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Preface

The Measurement of Association: A Permutation Statistical Approach utilizes exact
and Monte Carlo resampling permutation statistical procedures to generate proba-
bility values for a variety of measures of association. Association is broadly defined
to include measures of correlation for two interval-level variables; association for
two nominal-level; two ordinal-level, or two interval-level variables, and agreement
for two nominal-level or two ordinal-level variables. Measures of association
have historically been constructed for three levels of measurement, i.e., nominal,
ordinal, and interval. Additionally, measures of association for mixtures of the
three levels of measurement have been considered, i.e., nominal–ordinal, nominal–
interval, and ordinal–interval. The book is structured according to the three levels
of measurement.

S.S. Stevens promoted the typology of scales containing four levels of measure-
ment: nominal, ordinal, interval, and ratio, but it should be noted that a number of
writers have taken exception to the organization of statistical tests and measures
by levels of measurement, arguing that there is no relationship between levels of
measurement and statistical techniques used, while others have suggested different
typologies. Stevens also recognized that a too rigid adoption of his suggested
typology could be counterproductive. In this book, the interval and ratio scales
are considered together as simply “interval” and the nominal, ordinal, and interval
typology is utilized strictly as a pragmatic organizational framework. The 10
chapters of the book provide:

Chapter 1: An introduction to, and the criteria necessary for, creating valid measures
of association.

Chapter 2: A description and comparison of two models of statistical inference:
the population model and the permutation model. Permutation methods, which
are used almost exclusively in this book, are further detailed and illustrated,
including exact, moment-approximation, and Monte Carlo resampling permu-
tation methods.

Chapter 3: Presentation, discussion, and examples of measures of association
for two nominal-level variables that are based on Pearson’s chi-squared test
statistic.

vii



viii Preface

Chapter 4: Presentation, discussion, and examples of measures of association for
two nominal-level variables that are based on criteria other than Pearson’s chi-
squared test statistic.

Chapter 5: Presentation, discussion, and examples of measures of association for
two ordinal-level variables that are based on pairwise comparisons between
rank scores.

Chapter 6: Presentation, discussion, and examples of measures of association for
two ordinal-level variables that are based on criteria other than pairwise
comparisons between rank scores.

Chapter 7: Presentation, discussion, and examples of measures of association for
two interval-level variables.

Chapter 8: Presentation, discussion, and examples of measures of association for
two variables at different levels of measurement: nominal–ordinal, nominal–
interval, and ordinal–interval.

Chapter 9: Presentation, discussion, and examples of fourfold contingency tables as
a special application of measures of association.

Chapter 10: Presentation, discussion, and examples of measures of association
applied to symmetrical fourfold contingency tables.

The Measurement of Association adopts a permutation approach for generating
exact and resampling probability values for various measures of association.
Permutation statistical measures possess several advantages over classical statistical
methods in that they are optimal for small samples, can be utilized to analyze
nonrandom samples, are completely data dependent, are free of distributional
assumptions, and yield exact probability values. Today, permutation statistical tests
are considered by many to be a gold standard against which conventional statistical
tests should be evaluated and validated. An obvious drawback to permutation
statistical methods is the amount of computation required. While it took the advent
of high-speed computing to make permutation methods feasible for many problems,
today powerful computational algorithms and modern computers make permutation
analyses practical for many research applications.

A comparison of two models of statistical inference begins the book: the con-
ventional population model and the permutation statistical model. The population
model assumes random sampling from one or more specified populations. Under
the population model, the level of statistical significance that results from applying
a statistical test to the results of an experiment or survey corresponds to the
frequency with which the null hypothesis would be rejected in repeated random
samplings from a specified population. Because repeated sampling of the specified
population is impractical, it is assumed that the sampling distribution of test
statistics generated under repeated random sampling conforms to an approximating
theoretical distribution, such as the normal distribution. The size of a statistical test
is the probability under the null hypothesis that repeated outcomes based on random
samples of the same size are equal to or more extreme than the observed outcome.

In contrast, the permutation model does not assume, nor require, random
sampling from a specified population. For the exact permutation model, a test
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statistic is computed for the observed data. The observations are then permuted
over all possible arrangements of the observed data, and the selected test statistic
is computed for each of the possible arrangements. The proportion of arrangements
with test statistic values equal to or more extreme than the observed test statistic
yields the exact probability of the observed test statistic value. When the number
of possible arrangements of the observed data is very large, exact permutation
methods are impractical and Monte Carlo resampling permutation methods become
necessary. Resampling methods generate a random sample of all possible arrange-
ments of the observed data, and the resampling probability value is the proportion
of arrangements with test statistic values equal to or more extreme than the value of
the observed test statistic.

As described, vide supra, this book provides permutation statistical methods for
different measures of association for nominal-, ordinal-, and interval-level variables
and is organized into 10 chapters.

Chapter 1 defines association in general terms and examines four dimensions
of association: symmetry and asymmetry; one- and two-way association; models
of association including maximum-corrected, chance-corrected, and proportional-
reduction-in-error measures; and measures of correlation, association, and agree-
ment. Chapter 1 concludes with sections on choosing criteria for creating useful
measures of association, assessing the strength of association, and selecting an
appropriate measure of association.

Chapter 2 compares and contrasts two models of statistical inference: the popu-
lation model and the permutation model. Under the permutation model, three types
of permutation tests are described: exact, Monte Carlo resampling-approximation,
and moment-approximation statistical tests. Permutation and parametric statistical
tests are compared and contrasted in terms of sample size, data dependency, and the
assumptions of random sampling and normality.

Chapter 3 introduces permutation statistical methods for measures of association
designed for two nominal-level (categorical) variables. Included in Chap. 3 are the
usual chi-squared-based measures, Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and
Pearson’s contingency coefficient, C. The discussion of the four chi-squared-based
measures of association is followed by an analysis of permutation-based goodness-
of-fit tests. Chapter 3 concludes with an examination of the relationship between
chi-squared and Pearson’s product-moment correlation coefficient.

Chapter 4 introduces permutation statistical methods for measures of association
designed for two nominal-level variables that are based on criteria other than
Pearson’s chi-squared test statistic. Included in Chap. 4 are discussions of Goodman
and Kruskal’s two asymmetric measures of nominal-level association, λ and τ ,
McNemar’s Q and Cochran’s Q tests for change, Cohen’s unweighted κ measure of
inter-rater chance-corrected agreement, the Mantel–Haenszel test of independence
for combined 2×2 contingency tables, and Fisher’s exact probability test applied to
a variety of r×c contingency tables.

Chapter 5 introduces permutation statistical methods for measures of association
designed for ordinal-level variables based on pairwise comparisons between rank
scores. Included in Chap. 5 are Kendall’s τa and τb measures, Stuart’s τc measure,
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Goodman and Kruskal’s γ measure, Somers’ dyx and dxy measures, Kim’s dy·x and
dx·y measures, Wilson’s e measure, Whitfield’s S measure of ordinal association
between an ordinal-level variable and a binary variable, and Cureton’s rank-biserial
correlation coefficient.

Chapter 6 introduces permutation statistical methods for measures of association
designed for two ordinal-level variables that are based on criteria other than pairwise
comparisons between rank scores. Included in Chap. 6 are Spearman’s rank-
order correlation coefficient, Spearman’s footrule measure of inter-rater agreement,
Kendall’s coefficient of concordance, Kendall’s u measure of agreement, Cohen’s
weighted kappa measure of agreement with both linear and quadratic weighting,
and Bross’s ridit analysis.

Chapter 7 introduces permutation statistical methods for measures of association
designed for interval-level variables. Included in Chap. 7 are simple and multiple
ordinary least squares (OLS) and least absolute deviation (LAD) regression using
permutation statistical methodology. Fisher’s rxy to z transform is described and
evaluated as to its utility in transforming skewed distributions for both hypothesis
testing and confidence intervals. Point-biserial and biserial correlation are described
and tested with exact and Monte Carlo resampling permutation methods. Chapter 7
concludes with a discussion of the intraclass correlation.

Chapter 8 introduces permutation statistical methods for measures of association
designed for mixed variables: nominal–ordinal, nominal–interval, and ordinal–
interval. Included in Chap. 8 are Freeman’s θ , Agresti’s δ̂, Piccarreta’s τ̂ , and
Berry and Mielke’s � for the measurement of nominal–ordinal association. Also,
Whitfield’s S measure and Cureton’s rank-biserial measure for a dichotomous
nominal-level variable and an ordinal-level variable are described. For nominal–
interval association: Pearson’s η2, Kelley’s ε2, and Hays’ ω̂2 are presented. Chap-
ter 8 concludes with a discussion of permutation statistical methods for Jaspen’s
multiserial correlation coefficient for an ordinal-level variable and an interval-level
variable.

Chapter 9 introduces permutation statistical methods for measures of association
usually reserved for 2×2 contingency tables. Included in Chap. 9 are discussions
of Yule’s Q and Yule’s Y measures of nominal-level association, Pearson’s φ2

measure, simple percentage differences, Goodman and Kruskal’s ta and tb measures,
Somers’ dyx and dxy measures, the Mantel–Haenszel test, Fisher’s exact probability
test, tetrachoric correlation, and the odds ratio.

Chapter 10 continues the discussion of 2×2 contingency tables initiated in
Chap. 9 with consideration of symmetrical 2×2 contingency tables. Included in
Chap. 10 are permutation statistical methods applied to Pearson’s φ2, Tschuprov’s
T 2, Cramér’s V 2, Pearson’s product-moment correlation coefficient, Leik and
Gove’s d c

N measure, Goodman and Kruskal’s ta and tb asymmetric measures,
Kendall’s τb and Stuart’s τc measures, Somers’ dyx and dxy asymmetric measures,
simple percentage differences, Yule’s Y measure of nominal association, and
Cohen’s unweighted and weighted κ measures of inter-rater chance-corrected
agreement.
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Chapter 1
Introduction

The focus of this research monograph on The Measurement of Association is a
permutation approach to the measurement of statistical association, broadly defined
to include measures of correlation, association, and agreement. As sociologist
Herbert Costner wrote in 1965:

We suffer an embarrassment of riches with regard to measures of association. Ranging from
product-moment correlation to a simple percentage difference in a fourfold table, so many
measures have been designed to represent the degree of association between two variables
that few [researchers] would pretend detailed knowledge of them all. . . . It is frequently
difficult to decide which specific measure is suited to one’s needs, and even more difficult
to interpret certain measures that do appear appropriate [7, p. 341].

While a plethora of methods exist for measuring the magnitude of association
between two variables, there is considerable difficulty in interpreting and comparing
the various measures, as they often differ in structure, logic, and interpretation.
Moreover, how can a responsible researcher choose, for example, from among
Pearson’s1 coefficient of mean-square contingency φ2, Yule’s Q, Yule’s coefficient
of colligation Y , Pearson’s tetrachoric r , McNemar’s Q test, or a simple percentage
difference for a 2×2 contingency table; among Pearson’s coefficient of contingency
C, Tschuprov’s T 2, Cramér’s V 2, Goodman and Kruskal’s ta and tb, or Goodman
and Kruskal’s λa and λb for larger categorical contingency tables; Goodman and
Kruskal’s γ , Somers’ dyx and dxy , or Spearman’s rank-order correlation coefficient
ρ for rank scores; Pearson’s product-moment rxy , biserial rb, point-biserial rpb , or
Cureton’s rank-biserial rrb for measuring correlation; or Scott’s π , Robinson’s A,
Spearman’s footrule, Kendall’s u coefficient, Cohen’s unweighted kappa, Cohen’s
weighted kappa with linear weighting, or Cohen’s weighted kappa with quadratic
weighting for the measurement of inter-rater agreement?

1There are two prominent statisticians with the surname Pearson: Karl Pearson, the father, and
Egon S. Pearson, the son. Unless specified otherwise, in this book “Pearson” refers to Karl Pearson
(1857–1936).
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2 1 Introduction

The organization of The Measurement of Association is based on three levels
of measurement: nominal, ordinal, and interval/ratio. A number of writers have
taken exception to the organization of statistical tests and measures by levels of
measurement. Gaito, for example, argued that there is no relationship between
levels of measurement and which statistical techniques are used [11, p. 564].
Mosteller and Tukey suggested that a sixfold typology based on grades, ranks,
counted fractions, counts, amounts, and balances would be more useful [22]. See
also discussions by Borgatta and Bornstedt [5], Lord [18], Luce, Krantz, Suppes,
and Tversky [19], and Vellman and Wilkinson [27]. S.S. Stevens, who originated
the typology of scales containing four levels of measurement in 1946, recognized
that an inflexible invocation of that typology would be counterproductive [25, p. 26].
In this book, the nominal, ordinal, interval/ratio typology is utilized simply as a
pragmatic organizational framework.

As Leik and Gove noted many years ago, when data progress from nominal to
ordinal to interval levels of measurement, measures of association should ideally
incorporate the added properties of the level of measurement into the logic utilized at
the previous level [16, p. 279]. Unfortunately, such is not the case with the numerous
and diverse measures of association currently in use. Thus, the various measures of
association developed over the years constitute a hodgepodge of approaches, logic,
structure, and interpretation. It is convenient to categorize the various measures of
association by the level of measurement for which they were originally designed and
for which they are most appropriate, recognizing that some measures are suitable
for more than one level of measurement, especially the many measures originally
designed for the analysis of 2×2 contingency tables where the level of measurement
is often irrelevant.

Besides consideration of structure, logic, and interpretation, a major drawback
to measures of association is the determination of the probability of the obtained
measure under the null hypothesis. There are two major approaches to determining
probability values for measures of association: the Neyman–Pearson population
model and the Fisher–Pitman permutation model [4, pp. 2–3].2 The population
model is rife with assumptions that are seldom satisfied in practice and are often
inappropriate for the lower levels of measurement, e.g., independence, random
sampling from a parent population, an underlying Gaussian distribution for the
target variable in the population, and homogeneity of variance (and covariance,
when appropriate). In this book, the permutation model is used almost exclusively
as it is free of any distributional assumptions, does not require random sampling, is
completely data-dependent, provides exact probability values, and is ideally suited
for the analysis of small samples.

2The Neyman–Pearson population model is named for Jerzy Neyman (1894–1981) and Egon
Pearson (1895–1980) and the Fisher–Pitman permutation model is named for Ronald Aylmer
Fisher (1890–1962) and Edward James George Pitman (1897–1993).
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1.1 Definition of Measurement

Given that the title of the book is The Measurement of Association, it bodes
well to define “measurement” and “association.” George Bornstedt put it simply:
“Measurement is a sine qua non of any science” [6, p. 69]. Praveen Fernandes
argued: “If something is not counted, it is neither seen nor understood. For all
intents and purposes, it does not exist” [10, p. A25]. In the late 19th century, the
eminent Scottish mathematician and physicist William Thomson, Lord Kelvin of
Largs, delivered a lecture at the Institution of Civil Engineers on 3 May 1883, later
published in Popular Lectures and Addresses, in which he wrote:

I often say that when you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre and unsatisfactory kind: it may be the
beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of
science whatever the matter might be [26, pp. 73–74].

Ian Mortimer, writing on the Restoration period in England (1660–1700), noted:

Perhaps the most significant shift of thinking connected with all this scientific work is
the belief that everything can be subject to quantification. Newton can mathematically
determine the depth of a film of air between a lens and a flat sheet of glass to the accuracy
of 1/100,000 of an inch; Robert Boyle can calculate the relationship between the volume
and pressure of a gas; Flamsteed the progress of comets; Halley the life expectancy of the
population; and so on. . . . You don’t need to be a scientist to see how much the modern
world owes to the rise of statistical thinking in the Restoration period: it underpins all the
technological and social progress on which we depend [21, pp. 138–139].

As the discipline of statistics has progressed from its earliest days, the discipline
has become increasingly concerned with quantification as a means of describing
events. Florence Nightingale once observed:

To understand God’s thoughts we must study statistics, for these are the measure of His
purpose.

(quoted in Everitt, Chance Rules: An Informal Guide to Probability, Risk, and
Statistics [9, p. 135]).

Precise descriptions of events and the relationships among them are best achieved
by measurement. Measurement has been a fundamental feature of human civiliza-
tion from its very beginnings. Thus, measurement is the application of mathematics
to events—the use of numbers to designate objects and events and the relationships
that obtain among them [8, p. 39]. More formally, measurement is the process of
mapping empirical phenomena onto a system of numbers.



4 1 Introduction

As noted, vide supra, in 1946 S.S. Stevens distinguished four levels or scales
of measurement: nominal, ordinal, interval, and ratio [24].3 The nominal level
of measurement does not measure quantities; it simply classifies events into a
number of unordered categories and those events with characteristics in common
are grouped together. Examples of nominal classifications are Gender (Female,
Male), Blood Type (A, B, AB, O), Political Affiliation (Democrat, Republican,
Libertarian, Green, Independent), and Marital Status (Single, Married, Widowed,
Divorced, Separated).

The essence of the ordinal level of measurement is that it employs the charac-
teristics of “greater than” (>) or “less than” (<). The relations (>) and (<) are
irreflexive, asymmetrical, and transitive. Irreflexivity is the logical property that for
any a, it is not true that a > a. Asymmetry simply means that if a > b, then b �> a.
Transitivity means that if a > b and b > c, then a > c. Examples of ordinal scales
are Birth Order (1st, 2nd, 3rd, . . . ), Academic Rank (Instructor, Assistant Professor,
Associate Professor, Professor), and Likert Scales (Strongly Agree, Agree, Neutral,
Disagree, Strongly Disagree). Steven’s measurement typology of nominal, ordinal,
interval, and ratio levels is itself an ordinal scale.

Interval-level scales introduce another dimension to the measurement process
and order the events on equally appearing intervals. In interval scales, there
is no absolute zero point—if there is a value of zero, then zero is arbitrarily
defined. Temperatures measured as degrees Fahrenheit or Centigrade are traditional
examples of interval measurement. When, in 1714, the German physicist Daniel
Gabriel Fahrenheit observed that equal amounts (by weight) of pure table salt and
distilled water froze at sea level, he marked it zero, and thirty-eight years later when
Anders Celsius, the Swedish astronomer, observed that distilled water froze at sea
level, he marked it zero. Thus, 0◦F and 0◦C are arbitrarily defined. Because there is
no absolute zero value, proper ratios cannot be formed; thus, 20◦C cannot be said to
be twice as warm as 10◦C.

Ratio-level scales are scales that not only incorporate all the characteristics of
an interval scale, but have absolute zero points, allowing for the construction of
meaningful ratios. Examples of interval scales are time, age, years of education, and
height. Thus, a person who is six feet tall is twice as tall as a person who is three feet
tall, and a person who is twenty years old is twice as old as a person who is ten years
old. In terms of temperature, 200 Kelvins is twice as warm as 100 Kelvins because
0 Kelvins is absolute zero (−273.15◦C or −459.67◦F), defined as the absence of
molecular motion.4 Statistically, interval- and ratio-level measurements are usually
treated together and, in general, simply referred to as interval-level measurements.

3Other typologies of scales of measurement exist. See, for example, those by Anderson, Balilevsky,
and Hum [2], Mosteller and Tukey [22], and Pfanzagl [23].
4Kelvins are named for Scottish physicist William Thomson, Lord Kelvin of Largs (1866–1892).
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1.2 Definition of Association

While there are many ways of defining association, perhaps the simplest and most
useful definition is:

Two variables are associated when the distribution of values of one variable differs for
different values of the other variable.

Moreover, if a change in the distribution of values of one variable does not result
in a change in the distribution of values in the other variable, the variables are said
to be independent of each other. It should be noted that nearly every discussion
of association implies a comparison of subgroups. So, alternatively, independence
holds when subgroups of variables do not differ, and when subgroups do differ,
association holds. Tables 1.1 and 1.2 illustrate independence and association,
respectively, for two ordinal-level variables: Occupation Level and Job Satisfaction.
For example, the cell frequencies in Table 1.1 are those expected under randomness
and a measure of association such as Goodman and Kruskal’s gamma measure
of ordinal association is γ = 0.00. In contrast, the cell frequencies in Table 1.2
differ from those expected under randomness and for the data given in Table 1.2,
γ = +0.1921.

Table 1.1 Job satisfaction within middle-class occupations, illustrating statistical independence

Satisfied Dissatisfied Total

Occupation Number Percent Number Percent Number Percent

Professionals 21 78 6 22 27 100

Managers 21 78 6 22 27 100

Salesmen 14 78 4 22 18 100

Total 56 78 16 22 72 100

Table 1.2 Job satisfaction within middle-class occupations, illustrating statistical association

Satisfied Dissatisfied Total

Occupation Number Percent Number Percent Number Percent

Professionals 24 90 3 10 27 100

Managers 17 63 10 37 27 100

Salesmen 15 83 3 17 18 100

Total 56 78 16 22 72 100
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1.3 Dimensions of Association

There are several dimensions to be considered when measuring association. First
and foremost, measures of association have historically been constructed for
different levels of measurement: nominal-level (categorical), ordinal-level (ranked),
and interval-level variables [17, p. 86]. Also, in a few cases, mixtures of the three
levels of measurement are considered: nominal- and ordinal-level, nominal- and
interval-level, and ordinal- and interval-level variables.

Examples of nominal-level measures of association include, but are not limited
to, the symmetric chi-squared-based measures such as Pearson’s φ2, Tschuprov’s
(Čhuprov’s) T 2, Cramér’s V 2, and Pearson’s C, as well as Goodman and Kruskal’s
asymmetric ta and tb measures and Cohen’s unweighted kappa (κ) coefficient of
agreement. Examples of ordinal-level measures of association include Cohen’s
weighted kappa (κw) measure of agreement, Goodman and Kruskal’s gamma
(γ ) measure of weakly monotonic ordinal association, Spearman’s rank-order
correlation coefficient (ρ), Kendall’s asymmetric (τa and τb) measures of ordinal
association, and Somers’ dyx and dxy asymmetric measures of ordinal association.
Examples of interval-level measures of association include Pearson’s product-
moment (interclass) correlation coefficient (rxy or r2

xy ) and Pearson’s intraclass cor-

relation coefficient (rI or r2
I ). Examples of mixed-level measures include Freeman’s

θ for one nominal-level variable and one ordinal-level variable, Cureton’s rank-
biserial measure for one binary variable and one ordinal-level variable, Jaspen’s
multiserial correlation coefficient for one ordinal-level variable and one interval-
level variable, and Pearson’s η2 for one nominal-level variable and one interval-level
variable.5

1.3.1 Symmetry and Asymmetry

Second, a measure of association may be asymmetric, with well-defined indepen-
dent and dependent variables, yielding two indices of the strength of association
depending on which variable is considered to be the dependent variable. Or a
measure of association may be symmetric, without a specified independent or
dependent variable, yielding a single index of the strength of association. Examples
of asymmetric measures of association include simple percentage differences,
Goodman and Kruskal’s ta and tb measures of nominal association, Kendall’s
τa and τb measures of ordinal association, and Somers’ dyx and dxy measures
of ordinal association. Examples of symmetric measures of association include
the chi-squared-based measures for nominal-level variables such as Pearson’s φ2,

5The correlation ratio, η2, was first described by Karl Pearson in 1911 and 1923 and later by
R.A. Fisher in 1925.
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Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C; measures of ordinal association
such as Goodman and Kruskal’s gamma and Spearman’s rank-order correlation;
and measures of correlation between two interval-level variables such as Pearson’s
product-moment correlation coefficient.

1.3.2 One-Way and Two-Way Association

Third, measures of association may quantify one-way association between variables
based on the extent to which one variable implies the other, but not vice versa. On
the other hand, two-way or mutual association refers to the extent to which the
two variables imply each other. All asymmetric measures are measures of one-way
association, and some symmetric measures are measures of one-way association.
An example of one-way association is the simple percentage difference. Examples
of mutual association include the standard chi-squared-based measures: Pearson’s
φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C.

1.3.3 Models of Interpretation

Fourth, measures of association are variously based on different models, including
maximum-corrected (MC), chance-corrected (CC), and proportional-reduction-in-
error (PRE) models. While these models are neither exhaustive nor mutually
exclusive, the taxonomy provides an important classification scheme. Examples
of maximum-corrected measures of association include Pearson’s φ2, Tschuprov’s
T 2, Cramér’s V 2, and Pearson’s C.6 Examples of chance-corrected measures
of association include Scott’s π measure of agreement, Robinson’s A measure,
Spearman’s footrule measure, Kendall’s u coefficient, and Cohen’s unweighted and
weighted kappa coefficients, κ and κw . Examples of proportional-reduction-in-error
measures of association include Goodman and Kruskal’s λa and λb measures of
nominal association and Goodman and Kruskal’s γ measure of ordinal association.

1.3.4 Cross-Classification

Fifth, measures of association have historically been constructed for data cross-
classified into contingency tables or, alternatively, simple bivariate lists of response
measurements. In addition, some measures are typically calculated both ways.

6Technically, Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C are maximum-
corrected measures of association under only certain highly restrictive conditions.
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Examples of measures of association for data organized into contingency tables
include Cohen’s unweighted and weighted kappa coefficients, κ and κw, and
the usual chi-squared-based measures, including Pearson’s φ2, Tschuprov’s T 2,
Cramér’s V 2, and Pearson’s C. Examples of measures of association for data
not organized into a contingency table include Kendall τa measure of ordinal-
level association, Cochran’s Q test for change, Spearman’s rank-order correlation
coefficient, and Pearson’s product-moment correlation coefficient. Examples of
measures of association that are often calculated both ways include Kendall’s τa

and τb measures of ordinal association, Whitfield’s S measure for one binary
and one ordinal-level variable, and Goodman and Kruskal’s γ measure of ordinal
association.

1.3.5 Correlation, Association, and Agreement

Sixth, measures of association may variously measure correlation, association,
or agreement. Many writers have tried to distinguish between the concepts of
correlation and association. There are two domains corresponding to the term “asso-
ciation.” The wider domain includes all types of measures of association between
two variables at all levels of measurement. The narrower domain is reserved
for those measures specifically designed to measure the degree of relationship
between two variables at the nominal and ordinal levels of measurement. Thus,
association is used in two ways in this book. First, as an over-arching concept
including measures of correlation, association, and agreement. Second, association
is used more specifically as a measure of relationship between two nominal-level
variables, two ordinal-level variables, or some combination of the two. Measures
of association often label the two variables as A and B or a and b. Examples
of measures of association include Goodman and Kruskal’s λa and λb measures
of nominal association, Kendall’s τa and τb measures of ordinal association,
and various chi-squared-based measures such as Pearson’s φ2, Tschuprov’s T 2,
Cramér’s V 2, and Pearson’s C.

In general, correlation usually refers to the class of measures of covariation
derived from regression equations based on the method of ordinary least squares
(OLS). An obvious exception is least-absolute-deviation (LAD) regression, which
is based on ordinary Euclidean differences between measurements. Often, but not
always, simple correlation measures the relationship between two variables at the
interval level of measurement, where the two variables are typically labeled as X

and Y or x and y. Exceptions are Spearman’s rank-order correlation coefficient for
two ordinal-level variables, Pearson’s φ2 for two binary variables, biserial and point-
biserial correlation for one binary variable and one interval-level variable, Pearson’s
tetrachoric correlation for two binary variables, Cureton’s rank-biserial correlation
for one binary variable and one ordinal-level variable, and Jaspen’s multiserial
correlation for one ordinal-level variable and one interval-level variable.
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Measures of agreement attempt to ascertain the identity of two variables at
any level of measurement, i.e., Xi = Yi or Ai = Bi for all i. Examples of
measures of agreement include Scott’s π measure of agreement, Robinson’s A

measure, Spearman’s footrule measure, and Cohen’s unweighted and weighted
kappa coefficients. It is common that agreement and correlation are confused.
Suppose that a researcher wishes to establish the relationship between observed
and regression-predicted values, y and ŷ, respectively. Agreement implies that the
functional relationship between y and ŷ can be described by a straight line that
passes through the origin with a slope of 45◦, as depicted in Fig. 1.1 with N = 5
bivariate (y, ŷ) values: (2, 2), (4, 4), (6, 6), (8, 8), and (10, 10). For the N = 5
data points depicted in Fig. 1.1, the intercept is β̂0 = 0.00, the unstandardized
slope is β̂1 = +1.00, the squared Pearson product-moment correlation coefficient
is r2

yŷ
= +1.00, and the agreement percentage is 100 %, i.e., all five of the y and ŷ

paired values are in agreement.
In this context, the squared Pearson product-moment correlation coefficient, r2

yŷ
,

has also been used as a measure of agreement. However, r2
yŷ

= +1.00 implies a
linear relationship between y and ŷ, where both the intercept and slope are arbitrary.
Thus, while perfect agreement is described by a value of +1.00, it is also true that
r2
yŷ

= +1.00 describes a linear relationship that may or may not reflect perfect

agreement as depicted in Fig. 1.2 with N = 5 (y, ŷ) values: (2, 4), (4, 5), (6, 6),
(8, 7), and (10, 8). For the N = 5 bivariate data points depicted in Fig. 1.2, the
intercept is β̂0 = +3.00, the unstandardized slope is β̂1 = +0.50, the squared
Pearson product-moment correlation coefficient is r2

yŷ
= +1.00, and the agreement

percentage is 20 %, i.e., only one (6, 6) of the N = 5 y and ŷ paired values agree.

Fig. 1.1 Graphic depicting a
regression line with perfect
agreement between y and ŷ

with intercept equal to 0.00
and slope equal to +1.00
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Fig. 1.2 Graphic depicting a
regression line with perfect
correlation between y and ŷ

with intercept equal to +3.00
and slope equal to +0.50

1.4 Criteria for Measures of Association

A number of researchers have written on important criteria for measures of
association, most notably Costner [7] and Goodman and Kruskal [12, 13, 14, 15].
However, this section relies primarily on a discussion by Weiss [28, pp. 179–
180]. Important criteria for measures of association include proper norming,
interpretation, independence from marginal frequencies, and magnitude (degree or
strength) of association.

Norming Ideally, the values of a measure of association should cover the same
range as probability values, i.e., 0 to 1. Moreover, the measure of association
should be zero when the variables are independent and one when there is perfect
association. When it is appropriate to consider inverse association, then minus one
should represent perfect negative association. The measures of association based on
chi-squared—Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C—often
do not have one as an upper bound, and the odds ratio has an upper bound of infinity.
In addition, some proportional-reduction-in-error measures of association, such as
Goodman and Kruskal’s λa and λb, can be zero even when the two variables under
consideration are not independent of each other.

Interpretation A measure of association should have a meaningful interpretation,
such as proportional reduction in probable error, proportion of variance explained, or
proportion above what would be expected by chance. Many measures of association
are notably lacking in this regard. Indeed, many measures permit no interpretation
except that a higher value indicates more association than a lower value, and
even that is often questionable. The traditional measures based on chi-squared—
Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C—are notably lacking
in meaningful interpretation, except for the terminal values 0 and 1.
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Independence from Marginal Frequencies Ideally, a measure of association should
not change with an increase (decrease) in row or column frequency totals; that is,
the measure of association should be independent of the marginal frequency totals.
Some measures of association have this property, such as percentage differences and
the odds ratio, but many others do not.

Degree of Association The values of a measure of association should increase
(decrease) with increasing (decreasing) degrees of association. Thus, when the cell
frequencies of a contingency table indicate changes in association, the measure
of association should change concomitantly. Although proportionate-reduction-in-
error measures of association, such as Goodman and Kruskal’s γ measure of ordinal
association and Somers’ dyx and dxy asymmetric measures of ordinal association,
are widely popular, they are somewhat dubious in this respect [28, p. 179]. In this
regard, see also a 1971 article by Thomas Wilson in Social Forces on “Critique of
ordinal variables” [29, pp. 438–439].

1.5 Degree of Association

Different measures of association assess the degree of association in a variety of
ways. Among the various ways of measuring the strength of association are depar-
ture from independence, magnitude of subgroup differences, pairwise comparisons,
incremental correspondence, and agreement.

Departure from Independence Measures of association that are based on departure
from independence posit what the data would look like if the two variables were
independent, i.e., there was no association, then measure the extent to which the
observed data depart from independence. Examples of measures of association
based on departure from independence include the chi-squared-based measures
such as Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C, as well as
others, not based on chi-squared, such as Goodman and Kruskal’s λa , λb, ta , and tb
measures of nominal association.

Magnitude of Subgroup Differences Given that some association exists, the degree
of association may be measured by comparing subgroup proportions. Examples
of measures of association based on subgroup differences are simple percentage
differences, as well as a number of other measures designed for 2×2 contingency
tables, including Yule’s Q and Y measures of association and the odds ratio.

Pairwise Comparisons Some measures of association are based on pairwise com-
parisons where differences between response measurements are calculated between
all possible pairs of measurements and divided into concordant and discordant pairs.
A concordant pair is one in which the direction of a paired difference in one variable
agrees with the direction of a paired difference in the second variable. A discordant
pair is one in which the direction of a paired difference in one variable disagrees with
the direction of a paired difference in the second variable. The degree of association
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is measured by the preponderance of one type of pair over the other. Examples
of pairwise measures of ordinal association include Kendall’s τa and τb measures,
Stuart’s τc measure, Goodman and Kruskal’s γ measure of ordinal association, and
Somers’ dyx and dxy asymmetric measures of ordinal association.

Incremental Correspondence The degree of association is based on the extent to
which an incremental increase (decrease) in one variable is accompanied by an
increase (decrease) in the other variable. This approach is conventionally termed
“correlation” rather than “association.” A prime example is Pearson’s product-
moment correlation coefficient.

Agreement Between Variables The degree of association is measured by the extent
to which the values in one variable disagree with the values in the other variable,
above that expected by chance alone. Examples of measures of association based
on agreement include Scott’s π measure of agreement, Robinson’s A measure,
Spearman’s footrule measure, Kendall’s u coefficient, and Cohen’s unweighted and
weighted kappa measures, κ and κw .

1.6 The Choice of a Measure of Association

When selecting an appropriate measure of association, several criteria should be
considered. In order to choose the correct measure of association, a researcher must
first determine if the data are nominal, ordinal, or interval, which is the primary
organizing theme of this book.7 Second, a researcher should consider the purpose
for the measure of association: prediction, agreement, association, or correlation.
Liebetrau provides some guidelines for selecting an appropriate measure [17,
pp. 86–88].

First, are the variables nominal, ordinal, interval, or some combination of the
three? A measure of association for nominal-level (categorical) variables should
not depend on ordered categories. On the other hand, a measure of association for
ordinal-level (ranked) variables should depend on ordered categories. If the order of
the categories is ignored, then information is lost. Moreover, squaring of differences
between ordered categories or ranks is still controversial and should be avoided. A
measure of association (correlation) for interval-level variables should ideally make
use of all the information contained in the data. The choice between ordinary least
squared (OLS) and least absolute deviation (LAD) regression and correlation may
depend on, among other considerations, the presence of extreme values.

Second, is the measure designed to measure correlation, association, or agree-
ment? In general, asymmetric measures are appropriate for prediction, while
symmetric measures are appropriate for association or correlation, depending on the

7For a somewhat different organization using nominal, ordinal, and interval scales, see a 1983 book
by A.M. Liebetrau on non-permutation Measures of Association.
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level of measurement. If agreement is the intended objective where the variables are
evaluated on their identity rather than some function among them, an appropriate
measure of inter-rater agreement should be adopted. Commonly used measures
of correlation include Pearson’s product-moment correlation coefficient, Pearson’s
intraclass correlation coefficient, Spearman’s rank-order correlation coefficient,
Pearson’s tetrachoric correlation coefficient, and Jaspen’s multiserial correlation
coefficient. Measures of association include the chi-squared-based measures such
as Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 for nominal-level variables and
Kendall’s τa and τb measures for ordinal-level variables. Measures of agreement
include Scott’s π , Robinson’s A, Spearman’s footrule, Cohen’s κ , and Kendall’s u

measures of inter-rater agreement.
Third, is the measure of association going to be used to make inferences, i.e.,

a probability value? Under the Neyman–Pearson population model, this requires
knowledge of the standard error of the estimator and often requires making assump-
tions about the nature of the population as well as random sampling. Under the
Fisher–Pitman permutation model, no knowledge of the standard error is required,
random sampling is not necessary, distributional assumptions are irrelevant, and
permutation tests are completely data-dependent. Permutation-based probability
values may be exact, based on the entire reference set of all possible permutations
of the observed data, or approximate, based on a large Monte Carlo random sample
drawn from the reference set. Modern computing, even on a small desktop or a
laptop computer, can easily generate a complete reference set of 100,000,000 values
in just a few minutes, making exact permutation statistical methods increasingly
popular.

Fourth, is the measure of association sensitive to marginal frequency totals? If
the measure of association is unaltered by multiplying or dividing either or both the
columns or rows of the contingency table by any arbitrary factor, then this is a very
important property of the measure, as noted by Yule in 1912 [30, p. 587]. In general,
values of a measure of association computed on two different samples cannot be
compared if the measure depends on the marginal frequency totals [17, p. 88].
Nearly, all measures of association for nominal-level and ordinal-level variables are
sensitive to changes in marginal frequency totals. Some notable exceptions are the
odds ratio, percentage differences, and Yule’s Q measure of association.

Fifth, is the measure of association stable under changes in the number of
categories? A stable measure of association is one in which the value does not
change when, for example, the number of categories is changed from five to four.
Goodman and Kruskal’s gamma measure of ordinal association is particularly
unstable while Kendall’s τb measure of ordinal association is relatively stable.
Another form of stability is when a measure computed on a number of disjoint,
ordered categories is similar to the value computed on the underlying continuous
variable before it was divided into ordered categories, as noted by Agresti [1, p. 49].

Sixth, is the value of the measure of association easily interpretable? Some mea-
sures of association have clear and meaningful interpretations, such as proportional-
reduction-in-error measures and chance-corrected measures. Other measures have
no meaningful interpretation except when they possess the terminal values of 0, +1,
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or −1. For example, Goodman and Kruskal’s gamma symmetric measure of ordinal
association and Somers’ dyx and dxy asymmetric measures of ordinal association
possess proportional-reduction-in-error interpretations, where positive values indi-
cate proportional improvement over guessing prediction errors with knowledge of
both variables, compared with guessing prediction errors with knowledge of one
variable only. Cohen’s unweighted kappa and weighted kappa measures of inter-
rater agreement and Spearman’s footrule possess chance-corrected interpretations,
where positive values indicate agreement above what is expected by chance, zero
indicates chance agreement, and negative values indicate agreement below what is
expected by chance. In general, measures of association based on Pearson’s chi-
squared test statistic have meaningful interpretations only when they possess values
of 0 or 1.

Seventh, does the measure of association accommodate tied values? Some
measures of association require complicated adjustments in order to accommodate
tied values, while others incorporate tied values with no adjustment. For example,
Spearman’s rank-order correlation coefficient, as originally developed in 1904,
required complex adjustments for tied values. Today, researchers are knowledgeable
enough to simply calculate Pearson’s product-moment correlation coefficient on the
observed ranks, which automatically adjusts for any tied values. However, there are
numerous other measures of association that require convoluted adjustments for tied
values, some of which are highly questionable.

Eighth, will the measure of association easily generalize to multivariate data
structures? Multivariate analysis has become increasingly important in contem-
porary research, so measures of association that will accommodate multivariate
data are extremely useful. Some measures are easily generalized to multivariate
structures, others are more difficult to generalize, and some are impossible. For
years, researchers attempted to generalize Cohen’s kappa measure of inter-rater
agreement to more than two raters. Each time the generalization was found to have
problems. Finally, in 2008 a solution was found and Cohen’s kappa can now handle
any number of judges with any type of weighting function [20]. Another example is
Spearman’s footrule measure of ordinal association. Developed in 1906 for two sets
of rankings, a generalization to multiple rankings was finally established 92 years
later in 1998 [3].

Ninth, for what type of association does the measure of association assume its
extreme value? Some measures of association assume their extreme values, e.g., +1
in cases of weak association. For example, Goodman and Kruskal’s gamma statistic
is a measure of weakly monotonic association, reaching +1 under a variety of
cell frequency configurations. Other measures of association assume their extreme
values only in the case of strict perfect association. For example, Kendall’s τb

measure of ordinal association assumes a value of +1 only when strongly monotonic
association is present, e.g., when all cell frequencies fall on the principal diagonal.

Tenth, is the measure of association easy to calculate? Some measures of asso-
ciation are notoriously difficult to calculate. One of the most difficult is Pearson’s
tetrachoric correlation measure for 2×2 contingency tables. Another is Leik and
Gove’s d c

N measure of nominal association. Any measure employing a “sharper
bounds” procedure requires complex algorithms and considerable computer time.
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On the other hand, Spearman’s footrule measure was specifically designed for ease
of calculation and most measures of association based on chi-squared require very
little effort to calculate.

1.7 Overview of Chaps. 2 Through 10

Chapter 2 describes and compares two models of statistical inference: the population
model and the permutation model. Permutation methods are further detailed and
illustrated, including exact, moment-approximation, and Monte Carlo resampling-
approximation approaches. A number of limitations of the population statistical
model are described, including the requirements of random sampling and the
assumption of normality, as well as difficulties with the analysis of small sample
sizes. The permutation statistical model is shown to require neither random sam-
pling nor normality and is demonstrated to be ideal for small sample sizes.

Chapter 3 applies permutation statistical methods to measures of association for
two nominal-level (categorical) variables that are based on Pearson’s chi-squared
test statistic. Included in Chap. 3 are exact and Monte Carlo resampling permutation
statistical methods for the commonly used chi-squared-based measures: Pearson’s
φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s contingency coefficient, C. Also
included in Chap. 3 is a discussion of the relationship between chi-squared and
Pearson’s product-moment correlation coefficient.

Chapter 4 continues the discussion initiated in Chap. 3 with permutation statis-
tical methods applied to measures of association for two nominal-level variables
that are based on criteria other than Pearson’s chi-squared test statistic. Included in
Chap. 4 are exact and Monte Carlo resampling permutation statistical methods for
Goodman and Kruskal’s asymmetric measures of nominal-level association, λa , λb ,
ta , and tb, McNemar’s Q and Cochran’s Q tests for change, Cohen’s unweighted
κ measure of agreement, the Mantel–Haenszel test of independence for combined
2×2 contingency tables, and Fisher’s exact probability test for a variety of r×c

contingency tables.
Chapter 5 applies permutation statistical methods to measures of association

for two ordinal-level (ranked) variables that are based on pairwise comparisons
of differences between rank scores. Included in Chap. 5 are exact and Monte
Carlo resampling permutation statistical methods for Kendall’s τa and τb measures,
Stuart’s τc measure, Goodman and Kruskal’s γ measure, Somers’ dyx and dxy

measures, Kim’s dy·x and dx·y measures, Wilson’s e measure, Whitfield’s S measure
of ordinal association between one ordinal-level variable and one binary variable,
and Cureton’s rank-biserial correlation coefficient.

Chapter 6 continues the discussion in Chap. 5 with permutation statistical
methods applied to measures of association for two ordinal-level variables that are
based on criteria other than pairwise comparisons between rank scores. Included
in Chap. 6 are exact and Monte Carlo resampling permutation statistical methods
for Spearman’s rank-order correlation coefficient, Spearman’s footrule measure of
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agreement, Kendall’s coefficient of concordance, Kendall’s u measure of inter-
rater agreement, Cohen’s weighted kappa measure of agreement, and Bross’s ridit
analysis.

Chapter 7 applies permutation statistical methods to measures of association
for two interval-level variables. Included in Chap. 7 are exact and Monte Carlo
resampling permutation statistical methods for Pearson’s product-moment (inter-
class) correlation coefficient, Pearson’s intraclass correlation coefficient, ordinary
least squares (OLS) regression, least absolute deviation (LAD) regression, point-
biserial correlation, biserial correlation, and a discussion of Fisher’s normalizing
transformation for Pearson’s product-moment correlation coefficient.

Chapter 8 applies permutation statistical methods to measures of association
for two mixed variables: nominal–ordinal, nominal–interval, and ordinal–interval.
Included in Chap. 8 are exact and Monte Carlo resampling permutation statistical
methods for Freeman’s θ , Agresti’s δ̂, and Piccarreta’s τ̂ measures for a nominal-
level independent variable and an ordinal-level dependent variable; Pearson’s
correlation ratio, η2, Kelley’s ε2, and Hays’ ω̂2 for a nominal-level independent
variable and an interval-level dependent variable; and Jaspen’s coefficient of
multiserial correlation for an ordinal-level variable and an interval-level variable.

Chapter 9 applies permutation statistical methods to measures of association
usually reserved for 2×2 contingency tables. Because 2×2 tables are so prevalent
in statistical analysis, and so controversial, special attention is devoted to 2×2
contingency tables in Chap. 9. Included in Chap. 9 are exact and Monte Carlo
permutation statistical methods for Yule’s Q and Yule’s Y measures of nominal-
level association, Pearson’s φ2 measure, simple percentage differences, Goodman
and Kruskal’s ta and tb measures, Somers’ dyx and dxy measures, the Mantel–
Haenszel test, Fisher’s exact test for 2×2 tables, Pearson’s tetrachoric correlation,
and the odds ratio.

Chapter 10 continues the discussion of 2×2 contingency tables initiated in
Chap. 9 with consideration of symmetrical 2×2 contingency tables. Included in
Chap. 10 are permutation statistical methods applied to Pearson’s φ2, Tschuprov’s
T 2, Cramér’s V 2, Pearson’s product-moment correlation coefficient, Leik and
Gove’s d c

N measure, Goodman and Kruskal’s ta and tb asymmetric measures,
Kendall’s τb and Stuart’s τc measures, Somers’ dyx and dxy asymmetric mea-
sures, simple percentage differences, Yule’s Y measure of nominal association,
and Cohen’s unweighted and weighted κ measures of inter-rater agreement. A
discussion of extensions to multi-way contingency tables concludes the chapter.

1.8 Coda

Chapter 1 provided a broad overview of measures of association for various
levels of measurement, a brief introduction to permutation statistical methods,
and descriptions of the next nine chapters. Chapter 2 describes two models of
statistical inference: the Neyman–Pearson population model and the Fisher–Pitman
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permutation model. Three types of permutation tests are detailed: exact, Monte
Carlo resampling, and moment-approximation permutation procedures. Finally,
common research problems involving random sampling, small sample sizes, and
underlying assumptions are discussed.
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Chapter 2
Permutation Statistical Methods

In this second chapter of The Measurement of Association, two entirely different
models of statistical inference are described: the population model and the permu-
tation model. The permutation model includes three types of permutation statistical
tests: exact, Monte Carlo resampling, and moment-approximation, each of which
is detailed and illustrated. Several limitations of the population model, in contrast
with the permutation model are discussed, including the requirements of random
sampling and the assumption of normality, as well as difficulties with the analysis
of small sample sizes, none of which is problematic for the permutation statistical
model.

Permutation statistical methods were initially developed by R.A. Fisher, R.C.
Geary, T. Eden, F. Yates, E.J.G. Pitman, and other mathematicians and scientists
in the 1920s and 1930s for validating the normality and homogeneity assumptions
of classical statistical methods, a point made repeatedly by Fisher in The Design of
Experiments [43, Chaps. 20 and 21].1 Subsequently, permutation statistical methods
have emerged as an approach to data analysis in their own right [10].

Permutation statistical methods possess several advantages over classical statis-
tical methods. First, permutation tests are entirely data-dependent in that all the
information required for analysis is contained within the observed data. Second,
permutation tests are appropriate for non-random samples, such as are common in
many fields of research. Third, permutation tests are distribution-free in that they do
not depend on the assumptions associated with traditional parametric tests. Fourth,
permutation tests provide exact probability values based on the discrete permutation
distribution of equally-likely test statistic values. Fifth, permutation tests are ideal
for small data sets.

1For a brief overview of the development of permutation statistical methods, see a 2011 article in
Wiley Indisciplinary Reviews: Computational Statistics by Berry, Johnston, and Mielke [9]. For a
comprehensive history of the development of permutation statistical methods, see Berry, Johnston,
and Mielke A Chronicle of Permutation Statistical Methods: 1920–2000, and Beyond [10].
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2.1 Two Models of Statistical Inference

Essentially, two models of statistical inference coexist: the population model and the
permutation model; see, for example, extensive discussions by Curran-Everett [27],
Hubbard [69], Kempthorne [75], Kennedy [76], Lachin [77], Ludbrook [85, 86],
Ludbrook and Dudley [89], and May and Hunter [103]. The population model,
formally proposed by Jerzy Neyman and Egon Pearson in a seminal two-part article
on statistical inference in Biometrika in 1928, assumes random sampling from one
or more specified populations [117, 118]. Under the Neyman–Pearson population
model, the level of statistical significance that results from applying a statistical test
to the results of an experiment or survey corresponds to the frequency with which
the null hypothesis would be rejected in repeated random samplings from the same
specified population(s). Because repeated sampling of the specified population(s)
is usually impractical, it is assumed that the sampling distribution of the test
statistics generated under repeated random sampling conforms to an approximating
theoretical distribution, such as the normal distribution. The size of the statistical
test, e.g., 0.05, is the probability under a specified null hypothesis that repeated
outcomes based on random samples of the same size are equal to or more extreme
than the observed outcome.

While the Neyman–Pearson population model of statistical inference is familiar
to most, if not all, researchers, the permutation model may be less familiar, or
even unfamiliar, to many researchers. The permutation model was introduced by
R.A. Fisher in 1925 [42], further developed by R.C. Geary in 1927 [49] and
T. Eden and F. Yates in 1933 [31], and made explicit in three seminal articles
by E.J.G. Pitman in 1937 and 1938 [121, 122, 123]. These early publications
were a harbinger of a multitude of articles and books on permutation statistical
methods in subsequent years [10]. Under the Fisher–Pitman permutation model the
only assumption is that experimental variability has caused the observed result.
That assumption, or null hypothesis, is then tested as follows. A test statistic
is computed for the observed data, then the observations are permuted over all
possible arrangements of the data and the specified test statistic is computed for
each possible, equally-likely arrangement of the observed data. The proportion
of arrangements in the reference set of all possible arrangements possessing test
statistic values equal to or more extreme than the observed test statistic yields the
exact probability of the observed test statistic value.

2.2 Permutation Statistical Tests

Many statisticians have long felt that there should be something that statistics could
say about those cases where few if any assumptions could be made about the
properties of the population from which the sample was drawn [64, p. vii]. Because
permutation methods under the Fisher–Pitman model make no assumptions about
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a parent population, permutation statistical tests are considered by many to be a
gold standard against which conventional statistical tests should be evaluated and
validated. In 1940 Friedman, comparing tests of significance for multiple rankings,
referred to an exact permutation test as “the correct one” [47, p. 88]. In 1973
Feinstein remarked that conventional statistical tests “yield reasonably reliable
approximations of the more exact results provided by permutation procedures” [39,
p. 912]. In 1992 Good noted that Fisher regarded randomization as a technique for
validating tests of significance, i.e., ensuring that conventional probability values
were accurate [52, p. 263]. Bakeman, Robinson, and Quera remarked in 1996
that “like Read and Cressie . . . we think permutation tests represent the standard
against which asymptotic tests must be judged” [2, p. 6]. And in 2007 Edgington
and Onghena observed that “randomization tests . . . have come to be recognized by
many . . . as the ‘gold standard’ of statistical tests for randomized experiments” [37,
p. 9].2

The value of permutation statistical methods was recognized by early statis-
ticians, even during periods in which the computationally intensive nature of
permutation methods made them impractical. In 1955 Kempthorne wrote that “tests
of significance in the randomized experiment have frequently been presented by way
of normal law theory, whereas their validity stems from randomization theory” [73,
p. 947] and “there seems little point in the present state of knowledge in using [a]
method of inference other than randomization analysis” [73, p. 966]. Similarly, in
1959 Scheffé stated that the conventional analysis of variance F -ratio “can often be
regarded as a good approximation to a permutation test, which is an exact test under
a less restrictive model” [129, p. 313]. In 1966, Kempthorne re-emphasized that
“the proper way to make tests of significance in the simple randomized experiments
[sic] is by way of the randomization (or permutation) test” [74, p. 20] and “in the
randomized experiment one should, logically, make tests of significance by way of
the randomization test” [74, p. 21]. Later, in 1968, Bradley observed that “eminent
statisticians have stated that the randomization test is the truly correct one and that
the corresponding parametric test is valid only to the extent that it results in the same
statistical decision” [18, p. 85]. In 2000 Howell, in discussing permutation statistical
methods, noted:

These can be very powerful techniques that do not require unreasonable assumptions about
the populations from which you have sampled. I suspect that resampling statistics and
related procedures will be in the mainstream of statistical analysis in the not-too-distant
future [68, p. 204].

Because permutation statistical methods are inherently computationally inten-
sive, it took the development of high-speed computing for permutation methods
to achieve their potential. Today, a small laptop computer outperforms even
the largest mainframe computers of previous decades [14, p. 4]. Consequently,
in the 21st century permutation statistical methods have become both feasible

2In the literature, the terms “permutation” and “randomization” are often used interchangeably [39,
p. 910].
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and practical and have found applications in diverse fields of research ranging
from agronomy to zoology. Research areas that often examine small non-random
samples, such as atmospheric science, clinical psychology, early childhood devel-
opment, ecology, biology, family studies, and clinical trials, have been especially
receptive to permutation statistical methods where the objective is to examine
differences among two or more groups or treatments and not to make inferences
to a population or populations [39]. This is due in part to strong advocates of
permutation statistical methods in these fields, including Hugh Dudley [89, 90, 91,
92], Eugene Edgington [32, 33, 34, 35, 36, 37], Alvan Feinstein [39, 40], Phillip
Good [53, 54, 55, 56], Michael Hunter [70], Oscar Kempthorne [72, 73, 74, 75],
John Ludbrook [85, 86, 87, 88], Bryan Manly [94, 95, 96, 97], Richard May [103],
and John Tukey [20, 137, 138, 139].

Three types of permutation tests are common in the statistical literature: exact,
Monte Carlo resampling, and moment-approximation permutation tests. Although
the three types of permutation statistical tests are methodologically quite different,
all three types are based on the same specified null hypothesis: each of M possible
permutations of the observed data is equally likely, i.e, the probability of any
permutation of the observed data is 1/M .

2.2.1 Exact Permutation Tests

In an exact permutation statistical test, the first step is to calculate a test statistic
value on the observed data. Second, all possible, equally-likely arrangements of
the observed data are generated. Third, the desired test statistic is calculated for
each arrangement of the observed data.3 The probability of obtaining the observed
value of the test statistic, or one more extreme, is the proportion of the enumerated
test statistics with values equal to or more extreme than the value of the observed
test statistic. For large samples the total number of possible arrangements can be
considerable and exact permutation methods are quickly rendered impractical. For
example, permuting two small samples of sizes n1 = n2 = 30 yields

M = (n1 + n2)!
n1! n2! = (30 + 30)!

30! 30! = 118,264,581,564,861,424

arrangements of the observed data; or in words, 118 million billion different
arrangements of the observed data set—far too many statistical values to compute
in a reasonable amount of time.

3The Mehta–Patel network enumeration algorithm cleverly circumvents the need to completely
enumerate all possible arrangements of the data, yet still provides an exact probability value [105,
106].
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An Exact Permutation Analysis Example

On 18 December 1934, R.A. Fisher presented an invited paper describing the logic
of permutation statistical tests to the Royal Statistical Society, a paper that was
subsequently published in Journal of the Royal Statistical Society [44]. Fisher
described data on 30 criminal same-sex twins from a study originally conducted
by Dr. Johannes Lange, Chief Physician at the Munich-Schwabing Hospital in
Schwabing, a northern suburb of Munich.

The Lange data analyzed by Fisher consisted of 13 pairs of monozygotic
(identical) twins and 17 pairs of dizygotic (fraternal) twins [79]. For each of the 30
pairs of twins, one twin was known to be a convict. The study considered whether
the twin brother of the known convict was himself “convicted” or “not convicted,”
thus forming a 2×2 contingency table with 12 “convicted” and 18 “not convicted”
twins cross-classified by the 13 “monozygotic” and 17 “dizygotic” twins. The 2×2
contingency table is presented in Table 2.1.

Fisher determined the reference set of all possible arrangements of the four cell
frequencies, given the observed marginal frequency totals; in this case, M = 13
different arrangements of cell frequencies. For a 2×2 contingency table, it is
relatively easy to determine the total number of possible tables, given fixed marginal
frequency totals. Consider the 2×2 contingency table in Table 2.2. Denote by a
dot (·) the partial sum of all rows or all columns, depending on the position of
the (·) in the subscript list. If the (·) is in the first subscript position, the sum is
over all rows and if the (·) is in the second subscript position, the sum is over all
columns. Thus, ni. denotes the marginal frequency total of the ith row, i = 1, . . . , r ,
summed over all columns, and n.j denotes the marginal frequency total of the
j th column, j = 1, . . . , c, summed over all rows. Therefore, n1. and n2. denote
the marginal frequency totals for rows 1 and 2, n.1 and n.2 denote the marginal
frequency totals for columns 1 and 2, nij denotes the cell frequencies for i, j = 1, 2,
and N = n11 + n12 + n21 + n22. Then the total number of possible values for any
cell frequency, say, n11, is given by

M = min(n1., n.1) − max(0, n11 − n22) + 1 .

Table 2.1 Convictions of
like-sex criminal twins

Twin type Convicted Not convicted Total

Monozygotic 10 3 13

Dizygotic 2 15 17

Total 12 18 30

Table 2.2 Conventional
notation for a 2×2
contingency table

Category

Category 1 2 Total

1 n11 n12 n1.

2 n21 n22 n2.

Total n.1 n.2 N
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Thus, for the frequency data given in Table 2.1, there are

M = min(13, 12) − max(0, 10 − 15) + 1 = 12 − 0 + 1 = 13

possible arrangements of cell frequencies, given the observed row and column
marginal frequency distributions, {13, 17} and {12, 18}, respectively.

Fisher then calculated the hypergeometric point probability value for each of the
M = 13 cell arrangements, summing the probability values that were equal to or
less than the hypergeometric point probability value of the observed cell frequency
arrangement. Fisher concluded, “The test of significance is therefore direct, and
exact for small samples. No process of estimation is involved” [44, p. 50]. The
M = 13 arrangements of cell frequencies and the associated hypergeometric point
probability values are listed in Table 2.3. Fisher observed, given that any 2×2
contingency table has only one degree of freedom, it is only necessary to compute
the probability of one of the four cells; he chose the convicted dizygotic twins,
the lower-left cell of the 2×2 contingency table in Table 2.1 with an observed cell
frequency of n21 = 2.

Table 2.3 Listing of the 13
possible 2×2 contingency
tables from Table 2.1 with
associated exact
hypergeometric point
probability values

Table 1 Probability Table 2 Probability

0 13 7.1543×10−5 1 12 1.8601×10−3

12 5 11 6

Table 3 Probability Table 4 Probability

2 11 1.7538×10−2 3 10 8.0384×10−2

10 7 9 8

Table 5 Probability Table 6 Probability

4 9 2.0096×10−1 5 8 2.8938×10−1

8 9 7 10

Table 7 Probability Table 8 Probability

6 7 2.4554×10−1 7 6 1.2277×10−1

6 11 5 12

Table 9 Probability Table 10 Probability

8 5 3.5414×10−2 9 4 5.6212×10−3

4 13 3 14

Table 11 Probability Table 12 Probability

10 3 4.4970×10−4 11 2 1.5331×10−5

2 15 1 16

Table 13 Probability

12 1 1.5030×10−7

0 17
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For a 2×2 contingency table, such as depicted in Table 2.2, the hypergeometric
point probability of any specified cell, say, cell (2, 1), is given by

P(n21|n2., n.1, N) =
(

n.1

n11

)(
n.2

n12

)(
N

n1.

)−1

= n1.! n2.! n.1! n.2!
N ! n11! n12! n21! n22! .

Computing the discrepancies from proportionality equal to or greater than the
observed cell frequency configuration in Table 2.1, Fisher computed a one-tailed
hypergeometric probability value for 2, 1, and 0 convicted dizygotic twins of

P {2|17, 12, 30} + P {1|17, 12, 30} + P {0|17, 12, 30}

= 13! 17! 12! 18!
30! 10! 3! 2! 15! + 13! 17! 12! 18!

30! 11! 2! 1! 16! + 13! 17! 12! 18!
30! 12! 1! 0! 17!

= 4.4970×10−4 + 1.5331×10−5 + 1.5030×10−7

= 4.6518×10−4 .

For the frequency data given in Table 2.1, a two-tailed hypergeometric proba-
bility value includes all hypergeometric point probability values equal to or less
than the point probability value of the observed contingency table, i.e., P =
4.4970×10−4. In this case, the additional probability value associated with Table 1
within Table 2.3 with 12 dizygotic convicts, i.e., P = 7.1543×10−5. Thus, the
two-tailed hypergeometric probability value is calculated as

P {2|17, 12, 30} + P {1|17, 12, 30} + P {0|17, 12, 30} + P {12|17, 12, 30}

= 13! 17! 12! 18!
30! 10! 3! 2! 15! + 13! 17! 12! 18!

30! 11! 2! 1! 16! + 13! 17! 12! 18!
30! 12! 1! 0! 17! + 13! 17! 12! 18!

30! 0! 13! 12! 5!
= 4.4970×10−4 + 1.5331×10−5 + 1.5030×10−7 + 7.1543×10−5

= 5.3672×10−4 .

The point of the twin analysis—that exact tests are possible for small samples,
eliminating the need for estimation—indicates an early understanding of the
superiority of exact probability values computed from discrete permutation distri-
butions, over approximations of probability values based on assumed theoretical
distributions, i.e., abstractions based on a mathematical rule, that are presumed to
match, or approximate, distributions of events in the real world [26, p. 68].

A Second Exact Permutation Analysis Example

Permutation statistical methods are applicable to analyses beyond simply measuring
association. For a second example of an exact permutation analysis, consider a test
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Table 2.4 Average per
capita relief expenditures for
Southampton and Suffolk
counties in shillings: 1831

Southampton Suffolk

Parish Relief Parish Relief

1 6.731808 6 26.383673

6 16.156615 10 16.727664

7 14.760218 11 27.628032

8 15.057353 13 19.914255

12 11.001482 19 13.833671

15 29.089955 24 33.827534

18 11.818136 28 19.050737

25 16.002180

27 18.761256

29 32.443278

31 15.447992

36 15.756267

38 4.257547

39 8.611310

40 15.361136

of differences between means instead of Fisher’s exact probability test.4 Table 2.4
contains the per capita relief expenditures in 1831, in shillings, for N = 22 parishes
(identified only by number) in two counties in Great Britain: Southampton and
Suffolk. In 1831, Southampton county consisted of n1 = 15 parishes with a mean
relief expenditure of x̄1 = 15.4171 shillings and a sample standard deviation of
s1 = 7.4081 shillings, and Suffolk county consisted of n2 = 7 parishes with a mean
relief expenditure of x̄2 = 22.4808 shillings and a sample standard deviation of
s2 = 7.0321 shillings.5

For the Southampton and Suffolk county relief data given in Table 2.4, a
conventional Student’s two-sample t test yields t = −2.1147 and with

n1 + n2 − 2 = 15 + 7 − 2 = 20

degrees of freedom, the two-sided probability value under the null hypothesis is
P = 0.0472. There are only

M = (n1 + n2)!
n1! n2! = (15 + 7)!

15! 7! = 170,544

4For discussions of permutation methods applied to tests of differences, see Permutation Statistical
Methods: An Integrated Approach by Berry, Mielke, and Johnston [14].
5Note that, for these data, the sample standard deviations, s1 = 7.4081 and s2 = 7.0321, are very
similar.
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possible arrangements of the Southampton and Suffolk county relief data given in
Table 2.4, making an exact permutation analysis feasible. With n1 = 15 and n2 = 7
preserved for each arrangement, exactly 9,010 t values in the reference set of the
M = 170,544 possible t values are equal to or more extreme than the observed
value of t = −2.1147, yielding an exact two-sided probability value under the null
hypothesis of

P(t ≥ to|H0) = number of t values ≥ to

M
= 9,010

170,544
= 0.0528 ,

where to denotes the observed value of t .

2.2.2 Monte Carlo Permutation Statistical Tests

When exact permutation procedures become intractable, a random subset of all
possible arrangements of the observed data can be analyzed, providing approxi-
mate, but highly accurate, probability values. Resampling-approximation (hereafter,
resampling) permutation tests generate and examine a Monte Carlo random subset
of all possible, equally-likely arrangements of the observed response measurements.
For each randomly selected arrangement of the observed data, the desired test
statistic is calculated. The probability of obtaining the observed value of the test
statistic, or one more extreme, is the proportion of the randomly selected test
statistics with values equal to or more extreme than the value of the observed test
statistic. With a sufficient number of random samples, a probability value can be
computed to any reasonable accuracy. The current recommended practice is to use
L = 1,000,000 randomly selected arrangements of the observed data to ensure a
probability value with three decimal places of accuracy [71].

Meyer Dwass is usually credited with the formal development of resampling
permutation tests, first presented in an article on “Modified randomization tests
for nonparametric hypotheses” published in The Annals of Mathematical Statistics
in 1957 [30].6 Dwass provided the first rigorous investigation into the accuracy
of resampling probability approximations, although Dwass relied heavily on the
theoretical contributions of an article titled “On the theory of some non-parametric
hypotheses” by Erich Lehmann and Charles Stein published in The Annals of
Mathematical Statistics in 1949 [81].

Presently, Monte Carlo resampling permutation tests are the method of choice for
most researchers, with exact permutation tests reserved for smaller data sets. There
are three notable advantages to resampling permutation tests. First, resampling
permutation tests are highly efficient given the ready availability of high-speed

6Also see a 1958 article in The Journal of the American Statistical Association by Chung and
Fraser on “Randomization tests for a multivariate two-sample problem” [24].
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computers and the recent development of rapid pseudorandom number generators
such as the Mersenne Twister, on which resampling permutation tests are highly
dependent.7 Second, in some applications a resampling permutation test is much
more efficient than an exact permutation test, even for small samples. For example,
in the permutation analysis of contingency tables an exact permutation test must
necessarily calculate a hypergeometric point probability value for each of, poten-
tially, thousands of cell frequency arrangements, while a resampling permutation
test need only count the number of cell arrangements as extreme or more extreme
than the observed cell arrangement. Third, algorithms for exact permutation tests
are non-existent or completely impractical for analyzing certain problems, such as
multi-way contingency tables, while an efficient resampling algorithm is presently
available for multi-way tables; see, for example, a 2007 article by Mielke, Berry,
and Johnston in Psychological Reports [113].

A Monte Carlo Resampling Analysis Example

To illustrate a Monte Carlo resampling permutation analysis, consider Table 2.5
which contains the per capita relief expenditures in 1831, in shillings, for N = 36
parishes (identified only by number) in two counties in Great Britain: Oxford and
Hertford. In 1831, Oxford county consisted of n1 = 24 parishes with a mean relief
expenditure of x̄1 = 20.2766 shillings and a sample standard deviation of s1 =
7.6408 shillings, and Hertford county consisted of n2 = 12 parishes with a mean
relief expenditure of x̄2 = 13.4720 shillings and a sample standard deviation of
s2 = 6.1270 shillings.8

For the Oxford and Hertford county relief data given in Table 2.5, a conventional
Student’s two-sample t test yields t = +2.6783 and with

n1 + n2 − 2 = 24 + 12 − 2 = 34

degrees of freedom, the two-sided probability value under the null hypothesis is
P = 0.0113. There are

M = (n1 + n2)!
n1! n2! = (24 + 12)!

24! 12! = 1,251,677,700

possible arrangements of the Oxford and Hertford county relief data given in
Table 2.5, making an exact permutation analysis impractical. Based on L =
1,000,000 random arrangements of the observed data with n1 = 24 and n2 = 12

7Maxim Mersenne (1588–1648) was a Parisian monk, music theorist, and mathematician.
Mersenne was the first to observe that if 2n − 1 was a prime number, then n must also be a
prime number, but that the converse was not necessarily true. The Mersenne Twister pseudorandom
number generator is named in his honor.
8Again, note that the sample standard deviations, s1 = 7.6408 and s2 = 6.1270, are very similar.
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Table 2.5 Average per
capita relief expenditures for
Oxford and Hertford counties
in shillings: 1831

Oxford Hertford

Parish Relief Parish Relief

1 20.361860 2 27.974783

2 29.086095 4 6.417284

5 14.931757 7 10.484120

8 24.123211 11 10.005750

10 18.207501 13 9.769865

11 20.728732 14 15.866521

12 8.119472 15 19.342360

13 14.020071 17 17.145218

17 18.424789 20 13.134206

18 34.546600 21 10.041964

19 16.092713 22 15.083824

22 24.616592 27 6.398451

23 25.468298

24 12.563194

29 13.278003

31 27.302973

34 29.605508

36 13.613192

39 11.371418

45 21.524807

49 20.940801

52 11.595229

55 18.235469

56 37.880889

preserved for each arrangement, exactly 8,478 of the calculated t values are equal to
or more extreme than the observed value of t = +2.6783, yielding a Monte Carlo
resampling two-sided probability value under the null hypothesis of

P(t ≥ to|H0) = number of t values ≥ to

L
= 8,478

1,000,000
= 0.0085 ,

where to denotes the observed value of t .
While an exact permutation analysis is impractical for the Oxford and Hertford

county relief data given in Table 2.5, it is not impossible. The exact probability value
based on all M = 1,251,677,700 possible arrangements of the observed data is

P(t ≥ to|H0) = number of t values ≥ to

M
= 10,635,310

1,251,677,700
= 0.0085 .
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A Second Monte Carlo Resampling Analysis Example

For a second example of a Monte Carlo resampling permutation analysis, consider
the 3×4×5 contingency table with cell frequencies given in Table 2.6. Pearson’s
chi-squared test statistic for an r×c×s contingency table is given by

χ2 = N2

⎛
⎝ r∑

i=1

c∑
j=1

s∑
k=1

O2
ijk

RiCjSk

⎞
⎠− N ,

where Ri denotes a row marginal frequency total, i = 1, . . . , r , Cj denotes a
column marginal frequency total, j = 1, . . . , c, Sk denotes a slice marginal fre-
quency total, k = 1, . . . , s, Oijk denotes an observed cell frequency, i = 1, . . . , r ,
j = 1, . . . , c, k = 1, . . . , s, and N is the total number of cell frequencies; in
this case, N = 95. For the frequency data given in Table 2.6 with row marginal
frequency totals {32, 32, 31}, column marginal frequency totals {25, 23, 24, 23},
and slice marginal frequency totals {19, 19, 19, 19, 19}, the observed value of chi-
squared is χ2 = 84.7379.

The degrees of freedom for a multi-way contingency table are given by

df =
r∏

i=1

ci −
r∑

i=1

(ci − 1) − 1 ,

where r denotes the number of dimensions and ci denotes the number of categories
in each dimension, i = 1, . . . , r [112, p. 309]. Thus, for a 3×4×5 contingency
table,

df = (3)(4)(5) − [(3 − 1) + (4 − 1) + (5 − 1)] − 1 = 50 .

A chi-squared value of χ2 = 84.7379 with 50 degrees of freedom yields an
asymptotic probability value of P = 0.1563×10−2. In contrast, a Monte Carlo
resampling approximate probability value based on L = 1,000,000 random

Table 2.6 Listing of the 3×4×5 cell frequencies with rows (A1, A2, A3), columns
(B1, B2, B3, B4), and slices (D1,D2,D3,D4,D5) for a resampling-approximation example

A1 A2 A3

B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4

D1 0 3 1 3 4 0 0 0 2 1 4 1

D2 0 0 0 2 1 4 1 0 3 1 3 4

D3 4 1 0 3 1 3 4 0 0 0 2 1

D4 3 4 0 0 0 2 1 4 1 0 3 1

D5 2 1 4 1 0 3 1 3 4 0 0 0
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arrangements of the cell frequencies, given fixed marginal frequency totals, is

P(χ2 ≥ χ2
o

∣∣H0) = number of χ2 values ≥ χ2
o

L

= 1,425

1,000,000
= 0.1425×10−2 ,

where χ2
o denotes the observed value of χ2.

2.2.3 Moment-Approximation Permutation Tests

Monte Carlo resampling permutation methods can be inefficient when desired
probability values are very small, e.g., on the order of 10−6, as the method requires
a large number of randomly selected test statistics to approximate such a small
probability value. A number of techniques have been proposed to circumvent this
problem, most based on partitioning of the permutation reference set into smaller,
more manageable units [83, 146]. While these partitioning methods work well
for specific targeted applications, they are not sufficiently general to be readily
adopted for other applications. Moreover, such techniques are most efficient when
probability values are very small, e.g., 10−30, which is seldom of interest to most
researchers. An alternative method detailed here is based on the first three exact
moments of the discrete permutation distribution.

Prior to the development of high-speed computing that made exact and Monte
Carlo resampling permutation methods possible, researchers relied on moment-
approximation procedures to provide approximate probability values. The moment-
approximation of a test statistic requires calculation of the exact moments of the test
statistic, assuming equally-likely arrangements of the observed response measure-
ments. The moments are then used to fit a specified distribution that approximates
the underlying discrete permutation distribution and provide an approximate, but
often highly accurate, probability value. Historically, the beta distribution was
used for the approximating distribution, but in recent years the Pearson type III
distribution has largely replaced the beta distribution. For many years moment-
approximation permutation tests provided an important intermediary approximation
when computers lacked the speed for calculating exact permutation tests. With
the advent of high-speed computing, Monte Carlo resampling permutation tests
have largely replaced moment-approximation permutation procedures, although
moment-approximation permutation procedures are still important in, for example,
studies involving massive simulations.
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The Pearson type III approximation depends on the exact mean, variance, and
skewness of the test statistic under consideration, say δ, given by

μδ = 1

M

M∑
i=1

δi ,

σ 2
δ = 1

M

M∑
i=1

(
δi − μδ

)2
,

and

γδ = 1

σ 3
δ

[
1

M

M∑
i=1

(
δi − μδ

)3]
,

respectively, where M denotes the total number of possible, equally-likely arrange-
ments of the observed data.

In particular, the standardized statistic given by

T = δ − μδ

σδ

follows the Pearson type III distribution with density function given by

f (y) = (−2/γδ)
4/γ 2

δ

�(4/γ 2
δ )

[− (2 + yγδ)/γδ

](4−γ 2
δ )/γ 2

δ exp
[− 2(2 + yγδ)/γ

2
δ

]
,

when −∞ < y < −2/γδ and γδ < 0, or

f (y) = (2/γδ)
4/γ 2

δ

�(4/γ 2
δ )

[
(2 + yγδ)/γδ

](4−γ 2
δ )/γ 2

δ exp
[− 2(2 + yγδ)/γ

2
δ

]
,

when −2/γδ < y < +∞ and γδ > 0, or

f (y) = (2π)−1/2 exp
[− y2/2

]
,

when γδ = 0, i.e., the standard normal distribution [112, 25–26].9

9In mathematics, the gamma function �(n) may be thought of as an extension of the factorial
function to real and complex number arguments. If n is a positive integer, �(n) = (n − 1)! and
n! = �(n + 1).
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If the observed standardized statistic is given by

To = δo − μδ

σδ

,

where δo denotes the observed value of the test statistic, then

P(δ ≤ δo|H0)
.=
∫ To

−∞
f (y)dy

and

P(δ ≥ δo|H0)
.=
∫ +∞

To

f (y)dy

denote approximate probability values, which are evaluated numerically over an
appropriate finite interval. The Pearson type III distribution is used to approximate
the permutation distribution of T because it is completely specified by the skewness
of T , γT , and includes the normal and chi-squared distributions as special cases.
Thus, these distributions are asymptotic limits of the permutation distribution for
some research situations. Efficient computation expressions for μδ , σ 2

δ , and γδ under
the null hypothesis are given by Mielke and Berry [112, pp. 26–29].

The Pearson type III distribution, as a three-parameter gamma distribution, has
the advantage of being totally characterized by the exact mean, variance, and
skewness, in the same manner that the normal distribution, as a two-parameter
distribution, is fully characterized by the exact mean and variance—a property
not possessed by the beta distribution. An added advantage of the Pearson type
III distribution is that when the skewness parameter is zero, the distribution is
normal. Because the choice of a parametric distribution, such as the beta or Pearson
type III distribution, is completely arbitrary, the resulting probability value cannot
be expected to replicate precisely the probability value obtained from an exact
permutation analysis. Consequently, although a moment-approximation analysis is
based on exact moments, the resulting probability value is only approximate.

A Moment-Approximation Analysis Example

A moment-approximation statistical test can be illustrated with an example r×c

contingency table with cell frequencies given in Table 2.7. Pearson’s chi-squared
test statistic for an r×c contingency table is given by

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

⎞
⎠− N ,
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Table 2.7 Listing of the 3×5
cell frequencies with rows
(R1, R2, R3) and columns
(C1, C2, C3, C4, C5) for a
moment-approximation
example

A1 A2 A3 A4 A5 Total

B1 4 7 2 9 0 22

B2 1 5 2 7 6 21

B3 4 5 10 18 0 37

Total 9 17 14 34 6 80

where Ri denotes a row marginal frequency total, i = 1, . . . , r , Cj denotes a
column marginal frequency total, j = 1, . . . , c, Oij denotes an observed cell
frequency, i = 1, . . . , r and j = 1, . . . , c, and N is the total number of cell
frequencies; in this case, N = 80. For the frequency data given in Table 2.7
with row marginal frequency totals {22, 21, 37} and column marginal frequency
totals {9, 17, 14, 34, 6}, the observed value of chi-squared is χ2

o = 25.0809, δo =
24.8661, μδ = 8.00, σ 2

δ = 14.5148,

T = δo − μδ

σδ

= 24.8661 − 8.00√
14.5148

= +4.4270 ,

and the moment-approximation probability value based on the Pearson type III
distribution is P = 0.9763×10−3.

Comparisons of the Three Permutation Approaches

The three approaches to determining permutation probability values (exact, Monte
Carlo resampling, and moment-approximation) often yield similar probability
values. For comparison, the exact probability value for the frequency data given in
Table 2.7 based on M = 21,671,722 possible arrangements of the cell frequencies
is P = 0.1009×10−2, the Monte Carlo resampling probability value based on
L = 1,000,000 randomly selected arrangements is P = 0.1055×10−2, and the
moment-approximation probability value based on the first three exact moments
of the underlying permutation distribution is P = 0.9763×10−3. The difference
between the moment-approximation probability value (P = 0.9763×10−3) and the
exact probability value (P = 0.1009×10−2) is only 0.3270×10−4, the difference
between the moment-approximation probability value (P = 0.9763×10−3) and
the Monte Carlo resampling probability value based on L = 1,000,000 (P =
0.1055×10−2) is only 0.7870×10−4, and the difference between the Monte Carlo
resampling probability value (P = 0.1055×10−2) and the exact probability value
(P = 0.1009×10−2) is only 0.4600×10−4. Finally, the asymptotic probability
value of χ2 = 25.0809 with (r − 1)(c − 1) = (3 − 1)(5 − 1) = 8 degrees of
freedom is P = 0.1506×10−2. The comparisons are summarized in Table 2.8.
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Table 2.8 Absolute differences among probability values obtained with exact, Monte Carlo
resampling, moment-approximation, and asymptotic procedures for the frequency data given in
Table 2.7

Exact Monte Carlo Moment Asymptotic

Exact – 0.4600×10−4 0.3270×10−4 0.4970×10−3

Monte Carlo – 0.7870×10−4 0.4510×10−3

Moment – 0.5297×10−3

Asymptotic –

Table 2.9
Randomized-block example
with N = 6 subjects and
b = 3 blocks

Treatment

Subject 1 2 3

1 15 15 18

2 14 14 14

3 10 11 15

4 13 12 17

5 16 13 16

6 13 13 13

A Second Moment-Approximation Analysis Example

For a second example of a moment-approximation permutation analysis, consider
the randomized-block data given in Table 2.9 with N = 6 subjects and b = 3 blocks.
For the randomized-block data listed in Table 2.9, the observed value of the F -ratio
is F = 6.00 and with b − 1 = 2 and (N − 1)(b − 1) = (6 − 1)(3 − 1) = 10
degrees of freedom, the asymptotic probability value of F = 6.00 is P = 0.0194.
Alternatively, δo = 6.6667, μδ = 8.9444, σ 2

δ = 1.8920, the observed value of test
statistic T is

To = δo − μδ

σδ

= 6.6667 − 8.9444√
1.8920

= −1.6560 ,

and the moment-approximation probability value based on the Pearson type III
distribution is P = 0.0489.

For comparison, the number of possible arrangements for the data given in
Table 2.9 is only

M = (
N !)b = (

6!)3 = 373,248,000 .

The relationships between δ and F are given by

F = (b − 1)
[
2SSTotal − N(b − 1)δ

]
N(b − 1)δ − 2SSBlocks
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and

δ = 2
[
FSSBlocks + (b − 1)SSTotal

]
N(b − 1)(F + b − 1)

,

where

SSTotal =
N∑

i=1

b∑
j=1

(
xij − x̄..

)2
,

SSBlocks = N

b∑
j=1

(
x̄.j − x̄..

)2
,

x̄.j = 1

N

N∑
i=1

xij for j = 1, . . . , b ,

and

x̄.. = 1

Nb

N∑
i=1

b∑
j=1

xij ,

[114]. Because both SSTotal and SSBlocks are invariant under all M arrangements of
the observed data, δ may be used as a test statistic that is equivalent to F . Thus, the
exact probability value for the data given in Table 2.9 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M

= number of δ values ≤ δo

M
= 20,930,400

373,248,000
= 0.0561 ,

where Fo and δo denote the observed values of F and δ, respectively.10 For com-
parison, a Monte Carlo resampling probability value computed on L = 1,000,000
random arrangements of the observed data in Table 2.9 is

P(F ≥ Fo|H0) = number of F values ≥ Fo

M

= number of δ values ≤ δo

M
= 56,000

1,000,000
= 0.0560 .

10Note that large values of F correspond to small values of δ.
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2.3 Analyses of r-Way Contingency Tables

In this section, moment-approximation permutation statistical methods for analyz-
ing r-way contingency tables are presented. In 1988 Mielke and Berry designed
efficient cumulant methods for analyzing independence of r-way contingency
tables and goodness-of-fit frequency data [110]. Because the reference set of all
possible permutations of r-way contingency tables is generally very large, moment-
approximation methods are usually the appropriate choice. When the frequency data
are very sparse and/or the number of degrees of freedom is very small, exact tests
based on efficient algorithms should be used; see, for example, three articles by
Berry and Mielke in 1985 [11], 1987 [12], and 1988 [13].

2.3.1 Tests of Independence

Let Oj1, ..., jr denote the observed frequency of the (j1, . . . , jr )th cell of an r-way
contingency table, where ji = 1, . . . , ni for i = 1, . . . , r . If 〈i〉j denotes the j th
of ni marginal frequency totals for the ith of r dimensions in the r-way contingency
table, then

ni∑
j=1

〈i〉j = N

for i = 1, . . . , r , where N is the frequency total of the r-way contingency table.
The classical Pearson chi-squared test statistic corresponding to

T =
n1∑

j1=1

· · ·
nr∑

jr=1

(
O2

j1, ..., jr

/ r∏
i=1

〈i〉ji

)

and the modified statistic

S =
n1∑

j1=1

· · ·
nr∑

jr=1

(
O

(2)
j1, ..., jr

/ r∏
i=1

〈i〉ji

)

are considered, where

c(m) =
m∏

i=1

(
c + 1 − i

)
.

Note that χ2 = T Nr−1 − N . Statistic S possesses greater power than statistic T

with properties similar to the power characteristics of the likelihood-ratio test [147].
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The cumulant methods are governed by the conditional permutation distribution of
the Oj1, ..., jr values given by

P
(
Oj1, ..., jr |〈1〉1, . . . , 〈1〉n1 , . . . , 〈r〉1, . . . , 〈r〉nr

)

=
r∏

i=1

ni∏
ji=1

〈i〉ji !
/[

(N !)r−1
r∏

i=1

ni∏
ji=1

Oj1, ..., jr !
]

,

which is independent of any unknown probabilities under the null hypothe-
sis [108, 110]. Thus, the marginal frequency totals, 〈i〉ji , are sufficient statistics
for the marginal multinomial probabilities, [i]ji , under the null hypothesis. This
hypergeometric distribution function provides the basis for testing the independence
of categories for any r-way contingency table.

The exact mean, μT , variance, σ 2
T , and skewness, γT , of T under the conditional

permutation distribution are defined in terms of the first three moments about the
origin:

E[T ] =
[

r∏
i=1

(N − ni) + (N − 1)r−1
r∏

i=1

ni

]/ (
N(2)

)r−1
,

E
[
T 2] =

{
r∏

i=1

(〈i〉4,1 + 〈i〉4,2
)+ 2Nr−1

1,1

[
2

r∏
i=1

〈i〉3,1 +
r∏

i=1

(〈i〉3,1 + 〈i〉3,2
)]

+ Nr−1
2,1

[
6

r∏
i=1

〈i〉2,1 +
r∏

i=1

(〈i〉2,1 + 〈i〉2,2
)]+ Nr−1

3,1

r∏
i=1

〈i〉1,1

}/
Nr−1

4,1 ,

E
[
T 3] =

{
r∏

i=1

(〈i〉6,3 + 3〈i〉6,4 + 〈i〉6,6
)+ 3Nr−1

1,2

[
4

r∏
i=1

(〈i〉5,3 + 〈i〉5,4
)

+
r∏

i=1

(〈i〉5,3 + 2〈i〉5,4 + 〈i〉5,5 + 〈i〉5,6
)]+ Nr−1

2,2

[
32

r∏
i=1

〈i〉4,3

+ 18
r∏

i=1

(〈i〉4,3 + 〈i〉4,4
)+ 12

r∏
i=1

(〈i〉4,3 + 〈i〉4,5
)+ 3

r∏
i=1

(〈i〉4,3 + 〈i〉4,4

+ 2〈i〉4,5 + 〈i〉4,6
)]+ Nr−1

3,2

[
68

r∏
i=1

〈i〉3,3 + 3
r∏

i=1

(〈i〉3,3 + 〈i〉3,4
)

+ 18
r∏

i=1

(〈i〉3,3 + 〈i〉3,5
)+

r∏
i=1

(〈i〉3,3 + 3〈i〉3,5 + 〈i〉3,6
)]



2.3 Analyses of r-Way Contingency Tables 39

+ Nr−1
4,2

[
28

r∏
i=1

〈i〉2,3 + 3
r∏

i=1

(〈i〉2,3 + 〈i〉2,5
)]

+ Nr−1
5,2

r∏
i=1

〈i〉1,3

}/
Nr−1

6,2 ,

Nm,1 =
m∏

i=1

(N + i − 4) for m = 1, . . . , 4 ,

Nm,2 =
m∏

i=1

(N + i − 6) for m = 1, . . . , 6 ,

and for i = 1, . . . , r ,

〈i〉m,1 =
ni∑

j=1

〈i〉(m)
j

/〈i〉2
j for m = 1, . . . , 4 ,

〈i〉2,2 = n
(2)
i ,

〈i〉3,2 = (ni − 1)(N − ni) ,

〈i〉4,2 =
ni∑

j=1

(〈i〉j − 1
)(

N − 〈i〉j − ni + 1
)

,

〈i〉m,3 =
ni∑

j=1

〈i〉(m)
j

/〈i〉3
j for m = 1, . . . , 6 ,

〈i〉m,4 =
ni∑

j=1

〈i〉(m−2)
j

(
N − 〈i〉j − ni + 1

)/〈i〉2
j for m = 3, . . . , 6 ,

〈i〉m,5 = (ni − 1)

ni∑
j=1

〈i〉(m−1)
j

/〈i〉2
j for m = 2, . . . , 5 ,

〈i〉3,6 = n
(3)
i ,

〈i〉4,6 = (ni − 1)(ni − 2)(N − ni) ,
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〈i〉5,6 = (ni − 2)

ni∑
j=1

(〈i〉j − 1
)(

N − 〈i〉j − ni + 1
)

,

〈i〉6,6 =
ni∑

j=1

(〈i〉j − 1
)(

N − 〈i〉j − ni + 1
)(

N − 2〈i〉j − ni + 2
)

.

The corresponding moments for S are

E[S] =
r∏

i=1

(
N − ni

)/(
N(2)

)r−1
,

E
[
S2] =

[
r∏

i=1

(〈i〉4,1 + 〈i〉4,2
)+ 4Nr−1

1,1

r∏
i=1

〈i〉3,1

+ 2Nr−1
2,1

r∏
i=1

〈i〉2,1

]/
Nr−1

4,1 ,

E
[
S3] =

{
r∏

i=1

(〈i〉6,3 + 3〈i〉6,4 + 〈i〉6,6
)+ 12Nr−1

1,2

r∏
i=1

(〈i〉5,3 + 〈i〉5,4
)

+ Nr−1
2,2

[
6

r∏
i=1

(〈i〉4,3 + 〈i〉4,4
)+ 32

r∏
i=1

〈i〉4,3

]
+ 32Nr−1

3,2

r∏
i=1

〈i〉3,3

+ 4Nr−1
4,2

r∏
i=1

〈i〉2,3

}/
Nr−1

6,2 .

The computational expressions for μT , σ 2
T , and γT , and μS , σ 2

S , and γS

given above were derived using factorial moments, recognizing the correspondence
between two-way and r-way contingency table results. Verification of this corre-
spondence involved deriving the three-way table results since the two-way table
results presently exist; see discussions by Bartlett [6]; Berry and Mielke [11];
Dawson [28]; Haldane [57, 58]; Lewis, Saunders, and Westcott [82]; Mielke and
Berry [109]; and Zelterman [147].

Given the exact values of μT , σ 2
T , and γT , or μS , σ 2

S , and γS , the procedure is
based on the standardized statistic

Z = T − μT

σT

or Z = S − μS

σS

,

where the conditional permutation distribution of Z is approximated by the stan-
dardized Pearson type III distribution with parameter γ = γT , or γ = γS ,
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respectively. The motivation for selecting the Pearson type III distribution is that
it includes the asymptotic chi-squared and normal distributions of test statistics T

and S.

2.3.2 Tests of Goodness of Fit

In this section, analogues of the cumulant methods based on T and S are presented
for goodness-of-fit frequency data analyses. If pi > 0 denotes the occurrence
probability and Oi denotes the observed frequency for the ith of k disjoint events,
then

k∑
i=1

pi = 1 and
k∑

i=1

Oi = N ,

where N is the frequency total. Also, let Ei = Npi denote the expected frequency
of the ith event. Then the corresponding goodness-of-fit statistics are given by

T ′ =
k∑

i=1

(
O2

i

Ei

)
and S′ =

k∑
i=1

(
O

(2)
i

Ei

)
.

Here, χ2 = T ′ − N . These methods are governed by the multinomial distribution
of the observed frequencies given by

P(Oi |p1, . . . , pk,N) = N !
k∏

i=1

(
p

Oi

i

Oi !

)
.

The exact mean, variance, and skewness of T ′ under the multinomial distribu-
tion [57] are given by

μT ′ = k + N − 1 ,

σ 2
T ′ = 2(k − 1) +

[
3 − (k + 1)2 +

k∑
i=1

p−1
i

]/
N ,

and

γT ′ = A

σ 3
T ′

,
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where

A = 8(k − 1) −
[

2N(3k − 2)(3k + 8) − 2(k + 3)(k2 + 6k − 4)

− (22N − 3k − 22)

k∑
i=1

p−1
i −

k∑
i=1

p−2
i

]/
N2 .

Also, the exact mean, variance, and skewness of S′ are given by

μS ′ = N − 1 ,

σ 2
S ′ = 2(N − 1)(k − 1)

N
,

and

γS ′ = B

σ 3
S ′

,

where

B = 4(N − 1)

[
2N(k − 1) − 7k + 6 +

k∑
i=1

p−1
i

]/
N2 .

2.4 Permutation and Parametric Statistical Tests

Permutation statistical tests, which are based on the Fisher–Pitman permutation
model, differ from traditional parametric tests, which are based on the Neyman–
Pearson population model, in several ways. First, permutation tests are entirely
data-dependent in that all the information required for analysis is contained within
the observed data set [15, 111]. Second, permutation tests are appropriate for
non-random samples, such as are common in many fields of research. Third,
permutation tests are distribution-free in that they do not depend on the assumptions
associated with traditional parametric tests, such as normality and homogeneity of
variance. Fourth, permutation tests provide exact probability values based on the
discrete permutation distribution of equally-likely test statistic values, rather than
approximate probability values based on a theoretical approximating distribution,
such as a normal, χ2, t , or F distribution. Fifth, permutation tests are ideal for small
data sets, whereas distribution functions often provide very poor fits.

Of these five differences, the requirements of random sampling and normality
greatly limit the applications of statistical tests and measures based on the popula-
tion model. Moreover, the Neyman–Pearson population model cannot be used when



2.4 Permutation and Parametric Statistical Tests 43

sample sizes are very small, e.g., clinical trials or through sub-dividing otherwise
representative samples. On the other hand, since test statistics based on the Fisher–
Pitman permutation model require neither random sampling nor normality and
are suitable for small samples, permutation tests enjoy a decided advantage over
conventional tests in many research applications. Finally, it should be noted that
while conventional parametric tests are considered to be relatively robust with
respect to violations of assumptions, violation of a combination of assumptions is
especially problematic, e.g., random sampling and normality [59, 62, 135].

2.4.1 Permutation Tests and Random Sampling

The requirement of random sampling is fundamental to classical statistics and of
paramount importance to statistical inference. Three points should be emphasized.
First, permutation tests do not require random sampling [70]. Second, because
permutation tests do not depend on random sampling, any inferences are only valid
for the objects analyzed.11 Third, random sampling from a completely specified
population in conventional research is seldom achieved in practice.

Random sampling is the single most-important requirement in conventional
statistical research, in which every element in a specified population has an equal
opportunity of being selected or, alternatively, a sampling scheme that accounts for
unequal but known sample probabilities. Done properly, random sampling permits
the researcher to generalize results to the target population. The ultimate purpose of
random sampling is to eliminate systematic bias. Four forms of bias are prevalent in
sampling: frame bias, response bias, nonresponse bias, and observation bias.

Frame bias. A sampling frame is simply a complete listing of the population from
which the sample of interest is to be drawn. Simply put, frame bias occurs when
there is a mismatch between the sampling frame and the target population [127].
Bias in random samples can be introduced by using improper or imperfect sampling
frames. Frame biases are a primary source of problems in sampling [102, p. 164].
If the sampling frame is misspecified or, as in many cases, missing altogether,
it is impossible to guarantee the probability of selection for any given element.
More specifically, without a random sample from a completely specified and valid
sampling frame, no statistical inference about a population parameter can be made.
The problem of frame bias is common when studying transient populations ranging
from the homeless, migrant workers, and even wildlife populations. Of practical
import for election surveys, the sampling frame often includes many adults who are
not likely to vote [127].

Response bias. Missing observations due to missing cases lead to response
bias. This problem is especially acute in social science research involving mailed

11If random sampling from a population has been accomplished, permutation tests can then provide
inferences to the specified population.
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questionnaires or telephone interviews where response rates are often less than
40%.12 It is no secret that response rates for all types of surveys have been
plummeting [119] and it is well documented that decreasing response rates is an
increasingly important problem in the social sciences, especially in survey research.
According to the General Accountability Office, responses to mail-in questionnaires
and door-to-door interviews for the United States Census have been declining for
years [38].

For a historical example, the Literary Digest poll of 1936 predicted a 3-to-
2 victory for the Republican nominee, Kansas Governor Alf Landon, over the
incumbent President Franklin D. Roosevelt. Roosevelt not only won, but pulled off
one of the greatest landslides in political history, winning 62% of the popular vote
and carrying 46 of 48 states.13 Ten million sample ballots were mailed to prospective
voters, but only 2.3 million were returned. The respondents represented only that
subset of the population with a relatively intense interest in the subject at hand and,
as Bryson related, “it seems clear that the minority of anti-Roosevelt voters felt more
strongly about the election that did the pro-Roosevelt majority” [22, p. 185].

Nonresponse bias. Nonresponse bias occurs when the likelihood of responding
to a survey is systematically related to how a respondent would have answered the
survey [127]. Thus, supporters of a trailing candidate or an unpopular amendment
in a political election are less likely to respond to surveys, biasing the results
in favor of the leading candidate or opinion. For a political science example, in
the 2012 United States presidential election campaign, it is generally agreed that
Democratic candidate Barack Obama performed poorly in the first presidential
debate on October 3 with Republican candidate Mitt Romney. As a result, Obama’s
support declined precipitously in the subsequent polls. Gelman, Goel, Rivers, and
Rothschild showed that the decline was strongly correlated with changes in survey
participation, i.e., nonresponse to polls, rather than changes in voter intentions [51,
p. 107].

Observation bias. Missing observations due to missing values can also lead to
considerable bias. In this case, respondents decline to answer one or more questions.
This problem is of special concern when some questions explore especially sensitive
issues, e.g., politics, criminality, drug use, religion, sexual orientation, or even
amount of income. Techniques such as randomized response can overcome much
of observation bias due to sensitive questions wherein a pair of questions are asked:
one innocuous, the other sensitive. The randomized response procedure leaves the
choice of question by a respondent to a randomization device [45, 136, 140, 143].

It is important to note that the mathematical theorems that justify most statistical
procedures apply only to random samples drawn with replacement from a com-
pletely specified and valid sampling frame. For example, the model assumptions for
a one-sample z test are a simple random sample of a random variable from a normal

12In November 2015 Higgins reported that response rates for telephone surveys had fallen to less
than 10% in 2015, from more than 80% in 1970 [65, p. 30].
13There were only 48 states in 1936. Alaska and Hawaii were added in 1959.
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distribution. Consider all possible simple random samples of size n from random
variable Y . Then, if the model assumptions and the null hypothesis are both true,
the sampling distribution of sample means, Ȳ , will be approximately normal with
mean μȲ equal to the value specified by the null hypothesis, μ0, and standard error
σȲ given by σY /

√
n, where σY denotes the population standard deviation. However,

if the sample is not a simple random sample from a well-defined sampling frame,
then the validity of the hypothesis test is questionable.

As noted by John Ludbrook many years ago, early statisticians such as
R.A. Fisher, Frank Yates, and Oscar Kempthorne readily acknowledged that in
their extensive agricultural research random samples were never drawn from, nor
represented, well-defined populations. In their experiments at the Rothamsted
Experimental Station, plant varieties or different fertilizers were assigned to
blocks of land within a field by a process of randomization. The field was not
a random sample of the population of all possible fields, or even a random sample
of fields from a defined category [85, p. 675]. This holds true for contemporary
research where samples of patients, laboratory animals, students, the homeless, or
incarcerated criminals seldom are drawn from a well-defined population and are
usually acquired in a non-random fashion, then randomized into sub-groups for
intervention or treatment of one or more of the sub-groups. Moreover, a number
of authors have documented that the requirement of obtaining a random sample
from a well-defined population is seldom met in practice; see, for example, articles
by Altman and Bland [1], Bradbury [16], Feinstein [39], Frick [46], LaFleur and
Greevy [78], Ludbrook [85], Ludbrook and Dudley [91], and Still and White [133].

There are, admittedly, some applications in statistical analysis in which random
sampling from a specified population is neither attempted nor considered important.
The fact that medical researchers seldom use random samples often comes as a
surprise to investigators who work in other domains. As Alvan Feinstein, a noted
medical researcher, wrote in 1973:

With inanimate materials, chemists achieve random samples routinely and easily as an
aliquot of a homogeneous mass. With general human populations, social and political
scientists given careful attention to methods of sampling and getting random selections.
With medical populations, however, the investigative samples are almost never random.
Why are medical researchers so delinquent? [39, p. 899].

Feinstein goes on to answer his own question.

The answer to this question is based on the two different purposes of statistical inference.
A socio-political scientist often wants to estimate a populational parameter, whereas a
medical researcher usually wants to contrast a difference in two groups. A random sample
is mandatory for estimating a parameter, but has not been regarded as equally imperative
for contrasting a difference [39, p. 899].

Psychologists have been especially concerned with problems of random sam-
pling. Writing in Canadian Psychology, psychologists Michael Hunter and Richard
May noted that random sampling is of particular relevance to psychologists, “who
rarely use random sampling or any other sort of probability sampling” [70, p. 385].
In 1988 psychologist William Hays wrote:
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The point is that some probability structure must be known or assumed to underlie the
occurrence of samples if statistical inference is to proceed. This point is belabored only
because it is so often overlooked, and statistical inferences are so often made with only the
most casual attention to the process by which the sample was generated. The assumption
of some probability structure underlying the sampling is a little “price tag” attached to
a statistical inference. It is a sad fact that if one knows nothing about the probability of
occurrence for particular samples of units for observation, very little of the machinery
we are describing here applies. This is why our assumption of random sampling is not
to be taken lightly. . . . Unless this assumption is at least reasonable, the probability results
of inferential methods mean very little, and these methods might as well be omitted [63,
p. 212].14

In 2001, psychologist Michael Cowles wrote:

[T]he samples of convenience that are used in psychological research are hardly ever
selected randomly in the formal sense. Undergraduate student volunteers are not labeled
as automatically constituting random samples, but they are often assumed to be unbiased
with respect to the dependent variables of interest, an assumption that has produced much
criticism [26, p. 87].15

Finally, sampling distributions require random sampling whereas permutation
distributions do not [70, p. 387].

2.4.2 Permutation Tests and Normality

The assumption of normality is so basic to classical statistics that it deserves
special attention. Two points should be emphasized. First, permutation tests make
no distributional assumptions and, therefore, do not depend on the assumption of
normality. Second, the assumption of normality by conventional tests is always
unrealistic and never justified in practice [100]. In fact, the consistent defense of
the assumption of normality and the insistence on the robustness of various tests is
not only unnecessary but patently risible.

In 1927 R.C. Geary famously proclaimed: “Normality is a myth; there never
has, and never will be, a normal distribution” [50, p. 241], and in 1938 Joseph
Berkson wrote: “we may assume that it is practically certain that any series of real
observations does not actually follow a normal curve with absolute exactitude in
all respects” [7, p. 526],16 and The French physicist and Nobel laureate in physics,
Gabriel Lippmann, once wrote in a letter to Henri Poincaré à propos the normal
curve:

Experimentalists think that it is a mathematical theorem, while mathematicians believe it to
be an experimental effect.

14Emphasis in the original.
15Emphasis in the original.
16Emphasis in the original.
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(Gabriel Lippman, quoted in D’Arcy Wentworth Thompson’s On Growth and
Form [134, p. 121]), and Robert Matthews once described the normal distribution
as “beautiful, beguiling and thoroughly dangerous” [100, p. 193]. And in 1954
Bross pointed out that statistical methods “are based on certain assumptions—
assumptions which not only can be wrong, but in many situations are wrong” [21,
p. 815].17 Others have empirically demonstrated the prevalence of highly skewed
and heavy-tailed distributions in a variety of academic disciplines; see, for example,
discussions by Schmidt and Johnson [130], Bradley [19], Saal, Downey, and
Lahey [128], Bernardin and Beatty [8], Matthews [101], Micceri [107], and Murphy
and Cleveland [115], the best known of which is Micceri’s widely quoted 1989
article on “The unicorn, the normal curve, and other improbable creatures” in
Psychological Bulletin [107].

A number of authors have documented that the assumption of normality is
rarely satisfied in real-data situations; see, for example, articles by Bernardin and
Beatty [8], Bradley [17], Bross [21], Feinstein [39], Geary [49], Micceri [107],
Murphy and Cleveland [115], Saal, Downey, and Lahey [128], and Schmidt and
Johnson [130]. Finally, in 1947 G.A. Barnard, writing in response to a paper by
Egon Pearson on 2×2 contingency tables, noted that while it is imperative that
the means and variances of samples be independently distributed, “in the case of
normal distributions, and only in this case, the mean and variance of samples are
independently distributed” [5, p. 169].18 See also a discussion by Stephen Stigler in
The Seven Pillars of Statistical Wisdom [132, pp. 91–92].

2.4.3 Permutation Tests and Small Sample Sizes

Permutation statistical tests have an advantage over conventional statistical tests
based on the population model in that they are ideal for analyzing data from
small samples. Conventional statistical approaches rely on relatively large sample
sizes, although obtaining large enough samples to fit the underlying distributional
assumptions is often problematic. Sample sizes may be restricted for a number of
reasons: limitations due to ethical concerns, e.g., medical studies; subdividing larger
samples into smaller components such as analyzing survey data from only those
respondents who meet specific criteria, e.g., subdividing nationally representative
data on income for comparing consumer preferences between men and women
over the age of 72 with incomes above $100,000; “large units,” e.g., studying
corporate response to large-scale disaster events; and meta-analyses using only
published studies. In many cases, analyses are simply avoided when the required
sample sizes are not available. Permutation statistics allow researchers to use all
of the available data. Barry Nussbaum, chief statistician at the U.S. environmental

17Emphasis in the original.
18Emphasis in the original.
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Protection Agency and president of the American Statistical Association, wrote in a
2017 article titled “Bigger isn’t always better when it comes to data” that

[B]ecause we currently have a fascination with Big Data—large volumes, velocity, variety,
and, hopefully, veracity—we sometimes forget the beautiful basic utility of inferential
statistics getting a lot of information from small, but well-constructed, samples [120, p. 4].

2.4.4 Permutation Tests and Data Dependency

Permutation methods are often termed “data-dependent” methods, sometimes
referred to as “data at hand” methods, because all the information available for
analysis is contained within the observed data set and information external to the
observed data is neither necessary nor considered. As noted by Stigler [132, pp. 87–
88], in 1875 Francis Galton introduced data-dependency, his first contribution to the
methods of statistics [126, p. 295], which he called “statistics by intercomparison.”
Galton wrote:

[W]e do not require (1) independent measurements, nor (2) arithmetical operations; we are
(3) able to dispense with standards of reference, in the common acceptance of the phrase,
being able to create and afterwards indirectly to define them. . . . Therefore it is theoretically
possible, in a great degree, to replace the ordinary process of obtaining statistics by another,
much simpler in conception, more convenient in certain cases, and of incomparably wider
applicability. . . . This I suppose to be effected wholly by intercomparison, without the aid
of any external standard [48, p. 34].19

Since, in data-dependent research, the computed probability values are condi-
tioned solely on the observed data, permutation tests require no assumptions about
the population(s) from which the data have been sampled [60]. Thus, permutation
tests are distribution-free tests in that the tests do not assume distributional proper-
ties of the population [18, 23, 98]. With a parametric analysis, it is necessary to know
the parent distribution (e.g., a normal distribution) and evaluate the data with respect
to this known distribution. Conversely, a data-dependent permutation analysis
generates a reference set of outcomes by way of randomization for a comparison
with the observed outcome [103]. Since the randomization of objects is the basic
assumption for a permutation analysis, any arrangement can be obtained by pairwise
exchanges of the objects. Thus, the associated object measurements are termed
“exchangeable.” Hayes [61] provides an excellent discussion of exchangeability.
For more rigorous presentations, see Draper et al. [29], Lehmann [80], and Lindley
and Novick [84].

19Emphasis in the original.
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2.5 Advantages of Permutation Methods

Alvan Feinstein was a strong advocate for permutation methods. Trained as a
medical doctor, Feinstein is widely regarded as the founder of clinical epidemiology
and patient-oriented medicine and the originator of clinimetrics: the application of
mathematics to the field of medicine [10, p. 246]. In 1973 Feinstein published a
formative article on “The role of randomization in sampling, testing, allocation, and
credulous idolatry” [39].

Writing for a statistically unsophisticated readership, Feinstein distinguished
between socio-political research where the purpose was usually to estimate a
population parameter, and medical research where the purpose was typically to
contrast a difference between two groups.20 Feinstein observed that a random
sample is mandatory for estimating a population parameter, but “has not been
regarded as equally imperative for contrasting a difference” [39, p. 899]. Or, as May
and Hunter noted,

A major concern of surveys is external validity and generality inference, whereas compara-
tive experiments are more concerned with internal validity and causal inference. Thus, we
may need different statistical models for different research contexts [103, p. 401].

Feinstein’s article is as important today as it was when published in 1973 and
remains one of the most cogent and lucid expositions contrasting conventional
parametric and permutation methods. While R.A. Fisher, R.C. Geary, T. Eden,
F. Yates, and E.J.G. Pitman defined the field of permutation statistical methods in
the 1920s and 1930s, A.R. Feinstein’s 1973 article should be the vade mecum of
every researcher interested in permutation statistical methods.

As Feinstein’s focus was on medical investigations, he listed the major violations
of the assumptions underlying tests of two groups:

1. The groups studied in modern clinical or epidemiologic research are seldom
selected as random samples.

2. For the many clinical and epidemiologic research projects that are performed as
surveys, the subjects are not randomly assigned.

3. The distribution of the target variable is usually unknown in the parent popula-
tion.

4. It is usually known that the target variable does not have a Gaussian distribution,
and often departs from it dramatically.

5. It is usually known that the variances of the two samples are not remotely similar.

20The 1973 Feinstein article was the 23rd in a series of informative summary articles on
statistical methods for clinical researchers published in Clinical Pharmacology and Therapeutics.
A collection of 29 of the articles written by Feinstein is available in Clinical Biostatistics where
this article was retitled “Permutation tests and ‘statistical significance’ ” [40].
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Feinstein then compared, in meticulous detail, the classical approaches embodied
in the two-sample t test and the chi-squared test of independence for 2×2 contin-
gency tables. For his example data, he noted that the probability values obtained
from the classical approach differed substantially from those obtained from the
corresponding permutation tests.21 Regarding the chi-squared test of independence,
Feinstein observed that the corresponding permutation test provided an exact answer
to the research question that was “precise, unambiguous, unencumbered by any
peculiar expectations about fractional people, and unembroiled in any controversy
about the Yates’ correction [for continuity]” [39, p. 910].

Feinstein put forth some advantages and disadvantages of permutation tests
that were insightful for the time and foreshadowed later research. In terms of
permutation tests, he listed five advantages:

1. The result of a permutation test is a direct, exact probability value for the random
likelihood of the observed difference.

