi/Var{Y} is the principal (also called “first-order”) uncertainty importance
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index of Pi with respect to the model result Y. Vi/Var{Y} is known as the square
value of the correlation ratio of Pi with respect to Y (see Sect. 6.3.1.4).

Each of the terms in (6.64) is the result of a multiple integral, i.e.

Vi ¼
R R

. . .
R
h pð Þf�i p�ið Þd p�i

� �2
fi pið Þdpi � E Yf gð Þ2

Vi, j ¼
R R R

. . .
R
h pð Þf�i,�j p�i,�j

� �
dp�i,�j

� �2
fi, j pi;pj
� �

dpidpj � E Yf gð Þ2 � Vi � Vj

and so forth. The corresponding conditional densities are required under the
integrals in the case of state of knowledge dependence.

The computational cost of evaluating these integrals over M dimensions for the

mean value E{h(P)} and for each of the
XM

m¼1
Cm
M ¼ 2M � 1 terms in (6.63) is out

of the question for the number of model results to be analysed and for the number of
uncertain data involved in computer models of practical relevance where the number
M of uncertain data is usually large and the uncertainty importance measures are
required for various model results often evaluated at several points of time or space.
Analytic solutions are usually not available, and approximate solutions are to be
obtained either numerically or by Monte Carlo simulation. Both ways will require
evaluations of the model results for large numbers of data value vectors p.

In order to obtain the total variance contribution of the uncertain datum Pi, it is not
necessary to evaluate each of the terms in (6.65) since

V T
i ¼ E Var Y jP�if gf g ¼ Var Yf g � Var E Y jP�if gf g ð6:66Þ

with

Var E YjP�if gf g ¼
Z

. . .

Z Z
h pð Þf ij�i pið Þdpi

 �2
f�i p�ið Þd p�i � E Yf gð Þ2

and P�i is the vector of all uncertain data except Pi.

Examples
The following two simple examples serve to illustrate the method and the results
obtained:

(a)
Y ¼ h P1;P2;P3ð Þ ¼ P1 þ P2P3

The three uncertain data are pairwise state of knowledge independent.

E Yf g ¼ E P1f g þ E P2f ÞE P3f g
Var Yf g ¼ Var P1f g þ Var P2P3f g

¼ Var P1f g þ E2 P3f gVar P2f g þ E2 P2f gVar P3f g þ Var P2f gVar P3f g
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V1¼ Var E Y jP1f gf g ¼ R R R p1 þ p2p3ð Þf2,3 p2;p3ð Þdp2dp3
� �2

f1 p1ð Þdp1 � E Yf gð Þ2
¼ Var P1f g

V2 ¼ E2 P3f gVar P2f g
V3 ¼ E2 P2f gVar P3f gX3
i¼1

Vi < Var Yf g

V1,2 ¼ Var E YjP1;P2f gf g � V1 � V2

¼ R R R
p1 þ p2p3ð Þf3 p3ð Þdp3

� �2
f1,2 p1; p2ð Þdp1dp2 � E Yf gð Þ2 � V1 � V2

Var
�
E YjP1;P2f g� ¼ Var P1f g þ E2 P3f gVar P2f g

V1,2 ¼ 0
Var E YjP1;P3f gf g ¼ Var P1f g þ E2 P2f gVar P3f g
V1,3 ¼ 0

Var E YjP2;P3f gf g ¼ Var P2f gVar P3f g þ E2 P3f gVar P2f g þ E2 P2f gVar P3f g
V2,3 ¼ Var P2f gVar P3f gX3
i¼1

Vi þ
X3
i¼1

X3
j>i

V i, j ¼ Var Yf g

Var E Y jP1;P2;P3f gf g ¼ Var Yf g

V1,2, 3 ¼ Var E YjP1;P2;P3f gf g �
X3
i¼1

Vi �
X3
i¼1

X3
j>i

V i, j ¼ 0

V T
1 ¼ V1 þ V1,2 þ V1,3 þ V1,2, 3 ¼ Var P1f g

V T
2 ¼ E2 P3f gVar P2f g þ Var P2f gVar P3f g

V T
3 ¼ E2 P2f gVar P3f g þ Var P2f gVar P3f g

Var Yf g � V T
2 ¼ Var P1f g þ E2 P2f gVar P3f g:

If the true value of P2 is p2, then

Var YjP2 ¼ p2f g ¼ Var P1f g þ p22Var P3f g ¼ Var Yf g � V T
2

evaluated for P2 ¼ p2.

(b)
Y ¼ h P1;P2;P3ð Þ ¼ P1 þ P2P3

The uncertain data P1 and P2 are state of knowledge dependent.

E Yf g ¼ E P1f g þ E P2f ÞE P3f g
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Var Yf g ¼ E Y2
� �� E2 Yf g ¼ R R R p1 þ p2p3½ �2f1j2 p1jp2ð Þf2 p2ð Þf3 p3ð Þdp1dp2dp3

� E2 Yf g� � ¼ Var P1f g þ Var P2P3f g þ 2E P3f gCov P1;P2f g
¼ Var P1f g þ Var P3f gVar P2f g þ E2 P3f gVar P2f g

þE2 P2f gVar P3f g þ 2E P3f gCov P1;P2f g
V1 ¼ Var E Y jP1f gf g

¼ ∫ ∫∫ p1 þ p2p3ð Þf2j1 p2jp1ð Þf3 p3ð Þdp2dp3
� �2

f1 p1ð Þdp1− E Yf gð Þ2
¼ Var P1f g þ Var E P2jP1f gf gE2 P3f g þ 2E P3f gCov P1;P2f g

V2 ¼ E2 P3f gVar P2f g þ Var E P1jP2f gf g þ 2E P3f gCov P1;P2f g
V3 ¼ E2 P2f gVar P3f g
V1,2 ¼ Var E

�
Y jP1;P2

� ��
−V1−V2

¼ ∫∫ ∫ p1 þ p2p3ð Þf3 p3ð Þdp3
� �2

f1j2 p1jp2ð Þf2 p2ð Þdp1dp2− E Yf gð Þ2−V1−V2

Var E Y jP1;P2f gf g ¼ Var P1f g þ E P3f gVar P2f g þ 2E P3f gCov P1;P2f g
V1,2 ¼ �E2 P3f gVar E P2jP1f gf g � Var E P1jP2f gf g � 2E P3f gCov P1;P2f g
Var E Y jP1;P3f gf g ¼ Var P1f g þ E P2

3

� �
Var E P2jP1f gf g þ E2 P2f gVar P3f g

þ 2E P3f gCov P1;P2f g
V1,3 ¼ Var E P2jP1f gf gVar P3f g
Var E Y jP2P3f gf g ¼ Var E P1jP2f gf g þ Var P2P3f g þ 2E P3f gCov P1;P2f g
V2,3 ¼ Var P2f gVar P3f gX3

i¼1

Vi þ
X3
i¼1

X3
j>i

V i, j > Var Yf g

Var E YjP1;P2;P3f gf g ¼ Var Yf g ¼ Var P1f g þVar P2P3f g þ 2E P3f gCov P1;P2f g

V1,2, 3 ¼ Var E YjP1;P2;P3f gf g �
X3
i¼1

Vi þ
X3
i¼1

X3
j>i

V i, j

¼ �Var E P2jP1f gf gVar P3f g
V T
1 ¼ V1 þ V1,2 þ V1,3 þ V1,2, 3 ¼ Var P1f g � Var E P1jP2f gf g

V T
2 ¼ E2 P3f gVar P2f g þ Var P2f gVar P3f g � Var E P2jP1f gf gE P2

3

� �
¼ Var P2f gE P2

3

� �� Var E P2jP1f gf gE P2
3

� �
V T
3 ¼ E2 P2f gVar P3f g þ Var P2f gVar P3f g ¼ Var P3f gE P2

2

� �
Var Yf g � V T

2 ¼ Var P1f g þ E2 P2f gVar P3f g þ 2E P3f gCov P1;P2f g
� Var E P2jP1f gf gE P2

3

� �
If p2 turns out to be the true value of P2 , thenVar Yf g � V T

2 evaluated at P2 ¼ p2
equals

Var P1jP2 ¼ p2f g þ p22Var P3f g ¼ Var YjP2 ¼ p2f g
E Var Y jP3f gf g ¼ R � R R p1 þ p2p3ð Þ2f1j2 p1jp2ð Þf2 p2ð Þdp1dp2

� R R �
p1 þ p2p3

� �
f1j2 p1jp2ð Þf2 p2ð Þdp1dp2

�
2
�
f3 p3ð Þdp3
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E Var Y jP3f gf g ¼ Var P1f g þ E P2
3

� �
Var P2f g þ 2E P3f gCov P1;P2f g

and using V3 ¼ Var{E{Y |P3}} as well as

E P2
3

� �
Var P2f g ¼ Var P3f gVar P2f g þ E2 P3f gVar P2f g

it follows

Var E Y jP3f gf g þ E Var YjP3f gf g ¼ Var Yf g

End of Examples
State of knowledge independence of the uncertain data is not required for the
variance decomposition since

Var E Y jPLf gf g ¼ R ½R h pð Þf�LjL p�Lj pLð Þ
Y
l2�L

dpl�2fL pLð Þ
Y
l2L

dpl

� R
h pð Þf pð Þd p� �2 ¼ E E Y jPLf gð Þ2

n o
� E2 Yf g

and

E Var Y jPLf gf g ¼ R � R h pð Þð Þ2f�LjL p�Lj pLð Þ
Y
l2�L

dpl

� R
h pð Þf�LjL p�Lj pLð Þ

Y
l2�L

dpl
�
2

" !
fL pLð Þ

Y
l2L

dpl

¼ E Y2
� �� E E Y jPLf gð Þ2

n o
:

Y ¼ h(P), PL is the vector of any subset L of the set P1, P2, . . ., PM and P�L is its
complement, f�L|L is the conditional subjective probability density function of P�L

given PL. However,

V T
L ¼ Var Yf g � Var E Y jP�Lf gf g ¼ E Var YjP�Lf gf g 	 VL

may not hold if Var{E{Y |P�L}} contains contributions to VL that are due to
uncertain data in P�L that are state of knowledge dependent with uncertain data in PL

(compare V1 and V1
T of the example (b) above).

The total uncertainty importance index

V T
i

Var Yf g ¼ E Var Y jP�if gf g
Var Yf g ¼ 1� Var E Y jP�if gf g

Var Yf g ð6:67Þ

is a very powerful yet very expensive uncertainty importance measure. As has
been shown above, state of knowledge independence of the uncertain data is not
required for (6.67) to hold but, as has been explained above, Vi

T	 Vimay not hold if
uncertain data in P�i are state of knowledge dependent with Pi. Once the true value
pi of Pi is known (Var Yf g � V T

i ) evaluated at pi is what remains of Var{Y}, i.e. it
equals Var{Y |Pi ¼ pi}.
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Numerical integration or Monte Carlo methods will need to be applied unless the
multiple integrals can be evaluated analytically. The corresponding computational
effort will simply be unaffordable for the results of most computer models of
practical relevance. This is not surprising as E{Y |P�i} is the point-wise least squares
approximation of Y over the (M�1)-dimensional parameter space and Var{E{Y |
P�i}} is its variance. Consequently, with reference to P�i, Var{E{Y |P�i}} is the
equivalent of SSR and V T

i ¼ Var Yf g � Var E Y jP�if gf g is the equivalent of SSE in
regression analysis so that Var{E{Y |P�i}}/Var{Y} and V T

i =Var Yf g are the equiv-
alent of R2 and 1 � R2, respectively.

The first-order uncertainty importance index

Vi

Var Yf g ¼ Var E YjPif gf g
Var Yf g

is the quotient of the variance of the point-wise least squares approximation of
Y over Pi and the total variance of Y. Consequently, with reference to Pi,

Var E Y jPif gf g ¼
Z

½
Z

. . .

Z
h pð Þf�iji p�ij pið Þd p�i�2fi pið Þdpi � E Yf gð Þ2

is the equivalent of SSR in regression analysis, while Vi/Var{Y} is the equivalent
of the R2 value.

In order to somewhat reduce the computational effort involved in the estimation
of Vi and of V

T
i , mainly two estimation procedures are suggested in the literature for

the case of state of knowledge independent uncertain data. They proceed in the
following steps:

1. First they require the evaluation of the computer model for two random samples
of size N:

Sample No. 1 Sample No. 2

Data index 1 2 . . . . . . . . . M 1 2 . . . . . . . . . M

Sample element

1 p1,1
(1) p2,1

(1) . . . pi,1
(1) . . . pM,1

(1) p1,1
(2) p2,1

(2) . . . pi,1
(2) . . . pM,1

(2)

2 p1,2
(1) p2,2

(1) . . . pi,2
(1) . . . pM,2

(1) p1,2
(2) p2,2

(2) . . . pi,2
(2) . . . pM,2

(2)

⋮
N p1,N

(1) p2,N
(1) . . . pi,N

(1) . . . pM,N
(1) p1,N

(2) p2,N
(2) . . . pi,N

(2) . . . pM,N
(2)

Evaluation of the model result for the sample elements

p 1ð Þ
n ¼ p 1ð Þ

1,n; p
1ð Þ
2,n; ::; p

1ð Þ
i,n ; ::; p

1ð Þ
M,n

� �
and

p 2ð Þ
n ¼ p 2ð Þ

1,n; p
2ð Þ
2,n; ::; p

2ð Þ
i,n ; ::; p

2ð Þ
M,n

� �
for n ¼ 1, 2, . . ., N provides the two samples of model results

y kð Þ ¼ y kð Þ
1 ; y kð Þ

2 ; . . . ; y kð Þ
N

� �
, k ¼ 1, 2 with y kð Þ

n ¼ h p kð Þ
n

� �
.

2. Estimation of Vi
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To this end, the column for the uncertain datum with index i, in sample no. 2, is
replaced by the corresponding column in sample no. 1 and the computer model is
evaluated for the modified sample no. 2 to give the sample of model result values

y 2;ið Þ ¼ y 2;ið Þ
1 ; y 2;ið Þ

2 ; . . . ; y 2;ið Þ
N

� �
. Among the formulae, suggested in the literature

for the estimation of Vi, are (see Saltelli et al. (2010) for a compilation):

(a) bV i ¼ N�1
XN
n¼1

y 1ð Þ
n y 2;ið Þ

n � N�1
XN
n¼1

y 1ð Þ
n

 !
N�1

XN
n¼1

y 2;ið Þ
n

 !

(b) bV i ¼ dVar Yf g � 2Nð Þ�1
XN
n¼1

y 1ð Þ
n � y 2;ið Þ

n

� �2
The second formula avoids summation of products of possibly large absolute

values. Division of bV i by dVar Yf g gives the estimate of the principal (or “first-order”)
uncertainty importance index for the uncertain datum Pi. Estimation of all
M principal uncertainty importance indices requires N(M + 2) runs of the computer
model in order to obtain the sample values y(1), y(2) and y(2, i), i ¼ 1, . . ., M.

3. Estimation of V T
i

In order to obtain an estimate of V T
i , the column for the uncertain datum with

index i in sample no. 1 is replaced by the corresponding column in sample
no. 2 and the computer model is evaluated for the modified sample no. 1 to give

the sample of model result values y 1;ið Þ ¼ y 1;ið Þ
1 ; y 1;ið Þ

2 ; . . . ; y 1;ið Þ
N

� �
. Among the for-

mulae, suggested in the literature for the estimation ofV T
i , are (see Saltelli et al. 2010

for a compilation):

(a) bV T
i ¼ dVar Yf g � N�1

XN
n¼1

y 1ð Þ
n y 1;ið Þ

n � N�1
XN
n¼1

y 1ð Þ
n

 !
N�1

XN
n¼1

y 1;ið Þ
n

 !

(b) bV T
i ¼ 2Nð Þ�1

XN
n¼1

y 1ð Þ
n � y 1;ið Þ

n

� �2
Division of bV T

i by dVar Yf g gives the estimate of the total uncertainty importance
index for the uncertain datum Pi. Estimation of all M total uncertainty importance
indices requires NM additional runs of the computer model in order to obtain the
sample values y(1, i), i ¼ 1, . . ., M.

The estimation procedure for the case of state of knowledge dependence differs
from the one described above only in so far as for y(1, i) and y(2, i), i ¼ 1, . . ., M new
samples of parameter values are to be drawn with the values for p 1;ið Þ

i,n to be drawn
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under the condition P�i ¼ p 1ð Þ
�i,n and p 2;ið Þ

�i,n to be drawn under the condition of

Pi ¼ p 1ð Þ
i,n . The computational cost is the same as in the case of no state of knowledge

dependence except for the generation of the conditional sample values of the
uncertain data concerned.

It may be possible to stop the process of estimatingVi orV
T
i for Pi, i¼ 1, . . .,M once

an uncertain datum has been found with first order or total contribution to Var{Y}
that is sufficiently close to the value of Var{Y} so that one may conclude that this
uncertain datum is mainly responsible for Var{Y}. In the uncertainty analysis setting,
it will also not be necessary to compute estimates of the indices with up to three or
more digits (as is sometimes attempted in the literature on sensitivity analysis) since
only the main uncertainty contributors are of interest. Last but not least, the sample
sizes needed to obtain the estimates of Vi and/or V T

i are out of the question for
uncertainty analyses of results from most computer models of practical relevance
(Helton et al. 2012).

The approximate correlation ratio introduced in Sect. 6.3.1.4 is another attempt to
reduce the computational effort. Here, the sample values of Pi are ordered
by increasing magnitude and the ordered set is divided into an exhaustive set of
L ¼ N1/2 disjoint classes Cl, l¼ 1, . . ., L. The conditional mean values E{Y | pi 2 Cl}
are estimated from the N1/2 sample values of Y in each class. This approach does not
require model evaluations for a second sample of size N. In fact, the same Monte
Carlo sample that was used for the uncertainty quantification of Y can be used for this
approximate computation of the square roots of the M first-order uncertainty impor-
tance measures.

6.3.1.6 Recommendations and Necessary Checks

Table 6.6 provides some practical recommendations. Four problem classes are
distinguished. The classes are defined by the presence or absence of
non-negligible sample correlations (spurious and/or due to specified state of knowl-
edge dependence) and of uncertainties represented by a set of three or more
alternatives using their index values as values of a substitute uncertain datum
(i.e. alternative model formulations, multivariate output of a feeder model, etc.).

ΔR2 measures the growth of R2 from stepwise regression with every parameter
that is included in the least squares linear approximation. The intermediate R2 to the
top ranked parameters is thus immediately available to decide whether to include
more parameters into the approximation or to stop the stepwise regression procedure.
Clearly, the rankings based on correlation coefficients and on standardized regres-
sion coefficients may be misleading in problem classes 2 and 4 since correlation with
and regression on arbitrarily assigned index values will generally make no sense.
The correlation ratio is computed and compared to the rankings obtained from
correlation coefficients and standardized regression coefficients. This comparison
may help to explain any differences at the top of the ranking. Those differences
might be due either to uncertain data expressed by a set of more than two alternatives
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or to strong non-linearity and particularly non-monotonicity of the model result
Y with respect to some uncertain data. It is recommended to seek confirmation of the
explanation by viewing scatter plots of the sample values of the model result versus
the sample values of the uncertain data involved. In classes 3 and 4, the correlation
coefficients and standardized regression coefficients are computed to compare the
two rankings and to explain differences among the top ranks on the basis of the
sample correlations rm, l that are either spurious or due to specified state of knowl-
edge dependences. This also helps to single out the influence of spurious correlations
on the parameter ranking derived from correlation coefficients.

– What if R2 is small?
A small R2 value means that the ranking derived from standardized regression
coefficients refers to only a small fraction of the sample variance s2Y of the model
result. It may be due to strong non-linearities of Y ¼ f(P1, . . ., PM). These may
lead to extreme sample values yn (outliers). Non-linearities may also lead to
changes of direction of influence, indicated by a change of sign of the standard-
ized regression coefficient over some independent variable of the model result
(time or space), for one or more of the main contributors to model output

Table 6.6 Recommended measures for uncertainty importance ranking

Problem
class

Non-negligible
sample
correlations

>2 alternatives
and/or strong
non-linearitiesa Measure Purpose

1 No No SRCb Ranking, direction, R2

ΔR2 Intermediate R2

2 No Yes SRCb Ranking, direction, R2

CR Rankingc

ΔR2 Intermediate R2

3 Yes No CC Ranking, direction

SRC Ranking, direction, R2 d

ΔR2 Intermediate R2

4 Yes Yes CC Ranking, direction

SRC Ranking, direction, R2 d

CR Rankingc

ΔR2 Intermediate R2

SRC standardized regression coefficient, CC correlation coefficient, CR correlation ratio, ΔR2

growth of the sample coefficient of determination R2 due to the inclusion of an uncertain datum
into the least squares linear approximation
aAnd/or non-monotone relationships between the model result and some of the uncertain data
bCC and SRC will provide the same ranking for this class (see (6.48))
cCompare to the ranking from SRC (and CC, in case of class 4) to check the influence of
uncertainties expressed by more than two alternatives or of non-monotone and/or strongly
non-linear relationship with the model result. If, for instance, an important model uncertainty is
represented by more than 2 model alternatives, then its ranking, obtained from SRCs and CCs, may
be wrong due to arbitrary indexing of the alternatives
dCompare the ranks to those obtained with CC in order to check for the influence of spurious
correlations on the latter (see (6.48))
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uncertainty. As a consequence, R2 may be small in a neighbourhood of that value
of the independent variable where the change in sign takes place (Fig. 6.4).

