
Thorsten Dickhaus

Theory of 
Nonparametric 
Tests



Theory of Nonparametric Tests



Thorsten Dickhaus

Theory of Nonparametric
Tests

123



Thorsten Dickhaus
Institute for Statistics
University of Bremen
Bremen, Germany

ISBN 978-3-319-76314-9 ISBN 978-3-319-76315-6 (eBook)
https://doi.org/10.1007/978-3-319-76315-6

Library of Congress Control Number: 2018935297

Mathematics Subject Classification (2010): 62-01, 62G10, 62G09, 62G30, 62J05, 60F05, 60G15

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-76315-6


To my family



Preface

This book originated from lecture notes, and its main purpose is to provide the
basis for a one-semester graduate course on nonparametric statistical tests. Indeed,
I have given such courses at the Humboldt University of Berlin in the winter term
2014/2015 and at the University of Bremen in the winter term 2016/2017, and I
thank the students for many constructive comments. Special thanks for help with
TeXing are due to Mareile Große Ruse. In the case that the book is used for self-
studies, the reader should have knowledge in measure-theoretic probability theory
on the level of an introductory course. Some advanced concepts from probability
theory, in particular the concept of conditional expectations, are developed in
Chap. 1 of the present work. On the other hand, also researchers may find some of
the material valuable when designing nonparametric tests for specific applications.

My own interest in nonparametric test theory started during my diploma studies
at Aachen University of Applied Sciences, Campus Jülich, when attending lectures
given by Prof. Gerhard Dikta in the years 2001–2003. This was followed up by M.
Sc. studies at Heinrich Heine University Düsseldorf from 2003 to 2005, under the
supervision of Prof. Arnold Janssen. I am very grateful to these teachers of mine
for the many excellent lectures which I have been attending as their student. Also,
some of the teaching material from back then has been used when writing this book.
In particular, the German textbook by Janssen (1998),1 together with some original
research articles of him, has been a valuable source throughout, and parts of Chap. 6
of the present work have their origins in lecture notes of Gerhard Dikta on Bootstrap
Methods in Statistics.

It is impossible to cover the entire spectrum of nonparametric tests within the
scope of a one-semester course. Hence, it is a matter of fact that even some very
popular nonparametric tests are not explicitly covered in this work. For example,
we will not work out rank tests for k-sample problems with k > 2 groups,
although the theory derived in Chap. 4 is general enough to deduce, for example, the

1Janssen A (1998) Zur Asymptotik nichtparametrischer Tests, Lecture notes. Skripten zur
Stochastik Nr. 29. Gesellschaft zur Förderung der Mathematischen Statistik, Münster.
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viii Preface

Kruskal-Wallis test for the comparison of k groups. Also, we will not carry out
detailed power analyses of the derived test procedures, but mainly study their
behavior under the null. Narrowing the focus in this manner allows, on the other
hand, for explaining in a rather detailed manner the underlying mathematical
foundations and statistical principles. I consider this more important than providing
comprehensive lists of test procedures in the style of “cook recipes.” Once the
general principles have been understood, specific procedures follow easily. A
conceptual overview of the material and the underlying general ideas is provided
in Sect. 1.3.

To facilitate the usage of the book for teaching purposes, exercises are provided
at the end of each chapter. In general, there will be four different types of exercises,
namely (1) theoretical exercises involving proofs, (2) application-oriented exercises
involving real data, (3) programming exercises in R, mostly in terms of simulation
studies, and (4) multiple select exercises.

Bremen, Germany Thorsten Dickhaus
January 2018
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Chapter 1
Introduction and Examples

1.1 Basics from Statistics

Let Y denote a random quantity (which may be, depending on the context, a real-
valued random variable, an R

d -valued random vector, d > 1, an R
n×k-valued

random matrix, where n denotes a sample size and k the number of groups in a
k-sample problem, etc.), which describes the possible outcome of an experiment.1

Let Y denote the sample space corresponding to Y , i.e., the set of all possible
realizations of Y , and let B(Y ) ⊆ 2Y denote an appropriate σ -field over Y . The
elements of B(Y ) are called measurable subsets of Y or, synonymously, events.
Denote by P

Y the distribution of Y , assuming that Y is defined on some probability
space (Ω,F ,P). The latter probability space will typically not be given explicitly,
because the fundamental Definition 1.1 below does not require such an explicit
definition. However, one should always be aware of Ω in practice, meaning that we
should know for which universe (or: population) our sample is representative. We
assume that we do not know the distribution P

Y , but that we can provide a family
P of probability measures on the measurable space (Y ,B(Y )) for which we are
sure that PY ∈P = {Pϑ : ϑ ∈ Θ}.
Definition 1.1 (Statistical Experiment/Model) A triple (Y ,B(Y ),P) con-
sisting of a non-empty set Y , a σ -field B(Y ) ⊆ 2Y over Y , and a family
P = {Pϑ : ϑ ∈ Θ} of probability measures on (Y ,B(Y )) is called a statistical
experiment or a statistical model, respectively. If Θ ⊆ R

p, p ∈ N, then we
call (Y ,B(Y ),P) a parametric statistical model, where ϑ ∈ Θ is called the
parameter, and Θ is called the parameter space.

1Witting (1985): “We think of all the data material summarized as one “observation” [. . . ].”
(translation by the author, the observation will be denoted as Y = y).

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Introduction and Examples

Remark 1.2 We will mainly be concerned with nonparametric statistical models.
For example, letting Y = R and denoting by B(R) the system of Borel sets of R,
we may define

Θ = {F : F is a cumulative distribution function on R}. (1.1)

In (1.1), Θ is a function space of infinite dimension, and ϑ = F indexes all
distributions on the real line by means of their cumulative distribution functions
(cdfs). The latter model will be of much importance throughout the remainder.

The goal of statistical inference is to derive assertions about the true, but
unknown distribution P

Y or, equivalently, about the true, but unknown and unob-
servable value of ϑ on the basis of the data (i.e., observation) Y = y. Formally,
many different types of statistical inference problems can be specified as statistical
decision problems. Here, we will mainly be concerned with test problems, which
constitute an important class of statistical decision problems.

Definition 1.3 (Statistical Test Problem, Statistical Test) Assume that two non-
empty and disjoint subsets P0 and P1 of P are given, such that P0 ∪P1 = P .
Our goal is to decide, on the basis of the data Y = y, if PY ∈ P0 or if PY ∈ P1
holds true. If there is a one-to-one correspondence between the elements of P and
the value of ϑ , we can equivalently ask if ϑ ∈ Θ0 or if ϑ ∈ Θ1 holds true, where the
non-empty, disjoint subsets Θ0 and Θ1 of Θ correspond to P0 and P1 in the sense
that PY ∈P0 if and only if ϑ ∈ Θ0. In the latter case, we define the null hypothesis
H0 by

H0 : ϑ ∈ Θ0 ⇐⇒ P
Y ∈P0 (1.2)

and the alternative hypothesis by

H1 : ϑ ∈ Θ1 ⇐⇒ P
Y ∈P1. (1.3)

Often, one directly interprets H0 and H1 themselves as subsets of Θ , i.e., one
considers sets H0 and H1 such that H0 ∪H1 = Θ and H0 ∩H1 = ∅.

A (non-randomized) statistical test ϕ is a measurable mapping

ϕ : (Y ,B(Y )) → ({0, 1}, 2{0,1})

with the convention that

ϕ(y) = 1 ⇐⇒ Rejection of the null hypothesis H0, decision in favor of H1,

ϕ(y) = 0 ⇐⇒ Non-rejection of H0.
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The subset {y ∈ Y : ϕ(y) = 1} is called the rejection region or, synonymously, the
critical region of ϕ, {ϕ = 1} for short. Its complement {y ∈ Y : ϕ(y) = 0} is called
the acceptance region of ϕ, {ϕ = 0} = �{ϕ = 1} for short.

The randomness of the data Y = y implies the possibility of making an error when
carrying out the test. One says that an error of the first kind (type I error) occurs, if
the decision in favor of H1 is taken, although actually H0 holds true. Analogously,
an error of the second kind (type II error) occurs if H0 is not rejected, although H1
holds true. Typically, it is not possible to minimize the two error probabilities (type I
error probability and type II error probability) at the same time for a given statistical
model and fixed hypotheses H0 and H1. The classical (Neyman-Pearson) approach
to the statistical test problem therefore treats the two errors asymmetrically. The
type I error is considered as the more severe error, and its probability is bounded by
a pre-defined constant α ∈ (0, 1), which is called the significance level. A standard
choice is to take α = 5%. In the class of all tests ϕ for which the type I error
probability does not exceed α, one then tries to find the best test in terms of minimal
type II error probability. Equivalently, this means that one aims at maximizing the
test power (which is the probability of rejecting the null hypothesis, if H1 is true)
under the constraint of keeping the significance level α. Notice, however, that the test
power typically depends on the location of ϑ ∈ H1, if H1 is a composite alternative
hypothesis (i.e., |H1| > 1). Hence, one typically has to decide against which regions
in Θ1 one aims at optimal power. Let us summarize these concepts formally.

Notation 1.4 Consider the framework of Definition 1.3.

(i) The quantity βϕ(ϑ) = Eϑ

[
ϕ
] = Pϑ(ϕ = 1) = ∫

Y ϕdPϑ denotes the rejection
probability of a given test ϕ as a function of ϑ ∈ Θ . For ϑ ∈ Θ1 we call βϕ(ϑ)

the power of ϕ in the point ϑ . For ϑ ∈ Θ0, βϕ(ϑ) is the type I error probability
of ϕ under ϑ ∈ Θ0.

For fixed α ∈ (0, 1), we call
(ii) a test ϕ with βϕ(ϑ) ≤ α for all ϑ ∈ H0 a level α test,
(iii) a level α test ϕ unbiased, if βϕ(ϑ) ≥ α for all ϑ ∈ H1,
(iv) a level α test ϕ1 better than another level α test ϕ2, if βϕ1(ϑ) ≥ βϕ2(ϑ) for all

ϑ ∈ H1 and ∃ϑ∗ ∈ H1 with βϕ1(ϑ
∗) > βϕ2(ϑ

∗).

Remark 1.5 Notice that, under the framework of Notation 1.4, a statistically
safeguarded decision (namely, keeping the significance level α) can only be taken
in favor of the alternative H1. This implies the standard rule that one should express
the scientific claim that one is interested to gain evidence for as the alternative
hypothesis H1. From a decision-theoretic viewpoint, one may interpret ϕ(y) = 0
as a decision in favor of Θ (the null hypothesis cannot be rejected, meaning that the
union of both H0 and H1, which is whole Θ , is “compatible” with the data y).

An important subclass of tests is constituted by tests of (generalized) Neyman-
Pearson type.

Definition 1.6 Let (Y ,B(Y ), (Pϑ )ϑ∈Θ) be a statistical model and ϕ a test for the
pair of hypotheses ∅ �= H0 ⊂ Θ versus H1 = Θ \ H0. Assume that ϕ relies on



4 1 Introduction and Examples

a test statistic T : Y → R. More precisely, assume that the decision rule of ϕ

is characterized by means of rejection regions Γα ⊂ R for each significance level
α ∈ (0, 1), such that ϕ(y) = 1 ⇐⇒ T (y) ∈ Γα, for data y ∈ Y . Assume that the
test statistic fulfills the monotonicity condition

∀ϑ0 ∈ H0 : ∀ϑ1 ∈ H1 : ∀c ∈ R : Pϑ0(T > c) ≤ Pϑ1(T > c). (1.4)

Then we call ϕ a test of (generalized) Neyman-Pearson type, if for every α ∈ (0, 1)

there exists a constant cα , such that

ϕ(y) =
{

1, T (y) > cα,

0, T (y) ≤ cα.

Remark 1.7

(a) The monotonicity condition (1.4) means that T (Y ) tends under alternatives to
larger values than under the null.

(b) The rejection regions corresponding to a test of Neyman-Pearson (N-P) type are
given by Γα = (cα,∞).

(c) The constants cα are determined in practice via cα = inf{c ∈ R : P̄(T > c) ≤
α}, where the probability measure P̄ is chosen such that

P̄(T ∈ Γα) = sup
ϑ0∈H0

Pϑ0(T ∈ Γα)

holds true, if H0 is a composite null hypothesis (“the test is calibrated at the
boundary of the null hypothesis”). If H0 is simple (meaning that |H0| = 1) and
the distribution of T under PH0 is absolutely continuous, then it holds cα =
F−1

T (1− α), where FT denotes the cdf of T (Y ) under H0.
(d) A version of the fundamental lemma of test theory by Neyman and Pearson

yields that under (1.4) and further mild conditions N-P type tests are uniformly
(over all ϑ1 ∈ H1) best level α tests for H0 versus H1.

There are dualities between test problems/tests and confidence estimation prob-
lems/confidence regions in the sense of the following definition.

Definition 1.8 Let a statistical model (Y ,B(Y ), (Pϑ)ϑ∈Θ) be given. Then we call
C = (C(y) : y ∈ Y ), where C(y) ⊆ Θ for all y ∈ Y , a family of confidence
regions at confidence level 1− α for ϑ ∈ Θ , if

∀ϑ ∈ Θ : Pϑ ({y ∈ Y : C(y) � ϑ}) ≥ 1− α.

Theorem 1.9 (Correspondence Theorem, see, e.g., Aitchison, 1964) Let a
statistical model (Y ,B(Y ), (Pϑ)ϑ∈Θ) be given.



1.1 Basics from Statistics 5

(a) If for every ϑ ∈ Θ a level α test ϕϑ for the point null hypothesis {ϑ} is available,
and we let ϕ = (ϕϑ : ϑ ∈ Θ), then C ≡ C (ϕ), defined by C(y) = {ϑ ∈ Θ :
ϕϑ(y) = 0}, constitutes a family of confidence regions at confidence level 1−α

for ϑ ∈ Θ .
(b) If C is a family of confidence regions at confidence level 1− α for ϑ ∈ Θ , and

if we define ϕ = (ϕϑ : ϑ ∈ Θ) via ϕϑ(y) = 1− 1C(y)(ϑ), then ϕ is a (multiple)
test at local level α, meaning that, for every ϑ ∈ Θ , the test ϕϑ is a level α test
for the point null hypothesis {ϑ}.

Proof In both parts of Theorem 1.9, we have that for all ϑ ∈ Θ and for all y ∈ Y
the relationship ϕϑ(y) = 0 ⇐⇒ C(y) � ϑ holds true. Hence, ϕ is a (multiple) test
at local level α, if and only if

∀ϑ ∈ Θ : Pϑ ({y ∈ Y : ϕϑ(y) = 0}) ≥ 1− α

⇔ ∀ϑ ∈ Θ : Pϑ ({y ∈ Y : C(y) � ϑ}) ≥ 1− α

⇔ C is a family of confidence regions at confidence level 1− α for ϑ ∈ Θ.

Remark 1.10

(a) Figure 1.1 illustrates the duality ϕϑ(y) = 0 ⇐⇒ ϑ ∈ C(y) graphically for the
case, that both Y and Θ are one-dimensional.

Fig. 1.1 Graphical illustration of the duality ϕϑ(y) = 0 ⇐⇒ ϑ ∈ C(y)
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(b) A single level α test ϕ for an (arbitrary) null hypothesis H0 can also be
interpreted as a (1− α)-confidence region by setting

C(y) =
{

Θ , if ϕ(y) = 0,

H1 = Θ\H0 , if ϕ(y) = 1,

cf. Remark 1.5. Conversely, every single confidence region C(y) induces a level
α test ϕ for a null hypothesis H0 ⊂ Θ versus the alternative hypothesis H1 =
Θ \H0 by setting ϕ(y) = 1H1(C(y)), where

1B(A) :=
{

1 , if A ⊆ B,

0 , otherwise,

for arbitrary sets A and B.

Let us end this section with a theorem from measure theory which we will
occasionally use for some technical proofs in the forthcoming sections.

Theorem 1.11 ( Vitali’s Theorem, seeWitting (1985), Satz 1.181) Let (Ω,F , μ)

be a σ -finite measure space. Assume that fn : Ω → R is a measurable mapping for
each n ∈ N0. If fn → f0 μ-almost everywhere and

lim sup
n→∞

∫
|fn|pdμ ≤

∫
|f0|pdμ < ∞ for some p ≥ 1,

then it follows that
∫ |fn − f0|pdμ → 0 for n → ∞. If μ is a probability

measure, then the assumption of μ-almost everywhere convergence of fn to f0 can
be replaced by convergence in μ-probability of fn to f0.

1.2 Conditional Distributions and Expectations

Definition and Theorem 1.12 Let X and Y be two real-valued, jointly absolutely
continuously distributed random variables, which are defined on the same proba-
bility space (Ω,F ,P). Denote the (joint) Lebesgue density of (X, Y ) by f(X,Y ) :
R

2 → R≥0. Then the following assertions hold true.

(a) The function fY , given by fY (y) = ∫∞
−∞ f(X,Y )(x, y)dx, is a marginal

Lebesgue density of Y .
(b) The function fY |X(·|·), given by

fY |X(y|x) = f(X,Y )(x, y)

fX(x)
for x, y ∈ R,
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is a conditional Lebesgue density of Y with respect to X, where we let
fY |X(y|x) := 0 whenever fX(x) = 0.

(c) Let B(R) denote the Borel σ -algebra on R. For x ∈ R with fX(x) > 0, the set
function

B(R) � B �→ P(Y ∈ B|X = x) :=
∫

B

fY |X(y|x)dy

is called the conditional distribution of Y given X = x.
(d) Calculation rules:

(i) P(X ∈ A,Y ∈ B) = ∫
A P(Y ∈ B|X = x)fX(x)dx.

(ii) P(Y ∈ B) = ∫∞
−∞ P(Y ∈ B|X = x)fX(x)dx.

(iii) P((X, Y ) ∈ C) = ∫∞
−∞ P(Y ∈ C(x)|X = x)fX(x)dx

for C ∈ B(R2) and by defining C(x) = {y ∈ R : (x, y) ∈ C}.
(iv) If A and B are Borel sets of R with P(X ∈ A) > 0, then the elementary

conditional probability of {Y ∈ B} given {X ∈ A} is defined by

P(Y ∈ B|X ∈ A) = P(X ∈ A,Y ∈ B)

P(X ∈ A)
.

Proof All assertions follow immediately by elementary properties of the Lebesgue
integral, and by Fubini’s Theorem.

The goal of this section is to generalize the concepts in Definition and Theorem 1.12
to more general types of (joint) distributions of (X, Y ), and to derive a notion of
conditional probability which is still well-defined if the condition has probability
zero.

Definition 1.13 Let (Ω1,A1) and (Ω2,A2) be two measurable spaces. A mapping
q : Ω1 ×A2 → [0, 1] is called transition probability distribution (Markov kernel)
from Ω1 to Ω2 (or to A2, respectively):⇔
(i) A′ �→ q(x,A′) is a probability measure on (Ω2,A2) for all x ∈ Ω1.

(ii) x �→ q(x,A′) is (A1,B([0, 1]))-measurable for all A′ ∈ A2.

Definition and Theorem 1.14 Let (Ωi,Ai ), i = 1, 2, be two measurable spaces.
Let μ be a probability measure on (Ω1,A1) and q a Markov kernel from Ω1 to Ω2.

a) The mapping μ⊗ q , defined by

μ⊗ q(A1 × A2) :=
∫

A1

q(x,A2)μ(dx),Ai ∈ Ai , i = 1, 2,

is a probability measure on (Ω1 ×Ω2,A1 ⊗A2).
b) For C ∈ A1 ⊗A2, it holds that

μ⊗ q(C) =
∫

Ω1

q(x,C(x))μ(dx).
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Proof Define Q(C) := ∫
Ω1

q(x,C(x))μ(dx) for C ∈ A1⊗A2. Exercise 1.2 yields
that Q is normalized and σ -additive, hence, Q is a probability measure on (Ω1 ×
Ω2,A1 ⊗ A2). Now, consider a Cartesian product A × B ∈ A1 × A2. We verify
that

Q(A×B) =
∫

Ω1

q(x, (A×B)(x))μ(dx) =
∫

Ω1

1A(x)q(x, B)μ(dx) =
∫

A

q(x, B)μ(dx).

Notice that the system of all such Cartesian products is a ∩-stable generating system
of A1 ⊗ A2. Thus, uniqueness of measures yields that Q =: μ ⊗ q is uniquely
determined.

Example 1.15

a) Let q(x, B) ≡ ν(B), where ν is a probability measure on (Ω2,A2). Then we
have that

μ⊗ q(A1 ×A2) =
∫

A1

q(x,A2)μ(dx) =
∫

A1

ν(A2)μ(dx) = μ(A1)ν(A2)

= μ× ν(A1 ×A2),

such that μ ⊗ q equals the “classical” product measure of μ and ν in this case,
where we denoted the latter with the symbol× for notational convenience here.

b) Let X and Y be two stochastically independent random variables on the same
probability space (Ω,F ,P) taking values in Ω1 and Ω2, respectively. Then we
have that P(X,Y ) = P

X × P
Y . Utilizing part a), it follows that

P
(X,Y ) = P

X × P
Y = P

X ⊗ P
Y , i.e., q(t, A2) = P(Y ∈ A2)

is a version of the conditional distribution P
Y |X=t , for all t ∈ Ω1; cf.

Definition 1.18 below.

Theorem 1.16 (Fubini’s Theorem for Markov Kernels) Under the notational
framework of Theorem 1.14 let f : Ω1 × Ω2 → R denote a measurable mapping.
Then we have

∫

Ω1×Ω2

f d(μ⊗ q) =
∫

Ω1

[∫

Ω2

f (x, y)q(x, dy)

]

μ(dx),

if one of the following conditions holds true.

(i) f ≥ 0.
(ii) f is quasi-integrable with respect to μ⊗ q .

Proof Satz 14.29 in Klenke (2008).
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Remark 1.17

(a) If ν is a probability measure on Ω2 and q(x, B) :≡ ν(B), then Theorem 1.16
reduces to the classical version of Fubini’s Theorem for product measures,
namely,

∫

Ω1×Ω2

f d(μ× ν) =
∫

Ω1

[∫

Ω2

f dν

]

dμ =
∫

Ω2

[∫

Ω1

f dμ

]

dν

under the assumptions of Theorem 1.16.
(b) For the proof of Theorem 1.16, it is important that the function h : Ω1 → R,

defined by h(x) = ∫
Ω2

f (x, y)q(x, dy), is measurable. This can be shown by
algebraic induction (left to the reader).

Definition 1.18 Let (Ω,F ,P) be a probability space and let X,Y be random
variables on (Ω,F ,P) taking values in (Ω1,A1) and (Ω2,A2), respectively. Then
we call a Markov kernel q from Ω1 to Ω2 with the property that

P(X ∈ A1, Y ∈ A2) =
∫

A1

q(x,A2)P
X(dx) for all Ai ∈ Ai , i = 1, 2,

a regular version of the conditional distribution of Y with respect to X.
Shortcut notation: P(X,Y ) = P

X ⊗ q = P
X ⊗ P

Y |X.
If (Ω2,A2) = (Rd,B(Rd )) with d ∈ N, then there always exists a regular

version of PY |X.

Definition 1.19 Under the assumptions of Definition 1.18, let T : (Ω2,A2) →
(R,B(R)) be a measurable function which is such that T (Y ) ∈ L1(Ω,F ,P) holds
true.

Then we call

E[T (Y )|X = x] :=
∫

T (y)q(x, dy) =: g(x)

a version of the conditional expected value of T (Y ) under the hypothesis thatX = x.

Remark 1.20 Under the assumptions of Definition 1.19, the following assertions
hold true.

(i) There always exists a version of E[T (Y )|X = x].
(ii) All versions of E[T (Y )|X = x] are measurable and P

X-integrable mappings
g : Ω1 → R.

Definition and Theorem 1.21 Assume that the conditions of Definition 1.19 are
fulfilled with T = id .

a) The random variable E[Y |X] := g(X) = g ◦ X, which takes the value
g(x) = E[Y |X = x] = ∫

yq(x, dy) in case of X(ω) = x, is called conditional
expectation of Y with respect to X.
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b) Denote by

σ(X) = X−1(A1) = {X−1(B)|B ∈ A1} = {A ∈ F | ∃B ∈ A1 : X−1(B) = A}

the sub-σ -algebra of F generated by X : (Ω,F ) → (Ω1,A1). Let A ∈ σ(X)

and let B ∈ A1 such that X−1(B) = A. Then it holds that

∫

A

YdP =
∫

Ω

1B(X)YdP =
∫

Ω1×R
1B(x)ydP(X,Y )(x, y)

=
∫

Ω1

1B(x)

[∫

R

yq(x, dy)

]

P
X(dx) =

∫

Ω1

1B(x)g(x)PX(dx)

=
∫

B

g(x)PX(dx) =
∫

Ω

1B(X)g(X)dP =
∫

A

g ◦XdP

=
∫

A

E[Y |X]dP.

c) Let, more generally, C be any sub-σ -algebra of F . Then, a conditional
expectation Z ∈ E[Y |C ] (where we will typically write Z = E[Y |C ] instead) is
characterized by the following two properties.

(i) Z is (C ,B(R))-measurable.
(ii) ∀C ∈ C : ∫

C
ZdP = ∫

C
YdP.

Formally, one may write such a sub-σ -algebra C ⊆ F as σ(X) for a suitable
random variable X.

Example 1.22

a) Assume that characters in a transmission channel get disrupted with an unknown
disruption probability. We model this unknown disruption probability as a
random variable X with values in (0, 1). Assume that for a given realization
X = p the disruptions occur independently, each with the same probability
p. Let the random variable Y denote the waiting time until the first disruption
occurs, measured in the number of transmitted characters. We are interested in
the mean “time” until the first disruption.

Solution: A version of PY |X=p is the geometric distribution with parameter
p, hence P(Y = k|X = p) = p(1 − p)k , k ≥ 0. It follows that

E[Y |X = p] =
∞∑

k=0

kp(1− p)k = 1− p

p
= g(p).

Now, assume that the (random) disruption probability X has a two-point
distribution, such that P(X = 1

2 ) =: a and P(X = 3
4 ) = 1 − a, for some
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a ∈ (0, 1). Then we obtain that

E[Y |X] = 1−X

X
=: Z,

where Z is a random variable with P(Z = 1) = a = 1− P(Z = 1
3 ).

b) Let Y be a real-valued, integrable random variable and X a discrete random
variable with values in N0, where X and Y are defined on the same probability
space (Ω,F ,P). Then, g(i) := E[Y |X = i] for i ∈ N0 with P(X = i) >

0 can be calculated as follows. From the formula for elementary conditional
probabilities, we obtain that

P(Y ∈ B|X = i) = P(Y ∈ B,X = i)

P(X = i)

= [P(X = i)]−1
∫

1{Y∈B} 1{X=i}dP.

This leads to

g(i) = E[Y 1{X=i}]
P(X = i)

, i ∈ N0.

For a detailed verification of the latter result, see Exercise 1.3. For example, we
get for X := �Y � that

E[Y |X = i] = E[Y 1{i≤Y<i+1}]
P(i ≤ Y < i + 1)

= g(i), i ∈ N0.

Remark 1.23 (Evocative Interpretation of the Conditional Expectation) A condi-
tional expectation Z = E[Y |X] (more precisely: Z ∈ E[Y |X]) has the following
properties.

(i) Z is defined on the same probability space as Y .
(ii) The mean of Z equals the mean of Y , when restricted to sets of the form

X−1(B).
(iii) Due to Z = g(X) the random variable Z varies only as strongly as X. If, for

instance, X can only take finitely many values, then the same holds true for
Z = E[Y |X], even if the image of Ω under Y is an uncountable set. In this
sense, the conditional expectation smoothens Y along X.

(iv) We obtain the graphical illustration displayed in Fig. 1.2.
(v) If Y lies in L2(Ω,F ,P), then E[Y |X] yields the best L2-approximation of

Y among all functions of the form h(X), where h : Ω1 → R. This means
that the L2-distance between Y and any (deterministic) L2-transformation of
X is minimum for E[Y |X]. In other words, E[Y |X] is the projection of Y onto
L2(Ω, σ(X),P).
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Fig. 1.2 Graphical illustration of E[Y |X]

Let us end this section with important calculation rules for conditional expectations.

Theorem 1.24 (Calculation Rules for Conditional Expectations) Under the
assumptions of Definition 1.19 the following calculation rules hold true P-almost
surely.

a) Linearity of the conditional expectation:

E[αY1 + βY2|X] = αE[Y1|X] + βE[Y2|X].

b) Law of iterated expectations:

E[Y ] = E [E[Y |X]] =
∫

Ω1

E[Y |X = x]PX(dx).

c) Let h : Ω1 × R→ R be such that h(X, Y ) is integrable. Then it holds:

(i) E[h(X, Y )|X = x] = E[h(x, Y )|X = x] = ∫
h(x, y)PY |X=x(dy).

(ii) X |� Y ⇒ E[h(X, Y )|X = x] = E[h(x, Y )] = ∫
h(x, y)PY (dy).

d) Let h : Ω1 → R be measurable and such that Y · h(X) is integrable. Then it
holds that

E[Y · h(X)|X] = h(X) · E[Y |X].
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e) Let g : (Ω1,A1) → (Ω ′,A ′). Then it holds that

E [E[Y |X]|g(X)] = E[Y |g(X)] = E [E[Y |g(X)]|X] .

f) Tower equation: Let B1 ⊂ B2 be sub-σ -algebras of F , and assume that Y ∈
L1(Ω,F ,P). Then it holds that

E [E[Y |B1]|B2] = E[Y |B1] = E [E[Y |B2]|B1] .

Notice: Sub-σ -algebras can be interpreted as levels of information!

Proof All assertions follow immediately from properties of the Lebesgue integral
(cf. measure and integration theory) or can be verified by algebraic induction (the
reader may, for instance, verify part c) for indicator functions).

1.3 Overview and Motivating Examples

For concreteness, let us consider a sample of real-valued, stochastically independent
observables Y = (Y1, . . . , Yn)

� on some probability space (Ω,F ,P), where n

denotes the sample size. We are not willing to assume a parametric model for the
distribution P

Y of Y , but rather consider (at least in the first place) the family P of
all product measures on R

n as a statistical model for Y . Certain restrictions of P
will however be inherent depending on the type of problem. For example, in a so-
called one-sample problem it will be assumed that all Yi have the same (marginal)
distribution P

Yi ≡ P
Y1 , 1 ≤ i ≤ n. If, in this context, the mean of Y1 shall be

tested, then one has to restrict P further by assuming that the first moment of Y1
actually exists. Of course, the advantage of considering P is that the issue of model
misspecification, which is often problematic in parametric models, is avoided. On
the other hand, many familiar concepts from the parametric case, for example
the likelihood ratio approach to testing hypotheses, do not apply straightforwardly
anymore in the nonparametric setting, which requires new strategies for hypothesis
testing.