2. Permutation tests do not require any unwarranted inferential estimations of
means, variances, pooled variances, or other parameters of an unobserved,
hypothetical parent population. The tests are based solely on the evidence that
was actually obtained.22

3. The investigator is not forced into making any erroneous assumptions either that
the contrasted groups were chosen as random samples from a parent population,
or that treatments under study were randomly allocated to the two groups.

4. The investigator is not forced into making any erroneous or unconfirmable
assumptions about a Gaussian (or any other) distribution for the parent popu-
lation, or about equal variances in the contrasted groups.

5. A permutation test can be applied to groups of any size, no matter how large
or small. There are no degrees of freedom to be considered. In the case of a
contingency table, there is no need to worry about the magnitude of the expected
value, no need to calculate expectations based on fractions of people, and no need
to worry about applying, or not applying, Yates’ correction for continuity.

Feinstein observed that while there were definite advantages to permutation tests,
there were also disadvantages. The first three (of four) he considered as features that
contributed to “the existing state of statistical desuetude” and labeled them inertia,
ideology, and information [39, p. 911]:

1. Inertia: It is easier for many teachers to continue the inertia of teaching what they
were taught years ago than to revise the contents of their lectures.

21Here, Feinstein utilized permutation tests as the gold standard against which to evaluate classical
tests, referencing a 1963 article by McHugh [104] and 1966 articles by Baker and Collier [3], and
Edgington [33].
22In this second advantage, Feinstein clearly described the data-dependent nature of permutation
tests, anticipating by many years later research on permutation methods.
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2. Ideology: Investigators who ideologically believe that the goal of science is to
estimate parameters and variances will have no enthusiasm for tests that do not
include or rely on these estimations.

3. Information: Many investigators have a deep-seated horror of doing anything that
might entail losing information.

4. Calculation: Permutation tests are notoriously difficult to calculate.

Feinstein elaborated on items 3 (Information) and 4 (Calculation). Regarding
Item 3, he emphasized that a loss of information would occur if raw data were
converted into ordinal data for the sake of a non-parametric test that analyzes ranks
rather than the observed raw scores. He explained that since ranks are used in
nearly all non-parametric tests and since all non-parametric tests depend on random
permutations, a statistician may erroneously conclude that all non-parametric tests
create a loss of information.23 He retorted that that conclusion was specious as “the
non-parametric permutation tests illustrated here make use of the original values of
the [observed] data, not the ranks” [39, p. 911]. In his own words:

Many statisticians have a deep-seated horror of doing anything that may entail “losing
information.” This type of “loss” would occur if dimensional data were converted into
ordinal ranks for the sake of a non-parametric test that uses the ranks rather than the
observed values. Since ranks are used in almost all of the tests popularly known as non-
parametric, and since all of these tests depend on the principle of random permutations,
a statistician may erroneously conclude that all non-parametric tests create a loss of
information. The conclusion is wrong because the non-parametric tests illustrated here make
use of the original values of the data, not the ranks [39, p. 911].24

Regarding Item 4, Feinstein observed that every permutation test must be
computed entirely from the individual values of the observed data. Thus, each
application is a unique test and precludes the compilation of tables that can be
used repeatedly [39, p. 912]; a point made earlier, and most emphatically, by James
Bradley [18]. He followed this with the prescient observation that “in the era of the
digital computer . . . these calculational difficulties will ultimately disappear” [39, p.
912]. Feinstein further observed that in situations where the sample sizes were large,
the exact permutation test could be “truncated” into a Monte Carlo (resampling) type
of test.

In a strongly worded conclusion, Feinstein argued that the ultimate value of per-
mutation tests was that their intellectual directness, precision, and simplicity would
free both the investigator and the statistician from “a deleterious pre-occupation
with sampling distributions, pooled variances, and other mathematical distractions”
[39, p. 914]. Finally, Feinstein noted that “an investigator who comprehends the

23In the literature of mathematical statistics there are examples of distributions where a non-
parametric test that “throws away information” is clearly superior to a parametric test; see, for
example, articles by Festinger in 1946 [41], Pitman in 1948 [124], Whitney in 1948 [144], and van
den Brink and van den Brink in 1989 [141].
24Emphasis in the original.
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principles of his statistical tests will be less inclined to give idolatrous worship to a
numerical ‘significance’ that has no scientific connotation” [39, p. 914].25

Finally, it should be mentioned that numerous statistical tests and measures have
been developed over the past 100 years for which the standard errors are either
unknown or intractable. Many of these tests and measures have been very well
constructed and are generally quite useful, but their utility is constrained by the lack
of a known standard error. The absence of standard errors is of no consequence to
permutation statistical methods. Thus, an added advantage to permutation statistical
methods is the ability to generate exact probability values for these otherwise limited
tests and measures.

2.6 Calculation Efficiency

While permutation statistical tests do not require random sampling, normality,
homogeneity, or large sample sizes, and are also completely data-dependent, a
potential drawback is the amount of computation required, with exact permutation
tests formerly being unrealistic for many statistical analyses. Even Monte Carlo
resampling permutation tests often require the enumeration of millions of random
arrangements of the observed data in order to guarantee sufficient accuracy. For
many years, exact tests were considered to be impractical, but modern computers
make it possible to generate hundreds of millions of permutations in just a few
minutes. In addition, Monte Carlo permutation methods can be inefficient due to
millions of calls to a pseudorandom number generator (PRNG). The development
of the high-speed Mersenne Twister PRNG by Matsumoto and Nishimura in 1998
greatly increased the accuracy and speed of Monte Carlo resampling permutation
methods [99]. It was not too many years ago that 5,000 or 10,000 random samples
were considered to be sufficient for resampling permutation methods, due to the
slow speeds of computers. Presently, it is common to see 1,000,000 random samples,
which generally ensure three decimal places of accuracy, and even 100,000,000
random samples, which generally ensure four decimal places of accuracy [71].

Four innovations mitigate this problem. First, high-speed computing makes
possible exact permutation statistical tests in which all possible arrangements of the
observed data are generated and examined. Second, examination of all combinations
of arrangements of the observed data, instead of all permutations, yields the same
exact probability values with considerable savings in computation time. Third,
mathematical recursion with an arbitrary initial value greatly simplifies difficult
computations, such as large factorial expressions. Fourth, calculation of only the
variable components of the selected test statistic greatly simplifies calculation.

25See also an informative and engaging 2012 article on this topic by Megan Higgs in American
Scientist [66].
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2.6.1 High-Speed Computing

As Berry, Johnston, and Mielke observed in 2014 [10, pp. 364–365], one has
only to observe the hordes of the digitally distracted trying to navigate a crowded
sidewalk with their various smart-phones, pads, pods, and tablets to realize that
computing power, speed, and accessibility have finally arrived. As Martin Hilbert
documented, in 1986 just one percent of the world’s capacity to store information
was in digital format, but by year 2000 digital represented 25 percent of the total
world’s memory [67]. The year 2002 marked the start of the digital age, as 2002
was the year that humankind first stored more information in digital than in analog
form. By 2007 over 97 percent of the world’s storage capacity was digital [67, p. 9].
Moreover, it was estimated in 2012 that ninety percent of the data stored in the world
had been created in just the previous two years. Prior to 2001, data storage was
measured in bytes, kilobytes (103), and occasionally in megabytes (106); now data
storage is measured in gigabytes (109), terabytes (1012), petabytes (1015), exabytes
(1018), zettabytes (1021), and even yottabytes (1024).

In 2000, the Intel Pentium processor contained 42 million transistors and ran at
1.5 GHz. In the spring of 2010, Intel released the Itanium processor, code-named
Tukwila after a town in the state of Washington, containing 1.4 billion transistors
and running at 2.53 GHz. On 4 June 2013 Intel announced the Haswell processor,
named after a small town of 65 people in southeastern Colorado with 1.4 billion 3-D
chips and running at 3.50 GHz [142]. The latest generation of Haswell processors,
the i7-4790 processor, currently executes at 4.00 GHz with turbo-boost to 4.40 GHz.
In April of 2017, Intel introduced the Optane memory module which, when coupled
with a seventh generation Intel Core-based system, has the potential to increase
desktop computer performance by 28 percent.

While not widely available to researchers, by 2010 mainframe computers were
measuring computing speeds in teraflops. To emphasize the progress of computing,
in 1951 the Remington Rand Corporation introduced the UNIVAC computer
running at 1,905 flops, which with ten mercury delay line memory tanks could store
20,000 bytes of information; in 2008 the IBM Corporation supercomputer, code-
named Roadrunner, reached a sustained performance of one petaflops;26 in 2010
the Cray Jaguar was named the world’s fastest computer performing at a sustained
speed of 1.75 petaflops with 360 terabytes of memory; and in November of 2010
China exceeded the computing speed of the Cray Jaguar by 57 percent with the
introduction of China’s Tianhe-1A supercomputer performing at 2.67 petaflops [93].

In October of 2011, China broke the petaflops barrier again with the introduction
of the Sunway Bluelight MPP [4]. In late 2011 the IBM Yellowstone super-
computer was installed at the National Center for Atmospheric Research (NCAR)
Wyoming Supercomputer Center in Cheyenne, Wyoming. After months of testing,
the Wyoming Supercomputer Center officially opened on Monday, 15 October 2012.

26One petaflops indicates a quadrillion operations per second, or a 1 with 15 zeroes following it.
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Yellowstone was a 1.6 petaflops machine with 149.2 terabytes of memory and
74,592 processor cores and replaced an IBM Bluefire supercomputer installed in
2008 that had a peak speed of 76 teraflops. Also in late 2011, IBM unveiled the Blue
Gene\P and \Q supercomputing processing systems that can achieve 20 petaflops.
At the same time, IBM filed a patent for a massive supercomputing system capable
of 107 petaflops.

From a more general perspective, in 1977 the Tandy Corporation released the
TRS-80, the first fully assembled personal computer, distributed through Radio
Shack stores. The TRS-80 had 4MB of RAM and ran at 1.78 MHz. By way of
comparison, in 2010 the Apple iPhone had 131,072 times the memory of the TRS-
80 and was approximately 2,000 times faster, running at one GHz. In 2012, Sequoia,
an IBM Blue Gene/Q supercomputer was installed at Lawrence Livermore National
Laboratory (LLNL) in Livermore, California. In June of 2012 Sequoia officially
became the most powerful supercomputer in the world. Sequoia is capable of 16.32
petaflops—more than 16 quadrillion calculations a second—which was 55 percent
faster than Japan’s K supercomputer, ranked number 2, and more than five times
faster than China’s Tianhe-1A, which was the fastest supercomputer in the world in
2010.

Finally, high-speed computers have dramatically changed the field of compu-
tational statistics. The future of high-speed computing appears very promising for
exact and Monte Carlo resampling permutation statistical methods. Combined with
other efficiencies, it can safely be said that permutation methods have the potential
to provide exact or resampling probability values in an efficient manner for a wide
variety of statistical applications.

2.6.2 Analysis with Combinations

Although permutation statistical methods are known by the attribution “permuta-
tion,” they are, in fact, not based on all possible permutations of the observed data.
Instead exact permutation methods are typically based on all possible combinations
of the observed data.27 Conversely, a so-called combination lock is not based on
combinations of numbers or letters, but is instead based on all possible permutations
of the numbers or letters. A simple example will illustrate. Consider N = 8 objects
that are to be divided into two groups A and B, where nA = nB = 4. The
purpose is to compare differences between the two groups, such as a mean or median
difference. Let the eight objects be designated {a, b, c, d, e, f, g, h}. For group A,
the first object can be chosen in eight different ways, the second object in seven
ways, the third in six ways, and the fourth object in five ways. Once these four
members of Group A are chosen, the membership of Group B is fixed, since the
remaining four objects are assigned to Group B.

27In keeping with convention, “permutation methods” is used throughout this book.
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Of the 8×7×6×5 = 1,680 ways in which the four objects can be arranged for
Group A, each individual quartet of objects will appear in a series of permutations.
Thus, the quartet {a, b, c, d} can be permuted as {a, b, d, c}, {b, a, c, d}, {c, d, b, a},
and so on. The number of different permutations for a group of four different objects
is 4! = 4×3×2×1 = 24. Thus, each distinctive quartet will appear in 24 ways
among the 1,680 possible arrangements. Therefore, 1,680 divided by 24 yields 70
distinctive quartets that could be formed by dividing eight objects into two groups
of four objects each. The number of quartets can conveniently be expressed as

(nA + nB)!
nA! nB ! = (4 + 4)!

4! 4! = 40,320

576
= 70 .

Now, half of these arrangements are similar but opposite. Thus the quartet
{a, b, c, d} might be in Group A and the quartet {e, f, g, h} might be in Group
B, or vice versa, yielding the same absolute difference. Consequently, there are
really only 70/2 = 35 distinctly different pairs of quartets to be considered. The
35 possible arrangements for objects {a, b, c, d, e, f, g, h} are listed in Table 2.10
in Gray-code order.28 The next (36th) possible arrangement would be {a, b, c, h} in
Group A and {d, e, f, g} in Group B, which is simply the reverse of arrangement 35,
i.e., {d, e, f, g} in Group A and {a, b, c, h} in Group B, yielding the same absolute
mean or median difference. A substantial amount of calculation can be eliminated
by considering all possible combinations instead of all possible permutations, with
no loss of accuracy. In this case, a decrease from 1,680 to 35 arrangements to be
considered, a reduction of approximately 98%.

Example Permutation Analysis

Consider a sample of N = 8 objects with values {38, 39, 40, 43, 48, 49, 52, 57}.
The N = 8 objects are divided into two groups, A and B with nA = 4 objects in
Group A and nB = 4 objects in Group B. The objects in Group A have values of
{43, 49, 52, 57} and the objects in Group B have values of {38, 39, 40, 48}, yielding
means x̄A = 50.25 and x̄B = 41.25, and a mean difference of x̄A − x̄B = 50.25 −
41.25 = +9.00. Now consider the data from a permutation perspective. Table 2.11
lists the 35 possible arrangements of the N = 8 values with nA = nB = 4 preserved
for each arrangement, the mean values, x̄A and x̄B , and the 35 mean differences,
x̄A − x̄B .

Inspection of Table 2.11 shows that a mean difference of x̄A − x̄B = 50.25 −
41.25 = +9.00 or greater in favor of Group A occurs only twice in the 35
possible arrangements, i.e., row 1 with mean difference +11.50 and row 2 with
mean difference +9.00, indicated by asterisks. If Table 2.11 were to be completed

28Gray code, after Frank Gray, or reflected binary code (RBC), is an encoding of numbers such
that adjacent numbers have a single digit differing by 1.
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Table 2.10 Listing of the 35 arrangements of objects {a, b, c, d, e, f, g, h} into two groups of four
objects each

Number Group A Group B Number Group A Group B

1 a, b, c, d e, f, g, h 19 b, c, d, g a, e, f, h

2 a, b, c, e d, f, g, h 20 a, b, e, g c, d, f, h

3 a, b, d, e c, f, g, h 21 a, c, e, g b, d, f, h

4 a, c, d, e b, f, g, h 22 b, c, e, g a, d, f, h

5 b, c, d, e a, f, g, h 23 a, d, e, g b, c, f, h

6 a, b, c, f d, e, g, h 24 b, d, e, g a, c, f, h

7 a, b, d, f c, e, g, h 25 c, d, e, g a, b, f, h

8 a, c, d, f b, e, g, h 26 a, b, f, g c, d, e, h

9 b, c, d, f a, e, g, h 27 a, c, f, g b, d, e, h

10 a, b, e, f c, d, g, h 28 b, c, f, g a, d, e, h

11 a, c, e, f b, d, g, h 29 a, d, f, g b, c, e, h

12 b, c, e, f a, d, g, h 30 b, d, f, g a, c, e, h

13 a, d, e, f b, c, g, h 31 c, d, f, g a, b, e, h

14 b, d, e, f a, c, g, h 32 a, e, f, g b, c, d, h

15 c, d, e, f a, b, g, h 33 b, e, f, g a, c, d, h

16 a, b, c, g d, e, f, h 34 c, e, f, g a, b, d, h

17 a, b, d, g c, e, f, h 35 d, e, f, g a, b, c, h

18 a, c, d, g b, e, f, h

to form all 70 arrangements, a mean difference of 9.00 or greater would also occur
twice. Thus, for a two-sided test the exact probability is P = 4/70 = 0.0571, and
for a one-sided test the exact probability is P = 2/70 = 0.0286.

2.6.3 Mathematical Recursion

Mathematical recursion, in a statistical context, is a process in which an initial
probability value of a test statistic is calculated, then successive probability values
are generated from the initial value by a recursive process.29 The initial value need
not be an actual probability value, but can be a completely arbitrary positive value by
which the resultant relative probability values are adjusted for the initializing value
at the conclusion of the recursion process. This section demonstrates a recursion
procedure with an initial probability value using the data on convicted and non-
convicted monozygotic and dizygotic twins discussed in Sect. 2.2.1. The following

29A recursive process is one in which items are defined in terms of items of similar kind. Using a
recursive relation, a class of items can be constructed from one or a few initial values (a base) and
a small number of relationships (rules). For example, given the base, F0 = 0 and F1 = F2 = 1,
the Fibonacci series {0, 1, 1, 2, 3, 5, 8, 13, 21, . . .} can be constructed by the recursive rule Fn =
Fn−1 + Fn−2 for n > 2.
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Table 2.11 Means and mean differences for 35 arrangements of eight observations divided into
two groups of four objects each

Number Group A Group B x̄A x̄B x̄A − x̄B

1∗ 48, 49, 52, 57 38, 39, 40, 43 51.50 40.00 +11.50

2∗ 43, 49, 52, 57 38, 39, 40, 48 50.25 41.25 +9.00

3 43, 48, 52, 57 38, 39, 40, 49 50.00 41.50 +8.50

4 40, 49, 52, 57 38, 39, 43, 48 49.50 42.00 +7.50

5 39, 49, 52, 57 38, 40, 43, 48 49.25 42.25 +7.00

6 40, 48, 52, 57 38, 39, 43, 49 49.25 42.25 +7.00

7 43, 48, 49, 57 38, 39, 40, 52 49.25 42.25 +7.00

8 38, 49, 52, 57 39, 40, 43, 48 49.99 42.50 +6.50

9 39, 48, 52, 57 38, 40, 43, 49 49.00 42.50 +6.50

10 38, 48, 52, 57 39, 40, 43, 49 48.75 42.75 +6.00

11 40, 48, 49, 57 38, 39, 43, 52 48.50 43.00 +5.50

12 39, 48, 49, 57 38, 40, 43, 52 48.25 43.25 +5.00

13 40, 43, 52, 57 38, 39, 48, 49 48.00 43.50 +4.50

14 38, 48, 49, 57 39, 40, 43, 52 48.00 43.50 +4.50

15 39, 43, 52, 57 38, 40, 48, 49 47.75 43.75 +4.00

16 38, 43, 52, 57 39, 40, 48, 49 47.50 44.00 +3.50

17 40, 43, 49, 57 38, 39, 48, 52 47.25 44.25 +3.00

18 39, 40, 52, 57 38, 43, 48, 49 47.00 44.50 +2.50

19 39, 43, 49, 57 38, 40, 48, 52 47.00 44.50 +2.50

20 40, 43, 48, 57 38, 39, 49, 52 47.00 44.50 +2.50

21 39, 43, 48, 57 38, 40, 49, 52 46.75 44.75 +2.00

22 38, 40, 52, 57 39, 43, 48, 49 46.75 44.75 +2.00

23 38, 43, 49, 57 39, 40, 48, 52 46.75 44.75 +2.00

24 38, 39, 52, 57 40, 43, 48, 49 46.50 45.00 +1.50

25 38, 43, 48, 57 39, 40, 49, 52 46.50 45.00 +1.50

26 39, 40, 49, 57 38, 43, 48, 52 46.25 45.25 +1.00

27 38, 40, 49, 57 39, 43, 48, 52 46.00 45.50 +0.50

28 39, 40, 48, 57 38, 43, 49, 52 46.00 45.50 +0.50

29 38, 40, 48, 57 39, 43, 49, 52 45.75 45.75 0.00

30 38, 39, 49, 57 40, 43, 48, 52 45.75 45.75 0.00

31 38, 39, 48, 57 40, 43, 49, 52 45.50 46.00 −0.50

32 39, 40, 43, 57 38, 48, 49, 52 44.75 46.75 −2.00

33 38, 40, 43, 57 39, 48, 49, 52 44.50 47.00 −2.50

34 38, 39, 43, 57 40, 48, 49, 52 44.25 47.25 −3.00

35 38, 39, 40, 57 43, 48, 49, 52 43.50 48.00 −4.50

section demonstrates a recursion procedure with an arbitrary initial value using the
same data.

Mathematical recursion is so fundamental to permutation statistical methods that
a detailed example of a recursion process is important to illustrate the procedure.
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Perhaps no better description of the statistical recursion procedure exists than that
provided by Frank Yates. In 1934 Yates succinctly described the recursion process:

In cases where N is not too large the distribution with any particular numerical values of
the marginal totals can be computed quite quickly, using a table of factorials to determine
some convenient term, and working out the rest of the distribution term by term, by simple
multiplications and divisions. If a table of factorials is not available we may start with any
convenient term as unity, and divide by the sum of the terms so obtained [145, p. 219],

where N denotes the total number of observations.

A Recursion Example

Consider a 2×2 contingency table using the notation in Table 2.12. Denote by a dot
(·) the partial sum of all rows or all columns, depending on the position of the (·) in
the subscript list. If the (·) is in the first subscript position, the sum is over all rows
and if the (·) is in the second subscript position, the sum is over all columns. Thus, ni.

denotes the marginal frequency total of the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes the marginal frequency total of the j th column, j = 1, . . . , c,
summed over all rows, and N = n11 + n12 + n21 + n22 denotes the table frequency
total. The probability value corresponding to any set of cell frequencies in a 2×2
contingency table, n11, n12, n21, n22, is the hypergeometric point probability value
given by

P =
(

n.1

n11

)(
n.2

n12

)(
N

n1.

)−1

= n1.! n2.! n.1! n.2!
N ! n11! n12! n21! n22! .

Since the exact probability value of a 2×2 contingency table with fixed marginal
frequency totals and one degree of freedom is equivalent to the probability value
of any one cell, determining the probability value of the cell containing n11 is
sufficient. If

P {n11 + 1|n1., n.1, N} = P {n11|n1., n.1, N}×f (n11) ,

then solving for f (n11) produces

f (n11) = P {n11 + 1|n1., n.1, N}
P {n11|n1., n.1, N}

= n11! n12! n21! n22!
(n11 + 1)! (n12 − 1)! (n21 − 1)! (n22 + 1)!

and, after cancelling, yields

f (n11) = n12 n21

(n11 + 1)(n22 + 1)
. (2.1)
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To illustrate mathematical recursion with an initial probability value, consider
again the data on monozygotic and dizygotic twins given in Table 2.1 on p. 23
and replicated in Table 2.13 for convenience. The M = 13 exhaustive 2×2
contingency tables from the twin data are listed in Table 2.3 on p. 24, along with the
associated hypergeometric point probability values, and are replicated in Table 2.14
for convenience.

Table 2.12 Conventional
notation for a 2×2
contingency table

Category

Category 1 2 Total

1 n11 n12 n1.

2 n21 n22 n2.

Total n.1 n.2 N

Table 2.13 Convictions of
like-sex twins of criminals

Twin type Convicted Not convicted Total

Monozygotic 10 3 13

Dizygotic 2 15 17

Total 12 18 30

Table 2.14 Listing of the 13
possible 2×2 contingency
tables from the twin data with
associated hypergeometric
probability values

Table 1 Probability Table 2 Probability

0 13 7.1543×10−5 1 12 1.8601×10−3

12 5 11 6

Table 3 Probability Table 4 Probability

2 11 1.7538×10−2 3 10 8.0384×10−2

10 7 9 8

Table 5 Probability Table 6 Probability

4 9 2.0096×10−1 5 8 2.8938×10−1

8 9 7 10

Table 7 Probability Table 8 Probability

6 7 2.4554×10−1 7 6 1.2277×10−1

6 11 5 12

Table 9 Probability Table 10 Probability

8 5 3.5414×10−2 9 4 5.6212×10−3

4 13 3 14

Table 11 Probability Table 12 Probability

10 3 4.4970×10−4 11 2 1.5331×10−5

2 15 1 16

Table 13 Probability

12 1 1.5030×10−7

0 17
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To begin a recursion procedure it is necessary to have an initial value, in this case
the probability of zero monozygotic convicted twins (Table 1 in Table 2.14) given
by P {n11 = 0|n1., n.1, N}. Thus, define

P {0|13, 12, 30} = n1.! n2.! n.1! n.2!
N ! n11! n12! n21! n22!

= 13! 17! 12! 18!
30! 0! 20! 5! 17! = 7.1543×10−5

as the initial value.
The usual procedure in such cases is to estimate the larger factorial expressions

using Stirling’s series approximation given by30

n!  nne−n
√

2πn exp

(
1

12n
− 1

360n3 + 1

1,260n5 − 1

1,680n7 + · · ·
)

.

Then, the probability values for n11 = 1, . . . , 12 are generated recursively utilizing
the recursion equation

P {n11 + 1|n1., n.1, N} = P {n11|n1., n.1, N} × n12 n21

(n11 + 1)(n22 + 1)
. (2.2)

Thus,

P {n11 = 1|13, 12, 30} = 7.1543×10−5 × (13)(12)

(1)(6)
= 1.8601×10−3 ,

P {n11 = 2|13, 12, 30} = 1.8601×10−3 × (12)(11)

(2)(7)
= 1.7538×10−2 ,

P {n11 = 3|13, 12, 30} = 1.7538×10−2 × (11)(10)

(3)(8)
= 8.0384×10−2 ,

P {n11 = 4|13, 12, 30} = 8.0384×10−2 × (10)(9)

(4)(9)
= 2.0096×10−1 ,

P {n11 = 5|13, 12, 30} = 2.0096×10−1 × (9)(8)

(5)(10)
= 2.8938×10−1 ,

P {n11 = 6|13, 12, 30} = 2.8938×10−1 × (8)(7)

(6)(11)
= 2.4554×10−1 ,

P {n11 = 7|13, 12, 30} = 2.4554×10−1 × (7)(6)

(7)(12)
= 1.2277×10−1 ,

P {n11 = 8|13, 12, 30} = 1.2277×10−1 × (6)(5)

(8)(13)
= 3.5414×10−2 ,

30Attribution of the series is generally given to James Stirling, but more likely was first determined
by Abraham de Moivre [116, p. 25].
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P {n11 = 9|13, 12, 30} = 3.5414×10−2 × (5)(4)

(9)(14)
= 5.6213×10−3 ,

P {n11 = 10|13, 12, 30} = 5.6213×10−3 × (4)(3)

(10)(15)
= 4.4970×10−4 ,

P {n11 = 11|13, 12, 30} = 4.4970×10−4 × (3)(2)

(11)(16)
= 1.5331×10−5 ,

and

P {n11 = 12|13, 12, 30} = 1.5331×10−5 × (2)(1)

(12)(17)
= 1.5030×10−7 .

2.6.4 Recursion with an Arbitrary Initial Value

It is not necessary to provide an actual probability value to initialize a recursion
procedure. Any arbitrary positive value can serve as an initial value with a compen-
satory adjustment made at the conclusion of the recursion process. Recursion with
an arbitrary initial value was used extensively by Frank Yates during his 25-year
tenure as head of the Statistical Department at the Rothamsted Experimental Station,
but the technique can be traced back at least to Lambert Adolphe Jacques Quetelet
who used a recursion procedure to generate the binomial probability distribution
with p = 0.5 and published the technique in a volume with the imposing title Letters
Addressed to H.R.H. the Grand Duke of Saxe Coburg and Gotha on the Theory
of Probabilities as Applied to the Moral and Political Sciences in 1846 [125]. To
illustrate the use of an arbitrary origin in a recursion procedure, consider Table 1
in Table 2.14 and set relative probability value H {n11 = 0|13, 12, 30} to a small
arbitrarily chosen value, say 1.00; thus, H {n11 = 0|13, 12, 30} = 1.00. Then
following Eq. (2.2), a recursion procedure produces

H {n11 = 1|13, 12, 30} = 1.0000 × (13)(12)

(1)(6)
= 26.0000 ,

H {n11 = 2|13, 12, 30} = 26.0000 × (12)(11)

(2)(7)
= 245.1429 ,

H {n11 = 3|13, 12, 30} = 245.1429 × (11)(10)

(3)(8)
= 1,123.5714 ,

H {n11 = 4|13, 12, 30} = 1,123.5714 × (10)(9)

(4)(9)
= 2,808.9286 ,

H {n11 = 5|13, 12, 30} = 2,808.9286 × (9)(8)

(5)(10)
= 4,044.8571 ,
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H {n11 = 6|13, 12, 30} = 4,044.8571 × (8)(7)

(6)(11)
= 3,432.0000 ,

H {n11 = 7|13, 12, 30} = 3,432.0000 × (7)(6)

(7)(12)
= 1,716.0000 ,

H {n11 = 8|13, 12, 30} = 1,716.0000 × (6)(5)

(8)(13)
= 495.0000 ,

H {n11 = 9|13, 12, 30} = 495.0000 × (5)(4)

(9)(14)
= 78.5714 ,

H {n11 = 10|13, 12, 30} = 78.5714 × (4)(3)

(10)(15)
= 6.2857 ,

H {n11 = 11|13, 12, 30} = 6.2857 × (3)(2)

(11)(16)
= 0.2143 ,

and

H {n11 = 12|13, 12, 30} = 0.2143 × (2)(1)

(12)(17)
= 0.0021 .

for a total of

T =
12∑
i=0

H {n11 = i|13, 12, 30} = 1.00 + 26.00 + · · · + 0.0021 = 13,977.5735 .

The desired exact probability values are then obtained by dividing each relative
probability value, H {n11|n1., n.1, N}, by the recursively obtained total, T . For
example,

P {n11 = 0|13, 12, 30} = 1.0000

13,977.5735
= 7.1543×10−5 ,

P {n11 = 1|13, 12, 30} = 26.0000

13,977.5735
= 1.8601×10−3 ,

P {n11 = 2|13, 12, 30} = 245.1429

13,977.5735
= 1.7538×10−2 ,

P {n11 = 3|13, 12, 30} = 1,123.5714

13,977.5735
= 8.0384×10−2 ,

P {n11 = 4|13, 12, 30} = 2,808.9286

13,977.5735
= 2.0096×10−1 ,

P {n11 = 5|13, 12, 30} = 4,044.8571

13,977.5735
= 2.8938×10−1 ,

P {n11 = 6|13, 12, 30} = 3,432.0000

13,977.5735
= 2.4554×10−1 ,

P {n11 = 7|13, 12, 30} = 1,716.0000

13,977.5735
= 1.2277×10−1 ,
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P {n11 = 8|13, 12, 30} = 495.0000

13,977.5735
= 3.5414×10−2 ,

P {n11 = 9|13, 12, 30} = 78.5714

13,977.5735
= 5.6212×10−3 ,

P {n11 = 10|13, 12, 30} = 6.2857

13,977.5735
= 4.4970×10−4 ,

P {n11 = 11|13, 12, 30} = 0.2143

13,977.5735
= 1.5331×10−5 ,

and

P {n11 = 12|13, 12, 30} = 0.0021

13,977.5735
= 1.5030×10−7 .

In this manner, the entire analysis is conducted utilizing an arbitrary initial value
and a recursion procedure, thereby eliminating all factorial expressions. When the
number of potential contingency tables given by max(n11) − min(n11) + 1 is large,
the computational savings can be substantial.

2.6.5 Variable Components of a Test Statistic

Under permutation, only the variable components of the test statistic need be
calculated for each arrangement of the observed data. As this is often only a very
small piece of the desired test statistic, calculations can often be reduced by several
factors; see, for example, a discussion by Scheffé in 1959 [129, pp. 314–317]. To
illustrate, consider the expression for a conventional two-sample t test,

t = x̄1 − x̄2√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

(
1

n1
+ 1

n2

) ,

where n1 and n2 denote the sample sizes, s2
1 and s2

2 denote the estimated population
variances, and x̄1 and x̄2 denote the sample means for samples 1 and 2, respectively.
In computing the permutation probability value of Student’s two-sample t test, given
the total of all response measurements

T =
n1∑
i=1

x1i +
n2∑
i=1

x2i ,

where x1i and x2i denote the response measurements in samples 1 and 2, respec-
tively, only the sum of the response measurements in the smaller of the two samples
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need be calculated for each arrangement of the observed response measurements,
i.e.,

∑n1
i=1 x1i , where x1i denotes a response measurement in sample 1 and n1 ≤ n2.

Computing only the variable components of the test statistic thus eliminates a great
deal of calculation for each random arrangement of the observed data, a time-saving
technique utilized by Pitman in his 1937 permutation analysis of two independent
samples [121].

For a second example, in 1933 Thomas Eden and Frank Yates substantially
reduced calculations in a randomized-block analysis of Yeoman II wheat shoots
by recognizing that the block and total sums of squares would be constant for all of
their 1,000 random samples and, consequently, the value of z for each sample would
be uniquely defined by the treatment (between) sum of squares, i.e., the treatment
sum of squares was sufficient for a permutation test of a randomized-block analysis
of variance [31].31

For a third example, consider Cohen’s unweighted kappa measure of inter-rater
agreement given by

κ =

r∑
i=1

Oii −
r∑

i=1

Eii

N −
r∑

i=1

Eii

, (2.3)

where Oii and Eii for i = 1, . . . , r denote the observed and expected cell fre-
quencies, respectively, on the principal diagonal of an r×r contingency (agreement)
table [25]. Since the Eii , i = 1, . . . , r , are based on N and the row and column
marginal frequency totals, the variable components of κ in Eq. (2.3) is simply the
sum of the observed cell frequencies,

∑r
i=1 Oii , on the principal diagonal for each

arrangement of the cell frequencies, given fixed marginal frequency totals.
For a fourth example, consider Pearson’s product-moment correlation coefficient

between variables x and y given by

rxy =

N∑
i=1

xiyi −
(

N∑
i=1

xi

N∑
i=1

yi

)/
N

√√√√√
⎡
⎣ N∑

i=1

x2
i −

(
N∑

i=1

xi

)2/
N

⎤
⎦
⎡
⎣ N∑

i=1

y2
i −

(
N∑

i=1

yi

)2/
N

⎤
⎦

,

31The letter F for the analysis of variance (variance-ratio) test statistic was introduced in 1934 by
George Snedecor at Iowa State University, much to the displeasure of R.A. Fisher [131, p. 15].
Prior to 1934 the test statistic was indicated by z, the letter originally assigned to it by Fisher.
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where N is the number of bivariate measurements. N and the summations

N∑
i=1

xi ,

N∑
i=1

x2
i ,

N∑
i=1

yi , and
N∑

i=1

y2
i

are invariant under permutation. Thus, it is sufficient to calculate only
∑N

i=1 xiyi

for all permutations of the observed data, eliminating a great deal of unnecessary
calculation. In addition, it is only necessary to permute either variable x or variable
y, leaving the other variable fixed.

These two features, mathematical recursion with an arbitrary initial value and
computation of only the variable components of the test statistic under permutation,
combined with powerful resampling algorithms and high-speed computing, produce
a highly efficient permutation statistical approach that, today, makes permutation
analyses both feasible and practical for many research applications.

2.7 Coda

Chapter 2 introduced two models of statistical inference: the population model and
the permutation model. The permutation model included three types of permutation
tests: exact, Monte Carlo resampling, and moment approximation, each of which
was detailed and illustrated. Emphasized were the data-dependency of permutation
statistical tests and freedom from the usual assumptions of normality and homo-
geneity of variance. Mathematical recursion, the use of arbitrary initial values, the
use of all combinations of observed values instead of all permutations, and analysis
of only the variable components of tests and measures illustrated the computational
efficiency of permutation statistical tests.

Chapter 3 applies statistical permutation methods to measures of association
designed for two nominal-level variables. Included in Chap. 3 are the traditional
chi-squared-based measures: Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and
Pearson’s C. Alternatives to the four measures are proposed that make the measures
maximum-corrected and provide proper norming between the usual limits of 0 and
1. Also considered in Chap. 3 are permutation-based goodness-of-fit tests.
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Chapter 3
Nominal-Level Variables, I

The relationships between nominal-level (categorical) variables are often difficult
to analyze because discrete, unordered categories usually contain a very limited
amount of usable information. Examples of nominal-level variables are: Gender
(Female, Male), Political Affiliation (Democrat, Republican, Independent, Lib-
ertarian), and Marital Status (Single, Married, Widowed, Separated, Divorced).
Measures of association for two nominal-level variables are of two types: those
based on Pearson’s chi-squared test statistic, e.g., maximum-corrected measures
such as Pearson’s φ2, and those based on criteria other than Pearson’s chi-squared
test statistic, e.g., proportional-reduction-in-error measures such as Goodman and
Kruskal’s λa and λb measures, which are based on category modal values.

This third chapter of The Measurement of Association applies exact and Monte
Carlo permutation statistical methods to measures of association that are based on
Pearson’s chi-squared test statistic. Also included are several measures that are
not based directly on Pearson’s chi-squared test statistic but are approximately
distributed as chi-squared. The chapter begins with an examination of four measures
based on Pearson’s chi-squared test statistic that are notoriously difficult to interpret
because they do not norm properly between the terminal values of 0 and 1: Pearson’s
φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C. A chi-squared-based alternative
to the four conventional measures is proposed that norms properly between 0,
corresponding to independence, and 1, corresponding to perfect association, making
intermediate values interpretable. The discussion of the four chi-squared-based
measures of association is followed by a discussion of permutation-based goodness-
of-fit tests. Chapter 3 concludes with an examination of the relationship between
Pearson’s chi-squared and Pearson’s product-moment correlation coefficient for
r×c contingency tables. Measures of association for nominal-level variables that
are based on criteria other than Pearson’s chi-squared test statistic are discussed in
Chap. 4. Examples of the measures of nominal association that are based on criteria
other than chi-squared are Goodman and Kruskal’s λa and λb , Cohen’s unweighted

© Springer Nature Switzerland AG 2018
K. J. Berry et al., The Measurement of Association,
https://doi.org/10.1007/978-3-319-98926-6_3

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98926-6_3&domain=pdf
https://doi.org/10.1007/978-3-319-98926-6_3


74 3 Nominal-Level Variables, I

kappa coefficient, McNemar’s Q and Cochran’s Q tests of change, Leik and Gove’s
d c
N measure of nominal association, and Fisher’s exact probability test.

3.1 Chi-squared-Based Measures

It is well known that values of chi-squared and sample size are positively and
proportionately related, i.e., for a chi-squared test of independence, if all cell
frequencies are doubled in size, the calculated value of chi-squared will also
be doubled. Because of this relationship, a number of measures of association
based on Pearson’s chi-squared have been proposed, purportedly to implement
measures of association with proper norming, i.e., provide values between 0 and
1, where 0 indicates independence and 1 indicates perfect association between
the two variables. Four popular measures based on chi-squared are Pearson’s φ2,
Tschuprov’s T 2, Cramér’s V 2, and Pearson’s C.1,2

3.1.1 Pearson’s φ2 Measure of Association

Pearson’s mean-square measure of nominal-level association, φ2, is used almost
exclusively for 2×2 contingency tables, such as depicted in Table 3.1.3 Denote by a
dot (·) the partial sum of all rows or all columns, depending on the position of the (·)
in the subscript list. If the (·) is in the first subscript position, the sum is over all rows
and if the (·) is in the second subscript position, the sum is over all columns. Thus, ni.

denotes the marginal frequency total of the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes the marginal frequency total of the j th column, j = 1, . . . , c,
summed over all rows, and N = n11 + n12 + n21 + n22 denotes the table frequency
total. Then, in terms of chi-squared, Pearson’s φ2 measure of nominal association is
given by:

φ2 = χ2

N
, (3.1)

1While Pearson’s φ2, Cramér’s V 2, and Pearson’s C are still occasionally found in the contempo-
rary literature, Tschuprov’s T 2 has fallen into desuetude.
2Tschuprov’s measure of association is commonly known as T or T 2, but Tschuprov actually
labeled it ϕ2, and Cramér’s measure of association is commonly known as V or V 2, but Cramér
also labeled it ϕ2.
3In some references, Pearson’s φ2 is defined for other contingency tables. It is discussed here
in the context of 2×2 contingency tables because φ2 is not equal to unity when there is perfect
association in larger frequency tables, although there are exceptions for certain configurations of
2×c contingency tables.
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Table 3.1 Conventional
notation for a 2×2
contingency table

Category

Category 1 2 Total

1 n11 n12 n1.

2 n21 n22 n2.

Total n.1 n.2 N

where N denotes the total of the cell frequencies in the observed contingency
table. This statement is not entirely true, however, although it is standard in
myriad textbooks and articles, where it is often argued that when the observed cell
frequencies are doubled, chi-squared is also doubled and therefore the observed
value of chi-squared should be divided by N to give a suitable measure of
contextuality; see, for example, a 1968 article by Frederick Mosteller [77, pp. 2–
3]. In fact, the N in the denominator of Eq. (3.1) represents the maximum possible
value of χ2 for a 2×2 contingency table when and only when the marginal frequency
distributions are equivalent, e.g., {5, 5} and {5, 5}, {6, 4} and {6, 4}, or {6, 4} and
{4, 6}.

Let chi-squared for a contingency table with r = 2 rows, c = 2 columns, and N

cases be defined in the conventional textbook fashion as:

χ2 =
r∑

i=1

c∑
j=1

(
Oij − Eij

)2
Eij

, (3.2)

where Oij denotes the observed cell frequencies and Eij denotes the expected cell
values given by:

Eij = ni.n.j

N
for i = 1, . . . , r and j = 1, . . . , c .

Now, let the four marginal frequency totals be identical, as displayed in Table 3.2.
For the notation in Table 3.2, each expected value is given by:

Eij =

(
N

2

)(
N

2

)

N
= N

4

and, therefore, following Eq. (3.2),

χ2 =

(
N

4

)2

+
(−N

4

)2

+
(−N

4

)2

+
(

N

4

)2

N

4

=
(

N2

4

)(
4

N

)
= N .

An example will confirm that N is the maximum value for a 2×2 contingency
table with identical marginal frequency distributions. Consider the 2×2 contingency
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Table 3.2 Example 2×2
contingency table with
identical marginal frequency
distributions

Category

Category 1 2 Total

1 N
2 0 N

2

2 0 N
2

N
2

Total N
2

N
2 N

Table 3.3 Example 2×2
contingency table

A1 A2 Total

B1 0 4 4

B2 6 0 6

Total 6 4 10

table in Table 3.3 and let N denote the total of the cell frequencies, Ri denote a row
total for i = 1, 2, Cj denote a column total for j = 1, 2, and Oij denote a cell
frequency for i, j = 1, 2. Then, the expected cell values are

E11 = n1.n.1

N
= (4)(6)

10
= 2.40 , E12 = n1.n.2

N
= (4)(4)

10
= 1.60 ,

E21 = n2.n.1

N
= (6)(6)

10
= 3.60 , E22 = n2.n.2

N
= (6)(4)

10
= 2.40 ,

following Eq. (3.2) on p. 75 the observed value of chi-squared is

χ2 =
r∑

i=1

c∑
j=1

(
Oij − Eij

)2
Eij

= (0 − 2.40)2

2.40
+ (4 − 1.60)2

1.60
+ (6 − 3.60)2

3.60
+ (0 − 2.40)2

2.40

= 2.40 + 3.60 + 1.60 + 2.40 = 10.00 ,

and the observed value of Pearson’s mean-square measure of contingency is
therefore

φ2 = χ2

N
= 10.00

10
= 1.00 .

If the marginal frequency distributions of a 2×2 contingency table are not
equivalent, e.g., {7, 3} and {8, 2}, Pearson’s φ2 measure of nominal association
will necessarily be less than 1.00. To illustrate the limiting value of Pearson’s
φ2, consider the frequency data given in Table 3.4 with observed row and column
marginal frequency distributions {6, 4} and {5, 5}, respectively. In this case, the max-
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Table 3.4 Example 2×2
contingency table

A1 A2 Total

B1 5 1 6

B2 0 4 4

Total 5 5 10

Table 3.5 Example 2×2
contingency table with (0, 1)
coding for variables x and y

y

x 0 1 Total

0 2 3 5

1 1 4 5

Total 3 7 10

imum value of chi-squared, given the observed marginal frequency distributions, is
χ2

max = 6.6667 and the maximum value of Pearson’s φ2 is only

φ2
max = χ2

max

N
= 6.6667

10
= 0.6667 .

More positively, as noted by Yule and Filon, a singular advantage of Pearson’s φ2

over other measures of nominal association is that it is based on departure from
independence [104, p. 83].

Pearson’s φ2 and r2xy

It is well known that Pearson’s φ2 is equivalent to Pearson’s squared product-
moment correlation coefficient, r2

xy , when the two variables, x and y, are dummy-

coded (0, 1). Some textbooks even go so far as to label Pearson’s φ2 as r2
φ [87,

p. 232]. To illustrate the equivalency between Pearson’s φ2 and Pearson’s r2
xy ,

consider the 2×2 contingency table given in Table 3.5, where the row and column
variables are both dummy-coded (0, 1), the row variable is denoted as x, and the
column variable is denoted as y. For the frequency data given in Table 3.5, the
observed value of chi-squared is χ2 = 0.4762 and the observed value of Pearson’s
φ2 is

φ2 = χ2

N
= 0.4762

10
= 0.0476 .

The frequency data given in Table 3.5 can be recoded as in Table 3.6, where
Objects 1 and 2, coded (0, 0), represent the two objects in row 1 and column 1;
Objects 3 through 5, coded (0, 1), represent the three objects in row 1 and column
2; Object 6, coded (1, 0), represents the single object in row 2 and column 1; and
Objects 7 through 10, coded (1, 1), represent the four objects in row 2 and column
2 of Table 3.5.
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Table 3.6 Example
dummy-coded values from
the cell frequencies in the
2×2 contingency table in
Table 3.5

Variable

Object x y

1 0 0

2 0 0

3 0 1

4 0 1

5 0 1

6 1 0

7 1 1

8 1 1

9 1 1

10 1 1

For the binary-coded data listed in Table 3.6,

N = 10,

N∑
i=1

xi =
N∑

i=1

x2
i = 5,

N∑
i=1

yi =
N∑

i=1

y2
i = 7,

N∑
i=1

xiyi = +4 ,

and the Pearson product-moment correlation coefficient for variables x and y is

r2
xy =

(
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

)2

⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

=
[
(10)(+4) − (5)(7)

]2
[
(10)(5) − 52

][
(10)(7) − 72

] = 0.0476 ,

which is identical to the value for Pearson’s φ2 measure calculated from chi-squared.

3.1.2 Tschuprov’s T 2 Measure of Association

Compare Eq. (3.1) on p. 74 for Pearson’s φ2, that is,

φ2 = χ2

N
,
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Table 3.7 Example 3×3
contingency table with
equivalent marginal
frequency distributions

A1 A2 A3 Total

B1 20 0 0 20

B2 0 30 0 30

B3 0 0 50 50

Total 20 30 50 100

with the equation for Tschuprov’s T 2, which was specifically designed for square
contingency tables of any size,4 such as 3×3 or 4×4, and given by:

T 2 = χ2

N
√

(r − 1)(c − 1)
, (3.3)

where r and c denote the number of rows and columns in the observed contingency
table, respectively [93, pp. 50–53]. It is obvious from Eq. (3.3) that Tschuprov’s T 2

and Pearson’s φ2 are equivalent for 2×2 contingency tables.
The denominator for T 2 in Eq. (3.3) represents the maximum value of χ2 for

an r×c contingency table where r = c and the marginal frequency distributions
are equivalent, e.g., {4, 5, 6} and {4, 5, 6}, {4, 5, 6} and {6, 5, 4}, or {4, 5, 6} and
{5, 6, 4}, or any permutation of the marginal frequency totals as the order of the
categories does not matter. An example will make this point clear. Consider the 3×3
contingency table in Table 3.7 with observed row marginal frequency distribution
{20, 30, 50} and observed column marginal frequency distribution {20, 30, 50}, and
let Ri denote a row marginal frequency total, i = 1, 2, 3; Cj denote a column
marginal frequency total, j = 1, 2, 3; Oij denote a cell frequency, i, j = 1, 2, 3; and
let N denote the total of the cell frequencies. Then, the observed value of Pearson’s
χ2 is

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

⎞
⎠− N

= 100

[
202

(20)(20)
+ 02

(20)(30)
+ 02

(20)(50)
+ 02

(30)(20)
+ 302

(30)(30)

+ 02

(30)(50)
+ 02

(50)(20)
+ 02

(50)(30)
+ 502

(50)(50)

]
− 100

= 100(1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1) − 100 = 200

4There are a number of spellings of Tschuprov in the literature, possibly due to different translators.
Alexander (Aleksandr) Alexandrovich (Aleksandrovich) Tschuprov (Tschuprow, Tchouprow, or
Čhuprov) (1874–1926) was a Russian statistician noted for his contributions to mathematical
statistics, probability sampling, and demography.
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Table 3.8 Example 3×3
contingency table with
unequal marginal frequency
distributions

A1 A2 A3 Total

B1 20 0 0 20

B2 0 20 10 30

B3 0 0 50 50

Total 20 20 60 100

and the observed value of Tschuprov’s T 2 is

T 2 = χ2

N
√

(r − 1)(c − 1)
= 200

100
√

(3 − 1)(3 − 1)
= 200

100(2)
= 1.00 .

However, if the marginal frequency distributions of a square r×c contingency
table are not equivalent, Tschuprov’s T 2 must necessarily be less than 1.00.
Consider the frequency data given in Table 3.8 with observed row and column
marginal frequency distributions, {20, 30, 50} and {20, 20, 60}, respectively.

In this case, given the observed marginal frequency distributions, the maximum
value of χ2 is χ2

max = 155.5556 and the maximum value of T 2 is only

T 2
max = χ2

max

N
√

(r − 1)(c − 1)
= 155.5556

100
√

(3 − 1)(3 − 1)
= 0.7778 .

3.1.3 Cramér’s V 2 Measure of Association

Next, consider Cramér’s V 2, which was designed for r×c contingency tables, is not
restricted to contingency tables where r = c, and is given by:

V 2 = χ2

N [min(r − 1, c − 1)]
(3.4)

[36, pp. 280–283]. It is obvious from Eq. (3.4) that Cramér’s V 2, Tschuprov’s T 2,
and Pearson’s φ2 are equivalent for 2×2 contingency tables, and V 2 and T 2 are

equivalent for any contingency table where r = c.
The denominator in Eq. (3.4) represents the maximum value of χ2 for an r×c

contingency table. Consider the 2×3 contingency table given in Table 3.9 and let N

denote the sum of the cell frequencies; Ri denote a row total, i = 1, 2; Cj denote
a column total, j = 1, 2, 3; and Oij denote a cell frequency for i = 1, 2 and
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Table 3.9 Example 2×3
contingency table

A1 A2 A3 Total

B1 5 0 1 6

B2 0 5 0 5

Total 5 5 1 11

Table 3.10 Example 2×3
contingency table

A1 A2 A3 Total

B1 4 0 2 6

B2 0 4 2 6

Total 4 4 4 12

j = 1, 2, 3. Then, the observed value of Pearson’s χ2 is

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

⎞
⎠− N

= 11

[
52

(6)(5)
+ 02

(6)(5)
+ 12

(6)(5)
+ 02

(5)(5)
+ 52

(5)(5)
+ 02

(5)(1)

]
− 11

= 11(0.8333 + 0 + 0.1667 + 0 + 1 + 0) − 11 = 11.00

and the observed value of Cramér’s V 2 is

V 2 = χ2

N[min(r − 1, c − 1)] = 11.00

11[min(2 − 1, 3 − 1)] = 11.00

11
= 1.00 .

On the other hand, consider the 2×3 contingency table in Table 3.10, where the
observed value of Pearson’s chi-squared is χ2 = 8.00, which is the maximum value
of χ2 for a 2×3 contingency table with marginal frequency distributions {6, 6} and
{4, 4, 4}. Consequently, the observed value of Cramér’s V 2 is only V 2 = 8/12 =
0.6667 since N = 12 and min(r−1, c−1) = min(2−1, 3−1) = 1. Thus, Cramér’s
V 2, like Pearson’s φ2 and Tschuprov’s T 2, standardizes Pearson’s chi-squared to the
maximum value of a contingency table other (usually) than the table being analyzed.

Nonetheless, the three measures of association, Pearson’s φ2, Tschuprov’s T 2,
and Cramér’s V 2, were designed to be expressed as:

φ2 = T 2 = V 2 = χ2

χ2
max

,

where χ2
max represents the maximum chi-squared value for an idealized contingency

table, but not necessarily the contingency table under consideration.
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3.1.4 Limitations of φ2, T 2, and V 2

Measures of association based on Pearson’s chi-squared test statistic have been
heavily criticized in recent years. Wickens observed that Cramér’s V 2 lacks an
intuitive interpretation other than as a scaling of Pearson’s chi-squared test statistic,
which limits its usefulness [97, p. 226]. Costner noted that V 2 and other measures
based on Pearson’s chi-squared lack any interpretation at all for values other than
the limiting values 0 and 1, or for the maximum possible value given the observed
marginal frequency distributions [34].5 Agresti and Finlay also noted that Cramér’s
V 2 is very difficult to interpret and recommended other measures [3, p. 284].
Blalock observed that “all measures based on chi square are somewhat arbitrary
in nature, and their interpretations leave a lot to be desired . . . they all give greater
weight to those columns or rows having the smallest marginals rather than to those
with the largest marginals” [18, 19, p. 306]. Ferguson discussed the problem of using
idealized marginal frequencies [42, p. 422], and Guilford noted that measures such
as Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 necessarily underestimate the
magnitude of association present [49, p. 342]. Berry, Martin, and Olson considered
these issues with respect to 2×2 contingency tables [15, 16], and Berry, Johnston,
and Mielke discussed in some detail the problems with using φ2, T 2, and V 2 as
measures of effect size [14].

3.1.5 Pearson’s C Measure of Association

A fourth measure based on chi-squared is Pearson’s coefficient of contingency, C,
first proposed because it can be shown that if a bivariate normal distribution with
correlation parameter ρ2 is classified into a contingency table, then C2 approaches
ρ2 as the number of categories in the contingency table increases.6

Pearson’s coefficient of contingency is given by:

C =
√

χ2

χ2 + N

and was originally designed to measure the degree of association between two
categorical variables that have been cross-classified into an r×c contingency table
where r = c. Since χ2, C, and φ2 were all developed by Karl Pearson at University

5Some authors have defended Cramér’s V 2, observing that it can be interpreted as the average
of the squared product-moment correlation coefficients calculated on the (r − 1)(c − 1) possible
orthonormalized 2×2 tables embedded in the r×c contingency table, but this hardly seems helpful
to a typical reader.
6Pearson actually labeled the test statistic as C1, “the first coefficient of contingency.”
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Table 3.11 Example 2×2
contingency table

A1 A2 Total

B1 4 2 6

B2 2 2 4

Total 6 4 10

College London, it is not surprising that C and φ2 are related as they are both based
on chi-squared. For the example 2×2 contingency table given in Table 3.11, the
observed value of chi-squared is χ2 = 0.2778, the observed value of Pearson’s
mean-square contingency coefficient is

φ2 = χ2

N
= 0.2778

10
= 0.0278

and the observed value of Pearson’s coefficient of contingency is

C =
√

χ2

χ2 + N
=
√

0.2778

0.2778 + 10
= √

0.0270 = 0.1644 .

Then, the relationships between C and φ2 for a 2×2 contingency table are given by:

C =
√

φ2

1 + φ2
=
√

0.0278

1 + 0.0278
= √

0.0270 = 0.1644

and

φ2 = C2

1 − C2 = 0.16442

1 − 0.16442 = 0.0278 .

Because Pearson’s C always has an upper limit less than unity, it is common to
correct C by dividing the observed value of C by the maximum value of C for the
size of the contingency table under consideration. For convenience, let r = c = k,
then it follows that the maximum value that chi-squared can attain for any k×k

contingency table with equivalent row and column marginal frequency distributions
is

χ2
max = N(k − 1) .

Then, the maximum value of Pearson’s C is

Cmax =
√

χ2

χ2
max + N

=
√

N(k − 1)

N(k − 1) + N
=
√

k − 1

k
.
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Table 3.12 Values of Cmax
for various k×k contingency
tables

k×k Cmax k×k Cmax

2×2 0.7071 8×8 0.9354

3×3 0.8165 9×9 0.9428

4×4 0.8660 10×10 0.9487

5×5 0.8944 11×11 0.9535

6×6 0.9129 12×12 0.9574

7×7 0.9258 13×13 0.9608

Table 3.13 Example data for Pearson’s coefficient of contingency, C, with equivalent row and
column marginal frequency distributions, {60, 50, 50, 40} and {60, 50, 50, 40}, respectively

A1 A2 A3 A4 Total

B1 60 0 0 0 60

B2 0 50 0 0 50

B3 0 0 50 0 50

B4 0 0 0 40 40

Total 60 50 50 40 200

Table 3.12 lists various k×k contingency tables and associated values of Cmax.
While the upper limit of Cmax increases as k increases, the upper limit is always
less than unity. For this reason, Pearson’s C is somewhat difficult to interpret,
unless a correction is introduced by dividing C by Cmax for the observed number
of rows and columns. However, even then C is being standardized by a maximum
value calculated on an idealized k×k contingency table with equivalent marginal
frequency distributions, rather than the marginal frequency distributions of the
contingency table actually observed.

An example illustrates how Cmax corrects C for table size. Consider the fre-
quency data given in Table 3.13 with equivalent row and column marginal frequency
distributions, {60, 50, 50, 40} and {60, 50, 50, 40}, respectively, where the observed
value of chi-squared is χ2 = N(k − 1) = 200(4 − 1) = 600, the observed value of
Pearson’s C is

C =
√

χ2

χ2 + N
=
√

600

600 + 200
= √

0.75 = 0.8660 ,

the maximum value of Cmax for a 4×4 contingency table is

Cmax =
√

k − 1

k
=
√

4 − 1

4
= √

0.75 = 0.8660 ,

and the ratio of C to Cmax is

C

Cmax
= 0.8660

0.8660
= 1.00 .
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While the ratio of C to Cmax ensures proper norming, at the same time the
limitations of Pearson’s C as a measure of association are also revealed. The utility
of Pearson’s C in research is highly qualified because Cmax, which is required for
proper norming, is defined only for square contingency tables with equivalent row
and column marginal frequency totals and is clearly not appropriate for non-square
contingency tables.

3.1.6 Proper Norming

For proper norming, with a measure of association that varies over the range of
probability values from 0 to 1, the computed χ2 test statistic should be standardized
by the maximum value of χ2 obtained from the observed contingency table, not
some idealized contingency table. Fortunately, it is not difficult to generate the
maximum value of χ2 for any r×c contingency table. First, generate an r×c

contingency table with cell frequencies chosen to provide the maximum value of
chi-squared, then calculate chi-squared on that table to obtain χ2

max. In a permutation
context, this is quite easily done as, under permutation, a complete empirically
generated reference set of r×c contingency tables is generated, all belonging to
the same Fréchet class, and all possible values of chi-squared are calculated and
included in the reference set. The chi-squared test statistic with the largest value in
the reference set is χ2

max.

3.2 Maximum Arrangement of Cell Frequencies

The determination of the maximum arrangement of cell frequencies in an r×c con-
tingency table requires a different approach than a simple 2×2 contingency table.
In this section, a step-by-step procedure is described to generate an arrangement of
cell frequencies in an r×c contingency table that provides the maximum value of a
test statistic, such as Cramér’s V 2.7

STEP 1: List the observed marginal frequency totals of an r×c contingency table
with empty cell frequencies.

STEP 2: If any pair of marginal frequency totals, one from each set of marginal
frequency totals, are equal to each other, enter that value in the table as nij

and subtract the value from the two associated marginal frequency totals. For
example, if the marginal frequency total for Row 2 is equal to the marginal
frequency total for Column 3, enter the marginal frequency total in the table
as n23 and subtract the value of n23 from the marginal frequency totals of Row 2
and Column 3.

7The procedure is adapted from an algorithm by Leik and Gove [64, pp. 288–289].
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Table 3.14 Example 3×3
contingency table with row
marginal frequency
distribution {20, 30, 40} and
column marginal frequency
distribution {30, 50, 10}

A1 A2 A3 Total

B1 8 6 6 20

B2 10 17 3 30

B3 12 27 1 40

Total 30 50 10 90

Table 3.15 Empty 3×3
contingency table with row
marginal frequency
distribution {20, 30, 40} and
column marginal frequency
distribution {30, 50, 10}

A1 A2 A3 Total

B1 — — — 20

B2 — — — 30

B3 — — — 40

Total 30 50 10 90

Repeat STEP 2 until no two marginal frequency totals are equal. If all marginal
frequency totals have been reduced to zero, go to STEP 5; otherwise, go to
STEP 3.

STEP 3: Find the largest remaining marginal frequency totals in each set and enter
the smaller of the two values in nij . Then, subtract that (smaller) value from the
two marginal frequency totals. Go to STEP 4.

STEP 4: If all marginal frequency totals have been reduced to zero, go to STEP 5;
otherwise, go to STEP 2.

STEP 5: Set any remaining nij values to zero, i = 1, . . . , r and j = 1, . . . , c.

To illustrate the maximum-generating procedure, consider the 3×3 contingency
table given in Table 3.14 with observed row marginal frequency distribution
{20, 30, 40} and observed column marginal frequency distribution {30, 50, 10}.
Then, the procedure is:

STEP 1: List the observed row and column marginal frequency totals, leaving the
cell frequencies empty, as in Table 3.15.

STEP 2: For the two sets of marginal frequency totals given in Table 3.15, two are
equal to 30, one for Row 2 and one for Column 1. Set n21 = 30 and subtract 30
from the two associated marginal frequency totals. The adjusted row and column
marginal frequency totals are now {20, 0, 40} and {0, 50, 10}, respectively. No
other two marginal frequency totals are identical, so go to STEP 3.

STEP 3: The two largest remaining marginal frequency totals are 40 in Row 3 and
50 in Column 2. Set n32 = 40, the smaller of the two marginal frequency totals,
and subtract 40 from the two adjusted marginal frequency totals. The adjusted
row and column marginal frequency totals are now {20, 0, 0} and {0, 10, 10},
respectively. Go to STEP 4.

STEP 4: All marginal frequency totals have not yet been reduced to zero, so go to
STEP 2.

STEP 2: No two marginal frequency totals are identical, so go to STEP 3.
STEP 3: The two largest marginal frequency totals are 20 in Row 1 and 10 in either

Column 2 or Column 3. As it does not matter which of the two column marginals
is chosen, choose Column 3 and set n13 = 10, the smaller of the two marginal
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Table 3.16 Example 3×3
contingency table with row
marginal frequency
distribution {20, 30, 40} and
column marginal frequency
distribution {30, 50, 10}

A1 A2 A3 Total

B1 0 10 10 20

B2 30 0 0 30

B3 0 40 0 40

Total 30 50 10 90

frequency totals and subtract 10 from the two adjusted marginal frequency totals.
The adjusted row and column marginal frequency totals are now {10, 0, 0} and
{0, 10, 0}. Go to STEP 4.

STEP 4: All marginal frequency totals have not yet been reduced to zero, so go to
STEP 2.

STEP 2: Two marginal frequency totals are equal to 10, one for Row 1 and one
for Column 2. Set n12 = 10 and subtract 10 from the two adjusted marginal
frequency totals. The adjusted row and column marginal frequency totals are
now {0, 0, 0} and {0, 0, 0}. All adjusted marginal frequency totals are now zero,
so go to STEP 5.

STEP 5: Set any remaining nij values to zero; in this case, n11, n22, n23, n31, and
n33 are set equal to zero.

The completed contingency table is listed in Table 3.16. There may be alternative
cell locations for the non-zero entries, meaning that more than one arrangement of
cell frequencies may satisfy the conditions, but the four non-zero cell frequency
values {10, 10, 30, 40} must be included in the 3×3 contingency table.

For the frequency data in the 3×3 contingency table given in Table 3.16, the
observed value of Pearson’s χ2 is χ2 = 12.9060, the observed value of both
Tschuprov’s T 2 and Cramér’s V 2 is

T 2 = V 2 = χ2

N
√

(r − 1)(c − 1)
= 12.9060

90
√

(3 − 1)(3 − 1)
= 0.0717 ,

and the observed values of Pearson’s C and Cmax are C = 0.1254 and Cmax =
0.8165, yielding a corrected value for C of C/Cmax = 0.1254/0.8165 = 0.1536.
On the other hand, the maximum value of Pearson’s chi-squared for the frequency
data given in Table 3.16 is χ2

max = 126.00, and the value of the ratio of the observed
chi-squared value to the maximum chi-squared value is only

χ2

χ2
max

= 12.9060

126.00
= 0.1025 ,

indicating that the observed value of χ2 = 12.9060 is approximately 10 % of the
maximum possible value of χ2 = 126.00, given the observed row and column
marginal frequency distributions, {20, 30, 40} and {30, 50, 10}, respectively.
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3.2.1 Application to r×c×s Contingency Tables

The procedure to find the cell configuration that will yield the maximum value of
chi-squared is not restricted to two-way contingency tables. A procedure for a three-
way contingency table illustrates application to higher dimensions.

STEP 1: List the observed marginal frequency totals of an r×c×s contingency
table with empty cell frequencies.

STEP 2: If any triplet of marginal frequency totals, one from each set of marginal
frequency totals, are equal to each other, enter that value in the table as nijk

and subtract the value from the three associated marginal frequency totals. For
example, if the marginal frequency total for Row 2 is equal to the marginal
frequency total for Column 3 and is also equal to the marginal frequency total
for Slice 1, enter the marginal frequency total in the three-way contingency table
as n231 and subtract the value of n231 from the associated marginal frequency
totals of Row 2, Column 3, and Slice 1.

Repeat STEP 2 until no three marginal frequency totals are equal. If all
marginal frequency totals have been reduced to zero, go to STEP 5; otherwise,
go to STEP 3.

STEP 3: Find the largest remaining marginal frequency totals in each set and enter
the smaller of the three values in nijk . Then, subtract that (smallest) value from
the three marginal frequency totals. Go to STEP 4.

STEP 4: If all marginal frequency totals have been reduced to zero, go to STEP 5;
otherwise, go to STEP 2.

STEP 5: Set any remaining nijk values to zero, i = 1, . . . , r , j = 1, . . . , c, and
k = 1, . . . , s.

To illustrate, consider a 3×3×3 contingency table with observed row marginal
frequency distribution {20, 30, 40}, observed column marginal frequency distribu-
tion {30, 50, 10}, and observed slice marginal frequency distribution {30, 30, 30},
such as depicted in Fig. 3.1. Then, the procedure is:

STEP 1: List the observed row, column, and slice marginal frequency totals,
leaving the cell frequencies empty, as in Fig. 3.1.

STEP 2: For the three sets of marginal frequency totals given in Fig. 3.1, three are
equal to 30, one for Row 2, one for Column 1, and one for Slice 1. Set n211 =
30 and subtract 30 from the three marginal frequency totals. The adjusted row,
column, and slice marginal frequency totals are now {20, 0, 40}, {0, 50, 10}, and
{0, 30, 30}, respectively.8 No other three marginal frequency totals are identical,
so go to STEP 3.

STEP 3: The three largest remaining marginal frequency totals are 40 in Row
3, 50 in Column 2, and 30 in either Slice 2 or Slice 3. As it does not matter

8In this case, all three slice marginal frequency totals are equal to 30. It does not matter which slice
marginal frequency total is reduced by 30. In this example, 30 was subtracted from slice 1.
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Fig. 3.1 Three-dimensional
graphic depicting row
marginal frequency totals
{20, 30, 40}, column marginal
frequency totals {30, 50, 10},
and slice marginal frequency
totals {30, 30, 30}

which slice marginal is chosen, choose Slice 2 and set n322 = 30, the smallest
of the three adjusted marginal frequency totals, and subtract 30 from the three
adjusted marginal frequency totals. The adjusted row, column, and slice marginal
frequency totals are now {20, 0, 10}, {0, 20, 10}, and {0, 0, 30}, respectively. Go
to STEP 4.

STEP 4: All marginal frequency totals have not yet been reduced to zero, so go to
STEP 2.

STEP 2: No three marginal frequency totals are identical, so go to STEP 3.
STEP 3: The three largest marginal frequency totals are 20 in Row 1, 20 in

Column 2, and 30 in Slice 3. Set n123 = 10, the smallest of the three marginal
frequency totals and subtract 10 from the three adjusted marginal frequency
totals. The adjusted row, column, and slice marginal frequency totals are now
{10, 0, 10}, {0, 10, 10}, and {0, 0, 20}, respectively. Go to STEP 4.

STEP 4: All marginal frequency totals have not yet been reduced to zero, so go to
STEP 2.

STEP 2: For the three sets of marginal frequency totals, four are equal to 10, two
for Rows 1 and 3, two for Columns 2 and 3, and one is equal to 20 for Slice 3.
Set n333 = 10 and subtract 10 from the three adjusted marginal frequency totals.
The adjusted row, column, and slice marginal frequency totals are now {0, 0, 10},
{0, 0, 10}, and {0, 0, 10}, respectively. Go to STEP 4.

STEP 4: All marginal frequency totals have not yet been reduced to zero, so go to
STEP 2.

STEP 2: For the three sets of marginal frequency totals, three are equal to 10,
one for row 3, one for column 3, and one for slice 3. Set n333 = 10 and
subtract 10 from the three adjusted marginal frequency totals. The adjusted
row, column, and slice marginal frequency totals are now {0, 0, 0}, {0, 0, 0}, and
{0, 0, 0}, respectively. All adjusted marginal frequency totals are now zero, so go
to STEP 5.
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Table 3.17 Listing of the
3×3×3 cell frequencies with
rows (A1, A2, A3), columns
(B1, B2, B3), and slices
(D1,D2,D3)

A1 A2 A3

B1 B2 B3 B1 B2 B3 B1 B2 B3

D1 0 0 0 30 0 0 0 0 0

D2 0 0 0 0 0 0 0 30 0

D3 0 20 0 0 0 0 0 0 10

STEP 5: Set any remaining nijk values to zero, i = 1, . . . , r , j = 1, . . . , c, and
k = 1, . . . , s.

The completed contingency table is given in Table 3.17. There may be alternative
cell locations for the non-zero entries, meaning that more than one arrangement of
cell frequencies may satisfy the conditions, but the four non-zero cell frequency
values {20, 30, 30, 10} must be included in the 3×3×3 contingency table.

A χ2 value for an r×c×s contingency table is given by:

χ2 = N2

⎛
⎝ r∑

i=1

c∑
j=1

s∑
k=1

O2
ij

RiCjSk

⎞
⎠− N ,

where Ri denotes a row marginal frequency total, i = 1, . . . , r , Cj denotes
a column marginal frequency total, j = 1, . . . , c, Sk denotes a slice marginal
frequency total, k = 1, . . . , s, Oijk denotes an observed cell frequency, i =
1, . . . , r , j = 1, . . . , c, k = 1, . . . , s, and N is the total of all cell frequencies; in
this case, N = 90. The maximum value of chi-squared for the 3×3×3 contingency
table given in Table 3.17 is

χ2
max = 902

[
202

(20)(50)(30)
+ 302

(30)(30)(30)
+ 302

(40)(50)(30)
+ 102

(40)(10)(30)

+ 02

(20)(30)(30)
+ 02

(20)(50)(30)
+ · · · + 02

(40)(10)(30)

]
− 90

= (8,100)(0.0700) − 90 = 477.00 .

To illustrate the procedure, consider the 3×4×5 contingency table given
in Table 3.18 with observed row marginal frequency distribution {32, 32, 31},
observed column marginal frequency distribution {25, 23, 24, 23}, and observed
slice marginal frequency distribution {19, 19, 19, 19, 19}. For the frequency data in
the 3×4×5 contingency table given in Table 3.18 with N = 95 observations, the
observed value of Pearson’s chi-squared is χ2 = 84.7379, the maximum value of
chi-squared is χ2

max = 474.9616, and the ratio of the observed chi-squared value to
the maximum chi-squared value is

χ2

χ2
max

= 84.7379

474.9616
= 0.1784 ,
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Table 3.18 Listing of the 3×4×5 cell frequencies with rows (A1, A2, A3), columns
(B1, B2, B3, B4), and slices (D1,D2,D3,D4,D5) for a resampling-approximation example

A1 A2 A3

B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4

D1 0 3 1 3 4 0 0 0 2 1 4 1

D2 0 0 0 2 1 4 1 0 3 1 3 4

D3 4 1 0 3 1 3 4 0 0 0 2 1

D4 3 4 0 0 0 2 1 4 1 0 3 1

D5 2 1 4 1 0 3 1 3 4 0 0 0

indicating that the observed value of χ2 = 84.7379 is approximately 18 %
of the maximum possible value of chi-squared, given the observed row, col-
umn, and slice marginal frequency distributions, {32, 32, 31}, {25, 23, 24, 23}, and
{19, 19, 19, 19, 19}, respectively.

3.3 Measures of Effect Size

The fact that a chi-squared statistical test produces low probability values indicates
only that there are differences among the response measurement scores between the
two variables that (possibly) cannot be attributed to error. The obtained probability
value does not indicate whether these differences are of any practical value.9

Statisticians and quantitative methodologists have raised a number of issues
and concerns with null hypothesis statistical testing (NHST). A brief overview is
provided by Cowles:

The main criticisms [of NHST], endlessly repeated, are easily listed. NHST does not offer
any way of testing the alternative or research hypothesis; the null hypothesis is usually false
and when differences or relationships are trivial, large samples will lead to its rejection;
the method discourages replication and encourages one-shot research; the inferential model
depends on assumptions about hypothetical populations and data that cannot be verified;
and there are more [35, p. 83].

In addition, there are literally hundreds of articles and chapters dealing with
the problems of NHST, far too many to be summarized here. However, a brief
overview of the limitations of null hypothesis statistical testing will suffice for these
purposes.10

First, the null hypothesis is almost never literally true, so rejection of the null
hypothesis is relatively uninformative; see, for example, articles by Baken [6],

9In the literature, “practical value” is often referred to as “practical significance,” as contrasted
with “statistical significance” [60].
10A comprehensive bibliography for the limitations of null hypothesis statistical testing has been
compiled by William Thompson [91].
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Carver [28, 29], Levine, Weber, Hullett, Park, and Massi Lindsey [66], Levine,
Weber, Park, and Hullett [67], McLean and Ernest [71], and Nix and Barnette [79,
80]. This is especially true with null hypotheses for measures of association and
correlation. For example, rejection of the null hypothesis of no correlation in the
population between variables x and y (H0:ρxy = 0), where x is, say, Years of
Education, and y is, say, Yearly Income, is meaningless. Otherwise, the proportion
of young adults ages 18–22 attending college would be only a fraction of what it is.

Second, tests of significance are highly dependent on sample sizes. When sample
sizes are small, important effects can be non-significant, and when sample sizes
are large, even trivial effects can produce very small probability values; see, for
example, articles by Daniel [38] and Levine and Hullett [65].

Third, the requirement of obtaining a random sample from a well-defined
population is seldom met in practice; see, for example, articles by Altman and
Bland [5], Bradbury [22], Feinstein [41], Frick [44], LaFleur and Greevy [62],
Ludbrook [69], Ludbrook and Dudley [70], and Still and White [90].

Fourth, the assumption of normality is rarely satisfied in real-data situations;
see, for example, articles by Bernardin and Beatty [12], Bradley [23], Bross [24],
Feinstein [41], Geary [45], Micceri [72], Murphy and Cleveland [78], Saal, Downey,
and Lahey [84], and Schmidt and Johnson [86].11

Moreover, a test statistic such as chi-squared and its associated probability value
provides no information as to the size of treatment effects, only whether they are
statistically significant [59, p. 135]. As Kirk explained in 1996 [60, p. 747], the one
individual most responsible for bringing the shortcomings of hypothesis testing to
the attention of researchers was the psychologist Jacob Cohen with two articles with
unconventional titles in American Psychologist: “Things I have learned (so far)” in
1990 [32] and “The earth is round (p < .05)” in 1994 [33]. As a result of the
identified challenges with NHST and the reporting of probability values, various
measures of effect size have been designed to reflect the substantive importance
and practical value of differences between the variables. In the context of Pearson’s
chi-squared, these measures are Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and
Pearson’s C.

Recent trends in the literature have stressed the importance of reporting a
measure of effect size along with a test of significance when analyzing experimental
data [30, 54, 60, 99]. As far back as 1957, I. Richard Savage criticized authors
for confining their interests to tests of significance and ignoring the magnitudes
of the differences [85, p. 332]. In 1958, Bolles and Messick suggested that tests of
significance be supplemented with “indices of utility”[20]. In 1963, William Hays
challenged researchers to report measures of effect size in addition to the usual
tests of significance [53]. The challenge by Hays was reiterated by Vaughan and
Corballis in 1969 [94] who expressed concerns about the lack of attention paid to
the problems described by Hays, and by Keppel in 1982 who urged researchers to

11William Thompson has compiled an extensive list of quotes from various authors detailing the
limits of null hypothesis statistical testing [92].
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always report an index of the strength of association along with a test of statistical
significance [58]. The demand for the reporting of measures of effect size was
largely led by academic psychologists [100]. However, in February of 2016, the
American Statistical Association released a statement advocating eliminating the
uncritical use of significance levels, such as 0.05 and 0.01, suggesting instead
reporting actual probability values such as P = 0.0320 along with confidence
intervals and measures of effect size [96].

For many years, statisticians and psychometricians who were Fellows of the
American Psychological Association, Division 5, urged the editors of APA journals
to mandate the reporting of effect sizes. The fourth edition of the Publication
Manual of the American Psychological Association strongly encouraged reporting
measures of effect size in conjunction with probability values. In 1999, the
American Psychological Association Task Force on Statistical Inference, under the
leadership of Leland Wilkinson, noted that “reporting and interpreting effect sizes
in the context of previously reported effects is essential to good research” [100,
p. 599]. Consequently, a number of editors of academic journals, both APA and
others, began requiring measures of effect size as a condition of publication. In
recent years, there has been increased emphasis on reporting measures of effect size
in addition to tests of significance in a number of academic disciplines, recognizing
that determination of a significant treatment effect does not necessarily translate
into a substantial effect. As a result, numerous journals now require the reporting of
measures of effect size as part of their editorial policies [26, 27].

While the chi-squared-based measures, Pearson’s φ2, Tschuprov’s T 2, Cramér’s
V 2, and Pearson’s C, are often presented as measures of effect size, because
their upper limit is usually less than unity for any realized contingency table,
they systematically underestimate the true measure of effect size. Let R denote an
unbiased measure of effect size defined as:

R = χ2

χ2
max

for any contingency table composed of two or more nominal-level variables.
To illustrate the advantage of the R measure of effect size, consider the 2×2
contingency table in Table 3.19, where the observed value of Pearson’s chi-squared
is χ2 = 0.2667, the maximum value of chi-squared given the observed row
and column marginal frequency distributions, {15, 5} and {10, 10}, respectively, is
χ2

max = 0.3333, and the observed value of the R measure of effect size is R =
χ2/χ2

max = 0.2667/0.3333 = 0.80, indicating that the observed chi-squared value

Table 3.19 Example 2×2
contingency table

A1 A2 Total

B1 8 7 15

B2 2 3 5

Total 10 10 20
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Table 3.20 Example 2×4
contingency table

A1 A2 A3 A4 Total

B1 6 1 2 6 15

B2 1 8 9 7 25

Total 7 9 11 13 40

is 80 % of the maximum possible chi-squared value, given the observed marginal
frequency distributions. In contrast, φ2 = T 2 = V 2 = 0.0133, C = 0.1147,
Cmax = 0.7071, and C/Cmax = 0.1147/0.7071 = 0.1622.

Consider a second example with a larger contingency table, such as the 2×4
contingency table given in Table 3.20. For the frequency data given in Table 3.20,
Pearson’s φ2, Tschuprov’s T 2, and Pearson’s C are not appropriate for the 2×4
contingency table as r �= c.12 The observed value of Pearson’s chi-squared is χ2 =
11.7873, the maximum value of chi-squared given the observed row and column
marginal frequency distributions, {15, 25} and {7, 9, 11, 13}, respectively, is χ2

max =
33.9048, and the observed value of the R measure of effect size is

R = χ2

χ2
max

= 11.7873

33.9048
= 0.3476 ,

indicating that the observed value of χ2 is approximately 35 % of the maximum
possible chi-squared value, given the observed marginal frequency distributions. In
contrast, Cramér’s V 2 = 0.2947.

3.4 Likelihood-Ratio Tests

It is common to see likelihood-ratio tests of independence instead of tests based
on chi-squared in the research literature. Likelihood-ratio tests are preferred by
many researchers as it is believed that likelihood-ratio tests are less affected by
small sample sizes than chi-squared tests when there are two or more degrees of
freedom. In addition, likelihood-ratio tests are widely used in log-linear models for
the analysis of contingency tables. The likelihood-ratio test for an r×c contingency
table is given by:

G2 = 2N ln(N) + 2
r∑

i=1

c∑
j=1

nij ln(nij )

− 2
r∑

i=1

Ri ln(Ri) − 2
c∑

j=1

Cj ln(Cj ) ,

12Technically, Pearson’s φ2 can be calculated on 2×c contingency tables, where it has the potential
to norm properly between the limiting values of 0 and 1. In this case, φ2 = 0.2947, the same as
Cramér’s V 2.
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where nij denotes a cell frequency and Ri and Cj denote the row and column
frequency totals, respectively, for i = 1, . . . , r and j = 1, . . . , c; however, the
likelihood-ratio is usually expressed more succinctly for calculation purposes as:

G2 = 2
r∑

i=1

c∑
j=1

Oij ln

(
Oij

Eij

)
,

where Oij and Eij denote the observed and expected cell frequencies, respectively,
for i = 1, . . . , r and j = 1, . . . , c. To illustrate the likelihood-ratio test, consider
the frequency data given in Table 3.21, where the expected cell frequency values are

E11 = (26)(30)

60
= 13.00 , E12 = (26)(20)

60
= 8.6667 ,

E13 = (26)(10)

60
= 4.3333 , E21 = (34)(30)

60
= 17.00 ,

E22 = (34)(20)

60
= 11.3333 , E23 = (34)(10)

60
= 5.6667 ,

and the observed value of G2 is

G2 = 2
r∑

i=1

c∑
j=1

Oij ln

(
Oij

Eij

)

= 2

[
20 ln

(
20

13

)
+ 5 ln

(
5

8.6667

)
+ 1 ln

(
1

4.3333

)
+ 10 ln

(
10

17

)

+ 15 ln

(
15

11.3333

)
+ 9 ln

(
9

5.6667

)]
= 14.9219 .

Unfortunately, no maximum value for G2 has been determined and the algorith-
mic procedure detailed in Sect. 3.2 for the maximum value of chi-squared is not
appropriate for the likelihood-ratio test, as the procedure will always yield some
cell frequencies that are zero and ln(0) is −∞. For the same reason, G2 is one of
the very few statistical measures that is not amenable to permutation methods. In
generating the reference set of all possible arrangements of cell frequencies, some
arrangements will necessarily include one or more cell frequencies equal to zero.

Table 3.21 Example 2×3
contingency table

A1 A2 A3 Total

B1 20 5 1 26

B2 10 15 9 34

Total 30 20 10 60



96 3 Nominal-Level Variables, I

3.5 Multi-way Contingency Tables

The analysis of multi-way contingency tables composed of disjoint, unordered
categories has become increasingly important in contemporary research [2, 46, 57,
61, 81, 83, 95, 97, 98]. In particular, a great deal of attention has been given in recent
years to log-linear analysis of multi-way contingency tables [2, 17, 47, 48, 50, 51].
Each log-linear model for a contingency table contains a set of expected values that
satisfies the model perfectly, and the model goodness of fit is typically tested with
either Pearson’s chi-squared test statistic (χ2) or Wilks’ likelihood-ratio test statistic
(G2), both of which are asymptotically distributed as chi-squared with appropriate
degrees of freedom. However, these asymptotic tests require fairly large expected
cell values, while permutation tests are ideal when expected cell values are small.
Small expected cell values are common in sparse multi-way contingency tables,
resulting in discretely distributed test statistic values that are poorly approximated
by a continuous chi-squared distribution. Contingency tables are considered to
be sparse when a substantial proportion of table cells contain small observed
frequencies, Sparse tables occur when (1) the sample size is small, (2) there are
a large number of cells in the contingency table, (3) the number of variables is large,
or (4) one or more variables contain numerous unordered categories [1, p. 244].
In this section, Monte Carlo resampling permutation methods are presented that
provide approximate probability values for the chi-squared and likelihood-ratio test
statistics for sparse multi-way contingency tables [68].

3.5.1 Method

Following the notation of Mielke and Berry [73, 75, pp. 283–285], consider an r-
way contingency table with n1 × n2 × · · ·× nr cells, where nr ≥ 2 is the number of
disjoint, unordered categories for variables i = 1, . . . , r , the observed frequency of
the (j1, . . . , jr)th cell is denoted by Oj1, ..., jr , 〈i〉ji is the fixed marginal frequency
total in the ji th category of the ith variable for ji = 1, . . . , ni , and

N =
ni∑

ji=1

〈i〉ji

is the frequency total for the r-way contingency table. The notation accommodates
all contingency tables for r ≥ 2. The Pearson chi-squared and Wilks likelihood-ratio
test statistics for the independence of r variables are then given by:

χ2 = Nr−1

⎡
⎣ r∑

i=1

ni∑
ji=1

(
O2

j1, ..., jr

/ r∏
k=1

〈k〉jk

)⎤
⎦− N (3.5)
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and

G2 = 2
r∑

i=1

ni∑
ji=1

Oj1, ..., jr ln

(
Nr−1Oj1, ..., jr

/ r∏
k=1

〈k〉jk

)
, (3.6)

respectively [75, p. 309].
Under the null hypothesis that the r variables of an r-way contingency table are

mutually independent, the conventional asymptotic method to obtain a probability
value uses a large sample approximation, which assumes that all expected cell
frequencies are at least five [4, p. 227]. The asymptotic distribution of χ2 and G2

under the null hypothesis is chi-squared with

r∏
i=1

ni −
r∑

i=1

(ni − 1) − 1

degrees of freedom (df ).
As either N or r increases in an r-way contingency table, the number of possible

cell arrangements becomes exceedingly large; consequently, only a random sample
of size L drawn from all possible arrangements is typically examined. The resulting
probability values are based on Monte Carlo procedures and are variously termed
“resampling” or “randomization” tests. The Monte Carlo resampling permutation
method to obtain probability values calculates the χ2 and G2 test statistic values for
L cell arrangements of the r-way contingency table, given fixed marginal frequency
totals. The accuracy of the resampling probability value is a function of the true
probability value and the number of random samples. When the true probability
value is not too extreme, L = 1,000,000 random samples generally ensures three
decimal places of accuracy [56]. A Monte Carlo resampling algorithm for r-way
contingency tables provides L random arrangements of cell frequencies, given fixed
marginal frequency totals [76].

If χ2
o denotes the value of χ2 calculated on the observed r-way contingency table,

the resampling probability value of χ2
o under the null hypothesis is given by:

P
{
χ2

o |N, 〈i〉ji

}
= 1

L

L∑
k=1

φ
(
χ2

k

)
,

where χ2
k denotes the kth of L random χ2 values and

φ
(
χ2

k

) =
{

1 if χ2
k ≥ χ2

o ,

0 otherwise .

Analogously, if G2
o denotes the value of G2 calculated on the observed r-way

contingency table, the resampling probability value of G2
o under the null hypothesis
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is given by:

P
{
G2

o|N, 〈i〉ji

}
= 1

L

L∑
k=1

φ
(
G2

k

)
,

where G2
k denotes the kth of L random G2 values and

φ
(
G2

k

) =
{

1 if G2
k ≥ G2

o ,

0 otherwise .

The probability values of the asymptotic and Monte Carlo resampling methods
are essentially equivalent when all cell frequencies are large. However, given the
small expected cell values that commonly occur in r-way contingency tables,
probability values obtained with the asymptotic method may differ considerably
from probability values obtained with either an exact or Monte Carlo resampling
permutation method.

3.5.2 Example

In this section, the calculation of Monte Carlo resampling probability values for
χ2 and G2 is illustrated with an example data set. To simplify the presentation, the
example analysis is confined to a three-way contingency table.

A health-care facility evaluates prospective residents using the third version of
the Test of Nonverbal Intelligence (TONI-3) as a test to evaluate incoming residents
and assign them to an appropriate level of care: Independent Living, Assisted
Living, or Continuous Care [25]. In addition, administrators of the facility gather
basic demographic information on prospective residents, including marital status
and religious preference. TONI-3 is a norm-referenced measure of intelligence,
aptitude, abstract reasoning, and problem solving that is completely nonverbal and
largely motor-free, requiring only a gesture to indicate response choices, such
as pointing or nodding. TONI-3 is particularly well-suited for individuals who
have disorders of communication or thinking, such as aphasia, speech problems,
deafness, stroke, or other neurological impairments. The hypothesis to be tested is:
Level of Care is independent of Marital Status and Religious Preference.

Consider the sparse 3×4×5 contingency table given in Table 3.22 with N = 32
residents. For consistency with the notation in the previous section, j1 denotes Level
of Care with 1 indicating Independent Living, 2 indicating Assisted Living, and
3 indicating Continuous Care; j2 denotes Religious Preference with 1 indicating
Protestant, 2 indicating Catholic, 3 indicating Jewish, and 4 indicating Other; and j3
denotes Marital Status with 1 indicating Single, 2 indicating Married, 3 indicating
Widowed, 4 indicating Divorced, and 5 indicating Separated.
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Table 3.22 Example of a
sparse three-way contingency
table data with three levels of
variable j1, four levels of
variable j2, and five levels of
variable j3

j3

j1 j2 1 2 3 4 5

1 1 0 0 0 1 0

2 0 1 0 0 0

3 2 0 0 0 2

4 1 0 1 1 0

2 1 1 1 0 0 1

2 0 0 2 1 0

3 0 0 1 2 0

4 0 1 0 0 0

3 1 0 0 1 0 0

2 1 0 0 1 3

3 0 1 0 0 0

4 0 4 0 0 1

For the frequency data given in Table 3.22, the observed value of chi-squared is
χ2

o = 67.41, the asymptotic probability value based on

r∏
i=1

ni −
r∑

i=1

(ni − 1) − 1

= (3)(4)(5) − [(3 − 1) + (4 − 1) + (5 − 1)] − 1 = 50

degrees of freedom is P = 0.0508, and the Monte Carlo resampling probability
value based on L = 1,000,000 random samples is P = 0.0407. Analogously, for the
frequency data given in Table 3.22, G2

o = 66.28, the asymptotic probability value
based on 50 degrees of freedom is P = 0.0613, and the Monte Carlo resampling
probability value based on L = 1,000,000 random samples is P = 0.0315.

Illustration of the Resampling Procedure

To illustrate the Monte Carlo resampling process, consider the 3-way contingency
table in Table 3.22 and summarized in two 2-way subtables in Table 3.23, where
the marginal frequency distributions of variables j1, j2, and j3 are denoted by
〈1〉j1 , 〈2〉j2 , and 〈3〉j3 , respectively. The Monte Carlo resampling procedure can be
illustrated with just seven steps.

STEP 1: The 3×4×5 = 60 cells are each initialized to zero.
STEP 2: Each observed marginal frequency distribution is converted to a cumu-

lative probability distribution. Thus, for variable j1 the observed marginal
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Table 3.23 Subtables of the
frequency data given in
Table 3.22 with variable j1
cross-classified with variable
j2 and variable j1
cross-classified with
variable j3

j1 j1

j2 1 2 3 〈2〉j2 j3 1 2 3 〈3〉j3

1 1 3 2 6 1 3 1 1 5

2 1 3 5 9 2 1 2 5 8

3 4 3 1 8 3 1 3 1 5

4 3 1 5 9 4 2 3 2 7

〈1〉j1 9 10 13 32 5 2 1 4 7

〈1〉j1 9 10 13 32

frequency totals 〈1〉j1 = {9, 10, 13} in Table 3.23 are converted to cumulative
probability values as follows:

9

32
= 0.2813 ,

9 + 10

32
= 0.5938 , and

9 + 10 + 13

32
= 1.0000 .

For variable j2, the observed marginal frequency totals are 〈2〉j2 = {6, 9, 8, 9}
and the cumulative probability distribution is 0.1875, 0.4688, 0.7188, and
1.0000. For variable j3, the observed marginal frequency totals are 〈3〉j3 =
{5, 8, 5, 7, 7} and the cumulative probability distribution is 0.1563, 0.4063,
0.5625, 0.7813, and 1.0000.

STEP 3: A total of r = 3 uniform pseudorandom numbers, U1, U2, and U3, are
generated on [0, 1).

STEP 4: The pseudorandom numbers, U1, U2, and U3, are located in the three
cumulative probability distributions as follows. Suppose that U1 = 0.30, U2 =
0.50, and U3 = 0.70. Since 0.2813 ≤ U1 = 0.30 < 0.5938, 0.4688 ≤ U2 =
50 < 0.7188, and 0.5625 ≤ U3 = 70 < 0.7813, the frequency O234 is increased
by 1 and the corresponding marginal frequency totals of 10, 8, and 7 are each
reduced by 1, i.e., to 9, 7, and 6, respectively.

STEP 5: The cumulative probability distributions are recalculated on the modified
marginal frequency totals and the process is repeated until all N = 32
observations have been randomly assigned to a new 3×4×5 contingency table.

STEP 6: The test statistics of interest, χ2 and G2, are calculated on the random
table.

STEP 7: The randomization procedure is repeated L times.

Illustration of the Chi-squared Calculations

To illustrate the computation of χ2
o , consider the portion of Eq. (3.5) enclosed

in square brackets. Using the observed cell frequency values in Table 3.22, i.e.,
Oj1,j2,j3 , and the marginal frequency totals in Table 3.23, i.e., 〈1〉j1 , 〈2〉j2 , and 〈3〉j3
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for j1 = {1, 2, 3}, j21 = {1, 2, 3, 4}, and j31 = {1, 2, 3, 4, 5}, the calculation of χ2
o

proceeds as follows:

r∑
i=1

ni∑
ji=1

(
O2

j1, ..., jr

/ r∏
k=1

〈k〉jk

)

= 02

(9)(6)(5)
+ 02

(9)(6)(8)
+ 12

(9)(6)(5)
+ · · · + 12

(13)(9)(7)
= 0.0971 ,

corresponding to cells 111, 112, 113, . . . , 345. Then, Eq. (3.5) yields χ2
o =

323−1(0.0971) − 32 = 67.41.

Illustration of the Likelihood-Ratio Calculations

Following the same pattern as in the χ2 calculations, i.e., cells 111, 112, 113,
. . . , 345, G2

o in Eq. (3.6) is obtained from the observed cell frequency values in
Table 3.22 and the marginal frequency totals in Table 3.23 as follows:

r∑
i=1

ni∑
ji=1

Oj1, ..., jr ln

(
Nr−1Oj1, ..., jr

/ r∏
k=1

〈k〉jk

)

= 0 ln

[
(323−1)(0)

(9)(6)(5)

]
+ 0 ln

[
(323−1)(0)

(9)(6)(8)

]
+ 0 ln

[
(323−1)(0)

(13)(9)(7)

]

+ · · · + 1 ln

[
(323−1)(1)

(9)(6)(5)

]
= 33.14 .

Then, Eq. (3.6) yields G2
o = 2(33.14) = 66.28.13

The example analyses illustrate the advantage of a Monte Carlo resampling
approach over a conventional asymptotic approach for sparse multi-way con-
tingency tables. For both χ2 and G2 in the example analyses, the asymptotic
probability values, i.e., P = 0.0508 and P = 0.0613, respectively, are somewhat
greater than the resampling probability values, i.e., P = 0.0407 and P = 0.0315,
respectively.

13Since the natural logarithm of zero is −∞, for this example ln(0) has been set to zero.
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3.6 Chi-squared Goodness-of-Fit Tests

Although chi-squared tests for goodness of fit are generally not considered to
be measures of association, in a sense they are, since, like chi-squared tests of
independence, they measure the departure between the observed and expected
category frequencies. Consequently, a chi-squared measure of goodness of fit can
easily be created to yield a maximum-corrected measure of effect size [55]. Consider
the Pearson chi-squared goodness-of-fit statistic given by:

χ2 =
k∑

i=1

O2
i

Ei

− N ,

where k is the number of disjoint, unordered categories, Oi and Ei are the observed
and expected category frequencies, respectively, for i = 1, . . . , k, and N is the
total sample size. The maximum value for a chi-squared goodness-of-fit test can be
shown to be given by:

χ2
max = N(N − q)

q
,

where q = min(E1, E2, . . . , Ek) [55, p. 413]. In the case of tied values, any of the
smallest frequency values will suffice for q . Then, a maximum-corrected measure
of effect size for the chi-squared goodness-of-fit test is given by:

R = χ2

χ2
max

= q χ2

N(N − q)
.

Since 0 ≤ R ≤ 1, interpretation of intermediate values is straightforward as
the proportion of the maximum departure between the observed and expected
values [55, p. 413].

In 1988, Jacob Cohen developed statistic w, an unstandardized measure of effect
size for a chi-squared goodness-of-fit test given by:

w =
√√√√ 1

N

k∑
i=1

(Oi − Ei)
2

Ei

=
√

χ2

N
= φ ,

where 0 ≤ w ≤ ∞ [31, pp. 216–218]. Because w is not maximum corrected, it does
not norm between 0 and 1. Consequently, w is difficult to interpret [31, p. 224]. The
relationships between test statistics R and w are given by:

R = q

N − q
w2 and w =

(
N − q

q
R

)1/2

,

where q = min(E1, E2, . . . , Ek).
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Table 3.24 Example
goodness-of-fit frequencies
with k = 4 categories and
N = 40 observations

Category

A B C D Total

Observed 24 8 6 2 40

Expected 8 10 10 12 40

3.6.1 Chi-squared Goodness-of-Fit Example

To illustrate the calculation of test statistic R, consider the frequency data given
in Table 3.24 where k = 4, N = 40, and q = min(8, 10, 10, 12) = 8. For the
frequency data given in Table 3.24, the observed value of Pearson’s chi-squared is

χ2 =
k∑

i=1

O2
i

Ei

− N = 242

8
+ 82

10
+ 62

10
+ 22

12
− 40 = 42.3333

and the maximum value of chi-squared is

χ2
max = N(N − q)

q
= 40(40 − 8)

8
= 160 .

Then, the observed value of the maximum-corrected measure of effect size for the
Pearson chi-squared goodness-of-fit test is

R = χ2

χ2
max

= 42.3333

160
= 0.2646 ,

indicating that the observed value of chi-squared is approximately 26 % of the
maximum possible χ2 value, given the expected values.

Many researchers prefer the likelihood-ratio test over the chi-squared test for
testing goodness of fit. Consider Wilks’ likelihood-ratio goodness-of-fit test given
by:

G2 = 2
k∑

i=1

Oi ln

(
Oi

Ei

)
,

where k is the number of disjoint, unordered categories and Oi and Ei are the
observed and expected category frequencies, respectively, for i = 1, . . . , k, and
all Oi are greater than zero. The maximum value for G2 can be shown to be

G2
max = −2N ln

( q

N

)
,

where q = min(E1, E2, . . . , Ek) and N is the total sample size [55, p. 413]. In the
case of tied values, any of the smallest frequency values will suffice for q . Then, a
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maximum-corrected measure of effect size for the likelihood-ratio goodness-of-fit
test is given by:

R = G2

G2
max

= G2

−2N ln
( q

N

) .

Since 0 ≤ R ≤ 1, interpretation of intermediate values is straightforward as
the proportion of the maximum departure between the observed and expected
values [55, p. 413].

3.6.2 Likelihood-Ratio Goodness-of-Fit Example

To illustrate the calculation of test statistic R, consider the frequency data given in
Table 3.24, replicated as Table 3.25 for convenience. For the frequency data given
in Table 3.25, k = 4, N = 40, the observed value of G2 is

G2 = 2
k∑

i=1

Oi ln

(
Oi

Ei

)

= 2

[
24 ln

(
24

8

)
+ 8 ln

(
8

10

)
+ 6 ln

(
6

10

)
+ 2 ln

(
2

12

)]
= 35.8661 ,

and the maximum value of G2 is

G2
max = −2N ln

( q

N

)
= −2(40) ln

(
8

40

)
= 128.7550 .

Then, the observed value of the maximum-corrected measure of effect size for
Wilks’ likelihood-ratio goodness-of-fit test is

R = G2

G2
max

= 35.8661

128.7550
= 0.2786 ,

indicating that the observed value of G2 is approximately 28 % of the max-
imum possible G2 value, given the expected values. As noted previously, the

Table 3.25 Example
goodness-of-fit frequencies
with k = 4 categories (A, B,
C, D) and N = 40
observations

Category

A B C D Total

Observed 24 8 6 2 40

Expected 8 10 10 12 40
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likelihood-ratio for goodness of fit is not amenable to permutation methods. In
generating the reference set of all possible arrangements of cell frequencies, some
arrangements will necessarily include one or more cell frequencies equal to zero
and ln(0) is −∞.

3.7 Other Goodness-of-Fit Tests

Besides goodness-of-fit tests based on the chi-squared and likelihood-ratio test
statistics, a number of other goodness-of-fit tests have been developed. While
these alternative tests are not directly based on Pearson’s chi-squared test statistic,
most are distributed as chi-squared with defined degrees of freedom. In this
section, goodness-of-fit tests for unordered equiprobable categories are described
and compared. Included in this section are Fisher’s exact test, exact chi-squared,
exact likelihood-ratio, exact Freeman–Tukey, and exact Cressie–Read goodness-
of-fit tests for k disjoint, unordered categories with equal probabilities under the
null hypothesis. As noted previously, exact tests are free from any asymptotic
assumptions; consequently, they are ideal for sparse tables where expected values
may be small.

Consider the random assignment of N objects to k unordered, mutually exclu-
sive, exhaustive, equiprobable categories, i.e., the probability for each of the k

categories is pi = 1/k for i = 1, . . . , k under the null hypothesis. Then, the
probability that Oi objects occur in the ith of k categories is the multinomial
probability given by:

P(Oi |pi,N) = P(O1, . . . , Ok|p1, . . . , pk,N) =
(

N !
/ k∏

i=1

Oi !
)

k∏
i=1

p
Oi

i ,

where

k∑
i=1

pi = 1 and
k∑

i=1

Oi = N .

Fisher’s exact goodness-of-fit test is the sum of all distinct P(Oi |N,pi) values
that are equal to or less than the observed value of P(Oi |N,pi) associated with a
set of observations, O1, . . . , Ok [74]. The Pearson [82] chi-squared goodness-of-fit
test statistic for N objects in k disjoint, unordered categories is given by:

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei
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and Wilks’ [101, 102] likelihood-ratio test statistic is given by:

G2 = 2
k∑

i=1

Oi ln

(
Oi

Ei

)
,

where the expected frequency of the ith category under the null hypothesis of equal
category probabilities is given by:

Ei = N

k
for i = 1, . . . , k .

Two other tests that have received attention are the Freeman–Tukey [43]
goodness-of-fit test given by:

T 2 =
k∑

i=1

[√
Oi +√

Oi + 1 −√
4N/k + 1

]2

and the Cressie–Read [37] goodness-of-fit test given by:

I (λ) = 2

λ(λ + 1)

k∑
i=1

Oi

[(
k Oi

N

)λ

− 1

]
.

Cressie and Read demonstrated that I (λ) with λ set to 2/3 was optimal both in terms
of attained significance level and small sample properties.

Under the null hypothesis, the χ2, G2, T 2, and I (2/3) goodness-of-fit test
statistics are distributed as chi-squared with k − 1 degrees of freedom. However,
when N is small or k is large, the expected frequencies are often small and the chi-
squared approximation to these tests is, therefore, suspect. Based on early work by
Bartlett [7, 8, 9, 10, 11], Box [21], and Lawley [63], Williams [103] introduced a
correction to Wilks’ G2 given by:

Q = 1 + 1

6N(k − 1)

k∑
i=1

1 − pi

pi

. (3.7)

A further correction to Wilks’ G2 by Smith, Rae, Manderscheid, and Silbergeld [88]
is given by:

Q′ = 1 + 1

6N2(k − 1)

k∑
i=1

(1 − pi)(1 + Npi)

p2
i

. (3.8)
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Under the null hypothesis of equal category probabilities, i.e., pi = 1/k for i =
1, . . . , k, Eq. (3.7) reduces to

Q = 1 + k + 1

6N

and Eq. (3.8) reduces to

Q′ = 1 + k + 1

6N
+ k2

6N2 .

Both the Williams [103] corrected test statistic given by:

G2
W = G2

Q

and the Smith et al. [89] corrected test statistic given by:

G2
S = G2

Q′

are distributed as chi-squared with k − 1 degrees of freedom.

3.7.1 Partition Theory

In general, for an exact goodness-of-fit test with N objects in k categories there are

M =
(

N + k − 1

k − 1

)

distinct, ordered configurations to be examined. Under the null hypothesis that
the probabilities of all k categories are equal, a vastly reduced number of distinct
partitions of the data can be considered using a further condensation of the M

ordered configurations. The condensation is based on a 1748 result by Leonhard
Euler that provides a generating function for the number of decompositions of N

integer summands without regard to order using the recurrence relation:

p(N) =
∑
j=1

(−1)j−1p

[
N − 3j2 ± j

2

]
,

where p(0) = 1 and j is a positive integer satisfying 2 ≤ 3j2 ± j ≤ 2N [40,
pp. 256–282]. Note that if N = 1, then j = 1 with only the minus (−) sign allowed;
if 2 ≤ N ≤ 4, then j = 1 with both the plus (+) and minus (−) signs allowed;
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if 5 ≤ N ≤ 6, then j = 1 with both the plus (+) and minus (−) signs allowed
and j = 2 with only the minus (−) sign allowed; and so forth.14 G.H. Hardy and
S. Ramanujan [52, p. 79] provided the asymptotic formula for p(N) given by:

p(N) ∼ 1

4N
√

3
exp

(
π
√

2N/3
)

as N → ∞.

3.7.2 Algorithm

Given k disjoint, unordered categories and observed categorical frequencies
O1, . . . , Ok, an algorithmic procedure generates all p(N) partitions, computes
the exact probability for each partition, calculates the observed χ2, G2, G2

W ,
G2

S , T 2, and I (2/3) test statistic values, and calculates the number of ways that
each partition can occur, i.e., the partition weights [13]. The partition weights are
multinomial and are given by:

W = k!
m∏

i=1

fi !
,

where fi is the frequency for each of m distinct integers comprising a partition. For
example, if the observed partition is {3 2 2 1 0 0} where N = 8 objects, k = 6
categories, and m = 4 distinct integers (3, 2, 1, 0), then f1 = 1, f2 = 2, f3 = 1,
f4 = 2, and

W = 6!
1! 2! 1! 2! = 720

4
= 180 .

If k < N , the number of distinct partitions is reduced to eliminate those partitions
where the number of partition values exceeds k. For example, if k = 3 and N = 5,
then the two partitions {2 1 1 1} and {1 1 1 1 1} cannot be considered as the
respective number of partitions, four and five, both exceed k = 3. The sum of the
values of W for the included distinct partitions is equal to M .

The exact probability values for the Fisher exact, χ2, G2, T 2, and I (2/3)

goodness-of-fit tests are obtained by comparing observed values to partition prob-
ability values. In the case of Fisher’s exact test, partition probability values equal

14In order to maintain consistency with the mathematical notation first employed by Euler, p(N)

denotes the number of partitions of N into distinct parts and should not be confused with the
common statistical use of p, which usually indicates a probability value.
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to or less than the observed partition probability value are weighted and summed.
For the exact χ2, G2, T 2, and I (2/3) goodness-of-fit tests, partition probability
values associated with partition test statistics equal to or greater than the observed
test statistic values are weighted and summed. Under the null hypothesis, G2

W and
G2

S are simple scalar functions of G2; consequently, the exact probability values for
G2

W and G2
S are identical to the probability value for G2.

3.7.3 Examples

Three examples illustrate the application of the goodness-of-fit tests. The first
example is based on N = 8 events in k = 8 categories, i.e., N = k; the second
example is based on N = 45 events in k = 20 categories, i.e., N > k; and the third
example is based on N = 10 events in k = 50 categories, i.e., N < k.

Example 1

This first example illustrates the application of goodness-of-fit tests when N = k.
Consider an example application in which N = 8 learning-disabled elementary
school children are classified into k = 8 disjoint, unordered categories of learning
disability with categorical frequencies O1 = O2 = 3, O3 = 2, and O4 = O5 =
O6 = O7 = O8 = 0. The null hypothesis specifies that the k expected category
probabilities are equally likely, i.e., pi = 1/k = 1/8 = 0.125 for i = 1, . . . , 8.
Table 3.26 lists the p(8) = 22 distinct partitions of the N = 8 events into the k = 8
categories, the partition probabilities, the multinomial weight for each partition, and
the weighted partition probability values.