A small value of R2 means that a least squares linear approximation to Y in the
uncertain data or in a subset thereof is not capable of explaining a major fraction of
the sample variance s2Y of the model result. It follows that neither standardized
regression coefficients nor correlation coefficients may be suitable for ranking. What
about the correlation ratio? It will be suitable since it is not restricted to a linear
model. However, the correlation ratio gives no indication of the direction of the
influence of the uncertain datum on the model result. The correlation ratio may be
large due to few outliers in the sample. They often have a distorting influence on the
sample variance of the model result and therefore on the estimates of uncertainty
importance measures. To avoid this, a transformation of the sample values is often
performed before the uncertainty importance measures are computed.

6.3.2 Uncertainty Importance Measures Computed from
Rank Transformed Data

Outliers are often characteristic of random samples from strongly skewed probability
distributions. The subjective probability distribution of the model result Y may be
strongly skewed due to a non-linear relationship between Y and one or more of the
uncertain data. In this case, fractions of the sample variance s2Y explained by a linear
least squares regression model may not be a suitable measure of the contribution of
an uncertain datum to the uncertainty of the model result since s2Y will be strongly
affected by outliers. In this situation, ranges containing given amounts of subjective
probability may be better quantitative expressions of the uncertainty of the model
result and therefore better suited as reference for uncertainty importance measures.

Fig. 6.4 Example of a
regression coefficient
estimate bm changing sign
over the independent
variable “time”. A linear
relationship between Y and
Pm explains much of the
variability of Y before and
after the change of sign,
while little or none at all will
be explained at and around
the time of the change
of sign
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Therefore, measures derived from the cumulative probabilities of the model result
Y and of the uncertain data, instead of their actual values, may be more suitable for
ranking. They indicate whether selection of an upper quantile value of an uncertain
datum Pm will, in tendency, lead to an upper (or lower) quantile value of Y,
irrespective of the absolute values of Y and Pm involved. Only differences in
cumulative probability count, i.e. contributions to uncertainty represented by the
bulk of the population of values of Y and not so much by extreme values. Uncertainty
importance of Pm is now ranked the higher, the better the cumulative probabilities
(or complementary cumulative probabilities) of Y agree with the cumulative proba-
bilities of Pm. Thus, the bulk of the population of values of Y has a much higher
weight in determining uncertainty importance than the extreme values that are
relatively few in probability content. This leads to the use of probability integral
transformed data for the purpose of computing uncertainty importance measures.

The probability integral transformed value of an uncertain datum Pm at Pm ¼ p is
the value Fm( p), i.e. the cumulative subjective probability at p.

The probability integral transformed value of the model result Y at Y ¼ y is the
value FY( y), i.e. the cumulative subjective probability at y.

The focus of uncertainty importance ranking is not so much on generating an
approximate functional expression of the encoded relationship between the model
result and the uncertain data but rather on obtaining information about whether there
are some uncertain data with a stronger tendency to lead to an upper or lower
quantile value of Y, for an upper (lower) quantile value of their subjective probability
distribution, than others (Fig. 6.5).

With FY the probability integral transformation of the model result Y ¼ h(P1, . . .,
PM) and Fm the probability integral transformation of the uncertain datum Pm, least
squares linear regression works with the representation of FY( y) by a linear function
in the Fm( pm), m ¼ 1, . . ., M including an error term E:

FY yð Þ ¼ α0 þ
XM

m¼1
αmFm pmð Þ þ E: ð6:68Þ

Unfortunately, the subjective probability distribution of Y and thus its probability
integral transformation FY are generally unknown (Fig. 6.6). However, an empirical

Fig. 6.5 Probability
integral transformation
of Pm
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approximation is available from the sample values yn through rank transformation of
the yn, n ¼ 1, . . ., N. This transformation arranges the yn in ascending order and
assigns an ordinal number to each. The same transformation is performed with the
sample values pm, n, n ¼ 1, . . ., N for m ¼ 1, . . ., M (Table 6.7).

From the rank transformed values, estimates of the rank regression coefficients,
rank correlation coefficients and rank correlation ratios may be computed, using the
ranks rk(yn) and rk( pm, n) instead of the raw data in the relationships and procedures
described in Sect. 6.3.1. See Sect. 3.5.2.5 for a computationally easier way of
computing rank correlation coefficients.

Estimates a0, a1, . . ., aM of the rank regression coefficients are obtained from
fitting the expression

wn ¼ a0 þ
XM

m¼1
amrk pm,n

� � ð6:69Þ

to rk(yn) for n ¼ 1, . . ., N such that the following condition is satisfied:XN

n¼1
rk ynð Þ � wnð Þ2 ¼

XN

n¼1
rk ynð Þ � a0 �

XM

m¼1
amrk pm,n

� �h i2
¼ minimal! ð6:70Þ

Fig. 6.6 Probability
integral transformation of Y

Table 6.7 Example of a rank
transformation of the sample
values of a model result Y and
of the corresponding sample
values of the uncertain
datum Pm

y rk( y) pm rk( pm)

125.36 9 0.25 1

�17.25 1 0.96 9

83.12 6 0.63 5

2.37 3 0.77 7

95.87 7 0.47 2

13.56 4 0.65 6

101.18 8 0.48 3

75.39 5 0.58 4

�1.29 2 0.83 8
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The least squares estimates of the rank regression coefficients are identical to
the estimates of the standardized rank regression coefficients since mean and vari-
ance of the sample elements rk(yn) equal those of the sample elements rk( pm,n),
m ¼ 1, . . ., M; n ¼ 1, . . ., N. This follows from (6.36).

The (standardized) rank regression coefficient says by how many rank units the
linear least squares approximationW of the rank transformed model result changes if
rk(Pm) is changed by one rank unit, all other rk(Pl), l 6¼m, remaining unchanged. The
R2
rk Yð Þ,W value is now the fraction of the sample variance of rk(Y ) that is represented

by the sample variance of the approximation W. Just as is the case for raw data (see
(6.48)), the sample rank correlation coefficient rrk Yð Þ, rk Pmð Þ is not only an estimate of
the amount of rank units by which the approximation W of rk(Y ) changes due to the
change by one rank unit of rk(Pm), all rk(Pl), l 6¼ m, remaining constant. It also
includes estimates of the amounts of rank unit changes that are due to the fractions of
rank unit changes of the rank transformed Pl, l 6¼ m, which are state of knowledge
dependent on Pm (and/or spuriously correlated with Pm). Practical examples are
discussed in Sect. 6.3.3.

If the sample value of the empirical coefficient of determination R2, computed
from rank transformed data, is larger than that computed from raw data, the uncer-
tainty importance ranking from rank transformed data is usually adopted. The latter
is with respect to contributions to uncertainty as expressed by the bulk of the sample
values of the model result and not so much by the extreme sample values since it is
only differences in rank orders that count and not differences in value.

What if also the sample value of R2, obtained with rank transformed data, does
not exceed 0.5? This leaves the uncertainty importance analysis with the rankings
from the correlation ratio on raw data or rank transformed data and with viewing
scatter plots. Studying scatter plots will be very cumbersome if the analysis has to
deal with many uncertain data and with many model results and especially in the
case of model results that are a function of time or space. In the presence of spurious
correlations, scatter plots may be just as misleading as the correlation coefficients
and correlation ratios from raw or rank transformed data.

Approximations (or so-called meta-models), which may be used for uncertainty
importance analysis, are discussed in Gatelli et al. (2009), Storlie et al. (2009) and
Blatman and Sudret (2010). The statistical analysis of scatter plots is the subject of
Kleijnen and Helton (1999).

6.3.3 Practical Examples

Example 1
Figure 1a of Hofer (1999) shows sample correlation coefficients and Fig. 1b shows
estimates of standardized regression coefficients as uncertainty importance mea-
sures. Spurious correlations among the sample values of the 37 uncertain data are
the main cause for the differences between both figures. The few specified state of

250 6 Step 5: Rank Uncertainties



knowledge dependences involve only data with very small standardized regression
coefficients and therefore hardly change the picture. A good example for the
misleading uncertainty importance information from correlation coefficients is the
uncertain datum P19. The estimate of the standardized regression coefficient is
negligible, while that of the correlation coefficient ranks P19 as one of the main
uncertainty contributors. The contributions to the estimate of the correlation coeffi-
cient are mainly due to positive spurious correlations of P19 with P5, P9 and P11 and
negative spurious correlation with P16. The standardized regression coefficients b∗5 ,
b∗9 and b∗11 are negative, while b

∗
16 is positive. Their effect on rY, 19 can be seen from

the relationship (6.48) which reads in this case as

rY , 19 
 b∗19 þ b∗5 r19,5 þ b∗9 r19,9 þ b∗11r19,11 þ b∗16r19,16:

The uncertainty importance information for P31 and P33 is also affected by
spurious correlations with P5, P9, P11 and P16. In this case, the resulting estimates
of the correlation coefficients for P31 and P33 rank these uncertain data as
unimportant contributors to the uncertainty of Y, while the standardized regression
coefficients rank these uncertain data as important.

Example 2
Comparison of sample rank correlation coefficients and estimates of rank regression
coefficients, from an uncertainty analysis of another application of the same com-
puter model as in Example 1, illustrates the difference between rank regression
coefficients and rank correlation coefficients as uncertainty importance measures. In
this case, a specified correlation among the multivariate samples of values of
uncertain data is responsible for the difference. Strong state of knowledge depen-
dence was identified between the uncertain data P2 and P3. It was quantified by the
rank correlation coefficient rrk(2), rk(3)¼ � 0.95. The estimates of the rank regression
coefficients indicate that P3 strongly contributes to the uncertainty of the model
result Y and that large values of P3 tend to lead to large values of Y (positive sign of
the rank regression coefficient) over the time range up to about 450 s, while the
estimate of the rank regression coefficient for P2 indicates almost negligible uncer-
tainty contribution to Y. This suggests that Y is only weakly (or not at all) a function
of P2. However, due to the relationship (6.48) P2 receives a high ranking if rank
correlation coefficients are used as importance measures. This is due to the uncer-
tainty contributor that P2 and P3 have in common. It was the reason for the
specification of the strong negative rank correlation rrk(2), rk(3). The rank correlation
coefficients indicate about equally strong contributions of P2 and P3 to uncertainty,
however in opposite directions. Clearly, it does not suffice to look at correlation
coefficients only, if specified and/or spurious correlations among uncertain data are
large. Comparison of correlation coefficients and regression coefficients helps to
avoid pitfalls in the identification and interpretation of main contributions to model
result uncertainty. This observation is independent of whether raw or rank
transformed data are used.
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Example 3
Comparison of the estimates of the rank correlation coefficients and of the rank
regression coefficients with the uncertainty importance measures of Example 1 (see
Figs. 7 and 1a in Hofer 1999), for the same analysis and for the same model result,
shows the most striking difference in the importance measure for the uncertain
datum P16. The uncertainty importance of P16 could not be seen from rank correla-
tion coefficients or from rank regression coefficients. High values of the model result
are associated with values of P16 in the upper half of the uncertainty range. Rank
transformation turns the large absolute differences between these values of the model
result and those in the bulk of the sample into unit differences. This way the measure
of uncertainty importance of P16 is largely reduced. The scatter plot helps to explain
this difference. After rank transformation, it is mainly the variability in the bulk of
data points, i.e. the cloud at the bottom of the scatter plot, that determines the
estimates of the rank correlation and regression coefficient. On raw data, the large
gap between the two subsets of model result values is reflected in the estimates of the
correlation and standardized regression coefficient. In fact, rank transformation is
intended to reduce the effect of outliers (Iman and Conover 1979). But in this
example, the focus is exactly on those parameters that give rise to the large model
result values in the sample. Since the sample value of R2 from rank transformed data
is here larger than that of R2 obtained with raw data, one would be inclined to prefer
the uncertainty importance information from rank transformed data and would thus
miss the important contribution of P16 to model result uncertainty as measured by the
sample variance s2Y and thus by the importance measures obtained from raw data. The
message of this example is that uncertainty importance measures computed from
rank transformed data should always be compared to those computed from raw data.
Striking differences need to be clarified by viewing scatter plots.

Example 4
Glaeser et al. (1994) show in Figs. 11 and 12 the scatter plots of a model result versus
the uncertain data P46 and P48, each at a different point in time. The data represent
two different model uncertainties. While the values of P46 are those of a correction
factor to the output from the preferred model formulation, those of P48 are the indices
of three different model options. A small set of values at the lower end of the
uncertainty range of P46 leads to very high values of the model result, while all
other sample values produce model results from a significantly lower value range.
This is due to strong non-linearity of the model result with respect to P46. Accord-
ingly, the correlation ratio ranks P46 among the most important uncertainties with a
value of 0.86 for the importance measure, while the sample correlation coefficient
and rank correlation coefficient assign only a medium to low ranking to P46. Their
values are�0.49 and�0.38, respectively. At least they indicate the right direction of
the influence of the uncertainty of P46.

In the case of P48, model formulations 1 and 3 lead to a wide range of model result
values at a specific point in time, while the results obtained using formulation 2 are
mainly concentrated in the lower value range. The correlation ratio ranks P48 among
the important data uncertainties. Its value is 0.56. On the other hand, the sample
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correlation coefficient and rank correlation coefficient rank P48 among the
unimportant data uncertainties. Their values are 0.1 and 0.03 respectively.

The importance of both model uncertainties could only be detected with the
correlation ratio.

Example 5
The application of a small model, with only four uncertain data, provided the model
result Y as a function over the time span of 1 s. The sample correlation coefficients
ranked P2, P3 and P4 as unimportant uncertainties, while P1 was ranked as most
important with the correlation coefficient decreasing from 1.0 at time t¼ 0 to 0.65 at
t ¼ 0.97. The sample R2 value from least squares linear regression decreased from
1.0 at t ¼ 0 to 0.5 at t ¼ 0.97. If one had been satisfied with this importance
information, one would have missed out on an important uncertainty contributor.
The correlation ratio showed the importance of P3 as increasing from 0.3 at t ¼ 0 to
0.7 at t ¼ 0.97 and that of P1 as decreasing from 1.0 to about 0.68. The value of the
correlation ratio for P3 increased as fast as the sample R2 value from linear least
squares regression decreased over time. The scatter plot of Y versus P3 at time t ¼
0.97 confirmed the ranking of P3. It is due to non-monotone behaviour of Y with
respect to P3.

Example 6
This is a counter example from the uncertainty analysis of results of a computation-
ally demanding model application. The scatter plot of the model result Y versus the
data uncertainty P27 shows that the sample values of Y come from two distinct value
ranges. Few sample values are from the upper range. They are loosely spread over
the range of possibly true values of P27 with three sample values concentrated in a
narrow value range of P27. All other sample values of Y are from the lower value
range of Y and are more or less evenly spread over the value range of P27. The
estimate of the correlation ratio assumes a value as high as 0.42 due to the few very
high values of the model result in a narrow sub-range of the value range of P27. The
sample size is N ¼ 92, and it may be expected that a larger sample size would show
the values in the upper range of Y to be more evenly spread over the uncertainty
range of P27 and would thus yield a smaller estimate of the correlation ratio.

Example 7
Returning to Fig. 6.1 and using the explanations of the various importance measures
given in this chapter, it will now be possible to identify the main contributors to
uncertainty as a function of the distance from the hazardous operation. The estimate
of the standardized regression coefficient of the uncertain datum P4 is �0.6 at
distance 400 m and slowly approaches �0.35 at distance 600 m. Since the values
of the coefficients for the other three uncertain data move in a band between zero and
�0.35 over all distances, P4 is identified as the main source of uncertainty of the
model result at small distance from the operation. The negative sign of the estimate
of the standardized regression coefficient says that small values of P4 tend to lead to
large values of the model result and vice versa. The sample R2 value, however, is
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rapidly decreasing over the independent variable “distance”. Yet, in the range of
largest model result uncertainty it lies well above 0.5. Consequently, the state of
knowledge of P4 needs to be improved if the uncertainty of the hazard index at small
distance is to be reduced most effectively.

6.4 Explaining the Outliers

The following is a stepwise description of an algorithm for the application of a
statistical test that may be used to determine the uncertain data that are mostly
responsible for the top u% of the population of possibly true values of a computer
model result.2

Given:

– A computer model that provides the result Y as a function of M uncertain data
P1, . . ., PM.

– A simple random sample3 of N (see the remarks below for minimum sample sizes
N required) times M values of the uncertain data drawn according to the joint
subjective probability distribution of P1, . . ., PM, together with the corresponding
N values of Y.

One would like to know:

– Which of the uncertain data are mostly responsible for the top u% of the N sample
values of Y.

The steps of the suggested algorithm are:

1. Sort the N sample values of Y, beginning with the smallest value, and store them
along with their model run numbers from the Monte Carlo simulation.

Example:

Rank Y Run no.

1 1.3567E-1 124
2 1.4683E-1 15
⋮ ⋮ ⋮
N 2.5687E+2 73

2. Take the run numbers to the top u% values (i.e. the largest values of Y ). These are
N*u/100 numbers.

2Instead of this algorithm, it may be sufficient to use graphical means like mappings as in Fig. 6.8
for small sample sizes N.
3The algorithm should also serve its purpose for a Latin Hypercube sample although the N � M
values of the uncertain data are in this case not independently sampled nor are the N values of the
model result.
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3. Draw at random N*u/100 numbers from a uniform distribution over the interval
[0.5, (100 – u)*N/100 + 0.5] and round these numbers to their nearest integer
value.

Consider them as ranks of values of Y.

4. Find the run numbers that correspond to these ranks in the table of Step 1.
5. There are now two sets of N*u/100 run numbers each. Call the set from Step 2 the

“Top Set” and the set from Step 4 the “Bottom Set”. The following steps are
performed for each of the uncertain data P1, . . ., PM separately.

For Pm, m ¼ 1, . . ., M do:

6. Rank the N*u/100 sample values of Pm, which belong to the “Top Set”, by
increasing magnitude.4

7. Rank the N*u/100 sample values of Pm, which belong to the “Bottom Set”, by
increasing magnitude.

8. Start with the set that contains the smallest sample value of Pm.
5 Call this set of

sample values the “Start Set” and

Assign the value 1 to a variable V
The value 0 to a variable W
The absolute value │V � W│ to a variable Z.

9. Successively climb up the ranks of the “Start Set” and with each rank

– Set a variable T equal to the sample value of Pm that corresponds to this rank
in the “Start Set”

– Increase V by 1
– IncreaseW to the number of values in the other set that are below or equal to

T
– If │V � W│ is larger than Z, replace Z by the new absolute value of the

difference.

10. Stop for Pm, as soon as either V or W has reached the value N*u/100.
11. Divide Z by N*u/100 and store the result as dm. Increase the index m by 1 and

proceed to the next uncertain datum. Start with Step 6.

4Should a sample value appear several times, assign the corresponding rank numbers accordingly.
Example:

Rank Value

1 1.3567E-2

2 1.4683E-2

3 1.4683E-2

4 1.5925E-2

5Should the smallest values of both sets be equal, select one set as “Start Set” and assign the value
1 to both V and W.
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12. Once allM uncertain data have been dealt with, compare the values d1, . . ., dM to
g(α)/(N*u/100)1/2. α is the significance level of the test in percent divided by
100 and g(0.01) ¼ 2.30, g(0.05) ¼ 1.92, g(0.10) ¼ 1.73 (see Table A20 in
Conover 1980). Consider only those parameters Pm with dm exceeding the value
g(α)/(N*u/100)1/2 as possibly important for the upper u% of values of Y.

If none of the dm, m ¼ 1, ..., M exceeds g(α)/(N*u/100)1/2, then it was not
possible, at the significance level α%, to identify an uncertain datum as mainly
responsible for the magnitude of the top u% of values of Y in the sample of size
N. A larger sample size N may possibly lead to the identification of such a
parameter or increasing the significance level α may do.

13. The larger the value of dm in the significant subset of values from Step 12, the
more likely it is that Pm is responsible for the top u% of sample values of Y.

Remarks
This algorithm makes use of the two-sided Kolmogorov–Smirnov Test (Conover
1980) of the null hypothesis that both samples of N*u/100 values of the uncertain
datum (see steps 5, 6 and 7) are sampled according to the same distribution against
the alternative hypothesis that they are sampled according to different distributions.

The sample size N needs to be at least 40/(u/100) so that N*u/100 is at least 40.
For smaller N, the number to be compared to the test statistic dm may be taken from
Table A20 in Conover (1980).

Instead of the statistical test graphical means could be used as shown in Fig. 6.7
(Kurowicka and Cooke 2006).
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Fig. 6.7 Mapping of the rank transformed values of the four uncertain data of a simple model into
the rank transformed values of the model result. The latter are shown on the left-hand side for a
sample of size 100
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In Fig. 6.8, the graph has been restricted to the top u% model result values in
order to better identify the uncertain data that are mainly responsible for this part of
the subjective probability distribution.