In this work, the leading strategy will be the substitution principle. Restricting
attention for the moment to one-sample problems, we have that the model can be
expressed as

P = {PY = P⊗n : P is a probability measure on R},

where we set P := P
Y1 for notational convenience. If P would be known, the data-

generating distribution P
Y would be known as well. Hence, statistical hypotheses

can be formalized in terms of P . Let Θ be the set of all probability measures on R,
and Θ0 some subset of Θ . Typically, Θ0 will be characterized in terms of certain
properties of P , for example the property that P has mean zero. Now, assume that



14 1 Introduction and Examples

we can define some distance measure ρ : Θ × Θ → R≥0 fulfilling ρ(P,Q) = 0
iff P = Q. Then, we may equivalently express the null hypothesis H0 : P ∈ Θ0 in
terms of ρ, namely,

H0 : inf
Q∈Θ0

ρ(P,Q) = 0. (1.5)

Having re-written H0 in the form (1.5), the substitution principle works as follows.
We substitute the unknown data-generating distribution P by the empirical measure
P̂n = n−1 ∑n

i=1 δYi . This probability measure simply assigns the mass 1/n to each
observation in the sample. Notice, however, that P̂n is itself random, meaning that
the value of P̂n(A) depends on the data Y = y, where A is some Borel set on the
real line.

Now, a suitable test statistic for testing (1.5) is given by

Tn = inf
Q∈Θ0

ρ(P̂n,Q), (1.6)

and we will reject H0 for large values of Tn. The calibration of the test based on
Tn with respect to type I error control requires knowledge about the stochastic
properties of the random fluctuations of P̂n around P . Restricting (w. l. o. g.)
attention to special sets A of the form A = (−∞, x] for x ∈ R, this immediately
leads to studying properties of the empirical process

√
n
(
F̂n − F

)
,

where F is the cdf corresponding to P and F̂n, given by

F̂n(y) = P̂n((−∞, y]) = n−1
n∑

i=1

1(−∞,y](Yi),

denotes the empirical cdf of Y = (Y1, . . . , Yn)
�. A brief review of results from the

theory of empirical processes will therefore be provided in Chap. 2.
Presumably, the most stringent application of the substitution principle is the

problem of testing for goodness-of-fit, where in the simplest case H0 is a simple
null hypothesis, meaning that Θ0 = {P0} for some given probability distribution P0.
Different choices of ρ lead to classical goodness-of-fit tests like the Kolmogorov-
Smirnov test or the Cramér-Smirnov-von Mises test, cf. Chap. 3. The case that H0 is
a composite null hypothesis, where Θ0 is characterized via the value of a functional
κ : Θ → R, Q �→ κ(Q) ∈ R, leads to projection tests which we will study in
Chap. 7.

The connection to rank tests (see Chap. 4) can be drawn by observing that
nF̂n(Yi) equals the rank (i.e., the position in the ordered sample) of Yi among
Y1, . . . , Yn, at least in the absence of ties (identical observations). Furthermore, a
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direct connection by exploiting the substitution principle in the context of canonical
gradients of statistical functionals is given in Sect. 4.3. As we will explain in Chap. 4,
the null distribution of a rank test is typically given by the uniform distribution
on the symmetric group Sn, which is the set of all permutations of {1, . . . , n}.
This provides the link to permutation tests (see Sects. 1.3.2 and 5.2.1). Finally, as
we will see in Chap. 5, permutation tests can be embedded into the large class of
resampling tests, of which also Efron’s bootstrap is a prominent member. In the case
of the bootstrap, the substitution principle is applied in a slightly modified manner.
Namely, the unknown or intractable theoretical null distribution of an (almost)
arbitrary test statistic Tn, which does not necessarily have to be of the form as in
(1.6), is approximated by an empirical version, where the substitution of P by P̂n is
in a certain sense performed in two different layers, namely in an estimator of the
functional of interest and in the approximation of its null distribution.

The remaining parts of this section provide a more concrete outlook on the
bootstrap and permutation test approaches.

1.3.1 Bootstrap Tests for One-Sample Problems

Let us consider the problem of constructing a nonparametric test for a univariate
mean based on an independent and identically distributed (i.i.d.) sample Y1, . . . , Yn,
where all Yi are defined on the same probability space (Ω,F ,P), and each Yi takes
values in (R,B(R)), 1 ≤ i ≤ n. For ease of exposition, consider the one-sided pair
of hypotheses

H0 : E[Y1] = 0 versus H1 : E[Y1] > 0,

assuming that E[Y1] exists.
Suitable test statistics for this test problem are based on the arithmetic mean

Ȳn = n−1 ∑n
i=1 Yi , which is an estimator for E[Y1] that is based on the substitution

principle. Indeed, notice that

E[Y1] =
∫

ydPY1(y), Ȳn =
∫

ydP̂n(y).

Assuming that σ 2 := Var(Y1) ∈ (0,∞) is unknown (which is often the case in
practice), one typically chooses the test statistic

Tn = √
n · Ȳn/V

1
2

n with Vn = 1

n− 1

n∑

i=1

(Yi − Ȳn)
2.

For the calibration of the resulting test ϕn with respect to the significance level α,
it is necessary to determine the critical value cn(α), such that {ϕn = 1} = {Tn >
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cn(α)}. Obviously, this requires knowledge about the distribution of Tn under H0.
If we can assume that Y1 is normally distributed, then Student (1908) provided
the solution to this problem. Namely, the null distribution of Tn is then equal to
Student’s t-distribution with n−1 degrees of freedom, tn−1 for short, and we choose
cn(α) = F−1

tn−1
(1 − α), which is the upper α-quantile of tn−1. However, in almost

all other cases the exact null distribution of Tn is either intractable or, if no concrete
distributional assumption can be made for Y1, simply unknown.

One way out of this dilemma is to rely on asymptotics as n → ∞. Namely,
according to the central limit theorem for i.i.d. random variables, we have that

L

(
Ȳn − μ

σ/
√

n

)
w→ N (0, 1)

as n → ∞, with μ = E[Y1]. Furthermore, it is easy to show that Vn is a
consistent estimator of σ 2. Hence, application of Slutsky’s lemma yields that the
choice cn(α) = Φ−1(1−α) leads to asymptotic type I error control at level α of ϕn,
where Φ denotes the cdf of the standard normal distribution on R. Unfortunately,
this asymptotic approximation of the null distribution of Tn is often not accurate
enough if n is small or moderate.

The nonparametric bootstrap yields a finite-sample approximation of the null
distribution of Tn which is based on the substitution principle. Namely, we replace
P⊗n by P̂⊗n

n in the construction of the null distribution of Tn. To this end, consider
a new probability space (Ω∗,F ∗,P∗) and random variables Y ∗1 , . . . , Y ∗n with Y ∗i :
(Ω∗,F ∗,P∗) → (R,B(R)) for 1 ≤ i ≤ n, such that

P
∗(Y ∗1 ,...,Y ∗n )�|(Y1,...,Yn)� = P̂⊗n

n .

One may think of (Y ∗1 , . . . , Y ∗n )� as a pseudo-sample which is constituted by n inde-
pendent drawings with replacement from the original observables Y1, . . . , Yn. This
justifies to call the bootstrap a resampling procedure. Based on this construction, we
replace the theoretical null distribution, i.e., the distribution

P(Ȳn − μ ≤ t), t ∈ R, (1.7)

of the estimation error of Ȳn by its bootstrap analogue

P
∗ (Ȳ ∗n − Ȳn ≤ t|(Y1, . . . , Yn)

�) , t ∈ R, (1.8)

which we evaluate at our actually observed data Y1 = y1, . . . , Yn = yn. Since (1.8)
is purely empirical, it is (for given data) exactly computable, at least in principle.
To see this, notice that, given the original observables, there are only finitely many
possible realizations of (Y ∗1 , . . . , Y ∗n )�, namely, nn of them, which are all equally
likely. Hence, we can evaluate all nn possible realizations of Ȳ ∗n−Ȳn (where Ȳn = ȳn

is kept fixed given the original data), and simply count how many of these values



1.3 Overview and Motivating Examples 17

do not exceed our argument t ∈ R. Analogously, the bootstrap approximation of the
critical value for the test ϕn is given by the (1−α)-quantile of the discrete bootstrap
distribution of Tn.

Remark 1.25 If n is too large in order to traverse all nn possible bootstrap
resamples, one can use a Monte Carlo variant of the bootstrap, where only B < nn

randomly chosen bootstrap resamples are traversed.

As an illustration of the fact that the (conditional to the data) bootstrap distribu-
tion is explicitly given, let us calculate (conditional) moments of bootstrap random
variables.

Theorem 1.26 (Conditional Moments of Bootstrap Variates) Let Y =
(Y1, . . . , Yn)

� denote the vector of i.i.d. real-valued original observables, and
{m(n)}n∈N a sequence of integers. Then the following assertions hold true.

E
∗[Y ∗1 |Y ] =

1

n

n∑

i=1

Yi = Ȳn, (1.9)

E
∗
⎡

⎣ 1

m(n)

m(n)∑

i=1

Y ∗i |Y
⎤

⎦ = 1

n

n∑

i=1

Yi = Ȳn, (1.10)

E
∗[Y ∗1 2|Y ] = 1

n

n∑

i=1

Yi
2, (1.11)

Var
(
Y ∗1 |Y

) = 1

n

n∑

i=1

(Yi − Ȳn)
2, (1.12)

Var

⎛

⎝ 1

m(n)

m(n)∑

i=1

Y ∗i |Y
⎞

⎠ = 1

n ·m(n)

n∑

i=1

(Yi − Ȳn)
2, (1.13)

E
∗[Y ∗1 3|Y ] = 1

n

n∑

i=1

Yi
3. (1.14)

Proof This is Exercise 1.6.

In order to finish our motivation of the bootstrap technique, recall that the approx-
imation error of the normal approximation is in the general case of asymptotic
order O

(
n−1/2

)
, which is often denoted as “correctness of the first order”. On

the other hand, as proved by Hall (1992) by means of asymptotic (Edgeworth)
expansions, the bootstrap is, under mild conditions, second-order correct, meaning
that its approximation error achieves the asymptotic order O

(
n−1

)
; cf. Hall (1988,

1992). Technically, the argumentation is based on the concept of “bias correction”
or “skewness correction”, meaning that certain terms in the Edgeworth expansions
which refer to the third cumulant of Y1 vanish.



18 1 Introduction and Examples

In the general case of a one-sample problem with i.i.d. observables Y1, . . . , Yn,
the bootstrap method can be characterized as follows. We consider a statistical
functional

κ : {Q : Q distribution on supp(Y1)} → R

Q �→ κ(Q).

Typically, κ(Q) will be chosen as some kind of quantitative characteristic of Q.
Since P = P

Y1 is unknown, we estimate κ(P ) by plug-in, i.e., by applying
the substitution principle. Thus, the estimator is simply given by κ(P̂n). For the
construction of level α-tests or (1 − α)-confidence regions for κ(P ), we need
information about the error distribution

P(κ(P̂n)− κ(P ) ≤ t), t ∈ R, (1.15)

or at least an approximation of it. The (nonparametric) bootstrap approximation of
(1.15) is provided by evaluating the bootstrap analogue of (1.15), which is given by

P
∗ (κ(P̂ ∗

n )− κ(P̂n) ≤ t|(Y1, . . . , Yn)�
)

, t ∈ R, (1.16)

where κ(P̂ ∗
n ) means that we evaluate the functional on the bootstrap resample.

1.3.2 Permutation Tests for Two-Sample Problems

For two-sample problems, another idea can be used in order to derive a resampling
method for the comparison of the two groups. We consider again stochastically
independent random variables Y1, . . . , Yn which are defined on the same probability
space (Ω,F ,P), each taking values in the same space (Y ,B(Y )). However, we
now do not assume that all Yi are identically distributed in general, but that there
exists a number 2 ≤ n1 ≤ n− 2 such that Y1, . . . , Yn1 belong to the first group with
P

Y1 = P
Y2 = . . .PYn1 = P and Yn1+1, . . . , Yn belong to the second group with

P
Yi = Q for all n1 + 1 ≤ i ≤ n. Hence, the model is characterized by

Θ = {(P,Q) : P and Q are probability distributions on (Y ,B(Y ))},

where again certain further restrictions may be inherent to the actual problem at
hand.

Often, one will be concerned with the null hypothesis H0 : P = Q of equality
of the group-specific distributions, with corresponding alternative H1 : P �= Q.
In particular, Y1, . . . , Yn are exchangeable under H0, meaning that in this case

P
(Yi1 ,...,Yik

)� = P
(Yπ(i1),...,Yπ(ik))

�
holds true for any 1 ≤ k ≤ n, (i1, . . . , ik) ⊆



1.4 Notes on the Literature 19

{1, . . . , n}, and π ∈ Sn (permutation invariance of all k-variate marginal distri-
butions). This property implies that the null distribution of any test statistic Tn for
testing H0 versus H1 remains the same if we apply any π ∈ Sn to Y1, . . . , Yn,
meaning that ∀π ∈ Sn : L (Tn(Y1, . . . , Yn)) = L (Tn(Yπ(1), . . . , Yπ(n))) under
H0, while this property is typically violated under the alternative H1, at least for
reasonable choices of Tn. Therefore, a conditional (to the observed data) exact null
distribution of Tn, which can be used for calibrating a test for H0 versus H1 with
respect to type I error control, is given by the permutation distribution of Tn. We
simply traverse all π ∈ Sn, calculate the value of Tn(Yπ(1), . . . , Yπ(n)) on our
data sample, and store all these n! values. Now, if, for example, Tn tends to larger
values under H1, we take the upper α-quantile of the discrete distribution which
puts a point mass of 1/n! in each π ∈ Sn as the (conditional) critical value for
the permutation test of H0 versus H1. Again, if n is too large for carrying out all n!
possible permutations, a Monte Carlo variant may be employed instead, such that
only B < n! randomly chosen permutations π ∈ Sn are traversed. This permutation
test approach is also based on resampling, but in contrast to the bootstrap, here the
resamples of size n are drawn without replacement from the original observables
Y1, . . . , Yn, which is equivalent to permuting Y1, . . . , Yn. The advantage of drawing
without replacement is that the permutation test exactly keeps the significance level
α, for any finite sample size n, if exchangeability of Y1, . . . , Yn under H0 holds true.
On the other hand, notice that the permutation approach is inappropriate in one-
sample problems as discussed in Sect. 1.3.1, because in that case exchangeability
of Y1, . . . , Yn also holds under H1, implying that the rejection probability of the
permutation test is bounded from above by α under the alternative as well.

1.4 Notes on the Literature

Overviews of nonparametric test methods are provided by Krishnaiah and Sen
(Eds.) (1984), Hollander et al. (2014), Wilcox (2012) and, with an emphasis on
computation, Neuhäuser (2012).

Theory and practice of rank tests are described by Hájek et al. (1999), Lehmann
(2006), Büning and Trenkler (1994), Büning (1991), Brunner and Munzel (2013),
Puri (Ed.) (1970), and Duller (2008).

Randomization and resampling tests are treated by Edgington and Onghena
(2007), Good (2005, 2006), Berry et al. (2016), Pesarin and Salmaso (2010), Efron
and Tibshirani (1993), Politis et al. (1999), Mammen (1992), Davison and Hinkley
(1997), Barbe and Bertail (1995), Lahiri (2003), and LePage and Billard (Eds.)
(1992).

Projection tests have been developed by Owen (2001), Basu et al. (2011), and
Pardo (2006).

A valuable source for theory and application of goodness-of-fit tests is the book
by D’Agostino and Stephens (Eds.) (1986).
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1.5 Exercises

Exercise 1.1 (Taken from Küchler (2016)) Let (X1,X2)
� denote a bivariate

random vector on some probability space (Ω,F ,P) taking values in R
2. Assume

that (X1,X2)
� possesses the (joint) Lebesgue density fX1,X2 , given by

fX1,X2(x1, x2) = 2

πr2 1Hr (x1, x2), (x1, x2)
� ∈ R

2, where

Hr = {(x1, x2)
� ∈ R

2 : x2 ∈ [0, r], x2
1 + x2

2 ≤ r2}

for a given radius r > 0.

(a) Derive (the canonical version of) the marginal density fX1 of X1.
(b) Derive the conditional density fX2|X1=x1 of X2 given that X1 = x1 ∈ (−r, r).
(c) Compute the conditional expected value E[X2|X1 = x1] of X2 given that X1 =

x1 ∈ (−r, r).
(d) Derive the conditional expectation E[X2|X1] of X2 with respect to X1.

Exercise 1.2 Check that the set function Q defined in the proof of Theorem 1.14 is
normalized and σ -additive.

Exercise 1.3 Verify the formula for g(i) in part b) of Example 1.22 by checking the
characterizing integral formula for conditional expectations.

Exercise 1.4 Let X and Y denote two discrete random variables defined on the
same probability space (Ω,F ,P). In this, let X(ω) ∈ {x1, x2, . . .} and Y (ω) ∈
{y1, y2, . . .}, where P(X = xi) > 0 for all i. Furthermore, assume that Y ∈
L1(Ω,F ,P).

(a) The elementary formula for conditional probabilities yields that g(i) :=
E[Y |X = xi] = ∑

j≥1 yjP(Y = yj |X = xi). Use this result to derive a
version of E[Y |X].

(b) Verify by elementary calculations that E[Y ] = E[E[Y |X]] holds true.
Exercise 1.5 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) Let X = (X1,X2)
� be a random vector with values in R

2 which is (jointly)
normally distributed with a positive definite covariance matrix Σ = Cov(X).
Then, the conditional distribution of X1 given X2 = x2 is a normal distribution
on R for every fixed value x2 ∈ R.

(b) Let X and Y be two stochastically independent random variables which are
defined on the same probability space (Ω,F ,P). In this, assume that Y ∈
L1(Ω,F ,P). Then, the conditional expectation E[Y |X] of Y with respect to
X is P-almost surely equal to Y .

(c) LetX and Y be two random variables which are defined on the same probability
space (Ω,F ,P). In this, assume that Y ∈ L1(Ω,F ,P). Then, the cardinality



1.5 Exercises 21

of the support of the conditional expectation E[Y |X] of Y with respect to X is
upper-bounded by the cardinality of the support of X.

(d) Let (Xi)i≥1 be a sequence of stochastically independent, real-valued random
variables which are all defined on the same probability space (Ω,F ,P). In
this, assume that E[Xi ] = 0 for all i ≥ 1. For n ∈ N, denote by Sn :=∑n

i=1 Xi

the n-th partial sum of the Xi . Then, it holds P-almost surely for all n ∈ N and
all m > n, that E[Sm|Sn] = Sn.

Exercise 1.6 Prove Theorem 1.26.

Exercise 1.7 (Bootstrap Inclusion Probabilities)

(a) Under the general assumptions of Sect. 1.3.1, determine the (conditional) prob-
ability for the event that a bootstrap pseudo sample (Y ∗1 , . . . , Y ∗n )� contains the
data point Y1 = y1, i.e., calculate

p(n) := P
∗ (∃1 ≤ i ≤ n : Y ∗i = Y1 | (Y1, . . . , Yn)�

)
.

(b) Calculate p∞ := lim
n→∞p(n). Provide the numerical value of p∞, rounded to

three decimal places.

Exercise 1.8 (Programming Exercise)

(a) Implement the nonparametric bootstrap for the mean of a univariate sample,
which has been introduced in Sect. 1.3.1, in R.

(b) Evaluate how accurately this procedure keeps the significance level α. To this
end, carry out a Monte Carlo simulation study for α = 5% and sample sizes
n ∈ {20, 50, 100, 500, 1000} under the null hypothesis. For each n, perform
10,000 Monte Carlo simulation runs and assess the relative rejection frequency
of the nonparametric bootstrap.

Exercise 1.9 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) If, under the general assumptions of Sect. 1.3.1, the alternative hypothesis holds
true, then the considered bootstrap procedure approximates the distribution of
κ(P̂n) under the alternative.

(b) If, under the general assumptions of Sect. 1.3.2, the considered permutation test
is carried out as a randomized test, then its rejection probability under the null
hypothesis exactly equals the specified significance level, for any fixed sample
size n ∈ N.

(c) Let X1, . . . , Xd , d ≥ 2, be stochastically independent and identically dis-
tributed, real-valued random variables, such that X1 possesses the centered
normal distribution on R with variance σ 2 > 0. Moreover, let ν be a given
positive integer and S a further real-valued random variable, stochastically
independent of the Xi’s, such that νS2/σ 2 possesses the chi-square distribution
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with ν degrees of freedom. Then, the random variables (Yi)1≤i≤d with Yi :=
Xi/S are exchangeable, but not stochastically independent.

(d) The order statistics of stochastically independent random variables Y1, . . . , Yn,
n ≥ 2, are stochastically independent.
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Chapter 2
Empirical Measures, Empirical Processes

In this preparatory chapter, we gather some results from the theory of empirical
measures and empirical processes.

Throughout the chapter we assume an independent and identically distributed
sample Y = (Y1, . . . , Yn)

� which is defined on some probability space (Ω,F ,P).
As in Chap. 1, we denote the marginal distribution of Y1 by P = P

Y1 and notice that
the joint distribution of Y is given by P

Y = P⊗n. Hence, PY is already identified
by P .

2.1 Properties of Empirical Measures

Assume that Y1 is real-valued. Let P̂n = n−1 ∑n
i=1 δYi denote the empirical measure

pertaining to the sample Y . Notice that, for any Borel set A of R, we have

P̂n(A) = n−1
n∑

i=1

1A(Yi). (2.1)

More generally, we get for any measurable function g : R→ R that

Ên[g] = E
P̂n
[g] =

∫

R

g(y)P̂n(dy) = n−1
n∑

i=1

g(Yi), (2.2)

meaning that taking the expectation of g with respect to P̂n is equivalent to averaging
the values of g over the observational units. Of course, (2.1) is a special case of (2.2),
where we take g = 1A. If we restrict our attention further to Borel sets of the form
A = (−∞, y], y ∈ R, we obtain the empirical cumulative distribution function
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(ecdf) F̂n, given by

F̂n(y) = P̂n((−∞, y]) = Ên

[
1(−∞,y]

]

= n−1
n∑

i=1

1(−∞,y](Yi) = |{1 ≤ i ≤ n : Yi ≤ y}|
n

. (2.3)

Notice that the right-hand sides of (2.1)–(2.3) are random variables. Interpreting
these random variables as estimators, we will now see that they possess desirable
estimation properties, such as unbiasedness, consistency, and asymptotic normality.

Theorem 2.1 For any Borel set A of R, the following assertions hold true.

(a) E[P̂n(A)] = P(A), where E refers to P.

(b) Var
(
P̂n(A)

)
= n−1σ 2

A, where σ 2
A = P(A)[1− P(A)].

(c) For all y ∈ R, nF̂n(y) ∼ Bin(n, F (y)), where F is the cdf pertaining to P , i.e.,
F(y) = P(Y1 ≤ y).

(d) P̂n(A) → P(A) P-almost surely as n →∞.

(e)
√

n
{
P̂n(A)− P(A)

}
→ N (0, σ 2

A) in distribution as n →∞.

Proof This is Exercise 2.1.

The results of Theorem 2.1 can be extended to certain functionals of the
distribution P .

Theorem 2.2 Let g : R→ R be a function on the real line such that

∫ ∞

−∞
g2(y)P (dy) < ∞. (2.4)

Consider the functional

κ : {Q : Q is a probability distribution on R} → R,

which is given by κ(Q) = EQ[g]. Denote κ0 = κ(P ) = E[g(Y1)] =
∫
R

g(y)P (dy)

and consider the (plug-in) estimator κ̂n = κ(P̂n) = n−1 ∑n
i=1 g(Yi).

Then the following assertions hold true.

(a) For all n ∈ N, E[κ̂n] = κ0.
(b) Var(κ̂n) = σ 2

κ /n, where

σ 2
κ =

∫

R

g2(y)P (dy)− κ2
0 =

∫

R

[g(y)− κ0]2 P(dy).

(c) κ̂n → κ0 P-almost surely as n →∞.
(d) Assuming that σ 2

κ > 0,
√

n
(
κ̂n − κ0

)→ N (0, σ 2
κ ) in distribution as n →∞.
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(e) Let h : R → R be a continuously differentiable function on the real line, and
assume that h′(κ0) �= 0. Then, as n →∞,

h(κ̂n) → h(κ0) P-almost surely, (2.5)
√

n
{
h(κ̂n)− h(κ0)

} → N (0, σ 2
h ) in distribution, (2.6)

where σ 2
h = |h′(κ0)|2σ 2

κ .

Proof Introduce, for notational convenience, the new random variables ξi = g(Yi),
1 ≤ i ≤ n. We observe that (ξi : 1 ≤ i ≤ n) are i.i.d. with E[ξ1] = κ0 and Var(ξ1) =
σ 2

κ . This immediately entails parts (a) and (b) by linearity of expectation operators.
Furthermore, part (c) follows by applying the strong law of large numbers to (ξi :
1 ≤ i ≤ n). In order to prove part (d), notice that condition (2.4) ensures finiteness
of σ 2

κ . Hence, we can apply the central limit theorem to (ξi : 1 ≤ i ≤ n), and the
result follows. Finally, assertion (2.5) is a consequence of the Continuous Mapping
Theorem (see, e.g., Theorem 1.14 in DasGupta 2008), and (2.6) is a consequence of
the Delta method (see, e.g., Theorem 3.6 of DasGupta 2008).

Remark 2.3 The results of Theorem 2.2 can be extended to the case of a vector-
valued function g : R → R

p, that is, g(y) = (
g1(y), . . . , gp(y)

)� for y ∈ R; see
Theorem 2.1.4 of Spokoiny and Dickhaus (2015).

Let us conclude this section with an important statistical property of the empirical
cdf F̂n. Namely, Theorem 2.5 shows that choosing F̂n as the estimator of F actually
follows from the statistical principle of likelihood maximization.

Definition 2.4 (Nonparametric Likelihood Function) Let Y1, . . . , Yn be real-
valued i.i.d. random variables, y = (y1, . . . , yn)

� a realization of (Y1, . . . , Yn)�,
and F the set of all cdfs on R.

Then we call Z : Rn ×F → [0, 1], given by

(y, F ) �→ Z(y, F ) =
n∏

i=1

[F(yi)− F(yi−)]

=
n∏

i=1

PF ({yi}),

where PF denotes the probability measure on R induced by F , the nonparametric
likelihood function for the data y.

Theorem 2.5 Under the i.i.d. model for Y = (Y1, . . . , Yn)
�, the empirical cdf F̂n

is the nonparametric maximum likelihood estimator (NPMLE) of the cdf F of Y1,
i.e., F̂n maximizes Z(y, ·) overF , for every data point Y = y = (y1, . . . , yn)

�.

Proof It is immediately clear that the NPMLE F̂NPMLE is necessarily such that
P

F̂NPMLE
is a discrete probability measure which puts its entire mass in the
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observation points y1, . . . , yn. In other words, the NPMLE is such that P
F̂NPMLE

is

absolutely continuous with respect to the empirical measure P̂n. Thus, the NPMLE
is characterized by the n-tuple (pi : 1 ≤ i ≤ n), where pi = P

F̂NPMLE
({yi}), such

that pi ≥ 0 for all 1 ≤ i ≤ n and
∑n

i=1 pi = 1. This shows that the optimization of
Z(y, ·) over F is actually equivalent to a finite-dimensional optimization problem
over the unit simplex in R

n regarding (pi : 1 ≤ i ≤ n), although F is an infinite-
dimensional function space. Hence, we have to solve the following constrained
optimization problem.

max
p1,...,pn

n∏

i=1

pi subject to pi ≥ 0 ∀1 ≤ i ≤ n,

n∑

i=1

pi = 1. (2.7)

The solution of (2.7) can easily be obtained by using the Lagrange multiplier
method, and it is given by pi = 1/n for all 1 ≤ i ≤ n; cf. Exercise 2.2. This
completes the proof.

2.2 The Principle of Quantile Transformation

This section follows Section 1.1 of Shorack and Wellner (1986).

Definition 2.6 (Generalized Inverse, Quantile Function) Let F be any cdf on R.
Then we call the function

F−1 : [0, 1] → R̄

t �→ F−1(t) := inf{x ∈ R : F(x) ≥ t}
the (left-continuous)generalized inverse of F or the quantile function corresponding
to F , respectively.

If F is strictly isotone and continuous, then F−1 coincides with the (ordinary)
inverse of F .

Theorem 2.7 (Quantile Transformation) Let U ∼ UNI[0, 1] and F be any cdf
on R. Then, the random variable X := F−1(U) possesses the cdf F . We will use
the notation: X = F−1(U) ∼ F .

Furthermore, even the following stronger assertions hold true for all x ∈ R.

{X ≤ x} = {U ≤ F(x)}, (2.8)

1{X≤x} = 1{U≤F(x)}. (2.9)

Proof The definition of F−1 implies that

U ≤ F(x) ⇒ X = F−1(U) = inf{z|F(z) ≥ U} ≤ x.
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On the other hand, we can conclude from X = F−1(U) ≤ x that ∀ε > 0 : F(x +
ε) ≥ U. Exploiting the right-continuity of F and letting ε → 0, it follows that
F(x) ≥ U. This proves (2.8), which immediately implies (2.9).

The assertion about the distribution of X follows by noticing that

P(X ≤ x) =
(2.8)

P(U ≤ F(x)) =
U∼UNI[0,1] F(x).

Remark 2.8 We get from (2.8) that the following assertions hold true for any cdf F

on R � x and for any t ∈]0, 1[.
(a) F(x) ≥ t ⇔ F−1(t) ≤ x.
(b) F(x) < t ⇔ F−1(t) > x.
(c) F(x1) < t ≤ F(x2) ⇔ x1 < F−1(t) ≤ x2.

Theorem 2.9 For any cdf F on R, it holds that

∀0 ≤ t ≤ 1 : (F ◦ F−1)(t) ≥ t . (2.10)

Equality holds in (2.10), if and only if t belongs to the range of F on R̄, meaning
that there exists an argument x ∈ R̄ such that F(x) = t . If F is continuous, then we
have that F ◦ F−1 = id[0,1].

Proof Considering the special case x = F−1(t) in part (a) of Remark 2.8, we get
that F(F−1(t)) ≥ t ⇔ F−1(t) ≤ F−1(t), and the latter statement is always true.

Now, assume that t belongs to the range of F on R̄. It follows that

F−1(t) = inf{x|F(x) ≥ t} = inf{x|F(x) = t} ⇒ F(F−1(t)) = t .

On the other hand, if t does not belong to the range of F on R̄, we obtain that

F−1(t) = inf{x|F(x) ≥ t} = inf{x|F(x) > t} ⇒ F(F−1(t)) > t.

Theorem 2.10 (Probability Integral Transformation) Let X be a real-valued
random variable on some probability space (Ω,F ,P) with cdf F . Then it holds
that

P(F (X) ≤ t) ≤ t for all 0 ≤ t ≤ 1. (2.11)

Equality in (2.11) holds, if and only if t belongs to the closure of the range of F .
Thus, if F is continuous, it holds that U := F(X) ∼ UNI[0, 1].
Proof Assume that t belongs to the closure of the range of F . Then, Theorem 2.9
yields that

P(F (X) ≤ t) = P(X ≤ F−1(t)) = F(F−1(t)) = t .
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On the other hand, assume now that t does not belong to the closure of the range
of F . Then we can choose ε > 0 such that t − ε belongs to the closure of the range
of F , but t − ε + δ does not, for every δ > 0. We obtain that

P(F (X) ≤ t) = P(F (X) ≤ t − ε)

= P(X ≤ F−1(t − ε))

= F(F−1(t − ε)) = t − ε < t.