Partition number 10 in Table 3.26 (identified with an asterisk) corresponds to
the observed categorical frequencies. Table 3.27 illustrates the calculation of exact
cumulative partition probability values for Fisher’s exact, Pearson’s chi-squared
(χ2), and Wilks’ likelihood-ratio (G2) goodness-of-fit tests. The partition proba-
bility values for Fisher’s exact test are accumulated according to the magnitudes of
the partition probability values. Thus, the cumulative probability value for Fisher’s
exact goodness-of-fit test is the sum of the partition probability values equal to or
less than the observed partition probability value. The χ2 (G2) partition probability
values are accumulated according to the magnitudes of the associated χ2 (G2) test
statistic values. Thus, the cumulative probability value for the χ2 (G2) goodness-of-
fit test is the sum of the partition probability values associated with the χ2 (G2) test
statistic values equal to or greater than the observed χ2 (G2) test statistic value. The
T 2 and I (2/3) partition probability values are accumulated in like manner to the χ2

and G2 tests. The probability values for Fisher’s exact, χ2, and G2 goodness-of-fit
tests are indicated by asterisks in Table 3.27.
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Table 3.26 Partitions, exact partition probability values, multinomial weights, and exact weighted
probability values for N = 8 events and k = 8 categories

Partition Multinomial Weighted
Number Partition probability weight probability

1 1 1 1 1 1 1 1 1 0.2403×10−2 1 0.2403×10−2

2 2 1 1 1 1 1 1 1 0.1202×10−2 56 0.6729×10−1

3 2 2 1 1 1 1 0 0 0.6008×10−3 420 0.2523

4 2 2 2 1 1 0 0 0 0.3004×10−3 560 0.1682

5 2 2 2 2 0 0 0 0 0.1502×10−3 70 0.1051×10−1

6 3 1 1 1 1 1 0 0 0.4005×10−3 168 0.6729×10−1

7 3 2 1 1 1 0 0 0 0.2003×10−3 1,120 0.2243

8 3 2 2 1 0 0 0 0 0.1001×10−3 840 0.8411×10−1

9 3 3 1 1 0 0 0 0 0.6676×10−4 420 0.2804×10−1

10∗ 3 3 2 0 0 0 0 0 0.3338×10−4 168 0.5608×10−2

11 4 1 1 1 1 0 0 0 0.1001×10−3 280 0.2804×10−1

12 4 2 1 1 0 0 0 0 0.5007×10−4 840 0.4206×10−1

13 4 2 2 0 0 0 0 0 0.2503×10−4 168 0.4206×10−2

14 4 3 1 0 0 0 0 0 0.1669×10−4 336 0.5608×10−2

15 4 4 0 0 0 0 0 0 0.4172×10−5 28 0.1168×10−3

16 5 1 1 1 0 0 0 0 0.2003×10−4 280 0.5608×10−2

17 5 2 1 0 0 0 0 0 0.1001×10−4 336 0.3365×10−2

18 5 3 0 0 0 0 0 0 0.3338×10−5 56 0.1869×10−3

19 6 1 1 0 0 0 0 0 0.3338×10−5 168 0.5608×10−3

20 6 2 0 0 0 0 0 0 0.1669×10−5 56 0.9346×10−4

21 7 1 0 0 0 0 0 0 0.4768×10−6 56 0.2670×10−4

22 8 0 0 0 0 0 0 0 0.5960×10−7 8 0.4768×10−6

∗ The row containing the observed categorical frequencies is identified with an asterisk

Fisher’s exact goodness-of-fit probability value is P = 0.2538×10−1, the
observed Pearson uncorrected chi-squared test statistic is χ2 = 14.00 with an exact
probability value of P = 0.6744×10−1, the observed Wilks likelihood-ratio test
statistic is G2 = 15.96 with an exact probability value of P = 0.2538×10−1,
the observed Williams likelihood-ratio test statistic is G2

W = 13.44 with an exact
probability value of P = 0.2538×10−1, the observed Smith et al. likelihood-
ratio test statistic is G2

S = 11.78 with an exact probability value of P =
0.2538×10−1,15 the observed Freeman–Tukey test statistic is T 2 = 12.94 with
an exact probability value of P = 0.1977×10−1, and the observed Cressie–Read
test statistic is I (2/3) = 13.78 with an exact probability value of 0.2538×10−1.

Given the different criteria used for determining the Fisher exact, Pearson χ2,
and Wilks G2 probability values in Table 3.27, the exact probability values for the
three tests will sometimes differ, e.g., Fisher’s exact test and Pearson’s χ2 on the

15As scalar functions of G2, G2
W , and G2

S yield identical probability values to G2.
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Table 3.27 Exact probability (P ) values for Fisher’s exact, Pearson’s chi-squared, and Wilks’
likelihood-ratio tests

Chi-squared (χ2) Likelihood-ratio (G2)

Exact P value Statistic P value Statistic P value

0.4768×10−6 56.00 0.4768×10−6 33.27 0.4768×10−6

0.2718×10−4 42.00 0.2718×10−4 27.24 0.2718×10−4

0.1206×10−3 32.00 0.1206×10−3 24.27 0.1206×10−3

0.3076×10−3 30.00 0.6814×10−3 22.69 0.3076×10−3

0.8683×10−3 26.00 0.8683×10−3 22.18 0.4244×10−3

0.9851×10−3 24.00 0.9851×10−3 21.50 0.9851×10−3

0.4350×10−2 22.00 0.4350×10−2 18.87 0.4350×10−2

0.9957×10−2 20.00 0.9957×10−2 17.68 0.9957×10−2

0.1556×10−1 18.00 0.1556×10−1 16.64 0.1416×10−1

0.1977×10−1 16.00 0.1977×10−1 16.09 0.1977×10−1

0.2538×10−1∗ 14.00 0.2538×10−1 15.96 0.2538×10−1∗
0.6744×10−1 14.00 0.6744×10−1∗ 13.86 0.6744×10−1

0.9547×10−1 12.00 0.9547×10−1 13.18 0.9547×10−1

0.1796 12.00 0.1235 12.14 0.1796

0.2076 10.00 0.2076 11.09 0.2076

0.2181 8.00 0.2181 11.09 0.2181

0.4424 8.00 0.4424 9.36 0.4424

0.6107 6.00 0.6107 8.32 0.6107

0.6780 6.00 0.6780 6.59 0.6780

0.9303 4.00 0.9303 5.55 0.9303

0.9976 2.00 0.9976 2.77 0.9976

1.0000 0.00 1.0000 0.00 1.0000

∗ Observed probability values are identified with asterisks

one hand and Pearson’s χ2 and Wilks’ G2 on the other hand, and sometimes agree,
e.g., Fisher’s exact test and Wilks’ G2. While exact and resampling-approximation
probability values are the sine qua non for statistical inference in this book, it
is sometimes informative to compare exact probability values with asymptotic
probability values, which are more common in the literature. Table 3.28 lists the
exact and asymptotic probability values for the Fisher exact, Pearson χ2, Wilks G2,
Williams G2

W , Smith et al. G2
S , Freeman–Tukey T 2, and Cressie–Read I (2/3) test

statistics.
Example 1 illustrates the analysis of data with N = 8 observations in k = 8

unordered equiprobable categories; thus, the expected value for each category is
Ei = N/k = 8/8 = 1.00 for i = 1, . . . , 8. As can be seen in Table 3.28,
Fisher’s exact, G2, G2

W , G2
S , and I (2/3) yield identical exact probability values

of P = 0.2538×10−1, while the uncorrected χ2 exact probability value is
substantially larger at P = 0.6744×10−1. In contrast, the exact probability value
for T 2 is considerably lower at P = 0.1977×10−1. In contrast, the asymptotic
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Table 3.28 Test statistics, exact probability values, and asymptotic probability values for the
Fisher exact, Pearson χ2, Wilks G2, Williams G2

W , Smith et al. G2
S , Freeman–Tukey T 2, and

Cressie–Read I (2/3) tests for Example 1

Probability

Test Statistic Exact Asymptotic

Fisher exact test – 0.2538×10−1 –

Pearson χ2 14.00 0.6744×10−1 0.5118×10−1

Wilks G2 15.96 0.2538×10−1 0.2552×10−1

Williams G2
W 13.44 0.2538×10−1 0.6216×10−1

Smith et al. G2
S 11.78 0.2538×10−1 0.1078

Freeman–Tukey T 2 12.94 0.1977×10−1 0.7349×10−1

Cressie–Read I (2/3) 13.78 0.2538×10−1 0.5524×10−1

probability values for χ2 and G2 are good approximations to the corresponding
exact probability values, while the asymptotic probability values for G2

W and G2
S

provide increasingly conservative estimates of the corresponding exact probability
values. The asymptotic probability values for both T 2 and I (2/3) are much too
conservative with asymptotic probability values of P = 0.7349×10−1 and P =
0.5524×10−1, respectively.

Example 2

This second example illustrates the application of goodness-of-fit tests when N > k.
Consider N = 45 patients with a history of substance abuse classified into k = 20
substance types, with categorical frequencies O1 = O2 = O3 = 6, O4 = 5,
O5 = 4, O6 = 3, O7 = 2, and O8 = · · · = O20 = 1. For this second example,
only 81,801 of the p(45) = 89,134 partitions are relevant to the analysis as it is
not possible to distribute all N = 45 events into the k = 20 categories and have all
categories contain two or fewer observations. The null hypothesis specifies that the
k expected category probabilities are equally likely, i.e., pi = 1/k = 1/20 = 0.05
for i = 1, . . . , 20.

Fisher’s exact goodness-of-fit probability value is P = 0.6927×10−1, the
observed Pearson uncorrected chi-squared test statistic is χ2 = 32.78 with an exact
probability value of P = 0.2864×10−1, the observed Wilks likelihood-ratio test
statistic is G2 = 28.07 with an exact probability value of P = 0.1667, the observed
Williams likelihood-ratio test statistic is G2

W = 26.04 with an exact probability
value of P = 0.1289, the observed Smith et al. likelihood-ratio test statistic is
G2

S = 25.27 with an exact probability value of P = 0.1667, the observed Freeman–
Tukey test statistic is T 2 = 22.28 with an exact probability value of P = 0.3579,
and the observed Cressie–Read test statistic is I (2/3) = 30.70 with an exact
probability value of P = 0.3701×10−1. Table 3.29 lists the exact and asymptotic



3.7 Other Goodness-of-Fit Tests 113

Table 3.29 Test statistics, exact probability values, and asymptotic probability values for the
Fisher exact, Pearson χ2, Wilks G2, Williams G2

W , Smith et al. G2
S , Freeman–Tukey T 2, and

Cressie–Read I (2/3) tests for Example 2

Probability

Test Statistic Exact Asymptotic

Fisher exact test – 0.6927×10−1 –

Pearson χ2 32.78 0.2864×10−1 0.2550×10−1

Wilks G2 28.07 0.1667 0.8212×10−1

Williams G2
W 26.04 0.1667 0.1290

Smith et al. G2
S 25.27 0.1667 0.1518

Freeman–Tukey T 2 22.28 0.3579 0.2704

Cressie–Read I (2/3) 30.70 0.3701×10−1 0.4359×10−1

probability values for the Fisher exact, Pearson χ2, Wilks G2, Williams G2
W , Smith

et al. G2
S , Freeman–Tukey T 2, and Cressie–Read I (2/3) test statistics.

Example 2 illustrates the analysis of data with N = 45 observations in k = 20
unordered equiprobable categories; thus, the expected value for each category is
Ei = N/k = 45/20 = 2.25 for i = 1, . . . , 20. As can be seen in Table 3.29, G2,
G2

W , G2
S , and T 2 all yield very conservative exact probability values. In comparison,

the asymptotic probability values for χ2 and I (2/3) are good approximations to
the corresponding exact probability values, while the asymptotic probability values
for G2, G2

W , and T 2 provide poor approximations to the corresponding exact
probability values. On the other hand, the asymptotic probability value for G2

S

of P = 0.1518 is a good approximation to the exact G2
S probability value of

P = 0.1667. As in Example 1, the asymptotic probability values for G2
W and G2

S

result in pronounced increases over the value for G2 with the added corrections of
Williams [103] and Smith et al. [88].

Example 3

This third example illustrates the application of goodness-of-fit tests when N < k.
Consider that a patient is asked to check any of k = 50 symptoms experienced in
the past six months, resulting in N = 10 selections for categorical frequencies of
O1 = 4, O2 = 3, O3 = 2, O4 = 1, and O5 = · · · = O50 = 0. In this example, all
of the p(10) = 42 partitions are relevant to the analysis, given that N < k. The null
hypothesis specifies that the k expected category probabilities are equally likely, i.e.,
pi = 1/k = 1/50 = 0.02 for i = 1, . . . , 50.

Fisher’s exact probability value is 0.1795×10−5, the observed Pearson uncor-
rected chi-squared test statistic is χ2 = 140.00 with an exact probability value of
P = 0.3788×10−4, the observed Wilks likelihood-ratio test statistic is G2 = 52.64
with an exact probability value of P = 0.1795×10−5, the observed Williams
likelihood-ratio test statistic is G2

W = 28.46 with an exact probability value
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Table 3.30 Test statistics, exact probability values, and asymptotic probability values for the
Fisher exact, Pearson χ2, Wilks G2, Williams G2

W , Smith et al. G2
S , Freeman–Tukey T 2, and

Cressie–Read I (2/3) tests for Example 3

Probability

Test Statistic Exact Asymptotic

Fisher exact test – 0.1795×10−5 –

Pearson χ2 140.00 0.3788×10−4 0.1077×10−9

Wilks G2 52.64 0.1795×10−5 0.3351

Williams G2
W 28.46 0.1795×10−5 0.9917

Smith et al. G2
S 8.75 0.1795×10−5 1.0000

Freeman–Tukey T 2 23.87 0.1795×10−5 0.9991

Cressie–Read I (2/3) 89.87 0.8356×10−5 0.3339×10−3

of P = 0.1795×10−5, the observed Smith et al. likelihood-ratio test statistic
is G2

S = 8.75 with an exact probability value of 0.1795×10−5, the observed
Freeman–Tukey test statistic is T 2 = 23.87 with an exact probability value of
P = 0.1795×10−5, and the observed Cressie–Read test statistic is I (2/3) = 89.87
with an exact probability value of P = 0.8356×10−5. Table 3.30 lists the exact and
asymptotic probability values for the Fisher exact, Pearson χ2, Wilks G2, Williams
G2

W , Smith et al. G2
S , Freeman–Tukey T 2, and Cressie–Read I (2/3) test statistics.

Example 3 illustrates the analysis of very sparse data with N = 10 observations
in k = 50 unordered equiprobable categories; thus, the expected value for each
category is only Ei = N/k = 10/50 = 0.20 for i = 1, . . . , 50. As can be seen in
Table 3.30, Fisher’s exact test, G2, G2

W , G2
S , and T 2 yield identical exact probability

values of P = 0.1795×10−5 and the exact probability values for χ2 and I (2/3) are
not far removed at P = 0.3788×10−4 and P = 0.8356×10−5, respectively. On
the other hand, the asymptotic probability values range from P = 0.1077×10−9

for χ2 to P = 1.0000 for G2
S . The asymptotic probability value for I (2/3) of

P = 0.3339×10−3 is the only asymptotic probability value that even remotely
approximates the corresponding exact probability value of P = 0.8356×10−5.

In general, asymptotic goodness-of-fit probability values are heavily influenced
by small sample sizes leading to sparse tables with low expected values. As is
evident in Example 3, asymptotic probability values are of little use for very sparse
tables. Moreover, asymptotic probability values provide conservative estimates of
the corresponding exact probability values in some cases, and in other cases, liberal
estimates. As asymptotic goodness-of-fit probability values are neither dependable
nor reliable for sparse tables, exact probability values are recommended. Other
things being equal, Fisher’s exact test is probably the best choice of the exact
tests since the probability value is based solely on the underlying exact probability
structure.
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3.7.4 Computational Efficiency

The use of a partition algorithmic procedure based on p(N) with equal category
probabilities is highly efficient when compared with the calculation of test statistic
values based on all M possible configurations. Table 3.31 compares the p(N)

partitions with the M possible configurations for 1 ≤ N = k ≤ 20. For example,
with N = 15 observations in k = 15 categories, there are only p(15) = 176
partitions, but

M =
(

N + k − 1

k − 1

)
=
(

15 + 15 − 1

15 − 1

)
=
(

29

14

)
= 77,558,760

total configurations to be analyzed. When k is much larger than N , the efficiency of
the partition procedure is increased.

Table 3.31 Comparison of
p(N) partitions and M

configurations when
1 ≤ N = k ≤ 20

N p(N) M

1 1 1

2 2 3

3 3 10

4 5 35

5 7 126

6 11 462

7 15 1,716

8 22 6,435

9 30 24,310

10 42 92,378

11 56 352,716

12 77 1,352,078

13 101 5,200,300

14 135 20,058,300

15 176 77,558,760

16 231 300,540,195

17 297 1,166,803,110

18 385 4,537,567,650

19 490 17,672,631,900

20 627 68,923,264,410
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3.8 Chi-squared and Correlation for r×c Tables

Although the relationship between Pearson’s chi-squared and the Pearson product-
moment correlation coefficient is well known and easily demonstrated for a 2×2
contingency table with dummy coding as shown in Sect. 3.1, that is,

r2
xy = χ2

N
and χ2 = Nr2

xy ,

it is not widely recognized that Pearson’s chi-squared test statistic and Pearson’s
product-moment correlation coefficient are also related for larger contingency
tables. In an appendix to his 1988 textbook titled simply Statistics, psychologist
William Hays provided an excellent presentation of the Gram–Schmidt orthonor-
malization technique, on which this discussion is primarily based [53, pp. 890–895].
See also a 2000 article by Dunlap, Brody, and Greer [39]. An advantage of the
Gram–Schmidt orthonormalization algorithm is that it guarantees the existence of
an orthonormal basis for any inner-product space.

The Gram–Schmidt orthonormalization process requires an initial set of vectors,
X, which includes the unit vector x0, i.e., x′

0 = [1 1 1 · · · ]. Choose vector x0 to
serve as an initial vector, v0, in the set V. Then, vector v1 is given by:

v1 = x1 − b1,0v0 ,

where

b1,0 = (x1, v0)

‖v0‖2 ,

(x1, v0) is the Euclidean inner product (dot product) of vectors x1 and v0, and ‖v0‖2

is the inner product of vector v0 with itself. Vector v1 is now orthogonal to the unit
vector v0, i.e., the correlation between vectors v0 and v1 is zero, within rounding
error. Now, consider vector x2 in X and find vector v2 given by:

v2 = x2 − b2,0v0 − b2,1v1 ,

where

b2,0 = (x2, v0)

‖v0‖2 , b2,1 = (x2, v1)

‖v1‖2 ,

(x2, v0) is the inner product of vectors x2 and v0, ‖v0‖2 is the inner product of
vector v0 with itself, (x2, v1) is the inner product of vectors x2 and v1, and ‖v1‖2 is
the inner product of vector v1 with itself. Vector v2 is orthogonal to vectors v0 and
v1, i.e., the inter-correlations among vectors v0, v1, and v2 are zero, within rounding
error.
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Vector v3 is given by:

v3 = x3 − b3,0v0 − b3,1v1 − b3,2v2 ,

where

b3,0 = (x3, v0)

‖v0‖2 , b3,1 = (x3, v1)

‖v1‖2 , b3,2 = (x3, v2)

‖v2‖2 ,

(x3, v0) is the inner product of vectors x3 and v0, ‖v0‖2 is the inner product of vector
v0 with itself, (x3, v1) is the inner product of vectors x3 and v1, ‖v1‖2 is the inner
product of vector v1 with itself, (x3, v2) is the inner product of vectors x3 and v2,
and ‖v2‖2 is the inner product of vector v2 with itself. Vector v3 is orthogonal to
vectors v0, v1, and v2, i.e., the inter-correlations among vectors v0, v1, v2, and v3
are zero, within rounding error. The process continues until all vectors in X have
been used or until each additional vector in X yields a v vector consisting of all
zeroes.

The standard deviation of each row vector is given by:

Sv =
(

1

N

r∑
i=1

niv
2
i

)1/2

,

where vi is the ith element in vector v for v = 1, . . . , r − 1. Next, compute the
values for the orthonormal row weights given by:

ci = 1

Sv

vi

for i = 1, . . . , r −1. The purpose is to standardize the ci vectors, i = 1, . . . , r −1,
so that the variances of the r − 1 ci values will be 1.00 and any pair of c vectors will
have a product-moment correlation coefficient of 0.00.

The process is repeated for columns with

Sv =
⎛
⎝ 1

N

c∑
j=1

niv
2
j

⎞
⎠

1/2

for v = 1, . . . , c − 1 and the values for the orthonormal column weights are given
by:

dj = 1

Sv

vj

for j = 1, . . . , c − 1.
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Table 3.32 Example r×c

contingency table with r = 4
rows and c = 3 columns

Column

Row 1 2 3 Total

1 122 70 8 200

2 141 39 15 195

3 106 79 18 203

4 92 104 3 199

Total 461 292 44 797

3.8.1 Example Orthonormalization Analysis

To illustrate the Gram–Schmidt orthonormalization process, consider the r×c

contingency table given in Table 3.32 with r = 4 rows and c = 3 columns. It
is possible to code the 4×3 contingency table given in Table 3.32 with dummy
variables representing row membership into new uncorrelated variables, each of
which has a mean of 0.00 and a variance of 1.00. Similarly, dummy variables
representing column membership can also be transformed in the same manner.

Orthonormal RowWeights

Consider the X matrix coded with dummy variables given by:

X =

⎡
⎢⎢⎣

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎤
⎥⎥⎦ ,

which is then divided into vectors x0, x1, . . . , x4:

x0 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , x1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ , x3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , x4 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

Choose v0 = x0 to serve as an initial vector and, given the observed row marginal
frequency distribution in Table 3.32, {200, 195, 203, 199}, the inner product of
vectors x1 and v0 is

(x1, v0) = (200 × 1 × 1) + (195 × 1 × 0) + (203 × 1 × 0)

+ (100 × 1 × 0) = 200 ,
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the inner product of vector v0 with itself is

‖v0‖2 = (200 × 1 × 1) + (195 × 1 × 1) + (203 × 1 × 1)

+ (199 × 1 × 1) = 797 ,

b1,0 = (x1, v0)

‖v0‖2 = 200

797
,

and vector v1 is

v1 = x1 − b1,0v0 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦− 200

797

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

+0.749059
−0.250941
−0.250941
−0.250941

⎤
⎥⎥⎦ .

Next, consider vector x2 where

x2 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ .

The inner product of vectors x2 and v0 is

(x2, v0) = (200×1 × 0) + (195 × 1 × 1) + (203 × 1 × 0)

+ (199 × 1 × 0) = 195 ,

the inner product of vectors x2 and v1 is

(x2, v1) = [200 × 0 × (+0.749059)] + [195 × 1 × (−0.250941)]
+ [203 × 0 × (−0.250941)] + [199 × 0 × (−0.250941)] = −48.933501 ,

the inner product of vector v1 with itself is

‖v1‖2 = [200 × (+0.749059)2] + [195 × (−0.250941)2]
+ [203 × (−0.250941)2] + [199 × (−0.250941)2] = 149.811794 ,

b2,0 = (x2, v0)

‖v0‖2 = 195

797
, and b2,1 = (x2, v1)

‖v1‖2 = −48.933501

149.811794
.
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Then, vector v2 is

v2 = x2 − b2,0v0 − b2,1v1 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦− 195

797

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

− −48.933501

149.811794

⎡
⎢⎢⎣

+0.749059
−0.250941
−0.250941
−0.250941

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.000000
+0.673367
−0.326633
−0.326633

⎤
⎥⎥⎦ .

Next, consider vector x3 where

x3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ .

The inner product of vectors x3 and v0 is

(x3, v0) = (200 × 1 × 0) + (195 × 1 × 0) + (203 × 1 × 1)

+ (199 × 1 × 0) = 203 ,

the inner product of vectors x3 and v1 is

(x3, v1) = [200 × 0 × (+0.749059)] + [195 × 0 × (−0.250941)]
+ [203 × 1 × (−0.250941)] + [199 × 0 × (−0.250941)] = −50.941029 ,

the inner product of vectors x3 and v2 is

(x3, v2) = (200 × 0 × 0) + [195 × 0 × (+0.673367)]
+ [203 × 1 × (−0.327733)] + [199 × 0 × (−0.326633)] = −66.306499 ,

the inner product of vector v2 with itself is

‖v2‖2 = (200 × 0) + [195 × (+0.673367)2] + [203 × (−0.326633)2]
+ [199 × (−0.326633)2] = 131.306533 ,

b3,0 = (x3, v0)

‖v0‖2 = 203

797
, b3,1 = (x3, v1)

‖v1‖2 = −50.941029

149.811794
,



3.8 Chi-squared and Correlation for r×c Tables 121

and

b3,2 = (x3, v2)

‖v2‖2 = −66.306499

131.306533
.

Then, vector v3 is

v3 = x3 − b3,0v0 − b3,1v1 − b3,2v2 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦− 203

797

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

− −50.941029

149.811794

⎡
⎢⎢⎣

+0.749059
−0.250941
−0.250941
−0.250941

⎤
⎥⎥⎦− −66.306499

131.306533

⎡
⎢⎢⎣

0.000000
+0.673367
−0.326633
−0.326633

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.000000
0.000000

+0.495025
−0.504975

⎤
⎥⎥⎦ .

The standard deviations of the row vectors are given by:

Sv =
(

1

N

r∑
i=1

niv
2
i

)1/2

.

for v = 1, . . . , r − 1. Thus,

S1 =
{

1

797

[
(200)(+0.749059)2 + (195)(−0.250941)2

+ (203)(−0.250941)2 + (199)(−0.250941)2
]}1/2

= 0.433555 ,

S2 =
{

1

797

[
(200)(0)2 + (195)(−0.673367)2

+ (203)(−0.326633)2 + (199)(−0.326633)2
]}1/2

= 0.405895 ,
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and

S3 =
{

1

797

[
(200)(0)2 + (195)(0)2

+ (203)(−0.495025)2 + (199)(−0.504975)2
]}1/2

= 0.355085 .

The standard deviations of the row vectors, S1, S2, and S3, are used to calculate the
orthonormal row weights, c1, c2, and c3, where

c1 = 1

S1
v1 = 1

0.433555

⎡
⎢⎢⎣

+0.749059
−0.250941
−0.250941
−0.250941

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

+1.727715
−0.578799
−0.578799
−0.578799

⎤
⎥⎥⎦ ,

c2 = 1

S2
v2 = 1

0.405895

⎡
⎢⎢⎣

0
+0.673367
−0.326633
−0.326633

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.000000
+1.658967
−0.804723
−0.804723

⎤
⎥⎥⎦ ,

and

c3 = 1

S3
v3 = 1

0.355085

⎡
⎢⎢⎣

0.000000
0.000000

+0.495025
−1.422124

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.000000
0.000000

+1.394102
−1.422124

⎤
⎥⎥⎦ .

Orthonormal ColumnWeights

In a similar fashion, the orthonormal weights are calculated for the columns of data
given in Table 3.32, where there are only c = 3 columns and, thus, only c − 1 =
2 orthonormal column weights to be determined. Consider Table 3.32 on p. 118,
replicated in Table 3.33 for convenience. The X matrix for columns, coded with
dummy variables, is given by:

X =
⎡
⎣ 1 1 0 0

1 0 1 0
1 0 0 1

⎤
⎦
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Table 3.33 Example r×c

contingency table with r = 4
rows and c = 3 columns

Column

Row 1 2 3 Total

1 122 70 8 200

2 141 39 15 195

3 106 79 18 203

4 92 104 3 199

Total 461 292 44 797

then divided into vectors x0, x1, x2, and x3:

x0 =
⎡
⎣1

1
1

⎤
⎦ , x1 =

⎡
⎣1

0
0

⎤
⎦ , x2 =

⎡
⎣0

1
0

⎤
⎦ , x3 =

⎡
⎣0

0
1

⎤
⎦ .

The unit vector v0 is

v0 = x0 =
⎡
⎣1

1
1

⎤
⎦

and given the observed column marginal frequency distribution {461, 292, 44}, the
inner product of vectors x1 and v0 is

(x1, v0) = (461 × 1 × 1) + (292 × 1 × 0) + (44 × 1 × 0) = 461 ,

the inner product of vector v0 with itself is

‖v0‖2 = (461 × 1 × 1) + (292 × 1 × 1) + (44 × 1 × 1) = 797 ,

b1,0 = (x0, v0)

‖v0‖2 = 461

797
,

and vector v1 is

v1 = x1 − b1,0v0 =
⎡
⎣1

0
0

⎤
⎦− 461

797

⎡
⎣1

1
1

⎤
⎦ =

⎡
⎣+0.421581

−0.578419
−0.578419

⎤
⎦ .

Next, consider vector x2 where

x2 =
⎡
⎣0

1
0

⎤
⎦ .
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The inner product of vectors x2 and v0 is

(x2, v0) = (461 × 1 × 0) + (292 × 1 × 1) + (44 × 1 × 0) = 292 ,

the inner product of vectors x2 and v1 is

(x2, v1) = [461 × 0 × (+0.421581)] + [292 × 1 × (−0.578410)]
+ [44 × 0 × (−0.578419)] = 168.898369 ,

the inner product of vector v1 with itself is

‖v1‖2 = [
461 × (+0.421581)2]+ [

292 × (−0.578419)2]
+ [

44 × (−0.578419)2] = 194.348808 ,

b2,0 = (x2, v0)

‖v0‖2 = 292

797
, and b2,1 = (x2, v1)

‖v1‖2 = 168.898369

194.348808
.

Then, vector v2 is

v2 = x2 − b2,0v0 − b2,1v1 =
⎡
⎣0

1
0

⎤
⎦− 292

797

⎡
⎣1

1
1

⎤
⎦

− 168.898369

194.348808

⎡
⎣+0.421581

−0.578419
−0.578419

⎤
⎦ =

⎡
⎣ 0

+0.131952
−0.869048

⎤
⎦ .

The standard deviations of the column vectors are given by:

Sv =
⎛
⎝ 1

N

c∑
j=1

nj v
2
j

⎞
⎠

1/2

for v = 1, . . . , c − 1. Thus,

S1 =
{

1

797

[
(461)(+0.421581)2 + (292)(−0.578419)2

+ (44)(−0.578491)2
]}1/2

= 0.493812



3.8 Chi-squared and Correlation for r×c Tables 125

and

S2 =
{

1

797

[
(461)(0)2 + (292)(−0.130952)2

+ (44)(−0.869048)2
]}1/2

= 0.219038 .

The standard deviations of the column vectors, S1 and S2, are used to calculate the
orthonormal column weights, d1 and d2, where

d1 = 1

S1
v1 = 1

0.493812

⎡
⎣+0.421581

−0.578419
−0.578419

⎤
⎦ =

⎡
⎣+0.853727

−1.171334
−1.171334

⎤
⎦

and

d2 = 1

S2
v2 = 1

0.219038

⎡
⎣ 0.000000

+0.130952
−0.869048

⎤
⎦ =

⎡
⎣ 0.000000

+0.597853
−3.967570

⎤
⎦ .

The c1, c2, and c3 orthonormal row weights and the d1 and d2 orthonormal
column weights are thus

c1 =

⎡
⎢⎢⎣

+1.727715
−0.578799
−0.578799
−0.578799

⎤
⎥⎥⎦ , c2 =

⎡
⎢⎢⎣

0.000000
+1.658967
−0.804723
−0.804723

⎤
⎥⎥⎦ , c3 =

⎡
⎢⎢⎣

0.000000
0.000000

+1.394102
−1.422124

⎤
⎥⎥⎦ ,

d1 =
⎡
⎣+0.853727

−1.171334
−1.171334

⎤
⎦ , and d2 =

⎡
⎣ 0.000000

+0.597853
−3.967570

⎤
⎦ .

Correlation and Chi-squared

The orthonormal row and column weights can be arranged into an inter-correlation
matrix in which the entries are zero-order correlation coefficients, as given in
Table 3.34. For example, the zero-order correlation between the values for c1 and
d1 is given by:

rkl = 1

N

r∑
i=1

c∑
j=1

nij cikdjl .
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Table 3.34 Inter-correlation
matrix for vectors c and d

c1 c2 c3 d1 d2

c1 1 0 0 +0.037016 +0.029256

c2 1 0 +0.189495 −0.029256

c3 1 +0.043041 −0.132012

d1 1 0

d2 1

Thus,

r11 = 1

797

[
(122)(+1.727715)(+0.853727)+ (70)(+1.727715)(−1.171334)

+ (8)(+1.727715)(−1.171334)+ (141)(−0.578799)(+0.853727)

+ (39)(−0.578799)(−1.171334)+ (15)(−0.578799)(−1.171334)

+ (106)(−0.578799)(+0.853727)+ (79)(−0.578799)(−1.171334)

+ (18)(−0.578799)(−1.171334)+ (92)(−0.578799)(+0.853727)

+ (104)(−0.578799)(−1.171334)+ (3)(−0.578799)(−1.171334)
]

= +0.037016 .

Given the zero-order correlation coefficients for vectors c and d listed in
Table 3.34, the squared multiple correlation coefficient predicting d1 from c1, c2,
and c3 is given by:

R2
d1·c1,c2,c3

= r2
11 + r2

21 + r2
31 = (+0.037016)2

+ (+0.189495)2 + (+0.043041)2 = 0.039131

since r11, r21, and r31 are independent, and the squared multiple correlation
coefficient predicting d2 from c1, c2, and c3 is given by:

R2
d2·c1,c2,c3

= r2
12 + r2

22 + r2
32 = (+0.029256)2

+ (−0.101686)2 + (−0.132012)2 = 0.028623

since r12, r22, and r32 are independent.
Then,

χ2

N
= R2

d1·c1,c2,c3
+ R2

d2·c1,c2,c3
= 0.039131 + 0.028623 = 0.067754 ,

χ2 = N
(
R2

d1·c1,c2,c3
+ R2

d2·c1,c2,c3

)
= (797)(0.039131 + 0.028623) = 54.00 ,
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and Cramér’s V 2 is the average of R2
d1·c1,c2,c3

and R2
d2·c1,c2,c3

given by:

V 2 = R2
d1·c1,c2,c3

+ R2
d2·c1,c2,c3

c − 1
= 0.039131 + 0.028623

3 − 1
= 0.033877 .

In the same manner, the values of χ2/N , χ2, and V 2 can be obtained from the
sum of the squared multiple correlation coefficients predicting rows from columns.
Thus,

R2
c1·d1,d2

= r2
11 + r2

12 = (+0.037016)2 + (+0.029256)2 = 0.002226 ,

R2
c2·d1,d2

= r2
21 + r2

22 = (+0.189495)2 + (−0.101686)2 = 0.046248 ,

R2
c3·d1,d2

= r2
31 + r2

32 = (+0.043041)2 + (−0.132012)2 = 0.019280 ,

χ2

N
= R2

c1·d1,d2
+ R2

c2·d1,d2
+ R2

c3·d1,d2
=

0.002226 + 0.046247 + 0.019280 = 0.067754 ,

χ2 = N
(
R2

c1·d1,d2
+ R2

c2·d1,d2
+ R2

c3·d1,d2

)
=

(797)(0.002226 + 0.046247 + 0.019280) = 54.00 ,

and Cramér’s V 2 is the average of R2
c1·d1,d2

, R2
c2·d1,d2

, and R2
c3·d1,d2

given by:

V 2 = R2
c1·d1,d2

+ R2
c2·d1,d2

+ R2
c3·d1,d2

r − 1

= 0.002226 + 0.046248 + 0.019280

4 − 1
= 0.033877 .

3.8.2 Analysis with Shadow Tables

Consider the frequency data given in the 4×3 contingency table in Table 3.33 on
p. 123, but rearranged into a series of independent 2×2 contingency tables or the
so-called shadow tables. Then, it can be shown that: (1) the sum of the partial
chi-squared values calculated on the (r − 1)(c − 1) possible shadow tables is
equal to the chi-squared value calculated on the full r×c contingency table; (2) the
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Table 3.35 Cell frequencies and orthonormal vectors representing rows and columns

d ′
1 +0.853727 −1.171334 −1.171334

c1 c2 c3 d ′
2 0.000000 +0.597853 −3.967570

+1.727715 0.000000 0.000000 122 70 8

−0.578799 +1.658967 0.000000 141 39 15

−0.578799 −0.804723 +1.394102 106 79 18

−0.578799 −0.804723 −1.422124 92 104 3

Table 3.36 Shadow Table
(1, 1) with associated c1 and
d ′

1 orthonormal weights

d ′
1

c1 +0.853727 −1.171334

+1.727715 122 78

−0.578799 339 258

sum of all the squared product-moment correlation coefficients calculated on the
(r − 1)(c − 1) shadow tables is equal to the value of chi-squared calculated on the
full r×c contingency table, divided by N ; and (3) the squared Cramér’s coefficient
V 2 is equal to the average of the squared product-moment correlation coefficients
calculated on the (r − 1)(c − 1) possible orthonormalized 2×2 shadow tables.

Table 3.35 displays the frequencies of the 4×3 contingency table in Table 3.33 on
p. 123 along with the c and d orthonormal vectors representing rows and columns.
Table 3.36 contains the first of the (r − 1)(c − 1) = (4 − 1)(3 − 1) = 6 possible
shadow tables. Shadow Table (1, 1) in Table 3.36 is constructed from the frequency
data given in Table 3.35 as follows. The cell value in row 1 and column 1 of Shadow
Table (1, 1) in Table 3.36 containing 122 observations is simply transferred from
n11 = 122 in the 4×3 contingency table in Table 3.35. The cell value in row 1 and
column 2 of Shadow Table (1, 1) in Table 3.36 containing 78 observations is the
sum of n12 = 70 and n13 = 8 in the 4×3 contingency table in Table 3.35. The
cell value in row 2 and column 1 of Shadow Table (1, 1) in Table 3.36 containing
339 observations is the sum of n21 = 141, n31 = 106, and n41 = 92 in the
4×3 contingency table in Table 3.35. And, the cell value in row 2 and column 2
of Shadow Table (1, 1) in Table 3.36 containing 258 observations is the sum of
n22 = 39, n23 = 15, n32 = 79, n33 = 18, n42 = 104, and n43 = 3 in the 4×3
contingency table in Table 3.35.

Given

rkl = 1

N

r∑
i=1

c∑
j=1

nij cikdjl , (3.9)
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the product-moment correlation coefficient between c1 and d ′
1 for Shadow Table

(1, 1) in Table 3.36 is

r11 = 1

797

[
(122)(+1.727715)(+0.853727)+ (78)(+1.727715)(−1.171334)

+ (339)(−0.578799)(+0.853727)+ (258)(−0.578799)(−1.171334)
]

= +0.037016 ,

and the chi-squared statistic for the frequency data given in Shadow Table (1, 1) in
Table 3.36 is

χ2
11 = Nr2

11 = (797)(+0.037016)2 = 1.092044 .

Alternatively, consider Shadow Table (1, 1) in Table 3.36 complete with marginal
frequency totals as given in Table 3.37 and define Pearson’s χ2 in the conventional
manner as:

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

⎞
⎠− N ,

where Oij denotes an observed cell frequency and Ri and Cj denote the row and
column marginal frequency totals, respectively, for i = 1, . . . , r and j = 1, . . . , c.
Then,

χ2
11 = 797

[
1222

(200)(461)
+ 782

(200)(336)
+ 3392

(597)(461)
+ 2582

(597)(36)

]
− 797

= (797)(1.001370) − 797 = 1.092044

and

r11 =
√

χ2

N
=
√

1.092044

797
= 0.037016 .

Table 3.38 contains the second of six possible 2×2 shadow tables obtained
from the frequency data given in Table 3.35. Shadow Table (1, 2) in Table 3.38 is
constructed from the frequency data given in Table 3.35 as follows. The cell value in

Table 3.37 Shadow Table
(1, 1) with cell frequencies
and marginal frequency totals

A1 A2 Total

B1 122 78 200

B2 339 258 597

Total 461 336 797
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Table 3.38 Shadow Table
(1, 2) with associated c1 and
d ′

2 orthonormal weights

d ′
2

c1 +0.597853 −3.967570

+1.727715 70 8

−0.578799 222 36

row 1 and column 2 of Shadow Table (1, 2) in Table 3.38 containing 70 observations
is simply transferred from n12 = 70 in the 4×3 contingency table in Table 3.35. The
cell value in row 1 and column 2 of Shadow Table (1, 2) in Table 3.38 containing 8
observations is transferred from n22 = 8 in the 4×3 contingency table in Table 3.35.
The cell value in row 2 and column 1 of Shadow Table (1, 2) in Table 3.38 containing
222 observations is the sum of n22 = 39, n32 = 79, and n42 = 104 in the 4×3
contingency table in Table 3.35. And, the cell value in row 2 and column 2 of
Shadow Table (1, 2) in Table 3.38 containing 36 observations is the sum of n23 = 15,
n33 = 18, and n43 = 3 in the 4×3 contingency table in Table 3.35.

Following Eq. (3.9) on p. 128, the product-moment correlation coefficient
between c1 and d ′

2 for Shadow Table (1, 2) in Table 3.38 is

r12 = 1

797

[
(70)(+1.727715)(+0.597853)+ (8)(+1.727715)(−3.967570)

+ (222)(−0.578799)(+0.597853)+ (36)(−0.578799)(−3.967570)
]

= +0.029256 ,

and the chi-squared statistic for the frequency data given in Shadow Table (1, 2) in
Table 3.38 is

χ2
12 = Nr2

12 = (797)(+0.029256)2 = 0.682155 .

Table 3.39 contains the third of six possible 2×2 shadow tables obtained from
the frequency data given in Table 3.35. Following Eq. (3.9) on p. 128, the Pearson
product-moment correlation coefficient between c2 and d ′

1 for Shadow Table (2, 1)
in Table 3.39 is

r21 = 1

797

[
(141)(+1.658967)(+0.853727)+ (54)(+1.658967)(−1.171334)

+ (198)(−0.804723)(+0.853727)+ (204)(−0.804723)(−1.171334)
]

= +0.189495 ,

Table 3.39 Shadow Table
(2, 1) with associated c2 and
d ′

1 orthonormal weights

d ′
1

c2 +0.853727 −1.171334

+1.658967 141 54

-0.804723 198 204
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Table 3.40 Shadow Table
(2, 2) with associated c2 and
d ′

2 orthonormal weights

d ′
2

c2 +0.597853 −3.967570

+1.658967 39 15

-0.804723 183 21

and the chi-squared statistic for the frequency data given in Shadow Table (2, 1) in
Table 3.39 is

χ2
21 = Nr2

21 = (797)(+0.189495)2 = 28.618962 .

Table 3.40 contains the fourth of six possible 2×2 shadow tables obtained
from the frequency data given in Table 3.35. Following Eq. (3.9) on p. 128, the
product-moment correlation coefficient between c2 and d ′

2 for Shadow Table (2, 2)
in Table 3.40 is

r22 = 1

797

[
(39)(+1.658967)(+0.597853)+ (15)(+1.658967)(−3.967570)

+ (183)(−0.804723)(+0.597853)+ (21)(−0.804723)(−3.967570)
]

= −0.101686 ,

and the chi-squared statistic for the frequency data given in Shadow Table (2, 2) in
Table 3.40 is

χ2
22 = Nr2

22 = (797)(−0.101686)2 = 8.241027 .

Table 3.41 contains the fifth of six possible 2×2 shadow tables obtained from the
frequency data given in Table 3.35. Following Eq. (3.9) on p. 128, the product-
moment correlation coefficient between c3 and d ′

1 for Shadow Table (3, 1) in
Table 3.41 is

r31 = 1

797

[
(106)(+1.394102)(+0.853727)+ (97)(+1.394102)(−1.171334)

+ (92)(−1.422124)(+0.853727)+ (107)(−1.422124)(−1.171334)
]

= +0.043041 ,

Table 3.41 Shadow Table
(3, 1) with associated c3 and
d ′

1 orthonormal weights

d ′
1

c3 +0.853727 −1.171334

+1.394102 106 97

-0.422124 92 107
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Table 3.42 Shadow Table
(3, 2) with associated c3 and
d ′

2 orthonormal weights

d ′
2

c3 +0.597853 −3.967570

+1.394102 79 18

-0.422124 104 3

and the chi-squared statistic for the frequency data given in Shadow Table (3, 1) in
Table 3.41 is

χ2
31 = Nr2

31 = (797)(+0.043041)2 = 1.476433 .

Table 3.42 contains the sixth of six possible 2×2 shadow tables obtained from
the frequency data given in Table 3.35. Following Eq. (3.9) on p. 128, the product-
moment correlation coefficient between c3 and d ′

2 for Shadow Table (3, 2) in
Table 3.42 is

r32 = 1

797

[
(79)(+1.394102)(+0.597853)+ (18)(+1.394102)(−3.967570)

+ (104)(−1.422124)(+0.597853)+ (3)(−1.422124)(−3.967570)
]

= −0.132012 ,

and the chi-squared statistic for the frequency data given in Shadow Table (3, 2) in
Table 3.42 is

χ2
32 = Nr2

32 = (797)(−0.132012)2 = 13.889429 .

3.8.3 Summary

To summarize the Gram–Schmidt orthonormalization procedure, consider first that
the sum of the partial chi-squared values calculated on the (r − 1)(c − 1) = (4 −
1)(3 − 1) = 6 shadow tables is equal to the chi-squared value computed on the full
r×c contingency table. Thus,

χ2 = 1.092044 + 0.682156 + 28.618962 + 8.241027 + 1.476433

+ 13.889429 = 54.00
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Table 3.43 Example r×c

contingency table with r = 4
rows and c = 3 columns

Column

Row 1 2 3 Total

1 122 70 8 200

2 141 39 15 195

3 106 79 18 203

4 92 104 3 199

Total 461 292 44 797

and the chi-squared value for the full 4×3 contingency table given in Table 3.33 on
p. 123, replicated in Table 3.43 for convenience, is

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

⎞
⎠− N

= 797

[
122

(200)(461)
+ 70

(200)(292)
+ 8

(200)(44)
+ 141

(195)(461)

+ 39

(195)(292)
+ 15

(195)(44)
+ 106

(203)(461)
+ 79

(203)(292)

+ 18

(203)(44)
+ 92

(199)(461)
+ 104

(199)(292)
+ 3

(199)(44)

]
− 797

= 54.00 .

Second, the sum of all the squared correlation coefficients calculated on the (r −
1)(c − 1) = (4 − 1)(3 − 1) = 6 shadow tables is equal to the chi-squared value
calculated on the full r×c contingency table, divided by N . Thus, since the rij
values are independent for i = 1, . . . , r − 1 and j = 1, . . . , c − 1,

R2 =
r−1∑
i=1

c−1∑
j=1

r2
ij = (+0.037016)2 + (+0.029256)2 + (+0.189495)2

+ (−0.101686)2 + (+0.043041)2 + (−0.132012)2

= 0.067754

and

R2 = χ2

N
= 54.00

797
= 0.067754 .

Third, Cramér’s squared coefficient, V 2, is equal to the average of the squared
correlation coefficients calculated on the (r − 1)(c − 1) = (4 − 1)(3 − 1) = 6
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orthonormalized shadow tables. Let L = min(r −1, c−1) = min(4−1)(3−1) = 2
and determine the sum of the squared correlation coefficients from either

r−1∑
i=1

c−1∑
j=1

r2
ij or

1

N

r−1∑
i=1

c−1∑
j=1

χ2
ij .

Thus, Cramér’s V 2, the average of the (r−1)(c−1) squared correlation coefficients,
is given by:

V 2 = 1

L

r−1∑
i=1

c−1∑
j=1

r2
ij = 1

2
(0.067754) = 0.033877

or, more conventionally,

V 2 = 1

NL

r−1∑
i=1

c−1∑
j=1

χ2
ij = 1

(797)(2)
(54.00) = 0.033877 ,

where r2
ij and χ2

ij are calculated on the (r−1)(c−1) orthonormalized shadow tables,
i = 1, . . . , r − 1 and j = 1, . . . , c − 1.

3.9 Coda

Chapter 3 considered permutation statistical methods applied to measures of
association for two nominal-level variables based on Pearson’s chi-squared test
statistic. Included in Chap. 3 were detailed discussions of Pearson’s φ2, Tschuprov’s
T 2, Cramér’s V 2, and Pearson’s C. A chi-squared-based alternative was proposed
that corrected the four measures and normed properly between 0 and 1. The chapter
continued with a presentation of permutation-based goodness-of-fit tests including
the Fisher exact probability test, the Wilks G2 test, the Williams G2

W test, the
Smith et al. G2

S test, the Freeman–Tukey T 2 test, and the Cressie–Read I (2/3)

test. For each test, examples illustrating the various measures and either exact or
Monte Carlo resampling probability values based on the appropriate permutation
analysis were provided. The chapter concluded with an oft-neglected topic: the
relationship between chi-squared and Pearson’s product-moment correlation for
r×c contingency tables.

Chapter 4 applies exact and Monte Carlo permutation statistical methods to
measures of association for two nominal-level variables that are not based on
Pearson’s chi-squared test statistic. Included in Chap. 4 are discussions of Goodman
and Kruskal’s asymmetric λa , λb , ta , and tb measures, Cohen’s unweighted chance-
corrected κ coefficient of chance-corrected inter-rater agreement, McNemar’s and
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Cochran’s Q measures of change, Leik and Gove’s d c
N measure, Mielke and

Siddiqui’s exact probability for the matrix occupancy problem, and Fisher’s exact
probability test, extended to cover a variety of larger contingency tables.
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Chapter 4
Nominal-Level Variables, II

Chapter 3 of The Measurement of Association applied permutation statistical
methods to measures of association based on Pearson’s chi-squared test statistic
for two nominal-level (categorical) variables, e.g., Pearson’s φ2, Tschuprov’s
T 2, Cramér’s V 2, and Pearson’s C. This fourth chapter of The Measurement of
Association continues the examination of measures of association designed for
nominal-level variables, but concentrates on exact and Monte Carlo permutation
statistical methods for measures of nominal association that are based on criteria
other than Pearson’s chi-squared test statistic. First, two asymmetric measures
of nominal-level association proposed by Goodman and Kruskal in 1954, λ and
t , are described [37]. Next, Cohen’s unweighted kappa coefficient, κ , provides
an introduction to the measurement of agreement, in contrast to measures of
association [23]. Also included in Chap. 4 are McNemar’s [63] and Cochran’s [22]
Q tests that measure the degree to which response measurements change over time,
Leik and Gove’s [52] d c

N measure of nominal association, and a solution to the
matrix occupancy problem proposed by Mielke and Siddiqui [68]. Fisher’s [32]
exact probability test is the iconic permutation test for contingency tables. While
Fisher’s exact test is typically limited to 2×2 contingency tables, for which it was
originally intended, in this chapter Fisher’s exact test is extended to 2×c, 3×3,
2×2×2, and other larger contingency tables.

Some measures designed for ordinal-level variables also serve as measures of
association for nominal-level variables when r = 2 rows and c = 2 columns, i.e.,
a 2×2 contingency table. Other measures were originally designed for 2×2 contin-
gency tables with nominal-level variables. Included in measures of association for
2×2 contingency tables are percentage differences, Yule’s Q and Y measures [90],
the odds ratio, and Somers’ asymmetric measures, dyx and dxy [78]. These measures
are more appropriately described and discussed in Chaps. 9 and 10, which are
devoted to measures of association for analyzing 2×2 contingency tables, where
the level of measurement is often irrelevant.
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Table 4.1 Notation for a
2×2 contingency table

A1 A2 Total

B1 n11 n12 R1

B2 n21 n22 R2

Total C1 C2 N

4.1 Hypergeometric Probability Values

Exact permutation statistical methods, especially when applied to contingency
tables, are heavily dependent on hypergeometric probability values.1 In this section,
a brief introduction to hypergeometric probability values illustrates their calculation
and interpretation. For 2×2 contingency tables, the calculation of hypergeometric
probability values is easily demonstrated. Consider the 2×2 contingency table in
Table 4.1 where n11, . . . , n22 denote the four cell frequencies, R1 and R2 denote
the two row marginal frequency totals, C1 and C2 denote the two column marginal
frequency totals, and

N =
2∑

i=1

2∑
j=1

nij .

Because the contingency table given in Table 4.1 is a 2×2 table and, conse-
quently, has only one degree of freedom, the probability of any one cell frequency
constitutes the probability of the entire contingency table. Thus, the hypergeometric
point probability value for the cell containing n11 is given by:

p(n11|R1, C1, N) =
(

C1

n11

)(
C2

n12

)(
N

R1

)−1

=
(

R1

n11

)(
R2

n21

)(
N

C1

)−1

= R1! R2! C1! C2!
N ! n11! n12! n21! n22! . (4.1)

To illustrate the calculation of a hypergeometric point probability value for a
2×2 contingency table, consider the frequency data given in Table 4.2 with N = 20
observations. Following Eq. (4.1)

p(n11|R1, C1, N) = R1! R2! C1! C2!
N ! n11! n12! n21! n22! = 11! 9! 12! 8!

20! 9! 2! 3! 6! = 0.0367 .

The calculation of hypergeometric probability values for r×c contingency
tables is more complex than for simple 2×2 contingency tables. Consider the

1While exact permutation statistical methods for r×c contingency tables depend on hypergeomet-
ric probability values for each of the M possible arrangements of cell frequencies, Monte Carlo
resampling permutation statistical methods do not rely on hypergeometric probability values.
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Table 4.2 Example 2×2
contingency table

A1 A2 Total

B1 9 2 11

B2 3 6 9

Total 12 8 20

Table 4.3 Notation for a
4×3 contingency table

A1 A2 A3 Total

B1 n11 n12 n13 R1

B2 n21 n22 n23 R2

B3 n31 n32 n33 R3

B4 n41 n42 n43 R4

Total C1 C2 C3 N

4×3 contingency table given in Table 4.3 where n11, . . . , n43 denote the 12 cell
frequencies, R1, . . . , R4 denote the four row marginal frequency totals, C1, C2,
and C3 denote the three column marginal frequency totals, and

N =
4∑

i=1

3∑
j=1

nij .

When there are only two rows, as in the previous 2×2 example, each column
probability value is binomial, but with four rows each column probability value is
multinomial. It is well known that a multinomial probability value can be obtained
from an inter-connected series of binomial expressions. For example, for column
A1 in Table 4.3,

(
C1

n11

)(
C1 − n11

n21

)(
C1 − n11 − n21

n31

)
= C1!

n11! (C1 − n11)!

× (C1 − n11)!
n21! (C1 − n11 − n21)! × (C1 − n11 − n21)!

n31! (C1 − n11 − n21 − n31)!
= C1!

n11! n21! n31! n41! ,

for column A2 in Table 4.3,

(
C2

n12

)(
C2 − n12

n22

)(
C2 − n12 − n22

n32

)
= C2!

n12! (C2 − n12)!

× (C2 − n12)!
n22! (C2 − n12 − n22)! × (C2 − n12 − n22)!

n32! (C2 − n12 − n22 − n32)!
= C2!

n12! n22! n32! n42! ,
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for column A3 in Table 4.3,

(
C3

n13

)(
C3 − n13

n23

)(
C3 − n13 − n23

n33

)
= C3!

n13! (C3 − n13)!

× (C3 − n13)!
n23! (C3 − n13 − n23)! × (C3 − n13 − n23)!

n33! (C3 − n13 − n23 − n33)!
= C3!

n13! n23! n33! n43! ,

and for the row marginal frequency distribution in Table 4.3,

(
N

R1

)(
N − R1

R2

)(
N − R1 − R2

R3

)
= N !

R1! (N − R1)!

× (N − R1)!
R2! (N − R1 − R2)! × (N − R1 − R2)!

R3! (N − R1 − R2 − R3)!
= N !

R1! R2! R3! R4! .

Thus, for an r×c contingency table,

p(nij |Ri,Cj ,N) =

(
r∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠

N !
r∏

i=1

c∏
j=1

nij !
. (4.2)

In this form, Eq. (4.2) can easily be generalized to more complex multi-way
contingency tables [64].

To illustrate the calculation of a hypergeometric point probability value for an
r×c contingency table, consider the sparse frequency data given in Table 4.4 with
N = 14 observations. Following Eq. (4.2)

p(nij |Ri,Cj ,N) =

(
r∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠

N !
r∏

i=1

c∏
j=1

nij !

= 3! 4! 3! 4! 5! 5! 5!
14! 2! 1! 0! 0! 1! 3! 0! 3! 0! 3! 0! 1! = 0.1903×10−3 .
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Table 4.4 Example 4×3
contingency table

A1 A2 A3 Total

B1 2 1 0 3

B2 0 1 3 4

B3 0 3 0 3

B4 3 0 1 4

Total 5 5 4 14

While this section illustrates the calculation of a hypergeometric point probabil-
ity value, for an exact permutation test of an r×c contingency table it is necessary
to calculate the selected measure of association for the observed cell frequencies
and, then, exhaustively enumerate all possible, equally-likely arrangements of the
N objects in the rc cells, given the observed marginal frequency distributions.

For each arrangement in the reference set of all permutations of cell frequencies,
a measure of association, say, T , is calculated and the exact hypergeometric point
probability value, p(nij |Ri,Cj ,N) for i = 1, . . . , r and j = 1, . . . , c, is
calculated. If To denotes the value of the observed test statistic, i.e., measure
of association, the exact two-sided probability value of To is the sum of the
hypergeometric point probability values associated with the values of T computed
on all possible arrangements of cell frequencies that are equal to or greater than To.

When the number of possible arrangements of cell frequencies is very large,
exact tests are impractical and Monte Carlo permutation statistical methods become
necessary. Monte Carlo permutation statistical methods generate a random sample
of all possible arrangements of cell frequencies, drawn with replacement, given the
observed marginal frequency distributions. The resampling two-sided probability
value is simply the proportion of the T values computed on the randomly selected
arrangements that are equal to or greater than To. In the case of Monte Carlo resam-
pling, hypergeometric probability values are not involved—simply the proportion
of the values of the measures of association (T values) equal to or greater than the
value of the observed measure of association (To).

4.2 Goodman and Kruskal’s λa and λb Measures

A common problem that many researchers confront is the analysis of a cross-
classification table where both variables are categorical, as categorical variables
usually do not contain as much information as ordinal- or interval-level vari-
ables [54]. As noted in Chap. 3, the usual measures of association based on
chi-squared, such as Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, and Pearson’s
C, have proven to be less than satisfactory due to difficulties in interpretation;
see, for example, discussions by Agresti and Finlay [2, p. 284], Berry, Martin, and
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Table 4.5 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , c and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ac Total

b1 n11 n12 · · · n1c n1.

b2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

br nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N

Olson [11], Berry, Johnston, and Mielke [8, 9], Blalock [18, p. 306], Costner [27],
Ferguson [30, p. 422], Guilford [42, p. 342], and Wickens [86, p. 226].

In 1954, Leo Goodman and William Kruskal proposed several new measures
of association [37].2 Among the measures were two asymmetric proportional-
reduction-in-error (PRE) prediction measures for the analyses of a random sample
of two categorical variables: λa , for when A was considered to be the dependent
variable, and λb , for when B was considered to be the dependent variable [37].3

Consider an r×c contingency table such as depicted in Table 4.5, where aj for
j = 1, . . . , c denotes the c categories for dependent variable A, bi for i = 1, . . . , r

denotes the r categories for independent variable B, nij denotes a cell frequency for
i = 1, . . . , r and j = 1, . . . , c, and N denotes the total of cell frequencies in the
table. Denote by a dot (·) the partial sum of all rows or all columns, depending on
the position of the (·) in the subscript list. If the (·) is in the first subscript position,
the sum is over all rows and if the (·) is in the second subscript position, the sum
is over all columns. Thus, ni. denotes the marginal frequency total of the ith row,
i = 1, . . . , r , summed over all columns, and n.j denotes the marginal frequency
total of the j th column, j = 1, . . . , c summed over all rows.

Given the notation in Table 4.5, let

W =
r∑

i=1

max(ni1, ni2, . . . , nic)

and

X = max(n.1, n.2, . . . , n.c) .

Then, λa , with variable A the dependent variable, is given by:

λa = W − X

N − X
.

2This formative 1954 article by Goodman and Kruskal [37] was followed by three subsequent
articles on measures of association for cross-classifications in 1959, 1963, and 1972 [38, 39, 40]
3These same statistics, λa and λb, were independently developed by Louis (Eliyahu) Guttman in
1941 [43].
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In like manner, let

Y =
c∑

j=1

max(n1j , n2j , . . . , nrj )

and

Z = max(n1., n2., . . . , nr.) .

Then, λb, with variable B the dependent variable, is given by:

λb = Y − Z

N − Z
.

Both λa and λb are proportional-reduction-in-error (PRE) measures. Consider λa

and two possible scenarios:

Case 1: Knowledge of only the disjoint categories of dependent variable A.
Case 2: Knowledge of the disjoint categories of variable A, and also knowledge

of the disjoint categories of independent variable B.

For Case 1, it is expedient for a researcher to guess the category of dependent
variable A that has the largest marginal frequency total (mode), which in this case is
X = max(n.1, . . . , n.c). Then, the probability of error is N −X; label these “errors
of the first kind” or E1. For Case 2, it is expedient for a researcher to guess the
category of dependent variable A that has the largest cell frequency (mode) in each
category of the independent variable B, which in this case is

W =
r∑

i=1

max(ni1, ni2, . . . , nic) .

The probability of error is then N − W ; label these “errors of the second kind” or
E2. Then, λa may be expressed as:

λa = E1 − E2

E1
= N − X − (N − W)

N − X
= W − X

N − X
.

As noted by Goodman and Kruskal in 1954, a problem was immediately
observed with the interpretations of both λa and λb . Since both measures were
based on the modal values of the categories of the independent variable, when the
modal values all occurred in the same category of the dependent variable λa and
λb returned results of zero [37, p. 742]. Thus, while λa and λb were equal to zero
under independence, λa and λb could also be equal to zero for cases other than
independence. This made both λa and λb difficult to interpret; consequently, λa and
λb are seldom found in the contemporary literature. The problem is easy to illustrate
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Table 4.6 Example 2×2
contingency table with
variables A and B

independent

A1 A2 Total

B1 36 24 60

B2 24 16 40

Total 60 40 100

Table 4.7 Example 2×2
contingency table with
variables A and B not
independent

A1 A2 Total

B1 32 28 60

B2 28 12 40

Total 60 40 100

with simple 2×2 contingency tables. Consider first the 2×2 contingency table given
in Table 4.6 where the cell frequencies indicate independence between variables A

and B. For the frequency data given in Table 4.6,

W =
r∑

i=1

max(ni1, . . . , nic) = max(36, 24) + max(24, 16) = 36 + 24 = 60 ,

X = max(n.1, . . . , n.c) = max(60, 40) = 60 ,

and the observed value of λa is

λa = W − X

N − X
= 60 − 60

100 − 60
= 0.00 .

Now, consider the 2×2 contingency table given in Table 4.7 where the cell
frequencies do not indicate independence between variables A and B. For the
frequency data given in Table 4.7,

W =
r∑

i=1

max(ni1, . . . , nic) = max(32, 28) + max(28, 12) = 32 + 28 = 60 ,

X = max(n.1, . . . , n.c) = max(60, 40) = 60 ,

and the observed value of λa is

λa = W − X

N − X
= 60 − 60

100 − 60
= 0.00 .

Finally, consider the 2×2 contingency table given in Table 4.8, where the
cell frequencies indicate perfect association between variables A and B. For the
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Table 4.8 Example 2×2
contingency table with
variables A and B in perfect
association

A1 A2 Total

B1 60 0 60

B2 0 40 40

Total 60 40 100

frequency data given in Table 4.8,

W =
r∑

i=1

max(ni1, . . . , nic) = max(60, 0) + max(0, 40) = 60 + 40 = 100 ,

X = max(n.1, . . . , n.c) = max(60, 40) = 60 ,

and the observed value of λa is

λa = W − X

N − X
= 100 − 60

100 − 60
= 1.00 .

Thus, as Goodman and Kruskal explained in 1954 [37, p. 742]:

1. λa is indeterminate if and only if the population lies in one column; that is, it
appears in one category of variable A.

2. Otherwise, the value of λa lies between the limits 0 and 1.
3. λa is 0 if and only if knowledge of the B classification is of no help in predicting

the A classification.
4. λa is 1 if and only if knowledge of an object’s B category completely specifies

its A category, i.e., if each row of the cross-classification table contains at most
one non-zero value.

5. In the case of statistical independence, λa , when determinate, is zero. The
converse need not hold: λa may be zero without statistical independence holding.

6. λa is unchanged by any permutation of rows or columns.

4.2.1 Example λa and λb Analyses

For a more realistic application of Goodman and Kruskal’s λa and λb measures of
nominal association, consider the 3×4 contingency table given in Table 4.9, where
for λa

W =
r∑

i=1

max(ni1, . . . , nic) = max(5, 0, 15, 0) + max(5, 5, 15, 5)

+ max(5, 20, 5, 10) = 15 + 15 + 20 = 50 ,

X = max(n.1, . . . , n.c) = max(15, 25, 35, 15) = 35 ,
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Table 4.9 Example 3×4
contingency table for
Goodman and Kruskal’s λa

and λb

A1 A2 A3 A4 Total

B1 5 0 15 0 20

B2 5 5 15 5 30

B3 5 20 5 10 40

Total 15 25 35 15 90

and the observed value of λa is

λa = W − X

N − X
= 50 − 35

90 − 35
= 0.2727 .

The exact probability value of an observed value of λa under the null hypothesis
is given by the sum of the hypergeometric point probability values associated with
values of λa equal to or greater than the observed λa value. For the frequency
data given in Table 4.9, there are only M = 3,453,501 possible, equally-likely
arrangements in the reference set of all permutations of cell frequencies given
the observed row and column marginal frequency distributions, {20, 30, 40} and
{15, 25, 35, 15}, respectively, making an exact permutation analysis possible. The
exact upper-tail probability value of the observed λa value is P = 0.2715, i.e.,
the sum of the hypergeometric point probability values associated with values of
λa = 0.2727 or greater.

The frequency data given in Table 4.9 can also be considered with variable B as
the dependent variable. Thus, for λb

Y =
c∑

j=1

max(n1j , . . . , nrj ) = max(5, 5, 5) + max(0, 5, 20)

+ max(15, 15, 5) + max(0, 5, 10) = 5 + 20 + 15 + 10 = 50 ,

Z = max(n1., . . . , nr.) = max(20, 30, 40) = 40 ,

and the observed value of λb is

λb = Y − Z

N − Z
= 50 − 40

90 − 40
= 0.20 .

For the frequency data given in Table 4.9, there are only M = 3,453,501
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 30, 40} and {15, 25, 35, 15}, respectively, making an exact permutation analysis
feasible. The exact upper-tail probability value of the observed λb value is P =
0.7669, i.e., the sum of the hypergeometric point probability values associated with
values of λb = 0.20 or greater.
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Table 4.10 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , c and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ac Total

b1 n11 n12 · · · n1c n1.

b2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

br nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N

4.3 Goodman and Kruskal’s ta and tb Measures

As noted, vide supra, in 1954 Leo Goodman and William Kruskal proposed several
new measures of association. Among the measures was an asymmetric proportional-
reduction-in-error (PRE) prediction measure, ta , for the analysis of a random
sample of two categorical variables [37]. Consider two cross-classified unordered
polytomies, A and B, with variable A the dependent variable and variable B the
independent variable. Table 4.5 on p. 144, replicated in Table 4.10 for convenience,
provides notation for the cross-classification, where aj for j = 1, . . . , c denotes the
c categories for dependent variable A, bi for i = 1, . . . , r denotes the r categories
for independent variable B, N denotes the total of cell frequencies in the table, ni.

denotes a marginal frequency total for the ith row, i = 1, . . . , r , summed over all
columns, n.j denotes a marginal frequency total for the j th column, j = 1, . . . , c,
summed over all rows, and nij denotes a cell frequency for i = 1, . . . , r and
j = 1, . . . , c.

Goodman and Kruskal’s ta statistic is a measure of the relative reduction in
prediction error where two types of errors are defined. The first type is the error in
prediction based solely on knowledge of the distribution of the dependent variable,
termed “errors of the first kind” (E1) and consisting of the expected number of
errors when predicting the c dependent variable categories (a1, . . . , ac) from the
observed distribution of the marginals of the dependent variable (n.1, . . . , n.c). The
second type is the error in prediction based on knowledge of the distributions of both
the independent and dependent variables, termed “errors of the second kind” (E2)
and consisting of the expected number or errors when predicting the c dependent
variable categories (a1, . . . , ac) from knowledge of the r independent variable
categories (b1, . . . , br ).

To illustrate the two error types, consider predicting category a1 only from
knowledge of its marginal distribution, n.1, . . . , n.c. Clearly, n.1 out of the N total
cases are in category a1, but exactly which n.1 of the N cases is unknown. The
probability of incorrectly identifying one of the N cases in category a1 by chance
alone is given by:

N − n.1

N
.
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Since there are n.1 such classifications required, the number of expected incorrect
classifications is

n.1(N − n.1)

N

and, for all c categories of variable A, the number of expected errors of the first kind
is given by:

E1 =
c∑

j=1

n.j (N − n.j )

N
.

Likewise, to predict n11, . . . , n1c from the independent category b1, the proba-
bility of incorrectly classifying one of the n1. cases in cell n11 by chance alone is

n1. − n11

n1.

.

Since there are n11 such classifications required, the number of incorrect classifica-
tions is

n11(n1. − n11)

n1.

and, for all cr cells, the number of expected errors of the second kind is given by:

E2 =
c∑

j=1

r∑
i=1

nij (ni. − nij )

ni.

.

Goodman and Kruskal’s ta statistic is then defined as:

ta = E1 − E2

E1
.

An efficient computation form for Goodman and Kruskal’s ta is given by:

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.
−

c∑
j=1

n2
.j

N2 −
c∑

j=1

n2
.j

. (4.3)

A computed value of ta indicates the proportional reduction in prediction error
given knowledge of the distribution of independent variable B over and above
knowledge of only the distribution of dependent variable A. As defined, ta is a point
estimator of Goodman and Kruskal’s population parameter τa for the population
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from which the sample of N cases was obtained. If variable B is considered the
dependent variable and variable A the independent variable, then Goodman and
Kruskal’s test statistic tb and associated population parameter τb are analogously
defined.

While parameter τa norms properly from 0 to 1, possesses a clear and meaningful
proportional-reduction-in-error interpretation [27], and is characterized by high
intuitive and factorial validity [45], test statistic ta poses difficulties whenever the
null hypothesis posits that H0: τa = 0 [61]. The problem is that the sampling
distribution of ta is not asymptotically normal under the null hypothesis H0: τa = 0.
Consequently, the applicability of Goodman and Kruskal’s ta to typical tests of null
hypotheses has been severely circumscribed.

Although ta was developed by Goodman and Kruskal in 1954, it was not
until 1963 that the asymptotic normality for ta was established and an asymptotic
variance was given for ta , but only for 0 < τa < 1 [39]. Unfortunately, the
asymptotic variance for ta given in 1963 was later found to be incorrect, and it was
not until 1972 that the correct asymptotic variance for ta was obtained, but again,
only for 0 < τa < 1.

In 1971, Richard Light and Barry Margolin developed R2, an analysis-of-
variance technique for categorical response variables, called CATANOVA for
CATegorical ANalysis Of VAriance [55]. Light and Margolin apparently were
unaware that R2 was identical to Goodman and Kruskal’s ta and that they had
asymptotically solved the longstanding problem of testing H0: τa = 0. The identity
between R2 and ta was first recognized by Särndal in 1974 [75] and later discussed
by Margolin and Light [61], where they showed that ta(N−1)(r−1) was distributed
as chi-squared with (r − 1)(c − 1) degrees of freedom under H0: τa = 0 as
N → ∞ [13].

4.3.1 Example Analysis for ta

Consider the same 3×4 contingency table analyzed with Goodman and Kruskal’s
λa , replicated in Table 4.11 for convenience. Following Eq. (4.3), the observed value
of Goodman and Kruskal’s ta is

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
90

(
52

20
+ 02

20
+ · · · + 102

40

)
− (152 + 252 + 352 + 152)

902 − (152 + 252 + 352 + 152)
= 0.1659 .
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Table 4.11 Example 3×4
contingency table

A1 A2 A3 A4 Total

B1 5 0 15 0 20

B2 5 5 15 5 30

B3 5 20 5 10 40

Total 15 25 35 15 90

The exact probability value of an observed ta under the null hypothesis is given
by the sum of the hypergeometric point probability values associated with values of
ta equal to or greater than the observed value of ta . For the frequency data given in
Table 4.11, there are only M = 3,453,501 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies given the observed
row and column marginal frequency distributions, {20, 30, 40} and {15, 25, 35, 15},
respectively, making an exact permutation analysis possible. The exact upper-tail
probability value of the observed ta value is P = 0.3828, i.e., the sum of the
hypergeometric point probability values associated with values of ta = 0.1659 or
greater.

4.3.2 Example Analysis for tb

Now, consider variable B as the dependent variable. A convenient computing
formula for tb is

tb =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

.

Thus, for the frequency data given in Table 4.11 the observed value of tb is

tb =
90

(
52

15
+ 02

25
+ · · · + 102

40

)
− (202 + 302 + 402)

902 − (202 + 302 + 402)
= 0.2022 .

For the frequency data given in Table 4.11, there are only M = 3,453,501
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 30, 40} and {15, 25, 35, 15}, respectively, making an exact permutation analysis
feasible. The exact upper-tail probability value of the observed tb value is P =
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0.5187, i.e., the sum of the hypergeometric point probability values associated with
values of tb = 0.2022 or greater.

4.4 An Asymmetric Test of Homogeneity

Oftentimes a research question involves determining if the proportions of items
in a set of mutually exclusive categories are the same for two or more groups.
When independent random samples are drawn from each of g ≥ 2 groups and
then classified into r ≥ 2 mutually exclusive categories, the appropriate test is a
test of homogeneity of the g distributions. In a test of homogeneity, one of the
marginal distributions is known prior to collecting the data, i.e., the row or column
marginal frequency totals indicating the numbers in each of the g groups. This is
termed product multinomial sampling, since the sampling distribution is the product
of g multinomial distributions and the null hypothesis is that the g multinomial
distributions are identical [19, 49, 61].

A test of homogeneity is quite different from a test of independence, where
a single sample is drawn and then classified on both variables. In a test of
independence, both sets of marginal frequency totals are known only after the
data have been collected [62]. This is termed simple multinomial sampling, since
the sampling distribution is a multinomial distribution [19, 49]. The most widely
used test of homogeneity is the Pearson [69] chi-squared test of homogeneity with
degrees of freedom given by df = (r − 1)(g − 1). The Pearson chi-squared
test of homogeneity tests the null hypothesis that there is no difference in the
proportions of subjects in a set of mutually exclusive categories between two or
more populations [60].

Pearson’s chi-squared test of homogeneity is a symmetrical test, yielding only a
single value for an r×g contingency table. In contrast, an asymmetrical test yields
two values depending on which variable is considered to be the dependent variable.
As noted by Berkson, if the differences are all in one direction, a symmetrical test
such as chi-squared is insensitive to this fact [6, p. 536].

A symmetrical test of homogeneity, by its nature, excludes known information
about the data—which variable is the independent variable and which variable is
the dependent variable. While it is sometimes necessary to reduce the level of
measurement when distributional requirements cannot be met, in general it is not
advisable to use a statistical test that discounts important information [29, p. 911].
For example, a researcher should not discard the magnitude of a set of scores and
use a signed-ranks test instead of a Fisher–Pitman test, nor should a researcher
subsequently ignore the ranks and reduce the analysis to a simple sign test. In
the same fashion, given the problem of examining the contingency of two ordered
polytomies, the use of a chi-squared-based measure of association does not take into
consideration the inherent ordering of the categories [7].

Consider two cross-classified unordered polytomies, A and B, with B the
dependent variable. Let b1, . . . , br represent the r ≥ 2 categories of the dependent
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Table 4.12 Notation for the
cross-classification of two
categorical variables, Aj for
j = 1, . . . , g and Bi for
i = 1, . . . , r

A

B a1 a2 · · · ag Total

b1 n11 n12 · · · n1g n1.

b2 n21 n22 · · · n2g n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

br nr1 nr2 · · · nrg nr.

Total n.1 n.2 · · · n.g N

variable, a1, . . . , ag represent the g ≥ 2 categories of the independent variable,
nij indicate the cell frequency in the ith row and j th column, i = 1, . . . , r

and j = 1, . . . , g, and N denote the total sample size. Denote by a dot (·) the
partial sum of all rows or all columns, depending on the position of the (·) in the
subscript list. If the (·) is in the first subscript position, the sum is over all rows
and if the (·) is in the second subscript position, the sum is over all columns.
Thus, n1., . . . , nr. denotes the marginal frequency totals of row variable B summed
over all columns and n.1, . . . , n.g denotes the marginal frequency totals of column
variable A summed over all rows. The cross-classification of variables A and B is
displayed in Table 4.12.

Although never advanced as a test of homogeneity, the asymmetrical test tb, first
introduced by Goodman and Kruskal in 1954 [37], is an attractive alternative to the
symmetrical chi-squared test of homogeneity. The test statistic is given by:

tb =
N

g∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

,

where B is the dependent variable and the associated population parameter is
denoted as τb. If variable A is considered the dependent variable, the test statistic is
given by:

ta =
N

r∑
i=1

g∑
j=1

n2
ij

ni.

−
g∑

j=1

n2
.j

N2 −
g∑

j=1

n2
.j

and the associated population parameter is τa .
Test statistic tb takes on values between 0 and 1; tb is 0 if and only if there is

homogeneity over the r categories of the dependent variable (B) for all g groups,
and tb is 1 if and only if knowledge of variable Aj for j = 1, . . . , g completely



4.4 An Asymmetric Test of Homogeneity 155

determines knowledge of variable Bi for i = 1, . . . , r . In like fashion, test statistic
ta is 0 if and only if there is homogeneity over the g categories of the dependent
variable (A) for all r groups, and ta is 1 if and only if knowledge of variable Bi for
i = 1, . . . , r completely determines knowledge of variable Aj for j = 1, . . . , g.

While no general equivalence exists for test statistics tb, ta , and χ2, certain
relationships hold among tb, ta , and χ2 under special conditions. If g = 2, χ2 =
Ntb , and if g > 2 and n.j = N/g for j = 1, . . . , g, χ2 = N(g − 1)tb. Similarly, if
r = 2, χ2 = Nta , and if r > 2 and ni. = N/r for i = 1, . . . , r , χ2 = N(r − 1)ta .
It follows that if r = g = 2, tb = ta = χ2/N , which is the Pearson mean-
squared contingency coefficient, φ2. Finally, as N → ∞, tb(N − 1)(r − 1) and
ta(N − 1)(g − 1) are distributed as chi-squared with (r − 1)(g − 1) degrees of
freedom.

There are three methods to determine the probability value of a computed tb
or ta test statistic: exact, Monte Carlo resampling, and asymptotic procedures. The
following discussions consider only tb, but the methods are analogous for ta .

Exact Probability Values Under the null hypothesis, H0: τb = 0, each of the M

possible arrangements of the N cases over the rg categories of the contingency
table is equally probable with fixed marginal frequency distributions. For each
arrangement of the observed data in the reference set of all possible arrangements,
the desired test statistic is calculated. The exact probability value of an observed
tb test statistic is the sum of the hypergeometric point probability values associated
with values of tb or greater.

Resampling Probability Values An exact test is computationally not practical
except for fairly small samples. An alternative method that avoids the computational
demands of an exact test is a resampling permutation approximation. Under the null
hypothesis, H0: τb = 0, resampling permutation tests generate and examine a Monte
Carlo random subset of all possible, equally-likely arrangements of the observed
data. For each randomly selected arrangement of the observed data, the desired test
statistic is calculated. The Monte Carlo resampling probability value of an observed
tb test statistic is simply the proportion of the randomly selected values of tb equal
to or greater than the observed value of tb.

Asymptotic Probability Values Under the null hypothesis, H0: τb = 0, as N →
∞, tb(N −1)(g−1) is distributed as chi-squared with (r−1)(g−1) degrees of free-
dom [61]. The asymptotic probability value is the proportion of the appropriate chi-
squared distribution equal to or greater than the observed value of tb(N − 1)(g − 1).

4.4.1 Example 1

Consider a sample of N = 80 seventh grade female students, all from complete
families with three children, stratified by Resident Type (Rural, Suburban, or
Urban). Each subject is categorized into one of four Personality Characteristics
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Table 4.13 Example data set
of residence type (A) and
personality type (B)

Residence (A)

Personality (B) Rural Suburb Urban Total

Domineering 15 15 15 45

Assertive 15 0 0 15

Submissive 0 15 0 15

Passive 0 0 5 5

Total 30 30 20 80

(Domineering, Assertive, Submissive, or Passive) in a classroom setting by a panel
of trained observers. The data are given in Table 4.13. The null hypothesis posits
that the proportions of the r = 4 observed Personality Types are the same for each
of the g = 3 Residence Types. Thus, Residence Type (A) is the independent variable
and Personality Type (B) is the dependent variable.

For the frequency data given in Table 4.13,

tb =
N

g∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
80

(
152

30
+ 152

30
+ · · · + 52

20

)
− (452 + 152 + 152 + 52)

802 − (452 + 152 + 152 + 52)
= 0.2308 .

There are only M = 359,961 possible, equally-likely arrangements in the reference
set of all permutations of cell frequencies given the observed row and column
marginal frequency distributions, {45, 15, 15, 5} and {30, 30, 20}, respectively,
making an exact permutation analysis reasonable. The exact upper-tail probability
value for the observed value of tb is P = 0.1728, i.e., the sum of the hyper-
geometric point probability values associated with values of tb = 0.2308 or
greater.

In dramatic contrast, the Pearson chi-squared test of homogeneity yields a
computed value of χ2 = 66.6667 for the frequency data given in Table 4.13 and
the exact Pearson χ2 probability value is P = 0.1699×10−12. For comparison, the
asymptotic Pearson χ2 probability value based on (r−1)(g−1) = (4−1)(3−1) = 6
degrees of freedom is P = 0.1969×10−11.

The Pearson χ2 test of homogeneity is a symmetrical test and does not
distinguish between independent and dependent variables, thus excluding important
information. Because the Pearson χ2 test of homogeneity considers both variables
A and B, some insight can be gained by calculating a value for ta . For the frequency
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data given in Table 4.13,

ta =
N

r∑
i=1

g∑
j=1

n2
ij

ni.

−
g∑

j=1

n2
.j

N2 −
g∑

j=1

n2
.j

=
80

(
152

45
+ 152

45
+ · · · + 52

5

)
− (302 + 302 + 202)

802 − (302 + 302 + 202)
= 0.4286 ,

which is considerably larger than the value for tb of 0.2308. There are only
M = 359,961 possible, equally-likely arrangements in the reference set of all
permutations of cell frequencies given the observed row and column marginal
frequency distributions, {45, 15, 15, 5} and {30, 30, 20}, respectively, making an
exact permutation analysis feasible. The exact upper-tail probability value for the
observed value of ta is P = 0.0073, i.e., the sum of the hypergeometric point
probability values associated with values of ta = 0.4286 or greater.

Clearly, the Pearson χ2 test of homogeneity is detecting the substantial departure
from homogeneity of the row proportions. This is reflected in the relatively low
probability value for ta (P = 0.0073) where the column variable (A) is considered
to be the dependent variable. As the dependent variable of interest is variable B,
the Pearson χ2 test of homogeneity yields a misleading result with an asymptotic
probability value of P = 0.1969×10−11 compared with the exact probability value
for tb of P = 0.1728.

Table 4.14 displays the conditional column proportions obtained from the sample
cell frequencies of Table 4.13. In Table 4.14, variable B is the dependent variable
and the conditional column proportions are given by pi|j = nij /n.j , e.g., p1|1 =
15/30 = 0.5000. Table 4.15 displays the conditional row proportions obtained
from the sample cell frequencies of Table 4.13. In Table 4.15, variable A is the
dependent variable and the conditional row proportions are given by pj |i = nij /ni.,
e.g., p1|1 = 15/45 = 0.3333.

Table 4.14 Conditional
column proportions for
residence type (A) and
personality type (B)

Residence (A)

Personality (B) Rural Suburb Urban

Domineering 0.5000 0.5000 0.7500

Assertive 0.5000 0.0000 0.0000

Submissive 0.0000 0.5000 0.0000

Passive 0.0000 0.0000 0.2500

Total 1.0000 1.0000 1.0000
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Table 4.15 Conditional row
proportions for residence type
(A) and personality type (B)

Residence (A)

Personality (B) Rural Suburb Urban Total

Domineering 0.3333 0.3333 0.3333 1.0000

Assertive 1.0000 0.0000 0.0000 1.0000

Submissive 0.0000 1.0000 0.0000 1.0000

Passive 0.0000 0.0000 1.0000 1.0000

Even the most casual inspection of Tables 4.14 and 4.15 reveals the relative
homogeneity extant among the proportions in the columns of Table 4.14, compared
with the lack of homogeneity among the proportions in the rows of Table 4.15.
Compare, for example, the Domineering (0.3333, 0.3333, 0.3333) and Assertive
(1.0000, 0.0000, 0.0000) row proportions in Table 4.15. It is this departure from
homogeneity in the row proportions that contributes to the low probability value,
i.e., P = 0.1969×10−11, associated with the Pearson χ2 test of homogeneity.

4.4.2 Example 2

To clarify the utility of a test of homogeneity based on Goodman and Kruskal’s
tb test statistic, consider a simplified example. Suppose that a researcher wishes to
conduct a test of homogeneity with respect to Voting Behavior on three categories of
Marital Status. The null hypothesis posits that the proportions of the r = 3 observed
categories of Marital Status (independent variable) are the same for each of the
g = 3 categories of Voting Behavior (dependent variable). The researcher obtains
three independent simple random samples of 80 individuals from each of the three
categories of Marital Status—Single, Married, and Divorced—in a local election.
Table 4.16 contains the raw frequency data and conditional row proportions where
independent variable Marital Status (Single, Married, Divorced) is cross-classified
with dependent variable Voting Behavior (Republican, Democrat, Independent).

Table 4.16 Example data set of marital status (A) and voting behavior (B) with row proportions
in parentheses

Voting Behavior (B)

Marital Status (A) Republican Democrat Independent Total

Single 50 20 10 80
(0.625) (0.250) (0.125) (1.000)

Married 50 20 10 80
(0.625) (0.250) (0.125) (1.000)

Divorced 50 20 10 80
(0.625) (0.250) (0.125) (1.000)

Total 150 60 30 240
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Because the frequency data given in Table 4.16 correspond to the expected
values for each of the nine cells, Pearson’s chi-squared test of homogeneity is
χ2 = 0.00 with a probability value under the null hypothesis of P = 1.00. In
contrast, Goodman and Kruskal’s test statistic, with variable B (Voting Behavior)
the dependent variable is tb = 1.00 with a probability value under the null
hypothesis of P = 0.00.

4.5 The Measurement of Agreement

The measurement of agreement is a special case of measuring association between
two or more variables. A number of statistical research problems require the
measurement of agreement, rather than association or correlation. Agreement
indices measure the extent to which a set of response measurements are identical
to another set, i.e., agree, rather than the extent to which one set of response
measurements is a linear function of another set of response measurements, i.e.,
correlated.

The usual research situation involving a measure of agreement arises when
several judges or raters assign objects to a set of disjoint, unordered categories.
In 1957, W.S. Robinson published an article in American Sociological Review on
“The statistical measurement of agreement” [73]. In this formative article, Robinson
developed the idea of agreement, as contrasted with correlation, and showed that
a simple modification of the intraclass correlation coefficient was an appropriate
measure of statistical agreement, which he called A, presumably for agreement [73,
p. 20]. Robinson explained that statistical agreement requires that paired values be
identical, while correlation requires only that the paired values be linked by some
mathematical function [73, p. 19]. Thus, agreement is a more restrictive measure
than is correlation. Robinson argued that the distinction between agreement and
correlation leads to the conclusion that a logically correct estimate of the reliability
of a test is given by the intraclass correlation coefficient rather than the Pearsonian
(interclass) correlation coefficient and that the concept of agreement, rather than
correlation, is the proper basis of reliability theory [73, p. 18]. The 1957 Robinson
article, which was quite mathematical, was followed by a more interpretive article
in 1959 in the same journal on “The geometric interpretation of agreement” [74].

A measure of inter-rater agreement should, as a minimum, embody seven basic
attributes [16]. First, it is generally agreed that a measure of agreement should
be chance corrected, i.e., any agreement coefficient should reflect the amount of
agreement in excess of what would be expected by chance. Several researchers
have advocated chance-corrected measures of agreement, including Brennan and
Prediger [20], Cicchetti, Showalter, and Tyrer [21], Cohen [23], Conger [26],
and Krippendorff [50]. Although some investigators have argued against chance-
corrected measures of agreement, e.g., Armitage, Blendis, and Smyllie [3] and
Goodman and Kruskal [37], supporters of chance-corrected measures of agreement
far outweigh detractors.
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Second, as noted by Bartko [4, 5], Bartko and Carpenter [5], Krippendorff [50],
and Robinson [72], a measure of inter-rater agreement possesses an added advantage
if it is directly applicable to the assessment of reliability. Robinson, in particular,
was emphatic that reliability could not simply be measured by some function
of Pearsonian product-moment correlation, such as in the split-half or test–retest
methods, and argued that the concept of agreement should be the basis of reliability
theory, not correlation [73, p. 18].

Third, a number of researchers have commented on the simplicity of Euclidean
distance for measures of inter-rater agreement, noting that the squaring of dif-
ferences between scale values is questionable at best, while acknowledging that
squared differences allow for familiar interpretations of coefficients [34, 50].
Moreover, Graham and Jackson noted that squaring of differences between values,
i.e., quadratic weighting, results in a measure of association, not agreement [41].
Thus, Euclidean distance is a desired property for measures of inter-rater agreement.

Fourth, every measure of agreement should have a statistical base [5]. A measure
of agreement without a proper test of significance is severely limited in application
to practical research situations. Asymptotic analyses are interesting and useful,
under large sample conditions, but often limited in their practical utility when
sample sizes are small.

Fifth, a measure of agreement that analyzes multivariate data has a decided
advantage over univariate measures of agreement. Thus, if one observer locates a
set of objects in an r-dimensional space, a multivariate measure of agreement can
ascertain the degree to which a second observer locates the same set of objects in
the defined r-dimensional space.

Sixth, a measure of agreement should be able to analyze data at any level of
measurement. Cohen’s kappa measure of inter-rater agreement is, at the present
time, the most widely used measure of agreement. Extensions of Cohen’s kappa
to incompletely ranked data by Iachan [46] and to continuous categorical data by
Conger [26] have been established. An extension of Cohen’s kappa measure of
agreement to fully ranked ordinal data and to interval data was provided by Berry
and Mielke in 1988 [16].

Seventh, a measure of agreement should be able to evaluate information from
more than two raters or judges. Fleiss proposed a measure of agreement for multiple
raters on a nominal scale [33]. Williams presented a measure that was limited to
comparisons of the joint agreement of several raters with another rater singled out
as being of special interest [88]. Landis and Koch considered agreement among
several raters in terms of a majority opinion [51]. Light focused on an extension
of Cohen’s [23] kappa measure of inter-rater agreement to multiple raters that was
based on the average of all pairwise kappa values [54].

Unfortunately, the measure proposed by Fleiss was dependent on the average
proportion of raters who agree on the classification of each observation. The
limitation in the measure proposed by Williams appears to be overly restrictive, and
the formulation by Landis and Koch becomes computationally prohibitive if either
the number of observers or the number of response categories is large. Moreover,
the extension of kappa proposed by Fleiss did not reduce to Cohen’s kappa when
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the number of raters was two. Finally, Hubert [44] and Conger [25] provided
critical summaries of the problem of extending Cohen’s kappa measure of inter-
rater agreement to multiple raters for categorical data.

4.5.1 Robinson’s Measure of Agreement

An early measure of maximum-corrected agreement was developed by W.S.
Robinson in 1957 [73, 74]. Assume that k = 2 judges independently rate N

objects. Robinson argued that the Pearson product-moment (interclass) correlation
calculated between the ratings of two judges was an inadequate measure of
agreement because it measures the degree to which the paired values of the two
variables are proportional, when expressed as deviations from their means, rather
than identical [73, p. 19]. Robinson proposed a new measure of agreement based on
the intraclass correlation coefficient that he called A. Consider two sets of ratings
such as given in Table 4.17, where there are N = 3 pairs of values. Robinson defined
A as:

A = 1 − D

Dmax
,

where D (for Disagreement) is given by:

D =
N∑

i=1

(
X1i − X̄i

)2 +
N∑

i=1

(
X2i − X̄i

)2

and

X1i = the value of X1 for the ith pair of ratings ,

X2i = the value of X2 for the ith pair of ratings ,

X̄i = the mean of X1 and X2 for the ith pair of ratings .

Robinson noted that, by itself, D is not a very useful measure because it involves the
units of X1 and X2. To find a relative, rather than an absolute, measure of agreement,
Robinson standardized D by its range of possible variation, given by:

Dmax =
N∑

i=1

(
X1i − X̄

)2 +
N∑

i=1

(
X2i − X̄

)2
,



162 4 Nominal-Level Variables, II

Table 4.17 Example data for
Robinson’s A coefficient of
agreement

X1 X2

1 2

3 7

8 12

Table 4.18 Illustration of the
calculation of Robinson’s D

coefficient of agreement

X1i X2i X̄i

(
X1i − X̄i

)2 (
X2i − X̄i

)2
1 2 1.50 0.25 0.25

3 7 5.00 4.00 4.00

8 12 10.00 4.00 4.00

12 21 8.25 8.25

where the common mean is given by:

X̄ =

N∑
i=1

X1i +
N∑

i=1

X2i

2N
.

Example

Consider the data listed in Table 4.17 on p. 162 with N = 3 paired observations and
k = 2 sets of ratings, replicated in Table 4.18 for convenience. Then,

D =
N∑

i=1

(
X1i − X̄i

)2 +
N∑

i=1

(
X2i − X̄i

)2 = 8.25 + 8.25 = 16.50 .

Define the common mean as:

X̄ =

N∑
i=1

X1i +
N∑

i=1

X2i

2N
= 12 + 21

(2)(3)
= 5.50 ,

then the maximum value of D is illustrated in Table 4.19. The maximum value of
D is then

Dmax =
N∑

i=1

(
X1i − X̄

)2 +
N∑

i=1

(
X2i − X̄

)2 = 32.75 + 56.75 = 89.50
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Table 4.19 Illustration of
calculation of Robinson’s
maximum value of D

X1i X2i X̄i

(
X1i − X̄i

)2 (
X2i − X̄i

)2
1 2 5.50 20.25 12.25

3 7 5.50 6.25 2.25

8 12 5.50 6.25 42.25

12 21 32.75 56.75

Table 4.20 The M = 6
possible arrangements of the
X1i values, i = 1, 2, 3, with
associated values of
Robinson’s D and A

Arrangement X1 D A

1∗ 1, 3, 8 16.50 0.8156

2 3, 1, 8 26.50 0.7039

3 1, 8, 3 41.50 0.5363

4 3, 8, 1 61.50 0.3128

5 8, 1, 3 76.50 0.1453

6 8, 3, 1 86.50 0.0335

and Robinson’s A is

A = 1 − D

Dmax
= 1 − 16.50

89.50
= 0.8156 .

The sums,

N∑
i=1

X1i = 12 and
N∑

i=1

X2i = 21,

are invariant under permutation. Therefore, X̄ = 5.50 and Dmax = 89.50 are also
invariant under permutation. Moreover,

N∑
i=1

(
X1i − X̄i

)2 =
N∑

i=1

(
X2i − X̄i

)2

for all arrangements of the observed data. Thus, for an exact permutation analysis,
it is only required to calculate either

N∑
i=1

(
X1i − X̄i

)2 or
N∑

i=1

(
X2i − X̄i

)2
.

In addition, it is only necessary to shuffle either the X1i values or the X2i values,
i = 1, 2, 3, while holding the X2i or X1i values, respectively, constant.

For the data listed in Table 4.18, there are only M = 6 possible, equally-likely
arrangements of the observed data. Since M = 6 is a very small number, it will
be illustrative to list the shuffled X1i values and the associated D and A values
in Table 4.20, where the arrangement with the observed values in Table 4.18 is
indicated with an asterisk. The exact upper-tail probability of the observed value of
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Table 4.21 Example data for
the intraclass correlation
coefficient

X1i X2i X2
1i X2

2i X1iX2i

1 2 1 4 2

3 7 9 49 21

8 12 64 144 96

2 1 4 1 2

7 3 49 9 21

12 8 144 64 96

33 33 271 271 238

A = 0.8156 under the null hypothesis is given by:

P(A ≥ Ao|H0) = number of A values ≥ Ao

M
= 1

6
= 0.1667 ,

where Ao denotes the observed value of Robinson’s A. Alternatively,

P(D ≤ Do|H0) = number of D values ≤ Do

M
= 1

6
= 0.1667 ,

where Do denotes the observed value of Robinson’s D.

The Intraclass Correlation Coefficient

It is well known that the intraclass correlation coefficient (rI) between N pairs of
observations on two variables is by definition the ordinary Pearson product-moment
(interclass) correlation between 2N pairs of observations, the first N of which are
the original observations, and the second N the original observations with X1i

replacing X2i and vice versa for i = 1, . . . , N [31, Sect. 38]. Thus, the intraclass
correlation between the values of X1i and X2i for i = 1, . . . , N given in Table 4.18
on p. 162 is the Pearson product-moment correlation between the six pairs of values,
as illustrated in Table 4.21.

For the data given in Table 4.21 with N = 6 pairs of observations, the intraclass
correlation coefficient is

rI = r12 =
N

N∑
i=1

X1jX2i −
N∑

i=1

X1i

N∑
i=1

X2i

√√√√√
⎡
⎣N

N∑
i=1

X2
1i −

(
N∑

i=1

X1i

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

X2
2i −

(
N∑

i=1

X2i

)2⎤
⎦

= (6)(238) − (33)(33)√[
(6)(271) − (33)2

][
(6)(271) − (33)2

] = +0.6313 . (4.4)
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It is obvious from Eq. (4.4) that certain computational simplifications follow from
the reversal of the variable values, i.e., the row and column marginal frequency
distributions for the new variables are identical and, therefore, the means and
variances of the new variables are identical [73, p. 20].

For the case of two variables, the relationships between Robinson’s coefficient of
agreement and the coefficient of intraclass correlation are given by:

rI = 2A − 1 and A = rI + 1

2
.

Thus, in the case of two variables the intraclass correlation is a simple linear function
of the coefficient of agreement. For the example data given in Table 4.18 on p. 162,

rI = 2(0.8156) − 1 = 0.6313 and A = 0.6313 + 1

2
= 0.8156 .

For k > 2 sets of ratings, the relationships between the intraclass correlation
coefficient and Robinson’s A are not so simple and are given by:

rI = kA − 1

k − 1
and A = rI(k − 1) + 1

k
. (4.5)

It is apparent from the expressions in Eq. (4.5) that the value of the intraclass
coefficient depends not only upon A but also upon k, the number of observations
per case. The range of Robinson’s A is always from zero to unity regardless of the
number of observations. Therefore, comparisons between agreement coefficients
based upon different numbers of variables are commensurable [73, p. 22]. The upper
limit of the intraclass correlation coefficient is always unity, but its lower limit is
−1/(k − 1) [31, Sect. 38]. For k = 2 variables, the lower limit of rI is −1, but for
k = 3 variables the lower limit is −1/2, for k = 4 the lower limit is −1/3, for k = 5
the lower limit is −1/4, and so on.

4.5.2 Scott’s π Measure of Agreement

An early measure of chance-corrected agreement was introduced by William Scott
in 1955 [76]. Assume that two judges or raters independently classify each of N

observations into one of c categories. The resulting classifications can be displayed
in a c×c contingency table, such as the 3×3 table in Table 4.22, with frequencies for
cell entries. Denote by a dot (·) the partial sum of all rows or all columns, depending
on the position of the (·) in the subscript list. If the (·) is in the first subscript position,
the sum is over all rows and if the (·) is in the second subscript position, the sum
is over all columns. Thus, ni. denotes the marginal frequency total of the ith row,
i = 1, . . . , r , summed over all columns; n.j denotes the marginal frequency total
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Table 4.22 Example 3×3
cross-classification
(agreement) table with
frequencies for cell entries

Column

Row 1 2 3 Total

1 n11 n12 n13 n1.

2 n21 n22 n23 n2.

3 n31 n32 n33 n3.

Total n.1 n.2 n.3 N

of the j th column, j = 1, . . . , c, summed over all rows; and

N =
r∑

i=1

c∑
j=1

nij

denotes the table frequency total. In the notation of Table 4.22, Scott’s coefficient of
agreement for nominal-level data is given by:

π = po − pe

1 − pe
, (4.6)

where

po = 1

N

c∑
i=1

nii and pe = 1

4N2

c∑
k=1

(
n.k + nk.

)2
.

In this configuration, po is the observed proportion of observations on which the
judges agree, pe is the proportion of observations for which agreement is expected
by chance, po − pe is the proportion of agreement beyond that expected by chance,
1 − pe is the maximum possible proportion of agreement beyond that expected by
chance, and Scott’s π is the proportion of agreement between the two judges, after
chance agreement has been removed.

Example

For an example of Scott’s π measure of inter-rater agreement, consider the
frequency data given in Table 4.23, where two judges have independently classified
N = 40 objects into four disjoint categories: A, B, C, and D. For the agreement data
given in Table 4.23,

po = 1

N

c∑
1=1

nii = 4 + 4 + 4 + 4

40
= 0.40 ,

pe = 1

4N2

c∑
k=1

(n.k + nk.)
2 = 1

(4)(402)

[
(10 + 10)2 + (10 + 10)2

+ (10 + 10)2 + (10 + 10)2] = 0.25 ,



4.5 The Measurement of Agreement 167

Table 4.23 Example 4×4
cross-classification
(agreement) table

Judge 2

Judge 1 A B C D Total

A 4 3 2 1 10

B 3 4 1 3 10

C 2 1 4 2 10

D 1 2 3 4 10

Total 10 10 10 10 40

and the observed value of Scott’s π is

π = po − pe

1 − pe
= 0.40 − 0.25

1 − 0.25
= +0.20 , (4.7)

indicating 20% agreement above that expected by chance.
The exact probability value of an observed value of Scott’s π under the null

hypothesis is given by the sum of the hypergeometric point probability values
associated with the π values equal to or greater than the observed π value. For the
frequency data given in Table 4.23, there are only M = 5,045,326 possible, equally-
likely arrangements in the reference set of all permutations of cell frequencies given
the observed row and column marginal frequency distributions, {10, 10, 10, 10} and
{10, 10, 10, 10}, respectively, making an exact permutation analysis possible. The
exact upper-tail probability value of the observed π value is P = 0.2047, i.e.,
the sum of the hypergeometric point probability values associated with values of
π = +0.20 or greater.

While Scott’s π is interesting from a historical perspective, π has fallen into
desuetude and is no longer found in the current literature. Based as it is on joint
proportions, Scott’s π makes the assumption that the two judges have the same
distribution of responses, as in the example data in Table 4.18 on p. 162 with
identical marginal distributions, {10, 10, 10, 10} and {10, 10, 10, 10}. Cohen’s
κ measure does not make this assumption and, consequently, has emerged
as the preferred chance-corrected measure of inter-rater agreement for two
judges/raters.

4.5.3 Cohen’s κ Measure of Agreement

Currently, the most popular measure of agreement between two judges or raters
is the chance-corrected measure of inter-rater agreement first proposed by Jacob
Cohen in 1960 and termed kappa [23]. Cohen’s kappa measures the magnitude of
agreement between b = 2 observers on the assignment of N objects to a set of c

disjoint, unordered categories. In 1968, Cohen proposed a version of kappa that
allowed for weighting of the c categories [24]. Whereas the original (unweighted)
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Table 4.24 Example 3×3
cross-classification table with
proportions for cell entries

Column

Row 1 2 3 Total

1 p11 p12 p13 p1.

2 p21 p22 p23 p2.

3 p31 p32 p33 p3.

Total p.1 p.2 p.3 p..

kappa did not distinguish among magnitudes of disagreement, weighted kappa
incorporated the magnitude of each disagreement and provided partial credit
for disagreements when agreement was not complete [57]. The usual approach
is to assign weights to each disagreement pair with larger weights indicating
greater disagreement.4

In both the unweighted and weighted cases, kappa is equal to +1 when perfect
agreement among two or more judges occurs, 0 when agreement is equal to that
expected under independence, and negative when agreement is less than expected
by chance. Because weighted kappa applies to ordered categories, it is discussed in
Chap. 6. Unweighted kappa is discussed here as it is typically used for unordered
categorical data.

Assume that two judges or raters independently classify each of N observations
into one of c mutually exclusive, exhaustive, unordered categories. The resulting
classifications can be displayed in a c×c cross-classification, such as the 3×3
contingency table in Table 4.24, with proportions for cell entries. Denote by a dot
(·) the partial sum of all rows or all columns, depending on the position of the (·)
in the subscript list. If the (·) is in the first subscript position, the sum is over all
rows and if the (·) is in the second subscript position, the sum is over all columns.
Thus, pi. denotes the marginal proportion total of the ith row, i = 1, . . . , c,
summed over all columns; p.j denotes the marginal proportion total of the j th
column, j = 1, . . . , c, summed over all rows; and p.. = 1.00. In the notation
of Table 4.24, Cohen’s unweighted kappa coefficient for nominal-level data is given
by:

κ = po − pe

1 − pe
, (4.8)

where

po =
c∑

i=1

pii and pe =
c∑

i=1

pi.p.i .

4Some authors prefer to define kappa in terms of agreement weights, instead of disagreement
weights, e.g., Fleiss [33] and Vanbelle and Albert [83].
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Cohen’s kappa can also be defined in terms of raw frequency values, making
calculations somewhat more straightforward. Thus,

κ =

c∑
i=1

Oii −
c∑

i=1

Eii

N −
c∑

i=1

Eii

,

where Oii denotes an observed cell frequency value on the principal diagonal of a
c×c agreement table, Eii denotes an expected cell frequency value on the principal
diagonal, and

Eii = ni.n.i

N
for i = 1, . . . , c .

In the configuration of Table 4.24, po is the observed proportion of observations
on which the judges agree, pe is the proportion of observations for which agreement
is expected by chance, po − pe is the proportion of agreement beyond that expected
by chance, 1 − pe is the maximum possible proportion of agreement beyond that
expected by chance, and Cohen’s kappa test statistic is the proportion of agreement
between the two judges, after chance agreement has been removed.

Example 1

To illustrate Cohen’s kappa measure of chance-corrected inter-rater agreement, con-
sider the frequency data given in Table 4.25 where two judges have independently
classified N = 5 objects into c = 3 disjoint, unordered categories: A, B, and C. For
the agreement data given in Table 4.25,

po =
c∑

i=1

pii = 0

5
+ 2

5
+ 1

5
= 0.60 ,

pe =
c∑

i=1

pi.p.i =
(

1

5

)(
1

5

)
+
(

2

5

)(
3

5

)
+
(

2

5

)(
1

5

)
= 0.36 ,

and following Eq. (4.8), the observed value of Cohen’s κ is

κ = po − pe

1 − pe
= 0.60 − 0.36

1 − 0.36
= +0.3750 ,

indicating approximately 37% agreement above that expected by chance.
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Table 4.25 Example 3×3
cross-classification table for
Cohen’s unweighted kappa

Judge 2

Judge 1 A B C Total

A 0 1 0 1

B 0 2 0 2

C 1 0 1 2

Total 1 3 1 5

Table 4.26 Listing of the
eight sets of 3×3 cell
frequencies with row
marginal distribution {1, 2, 2}
and column marginal
distribution {1, 3, 1}

Table 1 Table 2 Table 3 Table 4

0 0 1 0 1 0 0 1 0 0 0 1

0 2 0 0 1 1 0 2 0 1 1 0

1 1 0 1 1 0 1 0 1 0 2 0

Table 5 Table 6 Table 7 Table 8

0 1 0 0 1 0 1 0 0 1 0 0

1 0 1 0 1 1 0 1 1 0 2 0

0 2 0 0 1 1 0 2 0 0 1 1

Table 4.27 Kappa and
hypergeometric probability
values for the eight 3×3
contingency tables listed in
Table 4.26

Table κ Probability

8∗ +0.6875 0.2000

3∗ +0.3750 0.1000

1 +0.0625 0.1000

6 +0.0625 0.1000

7 +0.0625 0.1000

2 −0.2500 0.1000

4 −0.2500 0.1000

5 −0.5625 0.2000

The exact probability value of an observed κ value under the null hypothesis is
given by the sum of the hypergeometric point probability values associated with
the κ values equal to or greater than the observed κ value. For the frequency data
given in Table 4.25, there are only M = 8 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies given the observed row
and column marginal frequency distributions, {1, 2, 2} and {1, 3, 1}, respectively,
making an exact permutation analysis possible. The eight possible arrangements
of cell frequencies, given the observed marginal frequency totals, are listed in
Table 4.26, where Table 3 of Table 4.26 contains the N = 5 observed cell
frequencies.

Table 4.27 lists the computed κ values and associated hypergeometric point
probability values for the M = 8 tables given in Table 4.26, ordered from high
to low by the κ values. Only two κ values are equal to or greater than the
observed value of κ = +0.3750, those belonging to Tables 8 and 3 (indicated with
asterisks). Thus, the exact upper-tail probability value of the observed κ value is
P = 0.2000 + 0.1000 = 0.3000, the sum of the hypergeometric point probability
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Table 4.28 Example 4×4
cross-classification table

Judge 2

Judge 1 A B C D Total

A 8 4 2 1 15

B 1 7 6 3 17

C 2 4 9 5 20

D 0 1 7 8 16

Total 11 16 24 17 68

values associated with values of κ = +0.3750 or greater, i.e., κ8 = +0.6875 and
κ3 = +0.3750.