6.5 Contributions to Quality Assurance

There are several ways of how uncertainty analysis and the associated ranking of the
uncertain data can contribute to quality assurance:

– Model runs end abnormally for some sets of data values in the input sample of the
uncertainty analysis and the uncertainty importance measures for the two-valued
model output “run ends normally ¼ 0”, “run ends abnormally ¼ 1” points out
where to look for causes.

– Due to an error in the model, in the coding, in the input specifications or in the
input file, uncertainty importance measures show associations that should not
exist or do not show associations that should exist. For instance, in Example 1, the
uncertainty importance measure to P1 ranked this uncertainty as unimportant
while it should actually rank among the most influential uncertainties with respect
to a specific model result. It turned out to be of negligible uncertainty importance
only because the sampled parameter values were entered in the wrong position of
the input deck, while the correct position carried the “best estimate” value in all
model runs of the Monte Carlo simulation.

– Uncertainty importance measures computed for the “model output” “processor-
time per run” may point out model inefficiencies.
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Fig. 6.8 Mapping of the rank transformed values of the four uncertain data into the top 10 ranks of
the model result. Clearly, the values of P2 and P3 from their upper uncertainty range are mainly
responsible for the top 10% of the model result values in the sample of size 100
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– Measured experimental values (including state of knowledge expressions of their
measurement errors) are not at all (or only in parts) contained within the uncer-
tainty range of the corresponding values provided by the computer model. The
uncertainty importance measures may suggest improvements to the computer
model or state of knowledge improvements to those uncertain data that were
identified by the uncertainty analysis as having the potential of effectively
reducing the discrepancy between measured and computed values.

The uncertainty analysis presented in Kolev and Hofer (1996) serves as an
illustration for the last point. Figure 4a of this publication shows the alternative
time histories obtained from the uncertainty analysis of a model result (sample size N
¼ 96) for the problem time span of 3 s. The two-sided (90%, 95%) statistical
tolerance limit is presented as a function of time in Fig. 4b (lines ending at 2.7 s).
The measured values are also shown in Fig. 4b (up to 3.0 s). Figure 4b says that at
least 90% of the population of model result values, which follow from the combined
effect of all uncertain data accounted for by the uncertainty analysis, lie within the
two-sided statistical tolerance limit lines (ending at t¼ 2.7 s) at a confidence level of
at least 95%. The measurement result first runs along and then closely below the
upper limit line for times up to about 1.3 s and stays well above the upper limit line
for all times above 1.5 s.

The conclusion is that the model result tends to be lower than the measured value.
The rank regression coefficients in Fig. 9a identify two uncertain data (P4 and P6) as
the main contributors to model result uncertainty. They also tell the direction in
which the model result tends to change with a given change in the value of these two
uncertain data. Positive sign (for P6) means same direction, and negative sign (for
P4) stands for opposite direction. The sample R2 value from the rank regression
model decreases steadily from a high value of almost 1.0 to 0.54 at time t ¼ 2.7
s. Investigations of how P4 and P6 are handled in the model revealed that P4 was
taken as the maximum value (twice the average) where the average value is actually
required (“maximum” and “average” not with respect to uncertainty range but in a
modelling context). The uncertainty importance ranking, derived from correlation
ratios (Fig. 9b), also identifies P4 and P6 as the main contributors to model result
uncertainty. The correlation ratio does, however, not carry directional information.

The 96 model runs were performed in parallel on an Intel Paragon XP/S MP
system with 96 compute nodes.

6.6 Graphical Presentation of the Uncertainty Importance
Measures

The most common ways of presenting uncertainty importance measures graphically
are the following:

– Bar charts
– Line charts
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– Scatter plots
– Mappings

6.6.1 The Bar Chart

The bar chart is used for uncertainty importance measures to single value model
results or to continuous value model results at chosen values of the independent
variable (i.e. time and/or space) or for their minima or maxima over the full time
(space) range or over a sub-range thereof. For small to moderate numbers M of
uncertain data it will make sense to present the bars for correlation coefficients,
standardized regression coefficients and/or correlation ratios to each of the
M uncertain data as vertical bars. For large numbers M stepwise regression will be
used and the chart will contain only bars for standardized regression coefficients to
those uncertain data that are included in the least squares linear approximation. The
bar chart of standardized regression coefficients also needs to show the
corresponding sample R2 value in the legend. Sometimes the chart is drawn verti-
cally (horizontal bars) if M is large and printing space requires.

6.6.2 The Line Chart

The line chart is used for uncertainty importance measures to model results that are a
function of some independent variable like time and/or space. The computer model
will provide the result only at a finite number of points on the axis of the independent
variable. The uncertainty importance analysis will be performed at each of these
points or at a subset thereof. For each individual uncertain datum, the line chart then
connects the values of the measure along the sequence of points by segments of
straight lines. For small to moderate numbersM of uncertain data this can be done for
all data although it will make sense to show the uncertainty importance measure for at
most 10 uncertain data per line chart. Consequently, a sequence of charts will often be
needed to present the lines for all M data. For large numbers M, stepwise regression
will be used. The line chart will then need to show the standardized regression
coefficients for all uncertain data that are included in the least squares linear approx-
imation at anyone of the set of points in time and/or space. The line connecting the
sample R2 values computed at each point is usually shown in a separate chart.

6.6.3 The Scatter Plot

Scatter plots for the chosen pair of uncertain datum Pm and model result Yj (or Yj at a
discrete value of an independent variable like time and/or space), show the set of
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pairs of values {( pm, n, yj, n) | n¼ 1, . . ., N} from the N runs of the computer model as
points in a diagram with the coordinates (Pm, Yj). They are useful in the search for
and detection of relationships that the chosen uncertainty importance measures may
not have been able to capture and for the comparisons mentioned in Table 6.6.
Sometimes it is helpful to use the number n of the model run as marker of the
position in the plot.

6.6.4 The Mapping

Mappings are suitable for single value model results or for continuous value model
results at chosen values of the independent variable or for their minima or maxima
over the full range of the independent variable or over a sub-range thereof. Their
advantage is the capability of visualizing value combinations from a subspace of the
M-dimensional space of uncertain data that tend to lead to values from a specific
sub-range (i.e. upper or lower range) of the total uncertainty range of the model result
(see Fig. 6.2 or Kurowicka and Cooke (2006) for more examples). Obviously, the
number of uncertain data shown in one Figure is limited so that a sequence of
Figures (using the same colour scheme for the model runs) may be needed to
accommodate all uncertain data.

6.7 Conclusions

Uncertainty analysis focuses on the combined influence of all potentially important
uncertainties on the model result. To this end, the state of knowledge of model
formulations, parameters, application-specific input data and parameters of numer-
ical solution algorithms is quantified and expressed by subjective probability distri-
butions in Step 3 of the analysis. As a consequence of these quantifications and of the
logic encoded in the computer model, a subjective probability distribution follows
for each of the model results in Step 4. Two aspects of this distribution are of interest
depending on the assessment question that is to be answered with the help of the
model result:

(a) How large is the subjective probability content of a specified value range of the
model result?

(b) How large is the value range that contains subjective probability u/100 with the
value of u commonly specified as 90 or higher?

Methods like importance sampling or subset sampling (see Sects. 4.4.3 and 4.4.4)
are in use if the subjective probability content of the specified value range is
expected to be very small. The main contributors to the subjective probability
content are determined in the course of its estimation.
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Monte Carlo simulation, using Latin Hypercube sampling or simple random
sampling (SRS), is commonly in use otherwise. The simulation provides an estimate
of the probability content of a specified value range as well as a one- or two-sided
value range with the specified subjective probability content u/100, depending on the
question to be answered. If SRS is used, one- or two-sided statistical tolerance limits
are available that contain at least u/100 subjective probability at a confidence level of
at least v%. This is important if only small sample sizes [in the order of 100 or
several 100 executions of the model application (for short called “model runs”)] are
affordable. The values of u and v are commonly chosen as 90 or higher. If the value
range with specified probability content is found to be so large that the model result
does not permit meaningful decision-making, then it is required to identify the main
contributors to this large uncertainty range. The size of this range is determined by
the variance of the subjective probability distribution. Uncertainty importance mea-
sures are therefore chosen such that they explain a maximum fraction of the variance.
The affordable sample size of the Monte Carlo simulation, i.e. the number of model
runs, is usually small for computationally demanding models. For these models,
uncertainty importance analysis cannot afford a separate set of model runs performed
specifically for the purpose of uncertainty importance analysis. For consistency and
efficiency reasons, uncertainty importance analysis has to use those model runs
executed for the purpose of uncertainty analysis. Consequently, correlation coeffi-
cients, correlation ratios (the square root of the first order importance measures from
variance decomposition, available only in their approximate form due to sample size
restrictions) and standardized regression coefficients (the latter often obtained from
stepwise regression) are with or without transformation into ranks, a reasonable
choice of importance measures. The input sample for the model runs is a multivariate
random sample of sets of values, each set consisting of one value for each of the
numerous uncertain data. For computationally demanding models, the number of
uncertain data will be large and the size of the input sample (i.e. the affordable
number of model runs) will be comparatively small. It will therefore show the effects
of spurious correlations in addition to those of the specified state of knowledge
dependences. Due to the presence of correlations within the multivariate sample, it
will not be sufficient to look at the uncertainty importance ranking derived from
correlation coefficients alone. Differences between this ranking and one obtained
from standardized regression coefficients need to be understood if significant.
Additional insights can be gained and pitfalls avoided if the estimates of correlation
coefficients and standardized regression coefficients are compared. The effect of
spurious correlations on uncertainty importance measures may often be singled out
by this comparison.

The correlation ratio is an indispensable measure whenever model uncertainty is
expressed by more than two alternatives with their indices used as values of a
substitute uncertain datum (see Sect. 3.4.1) or when measures, quantifying the extent
of linear or monotone relationship between an uncertain datum and a model result,
are not adequate.

Differences in uncertainty importance rankings, obtained before and after rank
transformation, are due to different ways of viewing the data. Rank transformation is
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performed if the uncertainty importance measures should focus more on the bulk of
the data and less on outliers or if strongly non-linear relationships between the model
result and its main uncertainty contributors are suspected. The differences between
importance measures from raw and from rank transformed data provide additional
insights and need to be understood.

Uncertainty importance analysis tells where to improve the state of knowledge in
order to reduce the uncertainty of the model result most effectively. In other words, it
provides guidance as to whether further model development is primarily needed or
improved knowledge of parameter and input data values of the model application.
This is a choice between two very different directions of further activities with
differing costs and chances for success. For instance, the importance analysis may
suggest that additional tests, experiments and theoretical investigations, leading to
improved model development, are required or that further data collection has
priority.

Table 6.6 offers recommendations for the choice of uncertainty importance
measures in 4 problem classes. An excellent compilation of additional uncertainty
importance measures is to be found in Helton et al. (2006).

Finally, the contribution of uncertainty analysis and of its uncertainty importance
ranking to the quality assurance of the model results cannot be appreciated highly
enough. It must receive the strong emphasis that it obviously deserves.
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Chapter 7
Step 6: Present the Analysis and Interpret
Its Results

7.1 Presentation of the Analysis

A document or publication presenting the results from an uncertainty analysis of a
computer model application should have the following structure:

1. The assessment question
This section presents the questions that are to be answered by the application of
the model. In this context, one needs to clarify whether there is a single true
answer to each of the questions or whether some of the questions have a
population of true answers that is to be summarized by a probability distribution.
The latter situation requires the quantification of Type A (aleatoric) uncertainty.
This task may either already be covered by the computer model or may be
performed in the course of the uncertainty analysis, namely in a second (inner)
Monte Carlo loop with the first (outer) loop handling the Type B (epistemic)
uncertainties. The approach with two nested Monte Carlo simulations is also
sometimes called a 2DMC approach (see Chap. 9).

2. The assessment model
This section presents the main features of the computer model that was applied to
answer the assessment questions.

3. The analysis tool
Commonly, an uncertainty analysis does not start from scratch but applies a
commercially available or custom-made software package that covers at least
Steps 3, 4 and 5 of the uncertainty analysis. This section needs to present the main
features of the package and to quote the corresponding documentation.

4. The elicitation process
Experts are not only required for state of knowledge quantifications but even one
step earlier (Step 1) namely in the search for and identification of the potentially
important uncertainties. This section needs to present the details of the selection
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of the panel of experts together with the structured approach used to identify
uncertainties and to elicit the experts’ state of knowledge quantifications.

5. The potentially important uncertainties
The main body of this section is a table presenting the uncertainties identified by
the experts as potentially important together with a short explanation of their role
within the computer model. This section also explains the methodologies chosen
for representing model uncertainties by uncertain parameters.1

6. State of knowledge quantifications
The main body of this section is a table that shows for each uncertain datum the
type of subjective probability distribution and its specifying details chosen to
quantitatively express the corresponding state of knowledge.

7. State of knowledge dependences
The main body of this section is a table that contains for all pairs of uncertain data,
identified as significantly state of knowledge dependent, the details of their
dependence quantification.

8. Propagation of the states of knowledge through the assessment model
A short description of the Monte Carlo procedure, particularly of the sampling
technique chosen, is given in this section. It explains how random sampling at the
level of uncertain data (input sample) and the evaluation of the computer model
for each sample element result in a random sample of model result values (output
sample). The latter is drawn according to the unknown joint subjective probabil-
ity distribution of the model results that follows logically from the state of
knowledge quantifications at the level of the uncertain data and from the encoded
instructions of the computer model. The sample of model result values is used to
derive uncertainty statements as well as other useful information contained in the
sample (like correlations among model results) and, together with the input
sample, a ranking of the uncertain data.

9. Uncertainty statements for selected model results
Of particular interest are those model results that are to be used in answering the
assessment questions. The uncertainty statements will be in the form of one- or
two-sided (u%, v%) statistical tolerance limits. These limits define intervals of
model result values with one endpoint left open in the case of one-sided limits.
The intervals say that one can be at least v% confident that at least u% subjective
probability of the model result are between the endpoints of the interval. This
statement also accounts for the sampling error that might be due to the fact that
only a sample of finite size was drawn according to the unknown joint subjective
probability distribution of the model results.

1Model uncertainties are represented by uncertain parameters, and uncertain parameters are con-
sidered as uncertain input data. Consequently, only the term uncertain data is used.
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The results obtained with best estimate or reference values of the uncertain data
may also be of interest particularly if shown in relation to the statistical tolerance
limits.
If the model result is a function of time (also called a time history) or any other
independent variable, the (u%, v%) statistical tolerance limits will be shown at
selected values of this variable. Sometimes, the upper and lower endpoints of the
two-sided limits are continuously connected for illustration purposes. This does,
however, not necessarily mean that at least u% of the sample of time histories
computed for a particular model result run within the continuous connections of
the lower and the upper endpoints at a confidence level of at least v%. Since the (u
%, v%) statistical tolerance limits are determined locally, at selected points in
time, etc., they do indeed contain at least u% of the population of model result
values at each individual point at a confidence level of at least v%; however, these
values may not belong to the same set of time histories at every selected point in
time. Any particular one of the sample of time histories may have its value within
the endpoints of the two-sided statistical tolerance limit at some values of the
independent variable but not necessarily at all of them. Therefore, it will also be
of interest to show the complete sample of time histories (or sequences of model
result values over space, etc.).
In addition to the statistical tolerance limits, it will be required to also show the
local (at a selected value of the independent variable) empirical subjective
probability distribution summarizing the local variability of the output sample
values of the model result. This may be of interest at several selected values of the
independent variable. In this empirical distribution, the position of specific values
like the endpoints of a two-sided statistical tolerance limit and the result obtained
with best estimate or reference values of the uncertain data should be indicated. It
may also be required to show the empirical subjective probability distribution of
the sample of global (over all values of the independent variable) maximum,
minimum, mean and median model result values.
In many situations, sample correlations that might exist between any pair of
model results will also be important. They are to be presented by scatter plots
of the respective sample of pairs of model results at selected values of the
independent variable. The plots illustrate the extent of a relationship between
the states of knowledge of the two model results in the pair.

10. Uncertainty importance rankings for selected model results
The purpose of this chapter is to present the main contributors to the uncertainty
of the model results. In other words, to show the model users, model developers
and the decision-makers primarily where the state of knowledge would need to
be improved in order to reduce the uncertainty of the model results most
effectively. The uncertainty importance rankings will also show whether these
improvements should be performed more at the data side (suggesting further
efforts in data gathering) or at the side of model formulations (suggesting further
model development).
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The information from several uncertainty importance measures will need to be
evaluated and presented. This is particularly so if state of knowledge depen-
dence has been specified and/or if spurious correlations in the sample drawn for
the uncertain data (input sample) cannot be excluded. Standardized regression
coefficients (probably from stepwise regression without or with rank transfor-
mation) are a good starting point together with the sample value of R2 that
indicates how much of the uncertainty of the model result is explained by the
measures. Low sample values of R2 as well as uncertainties represented by a set
of alternatives, with their indices being used as the values of an uncertain datum,
will make it necessary to also look at the rankings derived from the correlation
ratio. In the presence of state of knowledge dependences and/or spurious
correlations, the ranking derived from correlation coefficients always needs to
be compared to the ranking derived from standardized regression coefficients.
Additional important recommendations are given in Table 6.6 and in the
conclusions of Chap. 6. If the computer model result is a function of some
independent variable all measures will need to be presented locally, i.e. at
selected values of the independent variable. For illustration purposes, these
local values of the uncertainty importance measures will be connected along
the axis of the independent variable by straight lines. Uncertainty importance
measures may also need to be computed for the global (over all values of the
independent variable) maximum, minimum, mean and median model result
values.
Uncertainty importance information obtained with respect to the processor time
required by each of the model runs helps to identify improvements that aim at a
more economical (with respect to run time requirements) computer model.
Last but not least, the uncertainty importance ranking will provide some addi-
tional insights into the model internals and will most likely have suggested
improvements to the computer model and its application. Some of these insights
might be worthwhile to be communicated to the parties concerned.

11. Conclusions
This should be a summary of the main analysis results together with a descrip-
tion of what was learnt about the computer model and its application. It will also
contain some recommendations aiming at the reduction of the uncertainty of the
model results. Running the computer model for many sets of data values and
model formulations, selected from the combined multidimensional uncertainty
range, as is the case in uncertainty analysis, is certainly a thorough robustness
check of the model. This chapter may, therefore, also include remarks about any
model improvements initiated by the analysis or may point out that the computer
model successfully passed this robustness test.
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7.2 Interpretation of the Uncertainty Estimate

The uncertainty information is contained in the joint subjective probability distribu-
tion that follows for the computer model results by propagation of the states of
knowledge at the level of parameters, input data and model formulations (for short:
uncertain data) through the encoded instructions of the computer model. Uncertainty
estimates are derived from a random sample of values of the model results drawn
according to this joint distribution. The random selection is done indirectly by
drawing a random sample according to a joint subjective probability distribution
for all uncertain data with state of knowledge quantifications provided in Step
2 (Chap. 3) and by evaluating the computer model for this sample.

This sequence of analysis steps makes it clear that the correct interpretation of the
uncertainty information is as follows:

– A (u%, v%) statistical tolerance interval for the model result Y contains, at a
confidence level of at least v%, at least u% of the population of model result
values that follow from the combined effect of the state of knowledge quantifi-
cations for all uncertain data accounted for by the uncertainty analysis.

Or:

– The model result Y lies, at a confidence level of at least v%, with subjective
probability of at least u/100 within the given (u%, v%) statistical tolerance
interval. The subjective probability is the analyst’s degree of belief that follows
from the state of knowledge quantifications at the level of the uncertain data.

The population of model result values (that follow from the combined effect of
the state of knowledge quantifications for all uncertain data accounted for by the
uncertainty analysis) is a population of possibly true answers to the assessment
question under the condition that the following assumptions hold:

– The computer model is not seriously flawed.
– The most important contributors to the uncertainty of its results have been

accounted for in the analysis (the combined effect of all those not accounted for
may be neglected).

– The states of knowledge at the level of parameters, models and input data have
been appropriately expressed by a joint subjective probability distribution.

– Any changes to the interpretation of “subjective probability” (see Sect. 3.4.1) are
of only minor consequence.

Some caveats may be contained in the state of knowledge documentation sheets
(Sect. 3.6.1.5). The interpretation of the uncertainty information will be the appro-
priate place to mention these caveats and to discuss the limitations (if any) they may
place on the usability of the uncertainty information.

If the above assumptions hold, according to the judgment of the analysis team,
then the (u%, v%) statistical tolerance limits for the model result may be interpreted
as follows:
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– The two-sided (u%, v%) statistical tolerance limit contains at least u% of the
population of possibly true answers to the assessment question at a confidence
level of at least v%.

– The upper (u%, v%) statistical tolerance limit says that at least u% of the
population of possibly true answers to the assessment question do not exceed
this limit value at a confidence level of at least v%.

– At least u% of the population of possibly true answers to the assessment question
do not exceed the given upper safety limit (i.e. comply with the given upper limit
value), at a confidence level of at least v%, if the (u%, v%) upper statistical
tolerance limit coincides with (or is just below) the given safety limit.

Or equivalently,

– The two-sided (u%, v%) statistical tolerance limit contains the true answer to the
assessment question with subjective probability of at least u/100 at a confidence
level of at least v%.