Theorem 2.11 Let F be any cdf on R. Then it holds that

∀x ∈ R : (F−1 ◦ F)(x) ≤ x,

with equality failing if and only if there exists an ε > 0 with F(x − ε) = F(x).
It follows that P((F−1 ◦ F)(X) �= X) = 0, where X ∼ F .

Proof This is Exercise 2.3.

Corollary 2.12

(i) A cdf F on R is continuous, if and only if F−1 is strictly isotone.
(ii) A cdf F on R is strictly isotone, if and only if F−1 is continuous.

Theorem 2.13 Let F be a continuous cdf on R and assume that U := F(X) ∼
UNI[0, 1], where X is some real-valued random variable. Then we can conclude,
that X ∼ F .

Proof For any cdf F , it holds that {X ≤ x} ⊆ {F(X) ≤ F(x)}, because F is
isotone, but not necessarily strictly isotone. Hence, we have that

P(X ≤ x) ≤ P(F (X) ≤ F(x)) = P(U ≤ F(x)) = F(x)

by our assumptions.
On the other hand, it holds that

F(x) = P(U ≤ F(x))

= P(F−1(U) ≤ x)

= P((F−1 ◦ F)(X) ≤ x) = P(X ≤ x),

unless there exists an ε > 0 with F(x − ε) = F(x); cf. Theorem 2.11.
Since F is continuous, we conclude that x �→ P(X ≤ x) coincides with F .
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2.3 Some Results from the Theory of Empirical Processes

Theorem 2.14 (Glivenko-Cantelli) It holds that

sup
y∈R

∣
∣
∣F̂n(y)− F(y)

∣
∣
∣→ 0 P-almost surely as n →∞. (2.12)

Before we prove Theorem 2.14, recall the following important properties of
monotonic functions.

Lemma 2.15 (Theorem 8.19 in Hewitt and Stromberg 1975) Let F be a real-
valued, non-decreasing function defined on R. Then, F has finite right- and left-
hand limits in all points of R, and F is continuous except at a countable set of
points of R.

Proof We now prove Theorem 2.14. In this, we follow the argumentation of
Einmahl and de Haan (1999–2000), pp. 2–3. Due to Lemma 2.15, it suffices to
show that

∀m ∈ N : lim sup
n→∞

sup
y∈R

∣
∣
∣F̂n(y)− F(y)

∣
∣
∣ ≤ 1

m+ 1
P-almost surely. (2.13)

To this end, choose for fixed m ∈ N a grid

−∞ = y0,m < y1,m ≤ . . . ≤ ym,m < ym+1,m = +∞

such that

∀1 ≤ k ≤ m : F(yk,m−) ≤ k

m+ 1
≤ F(yk,m). (2.14)

Now, observe the basic fact that for all y ∈ R we have
∣
∣
∣F̂n(y)− F(y)

∣
∣
∣ =

max{F̂n(y)− F(y), F (y)− F̂n(y)}. We analyze both values separately.
For any 1 ≤ k ≤ m+ 1 and any y ∈ [yk−1,m, yk,m), we have that

F̂n(y)− F(y) ≤ F̂n(yk,m−)− F(yk−1,m)

= F̂n(yk,m−)− F(yk,m−)+ F(yk,m−)− F(yk−1,m)

≤
∣
∣
∣F̂n(yk,m−)− F(yk,m−)

∣
∣
∣+ 1

m+ 1

due to (2.14). Analogously, we get

F(y)− F̂n(y) ≤
∣
∣
∣F̂n(yk−1,m)− F(yk−1,m)

∣
∣
∣+ 1

m+ 1
.
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Because of F̂n(−∞)− F(−∞) = F̂n(∞)− F(∞) = 0 this yields

sup
y∈R

∣
∣
∣F̂n(y)− F(y)

∣
∣
∣ ≤ max

1≤k≤m

∣
∣
∣F̂n(yk,m−)− F(yk,m−)

∣
∣
∣

+ max
1≤k≤m

∣
∣
∣F̂n(yk,m)− F(yk,m)

∣
∣
∣+ 1

m+ 1
. (2.15)

From Theorem 2.1.(d), we have point-wise almost sure convergence, i.e.,

F̂n(yk,m−) → F(yk,m−) and F̂n(yk,m) → F(yk,m)

P-almost surely as n →∞. Since the maximization in (2.15) involves only a finite
number of random variables, assertion (2.13) follows.

Definition 2.16 ((Reduced) Empirical Process) Under the general assumptions

of this chapter, we call the random function
√

n
(
F̂n − F

)
the empirical process

pertaining to Y1, . . . , Yn. In the special case that Y1 ∼ UNI[0, 1], we write
U1, . . . , Un instead of Y1, . . . , Yn. In the latter case, we furthermore define for
0 ≤ u ≤ 1 the quantities

Ĝn(u) = n−1
n∑

i=1

1{Ui≤u},

Un(u) = √
n
(
Ĝn(u)− u

)
,

and call the random function Un(·) a reduced empirical process.

Lemma 2.17 Let n ∈ N, U1, . . . , Un i.i.d. with U1 ∼ UNI[0, 1], and define Yi =
F−1(Ui), for a given cdf F on R. Then, the following assertions hold true.

(a) ∀y ∈ R : F̂n(y) = Ĝn(F (y)).

(b) ∀y ∈ R : √n
(
F̂n(y)− F(y)

)
= Un(F (y)).

(c) If F is continuous, then Un(u) = √
n
(
F̂n(F

−1(u))− u
)
for all u ∈ [0, 1].

Proof To prove part (a), we straightforwardly calculate

Ĝn(F (y)) = n−1
n∑

i=1

1{Ui≤F(y)}

= n−1
n∑

i=1

1{Yi≤y} = F̂n(y), (2.16)
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where the left-hand side of (2.16) follows from (2.9). Part (b) is an immediate
consequence of part (a). For proving part (c), we substitute y = F−1(u) in part
(b) and recall from Theorem 2.9 that F ◦ F−1 = id[0,1] for continuous F .

Remark 2.18

(a) The function F , although typically unknown in a statistical context, is a fixed,
deterministic function. Hence, part (b) of Lemma 2.17 shows that the stochastic
behavior of a (general) empirical process is already determined by that of the
reduced empirical process.

(b) If one is only interested in probabilistic statements about some i.i.d. random
variables Y1, . . . , Yn with cdf F of Y1, then Theorem 2.7 (quantile transforma-
tion) yields that Yi = F−1(Ui) for 1 ≤ i ≤ n can be assumed without loss of
generality.

Definition 2.19

(a) A stochastic process is an indexed collection (Xt)t∈T of random variables,
where T denotes an (arbitrary) index set.

(b) A real-valued stochastic process (Xt )t∈T is called a Gaussian process, if
for any m ∈ N and any m-tuple (t1, . . . , tm) ⊆ T the random vector
(Xt1, . . . , Xtm)� is (jointly) normally distributed.

(c) A real-valued stochastic process (Bt )t≥0, which is defined on some probability
space (Ω,F ,P), is called a Brownian motion, if the following conditions are
fulfilled.

(i) The process (Bt )t≥0 is a Gaussian process with E[Bt ] = 0 for all t ≥ 0 and
Cov(Bs, Bt ) = s ∧ t for all s, t ≥ 0.

(ii) The path t �→ Bt (ω) is continuous for P-almost all ω ∈ Ω .

(d) Assume that (Bt )0≤t≤1 is a Brownian motion. Then, the process (B0
t )0≤t≤1,

defined by B0
t = Bt − tB1, 0 ≤ t ≤ 1, is called a Brownian bridge.

Remark 2.20

(a) The existence of Brownian motion has first been shown by Wiener (1923).
(b) If (Bt )t≥0 is a Brownian motion, then B0 = 0 almost surely, because E[B0] =

Var(B0) = 0.

Lemma 2.21 A Brownian bridge (B0
t )0≤t≤1 is a centered Gaussian process with

Cov(B0
s , B0

t ) = s ∧ t − st for all 0 ≤ s, t ≤ 1. In particular, B0
0 = B0

1 = 0 almost
surely.

Proof Gaussianity of (B0
t )0≤t≤1 holds due to linearity of normal distributions. Since

Bt is centered for all 0 ≤ t ≤ 1, so is B0
t . The covariance structure of (B0

t )0≤t≤1 is
calculated as follows.

Cov(B0
s , B0

t ) = Cov(Bs − sB1, Bt − tB1)

= Cov(Bs, Bt )− sCov(B1, Bt )− tCov(Bs, B1)+ stVar(B1)

= s ∧ t − st − st + st = s ∧ t − st, 0 ≤ s, t ≤ 1.
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Theorem 2.22 All finite-dimensional marginal distributions pertaining to the
reduced empirical process (Un(u))0≤u≤1 converge weakly to the corresponding
marginal distributions of a Brownian bridge (B0

u)0≤u≤1 as n →∞.

Proof Let m ∈ N and 0 ≤ u1 ≤ u2 ≤ . . . ≤ um ≤ 1 be arbitrary, but fixed. We
notice that

(Un(u1), . . . ,Un(um))� = n−
1
2

n∑

i=1

(
1{Ui≤u1} − u1, . . . , 1{Ui≤um} − um

)�

is a normalized sum of i.i.d. centered m-dimensional random vectors with finite
covariance matrix Σ (say). Hence, the multivariate central limit theorem for i.i.d.

random vectors yields that (Un(u1), . . . ,Un(um))� D→ Z, where Z is a centered m-
dimensional Gaussian random vector with the same covariance matrix Σ . It remains
to calculate Σ . This is done in Exercise 2.5. We obtain that Σj,k = uj − ujuk, 1 ≤
j ≤ k ≤ m. Hence, the covariance structure of Z is the same as that of the Brownian
bridge, completing the proof.

Corollary 2.23 (Donsker 1952) The reduced empirical process (Un(u))0≤u≤1
converges in distribution to (B0

u)0≤u≤1 as n →∞.

2.4 Exercises

Exercise 2.1 Prove Theorem 2.1.

Exercise 2.2 Solve the constrained optimization problem (2.7) using the Lagrange
multiplier method.
Hints:

(i) It suffices to take only the equality constraint of (2.7) into account.
(ii) It may be easier to work with L(y, F ) = log (Z(y, F )) instead of Z(y, F ).

Since the logarithm is a strictly increasing function, the (constrained) maximiz-
ers of L(y, ·) and Z(y, ·) coincide.

Exercise 2.3

(a) Prove Theorem 2.11.
(b) Illustrate the assertion of Corollary 2.12 graphically.

Hint: Choose F such that supp(F ) = [0, 1] and that F possesses on [0, 1]
exactly one jump and exactly one “plateau.”

(c) Elucidate the essential assertions of Sect. 2.2 with the help of your graph from
part (b) of this exercise.
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Exercise 2.4 (Programming Exercise)

(a) Write an R program which simulates and plots (equidistantly discretized) paths
of a Brownian motion on [0, 1]. To this end, show first that the increments of a
Brownian motion are normally distributed and stochastically independent.

(b) Add to your graph from part (a) of this exercise the path of the corresponding
Brownian bridge.

Exercise 2.5 Calculate the covariance matrix Σ appearing in the proof of
Theorem 2.22.

Exercise 2.6 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) If, under the general assumptions of Sect. 2.1, the variance σ 2 := Var(Y1) is
finite, then the plug-in estimator for σ 2 is unbiased.

(b) Assume that the random variable Z is standard normally distributed on R,
and let λ > 0 be a given real constant. Then, the random variable Y :=
−λ−1 log(Φ(Z)) is exponentially distributed with intensity parameter λ, where
Φ denotes the cdf ofN (0, 1).

(c) Under the assumptions of Theorem 2.14, the supremum in Eq. (2.12) is always
attained at a point of discontinuity of F̂n or at a point of discontinuity of F .

(d) The distribution of a Gaussian process (Xt )t∈T is uniquely determined by the
specification of a mean function μ : T → R with μ(t) = E[Xt ] and the
specification of a covariance function Σ : T × T → R with Σ(s, t) =
Cov(Xs,Xt ).
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Chapter 3
Goodness-of-Fit Tests

As outlined in Sect. 1.3, we will construct goodness-of-fit tests by making use of the
substitution principle. Let P = {Q : Q is a probability measure on (R,B(R))}.
We assume a sample Y = (Y1, . . . , Yn)

� of i.i.d. real-valued random variables
defined on some probability space (Ω,F ,P), such that P = P

Y1 ∈ P . Clearly,
P already determines PY = P⊗n.

Our aim is to test certain null hypotheses H0 corresponding to subsets P0 ⊂P .
To this end, assume that we have some distance ρ defined on P×P . Then, we can
equivalently express the null hypothesis as H0 : infQ∈P0 ρ(P,Q) = 0, cf. (1.5).
Hence, the substitution principle leads to the test statistic Tn = infQ∈P0 ρ(P̂n,Q),
where P̂n denotes the empirical measure pertaining to Y1, . . . , Yn; cf. (1.6).

In order to implement this idea into practical test procedures, we need to

(1) define appropriate distances on P ×P , and
(2) derive or approximate the null distribution of the resulting test statistics Tn.

In this chapter, we will cover two types of null hypotheses, namely

(1) simple null hypotheses of the form P0 = {P0}, where P0 is completely
specified, and

(2) (composite) null hypotheses consisting of a parametric family of the form
P0 = {Pϑ : ϑ ∈ Θ ⊆ R

p, p ∈ N}.
Other types of (composite) null hypotheses, relating to statistical functionals, will
be treated in Chap. 7.

Definition 3.1 (See Section 14.2 in Deza and Deza 2016) Let Q1 and Q2 ∈ P
with corresponding cdfs F1 and F2. Then we call

(i) ρKS, given by

ρKS(Q1,Q2) = sup
y∈R

|F1(y)− F2(y)|,

the Kolmogorov-Smirnov metric (or: uniform metric) on P ×P .
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(ii) ρCvM, given by

ρCvM(Q1,Q2) =
∫

R

[F1(y)− F2(y)]2 dF2(y),

the Cramér-von Mises distance on P ×P .

We will also write ρ(F1, F2) instead of ρ(Q1,Q2).

3.1 Simple Null Hypotheses

Theorem 3.2 Let Y1, . . . , Yn be i.i.d. real-valued random variables with continu-
ous cdf F of Y1, F̂n the empirical cdf pertaining to Y1, . . . , Yn, and let Un be the
reduced empirical process defined in Definition 2.16, where Ui := F(Yi) for all
1 ≤ i ≤ n. Then it holds:

√
n · ρKS(F̂n, F ) = sup

0≤u≤1
|Un(u)|, (3.1)

n · ρCvM(F̂n, F ) =
∫ 1

0
U

2
n(u)du. (3.2)

Proof To prove (3.1), recall that

√
n · ρKS(F̂n, F ) = sup

y∈R

∣
∣
∣
√

n{F̂n(y)− F(y)}
∣
∣
∣ . (3.3)

Now, substitute y = F−1(u) in (3.3). We obtain that

√
n · ρKS(F̂n, F ) = sup

0≤u≤1

∣
∣
∣
√

n{F̂n(F
−1(u))− F(F−1(u))}

∣
∣
∣

= sup
0≤u≤1

∣
∣
∣
√

n{F̂n(F
−1(u))− u}

∣
∣
∣

= sup
0≤u≤1

|Un(u)|,

due to Lemma 2.17.(c).
Assertion (3.2) can be proved analogously; cf. Exercise 3.1.

Corollary 3.3 Under the assumptions of Theorem 3.2, it holds that

√
n · ρKS(F̂n, F )

D→ sup
0≤t≤1

|B0
t |, (3.4)

n · ρCvM(F̂n, F )
D→

∫ 1

0

[
B0

t

]2
dt =: W 2, (3.5)
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where (B0
t )0≤t≤1 denotes a Brownian bridge.

Proof The assertions follow from Theorem 3.2 by applying the continuous mapping
theorem.

Theorem 3.4 (Kolmogorov Distribution) Let (B0
t )0≤t≤1 denote a Brownian

bridge defined on some probability space (Ω,F ,P). Then it holds that

∀x > 0 : P
(

sup
0≤t≤1

|B0
t | ≤ x

)

= 1− 2
∞∑

k=1

(−1)k+1 exp
(
−2k2x2

)
=: L(x).

(3.6)

Proof See Kolmogorov (1933).

Application 3.5 (Kolmogorov-Smirnov Test) Let Y1, . . . , Yn denote i.i.d. real-
valued random variables defined on some probability space (Ω,F ,P) with
unknown cdf F of Y1. Consider the test problem

H0 : {F = F0} versus H1 : {F �= F0} (3.7)

for some given cdf F0 on (R,B(R)). Then we call

Dn := ρKS(F̂n, F0) = sup
z∈R

∣
∣
∣F̂n(z)− F0(z)

∣
∣
∣

the Kolmogorov-Smirnov test statistic and ϕKS with

ϕKS(y) = 1 ⇐⇒ Dn(y) > cKSn (α)

the Kolmogorov-Smirnov test at significance level α for (3.7), where F̂n denotes the
empirical cdf pertaining to Y1, . . . , Yn and y = (y1, . . . , yn)

� the observed data.
If F0 is continuous, then ϕKS is distribution-free, meaning that the critical value

cKSn (α) only depends on n and α, and not on F0. If n is large, then
√

ncKSn (α) can be
approximated by L−1(1− α), where L is as in (3.6).

Theorem 3.6 Let (B0
t )0≤t≤1 denote a Brownian bridge, and let W 2 be as in (3.5).

Then it holds that

W 2 D=
∞∑

j=1

1

j2π2
Z2

j ,

where (Zj )j≥1 denotes a sequence of i.i.d. random variables such that Z1 ∼
N (0, 1).

Proof See Theorem 5.3.1 in Shorack and Wellner (1986).
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Remark 3.7 The cdf of W 2 is tabulated in Table 1 of Anderson and Darling (1952);
see also Table 3.8.4 in Shorack and Wellner (1986).

Application 3.8 (Cramér-von Mises Test) Under the assumptions of Applica-
tion 3.5, we call

ω2
n := ρCvM(F̂n, F0) =

∫

R

[
F̂n(z)− F0(z)

]2
dF0(z)

the Cramér-von Mises test statistic and ϕCvM with

ϕCvM(y) = 1 ⇐⇒ ω2
n(y) > cCvMn (α)

the Cramér-von Mises test at significance level α for (3.7).
If F0 is continuous, then ϕCvM is distribution-free. If n is large, then ncCvMn (α) can

be approximated by the (1 − α)-quantile of the distribution of W 2; cf. Theorem 3.6
and Remark 3.7.

In view of (3.2), the following result is useful for carrying out a Cramér-von
Mises test in practice.

Lemma 3.9 It holds that

W 2
n :=

∫ 1

0
U

2
n(u)du =

n∑

k=1

(

Uk:n − 2k − 1

2n

)2

+ 1

12n
,

where U1:n < . . . < Un:n are the order statistics of the uniformly distributed
random variablesU1, . . . , Un which define the reduced empirical processUn, where

Un(u) = √
n
(
Ĝn(u)− u

)
for 0 ≤ u ≤ 1; cf. Definition 2.16.

Proof Let u1:n < u2:n < . . . < un:n denote arbitrary realizations of U1:n < U2:n <

. . . < Un:n, and define u0:n := 0 as well as un+1:n := 1. For these realizations,
obviously Ĝn(u) takes the value i/n for u ∈ [ui:n, ui+1:n), 0 ≤ i ≤ n. Thus, we get
that

W 2
n = n

∫ 1

0

[
Ĝn(u)− u

]2
du

= n

n∑

i=0

∫ ui+1:n

ui:n

(
i

n
− u

)2

du = n

n∑

i=0

[(
u− i

n

)3

3

]ui+1:n

ui:n

= n

[
n−1∑

i=0

(
ui+1:n − i

n

)3

3
−

n∑

i=1

(
ui:n − i

n

)3

3

]
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= n

⎡

⎢
⎣

n∑

k=1

(
uk:n − k−1

n

)3

3
−

n∑

i=1

(
ui:n − i

n

)3

3

⎤

⎥
⎦

= n

⎡

⎢
⎣

n∑

k=1

(
uk:n − k−1

n

)3 − (
uk:n − k

n

)3

3

⎤

⎥
⎦ . (3.8)

An elementary calculation now yields that

(

uk:n − k − 1

n

)3

−
(

uk:n − k

n

)3

= 3u2
k:n
n

− 3uk:n
(

2k − 1

n2

)

+ 3k2 − 3k + 1

n3 .

Hence, the right-hand side of (3.8) equals

n∑

k=1

{

u2
k:n −

2k − 1

n
uk:n + 3k2 − 3k + 1

3n2

}

=
n∑

k=1

{

u2
k:n −

2k − 1

n
uk:n

}

+ n

3
,

(3.9)

because
n∑

k=1

(3k2 − 3k + 1) = n3. Finally, notice that the right-hand side of (3.9)

equals

n∑

k=1

{(

uk:n − k − 1/2

n

)2

− (k − 1/2)2

n2

}

+ n

3
=

n∑

k=1

(

uk:n − 2k − 1

2n

)2

+ 1

12n

as desired, because
n∑

k=1

(k − 1/2)2 = n3/3− n/12.

If, under the assumptions of Application 3.8, F0 is continuous and the null
hypothesis is true (meaning that F = F0), we have that nω2

n = nρCvM(F̂n, F0)

behaves like W 2
n , where Ui = F0(Yi) for 1 ≤ i ≤ n, because of (3.2). Hence, we

can also in the general case compute Zi := F0(Yi) for 1 ≤ i ≤ n and compare the
test statistic

Tn =
n∑

k=1

(

Zk:n − 2k − 1

2n

)2

+ 1

12n

with the appropriate critical value ncCvM
n (α).
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3.2 Tests for Parametric Families

Parts of this section are based on the lecture notes of Rui Castro from his Applied
Statistics Lectures 2 and 3 in the year 2013.1

A reasonable approach for testing the null hypothesis

H0 : P ∈ {Pϑ : ϑ ∈ Θ ⊆ R
p, p ∈ N} (3.10)

consists in a two-step strategy:

1. Estimate ϑ by ϑ̂ = ϑ̂(Y1, . . . , Yn).
2. Apply one of the tests treated in Sect. 3.1 with F0 replaced by F

ϑ̂
(the cdf

pertaining to P
ϑ̂

).

However, the fact that ϑ̂ = ϑ̂(Y1, . . . , Yn) depends on the data yields that the

“estimated empirical process”
√

n
(
F̂n − F

ϑ̂

)
will, even under the null hypothesis,

have a different stochastic behavior than
√

n
(
F̂n − F

)
, due to the additional

variability which is contributed by ϑ̂ . In addition, the tests of Kolmogorov-

Smirnov- and Cramér-von Mises-type based on
√

n
(
F̂n − F

ϑ̂

)
are unfortunately

not distribution-free anymore. In particular model classes, though, they are at least
parameter-free, meaning that their null distribution depends on the family (Pϑ)ϑ∈Θ ,
but not on the value of ϑ .

Definition 3.10 A family {Pμ,σ : μ ∈ R, σ > 0} of probability measures on
(R,B(R)) with corresponding cdfs Fμ,σ is called a location-scale family, if there
exists a cdf F0,1 on (R,B(R)) such that

∀μ ∈ R : ∀σ > 0 : ∀y ∈ R : Fμ,σ (y) = F0,1

(
y − μ

σ

)

.

In other words: If the real-valued random variable Y possesses the cdf Fμ,σ

belonging to a location-scale family, then the standardized random variable (Y −
μ)/σ possesses the cdf F0,1. The parameter μ is called the location parameter and
the parameter σ is called the scale parameter.

Example 3.11 The family {N (μ, σ 2) : μ ∈ R, σ 2 > 0} of univariate normal
distributions constitutes a location-scale family with the expectation μ as the
location parameter and the standard deviation σ as the scale parameter. Here, the
cdf F0,1 = Φ is the cdf of the standard normal distribution on (R,B(R)).

Definition 3.12 Let Y1, . . . , Yn denote some real-valued random variables and let
T : Rn → R be a measurable transformation. Then we call T

1These lecture notes are available at http://www.win.tue.nl/~rmcastro/AppStat2013/.

http://www.win.tue.nl/~rmcastro/AppStat2013/
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(i) location-scale invariant in distribution, if

∀a > 0 : ∀b ∈ R : T (aY1 + b, . . . , aYn + b)
D= aT (Y1, . . . , Yn)+ b.

(ii) scale invariant in distribution, if

∀a > 0 : ∀b ∈ R : T (aY1 + b, . . . , aYn + b)
D= aT (Y1, . . . , Yn).

Lemma 3.13 Let {Pμ,σ : μ ∈ R, σ > 0} be a location-scale family of probability
measures on (R,B(R)) with corresponding cdfs Fμ,σ . Let Y1, . . . , Yn denote an
i.i.d. sample from this family. Assume that the maximum likelihood estimators μ̂ =
μ̂(Y1, . . . , Yn) of μ and σ̂ = σ̂ (Y1, . . . , Yn) of σ exist. Then μ̂ is location-scale
invariant in distribution and σ̂ is scale invariant in distribution.

Proof If Y1 ∼ Pμ,σ and a > 0 and b ∈ R are given constants, then

P(aY1 + b ≤ y) = P

(

Y1 ≤ y − b

a

)

= Fμ,σ

(
y − b

a

)

= F0,1

(
y − b − aμ

aσ

)

. (3.11)

On the other hand, if Y1 ∼ Paμ+b,aσ , we have that

P(Y1 ≤ y) = F0,1

(
y − b − aμ

aσ

)

. (3.12)

Obviously, the right-hand sides of (3.11) and (3.12) coincide, implying that

μ̂(aY1 + b, . . . , aYn + b)
D= âμ+ b(Y1, . . . , Yn).

However, due to the parametrization invariance of the maximum likelihood method
(cf., e.g., Zehna 1966 or Section 2.8 of Barndorff-Nielsen and Cox 1994), we have
that âμ+ b = aμ̂ + b. Hence, μ̂ is location-scale invariant in distribution. The
assertion for σ̂ follows analogously.

Corollary 3.14 Under the assumptions of Lemma 3.13, the statistics (μ̂ − μ)/σ

and σ̂ /σ are pivotal, meaning that their distributions do not depend on μ or σ .

Proof This is Exercise 3.5.

Theorem 3.15 Under the assumptions of Lemma 3.13, assume additionally that
Fμ,σ is continuous for all μ ∈ R and all σ > 0. Then, the distribution of the

“estimated empirical process”
√

n
(
F̂n − Fμ̂,σ̂

)
does not depend on μ or σ .
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Proof Recall that

F̂n(y)− Fμ̂,σ̂ (y) = 1

n

n∑

i=1

1{Yi ≤ y} − Fμ̂,σ̂ (y)

for all y ∈ R. Now, substitute y := F−1
μ̂,σ̂

(u) for 0 ≤ u ≤ 1. This yields that

F̂n(y)− Fμ̂,σ̂ (y) = 1

n

n∑

i=1

1{Yi ≤ F−1
μ̂,σ̂

(u)} − u

= 1

n

n∑

i=1

1{Fμ̂,σ̂ (Yi) ≤ u} − u,

because Fμ̂,σ̂ is continuous. Finally, notice that, for all 1 ≤ i ≤ n, the distribution
of

Zi := Fμ̂,σ̂ (Yi) = F0,1

(
Yi − μ̂

σ̂

)

= F0,1

(
Yi−μ

σ
− μ̂−μ

σ

σ̂ /σ

)

(3.13)

does not depend on μ or σ , due to Corollary 3.14.

Remark 3.16 The right-hand side of (3.13) reveals that, even under the null
hypothesis, the distribution of Zi will typically not be uniform, 1 ≤ i ≤ n, because
(Yi − μ)/σ ∼ F0,1 and the statistics (μ̂ − μ)/σ and σ̂ /σ will typically have non-
degenerate distributions, at least for finite values of n.

Application 3.17 The result of Theorem 3.15 suggests the following procedure for
calibrating a test for the null hypothesis (3.10), provided that the assumptions of
Theorem 3.15 are fulfilled.

(i) Choose a suitable test statistic Tn, for example Dn from Application 3.5 or ω2
n

from Application 3.8, where F0 is replaced by Fμ̂,σ̂ in both cases.
(ii) Generate a (pseudo-) random sample Ỹ1, . . . , Ỹn from F0,1 on the computer.
(iii) Compute the value of the test statistic Tn on the pseudo-sample Ỹ1, . . . , Ỹn, by

computing the values of μ̂ = μ̂(Ỹ1, . . . , Ỹn), σ̂ = σ̂ (Ỹ1, . . . , Ỹn), and Z̃i =
F0,1

(
(Ỹi − μ̂)/σ̂

)
for 1 ≤ i ≤ n.

(iv) Repeat steps (ii) and (iii)B times, store theB computed values of the test statis-
tic, and approximate the critical value for the test based on Tn(Y1, . . . , Yn) by
the (1− α)-quantile of the B stored values.
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3.3 Exercises

Exercise 3.1 Prove assertion (3.2) in Theorem 3.2 under the assumptions that P is
absolutely continuous with Lebesgue density f and that F is strictly isotone on its
support.

Exercise 3.2 Compute the expectation and the variance of the statistic W 2 appear-
ing in (3.5) and in Theorem 3.6.

Exercise 3.3 (Programming Exercise)

(a) Write an R program which simulates paths of the reduced empirical process
Un on [0, 1] for n ∈ {20, 50, 100, 500, 1000}, respectively. For each value of
n, perform B = 10,000 simulation runs. On the basis of these simulations,
approximate the critical values cKSn (0.05), n ∈ {20, 50, 100, 500, 1000}, of the
Kolmogorov-Smirnov test at significance level α = 5% in the case of continuous
F0 (cf. Application 3.5).

(b) Verify by means of Theorem 3.4 that cKSn (0.05) can be approximated by
1.358/

√
n for large values of n. Compare your approximated values from part

(a) of this exercise with the latter approximation.

Exercise 3.4 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) Under the assumptions of Definition 3.1, ρCvM is symmetric, i.e., for all
Q1,Q2 ∈P it holds that ρCvM(Q1,Q2) = ρCvM(Q2,Q1).

(b) Under the assumptions of Theorem 3.4 it holds that

L(x) =
∞∑

m=−∞
(−1)m exp(−2m2x2).

(c) If, under the assumptions of Application 3.5, the cdf F0 is not continuous, then
the critical value cKSn (0.05) can nevertheless be approximated by means of a
computer simulation (with in principle arbitrary precision).

(d) The statistic W 2 appearing in (3.5) and in Theorem 3.6 is in distribution equal
to a weighted sum of chi-square-distributed random variables.

Exercise 3.5 Prove Corollary 3.14.

Exercise 3.6 (Programming Exercise) Let Y1, . . . , Yn be real-valued, stochas-
tically independent and identically normally distributed random variables, where
both μ = E[Y1] and σ 2 = Var(Y1) are unknown.

Write an R program which simulates paths of the “estimated empirical process”

√
n
(
F̂n − Fμ̂,σ̂

)
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for n ∈ {20, 50, 100, 500, 1000}; cf. Application 3.17. For every value of n,
perform B = 10,000 simulation runs. By means of these simulations, approximate
the critical values cKS2n (0.05), n ∈ {20, 50, 100, 500, 1000}, of the two-stage
Kolmogorov-Smirnov test at significance level α = 5% according to the construc-
tion principle considered in Sect. 3.2.