Example 2

For a second, more realistic, example of Cohen’s unweighted kappa measure
of chance-corrected inter-rater agreement, consider the frequency data given in
Table 4.28, where two judges have independently classified N = 68 objects into
four disjoint, unordered categories: A, B, C, and D. For the agreement data given in
Table 4.28,

po =
c∑

i=1

pii = 8

68
+ 7

68
+ 9

68
+ 8

68
= 0.4706 ,

pe =
c∑

i=1

pi.p.i

=
(

15

68

)(
11

68

)
+
(

17

68

)(
16

68

)
+
(

20

68

)(
24

68

)
+
(

16

68

)(
17

68

)

= 0.2571 ,

and following Eq. (4.8), the observed value of Cohen’s κ is

κ = po − pe

1 − pe
= 0.4706 − 0.2571

1 − 0.2571
= +0.2873 ,

indicating approximately 29% agreement above that expected by chance.
The exact probability value of an observed κ value under the null hypothesis is

given by the sum of the hypergeometric point probability values associated with κ

values equal to or greater than the observed κ value. For the frequency data given
in Table 4.28, there are M = 181,260,684 possible, equally-likely arrangements
in the reference set of all permutations of cell frequencies, given the observed row
and column marginal frequency distributions, {15, 17, 20, 16} and {11, 16, 24, 17},
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respectively, making an exact permutation analysis feasible. The exact upper-tail
probability value of the observed κ value is P = 0.1098×10−3, i.e., the sum of the
hypergeometric point probability values associated with values of κ = +0.2873 or
greater.

4.5.4 Application with Multiple Judges

Cohen’s κ measure of chance-corrected inter-rater agreement was originally
designed for, and limited to, only b = 2 judges. In this section, a procedure is
introduced for computing unweighted kappa with multiple judges. Although the
procedure is appropriate for any number of c ≥ 2 disjoint, unordered categories and
b ≥ 2 judges, the description of the procedure is confined to b = 3 independent
judges and the example is limited to b = 3 independent judges and c = 3 disjoint,
unordered categories to simplify presentation.

Consider b = 3 judges who independently classify N objects into c disjoint,
unordered categories. The classification may be conceptualized as a c×c×c contin-
gency table with c rows, c columns, and c slices. Let nijk , Ri , Cj , and Sk denote the
observed cell frequencies and the row, column, and slice marginal frequency totals
for i, j, k = 1, . . . , c and let the frequency total be given by:

N =
c∑

i=1

c∑
j=1

c∑
k=1

nijk .

Cohen’s unweighted kappa test statistic for a three-way contingency table is
given by:

κ = 1 −
N2

c∑
i=1

c∑
j=1

c∑
k=1

wijknijk

c∑
i=1

c∑
j=1

c∑
k=1

wijkRiCjSk

, (4.9)

where wijk are disagreement “weights” assigned to each cell for i, j, k = 1, . . . , c.
For unweighted kappa, the disagreement weights are given by:

wijk =
⎧⎨
⎩

0 if i = j = k ,

1 otherwise .

Given a c×c×c contingency table with N objects cross-classified by b = 3
independent judges, an exact permutation test involves generating all possible,
equally-likely arrangements of the N objects to the c3 cells, while preserving the
marginal frequency distributions. For each arrangement of cell frequencies, the
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unweighted kappa statistic, κ , and the exact hypergeometric point probability value
under the null hypothesis, p(nijk |Ri,Cj , Sk,N), are calculated, where

p(nijk |Ri,Cj , Sk,N) =

(
c∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠
(

c∏
k=1

Sk!
)

(N !)b−1
c∏

i=1

c∏
j=1

c∏
k=1

nijk !
. (4.10)

If κo denotes the value of the observed unweighted kappa test statistic, the exact
probability value of κo under the null hypothesis is given by:

P(κo) =
M∑
l=1

�l

(
nijk |Ri,Cj , Sk,N

)
,

where

�l

(
nijk |Ri,Cj , Sk,N

) =
⎧⎨
⎩

p(nijk |Ri,Cj , Sk,N) if κ ≥ κo ,

0 otherwise ,

and M denotes the total number of possible, equally-likely cell frequency arrange-
ments in the reference set of all possible arrangements of cell frequencies, given
the observed marginal frequency distributions. When M is very large, as is typical
with multi-way contingency tables, exact tests are impractical and Monte Carlo
resampling procedures become necessary. In such cases, a random sample of the
M possible, equally-likely arrangements of cell frequencies provides a comparison
of κ test statistics calculated on L random multi-way tables with the κ test statistic
calculated on the observed multi-way contingency table.

An efficient Monte Carlo resampling algorithm to generate random cell fre-
quency arrangements for multi-way contingency tables with fixed marginal fre-
quency distributions was developed by Mielke, Berry, and Johnston in 2007 [66,
pp. 19–20]. For a three-way contingency table with r rows, c columns, and s slices,
the resampling algorithm is given in 12 simple steps.

STEP 1. Construct an r×c×s contingency table from the observed data.
STEP 2. Obtain the fixed marginal frequency totals R1, . . . , Rr , C1, . . . , Cc,

S1, . . . , Ss , and frequency total N . Set a resampling counter JL = 0, and set
L equal to the number of samples desired.

STEP 3. Set the resampling counter JL = JL + 1.
STEP 4. Set the marginal frequency counters JRi = Ri for i = 1, . . . , r; JCj =

Cj for j = 1, . . . , c; JSk = Sk for k = 1, . . . , s, and M = N .
STEP 5. Set nijk = 0 for i = 1, . . . , r , j = 1, . . . , c, and k = 1, . . . , s, and set

row, column, and slice counters IR, IC, and IS equal to zero.
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STEP 6. Create cumulative probability distributions PRi , PCj , and PSk from the
adjusted marginal frequency totals JRi , JCj , and JSk for i = 1, . . . , r , j =
1, . . . , c, and k = 1, . . . , s, where

PR1 = JR1/M and PRi = PRi−1 + JRi/M

for i = 1, . . . , r ,

PC1 = JC1/M and PCj = PCj−1 + JCj /M

for j = 1, . . . , c, and

PS1 = JS1/M and PSk = PSk−1 + JSk/M

for k = 1, . . . , s.
STEP 7. Generate three uniform pseudorandom numbers Ur , Uc, and Us over

[0, 1) and set row, column, and slice indices i = j = k = 1, respectively.
STEP 8. If Ur ≤ PRi , then IR = i, JRi = JRi − 1, and go to STEP 9; otherwise,

i = i + 1 and repeat STEP 8.
STEP 9. If Uc ≤ PCj , then IC = j , JCj = JCj −1, and go to STEP 10; otherwise,

j = j + 1 and repeat STEP 9.
STEP 10. If Us ≤ PSk , then IS = k, JSk = JSk −1, and go to STEP 11; otherwise,

k = k + 1 and repeat STEP 10.
STEP 11. Set M = M − 1 and nIR,IC,IS = nIR,IC,IS + 1. If M > 0, go to STEP 4;

otherwise, obtain the required test statistic.
STEP 12. If JL < L, go to STEP 3; otherwise, stop.

At the conclusion of the resampling procedure, Cohen’s κ , as given in Eq. (4.9)
on p. 172, is obtained for each of the L random three-way contingency tables, given
fixed marginal frequency distributions. Let κo denote the observed value of κ , then
under the null hypothesis the resampling approximate probability value for κo is
given by:

P (κo) = 1

L

L∑
l=1

�l (κ) ,

where

�l (κ) =
⎧⎨
⎩

1 if κ ≥ κo ,

0 otherwise .
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Table 4.29 Classification of
N = 93 objects by three
independent judges into one
of three disjoint, unordered
categories: A, B, or C, with
disagreement weights in
parentheses

Judge 3

Judge 1 Judge 2 A B C

A A 6 (0) 4 (1) 2 (1)

B 3 (1) 5 (1) 4 (1)

C 2 (1) 3 (1) 4 (1)

B A 4 (1) 5 (1) 3 (1)

B 5 (1) 8 (0) 4 (1)

C 3 (1) 2 (1) 3 (1)

C A 1 (1) 3 (1) 4 (1)

B 3 (1) 2 (1) 2 (1)

C 1 (1) 2 (1) 5 (0)

4.5.5 Example Analysis with Multiple Judges

The calculation of unweighted kappa and the resampling procedure for obtaining
a probability value with multiple judges can be illustrated with a sparse data set.
Consider b = 3 independent judges who classify N = 93 objects into one of c = 3
disjoint, unordered categories: A, B, or C. Table 4.29 lists the c3 cross-classified
frequencies and corresponding disagreement weights, where the cell disagreement
weights are given in parentheses.

For the frequency data listed in Table 4.29, the observed value of kappa is κ =
+0.1007, indicating approximately 10% agreement among the b = 3 judges above
that expected by chance. If κo denotes the observed value of κ , the approximate
resampling probability value based on L = 1,000,000 random arrangements of the
observed data is

P(κ ≥ κo|H0) = number of κ values ≥ κo

L
= 8,311

1,000,000
= 0.0083 .

4.6 McNemar’s Q Test for Change

In 1947, psychologist Quinn McNemar proposed a test for change that was derived
from the matched-pairs t test for proportions [63]. A typical application is to analyze
binary responses, coded (0, 1), at g = 2 time periods for each of N ≥ 2 subjects,
such as Success and Failure, Yes and No, Agree and Disagree, or Pro and Con. If
the four cells are identified as in Table 4.30, then McNemar’s test for change is
given by:

Q = (B − C)2

B + C
,
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Table 4.30 Notation for a
2×2 cross-classification for
McNemar’s Q test for change

Time 2

Time 1 Pro Con Total

Pro A B A + B

Con C D C + D

Total A + C B + D N

where N = A + B + C + D and B and C represent the two cells of change, i.e.,
from Pro to Con and from Con to Pro.

Alternatively, McNemar’s Q test can be thought of as a chi-squared goodness-of-
fit test with two categories, where the observed frequencies, O1 and O2, correspond
to cells B and C, respectively, and the expected frequencies, E1 and E2, are given
by E1 = E2 = (B + C)/2, i.e., half the subjects are expected to change in
one direction (e.g., from Pro to Con) and half in the other direction (e.g., from
Con to Pro), under the null hypothesis of no change from Time 1 to Time 2.
Let

E = B + C

2

denote an expected value where, by chance, half of the changes are from Pro to
Con and half are from Con to Pro. Then, a chi-squared goodness of fit for the two
categories of change is given by:

χ2 = (B − E)2

E
+ (C − E)2

E
= B2

E
+ C2

E
+ 2E − 2B − 2C .

Substituting (B + C)/2 for E yields

2B2

B + C
+ 2C2

B + C
+ B + C − 2B − 2C

= 2B2

B + C
+ 2C2

B + C
− B − C

= 2B2 + 2C2 − B(B + C) − C(B + C)

B + C

= B2 − 2BC + C2

B + C

= (B − C)2

B + C
.
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4.6.1 Example 1

To illustrate McNemar’s test for change, consider the frequency data given in
Table 4.31, where N = 50 objects have been recorded as either Pro or Con
on a specified issue at Time 1 and again on the same issue at Time 2. For the
frequency data given in Table 4.31, the observed value of McNemar’s Q test
statistic is

Q = (B − C)2

B + C
= (5 − 25)2

5 + 25
= 13.3333 .

Alternatively, O1 = B = 5, O2 = C = 25, E1 = E2 = (O1 + O2)/2 =
(5 + 25)/2 = 15, and

χ2
1 = (O1 − E1)

2

E1
+ (O2 − E2)

2

E2
= (5 − 15)2

15
+ (25 − 15)2

15
= 13.3333 .

The exact probability value of an observed value of Q, under the null hypothesis,
is given by the sum of the hypergeometric point probability values associated with
the Q values that are equal to or greater than the observed value of Q. For the
frequency data listed in Table 4.31, there are only M = 31 possible, equally-likely
arrangements in the reference set of all permutations of cell frequencies given the
two cell frequencies of change, 5 and 25, and only 12 Q values are equal to or
greater than the observed value of Q = 13.3333.

Since M = 31 is a reasonably small number of arrangements, it will be
illustrative to list the complete set of Q values and the associated hypergeometric
point probability values in Table 4.32, where rows with hypergeometric point
probability values associated with Q values equal to or greater than the observed
value of Q are indicated with asterisks. The exact upper-tail probability value of the
observed value of Q is the sum of the hypergeometric point probability values that
are associated with values of Q = 13.3333 or greater. Since the distribution of all
possible Q values is symmetrical, the exact two-tailed probability value is

P = 2
(

0.1327×10−3 + 0.2552×10−4 + 0.3781×10−5 + 0.4051×10−6

+0.2794×10−7 + 0.9313×10−9
)

= 0.3429×10−3 .

Table 4.31 Example
frequency data for
McNemar’s test for change
with N = 50 objects

Time 2

Time 1 Pro Con Total

Pro 15 5 20

Con 25 5 30

Total 40 10 50
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Table 4.32 McNemar Q

values and exact
hypergeometric point
probability values for
M = 31 possible
arrangements of the
frequency data given in
Table 4.31

Number B C Q Probability

1∗ 0 30 30.0000 0.9313×10−9

2∗ 1 29 26.1333 0.2794×10−7

3∗ 2 28 22.5333 0.4051×10−6

4∗ 3 27 19.2000 0.3781×10−5

5∗ 4 26 16.1333 0.2552×10−4

6∗ 5 25 13.3333 0.1327×10−3

7 6 24 10.8000 0.5530×10−3

8 7 23 8.5333 0.1896×10−2

9 8 22 6.5333 0.5451×10−2

10 9 21 4.8000 0.1333×10−1

11 10 20 3.3333 0.2798×10−1

12 11 19 2.1333 0.5088×10−1

13 12 18 1.2000 0.8055×10−1

14 13 17 0.5333 0.1115

15 14 16 0.1333 0.1354

16 15 15 0.0000 0.1445

17 16 14 0.1333 0.1354

18 17 13 0.5333 0.1154

19 18 12 1.2000 0.8055×10−1

20 19 11 2.1333 0.5088×10−1

21 20 10 3.3333 0.2798×10−1

22 21 9 4.8000 0.1333×10−1

23 22 8 6.5333 0.5451×10−2

24 23 7 8.5333 0.1896×10−2

25 24 6 10.8000 0.5530×10−3

26∗ 25 5 13.3333 0.1327×10−3

27∗ 26 4 16.1333 0.2552×10−4

28∗ 27 3 19.2000 0.3781×10−5

29∗ 28 2 22.5333 0.4051×10−6

30∗ 29 1 26.1333 0.2794×10−7

31∗ 30 0 30.0000 0.9313×10−9

Sum 1.0000

4.6.2 Example 2

For a second example of McNemar’s Q test, consider the frequency data given in
Table 4.33, where N = 190 objects have been recorded as either Pro or Con on
a specified issue at Time 1 and again at Time 2. For the frequency data given in
Table 4.33, the observed value of McNemar’s Q test statistic is

Q = (B − C)2

B + C
= (59 − 37)2

59 + 37
= 5.0417 .
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Table 4.33 Example
frequency data for
McNemar’s test for change
with N = 190 objects

Time 2

Time 1 Pro Con Total

Pro 73 59 132

Con 37 21 58

Total 110 80 190

Alternatively, O1 = B = 59, O2 = C = 37, E1 = E2 = (O1 + O2)/2 =
(59 + 37)/2 = 48, and

χ2
1 = (O1 − E1)

2

E1
+ (O2 − E2)

2

E2
= (59 − 48)2

48
+ (37 − 48)2

48
= 5.0417 .

The exact probability value of an observed value of Q, under the null hypothesis,
is given by the sum of the hypergeometric point probability values associated with
the Q values that are equal to or greater than the observed value of Q. For the
frequency data listed in Table 4.33, there are only M = 97 possible, equally-
likely arrangements in the reference set of all permutations of cell frequencies
given the two cell frequencies of change, 59 and 37, and only 76 Q values are
equal to or greater than the observed value of Q = 5.0417. The exact upper-
tail probability value of the observed Q value is P = 0.0315, i.e., the sum
of the hypergeometric point probability values that are associated with values of
Q = 5.0417 or greater.

4.7 Cochran’s Q Test for Change

The ubiquitous dichotomous variable plays a large role and has many applications
in research and measurement. Conventionally, a value of one is assigned to each
test item that a subject answers correctly and a zero is assigned to each incorrect
answer. A common example application occurs when subjects are placed into an
experimental situation, observed as to whether or not some specified response is
elicited, and scored appropriately [56].

In 1950, William Cochran published an article on “The comparison of per-
centages in matched samples” [22]. In this brief but formative article, Cochran
described a test for equality of matched proportions that is now widely used in
educational and psychological research. The matching may be based on the char-
acteristics of different subjects or on the same subjects under different conditions.
The Cochran Q test may be viewed as an extension of the McNemar [63] test
to three or more treatment conditions. For a typical application, suppose that
a sample of N ≥ 2 subjects is observed in a situation wherein each subject
performs individually under each of k ≥ 1 different experimental conditions. The
performance is scored as a success (1) or as a failure (0). The research question
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evaluates whether the true proportion of successes is constant over the k time
periods.

Cochran’s Q test for the analysis of k treatment conditions (columns) and N

subjects (rows) is given by:

Q =
(k − 1)

⎛
⎝k

k∑
j=1

C2
j − A2

⎞
⎠

kA − B
, (4.11)

where

Cj =
N∑

i=1

xij

is the number of 1s in the j th of k columns,

Ri =
k∑

j=1

xij

is the number of 1s in the ith of N rows,

A =
N∑

i=1

Ri , B =
N∑

i=1

R2
i ,

and xij denotes the cell entry of either 0 or 1 associated with the ith of N rows and
the j th of k columns. The null hypothesis stipulates that each of the

M =
N∏

i=1

(
k

Ri

)

distinguishable arrangements of 1s and 0s within each of the N rows occurs with
equal probability, given that the values of R1, . . . , RN are fixed [65].

4.7.1 Example 1

For an example analysis of Cochran’s Q test, consider the binary-coded data listed
in Table 4.34 consisting of responses (1 or 0) for N = 10 subjects evaluated over
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Table 4.34 Successes (1)
and failures (0) of N = 10
subjects on a series of k = 5
time periods

Time

Subject 1 2 3 4 5 Ri

1 0 1 1 0 0 2

2 1 0 1 0 1 3

3 0 1 1 0 0 2

4 1 1 0 0 0 2

5 1 0 1 1 0 3

6 0 1 1 0 0 2

7 0 1 0 1 0 2

8 0 0 1 0 0 1

9 0 1 0 1 0 2

10 1 1 1 0 0 3

Cj 4 7 7 3 1 22

k = 5 time periods, where a 1 denotes success on a prescribed task and a 0 denotes
failure. For the binary-coded data listed in Table 4.34,

k∑
j=1

C2
j = 42 + 72 + 72 + 32 + 12 = 124 ,

A =
N∑

i=1

Ri = 2 + 3 + 2 + 2 + 3 + 2 + 2 + 1 + 2 + 3 = 22 ,

B =
N∑

i=1

R2
i = 22 + 32 + 22 + 22 + 32 + 22 + 22 + 12 + 22 + 32 = 52 ,

and, following Eq. (4.11) on p. 180, the observed value of Cochran’s Q is

Q =
(k − 1)

⎛
⎝k

k∑
j=1

C2
j − A2

⎞
⎠

kA − B
= (5 − 1)[(5)(124) − 222]

(5)(22) − 52
= 9.3793 .

For the binary-coded data listed in Table 4.34, there are

M =
N∏

i=1

(
k

Ri

)
=
(

5

1

)1(5

2

)6(5

3

)3

= (5)(106)(103) = 5,000,000,000

possible, equally-likely arrangements of the observed data, making an exact permu-
tation analysis prohibitive and a Monte Carlo resampling analysis necessary. Based
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on L = 1,000,000 random arrangements of the observed data, there are 54,486 Q

values equal to or greater than the observed value of Q = 9.3793. If Qo denotes the
observed value of Q, the approximate resampling probability value of the observed
data is

P
(
Q ≥ Qo|H0

) = number of Q values ≥ Qo

L
= 54,486

1,000,000
= 0.0545 .

For comparison, under the null hypothesis Cochran’s Q is approximately distributed
as chi-squared with k − 1 degrees of freedom. The approximate probability of Q =
9.3793 with k − 1 = 5 − 1 = 4 degrees of freedom is P = 0.0523.

4.7.2 Example 2

For a second example of Cochran’s Q test, consider the binary-coded data listed in
Table 4.35 consisting of responses (1 or 0) for N = 9 subjects evaluated over k = 3
time periods, where a 1 indicates success on a prescribed task and a 0 indicates
failure. For the binary-coded data listed in Table 4.35,

A =
N∑

i=1

Ri = 1 + 1 + 1 + 1 + 2 + 1 + 2 + 1 + 2 = 12 ,

B =
N∑

i=1

R2
i = 12 + 12 + 12 + 12 + 22 + 12 + 22 + 12 + 22 = 18 ,

g∑
j=1

C2
j = 42 + 72 + 12 = 66 ,

Table 4.35 Successes (1)
and failures (0) of N = 9
subjects on a series of k = 3
time periods

Time

Subject 1 2 3 Ri

1 0 1 0 1

2 0 1 0 1

3 1 0 0 1

4 0 1 0 1

5 1 0 1 2

6 0 1 0 1

7 1 1 0 2

8 0 1 0 1

9 1 1 0 2

Cj 4 7 1 12
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and, following Eq. (4.11) on p. 180, the observed value of Cochran’s Q is

Q =
(k − 1)

⎛
⎝k

k∑
j=1

C2
j − A2

⎞
⎠

kA − B
= (3 − 1)[(3)(66) − 122]

(3)(12) − 18
= 6.00 .

For the binary-coded data listed in Table 4.35, there are only

M =
N∏

i=1

(
k

Ri

)
=
(

3

1

)6(3

2

)3

= (36)(33) = 19,683

possible, equally-likely arrangements of the observed data in the reference set of all
possible arrangements, making an exact permutation analysis easily accomplished.
Based on M = 19,683 equally-likely, possible arrangements of the observed data,
there are 1,056 Q values equal to or greater than the observed value of Q = 6.00.
If Qo denotes the observed value of Q, the exact upper-tail probability value of the
observed data is

P
(
Q ≥ Qo|H0

) = number of Q values ≥ Qo

M
= 1,056

19,683
= 0.0537 .

For comparison, under the null hypothesis Cochran’s Q is approximately distributed
as chi-squared with k − 1 degrees of freedom. The approximate probability of Q =
86.00 with k − 1 = 3 − 1 = 2 degrees of freedom is P = 0.0498.

4.8 A Measure of Effect Size for Cochran’s Q Test

Measures of effect size are increasingly important in reporting research outcomes.
The American Psychological Association (APA) has long recommended measures
of effect size for articles published in APA journals. For example, as far back as
1994 the 4th edition of the APA Publication Manual strongly encouraged reporting
measures of effect size in conjunction with probability values. In 1999, the APA
Task Force on Statistical Inference, under the direction of Leland Wilkinson, noted
that “reporting and interpreting effect sizes in the context of previously reported
effects is essential to good research” [87, p. 599]. In 2016, the American Statistical
Association (ASA) recommended that measures of effect size be included in future
publications in ASA journals [84]. Unfortunately, measures of effect size do not
exist for a number of common statistical tests. In this section, a chance-corrected
measure of effect size is presented for Cochran’s Q test for related proportions [9].

Consider an alternative approach to Cochran’s Q test where g treatments are
applied independently to each of N subjects with the result of each treatment
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application recorded as either 1 or 0, representing any suitable dichotomization of
the treatment results, i.e., a randomized-block design where the subjects are the
blocks and the treatment results are registered as either 1 or 0. Let xij denote the
recorded 1 and 0 response measurements for i = 1, . . . , N and j = 1, . . . , g.
Then, Cochran’s test statistic can be defined as:

Q = g − 1

2
N∑

i=1

pi(1 − pi)

[
2

(
N∑

i=1

pi

)(
N −

N∑
i=1

pi

)
− N(N − 1) δ

]
,

where

δ =
[
g

(
N

2

)]−1 g∑
k=1

N−1∑
i=1

N∑
j=i+1

∣∣xik − xjk

∣∣ (4.12)

and

pi = 1

g

g∑
j=1

xij for i = 1, . . . , N ,

that is, the proportion of 1 values for the ith of N subjects. Note that in this
representation the variation of Q is totally dependent on δ.

In 1979, Acock and Stavig [1] proposed a maximum value for Q given by:

Qmax = N(g − 1) . (4.13)

Acock and Stavig’s maximum value of Q in Eq. (4.13) was employed by Serlin,
Carr, and Marascuilo [77] to provide a measure of effect size for Cochran’s Q

given by:

η̂ 2
Q = Q

Qmax
= Q

N(g − 1)
,

which standardized Cochran’s Q by a maximum value. Unfortunately, the value of
Qmax = N(g − 1) advocated by Acock and Stavig is achieved only when each
subject g-tuple is identical and there is at least one 1 and one 0 in each g-tuple.
Thus, η̂ 2

Q is a “maximum-corrected” measure of effect size and 0 ≤ η̂ 2
Q ≤ 1 only

under these rare conditions.
Assume 0 < pi < 1 for i = 1, . . . , N since pi = 0 and pi = 1 are

uninformative. If pi is constant for i = 1, . . . , N , then Qmax = N(g−1). However,
for the vast majority of cases when pi �= pj for i �= j , Qmax < N(g − 1). Thus, the
routine use of setting Qmax = N(g − 1) is problematic and leads to questionable
results.
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It should also be noted that η̂ 2
Q is a member of the V family of measures of

nominal association based on Cramér’s V 2 test statistic given by:

V 2 = χ2

χ2
max

= χ2

N
[

min(r − 1, c − 1)
] ,

where r and c denote the number of rows and columns in an r×c contingency
table [1]. Other members of the V family are Pearson’s φ2 for 2×2 contingency
tables [70] and Tschuprov’s T 2 for r×c contingency tables where r = c [82]. The
difficulties in interpreting V 2 extend to η̂ 2

Q.

As noted in Chap. 3, Wickens observed that Cramér’s V 2 lacks an intuitive
interpretation other than as a scaling of chi-squared, which limits its usefulness [86,
p. 226]. Also, Costner noted that V 2 and other measures based on Pearson’s chi-
squared lack any interpretation at all for values other than 0 and 1, or the maximum,
given the observed marginal frequency distributions [27]. Agresti and Finlay also
noted that Cramér’s V 2 is very difficult to interpret and recommended other mea-
sures [2, p. 284]. Blalock noted that “all measures based on chi square are somewhat
arbitrary in nature, and their interpretations leave a lot to be desired . . . they all
give greater weight to those columns or rows having the smallest marginals rather
than to those with the largest marginals” [17, 18, p. 306]. Ferguson discussed the
problem of using idealized marginal frequencies [30, p. 422], and Guilford noted
that measures such as Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 necessarily
underestimate the magnitude of association present [42, p. 342]. Berry, Martin, and
Olson considered these issues with respect to 2×2 contingency tables [10, 12],
and Berry, Johnston, and Mielke discussed in some detail the problems with using
Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 as measures of effect size [8].
Since η̂ 2

Q is simply a special case of Cramér’s V 2, it presents the same problems

of interpretation. For a detailed assessment of Pearson’s φ2, Tschuprov’s T 2, and
Cramér’s V 2, see Chap. 3.

4.8.1 A Chance-Corrected Measure of Effect Size

Chance-corrected measures of effect size have much to commend them over
maximum-corrected measures. A chance-corrected measure of effect size is a
measure of agreement among the N subjects over g treatments, corrected for chance.
A number of researchers have advocated chance-corrected measures of effect size,
including Brennan and Prediger [20], Cicchetti, Showalter, and Tyrer [21], Con-
ger [26], and Krippendorff [50]. A chance-corrected measure is zero under chance
conditions, unity when agreement among the N subjects is perfect, and negative
under conditions of disagreement. Some well-known chance-corrected measures are
Scott’s coefficient of inter-coder agreement [76], Kendall and Babington Smith’s
u measure of agreement [48], Cohen’s unweighted and weighted coefficients of
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inter-rater agreement [23, 24], and Spearman’s footrule measure [79, 80]. Under
certain conditions, Spearman’s rank-order correlation coefficient [79, 80] is also a
chance-corrected measure of agreement, i.e., when variables x and y consist of ranks
from 1 to N with no tied values, or when variable x includes tied values and variable
y is a permutation of variable x, then Spearman’s rank-order correlation coefficient
is both a measure of correlation and a chance-corrected measure of agreement [50,
p. 144].

Let xij denote the (0, 1) response measurements for i = 1, . . . , N blocks and
j = 1, . . . , g treatments, then

δ =
[
g

(
N

2

)]−1 g∑
k=1

N−1∑
i=1

N∑
j=i+1

∣∣xik − xjk

∣∣ .

Under the null hypothesis that the distribution of δ assigns equal probability to
each of

M = (
g!)N

possible allocations of the g dichotomous response measurements to the g treatment
positions for each of the N subjects, the average value of δ is given by:

μδ = 2

N(N − 1)

[(
N∑

i=1

pi

)(
N −

N∑
i=1

pi

)
−

N∑
i=1

pi(1 − pi)

]
,

where

pi = 1

g

g∑
i=1

xij for i = 1, . . . , N .

Then, a chance-corrected measure of effect size may be defined as:

� = 1 − δ

μδ

.

4.8.2 Example

Consider a sample of N = 6 psychology graduate students enrolled in a seminar
designed to hone skills in assessing patients with various disorders. The seminar
includes a clinical aspect whereby actors, provided with different scripts, present
symptoms that the students then diagnose. There are g = 8 scripts for a variety
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Table 4.36 Example data for
Cochran’s Q test of related
proportions with N = 6
subjects and g = 8 treatments

Treatment

Subject 1 2 3 4 5 6 7 8

1 0 1 1 1 0 0 1 0

2 1 1 1 0 0 1 1 1

3 0 1 0 1 1 0 1 1

4 1 1 1 1 0 1 1 1

5 0 1 1 0 0 0 1 1

6 1 1 1 1 0 1 1 0

Table 4.37 Summations for
pi and pi (1 − pi) for
i = 1, . . . , N

i pi 1 − pi pi(1 − pi )

1 0.5000 0.5000 0.2500

2 0.7500 0.2500 0.1875

3 0.6250 0.3750 0.2344

4 0.8750 0.1250 0.1094

5 0.5000 0.5000 0.2500

6 0.7500 0.2500 0.1875

Total 4.0000 1.2188

of symptoms including eating disorders, anxiety, depression, oppositional defiant
behavior, obsessive-compulsive disorder, and post-traumatic stress disorders, any of
which may be presented over the course of the seminar. The “patients” present at
random intervals during the semester and the students are assessed as to whether or
not the correct diagnosis was made. Table 4.36 lists the data with a 1 (0) indicating
a correct (false) diagnosis. For the binary data listed in Table 4.36, Table 4.37
illustrates the calculation of

N∑
i=1

pi and
N∑

i=1

pi(1 − pi) ,

where

p1 = 1

g

g∑
j=1

x1j = 0 + 1 + 1 + 1 + 0 + 0 + 1 + 0

8
= 0.5000 ,

p2 = 1

g

g∑
j=1

x2j = 1 + 1 + 1 + 0 + 0 + 1 + 1 + 1

8
= 0.7500 ,

p3 = 1

g

g∑
j=1

x3j = 0 + 1 + 0 + 1 + 1 + 0 + 1 + 1

8
= 0.6250 ,
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p4 = 1

g

g∑
j=1

x4j = 1 + 1 + 1 + 1 + 0 + 1 + 1 + 1

8
= 0.8750 ,

p5 = 1

g

g∑
j=1

x5j = 0 + 1 + 1 + 0 + 0 + 0 + 1 + 1

8
= 0.5000 ,

and

p6 = 1

g

g∑
j=1

x6j = 1 + 1 + 1 + 1 + 0 + 1 + 1 + 0

8
= 0.7500 .

Table 4.38 illustrates the calculation of the |xik − xjk| values, i = 1, . . . , N − 1
and j = i + 1, . . . , N , for Treatments 1, 2, . . . , 8. Then,

δ =
[
g

(
N

2

)]−1 g∑
k=1

N−1∑
i=1

N∑
j=i+1

∣∣xik − xjk

∣∣

=
[

8

(
6

2

)]−1

(9 + 0 + 5 + 8 + 5 + 9 + 0 + 8) = 0.3667 ,

Q = g − 1

2
N∑

i=1

pi(1 − pi)

[
2

(
N∑

i=1

pi

)(
N −

N∑
i=1

pi

)
− N(N − 1) δ

]

= 8 − 1

2(1.2188)

[
2(4.00)(6 − 4.00) − 6(6 − 1)(0.3667)

]= 14.3590 ,

μδ = 2

N(N − 1)

[(
N∑

i=1

pi

)(
N −

N∑
i=1

pi

)
−

N∑
i=1

pi(1 − pi)

]

= 2

6(6 − 1)

[
(4.00)(6 − 4.00) − 1.2188

] = 0.4521 ,

and

� = 1 − δ

μδ

= 1 − 0.3667

0.4521
= +0.1889 ,
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Table 4.38 Summation totals for |xik −xjk | for k = 1, 2, . . . , 7, 8 treatments, i = 1, . . . , N −1,
and j = i + 1, . . . , N

Treatment

1 2 · · · 7 8

i |xi1 − xj1| |xi2 − xj2| · · · |xi7 − xj7| |xi8 − xj8|
1 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

2 |0 − 0| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

3 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

4 |0 − 0| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 1| = 1

5 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |0 − 0| = 0

6 |1 − 0| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

7 |1 − 1| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

8 |1 − 0| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

9 |1 − 1| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

10 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

11 |0 − 0| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

12 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

13 |1 − 0| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 1| = 0

14 |1 − 1| = 0 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

15 |0 − 1| = 1 |1 − 1| = 0 · · · |1 − 1| = 0 |1 − 0| = 1

Total 9 0 · · · 0 8

indicating approximately 19% agreement above that expected by chance. For
comparison, the maximum-corrected measure of effect size proposed by Serlin et
al. [77] is

η̂ 2
Q = Q

Qmax
= Q

N(g − 1)
= 14.3590

6(8 − 1)
= 0.3419.

4.8.3 Advantages of the � Measure of Effect Size

Chance-corrected measures of effect size, such as �, possess distinct advantages
in interpretation over maximum-corrected measures of effect size, such as η̂ 2

Q. The

problem with η̂ 2
Q lies in the manner in which η̂ 2

Q is maximized. The denominator of

η̂ 2
Q, Qmax = N(g−1), standardizes the observed value of Q for the sample size (N)

and the number of treatments (g). Unfortunately, N(g − 1) does not standardize Q

for the data on which Q is based, but rather standardizes Q on another unobserved
hypothetical set of data.

Consider a simple example with N = 10 subjects and g = 2 treatments. The
observed data are given in Table 4.39, where at Time 1 seven subjects were classified
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Table 4.39 Example 2×2
cross-classification for
Cochran’s Q test for change

Time 2

Time 1 Pro Con Total

Pro 5 2 7

Con 0 3 3

Total 5 5 10

Table 4.40 Four possible arrangements of the data given in Table 4.39 with fixed observed row
and column marginal frequency distributions, {7, 3} and {5, 5}, respectively

Table A Table B Table C Table D

Pro Con Pro Con Pro Con Pro Con

Pro 5 2 4 3 3 4 2 5

Con 0 3 1 2 2 1 3 0

as Pro and three subjects were classified as Con, and at Time 2 five subjects were
classified as Pro and five subjects were classified as Con.

Given the observed data in Table 4.39, only four values of Q are possible.
Table 4.40 displays the four possible arrangements in the reference set of all
permutations of cell frequencies given the observed row and column marginal
frequency distributions, {7, 3} and {5, 5}, respectively. Table A in Table 4.40 (the
observed table) yields Q = 2.00, Table B yields Q = 1.00, Table C yields
Q = 0.6667, and Table D yields Q = 0.50. Thus, for the observed data given
in Table 4.40, Q = 2.00 is the maximum value of Q possible, given the observed
marginal frequency distributions. Note that Qmax = N(g − 1) = 10(2 − 1) = 10
cannot be achieved with these data. For the data given in Table A in Table 4.40
with Q = 2.00, η̂ 2

Q is only 0.20, while � = 1.00, indicating the proper maximum-
corrected effect size.

� is a preferred alternative to η̂ 2
Q as a measure of effect size for two reasons.

First, � can achieve an effect size of unity for the observed data, while this is often
impossible for η̂ 2

Q. Second, � is a chance-corrected measure of effect size, meaning
that � is zero under chance conditions, unity when agreement among the N subjects
is perfect, and negative under conditions of disagreement. Therefore, � possesses
a clear interpretation corresponding to Cohen’s coefficient of inter-rater agreement
and other chance-corrected measures that are familiar to most researchers. On the
other hand, η̂ 2

Q possesses no meaningful interpretation except for the limiting values
of Q = 0 and Q = 1.

4.9 Leik and Gove’s d c
N
Measure of Association

In 1971, Robert Leik and Walter Gove proposed a new measure of nominal asso-
ciation based on pairwise comparisons of differences between observations [53].
Dissatisfied with the existing measures of nominal association, Leik and Gove
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suggested a proportional-reduction-in-error measure of association that was cor-
rected for the true maximum amount of association, given the observed marginal
frequency distributions. The new measure was denoted by d c

N , where d indicated
the index, following other indices such as Somers’ dyx and dxy ; the subscript N

indicated the relevance of d to a nominal dependent variable; and the superscript c

indicated that the measure was corrected for the constraints imposed by the marginal
frequency distributions [53, p. 287].

Like d c
N , many measures of association for two variables have been based on

pairwise comparisons of differences between observations. Consider two nominal-
level variables that have been cross-classified into an r×c contingency table, where
r and c denote the number of rows and columns, respectively. Let ni., n.j , and nij

denote the row marginal frequency totals, column marginal frequency totals, and
number of objects in the ijth cell, respectively, for i = 1, . . . , r and j = 1, . . . , c,
and let N denote the total number of objects in the r×c contingency table. If y

and x represent the row and column variables, respectively, there are N(N − 1)/2
pairs of objects in the table that can be partitioned into five mutually exclusive,
exhaustive types of pairs: concordant pairs, discordant pairs, pairs tied on variable y

but differing on variable x, pairs tied on variable x but differing on variable y, and
pairs tied on both variables x and y.

For an r×c contingency table, concordant pairs (pairs of objects that are ranked
in the same order on both variable x and variable y) are given by:

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠ ,

discordant pairs (pairs of objects that are ranked in one order on variable x and the
reverse order on variable y) are given by:

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠ ,

pairs of objects tied on variable x but differing on variable y are given by:

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠ ,

pairs of objects tied on variable y but differing on variable x are given by:

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)
,
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Table 4.41 Example
observed values in a 3×3
contingency table with
N = 100 observations

x

y x1 x2 x3 Total

y1 15 5 0 20

y2 15 25 10 50

y3 0 10 20 30

Total 30 40 30 100

and pairs of objects tied on both variable x and variable y are given by:

Txy = 1

2

r∑
i=1

c∑
j=1

nij

(
nij − 1

)
.

Then,

C + D + Tx + Ty + Txy = N(N − 1)

2
.

To illustrate the calculation of Leik and Gove’s d c
N measure, consider first an

example 3×3 contingency table, such as given in Table 4.41, where N = 100
observations are cross-classified into variable x and variable y, each with r = c = 3
categories labeled x1, x2, x3 and y1, y2, y3, respectively.

4.9.1 Observed Contingency Table

For the frequency data given in Table 4.41, consider all possible pairs of observed
cell frequency values that have been partitioned into concordant pairs,

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (15)(25 + 10 + 10 + 20) + (5)(10 + 20) + (15)(10 + 20) + (25)(20)

= 2,075 ,

all discordant pairs of observed cell frequency values,

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (0)(15 + 25 + 0 + 10) + (5)(15 + 0) + (10)(0 + 10) + (25)(0)

= 175 ,
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all pairs of observed cell frequency values tied on variable x,

Tx =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (15)(15 + 0) + (15)(0) + (5)(25 + 10) + (25)(10)

+ (0)(10 + 20) + (10)(20) = 850 ,

all pairs of observed cell frequency values tied on variable y,

Ty =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

(15)(5 + 0) + (5)(0) + (15)(25 + 10) + (25)(10)

+ (0)(10 + 20) + (10)(20) = 1,050 ,

and all pairs of observed cell frequency values tied on both variables x and y,

Txy = 1

2

r∑
i=1

c∑
j=1

nij

(
nij − 1

)

= 1

2

[
(15)(15 − 1) + (5)(5 − 1) + (15)(15 − 1) + (25)(25 − 1)

+ (10)(10 − 1) + (10)(10 − 1) + (20)(20 − 1)
] = 800 .

Then,

C + D + Tx + Ty + Txy = N(N − 1)

2

and, for the observed frequency data given in Table 4.41,

2,075 + 175 + 850 + 1,050 + 800 = 100(100 − 1)

2
= 4,950 .

4.9.2 Expected Contingency Table

Now, consider Table 4.41 expressed as expected cell values, as given in Table 4.42,
where an expected value is given by:

Eij = ni.n.j

N
for i = 1, . . . , r and j = 1, . . . , c .
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Table 4.42 Example
expected values in a 3×3
contingency table with
N = 100 observations

x

y x1 x2 x3 Total

y1 6 8 6 20

y2 15 20 15 50

y3 9 12 9 30

Total 30 40 30 100

For example,

E11 = (20)(30)

100
= 6 and E12 = (20)(40)

100
= 8 .

Following Leik and Gove, let a prime (′) indicate a sum of pairs calculated on
the expected cell frequency values. Then, for the expected cell frequency values
given in Table 4.42, consider all possible pairs of expected values partitioned into
concordant pairs,

C ′ =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (6)(20 + 15 + 12 + 9) + (8)(15 + 9) + (15)(12 + 9)

+ (20)(9) = 1,023 ,

all discordant pairs of expected cell frequency values,

D ′ =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (6)(15 + 20 + 9 + 12) + (8)(15 + 9) + (15)(9 + 12)

+ (20)(9) = 1,023 ,

all pairs of expected cell frequency values tied on variable x,

T ′
x =

c∑
j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (6)(15 + 9) + (15)(9) + (8)(20 + 12) + (20)(12)

+ (6)(15 + 9) + (15)(9) = 1,054 ,
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all pairs of expected cell frequency values tied on variable y,

T ′
y =

r∑
i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

(6)(8 + 6) + (8)(6) + (15)(20 + 15) + (20)(15)

+ (9)(12 + 9) + (12)(9) = 1,254 ,

and all pairs of expected cell frequency values tied on both variables x and y,

T ′
xy = 1

2

r∑
i=1

c∑
j=1

nij

(
nij − 1

)

= 1

2

[
(6)(6 − 1) + (8)(8 − 1) + (6)(6 − 1) + (15)(15 − 1)

+ (20)(20 − 1) + (15)(15 − 1) + (9)(9 − 1) + (12)(12 − 1)

+ (9)(9 − 1)
] = 596 .

Then,

C ′ + D ′ + T ′
x + T ′

y + T ′
xy = N(N − 1)

2

and, for the expected frequency data given in Table 4.42,

1,023 + 1,023 + 1,054 + 1,254 + 596 = 100(100 − 1)

2
= 4,950 .

Fortunately, there is a more convenient way to calculate C ′, D ′, T ′
x , T ′

y ,
and T ′

xy without first calculating the expected values. First, given the observed
row and column marginal frequency distributions in Table 4.41, {20, 50, 30} and
{30, 40, 30}, respectively, calculate the number of pairs of expected cell frequency
values tied on both variables x and y,

T ′
xy = 1

2N2

(
r∑

i=1

n2
i.

)⎛
⎝ c∑

j=1

n2
.j

⎞
⎠− N

2

= 1

2(1002)

(
202 + 502 + 302

) (
302 + 402 + 302

)
− 100

2
= 596 .
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Next, calculate the number of pairs of expected cell frequency values tied on
variable y,

T ′
y = 1

2

r∑
i=1

n2
i. − N

2
− T ′

xy = 1

2

(
202 + 502 + 302

)
− 100

2
− 596 = 1,254 .

In like manner, calculate the number of pairs of expected cell frequency values tied
on variable x,

T ′
x = 1

2

c∑
j=1

n2
.j − N

2
− T ′

xy = 1

2

(
302 + 402 + 302

)
− 100

2
− 596 = 1,054 .

Finally, calculate the number of concordant and discordant pairs of expected cell
frequency values,

C ′ = D ′ = 1

2

[
N(N − 1)

2
− T ′

x − T ′
y − T ′

xy

]

= 1

2

[
100(100 − 1)

2
− 1054 − 1254 − 596

]
= 1,023 .

It should be noted that C ′, D ′, T ′
x , T ′

y , and T ′
xy are all calculated on the observed

marginal frequency totals of the observed contingency table, which are invariant
under permutation.

4.9.3 Maximized Contingency Table

Test statistic d c
N is based on three contingency tables: the table of observed values

given in Table 4.41, the table of expected values given in Table 4.42, and a table
of maximum values to be described next. A contingency table of maximum values
is necessary for computing d c

N . An algorithm for generating an arrangement of cell
frequencies in an r×c contingency table that provides the maximum value of a test
statistic was presented in Chap. 3, Sect. 3.2. The algorithm is reproduced here for
convenience.

STEP 1: List the observed marginal frequency totals of an r×c contingency table
with empty cell frequencies.

STEP 2: If any pair of marginal frequency totals, one from each set of marginals,
are equal to each other, enter that value in the table as nij and subtract the value
from the two marginal frequency totals. For example, if the marginal frequency
total for Row 2 is equal to the marginal frequency total for Column 3, enter the
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marginal frequency total in the table as n23 and subtract the value of n23 from the
marginal frequency totals of Row 2 and Column 3.

Repeat STEP 2 until no two marginal frequency totals are equal. If all marginal
frequency totals have been reduced to zero, go to STEP 5; otherwise, go to
STEP 3.

STEP 3: Find the largest remaining marginal frequency totals in each set and enter
the smaller of the two values in nij . Then, subtract that (smaller) value from the
two marginal frequency totals. Go to STEP 4.

STEP 4: If all marginal frequency totals have been reduced to zero, go to STEP 5;
otherwise, go to STEP 2.

STEP 5: Set any remaining nij values to zero, i = 1, . . . , r and j = 1, . . . , c.

To illustrate the algorithmic procedure, consider the 3×3 contingency table
given in Table 4.41 on p. 192, replicated in Table 4.43 for convenience. Then, the
procedure is:

STEP 1: List the observed row and column marginal frequency totals, leaving the
cell frequencies empty, as in Table 4.44.

STEP 2: For the two sets of marginal frequency totals given in Table 4.44, three
marginal frequency totals are equal to 30, one for Row 3, one for Column 1, and
one for Column 3, i.e., n3. = n.1 = n.3 = 30. Set n31 = 30 and subtract 30
from the two marginal frequency totals. The adjusted row and column marginal
frequency totals are now {20, 50, 0} and {0, 40, 30}, respectively. No other two
marginal frequency totals are identical, so go to STEP 3.

STEP 3: The two largest remaining marginal frequency totals are 50 in Row 2 and
50 in Column 2, i.e., n2. = 50 and n.2 = 40. Set n22 = 40, the smaller of the
two marginal frequency totals, and subtract 40 from the two adjusted marginal
frequency totals. The adjusted row and column marginal frequency totals are now
{20, 10, 0} and {0, 0, 30}, respectively. Go to STEP 4.

STEP 4: Not all marginal frequency totals have been reduced to zero, so go to
STEP 2.

Table 4.43 Example
observed values in a 3×3
contingency table with
N = 100 observations

x

y x1 x2 x3 Total

y1 15 5 0 20

y2 15 25 10 50

y3 0 10 20 30

Total 30 40 30 100

Table 4.44 Empty 3×3
contingency table with
observed row marginal
frequency distribution
{20, 50, 30} and observed
column marginal frequency
distribution {30, 40, 30}

x

y x1 x2 x3 Total

y1 – – – 20

y2 – – – 50

y3 – – – 30

Total 30 40 30 100
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STEP 2: No two marginal frequency totals are identical, so go to STEP 3.
STEP 3: The two largest marginal frequency totals are 20 in Row 1 and 30 in

Column 3, i.e., n1. = 20 and n.3 = 30. Set n13 = 20, the smaller of the
two marginal frequency totals and subtract 20 from the two adjusted marginal
frequency totals. The adjusted row and column marginal frequency totals are
now {0, 10, 0} and {0, 0, 10}. Go to STEP 4.

STEP 4: Not all marginal frequency totals have been reduced to zero, so go to
STEP 2.

STEP 2: Two marginal frequency totals are equal to 10, one for Row 2 and one
for Column 3, i.e., n2. = n.3 = 10. Set n23 = 10 and subtract 10 from the two
adjusted marginal frequency totals. The adjusted row and column marginals are
now {0, 0, 0} and {0, 0, 0}. All adjusted marginal frequency totals are now zero,
so go to STEP 5.

STEP 5: Set any remaining nij values to zero; in this case, n11, n12, n21, n32, and
n33 are set to zero.

The completed contingency table is given in Table 4.45. When there are tied values
in a marginal distribution, e.g., n.1 = n.3 = 30, there may be alternative cell
locations for the non-zero entries, meaning that more than one arrangement of
cell frequencies may satisfy the conditions, but the nine cell frequency values
{0, 0, 20, 0, 40, 10, 30, 0, 0} must be included in the 3×3 maximized contingency
table.

Let a double prime (′′) indicate a sum of pairs calculated on the maximized cell
frequency values. Then, for the maximized frequency data given in Table 4.45, the
number of concordant pairs of maximized cell frequency values is

C ′′ =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (0)(40 + 10 + 0 + 0) + (0)(10 + 0) + (0)(0 + 0)

+ (20)(0) = 0 ,

Table 4.45 Completed 3×3
contingency table with row
marginal frequency
distribution {20, 50, 30} and
column marginal frequency
distribution {30, 40, 30}

x

y x1 x2 x3 Total

y1 0 0 20 20

y2 0 40 10 50

y3 30 0 0 30

Total 30 40 30 100
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the number of discordant pairs of maximized cell frequency values is

D ′′ =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (20)(0 + 40 + 30 + 0) + (0)(0 + 30) + (10)(30 + 0)

+ (40)(30) = 2,900 ,

the number of pairs of maximized cell frequency values tied on variable x is

T ′′
x =

c∑
j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (0)(0 + 20) + (0)(20) + (0)(40 + 10) + (40)(10)

+ (30)(0 + 0) + (0)(0) = 400 ,

the number of pairs of maximized cell frequency values tied on variable y is

T ′′
y =

r∑
i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

(0)(0 + 30) + (0)(30) + (0)(40 + 0) + (40)(0)

+ (20)(10 + 0) + (10)(0) = 200 ,

and the number of pairs of maximized cell frequency values tied on both variables
x and y is

T ′′
xy = 1

2

r∑
i=1

c∑
j=1

nij

(
nij − 1

)

= 1

2

[
(20)(20 − 1) + (40)(40 − 1) + (10)(10 − 1) + (30)(30 − 1)

]

= 1,450 .

Then,

C ′′ + D ′′ + T ′′
x + T ′′

y + T ′′
xy = N(N − 1)

2
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Table 4.46 Values for C, D,
Tx , Ty , and Txy obtained from
the observed, expected, and
maximized frequency tables

Frequency table

Pairs Observed Expected Maximized

C 2,075 1,023 0

D 175 1,023 2,900

Tx 850 1,054 200

Ty 1,050 1,254 400

Txy 800 596 1,450

Total 4,950 4,950 4,950

and for the maximized data given in Table 4.45,

C ′′ + D ′′ + T ′′
x + T ′′

y + T ′′
xy

= 0 + 2,900 + 200 + 400 + 1,450 = 100(100 − 1)

2
= 4,950 .

Note that the maximized contingency table given in Table 4.45 occurs only
when as few cells as possible contain non-zero entries. Thus, either C ′′ or D ′′
is maximized and the other is minimized; in this case, C ′′ = 0 is the minimum
value of C possible, given the observed marginal frequency distributions, and
D ′′ = 2,900 is the maximum value of D possible, given the observed marginal
frequency distributions. Also, T ′′

x = 200 and T ′′
y = 400 are the minimum values

of Tx and Ty possible, given the observed marginal frequency distributions. On the
other hand, T ′′

xy = 1,450 is the maximum value of Txy possible, given the observed
marginal frequency distributions.

Table 4.46 summarizes the C, D, Tx , Ty , and Txy values obtained from the
observed, expected, and maximized contingency tables.

4.9.4 Calculation of Leik and Gove’s d c
N

Given the observed, expected, and maximized values for C, D, Tx , Ty , and Txy in
Table 4.46, errors of the first kind (E1)—the variation between independence and
maximum association—are given by:

E1 = T ′
y − T ′′

y = 1,254 − 400 = 854

and errors of the second kind (E2)—the variation between the observed table and
the table of maximum association—are given by:

E2 = Ty − T ′′
y = 1,050 − 400 = 650 .
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Then, in the manner of proportional-reduction-in-error measures of association,

d c
N = E1 − E2

E1
= (T ′

y − T ′′
y ) − (Ty − T ′′

y )

T ′
y − T ′′

y

= T ′
y − Ty

T ′
y − T ′′

y

= 1,254 − 1,050

1,254 − 400
= 0.2389 .

Because d c
N is a symmetrical measure, the number of tied values on variable x

can be used in place of the number of tied values on variable y. Thus,

d c
N = T ′

x − Tx

T ′
x − T ′′

x

= 1,054 − 850

1,054 − 200
= 0.2389 .

Alternatively, d c
N can be defined in terms of the number of values tied on both x and

y. Thus,

d c
N = T ′

xy − Txy

T ′
xy − T ′′

xy

= 596 − 800

596 − 1,450
= 0.2389 .

Because the data are categorical, C and D can be considered as grouped together.
Thus,

d c
N =

(
C ′ + D ′)− (

C + D
)

(
C ′ + D ′)− (

C ′′ + D ′′) = (1,023 + 1,023) − (2,075 + 175)

(1,023 + 1,023) − (0 + 2,900)

= 0.2389 .

Finally,

d c
N = T ′

y − Ty

T ′
y − T ′′

y

= T ′
x − Tx

T ′
x − T ′′

x

= T ′
xy − Txy

T ′
xy − T ′′

xy

=
(
C ′ + D ′)− (

C + D
)

(
C ′ + D ′)− (

C ′′ + D ′′) .

As noted by Leik and Gove, for an aid in interpreting the relationship between
variables x and y, it would be preferable to explicitly determine the number of pairs
lost to the marginal requirements of the contingency table. Association can then be
defined within those limits, enabling the index to reach unity if cell frequencies are
as close to a perfect pattern as the marginal distributions allow [53, p. 286]. Thus,
for the frequency data given in Table 4.41 on p. 192, the proportion of cases being
considered is

1 −
2
(
T ′′

x + T ′′
y

)
N(N − 1)

= 1 − 2(200 + 600)

100(100 − 1)
= 0.8384 .
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4.9.5 A Permutation Test for d c
N

Leik and Gove did not provide a standard error for test statistic d c
N [52]. On the

other hand, permutation tests neither assume nor require knowledge of standard
errors. Consider the expression

d c
N = T ′

y − Ty

T ′
y − T ′′

y

.

It is readily apparent that T ′
y and T ′′

y are invariant under permutation. Therefore,
the probability of d c

N under the null hypothesis can be determined by the discrete
permutation distribution of Ty alone, which is easily obtained from the observed
contingency table. Exact permutation statistical methods are highly efficient when
only the variable portion of the defined test statistic is calculated on each of the M

possible arrangements of the observed data; in this case, Ty .
For the frequency data given in Table 4.41 on p. 192, there are only M = 96,151

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 50, 30} and {30, 40, 30}, respectively, making an exact permutation analysis
feasible. If all M = 96,151 arrangements occur with equal chance, the exact
probability value of d c

N under the null hypothesis is the sum of the hypergeometric
point probability values associated with d c

N = 0.2389 or greater. Based on the
underlying hypergeometric probability distribution, the exact upper-tail probability
value is P = 0.1683×10−11.

4.10 A Matrix Occupancy Problem

In many research situations, it is necessary to examine a sequence of observations on
a small group of subjects, where each observation is classified in one of two ways.
Suppose, for example, a Success (1) or Failure (0) is recorded for each of N ≥ 2
subjects on each of k ≥ 2 tasks. The standard test in such cases is Cochran’s Q test,
as described in Sect. 4.7.

However, when the number of subjects is small, e.g., 2 ≤ N ≤ 6, and the number
of treatments is large, e.g., 20 ≤ k ≤ 400, an alternative test may be preferable to
Cochran’s Q test. Such research conditions arise for a number of reasons. First, a
long-term panel study is proposed, but few subjects are willing to make a research
commitment due to the extended time of the research, or the treatment is either
distasteful or time-intensive for the subjects. Second, a longitudinal study begins
with an adequate number of subjects, but there is a high drop-out rate and survival
analysis cannot be justified. Third, very few subjects satisfy the research protocol.
Fourth, the cost of each observation/treatment is expensive for the researcher. Fifth,
subjects are very expensive, as in primate studies. Sixth, a pilot study with a small



4.10 A Matrix Occupancy Problem 203

number of subjects may be implemented to establish the validity of the research
prior to applying for funding for a larger study.

Consider an N×k occupancy matrix with N subjects (rows) and k treatment
conditions (columns). Let xij denote the observation of the ith subject (i =
1, . . . , N) in the j th treatment condition (j = 1, . . . , k), where a success is coded
1 and a failure is coded 0. For any subject, a success might result from the treatment
administered or it might result from some other cause or a random response, i.e., a
false positive. Therefore, a successful treatment response is counted only when all
N subjects score a success, i.e., a full column of 1 values. Clearly, this approach
does not generalize well to a great number of subjects since it is unrealistic for a
large number of subjects to respond in concert. The Q test of Cochran is preferable
when N is large.

In 1965, Mielke and Siddiqui presented an exact permutation procedure for the
matrix occupancy problem in Journal of the American Statistical Association that
is appropriate for small samples (N) and a large number of treatments (k) [68].
Let

Ri =
k∑

j=1

xij

for i = 1, . . . , N denote subject (row) totals, let

M =
N∏

i=1

(
k

Ri

)

denote the number of equally-likely distinguishable N × k occupancy matrices
in the reference set, under the null hypothesis, and let v = min(R1, . . . , RN).
The null hypothesis stipulates that each of the M distinguishable configurations
of 1s and 0s within each of the N rows occurs with equal probability, given that
the R1, . . . , RN values are fixed. If Ug is the number of distinct configurations
where exactly k treatment conditions (columns) are filled with successes (1s),
then

Uv =
(

k

v

) N∏
i=1

(
k − v

Ri − v

)

is the initial value of the recursive relation

Ug =
(

k

g

)⎡⎣ N∏
i=1

(
k − g

Ri − g

)
−

v∑
j=g+1

(
k − g

j − g

)
Uj(
k
j

)
⎤
⎦ ,
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where 0 ≤ g ≤ v − 1. If g = 0, then

M =
v∑

g=0

Ug

and the exact probability of observing s or more treatment conditions (columns)
completely filled with successes (1s) is given by:

P = 1

M

v∑
g=s

Ug ,

where 0 ≤ s ≤ v.
In 1972, Eicker, Siddiqui, and Mielke described extensions to the matrix occu-

pancy problem [28]. In 1974, Mantel [58] observed that the solution to the matrix
occupancy problem was also the solution to the “committee problem” considered by
Mantel and Pasternack in 1968 [59], Gittelsohn in 1969 [36], Sprott in 1969 [81],
and White in 1971 [85]. Whereas the matrix occupancy problem considers N

subjects and k treatments, scoring a success by a subject for a specific treatment
as a 1 and a failure as a 0, the committee problem considers N committees and k

individuals, scoring a 1 if an individual is not a member of a specified committee and
0 otherwise. The committee problem is concerned with the number of individuals
belonging to no committees, which is equivalent to the concern of the matrix
occupancy problem with the number of treatments associated with successes among
all subjects.

4.10.1 Example Analysis

Consider an experiment with N = 6 subjects and k = 8 treatment conditions,
such as given in Table 4.47. For the binary data listed in Table 4.47, the Ri totals
are {4, 6, 5, 7, 4, 6}, the minimum of Ri , i = 1, . . . , N , is v = 4, the number of

Table 4.47 Successes (1s)
and failures (0s) of N = 6
subjects on a series of k = 8
treatments

Treatment

Subject 1 2 3 4 5 6 7 8 Ri

1 0 1 1 1 0 0 1 0 4

2 1 1 1 0 0 1 1 1 6

3 0 1 0 1 1 0 1 1 5

4 1 1 1 1 0 1 1 1 7

5 0 1 1 0 0 0 1 1 4

6 1 1 1 1 0 1 1 0 6
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treatment conditions filled with 1s is s = 2 (treatments 2 and 7),

v∑
g=s

Ug =
4∑

g=2

Ug = 149,341,920 + 6,838,720 + 40,320 = 156,220,960 ,

the number of N×k occupancy matrices in the reference set of all possible
occupancy matrices, under the null hypothesis, is

M =
N∏

i=1

(
k

Ri

)
=
(

8

4

)(
8

6

)(
8

5

)(
8

7

)(
8

4

)(
8

6

)

= 70 × 28 × 56 × 8 × 70 × 28 = 1,721,036,800 ,

and the exact probability of observing s = 2 or more treatment conditions
completely filled with 1s is

P = 1

M

v∑
g=s

Ug = 156,220,960

1,721,036,800
= 0.0908 .

It is also possible to define a maximum-corrected measure of effect size as R = s/k

that varies between 0 when no treatments (columns) are completely filled with 1s,
to a maximum of 1 when all k columns are filled with 1s; in this example,

R = s

k
= 2

8
= 0.25.

4.11 Fisher’s Exact Probability Test

While Fisher’s exact probability (FEP) test is, strictly speaking, not a measure of
association between two nominal-level variables, it has assumed such importance
in the analysis of 2×2 contingency tables that excluding Fisher’s exact test from
consideration would be a serious omission. That said, however, Fisher’s exact
probability test provides the probability of association rather than a measure of the
strength of association. The Fisher exact probability test was independently devel-
oped by R.A. Fisher, Frank Yates, and Joseph Irwin in the early 1930s [32, 47, 89].
Consequently, the test is often referred to as the Fisher–Yates or the Fisher–Irwin
exact probability test.5

5In this research monograph “Fisher exact probability test” is used throughout.
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Although the Fisher exact probability test was originally designed for 2×2
contingency tables and is used almost exclusively for this purpose, in this section
the test is extended to apply to other contingency tables such as 2×3, 3×3, 3×4,
2×2×2, and other larger contingency tables. For ease of calculation and to avoid
large factorial expressions, a recursion procedure with an arbitrary initial value
provides an efficient method to obtain exact probability values; for a detailed
description of recursion procedures, see Chap. 2, Sects. 2.6.1 and 2.6.2.

4.11.1 Fisher’s Exact Analysis of a 2×2 Table

Consider a 2×2 contingency table with N cases, where xo denotes the observed
frequency of any cell and r and c represent the row and column marginal frequency
totals, respectively, corresponding to xo. Table 4.48 illustrates the notation for a 2×2
contingency table.

If H(x|r, c,N) is a recursively defined positive function in which

H(x|r, c,N) = D ×
(

r

x

)(
N − r

c − x

)(
N

c

)−1

= D × r! c! (N − r)! (N − c)!
N ! x! (r − x)! (c − x)! (N − r − c + x)! ,

where D > 0 is an unknown constant, then solving the recursive relation

H(x + 1|r, c,N) = H(x|r, c,N) × g(x)

yields

g(x) = (r − x)(c − x)

(x + 1)(N − r − c + x + 1)
.

The algorithm may then be employed to enumerate all values of

H(x|r, c,N) ,

Table 4.48 Example
notation for a 2×2
contingency table

A1 A2 Total

B1 x r − x r

B2 c − x N − r − c + x N − r

Total c N − c N
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where a ≤ x ≤ b, a = max(0, r + c − N), b = min(r, c), and H(a|N, r, c) is
initially set to some small positive value [14]. The total over the entire distribution
may be found by:

T =
b∑

k=a

H(k|r, c,N) .

To calculate the probability value of xo, given the observed marginal frequency
distributions, the point probability of the observed table must be determined. This
value, designated by U2 = H(x|r, c,N), is found recursively. Next, the tail of the
probability distribution associated with U2 must be identified. Let

U1 =
⎧⎨
⎩

H(xo − 1|r, c,N) if xo > a ,

0 if xo = a ,

and

U3 =
⎧⎨
⎩

H(xo + 1|r, c,N) if xo < b ,

0 if xo = b .

If U1 > U3, U2 is located in the right tail of the distribution; otherwise, U2 is defined
to be in the left tail of the distribution, and the one-tailed (S1) and two-tailed (S2)
subtotals may be found by:

S1(xo|r, c,N) =
b∑

k=a

KkH(k|r, c,N)

and

S2(xo|r, c,N) =
b∑

k=a

LkH(k|r, c,N) ,

respectively, where

Kk =
⎧⎨
⎩

1 if U1 ≤ U3 and k ≤ xo or if U1 > U2 and k ≥ xo ,

0 otherwise ,
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and

Lk =
⎧⎨
⎩

1 if H(k|r, c,N) ≤ U2 ,

0 otherwise ,

for k = a, . . . , b. The one- and two-tailed exact probability values are then given
by:

P1 = S1

T
and P2 = S2

T
,

respectively.

A 2×2 Contingency Table Example

To illustrate the calculation of Fisher’s exact probability test for a fourfold contin-
gency table, consider the 2×2 contingency table given in Table 4.49 with xo = 6,
r = 9, c = 8, N = 20,

a = max(0, r + c − N) = max(0, 9 + 8 − 20) = max(0,−3) = 0 ,

b = min(r, c) = min(9, 8) = 8 ,

and b − a + 1 = 8 − 0 + 1 = 9 possible table configurations in the reference set of
all permutations of cell frequencies, given the observed row and column marginal
frequency distributions, {9, 11} and {8, 12}, respectively.

Table 4.50 lists the nine possible values of x in the first column. The second
column of Table 4.50 lists the exact point probability values for x = 0, . . . , 8
calculated from the conventional hypergeometric probability expression given by:

p(x|r, c,N) =
(

r

x

)(
N − r

c − x

)(
N

c

)−1

= r! (N − r)! c! (N − c)!
N ! x! (r − x)! (c − x)! (N − r − c + x)! .

Table 4.49 Example 2×2
contingency table

A1 A2 Total

B1 6 3 9

B2 2 9 11

Total 8 12 20
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Table 4.50 Example of
statistical recursion with an
arbitrary initial value

x Probability H(x|r, c,N) H(x|r, c,N)/T

0 0.001310 1 0.001310

1 0.023577 18 0.023577

2 0.132032 100.80 0.132032

3 0.308073 235.20 0.308073

4 0.330079 252 0.330079

5 0.165039 126 0.165039

6 0.036675 28 0.036675

7 0.003144 2.40 0.003144

8 0.000071 0.054545 0.000071

Total 1.000000 763.454545 1.000000

The third column of Table 4.50 contains the recursion values where, for x = 0, the
initial (starting) value is arbitrarily set to 1 for this example analysis. Then,

1

[
(9)(8)

(1)(4)

]
= 18 ,

18

[
(8)(7)

(2)(5)

]
= 100.80 ,

100.80

[
(7)(6)

(3)(6)

]
= 235.20 ,

235.20

[
(6)(5)

(4)(7)

]
= 252 ,

252

[
(5)(4)

(5)(8)

]
= 126 ,

126

[
(4)(3)

(6)(9)

]
= 28 ,

28

[
(3)(2)

(7)(10)

]
= 2.40 ,

2.40

[
(2)(1)

(8)(11)

]
= 0.054545 .

The total of H(x|r, c,N) for x = 0, . . . , 8 is

T = 1 + 18 + 100.80 + 235.20 + 252 + 126 + 28 + 2.40 + 0.054545

= 763.454545 .
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The fourth column of Table 4.50 corrects the entries of the third column by dividing
each entry by T . For the frequency data given in Table 4.41 on p. 192,

U2 = H(xo|r, c,N) = H(6|9, 8, 20) = 28 .

Because xo > a, i.e., 6 > 1,

U1 = H(xo − 1|r, v,N) = H(5|9, 8, 20) = 126

and because xo < b, i.e., 6 < 8,

U3 = H(xo + 1|r, c,N) = H(7|9, 8, 20) = 2.40 .

Thus, U2 = 28 is located in the right tail of the distribution since U1 > U3, i.e.,
126 > 2.40. Then, the one- and two-tailed subtotals are

S1 = 28 + 2.40 + 0.054545 = 30.454545

and

S2 = 1 + 18 + 28 + 2.40 + 0.054545 = 49.454545 ,

respectively, and the one- and two-tailed exact probability values are

P1 = S1

T
= 30.454545

763.454545
= 0.039890

and

P2 = S2

T
= 49.454545

763.454545
= 0.064777 ,

respectively.

4.11.2 Larger Contingency Tables

Although Fisher’s exact probability test has largely been limited to the analysis of
2×2 contingency tables in the literature, it is not difficult to extend Fisher’s exact
test to larger contingency tables, although such extensions may be computationally
intensive [71, pp. 127–130, 296–298 ]. Consider an example 2×3 contingency table
with N cases, where xo denotes the observed frequency of the cell in the first row
and first column, yo denotes the observed frequency of the cell in the second row
and first column, and r1, r2, and c1 are the observed marginal frequency totals in
the first row, second row, and first column, respectively. If H(x, y), given N , r1,
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r2, and c1, is a recursively defined positive function, then solving the recursive
relation

H(x, y + 1) = H(x, y) × g1(x, y)

yields

g1(x, y) = (c1 − x − y)(r2 − y)

(1 + y)(N − r1 − r2 − c1 + 1 + x + y)
. (4.14)

If y = min(r2, c1 − x), then H(x + 1, y) = H(x, y) × g2(x, y),
where

g2(x, y) = (c1 − x − y)(r1 − x)

(1 + x)(N − r1 − r2 − c1 + 1 + x + y)
, (4.15)

given that max(0, r1 + r2 + c1 − N − x) = 0. However, if y = min(r2, c1 − x) and
max(0, r1 + r2 + c1 − N − x) > 0, then H(x + 1, y − 1) = H(x, y) × g3(x, y),
where

g3(x, y) = y(r1 − x)

(1 + x)(r2 + 1 − y)
. (4.16)

The three recursive expressions given in Eqs. (4.14), (4.15), and (4.16) may be
employed to completely enumerate the distribution of H(x, y), where a ≤ x ≤ b,
a = max(0, r1 + c1 − N), b = min(r1, c1), c(x) ≤ y ≤ d(x), c(x) = max(0, r1 +
r2 + c1 − N + x), d(x) = min(r2, c1 − x), and H [a, c(x)] is initially set to some
small positive value [15]. The total over the completely enumerated distribution may
be found by:

T =
b∑

x=a

d(x)∑
y=c(x)

H (x, y) .

To calculate the probability value of (xo, yo), given the observed marginal
frequency distributions, the hypergeometric point probability value of the observed
2×3 contingency table must be obtained; this value may also be found recursively.
Next, the probability of a result this extreme or more extreme must be found. The
subtotal is given by:

S =
b∑

x=a

d(x)∑
y=c(x)

Jx,yHx,y ,
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Table 4.51 Example 2×3
contingency table

A1 A2 A3 Total

B1 5 3 2 10

B2 8 4 7 19

Total 13 7 9 29

where

Jx,y =
⎧⎨
⎩

1 if H(x, y) ≤ H(xo, yo) ,

0 otherwise ,

for x = a, . . . , b and y = c(x), . . . , d(x). The exact probability value for
independence associated with the observed cell frequencies, xo and yo is given by
P = S/T .

A 2×3 Contingency Table Example

To illustrate the calculation of Fisher’s exact probability test for a 2×3 contingency
table, consider the frequency data given in Table 4.51 where xo = 5, yo = 3,
r1 = 10, c1 = 13, c2 = 7, and N = 29. For the frequency data given in Table 4.51,
there are only M = 59 arrangements6 of cell frequencies that are consistent with the
observed row and column marginal frequency distributions, {10, 19} and {13, 7, 9},
respectively, and exactly 56 of the arrangements M = 59 have hypergeometric point
probability values equal to or less than the point probability value of the observed
table (p = 0.8096×10−1), yielding an exact probability value of P = 0.6873. Since
the 2×3 table in Table 4.51 has only two degrees of freedom, Table 4.52 lists the
M = 59 values for n11 and n12 for each possible arrangement of cell frequencies,
given the observed marginal frequency totals, and the associated hypergeometric
point probability values. Row 56 contains the observed values of n11 = 5 and n12 =
3 indicated by an asterisk.

A 2×6 Contingency Table Example

Fisher’s exact probability test is easily extended to any 2×c contingency table. For
example, consider the 2×6 contingency table given in Table 4.53 where vo = 1,
wo = 4, xo = 3, yo = 4, zo = 8, r1 = 6, r2 = 5, r3 = 10, r4 = 9, r5 = 10,

6Although it is relatively simple to calculate the number of possible arrangements of cell
frequencies (M) for a 2×2 contingency tables prior to analysis, it is considerably more difficult
to calculate M for larger contingency tables; thus, M is usually determined at the conclusion of the
analysis. For an algorithm to approximate the number of possible arrangements of cell frequencies,
see a 1977 article in Journal of the American Statistical Association by Gail and Mantel [35].
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Table 4.52 Listing of the M = 59 possible cell arrangements for the data given in Table 4.51 with
cell frequencies n11, n12, and associated exact hypergeometric point probability values

Table n11 n12 Probability Table n11 n12 Probability

1 0 1 0.3495×10−6 31 6 4 0.2999×10−2

2 1 0 0.6490×10−6 32 7 3 0.2999×10−2

3 0 7 0.4194×10−5 33 8 1 0.4048×10−2

4 0 2 0.9436×10−5 34 4 5 0.6747×10−2

5 10 0 0.1428×10−4 35 2 2 0.6869×10−2

6 3 7 0.1428×10−4 36 2 5 0.6869×10−2

7 1 7 0.2336×10−4 37 7 0 0.7196×10−2

8 2 0 0.3505×10−4 38 5 0 0.8096×10−2

9 2 7 0.3505×10−4 39 3 1 0.8396×10−2

10 1 1 0.4089×10−4 40 3 5 0.1079×10−1

11 0 6 0.4404×10−4 41 6 0 0.1079×10−1

12 0 3 0.6291×10−4 42 7 2 0.1619×10−1

13 0 5 0.1321×10−3 43 2 3 0.1717×10−1

14 0 4 0.1468×10−3 44 2 4 0.1717×10−1

15 4 6 0.2499×10−3 45 5 4 0.2024×10−1

16 9 1 0.2499×10−3 46 7 1 0.2159×10−1

17 9 0 0.3213×10−3 47 6 3 0.2699×10−1

18 1 6 0.3816×10−3 48 4 1 0.3148×10−1

19 1 2 0.4907×10−3 49 3 2 0.3778×10−1

20 3 0 0.5140×10−3 50 3 4 0.4198×10−1

21 3 6 0.8996×10−3 51 4 4 0.4498×10−1

22 2 6 0.9813×10−3 52 6 1 0.5037×10−1

23 2 1 0.9813×10−3 53 5 1 0.5667×10−1

24 5 5 0.1349×10−2 54 3 3 0.6297×10−1

25 8 2 0.1349×10−2 55 6 2 0.6447×10−1

26 1 5 0.1717×10−2 56∗ 5 3 0.8096×10−1

27 1 3 0.1908×10−2 57 4 2 0.9445×10−1

28 8 0 0.2313×10−2 58 4 3 0.1049

29 1 4 0.2862×10−2 59 5 2 0.1133

30 4 0 0.2999×10−2

Table 4.53 Example 2×6
contingency table

A1 A2 A3 A4 A5 A6 Total

B1 1 4 3 4 8 9 29

B2 5 1 7 5 2 3 23

Total 6 5 10 9 10 12 52

c1 = 29, and N = 52. For the frequency data given in Table 4.53, M = 33,565
arrangements of cell frequencies are consistent with the observed row and column
marginal frequency distributions, {29, 23} and {6, 5, 10, 9, 10, 12}, respectively,
and exactly 27,735 of the M = 33,565 arrangements have hypergeometric point
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probability values equal to or less than the point probability value of the observed
table (p = 0.1159×10−3), yielding an exact probability value of P = 0.0338.

A 3×3 Contingency Table Example

Fisher’s exact probability test can also be applied to larger contingency tables,
although calculation time increases substantially as the number of rows and
columns increase. In this section, Fisher’s exact probability test is applied to a 3×3
contingency table. Consider the 3×3 contingency table given in Table 4.54 where
wo = 3, xo = 5, yo = 2, zo = 9, r1 = 10, r2 = 14, c1 = 13, c2 = 16, and N = 40.
For the frequency data given in Table 4.54, M = 4,818 arrangements of cell
frequencies are consistent with the observed row and column marginal frequency
distributions, {10, 14, 16} and {13, 16, 11}, respectively, and exactly 3,935 of the
M = 4,818 arrangements have hypergeometric point probability values equal to
or less than the point probability value of the observed table (p = 0.1273×10−4),
yielding an exact probability value of P = 0.0475.

A 3×4 Contingency Table Example

Finally, consider the sparse 3×4 contingency table given in Table 4.55. For the
frequency data given in Table 4.55, only M = 706 arrangements of cell frequencies
are consistent with the observed row and column marginal frequency distributions,
{5, 5, 4} and {4, 3, 4, 3}, respectively, and 168 of the M = 706 arrangements have
hypergeometric point probability values equal to or less than the point probability
value of the observed table (p = 0.1903×10−3), yielding an exact probability value
of P = 0.0187.

Table 4.54 Example 3×3
contingency table

A1 A2 A3 Total

B1 3 5 2 10

B2 2 9 3 14

B3 8 2 6 16

Total 13 16 11 40

Table 4.55 Example 3×4
contingency table

A1 A2 A3 A4 Total

B1 3 0 0 2 5

B2 0 3 1 1 5

B3 1 0 3 0 4

Total 4 3 4 3 14
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4.12 Analyses of 2×2×2 Tables

Fisher’s exact probability test is not limited to two-way contingency tables. Consider
a 2×2×2 contingency table, such as depicted in Fig. 4.1, where nijk denotes the cell
frequency of the ith row, j th column, and kth slice for i, j, k = 1, 2. Denote by
a dot (·) the partial sum of all rows, all columns, or all slices, depending on the
position of the (·) in the subscript list. If the (·) is in the first subscript position,
the sum is over all rows, if the (·) is in the second subscript position, the sum is
over all columns, and if the (·) is in the third subscript position, the sum is over all
slices. Thus, ni.. denotes the marginal frequency total of the ith row, i = 1, . . . , r ,
summed over all columns and slices; n.j. denotes the marginal frequency total of the
j th column, j = 1, . . . , c, summed over all rows and slices; and n..k denotes the
marginal frequency total of the kth slice, k = 1, . . . , s, summed over all rows and
columns. Therefore, A = n1.., B = n.1., C = n..1, and N = n... denote the observed
marginal frequency totals of the first row, first column, first slice, and entire table,
respectively, such that 1 ≤ A ≤ B ≤ C ≤ N/2. Also, let w = n111, x = n112,
y = n121, and z = n211 denote cell frequencies of the 2×2×2 contingency table.
Then, the probability for any w, x, y, and z is given by:

P(w, x, y, z|A,B,C,N) =[
A!(N − A)! B! (N − B)! C!(N − C)!]

× [
(N !)2 w! x! y! z! (A − w − x − y)! (B − w − x − z)!

(C − w − y − z)! (N − A − B − C + 2w + x + y + z)!]−1

[67]. An algorithm to compute Fisher’s exact probability test involves a nested
looping structure and requires two distinct passes. The first pass yields the exact

Fig. 4.1 Graphic depiction
of a 2×2×2 contingency
table
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probability, U , of the observed 2×2×2 contingency table and is terminated when
U is obtained. The second pass yields the exact probability value of all tables with
hypergeometric point probability values equal to or less than the point probability
of the observed contingency table. The four nested loops within each pass are over
the cell frequency indices w, x, y, and z, respectively. The bounds for w, x, y, and
z are

0 ≤w ≤ Mw ,

0 ≤x ≤ Mx ,

0 ≤y ≤ My ,

and

Lx ≤z ≤ Mz ,

respectively, where Mw = A, Mx = A−w, My = A−w − x, Mz = min(B −w −
x,C − w − y), and Lz = max(0, A + B + C − N − 2w − x − y).

The recursion method can be illustrated with the fourth (inner) loop over z, given
w, x, y, A, B, C, and N because the inner loop yields both U on the first pass and
the exact probability value on the second pass. Let H(w, x, y, z) be a recursively
defined positive function given A, B, C, and N , satisfying

H(w, x, y, z + 1) = H(w, x, y, z) × g(w, x, y, z) ,

where

g(w, x, y, z) = (B − w − x − z)(C − w − z)

(z + 1)(N − A − B − C + 2w + x + y + z + 1)
.

The remaining three loops of each pass initialize H(w, x, y, z) for continued
enumerations. Let Ix = max(0, A + B + C − N) and set the initial value
of H(0, 0, 0, Iz) to an arbitrary small positive constant. Then, the total over the
completely enumerated distribution is found by:

T =
Mw∑
w=0

Mx∑
x=0

My∑
y=0

Mx∑
z=Lx

H(w, x, y, z) .

If wo, xo, yo, and zo are the values of w, x, y, and z in the observed 2×2×2
contingency table, then U and the exact probability value (P ) are given by:

U = H(wo, xo, yo, zo)/T
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and

P =
Mw∑
w=0

Mx∑
x=0

My∑
y=0

Mx∑
z=Lx

H(w, x, y, z) ψ(w, x, y, z, )/T .

respectively, where

ψ(w, x, y, z) =
⎧⎨
⎩

1 if H(w, x, y, z) ≤ H(wo, xo, yo, zo) ,

0 otherwise .

4.12.1 A 2×2×2 Contingency Table Example

Consider a scenario in which N = 1,663 respondents were asked if they agreed with
the statement that women should have equal pay for the same job as men (No, Yes).
The respondents were then classified by region of the country (North, South) and by
year of the survey (2000, 2010). For the frequency data given in Table 4.56, M =
3,683,159,504 arrangements of cell frequencies are consistent with the observed
row, column, and slice marginal frequency distributions, {623, 1040}, {1,279, 384},
and {1,039, 624}, respectively. Exactly 2,761,590,498 of the arrangements have
hypergeometric point probability values equal to or less than the point probability
value of the observed table (p = 0.1684×10−72), yielding an exact probability
value of P = 0.1684×10−65.

4.12.2 A 3×4×2 Contingency Table Example

Fisher’s exact probability test is not limited to multi-way contingency tables with
only two categories in each dimension. Consider the r×c×s contingency table given
in Table 4.57 with r = 3 rows, c = 4 columns, and s = 2 slices. In general, it is not
efficient to analyze complex multi-way tables with exact permutation procedures,
as there are usually too many arrangements of cell frequencies in the reference set
of all possible arrangements of cell frequencies. For the frequency data given in
Table 4.57 with row, column, and slice marginal frequency distributions, {71, 31},

Table 4.56
Cross-classification of
responses (No, Yes),
categorized by year and
region

Region

North South

Year No Yes No Yes

2000 410 56 126 31

2010 439 374 64 163
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Table 4.57 Three-way
contingency table with r = 3
rows, c = 4 columns, and
s = 2 slices

C1 C2 C3 C4

S1 R1 3 4 1 6

R2 7 8 4 9

R3 7 8 9 5

S2 R1 2 6 5 2

R2 0 2 6 1

R3 2 4 0 1

{21, 32, 25, 24}, and {29, 37, 36}, respectively, the approximate resampling proba-
bility value based on L = 1,000,000 random arrangements of cell frequencies is

P = 29,600

1,000,000
= 0.0296 .

4.13 Coda

Chapter 3 applied permutation statistical methods to measures of association for
two nominal-level variables that are based on Pearson’s chi-squared test statistic.
Chapter 4 applied exact and resampling permutation statistical methods to measures
of association for two nominal-level variables that are not based on Pearson’s chi-
squared test statistic. Included in Chap. 4 were Goodman and Kruskal’s asymmetric
λa , λb, ta , and tb measures, Cohen’s unweighted chance-corrected κ coefficient,
McNemar’s and Cochran’s Q measures of change, Leik and Gove’s d c

N measure,
Mielke and Siddiqui’s exact probability for the matrix occupancy problem, and
Fisher’s exact probability test, extended to cover a variety of contingency tables.
For each test, examples illustrated the measures and either exact or resampling
probability values based on the appropriate permutation analysis were provided.

Chapter 5 applies permutation statistical methods to a variety of measures of
association designed for ordinal-level variables that are based on all possible paired
comparisons. Included in Chap. 5 are Kendall’s τa and τb and Stuart’s τc measures of
ordinal association, Somers’ asymmetric dyx and dxy measures, Kim’s dy.x and dx.y

measures, Wilson’s e measure, and Cureton’s rank-biserial correlation coefficient.
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Chapter 5
Ordinal-Level Variables, I

Measures of relationships between two ordinal-level (ranked) variables are typically
more informative than measures of relationships between simple nominal-level (cat-
egorical) variables, as disjoint, ordered categories usually contain more information
than disjoint, unordered categories. Examples of ordinal-level variables are: Race
Finishes (Win, Place, Show), Birth Order (1st, 2nd, 3rd, etc.), Academic Rank
(Assistant Professor, Associate Professor, Professor), and Likert Scales (Strongly
Agree, Agree, Neutral, Disagree, Strongly Disagree). Measures of association for
two ordinal-level variables are typically of two types: those based on pairwise
differences, such as Kendall’s τa and τb measures and Goodman and Kruskal’s
γ measure, and those based on criteria other than pairwise differences, such as
Cohen’s weighted kappa measure of inter-rater agreement and Bross’s ridit analysis.

Chapter 5 of The Measurement of Association provides exact and Monte Carlo
permutation statistical methods for a variety of measures of association designed for
ordinal-level variables that are based on all possible pairwise comparisons between
ranked scores. Included in this chapter are exact and Monte Carlo permutation
statistical methods for Kendall’s τa and τb measures of ordinal association, Stuart’s
τc measure, Goodman and Kruskal’s γ measure, Somers’ dyx and dxy measures,
Kim’s dy·x and dx·y measures, Wilson’s e measure, Whitfield’s S measure of
ordinal association between one ordinal-level variable and one binary variable,
and Cureton’s rank-biserial correlation coefficient. Measures of association for two
ordinal-level variables that are not based on pairwise comparisons are considered
in Chap. 6 and include Spearman’s rank-order correlation coefficient, Spearman’s
footrule measure of agreement, Kendall’s coefficient of concordance, Kendall’s u

measure of inter-rater agreement, Cohen’s weighted kappa measure of agreement,
and Bross’s ridit analysis.

The measurement of objects by ordering or ranking them has an early and
distinguished beginning. It is not widely recognized that Francis Galton was an
early advocate of ranked data. In 1922, on the centenary of Francis Galton’s birth,
Sir Henry Rew attributed Galton’s first contribution to statistics to an 1875 article in
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Philosophical Magazine, Series 4 on “Statistics by intercomparison, with remarks
on the law of frequency of error” [41]. Galton’s method of intercomparison was
expressly designed to bring attributes that could be ordered or ranked, but not
measured, within the purview of statistical analysis [39, p. 144]. Galton’s objective
was to describe a method for obtaining simple statistical results that was “applicable
to a multitude of objects lying outside the present limits of statistical enquiry” [13,
p. 33]. Galton contended that the objects needed only to be ranked in order
as regards the characteristic considered—the middlemost (median) indicating the
average and those objects one-quarter distant from either end (quartiles) indicating
the divergence of the series, i.e., the probable or median error. Galton argued that
these three values, median and two quartiles, were sufficient to characterize or
compare populations [39, p. 144].1

5.1 Pairwise Measures of Ordinal Association

A number of measures of association for two ordinal-level variables are based on
pairwise comparisons of differences between rank scores. The test statistic S, as
defined by Maurice Kendall in 1938 [21] and more extensively in 1948 [23], plays
an important role in a variety of statistical measures where Kendall’s test statistic is
often expressed as S = C − D, where C and D indicate the number of concordant
pairs and discordant pairs, respectively, vide infra.2 Consider two ordinal variables
that have been cross-classified into an r×c contingency table, where r and c denote
the number of rows and columns, respectively. Let ni., n.j , and nij denote the row
marginal frequency totals, column marginal frequency totals, and number of objects
in the ijth cell, respectively, for i = 1, . . . , r and j = 1, . . . , c, and let N denote
the total number of objects in the r×c contingency table, i.e.,

ni. =
c∑

j=1

nij , n.j =
r∑

i=1

nij , and N =
r∑

i=1

c∑
j=1

nij .

Table 5.1 depicts a conventional notation for a typical r×c contingency table for
two categorical variables, xi for i = 1, . . . , r and yj for j = 1, . . . , c.

If x and y represent the row and column variables, respectively, there are N(N −
1)/2 pairs of objects in the table that can be partitioned into five mutually exclusive,
exhaustive types of pairs: concordant pairs, discordant pairs, pairs tied on variable

1For an alternative, more mathematical, approach to measuring the variation among disjoint,
ordered categories, see three articles by Berry and Mielke [5, 6, 7].
2Some authors prefer to indicate the number of concordant pairs by P and the number of discordant
pairs by Q. Still others indicate the number of concordant pairs by N+ and the number of
discordant pairs by N−.
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Table 5.1 Notation for the
cross-classification of two
categorical variables, xi for
i = 1, . . . , r and yj for
j = 1, . . . , c

y

x 1 2 · · · c Total

1 n11 n12 · · · n1c n1.

2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

r nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N

x but not tied on variable y, pairs tied on variable y but not tied on variable x, and
pairs tied on both variables x and y.

For an r×c contingency table, concordant pairs (pairs of objects that are ranked
in the same order on both variable x and variable y) are given by

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠ , (5.1)

discordant pairs (pairs of objects that are ranked in one order on variable x and the
reverse order on variable y) are given by

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠ , (5.2)

pairs of objects tied on variable x but not tied on variable y are given by

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠ , (5.3)

pairs of objects tied on variable y but not tied on variable x are given by

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)
, (5.4)

and pairs of objects tied on both variable x and variable y are given by

Txy = 1

2

r∑
i=1

c∑
j=1

nij

(
nij − 1

) = 1

2

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij − N

⎞
⎠ . (5.5)
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Then,

C + D + Tx + Ty + Txy = N(N − 1)

2
.

Given C, D, Tx , Ty , and N , six measures of ordinal association are commonly
defined, each having the same numerator, S = C − D, but different denomina-
tors [2].3 4 The earliest of these pairwise measures was Kendall’s τa [23].5 Kendall’s
τa is a symmetrical measure of ordinal association that is most suitable when there
are no tied pairs and is defined as the simple difference between the proportions of
concordant and discordant pairs given by

τa = C

N(N − 1)

2

− D

N(N − 1)

2

= C − D

N(N − 1)

2

= 2S

N(N − 1)
. (5.6)

Kendall’s τb [23] extends τa to measure strong monotonicity in contingency
tables and is most appropriate when r = c. The denominator for τb is adjusted
for the number of tied pairs for both variable x and variable y. Kendall’s τb is given
by

τb = S√
(C + D + Tx)(C + D + Ty)

. (5.7)

Stuart’s τc [46] modifies Kendall’s τb for contingency tables where r �= c and is
given by

τc = 2mS

N2(m − 1)
, (5.8)

where m = min(r, c). Goodman and Kruskal’s γ [15] is a symmetrical measure of
weak monotonicity in which tied pairs of all types are ignored and is given by

γ = C − D

C + D
= S

C + D
. (5.9)

Somers’ dyx and dxy [44] are asymmetric measures of ordinal association. Unlike
the four symmetrical measures, τa , τb, τc, and γ , Somers’ dyx and dxy measures

3The number of pairs tied on both variables x and y (Txy ) is not used in any of the six measures.
4There are actually many more than six measures of ordinal association based on pairwise
comparisons; only the most common six measures are discussed here.
5Yule’s Q for 2×2 contingency tables also has S in the numerator and preceded Kendall’s τa by
some 40 years [51, 52]. While Yule’s Q is occasionally prescribed for rank-score data [29, p. 255–
256], it was originally designed for categorical data and 2×2 contingency tables; it is therefore
described more appropriately in Chap. 9.
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depend on which variable, y or x, is considered to be the dependent variable. If
variable y is the dependent variable, then

dyx = S

C + D + Ty

, (5.10)

and if variable x is the dependent variable, then

dxy = S

C + D + Tx

. (5.11)

Thus, for both dyx and dxy , when a difference between paired values on the
independent variable (i.e., untied pair) is not reflected as a difference between
the corresponding paired values on the dependent variable (i.e., tied pair) the
denominators of Eqs. (5.10) and (5.11) are increased by Ty or Tx , respectively, and
the values of dyx and dxy are diminished accordingly. Finally, it is readily apparent
that Kendall’s τb measure of ordinal association given in Eq. (5.7) is simply the
geometric mean of Somers’ dyx and dxy measures given by

τb =
√

dyx dxy .

5.2 Permutation Statistical Methods

For an exact permutation analysis of an r×c contingency table, it is necessary
to calculate the selected measure of ordinal association for the observed cell
frequencies and exhaustively enumerate all M possible, equally-likely arrangements
of the N objects in the rc cells, given the observed marginal frequency distributions.
For each arrangement in the reference set of all permutations of cell frequencies
a measure of ordinal association, say T , and the exact hypergeometric point
probability value under the null hypothesis, p(nij |ni., n.j , N), are calculated, where

p(nij |ni., n.j , N) =

(
r∏

i=1

ni.!
)⎛
⎝ c∏

j=1

n.j !
⎞
⎠

N !
r∏

i=1

c∏
j=1

nij !
,

nij is an observed cell frequency for i = 1, . . . r and j = 1, . . . , c, ni. is the ith
of r row marginal frequency totals summed over all columns, n.j is the j th of c

column marginal frequency totals summed over all rows, and N is the total of all
nij values for i = 1, . . . , r and j = 1, . . . , c [8, 33, p. 258]. If To denotes the value
of the observed test statistic, the exact one-sided upper- and lower-tail probability
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(P ) values of To are the sums of the p(nij |ni., n.j , N) values associated with the
T values computed on all possible, equally-likely arrangements of cell frequencies
that are equal to or greater than To when To is positive and equal to or less than To
when To is negative, respectively. Thus, the exact hypergeometric probability value
of To when T is positive is given by

P =
M∑

k=1

�(Tk) p(nij |ni., n.j , N) ,

where

�(Tk) =
⎧⎨
⎩

1 if Tk ≥ To ,

0 otherwise ,

and the exact hypergeometric probability value of To when T is negative is given by

P =
M∑

k=1

�(Tk) p(nij |ni., n.j , N) ,

where

�(Tk) =
⎧⎨
⎩

1 if Tk ≤ To ,

0 otherwise .

When the number of possible arrangements of cell frequencies is very large,
exact tests are impractical and Monte Carlo methods become necessary. Monte
Carlo resampling permutation statistical methods generate a random sample of
all possible arrangements of cell frequencies, drawn with replacement, given the
observed marginal frequency distributions. The resampling one-sided upper- and
lower-tail probability values of statistic T are simply the proportions of the T values
computed on the randomly selected arrangements of cell frequencies that are equal
to or greater than To when To is positive and equal to or less than To when To is
negative, respectively. Thus, the Monte Carlo resampling probability value of To
when T is positive is given by

P(T ≥ To|H0) = number of T values ≥ To

L
,

where L denotes the number of random arrangements of the observed data.6

6In general, setting L = 1,000,000 ensures a probability value with three decimal places of
accuracy [19].
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5.3 Kendall’s τa Measure of Ordinal Association

Kendall’s τa measure of ordinal association [21], given by

τa = 2S

N(N − 1)
,

was originally designed to measure the association between two sets of untied
rank scores, where the two sets of rank scores are customarily labeled as x and y,
although the rank scores can also be represented in an r×c contingency table where
ni. = n.j = 1 for i = 1, . . . , r and j = 1, . . . , c. Kendall’s τa is occasionally
touted as an alternative to Spearman’s rank-order correlation coefficient [26, p. 179].
Note also that because it is assumed that there are no ties in the data, τa may also be
given by

τa = 2S

N(N − 1)
= C − D

C + D
.

Finally, a method based on systematic reversals of observed values advocated by
Henry Mann in 1945 may be employed to calculate Kendall’s τa [30].7 Table 5.2
illustrates the counting of reversal arrangements in a sequence of ranks from 1
to 5. The first set of paired columns in Table 5.2 lists the observed ranks for two
groups, and subsequent sets of paired columns illustrate the number of reversals
necessary to produce the first column from the second. In this case, seven reversal
sequences are required with one reversal arrangement per sequence. For example,
reversal sequence 1 in Table 5.2 exchanges ranks 2 and 1 in the observed column,
reversal sequence 2 exchanges ranks 5 and 1 in reversal sequence 1, reversal
sequence 3 exchanges ranks 4 and 1 in reversal sequence 2, and so on until reversal
sequence 7 exchanges ranks 3 and 2 in reversal sequence 6 to achieve the ordered
sequence in reversal sequence 7. The technique that Mann described is similar to
a graphic computation of disarray first constructed by S.D. Holmes and published
in an appendix to a book on Educational Psychology by P. Sandiford in 1928 with
application to Pearson’s product-moment correlation coefficient, rxy [43, pp. 391–
394], and in a later publication by H.D. Griffin in 1958 with application to Kendall’s
rank-order correlation coefficient, τa [16].

A proof that the number of interchanges of nearest neighbors required to reduce
one ranking to the other was provided by P.A.P. Moran in 1947 [34] and was,
according to Moran, first proved by Olinde Rodrigues in 1839 [42].8 In 1948

7James Durbin and Alan Stuart introduced an inversion procedure for rank-correlation coefficients
in 1951 [11]. Alan Stuart also developed a method to calculate Kendall’s τa based on inversions of
ranks in 1977 [47].
8A summary in English of the Rodrigues 1839 article is available in Mathematics and Social
Utopias in France: Olinde Rodrigues and His Times [1, pp. 110–112].
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Table 5.2 Reversal sequences for N = 5 ranks to obtain no reversals from an observed data set

Reversal sequence

Observed 1 2 3 4 5 6 7

1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1

2 4 2 4 2 4 2 1 2 3 2 3 2 3 2 2

3 5 3 5 3 1 3 4 3 4 3 4 3 2 3 3

4 2 4 1 4 5 4 5 4 5 4 2 4 4 4 4

5 1 5 2 5 2 5 2 5 2 5 5 5 5 5 5

Moran mathematically established the relationship between rank-order correlation
and permutation distributions [35].9 Consider N objects denoted by 1, . . . , N and
let s be the least number of interchanges of adjacent objects required to restore the
permutations to the normal order. Utilizing a theorem by Haden [17], Moran proved
that s = N(N − 1)/4 − S/2 so that

τa = 1 − 4s

N(N − 1)
= − 4t

N(N − 1)
,

where t = s − N(N − 1)/4. Thus, Moran showed that Kendall’s τa rank-
order correlation coefficient could be defined in terms of s and, therefore, the
theory of rank-order correlation could be mathematically linked with the theory of
permutations.

A graphic that depicts the number of reversals consists of lines that are drawn
between like values in the two columns and the number of reversals is represented
by the number of times the lines cross [16]. For example, consider the two sets of
ranks given in Fig. 5.1.10

There are five crosses (×s) among the N = 5 lines, i.e., both diagonal lines
cross two horizontal lines and each other, indicating the five reversals required to
produce the distribution of ranks on the left from the distribution of ranks on the
right. Thus, beginning with the right column of {4, 2, 3, 1, 5} and for the first
reversal, exchange ranks 3 and 1, yielding {4, 2, 1, 3, 5}; for the second reversal,
exchange ranks 2 and 1, yielding {4, 1, 2, 3, 5}; for the third reversal, exchange
ranks 4 and 1, yielding {1, 4, 2, 3, 5}; for the fourth reversal, exchange ranks 4
and 2, yielding {1, 2, 4, 3, 5}; and for the fifth reversal, exchange ranks 4 and 3,
yielding {1, 2, 3, 4, 5}.

9This paper was cited by Moran in 1947 as “Rank correlation and a paper by H.G. Haden,” [36,
p. 162] but apparently the title was changed at some point to “Rank correlation and permutation
distributions” when it was published in Proceedings of the Cambridge Philosophical Society in
1948.
10Technically, Fig. 5.1 is a permutation graph of a family of line segments that connect two
parallel lines in the Euclidean plane. Given a permutation {4, 2, 3, 1, 5} of the positive integers
{1, 2, 3, 4, 5}, there exists a vertex for each number {1, 2, 3, 4, 5} and an edge between two numbers
where the segments cross in the permutation diagram.
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Fig. 5.1 Graphic depiction
of the number of reversals for
two sets of ranks, from 1 to 5

For the N = 5 rank scores in Fig. 5.1, C = 5, D = 5, S = C − D = 5 − 5 = 0
and s = 5 crosses; thus,

τa = 1 − 4s

N(N − 1)
= 1 − 4(5)

5(5 − 1)
= 0.00

and

τa = 2S

N(N − 1)
= 2(0)

5(5 − 1)
= 0.00 .

5.3.1 Example 1

To illustrate the calculation of Kendall’s τa measure of ordinal association, consider
the two sets of rankings with no tied values listed in Table 5.3, where there are

(
N

2

)
= N(N − 1)

2
= 8(8 − 1)

2
= 28

possible pairs and N denotes the number of paired rankings; in this case, N = 8.
The 28 paired differences are listed in Table 5.4 for convenience.

Because there are no tied rank scores in Table 5.3, the N(N − 1)/2 pairs can be
exhaustively divided into just two types: concordant (C) and discordant (D) pairs.
To clarify the calculation of Kendall’s S, consider the x and y rank scores for the
first pair of objects in Table 5.3: Objects 1 and 2. For variable x calculate 1−3 = −2
and for variable y calculate 3 − 4 = −1. When the signs agree, either both negative
or both positive, as in this case with both signs negative, the pair is considered a
concordant (C) pair. Now consider the x and y rank scores for the second pair:
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Table 5.3 Two sets of
N = 8 rank scores for
Kendall’s τa measure of
ordinal association

Variable

Object x y

1 1 3

2 3 4

3 2 1

4 4 2

5 5 5

6 7 8

7 8 6

8 6 7

Table 5.4 Paired
differences, rij , sij , rij sij , and
|rij − sij | values for the rank
scores listed in Table 5.3

Pair xi − xj yi − yj rij sij rij sij |rij − sij |
1 1 − 3 3 − 4 −1 −1 +1 0

2 1 − 2 3 − 1 −1 +1 −1 2

3 1 − 4 3 − 2 −1 +1 −1 2

4 1 − 5 3 − 5 −1 −1 +1 0

5 1 − 7 3 − 8 −1 −1 +1 0

6 1 − 8 3 − 6 −1 −1 +1 0

7 1 − 6 3 − 7 −1 −1 +1 0

8 3 − 2 4 − 1 +1 +1 +1 0

9 3 − 4 4 − 2 −1 +1 −1 2

10 3 − 5 4 − 5 −1 −1 +1 0

11 3 − 7 4 − 8 −1 −1 +1 0

12 3 − 8 4 − 6 −1 −1 +1 0

13 3 − 6 4 − 7 −1 −1 +1 0

14 2 − 4 1 − 2 −1 −1 +1 0

15 2 − 5 1 − 5 −1 −1 +1 0

16 2 − 7 1 − 8 −1 −1 +1 0

17 2 − 8 1 − 6 −1 −1 +1 0

18 2 − 6 1 − 7 −1 −1 +1 0

19 4 − 5 2 − 5 −1 −1 +1 0

20 4 − 7 2 − 8 −1 −1 +1 0

21 4 − 8 2 − 6 −1 −1 +1 0

22 4 − 6 2 − 7 −1 −1 +1 0

23 5 − 7 5 − 8 −1 −1 +1 0

24 5 − 8 5 − 6 −1 −1 +1 0

25 5 − 6 5 − 7 −1 −1 +1 0

26 7 − 8 8 − 6 −1 +1 −1 2

27 7 − 6 8 − 7 +1 +1 +1 0

28 8 − 6 6 − 7 +1 −1 −1 2

Total +18 10
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Objects 1 and 3. For variable x calculate 1 − 2 = −1 and for variable y calculate
3 − 1 = +2. When the signs disagree, as in this case with one negative sign and one
positive sign, the pair is considered a discordant (D) pair.

Given the N = 8 bivariate rank scores listed in Table 5.3, for i < j define

rij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if xi > xj ,

0 if xi = xj ,

−1 if xi < xj ,

and sij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if yi > yj ,

0 if yi = yj ,

−1 if yi < yj .

Then, following Kendall [23],

S =
N−1∑
i=1

N∑
j=i+1

rij sij

as given in the sixth column of Table 5.4, where there are 23 concordant pairs, each
indicated by +1 (C = 23) and 5 discordant pairs, each indicated by −1 (D = 5);
therefore, the observed value of Kendall’s test statistic is S = C − D = 23 − 5 =
+18. For the rank scores with no tied values listed in Table 5.3, the observed value
of Kendall’s τa test statistic is

τa = 2S

N(N − 1)
= 2(+18)

8(8 − 1)
= +0.6429

and, because there are no tied rank scores for the data listed in Table 5.3, τa = τb =
τc = γ = dyx = dxy = +0.6429.

As Kendall pointed out in his 1948 book on Rank Correlation Methods, there is
one rather disappointing feature of rank-correlation coefficients, such as τa; namely,
the comparatively large standard errors that they usually possess [24, p. 65]. Kendall
noted that, whatever the value of τa might be, the standard error is of the order of√

2N and cautioned:

It is clearly impossible to locate the parent correlation very closely unless the ranking
contains 30 or 40 members. This provides a useful caution against attributing reality to
correlation coefficients calculated from rankings of small extent, unless several sample
values are available [24, p. 65].

Permutation statistical methods, being exact, are ideally suited for small sample
sizes as they do not assume a specific sampling distribution nor do they depend on
a theoretical approximating function.

Let N = 8 denote the number of bivariate scores listed in Table 5.3 and b = 2
denote the number of variables, in this case variables x and y. Then, for the rank
scores listed in Table 5.3 there are

M = (
N !)b = (

8!)2 = 1,625,702,400
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possible, equally-likely arrangements in the reference set of all permutations of the
observed rank scores. However, considering variable x fixed, relative to variable y,
M can be reduced to

M = (
N !)b−1 = (

8!)2−1 = 40,320

and an exact permutation analysis is easily accomplished. Since N(N − 1)/2 is
invariant under permutation, it is sufficient to find the probability of S [8].

If all M = 40,320 possible arrangements of the observed rank scores listed
in Table 5.3 occur with equal chance, the exact probability value of Kendall’s S

under the null hypothesis is the sum of the hypergeometric point probability values
associated with S = +18 or greater. Based on the hypergeometric probability
distribution, the exact upper-tail probability value is P = 0.0310.

5.3.2 Example 2

For a second example of Kendall’s τa measure of ordinal association, consider the
small set of rank scores listed in Table 5.5 in which tied rank scores on variables x

and y (Tx and Ty , respectively) are introduced.
Table 5.6 lists the 10 paired differences, rij , sij , rij sij , and |rij − sij | values for

the rank scores listed in Table 5.5. Following Kendall,

S =
N−1∑
i=1

N∑
j=i+1

rij sij

as given in the sixth column of Table 5.6, where there are C = 5 concordant pairs,
each indicated by +1 and D = 3 discordant pairs, each indicated by −1; therefore,
S = C − D implies that the observed value of S is S = 5 − 3 = +2. Also, there is
Tx = 1 pair of rank scores tied on variable x but not tied on variable y, indicated by
a 0 in row 5 of the sixth column and Ty = 1 pair of rank scores tied on variable y

but not tied on variable x, indicated by a 0 in row 8 of the sixth column. Then, the
observed value of Kendall’s τa test statistic based on S = +2 is

τa = 2S

N(N − 1)
= 2(+2)

5(5 − 1)
= +0.20 .

Table 5.5 Two sets of
N = 5 rank scores with ties
for Kendall’s τa measure of
ordinal association

Variable

Object x y

1 1 2

2 2.5 1

3 2.5 4.5

4 4 4.5

5 5 3
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Table 5.6 Paired
differences, rij , sij , rij sij , and
|rij − sij | values for the rank
scores listed in Table 5.5

Pair xi − xj yi − yj rij sij rij sij |rij − sij |
1 1.0 − 2.5 2.0 − 1.0 −1 +1 −1 2

2 1.0 − 2.5 2.0 − 4.5 −1 −1 +1 0

3 1.0 − 4.0 2.0 − 4.5 −1 −1 +1 0

4 1.0 − 5.0 2.0 − 3.0 −1 −1 +1 0

5 2.5 − 2.5 1.0 − 4.5 0 −1 0 1

6 2.5 − 4.0 1.0 − 4.5 −1 −1 +1 0

7 2.5 − 5.0 1.0 − 3.0 −1 −1 +1 0

8 2.5 − 4.0 4.5 − 4.5 −1 0 0 1

9 2.5 − 5.0 4.5 − 3.0 −1 +1 −1 2

10 4.0 − 5.0 4.5 − 3.0 −1 +1 −1 2

Total +2 8

For the rank scores listed in Table 5.5, there are only

M = (
N !)b = (

5!)2 = 14,400

possible, equally-likely arrangements in the reference set of all permutations of
the observed rank scores, making an exact permutation analysis feasible. If all
M = 14,400 possible arrangements of the observed rank scores listed in Table 5.5
occur with equal chance, the exact probability value of Kendall’s S under the null
hypothesis is the sum of the hypergeometric point probability values associated with
S = +2 or greater. Based on the hypergeometric probability distribution, the exact
upper-tail probability value is P = 0.7660.