– The upper (u%, v%) statistical tolerance limit says that the true answer to the
assessment question does not exceed this limit value with subjective probability
of at least u/100 at a confidence level of at least v%.

– The subjective probability, for the true answer to the assessment question not to
exceed the given upper safety limit (i.e. to comply with the given upper limit
value), is at least u/100, at a confidence level of at least v%, if the (u%, v%) upper
statistical tolerance limit coincides with (or is just below) the given safety limit.

The subjective probability is the degree of belief of the analysis team.

7.3 Interpretation of the Uncertainty Importance Ranking

The uncertainty importance information is in the form of a ranking of the main
contributors to the uncertainty of a model result Y. It is not automatically justified to
conclude that Y is most sensitive to the top ranked uncertain datum Pm. The ranking
considers not only the sensitivity of Y to Pm but also the uncertainty of Pm. Therefore,
if a model result Y is most sensitive to changes in the value of Pm but there is little
uncertainty about the true value of Pm, then its contribution to the uncertainty of Y,
which is made up of the sensitivity of Y to changes in the value of Pm and the
uncertainty of Pm, will be moderate to small. The ranking of Pm will consequently be
medium to low. On the other hand, Ymay be less sensitive to changes in the value of
Pl, but the uncertainty about the true value of Pl is large and therefore the ranking of
Pl is high in the uncertainty importance information for the model result Y.

It is important to keep this distinction in mind when interpreting uncertainty
importance rankings obtained from an uncertainty analysis. Much too often is the
information misinterpreted as being purely a measure of sensitivity while in fact it is
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a measure of the combination of the sensitivity of the model result to changes in the
value of the uncertain datum and of the uncertainty about the true value of that
datum.

Uncertainty importance rankings need to be supplemented by either the R2 value
(if the importance measures are standardized regression coefficients) or by some
other quantitative measure (see the example in Sect. 10.2) to show how much of the
uncertainty of the model result is actually explained by the top ranked uncertain data.
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Chapter 8
Practical Execution of the Analysis

8.1 Stepwise Support by Analysis Software

8.1.1 STEP 1: Search

The analyst conducts, together with the client (representative of the team performing
the computer model application) and the modeller (representative of the team that
developed the model), a preliminary search for potentially important uncertainties.
This search is performed along the lines of the discussion of sources of uncertainty in
Chaps. 1 and 2. There may be simple enough situations allowing the search to be
conducted by only one person.

The analyst and the client go through the scenario description and note down the
potentially important uncertainties that come to mind together with names of experts
who might be able to provide state of knowledge quantifications. Then they go
through the conceptual model together with the modeller, again associating names of
experts with the identified uncertainties. Next, the analyst and the modeller search
the mathematical model for uncertain model formulations and parameters and try to
identify suitable experts. The input data file is checked next for possibly important
uncertainty contributors. They also go through the numerical model and through the
list of model options that are available to the client and note down any potentially
important uncertainties in the choice of discretization schemes, parameters that
control the numerical solution process, and in the choice of combinations of model
options that might be used for the intended application.

Ideally, the analysis software is installed on a laptop computer and supports the
documentation of the findings of this step online, i.e. during the meetings of analyst,
client and modeller. The documentation should be organized such that the analyst
can easily trace back the origin of an uncertainty and follow up where and how an
uncertainty has been taken into account or why it was excluded from further
consideration.
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8.1.2 STEP 2: Quantify

The analyst will now, one by one, go through the list of uncertainties set up in Step
1 and contact the identified experts. In the case of an uncertain model formulation,
the analyst and the expert will first arrive at a parameterization using the most
appropriate method from those discussed in Sect. 3.4. For each uncertain datum,
the analyst fills in the state of knowledge document discussed in Sect. 3.6.1.5. It
consists of the cover sheet, the state of knowledge quantification and probabilistic
modelling sheet and the state of knowledge dependence information sheet. The
analysis software should offer a page for each sheet with pre-assigned places for
the various entries. This way, the state of knowledge quantification and probabilistic
modelling sheet can be completed in cooperation with the expert during the elicita-
tion session (see Sect. 3.6), and graphs of the density and cumulative probability
function of the subjective probability distribution fitted to the expert’s state of
knowledge quantifications can be immediately shown in order to obtain the expert’s
approval. Ideally, the software allows for the presentation of several fitted distribu-
tions in one figure so that they may be easily compared. The software should support
all the distribution types discussed in Sect. 3.6.1.3 and possibly additional ones.

The software must number the uncertain data consecutively, and the analyst
should be able to change this numbering, according to his preferences, with the
software taking care of the needed adjustments. The software must also set up a list
of the uncertain data showing number and short name and provide a link to the
details of the corresponding state of knowledge modelling like type and parameters
of the subjective probability distribution as well as state of knowledge dependences
and their modelling.

The page for the state of knowledge dependence information sheet should
provide for at least those modelling options that are discussed in Sect. 3.5. Some
of them will require the entry of encoded instructions needed to compute the values
of dependent uncertain data, and consequently a link to a compiler is required so that
these instructions can be executed in Step 3 of the analysis. The software must also
offer the option to show a scatterplot for any two or three state of knowledge
dependent uncertain data so that the expert may immediately be able to judge the
adequacy of his state of knowledge dependence quantification and modelling.

The analyst needs to indicate, on the cover sheet, whether the uncertain datum is
already part of the model and whether the input file of the computer model applica-
tion needs to be extended in order to allow the entry of values for this uncertain
datum. Note, that all those data that are not yet part of the model require changes so
that they may be read from the input file and processed by the computer model as
intended.

Upon request, the software should print out the state of knowledge documents for
all uncertain data or for a selection in a format suitable for documentation purposes.
It should also be possible to restrict the print out to either the cover sheets or to the
state of knowledge quantification and modelling sheets or to the state of knowledge
dependence information sheets. Examples of the three types of sheets are given in
Sect. 3.6.1.5.
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Finally, after all uncertainties have been dealt with and the corresponding state of
knowledge documents have been completed, the analyst presents the complete set of
state of knowledge documents to each of the consulted experts. The purpose is to ask
each expert whether any of the uncertain data with state of knowledge quantified by
him might be state of knowledge dependent to an uncertain datum with its state of
knowledge quantified by anyone of the other experts. Any state of knowledge
dependence identified this way and judged to be potentially important needs to be
quantified and probabilistically represented, e.g. by one of the ways discussed in
Sect. 3.5. This has to be done by the analyst in cooperation with the two experts
involved. The corresponding information sheets dealing with state of knowledge
dependence (see Sect. 3.6.1.5) are then updated accordingly.

8.1.3 STEP 3: Propagate

All state of knowledge quantification and probabilistic modelling has been done in
the previous step. Step 2 is the most laborious task of the whole analysis. Now it is
the task of the software to collect the distribution and state of knowledge dependence
information for all uncertain data from the respective sheets and to draw a random
sample of N sets of M data values each. N is the sample size chosen by the analyst,
and M is the total number of uncertain data (model uncertainties are represented by
uncertain parameters and uncertain parameters are categorized as uncertain data—
see Sects. 3.4 and 3.6.2). The analyst determines whether a simple random sample or
a Latin Hypercube sample is to be drawn (see Sect. 4.4 for the difference). The
software stores the sampled data values in an N � M array (N rows and M columns)
for the performance of the corresponding evaluations (for short called “runs”) of the
computer model and for their further use in Step 5 of the analysis.

The software may provide a skeleton program offering the possibility to either
enter the program statements of the encoded computer model directly by “copy and
paste” or to call the model program which may be on another file on the laptop
computer. The skeleton program will also read the sampled values from their array,
row by row, and assign the values to the short names given on the cover sheets of the
state of knowledge documents. The analyst only has to make sure that these names
are those that are being used in the model code and that the required compiler is
installed on the laptop computer. Using the skeleton would be the option to choose if
the computer model is not too large and the run-time is not too long on the laptop
computer. Otherwise the model would need to be run on an external machine. In this
case, the client takes the array of sampled parameter values and provides a program
that inserts the values in the right places of the input file of the computer model
application.
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There may be the possibility of running the model on a machine with many
processors in parallel, each capable of executing the complete model or it may be
possible to make use of a cluster of machines so that all N model runs can be
performed in parallel. This approach requires the preparation of N copies of the
input file.

The output from the N model runs is needed in Steps 4 and 5 of the uncertainty
analysis in order to obtain the actual analysis results. Usually not every one of the
many model results needs to be analysed. Some of those that do may be sequences of
values of discretized functions over one or more independent variables (like time
and/or space), and others may be single values like minima or maxima (over time
and/or space) or fields of values (vectors or matrices, for instance). Whatever is
supposed to be analysed will have to be stored by the client in a fashion suitable for
further processing by the analysis software on the laptop. The analysis software
should be capable of processing model output that is a mixture of all of the output
types mentioned above. The output file is generated automatically by the software
for further processing in Steps 4 and 5 if the model runs are executed under the
program skeleton offered by the analysis software on the laptop.

The output file provided by the client has to contain the following information for
every model result that is to be analysed:

– Number of the model result (from among the set of model results that are to be
analysed).

– Short name of the model result. The name will be used in the graphical pre-
sentations of the analysis results.

– Type of result, i.e. single value, array of values or sequence of values of a
discretized function.

– Independent variable of the sequence (if any).
– Measuring unit of the result.
– Measuring unit(s) of the independent variable(s).
– Value of the result (in the case of single values) or the sequence of pairs

(or triplets) of values of the discretized function [value of the result, value(s) of
the independent variable(s)].

– Sequence of specified values of the independent variable(s) at which the result
should be analysed and graphically presented.

Some of the N runs of the computer model may fail. For this reason, it will be of
advantage to include a model output that receives the value 1 if the run fails
and 0 otherwise. An uncertainty importance analysis (Step 5) using this output
may help to pinpoint the reason for the failure. After the computer model has been
improved accordingly or the state of knowledge quantifications have been revised, a
new sample of parameter values needs to be selected and the N computer model runs
will need to be redone. The analysis software should, however, offer the option to
perform Steps 4 and 5 of the analysis with selected model runs, for instance with
only those computer model runs that could be completed successfully.
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8.1.4 STEP 4: Estimate Uncertainty

This step can be fully executed by the analysis software. The analyst only needs to
select from among the available options like those described in Chap. 5.

8.1.5 STEP 5: Uncertainty Ranking

This step too can be fully performed by the analysis software with the analyst only
required to choose from the available options. His choice will most likely include
those options described in Chap. 6.

8.1.6 STEP 6: Present and Interpret

In this step, the analyst discusses the analysis results together with the client and the
modeller. The analyst will adopt the ways of interpretation presented in Chap. 7, and
the client will need to judge whether the quantified uncertainty of the model results is
acceptable for the purpose of the computer model application. If it is not acceptable,
the analyst will consult the uncertainty importance measures together with the
modeller in order to identify candidates among the uncertain data that promise
sufficient potential for state of knowledge improvement in order to effectively reduce
the uncertainty of the model result in question. The modeller on the other hand will
look at the uncertainty importance measures from the perspective of their reason-
ableness. Any measure that seems suspiciously small or large needs to be scrutinized
whether it may be due to errors or insufficiencies of the computer model or of the
scenario description or may be due to an erroneous transfer of the data values into the
input file of the computer model application. It could, however, also be due to the
inadequacy of the uncertainty importance measure chosen.

The modeller may also be interested in the run-time differences between the
N model runs and may for this reason include the runtime as an additional model
output that is to be subjected to the uncertainty importance analysis. The uncertainty
importance measures may provide an indication of where the computer model could
be improved in order to make it more economical to run.

Once satisfied with the analysis results, it has to be decided by the analyst and the
client which information is to be included in their documentation. They also need to
decide about those analysis results that should be given to decision-makers together
with the model results. The documentation of the analysis results may adopt the
structure suggested in Sect. 7.1.
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8.2 Comparison of Four Software Packages

SUSA (Kloos 2015) is a menu-driven software for uncertainty analysis that satisfies
most of the requirements mentioned above. It has been used, among numerous other
occasions, in the practical examples of Chap. 10. SUSA 3.6 runs on personal
computers under the operating system MS-WINDOWS. It makes use of
MS-EXCEL only for the purpose of generating graphics. A FORTRAN compiler
is required if the analyst expresses some state of knowledge dependences by
FORTRAN encoded functional relationships between uncertain data and if the
(FORTRAN encoded) computer model is to be evaluated under the control of
SUSA using the provided program skeleton that is encoded in FORTRAN. Other-
wise the computer model can be written in any programming language as only the
output file with the model results, that are to be analysed, needs to be provided for
further processing by SUSA. SUSA 4.0 (Kloos 2015) does not make use of
MS-EXCEL but has a graphical user interface (GUI) written in Visual Basic.NET
(vb.net). The GUI is menu-driven and guides through the steps of the analysis.
SUSA 4.0 is available for 32 bit and 64 bit computer systems. The free GNU
FORTRAN compiler is automatically installed with SUSA 4.0.

It is important to note that the computer model does not need to run on the
personal computer since SUSA provides for all necessary data exchanges between
an external machine and the personal computer.

The only limitations of SUSA 3.6 are those of memory space available for the
operation of SUSA and the limitations of MS-EXCEL. The latter concern mainly the
graphical presentation of data series in the case of index-dependent model results
(model output that is a sequence of values of a discretized function over some
independent variable). Specifically:

– An index-dependent model result can only be presented for the maximum number
of 255 model runs in one chart.

– The maximum number of index-dependent values per model run to be presented
in a chart is 32,000.

– The maximum number of data points of all model runs to be presented in a chart is
256,000.

Although the output from computer models may be in the order of MBs or GBs,
the limitations listed above are usually of no concern since the results actually
required to answer the assessment question, and therefore to be analysed, are
generally rather limited in number.

None of the limitations listed above apply to SUSA 4.0.
Other well-known analysis software systems are @RISK, Cristal Ball and

ModelRisk. Descriptions of their capabilities can be obtained from their websites.
Neither SUSA nor any of the other systems offer all the options discussed in
Chaps. 2–7. There are differences in the number of distribution types supported as
well as in the kind of input accepted for state of knowledge quantification. Also,
none of the systems provides all options for state of knowledge dependence
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modelling. Only ModelRisk offers several copula functions. With respect to sam-
pling, there is basically no difference between SUSA, @RISK and Cristal Ball as
they all support Latin Hypercube (LHS) (with the exception of ModelRisk) and
simple random sampling (SRS). None of them supports importance sampling or
subset sampling. Only SUSA computes statistical tolerance limits and intervals in
Step 4 of the analysis. SUSA is also the only system that computes the correlation
ratio (square root of the approximate first-order uncertainty importance measure
from variance decomposition). It does so without requiring model evaluations
additional to those used for the uncertainty analysis of the model result.

While @RISK, Cristal Ball and ModelRisk offer more or less the same support
for the analysis steps as SUSA, there is, however, one important difference. Crystal
Ball, @RISK and ModelRisk are MS-EXCEL based and are therefore limited to
models that can be formulated using spreadsheets. They are therefore not suited for
the analysis of computer model applications where the model is written in FOR-
TRAN or any other programming language and comprises thousands or tens of
thousands of lines of code. SUSA on the other hand expects the model to be entered
in FORTRAN into the offered template either directly or via the call function of
FORTRAN. For models running not under the control of SUSA, comfortable data
exchange options are provided. In this case, the model may run on any other
computer (even in parallel on a system of compute nodes) and may be encoded in
a programming language other than FORTRAN. This way there is no limitation to
the size of the computer model application that is to be analysed with SUSA.
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Chapter 9
Uncertainty Analysis When Separation
of Uncertainties Is Required

9.1 Introduction

Some assessment questions are not fully specific and therefore have not only one
true answer but a population of true answers (see Chap. 1). Their wording does not
include a specific but only a generic reference unit. Examples of generic reference
units are for instance:

– . . . Per throw of the die.
– . . . Per year of operation of the technical facility X.
– . . . Per repetition of experiment XYZ.
– . . . Per individual of the exposed population.
– . . . Per N individuals of the exposed population.

Specific reference units would be for instance:

– . . . The next throw of the die.
– . . . The next 20 years of operation of the technical facility X.
– . . . The next repetition of experiment XYZ.
– . . . The individual zi from the exposed population.
– . . . The individuals z1,. . .,zN from the exposed population.

While the specific reference unit permits only one true answer, variables that
change their value with every realization of the generic reference unit lead to a
population of true answers. As long as these realizations are not specified, the
variables are stochastic variables and their values are aleatoric uncertainties of the
assessment. Due to these aleatoric uncertainties, it cannot be known which answer to
give for an unspecified (i.e. any) realization of the reference unit. In what follows, the
analysis that quantifies aleatoric uncertainties of the assessment will be called
“analysis of Type A uncertainty”. It arrives at a probability distribution that sum-
marizes the population of true answers. This probability distribution is then the
answer to the assessment question with generic reference unit. It is a probabilistic
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answer. This probabilistic answer is the result of the application of a computer model
that quantifies the aleatoric uncertainty, i.e. performs the analysis of Type A
uncertainty.

Analyses of Type A uncertainty make use of random laws that model the
stochastic variability and thus express quantitatively the aleatoric uncertainties.
The applicable models and the appropriate values of their parameters are fixed yet
unknown or imprecisely known. They are therefore epistemic uncertainties of the
Type A analysis result. Together with other epistemic uncertainties, they are the
subject of an epistemic uncertainty analysis of the probabilistic answer to the
assessment question. This epistemic uncertainty analysis will subsequently be
referred to as “analysis of Type B uncertainty”.

Many computer models are designed to specifically quantify uncertainty due to
stochastic variability, i.e. they include the analysis of Type A uncertainty. Among
them are all probabilistic risk or safety assessments as well as reliability analyses of
any kind of system. Their results are estimates of the probability distributions that
summarize the population of true answers as well as estimates of their characteristics
like mean value, standard deviation, quantile values, cumulative and complementary
cumulative probabilities such as the probability (now in its frequentistic interpreta-
tion) that a safety limit is exceeded by a true answer to the assessment question.

The analysis of the epistemic uncertainty of these results runs as described in
Chaps. 2–7 except for some differences within each of the six analysis steps. Before
the differences are discussed, some remarks are in place. They concern notation and
the two kinds of analysis output that are connected to the two types of uncertainty.

The following notation is being used in this chapter:

X1,. . .,XJ the J results produced by an application of the model, each having a
population of true values; they are the J components of the vector X.

g1,. . .,gJ the corresponding J functions; they are the J components of the function
vector g.

Y1,. . .,YI the I results produced by an application of the model, each having only
one true value; they are the I components of the vector Y.

h1,. . .,hI the corresponding I functions; they are the I components of the function
vector h.

A1,. . .,AK the K aleatoric uncertainties (stochastic variables) used by some or all of
the J components of the function vector g; they are the K components of
the vector A.

P1,. . .,PM theM epistemic uncertainties used by some or all of the J + I functions.
They are theM components of the vector P and their state of knowledge
is expressed by a joint subjective probability distribution.

For a specific choice P¼ p of values for the epistemic uncertainties, one arrives at
the J-dimensional random variable

XP¼p ¼ g AjP ¼ pð Þ:
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A possibly true summary of its population of values is given by the possibly true
joint probability distribution F(X|P ¼ p). This distribution quantifies the aleatoric
uncertainty that is due to the stochastic variables A given P ¼ p, while

X ¼ g A;Pð Þ
defines a population of possibly true J-dimensional random variables and therefore a
population of possibly true joint probability distributions for X1, . . ., XJ that logically
results from the state of knowledge quantifications for the epistemic uncertainties P.
Figure 9.1 shows a small sample from the population of possibly true probability
distributions for the one-dimensional (i.e. J ¼ 1) random variable X. For every
quantile percentage value q, there is a population of possibly true quantile values xq%
that can be summarized by a subjective probability distribution for the quantile xq%.
This is illustrated in Fig. 9.2 where the sample of q(¼50)% quantile values is taken
from Fig. 9.1.

There is also a subjective probability distribution for the mean value EA{X}
(EA{.} denotes the mean taken over the stochastic variability) as well as for the
probability w(X> x∗) that X exceeds a given limit value x∗ and for the probability w
(X � x∗) that X does not exceed x∗.

The model results X1, P ¼ p, . . ., XJ, P ¼ p will share some or all of the influences of
the stochastic variables A. Consequently, there will be stochastic dependence among
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Fig. 9.1 Random sample of 20 conditional cumulative distribution functions (cut off at X ¼ 150)
each quantifying Type A uncertainty under the condition that P ¼ pn, n ¼ 1,. . .,20. The sample is
output from the analysis of Type B uncertainty of the results from the analysis of Type A
uncertainty
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the components of X. This dependence leads to a matrix of pairwise correlation
coefficients. It tells whether there are any strong concurrent or counter-current
pairwise linear or monotone (if rank correlation coefficients are chosen) relationships
between the model results X1, . . ., XJ due to the common aleatoric uncertainties.
Obviously, the entries of this correlation matrix are subject to epistemic uncertainty,
i.e. their state of knowledge is expressed by a joint subjective probability distribution
that is one of the results of the analysis of Type B uncertainty.

On the other hand, since some or all of the uncertain data P enter the computa-
tions of the quantiles xj, q%, j¼ 1, . . ., J, there will be state of knowledge dependence
between these quantiles. The same applies to the mean values EA{Xj}, as well as to
the probabilities wðXj � x∗j Þ and wðXj > x∗j Þ for j ¼ 1, . . ., J.