Exercise 3.7 (Tests for Exponentiality) Let {Exp(λ) : λ > 0} denote the family
of exponential distributions on (R≥0,B(R≥0)) with intensity parameter λ > 0, and
let {Fλ : λ > 0} denote the corresponding cdfs.
(a) Show that {Exp(λ) : λ > 0} constitutes a scale parameter family, and determine

the scale parameter.
Hint: A family {Pσ : σ > 0} of probability distributions on (Y ,B(Y )) with
corresponding cdfs {Fσ : σ > 0} is called a scale parameter family with scale
parameter σ , if there exists a cdf H on (Y ,B(Y )) such that for all y ∈ Y and
all σ > 0, it holds that Fσ (y) = H(y/σ).

(b) Now, let n ∈ N, and Y1, . . . , Yn be stochastically independent and identically
distributed random variables with Y1 ∼ Exp(λ) for unknown λ > 0. Denote
by λ̂ = λ̂(Y1, . . . , Yn) the maximum likelihood estimator for λ based on
Y1, . . . , Yn. Show that under these assumptions the distribution of λ̂/λ is
pivotal.

(c) Show that under the assumptions of part (b) the distribution of the “estimated

empirical process”
√

n
(
F̂n − F

λ̂

)
does not depend on the value of λ. Discuss

implications of the latter result for goodness-of-fit tests for exponentiality.
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Chapter 4
Rank Tests

4.1 Parametric Score Tests

Test problems involving composite null and/or alternative hypotheses are often
highly non-trivial. Only in special cases (e.g., for models with isotone likelihood
ratio in which the Neyman–Pearson theory is applicable) there exists a satisfactory
methodology allowing for uniformly (over ϑ ∈ H1) best level α-tests. If the
“geometry” of the statistical model is more complicated, then it is typically
impossible to minimize the type II error probability under the level constraint
uniformly. This issue is ubiquitous in nonparametric test problems. Hence, in the
latter case the researcher has to decide for which kinds of alternatives the test
procedure shall be most sensitive, meaning towards which “regions” of H1 optimal
power are targeted.

In the one-parametric case, one class of procedures is constituted by locally best
tests. They are targeted towards regions of H1 which are “close to H0”. Derivation
of locally best tests requires the concept of L1-differentiability or differentiability
in the mean.

Definition 4.1 (Differentiability in the Mean) Let (Y ,B(Y ), (Pϑ)ϑ∈Θ) denote
a statistical model and assume that (Pϑ)ϑ∈Θ is a dominated (by μ) family of
measures, where Θ ⊆ R. Then, (Y ,B(Y ), (Pϑ)ϑ∈Θ) is called differentiable in
the mean in ϑ0 ∈ Θ̊ , if a function g ∈ L1(μ) exists with

∥
∥
∥
∥t
−1

(dPϑ0+t

dμ
− dPϑ0

dμ

)
− g

∥
∥
∥
∥

L1(μ)

→ 0 as t → 0.

The function g is called L1(μ)-derivative of ϑ �→ Pϑ in ϑ0. In the sequel, we choose
w.l.o.g. ϑ0 ≡ 0.
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Theorem 4.2 (§18 in Hewitt and Stromberg (1975), Satz 1.183 in Witting
(1985)) Under the assumptions of Definition 4.1 let ϑ0 = 0 and let densities be
given by fϑ(y) = dPϑ/(dμ)(y). Assume that there exists an open neighborhood
U of 0 such that for μ-almost all y the mapping U � ϑ �→ fϑ(y) is absolutely
continuous, i.e., it exists an integrable function τ �→ ḟ (y, τ ) on U with

∫ ϑ2

ϑ1

ḟ (y, τ )dτ = fϑ2(y)− fϑ1(y), ϑ1 < ϑ2,

and assume that ∂
∂ϑ

fϑ (y)|ϑ=0 = ḟ (y, 0) μ-almost everywhere. Furthermore,
assume that for ϑ ∈ U the function y �→ ḟ (y, ϑ) is μ-integrable with

∫
|ḟ (y, ϑ)|dμ(y)→

∫
|ḟ (y, 0)|dμ(y), ϑ → 0.

Then, ϑ �→ Pϑ is differentiable in the mean in 0 with g = ḟ (·, 0).

Roughly speaking, Theorem 4.2 yields that in the case of absolute continuity the
L1-derivative can be computed by usual differentiation of the density with respect to
the parameter. Further applications of Theorem 4.2 are considered in Example 4.4.

Definition and Theorem 4.3 Under the assumptions of Definition 4.1 assume that
the densities ϑ �→ fϑ are differentiable in the mean in 0 with L1(μ)-derivative g.
Then,

ϑ−1 log(fϑ(y)/f0(y)) = ϑ−1(log fϑ(y)− log f0(y))

converges for ϑ → 0 to L̇(y) (say) in P0-probability. We call L̇ : Y → R the
derivative of the logarithmic likelihood ratio or score function. It holds

L̇(y) = g(y)/f0(y) and
∫

Y
L̇dP0 = 0. (4.1)

Proof ϑ−1(fϑ/f0 − 1) → g/f0 converges in L1(P0) and, consequently, in P0-

probability. The chain rule yields that L̇(y) = g(y)/f0(y). Noting that
∫

Y
(fϑ −

f0)dμ = 0 for all ϑ ∈ Θ we conclude that

∫

Y
L̇dP0 =

∫

Y
gdμ = 0.

Example 4.4

(a) Location parameter model:
Let Y = ϑ + X,ϑ ≥ 0, and assume that X has a density f which is absolutely
continuous with respect to the Lebesgue measure and does not depend on ϑ .
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Then, the densities ϑ �→ f (y − ϑ) of Y under ϑ are differentiable in the mean
in zero with score function L̇, given by L̇(y) = −f ′(y)/f (y) (where the prime
indicates differentiation with respect to y).

(b) Scale parameter model:
Let Y = exp(ϑ)X and assume again that X has density f with the properties
stated in part (a). Moreover, assume that

∫ |xf ′(x)|dx < ∞. Then, the densities
ϑ �→ exp(−ϑ)f (y exp(−ϑ)) of Y under ϑ are differentiable in the mean in
zero with score function L̇, given by L̇(y) = −[1+ yf ′(y)/f (y)].

Lemma 4.5 Assume that the family ϑ �→ Pϑ is differentiable in the mean with
score function L̇ in ϑ0 = 0 and that ci , 1 ≤ i ≤ n, are real constants. Then, also
ϑ �→⊗n

i=1 Pciϑ is differentiable in the mean in zero, with score function

(y1, . . . , yn)
� �→

n∑

i=1

ciL̇(yi).

Proof This is Exercise 4.1.

Definition 4.6 (Score Test) Let ϑ �→ Pϑ be differentiable in the mean in ϑ0 with
score function L̇. Then, every test ϕ of the form

ϕ(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if L̇(y) > c,

γ, if L̇(y) = c,

0, if L̇(y) < c,

is called a score test. In this, γ ∈ [0, 1] denotes a randomization constant.

Definition 4.7 (Locally Best Test) Let (Pϑ)ϑ∈Θ with Θ ⊆ R denote a family
which is differentiable in the mean in ϑ0 ∈ Θ . A test ϕ∗ with Eϑ0[ϕ∗] = α is called
locally best test among all tests with expectation α under ϑ0 for the test problem
H0 = {ϑ0} versus H1 = {ϑ > ϑ0} if

d

dϑ
Eϑ [ϕ∗]

∣
∣
∣
∣
ϑ=ϑ0

≥ d

dϑ
Eϑ [ϕ]

∣
∣
∣
∣
ϑ=ϑ0

for all tests ϕ with Eϑ0 [ϕ] = α.

Figure 4.1 illustrates the situation considered in Definition 4.7 graphically.

Remark 4.8 As indicated by Fig. 4.1, it is possible that locally best tests have sub-
optimal power properties for values of ϑ > ϑ0 which have a large distance to ϑ0.
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Fig. 4.1 Locally best test ϕ∗ with expectation α under ϑ0

Theorem 4.9 (Satz 2.44 in Witting (1985)) Under the assumptions of Defini-
tion 4.7, the score test ϕ, given by

ϕ(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if L̇(y) > c(α)

γ, if L̇(y) = c(α), γ ∈ [0, 1]
0, if L̇(y) < c(α)

(4.2)

with Eϑ0 [ϕ] = α, is a locally best test for testingH0 = {ϑ0} againstH1 = {ϑ > ϑ0}
among all tests with expectation α under ϑ0.

Proof We notice that for any test ϕ and any ϑ ∈ Θ , it holds

Eϑ [ϕ] =
∫

Y
ϕ(y)fϑ(y)μ(dy)
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and hence,

d

dϑ
Eϑ [ϕ]

∣
∣
∣
∣
ϑ=ϑ0

=
∫

Y
ϕ(y)g(y)μ(dy)

=
∫

Y
ϕ(y)L̇(y)fϑ0(y)μ(dy)

=
∫

Y
ϕ(y)L̇(y)Pϑ0(dy) = Eϑ0 [ϕL̇].

Thus, we have to maximize Eϑ0 [ϕL̇] with respect to ϕ under the condition that
Eϑ0 [ϕ] = α. To this end, for the sake of simplicity, assume that the distribution of
L̇ under ϑ0 is absolutely continuous, and let cα be such that

Pϑ0(L̇ > cα) = α.

We get that

Eϑ0 [ϕL̇] − αcα = Eϑ0 [ϕL̇] − cαEϑ0 [ϕ]
= Eϑ0 [(L̇− cα)ϕ]
≤ Eϑ0 [(L̇− cα)+]

with equality for ϕ = 1{L̇ > cα}.
The general case can be treated with the usual modifications, leading to the

randomized version of the score test as given in (4.2).

Theorem 4.9 shows that in the theory of locally best tests the score function L̇

takes the role that the likelihood ratio has in the Neyman–Pearson theory. Notice
that, for an i.i.d. sample Y = (Y1, . . . , Yn)

� with Y1 ∼ Pϑ , the joint distribution
of Y is the product measure Pϑ = P⊗n

ϑ . It has the score function (y1, . . . , yn)
� �→∑n

i=1 L̇(yi), where L̇ is the score function pertaining to (Pϑ : ϑ ∈ Θ) in ϑ0,
according to Lemma 4.5. Hence, Theorem 4.9 can be applied to test H0 = {ϑ0}
against H1 = {ϑ > ϑ0} based on Y in the following manner: We reject H0, iff∑n

i=1 L̇(yi) exceeds its critical value.
Moreover, for k-sample problems with k ≥ 2 groups and n jointly independent

observables, Lemma 4.5 can be utilized to test the homogeneity hypothesis

H0 =
{
P

Y1 = P
Y2 = . . . = P

Yn : PY1 absolutely continuous
}
. (4.3)

To this end, one considers auxiliary parametric families ϑ �→ Pn,ϑ which belong to
H0 only in case of ϑ = 0, i.e., Pn,0 ∈ H0 and Pn,ϑ �∈ H0, ϑ �= 0. For ϑ �= 0, Pn,ϑ

is a product measure with non-identical factors.
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Example 4.10

(a) Regression model for a location parameter
Let Yi = ciϑ + Xi , 1 ≤ i ≤ n, where ϑ ≥ 0. In this, assume that the Xi are
i.i.d. with Lebesgue density f which is independent of ϑ . Now, for a two-sample
problem with n1 observations in the first group and n2 = n − n1 observations
in the second group, we set c1 = c2 = · · · = cn1 = 1 and ci = 0 for all
n1 + 1 ≤ i ≤ n. Under alternatives, the observations in the first group are
shifted by ϑ > 0.

(b) Regression model for a scale parameter
Let ci , 1 ≤ i ≤ n, denote real regression coefficients and consider the model
Yi = exp(ciϑ)Xi , 1 ≤ i ≤ n, ϑ ∈ R, where we assume again that the Xi are
i.i.d. with Lebesgue density f which is independent of ϑ . Then, it holds

dPn,ϑ

dλn
(y) =

n∏

i=1

exp(−ciϑ)f (yi exp(−ciϑ)).

Under ϑ0 = 0, the product measure Pn,0 belongs to H0, while under alternatives
it does not.

(c) General model
Let ϑ �→ Pϑ be a one-parametric curve of probability distributions depending
on a real-valued parameter ϑ . Define Pn,ϑ = ⊗n

i=1 Pciϑ with real constants
c1, . . . , cn as the model for the sample Y1, . . . , Yn.

In the nonparametric case, H0 from (4.3) shall of course be tested without
utilizing a specific density f in the calibration of the test. This can be achieved
by conditioning on the ranks of the observations.

4.2 Deriving Rank Tests by Conditioning

Theorem 4.11 Let ϑ �→ Pϑ denote a parametric family which is L1(μ)-
differentiable in ϑ0 = 0 with score function L̇. Furthermore, let S : Y → S
be a statistic. Then, ϑ �→ P

S
ϑ is L1(μ

S)-differentiable in zero with score function
s �→ E0[L̇

∣
∣ S = s].

Proof First, we show that the L1(μ
S)-derivative of ϑ �→ P

S
ϑ is given by s �→

Eμ[g
∣
∣S = s], where g is the L1(μ)-derivative of ϑ �→ Pϑ , meaning that

ϑ−1(fϑ − f0) −→ g in L1(μ), ϑ → 0. (4.4)

To this end, notice that (see Satz 1.121.b) in Witting (1985))

Q $ P �⇒ dQT

dPT
(t) = EP

[dQ

dP
| T = t

]
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for probability measures P and Q and a statistic T . Applying this result to our
situation yields that

dPS
ϑ

dμS
(s) = Eμ[fϑ

∣
∣ S = s], where fϑ = dPϑ

dμ

as before. Linearity of Eμ[·
∣
∣S = s] and transformation of measures leads to

∫ ∣
∣
∣
∣
∣
ϑ−1

(
dPS

ϑ

dμS
(s)− dPS

0

dμS
(s)

)

− Eμ[g
∣
∣ S = s]

∣
∣
∣
∣
∣
dμS(s)

=
∫ ∣

∣
∣ϑ−1 (

Eμ[fϑ

∣
∣ S = s] − Eμ[f0

∣
∣S = s])− Eμ[g

∣
∣S = s]

∣
∣
∣ dμS(s)

=
∫ ∣

∣
∣Eμ[ϑ−1(fϑ − f0)− g

∣
∣ S = s]

∣
∣
∣ dμS(s)

=
∫ ∣

∣
∣Eμ[ϑ−1(fϑ − f0)− g

∣
∣ S]

∣
∣
∣ dμ.

Applying Jensen’s inequality and Vitali’s Theorem 1.11, we conclude that s �→
Eμ[g

∣
∣S = s] is L1(μ

S)-derivative of ϑ �→ P
S
ϑ .

Now, the chain rule yields that the score function of PS
ϑ in zero is given by

s �→ Eμ[g
∣
∣ S = s]

Eμ[f0
∣
∣ S = s] =

Eμ[L̇f0
∣
∣S = s]

Eμ[f0
∣
∣ S = s]

and the assertion follows by verifying that

E0[L̇
∣
∣ S]Eμ[dP0

dμ

∣
∣ S] = Eμ[L̇dP0

dμ

∣
∣ S] μ-almost surely, (4.5)

which is Exercise 4.3.

As outlined before, we will employ Theorem 4.11 in order to derive (nonparamet-
ric) rank tests based on the parametric curves Pn,ϑ considered in Example 4.10. It
will turn out that the coarsening of the information (only the ranks of the observables
are utilized, not their actual values) leads to a simple structure of the score test
statistics (namely, it leads to linear rank statistics). Furthermore, ranks have the
advantage of being robust against model misspecification. In some applications,
only the ranks of the observations are trustworthy (or available).

As a preparation, we will first gather some basic results about ranks and order
statistics. Detailed proofs for these results can be found, e.g., in §1 and §2 of Janssen
(1998), in Reiss (1989), or in other textbooks on the subject.
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Definition 4.12 Let y = (y1, . . . , yn)
� be a point in R

n. Assume that the yi are
pairwise distinct and denote their ordered values by y1:n < y2:n < . . . < yn:n.

(a) For 1 ≤ i ≤ n, the integer ri ≡ ri (y) := #{j ∈ {1, . . . , n} : yj ≤ yi} is called
the rank of yi (in y). The permutation r(y) := (r1(y), . . . , rn(y))� ∈ Sn is
called rank vector of y.

(b) The inverse permutation d(y) = (d1(y), . . . , dn(y))� := [r(y)]−1 is called the
vector of antiranks of y, and the integer di(y) is called antirank of i (the index
that corresponds to the i-th smallest observation in y).

Now, let Y1, . . . , Yn with Yi : Ωi → R be stochastically independent, absolutely
continuously distributed random variables, all driven by the same probability
measure P.

(c) Because of P(
⋃

i �=j {Yi = Yj }) = 0 the following objects are almost surely

uniquely defined: Yi:n is called i-th order statistic of Y = (Y1, . . . , Yn)�,
Ri(Y ) := nF̂n(Yi) = ri (Y1, . . . , Yn) is called rank of Yi , R(Y ) :=
(R1(Y ), . . . , Rn(Y ))� is called vector of rank statistics of Y , Di(Y ) :=
di(Y1, . . . , Yn) is called antirank of i with respect to Y and D(Y) := d(Y )

is called vector of antiranks of Y .

Lemma 4.13 Under the assumptions of Definition 4.12, it holds

(a) i = rdi = dri , yi = yri :n, yi:n = ydi .

(b) If Y1, . . . , Yn are exchangeable random variables, then R(Y ) is uniformly
distributed on Sn, i.e., P(R(Y ) = σ) = 1/n! for all permutations σ =
(r1, . . . , rn)

� ∈ Sn.
(c) If U1, . . . , Un are i.i.d. with U1 ∼ UNI[0, 1], and Yi = F−1(Ui), 1 ≤ i ≤ n,

for some c.d.f. F , then it holds Yi:n = F−1(Ui:n). If F is continuous, then it
holds R(Y ) = R(U1, . . . , Un).

(d) If (Y1, . . . , Yn) are i.i.d. with c.d.f. F of Y1, then we have

(i) P(Yi:n ≤ y) =∑n
j=i

(
n
j

)
F(y)j (1− F(y))n−j .

(ii) dPYi:n
dPY1

(y) = n
(
n−1
i−1

)
F(y)i−1(1 − F(y))n−i . If P

Y1 has Lebesgue

density f , then P
Yi:n has Lebesgue density fi:n, given by fi:n(y) =

n
(
n−1
i−1

)
F(y)i−1(1− F(y))n−if (y).

(iii) Letting P = P
Y1 , (Yi:n)1≤i≤n has the joint P⊗n-density

(y1, . . . , yn) �→ n!1{y1<y2<...<yn}.

If P has Lebesgue density f , then (Yi:n)1≤i≤n has Lebesgue density

(y1, . . . , yn) �→ n!
n∏

i=1

f (yi)1{y1<y2<...<yn}.
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Remark 4.14

(a) Part (c) of Lemma 4.13 (quantile transformation of order statistics) shows the
special importance of the distribution of order statistics of i.i.d. UNI[0, 1]-
distributed random variables U1, . . . , Un. According to part (d) of Lemma 4.13,
the order statistic Ui:n has a Beta(i, n − i + 1) distribution with E[Ui:n] =
i/(n+ 1) and Var(Ui:n) = [i(n− i + 1)]/[(n+ 1)2(n+ 2)].

(b) For computing the joint cdf of (U1:n, . . . , Un:n)�, efficient recursive algorithms
exist, for instance Bolshev’s recursion and Steck’s recursion (see Shorack and
Wellner 1986, p. 362 ff.).

Definition 4.15 (Sufficient Statistic) Let (Y ,B(Y ), (Pϑ)ϑ∈Θ) be a statistical
model, and let Y ∼ Pϑ denote a random variable with values in (Y ,B(Y )). Then,
a statistic S : (Y ,B(Y )) → (S ,B(S )) is called sufficient (for ϑ), if there exists
for all ϑ ∈ Θ a regular version of the conditional distribution of Y with respect to S

which does not depend on ϑ , i.e.,

∃h : ∀ϑ ∈ Θ,∀B ∈ B(Y ) : Eϑ

[
1B |S

]=Pϑ(B|S)=h(B, S) Pϑ − almost surely.

Theorem 4.16 Let Y = (Y1, . . . , Yn)
� be a random vector with values in

(Y n,B(Y n)) such that Y ∼ P⊗n
ϑ for an absolutely continuous distribution Pϑ

depending on ϑ ∈ Θ . Then, the vector (Yi:n : 1 ≤ i ≤ n) of the order statistics of
Y1, . . . , Yn is sufficient for ϑ .

Proof This is Exercise 4.4.

Definition 4.17 Under the assumptions of Definition 4.15, the statistic S is called
complete for (Y ,B(Y ), (Pϑ)ϑ∈Θ), if for every measurable function g and for
every ϑ ∈ Θ , it holds

Eϑ [g(S(Y ))] = 0 ⇒ Pϑ(g(S(Y )) = 0) = 1. (4.6)

The statistic S is said to be boundedly complete, if the implication in (4.6) holds for
every measurable function g which is also bounded.

Theorem 4.18 (Basu’s Theorem) Let (Y ,B(Y ), (Pϑ)ϑ∈Θ) be a statistical
model, S : (Y ,B(Y )) → (S ,B(S )) a boundedly complete sufficient statistic
for ϑ , and T : (Y ,B(Y )) → (T ,B(T )) ancillary to ϑ (i.e., a pivotal statistic).
Then, S and T are stochastically independent.

Proof Let B ∈ B(T ) be any event. We have that

P
T
ϑ (B) =

∫

S
P

T
ϑ (B|S = s)PS

ϑ(ds).

Now, notice that PT
ϑ (B) does not depend on ϑ , because T is ancillary to ϑ . On the

other hand, also P
T
ϑ (·|S = s) does not depend on ϑ , because S is sufficient for ϑ .
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Hence,

∫

S

[
P

T
ϑ (B|S = s)− P

T
ϑ (B)

]
P

S
ϑ(ds) =:

∫

S
gB(s)PS

ϑ(ds) = 0,

where the integrand gB(·) is independent of ϑ . Due to bounded completeness of S,
we conclude that PT

ϑ (B|S = s) = P
T
ϑ (B) for almost all s ∈ S , thus S |� T .

Corollary 4.19 Let Y = (Y1, . . . , Yn)
� be a vector of real-valued i.i.d. random

variables with absolutely continuous distribution P = P
Y1 . Then, the following

assertions hold true.

(a) The random vectors R(Y ) and (Yi:n)1≤i≤n are stochastically independent.
(b) Let T : Rn → R denote a mapping such that the statistic T (Y ) is integrable.

Then, for any σ = (r1, . . . , rn)� ∈ Sn, it holds that

E[T (Y )
∣
∣R(Y ) = σ ] = E[T ((Yri :n)1≤i≤n)]. (4.7)

Proof Due to part (b) of Lemma 4.13, the statistic R(Y ) is pivotal. Furthermore,
Theorem 4.16 yields that (Yi:n)1≤i≤n is sufficient for P⊗n, and it is easy to verify
that it is also boundedly complete. Thus, the assertion of part (a) can be concluded
by applying Basu’s Theorem. Part (b) is an immediate consequence of part (a) by
virtue of part c).(ii) of Theorem 1.24.

Now we are ready to apply Theorem 4.11 to vectors of rank statistics.

Corollary 4.20 (cf. Theorem 4.11, Corollary 4.19 and Lemma 4.5) Let (Pϑ)ϑ∈Θ

with Θ ⊆ R denote an L1(μ)-differentiable family with score function L̇ in ϑ0 = 0.
Let Y = (Y1, . . . , Yn)� denote a sample from Pn,ϑ = ⊗n

i=1 Pciϑ . Then, P
R
n,ϑ has

score function

σ = (r1, . . . , rn)
� �→ En,0

[
n∑

i=1

ciL̇(Yi)
∣
∣R(Y ) = σ

]

=
n∑

i=1

ciEn,0[L̇(Yi)
∣
∣R(Y ) = σ ]

=
n∑

i=1

ciEn,0[L̇(Yri :n)] =
n∑

i=1

cia(ri)

with En,0 denoting the expectation with respect to Pn,0 and scores a(i) :=
En,0[L̇(Yi:n)].
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Remark 4.21

(a) The test statistic

T (Y ) =
n∑

i=1

cia(Ri(Y )) (4.8)

is called a linear rank statistic.
(b) The homogeneity hypothesis H0 from (4.3) leads under conditioning on R(Y )

to a simple null hypothesis on Sn, namely, the discrete uniform distribution on
Sn, see part (b) of Lemma 4.13. Therefore, the critical value c(α) for the rank
test ϕ = ϕ(R(Y )), given by

ϕ(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if T (y) > c(α),

γ, if T (y) = c(α),

0, if T (y) < c(α),

(4.9)

can be computed by traversing all possible permutations σ ∈ Sn and thereby
determining the discrete permutation distribution of T (Y ) under H0. The test
ϕ from (4.9) is a locally best rank test at level α for the test problem {ϑ = 0}
versus {ϑ > 0} in the chosen auxiliary parametric model Pn,ϑ =⊗n

i=1 Pciϑ , cf.
Example 4.10. For large n, we can approximate c(α) by traversing only B < n!
randomly chosen permutations σ ∈ Sn.

(c) For the scores a(i) = En,0[L̇(Yi:n)], it holds that
∑n

i=1 a(i) = 0, because
L̇ is centered under ϑ = 0; cf. (4.1). If L̇ is isotone, then the scores fulfill
a(1) ≤ a(2) ≤ . . . ≤ a(n).

(d) Due to the relation Yi:n
D= F−1(Ui:n), the scores are often given in the form

a(i) = E[L̇ ◦ F−1(Ui:n)] and the function L̇ ◦ F−1 is called score-generating
function. For large n, one can approximately work with b(i) = L̇ ◦ F−1( i

n+1 )

(since E[Ui:n] = 1/(n + 1), see Remark 4.14) or with b̃(i) = n
∫ i/n

(i−1)/n L̇ ◦
F−1(u)du instead of a(i).

If the sample size n is large, an alternative method to approximate the critical
value c(α) from (4.9) is a normal approximation of the null distribution of T (Y ). To
this end, it is helpful to compute the first two moments of T (Y ) under H0.

Lemma 4.22 Let T = T (Y ) = ∑n
i=1 cia(Ri(Y )) denote a linear rank statistic

of the form given in (4.8), but with general deterministic scores (a(i) : 1 ≤
i ≤ n) which do not necessarily sum up to zero. Let c̄ := n−1 ∑n

i=1 ci and
ā = n−1 ∑n

i=1 a(i). Then, it holds under H0 from (4.3) that

E
[
T
] = n c̄ ā and Var (T ) = 1

n− 1

n∑

i=1

(ci − c̄)2
n∑

i=1

(a(i)− ā)2.
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Proof For any 1 ≤ i ≤ n, the rank Ri(Y ) is under H0 uniformly distributed
on {1, . . . , n}. Thus, we have that E

[
a(Ri(Y ))

] = ∑n
i=1 a(i)n−1 = ā and,

consequently,

E
[
T
] =

n∑

i=1

ciE
[
a(Ri(Y ))

] =
n∑

i=1

ci ā = n c̄ ā.

For computing the null variance of T , notice that
∑n

i=1 a(i) = nā is a constant,
because the scores are deterministic. Hence, letting Ri := Ri(Y ) for all 1 ≤ i ≤ n,
we have that

0 = Var

(
n∑

i=1

a(i)

)

= Var

(
n∑

i=1

a(Ri)

)

=
n∑

i=1

Var (a(Ri))+ 2
∑

1≤i<j≤n

Cov
(
a(Ri), a(Rj )

)
. (4.10)

Due to exchangeability under H0, it holds that PRi = P
R1 for all 1 ≤ i ≤ n as well

as PRi ,Rj = P
R1,R2 for all 1 ≤ i �= j ≤ n. Utilizing these facts in (4.10), we get

that 0 = nVar (a(R1))+ n(n− 1)Cov (a(R1), a(R2)) or, equivalently,

Cov (a(R1), a(R2)) = − 1

n− 1
Var (a(R1)) .

Furthermore, it holds that

Var (a(R1)) = E

[
(a(R1)− ā)2

]
=

n∑

j=1

(a(j)− ā)2

n
.

Finally, the variance of T computes as

Var(T ) = Var

(
n∑

i=1

cia(Ri(Y ))

)

= Var (a(R1))

n∑

i=1

c2
i −

Var (a(R1))

n− 1

∑

1≤i �=j≤n

cicj

=
n∑

i=1

(a(i)− ā)2

n

⎡

⎣
n∑

j=1

c2
j −

1

n− 1

∑

1≤i �=j≤n

cicj

⎤

⎦ ,

which leads after further elementary simplifications to the asserted expression for
Var(T ).
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As shown by Janssen (1998), the rank test ϕ from (4.9) is, under certain
assumptions, also an unbiased level α test for the (extended) two-sample test
problem

H ∗
0 : {F1 ≥ F2} (group 1 does not tend to larger values than group 2) versus

H ∗
1 : {F1 < F2} (group 1 tends to larger values than group 2).

Lemma 4.23 (“Stochastically Larger” Alternatives, Lemma 4.4 in Janssen
(1998)) Assume that a(1) ≤ a(2) ≤ . . . ≤ a(n) (cf. Remark 4.21) and let
ϕ = ϕ(R(Y )) be a rank test of the form (4.9) with EH0

[
ϕ
] = α, where H0 denotes

the homogeneity hypothesis from (4.3). Let Y1, . . . , Yn1 be i.i.d. with cdf F1 of Y1
and Yn1+1, . . . , Yn i.i.d. with cdf F2 of Yn1+1. Let Y = (Y1, . . . , Yn)

�. Then, the
following assertions hold true.

(a) If F1 ≥ F2, then E[ϕ(R(Y ))] ≤ α (meaning that ϕ has level α on whole H ∗
0 ).

(b) If F1 < F2, then E[ϕ(R(Y ))] ≥ α (meaning that ϕ is unbiased on whole H ∗
1 ).

Remark 4.24 In location parameter models (cf. part (a) of Example 4.4), the score
function is isotone if and only if the density f of X is strongly unimodal; see, e.g.,
the discussion on page 81 of Klaassen (2003) which is based on Ibragimov (1956).

Before we discuss specific examples, let us note that rank tests are invariant under
strictly isotone transformations.

Lemma 4.25 Let ϕ as in (4.9) denote a locally best rank test in the model Pn,ϑ =⊗n
i=1 Pciϑ for testing {ϑ = 0} versus {ϑ > 0}, cf. Theorem 4.9 in connection with

Lemma 4.5. Moreover, let S : R → R denote a strictly isotone function. Then, ϕ is
also locally optimal for

⊗n
i=1 PS

ciϑ
.

Proof The assertion follows immediately from the fact that Ri(S(Y1), . . . , S(Yn)) =
Ri(Y ) for all 1 ≤ i ≤ n, due to the strict isotonicity of S.

Example 4.26 (Two-Sample Rank Tests in Location Parameter Models) Through-
out, we consider the location parameter model introduced in part (a) of Exam-
ple 4.10 for Y = (Y1, . . . , Yn)

�, and we abbreviate Ri = Ri(Y ) for all 1 ≤ i ≤ n.