5.3.3 Example 3

For a third example of Kendall’s τa measure of ordinal association, consider the two
sets of rank scores listed in Table 5.7, where there are multiple tied rank scores on
both variable x and variable y (Tx and Ty , respectively). For the rank scores listed
in Table 5.7, N = 6, the number of concordant pairs is C = 8, the number of
discordant pairs is D = 2, the number of pairs tied on variable x is Tx = 1, the
number of pairs tied on variable y is Ty = 2, and the number of pairs tied on both
variable x and variable y is Txy = 2. Table 5.8 lists the

N(N − 1)

2
= 6(6 − 1)

2
= 15

paired differences, rij , sij , rij sij , and |rij − sij | values for the rank scores given in
Table 5.7.
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Table 5.7 Two sets of rank
scores with ties for Kendall’s
τa measure of ordinal
association

Variable

Object x y

1 1.5 2

2 1.5 2

3 3.5 4.5

4 5.5 2

5 3.5 4.5

6 5.5 6

Table 5.8 Paired differences, rij , sij , rij sij , and |rij − sij | values for the rank scores listed in
Table 5.7

Pair xi − xj yi − yj rij sij rij sij |rij − sij | Type

1 1.5 − 1.5 2.0 − 2.0 0 0 0 0 Txy

2 1.5 − 3.5 2.0 − 4.5 −1 −1 +1 0 C

3 1.5 − 5.5 2.0 − 2.0 −1 0 0 1 Ty

4 1.5 − 3.5 2.0 − 4.5 −1 −1 +1 0 C

5 1.5 − 5.5 2.0 − 6.0 −1 −1 +1 0 C

6 1.5 − 3.5 2.0 − 4.5 −1 −1 +1 0 C

7 1.5 − 5.5 2.0 − 2.0 −1 0 0 1 Ty

8 1.5 − 3.5 2.0 − 4.5 −1 −1 +1 0 C

9 1.5 − 5.5 2.0 − 6.0 −1 −1 +1 0 C

10 3.5 − 5.5 4.5 − 2.0 −1 +1 −1 2 D

11 3.5 − 3.5 4.5 − 4.5 0 0 0 0 Txy

12 3.5 − 5.5 4.5 − 6.0 −1 −1 +1 0 C

13 5.5 − 3.5 2.0 − 4.5 +1 −1 −1 2 D

14 5.5 − 5.5 2.0 − 6.0 0 −1 0 1 Tx

15 3.5 − 5.5 4.5 − 6.0 −1 −1 +1 0 C

Total +6 7

Following Kendall,

S =
N−1∑
i=1

N∑
j=i+1

rij sij

as given in the sixth column of Table 5.8, where there are C = 8 concordant pairs
in rows 2, 4, 5, 6, 8, 9, 12, and 15, indicated by +1 values, and D = 2 discordant
pairs in rows 10 and 13, indicated by −1 values. Values of Tx , Ty , and Txy receive
values of 0. Thus, the observed value of S is

S =
N−1∑
i=1

N∑
j=i+1

rij sij = C − D = 8 − 2 = +6
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and, following Eq. (5.6) on p. 226, the observed value of Kendall’s τa test statistic is

τa = 2S

N(N − 1)
= 2(+6)

6(6 − 1)
= +0.40 .

For the rank scores listed in Table 5.7, there are only

M = (
N !)b = (

6!)2 = 518,400

possible, equally-likely arrangements in the reference set of all permutations of
the observed rank scores, making an exact permutation analysis possible. If all
M = 518,400 possible arrangements of the observed rank scores listed in Table 5.7
occur with equal chance, the exact probability value of Kendall’s S under the null
hypothesis is the sum of the hypergeometric point probability values associated with
S = +6 or greater. Based on the hypergeometric probability distribution, the exact
upper-tail probability value is P = 0.1333.

5.3.4 Example 4

For a fourth example of Kendall’s τa measure of ordinal association, consider the
frequency data given in Table 5.9, where N = 20 bivariate observations have
been cross-classified into a 3×3 ordered contingency table, which is a more typical
application of measures of ordinal association, such as τa . For the frequency data
given in Table 5.9, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (6)(2 + 1 + 1 + 5) + (2)(1 + 5) + (2)(1 + 5) + (2)(5) = 88 ,

Table 5.9 Example
rank-score data for N = 20
bivariate observations
cross-classified on ordinal
variables x and y into a 3×3
contingency table

y

x 1 2 3 Total

1 6 2 0 8

2 2 2 1 5

3 1 1 5 7

Total 9 5 6 20
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the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (0)(2 + 2 + 1 + 1) + (2)(2 + 1) + (1)(1 + 1) + (2)(1) = 10 ,

the number of pairs tied on variable x but not tied on variable y is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (6)(2 + 0) + (2)(0) + (2)(2 + 1) + (2)(1) + (1)(1 + 5) + (1)(5) = 31 ,

the number of pairs tied on variable y but not tied on variable x is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (6)(2 + 1) + (2)(1) + (2)(2 + 1) + (2)(1) + (0)(1 + 5) + (1)(5) = 33 ,

and the number of pairs tied on both variable x and variable y is

Txy = 1

2

r∑
i=1

c∑
j=1

nij

(
nij − 1

)

= 1

2

[
(6)(6 − 1) + (2)(2 − 1) + (0)(0 − 1) + (2)(2 − 1) + (2)(2 − 1)

+ (1)(1 − 1) + (1)(1 − 1) + (1)(1 − 1) + (5)(5 − 1)
] = 28 .

Alternatively,

Txy = 1

2

⎛
⎝ r∑

i=1

c∑
j=1

n2
ij − N

⎞
⎠

= 1

2

(
62 + 22 + 02 + 22 + 22 + 12 + 12 + 12 + 52 − 20

) = 28 .
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Then, the observed value of Kendall’s S is S = C − D = 88 − 10 = +78 and
the observed value of Kendall’s τa test statistic is

τa = 2S

N(N − 1)
= 2(+78)

20(20 − 1)
= +0.4105 .

For the frequency data given in Table 5.9, there are only M = 412 possible,
equally-likely arrangements in the reference set of all permutations of cell frequen-
cies given the observed row and column marginal frequency distributions, {8, 5, 7}
and {9, 5, 6}, respectively, making an exact permutation analysis feasible. If all
M = 412 possible arrangements of the observed data given in Table 5.9 occur with
equal chance, the exact probability value of Kendall’s S under the null hypothesis is
the sum of the hypergeometric point probability values associated with S = +78 or
greater. Based on the hypergeometric probability distribution, the exact upper-tail
probability value is P = 0.0026.

5.4 Kendall’s τb Measure of Ordinal Association

Because tied values occur in the data sets in Examples 2, 3, and 4 (Tables 5.5, 5.7,
and 5.9), Kendall’s τa measure of ordinal association is less than satisfactory, as it
ignores the two sets of tied values, Tx and Ty . For this reason Kendall developed τb,
an alternative to τa , given by

τb = S√
(C + D + Tx)(C + D + Ty)

,

which incorporated tied values on variables x and y (Tx and Ty , respectively).

5.4.1 Example 1

Consider the frequency data given in Table 5.10, where N = 41 bivariate
observations have been cross-classified into a 3×3 ordered contingency table. For

Table 5.10 Example
rank-score data for N = 41
bivariate observations
cross-classified on ordinal
variables x and y into a 3×3
contingency table

y

x 1 2 3 Total

1 7 6 3 16

2 5 2 7 14

3 3 2 6 11

Total 15 10 16 41
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the frequency data given in Table 5.10, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (7)(2 + 7 + 2 + 6) + (6)(7 + 6) + (5)(2 + 6) + (2)(6) = 249 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (3)(5 + 2 + 3 + 2) + (6)(5 + 3) + (7)(3 + 2) + (2)(3) = 125 ,

the number of pairs tied on variable x is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (7)(6 + 3) + (6)(3) + (5)(2 + 7) + (2)(7) + (3)(2 + 6)

+ (2)(6) = 176 ,

the number of pairs tied on variable y is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (7)(5 + 3) + (5)(3) + (6)(2 + 2) + (2)(2) + (3)(7 + 6)

+ (7)(6) = 180 ,

S = C − D = 249 − 125 = +124, and the observed value of Kendall’s τb test
statistic is

τb = S√
(C + D + Tx)(C + D + Ty)

= +124√
(249 + 125 + 176)(249 + 125 + 180)

= +0.2246 .
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For the frequency data given in Table 5.10, there are only M = 5,225
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{16, 14, 11} and {15, 10, 16}, respectively, making an exact permutation analysis
possible. The exact probability value of Kendall’s τb under the null hypothesis is
the sum of the hypergeometric point probability values associated with the values
of τb = +0.2246 or greater. Based on the hypergeometric probability distribution,
the exact upper-tail probability value is P = 0.0555.

5.4.2 Example 2

For a second example analysis of Kendall’s τb measure of ordinal association, con-
sider the frequency data given in Table 5.11 where N = 72 bivariate observations
have been cross-classified into a 3×5 ordered contingency table. For the frequency
data given in Table 5.11, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (8)(2 + 8 + 5 + 5 + 5 + 3 + 7 + 7) + (4)(8 + 5 + 5 + 3 + 7 + 7)

+ · · · + (8)(7 + 7) + (5)(7) = 855 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (3)(3 + 2 + 8 + 5 + 4 + 5 + 3 + 7) + (5)(3 = 2 + 8 + 4 + 5 + 3)

+ · · · + (8)(4 + 5) + (2)(4) = 541 ,

Table 5.11 Example
rank-score data for N = 72
bivariate observations
cross-classified on ordinal
variables x and y into a 3×5
contingency table

y

x 1 2 3 4 5 Total

1 8 4 3 5 3 23

2 3 2 8 5 5 23

3 4 5 3 7 7 26

Total 15 11 14 17 15 72
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the number of pairs tied on variable x is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (8)(4 + 3 + 5 + 3) + (4)(3 + 5 + 3)

+ · · · + (3)(7 + 7) + (7)(7) = 668 ,

the number of pairs tied on variable y is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (8)(3 + 4) + (3)(4) + (4)(2 + 5) + (2)(5)

+ · · · + (3)(5 + 7) + (5)(7) = 329 ,

S = C − D = 866 − 541 = +314, and the observed value of Kendall’s τb test
statistic is

τb = S√
(C + D + Tx)(C + D + Ty)

= +314√
(855 + 541 + 668)(855 + 541 + 329)

= +0.1664 .

For the data listed in Table 5.11, there are M = 70,148,145 possible, equally-
likely arrangements in the reference set of all permutations of cell frequencies
given the observed row and column marginal frequency distributions, {23, 23, 26}
and {15, 11, 14, 17, 15}, respectively. Therefore, an exact test is not practical and
a Monte Carlo resampling probability analysis based on L = 1,000,000 random
arrangements of cell frequencies is utilized. The resampling probability value of
τb under the null hypothesis is the proportion of τb values equal to or greater than
τb = +0.1664; in this case there are 48,600 τb values that are equal to greater
than the observed value of τb = +0.1664. Thus, the Monte Carlo resampling
approximate upper-tail probability value is

P(τb ≥ τo) = number of τb values ≥ τo

L
= 48,600

1,000,000
= 0.0486 ,

where τo denotes the observed value of τb.
While an exact permutation analysis is not practical for the frequency data given

in Table 5.11, it is not impossible. The exact probability value of Kendall’s τb

under the null hypothesis is the sum of the hypergeometric point probability values
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Table 5.12 Example rank
data (y values) for three time
periods: t1, t2, and t3

Time

t1 t2 t3

1 2 5

3 4 6

7 8

9

associated with the values of τb = +0.1664 or greater. Based on the hypergeometric
probability distribution, the exact upper-tail probability value conditioned on the
reference set of all M = 70,148,145 arrangements of cell frequencies is P =
0.0488.11

5.4.3 Kendall’s τb and Wilcoxon’s W Measures

Kendall’s τb measure of ordinal association can be shown to be a function of the
Wilcoxon two-sample rank-sum test and, consequently, of the Mann–Whitney two-
sample rank-sum test. Kraft and van Eeden [26, pp. 179-181] showed that Kendall’s
τb can be computed as a sum of Wilcoxon test statistics as follows. Suppose that
N rank observations have been taken at k times periods. Let S1 be the sum of the
ranks among all the y values at t1; let S2 be the sum of the ranks among all the y

values at t2; and let S3, . . . , Sk−1 be defined analogously. Sk−1 is the sum of the
ranks among the y values for tk−1 and tk of the y values at tk−1. Then Wilcoxon’s
W = S1 + S2 + · · · + Sk−1 is a linear function of Kendall’s τb. This relationship
between Wilcoxon’s W and Kendall’s τb was noted by Whitfield in 1947 [48] and by
Kendall in 1948 [23, p. 165], but it was Kraft and van Eeden who made it explicit.

To illustrate the Kraft and van Eeden procedure, consider the rank data given in
Table 5.12 where nine observations (y values) have been taken at three time periods,
indicated by t1, t2, and t3. For the rank data given in Table 5.12, the number of
concordant pairs is C = 23, the number of discordant pairs is D = 3, the number of
pairs tied on variable t is Tt = 10, the number of pairs tied on variable y is Ty = 0,
the number of pairs tied on both variables t and y is Tty = 0, and S = C − D =
23 − 3 = +20. Then Kendall’s τb test statistic is

τb = S√
(C + D + Ty)(C + D + Tt )

= +20√
(23 + 3 + 0)(23 + 3 + 10)

= +0.6537 .

11In general, L = 1,000,000 randomly selected values ensure a probability value with three
decimal places of accuracy [19].
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Table 5.13 Example rank
data (y values) for two time
periods: t2 and t3

Time

t2 t3

1 3

2 4

5 6

7

For the rank-score data given in Table 5.12, S1 is the sum of the ranks in t1; thus,
S1 = 1 + 3 = 4. Then re-ranking the seven y values in t2 and t3 in Table 5.12 as
given in Table 5.13, S2 is the sum of the ranks in t2; thus, S2 = 1+2+5 = 8. Then,
Wilcoxon’s W is W = S1 + S2 = 4 + 8 = 12. Proceeding in this manner, Kraft and
van Eeden demonstrated that Wilcoxon’s W is simply a linear function of Kendall’s
τb test statistic.

5.5 Stuart’s τc Measure of Ordinal Association

Kendall’s τb is a strongly monotonic measure of ordinal association, i.e., for
every ordered category increase in variable x, there is expected to be an ordered
category increase in variable y. Consequently, τb can only achieve limits of ±1
for contingency tables where r = c and the row and column marginal frequency
distributions are identical, e.g., {20, 40, 60} and {20, 40, 60}. More specifically, τb

cannot generally attain values of ±1 because of the Cauchy inequality:

The square of the sum of the products of two sets will be equal to or less than the product
of the squared sums of two sets.

More formally, for variables x and y,

(
N∑

i=1

xiyi

)2

≤
N∑

i=1

x2
i

N∑
i=1

y2
i .

Consequently, the numerator of τb will be equal to or less than the denominator,
permitting τb to attain ±1 only when all the observations are concentrated on one
of the two principal diagonals of the contingency table. If no marginal frequency is
to be zero, this means that τb can attain ±1 only for a square contingency table with
identical marginal frequency distributions. It is important to note that, because the
categories are ordered, the marginal frequency distributions must be identical, not
merely equivalent. Thus, marginal frequency distributions for rows and columns of
{50, 30, 20} and {50, 30, 20}, respectively, are identical, providing the possibility
that tb will be equal to +1, and marginal frequency distributions for rows and
columns of {50, 30, 20} and {20, 30, 50}, respectively, are identical, providing the
possibility that τb will be equal to −1, but row and column marginal frequency
distributions of {50, 30, 20} and {30, 20, 50}, respectively, are equivalent but not
identical, and therefore constrain Kendall’s tb to be less than +1 or greater than −1.
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Thus, Kendall’s τb is not the most appropriate measure of ordinal association
for the 3×5 contingency table given in Table 5.11 on p. 241. To correct for this
limitation, Alan Stuart proposed τc for contingency tables where r �= c, given by

τc = 2mS

N2(m − 1)
, (5.12)

where m = min(r, c) [46], which in a classic case of Stigler’s [45] law of eponymy,
is often erroneously labeled as Kendall’s τc. Stuart showed that if N is a multiple
of m and r = c with identical marginal frequency distributions such that all
observations fall on the diagonal of the contingency table and all cell frequencies
are equal, the maximum value of Kendall’s S is given by

Smax = N2(m − 1)

2m
. (5.13)

Then, if N = m,

N2(m − 1)

2m
= N2(N − 1)

2N
= N(N − 1)

2
.

However, if N is not a multiple of m, the expression in Eq. (5.13) remains an upper
bound that cannot be attained. It follows that Stuart’s τc can sometimes attain, and
for large N , can generally almost always attain ±1.

5.5.1 Example 1

Consider the frequency data given in Table 5.14, where N = 40 bivariate
observations have been cross-classified into a 3×3 ordered contingency table. For
the frequency data given in Table 5.14, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (8)(6 + 2 + 4 + 7) + (5)(2 + 7) + (3)(4 + 7) + (6)(7) = 272 ,

Table 5.14 Example
rank-score data for Stuart’s τc

with N = 40 bivariate
observations cross-classified
on ordinal variables x and y

into a 3×3 contingency table

y

x 1 2 3 Total

1 8 5 3 16

2 3 6 2 11

3 2 4 7 13

Total 13 15 12 40
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the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (3)(3 + 6 + 2 + 4) + (5)(3 + 2) + (2)(2 + 4) + (6)(2) = 94 ,

S = C − D = 272 − 94 = +178, m = min(3, 3) = 3, and the observed value of
Stuart’s τc test statistic is

τc = 2mS

N2(m − 1)
= 2(3)(+178)

402(3 − 1)
= +0.3338 .

For the frequency data given in Table 5.14 with N = 40 observations, there
are only M = 5,329 possible, equally-likely arrangements in the reference set of
all permutations of cell frequencies given the observed row and column marginal
frequency distributions, {16, 11, 13} and {13, 15, 12}, respectively, making an exact
permutation analysis possible. The exact probability value of Stuart’s τc under
the null hypothesis is the sum of the hypergeometric point probability values
associated with the values of τc = +0.3338 or greater. Based on the hypergeometric
probability distribution, the exact upper-tail probability value is P = 0.0088.

5.5.2 Example 2

For a second example of Stuart’s τc measure of ordinal association, consider
the frequency data given in Table 5.11 on p. 241, replicated for convenience in
Table 5.15, where N = 72 bivariate observations have been cross-classified into
a 3×5 ordered contingency table. For the frequency data given in Table 5.15, the
number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (8)(2 + 8 + 5 + 5 + 5 + 3 + 7 + 7) + (4)(8 + 5 + 5 + 3 + 7 + 7)

+ · · · + (8)(7 + 7) + (5)(7) = 855 ,

Table 5.15 Example
rank-score data for Stuart’s τc

with N = 72 bivariate
observations cross-classified
on ordinal variables x and y

into a 3×5 contingency table

y

x 1 2 3 4 5 Total

1 8 4 3 5 3 23

2 3 2 8 5 5 23

3 4 5 3 7 7 26

Total 15 11 14 17 15 72
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the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (3)(3 + 2 + 8 + 5 + 4 + 5 + 3 + 7) + (5)(3 + 2 + 8 + 4 + 5 + 3)

+ · · · + (8)(4 + 5) + (2)(4) = 541 ,

S = C −D = 855−541 = +314, and the observed value of Stuart’s τc test statistic
is

τc = 2mS

N2(m − 1)
= 2(3)(+314)

722(3 − 1)
= +0.1817 .

Note that Stuart’s test statistic τc = +0.1817 is slightly larger than Kendall’s test
statistic τb = +0.1664, calculated on the same set of frequency data.

For the frequency data given in Table 5.15, there are M = 70,148,145
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{23, 23, 26} and {15, 11, 14, 17, 15}, respectively, making an exact permutation
analysis possible. The exact probability value of Stuart’s τc under the null hypothesis
is the sum of the hypergeometric point probability values associated with the values
of τc = +0.1817 or greater. Based on the hypergeometric probability distribution,
the exact upper-tail probability value is P = 0.0600.

5.5.3 Measures of Effect Size

A measure of effect size for Stuart’s τc that norms properly between ±1 would be
useful. Consider Table 5.16 with the same marginals as Table 5.15, but with the
cell frequencies constructed to produce the maximum value of τc. Note that because
two row marginal frequency totals are identical (n1. = n2. = 23) and two column
marginal frequency totals are identical (n.1 = n.5 = 15), the cell frequencies in
Table 5.16 constitute only one possible arrangement of cell frequencies yielding

Table 5.16 Example
maximized rank-score data
for N = 72 bivariate
observations cross-classified
on ordinal variables x and y

into a 3×5 contingency table

y

x 1 2 3 4 5 Total

1 15 8 0 0 0 23

2 0 3 5 0 15 23

3 0 0 9 17 0 26

Total 15 11 14 17 15 72
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the maximum value of τc, given the observed row and column marginal frequency
distributions, {23, 23, 26} and {15, 11, 14, 17, 15}, respectively.

For the frequency data given in Table 5.16, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (15)(3 + 5 + 0 + 15 + 0 + 9 + 17 + 0) + (8)(5 + 0 + 15 + 9 + 17 + 0)

+ · · · + (5)(17 + 0) + (0)(0) = 1,266 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (0)(0 + 3 + 5 + 0 + 0 + 0 + 9 + 17) + (0)(0 + 3 + 5 + 0 + 0 + 9)

+ · · · + (5)(0 + 0) + (3)(0) = 390 ,

the maximum value of S is Smax = C −D = 1,266−390 = 876, and the maximum
value of Stuart’s τc is

τmax = 2mSmax

N2(m − 1)
= 2(3)(876)

722(3 − 1)
= +0.5069 .

Then, a maximum-corrected measure of effect size is given by

ES = τc

τmax
= +0.1817

+0.5069
= +0.3584 ,

indicating that τc = +0.1817 is approximately 36% of the maximum possible
value of τc, given the observed row and column marginal frequency distributions,
{23, 23, 26} and {15, 11, 14, 17, 15}, respectively.

5.5.4 Sharper Bounds

There is an alternative, more general method for standardizing measures of ordinal
association [4]. The “sharper-bounds” approach applies to a variety of measures of
association and is illustrated here with Stuart’s τc measure. Stuart’s τc is based on
the unstandardized measure of effect size, S. Several possibilities exist to bound S

between −1 and +1, representing complete dissociation and complete association
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of variables x and y, respectively. As noted in Eq. (5.12) on p. 245, Stuart proposed
that the maximum value of S be defined as

Smax = N2(m − 1)

2m
,

where m = min(r, c) and provided N mod m = 0.
In order for S to equal N2(m − 1)/(2m) and, thus, for τc to attain the maximum

value when −1 ≤ τc ≤ +1, two conditions must be met. For simplicity, consider
an r×c contingency table with r ≤ c, then r = min(r, c) and c = max(r, c). First,
each row marginal frequency total must equal N/m, implying N mod m = 0 [46].
Second, some sum of 1 to c column marginal frequency totals must equal N/m,
summing sequentially either from left to right, beginning with the first column, or
from right to left, beginning with column c. Thus, the problem with the τc measure
of ordinal association lies in the definition for the maximum value for S provided
by Stuart. The denominator, N2(m − 1)/(2m), provides only an upper bound for S

computed on an idealized r×c contingency table. The solution is to find a sharper
bound for the maximum value of τc based on the observed data than Stuart’s N2(m−
1)/(2m) can provide.

An alternative to Stuart’s proposed maximum value of S, N2(m − s)/(2m),
is provided by a Monte Carlo resampling algorithm. Given two integral marginal
vectors, the set of all r×c contingency tables with row marginal frequency distri-
bution {n1., . . . , nr.} and column marginal frequency distribution {n.1, . . . , n.c} is
a Fréchet class of matrices of nonnegative integer elements given fixed marginal
frequency distributions and denoted by F(r, c). Enumerating all M members of
F(r, c) to find an exact solution is computationally prohibitive and impractical,
since the reference set of all possible permutations of cell frequencies is usually very
large, even for modest values of r and c. The alternative is a Monte Carlo resampling
algorithm that enumerates a random sample of size L from all M members of
F(r, c). If T denotes the statistic of interest, a nine-step Monte Carlo resampling
algorithm is constructed as follows.

STEP 1: Let L denote a random sample with replacement of a large number of
the M possible arrangements of the nij cell frequencies for i = 1, . . . , r and
j = 1, . . . , c with fixed marginal frequency distributions {n1., . . . , nr.} and
{n.1, . . . , n.c}.

STEP 2: Set counter k and the maximum value of statistic T (Tmax) to zero.
STEP 3: If each {n1., . . . , nr.} or {n.1, . . . , n.c} marginal frequency distribution

corresponding to m = min(r, c) equals N/m, go to STEP 4; otherwise, go to
STEP 5.

STEP 4: Set w = max(r, c). If w = c and any sequence of marginal frequency
totals beginning with Column 1 or Column w sums to N/m, or if w = r and any
sequence of marginal frequency totals beginning with Row 1 or Row w sums
to N/m, then set Tmax = N2(m − 1)/(2m) and go to STEP 9; otherwise, go to
STEP 5.
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STEP 5: Generate a random arrangement of the nij cell frequencies for i =
1, . . . , r and j = 1, . . . , c, satisfying the fixed marginal frequency distributions
{n1., . . . , nr.} and {n.1, . . . , n.c}.

STEP 6: Compute statistic T on the random arrangement of the nij values and set
counter k = k + 1.

STEP 7: If T > Tmax, Tmax is replaced by T .
STEP 8: If k = L, the maximum randomly selected value of T is Tmax, go to STEP

9; otherwise, go to STEP 5.
STEP 9: Exit.

Determination of the exact maximum value of S is impractical for many r×c

contingency tables. However, generation of all M arrangements of F(r, c) is
possible when r and c are small [32]. Table 5.17 contains maximum values of
Kendall’s S utilizing exact, Monte Carlo resampling, and Stuart’s procedures for

Table 5.17 Maximum values of S based on exact, resampling, and Stuart’s procedures for 2×2,
2×3, 2×4, 2×5, 3×3, 3×4, and 4×4 contingency tables with uniform and skewed row and column
marginal frequency distributions

Marginal Procedure

Table Size Row Column Exact Resampling Stuart’s

1 2×2 {9, 9} {9, 9} 81 81 81

2 {9, 9} {6, 12} 54 54 81

3 {6, 12} {6, 12} 72 72 81

4 2×3 {18, 18} {12, 12, 12} 288 288 324

5 {18, 18} {6, 12, 18} 324 324 324

6 {12, 24} {12, 12, 12} 288 288 324

7 {12, 24} {6, 12, 18} 252 252 324

8 2×4 {30, 30} {15, 15, 15, 15} 900 900 900

9 {30, 30} {6, 12, 18, 24} 828 828 900

10 {20, 40} {15, 15, 15, 15} 750 750 900

11 {20, 40} {6, 12, 18, 24} 768 708 900

12 2×5 {45, 45} {18, 18, 18, 18, 18} 1,944 1,944 2,025

13 {45, 45} {6, 12, 18, 24, 30} 1,890 1,764 2,025

14 {30, 60} {18, 18, 18, 18, 18} 1,728 1,728 2,025

15 {30, 60} {6, 12, 18, 24, 30} 1,728 1,728 2,025

16 {12, 12, 12} {6, 12, 18} 324 324 432

17 {6, 12, 18} {6, 12, 18} 396 396 432

18 3×4 {20, 20, 20} {15, 15, 15, 15} 1,100 1,100 1,200

19 {20, 20, 20} {6, 12, 18, 24} 1,088 876 1,200

20 {10, 20, 30} {15, 15, 15, 15} 1,050 1,050 1,200

21 {10, 20, 30} {6, 12, 18, 24} 996 996 1,200

22 4×4 {15, 15, 15, 15} {15, 15, 15, 15} 1,350 1,350 1,350

23 {15, 15, 15, 15} {6, 12, 18, 24} 1,116 1,035 1,350

24 {6, 12, 18, 24} {6, 12, 18, 24} 1,260 1,260 1,350
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2×2, 2×3, 2×4, 2×5, 3×3, 3×4, and 4×4 contingency tables. Because the true
maximum value of S is dependent on the observed marginal frequency distributions,
a variety of uniform and skewed marginal frequency distributions are utilized in
Table 5.17.

Uniform marginal frequency distributions imply that the probability of an
observation falling into Row i is given by 1/r and the probability of an observation
falling into Column j is given by 1/c. On the other hand, the skewed marginal
frequency distributions in Table 5.17 imply that the probability of an observation
falling into Row i is given by (2i)/[r(r + 1)] and the probability of an observation
falling into Column j is given by (2j)/[c(c + 1)]. The various values of N = 18
for the 2×2 tables; N = 36 for the 2×3 and 3×3 tables; N = 60 for the
2×4, 3×4 and 4×4 tables; and N = 90 for the 2×5 tables were obtained from
N = 3 max[r(r + 1), c(c + 1)], ensuring integral values for the r = 2, 3, 4
and c = 2, 3, 4, 5 marginal frequency totals. The column in Table 5.17 headed
“Exact” lists maximum values of S based on all M members of F(r, c); the column
headed “Resampling” lists maximum values of S based on L = 1,000,000 random
arrangements of cell frequencies; and the column headed “Stuart’s” lists maximum
values of S based on Stuart’s proposed Smax = N2(m − 1)/(2m).

It is evident in Table 5.17 that the maximum values of Kendall’s S based
on resampling are always less than the obtained by the maximum proposed
by Stuart, except in five cases: the 2×2 table (Table 1) with row and column
marginal frequency distributions, {9, 9} and {9, 9}, respectively; the 2×3 table
(Table 5) with row and column marginal frequency distributions, {18, 18} and
{6, 12, 18}, respectively; the 2×4 table (Table 8) with row and column marginal
frequency distributions, {30, 30} and {15, 15, 15, 15}, respectively; the 3×3 table
(Table 20) with row and column marginal frequency distributions, {12, 12, 12}
and {12, 12, 12}, respectively; and the 4×4 table (Table 27) with row and column
marginal frequency distributions, {15, 15, 15, 15} and {15, 15, 15, 15}, respectively.
All five cases satisfy the two conditions for Stuart’s N2(m − 1)/(2m)—row
marginals are either equal to N/m or some sequential sum of column marginals
are equal to N/m.

Proper comparisons in Table 5.17 are between the randomly selected maximum
values of S and Stuart’s maximum values of S. The purpose of these analyses is to
obtain sharper bounds on Smax through Monte Carlo resampling; the exact values of
Smax are listed in Table 5.17 only to demonstrate optimal results and, for the example
analyses in Table 5.17, constitute a gold standard for purposes of comparison.

Stuart’s procedure matches the exact maximum value of S for only 5 of the
25 marginal conditions specified in Table 5.17, i.e., Tables 1, 5, 8, 16, and 23.
Thus, Stuart’s suggested procedure often overestimates the maximum value of S

and, consequently, underestimates effect size. As is evident in Table 5.17, there are
four tables where the Monte Carlo resampling and exact procedures differ on the
maximum value of S: Tables 11, 13, 24, and 28. Note that all four tables have
similar skewed column marginal frequency distributions of either {6, 12, 18, 24}
or {6, 12, 18, 24, 30}. Consequently, the number of possible cell frequency con-
figurations yielding the maximum value of S is severely circumscribed, other
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Table 5.18 Tables 11, 13, 20, and 24 from Table 5.17 with total number of possible cell
frequency configurations, maximum S values, hypergeometric point probability values, and
cell frequency configurations corresponding to the maximum value of S

Table Number of Maximum Point Cell
number configurations S value probability frequencies

11 1,088 768 0.3650×10−13 6 12 2 0

0 0 16 24

13 37,775 1,890 0.1259×10−19 6 12 18 9 0

0 0 0 15 30

0 0 0 15 30

6 12 18 9 0

24 358,267 1,088 0.2814×10−20 6 12 2 0

0 0 16 4

0 0 0 20

28 28,904,292 1,116 0.1877×10−20 6 9 0 0

0 3 12 0

0 0 6 9

0 0 0 15

factors being equal. Table 5.18 lists the table numbers from Table 5.17 for the
tables where the resampling and exact maximum values of S do not agree, the
exact number of possible cell frequency configurations given the fixed marginal
frequency distributions, the exact maximum value of S, the point probability value
of each table yielding the maximum value of S, and a listing of the cell frequency
configurations yielding the maximum value of S.

To illustrate, consider Table 11 in Table 5.18 for which there are M = 1,088
cell frequency configurations in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 40} and {6, 12, 18, 24}, respectively. The maximum value of S is Smax =
768, the hypergeometric point probability value is only 0.3650×10−13, and only
one of the M = 1,088 possible cell configurations yields a maximum value of
Smax = 768. Note that for Table 13 in Table 5.18, there are two cell frequency
configurations yielding a maximum value of Smax = 1,890, because the row
marginal frequency totals are both equal to N/m = 90/2, i.e., {45, 45}. For the four
tables listed in Table 5.18, it is not surprising that the exact and resampling values
of Smax differ, given L = 1,000,000, the large number of possible cell frequency
configurations, the skewed marginal frequency distributions, the limited number(s)
of cell frequency configurations yielding the maximum value of S, and the very
small hypergeometric point probability values of the cell frequency configuration(s)
yielding the maximum value of S.

Although Table 5.17 documents the possible limitations of Stuart’s proposed
maximum value of S, the question remains as to the effect of the maximum value
on the standardized measure of effect size, τc. It is obvious that different maximum
values of S obtained by the resampling and Stuart’s procedures have little effect on
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Table 5.19 Example 2×2, 2×3, and 2×4 contingency tables with N = 60, row marginal
frequency totals of {30, 30}, and observed cell frequencies chosen to maximize the observed value
of S

Table Column Observed cell Resampling Stuart’s
size marginals frequencies τc value τc value

2×2 {30, 30} 30 0 +1.0000 +1.0000

0 30

{20, 40} 20 10 +1.0000 +0.6667

0 30

{10, 50} 10 20 +1.0000 +0.3333

0 30

{5, 55} 5 25 +1.0000 +0.1667

0 30

2×3 {10, 20, 30} 10 20 0 +1.0000 +1.0000

0 0 30

{20, 20, 20} 20 10 0 +1.0000 +0.8889

0 10 20

{5, 20, 35} 5 20 5 +1.0000 +0.8333

0 0 30

{5, 15, 40} 5 15 10 +1.0000 +0.6667

0 0 30

2×4 {15, 15, 15, 15} 15 15 0 0 +1.0000 +1.0000

0 0 15 15

{10, 15, 15, 20} 10 15 5 0 +1.0000 +0.9444

10 15 5 0

{5, 15, 15, 25} 5 15 10 0 +1.0000 +0.9444

0 0 5 25

{5, 10, 10, 35} 5 10 10 5 +1.0000 +0.8333

0 0 0 30

the value of τc when the observed value of S is zero or close to zero. Moreover,
researchers typically care little about very small effect sizes. Table 5.19 lists
four 2×2, four 2×3, and four 2×4 contingency tables, with the column marginal
frequency distributions, observed cell frequencies, maximum values of S based on
Monte Carlo resampling, maximum values of S based on Stuart’s N2(m− 1)/(2m),
observed values of τc based on the randomly selected maximum value of S, and
observed values of τc based on Stuart’s maximum value of S for each of the 12
tables.

In order to isolate the effect of skewed marginals on the value of τc, each of the
12 tables in Table 5.19 has N = 60, r = 2 rows, identical uniform row marginals
of N/m = 60/2 = {30, 30}, and observed cell frequencies designed to ensure a
maximum value of S, thus controlling for N , r , ni. for i = 1, 2, and S. The fourth
and fifth columns in Table 5.19 list the maximum values of Kendall’s S obtained
from the resampling and Stuart procedures. It should be noted that the Monte Carlo
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resampling and exact maximum values of S are identical in these examples. Since
Stuart’s procedure is based solely on N = 60 and m = 2, the maximum value is
identical for all 12 tables listed in Table 5.19. The last two columns of Table 5.19
list the observed values of τc on the basis of the resampling and Stuart procedures.
Comparison of the last two columns reveals that, whereas differences between the
two procedures are at times nonexistent or very small, at other times the differences
are quite large, due to skewed column marginal frequency distributions that neither
equal N/m nor sum sequentially to one of the row marginals, the most extreme
example being the 2×2 contingency table with highly skewed column marginals
totals of {5, 55}, where τc is = +1.00 under the Monte Carlo resampling procedure
and only +0.1667 under Stuart’s procedure.

The Monte Carlo resampling method for calculating sharper bounds, illustrated
with Stuart’s τc, is an example of a relatively new technique, applied to an existing
statistic that enables improvement in measurement accuracy. The Monte Carlo
resampling permutation procedure provided sharper bounds for the maximum value
of S, permitting better estimation of effect sizes than can be accomplished with
Stuart’s maximum value of S based on N2(m − 1)/(2m). Table 5.17 demonstrates
the effectiveness of resampling in providing sharper bounds for Smax than Stuart’s
N2(m − 1)/(2m) over a variety of table sizes, sample sizes, and marginal distribu-
tions. Stuart’s procedure systematically deflates effect sizes by overestimating Smax
in 20 of the 25 marginal conditions specified. Table 5.18 provides some rationale for
those instances when the exact and resampling maximum values of S do not agree.

Establishing Smax with Monte Carlo resampling is not a simple matter of
identifying one out of M possible cell frequency arrangements, since the prob-
abilities of different configurations vary considerably. In general, the success of
the resampling procedure depends on the size of M , the skewness of the marginal
frequency distributions, the number of cell frequency configurations yielding Smax,
and the point probability value of the cell frequency configuration(s) yielding Smax.
Table 5.19 explores the impact of the wrong maximum value of S on the value
of Stuart’s τc, while controlling for N , r , ni. for i = 1, . . . , r , and S. Inspection
of Table 5.19 reveals that skewed marginal frequency distributions often lead to
inflated values of Smax and generate τc values that are too small, sometimes by a
substantial amount.

5.6 Goodman and Kruskal’s γ Measure

In 1954 Goodman and Kruskal developed a new measure of association for two
ordinal-level variables that they called gamma (γ ) [15].12 Gamma is a proportional-
reduction-in-error measure of ordinal association that is based solely on the untied

12A number of authors prefer to reserve the symbol gamma (γ ) for the population parameter and
indicate the sample statistic by the letter G.
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pairs, C and D, and is given by

γ = S

C + D
= C − D

C + D
= C

C + D
− D

C + D
. (5.14)

It is clear from the expression on the right side of Eq. (5.14) that γ is simply the
difference between the proportions of like and unlike pairs, ignoring all tied pairs,
i.e., Tx , Ty , and Txy .

There is a potential problem with γ that was immediately recognized by
Goodman and Kruskal. Gamma is unstable over various “cutting points.” That is
to say, γ tends to increase as the categories of a contingency table are collapsed
because γ gives no consideration to tied pairs and the number of tied pairs increases
as the table is collapsed. Gamma also usually yields greater association values
than other measures of ordinal association as it does not consider any of the tied
pairs. Finally, γ is a weakly monotonic measure of ordinal association, i.e., for
every ordered category increase (decrease) in variable x, variable y either increases
(decreases) or stays the same.

5.6.1 Monotonicity

Strongly monotonic and weakly monotonic relationships can be illustrated with
some simple graphics. A strongly monotonic relationship, such as measured by
Kendall’s τb, is illustrated in Fig. 5.2 with an x denoting a non-zero cell frequency
and a blank cell denoting a zero cell frequency. In a strongly monotonic relationship,
for every increase (decrease) in one variable there is an increase (decrease) in the
other variable. In this case, if the xs were replaced with actual cell frequencies,
Kendall’s τb would equal +1.00, C would be a positive integer, D, Tx , and Ty would
be zero, and Goodman and Kruskal’s γ would equal +1.00.

Compare the strongly monotonic graphic illustrated in Fig. 5.2 with the graphic
in Fig. 5.3 in which a typical weakly monotonic relationship is illustrated. For a
weakly monotonic relationship, for every increase (decrease) in one variable, the
other variable either increases (decreases) or stays the same. In this case, with actual
cell frequencies, Goodman and Kruskal’s γ would equal +1.00 and Kendall’s τb

would be less than +1.00.

Fig. 5.2 Graphic for a
simulated strongly monotonic
relationship
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Fig. 5.3 Graphic for a
simulated weakly monotonic
relationship

Fig. 5.4 Graphic for a
simulated weakly monotonic
relationship

Table 5.20 Example
rank-score data for Goodman
and Kruskal’s γ with N = 60
bivariate observations
cross-classified on ordinal
variables x and y into a 3×3
contingency table

y

x 1 2 3 Total

1 15 3 2 20

2 7 12 1 20

3 8 5 7 20

Total 30 20 10 60

Finally, compare the strongly monotonic graphic illustrated in Fig. 5.2 with the
weakly monotonic graphic illustrated in Fig. 5.4, where with actual cell frequencies,
Goodman and Kruskal’s γ would again be +1.00 and Kendall’s τb would be less
than +1.00.

5.6.2 Example 1

To illustrate the calculation of Goodman and Kruskal’s γ measure of ordinal
association, consider the frequency data given in Table 5.20, where N = 60 bivariate
observations have been cross-classified into a 3×3 ordered contingency table. For
the frequency data given in Table 5.20, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (15)(12 + 1 + 5 + 7) + (3)(1 + 7) + (7)(5 + 7) + (12)(7) = 567 ,
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the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (2)(7 + 12 + 8 + 5) + (3)(7 + 8) + (1)(8 + 5) + (12)(8) = 218 ,

S = C − D = 567 − 218 = +349, and the observed value of Goodman and
Kruskal’s γ test statistic is

γ = C − D

C + D
= S

C + D
= 567 − 218

567 + 218
= +349

785
= +0.4446 .

For the ordered frequency data given in Table 5.20, there are only M = 13,101
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 20, 20} and {30, 20, 10}, respectively, making an exact permutation analysis
possible. The exact probability value of Goodman and Kruskal’s γ under the null
hypothesis is the sum of the hypergeometric point probability values associated with
the values of γ = +0.4446 or greater. Based on the hypergeometric probability
distribution, the exact upper-tail probability value is P = 0.0055.

5.6.3 Example 2

For a second example of Goodman and Kruskal’s γ measure of ordinal association,
consider the frequency data given in Table 5.21, where N = 75 bivariate
observations have been cross-classified into a 3×5 ordered contingency table. For
the frequency data given in Table 5.21, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (9)(7 + 8 + 3 + 2 + 4 + 8 + 8 + 10) + (5)(8 + 3 + 2 + 8 + 8 + 10)

+ · · · + (8)(8 + 10) + (3)(10) = 1,202 ,

Table 5.21 Example
rank-score data for Goodman
and Kruskal’s γ with N = 75
bivariate observations
cross-classified on ordinal
variables x and y into a 3×5
contingency table

y

x 1 2 3 4 5 Total

1 9 5 3 1 1 19

2 4 7 8 3 2 24

3 2 4 8 8 10 32

Total 15 16 19 12 13 75
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the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (1)(4 + 7 + 8 + 3 + 2 + 4 + 8 + 8) + (1)(4 + 7 + 8 + 2 + 4 + 8)

+ · · · + (8)(2 + 4) + (7)(2) = 306 ,

S = C − D = 1,202 − 306 = +896, and the observed value of Goodman and
Kruskal’s γ test statistic is

γ = C − D

C + D
= S

C + D
= +896

1,202 + 306
= +0.5942 .

For the ordered frequency data given in Table 5.21, there are only M =
68,161,105 possible, equally-likely arrangements in the reference set of all per-
mutations of cell frequencies given the observed row and column marginal fre-
quency distributions, {19, 24, 32} and {15, 16, 19, 12, 13}, respectively, making an
exact permutation analysis feasible. The exact probability value of Goodman and
Kruskal’s γ under the null hypothesis is the sum of the hypergeometric point
probability values associated with the values of γ = +0.5942 or greater. Based on
the hypergeometric probability distribution, the exact upper-tail probability value is
only P = 0.1518×10−5.

5.7 Somers’ dyx and dxy Measures of Association

In 1962 sociologist Robert Somers took exception to Goodman and Kruskal’s sym-
metric measure of ordinal association, γ , and proposed two asymmetric alternatives
given by

dyx = C − D

C + D + Ty

= S

C + D + Ty

, (5.15)

where Ty denotes the number of pairs tied on variable y but not tied on variable x,
and

dxy = C − D

C + D + Tx

= S

C + D + Tx

, (5.16)

where Tx denotes the number of pairs tied on variable x but not tied on variable y.
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Table 5.22 Example
rank-score data for Somers’
dyx with N = 18 bivariate
observations cross-classified
on ordinal variables x and y

into a 3×3 contingency table

y

x 1 2 3 Total

1 3 2 1 6

2 2 2 2 6

3 1 2 3 6

Total 6 6 6 18

As is evident in Eqs. (5.15) and (5.16), Somers included in the denominators of
dyx and dxy the number of tied values on the dependent variable: Ty for dyx and Tx

for dxy . The rationale for including tied values is simply that when variable y is the
dependent variable (dyx), then if two values of the independent variable, x, differ but
the corresponding two values of the dependent variable, y, do not differ (are tied),
there is evidence of a lack of association and the ties on variable y (Ty) should be
included in the denominator where they act to decrease the value of dyx . The same
rationale holds for Somers’ dxy where the ties on variable x (Tx) are included in the
denominator.

5.7.1 Example 1

To illustrate Somers’ dyx measure of ordinal association with y the dependent
variable, consider the frequency data given in Table 5.22 where N = 18 bivariate
observations have been cross-classified into a 3×3 ordered contingency table. For
the frequency data given in Table 5.22, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (3)(2 + 2 + 2 + 3) + (2)(2 + 3) + (2)(2 + 3) + (2)(3) = 53 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (1)(2 + 2 + 1 + 2) + (2)(2 + 1) + (2)(1 + 2) + (2)(1) = 21 ,
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the number of pairs tied on variable y but not tied on variable x is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (3)(2 + 1) + (2)(1) + (2)(2 + 2) + (2)(2)

+ (1)(2 + 3) + (2)(3) = 34 ,

S = C − D = 53 − 21 = +32, and the observed value of Somers’ dyx test statistic
is

dyx = C − D

C + D + Ty

= S

C + D + Ty

= +32

53 + 21 + 34
= +0.2963 .

For the ordered frequency data given in Table 5.22, there are only M = 406
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{6, 6, 6} and {6, 6, 6}, respectively, making an exact permutation analysis possible.
The exact probability value of dyx under the null hypothesis is the sum of the
hypergeometric point probability values associated with the values of dyx =
+0.2963 or greater. Based on the hypergeometric probability distribution, the exact
upper-tail probability value is P = 0.0994.

5.7.2 Example 2

To illustrate Somers’ dxy measure of ordinal association with x the dependent
variable, consider the ordered frequency data given in Table 5.23 where N = 42

Table 5.23 Example
rank-score data for Somers’
dxy with N = 42 bivariate
observations cross-classified
on ordinal variables x and y

into a 3×4 contingency table

y

x 1 2 3 4 Total

1 6 5 6 1 18

2 4 3 5 2 14

3 2 1 4 3 10

Total 12 9 15 6 42
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bivariate observations have been cross-classified into a 3×4 ordered contingency
table. For the frequency data given in Table 5.23, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (6)(3 + 5 + 2 + 1 + 4 + 3) + (5)(5 + 2 + 4 + 3) + (6)(2 + 3)

+ (4)(1 + 4 + 3) + (3)(4 + 3) + (5)(3) = 276 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (1)(4 + 3 + 5 + 2 + 1 + 4) + (6)(4 + 3 + 2 + 1) + (5)(4 + 2)

+ (2)(2 + 1 + 4) + (5)(2 + 1) + (3)(2) = 144 ,

the number of pairs tied on variable x but not tied on variable y is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (6)(5 + 6 + 1) + (5)(6 + 1) + (6)(1) + (4)(3 + 5 + 2)

+ (3)(5 + 2) + (5)(2) + (2)(1 + 4 + 3) + (1)(4 + 3) + (4)(3) = 219 ,

S = C − D = 276 − 144 = +132, and the observed value of Somers’ dxy test
statistic is

dxy = C − D

C + D + Tx

= S

C + D + Tx

= +132

276 + 144 + 219
= +0.2066 .

For the ordered frequency data given in Table 5.23, there are only M = 72,143
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{18, 14, 10} and {12, 9, 15, 6}, respectively, making an exact permutation analysis
feasible. However, in this case consider over-sampling via Monte Carlo resampling.
Over-sampling occurs quite often in the permutation literature as commercial
resampling programs often do not have an exact probability option. In addition,
resampling can be much more efficient than an exact procedure as the hypergeo-
metric point probability values need not be calculated for each arrangement of the
data. Conversely, exact procedures can sometimes be more efficient than resampling
procedures because repeated calls to a pseudorandom number generator can be
expensive in terms of execution time.
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The Monte Carlo resampling probability value of dxy is simply the proportion
of randomly selected dxy values that are equal to or greater than dxy = +0.2066.
If do denotes the observed value of dxy , the approximate resampling probability
value based on L = 1,000,000 random arrangements of the cell frequencies, given
the observed row and column marginal frequency distributions, {18, 14, 10} and
{12, 9, 15, 6}, respectively, is

P(dxy ≥ do|H0) = number of dxy values ≥ do

L
= 55,581

1,000,000
= 0.0556 .

5.8 Kim’s dy·x and dx·y Measures of Association

In 1971 Jae-On Kim proposed alternative asymmetric proportional-reduction-in-
error measures of ordinal association given by

dy·x = C − D

C + D + Tx

and dx·y = C − D

C + D + Ty

[25]. In contrast to Somers’ dyx and dxy measures of ordinal association, which
adjust for ties on the dependent variable—paired differences on the independent
variable that do not result in paired differences on the dependent variable—Kim’s
dy·x and dx·y measures adjust for ties on the independent variable—pairs with no
differences on the independent variable that correspond to pairs with differences on
the dependent variable. It is immediately apparent that Kim’s dy·x and dx·y measures
are equivalent to Somers’ dxy and dyx measures, respectively [25, p. 899].

5.8.1 Example 1

To illustrate Kim’s dy·x asymmetric measure of ordinal association, consider the
frequency data given in Table 5.24 with N = 8 observations cross-classified into

Table 5.24 Example
frequency data for Kim’s dy·x
with N = 8 observations
cross-classified on ordinal
variables x and y into a 3×2
contingency table

y

x Correct Wrong Total

High 2 1 3

Medium 1 2 3

Low 0 2 2

Total 3 5 8
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a 3×2 ordered contingency table. For the frequency data given in Table 5.24, the
number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠ = (2)(2 + 2) + (1)(2) = 10 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠ = (1)(1 + 0) + (2)(0) = 1 ,

the number of pairs tied on variable x but not tied on variable y is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠ = (2)(1) + (1)(2) + (0)(2) = 4 ,

the number of pairs tied on variable y but not tied on variable x is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)
= (2)(1 + 0) + (1)(0) + (1)(2 + 2)

+ (2)(2) = 10 ,

and the observed value of Kim’s dy·x test statistic is

dy·x = C − D

C + D + Tx

= 10 − 1

10 + 1 + 4
= +0.60 .

Because Kim did not provide a standard error for dy·x , an asymptotic solution
is not defined. However, for the ordered frequency data given in Table 5.24,
there are only M = 9 possible, equally-likely arrangements in the reference
set of all permutations of cell frequencies given the observed row and column
marginal frequency distributions, {3, 3, 2} and {3, 5}, respectively, making an exact
permutation analysis feasible. Since M = 9 is a very small number of arrangements,
it will be illustrative to list the nine sets of cell frequencies, the dy·x values, and the
associated hypergeometric point probability values in Table 5.25, where the rows
with hypergeometric point probability values associated with dy·x values equal to or
greater than the observed dy·x value are indicated with asterisks.

If all M = 9 possible arrangements of cell frequencies in Table 5.24 occur with
equal chance, the exact probability value of dy·x under the null hypothesis is the



264 5 Ordinal-Level Variables, I

Table 5.25 Cell frequencies, dy·x values, and exact hypergeometric point probability values for
M = 9 possible arrangements of the observed data in Table 5.24

Cell frequency

Table n11 n12 n21 n22 n31 n32 dy·x Probability

1 0 3 1 2 2 0 −0.8667 0.0536

2 0 3 2 1 1 1 −0.5333 0.1071

3 1 2 0 3 2 0 −0.4667 0.0536

4 0 3 3 0 0 2 −0.2000 0.0179

5 1 2 1 2 1 1 −0.1333 0.3215

6 1 2 2 1 0 2 +0.2000 0.1607

7 2 1 0 3 1 1 +0.4667 0.1071

8∗ 2 1 1 2 0 2 +0.6000 0.1607

9∗ 3 0 0 3 0 2 +1.0000 0.0179

Sum 1.0000

sum of the hypergeometric point probability values in Table 5.25 associated with
the values of dy·x = +0.60 or greater; in this case

P = 0.1607 + 0.0179 = 0.1786 .

It is not widely recognized that the numerator of dy·x , C+D+Tx , can be defined
strictly in terms of the marginal frequency totals, i.e.,

C + D + Tx = 1

2

⎛
⎝N2 −

c∑
j=1

n2
.j

⎞
⎠ ,

where n.j denotes the column marginal frequency totals for j = 1, . . . , c columns
and N denotes the total number of observations. Thus, for the frequency data given
in Table 5.24 on p. 262,

C + D + Tx = 10 + 1 + 4 = 15

and

1

2

⎛
⎝N2 −

c∑
j=1

n2
.j

⎞
⎠ = 1

2

[
82 − (

32 + 52)] = 15 .

Since the marginal frequency totals are invariant under permutation, the exact
probability value depends solely on the distribution of S = C − D. Table 5.26 lists
the M = 9 sets of cell frequencies, the S values, and the associated hypergeometric
point probability values, where the rows with hypergeometric point probability
values associated with S values that are equal to or greater than the observed value
of S = +9 are indicated with asterisks.
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Table 5.26 Cell frequencies, S values, and exact hypergeometric point probability values for
M = 9 possible arrangements of the observed data in Table 5.24

Cell frequency

Table n11 n12 n21 n22 n31 n32 S Probability

1 0 3 1 2 2 0 −13 0.0536

2 0 3 2 1 1 1 −8 0.1071

3 1 2 0 3 2 0 −7 0.0536

4 0 3 3 0 0 2 −5 0.0179

5 1 2 1 2 1 1 −2 0.3215

6 1 2 2 1 0 2 +3 0.1607

7 2 1 0 3 1 1 +4 0.1071

8∗ 2 1 1 2 0 2 +9 0.1607

9∗ 3 0 0 3 0 2 +15 0.0179

Sum 1.0000

If the M = 9 possible arrangements of the cell frequencies in Table 5.24 occur
with equal chance, the exact probability value of S under the null hypothesis is the
sum of the hypergeometric point probability values in Table 5.26 associated with
the values of S = C −D = 10−1 = +9 or greater; in this case, the exact upper-tail
probability value is

P = 0.1607 + 0.0179 = 0.1786 .

5.8.2 Example 2

Similarly, for Kim’s dx·y test statistic,

dx·y = C − D

C + D + Ty

= 10 − 1

10 + 1 + 10
= +0.4286 .

For the frequency data given in Table 5.24 on p. 262, there are only M = 9
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{3, 3, 2} and {3, 5}, respectively, making an exact permutation analysis feasible.
Since M = 9 is a very small number, it will be illustrative to list the nine sets of cell
frequencies, the dx·y values, and the associated hypergeometric point probability
values in Table 5.27, where the rows with hypergeometric point probability values
associated with dx·y values equal to or greater than the observed dy·x value are
indicated with asterisks.

If all M = 9 possible arrangements of cell frequencies in Table 5.27 occur with
equal chance, the exact probability value of dx·y under the null hypothesis is the
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Table 5.27 Cell frequencies, dx·y values, and exact hypergeometric point probability values for
M = 9 possible arrangements of the observed data in Table 5.24

Cell frequency

Table n11 n12 n21 n22 n31 n32 dx·y Probability

1 0 3 1 2 2 0 −0.6190 0.0536

2 0 3 2 1 1 1 −0.3810 0.1071

3 1 2 0 3 2 0 −0.3333 0.0536

4 0 3 3 0 0 2 −0.1429 0.0179

5 1 2 1 2 1 1 −0.0952 0.3215

6 1 2 2 1 0 2 +0.1429 0.1607

7 2 1 0 3 1 1 +0.3333 0.1071

8∗ 2 1 1 2 0 2 +0.4286 0.1607

9∗ 3 0 0 3 0 2 +0.7143 0.0179

Sum 1.0000

sum of the hypergeometric point probability values associated with the values of
dx·y = +0.4286 or greater; in this case

P = 0.1607 + 0.0179 = 0.1786 .

Also,

C + D + Ty = 1

2

(
N2 −

r∑
i=1

n2
i.

)
,

where ni. denotes the row marginal frequency totals for i = 1, . . . , r rows and
N denotes the total number of observations. Thus, for the frequency data given in
Table 5.24 on p. 262,

C + D + Ty = 10 + 1 + 10 = 21

and

1

2

(
N2 −

r∑
i=1

n2
i.

)
= 1

2

[
82 − (

32 + 32 + 22)] = 21 .

Since the marginal frequency totals are invariant under permutation, the exact
probability value depends solely on the distribution of S = C − D. If the M = 9
possible arrangements of the cell frequencies in Table 5.24 occur with equal chance,
the exact probability value of S under the null hypothesis is the sum of the
hypergeometric probability values associated with the values of S = C − D =
10 − 1 = +9 or greater. Based on the hypergeometric probability distribution, the
exact upper-tail probability value is

P = 0.1607 + 0.0179 = 0.1786 .
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5.9 Wilson’s e Measure of Ordinal Association

In 1974 Thomas Wilson proposed yet another measure of ordinal association that
he called e [50]. Arguing that a measure of association should be adjusted for tied
values on both variable x and variable y, Wilson suggested a symmetric measure of
ordinal association given by

e = C − D

C + D + Tx + Ty

= S

C + D + Tx + Ty

. (5.17)

As Wilson noted, e takes the values of ±1 if and only if the data exhibit a perfect
positive or a perfect negative strongly monotonic relationship [50, p. 334].

It is obvious from Eq. (5.17) that Wilson’s e is equivalent to Somers’ dyx when
Tx = 0 and is equivalent to Somers’ dxy when Ty = 0. Moreover, if both Tx = 0
and Ty = 0, then e = dyx = dxy = γ = τa = τb.

5.9.1 Example 1

To illustrate Wilson’s symmetric measure of ordinal association, consider the
frequency data given in Table 5.28 with N = 70 observations on variables,
Education and Responsibility, cross-classified into a 3×3 ordered contingency table.

For the frequency data given in Table 5.28, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (15)(20 + 5 + 0 + 5) + (5)(5 + 5) + (10)(0 + 5) + (20)(5) = 650 ,

Table 5.28 Example
frequency data for Wilson’s e

with N = 70 observations
cross-classified by
Responsibility and
Educational level into a 3×3
ordered contingency table

Education

Responsibility B.S. M.A. Ph.D. Total

High 15 5 5 25

Medium 10 20 5 35

Low 5 0 5 10

Total 30 25 15 70
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the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (5)(10 + 20 + 5 + 0) + (5)(10 + 5) + (5)(5 + 0) + (20)(5) = 375 ,

the number of pairs tied on Responsibility (variable x) but not tied on Education
(variable y) is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (15)(5 + 5) + (5)(5) + (10)(20 + 5) + (20)(5)

+ (5)(0 + 5) + (0)(5) = 550 ,

the number of pairs tied on Education (variable y) but not tied on Responsibility
(variable x) is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (15)(10 + 5) + (10)(5) + (5)(20 + 0) + (20)(0)

+ (5)(5 + 5) + (5)(5) = 450 ,

and the observed value of Wilson’s e test statistic is

e = C − D

C + D + Tx + Ty

= S

C + D + Tx + Ty

= 650 − 375

650 + 375 + 550 + 450
= 275

2,025
= +0.1358 .

Because Wilson did not provide a standard error for e, an asymptotic solution
is not defined. However, for the frequency data given in Table 5.28, there are
only M = 15,836 possible, equally-likely arrangements in the reference set of
all permutations of cell frequencies given the observed row and column marginal
frequency distributions, {25, 35, 10} and {30, 25, 15}, respectively, making an exact
permutation analysis feasible. If the M = 15,836 possible arrangements of cell
frequencies given in Table 5.28 occur with equal chance, the exact probability value
of Wilson’s e under the null hypothesis is the sum of the hypergeometric point
probability values associated with the values of e = +0.1358 or greater. Based on
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Table 5.29 Example
frequency data for Wilson’s e

with N = 49 observations
cross-classified into a 4×4
ordered contingency table

y

x 1 2 3 4 Total

1 5 4 1 2 12

2 1 5 4 3 13

3 3 3 6 2 14

4 3 2 1 4 10

Total 12 14 12 11 49

the hypergeometric probability distribution, the exact upper-tail probability value is
P = 0.0501.

5.9.2 Example 2

For a second example of Wilson’s e measure of ordinal association, consider the
frequency data given in Table 5.29 where N = 49 objects have been cross-classified
into a 4×4 ordered contingency table. For the frequency data given in Table 5.29,
the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (5)(5 + 4 + 3 + 3 + 6 + 2 + 2 + 1 + 4) + (4)(4 + 3 + 6 + 2 + 1 + 4)

+ (3)(1 + 4) + (6)(4) = 406 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (2)(1 + 5 + 4 + 3 + 3 + 6 + 3 + 2 + 1) + (1)(1 + 5 + 3 + 3 + 3 + 2)

+ (6)(3 + 2) + (3)(3) = 280 ,

the number of pairs tied on variable x but not tied on variable y is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (5)(4 + 1 + 2) + (4)(1 + 2) + (1)(2)

+ · · · + (3)(2 + 1 + 4) + (2)(1 + 4) + (4)(1) = 212 ,
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the number of pairs tied on variable y but not tied on variable x is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (5)(1 + 3 + 3) + (1)(3 + 3) + (3)(3)

+ · · · + (2)(3 + 2 + 4) + (3)(2 + 4) + (2)(4) = 210 ,

and the observed value of Wilson’s e test statistic is

e = C − D

C + D + Tx + Ty

= S

C + D + Tx + Ty

= 406 − 280

406 + 280 + 212 + 210
= 126

1,108
= +0.1137 .

There are only M = 20,597,720 possible, equally-likely arrangements in
the reference set of all permutations of cell frequencies given the observed row
and column marginal frequency distributions, {12, 13, 14, 10} and {12, 14, 12, 11},
respectively, making an exact permutation analysis possible. If the M = 20,597,720
possible arrangements of cell frequencies given in Table 5.29 occur with equal
chance, the exact probability value of Wilson’s e under the null hypothesis is the
sum of the hypergeometric point probability values associated with the values of
e = +0.1137 or greater. Based on the hypergeometric probability distribution, the
exact upper-tail probability value is P = 0.1236.

5.10 Comparisons of Pairwise Measures

Using a common set of cell frequencies, a comparison of the six most common
measures based on Kendall’s S demonstrates the differences among the measures.
Consider the sparse frequency data given in Table 5.30 where N = 55 bivariate
observations have been cross-classified into a 3×5 ordered contingency table.

Table 5.30 Example
rank-score data for N = 55
bivariate observations
cross-classified on ordinal
variables x and y into a 3×5
contingency table

y

x 1 2 3 4 5 Total

1 5 3 2 1 0 11

2 2 8 7 6 2 25

3 0 2 4 4 9 19

Total 7 13 13 11 11 55
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For the frequency data given in Table 5.30, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (5)(8 + 7 + 6 + 2 + 2 + 4 + 4 + 9) + (3)(7 + 6 + 2 + 4 + 4 + 9)

+ · · · + (7)(4 + 9) + (6)(9) = 678 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (0)(2 + 8 + 7 + 6 + 0 + 2 + 4 + 4) + (1)(2 + 8 + 7 + 0 + 2 + 4)

+ · · · + (7)(0 + 2) + (8)(0) = 123 ,

the number of pairs tied on variable x but not tied on variable y is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= (5)(3 + 2 + 1 + 0) + (3)(2 + 1 + 0) + (2)(1 + 0) + (1)(0)

+ · · · + (0)(2 + 4 + 4 + 9) + (2)(4 + 4 + 9) + (4)(4 + 9)

+ (4)(9) = 397 ,

the number of pairs tied on variable y but not tied on variable x is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (5)(2 + 0) + (2)(0) + (3)(8 + 2) + (8)(2)

+ · · · + (0)(2 + 9) + (2)(9) = 158 ,

S = C − D = 678 − 123 = +555, and the observed value of Kendall’s τa is

τa = 2S

N(N − 1)
= 2(+555)

55(55 − 1)
= +0.3737 ,
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the observed value of Kendall’s τb test statistic is

τb = S√
(C + D + Tx)(C + D + Ty)

= +555√
(678 + 123 + 397)(678 + 123 + 158)

= +0.5178 ,

with m = min(r, c) = min(3, 5) = 3, the observed value of Stuart’s τc test statistic
is

τc = 2mS

N2(m − 1)
= 2(3)(+555)

552(3 − 1)
= +0.5504 ,

the observed value of Goodman and Kruskal’s γ test statistic is

γ = S

C + D
= +555

678 + 123
= +0.6929 ,

the observed value of Somers’ dyx test statistic is

dyx = S

C + D + Ty

= +555

678 + 123 + 158
= +0.5787 ,

and the observed value of Somers’ dxy test statistic is

dxy = S

C + D + Tx

= +555

678 + 123 + 397
= +0.4633 .

For the frequency data given in Table 5.30, there are only M = 4,788,153
possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies, given the observed row and column marginal frequency distributions,
{11, 25, 19} and {7, 13, 13, 11, 11}, respectively, making an exact permutation
analysis possible. The exact probability value of τa , τb, τc, dyx , and dxy under
the null hypothesis is the sum of the hypergeometric point probability values
associated with the values of the observed statistics or greater; in this case the exact
upper-tail probability value for the five measures is P = 0.1550×10−5; on the
other hand, the exact upper-tail probability value for Goodman and Kruskal’s γ is
P = 0.1416×10−5. The results are summarized in Table 5.31.

It is, perhaps, curious that the five measures of ordinal association, τa , τb, τc, dyx ,
and dxy , yield identical probability values. It follows from the fact that C + D + Ty

and C + D + Tx can be computed from just the marginal frequency distributions,
which are fixed for all possible arrangements of cell frequencies. Thus, the
denominators of Kendall’s τa , Kendall’s τb, Stuart’s τc, Somers’ dyx , and Somers’
dxy can all be calculated from the marginals of the observed contingency table,
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Table 5.31 Summary of
computed values and
probability values for
Kendall’s τa , Kendall’s τb,
Stuart’s τc, Goodman and
Kruskal’s γ , Somers’ dyx ,
and Somers’ dxy

Measure Statistic Probability

Kendall’s τa +0.3737 0.1550×10−5

Kendall’s τb +0.5178 0.1550×10−5

Stuart’s τc +0.5504 0.1550×10−5

G/K’s γ +0.6929 0.1416×10−5

Somers’ dyx +0.5787 0.1550×10−5

Somers’ dxy +0.4633 0.1550×10−5

which are invariant under permutation. However, the denominator of Goodman and
Kruskal’s γ is C + D, cannot be obtained from the marginals alone, and is not
invariant under permutation.

For the observed cell frequencies given in Table 5.30, the number of concordant
pairs is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= 5(8 + 7 + 6 + 2 + 2 + 4 + 4 + 9) + 3(7 + 6 + 2 + 4 + 4 + 9)

+ 2(6 + 2 + 4 + 9) + 1(2 + 9) + 2(2 + 4 + 4 + 9) + 8(4 + 4 + 9)

+ 7(4 + 9) + 6(9) = 678 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= 0(2 + 8 + 7 + 6 + 0 + 2 + 4 + 4) + 1(2 + 8 + 7 + 0 + 2 + 4)

+ 2(2 + 8 + 0 + 2) + 3(2 + 0) + 2(0 + 2 + 4 + 4) + 6(0 + 2 + 4)

+ 7(0 + 2) + 8(0) = 123 ,

the number of pairs tied on variable x but not tied on variable y is

Tx =
r∑

i=1

c−1∑
j=1

nij

⎛
⎝ c∑

k=j+1

nik

⎞
⎠

= 5(3 + 2 + 1 + 0) + 3(2 + 1 + 0) + 2(1 + 0) + 1(0)

+ 2(8 + 7 + 6 + 2) + 8(7 + 6 + 2) + 7(6 + 2) + 6(2)

+ 0(2 + 4 + 4 + 9) + 2(4 + 4 + 9) + 4(4 + 9) + 4(9) = 397 ,
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and the number of pairs tied on variable y but not tied on variable x is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= 5(2 + 0) + 2(0) + 3(8 + 2) + 8(2) + 2(7 + 4) + 7(4)

+ 1(6 + 4) + 6(4) + 0(2 + 9) + 2(9) = 158 .

Thus,

C + D + Ty = 678 + 123 + 158 = 959

and

C + D + Tx = 678 + 123 + 397 = 1,198 .

It is easily shown that C + D + Ty can be obtained from N and the row marginal
frequency distribution; accordingly,

C + D + Ty = 1

2

(
N2 −

r∑
i=1

n2
i.

)
= 1

2

[
552 − (

112 + 252 + 192)] = 959 ,

and C + D + Tx can be obtained from N and the column marginal frequency
distribution; accordingly,

C + D + Tx = 1

2

⎛
⎝N2 −

c∑
j=1

n2
.j

⎞
⎠

= 1

2

[
552 − (

72 + 132 + 132 + 112 + 112)] = 1,198 .

5.10.1 Marginal Frequency Distributions

In this section, it is demonstrated that all pairwise components can be obtained from
the observed marginal frequency totals. Let C denote the number of concordant
pairs, D denote the number of discordant pairs, Tx denote the number of pairs tied
on variable x but not tied on variable y, Ty denote the number of pairs tied on
variable y but not tied on variable x, and Txy denote the number of pairs tied on
both variable x and variable y. Then the total number of pairs can be partitioned as

(
N

2

)
= N(N − 1)

2
= C + D + Tx + Ty + Txy .



5.10 Comparisons of Pairwise Measures 275

Note that

1

2

⎛
⎝N2 −

c∑
j=1

n2
.j

⎞
⎠ = C + D + Tx

and

1

2

⎡
⎣ c∑

j=1

n.j

(
n.j − 1

)
⎤
⎦ = Ty + Txy ,

where n.j denotes the j th column marginal frequency total, j = 1, . . . , c.
Then, all possible pairs can be partitioned in terms of the marginal frequency

totals as

(
N

2

)
= 1

2

⎛
⎝N2 −

c∑
j=1

n2
.j

⎞
⎠+ 1

2

⎡
⎣ c∑

j=1

n.j

(
n.j − 1

)⎤⎦

= 1

2

⎡
⎣N2 −

c∑
j=1

n2
.j +

c∑
j=1

n.j

(
n.j − 1

)⎤⎦ (5.18)

= 1

2

⎛
⎝N2 −

c∑
j=1

n.j

⎞
⎠ = N(N − 1)

2
.

While the relationship given in Eq. (5.18) is in terms of the column marginal
frequency totals, the same results can be obtained from the row marginal frequency
totals, i.e.,

(
N

2

)
= 1

2

[
N2 −

r∑
i=1

n2
i. +

r∑
i=1

ni.

(
ni. − 1

)]
, (5.19)

where ni. denotes the ith row marginal frequency total, i = 1, . . . , r .
For the frequency data given in Table 5.30 on p. 270 and following the first

expression in Eq. (5.18),

(
N

2

)
= 1

2

⎡
⎣N2 −

c∑
j=1

n2
.j +

c∑
j=1

n.j

(
n.j − 1

)⎤⎦

= 1

2

[
552 − (

72 + 132 + 132 + 112 + 112)+ (7)(7 − 1)
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+ (13)(13 − 1) + (13)(13 − 1) + (11)(11 − 1) + (11)(11 − 1)
]

= 1

2

(
3,025 − 629 + 574

) = 1,485 ,

and following Eq. (5.19)

(
N

2

)
= 1

2

[
N2 −

r∑
i=1

n2
i. +

r∑
i=1

ni.

(
ni. − 1

)]

= 1

2

[
552 − (

112 + 252 + 192)

+ (11)(11 − 1) + (25)(25 − 1) + (19)(19 − 1)
]

= 1

2

(
3,025 − 1,107 + 1,052

) = 1,485 .

Thus, since the marginal frequency distributions are fixed under permutation, the
exact probability values of Kendall’s τa , Kendall’s τb, Somers’ dyx , and Somers’
dxy are based entirely on the permutation distribution of the common numerator,
S [8]. In the case of Stuart’s measure of ordinal association, the formula for τc

does not include either C + D + Tx or C + D + Ty , but utilizes m = min(r, c),
which is based on the number of rows or columns that are fixed under permutation.
Consequently, the probability value for Stuart’s τc is also based solely on the
permutation distribution of statistic S. In the case of Goodman and Kruskal’s
measure of ordinal association, γ does not consider either Tx or Ty as providing any
usable information; therefore, its probability value differs slightly from the common
probability value for Kendall’s τa and τb, Stuart’s τc, and Somers’ dyx and dxy .

5.11 Whitfield’s S Measure

In 1947 John Whitfield, an experimental psychologist at the University of Cam-
bridge, proposed a measure of correlation between two variables in which one
variable was composed of N rank scores and the other variable was dichoto-
mous [48]. An example analysis will serve to illustrate Whitfield’s procedure.
Consider the rank scores listed in Table 5.32 where the dichotomous variable
categories are two samples indicated by the letters A and B and the rank scores

Table 5.32 Ranking of a dichotomous variable with n1 = 4, n2 = 2, and N = n1 + n2 = 6

Rank 1 2 3 4 5 6

Sample A B A A A B
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are from 1 to 6. Let n1 = 4 denote the number of rank scores in the A category, let
n2 = 2 denote the number of rank scores in the B category, and let N = n1 + n2.

Whitfield designed a procedure to calculate a statistic that he labeled S, following
Kendall’s notation in a 1945 Biometrika article on “The treatment of ties in ranking
problems” [22]. Given the N = 6 rank scores listed in Table 5.32, consider the
n1 = 4 rank scores in the category identified by the letter A: 1, 3, 4, and 5. Beginning
with rank score 1 with the letter A, there are no rank scores with the letter B to the
left of A = 1 and two rank scores with the letter B to the right of A = 1 (ranks 2
and 6); so Whitfield calculated 0 − 2 = −2. For rank score 3 with the letter A, there
is one rank score to the left of A = 3 with the letter B (rank 2) and one rank score
to the right of A = 3 with the letter B (rank 6); so 1 − 1 = 0. For rank score 4 with
the letter A, there is one rank score to the left of A = 4 with the letter B (rank 2)
and one rank score to the right of A = 4 with the letter B (rank 6); so 1 − 1 = 0.
Finally, for rank score 5 with the letter A, there is one rank score to the left of A = 5
with the letter B (rank 2) and one rank score to the right of A = 5 with the letter
B (rank 6); so 1 − 1 = 0. The sum of the differences between variables A and B is
S = −2 + 0 + 0 + 0 = −2. In this manner, Whitfield’s approach accommodated
samples with n1 �= n2 as well as any number of tied rank scores.

Since the number of possible pairs of N consecutive integers is given by

N(N − 1)

2
,

Whitfield defined and calculated a measure of rank-order association between
variables A and B as

τ = 2S

N(N − 1)
= 2(−2)

6(6 − 1)
= −0.1333 .

Whitfield’s S is identical to Kendall’s S [22] and is directly related to the two-
sample rank-sum U statistic of Mann and Whitney [31] and to the two-sample
rank-sum W statistic of Wilcoxon [49]. This can be demonstrated with a simple
comparison. For the rank scores listed in Table 5.32, there are n1 = 4 A rank scores
and n2 = 2 B rank scores, so considering the smaller of the two sample sizes
(the n2 = 2 B rank scores), the first letter B (rank 2) precedes three letter A rank
scores (ranks 3, 4, and 5) and the second letter B (rank 6) precedes no letter A, so
U = 3 + 0 = 3. The relationships between Whitfield’s S and Mann and Whitney’s
U statistics are given by

S = 2U − n1n2 and U = S + n1n2

2
.

Thus, for the rank scores listed in Table 5.32 the observed values of S and U are

S = (2)(3) − (4)(2) = −2 and U = −2 + (4)(2)

2
= 3 ,
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respectively [8, 27]. Also, for the example rank scores listed in Table 5.32, the
observed Wilcoxon W statistic for the smaller of the two sums (the n2 = 2 B

rank scores) is W = 2 + 6 = 8 and the relationships between Whitfield’s S and
Wilcoxon’s W are given by

S = n2(N + 1) − 2W and W = n2(N + 1) − S

2
.

Thus, the observed values of S and W are

S = (2)(6 + 1) − (2)(8) = −2 and W = (2)(6 + 1) − (−2)

2
= 8 ,

respectively [8, 27].
As Whitfield noted, the calculation of S was fashioned after a procedure

introduced by Maurice Kendall in 1945 and Whitfield might have been unaware
of the two-sample rank-sum tests previously published by Wilcoxon in 1945 [49],
Festinger in 1946 [12], and Mann and Whitney in 1947 [31], as they are not refer-
enced in the 1947 Whitfield article. Kendall considered the number of concordant
(C) and discordant (D) pairs, of which there is a total of N(N − 1)/2 pairs when
there are no tied values among the N integers [22]. For the example rank scores
listed in Table 5.32 there are

N(N − 1)

2
= 6(6 − 1)

2
= 15

pairs of rank scores. Table 5.33 lists and numbers the 15 rank pairs, the con-
cordant/discordant classification of rank pairs, and the rank-pair values, where
concordant pairs (−,− and +,+) are given a value of 0, and discordant pairs (+,−
and −,+) are given values of +1 and −1, respectively. The observed sum of the
pair values listed in Table 5.33 for the 15 pairs is S = −5 + 3 = −2.

Today it is well-known, although poorly documented, that when one classifica-
tion is a dichotomy and the other classification is rank ordered, with or without tied

Table 5.33 Fifteen pairs of observations with concordant/discordant (C/D) pairs and associated
rank-pair values

Number Pair C/D Value Number Pair C/D Value

1 1–2 −,+ −1 9 2–6 +,+ 0

2 1–3 −,− 0 10 3–4 −,− 0

3 1–4 −,− 0 11 3–5 −,− 0

4 1–5 −,− 0 12 3–6 −,+ −1

5 1–6 −,+ −1 13 4–5 −,− 0

6 2–3 +,− +1 14 4–6 −,+ −1

7 2–4 +,− +1 15 5–6 −,+ −1

8 2–5 +,− +1
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Table 5.34 Listing of the n1 = 9 and n2 = 6 rank scores from Samples A and B, respectively

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample A A B A A A B B A A A A B B B

values, the S statistic of Kendall is equivalent to the Mann–Whitney U statistic;
see articles on this topic by Lincoln Moses in 1956 [37] and Edmund John Burr in
1960 [8]. Whitfield apparently was the first to uncover the relationship between S,
the statistic underlying Kendall’s τa and τb rank-order correlation coefficients, and
U , the Mann–Whitney two-sample rank-sum statistic for two independent samples.

However, it was Hemelrijk in 1952 [18] and Jonckheere in 1954 [20] who
made the relationship between S and U explicit; see also a discussion by Leach
in 1979 [28, p. 183]. Because the Jonckheere–Terpstra test, when restricted to
two independent samples, is mathematically identical in reverse application to the
Wilcoxon and Mann–Whitney tests, see references [20, p. 138] and [40, p. 396],
the two-sample rank-sum test is sometimes referred to as the Kendall–Wilcoxon–
Mann–Whitney–Jonckheere–Festinger test [37, p. 246].

5.11.1 Example 1

Consider the rank scores listed in Table 5.34 consisting of n1 = 9 rank scores from
Sample A and n2 = 6 rank scores from Sample B. Calculating Mann and Whitney’s
U statistic for the data listed in Table 5.34, the number of A rank scores to the left
of (less than) the first B rank score (rank 3) is 2; the number of A rank scores to the
left of the second and third B rank scores (ranks 7 and 8) is 5 each; and the number
of A rank scores to the left of the last three B rank scores (ranks 13, 14, and 15)
is 9 each. Then U = 2 + 5 + 5 + 9 + 9 + 9 = 39. To calculate Wilcoxon’s W

statistic for the rank data listed in Table 5.34, the sum of the rank scores in Sample
A is W = 1 + 2 + 4 + 5 + 6 + 9 + 10 + 11 + 12 = 60.13

To calculate Whitfield’s S statistic for the data listed in Table 5.34, there are two
A rank scores to the left of B = 3 (ranks 1 and 2) and seven A rank scores to the
right of B = 3 (ranks 4, 5, 6, 9, 10 11, and 12), so 2−7 = −5. There are five A rank
scores to the left of B = 7 and B = 8 (ranks 1, 2, 4, 5, and 6) and four A rank scores
to the right of B = 7 and B = 8 (ranks 9, 10, 11, and 12), so (5 − 4) + (5 − 4) = 2.
There are nine A rank scores to the left of B = 13, 14, and 15 (ranks 1, 2, 4, 5, 6,
9, 10, 11, and 12) and zero A rank scores to the right of B = 13, 14, and 15, so
(9 − 0) + (9 − 0) + (9 − 0) = 27. Then S = −5 + 2 + 27 = +24. Note that the

13Coincidentally, in this example analysis the sum of the n1 = 9 rank scores in Sample B is also
60.
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relationships among Whitfield’s S, Mann and Whitney’s U , and Wilcoxon’s W are
given by

S = 2U − n1n2 = 2(39) − (9)(6) = 78 − 54 = +24 ,

U = S + n1n2

2
= 24 + (9)(6)

2
= 78

2
= 39 ,

S = n1(N + 1) − 2W = 9(15 + 1) − (2)(60) = 144 − 120 = +24 ,

and

W = n1(N + 1) − S

2
= 9(15 + 1) − 24

2
= 120

2
= 60 .

Alternatively, as Whitfield suggested, arrange the two samples into a contingency
table with two rows and columns equal to the frequency distribution of the combined
samples, as depicted in Table 5.35. Here the first row of frequencies in Table 5.35
represents the runs in the list of rank scores in Table 5.34 labeled as A, i.e., there
are two occurrences of A in ranks 1 and 2; no occurrence of A in rank 3; three
occurrences of A in ranks 4, 5, and 6; no occurrence of A in ranks 7 and 8; four
occurrences of A in ranks 10, 11, and 12; and no occurrence of A in ranks 13, 14,
and 15. The second row of frequencies in Table 5.35 represents the runs in the list of
rank scores in Table 5.34 labeled as B, i.e., there are no occurrences of B in ranks 1
and 2; one occurrence of B in rank 3; no occurrences of B in ranks 4, 5, and 6; two
occurrences of B in ranks 7 and 8; no occurrences of B in ranks 9, 10, 11, and 12;
and three occurrences of B in ranks 13, 14, and 15.

Given the r×c contingency table in Table 5.35 with r = 2 rows and c = 6
columns, let nij indicate a cell frequency for i = 1, . . . , r and j = 1, . . . , c. Then,
as Kendall showed in 1948 [23], the number of concordant pairs is given by

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠ (5.20)

and the number of discordant pairs is given by

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠ . (5.21)

Table 5.35 Contingency table of the frequencies of rank scores in Table 5.34

A 2 0 3 0 4 0

B 0 1 0 2 0 3
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Thus, for the cell frequencies given in Table 5.35, C is calculated by proceeding
from the upper-left cell with frequency n11 = 2 downward and to the right,
multiplying each cell frequency by the sum of all cell frequencies below and to
the right, and summing the products. Thus, following Eq. (5.20), the number of
concordant pairs in Table 5.35 is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (2)(1 + 0 + 2 + 0 + 3) + (0)(0 + 2 + 0 + 3)

+ (3)(2 + 0 + 3) + (0)(0 + 3) + (4)(3) = 39 ,

and D is calculated by proceeding from the upper-right cell with frequency n16 = 0
downward and to the left, multiplying each cell frequency by the sum of all cell
frequencies below and to the left, and summing the products. Thus, following
Eq. (5.21), the number of discordant pairs in Table 5.35 is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (0)(0 + 1 + 0 + 2 + 0) + (4)(0 + 1 + 0 + 2)

+ (0)(0 + 1 + 0) + (3)(0 + 1) + (0)(0) = 15 .

Then, the observed value of S is C − D = 39 − 15 = +24.
For the rank scores listed in Table 5.34 on p. 279, there are only

M = N !
n1! n2! = 15!

9! 6! = 5,005

possible, equally-likely arrangements in the reference set of all permutations of
the observed rank scores, making an exact permutation analysis feasible. If all
arrangements of the N = 15 observed rank scores listed in Table 5.34 occur with
equal chance, the exact probability value under the null hypothesis of S computed
on the M = 5,005 possible, equally-likely arrangements of the observed data with
n1 = 9 A rank scores and n2 = 6 B rank scores preserved for each arrangement is
the sum of the hypergeometric point probability values associated with the values of
S = +24 or greater. Based on the hypergeometric probability distribution, the exact
upper-tail probability value is P = 0.0905.
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Table 5.36 Listing of the n1 = 8 and n2 = 4 rank scores from Samples A and B, respectively

Rank 1 2 3 4 5 6 7 8 9 10 11 12

Sample A A A A A A B A B B A B

Table 5.37 Contingency table of the frequencies of rank scores in Table 5.36

A 6 0 1 0 1 0

B 0 1 0 2 0 1

5.11.2 Example 2

For a second example of Whitfield’s S statistic, consider the rank scores listed in
Table 5.36 consisting of n1 = 8 rank scores from Sample A and n2 = 4 rank scores
from Sample B. To calculate Whitfield’s S statistic for the data listed in Table 5.36,
there are six A rank scores to the left of B = 7 (ranks, 1, 2, 3, 4, 5, 6) and two A

ranks to the right of B = 7 (ranks 8 and 11), so 6 − 2 = 4. There are seven A ranks
to the left of B = 9 and B = 10 (ranks 1, 2, 3, 4, 5, 6, 8) and one A rank to the
right of B = 9 and B = 10 (rank 11), so (7 − 1) + (7 − 1) = 12. There are eight A

ranks to the left of B = 12 (ranks 1, 2, 3, 4, 5, 6, 8, 11) and no A ranks to the right
of B = 12, so 8 − 0 = 8. Then, S = 4 + 12 + 8 = +24.

Alternatively, arrange the two samples into a contingency table with two rows and
columns equal to the frequency distribution of the combined samples, as depicted
in Table 5.37. Here the first row of frequencies in Table 5.37 represents the runs in
the list of rank scores in Table 5.36 labeled as A, i.e., there are six occurrences of
A in ranks 1, 2, 3, 4, 5, and 6; no occurrence of A in rank 7; one occurrence of A

in rank 8; no occurrences of A in ranks 9 and 10; one occurrence of A in rank 11;
and no occurrence of A in rank 12. The second row of frequencies in Table 5.37
represents the runs in the list of rank scores in Table 5.36 labeled as B, i.e., there are
no occurrences of B in ranks 1, 2, 3, 4, 5, and 6; one occurrence of B in rank 7; no
occurrence of B in rank 8; two occurrences of B in ranks 9 and 10; no occurrence
of B in rank 11; and one occurrence of B in rank 12.

Given the r×c contingency table in Table 5.37 with r = 2 rows and c = 6
columns, let nij indicate a cell frequency for i = 1, . . . , r and j = 1, . . . , c. For
the cell frequencies given in Table 5.37, C is calculated by proceeding from the
upper-left cell with frequency n11 = 2 downward and to the right, multiplying each
cell frequency by the sum of all cell frequencies below and to the right, and summing
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the products. Thus, following Eq. (5.20) on p. 280, the number of concordant pairs
in Table 5.37 is

C =
r−1∑
i=1

c−1∑
j=1

nij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

nkl

⎞
⎠

= (6)(1 + 0 + 2 + 0 + 1) + (0)(0 + 2 + 0 + 1)

+ (1)(2 + 0 + 1) + (0)(0 + 1) + (1)(1) = 28 ,

and D is calculated by proceeding from the upper-right cell with frequency n16 = 0
downward and to the left, multiplying each cell frequency by the sum of all cell
frequencies below and to the left, and summing the products. Thus, following
Eq. (5.21) on p. 280, the number of discordant pairs in Table 5.37 is

D =
r−1∑
i=1

c−1∑
j=1

ni,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

nkl

⎞
⎠

= (0)(0 + 1 + 0 + 2 + 0) + (1)(0 + 1 + 0 + 2)

+ (0)(0 + 1 + 0) + (1)(0 + 1) + (0)(0) = 4 .

Then, the observed value of S is C − D = 28 − 4 = +24.
For the rank scores listed in Table 5.36, there are only

M = N !
n1! n2! = 12!

8! 4! = 479,001,600

(40,320)(24)
= 495

possible, equally-likely arrangements in the reference set of all permutations of the
observed rank scores, making an exact permutation analysis feasible.

If all arrangements of the N = 12 observed rank scores listed in Table 5.36
occur with equal chance, the exact probability value under the null hypothesis of S

computed on the M = 495 possible, equally-likely arrangements of the observed
data with n1 = 8 and n2 = 4 preserved for each arrangement is the sum of the
hypergeometric point probability values associated with the values of S = +24 or
greater. Based on the hypergeometric probability distribution, the exact upper-tail
probability value is P = 0.0242.

5.12 Cureton’s Rank-Biserial Correlation Coefficient

Consider two correlated variables, one represented by a ranking and the other
by a dichotomy, similar to Whitfield’s data in Table 5.34 on p. 279. In 1956
psychologist Edward Cureton proposed a new measure of correlation for a ranking



284 5 Ordinal-Level Variables, I

Table 5.38 Example (0, 1)
coded data for Cureton’s
rank-biserial correlation
coefficient with n0 = 6 and
n1 = 4

Variable

Object x y

1 0 1

2 1 2

3 0 3

4 0 4

5 0 5

6 0 6

7 1 7

8 0 8

9 1 9

10 1 10

and a dichotomous variable called rrb for rank-biserial correlation [9].14 The rank-
biserial correlation coefficient was introduced by Cureton as a measure of effect
size for the Wilcoxon–Mann–Whitney two-sample rank-sum test. Twelve years
later, in 1968, Cureton extended rrb to include tied rank scores [10]. Cureton
stated that the new correlation coefficient should norm properly between ±1
and should be strictly non-parametric, defined solely in terms of inversions and
agreements between rank pairs, without the use of means, variances, covariances, or
regression [9, p. 287]. Consequently, as Cureton stated, “clearly rrb is a Kendall-type
coefficient” [9, p. 289]. However, Cureton also stated that rrb “is also a Spearman-
type coefficient” [9, p. 289]. It is clear that rrb is, indeed, a Kendall-type coefficient
as Kendall’s tau-like family of measures and Cureton’s rrb are both based on
S = C − D, where C and D denote the number of concordant and discordant
pairs of x,y values, respectively. It is less clear that Cureton’s rrb belongs to the
Spearman family of correlation measures [3, pp. 302–303].

5.12.1 Example 1

Consider an example data set such as listed in Table 5.38 in which N = 10 objects
are ranked (variable y) and simultaneously classified into two groups coded 0 and 1
(variable x). Cureton defined rrb as

rrb = S

Smax
,

14Technically, Cureton’s rrb is not considered a measure of correlation [14, p. 629].
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where C is the number of concordant pairs, D is the number of discordant pairs,
S = C −D is the test statistic of Kendall [21] and Whitfield [48], and Smax = n0n1,
where n0 is the number of objects coded 0 and n1 is the number of objects coded 1.

Table 5.39 lists the
(

N

2

)
= N(N − 1)

2
= 10(10 − 1)

2
= 45

possible paired comparisons of xi and xj with yi and yj , where i < j and n0 and
n1 are the number of objects coded 0 and 1, respectively. Each paired difference is
labeled as concordant (C) or discordant (D). Paired differences not labeled as C or
D are not relevant in the present context as they are tied by either xi = xj = 0 or
xi = xj = 1. In Table 5.39 there are C = 18 concordant and D = 6 discordant
paired differences; thus, for the N = 10 paired differences listed in Table 5.39, the
observed value of S is C − D = 18 − 6 = +12.

Alternatively, as suggested by Whitfield [48], the rank scores listed in Table 5.38
can be rearranged into a contingency table to make calculation of C and D much

Table 5.39 Paired differences and concordant (C) and discordant (D) values for the univariate
rank scores listed in Table 5.38

Pair xi − xj yi − yj Type Pair xi − xj yi − yj Type

1 1 − 0 1 − 2 C 24 0 − 1 3 − 10 C

2 0 − 0 1 − 3 25 0 − 0 4 − 5

3 0 − 0 1 − 4 26 0 − 0 4 − 6

4 0 − 0 1 − 5 27 0 − 1 4 − 7 C

5 0 − 0 1 − 6 28 0 − 0 4 − 8

6 0 − 1 1 − 7 C 29 0 − 1 4 − 9 C

7 0 − 0 1 − 8 30 0 − 1 4 − 10 C

8 0 − 1 1 − 9 C 31 0 − 0 5 − 6

9 0 − 1 1 − 10 C 32 0 − 1 5 − 7 C

10 1 − 0 2 − 3 D 33 0 − 0 5 − 8

11 1 − 0 2 − 4 D 34 0 − 1 5 − 9 C

12 1 − 0 2 − 5 D 35 0 − 1 5 − 10 C

13 1 − 0 2 − 6 D 36 0 − 1 6 − 7 C

14 1 − 1 2 − 7 37 0 − 0 6 − 8

15 1 − 0 2 − 8 D 38 0 − 1 6 − 9 C

16 1 − 1 2 − 9 39 0 − 1 6 − 10 C

17 1 − 1 2 − 10 40 1 − 0 7 − 8 D

18 0 − 0 3 − 4 41 1 − 1 7 − 9

19 0 − 0 3 − 5 42 1 − 1 7 − 10

20 0 − 0 3 − 6 43 0 − 1 8 − 9 C

21 0 − 1 3 − 7 C 44 0 − 1 8 − 10 C

22 0 − 0 3 − 8 45 1 − 1 9 − 10

23 0 − 1 3 − 9 C
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Table 5.40 Contingency table of the frequencies of rank scores in Table 5.38

0 1 0 4 0 1 0

1 0 1 0 1 0 2

more convenient [48]. Consider the data listed in Table 5.38 arranged into a 2×6
contingency table, such as given in Table 5.40. The top row of frequencies given in
Table 5.40 represents the runs in the list of rank scores given in Table 5.38 coded
0, i.e., there is one occurrence of a 0 in rank 1, no occurrence of a 0 in rank 2,
four occurrences of a 0 in ranks 3, 4, 5, and 6, no occurrence of a 0 in rank 7, one
occurrence of a 0 in rank 8, and two occurrences of a 0 in ranks 9 and 10. The
bottom row of frequencies given in Table 5.40 represents the runs in the list of rank
scores given in Table 5.38 coded 1, i.e., there is no occurrence of a 1 in rank 1,
one occurrence of a 1 in rank 2, no occurrence of a 1 in ranks 3, 4, 5, and 6, one
occurrence of a 1 in rank 7, no occurrence of a 1 in rank 8, and two occurrences of
a 1 in ranks 9 and 10.

Given the r×c contingency table in Table 5.40 with r = 2 rows and c = 6
columns, let xij indicate a cell frequency for i = 1, . . . , r and j = 1, . . . , c. Then,
as Kendall showed in 1948 [23], the number of concordant and discordant pairs is
given by

C =
r−1∑
i=1

c−1∑
j=1

xij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

xkl

⎞
⎠

and

D =
r−1∑
i=1

c−1∑
j=1

xi,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

xkl

⎞
⎠ ,

respectively. Thus, the observed values of C and D are

C = (1)(1 + 0 + 1 + 0 + 2) + (0)(0 + 1 + 0 + 2) + (4)(1 + 0 + 2)

+ (0)(0 + 2) + (1)(2) = 18

and

D = (0)(0 + 1 + 0 + 1 + 0) + (1)(0 + 1 + 0 + 1) + (0)(0 + 1 + 0)

+ (4)(0 + 1) + (1)(0) = 6 ,

respectively, and the observed value of S is C − D = 18 − 6 = +12. It is easily
shown that the maximum value of Cureton’s S, Smax, is given by n0n1, where n0
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is the number of objects coded 0 and n1 is the number of objects coded 1. Then,
Cureton’s rank-biserial coefficient is given by

rrb = S

Smax
= S

n0n1
= +12

(6)(4)
= +0.50 .

In 1966 Glass derived a simplified formula for rrb, assuming no tied rank
scores [14], given by

rrb = 2

N
(ȳ1 − ȳ0) ,

where ȳ0 and ȳ1 are the arithmetic averages of the y values coded 0 and 1,
respectively. In this case, ȳ0 = 4.50 and ȳ1 = 7.00. Note that under (0, 1)
binary coding, ȳ0 and ȳ1 − ȳ0 are the intercept (ayx) and slope (byx), respectively,
of a regression line passing through the two points (x = 0, ȳ0 = 4.40) and
(x = 1, ȳ1 = 7.00), as illustrated in Fig. 5.5.

Glass provided two alternative calculating formulæ given by

rrb = 2

n0

(
ȳ1 − N + 1

2

)
or rrb = 2

n1

(
N + 1

2
− ȳ0

)
.

Thus, for the data listed in Table 5.38 on p. 284 where

ȳ0 = 1

n0

n0∑
i=1

= 1

6
(1 + 3 + 4 + 5 + 6 + 8) = 1

6
(27) = 4.50

Fig. 5.5 Graphic depicting
the regression line for the
data listed in Table 5.38 with
intercept equal to ȳ0 = 4.50
and slope equal to
ȳ1 − ȳ0 = 7.00 − 4.50 = 2.50
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and

ȳ1 = 1

n1

n1∑
i=1

= 1

4
(2 + 7 + 9 + 10) = 7.00 ,

Cureton’s rank-biserial correlation coefficient is given by either

rrb = 2

n0

(
ȳ1 − N + 1

2

)
= 2

6

(
7.00 − 10 + 1

2

)
= +0.50

or

rrb = 2

n1

(
N + 1

2
− ȳ0

)
= 2

4

(
10 + 1

2
− 4.50

)
= +0.50 .

Since n0 and n1 are constants under permutation,

P
(
rrb ≥ ro|H0

) = P
(
S ≥ So|H0

) = number of S values ≥ So

M
,

where ro and So denote the observed values of rrb and S, respectively.
For the rank scores listed in Table 5.38, there are only

M = N !
n0! n1! = 10!

6! 4! = 210

possible, equally-likely arrangements in the reference set of all permutations of
the observed rank scores, making an exact permutation analysis feasible. If all
arrangements of the N = 10 observed rank scores listed in Table 5.38 occur with
equal chance, the exact upper-tail probability value of S = +12 computed on the
M = 210 possible arrangements of the observed data with n0 = 6 and n1 = 4 rank
scores preserved for each arrangement is

P
(
S ≥ So|H0

) = number of S values ≥ So

M
= 54

210
= 0.2571 .

5.12.2 Example 2

For a second example of Cureton’s rank-biserial correlation coefficient, consider the
rank-score data given in Table 5.41 in which N = 12 objects are ranked (variable
y) and also classified into two groups coded 0 and 1 (variable x).

For the rank-score data given in Table 5.41, N = 12, n0 = 5, n1 = 7, the
number of concordant pairs is C = 18, the number of discordant pairs is D = 14,
the number of pairs with tied values on variable x is Tx = 30, the number of pairs
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Table 5.41 Example (0, 1)
coded data for Cureton’s
rank-biserial correlation
coefficient with n0 = 5 and
n1 = 7

Variable

Object x y

1 0 1

2 1 2.5

3 0 2.5

4 1 4

5 0 5

6 1 6

7 1 7

8 1 8

9 1 9

10 0 11

11 1 11

12 0 11

with tied values on variable y is Ty = 3, the number of pairs with tied values on both
variable x and variable y is Txy = 1, and Kendall’s test statistic is S = C − D =
18 − 14 = +4. Then Cureton’s rank-biserial correlation coefficient is

rrb = S

n0n1
= +4

(5)(7)
= +0.1143 .

As in Example 1, n0 and n1 are constants under permutation, therefore

P
(
rrb ≥ ro|H0

) = P
(
S ≥ So|H0

) = number of S values ≥ So

M
,

where ro and So denote the observed values of rrb and S, respectively. For the rank
scores listed in Table 5.41 there are only

M = N !
n0! n1! = 12!

5! 7! = 479,001,600

(120)(5,040)
= 792

possible, equally-likely arrangements in the reference set of all permutations of
the observed rank scores, making an exact permutation analysis feasible. If all
arrangements of the N = 12 observed rank scores listed in Table 5.41 occur with
equal chance, the exact upper-tail probability value of S = +4 computed on the
M = 792 possible arrangements of the observed data with n0 = 5 and n1 = 7 rank
scores preserved for each arrangement is

P
(
S ≥ So|H0

) = number of S values ≥ So

M
= 614

792
= 0.7753 .
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Table 5.42 Example (0, 1)
coded data for Cureton’s
rank-biserial correlation
coefficient with n0 = 6 and
n1 = 4

Variable

Object x y

1 0 1

2 1 2

3 0 3

4 0 4

5 0 5

6 0 6

7 1 7

8 0 8

9 1 9

10 1 10

5.13 Relationships Among Measures

It is sometimes of interest to examine the relationships among seemingly unrelated
statistical tests and measures. Since Cureton originally proposed rrb as a measure
of effect size for the Wilcoxon–Mann–Whitney two-sample rank-sum test, it is
expected that Cureton’s rrb and the Wilcoxon–Mann–Whitney test would be related.
In addition, since Cureton’s rank-biserial measure is based on Kendall’s S, it is to
be expected that Cureton’s rrb and Kendall’s τa would be related. Finally, in 2008
Roger Newson established the identity between Cureton’s rrb statistic and Somers’
dyx statistic [38].

For the rank-score data listed in Table 5.38 on p. 284, replicated in Table 5.42
for convenience, Cureton’s rank-biserial test statistic is rrb = +0.50. Wilcoxon’s
two-sample rank-sum test, W , is simply the smaller of the sums of the rank scores
of the two samples, i.e.,

W =
n0∑
i=1

= 1 + 3 + 4 + 5 + 6 + 8 = 27 .

When there are no tied rank values, the relationships between Wilcoxon’s W and
Cureton’s rrb are given by

W = n0(N + 1) − n0n1rrb

2
and rrb = n0(N + 1) − 2W

n0n1
, (5.22)

where n0 is the number of objects in the group with the smaller of the two sums;
in this case, W = 27. Thus, following the expressions in Eq. (5.22), the observed
value of Wilcoxon’s W is

W = 6(10 + 1) − (6)(4)(0.50)

2
= 27
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and the observed value of Cureton’s rrb test statistic is

rrb = 6(10 + 1) − 2(27)

(6)(4)
= +0.50 .

For the rank-score data listed in Table 5.42, Mann and Whitney’s two-sample
rank-sum test, U , is the sum of the number of values in one group, preceded by
the number of values in the other group. Thus, for the rank-score data listed in
Table 5.42, the value of 1 in Group 0 is less than values 2, 7, 9, and 10 in Group 1,
yielding U = 4. Then, the value of 3 in Group 0 is less than values 7, 9, and 10 in
Group 1, yielding U = 3+4 = 7. Next, the value of 4 in Group 0 is less than values
7, 9, and 10 in Group 1, yielding U = 3 + 3 + 4 = 10. Next, the value of 5 in Group
0 is less than values 7, 9, and 10 in Group 1, yielding U = 3 + 3 + 3 + 4 = 13.
Next, the value of 6 in Group 0 is less than values 7, 9, and 10 in Group 1, yielding
U = 3 + 3 + 3 + 3 + 4 = 16. Finally, the value of 8 in Group 0 is less than values
9 and 10 in Group 1, yielding U = 3 + 3 + 3 + 3 + 4 + 2 = 18. Alternatively,

U = n0n1 + n0(n0 + 1)

2
− W = (6)(4) + 6(6 + 1)

2
− 27 = 18 .

When there are no tied rank values, the relationships between Mann and
Whitney’s U and Cureton’s rrb are given by

U = n0n1(1 + rrb)

2
and rrb = 2U

n0n1
− 1 . (5.23)

Thus, following the expressions in Eq. (5.23), the observed value of Mann and
Whitney’s U is

U = (6)(4)(1 + 0.50)

2
= 18

and the observed value of Cureton’s rrb test statistic is

rrb = 2(18)

(6)(4)
− 1 = +0.50 .

For the rank scores listed in Table 5.42, Kendall’s τa test statistic is

τa = 2S

N(N − 1)
= 2(12)

10(10 − 1)
= 0.2667 .

The relationships between Kendall’s τa and Cureton’s rrb are given by

τa = 2n0n1rrb

N(N − 1)
and rrb = τaN(N − 1)

2n0n1
. (5.24)
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Thus, following the expressions in Eq. (5.24), the observed value of Kendall’s τa

test statistic is

τa = 2(6)(4)(0.50)

10(10 − 1)
= 0.2667

and the observed value of Cureton’s rrb test statistic is

rrb = (0.2667)(10)(10 − 1)

(2)(6)(4)
= +0.50 .

In a clever piece of mathematics, Roger Newson established the identity between
Cureton’s rank-biserial coefficient and Somers’ dyx measure of ordinal relation-
ship [38]. The identity is complicated to prove, but easy to demonstrate. For the
rank scores listed in Table 5.42, there are no tied rank scores in variable y, so the
number of values tied on y but not tied on x is Ty = 0; consequently, the number
of values tied on both x and y is also Txy = 0. There are six 0 values in variable x,
yielding n0(n0 − 1)/2 = 6(6 − 1)/2 = 15 tied values, and there are four 1 values
in variable x, yielding n1(n1 − 1)/2 = 4(4 − 1)/2 = 6 tied values. Thus, there are
Tx = 15 + 6 = 21 values tied on variable x, but not tied on variable y. Finally, for
the rank scores listed in Table 5.42, the number of concordant pairs is C = 18, the
number of discordant pairs is D = 6, and S = C − D = 18 − 6 = +12.

Somers’ asymmetric measure of ordinal relationship is

dyx = C − D

C + D + Ty

= S

C + D + Ty

= 18 − 6

18 + 6 + 0
= +12

24
= +0.50

and Cureton’s rank-biserial correlation coefficient is

rrb = S

Smax
= S

n0n1
= +12

(6)(4)
= +0.50 .

Because there are tied values on variable y, the relationships between Cureton’s
rrb, Wilcoxon’s W , and Mann and Whitney’s U given in Eqs. (5.23) and (5.24) do
not hold. However, Kendall’s τa test statistic is

τa = 2S

N(N − 1)
= 2(+4)

12(12 − 1)
= +0.0606

and the relationships between Cureton’s rrb and Kendall’s τa are

τa = 2n0n1rrb

N(N − 1)
= 2(5)(7)(0.1143)

12(12 − 1)
= 0.0606
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and

rrb = τaN(N − 1)

2n0n1
= (0.0606)(12)(12 − 1)

(2)(5)(7)
= 0.1143 .

Similarly, Somers’ dyx test statistic is

dyx = C − D

C + D + Ty

= S

C + D + Ty

= 18 − 14

18 + 14 + 3
= +4

35
= 0.1143

and, as expected, Somers’ dyx and Cureton’s rrb yield identical values.

5.14 Coda

Chapter 5 applied exact and Monte Carlo permutation statistical methods to mea-
sures of association for two ordinal-level variables based on pairwise differences
between rank scores. Included in Chap. 5 were Kendall’s τa and τb measures,
Stuart’s τc measure, Somers’ asymmetric dyx and dxy measures, Kim’s dy·x and dx·y
measures, Wilson’s e measure, and Cureton’s rank-biserial correlation coefficient.
For each test, examples illustrated the measures and either exact or resampling
probability values based on the appropriate permutation analysis were provided.

Chapter 6 continues the examination of measures of association for two ordinal-
level variables, but concentrates on permutation statistical methods for measures
of association that are not based on pairwise differences of rank scores. Included
in Chap. 6 are Spearman’s rank-order correlation coefficient, Spearman’s footrule
measure of agreement, Kendall’s coefficient of concordance, Kendall’s u measure of
inter-rater agreement, Cohen’s weighted kappa measure of agreement, and Bross’s
ridit analysis.
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Chapter 6
Ordinal-Level Variables, II

Chapter 5 applied exact and Monte Carlo permutation statistical methods to
measures of association designed for two ordinal-level (ranked) variables that are
based on pairwise comparisons between rank scores. This sixth chapter of The
Measurement of Association continues the examination of measures of association
designed for two ordinal-level variables initiated in Chap. 5, but concentrates on
measures of association that are based on criteria other than pairwise comparisons
between rank scores, although some overlap is unavoidable. Included in Chap. 6
are exact and Monte Carlo permutation statistical methods for Spearman’s rank-
order correlation coefficient, Spearman’s footrule measure of agreement, Kendall
and Babington Smith’s coefficient of concordance, Kendall’s and Babington Smith’s
u measure of inter-rater agreement, Cohen’s weighted kappa measure of chance-
corrected agreement, and Bross’s ridit analysis.