It follows now the discussion of the differences between an analysis of Type B
uncertainty of the results from the application of a model that does not require
separation of uncertainties as compared to one that does require separation. The
discussion goes through Steps 2–7 of the Type B uncertainty analysis. It points out
differences that are due to the fact that the model application now quantifies aleatoric
(Type A) uncertainty in order to answer the assessment question.
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Fig. 9.2 Empirical subjective probability distribution of the sample of twenty 50% quantile values
in Fig. 9.1; it is obtained by the analysis of Type B uncertainty of the results of the analysis of Type
A uncertainty. The random sample of cumulative distribution functions, each a possibly true
quantification of Type A uncertainty, is shown in Fig. 9.1
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9.2 STEP 1: Search

Anything that contributes to the stochastic variability of X needs to be expressed by
random variables A1, . . ., AK (Type A uncertainties), and their corresponding random
laws are needed in the analysis of Type A uncertainty. They are therefore part of the
computer model. The random laws are sometimes only assumptions or are fitted to
empirical distributions summarizing observations. While their functional forms are
model uncertainties, their parameter values are parameter or data uncertainties. Both
are to be handled within the analysis of Type B uncertainty. In addition, there may be
stochastic dependences between the random variables A1, . . ., AK. They need to be
expressed by suitable relationships (will be model uncertainties) or measures of
association (will be data uncertainties) as part of the computer model.

9.3 STEP 2: Quantify

The same procedures that were discussed in Chap. 3 for model uncertainties in
general apply to the quantification of the state of knowledge of the uncertain random
laws expressing aleatoric uncertainty. The random laws model stochastic variability
and therefore the quantification of the state of knowledge of their parameter values
can be achieved by using the likelihood function of available observations and by
applying the Bayesian method.

The Bayesian method plays a prominent role in the specification of subjective
probability distributions for the uncertain parameters of random laws. It uses the
likelihood of realizations of the respective random variables given specific values for
the uncertain parameters. In his essay “Towards solving a problem in the doctrine of
chances”, (Bayes 1958) Thomas Bayes explored more than 250 years ago how to
rationally use observation for an update of the state of knowledge of the probability
of an event if nothing is known about this probability a priori. His method requires a
relation between the observation and the uncertain parameter in question, i.e. the
likelihood of the observation, given specific parameter values.

For instance, the method provides for the parameter P of the binomial distribution
the subjective probability density function (state of knowledge quantification)

f1 pjm; nð Þ ¼ π m; njpð Þf0 pð Þ=
Z 1

0
π m; njpð Þf0 pð Þdp ð9:1Þ

with

P the uncertain parameter;
f0( p) the subjective probability density function that expresses the

a priori (before the observations became available) state of
knowledge of the true value of P;
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π(m; n| p) the probability of the observation (m;n) given the true value
of P is p, i.e. the probability to observe m failures in n trials
if p is the true failure probability per trial. It is the value of
the likelihood of P ¼ p given (m;n);Z 1

0
π m; njpð Þf0 pð Þdp the subjective unconditional (not conditioned on any

specific value of P) probability to observe m failures in
n trials. It serves as normalizing constant;

f1( p|m; n) the subjective probability density function that expresses the
a posteriori (after the observation became available) state of
knowledge of the true value of P.

Formula (9.1) is also known as Bayes’ theorem in classical statistics. There,
however, it is not applied to an uncertain fixed parameter value (epistemic uncer-
tainty) but to conditional probabilities of aleatoric uncertainties. Bayes did explicitly
consider the case of a fixed but unknown parameter value, and he expressed his state
of knowledge by probability. The wording of the problem formulation in his essay1

uses the term “chance” (later in the essay it is called “the chance to be in the right”).
It makes clear that a specific interpretation of the term “probability” is required if
Eq. (9.1) deals with a fixed but unknown parameter value.

Because of his pioneering use of the subjectivistic interpretation of probability, it
has become customary to use the term “Bayesian” whenever subjective probabilities
come into play.

In his essay, Bayes chose the density of the uniform distribution over the interval
(0, 1) as f0( p), i.e. as expression of the a priori state of knowledge (nothing known
prior to the observation). What if somebody decides to work with the parameter Q,
where Q ¼ P1/2? If this person uses the uniform distribution for Q over (0, 1) as the
expression of the prior state of knowledge (nothing known a priori), then a
non-uniform distribution follows forP through transformation. This is a contradiction
to the assumption “nothing known aboutP a priori”. Its root cause was most likely the
reason why the essay was not published by Bayes himself but was submitted to the
Royal Society by a friend after Bayes’ death. The contradiction can be avoided by the
use of non-informative a priori subjective probability distributions. Approximate
non-informative distributions are obtained using Jeffrey’s rule (Box and Tiao
1973). To this end, one determines a metric (transformation of P) in which the
shape of the likelihood function of the observation does not depend on the actual
observation; however, the position of its maximum value on the parameter axis in this
metric does. This achieves a separation of the information contained in the likelihood
function into two parts. One part contains what is known about the underlying chance
mechanism (i.e. Bernoulli law, etc.) and is independent of the actual observation, and
the other part contains the information fromwhat was actually observed. The first part

1
“Given the number of times in which an unknown (nothing known a priori) event has happened
and failed: Required the chance that the probability of its happening in a single trial lies somewhere
between any two degrees of probability that can be named”.

In definition no. 6 of his essay, it says: “By chance I mean the same as probability”.
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can serve as a priori information. This is achieved by choosing a uniform prior for the
transformed parameter, just as Bayes did in the original metric. Back transformation
of the uniform prior into the original metric (P) then provides the non-informative a
priori subjective probability density function f0( p).

The following examples refer to technical components. The underlying random
laws, however, apply to Type A uncertainties in a wide range of computer models.

Examples:

– P is the failure probability per demand of a technical component

The stochastic variable (aleatoric uncertainty) is the random variable X that
assumes only the values 1 (if the component fails on demand) or 0 (if it does not
fail). The corresponding random law is assumed to be the Bernoulli distribution with
the uncertain parameter P. The non-informative a priori density function f0( p) is
proportional to p�1/2(1 � p)�1/2 (Box and Tiao 1973), and the likelihood is the
Binomial probability π(m; n| p) ¼ [n!/m!(n�m)!] pm(1 � p)n�m if m failures are
observed among n demands. There are several good reasons for choosing a distri-
bution of the Beta type to express the state of knowledge for P. The density function2

of a Beta distribution over the interval (0, 1) is f pð Þ ¼ Γ αþβð Þ
Γ αð ÞΓ βð Þ
h i

pα�1 1� pð Þβ�1:

From Bayes’ method, one obtains the a posteriori Beta density function f1( p) with
parameters α¼ m+1/2 and β ¼ (n� m) + 1/2. The mean value is α/(α + β), and Beta
distribution quantile values can be obtained from the relationship between the Beta
and the F-distribution. For instance, the 90%-quantile p90% of the Beta distribution
for P over (0, 1) with parameters (α, β) is αw90/(β + αw90). w90 is the 90%-quantile of
the F-distribution with degree of freedom (2α, 2β) (See Table IV in Winkler and
Hays (1975)).

– P is the failure rate per hour of operation of a technical component

The stochastic variable is the random variable X that assumes any value larger
than 0. It is the operation time of the component until it fails. The corresponding
random law is often assumed to be the exponential distribution with the uncertain
parameter P ¼ Λ, the failure rate per unit time of operation. The non-informative a
priori density function f0( p) is proportional to λ�1/2 (Box and Tiao 1973) and the
likelihood is the Poisson probability π(s; t| λ) ¼ (λt)se�λt/s!. s is the number of
failures observed in the total operation time t. s and t are usually accumulated over
a pool of components that are assumed to have the same failure rate. There are
several good reasons for choosing a distribution of the Gamma type to express the
state of knowledge about the uncertain parameter “failure rate”. The density func-

tion3 of Gamma distributions is f λð Þ ¼ βαλα�1e�βλ

Γ αð Þ : From Bayes’ method, one obtains

the a posteriori Gamma density function f1(λ) with parameters α¼ s + 1/2 and β ¼ t.

2Caution: Some write the density function of a Beta distribution with parameters α and α + β.
3Caution: Some write the density function of a Gamma distribution with parameters α and 1/β.
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The mean value is α/β, and Gamma distribution quantile values can be obtained from
the relationship between the Gamma and the χ2 distribution. For instance, the 90%-
quantile λ90% of the Gamma distribution for Λwith parameters (α, β) is w90/2β. w90 is
the 90%-quantile of the χ2 distribution with degree of freedom 2α (See Table III in
Winkler and Hays (1975)).

Remarks to the examples:
The chosen type of the a priori distribution is conjugate to the likelihood function in
both cases, meaning that the a posteriori distribution is of the same type as the a
priori distribution, and its parameters are easily obtained from those of the a priori
and from the observation.

The observation of an individual technical component will most likely not
provide sufficient information to obtain reasonable results through Bayes’ theorem.
Therefore, the components are often grouped such that those in a group show
sufficiently close failure behaviour under the conditions considered by the model
application. The observations collected for the components in a group are then
aggregated or pooled and used in Bayes’ theorem to obtain a subjective probability
distribution for P, the failure probability per demand, or for Λ, the failure rate per unit
time of operation, common to all components in the group. As a logical consequence
of this, the model application has to use the same value of P (resp. Λ) for all
components in the group (Apostolakis and Kaplan 1981). This is sometimes called
“failure probability coupling” or “failure rate coupling”. It is a case of complete state
of knowledge dependence (see Sect. 3.5) between the failure probabilities (or rates)
of the components in the group. The uncertainty of how to define the group
boundaries may be seen as a model uncertainty.

The a priori state of knowledge of almost complete ignorance, represented by the
non-informative distribution, is usually rare. There are always relevant bits of
information about the fixed true but unknown parameter value, before the observa-
tion became available. However, it will often be hard to cast them in a defendable
manner into an a priori density f0( p). For this reason, non-informative a priori
densities are preferred. The influence of the a priori distribution on the a posteriori
distribution decreases with the increase of the amount of available observation.

For reliable components, it is not uncommon to have none or at most one failure
(m ¼ 0 or 1) in n demands. If, in addition, n is small despite the grouping of
components (small compared to the true inverse value of the failure probability
per demand), then f1( p|m; n) may only be adequate if prior knowledge is taken into
account.

Observations are also subject to epistemic uncertainties. Firstly, they are some-
times difficult to interpret. Was it really a failure or only close to a failure? Secondly,
it may be uncertain whether the failure observed in one group could also occur in the
group and under the conditions the model application is concerned with. Last but not
least, the question remains whether all failures within the accumulated number of
demands or operation times have been reported.

The simplest form of prior knowledge is based on plausibility considerations.
Such considerations provide, for instance, justifiable limits beyond which the fixed
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true yet unknown parameter value cannot lie. Such limits will be specifiable in all
instances where logical upper and/or lower limits apply and where the true values of
uncertain data could be found through measurement, albeit subject to measurement
error. Additional information may justify not to use a uniform distribution over the
interval defined by the limits but to choose a subjective probability distribution that
exhibits some characteristic behaviour towards the endpoints of the interval. Exam-
ple would be a triangular or truncated normal or a lognormal distribution among
others (see Sect. 3.6.1.3). The choice of a distribution type will need to observe the
maximum entropy principle (Buckley 1985).

The specification of limit values (truncations of the a priori distribution) means
that the a priori density f0( p) is chosen to be zero over those values of P that lie
outside the limit values. The a posteriori density f1( p|m; n) obtained from Eq. (9.1)
can then never be non-zero over those parts no matter what the observation (m;n)
says that became available after the specification of the a priori distribution. Obvi-
ously, such limit values must be well justified in order to be defendable.

The same procedures that are discussed in Sect. 3.5 are available for the speci-
fication of any state of knowledge dependences between the uncertain distribution
functions and their parameters used to quantify Type A uncertainty as well as for any
state of knowledge dependence to any of the other Type B uncertainties of the model
application.

All remarks made on expert judgement elicitation in Sects. 3.6 and 3.7 are equally
valid for the quantification of the state of knowledge of all the uncertain model
formulations and parameters needed to quantify Type A uncertainty.

9.4 STEP 3: Propagate

In some situations, it may be possible to obtain the probability distributions of the
model results X1, . . ., XJ analytically. These distributions summarize the Type A or
aleatoric uncertainty that is due to stochastic variability. The mean values, standard
deviations, quantile values and cumulative or complementary cumulative probabil-
ities of interest are then also available as single valued results of the analysis of Type
A uncertainty. The analysis of Type B or epistemic uncertainties of these expressions
of Type A uncertainty is then performed as described in Chaps. 2–7.

9.4.1 Two Nested Monte Carlo Simulation Loops

Generally, the computer model will be too complex to use an analytical approach for
the analysis of Type A uncertainty. Monte Carlo simulation may, therefore, already
be part of the model or the model may be supplemented by a Monte Carlo simulation
to obtain an estimate of a possibly true joint probability distribution that summarizes
the stochastic variability of X1, . . ., XJ and thus quantifies the Type A uncertainty.
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Together with the Monte Carlo simulation that is to propagate the Type B uncer-
tainty, two nested Monte Carlo simulation loops are therefore to be executed. This is
sometimes called a double randomization or two stage sampling approach or a
two-loop (2LMC, see Fig. 9.3) or two-dimensional (2DMC) Monte Carlo simula-
tion. In the outer loop, one value is sampled for each of the Type B or epistemic
uncertainties P1, . . ., PM according to their joint subjective probability distribution
that quantifies their state of knowledge. Using these values, the inner loop (it may
already be part of the computer model) samples one value each of the Type A or
aleatoric uncertainties A1, . . ., AK. The approximate possibly true joint probability

Fig. 9.3 The two nested
Monte Carlo simulation
loops required for the
analysis of Type A and Type
B uncertainty
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distribution of the model results X1, . . ., XJ is then computed. It is an empirical
summary of the population of true values that is due to the stochastic variability of
A1, . . ., AK, given the values P¼ p chosen for the epistemic uncertainties in the outer
loop. The inner loop also computes estimates of the distribution characteristics of
interest like mean values, standard deviations, quantile values and cumulative or
complementary cumulative probabilities and all other values that are output of the
computer model. The outer loop runs over the sample size NB chosen for the analysis
of Type B uncertainty while the number of runs performed by the inner loop
corresponds to the sample size NA chosen for the analysis of Type A uncertainty.
See Sect. 4.4 for sampling techniques that might be used in these Monte Carlo
simulations.

9.4.2 Low Probability Extreme Value Answers

The population of true answers to risk-related assessment questions with generic
reference unit often contains a small subset of low probability and extreme values for
some indices j 2 [1, J]. This subset is usually of particular concern to decision-
makers. The probability distribution summarizing the variability within the popula-
tion of true answers is therefore required to represent this subset adequately. To this
end, the Monte Carlo simulation of the inner loop in Fig. 9.3 would require a very
large sample size NA. Even a system of many compute nodes, each capable of
processing the full set of functions g and h of the computer model, would often
require a prohibitively long time to perform the NA model runs needed. In addition,
NB repetitions of the NA runs are to be performed to quantify the influence of the
epistemic uncertainties on the estimation of the probability distribution summarizing
the population of true answers. For this reason, analysts frequently resort to a
so-called scenario analysis in conjunction with subset sampling. In the context of
risk assessment for an industrial plant, the first set CY0ð Þ would contain the
population of all accident initiating events. This population is divided into sub-
populations, and representative members are selected from each subpopulation
(often those judged to have the potential of leading to the worst outcome from
among those in the subpopulation). The first subset CY1 � CY0ð Þ would contain all
those members of CY0 that are followed by some safety system failure. Again,
division into subpopulations and choice of representative members from each
leads to the next subset (CY2 � CY1 � CY0

�
. CY2 would contain all those members

of CY1 followed by plant damage (i.e. all sequences “accident initiating event !
safety system failure ! plant damage”). Again, division into subpopulations and
choice of representative members from each leads to subset (CY3 � CY2 � CY1 �
CY0

�
where CY3 would contain all those members of CY2 followed by contamination

of the plant environment. Since the populations of the subsets are not known, the
subpopulations are indirectly defined by choosing first a set of representatives such
that the corresponding model outcomes may be considered a satisfactory
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representation of the model outcomes of the subpopulations, and the union of these
model outcomes may be thought of as an adequate representation of the (unknown)
population of model outcomes for this subset. Following this scenario approach
through all subsets requires only the run of those parts of the computer model that are
needed by the chosen sequences of representatives, i.e. the scenarios. Additionally,
the conditional probabilities of the subpopulations in each subset, each represented
by chosen representative members, are to be determined. This is usually achieved by
using a mixture of operating experience, expert judgment, analytic modelling and
Monte Carlo simulation. The model outcomes obtained for the scenarios together
with the conditional probabilities assigned to the subpopulations of the subsets are
then summarized in the form of a probability distribution that is assumed to
satisfactorily quantify the Type A uncertainty, given the set of values P ¼ p chosen
for the epistemic uncertainties in the outer Monte Carlo loop.

Considering the need of the scenario approach to choose representatives from the
subpopulations of the various subsets, it is not surprising that a number of efforts
have been and are still being undertaken to improve the situation (Siu 1994; Cojazzi
1996; Devooght and Smidts 1996; Hsueh and Mosleh 1996; Chang and Mosleh
1998; Labeau et al. 2000; Hofer et al. 2002; Kloos and Peschke 2006), i.e. to replace
the assumptions inherent in the choice of representatives by as much realism as is
possible with the presently available computing power. These efforts are concen-
trated on the analysis of the Type A uncertainty as it is to provide the probabilistic
answer to the assessment question. The associated Type B uncertainty analysis by
Monte Carlo simulation with sample size NB multiplies the required computing
power by NB. Therefore, approximate approaches to the Type B uncertainty analysis
have been suggested.

Changing the generic reference unit of the assessment question into a specific one
(for instance, replacing “per repetition of experiment XYZ” by “the next repetition of
experiment XYZ”) turns aleatoric uncertainties into epistemic uncertainties. Then,
only the analysis of Type B uncertainty is required. The problem of “low probability
and extreme value answers” does, however, not go away. It will become one of “low
subjective probability possibly true answers of extreme value”. The importance
sampling and the subset sampling strategies discussed in Sects. 4.4.3 and 4.4.4 are
designed to reduce the sample size required for these problems.

9.5 STEP 4: Estimate Uncertainty

The joint probability distribution F(X|P ¼ p) for

XP¼p ¼ g AjP ¼ pð Þ,
is one possibly true joint probability distribution for X ¼X1, . . ., XJ. It quantifies the
aleatoric uncertainty of X that is due to the aleatoric uncertainties A, given P ¼ p.
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The marginal distributions Fj(Xj|P ¼ p), j ¼ 1, . . ., J, and their distribution charac-
teristics are among the results of the computer model application.

The analysis of the epistemic uncertainties on the other hand is to quantify the
state of knowledge of the joint probability distribution and thus of the marginal
distributions and of their characteristics like mean value, standard deviation, cumu-
lative probability and complementary cumulative probability as well as pairwise
correlations. Their subjective probability distributions result from the propagation of
the quantified state of knowledge at the level of uncertain model formulations,
parameters and input data through the computer model application that quantifies
the Type A uncertainty. Consequently, the relationships

X ¼ g A;Pð Þ
Y ¼ h Pð Þ

define a population of possibly true joint probability distributions for X1, . . ., XJ as
well as a population of possibly true values for all other model results Y. These
populations are generated by the state of knowledge expressions for the epistemic
uncertainties P propagated through the encoded computer model including the
analysis of Type A uncertainty.

As an approximate expression of the state of knowledge of the true joint proba-
bility distribution of X and of the true vector Y, the Monte Carlo simulation (outer
loop) provides a sample of joint probability distributions and of vectors y, drawn
from the population of possibly true distributions and vectors. From this sample, one
derives Type B uncertainty statements for all model results. These results include the
marginal distributions of X1, . . ., XJ and their characteristics of interest as well as all
other model results that are components of Y. The Type B uncertainty statements are
obtained in the same way as was discussed in Chap. 5. Some useful graphical
presentations of results from the analysis of Type A (inner simulation loop) and of
Type B (outer simulation loop) uncertainty are shown below for a one-dimensional
(i.e. J ¼ 1) model output X.

Figure 9.4 shows the empirical (obtained from NA sample values) cumulative
distribution function of X as obtained by the inner simulation loop with the reference
values of the epistemic uncertainties P. Often, the complementary cumulative
distribution function is of interest. Figure 9.5 shows the probabilities

w X > xjP ¼ pRef
� � ¼ 1� w X � xjP ¼ pRef

� �
,

to be read from the complementary cumulative distribution function. They are the
probabilities that X, as computed with the reference values of the epistemic uncer-
tainties P, exceeds given limit values x.

The range of probabilities and values of Xjwill extend over orders of magnitude if
there is a subset of low probability and extreme value answers. Consequently, the tail
end of the ccdf stretches along the abscissa over a wide range of values x while the
corresponding complementary cumulative probabilities are hardly distinguishable
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Fig. 9.4 Empirical cumulative distribution function (cdf) of X obtained in the inner simulation loop
and using the reference values of P
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Fig. 9.5 Empirical complementary cumulative distribution function (ccdf) of X, obtained with the
reference values of P
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on the ordinate. This suggests the presentation of the ccdf using logarithmic scales as
shown in Fig. 9.6.