(i) Fisher–Yates test:
Let f be the Lebesgue density of N (0, 1). Then it holds L̇(y) = y and we
obtain that

T =
n1∑

i=1

a(Ri) with a(i) = E[Yi:n].

In this, Yi:n denotes the i-th order statistic of i.i.d. random variables Y1, . . . , Yn

with Y1 ∼ N (0, 1).
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(ii) Van der Waerden test:
Let f be as in part (i). The score-generating function is given by u �→ Φ−1(u),
where Φ denotes the cdf of N (0, 1). Following part (d) of Remark 4.21,
approximate scores are given by b(i) = Φ−1(i/(n + 1)), leading to the test
statistic

T =
n1∑

i=1

Φ−1
(

Ri

n+ 1

)

.

(iii) Wilcoxon’s rank sum test:
Let f be the density of the standard logistic distribution, given by f (x) =
exp(−x)(1+ exp(−x))−2 with corresponding cdf F(x) = (1 + exp(−x))−1.
The score-generating function is in this case given by u �→ 2u− 1, leading to
the scores given by

a(i) = E[L̇ ◦ F−1(Ui:n)] = 2i

n+ 1
− 1.

These scores are an affine transformation of the identity and therefore, the test
can equivalently be carried out by means of the test statistic

T =
n1∑

i=1

Ri(Y ),

which is the sum of the ranks in the first group.
(iv) Median test:

The Lebesgue density of the double-exponential (Laplace) distribution is
given by f (x) = exp(−|x|)/2, with induced score-generating function u �→
sgn(ln(2u)) = sgn(2u− 1). Approximate scores are therefore given by

b(i) = L̇ ◦ F−1
(

i

n+ 1

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1, if i > (n+ 1)/2,

0, if i = (n+ 1)/2,

−1, if i < (n+ 1)/2.

We conclude this section with the Savage test (or log-rank test), which is an
example for a scale parameter test, cf. part (b) of Example 4.4.

Example 4.27 Under the scale parameter model considered in part (b) of Exam-
ple 4.4, assume that X is exponentially distributed with Lebesgue density x �→
f (x) = exp(−x)1(0,∞)(x). Then we obtain for y > 0 the score function L̇, given
by

L̇(y) = −
(

1+ y
f ′(y)

f (y)

)

= y − 1.
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According to Exercise 4.9, it holds that

E[Yi:n] =
i∑

j=1

1

n+ 1− j
. (4.11)

for i.i.d. random variables Y1, . . . , Yn with Y1 ∼ Exp(1).
Making use of (4.11), exact scores are given by

a(i) =
i∑

j=1

1

n+ 1− j
− 1.

Since X is almost surely positive, the model Y = exp(ϑ)X can be transformed into
the location parameter model log(Y ) = ϑ + log(X). For X ∼ Exp(1), it holds that
log(X) possesses a reflected Gumbel distribution, satisfying

P
(

log(X) ≤ x
) = 1− exp(− exp(x)), x ∈ R.

4.3 Justification of Rank Tests via Statistical Functionals

This section closely follows the derivations of Janssen (1999).
From the nonparametric viewpoint, it is incoherent to derive the scores appearing

in (4.8) by means of an auxiliary parametric model Pn,ϑ = ⊗n
i=1 Pciϑ . It would

be more coherent to derive the test statistic by achieving optimal local power with
respect to a nonparametric criterion, i.e., by considering a statistical functional with
respect to which the two groups differ under alternatives.

To this end, let again Y1, . . . , Yn denote stochastically independent, real-valued
observables such that Y1, . . . , Yn1 belong to group 1 with P

Yi = P for all 1 ≤ i ≤ n1
and Yn1+1, . . . , Yn belong to group 2 with P

Yj = Q for all n1 + 1 ≤ j ≤ n.
Obviously, this nonparametric model depends on (P,Q) only, and we consider an
appropriate set

Θ ⊆ {(P,Q) : P and Q are probability distributions on (R,B(R))}

of pairs of probability distributions for the mathematical formalization of the model.
Let

κ : Θ → R, (P,Q) �→ κ(P,Q) ∈ R (4.12)

denote a real-valued binary statistical functional. Within the nonparametric
approach, it is appealing to formalize the one-sided two-groups comparison problem
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for a chosen κ as follows:

H0 = {(P, P ) ∈ Θ : κ(P, P ) = c} versus H1 = {(P,Q) ∈ Θ : κ(P,Q) > c}
(4.13)

for a known value c ∈ R. The functional κ formalizes a nonparametric aspect with
respect to which P and Q differ under H1. One may think of κ as some kind of
quantification of “how much better” group 1 is than group 2 under H1.

Example 4.28

(a) Let Ξ ⊆ {P : P is a probability distribution on (R,B(R))} and κ1 : Ξ → R

denote a statistical functional of one variable (which is a probability distribu-
tion). Let κ : Ξ × Ξ → R be defined by κ(P,Q) = κ1(P ) − κ1(Q). One
particularly relevant example is the difference of medians, i.e., κ(P,Q) =
median(P ) − median(Q) for absolutely continuous distributions P and Q.
In this case, κ1(P ) = median(P ) = F−1

P (1/2), where FP denotes the cdf
pertaining to P . Of course, the constant c from (4.13) equals zero here. Under
alternatives, the first group has a larger median than the second group.

(b) Let h : (0, 1) → R be a function fulfilling
∫ 1

0
h2(u)du < ∞, and define

κh(P,Q) =
∫

h(FQ(x))dP (x), (4.14)

where Θ � (P,Q) is chosen such that FQ is continuous and κh(P,Q) exists

in R. Substitution yields that c = ∫ 1
0 h(u)du here. One particularly relevant

example is the identity h = id , leading to

κid (P,Q) = P ⊗Q
(
{(x, y)� ∈ R

2 : y ≤ x}
)

(4.15)

and c = 1/2.
Let X and Y be stochastically independent, real-valued random variables

defined on some probability space (Ω,F ,P) with X ∼ P and Y ∼ Q. Notice
that the right-hand side of (4.15) can then be written as

P(Y ≤ X) =
∫

P(Y ≤ X|X = x)dPX(x)

=
∫

P(Y ≤ x)dPX(x)

=
∫

FQ(x)dP (x) = κid(P,Q).
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Now, assume for the moment that we are able to define a gradient κ̇P0 ∈ L2(P0)

of P �→ κ(P, P0) in P0 ∈ Ξ . Then, for fixed P0 and in analogy to the considerations
for the score function, the test statistic

Tn =
n1∑

i=1

κ̇P0(Yi) (4.16)

would yield some kind of locally optimal discrepancy between κ(P0, P0) = c and
κ(P, P0) > c.

For functionals of expectation type, the definition of a gradient is straightforward.

Definition 4.29 (Gradient for von Mises Functionals) Let P0 ∈ Ξ denote a
probability measure on (R,B(R)), and h ∈ L2(P0).
Let Ξ = {P : P $ P0,

∫
h2dP < ∞}. Define κ : Ξ → R by

κ(P ) =
∫

hdP. (4.17)

Then, the (right-sided, centered) gradient κ̇P0 of P �→ κ(P ) in P0 is given by

κ̇P0 = h− κ(P0). (4.18)

Corollary 4.30 Let P0 with corresponding cdf F0 denote a fixed probability
measure on (R,B(R)). Let the binary statistical functional κh be defined as in part
(b) of Example 4.28 with Q replaced by P0, i.e.,

κh(P, P0) =
∫

h(F0(x))dP (x).

Furthermore, let Ξ be as in Definition 4.29, with h replaced by h ◦ F0. Then, the
gradient κ̇h,P0 of P �→ κh(P, P0) in P0 is given by

κ̇h,P0 =
(

h−
∫ 1

0
h(u)du

)

◦ F0. (4.19)

Example 4.31 (Example 4.28 Continued)

(a) For the functional κid from part (b) of Example 4.28, we get that

κ̇id,P0 = F0 − 1/2. (4.20)
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(b) Let h := 1(1/2,1] + 1{1/2}/2. Then we get that
∫ 1

0 h(u)du = ∫ 1
1/2 du = 1/2,

hence,

κ̇h,P0(y) = 1(1/2,1](F0(y))+ 1{1/2}(F0(y))/2− 1

2

=

⎧
⎪⎪⎨

⎪⎪⎩

−1/2, F0(y) < 1/2,

0, F0(y) = 1/2,

1/2, F0(y) > 1/2

= 1

2
sgn

(

F0(y)− 1

2

)

.

(c) Notice that median(P0) = F−1
0 (κh(P0, P0)), where h is as in part (b), and the

formula

d

du
F−1

0 (u) = 1

f0(F
−1
0 (u))

,

where f0 denotes the Lebesgue density of P0. Thus, the chain rule yields that
the gradient of the functional κ from part (a) of Example 4.28, given by P �→
median(P )−median(P0), at P0 is given by

κ̇P0(y) = [2f0(median(P0))]
−1 sgn

(

F0(y)− 1

2

)

. (4.21)

Unfortunately, the expressions in (4.19)–(4.21) depend on the cdf F0 which is
unspecified in the nonparametric context. Hence, they cannot directly be plugged
into the expression for the test statistic Tn given in (4.16). However, we can again
make use of the substitution principle and replace F0 by F̂n. In doing so, we recover
the rank tests considered in Example 4.26.

Example 4.32 (Example 4.31 Continued)

(a) Replacing F0 by F̂n in (4.20), the test statistic Tn given in (4.16) becomes

Tn =
n1∑

i=1

F̂n(Yi)− n1

2
so that nTn + nn1

2
=

n1∑

i=1

Ri(Y ).

Hence, the statistical functional κid from part (b) of Example 4.28 leads to
Wilcoxon’s rank sum test considered in part (iii) of Example 4.26.
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(b) Replacing F0 by F̂n in (4.21) and ignoring the constant factor
[
2f0(median

(P0))
]−1

, the test statistic Tn given in (4.16) becomes

Tn =
n1∑

i=1

sgn

(

F̂n(Yi)− 1

2

)

. (4.22)

For every summand in (4.22), we obtain that

sgn

(

F̂n(Yi)− 1

2

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1, Ri(Y ) > n/2,

0, Ri(Y ) = n/2,

−1, Ri(Y ) < n/2.

Hence, choosing the difference of the medians as the nonparametric criterion
for the comparison of the groups leads to the median test considered in part (iv)
of Example 4.26.

Remark 4.33 There are obvious similarities between rank tests and permutation
tests (see Sect. 1.3.2), because the critical value c(α) can in both cases be determined
by evaluating the test statistic for all permutations σ ∈ Sn and determining the
resulting (1− α)-quantile of the n! computed values.

In the next chapter, we generalize the theory by considering more general
mappings g(Y ) instead of R(Y ), and by considering potentially random scores. This
will lead to linear resampling statistics.

4.4 Exercises

Exercise 4.1 Prove Lemma 4.5.

Exercise 4.2 (Score Test in the Gaussian Shift Model) Let n ∈ N and σ 2 > 0
be given numbers. Consider the statistical model (Rn,B(Rn), (N (ϑ, σ 2)⊗n : ϑ ∈
R)), which is typically referred to as the Gaussian shift model. This means that
we can observe real-valued, stochastically independent and identically normally
distributed random variables Y1, . . . , Yn, where we know the variance σ 2 of Y1, but
not its expected value ϑ = E[Y1].

Show that under this model the score test at significance level α ∈ (0, 1) for the
test problem

H0 : {ϑ = 0} versus H1 : {ϑ > 0} (4.23)

coincides with the usual Z-Test ϕ at significance level α for (4.23), which is given
by the rejection region {ϕ = 1} = {√nȲn/σ > Φ−1(1 − α)}. In this, Ȳn denotes
the arithmetic mean of Y1, . . . , Yn, and Φ denotes the cdf of the univariate standard
normal distribution.
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Hint: Compute the score function of the model and exploit the invariance of a sta-
tistical test of Neyman–Pearson type with respect to strictly isotone transformations
of the corresponding test statistic.

Exercise 4.3 Verify formula (4.5) appearing in Theorem 4.11.

Exercise 4.4 Prove Theorem 4.16.

Exercise 4.5 (Wilcoxon’s Rank Sum Test in Practice) Assume that n = 16
randomly chosen calves, all from the same target population and of roughly equal
age, are randomly divided into two groups of equal size. The calves in the first
group receive normal feed, while the calves in the second group receive a special,
concentrated feed. After a fixed time span, the weight gain (in kilograms) of each of
the 16 calves is assessed, and the following measurements are obtained.

Group 1 (normal feed) 8.7 9.3 10.6 11.1 11.2 12.4 12.7 14.0

Group 2 (concentrated feed) 9.7 10.9 11.8 12.9 13.5 14.1 14.3 15.6

Utilize Wilcoxon’s rank sum test at significance level α = 5% to test the null
hypothesis that the (random) weight gain values under concentrated feed do not
tend to larger values than under normal feed against the (one-sided) alternative
that they do.
Hint:
Calibrate the critical value under the homogeneity hypothesis (implying that the
rank statistic of all n = 16 (random) measurements is uniformly distributed on
the symmetric group S16) approximately by means of the Monte Carlo method
employing B = 10,000 randomly chosen permutations σ ∈ S16.

Exercise 4.6 (Mann–Whitney U -Test) Consider the statistical model of a
nonparametric two-groups comparison with stochastically independent, real-valued
observables. In this, the random variables Y1, . . . , Yn1 are identically distributed
with absolutely continuous distribution P of Y1 and Yn1+1, . . . , Yn are identically
distributed with absolutely continuous distribution Q of Yn. We let n2 := n− n1.

(a) Show that Wilcoxon’s rank sum test is equivalent to the Mann–Whitney U -test,
which is based on the test statistic

Un1,n2 =
∣
∣
∣{(i, j) ∈ {1, . . . , n}2 : i ≤ n1 < j, Yi > Yj }

∣
∣
∣

=
n1∑

i=1

n∑

j=n1+1

1(0,∞)(Yi − Yj ).

Hint: Show that Un1,n2 =
n1∑

i=1

Ri(Y )− n1(n1 + 1)/2.
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(b) Compute the expected value and the variance of Un1,n2 under the homogeneity
hypothesisH0 from (4.3). (In particular, the rank statistic is underH0 uniformly
distributed on the symmetric group of order n.)

(c) Now, consider the special case of n1 = 3 and n2 = 5. Compile a table with the
(approximated by a computer simulation, if necessary) values PH0(Un1,n2 ≤ u)

for u ∈ {0, 1, 2, 3, . . . , 15}.
Exercise 4.7 (Recursion Formula for Wilcoxon’s Rank Sum Statistic) Let

Wn1,n2 =
n1∑

i=1

Ri(Y ) denote Wilcoxon’s rank sum statistic (see part (iii) of

Example 4.26), where n2 = n − n1 denotes the number of observational units in
the second group.

(a) Show that

supp(Wn1,n2) =
{

n1(n1 + 1)

2
, . . . ,

n1(n1 + 2n2 + 1)

2

}

.

(b) Let w ∈ supp(Wn1,n2) be fixed. Show that under the homogeneity hypothesis
(under which the rank statistic is uniformly distributed on the symmetric group
of order n) the following recursive formula for pn1,n2(w) = P(Wn1,n2 = w)

holds true:

npn1,n2(w) = n1pn1−1,n2(w − n)+ n2pn1,n2−1(w)

(c) Tabulate the discrete distribution of W3,5 under the homogeneity hypothesis.
Compare your tabulated values with your result from part (c) of Exercise 4.6.

Exercise 4.8 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) Under the assumptions of Exercise 4.6, the statistic Un1,n2 possesses under the
homogeneity hypothesis H0 the same distribution as the statistic Un2,n1 .

(b) Under the assumptions of Exercise 4.6, the statistic Un1,n2 has support
{0, . . . , n1n2}.

(c) Under the assumptions of Exercise 4.6, the statistic Un1,n2 has under the
homogeneity hypothesis H0 a smaller variance than Wilcoxon’s rank sum
statistic Wn1,n2 .

(d) Wilcoxon’s rank sum statistic Wn1,n2 possesses for all n1, n2 ∈ N both under
the homogeneity hypothesis H0 and under the entire alternative hypothesis
moments of any order, even if the random variables Y1, . . . , Yn are not
integrable.

Exercise 4.9 Let Y1, . . . , Yn be stochastically independent and identically dis-
tributed random variables, all defined on the same probability space (Ω,F ,P),
such that Y1 possesses the standard exponential distribution (i.e., the exponential
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distribution with intensity parameter λ = 1). Furthermore, let W1 := Y1:n and
Wj := Yj :n − Yj−1:n for 2 ≤ j ≤ n.

(a) Compute the (joint) Lebesgue density of (Y1:n, . . . , Yn:n)�.
(b) Show that W1, . . . ,Wn are stochastically independent random variables fulfill-

ing thatL (Wj ) = Exp(n− j + 1) for all 1 ≤ j ≤ n.
Hint: Transformation formula for Lebesgue densities.

(c) Prove assertion (4.11) in Example 4.27.

Exercise 4.10 Show that utilizing h(u) = − ln(1 − u) in part (b) of Example 4.28
leads to (an approximate version of) the log-rank test from Example 4.27.
Hint: Show and exploit that

r∑

j=1

1

n+ 1− j
≈

∫ r

1

1

n+ 1− j
dj = ln

(
n

n+ 1− r

)

, r ≥ 1.

Exercise 4.11 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) Under the assumptions of part (b) of Lemma 4.13, it holds that

P(R1(Y ) = i, R2(Y ) = j) = 1

n2
for all i �= j ∈ {1, . . . , n}.

(b) Under the Gaussian shift model considered in Exercise 4.2, the arithmetic mean
Ȳn is sufficient for ϑ .

(c) Under the assumptions of Corollary 4.20 and Remark 4.21, the linear rank
statistic T = T (Y ) tends to larger values under alternatives (in the sense of
(1.4)) than under the null hypothesis H0 from (4.3).

(d) Under the assumptions of part (c) of this exercise, T = T (Y ) is asymptotically
(as n →∞) normally distributed.
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Chapter 5
Asymptotics of Linear Resampling
Statistics

This chapter mainly follows the work of Janssen and Pauls (2003) and the Ph. D.
theses of Pauls (2003) and Pauly (2009).

5.1 General Theory

Definition 5.1 Let (ξn,i )1≤i≤k(n) denote a triangular array of random variables
defined on some probability space (Ω,F ,P), where n ∈ N and k(n) ∈ N. In
many relevant examples we will choose k(n) ≡ n. Furthermore, let (Wn,i )1≤i≤k(n)

denote a triangular array of (random) weight functions defined on a further
probability space (Ω̃, F̃ , P̃). We assume that (ξn,i )1≤i≤k(n) and (Wn,i )1≤i≤k(n) are
stochastically independent with respect to the product measure P⊗ P̃. The weights
shall fulfill the following three general assumptions.

(GA1) For all n ∈ N, the random variables Wn,1, . . . ,Wn,k(n) are exchangeable.
(GA2) max1≤i≤k(n)|Wn,i −Wn| → 0 in P̃-probability as n →∞, where

Wn = k(n)−1 ∑k(n)
i=1 Wn,i .

(GA3)
∑k(n)

i=1 (Wn,i −Wn)
2 → C ∈ R in P̃-probability as n →∞.

Then we call

T ∗n =
√

k(n)

k(n)∑

i=1

Wn,i(ξn,i − ξn)

a linear resampling statistic with weight functions (Wn,i )1≤i≤k(n).
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Remark 5.2 If Wn = 0 P̃-almost surely, then it follows that

T ∗n =
√

k(n)

k(n)∑

i=1

Wn,i ξn,i P̃-almost surely.

Example 5.3

(a) Linear rank statistics (cf. Chap. 4):
Let n ∈ N and Rn(Y ) = (Rn,i (Y ))1≤i≤n for Y = (Y1, . . . , Yn)

� be a rank vector
as considered in Chap. 4. Consider scores an(i) = EPn,0

[
L̇(Yi:n)

]
(or bn(i) or

b̃n(i) from part (d) of Remark 4.21) and regression coefficients (cn,i )1≤i≤n. Let
k(n) ≡ n.

Then, the linear rank statistic

Tn(Rn(Y )) =
n∑

i=1

(cn,i − cn)an(Rn,i(Y ))

has the structure of a linear resampling statistic (recall part (c) of Remark 4.21).
To see this, define

Wn,i := an(Rn,i (Y ))√
n

, 1 ≤ i ≤ n and

ξn,i := (cn,i − cn), 1 ≤ i ≤ n,

and verify (GA1)–(GA3).
A resampling procedure based on Tn(Rn(Y )) utilizes the uniform distribu-

tion of Rn(Y ) on Sn under the homogeneity hypothesis H0 from (4.3). Every
σ ∈ Sn is equally probable for Rn(Y ) under this homogeneity hypothesis.
Based on this, the critical value for the score test (which is carried out as a rank
test) is obtained by a quantile of the distribution of (Tn(σ ) : σ ∈ Sn) with
respect to the uniform distribution on Sn.

(b) Linear permutation statistics:
Returning to the considerations in Sect. 1.3.2, we now assume that the values
of (Yi)1≤i≤n are themselves trustworthy in a multi-sample problem. However,
we do not assume a parametric model. Then, a reasonable linear permutation
statistic is given by

T ∗n =
√

k(n)

k(n)∑

i=1

cn,σ (i)(ξn,i − ξn),

with

ξn,i := Yn,i√
k(n)

, 1 ≤ i ≤ k(n), (5.1)
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regression coefficients (cn,i )1≤i≤k(n), and resulting weights Wn,i := cn,σ (i). In
this, σ ∈ Sk(n) again denotes a random (uniformly distributed) permutation of
1, . . . , k(n). It is clear that these weights fulfill the general assumptions (GA1)–
(GA3) if and only if the regression coefficients fulfill them.

For example, consider a two-sample problem, and let k(n) = n as well
as n2 = n − n1. Then, reasonable regression coefficients for the detection of
location alternatives are given by

cn,i =
√

n1n2

n
·
{

1
n1

, 1 ≤ i ≤ n1,

− 1
n2

, n1 + 1 ≤ i ≤ n.

For σ = id we obtain the original test statistic Tn =
√

n1n2

n1 + n2
(Y n1 − Yn2).

This test statistic is also used in the pooled two-sample t-test for the comparison
of the (theoretical) group means under the assumption of normally distributed
data.

(c) Bootstrap statistics:
For one-sample problems (cf. Sect. 1.3.1), permutation methods (relying on
drawings without replacement) are inadequate, as discussed at the end of
Sect. 1.3. Instead, we will consider resampling methods based on drawings with
replacement, namely, bootstrap methods. For example, the classical nonpara-
metric bootstrap by Efron (1979) considers a vector (Mn,1, . . . ,Mn,k(n))

� of
multinomially distributed random variables, where the total sample size equals
k(n) =∑k(n)

i=1 Mn,i and the cell probabilities are given by pn,i ≡ k(n)−1, for all
1 ≤ i ≤ k(n). The bootstrap weights are then given by

Wn,i := k(n)−
1
2 (Mn,i − 1), 1 ≤ i ≤ k(n).

Letting ξn,i as in (5.1), a linear bootstrap statistic thus takes the form

T ∗n =
√

k(n)

⎛

⎝
k(n)∑

i=1

Mn,i

k(n)
Yn,i − Yn

⎞

⎠ . (5.2)

Exercise 5.1 shows that the construction of T ∗n is equivalent to the bootstrap
procedure for the mean functional which has been discussed in Sect. 1.3.1.

Theorems 5.5 and 5.8 will demonstrate that Definition 5.1 is general enough
to show asymptotic effectiveness of conditional (on the observed data) resampling
tests with respect to an unconditional level α test based on the original test statistic
Tn, for broad classes of resampling procedures. The advantage of the resampling
approach is that the conditional distribution of T ∗n given the data only depends on
the distribution of the weights, which is under the control of the statistician.
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Definition 5.4

(a) Conditional resampling test
Under the assumptions of Definition 5.1, denote the cdf of the conditional
distribution L (T ∗n |ξn,1, . . . , ξn,k(n)) by F ∗

n .
Let

c∗n(α) ≡ c∗n(α|ξn,1, . . . , ξn,k(n)) := (F ∗
n )−1(1− α)

denote the (1 − α)-quantile of F ∗
n . Let Tn be a real-valued statistic. Then, a

non-randomized conditional resampling test based on Tn and T ∗n is defined by
ϕ∗n,α := 1(c∗n(α),∞)(Tn).

(b) Asymptotic equivalence of sequences of tests
Let (ϕn,α)n∈N and (ϕ∗n,α)n∈N denote two sequences of tests for the same test
problem (Y n,B(Y n), (Pϑ)ϑ∈Θ,H0), and let ϑ0 ∈ H0. Then, (ϕn,α)n∈N and
(ϕ∗n,α)n∈N are called asymptotically equivalent under ϑ0, if

∀α ∈ (0, 1) : Eϑ0

[|ϕn,α − ϕ∗n,α|
]→ 0, n →∞.

Theorem 5.5 Assume that (GA1)–(GA3) hold true, where w. l . o. g. C = 1
in (GA3). Let (ϕn,α)n∈N be a sequence of tests for (Y n,B(Y n), (Pϑ)ϑ∈Θ,H0),
and let ϑ0 be an arbitrary element of H0. Assume that the sequence (ϕn,α)n∈N has
the following two properties.

(T1) For every n ∈ N, the decision rule of ϕn,α is defined via a real-valued test
statistic Tn : Y n → R and an (unconditional) critical value cn(α), such that

ϕn,α = 1(cn(α),∞)(Tn), where Eϑ0

[
ϕn,α

]→ α, n →∞.

(Asymptotic unconditional level α-test based on Tn)
(T2) The test statistic Tn from (T1) converges under ϑ0 in distribution to a

random variable T . The cdf FT of T is continuous and strictly isotone on its
support supp(FT ).
(Unconditional convergence)

Now, let (ϕ∗n,α)n∈N be a sequence of (conditional) resampling tests for the
same test problem (Y n,B(Y n), (Pϑ)ϑ∈Θ,H0). Then, (ϕn,α)n∈N and (ϕ∗n,α)n∈N are
asymptotically equivalent under ϑ0, if and only if

d(L (Tn),L (T ∗n |ξn,1, . . . , ξn,k(n))) → 0 in Pϑ0-probability as n →∞. (5.3)

In (5.3), d(·, ·) denotes any metric which metrizes the weak convergence on the
space of probability measures on (R,B(R)). For instance, the Lévy metric dL(·, ·)
is defined by

dL(F,G) := inf{ε > 0 : F(x − ε)− ε ≤ G(x) ≤ F(x + ε)+ ε ∀x ∈ R}
for two cdfs F and G on (R,B(R)).
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Proof A proof for the fact that the convergence in (5.3) implies the asymptotic
equivalence of (ϕn,α) and (ϕ∗n,α) can be found on page 58 of Witting and Nölle
(1970). A proof for the reverse implication can be found in Pauls (2003) (see the
proof of Lemma 3.4 there).

Definition 5.6 If the assertion of Theorem 5.5 holds for all ϑ0 ∈ H0, then (ϕ∗n,α)n∈N
is called asymptotically effective with respect to (ϕn,α)n∈N.

Remark 5.7

(a) The “only if” part of Theorem 5.5 is very important for the design of concrete
resampling methods for practical data analysis. It implies that the resampling
scheme has to be chosen carefully, such that the distributional properties of
the original test statistic Tn under the null hypothesis are reproduced as closely
as possible by the construction of T ∗n . For example, consider again part (b)
of Example 5.3, and assume an unbalanced design, meaning that n1 �= n2.
Then, it would not be valid to choose cn,i ∝ n−1/2 · 1{i≤n1}. Under asymptotic

Gaussianity of Tn =
√

n1n2
n1+n2

(Y n1 − Yn2) one can easily verify that (5.3) is

violated if T ∗n is based on these inappropriate regression coefficients.
Further classical counterexamples comprise bootstrapping the maximum

statistic by choosing k(n) = n or naive bootstrapping of correlated data (cf.
Section 2.3.1 of Pauly (2009)).

(b) If Tn is a normalized sum of stochastically independent original observables
and T ∗n is a linear resampling statistic, then a combination of an unconditional
central limit theorem for Tn under the null and a conditional central limit
theorem for T ∗n given the data is typically employed to establish asymptotic
effectiveness of ϕ∗n,α with respect to ϕn,α by means of Theorem 5.5.

We end this section with a rather general conditional central limit theorem for
linear resampling statistics.

Theorem 5.8 (Conditional Central Limit Theorem for Linear Resampling
Statistics) Let T ∗n be a linear resampling statistic. Assume that the weights Wn,i

fulfill the general assumptions (GA1)–(GA3), where C = 1 w. l. o. g. in (GA3).

Furthermore, assume that
√

k(n)(Wn,1 − Wn)
D−→ W1, where W1 is a random

variable with Var (W1) = 1. Finally, assume that the ξn,i fulfill the following three
regularity assumptions.

(R1) ξn → 0 in P-probability.
(R2) max1≤i≤k(n)|ξn,i − ξn| → 0 in P-probability.

(R3)
∑k(n)

i=1

(
ξn,i − ξn

)2 D→ V 2, where V 2 is a non-negative random variable.

Then it holds that

d(L (T ∗n |(ξn,i)1≤i≤k(n)),L (Z)) → 0 in P-probability,

where Z denotes a random variable on Ω × Ω̃ with Z(ω, ·) ∼ N (0, V 2(ω)).
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Proof See Satz 3.3 of Pauly (2009); cf. also Theorem 2.1 of Janssen (2005).

Notice that the ξn,i from part (a) of Example 5.3 do typically not fulfill (R1)–
(R3). However, rank tests are invariant with respect to strictly isotone transforma-
tions (see Lemma 4.25). Hence, one may re-scale the ξn,i in order to fulfill (R1)–
(R3); see Exercise 5.2.

Remark 5.9 (Bemerkung 3.4 of Pauly (2009))

(a) The combination of conditions (R1) and (R2) is equivalent to the convergence of
max1≤i≤k(n)|ξn,i | to zero in P-probability, by virtue of the triangular inequality.

(b) If V 2 ≡ σ 2 > 0 in (R3) is a positive constant, then the conditional cdf F ∗
n (cf.

part (a) of Definition 5.4) even converges uniformly, due to Polya’s Theorem
(see Satz 5.75 of Witting and Müller-Funk (1995)), meaning that

sup
y∈R

|F ∗
n (y)−Φ(

y

σ
)| → 0 in P-probability.

(c) If the original observables fulfill P
(∑k(n)

i=1 (Yn,i − Yn)
2 > 0

)
→ 1 as n →∞,

then one can use Studentized variates ξn,i of the form

ξn,i := Yn,i − Yn√∑k(n)
i=1 (Yn,i − Yn)2

1{∑k(n)
i=1 (Yn,i−Yn)2>0}.

Obviously, they fulfill (R3) with V 2 ≡ 1. This leads to resampling-based
analogues of Student’s t-test (see Janssen 2005 for a detailed treatment).

5.2 Application to Special Resampling Procedures

5.2.1 Multi-Sample Problems, Permutation Tests

We return to the setup introduced in Sect. 1.3.2 and analyze permutation tests. As
outlined in Remark 4.33, we will find close analogies between permutation tests
and rank tests, because in both cases the resampling distribution is based on the
uniform distribution on the set of all permutations of 1, . . . , n for the involved
weight functions. First, we consider two-sample problems.