6.1 Spearman’s Rank-Order Correlation Coefficient

Consider two rankings of N objects consisting of the first N integers and let xi and
yi for i = 1, . . . , N denote the first and second rankings, respectively. Rank-order
correlation is not without its critics, as the squaring of ranks is quite controversial.
S.S. Stevens relates that Frederick Mosteller convinced him that:

[R]ank order correlation does not apply to ordinal scales because the derivation of the
formula for this correlation involves the assumption that the differences between successive
ranks are equal.1

1Quoted in Cowles [16, p. 206].
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A popular measure of correlation between the two rankings is Spearman’s rank-
order correlation coefficient given by

ρ = 1 −

N∑
i=1

d2
i

N(N2 − 1)

6

= 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
, (6.1)

where di = xi − yi for i = 1, . . . , N . Charles Spearman developed ρ in the first
of two articles on the measurement of association and correlation in 1904 and 1906
that appeared in American Journal of Psychology and British Journal of Psychology,
respectively [82, 83].2 Recognizing that with two sets of untied rank scores, xi and
yi for i = 1, . . . , N ,

N∑
i=1

xi =
N∑

i=1

yi = N(N + 1)

2

and

N∑
i=1

x2
i =

N∑
i=1

y2
i = N(N + 1)(2N + 1)

6
,

Spearman simply substituted into Pearson’s formula for the product-moment corre-
lation coefficient given by

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2
√√√√N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2

and simplified the equation, yielding Eq. (6.1).
Note that the denominator of Spearman’s rank-order correlation coefficient,

N(N2 − 1)/6, as given in Eq. (6.1), represents one-half of the maximum value of∑N
i=1 d2

i when xi and yi , i = 1, . . . , N , both consist of untied rank scores and the
yi rank scores are the exact inverse of the xi rank scores, i.e., yi = N − xi + 1 for
i = 1, . . . , N . Thus, Spearman’s ρ is a maximum-corrected measure of rank-order

2Spearman published a second article in American Journal of Psychology in 1904 on general
intelligence that was not related to the measurement of association [81].
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correlation and norms properly between ±1, where +1 indicates perfect positive
association and −1 indicates perfect negative association.

It is easily confirmed that the denominator of Eq. (6.1), N(N2 − 1)/6, is one-
half of the maximum value of

∑N
i=1 d2

i when xi and yi for i = 1, . . . , N are both
untied rank scores and the yi rank scores are the inverse of the xi rank scores. For
the maximum value of

∑N
i=1 d2

i , define

N∑
i=1

d2
i =

N∑
i=1

(xi − yi)
2 =

N∑
i=1

x2
i +

N∑
i=1

y2
i − 2

N∑
i=1

xiyi .

Since, for N untied rank scores,

N∑
i=1

x2
i =

N∑
i=1

y2
i = N(N + 1)(2N + 1)

6

and, for xi = 1, . . . , N and yi = N − xi + 1, i = 1, . . . , N ,

N∑
i=1

xiyi = N(N + 1)(N + 2)

6
,

then substituting into Eq. (6.1) yields

N∑
i=1

d2
i = 2N(N + 1)(2N + 1)

6
− 2N(N + 1)(N + 2)

6

= 2N(N + 1)(N − 1)

6
= N(N2 − 1)

3
,

which is twice the value of N(N2 − 1)/6.
Kendall, Kendall, and Babington Smith observed that to judge the significance

of a value of ρ, it is necessary to consider only the distribution of values obtained
from the observed rankings with all other possible permutations of the integers from
1 to N , and further noted that in practice it is generally more convenient to consider
only the distribution of

∑N
i=1 d2

i as N(N2 −1)/6 is invariant under permutation [45,
p. 25]. Kendall et al. provided tables of explicit values up to and including N = 8
with some experimental distributions for N = 10 and N = 20. The distributions for
N = 2, . . . , 8 were exact, but the distributions for N = 10 and N = 20 were based
on a sample of 2,000 randomly selected permutations of the rank scores, making this
an early example of Monte Carlo resampling permutation statistical methods [45,
pp. 261–267].
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6.1.1 Example 1

Consider the rank-correlation data listed in Table 6.1 with N = 8 objects and two
sets of rank scores, x and y. For the rank-correlation data listed in Table 6.1, the
columns headed x and y contain the observed raw scores, the columns headed rx and
ry contain the corresponding rank scores, the column headed d contains the signed
differences between rx and ry , and the column headed d 2 contains the squared rank
differences. Let ρo denote the observed value of Spearman’s rank-order correlation
coefficient, then following Eq. (6.1) on p. 298,

ρo = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(18)

8(82 − 1)
= +0.7857 .

Because there are only M = N ! = 8! = 40,320 possible, equally-likely
arrangements in the reference set of all permutations of the observed rx and ry rank
scores listed in Table 6.1, an exact permutation analysis is easily accomplished. If all
M = 40,320 arrangements of the observed rank scores listed in Table 6.1 occur with
equal chance, the exact upper-tail probability of the observed value of ρ = +0.7857
under the null hypothesis is

P(ρ ≥ ρo|H0) = number of ρ values ≥ ρo

M
= 563

40,320
= 0.0140 ,

where ρo denotes the observed value of ρ. The exact upper-tail probability value of
P = 0.0140 agrees with the value provided by Kendall, Kendall, and Babington
Smith [45, p. 255].

Table 6.1 Example
rank-order correlation data
for Spearman’s rank-order
correlation coefficient with
N = 8 objects and two sets of
scores, x and y

Pair x y rx ry d d 2

1 72 63 8 7 +1 1

2 46 49 6 6 0 0

3 13 35 2 4 −2 4

4 27 17 4 2 +2 4

5 53 81 7 8 −1 1

6 34 41 5 5 0 0

7 11 26 1 3 −2 4

8 22 15 3 1 +2 4

Total 18
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6.1.2 Example 2

For a second example of Spearman’s rank-order correlation coefficient, consider the
rank data listed in Table 6.2 with N = 13 objects and two sets of scores, x and y. For
the rank-correlation data listed in Table 6.2, the columns headed x and y contain the
observed raw scores, the columns headed rx and ry contain the corresponding rank
scores, the column headed d contains the signed differences between rx and ry , and
the column headed d 2 contains the squared rank differences. Following Eq. (6.1) on
p. 298, the observed value of Spearman’s rank-order correlation coefficient is

ρ = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(42)

13(132 − 1)
= +0.8846 .

Because there are M = N ! = 13! = 6,227,020,800 possible, equally-likely
arrangements of the observed data listed in Table 6.2, an exact permutation test
is not practical and a Monte Carlo resampling permutation procedure based on
L = 1,000,000 random arrangements of the rank scores is utilized. If the M

arrangements in the reference set of all permutations of the observed rank scores
listed in Table 6.2 occur with equal chance, the approximate resampling probability
of the observed value of ρ = +0.8846 under the null hypothesis is

P(ρ ≥ ρo|H0) = number of ρ values ≥ ρo

L
= 138

1,000,000
= 0.1380×10−3 ,

where ρo denotes the observed value of ρ.

Table 6.2 Example
rank-order correlation data
for Spearman’s rank-order
correlation coefficient with
N = 13 objects and two sets
of scores, x and y

Pair x y rx ry d d 2

1 21 26 3 1 +2 4

2 39 41 7 5 +2 4

3 57 81 11 10 +1 1

4 27 39 4 4 0 0

5 45 94 9 12 −3 9

6 73 72 13 9 +4 16

7 32 59 5 7 −2 4

8 41 64 8 8 0 0

9 69 99 12 13 −1 1

10 36 43 6 6 0 0

11 13 29 1 2 −1 1

12 53 88 10 11 −1 1

13 17 33 2 3 −1 1

Total 42



302 6 Ordinal-Level Variables, II

While M = N ! = 13! = 6,227,020,800 possible arrangements makes an exact
permutation analysis impractical, it is not impossible. If the reference set of all
possible permutations of the rank scores in Table 6.2 occur with equal chance, the
exact probability of ρ = +0.8846 under the null hypothesis is

P(ρ ≥ ρo|H0) = number of ρ values ≥ ρo

M
= 868,215

6,227,020,800
= 0.1394×10−3 .

6.2 Spearman’s Footrule Agreement Measure

The oft-cited 1904 and 1906 articles by Charles Spearman contained two new mea-
sures of rank-order correlation: the well-known Spearman rank-order correlation
coefficient, ρ, and a second, lesser-known, correlation coefficient that Spearman
named “the footrule” [82, 83].34 Consider two rankings of N objects consisting of
the first N integers and let xi and yi for i = 1, . . . , N denote the first and second
rankings, respectively. Then, Spearman’s footrule is given by

R = 1 −

N∑
i=1

∣∣xi − yi

∣∣
N2 − 1

3

= 1 −
3

N∑
i=1

∣∣xi − yi

∣∣
N2 − 1

. (6.2)

Unlike Spearman’s rank-order correlation coefficient, the denominator of Spear-
man’s footrule coefficient, (N2 − 1)/3, as given in Eq. (6.2), does not represent
one-half of the maximum value of

∑N
i=1 |xi − yi | when xi and yi for i = 1, . . . , N

are both untied rank scores and the yi rank scores are the exact inverse of the xi

rank scores, i.e., yi = N − xi + 1 for i = 1, . . . , N . Thus, Spearman’s R is not
a maximum-corrected measure of rank-order correlation and is, instead, a chance-
corrected measure of agreement.

It can easily be shown that Spearman’s R is a chance-corrected measure of
agreement and is not, in fact, a conventional measure of correlation, which explains
why R can, on occasion, yield negative values and can only attain a value of −1
when N = 2. To show that the expected value of

∑N
i=1 |di | is given by (N2 − 1)/3,

3The “footrule” coefficient, under another name, had been proposed a few years earlier by Alfred
Binet and his collaborators in France [85].
4Presented in these two articles were a number of other measures of ordinal association for
comparison that were not new, e.g., Yule’s Q and Y measures.
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let

N∑
i=1

|di| = 1

N

N∑
i=1

N∑
j=1

|i − j |

= 2

N

N−1∑
i=1

N∑
j=i+1

(j − i)

= 1

N

N−1∑
i=1

[
N(N + 1) + i2 − i(2N + 1)

]

= N(N + 1)

6N

[
6(N + 1) + (2N − 1) − 3(2N + 1)

]

= N2 − 1

3
.

Therefore, Spearman’s footrule coefficient given by

R = 1 −

N∑
i=1

|di |

N2 − 1

3

is a chance-corrected measure of agreement when the expected value of
∑N

i=1 |di |
is given by (N2 − 1)/3, as it takes the classic form of chance-corrected measures of
agreement given by

agreement = 1 − observed disagreement

expected disagreement

[48, p. 140].5

Three limitations of Spearman’s footrule contribute to its lack of use in con-
temporary research, where it is rarely encountered [85, p. 104]. First, unlike other
measures of rank correlation, R does not norm properly between the limits of
±1; second, like Spearman’s ρ, R is limited to fully ranked data and does not
accommodate tied rank scores; and third, because of the summation of absolute
differences between the rank scores, it has traditionally been somewhat cumbersome

5Spearman offered a somewhat different, more elegant, derivation of (N2 − 1)/3 in the Appendix
to his 1906 paper on the footrule [83, p. 105].
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to establish the probability value of an observed value of R, especially when N is
small.

Spearman’s R attains a maximum value of +1 when xi is identical to yi for
i = 1, . . . , N and no tied values are present. However, if yi = N − xi + 1 for
i = 1, . . . , N , then R = −0.5 when N is odd and

R = −0.5

(
1 + 3

N2 − 1

)

when N is even [42]. Consequently, R cannot attain a minimum value of −1,
except when N = 2. Spearman, apparently unaware that R was a chance-
corrected measure and recognizing that negative values of R did not represent
inverse correlation, naïvely suggested that “it is better to treat every correlation as
positive” [82, pp. 87–88]. Maurice Kendall explicitly pointed to this apparent lack
of proper norming as a defect in the footrule and suggested a correction given by

R′ = 1 −
4

N∑
i=1

∣∣xi − yi

∣∣
N2

that ensured a proper limit of +1 when the two rankings were in complete agreement
and −1 when the two rankings were inverse to each other [42, p. 33]. However,
the correction, while well intended, completely destroyed the chance-corrected
interpretation of Spearman’s footrule, an important and valuable attribute that was
neither understood nor appreciated at the time.

6.2.1 Probability of Spearman’s Footrule

When both variables x and y consist entirely of untied rank scores from 1 to N and
variable y is a permutation of the rank observations in variable x, then methods exist
to determine the probability of an observed R under the null hypothesis that any of
the N ! orderings of either the x or y values is equally likely. If

D =
N∑

i=1

∣∣xi − yi

∣∣

then, since R is simply a linear transformation of D, the probability of an observed
value of D is the probability of an observed value of R. Tables of the exact
cumulative distribution function of D for 2 ≤ N ≤ 10 and approximate probability
values based on Monte Carlo methods for 11 ≤ N ≤ 15 were published by Ury and
Kleinecke in 1979 [88]. In 1988 Franklin extended the work of Ury and Kleinecke,
reported the exact cumulative distribution function of D for 11 ≤ N ≤ 18, and
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discussed the rate of convergence to an approximating normal distribution [31].
In 1990 Salama and Quade used Markov-chain properties to obtain the exact
cumulative distribution function of D for 4 ≤ N ≤ 40 and further investigated
approximations to the discrete distribution of D [71]. If either variable x or variable
y contains tied values, then the calculation of an exact probability value is more
complex.

6.2.2 Example 1

Consider the paired-rank data listed in Table 6.3 where there are N = 8 paired
observations and there are no tied rank scores. If Ro denotes the observed value of
Spearman’s footrule, then following Eq. (6.2) on p. 302,

Ro = 1 −
3

N∑
i=1

|xi − yi |

N2 − 1
= 1 − 3(10)

82 − 1
= +0.5238 ,

indicating approximately 52% agreement above that expected by chance.
Since there are only M = N ! = 8! = 40,320 possible, equally-likely

arrangements in the reference set of all permutations of the observed x and y

rank scores listed in Table 6.3, an exact permutation analysis is feasible. If all
M = 40,320 arrangements of the observed rank scores listed in Table 6.3 occur
with equal chance, the exact probability of the observed value of R = +0.5238
under the null hypothesis is

P(R ≥ Ro|H0) = number of R values ≥ Ro

M
= 1,248

40,320
= 0.0310 ,

where Ro denotes the observed value of R. The probability value P = 0.0310
is in agreement with the exact tabled probability value provided by Ury and
Kleinecke [88, p. 272].

Table 6.3 Example data for
Spearman’s footrule
rank-correlation coefficient
with N = 8 objects and two
sets of rankings, x and y

Pair x y x − y |x − y|
1 8 7 +1 1

2 6 6 0 0

3 2 4 −2 2

4 4 2 +2 2

5 7 8 −1 1

6 5 5 0 0

7 1 3 −2 2

8 3 1 +2 2

Total 10
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6.2.3 Example 2

For a second example of Spearman’s footrule measure, consider the paired-rank
data listed in Table 6.4 where there are N = 12 paired observations and there are no
tied rank scores. Following Eq. (6.2) on p. 302, the observed value of Spearman’s
footrule is

Ro = 1 −
3

N∑
i=1

|xi − yi |

N2 − 1
= 1 − 3(26)

122 − 1
= +0.4545 ,

indicating approximately 45% agreement above that expected by chance.
Because there are M = N ! = 12! = 479,001,600 possible, equally-likely

arrangements in the reference set of all permutations of the observed x and y

rank scores listed in Table 6.4, an exact permutation analysis is not practical and
a Monte Carlo resampling probability procedure based on L = 1,000,000 random
arrangements of cell frequencies is utilized. If all M arrangements of the observed
rank scores listed in Table 6.4 occur with equal chance, the approximate resampling
upper-tail probability of the observed value of R = +0.4545 under the null
hypothesis is

P(R ≥ Ro|H0) = number of R values ≥ Ro

L
= 19,115

1,000,000
= 0.0191 ,

where Ro denotes the observed value of R.
While M = 479,001,600 possible arrangements makes an exact permutation

analysis impractical, it is not impossible. If the reference set of all M arrangements
of the observed rank scores listed in Table 6.4 occur with equal chance, the exact

Table 6.4 Example data for
Spearman’s footrule
rank-correlation coefficient
with N = 12 objects and two
rankings, x and y

Pair x y x − y |x − y|
1 7 5 +2 2

2 3 1 +2 2

3 4 2 +2 2

4 11 10 +1 1

5 9 12 −3 3

6 8 9 −1 1

7 5 8 −3 3

8 6 7 −1 1

9 12 6 +6 6

10 10 11 −1 1

11 1 3 −2 2

12 2 4 −2 2

Total 26
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probability of R = +0.4545 under the null hypothesis is

P(R ≥ Ro|H0) = number of R values ≥ Ro

M
= 9,226,950

479,001,600
= 0.0193 ,

where Ro denotes the observed value of R.

6.2.4 Example 3

For a third example of Spearman’s footrule measure, consider the paired-rank data
listed in Table 6.5 where N = 10 paired observations and there are several tied
scores. Following Eq. (6.2) on p. 302, the observed value of Spearman’s footrule is

R = 1 −
3

N∑
i=1

|xi − yi |

N2 − 1
= 1 − 3(19)

102 − 1
= +0.5758 ,

indicating approximately 58% agreement above that expected by chance.
Since there are only M = N ! = 10! = 3,628,800 possible, equally-likely

arrangements in the reference set of all permutations of the observed x and y

rank scores listed in Table 6.5, an exact permutation analysis is feasible. If all
M arrangements of the observed rank scores listed in Table 6.5 occur with equal
chance, the exact probability of R = +0.5758 under the null hypothesis is

P(R ≥ Ro|H0) = number of R values ≥ Ro

M
= 117,216

3,628,800
= 0.0323 ,

where Ro denotes the observed value of R.

Table 6.5 Example data for
Spearman’s footrule
rank-correlation coefficient
with N = 10 objects and two
rankings, x and y

Pair x y x − y |x − y|
1 4 1 −3 3

2 5.5 2 −3.5 3.5

3 1 4 +3 3

4 5.5 4 −1.5 1.5

5 2 4 +2 2

6 3 6 +3 3

7 7 7 0 0

8 8.5 8 −0.5 0.5

9 10 9 −1 1

10 8.5 10 +1.5 1.5

Total 19
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6.2.5 Multiple Rankings

Spearman’s footrule, as originally presented in his 1904 and 1906 articles in
American Journal of Psychology and British Journal of Psychology, respectively,
was limited to N ≥ 2 untied rank scores and b = 2 judges/raters [82, 83]. However,
as Berry and Mielke showed in 1998, Spearman’s footrule can be generalized to
include both tied or untied rank scores and b ≥ 2 sets of rankings [5]. Let

δ =
[
N

(
b

2

)]−1 N∑
i=1

∑
r<s

∣∣xri − xsi

∣∣ (6.3)

denote an average distance function based on all
(
b
2

)
possible paired absolute

differences among values of the rankings by b judges and let

μδ =
[
N2
(

b

2

)]−1 N∑
i=1

N∑
j=1

∑
r<s

∣∣xri − xsj

∣∣ (6.4)

denote the expected value of δ where b is the number of judges, N is the number of
objects, and

∑
r<s is the sum over all r and s such that 1 ≤ r < s ≤ N . Then, the

generalization of Spearman’s footrule measure is given by

� = 1 − δ

μδ

, (6.5)

where � is a chance-corrected measure of the agreement among the b judges that
is not limited to untied rank scores. Note that in the case of b = 2 judges, Eq. (6.5)
reduces to Spearman’s 1906 footrule for b = 2 judges as given in Eq. (6.2) on p. 302.

Illustration with b = 2 Independent Judges

The calculation of test statistics δ, μδ , and �, as given in Eqs. (6.3), (6.4), and
(6.5), respectively, can be described and compared with Spearman’s equation for
the footrule given in Eq. (6.2) on p. 302 using an example data set with b = 2
independent judges. To illustrate the calculation of Spearman’s footrule, consider
the small set of rank data listed in Table 6.6 with N = 5 objects and b = 2
independent judges. Table 6.7 illustrates the calculation of Spearman’s footrule for
the rank data given in Table 6.6. Given the calculations in Table 6.7, Spearman’s
footrule is

R =
3

N∑
i=1

|xi − yi |

N2 − 1
= 3(4)

52 − 1
= +0.50 .
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Table 6.6 Rank scores
assigned to N = 5 objects by
b = 2 independent judges

Judge

Object 1 2

1 5 4

2 2 1

3 1 2

4 3 3

5 4 5

Table 6.7 Calculations for
Spearman’s footrule
coefficient with N = 5
objects and b = 2
independent judges

Pair x y x − y |x − y|
1 5 4 −1 1

2 2 1 +1 1

3 1 2 −1 1

4 3 3 0 0

5 4 5 −1 1

Total 4

Table 6.8 Calculation of
|xri − xsi | for r < s and
i = 1, . . . , N for δ

i |xri − xsi |, r < s Sum

1 |5 − 4| 1

2 |2 − 1| 1

3 |1 − 2| 1

4 |3 − 3| 0

5 |4 − 5| 1

Table 6.8 illustrates the calculation of δ for the rank data given in Table 6.6.
Given the calculations in Table 6.8, the observed value of δ is

δo =
[
N

(
b

2

)]−1 N∑
i=1

∑
r<s

∣∣xri − xsi

∣∣

=
[

5

(
2

2

)]−1 (
1 + 1 + 1 + 0 + 1

) = 4

5
= 0.80 .

Table 6.9 illustrates the calculation of μδ for the rank data given in Table 6.6.
Given the calculations in Table 6.9, the exact expected value of the M δ values is

μδ =
[
N2
(

b

2

)]−1 N∑
i=1

N∑
j=1

∑
r<s

∣∣xri − xsj

∣∣

=
[

52
(

2

2

)]−1 (
1 + 0 + 2 + · · · + 2 + 0 + 1

) = 40

25
= 1.60 .
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Table 6.9 Calculation of |xri − xsi | for r < s, i = 1, . . . , N , and j = 1, . . . , N

Pair i j |xri − xsj |, r < s Sum Pair i j |xri − xsj |, r < s Sum

1 1 2 |1 − 2| 1 14 3 5 |3 − 5| 2

2 1 1 |1 − 1| 0 15 3 4 |3 − 4| 1

3 1 3 |1 − 3| 2 16 4 2 |4 − 2| 2

4 1 5 |1 − 5| 4 17 4 1 |4 − 1| 3

5 1 4 |1 − 4| 3 18 4 3 |4 − 3| 1

6 2 2 |2 − 2| 0 19 4 5 |4 − 5| 1

7 2 1 |2 − 1| 1 20 4 4 |4 − 4| 0

8 2 3 |2 − 3| 1 21 5 2 |5 − 2| 3

9 2 5 |2 − 5| 3 22 5 1 |5 − 1| 4

10 2 4 |2 − 4| 2 23 5 3 |5 − 3| 2

11 3 2 |3 − 2| 1 24 5 5 |5 − 5| 0

12 3 1 |3 − 1| 2 25 5 4 |5 − 4| 1

13 3 3 |2 − 5| 0

Table 6.10 Rank scores
assigned to N = 8 objects by
b = 3 independent judges

Judge

Object 1 2 3

1 1 1 1

2 2 2 3

3 3 3 2

Then, the chance-corrected measure of agreement between the b = 2 independent
judges is

� = 1 − δo

μδ

= 1 − 0.80

1.60
= +0.50 ,

indicating 50% agreement above that expected by chance. Thus, the equivalence
between

R = 1 −
3

N∑
i=1

|xi − yi |

N2 − 1
and � = 1 − δ

μδ

is established for b = 2 independent judges.

Illustration with b = 3 Independent Judges

To illustrate the calculation of Spearman’s footrule with b > 2 independent judges,
consider the small set of rank data listed in Table 6.10 with N = 3 objects and
b = 3 judges. The example is deliberately kept small to clarify the calculations.
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Table 6.11 Calculation of
|xri − xsi | for r < s and
i = 1, . . . , N for δ

i |xri − xsi |, r < s Sum

1 |1 − 1| + |1 − 1| + |1 − 1| 0

2 |2 − 2| + |2 − 3| + |2 − 3| 2

3 |3 − 3| + |3 − 2| + |3 − 2| 2

Table 6.12 Calculation of
|xri − xsi | for r < s,
i = 1, . . . , N , and
j = 1, . . . , N for μδ

Pair i j |xri − xsj |, r < s Sum

1 1 1 |1 − 1| + |1 − 1| + |1 − 1| 0

2 1 2 |1 − 2| + |1 − 3| + |1 − 3| 5

3 1 3 |1 − 3| + |1 − 2| + |1 − 2| 4

4 2 1 |2 − 1| + |2 − 1| + |2 − 1| 3

5 2 2 |2 − 2| + |2 − 3| + |2 − 3| 2

6 2 3 |2 − 3| + |2 − 2| + |2 − 2| 1

7 3 1 |3 − 1| + |3 − 1| + |3 − 1| 6

8 3 2 |3 − 2| + |3 − 3| + |3 − 3| 1

9 3 3 |3 − 3| + |3 − 2| + |3 − 2| 2

Table 6.11 illustrates the calculation of δ for the rank data given in Table 6.10.
Given the calculations in Table 6.11, the observed value of δ is

δo =
[
N

(
b

2

)]−1 N∑
i=1

∑
r<s

∣∣xri − xsi

∣∣ =
[

3

(
3

2

)]−1 (
0 + 2 + 2

)

= 4

9
= 0.4444 .

Table 6.12 illustrates the calculation of μδ for the rank data given in Table 6.10.
Given the calculations in Table 6.12, the exact expected value of the M δ values is

μδ =
[
N2
(

b

2

)]−1 N∑
i=1

N∑
j=1

∑
r<s

∣∣xri − xsj

∣∣

=
[

32
(

3

2

)]−1 (
0 + 5 + 4 + 3 + 2 + 1 + 6 + 1 + 2

) = 24

27
= 0.8889 .

Then, the observed chance-corrected measure of agreement among the b = 3
independent judges is

�o = 1 − δo

μδ

= 1 − 0.4444

0.8889
= +0.50 ,

indicating 50% agreement above that expected by chance.
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6.2.6 Example Analysis

Consider a generalized footrule analysis where rankings by b = 4 independent
judges contain untied rank scores for N = 8 objects. The data are listed in
Table 6.13. Following Eq. (6.3) on p. 308, the observed value of δ is

δo =
[
N

(
b

2

)]−1 N∑
i=1

∑
r<s

∣∣xri − xsi

∣∣ =
[

8

(
4

2

)]−1 (
68.00

) = 68

48
= 1.4167 ,

and following Eq. (6.4) on p. 308, the exact expected value of the M δ values is

μδ =
[
N2
(

b

2

)]−1 N∑
i=1

N∑
j=1

∑
r<s

∣∣xri − xsj

∣∣

=
[

82
(

4

2

)]−1 (
1,008

) = 1,008

384
= 2.6250 .

Then, following Eq. (6.5) on p. 308, the observed chance-corrected measure of effect
size is

�o = 1 − δo

μδ

= 1 − 1.4167

2.6250
= +0.4603 ,

indicating approximately 46% agreement above that expected by chance.
An exact permutation analysis is not possible for the data listed in Table 6.13

since there are

M = (
N !)b = (

8!)4 = 2,642,908,293,365,760,000

possible, equally-likely arrangements in the reference set of all permutations of the
observed rank scores. Therefore, a Monte Carlo resampling permutation analysis

Table 6.13 Rank scores
assigned to N = 8 objects by
b = 4 independent judges

Judge

Object 1 2 3 4

1 6 7 8 8

2 8 5 4 7

3 1 3 6 4

4 2 1 2 2

5 3 2 1 1

6 5 6 7 5

7 4 4 3 3

8 7 8 5 6
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is mandated. If all M possible, equally-likely arrangements of the observed rank
scores listed in Table 6.13 occur with equal chance, the approximate resampling
upper-tail probability value of � = +0.4603 computed on L = 1,000,000 random
arrangements of the observed rank scores is

P(� ≥ �o|H0) = number of � values ≥ �o

L
= 195

1,000,000

= 0.1950×10−3 ,

where �o denotes the observed value of �.

6.3 The Coefficient of Concordance

The measurement of the degree of association among multiple sets of rank scores is
useful in studies of inter-test reliability. Whereas Spearman’s rank-order correlation
coefficient and Kendall’s τa and τb measures express the degree of association
between two variables measured in, or transformed to, rank scores, the coefficient of
concordance expresses the degree of association among multiple sets of rank scores.

In 1939 Maurice Kendall and Bernard Babington Smith published an article in
The Annals of Mathematical Statistics on “The problem of m rankings” in which
they developed the well-known coefficient of concordance [43].6 Let N and m

denote the number of rank scores and the number of judges, respectively, then
Kendall and Babington Smith defined the coefficient of concordance as

W = 12S

m2(N3 − N)
, (6.6)

where S is the observed sum of squares of the deviations of sums of ranks from the
mean value m(N + 1)/2.7

Since m2(N3 − N) in the denominator of Eq. (6.6) is invariant over all permu-
tations of the observed data, Kendall and Babington Smith showed that in order to
test whether an observed value of W is statistically significant it is only necessary
to consider the distribution of S by permuting the N ranks in all possible, equally-
likely ways. Letting one of the rankings be fixed, there are (N !)m−1 possible values
of S. Based on this permutation procedure, Kendall and Babington Smith created
four tables that provided exact probability values for N = 3 and m = 2, . . . , 10,
N = 4 and m = 2, . . . , 6, and N = 5 and m = 3.

6The coefficient of concordance was independently developed by W. Allen Wallis in 1939, which
he termed the “correlation ratio for ranked data” [91].
7The squaring of rank scores and calculating the mean of ranks are, to say the least, controversial
mathematical operations.
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In a form more conducive to calculation, W can be defined as

W =
12

N∑
i=1

R2
i − 3m2N(N + 1)

m2N(N2 − 1)
,

where Ri for i = 1, . . . , N is the sum of the rank scores for the ith of N objects
and there are no tied rank scores. It is also well known that W can be defined as
a function of the average value of all pairwise Spearman rank-order correlation
coefficients given by

ρ̄ = 2

m(m − 1)

m−1∑
i=1

m∑
j=i+1

ρij .

In this regard, Kendall and Babington Smith showed that ρ̄ is simply the intraclass
coefficient, rI, for the m sets of rankings, and also observed that the coefficient of
concordance is equivalent to Friedman’s two-way analysis of variance for ranks, as
noted by I.R. Savage [72, p. 335]. The relationships between W and ρ̄ are given by

ρ̄ = mW − 1

m − 1
and W = ρ̄(m − 1) + 1

m
.

If all arrangements of the m sets of observed rank scores occur with equal chance,
the exact probability value of the observed value of W computed on M possible,
equally-likely arrangements of the observed rank scores under the null hypothesis
is

P(W ≥ Wo|H0) = number of W values ≥ Wo

M
,

where Wo denotes the observed value of W .

6.3.1 Example 1

To illustrate Kendall and Babington Smith’s coefficient of concordance, consider
the rank data listed in Table 6.14 with N = 6 objects and m = 3 sets of rankings.
For the rank scores listed in Table 6.14, the sum of the squared rank scores is

N∑
i=1

R2
i = 42 + 142 + 152 + 132 + 112 + 62 = 763 ,
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the observed value of Kendall and Babington Smith’s coefficient of concordance is

W =
12

N∑
i=1

R2
i − 3m2N(N + 1)

m2N(N2 − 1)

= 12(763) − 3(32)(6)(6 + 1)2

32(6)(62 − 1)
= 0.6444 ,

and the observed value of the pairwise average Spearman rank-order correlation
with

ρ12 = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(20)

6(62 − 1)
= +0.4286 ,

ρ13 = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(22)

6(62 − 1)
= +0.3714 ,

and

ρ23 = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(14)

6(62 − 1)
= +0.60

is

ρ̄ = 2

m(m − 1)

m−1∑
i=1

m∑
j=i+1

ρij = 2(0.4286 + 0.3714 + 0.60)

3(3 − 1)
= 0.4667 .

Finally, the observed relationships between ρ̄ and Kendall and Babington Smith’s
W are

ρ̄ = mW − 1

m − 1
= 3(0.6444) − 1

3 − 1
= 0.4667

and

W = ρ̄(m − 1) + 1

m
= (0.4667)(3 − 1) + 1

3
= 0.6444 .

For the m = 3 sets of rank scores listed in Table 6.14 there are only

M = (
N !)m−1 = (

6!)3−1 = 518,400
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Table 6.14 Example data for
Kendall and Babington
Smith’s coefficient of
concordance with m = 3
rankings and N = 6 objects

Ranking

Object 1 2 3 Ri

1 1 1 2 4

2 6 5 3 14

3 3 6 6 15

4 4 4 5 13

5 5 2 4 11

6 2 3 1 6

Table 6.15 Example data for
Kendall and Babington
Smith’s coefficient of
concordance with m = 3 sets
of rankings and N = 8
objects

Ranking

Object 1 2 3 Ri

1 4 2 5 11

2 6 6 3 15

3 2 1 1 4

4 1 3 2 6

5 3 5 8 16

6 5 4 4 13

7 7 8 7 22

8 8 7 6 21

possible, equally-likely arrangements in the reference set of all permutations
of the observed data, making an exact permutation analysis practical. If all M

arrangements of the observed rank scores listed in Table 6.14 occur with equal
chance, the exact probability of W = 0.6444 under the null hypothesis is

P(W ≥ Wo|H0) = number of W values ≥ Wo

M
= 29,030

518,400
= 0.0560 ,

where Wo denotes the observed value of W .

6.3.2 Example 2

For a second example of Kendall and Babington’s Smith’s coefficient of concor-
dance, consider the rank data listed in Table 6.15 with N = 8 objects and m = 3
sets of rankings.

For the rank scores listed in Table 6.15, the sum of the squared rank scores is

N∑
i=1

R2
i = 112 + 152 + 42 + 62 + 162 + 132 + 222 + 212 = 1,748 ,
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the observed value of Kendall and Babington Smith’s coefficient of concordance is

W =
12

N∑
i=1

R2
i − 3m2N(N + 1)

m2N(N2 − 1)

= 12(1,748) − (3)(32)(8)(8 + 1)2

32(8)(82 − 1)
= 0.7672 ,

and the observed value of the pairwise average Spearman rank-order correlation
with

ρ12 = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(16)

8(82 − 1)
= +0.8095 ,

ρ13 = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(42)

8(82 − 1)
= +0.50 ,

and

ρ23 = 1 −
6

N∑
i=1

d2
i

N(N2 − 1)
= 1 − 6(30)

8(82 − 1)
= +0.6429

is

ρ̄ = 2

m(m − 1)

m−1∑
i=1

m∑
j=i+1

ρij = 2(0.8095 + 0.50 + 0.6429)

3(3 − 1)
= 0.6508 .

Finally, the observed relationships between ρ̄ and Kendall and Babington Smith’s
W are

ρ̄ = mW − 1

m − 1
= 3(0.7672) − 1

3 − 1
= 0.6508

and

W = ρ̄(m − 1) + 1

m
= (0.6508)(3 − 1) + 1

3
= 0.7672 .

For the m = 3 sets of rank scores listed in Table 6.15 there are

M = (
N !)m = (

8!)3 = 65,548,320,768,000
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possible arrangements of the observed data—too many for an exact permutation
analysis. However, holding one set of rank scores constant relative to the other two
sets of rank scores reduces the number of possible arrangements to

M = (
N !)m−1 = (

8!)3−1 = 1,625,702,400 .

While even this number of possible arrangements makes an exact permutation
analysis impractical, it is not impossible given modern computing operating speeds.
If the reference set of all M arrangements of the observed rank scores listed in
Table 6.15 occur with equal chance, the exact probability of W = 0.7672 under the
null hypothesis is

P(W ≥ Wo|H0) = number of W values ≥ Wo

M

= 5,125,594

1,625,702,400
= 0.3153×10−2 ,

where Wo denotes the observed value of W .

6.3.3 A Related Procedure

It has long been recognized that the data structure for Kendall and Babington
Smith’s coefficient of concordance [43] is the same as the Friedman two-way
analysis of variance for ranks [32] and the same as the Wallis correlation ratio
for rank-score data [91]. While the Friedman test, for example, provides a global
probability value of overall differences among ranks, there is a related procedure
that provides an exact probability value for the sum of ranks of just a single object,
answering the question: when is single object total not due to chance under the null
hypothesis of random assignment?

Suppose that each of N judges independently assigns K distinct untied ranks
to K ≥ 2 objects [6]. If S denotes the sum of the N ranks for a specified object
under the null hypothesis that each of the N judges assigns the K ranks to the K

objects at random, i.e., each object occurs with probability 1/K , then the exact point
probability of S is given by

pS = K−NCS−N (6.7)

for S = N, N + 1, . . . , NK. Let m = S − N , then

Cm =
v∑

j=0

(−1)j
(

N

j

)(
m − jK + N − 1

N − 1

)
(6.8)
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and v = min(N,m/K), i.e., the largest nonnegative integer less than or equal to N

or m/K . The exact one-sided probability value for S is given by

P1 =
w∑

j=N

pj ,

where w = min(S, NK + N − S) and the exact two-sided probability value for S is
given by

P2 = min(2P1, 1) ,

since the distribution of S is symmetric about N(K+1)/2 under the null hypothesis.
The mean and variance of S are given by

μS = N(K + 1)

2
and σ 2

S = N(K2 − 1)

12
,

respectively, and the limiting distribution of

z = S − μS

σS

under the null hypothesis is N(0, 1) as N → ∞.

Example Analysis

A panel of N = 3 reviewers evaluates K = 15 submitted manuscripts for inclusion
in a special issue of a journal. Each reviewer independently ranks the 15 manuscripts
from 15 (highest) to 1 (lowest). The manuscript with the largest total receives S =
13 + 11 + 10 = 34. Table 6.16 lists the values of j from N to w, where

w = min(SN, NK + N − S) = min[34, (3)(15) + 3 − 34] = 14 .

The exact point probability values of S = 34 under the null hypothesis is
pS = 0.2311×10−1, indicated with an asterisk in Table 6.16. The exact one-sided
probability value of S = 34 under the null hypothesis is

P1 =
w∑

j=N

pj = 0.2963×10−3 + 0.8889×10−3

+ · · · + 0.2311×10−1 = 0.1079 ,
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Table 6.16 Listing of values
of j from N to w and pj

probability values for
j = N, . . . , NK + N − S

j pj

3 0.2963×10−3

4 0.8889×10−3

5 0.1778×10−2

6 0.2963×10−2

7 0.4444×10−2

8 0.6222×10−2

9 0.8296×10−2

10 0.1067×10−1

11 0.1333×10−1

12 0.1630×10−1

13 0.1956×10−1

14∗ 0.2311×10−1

Sum 0.1079

and the exact two-sided probability value of S = 34 under the null hypothesis is

P2 = min(2P1, 1) = min[2(0.1079), 1] = 0.2158 .

For comparison, the mean of S is

μS = N(K + 1)

2
= 3(15 + 1)

2
= 24 ,

the variance of S is

σ 2
S = N(K2 − 1)

12
= 3(152 − 1)

12
= 56 ,

the standard score of S is

z = S − μS

σS

= 34 − 24√
56

= +1.3363 ,

the approximate one-sided N(0, 1) probability value of S = 34 under the null
hypothesis is P = 0.0907, and the approximate two-sided N(0, 1) probability value
of S = 34 under the null hypothesis is P = 0.1815. If the value of S is corrected
for continuity, then

z = (S − 0.5) − μS

σS
= 33.5 − 24√

56
= +1.2695 ,

the approximate one-sided N(0, 1) probability value of S = 33.5 under the null
hypothesis is P = 0.1021, and the approximate two-sided N(0, 1) probability value
of S = 33.5 under the null hypothesis is P = 0.2043.
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History of the Problem

The solution to the problem given in Eqs. (6.7) and (6.8) is not new. On the other
hand, it is not well known. Historically, the problem has been associated with
gaming where it is desired to know the probability of the various sums of N fair
dice. The number of ways any given total can be obtained from a throw of N = 3
common dice appears to be first given in the late Medieval Latin poem De Vetula,
and is ascribed to Richard de Fournival (A.D. 1200–1250), Chancellor of Amiens
Cathedral [7, 18, 41]. Girolamo Cardano wrote Liber de Ludo Aleae about 1526,
although it was not published until 1663 [41, p. 7]. Cardano delineated the number
of cases favorable for each throw that can be made with N = 3 common dice.

Galileo Galilei also examined the problem of three dice, which was posed to him
when he was First Philosopher and Mathematician to Cosimo II, Duke of Tuscany.
Although Galileo died in 1642, Sopra le Scoperte dei Dadi was not published until
1718 [18, pp. 64–66] and is translated in David [18, pp. 192–195]. Galileo solved
the problem of why three dice yield sums of 10 and 11 more frequently than sums of
9 and 12 by exhaustively enumerating all 216 permutations and showing that there
are 27 permutations yielding sums of 10 and 11, but only 25 permutations yielding
sums of 9 and 12 [7, 17, 34, p. 52].

Thomas Strode (1693) first generalized the rules of enumeration to any number
of dice, but limited the rules to those die shapes corresponding to the five
Platonic solids, i.e., tetrahedron (4-sided), hexahedron (6-sided), octahedron (8-
sided), dodecahedron (12-sided), and icosahedron (20-sided), using tables of the
figurate numbers [84]. The problem of two-sided dice is less interesting as it follows
the symmetric binomial distribution, i.e., N tosses of a fair coin. The general
solution for the sum of any number of dice with any number of faces, corresponding
to Eqs. (6.7) and (6.8), was first given by Abraham de Moivre [87]. The result is
presented without demonstration by de Moivre in De Mensura Sortis, published in
1711 [19], which is translated in Hald [35], and presented with demonstration in
Miscellanea Analytica, published in 1730 [20]. The result also appears as a lemma
in The Doctrine of Chances, published in 1738 [21, pp. 35–39].

6.4 Kendall’s u Measure of Agreement

Oftentimes, rather than ask a group of judges to rank a set of objects, the judges
might be presented with a series of pairs of objects and asked to indicate a preference
for one of the two objects in each pairing. Such a procedure in which judges
are asked to indicate a preference for one of a pair of objects is called paired
comparisons. A classic example of paired comparisons is presenting all possible
pairs of N brands of dry dog food to k individual dogs and recording the choices.
When data are gathered by the method of paired comparisons, it is possible to
calculate the degree of agreement among the judges. In 1940 Kendall and Babington
Smith [44] proposed a coefficient of agreement to evaluate paired comparisons
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among k judges for N rankings, given by

u = 2S(
k

2

)(
N

2

) − 1 ,

where

S =
N∑

i=1

N∑
j=1

(
aij

2

)
=

N∑
i=1

N∑
j=1

a2
ij − k

N∑
i=1

N∑
j=1

aij +
(

k

2

)(
N

2

)
,

aij is the number of times that an object associated with row i of a preference matrix
is preferred to the object associated with row j , and aij ≥ 2 for i, j = 1, . . . , N .
The maximum number of agreements, occurring when

(
N
2

)
cells of the preference

matrix each contain k, is
(
N
2

)(
k
2

)
and thus, in the case of complete agreement and

only in this case, u = +1 [44, p. 334].
While the maximum value of u is +1 when there is complete agreement among

all k judges, the minimum number of agreements occurs when each cell of the
preference matrix contains k/2 if k is even or (k ± 1)/2 if k is odd. Thus, when
k is even the minimum value of u is −1/(k − 1) and when k is odd the minimum
value of u is −1/k. Since the expected value of u is zero [44, p. 339] and the
minimum values of u are −1/(k − 1) when k is even and −1/k when k is odd, u is
clearly a chance-corrected measure of agreement, although this was apparently not
recognized by Kendall and Babington Smith, when u was developed in 1940.

6.4.1 Example 1

To illustrate the method of paired comparisons, consider the rank-score data listed
in Table 6.17, where k = 3 judges have ranked N = 6 objects, labeled a to f . Now
transform the rank data in Table 6.17 into a preference matrix as given in Table 6.18.
The preference matrix is composed from the k = 3 rankings given in Table 6.17 by
looking at all possible pairs of objects. Consider first Objects a and b. Judge 1

Table 6.17 Rankings of
N = 6 objects by k = 3
independent judges, where 1
denotes the highest ranking

Judge

Object 1 2 3

a 1 1 1

b 6 5 6

c 3 6 5

d 2 4 2

e 5 2 4

f 4 3 3
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preferred Object a to b, assigning rank 1 to Object A and rank 6 to Object b; Judge
2 preferred Object a to Object b, assigning rank 1 to Object a and rank 5 to Object
b; and Judge 3 also preferred Object a to Object b, assigning rank 1 to Object a and
rank 6 to Object b. Thus, since Object a was preferred to Object b three times, cell
(a, b) of the preference matrix is 3, and since Object b was preferred to Object a

zero times, cell (b, a) of the preference matrix is 0.
Now consider Objects e and f . Judge 1 preferred Object f to Object e, assigning

rank 4 to Object f and rank 5 to Object e; Judge 2 preferred Object e to Object f ,
assigning rank 2 to Object e and rank 3 to Object f ; and Judge 3 preferred Object f

to Object e, assigning rank 3 to Object f and rank 4 to Object e. Thus, since Object
e was preferred to Object f one time, cell (e, f ) of the preference matrix is 1, and
since Object f was preferred to Object e two times, cell (f, e) of the preference
matrix is 2.

For the preference matrix given in Table 6.18,

S =
N∑

i=1

N∑
j=1

(
aij

2

)
= 9

(
3

2

)
+ 6

(
2

2

)
= 33

and

u = 2S(
k

2

)(
N

2

) − 1 = 2(33)(
3

2

)(
6

2

) − 1 = +0.4667 ,

indicating approximately 47% agreement above that expected by chance. There is
another, more convenient, way to calculate u given by

u =
8

⎛
⎝ N∑

i=1

N∑
j=1

a2
ij − k

N∑
i=1

N∑
j=1

aij

⎞
⎠

k(k − 1)N(N − 1)
+ 1 ,

where the summation may be taken over the aij values either below or above the
principal diagonal; in this case, the preference values below the principal diagonal
are summed. For the preference matrix given in Table 6.18, consider the lower

Table 6.18 Preference
matrix of N = 6 objects by
k = 3 independent judges

a b c d e f

a – 3 3 3 3 3

b 0 – 1 0 0 0

c 0 2 – 0 1 1

d 0 3 3 – 2 2

e 0 3 2 1 – 1

f 0 3 2 1 2 –
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triangle of aij values where

N∑
i=2

N−1∑
j=1

aij = 0 + 0 + 2 + 0 + 3 + 3 + 0 + 3 + 2 + 1

+ 0 + 3 + 2 + 1 + 2 = 22

and

N∑
i=2

N−1∑
j=1

a2
ij = 02 + 02 + 22 + 02 + 32 + 32 + 02 + 32 + 22 + 12

+ 02 + 32 + 22 + 12 + 22 = 54 .

Then, with the two lower-triangle summations,

u =
8

⎛
⎝ N∑

i=2

N−1∑
j=1

a2
ij − k

N∑
i=2

N−1∑
j=1

aij

⎞
⎠

k(k − 1)N(N − 1)
+ 1

= 8
[
54 − (3)(22)

]
3(3 − 1)(6)(6 − 1)

+ 1 = +0.4667 .

If the upper triangle of aij values of the preference matrix is chosen instead of
the lower-triangle values,

N−1∑
i=1

N∑
j=2

aij = 3 + 3 + 3 + 3 + 3 + 1 + 0 + 0 + 0 + 0

+ 1 + 1 + 2 + 2 + 1 = 23 ,

N−1∑
i=1

N∑
j=2

a2
ij = 32 + 32 + 32 + 32 + 32 + 12 + 02 + 02 + 02 + 02

+ 12 + 12 + 22 + 22 + 12 = 57 ,



6.4 Kendall’s u Measure of Agreement 325

and

u =
8

⎛
⎝N−1∑

i=1

N∑
j=2

a2
ij − k

N−1∑
i=1

N∑
j=2

aij

⎞
⎠

k(k − 1)N(N − 1)
+ 1

= 8
[
57 − (3)(23)

]
3(3 − 1)(6)(6 − 1)

+ 1 = +0.4667 .

In the same manner that Kendall and Babington Smith’s coefficient of concor-
dance, W , is a function of the average Spearman rank-order correlation coefficient,
ρ, Kendall and Babington Smith’s coefficient of agreement may be thought of as a
generalization of Kendall’s τa statistic, published two years prior in 1938, as u is
the average value of the k(k − 1)/2 τa statistics calculated on all possible paired
rankings of the k judges. Given the rank-score data for Judges 1 and 2, the number
of objects is N = 6, the number of concordant pairs is C = 9, the number of
discordant pairs is D = 6, and S = C − D = 9 − 6 = +3. Then, Kendall’s τa for
Judges 1 and 2 is

τ12 = 2S

N(N − 1)
= 2(+3)

6(6 − 1)
= +0.20 .

Given the rank-score data for Judges 1 and 3, the number of objects is N = 6, the
number of concordant pairs is C = 13, the number of discordant pairs is D = 2,
and S = C − D = 13 − 2 = +11. Then, Kendall’s τa for Judges 1 and 3 is

τ13 = 2S

N(N − 1)
= 2(+11)

6(6 − 1)
= +0.7333 .

Finally, given the rank-score data for Judges 2 and 3, the number of objects is N = 6,
the number of concordant pairs is C = 11, the number of discordant pairs is D = 4,
and S = C − D = 11 − 4 = +7. Then, Kendall’s τa for Judges 2 and 3 is

τ23 = 2S

N(N − 1)
= 2(+7)

6(6 − 1)
= +0.4667 .

The arithmetic average of the three τa values is equal to u; thus,

u = 2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

τij = 2(0.20 + 0.7333 + 0.4667)

3(3 − 1)
= +0.4667 .

Because the lower limits of u are −1/(k − 1) when k is even and −1/k when k

is odd, Siegel and Castellan [80, p. 275] proposed an index of agreement similar to
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Table 6.19 Upper-tail
probability values for the
Kendall and Babington Smith
coefficient of agreement, u,
with k = 3 judges

N S u Probability

2 1 −0.3333 1.0000

3 +1.0000 0.2500

3 3 −0.3333 1.0000

5 +0.1111 0.5781

7 +0.5556 0.1563

9 +1.0000 0.0156

the Kendall coefficient of concordance, where

W = u(k − 1) + 1

k
if k is even

and

W = ku + 1

k + 1
if k is odd .

Thus, 0 ≤ W ≤ 1 and is interpretable as a percentage of agreement among the k

judges. For the example data in Table 6.18 where k is odd,

W = ku + 1

k + 1
= (3)(0.4667) + 1

3 + 1
= 0.60 ,

indicating 60% agreement among the three judges. It should be noted, however,
that the transformation of u to W as suggested by Siegel and Castellan destroys
the chance-corrected interpretation of Kendall and Babington Smith’s u measure of
agreement.8

Exact Probability Values

Kendall and Babington Smith provided tables of exact probability values in terms
of S for k = 3 and N = 2, . . . , 8; k = 4 and N = 2, . . . , 6; k = 5 and
N = 2, . . . , 5; and k = 6 and N = 2, . . . , 4 [44, pp. 336–337]. Given the range
of values for k and N , the tabled values are suitable for most applications of u.
Table 6.19 illustrates the upper-tail probability values of Kendall and Babington
Smith’s u statistic for k = 3 and N = 2, . . . , 3. Since k and N are invariant
under permutation, the permutation distribution of S is sufficient to establish an
exact upper-tail probability value.

8The introduction of W was apparently the work of N. John Castellan as it appears for the first time
in the second edition of Siegel and Castellan Nonparametric Statistics for the Behavioral Sciences
which was published in 1988 and Sidney Siegel had passed away much earlier in 1961, just five
years after Nonparametric Statistics for the Behavioral Sciences was published. Coincidentally,
N. John Castellan passed away in 1993, five years after the second edition was published.
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Table 6.20 Rankings by
k = 3 independent judges for
N = 2 objects and associated
preference matrices

Judge Preference

Table 1 Object 1 2 3 a b

a 1 1 1 a – 3

b 2 2 2 b 0 –

Judge Preference

Table 2 Object 1 2 3 a b

a 1 1 2 a – 2

b 2 2 1 b 1 –

Judge Preference

Table 3 Object 1 2 3 a b

a 1 2 1 a – 2

b 2 1 2 b 1 –

Judge Preference

Table 4 Object 1 2 3 a b

a 2 1 1 a – 2

b 1 2 2 b 1 –

Judge Preference

Table 5 Object 1 2 3 a b

a 1 2 2 a – 2

b 2 1 1 b 1 –

Judge Preference

Table 6 Object 1 2 3 a b

a 2 1 2 a – 2

b 1 2 1 b 1 –

Judge Preference

Table 7 Object 1 2 3 a b

a 2 2 1 a – 2

b 1 1 2 b 1 –

Judge Preference

Table 8 Object 1 2 3 a b

a 2 2 2 a – 3

b 1 2 1 b 0 –

To illustrate how the probability values in Table 6.19 were calculated, consider
k = 3 and N = 2 in Table 6.19. There are only

M = 2k(N
2) = 23(2

2) = 8

possible arrangements of the k = 3 rankings with N = 2 objects, making an exact
permutation analysis easily accomplished. The M = 8 arrangements and associated
preference matrices are listed in Table 6.20.
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For Table 1 in Table 6.20,

S =
N∑

i=1

N∑
j=1

a2
ij − k

N∑
i=1

N∑
j=1

aij +
(

k

2

)(
N

2

)

= 32 + 02 − (3)(3 + 0) +
(

3

2

)(
2

2

)
= +3 ,

for Tables 2 through 7, S = +1, and for Table 8, S = +3. Thus, for S = +3
there are two occurrences (Tables 1 and 8) out of a possible M = 8 tables and
the probability for S = +3 is 2/8 = 0.25. For S = +1 there are six occurrences
(Tables 8 through 7) and the cumulative upper-tail probability is (2 + 6)/8 = 1.00.
Table 6.21 illustrates the calculation with a frequency distribution where the column
headed f denotes the frequency of occurrence for values of S and the column
headed F denotes the cumulative frequency distribution.

Now consider the upper-tail probability values for k = 3 and N = 3. There are

M = 2k(N
2) = 23(3

2) = 512

possible arrangements of the k = 3 rankings with N = 3 objects. The frequency
distribution of the M = 512 arrangements is given in Table 6.22, illustrating how
the probability values were calculated by Kendall and Babington Smith.

For the example data in Table 6.17 on p. 322 with k = 3 judges and N = 6
objects, there are

M = 2k(N
2) = 23(6

2) = 0.3518×1014

possible arrangements of the preference matrix. For k = 3, N = 6, S = +33, and
u = +0.4667, the upper-tail probability value as given in Table 6.19 is P = 0.0042.

Table 6.21 Upper-tail probability values for S with k = 3 and N = 2 where f denotes the
frequency of occurrence and F denotes the cumulative frequency

u S f F Probability

−0.3333 1 6 8 1.0000

+1.0000 3 2 2 0.2500

Table 6.22 Upper-tail probability values for S with k = 3 and N = 3 where f denotes the
frequency of occurrence and F denotes the cumulative frequency of occurrence

u S f F Probability

−0.3333 3 216 512 1.0000

+0.1111 5 216 296 0.5781

+0.5556 7 72 80 0.1563

+1.0000 9 8 8 0.0156
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6.4.2 Example 2

For a second example of Kendall’s u measure of agreement, consider a situation
where k = 4 members of a selection committee are asked to rank the final N = 3
applicants for a new position. The data are given in Table 6.23. The question is: to
what degree do the k = 4 judges agree on the ranking of the N = 3 candidates?
Table 6.24 shows the rank data given in Table 6.23 rearranged into a preference
matrix.

For the preference matrix given in Table 6.24,

S =
N∑

i=1

N∑
j=1

(
aij

2

)
= 2

(
3

2

)
+ 2

(
2

2

)
= +8

and

u = 2S(
k

2

)(
N

2

) − 1 = 2(+8)(
4

2

)(
3

2

) − 1 = −0.1111 ,

indicating less than chance agreement among the k = 4 judges.
Alternatively, using the upper triangle of aij values in the preference matrix in

Table 6.24,

N−1∑
i=1

N∑
j=2

aij = 1 + 1 + 2 = 4 ,

N−1∑
i=1

N∑
j=2

a2
ij = 12 + 12 + 22 = 6

Table 6.23 Rank scores for
N = 3 candidates by k = 4
judges

Judge

Candidate 1 2 3 4

a 1 2 2 1

b 2 1 3 3

c 3 3 1 2

Table 6.24 Preference
matrix of N = 3 candidates
by k = 4 judges

a b c

a – 1 1

b 3 – 2

c 3 2 –
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and

u =
8

⎛
⎝N−1∑

i=1

N∑
j=2

a2
ij − k

N−1∑
i=1

N∑
j=2

aij

⎞
⎠

k(k − 1)N(N − 1)
+ 1

= 8
[
6 − (4)(4)

]
4(4 − 1)(3)(3 − 1)

+ 1 = −0.1111 .

Since k = 4 is even, u can be normed between 0 and 1 as

W = u(k − 1) + 1

k
= (−0.1111)(4 − 1) + 1

4
= 0.1667 ,

indicating approximately 17% agreement among the k = 4 judges.
As previously, vide supra, Kendall’s u measure of agreement may also be thought

of as a generalization of Kendall’s τa measure of ordinal association, as u is the
average of the k(k − 1)/2 τa statistics calculated on the paired rankings of the k =
4 judges. Given the rank-score data for Judges 1 and 2, the number of objects is
N = 3, the number of concordant pairs is C = 2, the number of discordant pairs is
D = 1, S = C − D = 2 − 1 = +1, and Kendall’s τa for Judges 1 and 2 is

τ12 = 2S

N(N − 1)
= 2(+1)

3(3 − 1)
= +0.3333 .

For Judges 1 and 3, the number of objects is N = 3, the number of concordant pairs
is C = 1, the number of discordant pairs is D = 2, S = C − D = 1 − 2 = −1, and
Kendall’s τa for Judges 1 and 3 is

τ13 = 2S

N(N − 1)
= 2(−1)

3(3 − 1)
= −0.3333 .

For Judges 1 and 4, the number of objects is N = 3, the number of concordant pairs
is C = 2, the number of discordant pairs is D = 1, S = C − D = 2 − 1 = +1, and
Kendall’s τa for Judges 1 and 4 is

τ14 = 2S

N(N − 1)
= 2(+1)

3(3 − 1)
= +0.3333 .

For Judges 2 and 3, the number of objects is N = 3, the number of concordant pairs
is C = 0, the number of discordant pairs is D = 3, S = C − D = 0 − 3 = −3, and
Kendall’s τa for Judges 2 and 3 is

τ23 = 2S

N(N − 1)
= 2(−3)

3(3 − 1)
= −1.00 .
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For Judges 2 and 4, the number of objects is N = 3, the number of concordant pairs
is C = 1, the number of discordant pairs is D = 2, S = C − D = 1 − 2 = −1, and
Kendall’s τa for Judges 2 and 4 is

τ24 = 2S

N(N − 1)
= 2(−1)

3(3 − 1)
= −0.3333 .

And for Judges 3 and 4, the number of objects is N = 3, the number of concordant
pairs is C = 2, the number of discordant pairs is D = 1, S = C −D = 2−1 = +1,
and Kendall’s τa for Judges 3 and 4 is

τ34 = 2S

N(N − 1)
= 2(+1)

3(3 − 1)
= +0.3333 .

The arithmetic average of the six τa values is equal to u; thus,

u = 2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

τij

= 2(0.3333 − 0.3333 + 0.3333 − 1.00 − 0.3333 + 0.3333)

4(4 − 1)
= −0.1111 .

Exact Probability Values

Kendall and Babington Smith provided tables of exact probability values for a
variety of combinations of k and N . The permutation distribution for k = 4 and
N = 3 given in Table 6.25 illustrates the exact probability values provided by
Kendall and Babington Smith.

Table 6.25 Upper-tail
probability values for S with
k = 4 and N = 3 where f

denotes the frequency of
occurrence and F denotes the
cumulative frequency

u S f F Probability

−0.3333 6 217 4,096 1.0000

−0.2222 7 864 3,879 0.9470

−0.1111 8 1,151 3,015 0.7361

+0.0000 9 512 1,864 0.4551

+0.1111 10 216 1,352 0.3301

+0.2222 11 576 1,136 0.2773

+0.3333 12 384 560 0.1367

+0.5556 14 72 176 0.0430

+0.6667 15 96 104 0.0254

+1.0000 18 8 8 0.0020
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For the example data given in Table 6.25 with k = 4 judges and N = 3
candidates, there are only

M = 2k(N
2) = 24(3

2) = 212 = 4,096

possible arrangements of the preference matrix, making an exact permutation
analysis practical. For u = −0.1111 and S = 8, the exact upper-tail probability
value under the null hypothesis as given in Table 6.25 is

P(S ≥ So|H0) = number of S values ≥ So

M
= 3,015

4,096
= 0.7361 ,

where So denotes the observed value of S.

6.5 Cohen’s Weighted Kappa

In 1960 Jacob Cohen developed statistic kappa, a chance-corrected measure of inter-
rater agreement between two judges for a set of c disjoint, unordered categories [13].
In 1968 Cohen extended kappa to measure the agreement between two judges
for a set of c disjoint, ordered categories [14]. The original kappa for c disjoint,
unordered categories became known as “unweighted” kappa, or κ , and kappa for
c disjoint, ordered categories became known as “weighted” kappa, or κw. Whereas
unweighted kappa did not distinguish among magnitudes of disagreement, weighted
kappa incorporated the magnitude of each disagreement and provided partial credit
for disagreements when agreement was not complete [52]. The usual approach is
to assign weights to each disagreement pair with larger weights indicating greater
disagreement.9 Unweighted kappa for c disjoint, unordered categories is discussed
in Chap. 4; weighted kappa for c disjoint, ordered categories is discussed in this
chapter.

The measurement of agreement is a special case of measuring association
between two ordinal-level variables. A number of statistical research problems
require the measurement of agreement, rather than association or correlation.
Agreement indices measure the extent to which a set of response measurements
are identical to another set, i.e., agree, rather than the extent to which one set of
response measurements is a linear function of another set of response measurements,
i.e., correlated. Like Spearman’s footrule, Cohen’s weighted kappa measure of inter-
rater agreement is a chance-corrected measure, reflecting the amount of agreement
in excess of what would be expected by chance. Thus, weighted kappa is equal to
one when perfect agreement occurs, is equal to zero under independence, and can
be slightly negative when agreement is less than expected by chance [30, p. 434].

9Some authors prefer to define weighted kappa in terms of agreement weights, instead of
disagreement weights [11, 89].
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Table 6.26 Notation for the
cross-classification of N

objects by b = 2 judges into c

disjoint, ordered categories
denoted by a1, . . . , ac

Judge 2

Judge 1 a1 a2 · · · ac Total

a1 n11 n12 · · · n1c n1.

a2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

ac nc1 nc2 · · · ncc nc.

Total n.1 n.2 · · · n.c N

For simplicity, consider N ≥ 2 objects cross-classified by b = 2 independent
judges into a c×c contingency table with c disjoint, ordered categories denoted
by a1, . . . , ac, such as in Table 6.26. Denote by a dot (·) the partial sum of all
rows or all columns, depending on the position of the (·) in the subscript list. If
the (·) is in the first subscript position, the sum is over all rows, and if the (·) is
in the second subscript position, the sum is over all columns. Thus, ni. denotes the
marginal frequency total of the ith row, i = 1, . . . , c, summed over all columns, and
n.j denotes the marginal frequency total of the j th column, j = 1, . . . , c, summed
over all rows. Then, nij , wij , ni., and n.j denote the cell frequencies, cell weights,
row marginal frequency totals, and column marginal frequency totals, respectively,
where

ni. =
c∑

j=1

nij , n.j =
c∑

i=1

nij , and N =
c∑

i=1

c∑
j=1

nij .

When the c categories for the b = 2 judges are similarly arranged, then nii , i =
1, . . . , c, and nij , i �= j , denote the agreement and disagreement cell frequencies,
respectively.

Although a variety of weighting schemes have been proposed for Cohen’s
weighted kappa, the most popular is quadratic weighting given by wij = (i − j)2

for i, j = 1, . . . , c, where category disagreement weights progress geometrically
outward from the agreement diagonal, i.e., 02, 12, 22, 32, and so on. However, linear
weighting in which wij = |i − j | for i, j = 1, . . . , c, where category disagreement
weights progress linearly outward from the agreement diagonal, i.e., 0, 1, 2, 3, and
so on, is perhaps more intuitive.

A simple calculation formula for Cohen’s weighted kappa test statistic with b =
2 judges is given by

κw = 1 −

1

N

c∑
i=1

c∑
j=1

wij nij

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j

. (6.9)
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Given a c×c agreement table with N objects classified by the ratings of two
independent judges into c disjoint, ordered categories, an exact permutation test
generates a reference set of all M possible, equally-likely arrangements of the N

objects in the c2 cells, while preserving the total number of objects in each category,
i.e., the marginal frequency distributions. For each arrangement of cell frequencies
with fixed marginal frequency distributions, the weighted kappa statistic, κw, and
the exact probability value, p(nij |ni., n.j , N), are calculated, where

p(nij |ni., n.j , N) =

(
c∏

i=1

ni.!
)⎛
⎝ c∏

j=1

n.j !
⎞
⎠

N !
c∏

i=1

c∏
j=1

nij !

is the conventional hypergeometric probability value of a c×c contingency (agree-
ment) table.

Let κo denote the value of the observed weighted kappa statistic and M denote
the total number of distinct cell frequency arrangements of the N objects in the c×c

classification table, given fixed marginal frequency totals. Then the exact probability
value of κo under the null hypothesis is given by

P(κo|H0) =
M∑

k=1

�(κk) p(nij |ni., n.j , N) ,

where

�(κk) =
⎧⎨
⎩

1 if κk ≥ κo ,

0 otherwise .

When the reference set of all M possible arrangements is very large, exact
permutation analyses are impractical and Monte Carlo resampling approximations
become necessary. Let L denote a random sample of all M possible values of κw.
Then, under the null hypothesis, the resampling approximate probability value for
the observed value of κw, κo, is given by

P (κo) = 1

L

L∑
l=1

�l (κw)

where

�l (κw) =
⎧⎨
⎩

1 if κw ≥ κo ,

0 otherwise .



6.5 Cohen’s Weighted Kappa 335

6.5.1 Example 1

Consider a small example data set of N = 5 objects classified into c = 3 disjoint,
ordered categories by b = 2 independent judges. Table 6.27 contains the c2 = 9
cell frequencies. The corresponding linear and quadratic disagreement cell weights
are given in parentheses and brackets, respectively. The number of objects and the
number of categories are deliberately kept small to simplify the example analysis.

Linear Weighting

Utilizing linear disagreement weights, given in parentheses in Table 6.27, and
following the numerator of Eq. (6.9) on p. 333 with N = 5 objects, c = 3 disjoint,
ordered categories, and b = 2 judges,

1

N

c∑
i=1

c∑
j=1

wij nij = 1

5

[
(0)(0) + (1)(1) + (2)(0) + (1)(0) + (0)(2)

+ (1)(0) + (2)(1) + (1)(0) + (0)(1)
] = 0.60 ,

and for the denominator of Eq. (6.9),

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j = 1

52

[
(0)(1)(1) + (1)(1)(3) + (2)(1)(1)

+ (1)(2)(1) + (0)(2)(3) + (1)(2)(1) + (2)(2)(1)

+ (1)(2)(3) + (0)(2)(1)
] = 0.76 .

Table 6.27 Example data for a weighted kappa analysis with N = 5 observations, c = 3 disjoint,
ordered categories, and b = 2 judges

Judge 2

Judge 1 Category A Category B Category C Total

Category A 0 (0) [ 0 ] 1 (1) [ 1 ] 0 (2) [ 4 ] 1

Category B 0 (1) [ 1 ] 2 (0) [ 0 ] 0 (1) [ 1 ] 2

Category C 1 (2) [ 4 ] 0 (1) [ 1 ] 1 (0) [ 0 ] 2

Total 1 3 1 5

Note—Linear cell weights are in parentheses and quadratic cell weights are in brackets
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Then the observed value of Cohen’s weighted kappa with linear weighting is

κw = 1 −

1

N

c∑
i=1

c∑
j=1

wij nij

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j

= 1 − 0.60

0.76
= +0.2105 ,

indicating approximately 21% agreement above that expected by chance.
There are only M = 8 possible, equally-likely arrangements of cell frequencies

given the observed row and column marginal frequency distributions, {1, 2, 2} and
{1, 3, 1}, respectively, in Table 6.27. The eight arrangements of cell frequencies
are listed in Table 6.28, where Table 1 of Table 6.28 contains the observed cell
frequencies.

Table 6.29 lists the computed kappa values and associated hypergeometric point
probability values for the M = 8 classification tables in Table 6.28, ordered
from high to low by the κw values. As is evident from the κw test statistics and
associated probability values listed in Table 6.29, the observed value of κw =
+0.2105 is not unusual as four κw values are less than κw = +0.2105 (−0.3158,
−0.3158, −0.3158, and −0.3158) and four values are equal to or greater than
κw = +0.2105 (+0.2105, +0.2105, +0.2105, and +0.7368). Thus, the exact
probability value of the observed cell configuration under the null hypothesis is
the sum of the hypergeometric point probability values associated with the values
of κw = +0.2105 or greater. Based on the hypergeometric probability distribution,

Table 6.28 Eight possible
arrangements of the cell
frequencies in Table 6.27,
given fixed marginal
frequency distributions

Table 1 Table 2 Table 3 Table 4

0 1 0 1 0 0 1 0 0 0 1 0

0 2 0 0 1 1 0 2 0 1 0 1

1 0 1 0 2 0 0 1 1 0 2 0

Table 5 Table 6 Table 7 Table 8

0 1 0 0 0 1 0 0 1 0 1 0

1 1 0 0 2 0 1 1 0 0 1 1

0 1 1 1 1 0 0 2 0 1 1 0

Table 6.29 Weighted kappa
and hypergeometric
probability values for the
eight 3×3 classification
tables given in Table 6.28
with linear weighting

Table κw Probability

3 +0.7368 0.1000

1 +0.2105 0.1000

2 +0.2105 0.1000

5 +0.2105 0.2000

4 −0.3158 0.1000

6 −0.3158 0.1000

7 −0.3158 0.1000

8 −0.3158 0.2000
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Table 6.30 Example data for
a weighted kappa analysis
with N = 5 observations,
c = 3 ordered categories,
b = 2 judges and quadratic
weights in brackets

Judge 2

Judge 1 A B C Total

A 0 [ 0 ] 1 [ 1 ] 0 [ 4 ] 1

B 0 [ 1 ] 2 [ 0 ] 0 [ 1 ] 2

C 1 [ 4 ] 0 [ 1 ] 1 [ 0 ] 2

Total 1 3 1 5

the exact upper-tail probability value is P = 0.1000 + 0.1000 + 0.1000 + 0.2000 =
0.5000.

Quadratic Weighting

Consider again the frequency data listed in Table 6.27 on p. 335, replicated for
convenience in Table 6.30, absent the linear weights, with N = 5 objects classified
into c = 3 disjoint, ordered categories by b = 2 independent judges.

Utilizing quadratic cell disagreement weights, given in brackets in Table 6.30,
and following the numerator of Eq. (6.9) on p. 333 with N = 5 objects, c = 3
disjoint, ordered categories, and b = 2 judges,

1

N

c∑
i=1

c∑
j=1

wij nij = 1

5

[
(0)(0) + (1)(1) + (4)(0) + (1)(0) + (0)(2)

+ (1)(0) + (4)(1) + (1)(0) + (0)(1)
] = 1.00 ,

and for the denominator of Eq. (6.9),

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j = 1

52

[
(0)(1)(1) + (1)(1)(3) + (4)(1)(1)

+ (1)(2)(1) + (0)(2)(3) + (1)(2)(1) + (4)(2)(1)

+ (1)(2)(3) + (0)(2)(1)
] = 1.00 .

Then, the observed value of Cohen’s weighted kappa with quadratic weighting is

κw = 1 −

1

N

c∑
i=1

c∑
j=1

wij nij

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j

= 1 − 1.00

1.00
= 0.00 ,

indicating only chance agreement between the two judges.
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As noted in the linear weighted analysis, there are only M = 8 possible, equally-
likely arrangements of cell frequencies given the observed row and column marginal
frequency distributions, {1, 2, 2} and {1, 3, 1}, respectively, in Table 6.30. The eight
arrangements of cell frequencies are listed in Table 6.28, where Table 6.1 of
Table 6.28 contains the observed cell frequencies.

Table 6.31 lists the computed kappa values and associated hypergeometric point
probability values for the M = 8 classification tables in Table 6.28, ordered from
high to low by the κw values. As is evident from the κw test statistics and associated
probability values listed in Table 6.31, for the observed value of κw = 0.00 three of
the κw values are less than κw = 0.00 (−0.40, −0.40, and −0.80) and five values are
equal to or greater than κw = 0.00 (0.00, 0.00, +0.40, +0.40, and +0.80). Thus, the
exact probability value of the observed cell configuration under the null hypothesis
is the sum of the hypergeometric point probability values associated with the values
of κw = 0.00 or greater. Based on the hypergeometric probability distribution, the
exact upper-tail probability value is P = 0.1000 + 0.1000 + 0.2000 + 0.1000 +
0.1000 = 0.6000.

6.5.2 Example 2

While the first example with N = 5 objects and only M = 8 possible arrangements
of cell frequencies illustrates an exact permutation statistical procedure, it does
not reflect a typical agreement analysis. A second example with N = 71 objects
provides a more realistic assessment of agreement data. Consider the frequency data
listed in Table 6.32 with N = 71 objects classified into c = 3 disjoint, ordered
categories by b = 2 independent judges.

Table 6.31 Weighted kappa
and hypergeometric
probability values for the
eight 3×3 classification
tables given in Table 6.28
with quadratic weighting

Table κw Probability

3 +0.80 0.1000

2 +0.40 0.1000

5 +0.40 0.2000

4 0.00 0.1000

1 0.00 0.1000

7 −0.40 0.1000

8 −0.40 0.2000

6 −0.80 0.1000

Table 6.32 Example data for
a weighted kappa analysis
with N = 71 observations,
c = 3 disjoint, ordered
categories, b = 2 judges, and
linear weights in parentheses

Judge 2

Judge 1 A B C Total

A 12 ( 0 ) 9 ( 1 ) 8 ( 2 ) 29

B 7 ( 1 ) 10 ( 0 ) 6 ( 1 ) 23

C 5 ( 2 ) 6 ( 1 ) 8 ( 0 ) 19

Total 24 25 22 71
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Linear Weighting

For the frequency data given in Table 6.32, utilizing linear cell disagreement weights
given in parentheses, and following the numerator of Eq. (6.9) on p. 333 with N =
71 objects, c = 3 disjoint, ordered categories, and b = 2 judges,

1

N

c∑
i=1

c∑
j=1

wij nij = 1

71

[
(0)(12) + (1)(9) + (2)(8) + (1)(7) + (0)(10)

+ (1)(6) + (2)(5) + (1)(6) + (0)(8)
] = 0.7606 ,

and for the denominator of Eq. (6.9) on p. 333,

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j = 1

712

[
(0)(29)(24) + (1)(29)(25) + (2)(29)(22)

+ (1)(23)(24) + (0)(23(25) + (1)(23)(22) + (2)(19)(24)

+ (1)(19)(25 + (0)(19)(22)
] = 0.8820 .

Then, the observed value of Cohen’s weighted kappa with linear weighting is

κw = 1 −

1

N

c∑
i=1

c∑
j=1

wij nij

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j

= 1 − 0.7606

0.8820
= +0.1377 ,

indicating approximately 14% agreement above that expected by chance.
Since there are only M = 43,315 arrangements in the reference set of all

permutations of cell frequencies consistent with the observed row and column
marginal frequency distributions, {29, 23, 19} and {24, 25, 22}, respectively, an
exact permutation analysis is feasible. The exact probability value of the observed
cell configuration under the null hypothesis is the sum of the hypergeometric point
probability values associated with the values of κw = +0.1377 or greater. Based on
the hypergeometric probability distribution, the exact upper-tail probability value is
P = 0.0970.

Quadratic Weighting

For comparison, contrast linear cell weighting with quadratic cell weighting,
utilizing the common data set given in Table 6.32, replicated in Table 6.33 for
convenience, with N = 71 objects classified into c = 3 disjoint, ordered categories
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Table 6.33 Example data for
a weighted kappa analysis
with N = 71 observations,
c = 3 disjoint, ordered
categories, b = 2 judges, and
quadratic weights in brackets

Judge 2

Judge 1 A B C Total

A 12 [ 0 ] 9 [ 1 ] 8 [ 4 ] 29

B 7 [ 1 ] 10 [ 0 ] 6 [ 1 ] 23

C 5 [ 4 ] 6 [ 1 ] 8 [ 0 ] 19

Total 24 25 22 71

by b = 2 independent judges. For the frequency data given in Table 6.33, utilizing
quadratic cell disagreement weights given in brackets, and following the numerator
of Eq. (6.9) on p. 333 with N = 71, c = 3 disjoint, ordered categories, and b = 2
judges,

1

N

c∑
i=1

c∑
j=1

wij nij = 1

71

[
(0)(12) + (1)(9) + (4)(8) + (1)(7) + (0)(10)

+ (1)(6) + (4)(5) + (1)(6) + (0)(8)
] = 1.1268 ,

and for the denominator of Eq. (6.9) on p. 333,

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j = 1

712

[
(0)(29)(24) + (1)(29)(25) + (4)(29)(22)

+ (1)(23)(24) + (0)(23(25) + (1)(23)(22) + (4)(19)(24)

+ (1)(19)(25 + (0)(19)(22)
] = 1.3160 .

Then the observed value of Cohen’s weighted kappa with quadratic weighting is

κw = 1 −

1

N

c∑
i=1

c∑
j=1

wij nij

1

N2

c∑
i=1

c∑
j=1

wij ni.n.j

= 1 − 1.1268

1.3160
= +0.1438 ,

indicating approximately 14% agreement above that expected by chance.
Since there are only M = 43,315 arrangements in the reference set of all

permutations of cell frequencies consistent with the observed row and column
marginal frequency distributions, {29, 23, 19} and {24, 25, 22}, respectively, an
exact permutation analysis is feasible. The exact probability value of the observed
cell configuration under the null hypothesis is the sum of the hypergeometric point
probability values associated with the values of κw = +0.1438 or greater. Based on
the hypergeometric probability distribution, the exact upper-tail probability value is
P = 0.1311.
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6.5.3 Linear and Quadratic Weighting Compared

There exists considerable controversy over exactly which cell disagreement weights
should be used with Cohen’s weighted kappa statistic, κw . On the one hand, the
choice of weights is completely arbitrary and any disagreement cell weights may
be utilized [89, p. 157]. On the other hand, linear and quadratic cell weights are
observed almost exclusively in the literature. Linear weighting is perhaps the more
useful of the two approaches in which wij = |i − j | for i, j = 1, . . . , c, where
disagreement cell weights progress linearly outward from the agreement diagonal.
In addition, linear weighting has been shown to have some interesting and valuable
properties. In 2008 Vanbelle and Albert demonstrated that linear-weighted kappa
for b = 2 independent judges and c ≥ 3 disjoint, ordered categories is equivalent to
deriving the weighted kappa agreement coefficient from unweighted kappa values
computed on c − 1 embedded 2×2 classification tables [89]. In 2009 Mielke
and Berry generalized the results of Vanbelle and Albert to b ≥ 2 independent
judges [63].

It is patently obvious that linear weighting and quadratic weighting yield the
same results for 2×2 contingency tables. It is also abundantly clear that linear
weighted and quadratic weighted kappa values often differ very little for 3×3
contingency tables. For example, for the frequency data in Tables 6.32 and 6.33, the
observed value of weighted kappa with linear weighting was κw = +0.1377 and the
observed value of weighted kappa with quadratic weighting was κw = +0.1438, a
difference of only 0.0061. Linear and quadratic weighting generally yield greater
differences with larger contingency tables. Consider the 5×5 contingency table
given in Table 6.34 with N = 10 objects, c = 5 disjoint, ordered categories,
and b = 2 judges. For the frequency data given in Table 6.34 with linear weights
given in parentheses and quadratic weights given in brackets, the observed value
of weighted kappa with linear weighting is κw = +0.7222 and the observed value
of weighted kappa with quadratic weighting is κw = +0.5122, for a difference of
0.2100. The single frequency in the first row (A) and fifth column (E) of Table 6.34
has a linear weight of w15 = 4, a quadratic weight of w15 = 16, and accounts for the
entire difference in the two κw values. As demonstrated by Brenner and Kliebsch,

Table 6.34 Example data for a weighted kappa analysis with N = 10 observations, c = 5 ordered
categories, b = 2 judges, linear weights in parentheses, and quadratic weights in brackets

Judge 2

Judge 1 A B C D E Total

A 1 (0) [ 0 ] 0 (1) [ 1 ] 0 (2) [ 4 ] 0 (3) [ 9 ] 1 (4) [ 16 ] 2

B 0 (1) [ 1 ] 2 (0) [ 0 ] 0 (1) [ 1 ] 0 (2) [ 4 ] 0 (3) [ 9 ] 2

C 0 (2) [ 4 ] 0 (1) [ 1 ] 3 (0) [ 0 ] 0 (1) [ 1 ] 0 (2) [ 4 ] 3

D 0 (3) [ 9 ] 0 (2) [ 4 ] 0 (1) [ 1 ] 2 (0) [ 0 ] 0 (1) [ 1 ] 2

E 0 (4) [ 16 ] 0 (3) [ 9 ] 0 (2) [ 4 ] 0 (1) [ 1 ] 1 (0) [ 0 ] 1

Total 1 2 3 2 2 10
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the linear form of the weighted kappa coefficient is less sensitive to the number of
categories than the quadratic form; consequently, they recommended that the linear
form be used whenever the number of categories of the ordinal scale is large [9].

6.5.4 Weighted Kappa with Multiple Judges

While Cohen’s weighted kappa was originally designed for and is limited to b = 2
independent judges, weighted kappa can be generalized and extended to measure
agreement among multiple judges [4]. The generalization of Cohen’s kappa to
multiple judges has long been controversial, with many missteps and dead-ends
along the way; see Sect. 4.5 in Chap. 4. In 1988 Berry and Mielke generalized
Cohen’s kappa agreement measure to accommodate multiple judges [4] and in
2008 Mielke, Berry, and Johnston provided an efficient Monte Carlo resampling
algorithm to analyze agreement data with multiple judges [60].

In this section, an algorithmic procedure to compute unweighted and weighted
kappa with multiple raters is presented [60]. Although the procedure is appropriate
for any number of c ≥ 2 disjoint, ordered categories and b ≥ 2 judges, the
description of the procedure and the examples are limited to b = 3 independent
judges to simplify presentation, with no loss of generality.

Consider b = 3 judges who independently classify N objects into c disjoint,
ordered categories. The classification may be conceptualized as a c×c×c con-
tingency table with c rows, c columns, and c slices. Let nijk , Ri , Cj , and Sk

denote the cell frequencies and row, column, and slice marginal frequency totals
for i, j, k = 1, . . . , c and let the frequency total be given by

N =
c∑

i=1

c∑
j=1

c∑
k=1

nijk .

Cohen’s weighted kappa test statistic for a three-way contingency table is
given by

κw =
N2

c∑
i=1

c∑
i=1

c∑
i=1

wijknijk

c∑
i=1

c∑
i=1

c∑
i=1

wijkRiCjSk

, (6.10)

where wijk are disagreement weights assigned to each cell for i, j, k = 1, . . . , c.
Under the null hypothesis that the judges classify the N objects independently with
fixed marginal frequency totals, E[κw] = 0.

As discussed previously, vide supra, a variety of weighting functions have been
proposed for weighted kappa for two judges, where the arbitrary cell weights are
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denoted as wij and i and j designate the c categories for each judge, i, j =
1, . . . , c [77, p. 246]. Typically, the cell weights are defined such that wii = 0 for
i = 1, . . . , c and the weights are symmetrical, i.e., wij = wji for i, j = 1, . . . , c.
Examples of weighting systems for two judges include linear weighting where
wij = |i − j |, quadratic weighting where wij = (i − j)2, and unweighted kappa
where

wij =
⎧⎨
⎩

0 if i = j ,

1 otherwise .

For three judges, the cell disagreement weights are given by wijk , where i, j ,
and k designate the c categories for each judge. Analogously to wij , wijk may be
defined such that wiii = 0 for i = 1, . . . , c and the weights are symmetrical, i.e.,
wijk = wikj = wjik = wjki = wkij = wkji for i, j, k = 1, . . . , c. Examples of
weighting systems for three judges include linear weighting where

wijk = |i − j | + |i − k| + |j − k|

and quadratic weighting where

wijk = (i − j)2 + (i − k)2 + (j − k)2

for i, j, k = 1, . . . , c.
Weighted kappa for three judges reduces to unweighted kappa when

wijk =
⎧⎨
⎩

0 if i = j = k ,

1 otherwise .

Given a c×c×c contingency table with N objects cross-classified by three
independent judges, an exact permutation test involves generating all possible,
equally-likely arrangements of the N objects to the c3 cells, while preserving the
observed marginal frequency distributions. For each arrangement in the reference
set of all permutations of cell frequencies, the weighted kappa statistic, κw,
and the exact hypergeometric point probability value under the null hypothesis,
p(nijk |Ri,Cj , Sk,N), are calculated, where

p(nijk |Ri,Cj , Sk,N) =

(
c∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠
(

c∏
k=1

Sk!
)

(N !)2
c∏

i=1

c∏
j=1

c∏
k=1

nijk !
(6.11)

[54].
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If κo denotes the value of the observed weighted kappa test statistic, the exact
probability value of κo under the null hypothesis is given by

P(κo|H0) =
M∑
l=1

�l

(
nijk |Ri,Cj , Sk,N

)
,

where

�l

(
nijk |Ri,Cj , Sk,N

) =
⎧⎨
⎩

p(nijk |Ri,Cj , Sk,N) if κw ≥ κo ,

0 otherwise ,

and M denotes the total number of possible, equally-likely cell frequency arrange-
ments given fixed observed marginal frequency totals. When the reference set of
M possible arrangements is very large, as is typical with multi-way contingency
tables, exact tests are impractical and Monte Carlo resampling procedures become
necessary. Under resampling, a random sample of size L drawn from the M possible
arrangements of cell frequencies provides for a comparison of κw test statistics
calculated on the L random tables with the κw test statistic calculated on the
observed table.

6.5.5 Algorithm for r×c×s Contingency Tables

An efficient resampling algorithm to generate random cell frequency arrangements
for multi-way contingency tables with fixed marginal frequency totals was devel-
oped by Mielke, Berry, and Johnston in 2007 [59, pp. 19–20]. For a three-way
contingency table with r rows, c columns, and s slices, the Monte Carlo resampling
algorithm is given in 12 simple steps.

STEP 1. Construct an r×c×s contingency table from the observed data.
STEP 2. Obtain the fixed marginal frequency totals R1, . . . , Rr , C1, . . . , Cc,

S1, . . . , Ss , and frequency total N . Set the resampling counter JL = 0,
and set L equal to the number of samples desired.

STEP 3. Set the resampling counter JL = JL + 1.
STEP 4. Set the marginal frequency counters JRi = Ri for i = 1, . . . , r; JCj =

Cj for j = 1, . . . , c; JSk = Sk for k = 1, . . . , s, and M = N .
STEP 5. Set nijk = 0 for i = 1, . . . , r , j = 1, . . . , c, and k = 1, . . . , s, and

set row, column, and slice counters IR, IC, and IS equal to zero.
STEP 6. Create cumulative probability distributions PRi, PCj , and PSk from the

adjusted marginal frequency totals JRi, JCj , and JSk for i = 1, . . . , r ,
j = 1, . . . , c, and k = 1, . . . , s, where

PR1 = JR1/M and PRi = PRi−1 + JRi/M
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for i = 1, . . . , r ,

PC1 = JC1/M and PCj = PCj−1 + JCj/M

for j = 1, . . . , c, and

PS1 = JS1/M and PSk = PSk−1 + JSk/M

for k = 1, . . . , s.
STEP 7. Generate three uniform pseudorandom numbers Ur , Uc, and Us over

[0, 1) and set row, column, and slice indices i = j = k = 1,
respectively.

STEP 8. If Ur ≤ PRi , then IR = i, JRi = JRi − 1, and go to STEP 9; otherwise,
i = i + 1 and repeat STEP 8.

STEP 9. If Uc ≤ PCj , then IC = j , JCj = JCj − 1, and go to STEP 10;
otherwise, j = j + 1 and repeat STEP 9.

STEP 10. If Us ≤ PSk , then IS = k, JSk = JSk −1, and go to STEP 11; otherwise,
k = k + 1 and repeat STEP 10.

STEP 11. Set M = M − 1 and nIR,IC,IS = nIR,IC,IS + 1. If M > 0, go to STEP 4;
otherwise, obtain the required test statistic and go to STEP 12.

STEP 12. If JL < L, go to STEP 3; otherwise, stop.

At the conclusion of the resampling algorithm, κw, as given in Eq. (6.10)
on p. 342, is obtained for each of the L random three-way contingency tables,
given the observed marginal frequency distributions. Under the null hypothesis,
the resampling approximate probability value for the observed value of κw, κo, is
given by

P (κo) = 1

L

L∑
l=1

�l (κw) ,

where

�l (κw) =
⎧⎨
⎩

1 if κw ≥ κo ,

0 otherwise .

Example

The calculation of weighted kappa and the Monte Carlo resampling procedure
for obtaining a probability value with multiple raters can be illustrated with a
small example data set. Consider b = 3 independent journal reviewers for N =
93 submitted manuscripts over a five-year period. Each reviewer classified each
manuscript into one of c = 3 disjoint, ordered categories: reject, revise and
resubmit, or accept. Table 6.35 lists the c3 cross-classified observed frequencies
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Table 6.35 Article
recommendations by three
independent reviewers for
N = 93 manuscripts: reject,
revise, and accept

Reviewer 3

Reviewer 1 Reviewer 2 Reject Revise Accept

Reject Reject 6 (0) [ 0 ] 4 (2) [ 2 ] 2 (4) [ 8 ]

Revise 3 (2) [ 2 ] 5 (2) [ 2 ] 4 (4) [ 6 ]

Accept 2 (4) [ 8 ] 3 (4) [ 6 ] 4 (4) [ 8 ]

Revise Reject 4 (2) [ 2 ] 5 (2) [ 2 ] 3 (4) [ 6 ]

Revise 5 (2) [ 2 ] 8 (0) [ 0 ] 4 (2) [ 2 ]

Accept 3 (4) [ 6 ] 2 (2) [ 2 ] 3 (2) [ 2 ]

Accept Reject 1 (4) [ 8 ] 3 (4) [ 6 ] 4 (4) [ 8 ]

Revise 3 (4) [ 6 ] 2 (2) [ 2 ] 2 (2) [ 2 ]

Accept 1 (4) [ 8 ] 2 (2) [ 2 ] 5 (0) [ 0 ]

Note—Linear cell weights are in parentheses and quadratic cell
weights are in brackets

and corresponding linear and quadratic weights, where the linear cell weights are
given in parentheses and the quadratic cell weights are given in brackets.

Linear Weighting

For the observed data listed in Table 6.35 with linear cell disagreement weights, the
observed value of weighted kappa is κw = +0.1000, indicating 10% agreement
above that expected by chance, and the approximate Monte Carlo resampling
probability value based on L = 1,000,000 random arrangements of cell frequencies
with fixed marginal frequency totals is

P(κw ≥ κo|H0) = number of κw values ≥ κo

L
= 21,949

1,000,000
= 0.0219 ,

where κo denotes the observed value of κw with linear weighting.

Quadratic Weighting

For the observed data listed in Table 6.35 with quadratic cell disagreement weights,
the observed value of weighted kappa is κw = +0.1036, indicating approximately
10% agreement above that expected by chance, and the approximate Monte Carlo
resampling probability value based on L = 1,000,000 random arrangements of cell
frequencies with fixed marginal frequency totals is

P(κw ≥ κo|H0) = number of κw values ≥ κo

L
= 48,926

1,000,000
= 0.0489 ,

where κo denotes the observed value of κw with quadratic weighting.
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6.5.6 Advantages of Linear Weighting

In practice, linear and quadratic weighting schemes are the most widely used, to the
point of near exclusivity [89, p. 162]. For two judges, linear disagreement weights
and quadratic disagreement weights are given by

wij = |i − j | and wij = (i − j)2 ,

respectively, for i, j = 1, . . . , c. On the other hand, Cicchetti and Allison [11]
proposed using linear agreement weights and Fleiss and Cohen [29] proposed using
quadratic agreement weights given by

wij = 1 − |i − j |
c − 1

and wij = 1 − (i − j)2

c − 1
,

respectively, for i, j = 1, . . . , c.
Cohen showed that if the marginal distributions of the two judges are the same

and quadratic weights are used, weighted kappa is equivalent to Pearson’s product-
moment correlation coefficient [14]. Moreover, Fleiss and Cohen showed that, using
quadratic weights, weighted kappa has the same interpretation as the intraclass
correlation coefficient [29]. Fleiss and Cohen noted that the use of quadratic weights
was “admittedly arbitrary,” but argued that the scaling of errors by the means of their
squares was so common that the convention required little justification [29, p. 617].
On the other hand, a number of researchers have argued that linear weighting is
simpler and more intuitive than quadratic weighting [48].

Writing in Statistical Methodology in 2008, Vanbelle and Albert provided
support for linear weighting, showing that using linear agreement weights for c

ordered categories is equivalent to deriving unweighted kappa coefficients from c−1
embedded 2×2 contingency tables [89]. Given a c×c agreement table where pij

denotes a cell proportion, i, j = 1, . . . , c, pi. denotes a row marginal proportion,
i = 1, . . . , c, and p.j denotes a column marginal proportion, j = 1, . . . , c, a
weighted kappa coefficient can be defined in terms of linear agreement weights by

κw = po − pe

1 − pe
,

where

po =
c∑

i=1

c∑
j=1

wij pij and pe =
c∑

i=1

c∑
j=1

wij pi.p.j ,

with 0 ≤ wij ≤ 1, wii = 1 for i = 1, . . . , c, and linear agreement weights given by

wij = 1 − |i − j |
c − 1

for i, j = 1, . . . , c.
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6.5.7 Embedded 2×2 Tables

Consider the notation of Vanbelle and Albert given in Table 6.36. Denote by a dot
(·) the partial sum of all rows or all columns, depending on the position of the (·)
in the subscript list. If the (·) is in the first subscript position, the sum is over all
rows, and if the (·) is in the second subscript position, the sum is over all columns.
Thus, ni. denotes the marginal frequency total of the ith row, i = 1, . . . , c, summed
over all columns, and n.j denotes the marginal frequency total of the j th column,
j = 1, . . . , c, summed over all rows. For any “cut-off” value k, k = 1, . . . , c − 1,
the c×c classification table in Table. 6.36 can be reduced to a 2×2 contingency
table by summing up all observations below and above the first k rows and the first
k columns, as shown in Table 6.37, where

n11(k) =
k∑

i=1

k∑
j=1

nij , n12(k) =
k∑

i=1

c∑
j=k+1

nij ,

n21(k) =
c∑

i=k+1

k∑
j=1

nij , n22(k) =
c∑

i=k+1

c∑
j=k+1

nij .

Example

To illustrate the Vanbelle and Albert procedure, consider the frequency data given
in Table 6.38 where N = 500 objects have been placed into one of c = 5 disjoint,
ordered categories by b = 2 independent judges; linear agreement cell weights are

Table 6.36 Notation for a
two-way classification table
resulting from the
classification of N items by
two judges on an ordinal
scale with c categories

Judge 2

Judge 1 1 · · · j · · · c Total

1 n11 · · · n1j · · · n1c n1.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.

i ni1 · · · nij · · · nic ni.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.

c nc1 · · · ncj · · · ncc nc.

Total n.1 · · · n.j · · · n.c N

Table 6.37 Notation for the
cross-classification of two
categorical variables with
c = 2 disjoint categories

Judge 2

Judge 1 ≤ k > k Total

≤ k n11(k) n12(k) n1.(k)

> k n21(k) n22(k) n2.(k)

Total n.1(k) n.2(k) N
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given in parentheses. Using linear agreement weights, po = 0.6350, pe = 0.5858,
and weighted kappa for the frequency data given in Table 6.38 is

κw = po − pe

1 − pr
= 0.6350 − 0.5858

1 − 0.5858
= +0.1188 ,

indicating approximately 12% agreement above that expected by chance.
Since c = 5, c − 1 = 4 embedded 2×2 tables can be constructed. The four

embedded tables are given in Table 6.39. For the first 2×2 embedded table (≤ 1,>

1), po(1) = 0.6400, pe(1) = 0.5896, and unweighted κ(1) is

κ(1) = po(1) − pe(1)

1 − pe(1)
= 0.6400 − 0.5896

1 − 0.5896
= +0.1228 ;

for the second 2×2 embedded table (≤ 2,> 2), po(2) = 0.5080, pe(2) = 0.5096,
and unweighted κ(2) is

κ(2) = po(2) − pe(2)

1 − pe(2)
= 0.5080 − 0.5096

1 − 0.5096
= −0.0033 ;

Table 6.38 Example two-way contingency table with two independent judges and c = 5 disjoint,
ordered categories

Judge 2

Judge 1 1 2 3 4 5 Total

1 45 (1.00) 2 (0.75) 23 (0.50) 8 (0.25) 12 (0.00) 90

2 22 (0.75) 23 (1.00) 28 (0.75) 31 (0.50) 16 (0.25) 120

3 32 (0.50) 5 (0.75) 14 (1.00) 7 (0.75) 2 (0.50) 60

4 45 (0.25) 6 (0.50) 41 (0.75) 42 (1.00) 16 (0.75) 150

5 36 (0.00) 4 (0.25) 4 (0.50) 2 (0.75) 34 (1.00) 80

Total 180 40 110 90 80 500

Note—Linear agreement cell weights are in given parentheses

Table 6.39 All possible embedded 2×2 tables derived from the original 5×5 classification table
given in Table 6.38

Judge 2 Judge 2

Judge 1 ≤ 1 > 1 Total Judge 1 ≤ 2 > 2 Total

≤ 1 45 45 90 ≤ 2 92 118 210

> 1 135 275 410 > 2 128 162 290

Total 180 320 500 Total 220 280 500

Judge 2 Judge 2

Judge 1 ≤ 3 > 3 Total Judge 1 ≤ 4 > 4 Total

≤ 3 194 76 270 ≤ 4 374 46 420

> 3 136 94 230 > 4 46 34 80

Total 330 170 500 Total 420 80 500
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for the third 2×2 embedded table (≤ 3,> 3), po(3) = 0.5760, pe(3) = 0.5128,
and unweighted κ(3) is

κ(3) = po(3) − pe(3)

1 − pe(3)
= 0.5760 − 0.5128

1 − 0.5128
= +0.1297 ;

and for the fourth 2×2 embedded table (≤ 4,> 4), po(4) = 0.8160, pe(4) =
0.7312, and unweighted κ(4) is

κ(4) = po(4) − pe(4)

1 − pe(4)
= 0.8160 − 0.7312

1 − 0.7312
= +0.3155 .

Then, averaging the observed and expected proportions yields,

p ′
o = 1

c − 1

c−1∑
k=1

po(k) = 0.64 + 0.5080 + 0.5760 + 0.8160

5 − 1
= 0.6350

and

p ′
e = 1

c − 1

c−1∑
k=1

pe(k) = 0.5896 + 0.5096 + 0.5128 + 0.7312

5 − 1
= 0.5858 .

As expected, the p ′
o and p ′

e average values obtained from the c − 1 embedded 2×2
tables are equal to the po and pe values obtained from the full 5×5 classification
table given in Table 6.38.10

It should be noted that the average unweighted kappa coefficient derived from
the 2×2 tables, namely

κ̄ = 1

c − 1

c−1∑
k=1

κ(k) = +0.1228 − 0.0033 + 0.1297 + 3155

5 − 1
= +0.5647 ,

is not equal to κw = +0.1188 calculated on the full 5×5 classification table.
In this manner, Vanbelle and Albert showed that the observed and expected

weighted agreements are merely the mean values of the corresponding proportions
of all possible 2×2 embedded tables obtained by collapsing the first c categories
and last c − 1 categories (k = 1, . . . , c − 1) of the original c×c classification table.
Thus, the linearly weighted kappa coefficient for a c×c ordinal table can simply be
derived from non-weighted observed and expected agreements (or disagreements)
computed from c − 1 embedded 2×2 tables.

10When using linear disagreement weights, instead of linear agreement weights, the weighted
observed and expected disagreements are obtained by the sum rather than the average of the
corresponding elements of the 2×2 contingency tables.
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6.5.8 Embedded 2×2×2 Tables

Utilizing the linear agreement weights suggested by Cicchetti and Allison [11],
Vanbelle and Albert [89] demonstrated that weighted kappa for b = 2 independent
judges and c ≥ 3 ordered categories is equivalent to deriving the weighted kappa
coefficient from unweighted kappa coefficients computed on c − 1 embedded 2×2
classification tables. In 2009 Mielke and Berry generalized the results of Vanbelle
and Albert to b ≥ 2 independent judges [56]. While the generalized procedure is
appropriate for any number of judges, in this section the description of the procedure
and the example are confined to b = 3 independent judges to simplify presentation.

Consider N items classified into c disjoint, ordered categories by b = 3
independent judges. Judge 1 assigns the N items to the c ordered categories and
Judges 2 and 3 independently assign the same N items to the same c ordered
categories. Arrange the assignments of the b = 3 judges in a 3-way classification
table dimensioned as c rows, c columns, and c slices, and index the assignments
of Judges 1, 2, and 3 by i, j, k = 1, . . . , c, respectively. The layout of a 3-way
classification table with c = 2 rows, c = 2 columns, and c = 2 slices is portrayed in
Table 6.40, where a dot (·) indicates a partial sum over either all rows, all columns,
or all slices depending on the position of the (·) in the subscript list. If the (·) is
in the first subscript position, the sum is over all rows, if the (·) is in the second
subscript position, the sum is over all columns, and if the (·) is in the third subscript
position, the sum is over all slices. Thus, ni.. denotes the marginal frequency total
of the ith row, i = 1, . . . , c, summed over all columns and all slices, n.j. denotes
the marginal frequency total of the j th column, j = 1, . . . , c, summed over all
rows and all slices, and n..k denotes the marginal frequency total of the kth slice,
k = 1, . . . , c, summed over all rows and all columns.

For any “cut-off” value � for � = 1, . . . , c − 1 a c×c×c classification table can
be reduced to a distinct 2×2×2 table by summing the observations below and above
the first � rows, the first � columns, and the first � slices, where the 2×2×2 table
contains eight cells indexed by

n111(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk , n112(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk ,

n121(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk , n211(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk ,

Table 6.40 Example layout
of a 3-way classification table
with c = 2 rows, c = 2
columns, and c = 2 slices

Slice 1 Slice 2

Col 1 Col 2 Total Col 1 Col 2 Total

Row 1 n111 n121 n1.1 n112 n122 n1.2

Row 2 n211 n221 n2.1 n212 n222 n2.2

Total n.11 n.21 n..1 n.12 N.22 n..2
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n221(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk , n212(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk ,

n122(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk , n222(�) =
�∑

i=1

�∑
j=1

�∑
k=1

nijk .

Let

fijk(�) = 1

N
nijk(�) ,

fi..(�) = 1

N
ni..(�) ,

f.j.(�) = 1

N
n.j.(�) ,

and

f..k(�) = 1

N
n..k(�) ,

represent the corresponding joint and marginal frequency totals for i, j, k =
1, . . . , c and � = 1, . . . , c − 1. Finally, denote by

po(�) = f111(�) + f222(�)

and

pe(�) = f1..(�)f.1.(�)f..1(�) + f2..(�)f.2.(�)f..2(�)

the observed and expected proportions of agreement, respectively, corresponding to
Table 6.41.

Table 6.41 Reduction of a
c×c×c classification table
into a 2×2×2 classification
table utilizing cut-off level �

for � = 1, . . . , c − 1

Judge 2

≤ � > �

Judge 3 Judge 3

Judge 1 ≤ � > � ≤ � > �

≤ � n111(�) n112(�) n121(�) n122(�)

> � n211(�) n212(�) n221(�) n222(�)



6.5 Cohen’s Weighted Kappa 353

Table 6.42 Three-way classification table with b = 3 judges, c = 4 disjoint, ordered categories,
and N = 56 observations, with linear agreement weights in parentheses

Judge 3

Judge 1 Judge 2 1 2 3 4

1 1 3 (1.000) 0 (0.667) 0 (0.333) 1 (0.000)

2 0 (0.667) 0 (0.667) 1 (0.333) 1 (0.000)

3 0 (0.333) 1 (0.333) 1 (0.333) 0 (0.000)

4 0 (0.000) 1 (0.000) 2 (0.000) 3 (0.000)

2 1 0 (0.667) 1 (0.667) 1 (0.333) 0 (0.000)

2 1 (0.667) 3 (1.000) 1 (0.667) 0 (0.333)

3 0 (0.333) 1 (0.667) 4 (0.667) 1 (0.333)

4 0 (0.000) 0 (0.333) 1 (0.333) 2 (0.333)

3 1 0 (0.333) 0 (0.333) 1 (0.333) 1 (0.000)

2 0 (0.333) 1 (0.667) 1 (0.667) 0 (0.333)

3 1 (0.333) 0 (0.667) 1 (1.000) 0 (0.667)

4 1 (0.000) 0 (0.333) 1 (0.667) 4 (0.667)

4 1 1 (0.000) 0 (0.000) 1 (0.000) 0 (0.000)

2 1 (0.000) 2 (0.333) 1 (0.333) 0 (0.333)

3 0 (0.000) 1 (0.333) 1 (0.667) 1 (0.667)

4 0 (0.000) 1 (0.333) 1 (0.667) 3 (1.000)

Note—Linear cell agreement weights are in parentheses

Example

Consider N = 56 items classified by b = 3 independent judges into c = 4 disjoint,
ordered categories and arranged in a 4×4×4 classification table. Table 6.42 lists the
raw frequency data and the corresponding linear agreement weights in parentheses.

For the frequency data given in Table 6.42, po = 0.9815, and pe = 0.9780,
yielding

κw = po − pe

1 − pe
= 0.9815 − 0.9780

1 − 0.9780
= +0.1594 ,

indicating approximating 16% agreement above that expected by chance. Since c =
4, c−1 = 3 embedded 2×2×2 classification tables can be constructed from the full
4×4×4 classification table given in Table 6.42. Tables 6.43, 6.44, and 6.45 contain
the three embedded 2×2×2 classification tables constructed from the frequency data
given in Table 6.42.

For the first 2×2×2 embedded table, given in Table 6.43, po(1) = 0.9866,
pe(1) = 0.9834, and unweighted κ(1) is

κ(1) = po(1) − pe(1)

1 − pe(1)
= 0.9866 − 0.9834

1 − 0.9834
= +0.1945 ;
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Table 6.43 First embedded
2×2×2 classification table

Judge 2

≤ 1 > 1

Judge 3 Judge 3

Judge 1 ≤ 1 > 1 ≤ 1 > 1

≤ 1 3 1 1 5

> 1 0 10 4 32

Table 6.44 Second
embedded 2×2×2
classification table

Judge 2

≤ 2 > 2

Judge 3 Judge 3

Judge 1 ≤ 2 > 2 ≤ 2 > 2

≤ 2 8 5 5 5

> 2 3 14 4 12

Table 6.45 Third embedded
2×2×2 classification table

Judge 2

≤ 3 > 3

Judge 3 Judge 3

Judge 1 ≤ 3 > 3 ≤ 3 > 3

≤ 3 23 4 8 1

> 3 6 9 2 3

for the second 2×2×2 embedded table, given in Table 6.44, Po(2) = 0.9770,
Pe(2) = 0.9809, and unweighted κ(2) is

κ(2) = po(2) − pe(2)

1 − pe(2)
= 0.9770 − 0.9809

1 − 0.9809
= +0.1377 ;

and for the third 2×2×2 embedded table, given in Table 6.45, Po(3) = 0.9809,
Pe(3) = 0.9772, and unweighted κ(3) is

κ(3) = po(3) − pe(3)

1 − pe(3)
= 0.9809 − 0.9772

1 − 0.9772
= +0.1592 .

For the three 2×2×2 embedded tables in Tables 6.43, 6.44, and 6.45, define

p ′
o = 1

c − 1

c−1∑
�=1

po(�) = 0.9866 + 0.9770 + 0.9809

4 − 1
= 0.9815

and

p ′
e = 1

c − 1

c−1∑
�=1

pe(�) = 0.9834 + 0.9734 + 0.9772

4 − 1
= 0.9870 .
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As expected, the p ′
o and p ′

e averaged values obtained from the c − 1 embedded
2×2×2 tables are equal to the po and pe values obtained from the full 4×4×4
classification table given in Table 6.42. Finally, the average unweighted kappa
coefficient derived from the embedded 2×2×2 classification tables,

κ̄ = 1

c − 1

c−1∑
�=1

κ(�) = 0.1945 + 0.1377 + 0.1592

4 − 1
= +0.1638 ,

is not equal to κw = +0.1594.

6.6 Alternative Approaches for Multiple Judges

In this section, five methods for determining probability values for kappa with
multiple independent judges are compared and contrasted. Although the five
methods are appropriate for any number of independent judges, the descriptions of
the methods and the examples are confined to three judges to simplify presentation.
Extension to more than three judges is straightforward for all five methods.

Consider b independent judges/raters, each of which classifies N objects into
c disjoint categories. The five methods for calculating weighted kappa with b ≥
2 independent judges and c ≥ 2 disjoint, ordered categories are (1) an exact
variance method, (2) a resampling contingency table method, (3) an intraclass
correlation method, (4) a randomized-block method, and (5) a resampling-block
method [3]. A sixth method based on agreement values among all possible pairs of
b judges is sometimes advanced; see articles by Fleiss [27], Light [51], Landis and
Koch [50], Conger [15], Schouten [74, 75, 76], Kramer and Feinstein [47], Epstein,
Dalinka, Kaplan, Aronchick, Marinelli, and Kundel [23], Herman, Khan, Kallman,
Rojas, Carmody, and Bodenheimer [36], Taplin, Rutter, Elmore, Seger, White, and
Brenner [86], Kundel and Polansky [49], and Schorer and Weiss [73]. However, the
paired-judges agreement method is not considered here as the pairwise probability
values are not orthogonal and cannot be combined into a single probability
value [61].