The following example of an analysis of Type B uncertainty of the result from a
computer model quantifying Type A uncertainty is subsequently used for illustration
purposes. The model determines the spillage in kg per year of a toxic substance at an
industrial site. The example is purely artificial. Since the annual spillage varies
stochastically from year to year of operation and the reference unit of the assessment
question is generic (. . ..per year of operation), there is a population of true answers
summarized by a probability distribution. Due to the epistemic uncertainties
involved in the computation of this distribution, there is a population of possibly
true distributions. Figure 9.7 shows a sample from the population obtained by the
analysis of Type B uncertainty using sample size NB in the outer loop of the double
randomization approach of Fig. 9.3 and sample size NA in the inner Monte Carlo
simulation loop. The corresponding sample of empirical ccdfs is shown in Fig. 9.8.

From the sample of empirical distributions computed in the outer loop of Fig. 9.3,
one obtains estimates of the q% quantiles wq% of the subjective probability distri-
butions for w(X � x) and for w(X > x), i.e. sw(w(X � x) � wq%) ¼ q/100 and sw(w
(X> x)� wq%)¼ q/100 at every value x of X. These estimates of quantile values are
continuously connected to arrive at the curve of q% quantile estimates as shown for
q ¼ 5, 10, 50, 90 and 95 in Fig. 9.9 for the cumulative distribution function and in
Fig. 9.10 for the complementary cumulative distribution function. The estimates of
the 50% quantiles (the medians) and of the mean values together with the sample
minima and maxima of the empirical probabilities w(X > x) are shown in Fig. 9.11
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for the complementary cumulative distribution function. The equivalent of Fig. 9.10
is shown in Fig. 9.12 for the empirical complementary cumulative distribution
functions using the logarithmic scale.

Figure 9.9 provides, for instance, the following type of information: From the
NB ¼ 100 model runs, it is estimated that 90% of the population of possibly true
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Fig. 9.11 The continuous connections of the mean and median values and smallest and largest
values of the sample of NB empirical complementary cumulative probabilities at selected values of X
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Fig. 9.12 The uncertainty information of Fig. 9.10 presented after log10 transformation in order to
permit a more detailed illustration of the range of low probability and high model result values
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values for the empirical probability that the spillage per year does not exceed 200 kg
are between 0.78 and 0.96.

Figure 9.10 provides, for instance, the following type of information: From the
NB ¼ 100 model runs, it is estimated that 90% of the population of possibly true
values for the empirical probability that the spillage per year does exceed 200 kg are
between 0.04 and 0.22.

Figure 9.13 provides, for instance, the following type of information: From the
NB ¼ 100 model runs, it is estimated that at least 90% of the population of possibly
true values for the empirical probability that the spillage per year does not exceed
200 kg are between 0.77 and 0.97 at a confidence level of at least 95%. These
probability values are given by the intersections of the vertical line at 200 kg with the
two limit lines. The values read from the intersections with the line segments,
connecting the tolerance limit endpoints, will be subject to interpolation error.

Statistical tolerance limits can also be obtained for the spillage per year at selected
values of the empirical cumulative probability (instead of for the empirical cumula-
tive probability at selected values of the spillage per year). The corresponding Figure
says that at least 90% of the population of possibly true values of the spillage per
year that are not exceeded with empirical probability 0.5 lie between 77 kg and
135 kg at a confidence level of at least 95%. These values are given by the
intersections of the horizontal line at cumulative probability 0.5 with the two limit
lines.
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Fig. 9.13 The continuous connections of the endpoints of (90%, 95%) two-sided statistical
tolerance limits for the empirical cumulative probability of the spillage X per year, shown at
selected values of X
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The confidence statement accounts for the possible influence of the estimation
error that may be due to the fact that only a sample of NB ¼ 100 was drawn in the
outer simulation loop. In addition, the inner loop only provides distribution estimates
from a sample of size NA in practice. The statistical tolerance limits also account for
the uncertainty that is due to the variability of empirical probabilities obtained from
samples of size NA in the inner loop.

Analogous information as in Fig. 9.13 is available from Fig. 9.14 for the
complementary cumulative probability.

Figure 9.14 provides, for instance, the following type of information: From the
NB ¼ 100 model runs, it is estimated that at least 90% of the population of possibly
true values for the empirical probability that the spillage per year exceeds 200 kg are
between 0.03 and 0.23 at a confidence level of at least 95%.

Of particular interest will be the probability for X to exceed a given limit value x*.
This probability may be read directly from the probability distribution in its com-
plementary form (ccdf). Since there is a population of possibly true ccdfs, due to the
epistemic uncertainties involved in its computation, the state of knowledge of the
probability for X to exceed x* is quantified by a subjective probability distribution
obtained from the analysis of Type B uncertainty. This distribution tells how well the
empirical probability for X to exceed x* can only be known given the epistemic
uncertainties and the variability of empirical probabilities obtained from samples of
size NA in the inner loop. Figure 9.15 shows the empirical subjective probability
distribution of the empirical probability for the annual spillage to exceed the limit
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Fig. 9.14 The continuous connections of the endpoints of (90%, 95%) two-sided statistical
tolerance limits for the empirical complementary cumulative probability of the spillage per year,
shown at selected values of X
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value of 250 kg. A two-sided (90%, 95%) statistical tolerance limit for this empirical
probability is indicated on the abscissa.

The uncertainty information to all single value model results like the comple-
mentary cumulative probability w(X > x) or the cumulative probability w(X � x) or
the quantile value xq% to a given cumulative (or complementary cumulative) prob-
ability q/100 or the mean or median value of X may be graphically presented as is
shown in Sect. 5.3.

9.6 STEP 5: Rank Uncertainties

Uncertainty importance analysis has to answer different questions at each of the two
sampling stages in Fig. 9.3.

After each completion of the inner simulation loop, the question is:
Which of the stochastic variables (aleatoric uncertainties) Ak, k ¼ 1, . . ., K,

contribute most to the variance of the empirical distribution summarizing the sample
of values of Xj, j ¼ 1, . . ., J, given P ¼ p.
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Fig. 9.15 The empirical subjective probability distribution for the empirical probability that the
annual spillage X exceeds the limit value of 250 kg. A two-sided (90%, 95%) statistical tolerance
limit is indicated on the abscissa. It says that, at a confidence level of at least 95%, at least 90% of
the population of possibly true values of this empirical probability lie between 0.004 and 0.129
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After the completion of the outer simulation loop, the question is:
Which of the epistemic uncertainties Pm, m ¼ 1, . . ., M contribute most to the

variance of:

– The sample of possibly true empirical distributions for Xj, j ¼ 1, . . ., J,
– The sample of possibly true values for Yi, i ¼ 1, . . ., I and
– The sample of estimates of the importance measures for Xj with respect to each of

the Ak, k ¼ 1, . . ., K.

At both Monte Carlo simulation loops, the same types of uncertainty importance
measures may be computed that were discussed in Chap. 6 for the epistemic
uncertainties. However, their messages are quite different:

The measures derived after each completion of the inner simulation loop say
where the assessment question would need to be changed in order to reduce the
variances of the empirical marginal probability distributions of the Xj, j ¼ 1, . . .,
Jmost effectively or to shift the locations of these distributions to less critical ranges
of values. This change of the assessment question may be achieved either through

– The use of a less generic reference unit, thereby restricting the variability of some
of the Ak. For example: The reference unit might be changed from “. . . per
repetition of experiment XYZ” to “. . . per repetition of experiment XYZ with
molten mass between Ml and Mu” if the molten mass is one of the stochastic
variables Ak and is free to vary between technically possible limits describing a
larger range than (Ml, Mu).

or through

– a system modification, i.e. a technical change to the system under investigation.
For example: If the time to failure of the heating system is one of the stochastic
variables Ak that are identified as important contributors to the variance of the
probability distribution of Xj, then the heating system of the experimental facility
may be changed to one with improved reliability.

The uncertainty importance measures derived after completion of the outer
simulation loop carry the same message as discussed in Chap. 6. They rank the
epistemic uncertainties Pm, m ¼ 1, . . ., M with respect to their contribution to the
epistemic uncertainty of the empirical distributions of the Xj, j ¼ 1, . . ., J, the single
output values for Yi, i ¼ 1, . . ., I and even the values of the uncertainty importance
measures of the Xj with respect to each of the Ak, k ¼ 1, . . ., K. The importance
measures from the outer simulation loop do not directly indicate changes to the
reference unit nor to the system under investigation but they indicate where the state
of knowledge of the uncertain data Pm, m ¼ 1, . . .,M, should be improved primarily
in order to reduce the epistemic uncertainty of the results most effectively. Indirectly,
this ranking may also lead to system changes. If, for instance, the epistemic
uncertainty of a complementary cumulative probability is large due to lack of
knowledge of the failure rate of a technical component, instead of improving its
state of knowledge for the component presently in use, it may be decided to
exchange the component for one with less uncertainty about its failure rate.
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Improving the state of knowledge for any of the parameters of the random laws
expressing the aleatoric uncertainty of Ak, k ¼ 1, . . ., K, does not change the true
stochastic variability (or aleatoric uncertainty) of the model results Xj, j ¼ 1, . . ., J,
but it changes the state of knowledge of the empirical probability distributions
summarizing their stochastic variability.

Figure 9.16 shows the continuous connections of regression coefficients as
uncertainty importance measures for the empirical complementary cumulative dis-
tribution function (ccdf) after rank transformation of the sample values of the
epistemic uncertainties P and of the sample ccdf values at the selected equidistant
values of spillage. The corresponding R2 values are shown in Fig. 9.17. Figure 9.18
gives rank regression coefficients as uncertainty importance measures for the empir-
ical probability that the spillage per year exceeds the limit value of 250 kg. The
corresponding R2 value is given in the Figure caption.

Figure 9.18 shows that most of the uncertainty of the empirical probability for the
spillage to exceed the limit value of 250 kg per year is due to the uncertainty of
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Fig. 9.16 The continuous connections of regression coefficients as uncertainty importance mea-
sures derived from the empirical complementary cumulative distribution functions in Fig. 9.8 after
rank transformation of the sample values of the epistemic uncertainties P and of the sample ccdf
values at the selected equidistant values of spillage. The epistemic uncertainties nos. 5 and 6 are
identified as main contributors to the uncertainty of the empirical probability for more than x kg of
spillage per year for most of the value range of X. Large values for parameter nos. 5 and 6 tend to
lead to small values for the empirical probability of the spillage to exceed x
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probability quantified by the empirical subjective probability distribution shown in Fig. 9.15
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parameter no. 5 with large parameter values tending to lead to low probability
values.

The inner simulation loop may be replaced by an importance sampling or subset
sampling procedure (see Sects. 4.4.3 and 4.4.4) if the low probability of a subset of
extreme values is to be estimated. The Type B uncertainty importance analysis is
performed in the outer simulation loop as usual.

9.7 STEP 6: Present the Analysis and Interpret Its Results

The presentation of the analysis of Type B uncertainty of results from an analysis of
Type A uncertainty has the same structure as described in Chap. 7. The only
exceptions are:

– The assessment question

It has a generic reference unit and therefore a population of true answers.

– The assessment model

It is a computer model that includes the analysis of Type A uncertainty in order to
arrive at a summary of the population of answers to the assessment question in the
form of a probability distribution. Particularly, it includes the identification of the
aleatoric uncertainties, leading to the population of answers, and the modelling of
their stochastic variability by probability distributions. It also includes the inner
Monte Carlo loop of Fig. 9.3 or any other approach (i.e. scenario analysis, etc.)
suitable to arrive at an estimate of or approximation to the probability distribution
summarizing the population of answers to the assessment question given the values
of the epistemic uncertainties sampled in the outer simulation loop. Finally, the
presentation of the distribution estimate as well as of its characteristics of interest,
like mean value, standard deviation, cumulative and complementary cumulative
probabilities at limit values, etc., and their interpretation are all part of the assessment
model. The results of the analysis of Type B uncertainty of the output from this
assessment model are then determined, presented and interpreted as for any other
computer model (see Chap. 7 and the specifics discussed in Sects. 9.5 and 9.6).
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Chapter 10
Practical Examples

10.1 Introduction

The model applied in Sect. 10.2 deals with the population dynamics of the Peruvian
anchovy. It was developed in an undergraduate modelling contest (Caulkins et al.
1985) and was modified to some extent in order to serve the intended illustration
purpose of this chapter. State-of-the-art population dynamics models for animal
populations, in particular for various species of fish, are very sophisticated. Docu-
mentation of the uncertainty analysis of their application would fill a report and
would therefore not be suitable to serve here as a practical example.

The uncertainty of results from the application of a dose reconstruction model,
again developed for illustration purposes only, is analysed in Sect. 10.3. The
assessment question asks for the dose value of each of N specific individuals. No
Type A uncertainty is therefore involved. The model was specifically designed to
illustrate the difference in the treatment of the two kinds of measurement error of
Sect. 3.3.1 as well as the effect of uncertain data shared by the reconstructed dose
values of several or all individuals.

The results from the population dynamics model are functions of the independent
variable “time”. A specific sequence of 20 years of fishing activity is modelled.
Therefore, there is no Type A uncertainty involved. During this time, an event called
“El Nino” may occur. It is unknown how often this will be the case, when the event
will occur and if it occurs how severe it will be. The El Nino uncertainty is epistemic
since the model application deals with a specific sequence of 20 years. Together with
various uncertain data, the El Nino uncertainty is the subject of the Type B
uncertainty analysis.

The results from the dose reconstruction model, i.e. the dose value of each of the
N specific individuals, can be arranged in a probability distribution summarizing the
variability of dose over this population. Due to the uncertain data of the dose
reconstruction model, there are infinitely many possibly true distributions. The
uncertainty analysis deals with the percentage of individuals (in the given
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population) with dose value above a given limit as well as with the dose received by
selected individuals. It uses the two-loop Monte Carlo simulation approach
discussed in Chap. 9 in order to quantify the epistemic (Type B) uncertainty of a
population value, i.e. the percentage of individuals in the population with dose above
the given limit value, and to quantify the epistemic uncertainty of individual dose
values while properly accounting for their state of knowledge dependences that are
due to shared data uncertainties.

10.2 Uncertainty Analysis of Results from the Application
of a Population Dynamics Model for the Peruvian
Anchovy

The following short summary of the background information to the assessment
questions is taken from Caulkins et al. (1985):

“The anchovy is important for Peru’s large fishing industry. The Peruvian
anchovy inhabits a narrow strip of water that runs 1500 miles along the coast of
Peru. Strong prevailing winds cause a constant northern flow of the surface water.
The displaced water is replaced by nutrient-enriched upwelling that supports heavy
concentrations of plankton. This plankton is essential for the survival of the anchovy
larvae. An unpredictable ocean counter-current, known as El Nino, stops the upwell-
ing and thus has devastating effects on the anchovy larvae. El Nino together with
heavy fishing has in the past severely depleted anchovy stocks. The ultimate goal is
to find an optimal fishing management policy.

The anchovies have three enemies: The guano-birds, other fish, and man. Since
80% to 95% of the guano-bird’s diet consists of adult anchovies, the bird population
is highly sensitive to fluctuations in the anchovy population.”

10.2.1 The Assessment Questions

The model is applied to answer the following questions for the specified time period
of 20 years:

– How large is the harvestable anchovy biomass at discrete times?
– How large is the population of guano-birds at discrete times?

If an annual fishing quota of 5 Mt is adhered to?
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10.2.2 The Model

The anchovy population dynamics model from the literature (Caulkins et al. 1985)
was modified and implemented as a computer model. The model incorporates the
peculiar characteristics of the anchovy ecosystem. In particular, it

– Divides the population into 6 age cohorts:

Cohort 1: up to 4 months
Cohort 2: over 4 and up to 8 months
Cohort 3: over 8 and up to 12 months
Cohort 4: over 12 and up to 16 months
Cohort 5: over 16 and up to 20 months
Cohort 6: over 20 months (adult anchovies)

– Proceeds in time periods of 4 months:

Period 1: January to April
Period 2: May to August
Period 3: September to December

– Considers the spawning behaviour of the anchovy:

75% of the total spawning in September
25% in January

– Relates the number of eggs to body length (age)
– Accounts for the effect of overpopulation on spawning
– Considers infant mortality and predation by guano-birds and by non-bird enemies
– Stops harvest if population is driven below minimum
– Includes the effects of El Nino on:

Spawning behaviour
Fecundity
Infant mortality
Predation by non-bird enemies
The breaking up of anchovy schools (scatter)
Minimum population

– Contains the dynamics of the guano-bird population:

– Growth rate
– Predation on population of anchovies
– Survival if there is a shortage of anchovies

– Accounts for El Nino over the time period considered with respect to

Years of occurrence
Severity
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10.2.3 The Analysis Tool

The uncertainty and sensitivity analysis was performed with version 3.6 of the
analysis software SUSA (Kloos 2015).

SUSA supports the probabilistic modelling of the state of knowledge of uncertain
data. It offers a large selection of distribution types, takes distribution truncations
into account, derives distribution parameters from quantile values and plots the
selected distributions. For the quantification of state of knowledge dependences, it
accepts population measures of association, sample measures, conditional distribu-
tions, restrictions, complete dependence and functional relationships between uncer-
tain data and provides scatter plots to illustrate the selected dependence
quantification.

SUSA offers simple random sampling and Latin Hypercube sampling, derives
distribution-free quantile estimates as well as statistical tolerance limits and performs
statistical tests of distribution hypotheses and fitting of distributions to data. A choice
of uncertainty importance measures is available for model output in the form of
single values as well as of discretized functions of an independent variable like time.

10.2.4 The Elicitation Process

There was no elicitation process for this demonstration of an uncertainty analysis.
Provisional quantitative expressions of the state of knowledge are provided by the
analyst and are used for illustration purposes only.

10.2.5 The Potentially Important Uncertainties

A total of 37 uncertain data were identified in addition to the uncertainty of when El
Nino will occur.

10.2.6 Provisional State of Knowledge Quantifications

The state of knowledge to all uncertain data is expressed by subjective probability
distributions. Provisional subjective probability distributions are used in this analysis
for demonstration purposes only. They are presented in Fig. 10.1. The information in
this Figure is part of the automatic documentation support offered by SUSA.
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Additionally, a subjective probability of 0.14 was specified for the occurrence of
an El Nino for every year; while the subjective probability for the El Nino to be a
severe one was set at 0.4.

Figure 10.1 (a–e) presents the SUSA output of the state of knowledge
quantifications.

Fig. 10.1 (a–e) SUSA output: state of knowledge quantifications
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10.2.7 State of Knowledge Dependences

Figure 10.2 lists the identified state of knowledge dependences. The information in
this Figure is also part of the automatic documentation support offered by SUSA.
Two sets of dependences, each due to proportionality relationships (see Sect. 3.5.2.3
and 4.4.1.8), are included in the Figure. This requires the Monte Carlo simulation
to generate the random sample of possibly true values in two steps. SUSA

Fig. 10.1 (continued)

Fig. 10.2 SUSA output: state of knowledge dependence quantifications
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automatically performs the necessary steps as design extensions. It first samples for
the involved uncertain data, according to their conditional distributions given in
Fig. 10.1 and in the second step post-processes the sampled values according to the
relationships in Sect. 4.4.1.8 to satisfy the proportions condition.

10.2.8 Model Results Obtained with Best Estimate Data
Values and El Nino

Figures 10.3, 10.4, 10.5, and 10.6 show the

– Population of anchovies in cohort 6 (adult anchovies)
– Occurrence periods of the “best estimate” El Nino sequence
– Population of guano-birds
– Harvestable anchovy biomass (cohorts 3–6)

over the specified sequence of 60 consecutive periods of 4 months each
(20 years).
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Fig. 10.3 The population of anchovies in age cohort 6 (adult anchovies) computed at intervals of
4 months and over the given time period of 20 years, using best estimate values of the uncertain
data, best estimate El Nino sequence (it is the reason for the marked declines in population numbers)
and an annual fishing quota of 5 Mt
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10.2.9 Propagation of the Provisional State of Knowledge
Quantifications Through the Model

One thousand sets of 37 data values each were selected at random (simple random
sampling) according to a joint subjective probability distribution satisfying the
provisional state of knowledge quantifications in Figs. 10.1 and 10.2. Each set was
combined with a random El Nino event sequence defined over the specified 20 years.
The model was run for each of these combinations. The 1000 sets of model results
are a random sample from their unknown joint subjective probability distribution
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Fig. 10.4 Occurrence periods of the “best estimate” El Nino sequence. The width of the spike
indicates the severity of the El Nino
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Fig. 10.5 The population of guano-birds computed with best estimate values of the uncertain data,
best estimate El Nino sequence and an annual fishing quota of 5 Mt
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that is the logical consequence of the propagation of the provisional state of
knowledge quantifications through the computer model. Quantitative uncertainty
statements are derived from this sample.