Model 5.10 (Two-Sample Problem) Let (Yi)1≤i≤n be real-valued, stochastically
independent random variables. The variates Y1, . . . , Yn1 are assumed to be i.i.d.
with Y1 ∼ F1 and Yn1+1, . . . , Yn are assumed to be i.i.d. with Yn1+1 ∼ F2. Let
n2 := n− n1 and assume that 0 < n1 < n. The test problem of interest is given by

H0 = {F1 = F2} versus H1 = {F1 �= F2}. (5.4)
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Example 5.11 (Two-Sample Problem in a Gaussian Location Parameter Model)
Under the assumptions of Model 5.10, consider the special case that F1 and F2
are Gaussian cdfs which only differ in their means. In this case, one compares the
empirical group means to test (5.4). More specifically, we define the group means by
Yn1 := n−1

1

∑n1
i=1 Yi and Yn2 := n−1

2

∑n
j=n1+1 Yj . The test statistic of the resulting

two-sample Z-test is then given by T̃ := |Yn1−Yn2 | and the test for (5.4) can easily
be calibrated by noticing that Yn1 − Yn2 is again normally distributed under H0.

However, in the case of general F1 and F2, exact distributional results for T̃

are difficult to obtain. Assuming that F1 and F2 are continuous, we consider more
general statistics of the form

T =
n∑

i=1

cig(Yi) =
n∑

i=1

cDi(Y )g(Yi:n) (5.5)

for a given function g : R→ R and real numbers (ci)1≤i≤n.
The representation of T on the right-hand side of (5.5) establishes the connection

to rank tests. For example, |T | equals T̃ from Example 5.11 if we choose g =
id , ci = n−1

1 for i ≤ n1 and ci = −n−1
2 for i > n1. Under H0 from (5.4), the

vector of antiranks D(Y) = (Di(Y ))1≤i≤n and the order statistics (Yi:n)1≤i≤n are
stochastically independent, see Theorem 4.19. Due to this property, the two-sample
homogeneity test based on T can be carried out as a permutation test (or as a rank
test with random scores) according to the following resampling scheme.

Scheme 5.12 (Resampling Scheme for Problem (5.4)) The following resampling
scheme is appropriate for a one-sided “stochastically larger” alternative. The two-
sided case is obtained by obvious modifications. Furthermore, we have to assume
here that the Yi , 1 ≤ i ≤ n, possess absolutely continuous distributions.

(A) Consider the order statistics (Yi:n)1≤i≤n and regard a(i) := g(Yi:n) as random
scores.

(B) Denote by D̃ = (D̃i)1≤i≤n a random vector which is uniformly distributed on
the symmetric group Sn and let c = c(α, (Yi:n)1≤i≤n) denote the (1 − α)-
quantile of the discretely distributed random variable D̃ �→∑n

i=1 cD̃i
a(i).

(C) The permutation test ϕ for testing (5.4) is then given by

ϕ =

⎧
⎪⎪⎨

⎪⎪⎩

1, T > c,

γ, T = c,

0 T < c,

where T is as in (5.5), and γ ∈ [0, 1] denotes a randomization constant.
The steps (A)–(C) lead to a conditional test ϕ, where the critical value c =
c(α, (Yi:n)1≤i≤n) is calibrated conditionally to the observed order statistics Yi:n,
1 ≤ i ≤ n.
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Remark 5.13 If we choose g = id and (cj )1≤j≤n as in Example 5.11, leading to
|T | = T̃ , then the test ϕ from Scheme 5.12 is called Pitman’s permutation test ; see
Pitman (1937).

The permutation test principle can be adapted to test the more general null
hypothesis

H0 : Y1, . . . , Yn are i.i.d. (5.6)

In the generalized form, the Yj : 1 ≤ j ≤ n are not even restricted to be real-valued.
The modified resampling scheme is given as follows.

Scheme 5.14 (Modified Resampling Scheme for General Permutation Tests)

(A) Consider n random variates Yj , 1 ≤ j ≤ n, each taking values in some space
Y , and a real-valued test statistic T = T (Y1, . . . , Yn).

(B) In the remainder, consider permutations π with values in Sn, which are
independent of Y1, . . . , Yn.

(C) Denote by Q0 the uniform distribution on Sn and let c = c(α, Y1, . . . , Yn)

denote the (1− α)-quantile of t �→ Q0({π ∈ Sn : T (Yπ(1), . . . , Yπ(n)) ≤ t}).
(D) The modified (conditional) permutation test ϕ̃ for testing (5.6) is then given by

ϕ̃ =

⎧
⎪⎪⎨

⎪⎪⎩

1, T > c,

γ, T = c,

0, T < c.

Theorem 5.15 Under the respective assumptions, the permutation test ϕ defined in
Scheme 5.12 and the modified permutation test ϕ̃ defined in Scheme 5.14 are under
the null hypothesis H0 from (5.4) or (5.6), respectively, tests of exact level α for any
fixed n ∈ N.

Proof Conditionally to the order statistics (Scheme 5.12) or to the data themselves
(Scheme 5.14), the critical value c and the randomization constant γ are chosen
such that

EL (D̃)[ϕ
∣
∣ Y = y] = EQ0[ϕ̃

∣
∣ Y = y] = α

holds true. Furthermore, the antiranks D(Y) are under H0 from (5.4) stochastically
independent of the order statistics. Analogously, the random permutations π are
chosen stochastically independent of Y1, . . . , Yn in the case of ϕ̃. The result of the
theorem follows by averaging with respect to the distribution of Y and exploiting
part c) of Theorem 1.24.

In principle, Theorem 5.15 provides a very satisfying assertion for the behavior
of permutation tests under the null hypothesis of distributional homogeneity. For
small values of n it is possible to calculate (conditional) critical values explicitly
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by traversing all n! possible permutations. For moderate values of n, one can
approximate the critical value by traversing B < n! randomly chosen permutations
(Monte Carlo-variant of the permutation test). For large values of n, however, one
may also consider a normal approximation if the test statistic has the form of an
(appropriately normalized) sum. In order to establish asymptotic effectiveness of
the latter approach, we need unconditional (under H0) and conditional (given the
data) central limit theorems, cf. part (b) of Remark 5.7.

Assumptions 5.16 Let (Yi)i≥1 be i.i.d. random variates with Y1 : (Ω,F ,P) →
Y , and let g : Y → R a measurable mapping fulfilling

∫
g2(Y1)dP < ∞. (5.7)

Assume that regression coefficients (cni)1≤i≤n are given such that the following four
conditions are fulfilled.

∀n ∈ N :
n∑

i=1

cni = 0. (5.8)

lim
n→∞

n∑

i=1

c2
ni = c2 > 0. (5.9)

∀ε > 0 ∃M = M(ε) > 0 : ∀n ∈ N :
n∑

i=1

c2
ni1[M,∞)(|

√
ncni |) ≤ ε. (5.10)

σ 2 := c2
∫
{g(Y1)− E[g(Y1)]}2dP > 0. (5.11)

Theorem 5.17 Under Assumptions 5.16, let Tn =∑n
i=1 cnig(Yi).

(a) It holds thatL (Tn)
w→ N (0, σ 2) for n →∞.

(b) Let τn = (τni)1≤i≤n : (Ω̃, F̃ , P̃) → Sn denote a uniformly distributed
random variate taking its values in Sn, where τn is stochastically inde-
pendent of (Yi)i≥1. For fixed ω ∈ Ω let Fn,ω(·) denote the cdf of ω̃ �→
Tn((Yτni (ω̃)(ω))1≤i≤n). Then it holds that

sup
t∈R
|Fn,·(t)−Φ(

t

σ
)| → 0 in P-probability.

Proof For proving part (a), we apply the central limit theorem of Lindeberg-Feller,
noticing that assumption (5.10) yields uniform integrability of the summands of Tn.
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For proving part (b), we apply Theorem 5.8 in connection with Remark 5.9. To
this end, re-write the resampling statistic for fixed τn = π = (π(1), . . . , π(n)) in
the form

Tn((Yπ(j))1≤j≤n) =
n∑

i=1

cnig(Yπ(i)) =
√

n

n∑

i=1

cn,π−1(i)

g(Yi)√
n

= √
n

n∑

i=1

Wn,i(ξn,i − ξn),

where

ξn,i := c
g(Yi)√

n
and Wn,i :=

cn,π−1(i)

c
.

In this, notice that we may assume w. l. o. g. that the g(Yi), 1 ≤ i ≤ n, are centered
at their arithmetic mean, cf. assumption (5.8) in connection with Remark 5.2.

It remains to check all assumptions of Theorem 5.8. The regularity assumption

max1≤i≤n|ξn,i | P−→ 0 from part (a) of Remark 5.9 is obviously fulfilled. Validity
of (R3) with V 2 ≡ σ 2 > 0 follows from assumption (5.11). Assumption (GA1) is
fulfilled, because τn = π is uniformly distributed on Sn. Validity of (GA3) with
C = 1 follows from assumptions (5.8) and (5.9). It remains to check (GA2), i.e.,

max1≤i≤n cni
P̃−→ 0 as n →∞. To this end, we argue as follows. Since the cn,π−1(i)

are exchangeable and limn→∞
∑n

i=1 c2
ni = c2 (which is a constant) due to (5.9), it

must hold that cn,π−1(i) = O
P̃

(
1√
n

)
for all indices i, for eventually all large n.

Remark 5.18 For the application of Theorem 5.17 in practice, the permutation
variance of

∑n
i=1 cnig(Yτni ) (i.e., its conditional variance given the data Y = y with

respect to the distribution of τn) is needed. Assuming w. l. o. g. that E[g(Y1)] = 0,
this permutation variance is computed as follows:

Var

(
n∑

i=1

cnig(Yτni
)|Y = y

)

= Var

(
n∑

i=1

c
n,τ−1

ni
g(yi )

)

= 1

n− 1

n∑

i=1

(cni − c)2 ·
n∑

i=1

⎡

⎣g(yi )− n−1
n∑

j=1

g(yj )

⎤

⎦

2

,

where the first equality follows from part c) of Theorem 1.24, and the second
equality is obtained as in the proof of Lemma 4.22.
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5.2.2 One-Sample Problems, Bootstrap Tests

Here, we return to testing (linear) statistical functionals in one-sample problems (cf.
Sect. 1.3.1).

Model 5.19 Let Y1, . . . , Yn be stochastically independent and identically dis-
tributed random variables defined on some probability space (Ω,F ,P), where Y1
takes values in (Y ,B(Y )). Let g : Y → R be a measurable mapping fulfilling
0 < σ 2 := Var(g(Y1)) < ∞ and let

κ(PY1) =
∫

g(Y1)dP = E[g(Y1)]

be the statistical functional of interest. Denote by P̂n = n−1 ∑n
i=1 δYi the empirical

measure pertaining to Y1, . . . , Yn and by

σ̂ 2
n = n−1

n∑

j=1

(

g(Yj )− n−1
n∑

i=1

g(Yi)

)2

the (uncorrected) sample variance of g. We abbreviateZi := g(Yi), 1 ≤ i ≤ n, and
Zn := n−1 ∑n

j=1 Zj = κ(P̂n).

Lemma 5.20 Under Model 5.19, the following two assertions hold true.

(a) L
(√

nκ(P̂n)−κ(PY1 )
σ

)
w→ N (0, 1) as n →∞.

(b) L
(√

nκ(P̂n)−κ(PY1 )
σ̂n

)
w→ N (0, 1) as n →∞.

Proof Part (a) is an application of the central limit theorem to the i.i.d. variables
Z1, . . . , Zn, and part (b) follows from part (a) in combination with Slutzky’s lemma,
since σ̂ 2

n estimates σ 2 consistently due to the law of large numbers.

Now, assume that we are interested in testing

H0 : κ(PY1) = μ0 versus H1 : κ(PY1) �= μ0 (5.12)

for some fixed value μ0 ∈ R. Lemma 5.20 yields that a Z-test based on Z̄n is
asymptotically valid. However, as argued in Sect. 1.3.1, the normal approximation
of the null distribution of Z̄n may be inaccurate for finite sample sizes.

We will discuss three bootstrap tests for (5.12), which are given by the resampling
Schemes 5.21, 5.22, and 5.23, respectively. In this, we restrict our attention to
the case of an unknown variance σ 2 which has a high relevance for practical
applications.
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Scheme 5.21 (Bootstrap Test)

(A) Let Y = (Y1, . . . , Yn)
� be as in Model 5.19.

(B) Let Y ∗ = (Y ∗1 , . . . , Y ∗n )� be a vector of random variables defined on some
further probability space (Ω∗,F ∗,P∗), each taking values in (Y ,B(Y )),
such thatL (Y ∗|Y ) = (P̂n)

⊗n.
(C) Let P̂ ∗

n = n−1 ∑n
i=1 δY ∗i , Z

∗
n = κ(P̂ ∗

n ) = n−1 ∑n
i=1 g(Y ∗i ), and qβ be the

β-quantile of the conditional cdf z �→ P
∗(Z∗n − Zn ≤ z|Y ).

(D) Reject H0, if and only if Zn /∈ [μ0 + qα/2, μ0 + q1−α/2].
For reasonable sample sizes n, the exact determination of the critical values qα/2

and q1−α/2 will often be computationally too demanding in practice. Therefore, a
Monte Carlo variant of Scheme 5.21 can be performed as follows.

Scheme 5.22 (Monte Carlo Bootstrap, cf. Efron (1977, 1979))

(A) Let Y = (Y1, . . . , Yn)
� be as in Model 5.19. Compute from this sample the

transformed sample Z = (Z1, . . . , Zn)
� = (g(Y1), . . . , g(Yn))

�.
(B) Fix a numberB ∈ N of Monte Carlo repetitions, ideally such that (1−α) ·B is

an integer. Generate B bootstrap pseudo-samples
(
(Z∗b,1, . . . , Z

∗
b,n)

)

b=1,...,B
.

In this, all Z∗b,j for 1 ≤ b ≤ B und 1 ≤ j ≤ n are drawn independently and
uniformly with replacement from the original sample units Z1, . . . , Zn.

(C) Compute the bootstrap test statistics

T ∗n,b =
√

n

∣
∣
∣
∣
∣

Z
∗
n,b − Zn

σ̂n

∣
∣
∣
∣
∣

for 1 ≤ b ≤ B.

(D) Reject H0, if and only if
√

n

∣
∣
∣
∣
∣
Zn − μ0

σ̂n

∣
∣
∣
∣
∣
exceeds the {(1 − α) · B}-th order

statistic of the vector (T ∗n,b)b=1,...,B .

Scheme 5.22 can be improved by including the Studentization into the resam-
pling mechanism, leading to Scheme 5.23 which is recommended for practical data
analysis.

Scheme 5.23 (Improved Resampling Scheme (See, e.g., Hall and Wilson 1991))
Proceed as in Scheme 5.22, but replace in step (C) the original estimate σ̂n

of the standard deviation by its resampling counterpart σ̂ ∗n,b , given by σ̂ ∗n,b =
√

n−1
∑n

j=1(Z
∗
b,j − Z

∗
n,b)

2.

According to the guidelines by Hall and Wilson (1991), Scheme 5.23 should be
preferred over Scheme 5.22. Theoretical justifications for this guideline regarding
the speed of convergence have been established by Hall (1988); cf. also Singh
(1981).

In the remainder of this section, we will utilize the conditional central limit
theorem for general linear resampling statistics (i.e., Theorem 5.8) in order to
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establish the asymptotic effectiveness of the bootstrap test defined by Scheme 5.21
with respect to the Z-test based on Zn. To this end, define Z∗i = g(Y ∗i ),

ξi = Zi − Zn√
nσ̂n

and ξ∗i =
Z∗i − Zn√

nσ̂n

, for all 1 ≤ i ≤ n.

This leads to the (Studentized) resampling statistic

T ∗n :=
√

n
Z
∗
n − Zn

σ̂n

=
n∑

j=1

(
ξ∗j − ξn

)
=

n∑

j=1

ξ∗j − nξn, (5.13)

because

n∑

j=1

(
ξ∗j − ξn

)
=

n∑

j=1

(
Z∗j − Zn√

nσ̂n

− 1

n

n∑

i=1

Zi − Zn√
nσ̂n

)

= 1√
nσ̂n

n∑

j=1

(
Z∗j − Zn − Zn + Zn

)

= 1√
nσ̂n

(
nZ

∗
n − nZn

)
= √

n
Z
∗
n − Zn

σ̂n

.

Now, we analyze the sum
∑n

j=1 ξ∗j . For fixed ω ∈ Ω and fixed 1 ≤ i ≤ n, we
observe that the value yi = Yi(ω) will exactly mn,i times be used in this sum,
where the counts (mn,i)1≤i≤n can be regarded as realizations of a multinomially
distributed random vector Mn = (Mn,1, . . . ,Mn,n)

�, where the total sample size in
this multinomial distribution equals n = ∑n

i=1 Mn,i , and the cell probabilities are
given by pn,i ≡ n−1 for all 1 ≤ i ≤ n. This leads to the stochastic representation∑n

j=1 ξ∗j =
∑n

j=1 Mn,j ξj . Substituting the latter representation in (5.13), we obtain
the linear resampling statistic

T ∗n =
n∑

j=1

Mn,j ξj −
n∑

i=1

ξi =
n∑

j=1

(Mn,j − 1)ξj = √
n

n∑

j=1

Wn,j (ξj − ξn)

with weights Wn,j = n−1/2(Mn,j − 1) for all 1 ≤ j ≤ n.
Parts (a) and (c) of Remark 5.9 immediately yield that (R1)–(R3) are fulfilled for

(ξi)1≤i≤n, where V 2 ≡ 1 in (R3). It remains to verify the general assumptions for
the weights. To this end, consider the following lemma.

Lemma 5.24 (Lemma 20.2 in Janssen (1998)) Let M = (M1, . . . ,Mn)
� be

a multinomially distributed random vector, where the total sample size in this
multinomial distribution equals n = ∑n

i=1 Mi , and the cell probabilities are given
by pi ≡ n−1 for all 1 ≤ i ≤ n. Then, the following assertions hold true.
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(a) ∀1 ≤ i ≤ n: Mi
D= ∑n

k=1 1{i}(ζk), where ζ1, . . . , ζn are i.i.d. and uniformly
distributed on {1, . . . , n}.

(b) ∀1 ≤ i ≤ n: E[Mi] = 1, Var (Mi) = n−1
n

.
(c)

∑n
j=1 Mj ≡ n ⇒ Mn ≡ 1.

(d) ∀ε > 0 : P(√n max1≤i≤n|Mi

n
− 1

n
| ≥ ε

)→ 0 as n →∞.

(e) Var

(
∑n

j=1

[
Mj−1√

n

]2
)

= (n−1)2

n3 → 0 as n →∞.

Corollary 5.25 LetWn,j = n−1/2(Mn,j−1), 1 ≤ j ≤ n, denote bootstrap weights,
where Mn = (Mn,1, . . . ,Mn,n)

� is distributed as M in Lemma 5.24. Then, the
following assertions hold true.

(a) The Wn,j fulfill (GA1) because of part (a) of Lemma 5.24.
(b) The Wn,j fulfill (GA2) because of part (d) of Lemma 5.24.
(c) The Wn,j fulfill (GA3) with C= 1, meaning that SW := ∑n

j=1(Wn,j −
Wn)

2→ 1 in probability as n → ∞, because of the following argumentation.
First, we have that

SW =
n∑

j=1

W 2
n,j =

n∑

j=1

(Mn,j − 1)2

n
,

because Wn = 0. According to part (b) of Lemma 5.24, we have E[SW ] =
Var

(
Mn,1

) = (n− 1)/n → 1 as n →∞. Moreover, Var (SW ) → 0 as n →∞
due to part (e) of Lemma 5.24.

(d) Finally, it holds
√

n(Wn,1 −Wn) = Mn,1 − 1 and Var
(
Mn,1

)→ 1 as n →∞.

Combining Corollary 5.25 and Theorem 5.8, we have that

L

(
√

n
Z
∗
n − Zn

σ̂n

∣
∣
∣
∣
∣
Y

)
w→ N (0, 1)

in probability. On the other hand, we have unconditional weak convergence of

L
(√

n
Zn−μ0

σ̂n

)
to N (0, 1) under H0 as n → ∞; see Lemma 5.20. Hence,

Theorem 5.5 yields asymptotic effectiveness of the bootstrap test from Scheme 5.21
with respect to the Z-test based on Zn. The Schemes 5.22 and 5.23 can be analyzed
analogously.

5.3 Non-exchangeability, Studentization

We have seen in Theorem 5.15 that exchangeability (i.e., distributional invariance
with respect to permutations) of all n observational units under the null hypothesis
is sufficient for a permutation test to keep the significance level α exactly for any
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finite sample size. However, the properties of permutation tests may also be analyzed
if this invariance assumption is violated (cf. Romano 1990). For concreteness,
consider again the “pooled t-type” test statistic

Tn =
√

n1n2

n1 + n2
(Y n1 − Yn2).

Assuming finite first moments of the observables, one may employ this test statistic
in a permutation test to test the null hypothesis

H0 = {μ1 = μ2} versus H1 = {μ1 �= μ2}, (5.14)

where μ1 = E[Y1] denotes the (theoretical) mean in the first group and μ2 =
E[Yn1+1] denotes the mean in the second group. Notice that the observables are
not necessarily exchangeable under H0 from (5.14), because it may well be true that
the (theoretical) group means coincide, while their higher moments (e.g., the group
variances) are different.

Theorem 5.26 Under the general assumptions from Model 5.10, assume that
testing H0 from (5.14) is of interest, and that the observables possess non-trivial,
finite variances σ 2

1 = Var(Y1) and σ 2
2 = Var(Yn1+1). We assume that n2/n tends to

λ ∈ (0, 1) for n →∞. Then, the following assertions hold true.

(a) Letting σ 2(Tn|H0) denote the (unconditional) sampling variance of Tn under
H0, we have that

lim
n→∞ σ 2(Tn|H0) = λσ 2

1 + (1− λ)σ 2
2 . (5.15)

(b) Letting σ 2(T ∗n |Y ) denote the (conditional) permutation variance of T ∗n given
the data, we have that

σ 2(T ∗n |Y ) → (1− λ)σ 2
1 + λσ 2

2 (5.16)

almost surely as n →∞.
(c) The right-hand sides of (5.15) and (5.16) coincide if and only if σ 2

1 = σ 2
2 or

λ = 1/2.

Proof To prove part (a), we straightforwardly calculate that

σ 2(Tn|H0) = n1n2

n

(
σ 2

1

n1
+ σ 2

2

n2

)

= n2

n
σ 2

1 +
n1

n
σ 2

2

→ λσ 2
1 + (1− λ)σ 2

2 , n →∞.
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For showing the validity of (5.16), we employ Remark 5.18. Noticing that the
regression coefficients (cn,i )1≤i≤n given in part (b) of Example 5.3 are centered,
elementary calculations yield that

σ 2(T ∗n |Y ) = 1

n− 1

n∑

i=1

(Yi − Ȳn)
2,

which is the pooled sample variance. It follows from the strong law of large numbers
that σ 2(T ∗n |Y ) converges almost surely to the pooled population variance, which is
given by

Var
(
(1− λ)PY1 + λPYn1+1

)
= (1− λ)σ 2

1 + λσ 2
2 .

Part (c) follows immediately from parts (a) and (b).

In view of Theorem 5.5, the permutation test based on Tn can hence only be
asymptotically effective for testing H0 from (5.14) if σ 2

1 = σ 2
2 (in particular,

of course, in the case of exchangeability under H0) or if λ = 1/2 (balanced
sample sizes). However, there exists a technique (namely, Studentization) such
that the Studentized version of the permutation test based on Tn is asymptotically
effective for testing H0 from (5.14) even if the latter assumptions may be violated.

Theorem 5.27 (Part (a) of Theorem 2.1 of Janssen (1997)) Let the pooled sample
variance Vn be defined by

Vn = n1n2

n

(
S2

1

n1
+ S2

2

n2

)

,

where

S2
1 =

1

n1 − 1

n1∑

i=1

(Yi − Ȳn1)
2 and S2

2 =
1

n2 − 1

n∑

j=n1+1

(Yj − Ȳn2)
2.

Define the Studentized variant of the test statistic Tn by T Stud.
n = Tn/V

1/2
n .

Then, under the general assumptions of Model 5.10 and additionally assuming
non-trivial, finite variances σ 2

1 and σ 2
2 , the permutation test based on T Stud.

n is of
asymptotic (min(n1, n2) →∞) size α for all (joint) data distributions PY such that
H0 from (5.14) holds true, where Y = (Y1, . . . , Yn)

�.

Remark 5.28 The argumentation of Janssen (1997) is similar to the proof of
Theorem 5.17 and our argumentation in Sect. 5.2.2. Namely, it is shown that
both the unconditional null distribution of T Stud.

n and the (conditional) permutation
distribution of T Stud.

n given the data are asymptotically standard normal (where the
latter convergence holds in P-probability).
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5.4 Exercises

Exercise 5.1 Show that the linear bootstrap statistic T ∗n from (5.2) is equivalent
to the bootstrap method for the mean functional which has been discussed in
Sect. 1.3.1.
Hint: Show that T ∗n is a scaled version of the difference Ȳ ∗n − Ȳn appearing in (1.8).

Exercise 5.2 Consider Wilcoxon’s rank sum statistic from part (iii) of Example 4.26
and regard this statistic (or its centered and scaled version, respectively) as a linear
resampling statistic as described in part (a) of Example 5.3. How can one define the
regression coefficients and the weights such that the assumptions of Theorem 5.8 are
fulfilled?

Exercise 5.3 (Permutation Test in Practice) Assume that six cell cultures of the
same kind are grown in Petri dishes. Three randomly chosen cultures are treated
with vitamin E, while the other three cell cultures do not receive this treatment.
After three weeks it is assessed how many cells per cell culture still have the ability
to grow. The obtained data are summarized in the following table.

Group 1 (Treatment with vitamin E) 121 118 110

Group 2 (No treatment with vitamin E) 34 22 12

Test at significance level α = 5% the null hypothesis that the vitamin E treatment
does not lead to an increase in the (random) number of cells with ability to grow
after three weeks against its (one-sided) alternative that it does, by means of a
permutation test. Employ as test statistic the sum of the number of cells with the
ability to grow after three weeks in group 1 (treated with vitamin E).
Hint: You do not have to explicitly traverse all 6! = 720 possible permutations,
because many of them lead to identical values of the test statistic. Thus, consider
first how many and which permutations have to be traversed.

Exercise 5.4 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) For testing the simple null hypothesis {F1 = F2} against the (“two-sided”)
alternative {F1 �= F2} under a two-sample problem, one needs two critical
values for the test statistic Tn of the permutation test considered in part (b) of
Example 5.3.

(b) The weights Wn,i from part (c) of Example 5.3 are centered for all n ∈ N and
all 1 ≤ i ≤ k(n).

(c) The critical value c∗n(α) from part (a) of Definition 5.4 only depends on n and
α, and can hence be tabulated.

(d) For every n ∈ N, let Xn be a (real-valued) random variable with distribution
N (0, σ 2

n ). Assume that the variances σ 2
n > 0 converge to zero for n → ∞.

Denote by Fn the cdf of Xn and by G the cdf of the Dirac distribution with
point mass 1 in zero. Then it holds for the Lévy metric dL(·, ·) introduced in
Theorem 5.5, that dL(Fn,G) → 0 for n →∞.
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Exercise 5.5 (Generalized Weighted Bootstrap) Let us construct a weighted
bootstrap procedure or the mean functional, where we assume that k(n) ≡ n for
ease of notation.

To this end, let (ζ�)�≥1 be a sequence of real-valued, stochastically independent
and identically distributed, almost surely positive random variables, such that ζ1
possesses a finite second moment. For n ∈ N we let Mn,i = ζi/

∑n
j=1 ζj , 1 ≤ i ≤ n.

Finally, in analogy to part (c) of Example 5.3, we let Wn,i = bn(Mn,i − an) for
1 ≤ i ≤ n and real numbers an and bn.

Construct sequences {an}n∈N and {bn}n∈N such that the general assump-
tions (GA1)–(GA3) are fulfilled for these weights.

Exercise 5.6 (Programming Exercise) Compare, under the general assumptions
of Sect. 5.3, the permutation tests based on Tn and on T Stud.

n , respectively, with
respect to the accurateness with which they keep the significance level in a computer
simulation. Try out varying ratios n1/n2 of the group-specific sample sizes as well
as varying ratios σ 2

1 /σ 2
2 of the group-specific variances.

Exercise 5.7 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) Efron’s bootstrap can also be applied to two-sample problems.
(b) In the case of Pitman’s permutation test from Remark 5.13, one does not

have to explicitly consider those permutations of the antiranks which leave all
observational units in their original groups.

(c) Scheme 5.14 remains valid in the case where there are ties among the Yi , 1 ≤
i ≤ n.

(d) Under the assumptions of Lemma 5.24, the covariance of Mi and Mj converges
to zero as n →∞, for every pair 1 ≤ i < j ≤ n of indices.
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Chapter 6
Bootstrap Methods for Linear Models

In this chapter, we employ multivariate central limit theorems for establishing
consistency of bootstrap approximations of the distribution of estimators of vectors
of regression coefficients in linear models. As argued by Freedman (1981), the
choice of appropriate resampling schemes crucially depends on whether the design
matrix is deterministic or random.

6.1 Deterministic Design

Model 6.1 We consider the sample space (Y ,B(Y )) = (Rn,B(Rn)). The
observations y1, . . . , yn are modeled as realizations of real-valued, stochastically
independent random variables Y1, . . . , Yn fulfilling

∀1 ≤ i ≤ n : Yi =
p∑

k=1

βkxi,k + εi. (6.1)

The vector β = (β1, . . . , βp)� ∈ R
p is the parameter of interest. We assume that

the real numbers (xi,k)1≤i≤n,1≤k≤p are fixed and known. The random variables
ε1, . . . , εn are called error terms. They are assumed to be i.i.d. and defined on some
probability space (Ω,F ,P). We assume that E[ε1] = 0 and that 0 < σ 2 :=
Var (ε1) < ∞ holds true. However, we do not assume a parametric family for
the cdf F of ε1. Thus, F is an infinite-dimensional nuisance parameter, leading
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to a semiparametric model. In abbreviated notation, we have the following model
quantities.

Y (n) ≡ Y := (Y1, . . . , Yn)
� ∈ R

n response vector

x(n) ≡ x :=
⎛

⎜
⎝

x1,1 . . . x1,p

...
...

xn,1 . . . xn,p

⎞

⎟
⎠ ∈ R

n×p design matrix

ε(n) ≡ ε := (ε1, . . . , εn)
� ∈ R

n vector of error terms

β = (β1, . . . , βp)� ∈ R
p parameter vector

In matrix notation, we can express (6.1) as follows:

Y (n) = x(n)β + ε(n) or Y = xβ + ε. (6.2)

Finally, we assume that the design matrix has full rank, such that x�x ∈ R
p×p is

positive definite and hence invertible.

Lemma 6.2 Under Model 6.1, the least squares estimator (LSE) β̂ of β is given by

β̂(n) ≡ β̂ ≡ β̂(Y ) = (x�x)−1x�Y. (6.3)

Furthermore, the estimation error can be represented as

β̂ − β = (x�x)−1x�ε. (6.4)

Proof The LSE β̂(n) ≡ β̂ is the L2-projection of Y onto the vector space {z ∈ R
n :

z = xγ, γ ∈ R
p}. Hence, it can be characterized by the following property.