6.6.1 Exact Variance Method

In 1968 Brian Everitt [24] derived the exact variance of weighted kappa for b = 2
independent judges under the null hypothesis that was suitable for any weighting
scheme, but the calculations were deemed too complicated to be practical for routine
use [28]. In 2005 Mielke, Berry, and Johnston reformulated the exact variance
presented by Everitt for b = 2 independent judges into a form conducive to
computation and provided a programming algorithm for b = 2 judges [57]. In 2007
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Mielke, Berry, and Johnston extended the exact variance result developed by Everitt
to include the classification of N objects by b ≥ 2 independent judges with
fixed marginal frequency totals [55]. Because any weighting scheme is allowed,
asymmetric weighting schemes are permitted. For detailed discussions regarding
choices of weighting schemes, see articles by Maclure and Willett [52], Graham
and Jackson [33], Banerjee, Capozzoli, McSweeney, and Sinha [2], Kundel and
Polansky [49], and Schuster and Smith [78].

Since

z = κw − E[κw][
Var(κw)

]1/2 ,

approaches the N(0, 1) distribution as N → ∞ with fixed positive marginal
proportions, the approximate probability value (P ) under the null hypothesis is
given by P(z ≥ zo), where

zo = κo − E[κw][
Var(κw)

]1/2 ,

κo denotes the observed value of κw , and E[κw] = 0.

6.6.2 Resampling Contingency Table Method

In the context of a multi-way contingency table with N objects cross-classified
by b ≥ 2 independent judges, a Monte Carlo resampling procedure generates
L random samples, drawn with replacement, from all M possible, equally-likely
arrangements of cell frequencies, given fixed marginal frequency totals, where L

is usually set to a large number, e.g., L = 1,000,000 [39]. Mielke, Berry, and
Johnston [58] developed Monte Carlo resampling algorithms to generate random
contingency table cell frequency arrangements with fixed marginal frequency totals
that permit any b ≥ 2 independent judges, and Mielke, Berry, and Johnston [60]
developed a resampling algorithm for weighted kappa that accommodates b ≥ 2
independent judges (see Sect. 6.5.4). The resampling probability value (P ) is simply
the proportion of κw values among the L sampled κw values equal to or greater than
κo, i.e.,

P = number of κw values ≥ κo

L
.

If the exact probability value is not too small and L is large, Monte Carlo
resampling methods provide highly accurate probability values. The Monte Carlo
resampling contingency table method also allows for any weighting scheme as well
as symmetric and asymmetric weights.
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6.6.3 Intraclass Correlation Method

Provided that weighted kappa is confined to symmetric quadratic weights, Fleiss
and Cohen [29] showed that a specific form of the intraclass correlation coefficient
is identical to weighted kappa for B = 2 independent judges.11 Extension of
the Fleiss and Cohen intraclass correlation coefficient to B independent judges is
straightforward [67, 68, 69]. Specifically, for a randomized-block design with B ≥ 2
judges and N subjects, the intraclass correlation coefficient given by

ICC = MSBS − MSB×S

MSBS + (B − 1)MSB×S + B(MSB)/(N − 1)
(6.12)

is equivalent to weighted kappa with symmetric quadratic weighting, where MSBS,
MSB, and MSB×S refer to the subject, judge, and error mean squares, respectively.
The approximate probability value is based on

F = MSBS

MSB×S
,

which follows Snedecor’s F distribution with N − 1 and (B − 1)(N − 1) degrees
of freedom [67]. While there are many variations of the intraclass correlation
coefficient described in the literature [53, 79], only the intraclass correlation
coefficient defined in Eq. (6.12) yields the symmetric quadratic weighting version
of weighted kappa.

6.6.4 Randomized-Block Method

In 1982 Mielke and Iyer [62] presented a permutation method to analyze
randomized-block designs. The test statistic developed by Mielke and Iyer
represents the observed proportion of disagreements and, for b ≥ 2 and c ≥ 2
disjoint, ordered categories, is given by

δ =
[
N

(
b

2

)]−1 N∑
i=1

∑
j<k

[
c∑

l=1

(
xijl − xikl

)2]v/2

, (6.13)

where b is the number of independent judges, N is the number of subjects, xijl

denotes the lth score of the j th judge for the ith of N subjects, xikl denotes the
lth of c scores of the kth of b judges for the ith subject,

∑
j<k is the sum over all

11In this section, the number of independent judges is denoted by an upper case B to be consistent
with conventional randomized-block analysis of variance notation.
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j and k such that 1 ≤ j < k ≤ b, and v > 0 yields a symmetric weighting function.
Under the null hypothesis, there are M = (N !)b equally-likely allocations of the
N subjects to the b judges. Symmetric linear and quadratic weightings follow by
setting v = 1 for linear weighting and v = 2 for quadratic weighting in Eq. (6.13).
It is easily shown that statistics κw and δ are simple linear transformations of each
other, i.e.,

κw = 1 − δ

μδ

and δ = μδ(1 − κw) ,

where μδ is the average δ value under the null hypothesis. The exact probability
value (P ) is the proportion of κw values equal to or greater than the observed value
of κw. Thus,

P = number of κw values ≥ κo

M
,

where κo denotes the observed value of κw.

6.6.5 Resampling-Block Method

The resampling-block method for multiple independent judges is identical to the
randomized-block method, except for the calculation of the probability value.
Thus, the same class of symmetric weighting functions is allowed. A Monte Carlo
resampling procedure for b ≥ 2 independent judges generates L random samples,
drawn with replacement from all M = (N !)b possible, equally-likely arrangements
of the classification values under the null hypothesis. The resampling probability
value (P ) is the proportion of κw values among the L sampled values of κw equal
to or greater than the observed value of κw. Thus,

P = number of κw values ≥ κo

L
,

where κo denotes the observed value of κw.

6.6.6 Example with Three Judges

In this section the five methods to obtain probability values for Cohen’s kappa with
b = 3 independent judges are illustrated and compared, utilizing a small example
data set. Symmetric unweighted, linear weighted, and quadratic weighted values
are used to illustrate the five methods. Consider a data set with b = 3 independent
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judges, N = 9 subjects, and c = 3 disjoint, categories. The raw data are listed in
Table 6.46 and the results of the five analyses are given in Table 6.47.

Exact permutation probability values to four places are listed in the last row of
Table 6.47 for comparison purposes. It should be noted that calculation of exact
probability values is not possible for the b = 3 data listed in Table 6.46 due to the
large number of possible arrangements of subjects, i.e., M = 131,681,894,400.
Thus, the “exact permutation” probability values listed in Table 6.47 are based on
L = 10,000,000,000 randomizations of the b = 3 data listed in Table 6.46. Under
a worst-case scenario with P = 0.5, the 95% confidence bounds are

±2

[
P(1 − P)

L

]1/2

= ±2

[
(0.5)(0.5)

10,000,000,000

]1/2

= ±1.00×10−5 ,

implying that the exact probability values reported in Table 6.47 are very likely
accurate to four decimal places, since P < 0.02 for each weighting scheme [39].

Table 6.46 Example data set
for kappa with multiple
judges with b = 3
independent judges, N = 9
subjects, and c = 3 categories

Judge

Subject A B C

1 1 1 1

2 1 1 2

3 1 2 1

4 2 2 2

5 2 3 2

6 3 2 3

7 3 3 3

8 3 3 3

9 3 3 1

Table 6.47 Cohen’s kappa probability values (P ) calculated with exact variance, resampling
three-way contingency, intraclass correlation, randomized-block, resampling-block, and exact
permutation procedures for b = 3 independent judges for symmetric unweighted, linear, and
quadratic weightings

Weighting

Unweighted Linear Quadratic

Method κ P κw P κw P

Exact variance 0.3721 0.0012 0.5091 0.0008 0.5740 0.0021

Contingency table 0.3721 0.0159 0.5091 0.0043 0.5740 0.0062

Intraclass correlation 0.5740 0.0025

Randomized-block 0.5091 0.0035 0.5740 0.0061

Resampling-block 0.5091 0.0045 0.5740 0.0065

Exact permutation 0.3721 0.0161 0.5091 0.0043 0.5740 0.0063
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6.6.7 Strengths and Limitations of the Five Methods

The five methods differ greatly in strengths and limitations. No single method is
sufficiently flexible to address all important aspects of unweighted and weighted
kappa for multiple judges. However, for a specific application, a researcher may
well find one of the methods to be very satisfactory, despite its general limitations.
The five summaries provided below are numbered for comparison purposes, where
(1) considers weighting schemes, (2) considers the number of disjoint categories, (3)
considers symmetric/asymmetric weights, (4) considers suitability for unweighted
kappa, (5) considers suitability for weighted kappa, (6) considers the number of
possible judges, (7) considers the nature of the probability value, (8) considers
assumptions about the probability distribution, and (9) considers assumptions about
the data distribution.

Exact Variance Method

1. Permits any weighting scheme.
2. Allows for c ≥ 2 disjoint, ordered categories.
3. Accommodates both symmetric and asymmetric weights.
4. Is appropriate for unweighted kappa.
5. Is appropriate for weighted kappa.
6. Is highly cumbersome for b ≥ 5 judges.
7. Provides an approximate asymptotic probability value.
8. Approaches the N(0, 1) probability distribution of the standardized test statistic

with fixed positive marginal proportions as N → ∞.
9. Requires no distributional assumptions for the data.

Resampling Contingency Table Method

1. Permits any weighting scheme.
2. Allows for c ≥ 2 disjoint, ordered categories.
3. Accommodates both symmetric and asymmetric weights.
4. Is appropriate for unweighted kappa.
5. Is appropriate for weighted kappa.
6. Is computationally intensive for b ≥ 7 judges.
7. Provides a highly accurate Monte Carlo resampling probability value when the

exact probability value is not too small.
8. Makes no assumptions about the probability distribution of the statistic.
9. Requires no distributional assumptions for the data.
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Intraclass Correlation Method

1. Is restricted to quadratic weighting.
2. Allows for c ≥ 2 disjoint categories.
3. Is limited to symmetric quadratic weights and is not appropriate for linear

weighting.
4. Is not suitable for unweighted kappa.
5. Is appropriate for a specified weighted kappa.
6. Easily accommodates large numbers of judges.
7. Provides an approximate probability value if assumptions are not excessively

violated.
8. Assumes the probability distribution of the statistic is Snedecor’s F .
9. Assumes that the data were independently drawn from a normal distribution.

Randomized-Block Method

1. Permits any symmetric weighting scheme based on v > 0.
2. Allows for c ≥ 2 disjoint categories.
3. Is limited to symmetric weights that include linear and quadratic weights when

v = 1 and v = 2, respectively.
4. Is specifically suited for unweighted kappa when b = 2.
5. Is appropriate for a particular class of weighted kappa with b ≥ 2.
6. Easily accommodates any number of judges for weighted kappa.
7. Provides an approximate probability value.
8. Makes no assumptions about the probability distribution of the statistic.
9. Requires no distributional assumptions for the data.

Resampling-Block Method

1. Permits any symmetric weighting scheme based on v > 0.
2. Allows for c ≥ 2 disjoint categories.
3. Is limited to symmetric weights that include linear and quadratic weights when

v = 1 and v = 2, respectively.
4. Is specifically suited for unweighted kappa when b = 2.
5. Is appropriate for a particular class of weighted kappa with b ≥ 2.
6. Easily accommodates any number of judges for weighted kappa.
7. Provides a highly accurate Monte Carlo resampling probability value when the

exact probability value is not too small.
8. Makes no assumptions about the probability distribution of the statistic.
9. Requires no distributional assumptions for the data.
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6.6.8 Discussion

Fisher in 1935 [26] was the first to propose a permutation test that employed a
reference set of test statistic values based on the actual observations, rather than
their ranks [46]. Further work by Eden and Yates in 1933 [22], Hotelling and
Pabst in 1936 [38], Pitman in 1937 and 1938 [64, 65, 66], Wald and Wolfowitz
in 1944 [90], Hoeffding in 1952 [37], Box and Anderson in 1955 [8], Kempthorne
in 1955 [40], Feinstein in 1973 [25], and others extended permutation tests to a
wide variety of analytic problems. The initial motivation for permutation statistical
methods was to validate asymptotic tests. Consequently, permutation methods have
become the gold standard against which conventional parametric tests are tested and
evaluated [1, 70]. Thus, the Monte Carlo resampling permutation contingency table
method is the most versatile and accurate of the five methods for univariate data,
provided that the number of judges is not too large. As summarized, vide supra,
the resampling contingency table method permits any weighting scheme, accom-
modates both symmetric and asymmetric weights, is suitable for both unweighted
and weighted kappa, makes no assumptions about the data distribution, and makes
no assumptions about the probability distribution.

Finally, there are some concerns about the intraclass correlation method, in
general, and quadratic symmetric weighting, in particular. Cicchetti and Fleiss [12,
p. 200] noted that the intraclass correlation method, based as it is on the analysis
of variance, assumes that the data are continuous. In addition, Graham and
Jackson [33] observed that the use of symmetric quadratic weights for weighted
kappa results in a measure of association, not agreement.

6.7 Ridit Analysis

In 1958 I.D.J. Bross introduced ridit scoring for the analysis of ordered categorical
data where “ridit” is an acronym for Relative to an Identified Distribution and
the “it” represents a type of transformation similar to logit and probit [10]. Two
applications of ridit analysis are common. The first compares treatment and control
groups where the observed control group serves as a reference group and ridits are
calculated for the c disjoint, ordered categories of the control group and applied to
the c disjoint, ordered categories of the treatment group.

In the first application, the control group and corresponding ridits are treated
as an infinite population and population parameters, respectively. The second
application compares two independent treatment groups where neither treatment
group is considered to be a reference group and ridits are calculated for the c

disjoint, ordered category frequencies of each treatment group and applied to the
c disjoint, ordered categories of the other treatment group. In this application, the
k = 2 treatment groups are considered as independent finite samples, with neither
identified as a reference group. The assumption of the second application that both
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groups are finite is more realistic. In 2009 Mielke, Long, Berry, and Johnston
generalized ridit analysis for k ≥ 2 independent treatment groups [63].

Consider a c×k cross-classification contingency table with c disjoint, ordered
response categories and k unordered treatment groups. Following the notation of
Bross, let mij denote the observed cell frequency of the ith row and j th column for
i = 1, . . . , c and j = 1, . . . , k, let

Mj =
c∑

i=1

mij

denote the unordered treatment frequency totals for j = 1, . . . , k, and let

N =
c∑

i=1

k∑
j=1

mij

denote the table frequency total for all ck cells. The ridit scores for the j th observed
treatment, j = 1, . . . , k, are given by

R1j = mij

2Mj

, R2j =
m1j + m2j

2
Mj

, . . . , Rcj =
m1j + · · · + mc−1,j + mcj

2
Mj

.

Thus, the ridit score Rij for the ith of c categories in the j th of k treatments is
the proportion of observations in the categories below the ith category in the j th
treatment, plus half the proportion of observations in the ith category of the j th
treatment.

6.7.1 Example Calculations

For an example illustrating the calculation of ridit scores, consider the data given in
Table 6.48. The graded categories in Table 6.48 refer to a scale of injuries suffered
in automobile accidents. Column 1 of Table 6.48 is the frequency distribution in
an identified treatment group. Column 2 is one-half of the corresponding entry
in Column 1, e.g., for category None, 17/2 = 8.5. Column 3 is the cumulative
frequency of Column 1, displaced by one category downward, e.g., the frequency
of 17 for category None in Column 1 is added to the frequency of 54 for category
Minor in Column 1 and the frequency of 71 for Moderate in Column 3 is the sum
of 17 and 54. Column 4 is the sum of Columns 2 and 3, e.g., for category Minor,
27.0 + 17 = 44.0. Column 5 contains the ridit scores that are the entries in Column
4 divided by N , e.g., for category None, 8.5/179 = 0.0475.
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Table 6.48 Example
calculation of ridit scores

Column

Category 1 2 3 4 5

None 17 8.5 0 8.5 0.0475

Minor 54 27.0 17 44.0 0.2458

Moderate 60 30.0 71 101.0 0.5642

Severe 19 9.5 131 140.5 0.7849

Serious 9 4.5 150 154.5 0.8631

Critical 6 3.0 159 162.0 0.9050

Fatal 14 7.0 165 172.0 0.9609

Total 179 179

Define test statistic T as

T =
k−1∑
i=1

k∑
j=i+1

∣∣xij − xji

∣∣ ,

where

xij =
c∑

k=1

Rkimkj

Mj

for i, j = 1, . . . , k.
In the context of a k-treatment ridit analysis, exact permutation procedures

examine all possible, equally-likely assignments of the N subjects to the c disjoint,
ordered categories. Alternatively, Monte Carlo resampling permutation procedures
examine a random subset selected from all possible assignments of the N subjects to
the c disjoint, ordered categories. The null hypothesis of a permutation test specifies
that all possible outcomes of the ridit analysis are equally likely.

Exact Permutation Procedures

The Mj subjects of the j th treatment group, j = 1, . . . , k, are classified
into c disjoint, ordered categories. Among the cN equally-likely distinguishable
assignment configurations under the null hypothesis, there are

W =
k∏

j=1

(
Mj + c − 1

c − 1

)
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distinguishable partitions of the cN assignment configurations of the k treatment
groups. In a typical application, W and cN are usually very large, e.g., with c = k =
4 and M1 = M2 = M3 = M4 = 20,

W = 9,837,262,146,481 and cN = 1.4615×1048 .

Therefore, an exact permutation analysis is generally not practical for ridit analyses
with k > 2 treatments and Monte Carlo permutation procedures are recommended.

Resampling Permutation Procedures

A Monte Carlo resampling permutation procedure generates L sets of N random
assignments selected with replacement from the cN equally-likely assignment
configurations of the k treatment groups. In general, L = 1,000,000 is sufficient
to ensure three decimal places of accuracy [39]. For each of the L sets, counters
for the c disjoint, ordered categories indexed by i = 1, . . . , c are set to zero and an
independent uniform random variable Uj over [0, 1) is generated for j = 1, . . . , N .
If Uj belongs to

[
i − 1

c
,
i

c

)
,

the ith of c counters is increased by 1. The ridit test statistic T is then calculated for
each of the L sets of N random assignments of the ordered category frequencies.
Let To denote the observed value of T . Then given the resampling ridit statistics,
T1, . . . , TL, the resampling upper-tail probability value of To under the null
hypothesis is given by

P = 1

L

L∑
i=1

�(Ti) ,

where

�(Ti) =
⎧⎨
⎩

1 if Ti ≥ To ,

0 otherwise .

6.7.2 Example Ridit Analysis

Consider an example ridit analysis with c = 5 disjoint, ordered categories and k =
4 treatment groups. Suppose that a medical researcher evaluates four post-surgery
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medications on N = 149 patients in a large hospital over a period of one year.
Each patient received a robotic-assisted laparoscopic radical prostatectomy and was
randomly assigned to one of k = 4 post-surgery groups. Patients in each treatment
group were administered standard doses of one of four opioids: Fentanyl, Codeine,
Oxycodone, or Morphine. Four hours after recovery, patients rated the effectiveness
of the pain medication on a c = 5 point scale from Excellent to Poor. Table 6.49
lists the rating frequencies and associated ridit scores for each opioid, i.e., mij and
Rij for i = 1, . . . , c = 5 and j = 1, . . . , k = 4. At the completion of the research
trial, for Fentanyl M1 = 36, for Codeine M2 = 38, for Oxycodone M3 = 38, for
Morphine M4 = 37, and N = 149. For the ridit data listed in Table 6.49, based on
L = 1,000,000 random arrangements of the observed data, the observed value of T

is To = 0.8420 with an upper-tail probability value of P = 0.0359.
Once the k-treatment analysis is completed, researchers often look to compare

all possible pairs of treatments. In this example, there are

(
k

2

)
= k(k − 1)

2
= 4(4 − 1)

2
= 6

possible treatment pairs. Table 6.50 summarizes the results of the pairwise compar-
isons, where the probability values (in parentheses) for each comparison are based
on L = 1,000,000 random arrangements of the observed data given in Table 6.49.

Table 6.49 Observed frequencies and associated ridit scores (in parentheses) for four post-surgery
opioids

Opioid

Rating Fentanyl Codeine Oxycodone Morphine

Excellent 5 (0.0694) 4 (0.0526) 2 (0.0263) 3 (0.0405)

Good 9 (0.2639) 8 (0.2105) 16 (0.2632) 17 (0.3108)

Adequate 2 (0.4167) 3 (0.3553) 7 (0.5658) 4 (0.5946)

Weak 3 (0.4861) 15 (0.5921) 5 (0.7237) 5 (0.7162)

Poor 17 (0.7639) 8 (0.8947) 8 (0.8947) 8 (0.8919)

Sum 36 38 38 37

Table 6.50 Test statistic T and associated P values (in parentheses) for six pairwise treatment
comparisons

Opioid Codeine Oxycodone Morphine

Fentanyl 0.1031 (0.1160) 0.1674 (0.1301) 0.1944 (0.0925)

Codeine – 0.1537 (0.1275) 0.1743 (0.1110)

Oxycodone – – 0.0491 (0.5037)
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6.8 Coda

While Chap. 5 applied permutation statistical methods to measures of association
designed for two ordinal-level variables based on pairwise comparisons between
rank scores, Chap. 6 applied exact and Monte Carlo resampling permutation statisti-
cal methods to measures of association designed for two ordinal-level variables that
are based on criteria other than pairwise comparisons between rank scores. Included
in Chap. 6 were Spearman’s rank-order correlation coefficient, Spearman’s footrule
measure of inter-rater agreement, Kendall’s coefficient of concordance, Kendall’s u

measure of chance-corrected agreement, Cohen’s weighted kappa measure of inter-
rater agreement with linear and quadratic weightings, Vanbelle and Albert’s analysis
of embedded 2×2 contingency tables, and Bross’s ridit analysis.

Chapter 7 examines exact and Monte Carlo resampling statistical permutation
methods applied to measures of association for two variables at the interval level of
measurement. Included in Chap. 7 are discussions of ordinary least squares (OLS
regression), least absolute deviation (LAD) regression, point-biserial correlation,
biserial correlation, intraclass correlation, and Fisher’s z transform for skewed
distributions.
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Chapter 7
Interval-Level Variables

Chapter 7 of The Measurement of Association applies exact and Monte Carlo
permutation statistical methods to measures of association designed for two or
more interval-level variables. While permutation statistical methods are commonly
associated with non-parametric statistics and, therefore, thought by many to be
limited to nominal- and ordinal-level measurements, such is certainly not the case,
as noted by Feinstein in 1973 [12]. In fact, a great strength of exact and Monte Carlo
permutation statistical methods is in the analysis of interval-level measurements [6].
Chapter 7 begins with a discussion and comparison of simple and multiple ordinary
least squares (OLS) regression and simple and multiple least absolute deviation
(LAD) regression using permutation statistical methods. Multiple regression with
multiple independent variables and multivariate dependent variables is described
and illustrated. Point-biserial and biserial correlation coefficients are described and
analyzed with exact and Monte Carlo permutation methods. Fisher’s z transform
is examined and evaluated as to its utility in transforming skewed distributions
for both hypothesis testing and confidence intervals. Chapter 7 concludes with
a discussion of permutation statistical methods applied to Pearson’s intraclass
correlation coefficient.

7.1 Ordinary Least Squares (OLS) Linear Regression

Ordinary least squares (OLS) regression with a single predictor is a popular
statistical measure of the degree of association (correlation) between two interval-
level variables, usually denoted as x and y. The assumption of normality comes
into play when the null hypothesis is tested by conventional means. Permutation
statistical methods do not assume normality and, therefore, are often more useful
than conventional statistical methods, especially when the sample size is small. Let
rxy denote the Pearson product-moment correlation coefficient for variables x and y
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given by

rxy =

N∑
i=1

(xi − x̄)(yi − ȳ)

√√√√
[

N∑
i=1

(xi − x̄)2

][
N∑

i=1

(yi − ȳ)2

] ,

where x̄ and ȳ denote the arithmetic means of variables x and y, respectively, and
N is the number of bivariate measurements. The conventional test of significance is
given by

t = rxy

√
N − 2√

1 − r2
xy

,

which is distributed as Student’s t with N − 2 degrees of freedom, under the
assumption of normality.

More useful than simple OLS regression and correlation is multiple OLS
regression with p predictors, x1, x2, . . . , xp. Let Ry.x1, x2, ..., xp indicate the multiple
correlation coefficient for variables y and x1, x2, . . . , xp given by

R2
x1, x2, ..., xp

= β ′ry ,

where β ′ is the transposed vector of standardized regression weights and ry is
the vector of zero-order correlation coefficients of y with x1, x2, . . . , xp. The
conventional test of significance is given by

F = (N − p − 1)R2
y.x1, x2, ..., xp

p(1 − R2
y.x1, x2, ..., xp

)
,

which is distributed as Snedecor’s F with p and N − p − 1 degrees of freedom,
under the assumption of normality.

7.1.1 Univariate Example of OLS Regression

Consider the example set of bivariate data listed in Table 7.1 for N = 11 subjects.
For the bivariate data listed in Table 7.1, the Pearson product-moment correlation
coefficient is rxy = +0.8509. An exact permutation analysis requires random
shuffles of either the x or the y values with the other set of values held constant.
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Table 7.1 Example bivariate
OLS correlation data on
N = 11 subjects

Subject x y

1 11 4

2 18 11

3 12 1

4 27 16

5 15 5

6 21 9

7 25 10

8 15 2

9 18 8

10 23 7

11 12 3

For this small example there are

M = N ! = 11! = 39,916,800

possible, equally-likely arrangements in the reference set of all permutations of
the observed bivariate data, making an exact permutation analysis feasible. Monte
Carlo resampling methods are generally preferred for permutation correlation
analyses since N ! is usually a very large number, e.g., with N = 13 there are
13! = 6,227,020,800 possible arrangements. Let ro indicate the observed value
of rxy . Then, based on L = 1,000,000 random arrangements of the observed
data under the null hypothesis, there are 861 |rxy | values equal to or greater than
|ro| = 0.8509, yielding a Monte Carlo resampling two-sided probability value of
P = 861/1,000,000 = 0.8610×10−3.

While M = 39,916,800 possible arrangements of the observed data makes an
exact permutation analysis impractical, it is not impossible. Based on the M =
39,916,800 arrangements of the observed data under the null hypothesis, there
are 35,216 |rxy | values equal to or greater than |ro| = 0.8509, yielding an exact
two-sided probability value of P = 35,216/39,916,800 = 0.8822×10−3. For
comparison, for the data listed in Table 7.1 t = 4.8591 and the two-sided probability
value of |ro| = 0.8509 based on Student’s t distribution with N − 2 = 11 − 2 = 9
degrees of freedom is P = 0.8969×10−3.

7.1.2 Multivariate Example of OLS Regression

For a multivariate example of OLS linear regression, consider the small example
data set with p = 2 predictors listed in Table 7.2 where variable y is Weight in
pounds, variable x1 is Height in inches, and variable x2 is Age in years for N = 12
school children. For the multivariate data listed in Table 7.2, the unstandardized
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Table 7.2 Example
multivariate OLS correlation
data on N = 12 children

Child x1 x2 y

1 57 8 64

2 59 10 71

3 49 6 53

4 62 11 67

5 51 8 55

6 50 7 58

7 55 10 77

8 48 9 57

9 52 6 56

10 42 12 51

11 61 9 76

12 57 9 68

OLS regression coefficients are

β̂1 = +1.1973 and β̂2 = +1.1709 ,

and the squared OLS multiple correlation coefficient is R2
y.x1, x2

= 0.7301

(henceforth, simply R2). An exact permutation analysis of multiple correlation
requires random shuffles of either the x or the y values. It is important to note
that the predictor variables must be shuffled as a unit, i.e., x1, . . . , xp. Otherwise,
a researcher may end up with a combination of predictor variables that make no
sense, e.g., 4-year-old child, married, with two children. Thus, it is advisable to
simply shuffle the y values. Even with this very small example there are

M = N ! = 12! = 479,001,600

possible, equally-likely arrangements of the observed data, making an exact permu-
tation analysis impractical. Based on L = 1,000,000 random arrangements of the
observed data, the Monte Carlo resampling probability of R2 = 0.7301 is

P
(
R2 ≥ R2

o

∣∣H0
) = number of R2 values ≥ R2

o

L
= 2,370

1,000,000

= 0.2370×10−2 ,

where R2
o denotes the observed value of R2.

While M = 479,001,600 possible arrangements makes an exact permutation
analysis impractical, it is not impossible. If the reference set of all possible
permutations of the observed scores in Table 7.2 occur with equal chance, the exact
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probability of R2 = 0.7301 under the null hypothesis is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

M
= 1,147,714

479,001,600

= 0.2396×10−2 ,

where R2
o denotes the observed value of R2. For comparison, for the data listed

in Fig. 7.2, F = 12.1728 and the probability value of R2 = 0.7301 based on
Snedecor’s F distribution with p,N − p − 1 = 2, 12 − 2 − 1 = 2, 9 degrees
of freedom is approximately P = 0.2757×10−2, under the null hypothesis.

7.2 Least Absolute Deviation (LAD) Regression

Ordinary least squares (OLS) linear regression has long been recognized as a useful
tool in many areas of research. The optimal properties of OLS linear regression
are well known when the errors are normally distributed. In practice, however,
the assumption of normality is rarely justified. Least absolute deviation (LAD)
linear regression is often superior to OLS linear regression when the errors are not
normally distributed [8, 9, 29, 44, 55]. Estimators of OLS regression parameters
can be severely affected by unusual values in either the criterion variable or in
one or more of the predictor variables, which is largely due to the weight given
to each data point when minimizing the sum of squared errors. In contrast, LAD
regression is less sensitive to the effects of unusual values because the errors are not
squared. The comparison between OLS and LAD linear regression is analogous to
the effect of extreme values on the mean and median as measures of location [8]. In
this section, the robust nature of least absolute linear regression is illustrated with
a simple example and the effects of distance, leverage, and influence are examined.
For clarity and efficiency, the illustration and ensuing discussion are limited to
simple linear regression with one predictor variable (x) and one criterion variable
(y), with no loss of generality.

Consider N paired xi and yi observed values for i = 1, . . . , N . For the OLS
regression equation given by

ŷi = α̂yx + β̂yxxi ,

where ŷi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̂yx and β̂yx are the OLS parameter estimates of the intercept (αyx) and slope
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(βyx), respectively, and are given by

β̂yx =

N∑
i=1

(
yi − ȳ

)(
xi − x̄

)

N∑
i=1

(
xi − x̄

)2
(7.1)

and

α̂yx = ȳ − β̂yxx̄ , (7.2)

where x̄ and ȳ are the sample means of variables x and y, respectively. Estimates
of OLS regression parameters minimize the sum of the squared differences between
the observed and predicted criterion values, i.e.,

N∑
i=1

(
yi − ŷi

)2
.

For the LAD regression equation given by

ỹi = α̃yx + β̃yxxi ,

where ỹi is the ith of N predicted criterion values and xi is the ith of N predictor
values, α̃yx and β̃yx are the LAD parameter estimates of the intercept (αyx) and
slope (βyx), respectively.1 Unlike OLS regression, no simple expressions can be
given for α̃yx and β̃yx , as for OLS regression in Eqs. (7.1) and (7.2). However, values
for α̃yx and β̃yx may be found through an efficient linear programming algorithm,
such as provided by Barrodale and Roberts [1, 2]. In contrast to estimates of OLS
regression parameters, estimates of LAD regression parameters minimize the sum
of the absolute differences between the observed and predicted criterion values, i.e.,

N∑
i=1

∣∣yi − ỹi

∣∣ .

1In this chapter, a caret (∧) over a symbol such as α̂ or β̂ indicates an OLS regression model
predicted value of a corresponding population parameter, while a tilde (∼) over a symbol such as α̃

or β̃ indicates a LAD regression model predicted value of a corresponding population parameter.
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It is convenient to have a measure of agreement, not correlation, between the
observed and predicted y values. Let

δ = 1

N

N∑
i=1

∣∣yi − ỹi

∣∣ .

Then, the expected value of δ is given by

μδ = 1

N2

N∑
i=1

N∑
j=1

∣∣yi − ỹj

∣∣ ,

and a measure of agreement between the observed y values and the predicted ỹ

values is given by

� = 1 − δ

μδ

.

� is a chance-corrected measure of agreement and/or effect size, reflecting the
amount of agreement in excess of what would be expected by chance. � attains a
maximum value of unity when the agreement between the observed y values and the
predicted ỹ values is perfect, i.e., yi and ỹi values are identical for i = 1, . . . , N . �
is zero when the agreement between the observed y values and predicted ỹ values
is equal to what is expected by chance, i.e., E[�|H0] = 0. Like all chance-corrected
measures, � will occasionally be slightly negative when agreement is less than what
is expected by chance.

7.2.1 Illustration of Effects of Extreme Values

Three useful diagnostics for assessing the potential effects of extreme values
on regression estimators are distance, leverage, and influence. In general terms,
distance refers to the possible presence of unusual values in the criterion variable
and is typically measured as the deviation of a value from the measured center of the
criterion variable (y). Leverage refers to the possible presence of unusual values in
a predictor variable. In the case of a single predictor, leverage is typically measured
as the deviation of a value from the measured center of the predictor variable (x).
Influence incorporates both distance and leverage and refers to the possible presence
of unusual values in some combination of the criterion and predictor variables.

For OLS regression, the measure of distance for any data point is simply an error
term or residual, i.e., ei = yi − ŷi and is sometimes standardized and sometimes
Studentized. Leverage is a measure of the importance of the ith observation in
determining the model fit and is usually designated as hi . More specifically, hi is



378 7 Interval-Level Variables

the ith diagonal element of the N×N matrix

H = X
(
X′X

)−1 X′

called the “hat matrix,” since ŷ = Hy in which ŷ is the transposed column vector

ŷ = (
ŷ1, ŷ2, . . . , ŷN

)′ and y = (y1, y2, . . . , yN)′ .

In the case of only one predictor, leverage is simply a function of the deviation of
an x score on that predictor from the prediction mean and is given by

hi = 1

N
+ (xi − x̄)2

(N − 1)s2
x

for i = 1, . . . , N ,

where s2
x is the estimated population variance for variable x given by

s2
x = 1

N − 1

N∑
i=1

(
xi − x̄

)2
.

Influence combines both leverage and distance, measured as a Studentized
residual, to identify unusually influential observations. Residuals are sometimes
standardized and sometimes Studentized. Standardized residuals are given by

zi = ei

sy.x

for i = 1, . . . , N ,

where ei = yi − ŷi for i = 1, . . . , N is the unstandardized residual and

sy.x =
(

1

N − p − 1

N∑
i=1

e2
i

)1/2

is the standard error of estimate. Standardized residuals have a mean of zero and a
variance of one. Studentized residuals are given by

ri = ei

sy.x

√
1 − hi

= zi√
1 − hi

for i = 1, . . . , N .

Studentized residuals follow Student’s t distribution with mean near zero and
variance slightly greater than one.

The most common measure of influence is Cook’s distance given by

di =
(

1

p + 1

)
r2
i

(
hi

1 − hi

)
,
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where r2
i denotes the squared Studentized residual and p is the number of predictor

variables.
To illustrate the effects of extreme values on the estimates of OLS and LAD

regression parameters, consider an example of linear regression with one predictor
and a single extreme data point. This simplified example permits the isolation and
assessment of distance, leverage, and influence and allows comparison of the effects
of an atypical value on estimates of OLS and LAD regression parameters. The
data for a linear regression with one predictor variable are listed in Table 7.3.
The bivariate data listed in Table 7.3 consist of nine data points with xi = i and
yi = 10 − i for i = 1, . . . , 9 and describe a perfect negative linear relationship.
Figure 7.1 displays the example bivariate data listed in Table 7.3 and indicates the
directions of unusual values implicit in distance (D), leverage (L), and influence (I).

Table 7.3 Example bivariate
data on N = 9 objects for a
perfect negative linear
regression with one predictor
variable

Object

Variable 1 2 3 4 5 6 7 8 9

x 3 6 1 8 5 9 2 4 7

y 7 4 9 2 5 1 8 6 3

Fig. 7.1 Scatterplot of the data given in Table 7.3 with the directions of extreme values indicated
by D, I, and L for distance, influence, and leverage, respectively
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Distance

If a tenth bivariate value is added to the nine bivariate values given in Table 7.3
where (x10, y10) = (5, 5), the new data point is located at the common mean and
median of both variable x and variable y and, therefore, does not affect the perfect
linear relationship between the variables. If x10 is held constant at x10 = 5, but y10
takes on the added values of 6, 7, . . . , 30, 40, 60, 80, and 100, then the effects of
distance on the two regression models can be observed. The vertical movement of
y10 with variable x held constant at x10 = 5 is depicted by the directional arrow
labeled “D” in Fig. 7.1 and by the four white circles in Fig. 7.2, illustrating an
additional data point moving vertically away from location (x5, y5) = (5, 5) by
increments of one y unit, i.e., (5, 6), (5, 7), (5, 8), and so on.

Table 7.4 lists the values for x10 and y10 in the first two columns, the α̂yx and
β̂yx estimates of the OLS regression parameters in the next two columns, and the
α̃yx and β̃yx estimates of the LAD regression parameters in the last two columns.
The α̃yx and β̃yx parameter estimates in the last two columns of Table 7.4 were
obtained using the linear program of Barrodale and Roberts [2]. The estimates of the
OLS regression parameters listed in Table 7.4 demonstrate that α̂yx systematically
changes with increases in distance, but β̂yx remains constant at −1.00. In contrast,
estimates of the LAD regression parameters are unaffected by changes in distance,
remaining constant at α̃yx = 10.00 and β̃yx = −1.00 for x10 = 5 and any value
of y10. Given the nine bivariate data points listed in Table 7.3 and an additional

Fig. 7.2 Scatterplot of the
data given in Table 7.3 with
the locations of an added
tenth value indicated by four
white circles
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Table 7.4 Effects of distance
on intercepts and slopes of
OLS and LAD linear
regression models

OLS model LAD model

x10 y10 α̂yx β̂yx α̃yx β̃yx

5 5 +10.0000 −1.0000 +10.0000 −1.0000

5 6 +10.1000 −1.0000 +10.0000 −1.0000

5 7 +10.2000 −1.0000 +10.0000 −1.0000

5 8 +10.3000 −1.0000 +10.0000 −1.0000

5 9 +10.4000 −1.0000 +10.0000 −1.0000

5 10 +10.5000 −1.0000 +10.0000 −1.0000

5 11 +10.6000 −1.0000 +10.0000 −1.0000

5 12 +10.7000 −1.0000 +10.0000 −1.0000

5 13 +10.8000 −1.0000 +10.0000 −1.0000

5 14 +10.9000 −1.0000 +10.0000 −1.0000

5 15 +11.0000 −1.0000 +10.0000 −1.0000

5 16 +11.1000 −1.0000 +10.0000 −1.0000

5 17 +11.2000 −1.0000 +10.0000 −1.0000

5 18 +11.3000 −1.0000 +10.0000 −1.0000

5 19 +11.4000 −1.0000 +10.0000 −1.0000

5 20 +11.5000 −1.0000 +10.0000 −1.0000

5 21 +11.6000 −1.0000 +10.0000 −1.0000

5 22 +11.7000 −1.0000 +10.0000 −1.0000

5 23 +11.8000 −1.0000 +10.0000 −1.0000

5 24 +11.9000 −1.0000 +10.0000 −1.0000

5 25 +12.0000 −1.0000 +10.0000 −1.0000

5 26 +12.1000 −1.0000 +10.0000 −1.0000

5 27 +12.2000 −1.0000 +10.0000 −1.0000

5 28 +12.3000 −1.0000 +10.0000 −1.0000

5 29 +12.4000 −1.0000 +10.0000 −1.0000

5 30 +12.5000 −1.0000 +10.0000 −1.0000

5 40 +13.5000 −1.0000 +10.0000 −1.0000

5 60 +15.5000 −1.0000 +10.0000 −1.0000

5 80 +17.5000 −1.0000 +10.0000 −1.0000

5 100 +19.5000 −1.0000 +10.0000 −1.0000

bivariate data point with x10 = 5, it follows that

10∑
i=1

∣∣yi − ỹi

∣∣ = ∣∣y10 − 5
∣∣ .

Leverage

If a tenth bivariate value is added to the nine bivariate values given in Table 7.3
where y10 = 5 and x10 takes on the added values of 6, 7, . . . , 30, 40, 60, 80, and
100, then the effects of leverage on the two regression models can be observed.
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Fig. 7.3 Scatterplot of the data given in Table 7.3 with the locations of an added tenth value
indicated by four white circles

The horizontal movement of x10 with y10 held constant at y10 = 5 is depicted
by the directional arrow labeled “L” in Fig. 7.1 and by the four white circles
in Fig. 7.3, illustrating an additional data point moving horizontally away from
(x5, y5) = (5, 5) by increments of one x unit, i.e., (6, 5), (7, 5), (8, 5), and so on.

Table 7.5 lists the values of x10 and y10 in the first two columns, the α̂yx and β̂yx

estimates of the OLS regression parameters in the next two columns, and the α̃yx

and β̃yx estimates of the LAD regression parameters in the last two columns. The
α̃yx and β̃yx estimates were again obtained using the linear program of Barrodale
and Roberts [2]. The estimates of the OLS regression parameters listed in Table 7.5
demonstrate that both α̂yx and β̂yx exhibit complex changes with increases in
leverage. Note the dramatic changes in the intercept from α̂yx = +10.00 to α̂yx =
+5.1063, approaching the mean of y (+5.00), and the slope from β̂yx = −1.00
to β̂yx = −0.0073, approaching a slope of zero. In contrast, α̃yx and β̃yx are
unaffected for y10 = 5 and 5 ≤ x10 ≤ 24. For y10 = 5 and x10 ≥ 26, the LAD
estimated regression parameters change from α̃yx = +10.00 and β̃yx = −1.00 to
α̃yx = +5.00 and β̃yx = 0.00.

Given the bivariate data listed in Table 7.3 on p. 379 and an additional bivariate
data point with variable y held constant at y10 = 5, it follows that

10∑
i=1

∣∣yi − ỹi

∣∣ ≤ 20.00
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Table 7.5 Effects of
leverage on intercepts and
slopes of OLS and LAD
linear regression models

OLS model LAD model

x10 y10 α̂yx β̂yx α̃yx β̃yx

5 5 +10.0000 −1.0000 +10.0000 −1.0000

6 5 +10.0246 −0.9852 +10.0000 −1.0000

7 5 +9.9057 −0.9434 +10.0000 −1.0000

8 5 +9.6696 −0.8811 +10.0000 −1.0000

9 5 +9.3548 −0.8065 +10.0000 −1.0000

10 5 +9.0000 −0.7273 +10.0000 −1.0000

11 5 +8.6364 −0.6494 +10.0000 −1.0000

12 5 +8.2853 −0.5764 +10.0000 −1.0000

13 5 +7.9592 −0.5102 +10.0000 −1.0000

14 5 +7.6637 −0.4515 +10.0000 −1.0000

15 5 +7.4000 −0.4000 +10.0000 −1.0000

16 5 +7.1670 −0.3552 +10.0000 −1.0000

17 5 +6.9620 −0.3165 +10.0000 −1.0000

18 5 +6.7822 −0.2829 +10.0000 −1.0000

19 5 +6.6244 −0.2538 +10.0000 −1.0000

20 5 +6.4857 −0.2286 +10.0000 −1.0000

21 5 +6.3636 −0.2066 +10.0000 −1.0000

22 5 +6.2559 −0.1874 +10.0000 −1.0000

23 5 +6.1604 −0.1706 +10.0000 −1.0000

24 5 +6.0756 −0.1559 +10.0000 −1.0000

25 5 +6.0000 −0.1429 +10.0000 −1.0000

26 5 +5.9324 −0.1313 +5.0000 0.0000

27 5 +5.8717 −0.1211 +5.0000 0.0000

28 5 +5.8170 −0.1119 +5.0000 0.0000

29 5 +5.7676 −0.1037 +5.0000 0.0000

30 5 +5.7229 −0.0964 +5.0000 0.0000

40 5 +5.4387 −0.0516 +5.0000 0.0000

60 5 +5.2264 −0.0216 +5.0000 0.0000

80 5 +5.1464 −0.0117 +5.0000 0.0000

100 5 +5.1063 −0.0073 +5.0000 0.0000

for x10 ≤ 25 and

10∑
i=1

∣∣yi − ỹi

∣∣ = 20.00

for x10 ≥ 25. When x10 ≤ 25, the LAD regression line defined by α̃yx = +10.00
and β̃yx = −1.00 yields the minimum sum of absolute differences. However, when
x10 ≥ 25 the LAD regression line defined by α̃yx = +5.00 and β̃yx = 0.00
that passes through the data point located at (x10, y10) yields the minimum sum
of absolute differences. For x10 = 25, the LAD regression line is not unique. While
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Fig. 7.4 Scatterplot of the
data given in Table 7.3 with
the regression line β̃yx
depicted and the locations of
an added tenth value
indicated by four white
circles

this is an interesting property of LAD regression and can easily be demonstrated
with one predictor and a small number of data points, in practice any extreme value
would have to be so far removed from the measured center of the distribution of
variable x to be considered a “grossly aberrant” value [47, p. 871].

The fact that when y10 = 5 and x10 = 25, the solution is not unique and either of
the two LAD regression lines is appropriate, deserves some additional explanation.
Consider the data points in Fig. 7.4 where the additional tenth point is indicated at
locations

(x6, y5), (x7, y5), . . . , (x9, y5)

and the LAD regression line for the original nine data points with α̃ = +10.00 and
β̃ = −1.00 is depicted. If only the original nine data points are considered, the sum
of absolute deviations is zero, i.e.,

9∑
i=1

∣∣yi − ỹi

∣∣ = ∣∣9 − 9
∣∣+ ∣∣8 − 8

∣∣+ ∣∣7 − 7
∣∣+ ∣∣6 − 6

∣∣+ ∣∣5 − 5
∣∣+ ∣∣4 − 4

∣∣

+ ∣∣3 − 3
∣∣+ ∣∣2 − 2

∣∣+ ∣∣1 − 1
∣∣ = 0.00 .

The addition of a tenth data point at location (x6, y5), the first white circle to
the right of the regression line in Fig. 7.4, increases the sum of absolute deviations
by one, i.e., |yi − ŷi | = |6 − 5| = 1. Moving the new data point horizontally
to location (x7, y5), the second white circle to the right of the regression line in
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Fig. 7.4, increases the sum of absolute deviations by two, i.e., |yi − ỹi | = |7 −
5| = 2. Continuing to move the new data point horizontally increments the sum of
absolute deviations by increasing amounts. Consider locations (x24, y5), (x25, y5),
and (x26, y5), where

∣∣yi − ỹi

∣∣ = ∣∣24 − 5
∣∣ = 19 ,

∣∣yi − ỹi

∣∣ = ∣∣25 − 5
∣∣ = 20 ,

and

∣∣yi − ỹi

∣∣ = ∣∣26 − 5
∣∣ = 21 ,

respectively.
Thus, for an additional value up to location (x25, y5) the sum of absolute

deviations will be equal to or less than 20, and for an additional value beyond
location (x25, y5) the sum of absolute deviations will be equal to or greater than
20. However, when a data point is added at location (x25, y5) something interesting
happens, which is readily apparent in Table 7.5. At this point a dramatic shift in the
LAD regression line occurs, from α̃yx = +10.00 and β̃yx = −1.00 to α̃yx = +5.00
and β̃yx = 0.00. The regression line is leveraged and forced through the new data
point location at (x25, y5). The new regression line is depicted in Fig. 7.5 with the
absolute errors indicated by dashed lines. The sum of the absolute errors around the

Fig. 7.5 Scatterplot of the
data given in Table 7.3 with
absolute errors indicated by
dashed lines
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new regression line is

10∑
i=1

∣∣yi − ỹi

∣∣ = ∣∣9 − 5
∣∣+ ∣∣8 − 5

∣∣+ ∣∣7 − 5
∣∣+ ∣∣6 − 5

∣∣+ ∣∣5 − 5
∣∣+ ∣∣4 − 5

∣∣

+ ∣∣3 − 5
∣∣+ ∣∣2 − 5

∣∣+ ∣∣1 − 5
∣∣+ ∣∣5 − 5

∣∣ = 20.00 .

Thus both regression lines given by α̃yx = +10.00 and β̃yx = −1.00 and α̃yx =
+5.00 and β̃yx = 0.00 minimize the sum of absolute deviations when an additional
data point is located at (x25, y5). Note, however, that the additional data point is
far to the right and is a very extreme value, unlikely to be encountered in everyday
research. Specifically, for this minimalist example, a tenth value at location (x25, y5)

is almost three times the range and over seven standard deviations above the mean—
too extreme to be of concern in practice. Thus, LAD regression is highly stable
under all but the most extreme cases.

Influence

If a tenth bivariate value is added to the nine bivariate values given in Table 7.3 on
p. 379 where x10 = y10 takes on the added values of 6, 7, . . . , 30, 40, 60, 80, and
100, then the effects of influence on the two regression models can be observed. The
diagonal movement of (x10, y10) is depicted by the directional arrow labeled “I” in
Fig. 7.3 and by the four white circles in Fig. 7.6, illustrating an additional data point

Fig. 7.6 Scatterplot of the
data given in Table 7.3 with
the locations of an added
tenth value indicated by four
white circles
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moving diagonally away from (x5, y5) = (5, 5) by increments of one x and one y

unit, i.e., (6, 6), (7, 7), (8, 8), and so on.
Table 7.6 lists the values of x10 and y10 in the first two columns, the α̂yx and β̂yx

estimates of the OLS regression parameters in the next two columns, and the α̃yx

and β̃yx estimates of the LAD regression parameters in the last two columns. The
estimates of the OLS regression parameters listed in Table 7.4 demonstrate that both
α̂yx and β̂yx exhibit complex changes with increases in influence, quickly becoming
unstable with changes in the intercept from α̂yx = +10.00 to α̂yx = +0.2126 and
changes in the slope from β̂yx = −1.00 to β̂yx = +0.9853. Note that β̂yx is negative
from x10 = 5 up to x10 = 13, then changes to positive for x10 = 14 up to x10 = 100.

Table 7.6 Effects of
influence on intercepts and
slopes of OLS and LAD
linear regression models

OLS model| LAD model|

x10 y10 α̂yx β̂yx α̃yx β̃yx

5 5 +10.0000 −1.0000 +10.0000 −1.0000

6 6 +10.0493 −0.9704 +10.0000 −1.0000

7 7 +9.8113 −0.8868 +10.0000 −1.0000

8 8 +9.3392 −0.7621 +10.0000 −1.0000

9 9 +8.7097 −0.6129 +10.0000 −1.0000

10 10 +8.0000 −0.4545 +10.0000 −1.0000

11 11 +7.2727 −0.2987 +10.0000 −1.0000

12 12 +6.5706 −0.1527 +10.0000 −1.0000

13 13 +5.9184 −0.0204 +10.0000 −1.0000

14 14 +5.3273 +0.0971 +10.0000 −1.0000

15 15 +4.8000 +0.2000 +10.0000 −1.0000

16 16 +4.3339 +0.2895 +10.0000 −1.0000

17 17 +3.9241 +0.3671 +10.0000 −1.0000

18 18 +3.5644 +0.4342 +10.0000 −1.0000

19 19 +3.2487 +0.4924 +10.0000 −1.0000

20 20 +2.9714 +0.5429 +10.0000 −1.0000

21 21 +2.7273 +0.5868 +10.0000 −1.0000

22 22 +2.5117 +0.6251 +10.0000 −1.0000

23 23 +2.3208 +0.6587 +10.0000 −1.0000

24 24 +2.1512 +0.6882 +10.0000 −1.0000

25 25 +2.0000 +0.7143 0.0000 +1.0000

26 26 +1.8647 +0.7374 0.0000 +1.0000

27 27 +1.7433 +0.7579 0.0000 +1.0000

28 28 +1.6340 +0.7762 0.0000 +1.0000

29 29 +1.5353 +0.7925 0.0000 +1.0000

30 30 +1.4458 +0.8072 0.0000 +1.0000

40 40 +0.8774 +0.8968 0.0000 +1.0000

60 60 +0.4528 +0.9569 0.0000 +1.0000

80 80 +0.2928 +0.9766 0.0000 +1.0000

100 100 +0.2126 +0.9853 0.0000 +1.0000
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Fig. 7.7 Scatterplot of the
data given in Table 7.3 with
the regression lines
minimizing the sum of
absolute errors

Note also that the range of changes in β̂yx is from β̂yx = −1.00 for x10 = 5
approaching β̂yx = +1.00 for x10 = 100; actually, β̂yx = +0.9853 for x10 = 100.
In contrast, α̃yx and β̃yx do not change for 5 ≤ x10 = y10 ≤ 24. For x10 = y10 ≥ 26,
the estimates of the LAD regression parameters change from α̃yx = +10.00 and
β̃yx = −1.00 to α̃yx = 0.00 and β̃yx = +1.00. When x10 = y10 = 25, either of
the two LAD regression lines holds since the solution is not unique. Thus, two LAD
regression lines minimize the sum of absolute errors: one with α̃yx = +10.00 and
β̃yx = −1.00 and the other with α̃yx = 0.00 and β̃yx = +1.00.

Figure 7.7 depicts the two LAD regression lines, labeled with the values for α̃yx

and β̃yx , and dashed lines indicating the errors around the regression line with α̃yx =
0.00 and β̃yx = +1.00. As shown in Fig. 7.7, the sum of absolute errors is

10∑
i=1

∣∣yi − ỹi

∣∣ = ∣∣9 − 1
∣∣+ ∣∣8 − 2

∣∣+ ∣∣7 − 3
∣∣+ ∣∣6 − 4

∣∣+ ∣∣5 − 5
∣∣+ ∣∣4 − 6

∣∣

+ ∣∣3 − 7
∣∣+ ∣∣2 − 8

∣∣+ ∣∣1 − 9
∣∣+ ∣∣25 − 25

∣∣ = 40.00 .

Given the bivariate data listed in Table 7.3 on p. 379 and an additional bivariate
data point x10 = y10, it follows that

10∑
i=1

∣∣yi − ỹi

∣∣ ≤ 40.00
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for 5 ≤ x10 = y10 ≤ 25 and

10∑
i=1

∣∣yi − ỹi

∣∣ = 40.00

for x10 = y10 ≥ 25. When x10 = y10 ≤ 25, the LAD regression line defined by
α̃yx = +10.00 and β̃yx = −1.00 yields the minimum sum of absolute differences
between yi and ỹi for i = 1, . . . , N . However, when x10 = y10 ≥ 25, the LAD
regression line defined by α̃yx = 0.00 and β̃yx = +1.00 that passes through the data
point located at (x10, y10) yields the minimum sum of absolute differences between
yi and ỹi for i = 1, . . . , N . For x10 = y10 = 25, the LAD regression line is not
unique. It should be noted that the shift in the LAD regression line is a consequence
of only the leverage component of influence. For these data, the LAD regression
line is defined by α̃yx = +10.00 and β̃yx = −1.00 if |x10 − 5| ≤ 20.00 and the
regression line is unique if |x10 − 5| < 20.0 or y10 = 10 − x10.

LAD linear regression is a robust alternative to OLS linear regression, especially
when errors are generated by fat-tailed distributions [10, 52]. Fat-tailed distributions
mean an abundance of extreme values and OLS linear regression gives dispropor-
tionate weight to extreme values. In practice, LAD linear regression is virtually
unaffected by the presence of a few extreme values. While the effects of distance,
leverage, and influence are illustrated with only a simplified example of perfect
linear regression with one predictor, the results extend to more general regression
models. If a less-than-perfect regression model with p predictors is considered,
then the estimators of the LAD regression parameters are unaffected by unusual
yi values, when the leverage effect is absent. In addition, only exceedingly extreme
values of the predictors x1, . . . , xp have any effect on the estimation of the LAD
regression parameters.

7.2.2 Univariate Example of LAD Regression

Consider the small example set of bivariate data listed in Table 7.7 for N = 10
subjects. For the bivariate data listed in Table 7.7, the LAD regression coefficient is
β̃ = +2.1111, δ = 5.9889, μδ = 9.2267, and the LAD chance-corrected measure
of agreement between the observed y values and the predicted ỹ values is

� = 1 − δ

μδ

= 1 − 5.9889

9.2267
= +0.3509 .

Since there are M = N ! = 10! = 3,628,800 possible arrangements of the observed
data, an exact permutation analysis may not be practical. Based on L = 1,000,000
random arrangements of the observed data, the Monte Carlo resampling probability
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Table 7.7 Example bivariate
LAD correlation data on
N = 10 subjects

Subject x y

1 14 25

2 8 23

3 5 21

4 2 10

5 1 12

6 3 11

7 9 19

8 2 13

9 3 13

10 9 16

value of � = +0.3509 is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 6,679

1,000,000

= 0.6679×10−2 ,

where �o denotes the observed value of �.
While M = 3,628,800 possible arrangements makes an exact permutation

analysis impractical, it is not impossible. If the reference set of all possible
permutations of the observed scores in Table 7.7 occur with equal chance, the exact
probability of � = +0.3509 under the null hypothesis is

P
(� ≥ �o|H0

) = number of � values ≥ �o

M
= 26,966

3,628,800

= 0.7431×10−2 ,

where �o denotes the observed value of �.

7.2.3 Multivariate Example of LAD Regression

To illustrate a multivariate LAD linear regression analysis, an application of the
LAD regression model to forecasting African rainfall in the western Sahel is
utilized [38]. For the multivariate data listed in Table 7.8, the first column lists
N = 15 calendar years from 1950 to 1964 and the second through fourth columns
(U50, U30, and |U50 − U30|) contain values based on the quasibiennial oscillation of
equatorial east/west winds. U50 is the zonal wind measured in meters per second at
50 millibars (approximately 20 km in altitude) and U30 is the zonal wind measured
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Table 7.8 Regional rainfall precipitation by years with predictors U50, U30, |U50 − U30|, Rs ,
and Rg

Predictor

Year U50 U30 |U50 − U30| Rs Rg Rainfall

1950 −3 −3 0 −0.14 +1.07 +1.05

1951 −4 −13 9 +1.68 −0.66 +0.74

1952 −23 −26 3 +0.49 +0.65 +1.45

1953 0 −18 18 +0.93 +0.41 +0.99

1954 −23 −32 9 +0.20 −0.16 +1.12

1955 0 −4 4 +0.60 +0.64 +1.07

1956 −19 −33 14 +1.00 +0.41 +0.36

1957 −2 −3 1 +0.47 −0.36 +0.87

1958 −12 −28 16 +0.58 +1.03 +0.86

1959 −9 −5 4 +1.45 −0.74 +0.30

1960 −6 −21 15 +0.25 +0.12 +0.24

1961 −3 −3 0 +0.23 +1.05 +0.20

1962 −12 −32 20 +0.48 −0.74 +0.41

1963 −17 −3 14 +0.28 +0.73 +0.22

1964 −4 −18 14 −0.12 +1.18 +0.76

in meters per second at 30 millibars (approximately 23 km is altitude).2 The Rs

values in the fifth column are standard deviations from the mean rainfall for the
western Sahel region. The values for Rg in the sixth column are standard deviations
from the mean rainfall for the Gulf of Guinea. The dependent variable in the
seventh column is the April to October rainfall in the western Sahel region based
on recordings from 20 stations in the region.

For the multivariate data listed in Table 7.8, the LAD regression coefficients are

β̃1 = −0.0021 , β̃2 = −0.0364 , β̃3 = −0.0325 ,

β̃4 = +0.5328 , and β̃5 = +0.5215 ,

δ = 0.3439, μδ = 0.4756, and the LAD chance-corrected measure of agreement
between the observed y values and the predicted ỹ values is

� = 1 − δ

μδ

= 1 − 0.3439

0.4756
= +0.2768.

Even with a small sample of observations such as this, there are

M = N ! = 15! = 1,307,674,368,000

2For comparison, the top of Mount Everest is approximately 8.85 km with a pressure of about 300
millibars.
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possible, equally-likely arrangements of the observed to be considered, far too many
for an exact permutation analysis. Based on L = 1,000,000 random arrangements
of the observed data, the Monte Carlo resampling probability value of � = +0.2768
is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 42,279

1,000,000
= 0.0423 ,

where �o denotes the observed value of �.

7.3 LAD Multivariate Multiple Regression

An extension of LAD multiple linear regression to include multiple response vari-
ables, coupled with multiple predictor variables, is developed in this section [36, 37].
The extension was prompted by a multivariate Least Sum of Euclidean Distances
(LSED) algorithm developed by Kaufman, Taylor, Mielke, and Berry in 2002 [24].

Consider the multivariate multiple linear regression model given by

yik =
m∑

j=1

xijβjk + eik

for i = 1, . . . , N and k = 1, . . . , r , where yik represents the ith of N measurements
for the kth of r response variables, possibly affected by a treatment; xij is the j th of
m covariates associated with the ith response, where xi1 = 1 if the model includes
an intercept; βjk denotes the j th of m regression parameters for the kth of r response
variables; and eik designates the error associated with the ith of N measurements
for the k of r response variables.

If estimates of βjk that minimize

N∑
i=1

(
r∑

k=1

e2
ik

)1/2

are denoted by β̃jk for j = 1, . . . , m and k = 1, . . . , r , then the N r-dimensional
residuals of the LSED multivariate multiple linear regression model are given by

eik = yik −
m∑

j=1

xij β̃jk

for i = 1, . . . , N and k = 1, . . . , r .
Let the N r-dimensional residuals, ei1, . . . , eir for i = 1, . . . , N , obtained

from a LSED multivariate multiple linear regression model, be partitioned into g
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treatment groups of sizes n1, . . . , ng , where ni ≥ 2 for i = 1, . . . , g and

N =
g∑

i=1

ni .

The analysis of the multivariate multiple regression residuals depends on test
statistic

δ =
g∑

i=1

Ciξi , (7.3)

where Ci = ni/N is a positive weight for the ith of g treatment groups and ξi is the
average pairwise Euclidean distance among the ni r-dimensional residuals in the ith
of g treatment groups defined by

ξi =
(

ni

2

)−1 N−1∑
k=1

N∑
l=k+1

⎡
⎣ r∑

j=1

(
ekj − elj

)2
⎤
⎦

1/2

�ki�li , (7.4)

where

�ki =
⎧⎨
⎩

1 if (ek1, . . . , ekr ) is in the ith treatment group ,

0 otherwise .

The null hypothesis specifies that each of the

M = N !
g∏

i=1

ni !

possible allocations of the N r-dimensional residuals to the g treatment groups is
equally-likely. Under the null hypothesis, an exact probability value associated with
the observed value of δ, δo, is given by

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
.

As with LAD univariate multiple regression models, the criterion for fitting
LSED multivariate multiple regression models based on δ is the chance-corrected
measure of effect size between the observed and predicted response measurement
values given by

� = 1 − δ

μδ

, (7.5)
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where μδ is the expected value of δ over the N ! possible pairings under the null
hypothesis, given by

μδ = 1

M

M∑
i=1

δi . (7.6)

Note that � = 1 implies perfect agreement between the observed and model-
predicted response vectors and the expected value of � is 0 under the null
hypothesis, i.e., chance-corrected.

7.3.1 Example of Multivariate Multiple Regression

To illustrate a multivariate LSED multiple regression analysis, consider an unbal-
anced two-way randomized-block experimental design in which N = 16 subjects
are tested over a = 3 levels of Factor A, the experiment is repeated b = 2 times for
Factor B, and there are r = 2 response measurement scores for each subject. The
data are listed in Table 7.9. The design is intentionally kept small to illustrate the
multivariate multiple regression procedure.

Analysis of Factor A

A design matrix of dummy codes (0, 1) for a regression analysis of Factor A is
given in Table 7.10, where the first column of 1 values provides for an intercept,
the next column contains the dummy codes for Factor B, and the third and fourth
columns contain the bivariate response measurement scores listed according to the
original random assignment of the N = 16 subjects to the a = 3 levels of Factor
A, with the first nA1 = 5 scores, the next nA2 = 7 scores, and the last nA3 = 4
scores associated with the a = 3 levels of Factor A, respectively. The analysis of

Table 7.9 Example data for
a two-way randomized-block
design with a = 3 blocks,
b = 2 treatments, and
N = 16 subjects

Factor A

Factor B A1 A2 A3

B1 (49, 102) (63, 84) (45, 107)

(60, 89) (50, 100)

(42, 111)

(46, 104)

B2 (48, 103) (27, 114)

(58, 94) (66, 83)

(51, 100) (74, 79)

(55, 97) (69, 88)

(71, 82)
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Table 7.10 Example design
matrix and bivariate response
measurement scores for a
multivariate LSED multiple
regression analysis of Factor
A with N = 16 subjects

Matrix Scores

1 1 49 102

1 0 48 103

1 0 58 94

1 0 51 100

1 0 55 97

1 1 63 84

1 1 60 89

1 0 27 114

1 0 66 83

1 0 74 79

1 0 69 88

1 0 71 82

1 1 45 107

1 1 50 100

1 1 42 111

1 1 46 104

the data listed in Table 7.10 examines the N = 16 regression residuals for possible
differences among the a = 3 treatment levels of Factor A; consequently, no dummy
codes are provided for Factor A as this information is implicit in the ordering of the
a = 3 levels of Factor A in the last two columns of Table 7.10.

Because there are only

M = N !
a∏

i=1

nAi !
= 16!

5! 7! 4! = 1,441,440

possible, equally-likely arrangements of the N = 16 bivariate response measure-
ment scores listed in Table 7.10, an exact permutation analysis is feasible. The
analysis of the N = 16 LAD regression residuals calculated on the bivariate
response measurement scores for Factor A in Table 7.10 yields estimated LAD
regression coefficients of

β̃1,1 = +58.00 , β̃2,1 = −9.00 , β̃1,2 = +94.00 , and β̃2,2 = +8.00

for Factor A. Table 7.11 lists the observed yik values, LAD-predicted ỹik values,
and residual eik values for i = 1, . . . , 16 subjects and k = 1, 2 response variables.

Following Eq. (7.4) on p. 393 and employing ordinary Euclidean distance
between residuals, the N = 16 LAD regression residuals listed in Table 7.11 yield
a = 3 average distance-function values of

ξA1 = 7.2294 , ξA2 = 20.0289 , and ξA3 = 7.3475 .
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Table 7.11 Observed,
predicted, and residual values
for a multivariate LSED
multiple regression analysis
of Factor A with N = 16
subjects

yi1 yi2 ỹi1 ỹi2 ei1 ei2

49 102 49.00 102.00 0.00 0.00

48 103 58.00 94.00 −10.00 +9.00

58 94 58.00 94.00 0.00 0.00

51 100 58.00 94.00 −7.00 +6.00

55 97 58.00 94.00 −3.00 +3.00

63 84 49.00 102.00 +14.00 −18.00

60 89 49.00 102.00 +11.00 −13.00

27 114 58.00 94.00 −31.00 +20.00

66 83 58.00 94.00 +8.00 −11.00

74 79 58.00 94.00 +16.00 −15.00

69 88 58.00 94.00 +11.00 −6.00

71 82 58.00 94.00 +13.00 −12.00

45 107 49.00 102.00 −4.00 +5.00

50 100 49.00 102.00 +1.00 −2.00

42 111 49.00 102.00 −7.00 +9.00

46 104 49.00 102.00 −3.00 +2.00

Following Eq. (7.3) on p. 393, the observed value of test statistic δ calculated on the
N = 16 LAD regression residuals listed in Table 7.11 with treatment group weights

Cj = nAj

N
for j = 1, 2, 3

is

δA =
a∑

j=1

Cj ξj = 1

16

[
(5)(7.2294) + (7)(20.0289) + (4)(7.3475)

] = 12.8587 .

If all M arrangements of the N = 16 observed LAD regression residuals listed
in Table 7.11 occur with equal chance, the exact probability value of δA = 12.8587
computed on the M = 1,441,440 possible arrangements of the observed LAD
regression residuals with nA1 = 5, nA2 = 7, and nA3 = 4 preserved for each
arrangement is

P(δ ≤ δA|H0) = number of δ values ≤ δA

M
= 6,676

1,441,440
= 0.0046 .

Following Eq. (7.6) on p. 394, the exact expected value of the M = 1,441,440 δ

values is

μδ = 1

M

M∑
i=1

δi = 26,092,946.8800

1,441,440
= 18.1020
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and, following Eq. (7.5) on p. 393, the observed chance-corrected measure of effect
size for the yi and ỹi values, i = 1, . . . , N , is

�A = 1 − δA

μδ

= 1 − 12.8587

18.1020
= +0.2897 ,

indicating approximately 29% agreement between the observed and predicted
values above that expected by chance.

Analysis of Factor B

A design matrix of dummy codes (0, 1) for a regression analysis of Factor B is
given in Table 7.12, where the first column of 1 values provides for an intercept, the
next two columns contain the dummy codes for Factor A, and the fourth and fifth
columns contain the bivariate response measurement scores listed according to the
original random assignment of the N = 16 subjects to the b = 2 levels of Factor
B, with the first nB1 = 7 scores and the last nB2 = 9 scores associated with the
b = 2 levels of Factor B, respectively. The analysis of the data listed in Table 7.12
examines the N = 16 regression residuals for possible differences between the
b = 2 treatment levels of Factor B; consequently, no dummy codes are provided for
Factor B as this information is implicit in the ordering of the b = 2 levels of Factor
B in the last two columns of Table 7.12.

Table 7.12 Example design
matrix and bivariate response
measurement scores for a
multivariate LSED multiple
regression analysis of Factor
B with N = 16 subjects

Matrix Scores

1 1 0 49 102

1 0 1 63 84

1 0 1 60 89

1 0 0 45 107

1 0 0 50 100

1 1 0 42 111

1 1 0 46 104

1 0 0 48 103

1 0 0 58 94

1 0 0 51 100

1 0 0 55 97

1 0 1 27 114

1 1 1 66 83

1 1 1 74 79

1 1 1 69 88

1 1 1 71 82
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Because there are only

M = N !
b∏

i=1

nBi !
= 16!

7! 9! = 11,440

possible, equally-likely arrangements of the N = 16 response measurement scores
listed in Table 7.12, an exact permutation analysis is feasible. The analysis of the
N = 16 LAD regression residuals calculated on the bivariate response measurement
scores for Factor B in Table 7.12 yields estimated LAD regression coefficients of

β̃1,1 = +46.00 , β̃2,1 = +5.00 , β̃3,1 = +20.00 , β̃1,2 = +104.00 ,

β̃2,2 = −4.00 , and β̃3,2 = −20.00

for Factor B. Table 7.13 lists the observed yik values, LAD-predicted ỹik values,
and residual eik values for i = 1, . . . , 16 subjects and k = 1, 2 response variables.

Following Eq. (7.4) on p. 393 and employing ordinary Euclidean distance
between residuals, the N = 16 LAD regression residuals listed in Table 7.13 yield
b = 2 average distance-function values of

ξB1 = 6.0229 and ξB2 = 16.7440 .

Table 7.13 Observed,
predicted, and residual values
for a multivariate LSED
multiple regression analysis
of Factor A with N = 16
subjects

yi1 yi2 ỹi1 ỹi2 ei1 ei2

49 102 51.00 100.00 −2.00 +2.00

63 84 66.00 84.00 −3.00 0.00

60 89 66.00 84.00 −6.00 +5.00

45 107 46.00 104.00 −1.00 +3.00

50 100 46.00 104.00 +4.00 −4.00

42 111 46.00 104.00 −4.00 +7.00

46 104 46.00 104.00 0.00 0.00

48 103 51.00 100.00 −3.00 +3.00

58 94 51.00 100.00 +7.00 −6.00

51 100 51.00 100.00 0.00 0.00

55 97 51.00 100.00 +4.00 −3.00

27 114 66.00 84.00 −39.00 +30.00

66 83 66.00 84.00 0.00 −1.00

74 79 66.00 84.00 −8.00 −5.00

69 88 66.00 84.00 +3.00 +4.00

71 82 66.00 84.00 +5.00 −2.00
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Following Eq. (7.3) on p. 393, the observed value of test statistic δ calculated on the
N = 16 LAD regression residuals listed in Table 7.13 with treatment group weights

Ci = nBi

N
for i = 1, 2 ,

is

δB =
b∑

i=1

Ciξi = 1

16

[
(7)(6.0229) + (9)(16.7440)

]= 12.0535 .

If all M arrangements of the N = 16 observed LAD regression residuals listed
in Table 7.13 occur with equal chance, the exact probability value of δB = 12.0535
computed on the M = 11,440 possible arrangements of the observed LAD
regression residuals with nB1 = 7 and nB2 = 9 preserved for each arrangement is

P(δ ≤ δB |H0) = number of δ values ≤ δB

M
= 2,090

11,440
= 0.1827 .

Following Eq. (7.6) on p. 394, the exact expected value of the M = 11,440 δ

values is

μδ = 1

M

M∑
i=1

δi = 140,623.9120

11,440
= 12.2923

and, following Eq. (7.5) on p. 393, the observed chance-corrected measure of effect
size for the yi and ỹi values, i = 1, . . . , N , is

�B = 1 − δB

μδ

= 1 − 12.0535

12.2923
= +0.0194 ,

indicating approximately 2% agreement between the observed and predicted values
above that expected by chance.

For another example of LAD multiple multivariate example, see an informative
and widely cited article by Endler and Mielke on “Comparing entire colour patterns
as birds see them” in Biological Journal of the Linnean Society [11].

7.4 Comparison of OLS and LAD Linear Regression

In this section, OLS and LAD linear regression analyses are illustrated and
compared on two example data sets—one with p = 2 predictors and no extreme
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Table 7.14 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 4

values and one with p = 2 predictors and a single extreme value.3 Consider first
the small example data set with p = 2 predictors listed in Table 7.14 where variable
y is Hours of Housework done by husbands per week, variable x1 is Number of
Children, and variable x2 is husband’s Years of Education for N = 12 families.

7.4.1 Ordinary Least Squares (OLS) Analysis

For the multivariate data listed in Table 7.14, the unstandardized OLS regression
coefficients are

β̂1 = +0.6356 and β̂2 = −0.0649 ,

and the observed squared OLS multiple correlation coefficient is R2
o = 0.2539.

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of R2

o = 0.2539 is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 268,026

1,000,000
= 0.2680 ,

where R2
o denotes the observed value of R2. For comparison, the exact probability

value of R2
o = 0.2539 based on M = N ! = 12! = 479,001,600 possible

arrangements of the data listed in Table 7.14 is P = 0.2681.

3For real-life applications and comparisons of OLS and LAD regression applied to meteorological
forecasting, see two articles in Weather and Forecasting by Mielke, Berry, Landsea, and Gray [39,
40].
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7.4.2 Least Absolute Deviation (LAD) Analysis

For the multivariate data listed in Table 7.14, the LAD regression coefficients are

β̃1 = +0.4138 and β̃2 = +0.1207 ,

δ = 1.5000, μδ = 1.8084, and the LAD chance-corrected measure of agreement
between the observed y values and the predicted ỹ values is

�o = 1 − δ

μδ

= 1 − 1.5000

1.8084
= +0.1706 .

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of � = +0.1706 is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 19,176

1,000,000
= 0.0192 ,

where �o denotes the observed value of �. For comparison, the exact probability
value of �o = +0.1706 based on M = N ! = 12! = 479,001,600 possible
arrangements of the data listed in Table 7.14 is P = 0.0221.

Now, suppose that the husband in family “L” was a stay-at-home house-husband
and instead of contributing just four hours of housework per week, he actually
contributed 40 hours, as in Table 7.15.

Table 7.15 Example
multivariate correlation data
on N = 12 families with
p = 2 predictors, where the
husband in Family L
contributed 40 hours of
housework per week

Family x1 x2 y

A 1 12 1

B 1 14 2

C 1 16 3

D 1 16 5

E 2 18 3

F 2 16 1

G 3 12 5

H 3 12 0

I 4 10 6

J 4 12 3

K 5 10 7

L 5 16 40
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7.4.3 Ordinary Least Squares (OLS) Analysis

For the multivariate data listed in Table 7.15, the unstandardized OLS regression
coefficients are

β̂1 = +5.7492 and β̂2 = +2.3896 ,

and the observed squared OLS multiple correlation coefficient is R2
o = 0.5786.

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of R2

o = 0.5786 is

P
(
R2 ≥ R2

o |H0
) = number of R2 values ≥ R2

o

L
= 15,215

1,000,000
= 0.0152 ,

where R2
o denotes the observed value of R2. For comparison, the exact probability

value of R2
o = 0.5786 based on M = N ! = 12! = 479,001,600 possible

arrangements of the data listed in Table 7.15 is P = 0.0153.

7.4.4 Least Absolute Deviation (LAD) Analysis

For the multivariate data listed in Table 7.15, the LAD regression coefficients are

β̃1 = +1.3000 and β̃2 = +0.0500 ,

δo = 4.0333, μδ = 5.2194, and the LAD chance-corrected measure of agreement
between the observed y values and the predicted ỹ values is

�o = 1 − δo

μδ

= 1 − 4.0333

5.2194
= +0.2272 .

Based on L = 1,000,000 random arrangements of the observed data, the Monte
Carlo resampling probability value of �o = +0.2272 is

P
(� ≥ �o|H0

) = number of � values ≥ �o

L
= 4,517

1,000,000

= 0.4571×10−2 ,

where �o denotes the observed value of �. For comparison, the exact probability
value of �o = +0.2272 based on M = N ! = 12! = 479,001,600 possible
arrangements of the data listed in Table 7.14 is P = 0.5630×10−2.

The results of the comparison of OLS and LAD analyses with 4 and 40 hours of
housework by the husband in family “L” are summarized in Table 7.16. The value
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Table 7.16 Comparison of OLS and LAD analyses for the data given in Table 7.14 with 4 hours
of housework for the husband in family L and the data given in Table 7.15 with 40 hours of
housework for the husband in family L

OLS analysis LAD analysis

Hours R2 Probability � Probability

4 0.2539 0.2680 0.1706 0.0192

40 0.5786 0.0152 0.2272 0.0046

|�| 0.3247 0.2528 0.0566 0.0146

of 40 hours of housework by the husband in family “L” is, by any definition, an
extreme value. It is six times the mean of ȳ = 6.3333 and three standard deviations
above the mean. It is readily apparent that the extreme value of 40 hours had a
profound impact on the results of the OLS analysis. The OLS multiple correlation
coefficient more than doubled from R2

o = 0.2539 to R2
o = 0.5786, a difference of

R2 = 0.3247, and the corresponding probability value decreased from P = 0.2680
to P = 0.0152, a difference of P = 0.2528. The impact of 40 hours of housework
on the LAD analysis is more modest with the LAD chance-corrected measure of
agreement increasing only slightly from �o = 0.1706 to �o = 0.2272, a difference
of � = 0.0566, and the probability value decreasing from P = 0.0192 to P =
0.0046, a difference of only P = 0.0146.

7.5 Fisher’s rxy to z Transformation

In order to attach a probability statement to inferences about the Pearson product-
moment correlation coefficient, it is necessary to know the sampling distribution
of a statistic that relates the sample correlation coefficient, rxy , to the population
parameter, ρxy . Because −1.0 ≤ rxy ≤ +1.0, the sampling distribution of statistic
rxy is asymmetric whenever ρxy �= 0.0.4 Given two random variables that follow
the bivariate normal distribution with population parameter ρxy , the sampling
distribution of statistic rxy approaches normality as the sample size increases;
however, it converges very slowly for |ρxy | ≥ 0.6, even with samples as large as
N = 400 [7, p. xxxiii]. Fisher [13, 14] obtained the basic distribution of rxy and
showed that, when bivariate normality is assumed, a logarithmic transformation of
rxy (henceforth referred to as the Fisher z transform),

z = 1

2
ln

(
1 + rxy

1 − rxy

)
= tanh−1(rxy) ,

4It is probably safe to assume that in any actual research situation, the population correlation
coefficient is always not equal to zero.
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becomes normally distributed with a mean of approximately

1

2
ln

(
1 + ρxy

1 − ρxy

)
= tanh−1(ρxy)

and the standard error approaches

1√
N − 3

as N → ∞.
The Fisher rxy to z transform is presented in most textbooks and is available

in a wide array of statistical software packages. In this section, the precision
and accuracy of the Fisher z transform are examined for a variety of bivariate
distributions, sample sizes, and values of ρxy [5]. If ρxy �= 0.0 and the distribution is
not bivariate normal, then the desired properties of the Fisher z transform generally
fail.

There are two general applications of the Fisher z transform. The first application
comprises the computation of the confidence limits for ρxy and the second involves
the testing of hypotheses about specified values of ρxy �= 0.0. The second
application is more tractable than the first application as a hypothesized value of
ρxy is available. The next part of this section describes the bivariate distributions to
be examined, followed by an exploration of confidence intervals and an examination
of hypothesis testing. The last part of the section provides some general conclusions
about the propriety of uncritically using the Fisher z transform in actual research.

7.5.1 Distributions

Seven bivariate distributions are utilized to test the Fisher z transform. In addition,
two related methods by Gayen [17] and Jeyaratnam [22] are also examined.
The Gayen and Jeyaratnam techniques are characterized by simplicity, accuracy,
and ease of use. For other interesting approaches, see David [7]; Hotelling [21];
Kraemer [25]; Liu, Woodward, and Bonett [28]; Mudholkar and Chaubey [41];
Pillai [45]; Ruben [48]; and Samiuddin [49].

Normal Distribution

The density function of the standardized normal, N(0, 1), distribution is given by

f (x) = (2π)−1/2 exp(−x2/2) .



7.5 Fisher’s rxy to z Transformation 405

Generalized Logistic Distribution

The density function of the generalized logistic (GL) distribution is given by

f (x) = [
exp(θx)/θ

]1/θ[1 + exp(θx)/θ
]−(θ+1)/θ

for θ > 0 [34]. The generalized logistic distribution is positively skewed for θ < 1
and negatively skewed for θ > 1. When θ = 1.0, GL(θ) is a logistic distribution
that closely resembles the normal distribution, with somewhat lighter tails. When
θ = 0.10, GL(θ) is a generalized logistic distribution with positive skewness. When
θ = 0.01, GL(θ) is a generalized logistic distribution with even greater positive
skewness.

Symmetric Kappa Distribution

The density function of the symmetric kappa (SK) distribution is given by

f (x) = 0.5λ−1/λ
(
1 + |x|λ/λ)−(λ+1)/λ

for λ > 0 [34, 35]. The shape of the symmetric kappa distribution ranges from an
exceedingly heavy-tailed distribution as λ approaches zero to a uniform distribution
as λ goes to infinity. When λ = 2, SK(λ) is a peaked, heavy-tailed distribution,
identical to Student’s t distribution with 2 degrees of freedom. Thus, the variance of
SK(2) does not exist. When λ = 3, SK(λ) is also a heavy-tailed distribution, but the
variance does exist. When λ = 25, SK(λ) is a loaf-shaped distribution resembling
a uniform distribution with the addition of very light tails. These distributions
provide a variety of populations from which to sample and evaluate the Fisher z

transformation and the Gayen [17] and Jeyaratnam [22] modifications.
Seven bivariate correlated distributions were constructed in the following man-

ner. Let x and y be independent identically distributed univariate random vari-
ables from each of seven univariate distributions, i.e., N(0, 1), GL(1.0), GL(0.1),
GL(0.01), SK(2), SK(3), and SK(25), and define the correlated random variables
U1 and U2 of each bivariate distribution by

U1 = x(1 − ρ2
xy)1/2 + ρxyy

and U2 = y, where ρxy is the desired Pearson product-moment correlation
coefficient of random variables U1 and U2. Then a Monte Carlo procedure obtains
random samples, corresponding to x and y, from the normal, generalized logistic,
and symmetric kappa distributions.



406 7 Interval-Level Variables

7.5.2 Confidence Intervals

In this section, Monte Carlo confidence intervals are based on the seven distri-
butions: N(0, 1), GL(1.0), GL(0.1), GL(0.01), SK(2), SK(3), and SK(25). Each
simulation is based on L = 1,000,000 bivariate random samples, U1 and U2, of
size N = 10, 20, 40, and 80 for ρxy = 0.00, +0.40, +0.60, and +0.80 with
1 − α = 0.90, 0.95, and 0.99. Confidence intervals obtained from two methods
are considered. The first confidence interval is based on the Fisher z transform and
is defined by

tanh

[
tanh−1(rxy) − zα/2√

N − 3

]
≤ ρxy ≤ tanh

[
tanh−1(rxy) + zα/2√

N − 3

]
,

where zα/2 is the upper 0.50α probability point of the N(0, 1) distribution. The
second confidence interval is based on a method proposed by Jeyaratnam [22] and
is defined by

rxy − w

1 − rxyw
≤ ρxy ≤ rxy + w

1 + rxyw
,

where

w =
(
tα/2,N−2

)
/
√

N − 2[
1 + (

tα/2,N−2
)2

/
√

N − 2
]1/2

and tα/2,N−2 is the upper 0.50α probability point of Student’s t distribution with
N − 2 degrees of freedom.

The results of the Monte Carlo analyses are summarized in Tables 7.17, 7.18,
7.19, 7.20, 7.21, 7.22, 7.23, which contain simulated containment probability values
for the seven bivariate distributions with specified nominal values of 1 − α (0.90,
0.95, 0.99), ρxy (0.00, +0.40, +0.60, +0.80), and N (10, 20, 40, 80) for the Fisher
(F) and Jeyaratnam (J) confidence intervals. Table 7.17 analyzes data obtained
from the N(0, 1) distribution; Tables 7.18, 7.19, and 7.20 analyze data obtained
from the generalized logistic distribution with θ = 1.0, 0.1, and 0.01, respectively;
and Tables 7.21, 7.22, and 7.23 analyze data obtained from the symmetric kappa
distribution with λ = 2, 3, and 25, respectively.

In each of the seven tables, the Monte Carlo containment probability values
for a 1 − α confidence interval based on the Fisher z transform and a 1 − α

confidence interval based on the Jeyaratnam technique were obtained from the
same L = 1,000,000 bivariate random samples of size N drawn with replacement
from the designated bivariate distribution characterized by the specified population
correlation ρxy . If the Fisher and Jeyaratnam transforms are appropriate for the
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Table 7.17 Containment probability values for a bivariate N(0, 1) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9014 0.8992 0.9026 0.9004 0.9037 0.9015 0.9048 0.9025

20 0.9012 0.9005 0.9015 0.9008 0.9009 0.9002 0.9020 0.9014

40 0.9004 0.9001 0.9012 0.9009 0.9009 0.9006 0.9011 0.9009

80 0.9002 0.9001 0.9000 0.9000 0.9006 0.9005 0.9008 0.9007

0.95 10 0.9491 0.9501 0.9490 0.9501 0.9497 0.9508 0.9516 0.9516

20 0.9495 0.9502 0.9493 0.9501 0.9500 0.9507 0.9500 0.9507

40 0.9495 0.9499 0.9497 0.9501 0.9493 0.9497 0.9502 0.9506

80 0.9595 0.9498 0.9497 0.9499 0.9501 0.9503 0.9498 0.9500

0.99 10 0.9875 0.9900 0.9877 0.9900 0.9877 0.9901 0.9880 0.9904

20 0.9889 0.9900 0.9888 0.9900 0.9890 0.9901 0.9891 0.9902

40 0.9893 0.9899 0.9896 0.9901 0.9894 0.9900 0.9895 0.9901

80 0.9896 0.9899 0.9897 0.9900 0.9897 0.9900 0.9897 0.9900

Table 7.18 Containment probability values for a bivariate GL(1.0) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9011 0.8990 0.8930 0.8907 0.8833 0.8809 0.8710 0.8684

20 0.9009 0.9002 0.8894 0.8886 0.8742 0.8734 0.8565 0.8557

40 0.9007 0.9004 0.8873 0.8871 0.8701 0.8698 0.8484 0.8481

80 0.9005 0.9004 0.8851 0.8850 0.8677 0.8676 0.8438 0.8437

0.95 10 0.9485 0.9496 0.9425 0.9437 0.9359 0.9372 0.9273 0.9287

20 0.9491 0.9498 0.9407 0.9415 0.9313 0.9322 0.9170 0.9181

40 0.9491 0.9496 0.9402 0.9406 0.9274 0.9279 0.9116 0.9121

80 0.9497 0.9499 0.9394 0.9396 0.9266 0.9269 0.9082 0.9085

0.99 10 0.9873 0.9897 0.9852 0.9880 0.9827 0.9858 0.9794 0.9832

20 0.9886 0.9897 0.9855 0.9870 0.9821 0.9838 0.9764 0.9785

40 0.9891 0.9897 0.9861 0.9867 0.9815 0.9823 0.9744 0.9755

80 0.9895 0.9898 0.9860 0.9864 0.9808 0.9812 0.9729 0.9735

simulated data, the containment probability values should agree with the nominal
1 − α values.

Some general observations can be made about the Monte Carlo results contained
in Tables 7.17 through 7.23. First, in each of the tables there is little difference
between the Fisher and Jeyaratnam Monte Carlo containment probability values
and both techniques provide values close to the nominal 1 − α values for the
N(0, 1) distribution analyzed in Table 7.17 with any value of ρxy and for any of the
other distributions analyzed in Tables 7.18 through 7.23 when ρxy = 0.00. Second,
for the skewed and heavy-tailed distributions, i.e., GL(0.1), GL(0.01), SK(2), and
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Table 7.19 Containment probability values for a bivariate GL(0.1) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9016 0.8995 0.8878 0.8854 0.8729 0.8704 0.8544 0.8516

20 0.9013 0.9006 0.8821 0.8813 0.8593 0.8584 0.8321 0.8313

40 0.9010 0.9007 0.8780 0.8777 0.8510 0.8507 0.8174 0.8170

80 0.9006 0.9004 0.8760 0.8759 0.8459 0.8457 0.8081 0.8079

0.95 10 0.9486 0.9497 0.9389 0.9401 0.9281 0.9295 0.9150 0.9165

20 0.9495 0.9502 0.9354 0.9362 0.9197 0.9206 0.8982 0.8993

40 0.9495 0.9499 0.9335 0.9340 0.9136 0.9141 0.8871 0.8877

80 0.9498 0.9500 0.9320 0.9323 0.9100 0.9102 0.8797 0.8800

0.99 10 0.9871 0.9895 0.9835 0.9865 0.9793 0.9830 0.9744 0.9787

20 0.9882 0.9895 0.9833 0.9850 0.9770 0.9790 0.9674 0.9700

40 0.9890 0.9895 0.9833 0.9841 0.9752 0.9763 0.9623 0.9637

80 0.9895 0.9898 0.9828 0.9832 0.9737 0.9743 0.9585 0.9592

Table 7.20 Containment probability values for a bivariate GL(0.01) distribution with Fisher (F)
and Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9019 0.8996 0.8860 0.8837 0.8693 0.8667 0.8485 0.8457

20 0.9015 0.9008 0.8798 0.8790 0.8545 0.8537 0.8243 0.8234

40 0.9012 0.9009 0.8754 0.8752 0.8454 0.8450 0.8084 0.8080

80 0.9002 0.9001 0.8726 0.8724 0.8394 0.8393 0.7984 0.7982

0.95 10 0.9485 0.9496 0.9375 0.9388 0.9255 0.9269 0.9106 0.9121

20 0.9496 0.9503 0.9337 0.9346 0.9160 0.9170 0.8921 0.8932

40 0.9495 0.9499 0.9317 0.9321 0.9092 0.9097 0.8797 0.8803

80 0.9500 0.9502 0.9296 0.9298 0.9055 0.9057 0.8713 0.8716

0.99 10 0.9869 0.9893 0.9829 0.9860 0.9782 0.9820 0.9725 0.9771

20 0.9881 0.9893 0.9825 0.9842 0.9752 0.9774 0.9644 0.9671

40 0.9889 0.9895 0.9825 0.9833 0.9732 0.9743 0.9584 0.9600

80 0.9897 0.9897 0.9821 0.9825 0.9712 0.9718 0.9540 0.9548

SK(3), with N held constant, the differences between the Monte Carlo containment
probability values and the nominal 1 − α values become greater as |ρxy | increases.
Third, the differences between the Monte Carlo containment probability values and
the nominal 1 − α values increase with increasing N and |ρxy | > 0.00 for all the
distributions except N(0, 1) and SK(25). This is especially evident with the skewed
and heavy-tailed distributions GL(0.1), GL(0.01), SK(2), and SK(3).
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Table 7.21 Containment probability values for a bivariate SK(2) distribution with Fisher (F) and
Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.8961 0.8942 0.8054 0.8029 0.7487 0.7457 0.6806 0.6774

20 0.9002 0.8996 0.7582 0.7573 0.6650 0.6641 0.5733 0.5723

40 0.9050 0.9048 0.6968 0.6965 0.5755 0.5752 0.4784 0.4781

80 0.9097 0.9096 0.6192 0.6191 0.4884 0.4883 0.3942 0.3941

0.95 10 0.9403 0.9413 0.8670 0.8687 0.8198 0.8217 0.7612 0.7634

20 0.9415 0.9421 0.8257 0.8269 0.7442 0.7457 0.6522 0.6538

40 0.9436 0.9439 0.7726 0.7732 0.6543 0.6551 0.5521 0.5528

80 0.9461 0.9463 0.6982 0.6986 0.5630 0.5634 0.4599 0.4602

0.99 10 0.9797 0.9828 0.9357 0.9420 0.9068 0.9152 0.8697 0.8810

20 0.9789 0.9803 0.9065 0.9102 0.8523 0.8577 0.7761 0.7829

40 0.9788 0.9794 0.8694 0.8715 0.7748 0.7780 0.6733 0.6768

80 0.9794 0.9797 0.8107 0.8121 0.6819 0.6835 0.5721 0.5738

Table 7.22 Containment probability values for a bivariate SK(3) distribution with Fisher (F) and
Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9007 0.8985 0.8707 0.8707 0.8451 0.8424 0.8145 0.8117

20 0.9009 0.9002 0.8508 0.8499 0.8068 0.8060 0.7575 0.7566

40 0.9015 0.9012 0.8284 0.8280 0.7670 0.7667 0.7027 0.7023

80 0.9016 0.9015 0.8022 0.8021 0.7246 0.7245 0.6490 0.6488

0.95 10 0.9474 0.9485 0.9248 0.9262 0.9052 0.9067 0.8810 0.8827

20 0.9479 0.9486 0.9095 0.9105 0.8751 0.8762 0.8306 0.8318

40 0.9482 0.9485 0.8920 0.8925 0.8382 0.8388 0.7803 0.7810

80 0.9490 0.9491 0.8697 0.8700 0.8010 0.8013 0.7275 0.7279

0.99 10 0.9863 0.9888 0.9758 0.9796 0.9660 0.9708 0.9536 0.9596

20 0.9869 0.9881 0.9682 0.9705 0.9488 0.9518 0.9217 0.9257

40 0.9873 0.9879 0.9588 0.9601 0.9256 0.9275 0.8825 0.8849

80 0.9878 0.9880 0.9455 0.9462 0.8968 0.8980 0.8387 0.8401

7.5.3 Hypothesis Testing

In this section, Monte Carlo tests of hypotheses are based on the same seven
distributions: N(0, 1), GL(1.0), GL(0.1), GL(0.01), SK(2), SK(3), and SK(25).
Each simulation is based on L = 1,000,000 bivariate random samples of size
N = 20 and N = 80 for ρxy = 0.00 and ρxy = +0.60 and compared to seven
nominal upper-tail probability values of P = 0.99, 0.90, 0.75, 0.50, 0.25, 0.10, and
0.01. Two tests of ρxy �= 0.00 are considered. The first test is based on the Fisher z



410 7 Interval-Level Variables

Table 7.23 Containment probability values for a bivariate SK(25) distribution with Fisher (F) and
Jeyaratnam (J) 1 − α correlation confidence intervals

ρxy = 0.00 ρxy = +0.40 ρxy = +0.60 ρxy = +0.80

1 − α N F J F J F J F J

0.90 10 0.9009 0.8988 0.9134 0.9114 0.9288 0.9270 0.9485 0.9471

20 0.9010 0.9003 0.9151 0.9145 0.9322 0.9317 0.9556 0.9552

40 0.9006 0.9004 0.9159 0.9157 0.9340 0.9338 0.9590 0.9589

80 0.9005 0.9004 0.9157 0.9156 0.9347 0.9346 0.9605 0.9604

0.95 10 0.9476 0.9487 0.9551 0.9561 0.9648 0.9657 0.9759 0.9765

20 0.9489 0.9496 0.9577 0.9583 0.9691 0.9696 0.9817 0.9821

40 0.9496 0.9496 0.9592 0.9595 0.9704 0.9707 0.9844 0.9845

80 0.9494 0.9496 0.9599 0.9600 0.9716 0.9717 0.9853 0.9854

0.99 10 0.9862 0.9888 0.9889 0.9910 0.9919 0.9935 0.9950 0.9960

20 0.9881 0.9892 0.9911 0.9921 0.9943 0.9950 0.9973 0.9976

40 0.9891 0.9897 0.9923 0.9927 0.9951 0.9954 0.9981 0.9982

80 0.9896 0.9898 0.9925 0.9928 0.9959 0.9960 0.9985 0.9986

transform and uses the standardized test statistic given by

T = z − μz

σz

,

where

z = tanh−1(rxy) , μz = tanh−1(ρxy) , and σz = 1√
N − 3

.

The second test is based on corrected values proposed by Gayen [17], where

z = tanh−1(rxy) ,

μz = tanh−1(ρxy) + ρxy

2(N − 1)

[
1 + 5 − ρ2

xy

4(N − 1)

]
,

and

σz =
{

1

N − 1

[
1 + 4 − ρ2

xy

2(N − 1)
+ 22 − 6ρ2

xy − 3ρ4
xy

6(N − 1)2

]}1/2

.

The results of the Monte Carlo analyses are summarized in Tables 7.24, 7.25,
7.26, 7.27, 7.28, 7.29, 7.30, which contain simulated upper-tail probability values
for the seven distributions with specified nominal probability values of P (0.99,
0.95, 0.75, 0.50, 0.25, 0.10, 0.01), ρxy (0.00, +0.60), and N (20, 80) for the Fisher
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Table 7.24 Upper-tail probability values compared with nominal values (P ) for a bivariate
N(0, 1) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = 0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = +0.60

P F G F G F G F G

0.99 0.9894 0.9893 0.9915 0.9895 0.9898 0.9898 0.9908 0.9899

0.90 0.9016 0.9014 0.9147 0.9022 0.9009 0.9009 0.9065 0.9005

0.75 0.7531 0.7529 0.7754 0.7525 0.7514 0.7514 0.7622 0.7512

0.50 0.5001 0.5001 0.5281 0.4997 0.5008 0.5008 0.5141 0.5006

0.25 0.2464 0.2466 0.2685 0.2471 0.2495 0.2496 0.2601 0.2494

0.10 0.0983 0.0985 0.1098 0.0986 0.0999 0.1000 0.1054 0.0995

0.01 0.0108 0.0108 0.0126 0.0110 0.0102 0.0102 0.0110 0.0101

Table 7.25 Upper-tail probability values compared with nominal values (P ) for a bivariate
GL(1.0) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9892 0.9891 0.9878 0.9853 0.9897 0.9897 0.9851 0.9838

0.90 0.9019 0.9016 0.9020 0.8888 0.9011 0.9011 0.8880 0.8817

0.75 0.7539 0.7537 0.7638 0.7419 0.7518 0.7518 0.7451 0.7348

0.50 0.4999 0.4999 0.5324 0.5060 0.5004 0.5004 0.5158 0.5037

0.25 0.2457 0.2460 0.2895 0.2688 0.2495 0.2495 0.2815 0.2715

0.10 0.0981 0.0983 0.1314 0.1197 0.1000 0.1000 0.1290 0.1228

0.01 0.0109 0.0109 0.0195 0.0173 0.0102 0.0102 0.0190 0.0177

Table 7.26 Upper-tail probability values compared with nominal values (P ) for a bivariate
GL(0.1) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9918 0.9918 0.9869 0.9841 0.9916 0.9916 0.9819 0.9804

0.90 0.9059 0.9056 0.8954 0.8818 0.9026 0.9026 0.8774 0.8710

0.75 0.7502 0.7499 0.7560 0.7342 0.7484 0.7484 0.7347 0.7247

0.50 0.2436 0.4908 0.5297 0.5045 0.4937 0.4937 0.5144 0.5027

0.25 0.1016 0.2438 0.2982 0.2784 0.2470 0.2470 0.2921 0.2824

0.10 0.0137 0.1018 0.1441 0.1323 0.1016 0.1016 0.1435 0.1373

0.01 0.0000 0.0138 0.0257 0.0231 0.0122 0.0122 0.0265 0.0250
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Table 7.27 Upper-tail probability values compared with nominal values (P ) for a bivariate
GL(0.01) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9924 0.9923 0.9865 0.9837 0.9920 0.9920 0.9890 0.9792

0.90 0.9060 0.9058 0.8940 0.8803 0.9030 0.9030 0.8740 0.8675

0.75 0.7491 0.7488 0.7544 0.7329 0.7481 0.7481 0.7311 0.7210

0.50 0.4893 0.4893 0.5301 0.5054 0.4921 0.4921 0.5135 0.5018

0.25 0.2429 0.2431 0.3010 0.2810 0.2469 0.2469 0.2947 0.2850

0.10 0.1019 0.1021 0.1476 0.1357 0.1019 0.1019 0.1476 0.1416

0.01 0.0141 0.0142 0.0279 0.0250 0.0128 0.0128 0.0285 0.0268

Table 7.28 Upper-tail probability values compared with nominal values (P ) for a bivariate SK(2)

distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9842 0.9841 0.9487 0.9423 0.9852 0.9852 0.8480 0.8442

0.90 0.9096 0.9094 0.8159 0.8016 0.9167 0.9167 0.7162 0.7111

0.75 0.7739 0.7737 0.6918 0.6750 0.7838 0.7837 0.6221 0.6165

0.50 0.5001 0.5001 0.5327 0.5163 0.5002 0.5002 0.5121 0.5064

0.25 0.2263 0.2265 0.3797 0.3662 0.2172 0.2172 0.4060 0.4011

0.10 0.0905 0.0907 0.2650 0.2548 0.0834 0.0834 0.3224 0.3182

0.01 0.0159 0.0160 0.1333 0.1284 0.0151 0.0151 0.2099 0.2071

Table 7.29 Upper-tail probability values compared with nominal values (P ) for a bivariate SK(3)

distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9883 0.9883 0.9766 0.9726 0.9887 0.9887 0.9463 0.9437

0.90 0.9034 0.9032 0.8731 0.8595 0.9031 0.9031 0.8215 0.8152

0.75 0.7559 0.7557 0.7394 0.7192 0.7553 0.7553 0.6941 0.6854

0.50 0.4998 0.4998 0.5348 0.5119 0.4998 0.4998 0.5169 0.5076

0.25 0.2440 0.2442 0.3249 0.3067 0.2450 0.2451 0.3394 0.3315

0.10 0.0967 0.0970 0.1790 0.1672 0.0973 0.0973 0.2107 0.2051

0.01 0.0118 0.0119 0.0506 0.0471 0.0112 0.0112 0.0807 0.0783
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Table 7.30 Upper-tail probability values compared with nominal values (P ) for a bivariate
SK(25) distribution with Fisher (F) and Gayen (G) tests of hypotheses on ρxy = 0.00 and
ρxy = +0.60

N = 20 N = 80

ρxy = 0.00 ρxy = 0.60 ρxy = 0.00 ρxy = 0.60

P F G F G F G F G

0.99 0.9890 0.9889 0.9955 0.9943 0.9899 0.9899 0.9958 0.9953

0.90 0.9014 0.9017 0.9337 0.9217 0.9006 0.9006 0.9292 0.9237

0.75 0.7538 0.7536 0.7928 0.7679 0.7512 0.7512 0.7831 0.7714

0.50 0.5005 0.5005 0.5179 0.4861 0.5004 0.5004 0.5076 0.4924

0.25 0.2463 0.2465 0.2354 0.2133 0.2493 0.2493 0.2295 0.2184

0.10 0.0975 0.0978 0.0830 0.0734 0.0999 0.0999 0.0785 0.0734

0.01 0.0111 0.0112 0.0072 0.0062 0.0103 0.0103 0.0054 0.0049

(F) and Gayen (G) test statistics. Table 7.24 analyzes data obtained from the N(0, 1)

distribution; Tables 7.25, 7.26, and 7.27 analyze data obtained from the generalized
logistic distribution with θ = 1.0, 0.1, and 0.01, respectively; and Tables 7.28, 7.29,
and 7.30 analyze data obtained from the symmetric kappa distribution with λ = 2,
3, and 25, respectively.

In each table, the Monte Carlo upper-tail probability values for tests of hypothe-
ses based on the Fisher and Gayen approaches were obtained from the same
L = 1,000,000 bivariate random samples of size N drawn with replacement
from the designated bivariate distribution characterized by the specified population
correlation ρxy . If the Fisher [14] and Gayen [17] techniques are appropriate for
the simulated data, the upper-tail probability values should agree with the nominal
upper-tail values, P .

Considered as a set, some general statements can be made about the Monte Carlo
results contained in Tables 7.24 through 7.30. First, both the Fisher z transform and
the Gayen correction provide very satisfactory results for the N(0, 1) distribution
analyzed in Table 7.24 with any value of ρxy and for any of the other distributions
analyzed in Tables 7.25 through 7.30 when ρxy = 0.00. Second, in general the
Monte Carlo upper-tail probability values obtained with the Gayen correction are
better than those obtained with the uncorrected Fisher z transform, especially near
P = 0.50. Where differences exist, the Fisher z transform is somewhat better
than the Gayen correction with P > 0.75 and the Gayen correction performs
better when P < 0.75. Third, discrepancies between the Monte Carlo upper-
tail probability values and the nominal probability values are noticeably larger for
N = 80 than for N = 20 and for ρxy = 0.60 than for ρxy = 0.00, especially for the
skewed and heavy-tailed distributions, i.e., GL(0.1), GL(0.01), SK(2), and SK(3).
Fourth, the Monte Carlo upper-tail probability values in Tables 7.24 through 7.30
are consistently closer to the nominal values for ρxy = 0.00 than for ρxy = +0.60.

To illustrate the difference in results among the seven distributions, consider the
first and last values in the last column in each table, i.e., the two Gayen values
corresponding to P = 0.99 and P = 0.01 for N = 80 and ρxy = +0.60 in
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Tables 7.25 to 7.30, inclusive. If an investigator was to test the null hypothesis
H0: ρxy = +0.60 with a two-tailed test at α = 0.02, then given the N(0, 1)

distribution analyzed in Table 7.24, the investigator would reject the null hypothesis
at a rate of 0.0202 or about 2.02% of the time, i.e., 1.0000 − 0.9899 + 0.0101 =
0.0202, which is very close to α = 0.02. For the light-tailed GL(1.0) or generalized
logistic distribution analyzed in Table 7.25, the investigator would reject H0: ρxy =
0.60 at a rate of 0.0339 or about 3.39% of the time, i.e., 1.0000−0.9838+0.0177 =
0.0339, compared with the specified α = 0.02. For the skewed GL(0.1) distribution
analyzed in Table 7.26, the investigator would reject H0: ρxy = +0.60 at a rate of
0.0446 or about 4.46% of the time, and for the GL(0.01) distribution analyzed in
Table 7.27, which has a more pronounced skewness than GL(0.1), the rejection rate
is 0.0476 or about 4.76%, compared to α = 0.02. The heavy-tailed distributions,
SK(2) and SK(3), analyzed in Tables 7.28 and 7.29, respectively, yield rejection
rates of 0.3629 and 0.1346, respectively, which are not the least bit close to
α = 0.02. Finally, the very light-tailed distribution, SK(25), analyzed in Table 7.30
yields a reversal with a very conservative rejection rate of 0.0096, compared to
α = 0.02.

7.5.4 Discussion

The Fisher z transform of the sample correlation coefficient, rxy , is widely used in
a variety of disciplines for both estimating population ρxy values and for testing
hypothesized values of ρxy �= 0.00. The transform is presented in most textbooks
and is a standard feature of many statistical software packages. The assumptions
underlying the use of the Fisher z transform are (1) a simple random sample drawn
with replacement from (2) a bivariate normal distribution. It is commonly believed
that the Fisher z transform is robust to non-normality. For example, in 1929 Karl
Pearson observed:

[T]he normal bivariate surface can be mutilated and distorted to a remarkable degree without
affecting the frequency distribution of r in samples as small as 20 [43, p. 357].

Given correlated non-normal bivariate distributions, these Monte Carlo analyses
demonstrate that the Fisher z transform is not at all robust.

In general, while the Fisher z transform and the alternative techniques proposed
by Gayen [17] and Jeyaratnam [22] provide accurate results for a bivariate normal
distribution with any value of ρxy and for non-normal bivariate distributions when
ρxy = 0.0, serious problems surface with non-normal bivariate distributions when
|ρxy | > 0.0. The results for the light-tailed SK(25) distribution are, in general,
slightly conservative when |ρxy | > 0.0; cf. Liu, Woodward, and Bonett [28, p. 508].
This is usually not seen as a serious problem in practice as conservative results imply
possible failure to reject the null hypothesis and a potential increase in type II error.
In comparison, the results for the heavy-tailed distributions, SK(2) and SK(3), and
the skewed distributions, GL(0.1) and GL(0.01) are quite liberal when |ρxy | > 0.0.
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Also, GL(1.0) is a light-tailed distribution that yields slightly liberal results. Liberal
results are much more serious than conservative results, as they imply possible
rejection of the null hypothesis and a potential increase in type I error.