10.2.10 Uncertainty Statements for Selected Model Results

To give a first impression of the uncertainty of the model result “harvestable anchovy
biomass”, the first 10 time histories out of the simulated 1000 are shown in Fig. 10.7.
They are followed by the 5%, 10%, 50%, 90% and 95% subjective probability lines
in Figs. 10.8 and 10.9 as well as by the continuous connections of the local upper and
lower endpoints of the (90%, 95%) two-sided statistical tolerance limits for the
harvestable anchovy biomass (Fig. 10.10) and for the population of guano-birds
(Fig. 10.11).

Comparing Figs. 10.6 and 10.10 shows that the harvestable anchovy biomass
computed with best estimates of the uncertain data assumes values mainly from the
lower end of the uncertainty range delimited by the endpoints of the two-sided
statistical tolerance limits. The uncertainty range extends over about a factor of
8 between lower and upper endpoint of the two-sided (90%, 95%) limit, while the
solution obtained with best estimates never lies more than a factor of 3 above the
lower limit.

The comparison of Figs. 10.5 and 10.11 shows that the model result for the
population of guano-birds, obtained with best estimates of the uncertain data, lies
close to the upper end of the two-sided statistical tolerance limit. Contrary to the
situation for the harvestable anchovy biomass, the uncertainty range extends here
more to the lower values. The uncertainty importance measures will help explain this
difference.
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Fig. 10.6 The harvestable anchovy biomass computed with best estimate values of the uncertain
data, best estimate El Nino sequence and an annual fishing quota of 5 Mt
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Fig. 10.7 Ten time histories of the harvestable anchovy biomass computed at intervals of 4 months
over the time period of 20 years; they are the first ten time histories out of a random sample of size
N ¼ 1000 drawn according to the joint subjective probability distribution for all uncertain data
including the uncertain El Nino event sequence
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Fig. 10.8 The continuous connections of selected quantile values of the local (at intervals of
4 months) subjective probability distributions for the computed harvestable anchovy biomass in Mt;
they are estimated using a random sample of size N ¼ 1000 drawn according to the joint subjective
probability distribution for all uncertain data including the uncertain El Nino event sequence
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Fig. 10.9 The continuous connections of selected quantile values of the local (at intervals of
4 months) subjective probability distributions for the computed population of guano-birds
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Fig. 10.10 The continuous connections of the local (at intervals of 4 months) (90%, 95%)
two-sided statistical tolerance limits of the computed harvestable anchovy biomass in Mt; the limits
contain at least 90% subjective probability at a confidence level of at least 95%
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10.2.11 Uncertainty Importance Statements for Selected
Model Results

Two groups of uncertain data in Fig. 10.1 are members of a proportion relationship
(see Sect. 3.5.2.3). Some of these data exhibit strong state of knowledge dependence
(in particular: The correlation between data nos. 4 and 5 is about�0.95) that leads to
very high variance inflation factors for the standardized regression coefficients [see
Eq. (6.45)]. SUSA issues a warning and indeed the regression coefficients obtained
from raw as well as from rank transformed data (nos. 9 and 30 excluded from the
regression model—see Fig. 10.2) turn out to make little sense. Consequently, the
uncertainty importance analysis initially resorts to correlation coefficients and to the
correlation ratios for ranking of the uncertain data.

The following figures show graphs of correlation coefficients and approximate
correlation ratios for the model results

– Population of guano-birds
– Harvestable anchovy biomass

with respect to the uncertain data of Fig. 10.1. They are estimated using the 1000
values of the model result and the 1000 sets of values for the 37 uncertain data in
combination with the 1000 El Nino event sequences.

Figure 10.12(a–d) shows the correlation coefficients for the model result “popu-
lation of guano-birds” with respect to the uncertain data of Fig. 10.1.
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Fig. 10.11 The continuous connections of the local (at intervals of 4 months) (90%, 95%)
two-sided statistical tolerance limits of the computed population of guano-birds. The limits contain
at least 90% subjective probability at a confidence level of at least 95%
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Fig. 10.12 (a–d) Correlation coefficients for the model result “population of guano-birds” with
respect to the uncertain data of Fig. 10.1; the coefficients are estimated at each of the 60 points of
time. Data nos. 1, 11, 12, 24 and 33 are identified as the main contributors to the uncertainty of the
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Figure 10.13(a–d) presents the correlation coefficients obtained from rank
transformed data. The latter emphasize associations between rank orders of data,
while the correlation coefficients obtained from raw data measure associations
between the actual values and are therefore more sensitive to outliers. However,
the top ranked uncertain data and the directions of their influence on the computed
population of guano-birds are the same for both uncertainty importance measures.
The largest contributions to the uncertainty of the population of guano-birds come
from uncertain data nos. 1, 11, 12, 24 and 33 over most of the simulated time span.
Large values of nos. 1, 11, 12 and 24 tend to lead to large values of the population,
while large values of no. 33 tend to lead to small values of the population of guano-
birds. Unfortunately, there is no information available about how much of the
uncertainty is explained by the top ranked uncertain data.

Figure 10.14(a–d) show the approximate correlation ratio. While this measure
cannot provide directional information, it is capable of accounting for non-linear and
even non-monotone relationships between the model result and the uncertain data.

The correlation coefficients and the approximate correlation ratios identify the
same set of five main contributors to the uncertainty of the computed temporal
evolution of the guano-bird population.

Figures 10.15, 10.16, and 10.17 present the same uncertainty importance mea-
sures for the model result “harvestable anchovy biomass”.

Figure 10.15(a–d) shows the correlation coefficients for the model result “har-
vestable anchovy biomass” with respect to the uncertain data of Fig. 10.1, while the
correlation coefficients obtained from rank transformed data are presented in
Fig. 10.16(a–d). The top ranked uncertain data and the directions of their influence
on the computed harvestable anchovy biomass are the same for both uncertainty
importance measures. The largest uncertainty contributions come from data nos.
1, 11, 12, 24 and 33 over most of the simulated time span. Large values of nos. 1, 11,
24 and 33 tend to lead to small values of the computed harvestable anchovy biomass,
while large values of no. 12 tend to lead to large values of the biomass.

The approximate correlation ratios are presented in Fig. 10.17(a–d)
The correlation coefficients obtained from raw as well as from rank transformed

data and the correlation ratios identify the same set of five uncertain data as main
contributors to the uncertainty of the computed temporal evolutions of the harvest-
able anchovy biomass and of the population of guano-birds. However, for some of
the important uncertainty contributors the sign of the importance measure is
changed. This change in sign explains why the uncertainty of the harvestable
anchovy biomass extends more to larger computed values while that of the

Fig. 10.12 (continued) computed population of guano-birds. No. 1 is the growth rate of the bird
population. No. 11 is the percentage of the bird population kept alive if only half the desired food
supply is available and no. 12 is the anchovy biomass at which the anchovy fecundity starts to
decline. No. 24 represents the start value for the biomass defined as an uncertain fraction of
no. 12, while no. 33 is the mortality rate of the anchovy larvae
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Fig. 10.13 (a–d) Rank
correlation coefficients for
the population of the guano-
birds with respect to the
uncertain data of Fig. 10.1
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Fig. 10.14 (a–d) Approximate correlation ratios for the model result “population of the guano-
birds” with respect to the uncertain data of Fig. 10.1
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Fig. 10.15 (a–d) Correlation coefficients for the model result “harvestable anchovy biomass” with
respect to the uncertain data of Fig. 10.1; the coefficients are estimated at each of the 60 points of time.
Data nos. 1, 11, 12, 24 and 33 are identified as the main contributors to the uncertainty of the computed
harvestable anchovy biomass. For their meaning, see the caption of Fig. 10.12 or see Fig. 10.1
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population of guano-birds extends more to lower values if compared to the results
obtained with best estimate data values and the best estimate El Nino sequence.

Regression coefficients cannot be obtained for the reason given above. Conse-
quently, the coefficient of determination R2 is not available to measure how much of
the uncertainty in Figs. 10.10 and 10.11 is explained by the top ranked uncertain
data. None of the uncertain data with large variance inflation factors of the regression
coefficients is among the latter, and therefore, standardized regression coefficients
have been obtained by admitting only the top ranked uncertain data into the
regression model. The corresponding R2 value is initially high for both model results
(over or just below 0.8) and starts to decline after period 20. This decline is sharp for
the model result “population of guano-birds”. The R2 value settles at around 0.5 at
period 30 and fluctuates about this value for the rest of the time interval. The decline
is smooth for the result “harvestable anchovy biomass”. However, the R2 value
crosses the 0.5 line between period 40 and period 50 and continues to decline
towards the end of the time interval. To get a clearer picture of the uncertainty
importance over the time periods with low R2 value, 1000 additional model runs
were performed with only the 5 top ranked uncertain data sampled according to their
subjective probability distributions and the El Nino event sequence varied but all
other uncertain data set at their best estimate values. Figures 10.18 and 10.19 show
the statistical tolerance limits for “population of guano-birds” and “harvestable
anchovy biomass”. Comparison with Figs. 10.10 and 10.11 demonstrates that the
five top ranked uncertain data together with the uncertain El Nino sequence explain
most of the uncertainty.

Figures 10.20 and 10.21 present the statistical tolerance limits for “population of
guano-birds” and “harvestable anchovy biomass” if only the El Nino event sequence
is varied and all uncertain data are set at their best estimate values. The resulting
uncertainty range is moderate.

10.2.12 Conclusions

– Best estimate results and uncertainty analysis suggest that the fishing quota may
be sustainable over the projected time period although the uncertainty of the
computed harvestable anchovy biomass is rather large.

– The guano-bird population seems to be in a dynamic equilibrium with the
anchovy population.

– Apart from the uncertainty about

when an El Nino will strike and
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Fig. 10.16 (a–d) Rank correlation coefficients for the model result “harvestable anchovy biomass”
with respect to the uncertain data of Fig. 10.1
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Fig. 10.17 (a–d)
Approximate correlation
ratios for the model result
“harvestable anchovy
biomass” with respect to the
uncertain data of Fig. 10.1
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Fig. 10.18 The continuous connections of the local (at intervals of 4 months) (90%, 95%)
two-sided statistical tolerance limits of the computed population of guano-birds. Clearly, most of
the uncertainty, shown in Fig. 10.11, is explained by the five top ranked uncertain data and by the El
Nino event sequence
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Fig. 10.19 The continuous connections of the local (at intervals of 4 months) (90%, 95%)
two-sided statistical tolerance limits of the computed harvestable anchovy biomass. Clearly, most
of the uncertainty shown in Fig. 10.10 is explained by the five top ranked uncertain data and by the
El Nino event sequence
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Fig. 10.20 The continuous connections of the local (at intervals of 4 months) (90%, 95%)
two-sided statistical tolerance limits of the computed population of guano-birds; they are obtained
using a random sample of size N ¼ 1000 of El Nino event sequences, while all uncertain data are
kept at their best estimate values
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Fig. 10.21 The continuous connections of the local (at intervals of 4 months) (90%, 95%)
two-sided statistical tolerance limits of the computed harvestable anchovy biomass. They are
obtained using a random sample of size N ¼ 1000 of El Nino event sequences, while all uncertain
data are kept at their best estimate values

328 10 Practical Examples



how severe it will be only five uncertain data are main contributors to uncertainty
of the computed harvestable anchovy biomass. These are in the order of their
uncertainty importance:

Biomass value at which fecundity starts to decline (par. no. 12)
Infant mortality rate of anchovies (par. no. 33)
Initial value of biomass (par. no. 24)
Exponent in food/survival relationship for guano-birds (par. no. 11)
Growth rate of guano-bird population (par. no. 1).

Improving the state of knowledge of these uncertain data would reduce the large
uncertainty of the computed harvestable anchovy biomass is most effectively.

10.3 Uncertainty Analysis of Results from the Application
of a Dose Reconstruction Model

A population of I ¼ 1000 individuals was accidentally exposed to a carcinogenic
contaminant. The release of the contaminant into the environment took place many
years ago. Exposure of the individuals occurred via the intake of a specific foodstuff
and during outdoor activities in the contaminated area.

10.3.1 The Assessment Question

In order to decide about compensation for the affected individuals, the decision-
makers need to know the percentage of the exposed population with dose above a
given limit value and who these individuals are. The dose value needs to be
computed for each of the I ¼ 1000 exposed individuals in order to answer these
questions. The basic assessment question therefore is:

“What is the dose of individual i, i ¼ 1, . . ., 1000?”. This question has a single
true answer, namely the set of 1000 individual dose values. This set of values may be
summarized by an empirical distribution and from this distribution in its comple-
mentary cumulative form the percentage of individuals with dose above the given
limit value may be read.

The following notation is used in the subsequent subsections:

d the vector of the I unknown true values of the consumed quantity of the
specific foodstuff

d+ the vector of the recalled (in interviews with the exposed individuals) values of
the quantity consumed

d* a vector of I possibly true values of the quantity consumed
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δ the vector of the unknown true recall errors
δ∗ a vector of possibly true recall errors
δ~ an interim vector of possibly true recall errors
m the vector of the J unknown true contamination values of the foodstuff
m+ the vector of the measured contamination values
m* a vector of J possibly true contamination values
μ the vector of the unknown true measurement errors
μ∗ a vector of possibly true measurement errors
μ~ an interim vector of possibly true measurement errors
b* a vector of I possibly true individual exposure values due to ground

contamination
f* a vector of I possibly true individual-specific values of the coefficient used in

the transfer of exposure into dose.

The following types of measurement error shall be considered:

• Berkson error: The true value is the sum or product of themeasured value and a
random variable that is statistically independent of the measured value.

• Classical error: Themeasured value is the sum or product of the true value and a
random variable that is statistically independent of the true value.

Schafer and Gilbert (2006) present practical examples for both types of error
together with a thorough explanation of the difference as well as of its consequences
for regression analysis. Clearly, for both types, the true value is somewhere about the
measured value. Its state of knowledge can be quantified by a subjective probability
distribution that is based on the measured value plus all available information about
the error distribution, i.e. about the random variable mentioned above. In the present
example, one measurement result or recalled value is given per uncertain datum in
the two sets of size I and J, respectively. Sampling independently from each of the
I or J individual subjective probability distributions, to obtain a set of input values
for one Monte Carlo simulation run of the uncertainty analysis, would be adequate if
the errors are of the Berkson type. For this measurement error type, measured value
and error are statistically independent. In the case of the classical measurement error,
however, measured value and error are statistically dependent. Therefore, while each
individually sampled value can be considered as possibly true, the set of input values
cannot be considered as possibly true. Reason is that the statistical dependence was
ignored by the sampling procedure, and therefore, the variance of the set of sampled
values is bound to differ from that of the true values (see Sect. 3.3.1.1). Conse-
quently, the set of independently sampled values is not suitable as input for a Monte
Carlo simulation run of the uncertainty analysis. It requires the modelling of the
statistical dependence between measured values and measurement errors, which
characterizes the classical error, in order to obtain sets of input values that are
suitable for the uncertainty analysis.
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10.3.2 The Model

The model considers the total intake di of the foodstuff for each of the exposed
individuals i ¼ 1, . . ., 1000. A recalled value di

+ is obtained in interviews with the
individuals. It is subject to the so-called recall error δi. The error is of the additive
classical measurement error type. The 1000 total intake values are uncertain input
data of the model.

The model also considers J ¼ 50 producers of the specific foodstuff. From each
producer, one measured value mj

+ of the contamination mj, j ¼ 1, . . ., 50, is
available. The 50 measurement values are subject to a multiplicative classical
measurement error μj. The 50 contamination values are uncertain input data of the
model.

For each individual, the model identifies at most three producers that supplied the
individual with contaminated foodstuff. It also considers the proportion ci,j of the
individual’s total intake of the foodstuff that was supplied by each of the identified
producers j 2 l(i) where l(i) is the set of indices j of those producers that supplied the
foodstuff to individual i. The values ci,j are uncertain input data of the model. Their
uncertainty is neglected in this illustrative example.

The model also divides the contaminated area into K ¼ 5 sub-areas of distinctly
different average ground contamination, and it assigns each of the producers and
individuals to their sub-area. k(i) is the index of the sub-area where individual i lived
at the time of exposure. The average ground contamination values are input data of
the model and are derived from several measurements taken in the area. They are
considered to be rather accurate. The ground contamination bi, to which individual
iwas exposed, differs in the sense of a multiplicative Berkson error, from the average
value for the sub-area in which individual i lived.

Additionally, the model considers a factor fi that is to be used in the transfer of
exposure into the dose for individual i. The individual values fi vary, in the sense of a
multiplicative Berkson error, about the mean value ϕ taken over many individuals.
There is an estimate of ϕ available in the literature. It is uncertain how well it fits the
mean over the exposed population. The values fi are uncertain input data of the
model, while the uncertain datum ϕ is the unknown mean value of the frequency
distribution summarizing the variability of the transfer factor within the exposed
population.

Furthermore, the model makes use of two additional data, namely r and t, in the
transformation of exposure into dose. The values to be used for these two data are the
same for all individuals but are imprecisely known. Their uncertainty is shared by
the computations of the individual dose values.

The dose of individual i is computed as

qi ¼
X
j2l ið Þ

ci, jmj

0
@

1
Adi þ bit

2
4

3
5rf i

See Sect. 10.3.8 for extensions of the assessment model.
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As was mentioned in the introduction to this chapter, the model only serves
illustration purposes. In practice, dose reconstruction models are rather complex and
computationally demanding.

10.3.3 The Analysis Tool

The uncertainty and sensitivity analysis was performed with version 3.6 of the
analysis software SUSA (Kloos 2015) .

SUSA supports the probabilistic modelling of the state of knowledge of uncertain
data. It offers a large selection of distribution types, takes distribution truncations
into account, derives distribution parameters from quantile values and plots the
selected distributions. For the quantification of state of knowledge dependences, it
accepts population measures of association, sample measures, conditional distribu-
tions, restrictions, complete dependence and functional relationships between uncer-
tain data and provides scatter plots to illustrate the selected dependence
quantification.

SUSA offers simple random sampling and Latin Hypercube sampling, derives
distribution-free quantile estimates as well as statistical tolerance limits and performs
statistical tests of distribution hypotheses and fitting of distributions to data. A choice
of uncertainty importance measures is available for model output in the form of
single values as well as of discretized functions of an independent variable such
as time.

10.3.4 The Elicitation Process

There was no elicitation process as this example has been constructed for illustration
purposes only.

10.3.5 The Potentially Important Uncertainties

The analysis considers the following uncertain data:

P1 � P1000 The individual recall errors δi
P1001 � P1050 The errors μj of the contamination measurements of the foodstuff
P1051 � P2050 The multiplicative Berkson error (factor to the average ground

contamination) of the individual exposures bi
P2051 � P3050 The multiplicative Berkson error (factor to the average value ϕ) of

the individual factor values fi
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P3051 The mean value ϕ around which the individual transfer factors fi
vary

P3052 Transformation parameter r (same value for all individuals)
P3053 Transformation parameter t (same value for all individuals)

Although true value and error are statistically independent in the classical mea-
surement error situation, the value of their sample correlation may differ from zero.
Therefore, the following uncertain data are additionally included in the analysis:

P3054 The coefficient of Pearson’s sample correlation r(d, δ) between the true total
quantities consumed and their recall errors

P3055 The coefficient of Pearson’s sample correlation r(ln(m),ln(μ)) between the
natural logarithms of the true contamination values and of their
measurement errors

10.3.6 The State of Knowledge Quantifications

P1 � P1000 Normal subjective probability distribution with mean value 0.0 and
standard deviation 5.0 for each δi, i ¼ 1, . . ., 1000

P1001 � P1050 Logarithmic normal (lognormal) subjective probability distribution
with parameters 0.0 and 0.2 as mean value and standard deviation
for the natural logarithm of each μj, j¼ 1, . . ., 50; the mean value of
the distribution for each μj is larger than 1.0 to account for
measurement bias.

P1051 � P2050 Lognormal subjective probability distribution with parameters
�0.045 and 0.3 as mean value and standard deviation for the
natural logarithm of each bi, i ¼ 1, . . ., 1000

P2051 � P3050 Lognormal subjective probability distribution with parameters
�0.125 and 0.5 as mean value and standard deviation for the
natural logarithm of each fi, i ¼ 1, . . ., 1000

P3051 Lognormal subjective probability distribution with parameters
�6.5 and 0.25 as mean value and standard deviation for the
natural logarithm of ϕ

P3052 Lognormal subjective probability distribution with parameters 3.2
and 0.2 as mean value and standard deviation for the natural
logarithm of r

P3053 Lognormal subjective probability distribution with parameters
�5.5 and 0.5 as mean value and standard deviation for the natural
logarithm of t

P3054 T998/(998 + T998
2)1/2 where T998 is Student distributed with degree

of freedom 998 (Rosner 1995)
P3055 T48/(48 + T48

2)1/2 where T48 is Student distributed with degree of
freedom 48
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T998 and T48 are each expressed using a standard normal distributed quantity and an
independent Chi2 distributed quantity with the degree of freedom equal to the
number of data points minus 2.

Figure 10.22 presents the SUSA Output “Documentation Sheet” for the uncertain
data varied in the outer simulation loop.