∀γ ∈ R
p : 〈Y − xβ̂, xγ 〉Rn = 0

⇔ ∀γ ∈ R
p : (Y − xβ̂)�xγ = 0

⇔ ∀γ ∈ R
p : Y�xγ − β̂�x�xγ = 0

⇔ ∀γ ∈ R
p : Y�xγ = β̂�x�xγ

⇔ Y�x = β̂�x�x.

Multiplication from the right by (x�x)−1 yields

Y�x(x�x)−1 = β̂� ⇐⇒ β̂ = (x�x)−1x�Y,

because (x�x)−1 ∈ R
p×p is a symmetric matrix.
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Now, substituting the right-hand side of (6.2) in the representation for β̂,
we obtain

β̂ = (x�x)−1x�(xβ + ε) = β + (x�x)−1x�ε

or, equivalently,

β̂ − β = (x�x)−1x�ε,

as desired.

Equation (6.4) is a helpful tool for the (asymptotic) analysis of least squares-based
statistical inference methods for β. The following theorem yields the first two
moments of β̂ for any finite sample size.

Theorem 6.3 Under Model 6.1, let β̂(n) ≡ β̂ = (x�x)−1x�Y . Then, the following
two assertions hold true.

(i) Eβ [β̂] = β.
(ii) Cov(β̂) = σ 2(x�x)−1.

Proof We exploit the representation

β̂ = β + (x�x)−1x�ε.

Linearity of expectation operators yields (i), because ε is centered. Furthermore,
we get

Cov(β̂) = E

[
(β̂ − β)(β̂ − β)�

]

= (x�x)−1x�E
[
εε�

]
x(x�x)−1

= σ 2(x�x)−1,

because E
[
εε�

] = σ 2In.

Our next goal is to prove an (unconditional) multivariate central limit theorem
for β̂(n). To this end, we first have the following auxiliary result.

Lemma 6.4 Let a� = (a1, . . . , ap) be an arbitrary, but fixed vector in R
p. Under

Model 6.1, assume that

(i) n− 1
2 max1≤i≤n,1≤k≤p|xi,k| → 0 as n →∞,

(ii) n−1x�x → V as n →∞, for a positive definite, symmetric matrix V ∈ R
p×p.

Then it holds that

L
(
n−

1
2 a�x�ε

)
w→ N (0, ρ2) as n →∞,

where ρ2 = σ 2a�V a.
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Proof Let Sn := a�x�ε and notice that

Sn =
p∑

k=1

(

ak

n∑

i=1

xi,kεi

)

=
n∑

i=1

εi

(
p∑

k=1

akxi,k

)

=:
n∑

i=1

biεi

can be written as a sum of stochastically independent, centered random variables.
Furthermore, we have that

Var (Sn) = σ 2
n∑

i=1

b2
i = σ 2

n∑

i=1

p∑

j,k=1

ajakxi,j xi,k

= σ 2
p∑

j,k=1

ajak(x
�x)j,k

= σ 2a�(x�x)a.

Consequently,

Var
(
n−

1
2 Sn

)
= n−1σ 2a�x�xa → ρ2 = σ 2a�V a as n →∞.

It remains to check the Lindeberg condition, meaning that

∀δ > 0 : n−1
n∑

i=1

[

b2
i

∫

{|εi |≥δ
√

n/|bi |}
ε2
i dP

]

→ 0 as n →∞.

To this end, notice that assumption (i) implies that

∀1 ≤ i ≤ n :
√

n

|bi | ≥
√

n

max1≤i≤n |bi| =: cn →∞ as n →∞.

Thus, we get for all 1 ≤ i ≤ n that

∫

{|εi |≥δ
√

n/|bi |}
ε2
i dP ≤

∫

{|εi |≥δcn}
ε2

1dP→ 0 as n →∞,

because ε1 possesses a finite second moment. Furthermore, as shown before,
n−1 ∑n

i=1 b2
i converges to the fixed value a�V a as n →∞, completing the proof.

Theorem 6.5 (Multivariate Central Limit Theorem) Under Model 6.1, assume
that assumptions (i) and (ii) from Lemma 6.4 are fulfilled. Then, letting β̂(n) be as
in Theorem 6.3, we have the convergence

L
(√

n [β̂(n)− β]
)

w→ Np

(
0, σ 2V−1

)
as n →∞.
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Proof Notice that

√
n[β̂(n)− β] = 1√

n
(n−1x�x)−1x�ε.

Now, due to the Cramér-Wold device (see, e.g., page 862 of Shorack and Wellner
(1986)), it holds that

L

(
1√
n
x�ε

)
w→ Np

(
0, σ 2V

)
as n →∞.

Furthermore, assumption (ii) implies that (n−1x�x)−1 converges to V−1 as n →
∞. Altogether, this entails that

L

(
1√
n
(n−1x�x)−1x�ε

)
w→ Np

(
0, σ 2V −1

)
as n →∞,

as desired.

Theorem 6.6 (cf. Freedman (1981)) Under the assumptions of Theorem 6.5, the
following assertions hold true.

(a) n−1(x(n))�ε(n) → 0 almost surely as n →∞.
(b) β̂(n) → β almost surely as n →∞.

Let

ε̂ = (ε̂1, . . . , ε̂n)
� = Y − xβ̂ = x(β − β̂)+ ε (6.5)

denote the vector of residuals, and let F̂n denote the ecdf pertaining to ε̂1, . . . , ε̂n.
Then we have that

(c) ¯̂εn =
∫

zF̂n(dz) = n−1 ∑n
i=1 ε̂i → 0 almost surely as n →∞,

(d) σ̂ 2
n =

∫
z2F̂n(dz) = n−1(ε̂)�ε̂ → σ 2 almost surely as n →∞.

(e) Due to part (c), the convergence in part (d) remains the same if the residuals
are centered at ¯̂εn.

The bootstrap procedure given in Scheme 6.7 for the approximation of L (β̂(n))

randomly combines the centered residuals with rows of the design matrix.

Scheme 6.7 (Bootstrap for Model 6.1)

(A) Compute the LSE β̂(n) = (x(n)�x(n))−1x(n)�Y (n) based on the originally
observed response vector Y (n) ≡ Y = (Y1, . . . , Yn)

�.
(B) Compute the residuals ε̂1, . . . , ε̂n defined in (6.5), as well as their mean ¯̂εn =

n−1 ∑n
i=1 ε̂i . Denote by F̃n the ecdf of the centered residuals ε̃1, . . . , ε̃n, where

ε̃j = ε̂j − ¯̂εn, 1 ≤ j ≤ n.



96 6 Bootstrap Methods for Linear Models

(C) Denote by ε∗1, . . . , ε∗n a bootstrap pseudo sample which is conditionally (to Y )
i.i.d. and such that ε∗1 |Y ∼ F̃n. Let Y ∗j = xj β̂(n) + ε∗j , 1 ≤ j ≤ n, where xj

denotes the j -th row of x, and Y ∗ = (Y ∗1 , . . . , Y ∗n )�.
(D) Let β̂∗(n) = (x�x)−1x�Y ∗ and take the (conditional) distribution

of
√

n
(
β̂∗(n)− β̂(n)

)
given Y as a bootstrap approximation of the

(unconditional) distribution of
√

n
(
β̂(n)− β

)
.

The consistency of the bootstrap approximation defined by Scheme 6.7 will be
shown by the Conditional Multivariate Central Limit Theorem 6.10. To this end, we
need two preparatory lemmas.

Lemma 6.8 Under Model 6.1, let assumptions (i) and (ii) from Lemma 6.4 be
fulfilled. Then, with the notation introduced in Scheme 6.7, the following two
assertions hold true.

(a) n−1
∥
∥ε̂ − ε

∥
∥2 = n−1 ∑n

i=1(ε̂i − εi)
2 → 0 almost surely as n →∞.

(b) n−1 ‖ε̃ − ε‖2 = n−1 ∑n
i=1(ε̃i − εi)

2 → 0 almost surely as n →∞.

Proof Representation (6.5) implies that ε̂ − ε = x(β − β̂), hence

∥
∥ε̂ − ε

∥
∥2 = (β − β̂)�x�x(β − β̂).

Now, part (b) of Theorem 6.6 yields assertion (a), because n−1x�x converges to the
fixed matrix V due to assumption (ii). Assertion (b) follows by additionally utilizing
part (c) of Theorem 6.6.

Lemma 6.9 Under the assumption of Lemma 6.8, it holds that

F̃n→F with probability 1 as n →∞,

where the convergence is in the sense of weak convergence of the corresponding
probability measures.

Proof Let Ψ denote a bounded, Lipschitz continuous function with Lipschitz
constant K . Then we have that

n−1
n∑

i=1

|Ψ (ε̃i)− Ψ (εi)| ≤ K

n

n∑

i=1

|ε̃i − εi |

≤ K

(

n−1
n∑

i=1

(ε̃i − εi)
2

) 1
2

, (6.6)
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because for any vector a ∈ R
n it holds that ‖a‖1 ≤ √

n‖a‖2. Now, Part (b) of
Lemma 6.8 yields that the right-hand side of (6.6) tends to zero almost surely as
n →∞. Hence, we have that

∫
Ψ (x)F̃n(dx)−

∫
Ψ (x)F̂n(dx) → 0 almost surely as n →∞,

where F̂n denotes the ecdf pertaining to ε1, . . . , εn. A slight variation of Vitali’s
Theorem (see Lemma 8.4 in Bickel and Freedman (1981)) yields the assertion.

Theorem 6.10 (Conditional Multivariate Central Limit Theorem) Under
Model 6.1, let assumptions (i) and (ii) from Lemma 6.4 be fulfilled. Then, the
convergence

L
(√

n
[
β̂∗(n)− β̂(n)

]∣∣
∣ Y

)
w→ Np

(
0, σ 2V −1

)
as n →∞

holds with probability 1.

Proof We notice that

x�x
[
β̂∗(n)− β̂(n)

]
= x�ε∗,

because

β̂∗(n) = (x�x)−1x�Y ∗

= (x�x)−1x�(xβ̂(n)+ ε∗)

= β̂(n)+ (x�x)−1x�ε∗.

Now, we can proceed as in the proofs of Lemma 6.4 and Theorem 6.5, where
Lemmas 6.8 and 6.9 can be exploited in order to establish the validity of the
Lindeberg condition.

6.2 Random Design

Model 6.11 (Linear Model with Random Design, Linear Correlation Model)
We consider the sample space (Rn(p+1),B(Rn(p+1))). The observations are mod-
eled as realizations of i.i.d. tuples (Xi, Yi)1≤i≤n, defined on some probability space
(Ω,F ,P), where X1 = x1 ∈ R

p and Y1 = y1 ∈ R. For ease of exposition, assume
that both X1 and Y1 are centered.
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We are interested in the strength of the linear association between X1 and Y1.
Thus, we may write

∀1 ≤ i ≤ n : Yi =
p∑

k=1

βkXi,k + εi = X�
i β + εi, (6.7)

and thereby introduce “error terms” ε1, . . . , εn. The random matrix

X(n) ≡ X =
⎛

⎜
⎝

X1,1 . . . X1,p

...
...

Xn,1 . . . Xn,p

⎞

⎟
⎠

is called the random design matrix of the model, leading to the matrix representation

Y = Xβ + ε

of (6.7), where we omitted the index n for ease of notation.
Under Model (6.7), we make the following assumptions.

(i) The (covariance)matrixΣ = E
[
X1X

�
1

] ∈ R
p×p is finite and positive definite.

(ii) Let μ denote the (p + 1)-dimensional probability distribution of (X1, Y1).
Then μ already fully specifies the distribution of ε1, because ε1 = Y1 −X�

1 β.
In particular, (εj )j=1,...,n are (unconditionally) i.i.d. However, it may well be
true that Var(ε1|X1 = x1) =: σ 2(x1) is a non-constant function of x1 ∈ R

p

(heteroscedasticity).
(iii) The parameter vector β = (β1, . . . , βp)� is defined as the minimizer of the

expected squared prediction error E
[(

Y1 −X�
1 β

)2
]
. This implies (see, e.g.,

Section 5.2 in Whittaker (1990)) that Y1 − X�
1 β = ε1 is perpendicular to X1,

meaning that ∀1 ≤ j ≤ p : E[X1,j ε1] = 0 or Cov(ε1,X1) = Cov(Y1 −
β�X1,X1) = 0, respectively. Hence, β = Σ−1

E[X1Y1].
(iv) The matrix M = (Mj,k)1≤j,k≤p with entries Mj,k = E[X1,jX1,kε

2
1] exists in

R
p×p. This assumption is fulfilled if E

[∥
∥(X�

1 , Y1)
∥
∥4

2

]
< ∞.

Lemma 6.12 Under the assumptions of Model 6.11, the matrix

n−1X�X = n−1

(
n∑

i=1

Xi,jXi,k

)

j,k=1,...,p

with values in R
p×p converges μ⊗n-almost surely to Σ ∈ R

p×p as n →∞.

Proof The assertion follows from the strong law of large numbers, applied element-
wise.
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By the substitution principle, we define the estimator β̂(n) ≡ β̂ of β ∈ R
p

as the minimizer of the empirical squared prediction error n−1 ∑n
i=1

(
Yi −X�

i β
)2

.

The solution is (see Sect. 6.1) the LSE β̂(n) ≡ β̂ = (X�X)−1X�Y . We obtain the
stochastic representation

(X�X)(β̂ − β) = (X�X)[(X�X)−1X�Y − β] = X�Y − (X�X)β = X�ε

of the (weighted) random estimation error.

Lemma 6.13 Under the assumptions of Model 6.11, it holds that

n−
1
2 (X�X)(β̂ − β) = n−

1
2 X�ε

D→ Np (0,M) as n →∞.

Proof Notice that X�ε = (∑n
i=1 Xi,j εi

)�
j=1,...,p

is a sum of i.i.d. random vectors.
Assumption (iii) from Model 6.11 entails that each of these vectors is centered, and
assumption (iv) entails that each of these vectors possesses the (finite) covariance
matrix M . This allows us to apply the multivariate central limit theorem for
i.i.d. random vectors; see also the proof of Lemma 6.18 below for an analogous
argumentation.

Combining Lemmas 6.12 and 6.13, we obtain an (unconditional) multivariate
central limit theorem for β̂.

Theorem 6.14 (Multivariate Central Limit Theorem) Under the assumptions of
Model 6.11, it holds that

√
n
(
β̂(n)− β

)
D→ Np

(
0,Σ−1MΣ−1

)
as n →∞.

Furthermore, β̂(n) converges almost surely to β as n →∞.

Proof We exploit the representation

β̂(n) = (X�X)−1X�Y = β + (X�X)−1X�ε = β + (n−1X�X)−1(n−1X�ε).

Now, Lemma 6.12 yields that n−1(X�X) converges almost surely to Σ . Analo-
gously, n−1X�ε converges almost surely to 0 ∈ R

p. Hence, the strong law of large
numbers yields β̂(n) → β almost surely as n →∞. The multivariate normality of√

n
(
β̂(n)− β

)
follows from Lemma 6.13 in combination with Slutzky’s lemma.

Since we did not make any parametric assumptions regarding the (joint) distribu-

tion μ⊗n of the data, it appears plausible to approximate L
(√

n [β̂(n)− β)]
)

for

finite n by means of the following bootstrap procedure.
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Scheme 6.15 (Bootstrap for Model 6.11)

(A) Assume i.i.d. data ((Xi = xi, Yi = yi))1≤i≤n according to Model 6.11. Denote

by β̂ ≡ β̂(n) the LSE based on this sample, i.e., β̂ = (X�X)−1X�Y with
random design matrix X and random response vector Y . Furthermore, denote
by P̂n the (p + 1)-variate empirical distribution of the data tuples.

(B) Let
(
(X∗

i = x∗i , Y ∗i = y∗i )
)

1≤i≤n
denote a bootstrap pseudo sample, the n

elements of which are conditionally i.i.d. given the original data. In this,
(X∗

1, Y ∗1 ) : (Ω∗,F ∗,P∗) → (Rp+1,B(Rp+1)) with P
∗(X∗

1,Y ∗1 )|data = P̂n

(random uniformly distributed drawings with replacement from the originally
observed data tuples).

(C) Let the LSE on the bootstrap sample be given by β̂∗(n) ≡ β̂∗ =
(X∗�X∗)−1X∗�Y ∗, and define ε∗ := Y ∗ −X∗β̂ with values in Rn.

(D) ApproximateL
(√

n [β̂(n)− β]
)
byL

(√
n [β̂∗(n)− β̂(n)] |data

)
.

Stute (1990) showed the consistency of the bootstrap approximation defined
by Scheme 6.15 by imitating the steps of argumentation, which have led to the
unconditional Central Limit Theorem 6.14, in the bootstrap model.

Lemma 6.16 Under Scheme 6.15, it holds that

∀1 ≤ i ≤ n : ∀1 ≤ j ≤ p : E∗
[
X∗

i,j ε
∗
i |data

]
= 0.

Proof Notice that taking the conditional (given the data) expectation with respect
to P

∗ leads to a discrete sum with uniform weights for the originally observed data
tuples. Taking into account the definition of ε∗ from Scheme 6.15, we find that

E
∗ [X∗

i,j ε
∗
i |data

]
= n−1

n∑

k=1

Xk,j (Yk −X�
k β̂)

= n−1〈Xj , Y −Xβ̂〉Rn = 0

for all 1 ≤ i ≤ n, 1 ≤ j ≤ p, by the construction of β̂.

Lemma 6.17 Under Scheme 6.15, it holds μ⊗n-almost surely for all δ > 0 that

P
∗ (

∥
∥
∥n−1X∗�X∗ −Σ

∥
∥
∥ > δ

)
→ 0 as n →∞.

Proof We have that X∗�X∗ =
(∑n

i=1 X∗
i,jX

∗
i,k

)

j,k=1,...,p
. Now,

E
∗
[

n∑

i=1

X∗
i,jX

∗
i,k |data

]

=
n∑

i=1

E
∗ [X∗

i,jX
∗
i,k |data

]
= nE∗

[
X∗

1,jX
∗
1,k|data

]

= nn−1
n∑

�=1

X�,jX�,k =
n∑

�=1

X�,jX�,k.
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Making use of the tower equation, we conclude that

E

[

n−1
n∑

i=1

X∗
i,jX

∗
i,k

]

= E

[

n−1
E
∗
[

n∑

i=1

X∗
i,jX

∗
i,k |data

]]

= n−1
E

[
n∑

�=1

X�,jX�,k

]

= E
[
X1,jX1,k

] = Σj,k < ∞
for all 1 ≤ j, k ≤ p. Furthermore, the model fulfills the “Degenerate Convergence
Criterion” (see Loève (1977), page 329), completing the proof.

Lemma 6.18 Under Scheme 6.15, it holds μ⊗n-almost surely that

∀a ∈ R
p : n− 1

2 a�X∗�ε∗ D→ N
(

0, a�Ma
)
as n →∞.

Proof We introduce the abbreviation

S∗n := n−
1
2 a�X∗�ε∗ = n−

1
2

n∑

k=1

p∑

j=1

ajX
∗
k,j ε

∗
k .

Notice that S∗n is a normalized sum of i.i.d. random variables

(Z∗k )1≤k≤n :=
⎛

⎝
p∑

j=1

ajX
∗
k,j ε

∗
k

⎞

⎠

1≤k≤n

.

By Lemma 6.16, Z∗1 is (conditionally) centered, hence also S∗n . It remains to
calculate the (conditional) variance of S∗n . We get that

Var∗
(
S∗n |data

) = E
∗ [(Z∗1)2|data

]
=

p∑

�=1

p∑

j=1

a�ajE
∗ [X∗

1,�ε
∗
1X∗

1,j ε
∗
1 |data

]

=
p∑

�=1

p∑

j=1

a�aj

[

n−1
n∑

i=1

Xi,�Xi,j (Yi −X�
i β̂)2

]

.

Now, Theorem 6.14 yields that β̂ = β̂(n) converges almost surely to β as n →∞.
This entails that, for all 1 ≤ i ≤ n, the random variable (Yi − X�

i β̂)2 converges
almost surely to ε2

i . Exploiting assumption (iv) of Model 6.11 and the strong law of
large numbers, we conclude that n−1 ∑n

i=1 Xi,�Xi,j (Yi −X�
i β̂)2 converges almost

surely to M�,j , for all 1 ≤ �, j ≤ p. Altogether, this entails that

Var∗
(
S∗n |data

)→
p∑

�=1

p∑

j=1

a�ajM�,j = a�Ma

μ⊗n-almost surely as n →∞.
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Finally, the aforementioned results yield the consistency of the bootstrap approx-
imation defined by Scheme 6.15, by means of Theorem 6.19.

Theorem 6.19 (Conditional Multivariate Central Limit Theorem) Under
Scheme 6.15, it holds μ⊗n-almost surely that

L
(√

n [β̂∗(n)− β̂(n)] |data
)

w→ Np

(
0,Σ−1MΣ−1

)
as n →∞.

Proof Consider the representation

√
n
[
β̂∗(n)− β̂(n)

]
= n

1
2

[
(X∗�X∗)−1X∗�(X∗β̂ + ε∗)− β̂

]
= n

1
2 (X∗�X∗)−1X∗�ε∗

= (n−1X∗�X∗)−1(n− 1
2 X∗�ε∗).

By Lemma 6.18 and the Cramér-Wold device, the conditional distribution of

n− 1
2 X∗�ε∗ converges to Np(0,M) for μ⊗n-almost all observations. Furthermore,

according to Lemma 6.17 we have stochastic convergence of n−1X∗�X∗ to the
invertible matrix Σ for μ⊗n-almost all observations. The assertion follows by
Slutzky’s lemma.

6.3 Exercises

Exercise 6.1 (Approximate Confidence Interval for a Regression Coefficient)
Consider Model 6.1 with n = 50, p = 1, σ 2 = 4 and design points xi ≡ xi,1 = i/n,
1 ≤ i ≤ n.

(a) Utilize Theorem 6.5 to construct an approximate (1 − α)-confidence interval
for the regression coefficient β ≡ β1, α ∈ (0, 1).

(b) Assess the relative coverage frequency of the confidence interval from part (a) of
this exercise by means of a computer simulation with 5000 simulation runs, for
α = 5%. For the error distribution Pε1 , choose the centered normal distribution
with variance σ 2 = 4 and a shifted exponential distribution with expectation
zero and variance σ 2 = 4, respectively.

Exercise 6.2 (Conditional Multivariate Central Limit Theorem) Complete the
proof of Theorem 6.10; i.e., carry out explicitly those steps which are in analogy to
Lemma 6.4 and Theorem 6.5.

Exercise 6.3 (Programming Exercise)

(a) Program Scheme 6.7 in R.
(b) Consider again the model from Exercise 6.1. Construct a bootstrap-based

95%-confidence interval for the regression coefficient β. Assess the relative
coverage frequency of the latter confidence interval by means of a computer
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simulation with 5000 simulation runs. Choose the same error distributions as in
Exercise 6.1, and compare your results with those from part (b) of Exercise 6.1.

Exercise 6.4 (Multiple Select) Which of the following assertions are true and
which are false? Provide reasons for your answers.

(a) Under Model 6.1, the least squares estimator β̂ for β coincides with the
maximum likelihood estimator for β, if and only if Pε1 = N (0, 1).

(b) The Cramér-Wold device can only be applied to normal distributions.
(c) Scheme 6.15 can successfully (i.e., asymptotically effectively) be applied under

Model 6.1.
(d) Scheme 6.7 can successfully (i.e., asymptotically effectively) be applied under

Model 6.11.
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Chapter 7
Projection Tests

7.1 Empirical Likelihood Ratio Tests for Vector Means

This section mainly follows Chapter 11 of Owen (2001) and Section 2 of Schennach
(2007).

Let us return to the statistical motivation of utilizing the empirical measure as
a nonparametric maximum likelihood estimator in i.i.d. models; cf. Definition 2.4
and Theorem 2.5. Notice first that the assumption that Y1 is real-valued was nowhere
used in the proof of Theorem 2.5, because we translated the optimization problem
regarding the cdf F of Y1 into an optimization problem regarding the probabilities
pi = P

F̂
({yi}), 1 ≤ i ≤ n, where F̂ is some estimator (candidate) for F and

Y1 = y1, . . . , Yn = yn is the (observed) i.i.d. sample. Hence, we may apply the very
same reasoning to i.i.d. models where Y1 takes values in R

d for some d ∈ N.
In the sequel, with slight abuse of notation, we will write Z(y, P̂ ) instead of

Z(y, F̂ ), where P̂ ≡ P
F̂

is the probability measure induced by F̂ . Theorem 2.5

yields that the empirical measure P̂n maximizes Z(y, ·) over the space P of all
probability measures on (Rd ,B(Rd )). Noticing that

Z(y, P̂n) = 1

nn
as well as

Z(y, P̂ ) =
n∏

i=1

pi ≤ Z(y, P̂n),

we thus obtain that the ratio

R(P̂ ) = Z(y, P̂ )

Z(y, P̂n)
= nn

n∏

i=1

pi =
n∏

i=1

npi

takes values in [0, 1].
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Now, assume that testing some null hypothesis H0 corresponding to a subspace
P0 ⊂ P is of interest. Then, we may optimize the probabilities (pi : 1 ≤ i ≤ n)

under the constraint that the corresponding probability measure P̂ belongs to P0.
We will indicate this constraint by writing P̂0 instead of P̂ in such cases. Notice
that, since the data are random, the empirical measure will typically not belong to
P0, even if H0 is true. For example, if H0 = {E[Y1] = μ0} is considered, where
μ0 is a fixed, given vector in R

d , then Ȳn =
∫

yP̂n(dy) will typically not be equal
to μ0, even if H0 holds true. One may, however, weight the observations y1, . . . , yn

with probabilities p1, . . . , pn such that
∑n

i=1 piyi = μ0, at least if μ0 happens to
lie inside the convex hull of the observations, which should happen with very high
probability if H0 is true. By our argumentation from before, these probabilities will
typically not all be equal to 1/n. Hence we may consider the ratio R(μ0) ≡ R(P̂0)

as some kind of empirical discrepancy between the unconstrained optimizer P̂n and
the constrained optimizer P̂0. If this empirical discrepancy is large, we may take this
as an indication that H0 may be false. This is the general idea of empirical likelihood
ratio (ELR) tests.

Lemma 7.1 Under the aforementioned assumptions, maximizingR(P̂0) over P̂0 ∈
P0 is equivalent to minimizing the Kullback-Leibler divergence K (P̂n‖P̂0) over
P̂0 ∈P0.

Proof We have that P̂0 $ P̂n, meaning that P̂0 is a discrete probability measure
which distributes its mass among the observed data points. Hence, the definition
of the Kullback-Leibler divergence for discrete probability measures with common
support yields that

K (P̂n‖P̂0) =
n∑

i=1

1

n
log

(
1/n

pi

)

= 1

n

n∑

i=1

log

(
1

npi

)

.

Now, minimizing K (P̂n‖P̂0) is equivalent to maximizing

−K (P̂n‖P̂0) = 1

n

n∑

i=1

log (npi) = 1

n
log

(
R(P̂0)

)
. (7.1)

Obviously, the right-hand side of (7.1) is a strictly isotone transformation of R(P̂0).

By Lemma 7.1, we may regard P̂0 as a Kullback-Leibler projection of P̂n onto

the subspace P0, and − log
(
R(P̂0)

)
as the (scaled) “length of the difference in

Kullback-Leibler geometry”.

Remark 7.2 In general, the Kullback-Leibler divergence is not symmetric, meaning
that K (P̂n‖P̂0) �= K (P̂0‖P̂n) in general.

Returning to null hypotheses regarding the (theoretical) mean of Y1, one of the
most important results about empirical likelihood ratio tests is that they exhibit
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a Wilks (1938)-type phenomenon, meaning that −2 log (R(μ0)) is, under certain
regularity assumptions, asymptotically chi-square distributed under H0 = {E[Y1] =
μ0}. To prove this, we need some preparatory results.

Lemma 7.3 Let y1, . . . , yn with yi ∈ R
d , 1 ≤ i ≤ n, be given points, and μ0 ∈ R

d

a further given vector. Assume that μ0 is located inside the convex hull

{
n∑

i=1

piyi : pi ≥ 0 for all 1 ≤ i ≤ n,

n∑

i=1

pi = 1

}

of y1, . . . , yn.
Then, the solution (p1, . . . , pn)

� of the constrained optimization problem

maximize
n∏

i=1

npi (7.2)

subject to ∀1 ≤ i ≤ n : pi ≥ 0,

n∑

i=1

pi = 1, (7.3)

n∑

i=1

pi(yi − μ0) = 0 ∈ R
d , (7.4)

can be written as follows:

∀1 ≤ i ≤ n : pi = 1

n
· 1

1+ λ�(yi − μ0)
, (7.5)

where λ ≡ λ(μ0) = (λ1, . . . , λd)� ∈ R
d satisfies the system of equations

1

n

n∑

i=1

yi − μ0

1+ λ�(yi − μ0)
= 0 ∈ R

d . (7.6)

Proof We employ the method of Lagrange multipliers. To this end, we need
one Lagrange multiplier, say γ , for constraint (7.3) and d Lagrange multipliers
λ1, . . . , λd for the d constraints imposed by (7.4). Considering the target function
(7.2) on the logarithmic scale, a suitable Lagrangian function L is then given by

L(p1, . . . , pn, λ1, . . . , λd , γ ) =
n∑

i=1

log(npi)− nλ�
(

n∑

i=1

pi(yi − μ0)

)

+ γ

(
n∑

i=1

pi − 1

)

.
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For any 1 ≤ i ≤ n, we have that

∂L(p1, . . . , pn, λ1, . . . , λd , γ )

∂pi

= 1

pi

− nλ�(yi − μ0)+ γ.

Hence,

∀1 ≤ i ≤ n : ∂L(p1, . . . , pn, λ1, . . . , λd , γ )

∂pi

= 0

⇐⇒ ∀1 ≤ i ≤ n : 1

pi

− nλ�(yi − μ0)+ γ = 0 (7.7)

⇐⇒ ∀1 ≤ i ≤ n : 1− nλ�pi(yi − μ0)+ piγ = 0, (7.8)

because any maximizer of the target function (7.2) is such that pi > 0 for all 1 ≤
i ≤ n. Adding the left-hand and the right-hand sides of (7.8), we obtain that

0 =
n∑

i=1

[
1− nλ�pi(yi − μ0)+ piγ

]

= n− nλ�
n∑

i=1

pi(yi − μ0)+ γ

= n+ γ,

hence γ = −n. Utilizing this in (7.7), we obtain for all 1 ≤ i ≤ n that

n = 1

pi

− nλ�(yi − μ0)

⇐⇒ npi = 1− npiλ
�(yi − μ0)

⇐⇒ 1 = npi

[
1+ λ�(yi − μ0)

]

⇐⇒ pi = 1

n
· 1

1+ λ�(yi − μ0)
,

which is the representation asserted in (7.5). Finally, plugging (7.5) into (7.4) yields
(7.6).