10.3.7 State of Knowledge Dependences

State of knowledge dependence between P1, . . ., P1000 is introduced through the
condition

r(d+, δ∗) ¼ g(r(d, δ), δ∗, d+),
and state of knowledge dependence between P1001, . . ., P1050 is introduced

through the condition

r ln mþð Þ; ln μ∗ð Þð Þ ¼ g r ln mð Þ; ln μð Þð Þ; ln μ∗ð Þ; ln mþð Þð Þ:
r(.,.) stands for Pearson’s sample correlation coefficient and the function g is

given in the next subsection for possibly true values r*(.,.) to the unknown sample
correlation coefficients r(.,.) needed in order to have s2d∗ ¼ s2d and s2ln m∗ð Þ ¼ s2ln mð Þ,
respectively (see Sect. 3.3.1.1).

Fig. 10.22 SUSA output: documentation sheet for the uncertain data varied in the outer
simulation loop
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10.3.8 Propagation of the State of Knowledge Quantifications
Through the Model

The Monte Carlo simulation with SUSA proceeds in two nested simulation loops of
sample size N for the outer loop (chosen to be 1000) and of sample size I¼ 1000 for
the inner loop. In every simulation of the outer loop, SUSA provides one possibly
true value each for ϕ, r, t, r(d, δ), r(ln(m),ln(μ)) sampled according to the subjective
probability distributions expressing the state of knowledge for P3051 to P3055 (see
Fig. 10.22). These values are then used in the inner loop. The inner loop runs over
the I ¼ 1000 individuals.

The assessment model has been amended in order to

– Provide in the inner loop the sample values of the vectors δ�, μ�, b*, f* drawn
according to the subjective probability distributions specified for P1, . . ., P3050.

– Post-process in the inner loop the vector δ� by permuting its components such
that for the permuted vector δ∗ the sample correlation with d+ is

r∗ dþ;δ∗
� � ¼ sδ� þ r∗ d;δð Þ �r∗ d;δð Þsδ� þ s2δ� r∗2 d;δð Þ � 1

� �þ s2dþ
� �1

2

h in o
=sdþ

[see Eq. (130) in Hofer (2008)].
r∗(d, δ) is the value sampled for P3054 by SUSA, δ∗ is the vector of the

permuted components of δ�, sδ� is the sample standard deviation of the compo-
nents of δ� and sdþ is the sample standard deviation of the recalled values. The
seven steps of the permutation algorithm are described in Sect. 3.3.1.1. The model
run uses the possibly true vector d∗ ¼ d+ � δ∗ of consumed quantities of the
contaminated foodstuff.

– Post-process in the inner loop the vector ln(μ�) by permuting its components such
that for the permuted vector ln(μ∗) the sample correlation with ln(m+) is

r∗ ln mþð Þ; ln μ∗ð Þð Þ ¼ �
sln μ�ð Þ þ r∗ ln mð Þ; ln μð Þð Þ�� r∗ ln mð Þ; ln μð Þð Þsln μ�ð Þ

þ sln μ�ð Þ2 r∗2 ln mð Þ; ln μð Þð Þ � 1
� �þ s2ln mþð Þ

�1
2

n i�
=sln mþð Þ:

r∗(ln(m), ln(μ)) is the value sampled for P3055 by SUSA, ln(μ
∗) is the vector of the

permuted components of ln(μ�),sln μ�ð Þ is the sample standard deviation of the natural
logarithms of the components of μ� and sln mþð Þ is the sample standard deviation of
the natural logarithms of the measured contamination values of the produced food-
stuff. The model run uses the possibly true vector m∗ ¼ exp (ln(m+) � ln (μ∗)) of
contamination values.

A possibly true set of I ¼ 1000 dose values is then computed in the inner loop
using the sampled data values.

A new set of values is sampled in the outer loop, and this is followed by a run
through the inner loop as described above. This sequence of simulations is repeated
N ¼ 1000 times for the purpose of uncertainty analysis.
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10.3.9 Why Two Monte Carlo Simulation Loops?

If the error is additive, a value sampled at random according to the error distribution
was added to the true value to give the measurement value. This added value is
unknown just as the true value is. Any value sampled at random according to the
error distribution could be the unknown added value. Subtracting it from the
measurement value therefore renders a value that can be considered as possibly
true. It would therefore be entirely appropriate to perform I ¼ 1000 independent
Monte Carlo simulations of sample size N ¼ 1000 each instead of proceeding with
two nested simulation loops, as long as the goal of the assessment was only to
independently quantify the uncertainty of the dose received by each of the I ¼ 1000
individuals in the exposed population. The N ¼ 1000 dose values, computed for
each individual, could then be compared to the given limit value and the subjective
probability for compliance with (or violation of) the limit could be estimated for each
individual’s dose independently (see also the remark below).

Since the assessment question also asks for the percentage of the exposed
population with dose value above the limit, I ¼ 1000 independent Monte Carlo
simulations are clearly not the correct approach. This approach would ignore the
effect of the shared uncertainties and of the correlations between the recalled values
d+ and their errors δ as well as the measurement values m+ of the contamination and
their errors μ. The answer to this question requires a possibly true set of I ¼ 1000
dose values and not just I ¼ 1000 independently sampled possibly true dose values.
This is not merely a semantic difference. It is an important technical difference that
has to do with the state of knowledge dependence of the individual dose values. This
dependence is due to uncertainties that are fully or partially (like the two joint
empirical distributions of I ¼ 1000 as well as J ¼ 50 measurement values and
their errors)1 shared by the computations of the individual dose values. At this point,
it may be helpful to categorize the uncertain data P of a dose calculation for a cohort
of I individuals as in Simon et al. (2015).

Due to the shared uncertain data and due to data with common uncertainty
contributors, the states of knowledge of the I true dose values are dependent and
are thus quantified by a joint subjective probability distribution. As a consequence,
the dose values cannot be sampled independently according to their marginal
subjective probability distributions if the goal of the assessment is to simulate a
possibly true set of I dose values. Once a dose value has been selected for an
individual, according to the corresponding marginal subjective probability distribu-
tion, the set of dose values for all other individuals in the exposed population can no
longer be chosen at random according to their marginal subjective probability
distributions. This becomes immediately clear if one considers, for instance, the
uncertain data nos. 3051–3053. The dose value chosen for the first individual was

1The choice of possibly true vectors of measurement errors has to satisfy the condition that the
variance of the difference between measurement values and possibly true errors must be a possibly
true variance of the true values. In particular, it must not be inflated by the variance of the errors.
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computed with specific values for these uncertain data, and therefore, the dose values
for all other individuals would need to be chosen from only those that were
computed with the same values for these uncertain data. If sampled independently,
the set of I dose values would exhibit inter-individual variability that is inappropri-
ately inflated by the variance contributions from shared uncertainties. This would
render them useless for dose–response estimation.

N ¼ 1000 possibly true sets of I ¼ 1000 individual dose values each are obtained
through a Monte Carlo procedure performed in two nested simulation loops [often
called 2DMC (Simon et al. 2015)]. The method used in this example is the procedure
described in Sect. 9.4. It is used here for the uncertainty analysis of a dose recon-
struction although all uncertainties are of Type B. The reason is that partially or fully
shared uncertainties require an outer simulation loop while individual-specific
uncertainties are accounted for in the inner simulation loop.

In this example, the procedure using two nested simulation loops provides
N possibly true sets of I dose values each as follows:

In the outer loop:

(a) Sample one value each for the uncertain data t, ϕ, r, nd, ad, nc, ac.
(b) Sample one value each for the uncertain datamj, j¼ 1, . . ., J; the input valuesmj

+,
j ¼ 1, . . ., J are subject to classical measurement error following the same error
distribution. Therefore, proceed as in Sect. 3.3.1.1 using the sampled values nc

and ac to obtain the sample value t48 ¼ nc=
ac
48

� �1
2 and use it in (3.16) to compute

the sample value r∗(ln(m), ln(μ)). Use the values mj* ¼ exp(ln(mj
+) – ln(μj*)) as

possibly true values for mj, j ¼ 1, . . ., J.
(c) Sample a value for the uncertain datum ϕ.
(d) The input values di

+, i ¼ 1, . . ., I are subject to classical measurement error
following the same error distribution. Therefore, proceed as in Sect. 3.3.1.1

using the sampled values nd and ad to obtain the sample value of t998 ¼ nd=
ad
998

� �1
2 and use it in (3.16) to compute the sample value r∗(d, δ). Use the values

d∗i ¼ dþi � δ∗i as sample values that are possibly true for di, i ¼ 1, . . ., I in the
inner simulation loop.

Then, in the inner loop, for i ¼ 1, . . ., I

(e) Sample a value fi* for the uncertain datum fi.
(f) Take the value di* for di and sample bi* for bi.
(g) Compute the dose value using the sampled values for the uncertain data t, r, nd,

ad, nc, ac, ϕ, fi, bi, di and mj, j 2 l(i) (i.e. the contamination values with respect to
the suppliers of the foodstuff to individual i).

At the end of the inner loop:

(h) The possibly true set of I dose values may now be used to determine a possibly
true percentage of the individuals with dose value above the limit. To this end,
the I dose values are arranged in the form of a complementary cumulative
distribution function.
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Repeat steps (a), (b), (c), (d) and (h) and the execution of the inner simulation loop
N times, if N is the chosen sample size of the outer Monte Carlo simulation. The
results are N possibly true sets of I dose values each. These N sets may be used to
quantify the effect of dose uncertainty on the state of knowledge of the true
percentage of individuals with dose value above the limit.

The results from the procedure using two nested simulation loops also answer the
first question mentioned above, namely to determine for each individual the subjec-
tive probability for the dose value to exceed the given limit value. A Monte Carlo
sample of N possibly true dose values can be obtained for any specific individual by
simply collecting the N dose values computed for the individual over the
N repetitions of the outer simulation loop. Thus, the method addresses questions
about the uncertainty of the true dose for any specific individual as well as questions
about the uncertainty of the true set of N dose values for the exposed population. The
computational effort involved in the two nested simulation loops is not different to
the approach running I independent Monte Carlo simulations of size N. In both
cases, I*N individual dose calculations are required.

Uncertainty importance measures can be derived for the mean value, standard
deviation, the percentage of individuals with dose above a given limit value and any
other distribution characteristic of the probability distribution summarizing the
variability within the set of I individual dose values. This task uses the N sets of
I dose values and the N sets of values sampled for the uncertain data in the outer
Monte Carlo simulation loop. The ranking indicates where the state of knowledge
should be improved in order to reduce dose uncertainty most effectively.

A ranking of uncertain data may also be obtained for any individual’s dose value
by using the N dose values collected over the outer loop and the N values of all
involved uncertain data sampled in the outer and inner loop of the simulation.

10.3.10 Answering the Assessment Questions

The assessment questions of Sect. 10.3.1 can only be answered by subjective
probability distributions that quantify the combined influence of the uncertain data
involved in the dose reconstruction.

For instance, Fig. 10.23 answers the question “What is the dose of individual i ¼
22?”. From the distribution, it becomes evident that there is only a negligible
subjective probability for the dose to be larger than the limit value dlim ¼ 1000.
An answer to the question would be:

“The dose of individual i ¼ 22 is smaller or equal to 400 with subjective
probability of approximately 0.95.”

The 95% quantile was estimated from a sample of N ¼ 1000 dose values. The
sample was obtained by Monte Carlo simulation, i.e. it was drawn at random
according to the subjective probability distribution for the dose of individual i ¼
22. This subjective probability distribution results from the propagation of the
combined state of knowledge for the involved uncertain data through the model.

338 10 Practical Examples



In order to account for the possible estimation error (also called sampling error), the
upper (95%, 95%) statistical tolerance limit, indicated on the abscissa of Fig. 10.23,
may be used in answering the assessment question. Its meaning is:

“At a confidence level of at least 95% the dose of individual i ¼ 22 is smaller or
equal to 434 with subjective probability of at least 0.95.”

or
“At least 95% of the dose values of individual i ¼ 22 that have to be considered as

possibly true, given the quantified state of knowledge at the level of the uncertain
data, are below 434 at a confidence level of at least 95%.”

These uncertainty statements refer to the true dose of individual i ¼ 22. In
subchapter 7.2, it was explained that this reference to the true value is based on
the following assumptions:

– The encoded computer model is not seriously flawed.
– The most important contributors to uncertainty of its results have been accounted

for in the uncertainty analysis (the combined effect of all those not accounted for
may be neglected).

– The states of knowledge at the level of parameters, models and input data have
been appropriately expressed by a joint subjective probability distribution.
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Fig. 10.23 Empirical subjective probability distribution for the dose of individual i ¼ 22; the
distribution shows the combined influence of the uncertain data on the reconstruction of the dose
value. An upper (95%, 95%) statistical tolerance limit of the dose value is shown on the abscissa. At
a confidence level of at least 95%, the subjective probability is at least 0.95 for the dose of
individual i ¼ 22 not to exceed 434
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– Any changes to the interpretation of “subjective probability” (see Sect. 3.4.1) are
of only minor consequence.

If there is doubt whether the first assumption does apply, then the uncertainty
statements may refer only to the computed dose for individual i ¼ 22. If the second
assumption does not apply, then the uncertainty statements are only of limited use.
The uncertainty statements may be useless (or only of illustrative value, as is the case
for the present example) in case the third assumption does not apply.

The corresponding information for individual i ¼ 866 is shown in Fig. 10.24.
Here, the estimate of the subjective probability for the dose value to exceed the limit
value dlim ¼ 1000 is between 0.14 and 0.15. An upper (95%, 95%) statistical
tolerance limit of the dose is again indicated on the abscissa.

Remark
The subjective probability for a dose value above dlim may exceed a decision limit
for several individuals. The dose value may not be above dlim for all of these
individuals in the same possibly true set of dose values. Since only one such set
can be true and since the state of knowledge does not permit to decide which,
compensation will have to be paid to all of those individuals with subjective
probability larger than the decision limit for a dose value above dlim.

The situation with only two clearly separated possibly true wind directions that
could have prevailed at the time of the release of the contaminant may serve as an
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Fig. 10.24 Empirical subjective probability distribution for the dose of individual i ¼ 866; the
distribution shows the combined influence of the uncertain data on the reconstruction of the dose
value. An upper (95%, 95%) statistical tolerance limit of the dose value is shown on the abscissa. At
a confidence level of at least 95%, the subjective probability is at least 0.95 for the dose of
individual i ¼ 866 not to exceed 1645
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example. It is unknown which of the two directions is the true wind direction, and
therefore, the area affected by the contaminant cloud is unknown. Dose values above
dlim may have been computed for individuals from both areas under the assumption
that the wind was blowing in their direction. The subjective probability for a dose
value above dlim may be above the decision limit for several individuals from both
areas. Yet, it is obvious that only individuals from one area could have received a
dose above dlim. However, it will remain unknown which of the two areas.

The question asking for the percentage of individuals with dose above the limit
value dlim ¼ 1000 is answered by the subjective probability distribution in
Fig. 10.25. A two-sided (90%, 95%) statistical tolerance limit is indicated on the
abscissa. It says:

“At a confidence level of at least 95%, the percentage of individuals with dose
above the limit value dlim ¼ 1000 is between 0.1% and 5.7% with subjective
probability of at least 0.90.” Again, this reference to the true percentage (instead
of only to the computed percentage) is appropriate only under the condition that the
assumptions listed above hold.

The uncertainty range shown in Fig. 10.25 is rather wide. It will most likely be
considered as too wide for decision-making. The uncertainty importance measures
will provide guidance as to where the state of knowledge needs to be improved in
order to reduce this substantial uncertainty most effectively.
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Fig. 10.25 Empirical subjective probability distribution for the percentage of individuals with dose
above the limit value; the distribution shows the combined influence of the uncertain data on the
percentage. A two-sided (90%, 95%) statistical tolerance limit of the percentage is shown on the
abscissa. At a confidence level of at least 95%, the subjective probability is at least 0.90 for the
percentage of individuals with dose above the limit value to lie between 0.1% and 5.7%
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It should be noted that the answer to the question asking for the percentage of
individuals with dose above dlim is not affected by the dilemma discussed in the
remark made above. Reason is that each possibly true percentage value is computed
from only one run of the outer simulation loop and therefore uses one possibly true
set of dose values.

The compilation of uncertain data in Sect. 10.3.5 contains 1000 recalled and
50 measurement values subject to error. Inevitably, there is some sample correlation
between the true values and their recall errors and between the true values of the
measurands and their measurement errors. This correlation increases or reduces the
sample variance of the recalled or measurement values, depending on the sign of the
sample correlation coefficient. The measurement values and their errors are corre-
lated as well since the measurement values are x ¼ z + ε. x is the vector of
measurement values, z the vector of true values and ε the vector of errors. If one
were to use z∗ ¼ x� ε∗ as “possibly true” values with ε∗ the vector of possibly true
errors sampled independently of x according to the subjective probability distribu-
tion for the measurement error, one would ignore this correlation in the Monte Carlo
simulation. As a consequence, one would arrive at sets of “possibly true” values with
sample variance even larger than that of the measurement values since
s2Z∗ ¼ s2X þ s2ε∗ . The effect of this variance inflation on the reconstructed dose values
can be seen from a comparison of the scatter plots in Figs. 10.26 and 10.27. It
becomes also apparent from a comparison of Figs. 10.25 and 10.28.

The increased inter-individual variability shown by each of the N dose vectors in
Fig. 10.27 makes them useless for dose–response estimation since the higher
variability will lead to a lower estimate for the dose–response coefficient.
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Fig. 10.26 Scatter plot of mean value versus standard deviation of the N ¼ 1000 sampled dose
vectors
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Fig. 10.27 Scatter plot of mean value versus standard deviation of the N ¼ 1000 sampled dose
vectors. The dependence between measurement or recalled values and their errors was ignored this
time. As a consequence, the cloud of data points is shifted upwards to higher standard deviation
values if compared to Fig. 10.26
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Fig. 10.28 Empirical subjective probability distribution for the computed percentage of individ-
uals with dose above the limit value; the distribution shows the combined influence of the uncertain
data on the percentage. The dependence between measurement or recalled values and their errors
was, however, ignored. This caused the shift to higher standard deviation values illustrated by
Fig. 10.27, and consequently, the subjective probability distribution for the computed percentage of
individuals with dose above the limit value is shifted to higher percentages
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10.3.11 Uncertainty Importance Statements for Selected
Model Results

Figure 10.25 indicates that the computed percentage of individuals with dose above
the limit value is rather uncertain. Within the random sample of size N¼ 1000 (1000
dose vectors of I ¼ 1000 dose values each), the percentage ranges from 0% to over
11%. It will be of interest to know where the main uncertainty contributions to this
wide range come from. Figure 10.29 shows Pearson’s correlation coefficients as
uncertainty importance measures for those uncertain data that are handled by SUSA
(see Fig. 10.22). The uncertain data nos. 4–7 are used to represent the two sample
correlation coefficients P3054 and P3055. Obviously, the main uncertainty contribu-
tions come from the uncertain data nos. 2 (P3052) and 3 (P3053). They have the same
value for all individuals (shared uncertainty). The sign of their uncertainty impor-
tance measure is positive. This indicates that changing the values of these uncertain
data leads to a change of the computed percentage in the same direction. Improving
the state of knowledge for these two uncertain data would reduce the uncertainty of
the percentage of individuals with dose above the limit value most effectively.
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Fig. 10.29 Correlation coefficients as uncertainty importance measures for the percentage of
individuals with dose above the limit value, obtained with respect to the uncertain data handled
in the outer simulation loop by SUSA (see Fig. 10.22). The uncertain data nos. 2 and 3 are clearly
the main contributors to the uncertainty of the computed percentage. The larger their value, the
larger is the percentage of individuals with dose above the limit
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Comparison with the standardized regression coefficients in Fig. 10.30 shows a
slight change for the uncertain datum no. 4. The only spurious correlation of any
consequence in the sample of 1000 sets of data values exists between nos. 4 and
2. The correlation coefficient for no. 4 is partly due to this spurious correlation.

The coefficient of determination R2 is 0.83, saying that a little less than 83% of the
variance of the subjective probability distribution in Fig. 10.25 may be explained by
a linear relationship between the computed percentage of individuals with dose
above the limit value and the values thought to be true for the uncertain data nos.
2 and 3.

The situation is clearly different for the dose values to individuals no. 22 and
no. 866 where the R2 values are only 0.18 and 0.21 for linear least squares regression
models in the uncertain data of Fig. 10.22 (varied in the outer Monte Carlo loop). A
separate calculation of Pearson’s correlation coefficient between the individual dose
values and the corresponding individual components of the vectors δ*, b* and f*
(used in the inner Monte Carlo loop) was performed applying the scatter plot option
in SUSA. By far the largest correlation coefficient is computed for the individual
transfer parameters f22 and f688, respectively, namely 0.857 for the dose of individual
no. 22 and 0.88 for the dose of individual no. 866. Different to the uncertainty of the
percentage of individuals with dose above the limit, the uncertainty of the individual
dose in Figs. 10.23 and 10.24 could be most effectively reduced by improving the
state of knowledge of the uncertain individual transfer parameters.
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Fig. 10.30 Standardized regression coefficients as uncertainty importance measures for the per-
centage of individuals with dose above the limit value, obtained with respect to the uncertain data
handled in the outer simulation loop by SUSA (see Fig. 10.22). Again, the uncertain data nos. 2 and
3 are the main contributors to uncertainty. The larger their value, the larger is the computed
percentage of individuals with dose above the limit. The value of the coefficient of determination
R2 is 0.83
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