Remark 7.4 In order to fulfill pi > 0 for all 1 ≤ i ≤ n, the vector λ =
(λ1, . . . , λd)� from (7.5) must fulfill the system of equations

∀1 ≤ i ≤ n : 1+ λ�(yi − μ0) > 0. (7.9)
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The set of values of λ for which (7.9) holds is an intersection of n half spaces in R
d .

It contains the value λ = 0 ∈ R
d . Hence, it is a non-empty and convex subset of

R
d .

Next, we would like to bound the stochastic order of ‖λ‖.

Definition 7.5 (Stochastic Orders; cf., e.g., Section 14.4 in Bishop et al. (2007))
Let {Xn}n≥1 denote a sequence of real-valued random variables defined on some
probability space (Ω,F ,P), and let {bn}n≥1 denote a sequence of real numbers.

(a) We say that Xn = oP(1), if for every ε > 0 we have that limn→∞ P(|Xn| ≤
ε) = 1. More precisely, Xn = oP(1), if for every ε > 0 and every δ > 0 there
exists an integer n∗(ε, δ) such that n > n∗(ε, δ) implies P(|Xn| ≤ ε) ≥ 1 − δ.
We call {Xn}n≥1 a stochastic null sequence if Xn = oP(1).

(b) We say that Xn = oP(bn), if Xn/bn = oP(1) or, equivalently, Xn = bnoP(1).
(c) We say that Xn = OP(1), if for every δ > 0 there exists a constant K(δ) and

an integer n∗(δ) such that n > n∗(δ) implies P(|Xn| ≤ K(δ)) ≥ 1− δ. We call
{Xn}n≥1 stochastically bounded if Xn = OP(1).

(d) We say that Xn = OP(bn), if Xn/bn = OP(1) or, equivalently, Xn = bnOP(1).

Lemma 7.6 Let {ξn}n∈N denote a sequence of i.i.d. real-valued random variables
defined on some probability space (Ω,F ,P), such that E[ξ2

1 ] < ∞.

(a) Let Mn = max1≤i≤n |ξi |. Then Mn = o(n1/2) almost surely.
(b) It holds that n−1 ∑n

i=1 |ξi |3 = o(n1/2) almost surely.

Proof For part (a), see Remark 1.6.2 of Chandra (2012).
For proving part (b), notice that n−1 ∑n

i=1 |ξi |3 ≤ Mn · n−1 ∑n
i=1 ξ2

i . The
result follows by applying part (a) to Mn and the strong law of large numbers to
n−1 ∑n

i=1 ξ2
i .

Lemma 7.7 Let Y1, . . . , Yn denote i.i.d. random vectors defined on some probabil-
ity space (Ω,F ,P), each taking values in Rd for d ∈ N. Assume that Y1 possesses
a finite and positive definite covariance matrix Σ ∈ R

d×d . Denote the empirical
likelihood ratio statistic pertaining to the point null hypothesis H0 = {E[Y1] = μ0}
by R(μ0), where μ0 is a given point in R

d . Then, considering the Lagrange
multiplier λ from Lemma 7.3 as a transformation of Y1 = y1, . . . , Yn = yn, it
holds under H0 that ‖λ‖ = OP(n

−1/2).

Proof If λ = 0 ∈ R
d , then the assertion is trivially true. Hence, we may assume

throughout that λ �= 0, hence ‖λ‖ > 0.
Write λ = ‖λ‖u for a unit vector u in R

d such that u�u = 1, and let ξi =
λ�(Yi − μ0), 1 ≤ i ≤ n. Let

g(λ) = 1

n

n∑

i=1

Yi − μ0

1+ λ�(Yi − μ0)
,

and notice that g(λ) = 0 ∈ R
d according to (7.6), implying that λ�g(λ) = 0 ∈ R.
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Now, we have that

0 = λ�g(λ) = 1

n

n∑

i=1

λ�(Yi − μ0)

1+ λ�(Yi − μ0)
= 1

n

n∑

i=1

ξi

1+ ξi

= 1

n

n∑

i=1

ξi

(

1− ξi

1+ ξi

)

or, equivalently,

1

n

n∑

i=1

ξi = 1

n

n∑

i=1

ξ2
i

1+ ξi
. (7.10)

It is straightforward to show (see Exercise 7.1) that

1

n

n∑

i=1

ξi = ‖λ‖ · u� (
Ȳn − μ0

)
, (7.11)

1

n

n∑

i=1

ξ2
i

1+ ξi

= ‖λ‖2 · u�S̃u, where S̃ = 1

n

n∑

i=1

(Yi − μ0)(Yi − μ0)
�

1+ ξi

. (7.12)

Thus, we may write (7.10) as

‖λ‖ · u�S̃u = u�
(
Ȳn − μ0

)
. (7.13)

Let

S = 1

n

n∑

i=1

(Yi − μ0)(Yi − μ0)
�.

From Remark 7.4 we get that 1+ ξi > 0 for all 1 ≤ i ≤ n. Thus,

‖λ‖ · u�Su ≤ ‖λ‖ · u�S̃u

(

1+ max
1≤i≤n

ξi

)

≤ ‖λ‖ · u�S̃u (1+ ‖λ‖Mn)

according to the Cauchy-Schwarz inequality, where Mn = max1≤i≤n ‖Yi − μ0‖.
Utilizing (7.13), we obtain

‖λ‖ · u�Su ≤ u�
(
Ȳn − μ0

) · (1+ ‖λ‖Mn)

or, equivalently,

‖λ‖
(
u�Su−Mnu

� (
Ȳn − μ0

)) ≤ u�
(
Ȳn − μ0

)
. (7.14)

Let σmin > 0 denote the smallest eigenvalue of Σ , and σmax ≥ σmin the largest
eigenvalue of Σ . Since σmin ≤ u�Σu ≤ σmax and S is a consistent estimator of Σ ,
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we conclude that

σmin + oP(1) ≤ u�Su ≤ σmax + oP(1).

Furthermore, due to Lemma 7.6, Mn = o(n1/2) almost surely. Also, the central limit
theorem implies that u�

(
Ȳn − μ0

) = OP(n−1/2). Utilizing these three bounds in
(7.14), we find that

‖λ‖
(
u�Su+ oP(1)

)
= OP(n

−1/2),

hence ‖λ‖ = OP(n−1/2) as desired.

The following theorem is the main result of this section.

Theorem 7.8 Under the assumptions of Lemma 7.7, the following assertions hold
true.

(a) Under H0, the statistic −2 log (R(μ0)) converges in distribution to χ2
d as n →

∞.
(b) Let α ∈ (0, 1), and let cα = χ2

d;1−α denote the (1 − α)-quantile of χ2
d . Then,

the set

Cα(μ) =
⎧
⎨

⎩
μ0 =

n∑

i=1

piYi

∣
∣− 2 log (R(μ0)) ≤ cα, ∀1 ≤ i ≤ n : pi ≥ 0,

n∑

i=1

pi = 1

⎫
⎬

⎭

constitutes an asymptotic (1−α)-confidence region for μ = E[Y1], where n →
∞.

(c) The set Cα(μ) from part (b) is a convex subset of Rd .

Proof To prove part (a), we continue with the same notation as in the proof of
Lemma 7.7.

First, combining part (a) of Lemmas 7.6 and 7.7, and the Cauchy-Schwarz
inequality, we find that

max
1≤i≤n

|ξi | = max
1≤i≤n

|λ�(Yi − μ0)| ≤ ‖λ‖ ·Mn = OP(n−1/2) · o(n1/2) = oP(1),

hence

∀1 ≤ i ≤ n : |1+ ξi |−1 = OP(1). (7.15)

Now, recall that

0 = g(λ) = 1

n

n∑

i=1

Yi − μ0

1+ λ�(Yi − μ0)

= 1

n

n∑

i=1

(Yi − μ0) · 1

1+ ξi
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= 1

n

n∑

i=1

(Yi − μ0)

[

1− ξi + ξ2
i

1+ ξi

]

= Ȳn − μ0 − Sλ+ 1

n

n∑

i=1

(Yi − μ0)ξ
2
i

1+ ξi

. (7.16)

Combining part (b) of Lemma 7.6, Lemma 7.7, and (7.15) yields that the norm of
the third summand in (7.16) is bounded by

1

n

n∑

i=1

‖Yi − μ0‖3 · ‖λ‖2 · |1+ ξi |−1 = o(n1/2) ·OP(n
−1) ·OP(1) = oP(n

−1/2).

Thus, we can write

λ = S−1(Ȳn − μ0)+ β, (7.17)

where ‖β‖ = oP(n
−1/2). Furthermore, considering the Taylor expansion of the

logarithm, we may write log(1+ ξi) = ξi − ξ2/2+ ηi , where the (ηi : 1 ≤ i ≤ n)

are such that

lim
n→∞P(∀1 ≤ i ≤ n : |ηi | ≤ B|ξi |3) = 1 (7.18)

for some finite constant B > 0. Also, recall that npi = (1+ ξi)
−1, 1 ≤ i ≤ n.

Now, we write

− 2 log (R(μ0)) = −2
n∑

i=1

log(npi)

= 2
n∑

i=1

log(1+ ξi)

= 2
n∑

i=1

ξi −
n∑

i=1

ξ2
i + 2

n∑

i=1

ηi

= 2nλ�(Ȳn − μ0)− nλ�Sλ + 2
n∑

i=1

ηi. (7.19)

Plugging (7.17) into (7.19), we obtain that

−2 log (R(μ0)) = n(Ȳn − μ0)
�S−1(Ȳn − μ0)− nβ�Sβ + 2

n∑

i=1

ηi,
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because

2nλ�(Ȳn − μ0) = 2n(Ȳn − μ0)
�S−1(Ȳn − μ0)+ 2nβ�(Ȳn − μ0), (7.20)

nλ�Sλ = n(Ȳn − μ0)
�S−1(Ȳn − μ0)+ 2nβ�(Ȳn − μ0)+ nβ�Sβ, (7.21)

according to Exercise 7.2.
The central limit theorem, together with the continuous mapping theorem and

Slutzky’s lemma, yields that n(Ȳn − μ0)
�S−1(Ȳn − μ0) converges in distribution

to χ2
d as n → ∞. Moreover, nβ�Sβ = oP(1), because ‖β‖2 = oP(n

−1) and S

converges to the fixed (covariance) matrix Σ as n → ∞. Finally, we get from
(7.18) that

∣
∣
∣
∣
∣

n∑

i=1

ηi

∣
∣
∣
∣
∣
≤ B‖λ‖3

n∑

i=1

‖Yi − μ0‖3 = OP(n−3/2)oP(n
3/2) = oP(1),

implying the assertion of part (a). Part (b) is an immediate consequence of part (a).
To prove part (c), choose μ1 ∈ Cα(μ) and μ2 ∈ Cα(μ) as well as τ ∈ (0, 1)

arbitrarily. We have to show that the convex combination μ(τ) := τμ1+ (1− τ )μ2
belongs to Cα(μ) as well. To this end, we argue as follows. Since μ1 and μ2 are
elements of Cα(μ), there exist tuples (p1i : 1 ≤ i ≤ n) and (p2i : 1 ≤ i ≤ n) of
probabilities such that μk =∑n

i=1 pkiYi for k = 1, 2 and−2
∑n

i=1 log(npki) ≤ cα ,
k = 1, 2. Now, define pi(τ ) = τp1i + (1 − τ )p2i for 1 ≤ i ≤ n. It is
easy to see that (pi(τ ) : 1 ≤ i ≤ n) are non-negative and sum up to one.
Furthermore,

∑n
i=1 pi(τ )Yi = τμ1 + (1 − τ )μ2 = μ(τ). It remains to show that

−2
∑n

i=1 log(npi(τ )) ≤ cα. This can be verified by writing

−2
n∑

i=1

log(npi(τ )) = −2
n∑

i=1

log (τnp1i + (1− τ )np2i )

and exploiting the fact that the logarithm is a concave function, meaning that

log {τnp1i + (1− τ )np2i} ≥ τ log (np1i )+ (1− τ ) log (np2i )

for all 1 ≤ i ≤ n, leading to

−2
n∑

i=1

log(npi(τ )) ≤ −2

[

τ

n∑

i=1

log (np1i)+ (1− τ )

n∑

i=1

log (np2i )

]

≤ τcα + (1− τ )cα = cα,

completing the proof.
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Remark 7.9 If 0 < rank(Σ) = q < d , then Theorem 7.8 holds with χ2
d replaced by

χ2
q .

7.2 Some Modifications and Generalizations

The following result can be proved in analogy to the calculations in the proof of
Lemma 7.1.

Lemma 7.10 Under the general assumptions of Sect. 7.1, it holds that

K (P̂0‖P̂n) =
n∑

i=1

pi log (npi) .

Lemma 7.11 Let y1, . . . , yn with yi ∈ R
d , 1 ≤ i ≤ n, be given points, and

μ0 ∈ R
d a further given vector. Assume that μ0 is located inside the convex hull of

y1, . . . , yn.
Then, the solution (p1, . . . , pn)

� of the constrained optimization problem

minimize
n∑

i=1

pi log (npi) (7.22)

subject to ∀1 ≤ i ≤ n : pi ≥ 0,

n∑

i=1

pi = 1, (7.23)

n∑

i=1

pi(yi − μ0) = 0 ∈ R
d , (7.24)

can be written as follows:

∀1 ≤ i ≤ n : pi ≡ pi(λ) = exp
(
λ�(yi − μ0)

)

∑n
j=1 exp

(
λ�(yj − μ0)

) = exp
(
λ�yi

)

∑n
j=1 exp

(
λ�yj

) ,

(7.25)

where λ ≡ λ(μ0) = (λ1, . . . , λd)� ∈ R
d satisfies the system of equations

n∑

i=1

pi(λ)(yi − μ0) = 0 ∈ R
d (7.26)
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or, equivalently,

n∑

i=1

exp
(
λ�yi

)
(yi − μ0) = 0 ∈ R

d .

Proof We proceed as in the proof of Lemma 7.3. Here, a suitable Lagrangian
function is given by

L(p1, . . . , pn, λ1, . . . , λd, γ ) =
n∑

i=1

pi log(npi)− λ�
(

n∑

i=1

pi(yi − μ0)

)

− γ

(
n∑

i=1

pi − 1

)

,

with partial derivatives given by

∂L(p1, . . . , pn, λ1, . . . , λd , γ )

∂pi

= log(npi)+ 1− λ�(yi − μ0)− γ.

Now, again assuming that pi > 0 for all 1 ≤ i ≤ n,

∂L(p1, . . . , pn, λ1, . . . , λd , γ )

∂pi

= 0

⇐⇒ log(npi)+ 1− λ�(yi − μ0)− γ = 0 (7.27)

⇐⇒ pi log(npi)+ pi − λ�pi(yi − μ0)− piγ = 0. (7.28)

Summing the left-hand and the right-hand sides of (7.28), we find that

γ =
n∑

i=1

pi log(npi)+ 1.

Utilizing this result in (7.27) and simplifying, we obtain that

∀1 ≤ i ≤ n : log(pi)−
n∑

i=1

pi log(pi) = λ�(yi − μ0). (7.29)

The representation (7.29) implies that there exists a constant c > 0 such that

∀1 ≤ i ≤ n : pi = c · exp
(
λ�(yi − μ0)

)
.

Due to constraint (7.23), c =
⎡

⎣
n∑

j=1

exp
(
λ�(yj − μ0)

)
⎤

⎦

−1

, completing the proof.
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Remark 7.12

(a) The probabilities (pi : 1 ≤ i ≤ n) from (7.25) are commonly referred to
as “exponential tilting weights,” see Efron (1981). Their projection properties
with respect to K (P̂0‖P̂n) have already been studied by Csiszar (1975).

(b) The exponential tilting-based projection test can be carried out as an asymptotic
chi-square test in analogy to the results in Theorem 7.8; see, e.g., Schennach
(2007) and Li et al. (2011).

Definition 7.13 (Cressie and Read (1984)) Let n ∈ N, γ be a real constant and
p ∈ (0, 1). Then, the Cressie-Read discrepancy hγ between p and n−1 is given by

hγ (p) = (np)γ+1 − 1

γ (γ + 1)
.

Lemma 7.14 Let p ∈ (0, 1) and n ∈ N be given. Then it holds that

lim
γ→−1

hγ (p) = − log(np), (7.30)

∂

∂γ
(np)γ+1 = (np)γ+1 log(np). (7.31)

In view of (7.30) and (7.31), we may define h−1(p) := − log(np) and h0(p) :=
np log(np) for p close to n−1.

Corollary 7.15 Under the general assumptions of Sect. 7.1, the following asser-
tions hold true.

K (P̂n‖P̂0) = 1

n

n∑

i=1

log

(
1

npi

)

= 1

n

n∑

i=1

h−1(pi),

K (P̂0‖P̂n) =
n∑

i=1

pi log (npi) = 1

n

n∑

i=1

h0(pi).

Thus, both the empirical likelihood method and the exponential tilting method can
be regarded as special cases of (constrained) empirical Cressie-Read discrepancy
minimization.

Remark 7.16

(a) The (constrained) empirical Cressie-Read discrepancy minimization technique
can further be generalized to treat functionals which are defined via generalized
estimating equations (GEEs). To this end, consider a function g : Rd × R

p →
R

q and define the functional κ of interest (taking values in R
p) implicitly by

E[g(Y1, κ)] = 0. Obviously, the mean (κ = μ = E[Y1]) is a special case, where
p = q = d and g(Y1, κ) = Y1 − κ . One may now, for given γ ∈ R, consider
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the minimization problem

minimize n−1
n∑

i=1

hγ (pi)

subject to ∀1 ≤ i ≤ n : pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

pig(yi , κ0) = 0

for the null hypothesis H0 = {κ = κ0}, where κ0 ∈ R
p is the hypothesized

value of κ .
(b) A different generalization approach, allowing for treating derived parameters,

consists of profile ELR tests. For example, the correlation coefficient pertaining
to a bivariate i.i.d. sample can be tested with this methodology; see Dickhaus
(2015) and the references therein.

7.3 Exercises

Exercise 7.1 Show that Eqs. (7.11) and (7.12) appearing in the proof of Lemma 7.7
hold true.

Exercise 7.2 Show that Eqs. (7.20) and (7.21) appearing in the proof of Theo-
rem 7.8 hold true.

Exercise 7.3 (Programming Exercise)

(a) Write an R program which implements the empirical likelihood ratio test for
point null hypotheses regarding a multivariate mean.
Hint: Use Theorem 7.8 in connection with duality of tests and confidence
regions.

(b) Assess the accuracy of the chi-square approximation of the null distribution of
−2 log (R(μ0)) in a computer simulation.
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Chapter 8
Some Extensions

8.1 Linear Rank Tests for One-Sample Problems

This section mainly follows Section 4.4 of Büning and Trenkler (1994).
In Chap. 4, we have derived rank tests for multi-sample problems (with stochas-

tically independent observables), exploiting the property that the vector of (pooled)
ranks is uniformly distributed on Sn under the null hypothesis of (distributionally)
homogeneous groups. Under certain model assumptions, this idea can be adapted to
treat one-sample problems.

Model 8.1 (One-Sample Location Parameter Model) Let Y1, . . . , Yn denote
real-valued i.i.d. observables on some probability space (Ω,F ,P) with cdf Fθ of
Y1 depending on a parameter θ ∈ Θ . Assume that

∀y ∈ R : Fθ (y) = F(y − θ),

where F is a continuous cdf which is symmetric about the point (0, 1/2). Hence, θ
is a location parameter; cf. Definition 3.10. We let F unspecified, yielding a semi-
parametric model.

Under Model 8.1, assume that the point null hypothesis H0 = {θ = θ0} for some
given point θ0 ∈ R is of interest, with possible (two-sided or one-sided) alternatives
given by H1 = {θ �= θ0}, H−

1 = {θ < θ0}, or H+
1 = {θ > θ0}, respectively. The

idea now is to split the sample into two sub-samples, namely {Yi : Yi > θ0} and
{Yi : Yi < θ0}. Under H0, these two sub-samples are homogeneous, whereas they
are heterogeneous whenever θ �= θ0. In particular, notice that

∀θ ∈ Θ : ∀1 ≤ i ≤ n : Pθ (Yi ≤ θ) = Pθ (Yi − θ ≤ 0) = F(0) = 1

2
= Pθ (Yi > θ).

(8.1)
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Definition 8.2 Assume that the assumptions of Model 8.1 are fulfilled. Let Di =
Yi − θ0, with corresponding absolute value |Di | = |Yi − θ0|, 1 ≤ i ≤ n.
Furthermore, let R+i = R(|Di |) denote the rank of |Di | among all absolute
differences |D1|, . . . , |Dn|, and let Zi = 1{Di > 0}, 1 ≤ i ≤ n. Due to (8.1),
{Zi}1≤i≤n are i.i.d. under H0, with Z1 ∼ Bernoulli(1/2). For testing H0, define the
linear rank statistic

L+n =
n∑

i=1

g(R+i )Zi,

where (g(i))1≤i≤n are given weights (scores).
Alternatively, we can write

L+n =
n∑

i=1

g(i)Vi,

where

∀1 ≤ i ≤ n : Vi = 1{|D|i:n corresponds to a positive Dj },

with |D|1:n < |D|2:n < . . . < |D|n:n denoting the order statistics of |D1|, . . . , |Dn|.
Example 8.3 Assume that n = 10 study participants, which were randomly drawn
from a (homogeneous) target population, perform (independently from each other)
an IQ test. Assume that the distribution of the IQ in the target population is such that
the assumptions of Model 8.1 are fulfilled. Assume that the following ten IQ values
are observed.

99 131 118 112 128 136 120 107 134 122

Then, letting θ0 = 110, we can compute the values of the quantities defined in
Definition 8.2 as displayed in Table 8.1.

Table 8.1 Relevant
quantities for Example 8.3

i yi di = yi − 110 |di | r+i zi vi

1 99 −11 11 5 0 1

2 131 21 21 8 1 0

3 118 8 8 3 1 1

4 112 2 2 1 1 1

5 128 18 18 7 1 0

6 136 26 26 10 1 1

7 120 10 10 4 1 1

8 107 −3 3 2 0 1

9 134 24 24 9 1 1

10 122 12 12 6 1 1
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The values vi for 1 ≤ i ≤ n in the last column of Table 8.1 have been obtained
by permuting the values (zi)1≤i≤n according to the ordering of (r+i )1≤i≤n. Hence,
the realized value of L+n for this dataset equals

L+n (y1, . . . , yn) = g(8)+ g(3)+ g(1)+ g(7)+ g(10)+ g(4)+ g(9)+ g(6)

=
n∑

i=1

g(i)− g(2)− g(5).

Theorem 8.4 Under Model 8.1, the following assertions hold true under H0 =
{θ = θ0}.
(i) For all 1 ≤ i ≤ n, we have that

Pθ0(Vi = 1) = 1

2
= Pθ0(Vi = 0).

(ii) For all binary tuples (v1, . . . , vn)
� ∈ {0, 1}n, we have that

Pθ0(V1 = v1, . . . , Vn = vn) = 1

2n
.

Thus, the random vector (V1, . . . , Vn)
� is under θ0 uniformly distributed on

{0, 1}n.
(iii) For all �+ ∈ supp(L+n ), we have that

Pθ0(L
+
n = �+) = a(�+)

2n
,

where a(�+) = |{(v1, . . . , vn)
� ∈ {0, 1}n :∑n

i=1 g(i)vi = �+}|.
(iv) The first two moments of L+n under θ0 are given by

Eθ0[L+n ] =
1

2

n∑

i=1

g(i),

Varθ0(L
+
n ) = 1

4

n∑

i=1

g2(i).

Proof The (Vi)1≤i≤n are obtained from (Zi)1≤i≤n by permuting. As argued in
Definition 8.2, (Zi)1≤i≤n are under θ0 i.i.d., hence exchangeable. We conclude that

Lθ0

(
(V1, . . . , Vn)

�) = Lθ0

(
(Z1, . . . , Zn)

�) = (Bernoulli(1/2))⊗n .
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This implies all four assertions, because

E[Bernoulli(1/2)] = 1

2
and

Var (Bernoulli(1/2)) = 1

4
.

Example 8.5

(a) The sign test employs the weights g(i) ≡ 1 for all 1 ≤ i ≤ n. The resulting test

statistic is given by V+
n :=

n∑

i=1

Vi . It equals the number of the Di , 1 ≤ i ≤ n,

with positive sign.
(b) Wilcoxon’s signed rank test employs the weights g(i) = i for all 1 ≤ i ≤ n.

The resulting test statistic is given by W+
n :=

n∑

i=1

R+i Zi . It equals the sum of

the ranks of those |Di | for which Di is positive, 1 ≤ i ≤ n.

Theorem 8.6 With the notation introduced in Example 8.5, the following assertions
hold true under H0 = {θ = θ0}.
(a) Under θ0, V +

n follows the Bin(n, 1/2) distribution, i.e.,

∀0 ≤ k ≤ n : Pθ0(V
+
n = k) =

(
n

k

)(
1

2

)n

=
(
n
k

)

2n
.

(b) For large sample sizes n, we have that

Pθ0(W
+
n ≤ w) ≈ Φ(z),

where Φ denotes the cdf of the standard normal distribution on R, and

z ≡ z(w) = w − n(n+ 1)/4√
n(n+ 1)(2n+ 1)/24

.

Proof Assertion (a) follows immediately from part (ii) of Theorem 8.4.
To prove assertion (b), we note that, due to part (iv) of Theorem 8.4, it holds that

Eθ0[W+
n ] =

1

2

n∑

i=1

i = 1

2

n(n+ 1)

2
= n(n+ 1)

4
,

Varθ0(W
+
n ) = 1

4

n∑

i=1

i2
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= 1

4

[
n3

3
+ n2

2
+ n

6

]

= 2n3 + 3n2 + n

24
= n(n+ 1)(2n+ 1)

24
.

The assertion follows by the central limit theorem.

Application 8.7

(a) The sign test can be carried out as a binomial test.
(b) For n > 20 (according to Büning and Trenkler (1994)), Wilcoxon’s signed rank

test can be carried out as an approximate Z-test.

8.2 Tied Observations

This section mainly follows the theoretical parts of Brunner and Munzel (2013).
In Chap. 4, we have assumed that there are (with probability one) no tied

observations, so that ranks could be assigned (almost surely) unambiguously to the
observed data points. However, in practice one often has a non-zero probability for
ties, because the measurements cannot be performed with arbitrary precision. For
example, human height is typically reported in full centimeters, implying a positive
probability for observing the same height more than once in a random sample.

There are several possibilities how to deal with tied observations in rank-based
statistical inference methods. In many cases, the most appropriate method is to
assign so-called midranks to tied observations. One of the main reasons for this
choice is the fact that the total (mid-)rank sum then equals the tie-free rank sum
n(n+ 1)/2, where n denotes the sample size; see Theorem 8.10 below.

In any case, notice that the (random) vector R(Y ) of the ranks of an i.i.d. sample
Y = (Y1, . . . , Yn)

� is not uniformly distributed on Sn anymore if there is a positive
probability for ties. Instead, the exact distribution of R(Y ) depends on the (expected)
tie structure of the joint distribution of Y , which is often unknown in practice. As a
consequence, also the exact null distribution of linear rank statistics as considered
in Chap. 4 is often intractable or unknown in the presence of ties. However, central
limit theorems (with a modified variance or an appropriate estimator thereof)
typically continue to hold true in the tied case; see, e.g., Brunner and Munzel (2013)
for a detailed treatment.

Definition 8.8

(a) For a real number x, define

c−(x) = 1{x > 0},
c+(x) = 1{x ≥ 0},
c(x) = 1

2

[
c+(x)+ c−(x)

]
.
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(b) For a sample Y = (Y1, . . . , Yn)� of real-valued random variables, and for all
y ∈ R, define

F̂−
n (y) = 1

n

n∑

i=1

c−(y − Yi),

F̂+
n (y) = 1

n

n∑

i=1

c+(y − Yi),

F̂ norm
n (y) = 1

n

n∑

i=1

c(y − Yi).

We call F̂−
n the left-continuous, F̂+

n the right-continuous, and F̂ norm
n the

normalized version of the ecdf pertaining to Y1, . . . , Yn.
(c) Under the assumptions of part (b), define for all 1 ≤ i ≤ n the following

quantities.

R−i ≡ R−i (Y ) =
n∑

j=1

c−(Yi − Yj )+ 1 = nF̂−
n (Yi)+ 1,

R+i ≡ R+i (Y ) =
n∑

j=1

c+(Yi − Yj ) = nF̂+
n (Yi),

Ri ≡ Ri(Y ) = 1

2

[
R−i + R+i

]
. (8.2)

We call R−i (Y ) the minimum rank, R+i (Y ) the maximum rank, and Ri(Y ) the
midrank of Yi , 1 ≤ i ≤ n.

Lemma 8.9 Let 1 ≤ a ≤ b be two positive integers. Then it holds that

1

b − a + 1

b∑

�=a

� = a + b

2
.

Proof First, we notice that

b∑

�=1

� = b(b + 1)

2
and

a−1∑

�=1

� = a(a − 1)

2
.
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Hence,

b∑

�=a

� =
b∑

�=1

�−
a−1∑

�=1

�

= b(b + 1)

2
− a(a − 1)

2
= b2 + b − a2 + a

2
.

On the other hand, we also have that

a + b

2
(b − a + 1) = ab − a2 + a + b2 − ab+ b

2
= b2 + b − a2 + a

2
.

Lemma 8.9 justifies the terms “midrank” or “average rank,” respectively, of Yi

for the quantity

Ri = R−i + R+i
2

= 1

R+i − R−i + 1

R+i∑

�=R−i

� (8.3)

from (8.2). In the case of no ties, we have that R−i = R+i = Ri for all 1 ≤ i ≤ n.

Theorem 8.10 The sum of the n midranks of Y1, . . . , Yn always equals n(n+ 1)/2,
no matter the structure of the ties in the data.

Proof Assume that there are G groups with ng tied observations in group g, 1 ≤
g ≤ G, such that

∑G
g=1 ng = n. Denote the minimum rank number in group g by

m(g) and the maximum rank number in group g by M(g), and notice that M(g) −
m(g) + 1 = ng is the number of observations in group g, 1 ≤ g ≤ G. Due to

(8.3), the midrank of every of the ng observations in group g equals n−1
g

M(g)∑

�=m(g)

�.

We conclude that

n∑

i=1

ri =
G∑

g=1

⎡

⎣ng · 1

ng

M(g)∑

�=m(g)

�

⎤

⎦ =
G∑

g=1

M(g)∑

�=m(g)

� =
n∑

i=1

i = n(n+ 1)

2
.

Remark 8.11 Apart from assigning minimum ranks, maximum ranks, or midranks,
there are also other possibilities to deal with ties. For example, one may remove
tied observations altogether, or one may break the ties by randomly assigning the
numbers from R−i to R+i to the tied observations in question.
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8.3 Exercises

Exercise 8.1 Continue Example 8.3 by testing the null hypothesis H0 = {θ = 110}
against its one-sided alternative H+

1 = {θ > 110} with the sign test at significance
level α = 5%.

Exercise 8.2 Generate on the computer a (pseudo) random sample of size n = 10
from some univariate probability distribution. Sketch the graphs of F̂−

10, F̂+
10, and

F̂ norm
10 fromDefinition 8.8, evaluated on the generated sample, together in one figure.
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