Most surprisingly, from a statistical perspective, for the heavy-tailed and skewed
distributions, small samples provide better estimates than large samples. Table 7.31
extends the analyses of Tables 7.21, 7.22, 7.23, and 7.24 to larger sample sizes.
In Table 7.31 the investigation is limited to Monte Carlo containment probability
values obtained from the Fisher z transform for the skewed bivariate distributions
based on GL(0.1) and GL(0.01) and for the heavy-tailed bivariate distributions
based on SK(2) and SK(3), with ρxy = 0.00 and ρxy = 0.60, and for N = 10,
20, 40, 80, 160, 320, and 640. Inspection of Table 7.31 confirms that the trend
observed in Tables 7.19 through 7.22 continues with larger sample sizes, producing
increasingly smaller containment probability values with increasing N for |ρxy | >

0.00, where ρxy = +0.60 is considered representative of larger ρxy values.
The impact of large sample sizes is most pronounced in the heavy-tailed bivariate

distribution based on SK(2) and the skewed bivariate distribution based on GL(0.01)

where, with ρxy = +0.60, the divergence between the containment probability
values and the nominal 1 − α values for N = 10 and N = 640 is quite extreme.
For example, SK(2) with 1 − α = 0.90, ρxy = +0.60, and N = 10 yields a
containment probability value of P = 0.7487, whereas N = 640 for this case yields
a containment probability value of P = 0.2677, compared with 1 − α = 0.90.
Obviously, large samples have a greater chance of selecting rare extreme values
than small samples. Consequently, the Monte Carlo containment probability values
become worse with increasing sample size when heavy-tailed distributions are
encountered.

It is clear that the Fisher z transform provides very good results for the bivariate
normal distribution and any of the other distributions when ρxy = 0.00. However, if
a distribution is not bivariate normal and ρxy > 0.00, then the Fisher z random
variable does not follow a normal distribution. Geary [18, p. 241] admonished:
“Normality is a myth; there never was, and never will be, a normal distribution.”
In the absence of bivariate normality and in the presence of correlated heavy-tailed
bivariate distributions, such as those contaminated by extreme values, or correlated
skewed bivariate distributions, the Fisher z transform and related techniques can
yield highly inaccurate results.

Given that normally distributed populations are rarely encountered in actual
research situations [18, 33] and that both heavy-tailed symmetrical distributions
and heavy-tailed skewed distributions are prevalent in much research, considerable
caution should be exercised when using the Fisher z transform or related techniques
such as those proposed by Gayen [17] and Jeyaratnam [22], as these methods clearly
are not robust to deviations from normality when |ρxy | �= 0.0. In general, there
is no easy answer to this problem. However, a researcher cannot simply ignore a
problem just because it is annoying. Unfortunately, given a non-normal population
with ρxy �= 0.0, there appear to be no published alternative tests of significance nor
viable options for the construction of confidence intervals.
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Finally, to paraphrase a line from Thompson regarding the use of tiltmeters in
volcanology [53, p. 258],

1. Do not use the Fisher z transformation.
2. If you do use it, don’t believe it.
3. If you do believe it, don’t publish it.
4. If you do publish it, don’t be the first author.

7.6 Point-Biserial Linear Correlation

The point-biserial correlation coefficient measures the association between a
dichotomous variable and an interval-level variable. Applications of the point-
biserial correlation abound in fields such as education and educational psychology.
The point-biserial correlation may be thought of simply as the Pearson product-
moment correlation between an interval-level variable and a variable with two
disjoint, unordered categories.

7.6.1 Example

To illustrate the point-biserial correlation coefficient, consider the dichotomous
data listed in Table 7.32 for N = 13 subjects where variable x is a dichotomous
variable coded (0, 1) and variable y is an interval-level variable. The point-biserial
correlation is usually computed as

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
,

Table 7.32 Example
bivariate data for
point-biserial correlation on
N = 13 subjects

Subject x y

1 0 19

2 1 17

3 0 18

4 0 18

5 1 26

6 1 28

7 0 20

8 1 19

9 0 22

10 1 23

11 1 26

12 0 25

13 1 30
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where n0 and n1 denote the number of y values coded 0 and 1, respectively, N =
n0 +n1, ȳ0 and ȳ1 denote the means of the y values coded 0 and 1, respectively, and
sy is the sample standard deviation of the y values given by

sy =
√√√√ 1

N − 1

N∑
i=1

(
yi − ȳ

)2
.

For the data listed in Table 7.32, n0 = 6, n1 = 7, ȳ0 = 20.3333, ȳ1 = 24.1429,
sy = 4.2728, and the point-biserial correlation is

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 24.1429 − 20.3333

4.2728

√
(6)(7)

13(13 − 1)
= +0.4626 .

However, rpb can also be calculated simply as the Pearson product-moment
correlation (rxy ) between dichotomous variable x and interval variable y. For the
data listed in Table 7.32, N = 13,

N∑
i=1

xi =
N∑

i=1

x2
i = 7 ,

N∑
i=1

yi = 291 ,

N∑
i=1

y2
i = 6,733 ,

N∑
i=1

xiyi = 169 ,

and

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2⎤
⎦

= (13)(169) − (7)(291)√[
(13)(7) − 72

][
(13)(6,733) − 2912

] = +0.4626 .

Approaching the calculation of the probability value from a product-moment
perspective, there are

M = N ! = 13! = 6,227,020,800

possible, equally-likely arrangements in the reference set of all permutations of
the observed bivariate data, making an exact permutation analysis impractical. Let
ro denote the observed value of rpb. Then, based on L = 1,000,000 random
arrangements of the observed data under the null hypothesis, there are 121,667 |rpb|
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values equal to or greater than |ro| = 0.4626, yielding a Monte Carlo resampling
two-sided probability value of P = 121,667/1,000,000 = 0.121667.

In general, L = 1,000,000 ensures three decimal places of accuracy. However,
it requires an increase of two orders of magnitude, i.e., L = 100,000,000,
to ensure four decimal places of accuracy [23]. Based on L = 100,000,000
random arrangements of the observed bivariate data, the two-sided Monte Carlo
resampling probability value of rpb = +0.4626 to six decimal places is P =
12,121,600/100,000,000 = 0.121216.

However, because variable x is composed of only two categories, an alternative
procedure exists for establishing the probability value of rpb . The relationships
between rpb and Student’s two-sample t test are

rpb =
√

t2

t2 + N − 2
and t = rpb

√
N − 2√

1 − r2
pb

.

Thus, the probability value for a specified point-biserial correlation coefficient can
be calculated much more efficiently as the probability value of a two-sample t test
with N − 2 degrees of freedom. Consider the data in Table 7.32 rearranged into two
groups coded 0 and 1 as in Table 7.33.

For the observed data listed in Table 7.33, Student’s t test statistic is

t = rpb

√
N − 2√

1 − r2
pb

= +0.4626
√

13 − 2√
1 − (+0.4626)2

= +1.7307 .

For the data listed in Table 7.33, there are only

M = N !
n0! n1! = 13!

6! 7! = 1,716

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, compared with

M = N ! = 13! = 6,227,020,800

Table 7.33 Example data on
N = 13 subjects for Student’s
t test

0 1

19 17

18 26

18 28

20 19

22 23

25 26

30
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in the initial set, making an exact permutation analysis possible. If all arrangements
of the N = 13 observed scores occur with equal chance, the exact two-sided
probability value of t = +1.7307 to six places computed on the M = 1,716
possible arrangements of the observed data with n0 = 6 and n1 = 7 preserved
for each arrangement is 208/1,716 = 0.121212.

The Monte Carlo resampling probability value of P = 0.121667 based on L =
1,000,000 and the Monte Carlo resampling probability value of P = 0.121216
based on L = 100,000,000 both compare favorably with the exact probability value
of P = 0.121212. For comparison, the two-sided probability value of t = +1.7303
based on Student’s t distribution with N − 2 = 13 − 2 = 11 degrees of freedom is
P = 0.111421.

7.6.2 Problems with the Point-Biserial Coefficient

Whenever a dichotomous variable is correlated with an interval-level variable, as in
point-biserial correlation, there are potential problems with proper norming between
±1. In brief, it is not possible to obtain a perfect correlation, positive or negative,
between a dichotomous variable and a continuous variable [42, p. 145]. The reason
is simply that it is not possible for a dichotomous variable and a continuous variable
to have the same shape, as illustrated in Fig. 7.8 where a dichotomous variable (x) is
correlated with a continuous variable (y) that is comprised of a uniform distribution,
i.e, y = 1, 2, . . . , 10. In order to achieve a perfect correlation of rpb = +1.00, it

Fig. 7.8 Scatterplot of a
uniform distribution of y

values with the regression
line overlaid
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Fig. 7.9 Scatterplot of
clusters of y values located at
x = 0 and x = 1 with the
regression line overlaid

would be necessary for all the scores at the two points of variable x (x = 0 and
x = 1) to fall exactly on two points on variable y, as depicted in Fig. 7.9 where the
larger black circles represent a cluster of points at x = 0 and x = 1. Since variable y

is assumed to be continuous, this is not possible. Consequently, values of variable y

at either of the two points on variable x (the dichotomous variable) must correspond
to a range of points on variable y (the continuous variable).

As Jum Nunnally showed in 1978, the maximum value of rpb between a
dichotomous variable and a normally distributed variable is approximately rpb =
±0.80, which occurs only when p = n0/N = 0.50 [42]. As p deviates from 0.50 in
either direction, the maximum value of rpb is further reduced. Consequently, when
p = 0.25 or p = 0.75, the maximum value of rpb is approximately rpb = ±0.75,
and when p = 0.90 or p = 0.10, the maximum value of rpb is only approximately
rpb = ±0.58.5

The problem can be illustrated with a small empirical example. Table 7.34
contains 10 scores (1, 2, . . . , 10) with frequencies corresponding to an expanded
binomial distribution, which approximates a normal distribution with N = 512. For

5The problem is not confined to rpb . In general, the problem is called the base-rate problem or the
marginal-dependent problem. See two excellent discussions of the problem by Goodman [19] and
McGrath and Meyer [31].
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Table 7.34 Example
binomial distribution on
N = 512 subjects with
p = 0.50

x y f fy y2 fy2

0 1 1 1 1 1

0 2 9 18 4 36

0 3 36 108 9 324

0 4 84 336 16 1,344

0 5 126 630 25 3,150

1 6 126 756 36 4,536

1 7 84 588 49 4,116

1 8 36 288 64 2,304

1 9 9 81 81 729

1 10 1 10 100 100

Sum 512 2,816 16,640

the binomial data listed in Table 7.34 with p = 0.50,

ȳ0 =
(

n0∑
i=1

fi

)−1 n0∑
i=1

fiyi = 1 + 18 + 108 + 336 + 630

1 + 9 + 36 + 84 + 126
= 4.2695 ,

ȳ1 =
(

n1∑
i=1

fi

)−1 n1∑
i=1

fiyi = 756 + 588 + 288 + 81 + 10

126 + 84 + 36 + 9 + 1
= 6.7305 ,

sy =

√√√√√√√√√√
N∑

i=1

fy2 −

(
N∑

i=1

fy

)2

N

N − 1
=

√√√√√16,640 − (2,816)2

512
512 − 1

= 1.5015 ,

and

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 6.7305 − 4.2695

1.5015

√
(256)(256)

512(512 − 1)

= +0.8203 ,

which approximates Nunnally’s estimate of rpb = +0.80.
Table 7.35 illustrates a binomial distribution with N = 512 and p  0.25, i.e.,

p = 1

N

n0∑
i=1

fi = 1 + 9 + 36 + 84

512
= 0.2539 .
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Table 7.35 Example
binomial distribution on
N = 512 subjects with
p  0.25

x y f fy y2 fy2

0 1 1 1 1 1

0 2 9 18 4 36

0 3 36 108 9 324

0 4 84 336 16 1,344

1 5 126 630 25 3,150

1 6 126 756 36 4,536

1 7 84 588 49 4,116

1 8 36 288 64 2,304

1 9 9 81 81 729

1 10 1 10 100 100

Sum 512 2,816 16,640

For the binomial data in Table 7.35 with p  0.25,

ȳ0 =
(

n0∑
i=1

fi

)−1 n0∑
i=1

fiyi = 1 + 18 + 108 + 336

1 + 9 + 36 + 84
= 3.5615 ,

ȳ1 =
(

n1∑
i=1

fi

)−1 n1∑
i=1

fiyi = 630 + 756 + 588 + 288 + 81 + 10

126 + 126 + 84 + 36 + 9 + 1
= 6.1597 ,

the standard deviation of the y values is unchanged at sy = 1.5015 and

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 6.1597 − 3.5615

1.5015

√
(130)(382)

512(512 − 1)

= +0.7539 ,

which approximates Nunnally’s estimate of rpb = +0.75.
While it is not convenient to take exactly 10% of N = 512 cases, as arranged in

Table 7.34, it is possible to take 9% of N = 512 cases. Thus,

p = 1

N

n0∑
i=1

= 1 + 9 + 36

512
= 46

512
= 0.0898.
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Table 7.36 Example
binomial distribution on
N = 512 subjects with
p = 0.09

x y f fy y2 fy2

0 1 1 1 1 1

0 2 9 18 4 36

0 3 36 108 9 324

1 4 84 336 16 1,344

1 5 126 630 25 3,150

1 6 126 756 36 4,536

1 7 84 588 49 4,116

1 8 36 288 64 2,304

1 9 9 81 81 729

1 10 1 10 100 100

Sum 512 2,816 16,640

Table 7.36 illustrates a binomial distribution with N = 512 and p = 0.09. For the
binomial data listed in Table 7.36 with p  0.10,

ȳ0 =
(

n0∑
1=1

fi

)−1 n0∑
i=1

fiyi = 1 + 18 + 108

1 + 9 + 36
= 2.7609 ,

ȳ1 =
(

n1∑
i=1

fi

)−1 n1∑
i=1

fiyi = 336 + 630 + 756 + 588 + 288 + 81 + 10

84 + 126 + 126 + 84 + 36 + 9 + 1

= 5.7704 ,

the standard deviation of the y values is unchanged at sy = 1.5015 and

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 5.7704 − 2.7609

1.5015

√
(46)(466)

512(512 − 1)

= +0.5737 ,

which approximates Nunnally’s estimate of rpb = +0.58.

7.7 Biserial Linear Correlation

Point-biserial correlation measures the degree of association between an interval-
level variable and a dichotomous variable that is a true dichotomy, such as right
and wrong, true and false, or left and right. On the other hand, biserial correlation
measures the degree of association between an interval-level variable and a dichoto-
mous variable that has been created from a variable that is assumed to be continuous
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and normally distributed, such as grades that have been dichotomized into “pass”
and “fail” or weight that has been classified into “normal” and “obese.”6 Biserial
correlation has long been difficult to compute, requiring the ordinate of a unit-
normal distribution. Some approximating methods have been suggested to simplify
computation [16], but these are unnecessary with permutation methods.

Let x represent the dichotomous variable and y represent the continuous interval-
level variable, then the biserial correlation coefficient is given by

rb = (ȳ1 − ȳ0)pq

uSy

,

where p and q = 1 − p denote the proportions of all y values coded 0 and 1,
respectively, ȳ0 and ȳ1 denote the arithmetic means of the y values coded 0 and 1,
respectively, Sy is the standard deviation of the y values given by7

Sy =
√√√√ 1

N

N∑
i=1

(
yi − ȳ

)2
,

and u is the ordinate of the unit normal curve at the point of division between the p

and q proportions under the curve given by

u = exp(−z2/2)√
2π

.

Written in raw terms without the p and q proportions,

rb = (ȳ0 − ȳ1)n0n1

N2uSy

,

where n0 and n1 denote the number of y values coded 0 and 1, respectively, and
N = n0 + n1. The biserial correlation may also be written in terms of the point-
biserial correlation coefficient,

rb = rpb
√

pq

u
= rpb

√
n0n1

Nu
,

6For many years height has been considered as normally distributed, but recent research indicates
that this is not necessarily the case [30, pp. 205–207].
7Note that the sum of squared deviation is divided by N , not N −1 and the symbol for the standard
deviation is Sy with an uppercase letter S to distinguish it from the usual sample standard deviation
denoted by sy .
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where the point-biserial correlation coefficient is given by

rpb = (ȳ1 − ȳ0)
√

pq

Sy

.

7.7.1 Example

To illustrate the calculation of the biserial correlation coefficient, consider the set
of data given in Table 7.37 where N = 15 subjects are scored on interval-level
variable y and are classified into types on dichotomous variable x. For the data
listed in Table 7.37, n0 = 6, n1 = 9, p = 6/15 = 0.40, q = 9/15 = 0.60,

ȳ0 = 1

n0

n0∑
i=1

yi = 12 + 15 + 11 + 18 + 13 + 11

6
= 13.3333 ,

ȳ1 = 1

n1

n1∑
i=1

yi = 10 + 33 + 19 + 21 + 29 + 12 + 19 + 23 + 16

9
= 20.2222 ,

Sy =
√√√√ 1

N

N∑
i=1

(
yi − ȳ

)2 =
√

649.7333

15
= 6.5815 ,

the standard score that defines the lower p = 0.40 of the unit-normal distribution is
z = −0.2533,

u = exp(−z2/2)√
2π

= exp[−(−0.2533)2/2]√
(2)(3.1416)

= 0.3863 ,

and

rb = (ȳ1 − ȳ0)pq

uSy

= (20.2222 − 13.3333)(0.40)(0.60)

(0.3863)(6.5815)
= +0.6503 .

For the data listed in Table 7.37, the point-biserial correlation coefficient is

rpb = (ȳ1 − ȳ0)
√

pq

Sy

= (20.2222 − 13.3333)
√

(0.40)(0.60)

6.5815
= +0.5128 ,

and in terms of the point-biserial correlation coefficient, the biserial correlation
coefficient is

rb = rpb
√

pq

u
= +0.5128

√
(0.40)(0.60)

0.3863
= +0.6503 .
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Table 7.37 Example biserial
correlation data on N = 15
subjects

Subject x y

1 0 12

2 0 15

3 0 11

4 0 18

5 0 13

6 0 11

7 1 10

8 1 33

9 1 19

10 1 21

11 1 29

12 1 12

13 1 19

14 1 23

15 1 16

For the N = 15 scores listed in Table 7.37, there are only

M = N !
n0! n1! = 15!

6! 9! = 5,005

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, making an exact permutation analysis easily accomplished. Note
that in the formula for the biserial correlation coefficient,

rb = ȳ1 − ȳ0pq

uSy

p, q , u, and Sy are invariant under permutation. Therefore, the permutation
distribution can efficiently be based entirely on ȳ1 − ȳ0. If all M = 5,005
arrangements of the N = 15 observed values occur with equal chance, the exact
two-sided probability value of |rb| = +0.6503 computed on the M = 5,005
possible arrangements of the observed data with n0 = 6 and n1 = 9 preserved
for each arrangement is P = 263/5,005 = 0.0525.

7.8 Intraclass Correlation

There exists an extensive, and controversial, literature on the intraclass correlation
coefficient and its uses. The standard reference is by E.A. Haggard, Intraclass
Correlation and the Analysis of Variance [20], although it has been heavily criticized
for both its exposition and its statistical accuracy [51]. See also discussions by
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Bartko [3, 2, 4], Kraemer [27], Kraemer and Thiemann [26, pp. 32–34, 54–56],
Shrout and Fleiss [50], von Eye and Mun [54, pp. 116-122], and Winer [56, pp. 289–
296].

The intraclass correlation coefficient is most often used for measuring the level
of agreement among judges. The coefficient represents concordance, where +1
indicates perfect agreement and 0 indicates no agreement. While the maximum
value of the intraclass correlation coefficient is +1, the minimum is given by
−1/(k − 1), where k is the number of judges. Thus, for k = 2 judges the lower
limit is −1, but for k = 3 judges the lower limit is −1/2, for k = 4 judges the lower
limit is −1/3, for k = 5 judges the lower limit is −1/4, and so on, approaching zero
as the number of judges increases. A number of authors recommend that when the
intraclass correlation coefficient is negative, it should be interpreted as zero [4, 20,
p. 71], but this seems intuitively wrong.

In many ways the intraclass correlation coefficient is a special form of the
Pearson product-moment (interclass) correlation coefficient. Consider the small set
of data given in Table 7.38 with N = 5 subjects and measurements on Height (x)
and Weight (y). For the bivariate data given in Table 7.38 with N = 5 subjects,

N∑
i=1

xi = 15 ,

N∑
i=1

x2
i = 55 ,

N∑
i=1

yi = 25 ,

N∑
i=1

y2
i = 135 ,

N∑
i=1

xiyi = 83 ,

and the Pearson product-moment correlation coefficient is rxy = +0.80.
Now consider N = 5 sets of twins and let the variable under consideration be

Weight, as in Table 7.39. The question is, which of the two variables labeled Weight
is to be considered variable x and which is to be considered variable y? The problem
can be solved by the intraclass correlation coefficient using double entries. The
intraclass correlation between N pairs of observations on two variables, x and y, is
by definition the ordinary Pearson product-moment (interclass) correlation between
2N pairs of observations, the first N of which are the original observations, and the

Table 7.38 Example
bivariate correlation data on
N = 5 subjects

Subject Height (x) Weight (y)

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6

Table 7.39 Example
bivariate correlation data on
N = 5 twins

Twins Weight Weight

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6
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second N the original observations with variable x replacing variable y and vice
versa [15, Sect. 38]. Table 7.40 illustrates the arrangement. For the bivariate data
given in Table 7.40 with 2N = 10 subjects,

N∑
i=1

xi =
N∑

i=1

yi = 40 ,

N∑
i=1

x2
i =

N∑
i=1

y2
i = 190 ,

N∑
i=1

xiyi = 166 ,

and the intraclass correlation coefficient is rI = +0.20. Note that certain compu-
tational simplifications follow from the reversal of the variables, mainly because
the reversals make the marginal distributions for the new variables the same and,
therefore, the means and variances of the new variables are also the same [46, p. 20].

For cases with k > 2, the construction of a table suitable for calculating the
intraclass correlation coefficient is more laborious. For example, given k = 3 judges,
designate the three values for each subject as x1, x2, and x3. The three values are
entered into the table as six observations, each being one of the six permutations of
two values that can be made from the original three values. That is, the values of the
three values x1, x2, and x3 for each subject are entered into a bivariate correlation
table with coordinates (x1, x2), (x1, x3), (x2, x3), (x2, x1), (x3, x1), and (x3, x2), and
the Pearson product-moment correlation coefficient is computed for the resulting
table, yielding the intraclass correlation coefficient.

To illustrate, consider the small data set given in Table 7.41 with N = 3 subjects
and k = 3 judges. The permutations of the observations in Table 7.41 are listed in
the correlation matrix given in Table 7.42. For the bivariate data listed in Table 7.42

Table 7.40 Example
bivariate correlation data on
2N = 10 twins

Twins Weight (x) Weight (y)

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6

A′ 4 1

B′ 3 2

C′ 5 3

D′ 7 4

E′ 6 5

Table 7.41 Example
correlation data with k = 3
judges and N = 3 subjects

Subject x1 x2 x3

A 1 2 3

B 6 4 5

C 8 9 7
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Table 7.42 Bivariate permutation matrix for k = 3 judges and N = 3 subjects

Ss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x 1 1 2 6 6 4 8 8 9 3 3 2 5 5 4 7 7 9

y 2 3 3 4 5 5 9 7 7 1 2 1 4 6 6 9 8 8

Table 7.43 Example data for
Case 1, Form 1, with N = 6
subjects (S) and k = 4 judges
(A)

Judge (A)

Subject (S) 1 2 3 4

1 9 2 5 8

2 6 1 3 2

3 8 4 6 8

4 7 1 2 6

5 10 5 6 9

6 6 2 4 7

with N = 18 subjects,

N∑
i=1

xi =
N∑

i=1

yi = 90 ,

N∑
i=1

x2
i =

N∑
i=1

y2
i = 570 ,

N∑
i=1

xiyi = 552 ,

and the intraclass correlation coefficient obtained via the Pearson product-moment
correlation coefficient is rI = rxy = +0.85.

Because of the complexity of double entries with k > 2, the intraclass correlation
coefficient is usually formulated as an analysis of variance with variable A a random
variable. There are actually three different intraclass correlation coefficients, and
two forms of each [32, 50, 57]. The three types and two forms are designated as:

ICC(1, 1) and ICC(1, k),

ICC(2, 1) and ICC(2, k),

ICC(3, 1) and ICC(3, k).

Case 1, Form 1: ICC(1, 1) For Case 1, Form 1, there exists a pool of judges. For
each subject, a researcher randomly samples k judges from the pool to evaluate each
subject. The k judges who rate Subject 1 are not necessarily the same judges who
rate Subject 2. To illustrate Case 1, Form 1, Table 7.43 lists example data for k = 4
judges (A) and N = 6 subjects (S).

Now consider the data given in Table 7.43 as a one-way randomized-block
analysis of variance, given in Table 7.44. For the summary data given in Table 7.44,
let a indicate the number of levels of Factor A, then the sum-of-squares Total is

SSTotal =
N∑

i=1

x2
i −

(
N∑

i=1

xi

)2

Na
= 841 − (127)2

(6)(4)
= 168.9583 ,
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Table 7.44 Example data for
Case 1, Form 1, prepared for
an analysis of variance with
N = 6 subjects (S) and k = 4
judges (A)

Judge (A)

Subject (S) 1 2 3 4 TS

1 9 2 5 8 24

2 6 1 3 2 12

3 8 4 6 8 26

4 7 1 2 6 16

5 10 5 6 9 30

6 6 2 4 7 19

N 6 6 6 6 24

TA 46 15 26 40 127

Σx2 366 51 126 298 841

the sum-of-squares Between Subjects (BS) is

SSBS =

N∑
i=1

T 2
Si

a
−

(
N∑

i=1

xi

)2

Na

= (24)2 + (12)2 + · · · + (19)2

4
− (127)2

(6)(4)
= 56.2083 ,

the sum-of-squares for Factor A is

SSA =

a∑
j=1

TA2
j

N
−

(
N∑

i=1

xi

)2

Na

= (46)2 + (15)2 + (26)2 + (40)2

6
− (127)2

(6)(4)
= 97.4583 ,

the sum-of-squares Within Subjects (WS) is

SSWS = SSTotal − SSBS = 168.9583 − 56.2083 = 112.7500 ,

and the sum-of-squares Error is

SSError = SSA×S = SSWS − SSA = 112.7500 − 97.4583 = 15.2917 .
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Table 7.45 Analysis of
variance source table for the
data given in Table 7.44 with
k = 4 judges and N = 6
subjects

Source SS df MS F

Between S 56.2083 5 11.2417

Within S 112.7500 18 6.2639

Factor A 97.4583 3 32.4861 31.87

Error (A×S) 15.2917 15 1.0194

Total 168.9583 23

The analysis of variance source table is given in Table 7.45. For Case 1, Form 1, the
intraclass correlation coefficient is given by

ICC(1, 1) = MSBS − MSWS

MSBS + (a − 1)MSWS

= 11.2417 − 6.2639

11.2417 + (4 − 1)(6.2639)
= +0.1659 .

Case 1, Form k: ICC(1,k) If each judge is replaced with a group of k judges, such
as a team of clinicians, and the score is the average score of the k judges, then for
Case 1, Form k, the intraclass correlation coefficient is

ICC(1, k) = MSBS − MSWS

MSBS
= 11.2417 − 6.2639

11.2417
= +0.4428 .

Case 2, Form 1: ICC(2, 1) If the same set of k judges rate each subject and the k

judges are considered a random sample from a population of potential judges, then
the intraclass correlation coefficient is designated ICC(2, 1). Because this is the most
common case/form, it is usually designated simply as rI in the literature.

ICC(2, 1) = MSBS − MSA×S

MSBS + (a − 1)MSA×S + a(MSA − MSA×S)

N

= 11.2417 − 1.0194

11.2417 + (4 − 1)(1.0194) + (4)(32.4861 − 1.0194)

6

= +0.2898 .

Case 2, Form k: ICC(2, k) If each judge is replaced with a team of k judges, and
the score is the average score of the k judges, then for Case 2, Form k, the intraclass
correlation coefficient is

ICC(2, k) = MSBS − MSA×S

MSBS + MSA − MSA×S

N

= 11.2417 − 1.0194

11.2417 + 32.4861 − 1.0194

6

= +0.6200 .
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Case 3, Form 1: ICC(3, 1) Case 3, Form 1 is the same as Case 2, Form 1, except
that the raters are considered as fixed, not random. For Case 3, Form 1, the intraclass
correlation coefficient is

ICC(3, 1) = MSBS − MSA×S

MSBS + (a − 1)MSA×S

= 11.2417 − 1.0194

11.2417 + (4 − 1)(1.0194)
= +0.7148 .

Case 3, Form k: ICC(3, k) If each judge is replaced with a team of k judges and
the teams are considered as fixed, not random, the intraclass correlation coefficient is

ICC(3, k) = MSBS − MSA×S

MSBS
= 11.2417 − 1.0194

11.2417
= +0.9093 .

7.8.1 Example

For another example of the intraclass correlation coefficient, consider Case 2, Form
1, the most common in the literature, with k judges randomly selected from a
pool of potential judges. Table 7.46 contains data for k = 3 judges and N = 5
subjects. Table 7.47 contains the analysis of variance source table for the data given
in Table 7.46. Given the analysis of variance source table in Table 7.47, the intraclass

Table 7.46 Example data for
Case 2, Form 1, with N = 5
subjects (S) and k = 3 judges
(A)

Judge (A)

Subject (S) 1 2 3

1 12 10 8

2 15 11 7

3 9 9 6

4 6 5 4

5 8 5 5

Table 7.47 Analysis of
variance source table for the
data given in Table 7.46 with
k = 3 judges and N = 5
subjects

Source SS df MS F

Between S 78.00 4 19.50

Within S 54.00 10 5.40

Factor A 40.00 2 20.00 11.43

Error (A×S) 14.00 8 1.75

Total 132.00 14
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correlation coefficient is

rI = MSBS − MSA×S

MSBS + (a − 1)MSA×S + a(MSA − MSA×S)

N

= 19.50 − 1.75

19.50 + (3 − 1)(1.75) + (3)(20.00 − 1.75)

5

= 0.5228 .

7.8.2 A Permutation Analysis

Permutation analyses are completely data-dependent and do not depend on random
sampling and/or fixed- or random-effects models. For the data given in Table 7.46
for k = 3 judges and N = 5 subjects there are only

M = (
k!)N = (

3!)5 = 7,776

possible, equally-likely arrangements in the reference set of all permutations of the
observed data, making an exact permutation analysis possible. If ro denotes the
observed value of rI, the exact upper-tail probability value of the observed value
of rI is

P
(
rI ≥ ro|H0

) = number of rI values ≥ ro

M
= 24

7,776
= 0.0031 .

7.8.3 Interclass and Intraclass Linear Correlation

In the special case of k = 2 the relationship between the Pearson product-
moment (interclass) correlation coefficient and the Pearson intraclass correlation
coefficient can easily be demonstrated. Given k = 2 judges, the value of the
intraclass correlation depends in part upon the corresponding Pearson product-
moment correlation, but it also depends upon the differences between the means
and standard deviations of the two variables. Thus,

rI =
[(

σ 2
x + σ 2

y

)
− (

σx − σy

)2]
rxy − (x̄ − ȳ)2 /2

(σ 2
x + σ 2

y ) + (x̄ − ȳ)2 /2
,
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Table 7.48 Example
bivariate correlation data on
N = 5 subjects

Subject Height (x) Weight (y)

A 1 4

B 2 3

C 3 5

D 4 7

E 5 6

where x̄ and ȳ denote the means, σ 2
x and σ 2

y the variances, and rxy the Pearson
product-moment correlation of variables x and y. Thus, for the bivariate data given
in Table 7.38 on p. 428, replicated in Table 7.48 for convenience,

x̄ = 3.00 , ȳ = 5.00 , σx = σy = 1.4142 , σ 2
x = σ 2

y = 2.00 ,

rxy = +0.80, and

rI =
[
2.00 + 2.00 − (1.4142 − 1.4142)2

]
0.80 − (3.00 − 5.00)2/2

(2.00 + 2.00) + (3.00 − 5.00)2/2

= 1.20

6.00
= +0.20 ,

the same value found with 2N pairs of observations.

7.9 Coda

Chapter 7 applied permutation statistical methods to measures of association for
two variables at the interval level of measurement. Included in Chap. 7 were dis-
cussions of ordinary least squares (OLS) regression, least absolute deviation (LAD
regression), multivariate multiple regression, point-biserial correlation, biserial
correlation, intraclass correlation, and Fisher’s z transform for skewed distributions.

Chapter 8 applies exact and Monte Carlo resampling permutation statistical
methods to measures of association for two variables at different levels of measure-
ment, e.g., a nominal-level variable and an ordinal-level variable, a nominal-level
variable and an interval-level variable, and an ordinal-level variable and an interval-
level variable. Included in Chap. 8 are permutation statistical methods applied to
Freeman’s θ , Agresti’s δ̂, Piccarreta’s τ̂ , Whitfield’s S, Cureton’s rrb, Pearson’s η2,
Kelley’s ε2, Hays’ ω̂2, and Jaspen’s multiserial correlation coefficient.
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Chapter 8
Mixed-Level Variables

Chapters 3 and 4 of The Measurement of Association applied permutation statistical
methods to measures of association for two nominal-level (categorical) variables,
e.g., Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, Pearson’s C, Goodman and
Kruskal’s λa , λb , ta , and tb measures, Cohen’s unweighted kappa measure of
agreement, McNemar’s and Cochran’s Q tests for change, and Leik and Gove’s d c

N

measure of nominal association. Chapters 5 and 6 applied permutation statistical
methods to measures of association for two ordinal-level (ranked) variables, e.g.,
Kendall’s τa and τb measures, Stuart’s τc measure, Goodman and Kruskal’s γ ,
Somers’ dyx and dxy , Spearman’s rank-order correlation coefficient, Spearman’s
footrule measure, Kendall’s coefficient of concordance, Cohen’s weighted kappa
measure of agreement, and Bross’s ridit analysis. Chapter 7 applied permutation
statistical methods to measures of association for two interval-level variables,
e.g., Pearson’s product-moment correlation coefficient, the intraclass correlation
coefficient, ordinary least squares (OLS) regression, least absolute deviation (LAD)
regression, biserial correlation, and point-biserial correlation.

In this, the eighth chapter of The Measurement of Association, exact and
Monte Carlo permutation statistical methods are applied to measures of association
designed for two variables at different levels of measurement, e.g., a nominal-level
independent variable and an ordinal- or interval-level dependent variable, and an
ordinal-level independent variable and an interval-level dependent variable. For
practical use there is little reason to examine those cases in which the dependent
variable is at a lower measurement level than the independent variable because the
underlying logic of prediction cannot use the added information contained within
the independent variable [47, p. 292].

Chapter 8 begins with discussions of permutation statistical methods for three
measures of association for a nominal-level independent variable and an ordinal-
level dependent variable: Freeman’s θ , Agresti’s δ̂, and Piccarreta’s τ̂ . As special
cases for the measurement of nominal-ordinal association, permutation imple-
mentations of Whitfield’s S measure and Cureton’s rank-biserial measure for a
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dichotomous nominal-level variable and an ordinal-level variable are described.
Chapter 8 continues with a discussion of measures of association for a nominal-
level variable and an interval-level variable: Pearson’s η2, Kelley’s ε2, and Hays’
ω̂2. As special cases for the measurement of nominal-ordinal association, permu-
tation implementations of point-biserial correlation and biserial correlation for a
dichotomous nominal-level variable and an interval-level variable are described.
Next, permutation statistical methods for Jaspen’s multiserial correlation coefficient
for an ordinal-level variable and an interval-level variable are presented. Chapter 8
concludes with suggestions for a chance-corrected, generalized measure of associa-
tion for nominal-, ordinal-, or interval-level variables.

8.1 Freeman’s Index of Nominal-Ordinal Association

In 1965 Linton Freeman proposed a new measure of association for a nominal-
level independent variable and an ordinal-level dependent variable that he called
theta (θ ) [20, pp. 108–119].1 Consider an r×c contingency table where the r rows
are a nominal-level independent variable (x) and the c columns are an ordinal-level
dependent variable (y). In the fashion of Goodman and Kruskal [24], let ni., n.j , and
nij denote the row marginal frequency totals, column marginal frequency totals, and
number of objects in the ijth cell, respectively, for i = 1, . . . , r and j = 1, . . . , c,
and let N denote the total number of objects in the r×c contingency table, i.e.,

ni. =
c∑

j=1

nij , n.j =
r∑

i=1

nij , and N =
r∑

i=1

c∑
j=1

nij .

If x and y represent the row and column variables, respectively, the number of
concordant pairs (C), i.e., pairs of objects that are ranked in the same order on both
variable x and variable y, plus the number of discordant pairs (D), i.e., pairs of
objects that are ranked in one order on variable x and the reverse order on variable
y, plus the number of pairs tied on variable y but not tied on variable x (Ty) can be
shown to be given by

C + D + Ty = 1

2

(
N2 −

r∑
i=1

n2
i

)
.

1Unconventionally, Freeman’s θ was first presented in an introductory textbook on Elementary
Applied Statistics and not in a journal article.
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Alternatively,

C + D + Ty =
r−1∑
i=1

r∑
j=i+1

ni.nj. .

For Freeman’s θ , it is necessary to calculate the absolute sum of the number of
concordant pairs and number of discordant pairs for all combinations of rows (the
nominal-level independent variable) considered two at a time. Thus, assuming that
the c ordered variable (y) is underlying continuous and that ties in ranking result
simply from crude classification on that variable [20, p. 113], Freeman’s nominal-
ordinal measure of association is given by

θ =

r−1∑
i=1

r∑
j=i+1

∣∣Cij − Dij

∣∣
C + D + Ty

.

8.1.1 Example 1

Consider a simple example with r = 2 disjoint, unordered categories and c = 4
disjoint, ordered categories, such as given in Table 8.1 with N = 14 subjects. For
the frequency data given in Table 8.1, the number of concordant pairs (C) is obtained
by proceeding from the upper-left cell with frequency n11 = 1 downward and to the
right, multiplying each cell frequency by the sum of all cell frequencies below and to
the right, and summing the products. The number of discordant pairs (D) is obtained
by proceeding from the upper-right cell with frequency n14 = 4 downward and to
the left, multiplying each cell frequency by the sum of all cell frequencies below
and to the left, and summing the products. The number of pairs tied on variable y

(Ty) is obtained by proceeding from the first row in each column, multiplying each
cell frequency by the sum of all cell frequencies below, and summing the products.
Thus, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

xij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

xkl

⎞
⎠

= (1)(0 + 2 + 0) + (2)(2 + 0) + (3)(0) = 6 ,
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Table 8.1 Listing of example data for Freeman’s θ with N = 14 subjects classified into r = 2
unordered categories of the nominal-level independent variable Gender (x) and c = 4 ranks on the
ordinal-level dependent variable Social Status (y)

Social Status (y)

Gender (x) 4 3 2 1 Total

Female 1 2 3 4 10

Male 2 0 2 0 4

Total 3 2 5 4 14

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

xi,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

xkl

⎞
⎠

= (4)(2 + 0 + 2) + (3)(0 + 2) + (2)(2) = 26 ,

the number of pairs tied on variable y is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)
= (1)(2) + (2)(0) + (3)(2) + (4)(0) = 8 ,

and, since there are only r = 2 unordered categories,

θ = |C − D|
C + D + Ty

= |6 − 26|
6 + 26 + 8

= 20

40
= 0.50 .

The standard error of Freeman’s θ is unknown, so a permutation analysis is
essential. Usually, a Monte Carlo resampling permutation analysis is recommended
for analyzing contingency tables as the number of possible arrangements of cell
frequencies may often be very large. However, in this example with N = 14 subjects
and rc = (2)(4) = 8 cell frequencies, there are only M = 30 possible arrangements
in the reference set of all permutations of the cell frequencies consistent with the
observed row and column marginal frequency distributions, {10, 4} and {3, 2, 5, 4},
respectively, making an exact permutation analysis feasible.

Since M = 30 is a small number, it will be illustrative to list all M arrangements
of the observed data, the values of Freeman’s θ , and the associated hypergeometric
probability values. The M = 30 arrangements of the observed data are listed in
Table 8.2, organized by the values of Freeman’s θ from high to low. Because the
data given in Table 8.1 have only three degrees of freedom, it is sufficient to list
only three cell frequency values in Table 8.2, n11, n12, and n13, as the remaining
five cell frequency values are determined by the marginal frequency totals. The 11
arrangements in Table 8.2 indicated with asterisks, i.e., arrangements 1 through 11,
possess values of θ equal to or greater than the observed value of θ = 0.50. For the
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Table 8.2 Listing of
M = 30 possible
arrangements of the data
given in Table 8.1 with
associated θ values and
hypergeometric point
probability values; values of
θ equal to or greater than
θ = 0.50 are indicated by
asterisks

Cell frequency

Number n11 n12 n13 θ Probability

1∗ 3 2 5 1.0000 0.000999

2∗ 0 1 5 0.9750 0.001998

3∗ 1 0 5 0.8500 0.002997

4∗ 0 2 4 0.8000 0.004995

5∗ 3 2 4 0.6785 0.019980

6∗ 1 1 4 0.6750 0.029970

7∗ 1 1 5 0.6571 0.023976

8∗ 0 2 5 0.5750 0.003996

9∗ 2 0 4 0.5500 0.014985

10∗ 2 0 5 0.5143 0.011988

11∗ 1 2 3 0.5000 0.029970

12 3 2 3 0.4706 0.059940

13 1 2 4 0.4167 0.059940

14 1 2 5 0.4000 0.017982

15 2 1 2 0.3750 0.059940

16 3 1 5 0.3600 0.007992

17 3 2 2 0.2895 0.039960

18 2 1 4 0.2778 0.119880

19 3 0 3 0.2500 0.009990

20 2 1 5 0.2333 0.035964

21 3 1 4 0.2187 0.059940

22 2 2 2 0.2000 0.029970

23 2 2 5 0.1600 0.011988

24 3 0 4 0.1389 0.019980

25 3 2 1 0.1000 0.004995

26 3 1 3 0.0811 0.079920

27 3 1 2 0.0750 0.019980

28 3 0 5 0.0667 0.005994

29 1 0 1 0.0625 0.089910

30 1 0 2 0.0541 0.119880

Sum 1.000000

data given in Table 8.1, the exact probability value is the sum of the hypergeometric
point probability values in Table 8.2 associated with the arrangements of cell
frequencies with values of θ equal to or greater than the observed value of θ = 0.50.
Based on the underlying hypergeometric probability distribution, the exact upper-
tail probability value is P = 0.000999 + 0.001998 + · · · + 0.029970 = 0.1459.

As Jacobson [35] noted, when there are only r = 2 categories of the nominal-
level independent variable, Freeman’s θ is equivalent to Somers’ dyx ; see Chap. 5,
Sect. 5.7. However, the signs may differ due to the fact that 0 ≤ θ ≤ 1 and −1 ≤
dyx ≤ +1.
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Table 8.3 Listing of example data for Freeman’s θ with N = 40 subjects classified into r = 4
categories of the nominal-level independent variable Marital Status and c = 5 ranks on the ordinal-
level dependent variable Social Adjustment

Rank on Social Adjustment (y)

Marital Status (x) 5 4 3 2 1 Total

Single 1 2 5 2 0 10

Married 10 5 5 0 0 20

Widowed 0 0 2 2 1 5

Divorced 0 0 0 2 3 5

Total 11 7 12 6 4 40

8.1.2 Example 2

For a second, more realistic, example of Freeman’s θ , consider the data given
in Table 8.3 with r = 4 disjoint, unordered categories and c = 5 disjoint,
ordered categories. When the number of unordered categories is greater than two,
the computation of Freeman’s θ is more involved. In such cases, the number of
concordant pairs (C) and the number of discordant pairs (D) must be calculated
for all r(r − 1)/2 combinations of row categories. For the frequency data given in
Table 8.3, the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

xij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

xkl

⎞
⎠

= (1)(5 + 5 + 0 + 0 + 0 + 2 + 2 + 1 + 0 + 0 + 2 + 3)

+ (2)(5 + 0 + 0 + 2 + 2 + 1 + 0 + 2 + 3)

+ · · · + (2)(2 + 3) + (2)(3) = 304 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

xi,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

xkl

⎞
⎠

= (0)(2 + 0 + 0 + 0 + 2 + 2 + 0 + 0 + 0 + 5 + 5 + 10)

+ (2)(0 + 0 + 0 + 2 + 0 + 0 + 5 + 5 + 10)

+ · · · + (2)(0 + 0) + (0)(0) = 141 ,
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the number of pairs tied on variable y is

Ty =
c∑

j=1

r−1∑
i=1

nij

(
r∑

k=i+1

nkj

)

= (1)(10 + 0 + 0) + (10)(0 + 0) + (0)(0)

+ · · · + (0)(0 + 1 + 3) + (1)(1 + 3) + (1)(3) = 80 ,

the concordant and discordant pairs for the r = 4 rows considered two at a time are

C12 = (1)(5 + 5 + 0 + 0) + (2)(5 + 0 + 0) + (5)(0 + 0) + (2)(0) = 20 ,

D12 = (0)(10 + 5 + 5 + 0) + (2)(10 + 5 + 5) + (5)(10 + 5) + (2)(10) = 135 ,

C13 = (1)(0 + 2 + 2 + 1) + (2)(2 + 2 + 1) + (5)(2 + 1) + (2)(1) = 32 ,

D13 = (0)(0 + 0 + 2 + 2) + (2)(0 + 0 + 2) + (5)(0 + 0) + (2)(0) = 4 ,

C14 = (1)(0 + 0 + 2 + 3) + (2)(0 + 2 + 3) + (5)(2 + 3) + (2)(3) = 46 ,

D14 = (0)(0 + 0 + 0 + 2) + (2)(0 + 0 + 0) + (5)(0 + 0) + (2)(0) = 0 ,

C23 = (10)(0 + 2 + 2 + 1) + (5)(2 + 2 + 1) + (5)(2 + 1) + (0)(1) = 90 ,

D23 = (0)(0 + 0 + 2 + 2) + (0)(0 + 0 + 2) + (5)(0 + 0) + (5)(0) = 0 ,

C24 = (10)(0 + 0 + 2 + 3) + (5)(0 + 2 + 3) + (5)(2 + 3) + (0)(3) = 100 .

D24 = (0)(0 + 0 + 0 + 2) + (0)(0 + 0 + 0) + (5)(0 + 0) + (5)(0) = 0 ,

C34 = (0)(0 + 0 + 2 + 3) + (0)(0 + 2 + 3) + (2)(2 + 3) + (2)(3) = 16 ,

D34 = (1)(0 + 0 + 0 + 2) + (2)(0 + 0 + 0) + (2)(0 + 0) + (0)(0) = 2 ,

and Freeman’s θ is

θ =

r−1∑
i=1

r∑
j=i+1

∣∣Cij − Dij

∣∣
C + D + Ty

= |20 − 135| + |32 − 4| + |46 − 0| + |90 − 0| + |100 − 0| + |16 − 2|
304 + 141 + 80

= 0.7486 .
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There are only M = 6,340,588 possible arrangements in the reference set of
all permutations of cell frequencies consistent with the observed row and column
marginal frequency distributions, {10, 20, 5, 5} and {11, 7, 12, 6, 4}, respectively,
making an exact permutation analysis possible. If all M possible arrangements occur
with equal chance, the exact probability value of θ under the null hypothesis is the
sum of the hypergeometric point probability values associated with the arrange-
ments of cell frequencies with values of θ equal to or greater than the observed value
of θ = 0.7486. Based on the underlying hypergeometric probability distribution, the
exact upper-tail probability value of θ = 0.7486 is P = 0.2105×10−10.

8.2 Agresti’s Index of Nominal-Ordinal Association

In 1981 Alan Agresti proposed a new measure of association for a nominal-level
independent variable and an ordinal-level dependent variable that he denoted as
δ̂ [1]. Agresti noted that δ̂ was equivalent to Somers’ [69] dyx measure of ordinal
association when the independent variable was dichotomous, and directly related
to the ridit measure introduced by Bross in 1954 [10].2 Consequently, δ̂ is also
equivalent to Freeman’s θ when there are r = 2 categories of the independent
variable. Additionally, a similar approach was put forward by Maravelakis, Perakis,
Psarakis, and Panaretos [50] and Perakis, Maravelakis, Psarakis, Xekalaki, and
Panaretos [61] in 2003 and 2005, respectively. Agresti’s δ̂ measure is based on
concordant and discordant pairwise structures, is bounded 0 ≤ δ̂ ≤ 1, and possesses
a maximum-corrected interpretation.

Let X be a nominal-level independent variable with r disjoint, unordered
categories, x1, . . . , xr , and Y be an ordinal-level dependent variable with c disjoint,
ordered categories, y1, . . . , yc, ranging from least to greatest in degree. If N objects
are classified on both variables X and Y , the frequency for which objects are
characterized by {xi, yj } is denoted by nij for i = 1, . . . , r and j = 1, . . . , c.
The row and column marginal frequency distributions of X and Y are denoted
by {n1., . . . , nr.} and {n.1, . . . , n.c}, respectively. Agresti’s measure of nominal-
ordinal association is given by

δ̂ =

r−1∑
i=1

r∑
h=i+1

|�ih|

r−1∑
i=1

r∑
h=i+1

ni.nh.

, (8.1)

2For a discussion of Bross’s ridit analysis, see Chap. 6, Sect. 6.7.
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where

�ih =
c−1∑
j=1

c∑
k=j+1

njinkh −
c∑

j=2

j−1∑
k=1

njhnki . (8.2)

8.2.1 Example

Consider an example with N = 33 subjects, r = 3 disjoint, unordered categories,
and c = 4 disjoint, ordered categories, as given in Table 8.4. For the frequency
data given in Table 8.4, the denominator of δ̂ in Eq. (8.1) is the sum of the pairwise
products of the row marginal frequency totals, i.e.,

r−1∑
i=1

r∑
h=i+1

ni.nh.

= (11)(8) + (11)(14) + (8)(14) = 88 + 154 + 112 = 354 .

The numerator of δ̂ in Eq. (8.1) is the sum of all possible pairs of concordant (C)
minus discordant (D) row frequencies calculated from Eq. (8.2), i.e.,

�12 = (5)(2 + 3 + 2) + (3)(3 + 2) + (2)(2)

− (1)(3 + 2 + 1) + (2)(2 + 1) + (3)(1) = 39 ,

�13 = (5)(1 + 6 + 7) + (3)(6 + 7) + (2)(7)

(0)(3 + 2 + 1) + (1)(2 + 1) + (6)(1) = 114 ,

and

�23 = (1)(1 + 6 + 7) + (2)(6 + 7) + (3)(7)

(0)(2 + 3 + 2) + (1)(3 + 2) + (6)(2) = 44 .

Table 8.4 Example data for
Agresti’s δ̂ with N = 33
subjects, r = 3 independent
unordered row categories, and
c = 4 dependent ordered
column categories

Y

X 1 2 3 4 Total

A 5 3 2 1 11

B 1 2 3 2 8

C 0 1 6 7 14

Total 6 6 11 10 33



448 8 Mixed-Level Variables

Then, the numerator of δ̂ in Eq. (8.1) is |39| + |114| + |44| = 197 and

δ̂ =

r−1∑
i=1

r∑
h=i+1

|�ih|

r−1∑
i=1

r∑
h=i+1

ni.nh.

= 197

354
= 0.5565 .

When analyzing contingency tables, an exact permutation analysis generally
is not practical as the number of possible arrangements of cell frequencies in
the reference set is usually very large. In such cases, Monte Carlo resampling
permutation tests generate a random sample of L arrangements of cell frequencies
from the M total possible arrangements with the fixed observed marginal frequency
totals of the observed cell frequencies. If δ̂o denotes the observed value of Agresti’s
δ̂, the resampling upper-tail probability value of δ̂o is given by

P(δ̂ ≥ δ̂o|H0) = 1

L

L∑
i=1

�i(δ̂) ,

where

�i(δ̂) =
⎧⎨
⎩

1 if δ̂ ≥ δ̂o ,

0 otherwise ,

and L is set to a large number for accuracy. For the frequency data given in Table 8.4,
δ̂o = 0.5565 and with L = 1,000,000 randomly selected δ̂ values, the Monte Carlo
resampling probability of a δ̂ value equal to or greater than the observed value of
δ̂o = 0.5565 is

P(δ̂ ≥ δ̂o|H0) = number of δ̂ values ≥ δ̂o

L
= 15,151

1,000,000
= 0.0152 .

Since, for the frequency data given in Table 8.4, there are only M = 24,641 pos-
sible arrangements of cell frequencies, given the observed row and column marginal
frequency totals, {11, 8, 14} and {6, 6, 11, 10}, respectively, an exact permutation
analysis is possible. The exact probability value is the sum of the hypergeometric
point probability values associated with values of δ̂ equal to or greater than the
observed value of δ̂ = 0.5565. Based on the underlying hypergeometric probability
distribution, the exact upper-tail probability value is P = 0.0221.
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8.3 Piccarreta’s Index of Nominal-Ordinal Association

As noted, vide supra, a common problem in data analysis is the measurement of the
magnitude of association between a nominal independent variable and an ordinal
dependent variable. Some representative examples are the measured association
between nominal variables such as religious affiliation (Catholic, Jewish, Protestant,
None), voting behavior (Democrat, Independent, Republican), gender (Female,
Male), and marital status (Single, Married, Widowed, Divorced, Separated), ver-
sus ordinal attitudinal questions that are Likert-scaled (Strongly Agree, Agree,
Disagree, Strongly Disagree). In 2001 Raffælla Piccarreta [62] presented a new
index of nominal-ordinal association that was a generalization of the Goodman and
Kruskal [24] well-known τ index of nominal-nominal association. The Piccarreta τ̂

index is based on the Gini mean difference, is bounded between zero and one, and
possesses a proportional-reduction-in-error interpretation.

Following the notation of Piccarreta, let X be a nominal-level independent
variable with r disjoint, unordered categories, x1, . . . , xr , and let Y be an ordinal-
level dependent variable with c disjoint, ordered categories, y1, . . . , yc, ranging
from least to greatest in degree. If N objects in a sample are classified on both X

and Y , the frequency with which objects are characterized by {xi, yj } is denoted
by nij for i = 1, . . . , r and j = 1, . . . , c. The row and column marginal
frequency distributions of variables X and Y are denoted by {n1., . . . , nr.} and
{n.1, . . . , n.c}, respectively. The Piccarreta proportional-reduction-in-error index of
nominal-ordinal association is then defined as

τ̂ = 1 − VYX

VY

,

where

VY = 1

N

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj

(
N − Fj

)
, (8.3)

VYX =
r∑

i=1

1

ni.

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj |i

(
N − Fj |i

)
, (8.4)

Fj denotes the cumulative marginal frequency distribution of Y , defined as

Fj =
j∑

k=1

n.k ,
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Fj |i denotes the cumulative frequency distribution of Y in category i of variable X,
defined as

Fj |i =
j∑

k=1

nik ,

and y ′
j is an auxiliary variable representing the distances between adjacent cate-

gories of Y , j = 1, . . . , c. In the most elementary case where the categories of Y

are simply ranked, as in any Likert scale, y ′
j = j for j = 1, . . . , c, in which case the

term y ′
j+1 −y ′

j = 1 can be omitted from Eqs. (8.3) and (8.4). The minimum value of
τ̂ is 0 and occurs if and only if Fj |i = Fj for i = 1, . . . , r and j = 1, . . . , c, i.e.,
independence. The maximum value of τ̂ is 1 and occurs if and only if VYX(i) = 0
for i = 1, . . . , r .

8.3.1 Example

To illustrate Piccarreta’s τ̂ measure of nominal-ordinal association, consider the
frequency data for N = 243 respondents on a 3-point Likert scale arranged in a 3×3
contingency table as given in Table 8.5. For this example analysis, r = 3 disjoint,
unordered categories (Single, Married, Divorced) and c = 3 disjoint, ordered
categories (Agree, Neutral, Disagree). To demonstrate the calculation of Piccarreta’s
τ̂ for the data given in Table 8.5, assume that the c = 3 ordered categories of
variable Y are simply ranked as 1, 2, 3, and therefore, y ′

j for j = 1, . . . , c and
y ′
j+1 − y ′

j = 1. Then, F1 = n.1 = 86, F2 = n.1 + n.2 = 86 + 81 = 167, and

VY = 1

N

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj

(
N − Fj

)

= 1

243

[
(1)(86)(243 − 86) + (1)(167)(243 − 167)

] = 107.7942 .

Table 8.5 Example data for
Piccarreta’s τ̂ arranged in a
3×3 contingency table with a
nominal-level independent
variable (X) and an ordinal
level dependent variable (Y )

Variable Y

Variable X Agree Neutral Disagree Total

Single 37 31 19 87

Married 25 32 24 81

Divorced 24 18 33 75

Total 86 81 76 243
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VYX is calculated over the r = 3 disjoint, unordered categories. For row 1, F1|1 =
n11 = 37, F2|1 = n11 + n12 = 37 + 31 = 68, and

VYX(1) =
r∑

i=1

1

n1.

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj |1

(
N − Fj |1

)

= 1

87

[
(1)(37)(87 − 37) + (1)(68)(87 − 68)

] = 36.1149 .

For row 2, F1|2 = n21 = 25, F2|2 = n21 + n22 = 25 + 32 = 57, and

VYX(2) =
r∑

i=1

1

n2.

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj |2

(
N − Fj |2

)

= 1

81

[
(1)(25)(81 − 25) + (1)(57)(877)

] = 34.1728 .

For row 3, F1|3 = n31 = 24, F2|3 = n31 + n32 = 24 + 18 = 42, and

VYX(3) =
r∑

i=1

1

n3.

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj |3

(
N − Fj |3

)

= 1

75

[
(1)(24)(75 − 24) + (1)(42)(75 − 42)

] = 34.80 .

Then

VYX =
r∑

i=1

VYX(i) = 36.1149 + 34.1728 + 34.80 = 105.0878

and the observed value of Piccarreta’s test statistic is

τ̂o = 1 − VYX

VY

= 1 − 105.0878

107.7942
= 0.0251 .

In analyzing large contingency tables, an exact permutation analysis generally is
not practical. If τ̂o denotes the observed value of Piccarreta’s τ̂ , the Monte Carlo
resampling upper-tail probability value of τ̂o is given by

P(τ̂ ≥ τ̂o|H0) = 1

L

L∑
i=1

�i(τ̂ ) ,



452 8 Mixed-Level Variables

where

�i(τ̂ ) =
⎧⎨
⎩

1 if τ̂ ≥ τ̂o ,

0 otherwise ,

and L is set to a large number for accuracy. For the frequency data given in Table 8.5,
τ̂o = 0.0251 and with L = 1,000,000 randomly selected τ̂ values, the Monte Carlo
resampling probability of a τ̂ value equal to or greater than the observed value of
τ̂o = 0.0251 is

P(τ̂ ≥ τ̂o|H0) = number of τ̂ values ≥ τ̂o

L
= 255,978

1,000,000
= 0.0256 .

8.4 Comparisons Between δ̂ and τ̂

Agresti’s δ̂ and Piccarreta’s τ̂ measures of nominal-ordinal association are based on
entirely different principles and often lead to quite different results. In this section,
the two measures are compared and evaluated. For convenience, the necessary
notation and equations are reproduced here.

Let X be a nominal-level independent variable with r disjoint, unordered
categories, x1, . . . , xr , and let Y be an ordinal-level dependent variable with c

disjoint, ordered categories, y1, . . . , yc, ranging from least to greatest in degree.
If N objects are classified on both variables X and Y , the frequency that objects are
characterized by {xi, yj } is denoted by nij for i = 1, . . . , r and j = 1, . . . , c.
The row and column marginal frequency distributions of X and Y are denoted
by {n1., . . . , nr.} and {n.1, . . . , n.c}, respectively. Agresti’s δ̂ measure of nominal-
ordinal association is given by

δ̂ =

r−1∑
i=1

r∑
h=i+1

|�ih|

r−1∑
i=1

r∑
h=i+1

ni.nh.

, (8.5)

where

�ih =
c−1∑
j=1

c∑
k=j+1

njinkh −
c∑

j=2

j−1∑
k=1

njhnki .
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Piccarreta’s τ̂ measure of nominal-ordinal association is given by

τ̂ = 1 − VYX

VY

,

where

VY = 1

N

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj

(
N − Fj

)
,

VYX =
r∑

i=1

1

ni.

c−1∑
j=1

(
y ′
j+1 − y ′

j

)
Fj |i

(
N − Fj |i

)
,

Fj denotes the cumulative marginal frequency distribution of Y , defined as

Fj =
j∑

k=1

n.k ,

Fj |i denotes the cumulative frequency distribution of Y in category i of variable X,
defined as

Fj |i =
j∑

k=1

nik ,

and y ′
j is an auxiliary variable representing the distances between adjacent cate-

gories of Y , j = 1, . . . , c.
Both measures, Agresti’s δ̂ and Piccarreta’s τ̂ , are bounded by 0 and 1, as is cus-

tomary with nominal independent variables, but Agresti’s δ̂ is a maximum-corrected
measure, i.e., the denominator in Eq. (8.5) is the maximum value that the numerator
can attain, given the observed row and column marginal frequency distributions,
respectively. In contrast, while Piccarreta’s τ̂ is a maximum-corrected measure, it is
also a proportional-reduction-in-errormeasure with a familiar interpretation, i.e., the
reduction in error provided by the inclusion of the specified independent variable,
compared with knowledge of the dependent variable alone.

One weakness of Agresti’s δ̂ is that it ignores the characteristics of the distribu-
tions of the dependent variable, Y , conditional on the categories of the explanatory
variable, X [3]. Thus, δ̂ = 1 whenever one of the conditional distributions is entirely
above or below another. Consequently, Agresti’s δ̂ is equal to 1 under a variety of cell
frequency arrangements. In contrast, Piccarreta’s τ̂ is equal to 1 if and only if all the
conditional variables, x1, . . . , xr , fall into only one level of the dependent variable,
Y . Table 8.6 illustrates this deficiency of Agresti’s δ̂ with seven 2×4 contingency
tables. The results summarized in Table 8.6 indicate that δ̂ = 1 for all seven cell
configurations, while τ̂ is more sensitive to the various cell configurations.



454 8 Mixed-Level Variables

Table 8.6 Agresti’s δ̂ and
Piccarreta’s τ̂ values for
seven 2×4 contingency tables

Y

Table X 1 2 3 4 δ̂ τ̂

1 A 2 3 4 0 1.0000 0.2444

B 0 0 0 1

2 A 1 0 0 0 1.0000 0.3004

B 0 2 3 4

3 A 1 2 0 0 1.0000 0.5591

B 0 0 3 4

4 A 1 2 3 0 1.0000 0.5679

B 0 0 0 4

5 A 3 4 0 0 1.0000 0.5895

B 0 0 1 2

6 A 4 0 0 0 1.0000 0.6667

B 0 1 2 3

7 A 4 0 0 0 1.0000 1.0000

B 0 4 0 0

8.4.1 Example Analysis

Table 8.7 contains frequency data arranged in a 3×6 contingency table to illustrate
a comparison between Agresti’s δ̂ and Piccarreta’s τ̂ measures of nominal-ordinal
association. Variable X is a nominal-level independent variable with r = 3 disjoint,
unordered categories {A, B, C} and variable Y is an ordinal-level dependent variable
with c = 6 disjoint, ordered categories {1, 2, 3, 4, 5, 6}. For the frequency data
given in Table 8.7, the observed value of Agresti’s δ̂ measure is δ̂o = 0.5210 and
the observed value of Piccarreta’s τ̂ measure with y ′

j = 1, 2, . . . , 6 and y ′
j+1 −

y ′
j = 1, is τ̂o = 0.1828, highlighting the two different approaches for measuring the

magnitude of nominal-ordinal association.
Two different methods can be considered in establishing probability values for

the two measures. First, the delta method [30], advocated by both Agresti and
Piccarreta, estimates the mean and variance of the sampling distribution of the
selected statistic, which is assumed to be distributed N(0, 1). A z-score is computed
and an approximate probability value is obtained by numerical integration of the
normal distribution over a finite interval.

Table 8.7 Example 3×6
contingency table to compare
Agresti’s δ̂ and Piccarreta’s τ̂

measures of nominal-ordinal
association

Y

X 1 2 3 4 5 6 Total

A 1 2 3 4 0 0 10

B 0 2 3 4 5 0 14

C 0 0 3 4 5 6 18

Total 1 4 9 12 10 6 42
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Second, Monte Carlo resampling methods generate L random arrangements
of cell frequencies, given the fixed observed marginal frequency totals, where L

typically is a large number, e.g., L = 1,000,000. For each random arrangement of
cell frequencies, the selected statistic is calculated, resulting in a discrete sampling
distribution. The probability of obtaining the observed statistic value, or a more
extreme value, is simply the proportion of randomly selected test statistics, δ̂ or τ̂ ,
with values equal to or more extreme than the value of the observed statistic.

Consider the frequency data given in Table 8.7 and Agresti’s δ̂ measure of
nominal-ordinal association. For the data given in Table 8.7, the delta method is
based on a mean of μ

δ̂
= 0.3605 and a variance of σ 2

δ̂
= 0.0082; skewness (γ

δ̂
) is

not considered in the delta method since the distribution is assumed to be N(0, 1).
The standard score for the observed value of δ̂o = 0.5210 is

z = δ̂o − μ
δ̂

σ
δ̂

= 0.5210 − 0.3605√
0.0082

= +1.7724

and the N(0, 1) upper-tail probability value is P = 0.0384. For the frequency data
given in Table 8.7, based on L = 1,000,000 randomly selected values, the Monte
Carlo resampling probability of a δ̂ value equal to or greater than the observed value
of δ̂o = 0.5210 is

P(δ̂ ≥ δ̂o|H0) = number of δ̂ values ≥ δ̂o

L
= 55,100

1,000,000
= 0.0551 .

Analogously, for the data listed in Table 8.7 and Piccarreta’s τ̂ measure of
nominal-ordinal association, the delta method is based on a mean of μτ̂ = 0.0488
and a variance of σ 2

τ̂
= 0.8565×10−3. The standard score for the observed value of

τ̂o = 0.1828 is

z = τ̂o − μτ̂

στ̂

= 0.1828 − 0.0488√
0.8565×10−3

= +4.5787

and the N(0, 1) upper-tail probability value is P = 2.3394×10−6. For the frequency
data given in Table 8.7, based on L = 1,000,000 randomly selected values, the
Monte Carlo resampling probability of a τ̂ value equal to or greater than the
observed value of τ̂o = 0.1828 is

P(τ̂ ≥ τ̂o|H0) = number of τ̂ values ≥ τ̂o

L
= 2,300

1,000,000
= 0.0023 ,

which is markedly different than P = 0.0551 obtained by resampling permutation
methods for Agresti’s δ̂ measure.
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8.4.2 The Delta Method

The delta method advocated by both Agresti and Piccarreta obtains only the
expected mean (μ

δ̂
or μτ̂ ) and variance (σ 2

δ̂
or σ 2

τ̂
) of the differentiable function

of a random variable based on the first and second order terms in a truncated
Taylor series, with the third and higher order terms ignored. In the cases of both
Agresti’s δ̂ and Piccarreta’s τ̂ , the use of the delta method is problematic, since
the method does not consider possible skewness. For the data given in Table 8.7,
γ
δ̂

= +0.5965 and γτ̂ = +1.1500 for δ̂ and τ̂ , respectively. Tables 8.8 and 8.9

examine skewness for Agresti’s δ̂ and Piccarreta’s τ̂ measures of nominal-ordinal
association, respectively. The contingency tables are constructed with nij = 3,
nij = 9, and nij = 18 for i = 1, . . . , r and j = 1, . . . , c, r = 2, . . . , 5,

Table 8.8 Skewness values
for Agresti’s δ̂ for 48 r×c

contingency tables with cell
frequencies of nij = 3,
nij = 9, and nij = 18 for
i = 2, . . . , 5 and
j = 2, . . . , 5

Columns

Rows nij 2 3 4 5

2 3 +0.4897 +0.7189 +0.8331 +0.8858

9 +0.7312 +0.8946 +0.9402 +0.9606

18 +0.8458 +0.9406 +0.9701 +0.9778

3 3 +0.7172 +0.4949 +0.5740 +0.5950

9 +0.8932 +0.6061 +0.6247 +0.6305

18 +0.9451 +0.6257 +0.6330 +0.6561

4 3 +0.7168 +0.5327 +0.4443 +0.4647

9 +0.8926 +0.6089 +0.4842 +0.4930

18 +0.9404 +0.6294 +0.4959 +0.4981

5 3 +0.7141 +0.5384 +0.4473 +0.3817

9 +0.8932 +0.6105 +0.4873 +0.4132

18 +0.9430 +0.6348 +0.4954 +0.4213

Table 8.9 Skewness values
for Piccarreta’s τ̂ for 48 r×c

contingency tables with cell
frequencies of nij = 3,
nij = 9, and nij = 18 for
i = 2, . . . , 5 and
j = 2, . . . , 5

Columns

Rows nij 2 3 4 5

2 3 +2.4972 +2.1322 +2.1839 +2.2646

9 +2.7022 +2.3811 +2.3786 +2.4164

18 +2.7586 +2.4343 +2.4436 +2.4543

3 3 +1.6444 +1.5213 +1.5658 +1.6078

9 +1.8808 +1.6880 +1.6893 +1.7012

18 +1.9409 +1.7296 +1.7223 +1.7269

4 3 +1.2820 +1.2354 +1.2782 +1.3168

9 +1.5245 +1.3716 +1.3783 +1.4023

18 +1.5844 +1.4069 +1.4042 +1.4206

5 3 +1.0988 +1.0719 +1.1069 +1.1249

9 +1.3175 +1.2017 +1.2020 +1.2150

18 +1.3701 +1.2245 +1.2111 +1.2335
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c = 2, . . . , 5, and yj = j = 1, . . . , c, i.e., 16 contingency tables ranging in
size from 2×2 to 5×5, ensuring identical uniform marginal frequency distributions
with nij = 3, nij = 9, and nij = 18. The 96 skewness terms in Tables 8.8 and 8.9
were obtained by simulation based on L = 1,000,000 random arrangements of cell
frequencies and a common seed. One obvious result for both Tables 8.8 and 8.9 is
that all the skewness values are substantially greater than zero.

Three skewness patterns for Agresti’s δ̂ measure are apparent in Table 8.8: (1)
skewness increases as nij increases from nij = 3 to nij = 18, when r and c are held
constant, (2) inconsistent skewness decreasing with increasing r is suggested when
nij and c are held constant, and (3) skewness increases with c ≥ 3 when nij and
r = 3 or r = 4 are held constant; however, skewness decreases as c ≥ 3 increases
when nij and r = 4 or r = 5 are held constant.

In contrast with the skewness results in Table 8.8 for Agresti’s δ̂, the skewness
patterns for Piccarreta’s τ̂ are far more consistent, as is evident in Table 8.9: (1)
skewness increases as nij increases, when r and c are held constant, (2) skewness
decreases as r increases, when nij and c are held constant, and skewness increases
as c ≥ 3 increases, when nij and r are held constant.

While both Agresti’s δ̂ and Piccarreta’s τ̂ measures of nominal-ordinal associa-
tion possess different strengths and weaknesses, overall Piccarreta’s τ̂ appears to be
the better of the two measures. Although δ̂ = 0 if and only if independence holds,
perfect association implies δ̂ = 1, but δ̂ = 1 does not imply perfect association, i.e.,
δ̂ = 1 under a variety of cell frequency configurations, as demonstrated in Table 8.6
on p. 454. On the other hand, while τ̂ = 0 if and only if independence holds,
and τ̂ = 1 if and only if perfect association holds, τ̂ only achieves unity when
r = c. Piccarreta’s τ̂ possesses a proportional-reduction-in-error interpretation,
which is familiar to many researchers, while Agresti’s δ̂ is very difficult to interpret,
especially when δ̂ = 1. Piccarreta’s τ̂ is more flexible in that different weights
can be assigned to the ordered categories, while Agresti’s δ̂ is restricted to y ′

j for

j = 1, . . . , c. The sampling distributions of both δ̂ and τ̂ possess considerable
skewness, τ̂ more than δ̂, but permutation statistical methods easily accommodate
for any skewness.

8.5 Dichotomous Nominal-Level Variables

As special cases of nominal-ordinal association, consider two examples: Whitfield’s
symmetrical measure of association, S, and Cureton’s rank-biserial correlation, rrb.
Both examine the relationship between a dichotomous variable and an ordinal-level
variable where, in this case, the dichotomous variable is considered to be a nominal-
level variable with only two disjoint, unordered categories.
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Table 8.10 Ranking of a dichotomous variable with nA = 5, nB = 3, and N = 8

Rank 1 2 3 4 5 6 7 8

Sample A B A A B B A A

8.5.1 Whitfield’s τ Measure of Association

In 1947 John Whitfield proposed a measure of correlation between two variables
in which one variable was composed of N rank scores and the other variable was
dichotomous [72]. Consider the N = 8 rank scores listed in Table 8.10 where the
dichotomous variable categories are two samples indicated by the letters A and B

and the rank scores are from 1 to 8. Let nA denote the number of rank scores in
sample A, let nB denote the number of rank scores in sample B, and let N = nA +
nB .

Whitfield designed a procedure to calculate a statistic that he labeled S, following
Kendall’s notation in a 1945 Biometrika article on “The treatment of ties in ranking
problems” [40]. Given the N = 8 rank scores listed in Table 8.10, consider the
nB = 3 rank scores in the sample identified by the letter B: 2, 5, and 6.3 Beginning
with rank score 2 with the letter B, there is one rank score with the letter A to the
left of B = 2 (rank 1) and four rank scores with the letter A to the right of B = 2
(ranks 3, 4, 7, and 8); so Whitfield calculated 1 − 4 = −3. For rank score 5 with the
letter B, there are three rank scores to the left of B = 5 with the letter A (ranks 1, 3,
and 4) and two rank scores to the right of B = 5 with the letter A (ranks 7 and 8); so
3 − 2 = +1. Finally, for rank score 6 with the letter B, there are three rank scores
to the left of B = 6 with the letter A (ranks 1, 3, and 4) and two rank scores to the
right of B = 6 with the letter A; so 3 − 2 = +1. The sum of the three differences
between variables A and B is S = −3 + 1 + 1 = −1. In this manner, Whitfield’s
approach accommodated unequal sample sizes as well as tied rank scores.

Since the number of possible pairs of N consecutive integers is given by

N(N − 1)

2
,

Whitfield defined and calculated a measure of rank-order association between a
dichotomous variable and an ordinal-level variable as

τ = 2S

N(N − 1)
= 2(−1)

8(8 − 1)
= −0.0357 .

Alternatively, as Whitfield suggested, arrange the two samples into a contingency
table with two rows and columns equal to the frequency distribution of the combined
samples, as depicted in Table 8.11. The first row of frequencies in Table 8.11

3Sample B simply because it is the smaller of the two samples.
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Table 8.11 Contingency table of the frequencies of rank scores in Table 8.10

A 1 0 2 0 2

B 0 1 0 2 0

represents the runs in the list of rank scores in Table 8.10 labeled A, i.e., there is
one occurrence of A in rank 1, no occurrence of A in rank 2, two occurrences of A

in ranks 3 and 4, no occurrences of A in ranks 5 and 6, and two occurrences of A

in ranks 5 and 6. The second row of frequencies in Table 8.11 represents the runs in
the list of rank scores in Table 8.10 labeled B, i.e., there is no occurrence of B in
rank 1, one occurrence of B in rank 2, no occurrences of B in ranks 3 and 4, two
occurrences of B in ranks 5 and 6, and no occurrences of B in ranks 5 and 6.

Given the r×c contingency table in Table 8.11 with r = 2 rows and c = 5
columns, let xij indicate a cell frequency for i = 1, . . . , r and j = 1, . . . , c. Then,
as Kendall showed in 1948 [41], the number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

xij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

xkl

⎞
⎠

= (1)(1 + 0 + 2 + 0) + (0)(0 + 2 + 0) + (2)(2 + 0) + (0)(0)

= 3 + 0 + 4 + 0 = 7 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

xi,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

xkl

⎞
⎠

= (2)(0 + 1 + 0 + 2) + (0)(0 + 1 + 0) + (2)(0 + 1) + (0)(0)

= 6 + 0 + 2 + 0 = 8 ,

and S = C − D = 7 − 8 = −1.
Thus, Whitfield’s S statistic is identical to Kendall’s S statistic and is also directly

related to the two-sample rank-sum U statistic of Mann and Whitney [49] and,
hence, to the two-sample rank-sum W statistic of Wilcoxon [73]. The relationships
between Whitfield’s S statistic and Mann and Whitney’s U statistic are given by

S = 2U − nAnB and U = S + nAnB

2
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and the relationships between Whitfield’s S statistic and Wilcoxon’s W statistic are
given by

S = nB(N + 1) − 2W and W = nB(N + 1) − S

2
.

Example

To illustrate Whitfield’s τ measure of association, consider the N = 15 rank scores
listed in Table 8.12 consisting of nA = 9 rank scores in Sample A and nB = 6 rank
scores in Sample B. To calculate Whitfield’s S statistic for the dichotomous data
listed in Table 8.12, there are two A rank scores to the left of B = 3 (ranks 1 and 2)
and seven A rank scores to the right of B = 3 (ranks 4, 5, 6, 9, 10 11, and 12), so
2 − 7 = −5. There are five A rank scores to the left of B = 7 and B = 8 (ranks 1,
2, 4, 5, and 6) and four A rank scores to the right of B = 7 and B = 8 (ranks 9, 10,
11, and 12), so (5 − 4) + (5 − 4) = +2. There are nine A rank scores to the left of
B = 13, 14, and 15 (ranks 1, 2, 4, 5, 6, 9, 10, 11, and 12) and zero A rank scores
to the right of B = 13, 14, and 15, so (9 − 0) + (9 − 0) + (9 − 0) = +27. Then,
S = −5 + 2 + 27 = +24.

Alternatively, arrange the two samples into a contingency table with two rows and
columns equal to the frequency distribution of the combined samples, as depicted in
Table 8.13. The first row of frequencies in Table 8.13 represents the runs in the list
of rank scores in Table 8.12 labeled A, i.e., there are two occurrences of A in ranks
1 and 2; no occurrence of A in rank 3; three occurrences of A in ranks 4, 5, and
6; no occurrence of A in ranks 7 and 8; four occurrences of A in ranks 10, 11, and
12; and no occurrence of A in ranks 13, 14, and 15. The second row of frequencies
in Table 8.13 represents the runs in the list of rank scores in Table 8.12 labeled B,
i.e., there are no occurrences of B in ranks 1 and 2, one occurrence of B in rank 3,
no occurrences of B in ranks 4, 5 and 6, two occurrences of B in ranks 7 and 8, no
occurrence of B in ranks 9, 10, 11, and 12, and three occurrences of B in ranks 13,
14, and 15.

Given the r×c contingency table in Table 8.13 with r = 2 rows and c = 6
columns, let xij indicate a cell frequency for i = 1, . . . , r and j = 1, . . . , c. The

Table 8.12 Listing of example data for Whitfield’s S with nA = 9 and nB = 6 rank scores from
samples A and B, respectively

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample A A B A A A B B A A A A B B B

Table 8.13 Contingency table of the frequencies of rank scores in Table 8.12

A 2 0 3 0 4 0

B 0 1 0 2 0 3
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number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

xij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

xkl

⎞
⎠

= (2)(1 + 0 + 2 + 0 + 3) + (0)(0 + 2 + 0 + 3)

+ (3)(2 + 0 + 3) + (0)(0 + 3) + (4)(3)

= 12 + 0 + 15 + 0 + 12 = 39 ,

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

xi,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

xkl

⎞
⎠

= (0)(0 + 1 + 0 + 2 + 0) + (4)(0 + 1 + 0 + 2)

+ (0)(0 + 1 + 0) + (3)(0 + 1) + (0)(0)

= 0 + 12 + 0 + 3 + 0 = 15 ,

S = C − D = 39 − 15 = +24, and Whitfield’s test statistic is

τ = 2S

N(N − 1)
= 2(+24)

15(15 − 1)
= +0.2286 .

Calculating Mann and Whitney’s U statistic for the data listed in Table 8.12, the
number of A rank scores to the left of (less than) the first B rank score (rank 3) is 2;
the number of A rank scores to the left of the second and third B rank scores (ranks
7 and 8) is 5 each; and the number of A rank scores to the left of the last three B

rank scores (ranks 13, 14, and 15) is 9 each. Then U = 2 + 5 + 5 + 9 + 9 + 9 = 39.
Calculating Wilcoxon’s W statistic for the rank data listed in Table 8.12, the sum of
the rank scores in Sample A is W = 1 + 2 + 4 + 5 + 6 + 9 + 10 + 11 + 12 = 60.4

Then the relationships among Whitfield’s S, Mann and Whitney’s U , and
Wilcoxon’s W are given by

S = 2U − nAnB = 2(39) − (9)(6) = +24 ,

U = S + nAnB

2
= 24 + (9)(6)

2
= 39 ,

S = nA(N + 1) − 2W = 9(15 + 1) − 2(60) = +24 ,

4Coincidentally, in this example the sum of the n1 = 9 rank scores in Sample B is also 60.
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and

W = nA(N + 1) − S

2
= 9(15 + 1) − 24

2
= 60 .

For the N = 15 rank scores listed in Table 8.12, there are only

M = N !
nA! nB ! = 15!

9! 6! = 5,005

possible, equally-likely arrangements in the reference set of all permutations of
the observed rank scores, making an exact permutation analysis possible. Since
Whitfield’s τ is simply a linear function of Kendall’s S, the probability of S is the
probability of τ . If all arrangements of the N = 15 observed rank scores listed
in Table 8.12 occur with equal chance, the exact probability value of S = +24
computed on the M = 5,005 possible arrangements of the observed data with
nA = 9 A rank scores and nB = 6 B rank scores preserved for each arrangement is

P(S ≥ So|H0) = number of S values ≥ So

M
= 906

5,005
= 0.1810 ,

where So denotes the observed value of Kendall’s S.

8.5.2 Cureton’s rrb Measure of Association

In 1956 Edward Cureton proposed a new measure of correlation for a ranked vari-
able and a dichotomous variable that he labeled rrb for rank-biserial correlation [14].
The rank-biserial correlation coefficient was introduced by Cureton as a measure
of effect size for the Wilcoxon–Mann–Whitney two-sample rank-sum test. Twelve
years later, in 1968, Cureton extended rrb to include tied ranks [15]. In this section,
only non-tied ranks are considered, with no loss of generality. Cureton stated that the
new correlation coefficient should norm properly between ±1 and should be strictly
non-parametric, defined solely in terms of inversions and agreements between rank-
pairs, without the use of means, variances, covariances, or regression [14, p. 287].
Consequently, as Cureton stated, “clearly rrb is a Kendall-type coefficient” [14,
p. 289].

Example

Consider an example data set such as listed in Table 8.14 in which N = 10
objects are ranked (variable y) and also classified into two samples coded 0 and 1
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Table 8.14 Example (0, 1)
coded data for Cureton’s
rank-biserial correlation
coefficient

Variable

Object x y

1 0 1

2 1 2

3 0 3

4 0 4

5 0 5

6 0 6

7 1 7

8 0 8

9 1 9

10 1 10

(variable x). Cureton defined rrb as

rrb = C − D

Smax
= S

Smax
,

where C is the number of concordant pairs, D is the number of discordant pairs,
S = C −D is the test statistic of Kendall [39] and Whitfield [72], and Smax = n0n1,
where n0 and n1 denote the number of objects coded 0 and 1, respectively.

Table 8.15 lists the
(

N

2

)
= N(N − 1)

2
= 10(10 − 1)

2
= 45

possible paired comparisons of xi and xj with yi and yj , where i < j and n0 and
n1 denote the number of objects coded 0 and 1, respectively. Each paired difference
is labeled as concordant (C) or discordant (D). Paired differences not labeled as C

or D are irrelevant in the present context as they are tied by either xi = xj = 0 or
xi = xj = 1. In Table 8.15 there are C = 18 concordant and D = 6 discordant
paired differences; thus, for the paired differences listed in Table 8.15, the observed
value of S is S = C − D = 18 − 6 = +12.

Alternatively, as suggested by Whitfield, the rank scores listed in Table 8.14
can be rearranged into a contingency table to make calculation of C and D much
easier [72]. Consider the data listed in Table 8.14 arranged into a 2×6 contingency
table, such as given in Table 8.16. The top row of frequencies given in Table 8.16
represents the runs in the list of rank scores given in Table 8.14 coded 0, i.e., there
is one occurrence of a 0 in rank 1 , no occurrence of a 0 in rank 2, four occurrences
of a 0 in ranks 3, 4, 5, and 6, no occurrence of a 0 in rank 7, one occurrence of a 0 in
rank 8, and no occurrences of a 0 in ranks 9 and 10. The bottom row of frequencies
given in Table 8.16 represents the runs in the list of rank scores given in Table 8.14
coded 1, i.e., there is no occurrence of a 1 in rank 1, one occurrence of a 1 in rank 2,
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Table 8.15 Paired differences and concordant (C) and discordant (D) values for the rank scores
listed in Table 8.14

Pair xi − xj yi − yj Type Pair xi − xj yi − yj Type

1 1 − 0 1 − 2 C 24 0 − 1 3 − 10 C

2 0 − 0 1 − 3 25 0 − 0 4 − 5

3 0 − 0 1 − 4 26 0 − 0 4 − 6

4 0 − 0 1 − 5 27 0 − 1 4 − 7 C

5 0 − 0 1 − 6 28 0 − 0 4 − 8

6 0 − 1 1 − 7 C 29 0 − 1 4 − 9 C

7 0 − 0 1 − 8 30 0 − 1 4 − 10 C

8 0 − 1 1 − 9 C 31 0 − 0 5 − 6

9 0 − 1 1 − 10 C 32 0 − 1 5 − 7 C

10 1 − 0 2 − 3 D 33 0 − 0 5 − 8

11 1 − 0 2 − 4 D 34 0 − 1 5 − 9 C

12 1 − 0 2 − 5 D 35 0 − 1 5 − 10 C

13 1 − 0 2 − 6 D 36 0 − 1 6 − 7 C

14 1 − 1 2 − 7 37 0 − 0 6 − 8

15 1 − 0 2 − 8 D 38 0 − 1 6 − 9 C

16 1 − 1 2 − 9 39 0 − 1 6 − 10 C

17 1 − 1 2 − 10 40 1 − 0 7 − 8 D

18 0 − 0 3 − 4 41 1 − 1 7 − 9

19 0 − 0 3 − 5 42 1 − 1 7 − 10

20 0 − 0 3 − 6 43 0 − 1 8 − 9 C

21 0 − 1 3 − 7 C 44 0 − 1 8 − 10 C

22 0 − 0 3 − 8 45 1 − 1 9 − 10

23 0 − 1 3 − 9 C

Table 8.16 Ranking of a dichotomous variable with n0 = 6, n1 = 4, and N = n0 + n1 = 10

0 1 0 4 0 1 0

1 0 1 0 1 0 2

no occurrences of a 1 in ranks 3, 4, 5, and 6, one occurrence of a 1 in rank 7, no
occurrence of a 1 in rank 8, and two occurrences of a 1 in ranks 9 and 10.

Given the r×c contingency table presented in Table 8.16 with r = 2 rows and
c = 6 columns, let xij indicate a cell frequency for i = 1, . . . , r and j = 1, . . . , c.
The number of concordant pairs is

C =
r−1∑
i=1

c−1∑
j=1

xij

⎛
⎝ r∑

k=i+1

c∑
l=j+1

xkl

⎞
⎠

= (1)(1 + 0 + 1 + 0 + 2) + (0)(0 + 1 + 0 + 2)

+ (4)(1 + 0 + 2) + (0)(0 + 2) + (1)(2)

= 4 + 0 + 12 + 2 = 18 ,



8.5 Dichotomous Nominal-Level Variables 465

the number of discordant pairs is

D =
r−1∑
i=1

c−1∑
j=1

xi,c−j+1

⎛
⎝ r∑

k=i+1

c−j∑
l=1

xkl

⎞
⎠

= (0)(0 + 1 + 0 + 1 + 0) + (1)(0 + 1 + 0 + 1)

+ (0)(0 + 1 + 0) + (4)(0 + 1) + (0)(0)

= 0 + 2 + 0 + 4 + 0 = 6 ,

S = C − D = 18 − 6 = +12, and Cureton’s rank-biserial coefficient is

rrb = S

Smax
= S

n0n1
= +12

(6)(4)
= +0.50 .

For the rank scores listed in Table 8.14, there are only

M = N !
n0! n1! = 10!

6! 4! = 210

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores with n0 = 6 and n1 = 4 preserved for each arrangement, making
an exact permutation analysis possible. If all arrangements of the N = 10 observed
rank scores occur with equal chance, the exact probability value of rrb = +0.50
computed on the M = 210 possible arrangements of the observed data is

P(rrb ≥ ro|H0) = number of rrb values ≥ ro

M
= 54

210
= 0.2571 ,

where ro denotes the observed value of Cureton’s rrb .
Because Cureton developed rrb as a measure of effect size for the Wilcoxon–

Mann–Whitney two-sample rank-sum test, it is not surprising that Cureton’s rrb is
related to Wilcoxon’s W and to Mann and Whitney’s U . In addition, it can be shown
that rrb is also related to Kendall’s τa when there are no tied values. For the N = 10
rank scores listed in Table 8.14, Wilcoxon’s W is simply the smaller of the sums of
the rank scores of the two samples, i.e.,

W =
n0∑
i=1

= 1 + 3 + 4 + 5 + 6 + 8 = 27 .

The relationships between Wilcoxon’s W and Cureton’s rrb are given by

W = n0(N + 1) − n0n1rrb

2
and rrb = n0(N + 1) − 2W

n0n1
,
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where n0 is the number of objects in the group with the smaller of the two sums; in
this case, 27. Thus, the observed value of Wilcoxon’s W is

Wo = 6(10 + 1) − (6)(4)(0.50)

2
= 27

and the observed value of Cureton’s rrb is

rrb = 6(10 + 1) − 2(27)

(6)(4)
= +0.50 .

For the N = 10 rank scores listed in Table 8.14, Mann and Whitney’s U is the
sum of the number of values in one sample, preceded by the number of values in the
other sample. Thus, for the rank scores listed in Table 8.14, the value of 1 in Sample
0 is less than values 2, 7, 9, and 10 in Sample 1, yielding U = 4. Then, the value of
3 in Sample 0 is less than values 7, 9, and 10 in Sample 1, yielding U = 3 + 4 = 7.
Next, the value of 4 in Sample 0 is less than values 7, 9, and 10 in Sample 1, yielding
U = 3 + 3 + 4 = 10. Next, the value of 5 in Sample 0 is less than values 7, 9, and
10 in Sample 1, yielding U = 3 + 3 + 3 + 4 = 13. Next, the value of 6 in Sample 0
is less than values 7, 9, and 10 in Sample 1, yielding U = 3 + 3 + 3 + 3 + 4 = 16.
Finally, the value of 8 in Sample 0 is less than values 9 and 10 in Sample 1, yielding
U = 3 + 3 + 3 + 3 + 4 + 2 = 18. Alternatively,

U = n0n1 + n0(n0 + 1)

2
− W = (6)(4) + 6(6 + 1)

2
− 27 = 18 .

The relationships between Mann and Whitney’s U and Cureton’s rrb are given by

U = n0n1(1 + rrb)

2
and rrb = 2U

n0n1
− 1 .

Thus, the observed value of Mann and Whitney’s U is

U = (6)(4)(1 + 0.50)

2
= 18

and the observed value of Cureton’s rrb is

rrb = 2(18)

(6)(4)
− 1 = +0.50 .

For the N = 10 rank scores listed in Table 8.14, Kendall’s τa is

τa = 2S

N(N − 1)
= 2(+12)

10(10 − 1)
= +0.2667 .
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The relationships between Kendall’s τa and Cureton’s rrb are given by

τa = 2n0n1rrb

N(N − 1)
and rrb = τaN(N − 1)

2n0n1
.

Thus, the observed value of Kendall’s τa is

τa = 2(6)(4)(+0.50)

10(10 − 1)
= +0.2667

and the observed value of Cureton’s rrb is

rrb = (0.2667)(10)(10 − 1)

2(6)(4)
= +0.50 .

Since Cureton’s rrb is related to Mann and Whitney’s U and Whitfield’s τ is
related to Mann and Whitney’s U , the relationships are transitive and it follows that
rrb and τ must be related. The relationships between Cureton’s rrb and Whitfield’s
τ are given by

rrb = τN(N − 1)

2n0n1
and τ = 2rrbn0n1

N(N − 1)
,

where n0 and n1 denote the number of objects in samples 0 and 1, respectively, and
N = n0 + n1.

Consider the (0, 1) coded data in Table 8.14 on p. 463, replicated for convenience
in Table 8.17. For the data given in Table 8.17, n0 = 6, n1 = 4, N = 10, rrb =
+0.50, and τ = +0.2667. Then, Cureton’s rank-biserial correlation coefficient is

rrb = (+0.2667)(10)(10 − 1)

2(6)(4)
= +0.50

Table 8.17 Example (0, 1)
coded data for Cureton’s
rank-biserial correlation
coefficient and Whitfield’s
measure of nominal-ordinal
relationship

Variable

Object x y

1 0 1

2 1 2

3 0 3

4 0 4

5 0 5

6 0 6

7 1 7

8 0 8

9 1 9

10 1 10
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and Whitfield’s measure of association is

τ = 2(+0.50)(6)(4)

10(10 − 1)
= +0.2667 .

8.6 Measures of Nominal-Interval Association

In this section, permutation statistical methods are described for measures of
association designed for a nominal-level independent variable and an interval-level
dependent variable. In practice, such measures are usually referred to as measures
of effect size, i.e., a measurement of the strength of association as an indicator of
the practical effect of the factors under consideration that is independent of the
sample size(s). Four measures are considered: Pearson’s squared product-moment
correlation coefficient r2, Pearson’s squared correlation ratio η2, Kelley’s ε2, and
Hays’ ω̂2. A fifth permutation-based measure, �, is introduced that corrects some of
the deficiencies of the four conventional measures. For simplification, dichotomous
independent variables are first considered in this section to illustrate the various
measures, with no loss of generality.

8.6.1 Product-Moment Correlation Coefficient

The first measure of effect size for a dichotomous nominal-level independent
variable is the familiar squared Pearson product-moment correlation coefficient—
the coefficient of determination. For Student’s two-sample t test, the squared
correlation coefficient may be expressed as

r2 = t2

t2 + N − 2
, (8.6)

where N is the total number of subjects in the two treatments combined. It is
not uncommon for r2 to be labeled as r2

pb, indicating that this measure of effect
size is the point-biserial correlation between the response measurement scores and
a dummy-coded (0, 1) variable representing the two treatment groups, i.e., the
correlation between the response measurement scores and group membership; see,
for example, discussions by Friedman [22], Howell [32, pp. 307–309], Kline [44,
pp. 114–116], and Nunnally [56, pp. 143–146]. In other applications, especially in
the analysis of variance, r2 is designated as the “correlation ratio” and expressed
as η2.

The coefficient of determination (r2) has been heavily criticized in the literature
as a measure of effect size. D’Andrade and Dart advocated the use of r instead
of r2, arguing that the usual interpretation of r2 as “variance accounted for” is
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inappropriate since variance is a squared measure, no longer corresponding to the
dimensionality of the original measurements [16, p. 47]. Kvålseth [45] and Ozer [57]
demonstrated that for any model other than a linear model with an intercept, r2 is
inappropriate as a measure of effect size; see also articles by Anderson-Sprecher [2],
Draper [17], Hahn [26], Healy [29], and Willett and Singer [74]. Finally, while r2

is touted as varying between 0 and 1 and therefore has a clear interpretation, as is
obvious in Eq. (8.6) r2 approaches 1 only as t2 approaches infinity and, thus, the
only way that r2 can equal 1 is when there is only a single object in each treatment,
i.e., N − 2 = 0.

Blalock [8] and Rosenthal and Rubin [65, 66] showed that values of r2 under-
estimate the magnitudes of experimental effects, even though r2 is biased upward.
Rosenthal and Rubin proposed a new measure to replace r2 that they called the
binomial effect size display (BESD). Table 8.18 illustrates binomial effect size
displays for various values of r2 and r .

To illustrate how the BESD is calculated, consider the 2×2 contingency table in
Table 8.19. For the frequency data given in Table 8.19, Pearson’s chi-squared test
statistic is χ2 = 20.4800 and Pearson’s r2 is

r2 = χ2

N
= 20.4800

200
= 0.1024 .

As Rosenthal and Rubin explained, r2 = 0.1024 is the correlational equivalent of
increasing a success rate from 34% to 66% by means of an experimental treatment

Table 8.18 Binomial effect
size displays (BESD)
corresponding to various
values of r2 and r

Success rate
increased

r2 r From To Difference

0.01 0.10 0.45 0.55 0.10

0.04 0.20 0.40 0.60 0.20

0.09 0.30 0.35 0.65 0.30

0.16 0.40 0.30 0.70 0.40

0.25 0.50 0.25 0.75 0.50

0.36 0.60 0.20 0.80 0.60

0.49 0.70 0.15 0.85 0.70

0.64 0.80 0.10 0.90 0.80

0.81 0.90 0.05 0.95 0.90

1.00 1.00 0.00 1.00 1.00

Table 8.19 Example
binomial effect size display
accounting for only 10% of
the variance

Outcome

Condition Alive Dead Total

Treatment 66 34 100

Control 34 66 100

Total 100 100 200
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procedure [66, p. 166]. Put another way, a death rate under the control condition is
66%, but is only 34% under the experimental condition, with a decrease in the death
rate of 32%. Rosenthal and Rubin argued that this difference in death rates is not
reflected in a coefficient of determination of only r2 = 0.1024.

8.6.2 The Correlation Ratio

The correlation ratio was first described by Karl Pearson in 1911 and 1923 [58, 59]
and later by R.A. Fisher in 1925 [19, Chap. 8]. For many years the correlation ratio,
η2, was the standard measure of effect size for a nominal-level independent variable
and an interval-level dependent variable, such as in a conventional two-sample t test
or a one-way analysis of variance F test. In terms of a simple one-way completely
randomized analysis of variance,

η2 = SSBetween

SSTotal
,

i.e., the proportion of the total variability attributable to the treatment or interven-
tion. The measure of effect size, r2 or η2, has been criticized repeatedly in the
literature for its positive bias, especially for small sample sizes; see, for example,
articles by Levine and Hullett [48] and Maxwell, Camp, and Arvey [52]. In addition,
η2 is affected by the size of the design as well as the total sample size. Other things
being equal, the larger the total sample size, the smaller η2 tends to be. On the
other hand, the greater the number of treatments in the design, the larger η2 tends to
be [60, p. 506]. Also, see two articles by Murray and Dosser [55] and Strube [70].
Finally, it should be noted that η2 is sometimes employed as a test of linearity in
simple regression problems, where it is compared with the Pearson product-moment
correlation coefficient and evaluated with the F distribution. Since η2 is a coefficient
of non-linearity and r2 is a coefficient of linearity, the difference between them
may be used as a test of linearity where a difference of zero implies linearity and a
difference greater than zero indicates non-linearity. For the test of linearity with k

categories,

F = (η2 − r2)(N − k)

(1 − η2)(k − 2)
,

which is distributed as Snedecor’s F with k−2 and N −k degrees of freedom, under
the assumption of normality.



8.6 Measures of Nominal-Interval Association 471

8.6.3 Kelley’s ε2

The third measure of effect size is Kelley’s ε2 [38] and, defined for Student’s two-
sample t test, is given by

ε2 = t2 − 1

t2 + N − 2
. (8.7)

In some earlier textbooks, ε2 was designated as η̂2, i.e., η2 adjusted for degrees of
freedom, and is typically termed the “unbiased correlation ratio.” It has been well
established and is widely recognized that ε2 is not, in fact, unbiased, but since the
title of Truman Kelley’s article was “An unbiased correlation ratio measure,” the
label has survived for over 80 years.

8.6.4 Hays’ ω̂2

The fourth measure of effect size for a nominal independent variable and an interval
dependent variable is Hays’ ω̂2 [28, pp. 323–332]. According to Hays, ω̂2 estimates
the proportion of total variance attributable to treatment [28, p. 325]. Thus, ω̂2 is a
ratio of variance estimates given by

ω̂2 = σ̂ 2
t

σ̂ 2
t + σ̂ 2

x

,

where σ̂ 2
t is an estimate of the treatment variance and σ̂ 2

x is an estimate of the
population variance. For Student’s two-sample t test, Hays’ ω̂2 is given by

ω̂2 = t2 − 1

t2 + N − 1
. (8.8)

Hays defined ω̂2 as the proportion of variance in the observations attributable to
group membership and, alternatively, as the relative reduction in uncertainty about
the observations given by knowledge of group membership [28, p. 325]. Note the
high degree of similarity between Kelley’s ε2 as given in Eq. (8.7) and Hays’ ω̂2

as given in Eq. (8.8). It has been shown empirically by Carroll and Nordholm that
ε2 and ω̂2 will ordinarily differ very little for a given set of response measurement
scores [11]. In fact, as sample sizes increase, Kelley’s ε2 and Hays’ ω̂2 converge to
the same value [52].
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8.6.5 Mielke and Berry’s �

The permutation-based chance-corrected measure of agreement, �, is described
more completely in Chap. 4, Sect. 4.8.1 and is defined as

� = 1 − δ

μδ

,

where δ is the weighted mean of the observed response measurement scores and μδ

is the arithmetic average of the δ values calculated on all possible, equally-likely
arrangements of the observed scores. Defined in terms of Student’s two-sample t

test,

� = t2 − 1

t2 + N − 2
.

Under certain conditions the four measures of effect size, r2 (η2), ε2 (η̂2), ω̂2,
and � produce similar results and are directly related to each other and to Student’s
t test for two independent samples [7, p. 69]. However, the measures r2, ε2, and
ω̂2 all require homogeneity of variance as they are appropriate only for pooled two-
sample t tests. On the other hand, � does not require homogeneity of variance and
is appropriate for both pooled and non-pooled two-sample t tests [37].

It is widely recognized that r2 is a positively biased estimate of the squared
Pearson population correlation coefficient, ρ2. An adjusted r2 coefficient that
compensates for degrees of freedom was introduced by M.J.B. Ezekiel in 1930 [18];
see also discussions by Larson [46] and Wherry [71] in 1931. An adjusted r2 value
is produced by most statistical computer programs and is given by

r̂2 = 1 − (1 − r2)(N − 1)

N − 2

for two treatment groups.5 It can easily be shown that ε2 = r̂2; see, for example,
discussions by Cohen and Cohen [12, p. 188] and Maxwell, Camp, and Arvey [52].
It can also be shown that � = ε2 = r̂2. Thus, since � is a chance-corrected
measure, ε2 and r̂2 are also chance-corrected measures of effect size. To clarify
the relationship and emphasize that the adjustment is for the degrees of freedom, ε2,
r̂2, and � can be redefined in an analysis of variance context as

� = ε2 = r̂2 = 1 −
(

N − 1

N − k

)
SSWithin

SSTotal
(8.9)

5In the literature, r̂2 is variously termed “adjusted” or “shrunken” r2.
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and expressed in terms of the conventional F -ratio as

� = ε2 = r̂2 = (F − 1)(k − 1)

F (k − 1) + N − k
, (8.10)

where k denotes the number of treatments.
As is evident in Eq. (8.10), when F < 1, �, ε2, and r̂2 are all negative.

It is disconcerting, to say the least, to try to interpret squared coefficients with
negative values, as a negative value does not constitute a valid estimate of the
population variance [68, p. 344]. In 1968 Friedman noted that ε2 could sometimes
be negative [21]. In 1981 Maxwell, Camp, and Arvey also observed that r̂2 could
be negative and suggested that negative values of r̂2, ω̂2, and ε2 be treated as
zero [52], failing to recognize that negative values simply represent effect sizes less
than expected by chance. As can be seen in Eq. (8.9), when SSWithin = 0, � = ε2 =
r̂2 = 1; when SSWithin = SSTotal, then

� = ε2 = r̂2 = 1 − N − 1

N − k
= −

(
k − 1

N − k

)
,

i.e., the negated ratio of the numerator and denominator degrees of freedom, which
is the most extreme negative value that can be obtained for these equivalent chance-
corrected measures of effect size; and when δ = μδ, i.e., the observed result is
expected only by chance, � = ε2 = r̂2 = 0. Thus, positive reported values of �,
ε2, and r̂2 are to be interpreted as effect sizes greater than expected by chance, and
negative values are to be interpreted as effect sizes less than expected by chance, i.e.,
the treatment group means are closer together than expected under randomization
of the N subjects.

Hays’ ω̂2 also produces negative values—again, seemingly not appropriate for
a squared coefficient of effect size. The value of ω̂2 will be negative whenever the
value of the computed F -ratio is less than 1. Defining ω̂ in terms of F makes this
clear. For a fixed-effects one-way analysis of variance,

ω̂2 = (F − 1)(k − 1)

(F − 1)(k − 1) + N
. (8.11)

If F < 1, the numerator of Eq. (8.11) will be negative and ω̂2 will ipso facto be
negative. For a random-effects analysis of variance,

ω̂2 = F − 1

F + n − 1
, (8.12)

where n denotes the common number of objects in each of k treatments. Again, if
F < 1, the numerator of Eq. (8.12) will be negative and ω̂2 will also be negative.

Negative value of ω̂2 has led many researchers to advocate treating negative
values as zero, including Hays [28, pp. 327, 383]; see also Kenny [42, p. 234].
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Although ω̂2 does not norm properly between 0 and 1, i.e., its minimum value is
given by

−
(

k − 1

N − k + 1

)
,

it is in fact a chance-corrected measure of effect size like �, ε2, and r̂2. The
relationships between the chance-corrected measures of effect size, � and Hays’
ω̂2, in terms of F , for a fixed effects one-way analysis of variance, are given by

� = ω̂2
(

F + N − 1

F + N − 2

)
and ω̂2 = �

(
F + N − 2

F + N − 1

)
.

8.6.6 Biased Estimators

In general, statisticians prefer sample estimates of population parameters that are
unbiased, e.g., the sample mean, x̄, is an unbiased estimator of the population mean,
μx , and the sample variance, s2

x , is an unbiased estimator of the population variance,
σ 2

x . It is well known that, under the population model of inference whereby repeated
random samples are hypothetically drawn from a normal population, measures of
effect size such as r2, r̂2, η2, ε2, and ω̂2 are biased estimators of their respective
population parameters [43, 64, 68].

The terms “biased” and “unbiased” possess quite different meanings when used
with the permutation model of inference, as there is no population parameter to
be estimated. Under the permutation model, an unbiased measure simply means
that the average value of the measure of effect size obtained from all M possible
arrangements of the observed response measurement scores is zero. In the case of
ε2 = r̂2 = �, the expected value of each measure is indeed zero and each of the
three chance-corrected measures of effect size is unbiased under the permutation
model. On the other hand, while ω̂2 is a chance-corrected measure of effect size, it
is not an unbiased estimator under either the permutation or population models of
inference. That said, however, the positive bias of ω̂2 is typically quite small, within
the context of a fixed-effect one-way analysis of variance. Under the permutation
model, the expected value of ω̂2 is given by

E
[
ω̂2] = 1

M

M∑
i=1

(
Nδi

μδ(N − 1) + δi

)
,
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where

M = N !
k∏

i=1

ni !

and ni denotes the number of objects in the ith of k treatment groups.

8.6.7 Homogeneity of Variance

It is important to note that conventional measures of effect size such as r̂2, ε2, and
ω̂2 depend on the assumption of homogeneity of variance [54, p. 96]. Mitchell and
Hartmann documented this dependency and a number of additional weaknesses of
measures of effect size, leading them to conclude that:

[T]he uncritical use of magnitude of effects statistics as a cure for the problem of
conventional hypothesis testing methods of assessing treatment effectiveness may very well
represent a remedy as troublesome as the original problem [54, p. 99].6

The assumption of homogeneity of variance underlies many statistical tests and
measures. When confounded with unequal sample sizes, serious problems can arise.
When sample sizes are unequal and the homogeneity assumption does not hold then,
for example, the t and F -ratio test statistics tend to be liberal when large sample
variances are associated with small sample sizes, leading to a potential increase in
type I error. On the other hand, t or F -ratio test statistics tend to be conservative
when large sample variances are associated with large sample sizes, leading to a
potential increase in type II error and a corresponding loss of power [9, 25, 27, 31,
33]. In addition, it has been well documented that equal sample sizes provide little
protection against inflated error rates for the t and F -ratio tests when variances are
unequal [23, 27].

8.7 Dichotomous Nominal-Level Variables

As special cases of nominal-interval association, consider two measures: the point-
biserial correlation coefficient (rpb) and the biserial correlation coefficient (rb).
Both examine the relationship between a dichotomous variable and an interval-
level variable where, in this case, the dichotomous variable is considered to be a
nominal-level variable with only two disjoint, unordered categories. Although both
the point-biserial and biserial correlation coefficients were presented in Chap. 7,

6Emphasis in the original.



476 8 Mixed-Level Variables

Sects. 7.6 and 7.7, respectively, brief discussions are included here as a dichotomous
variable may be considered as a nominal-level variable with only two categories.

8.7.1 Point-Biserial Correlation

The point-biserial correlation coefficient, rpb, measures the association between a
true dichotomous variable and an interval-level variable and is an important measure
in fields such as education and educational psychology where it is typically used to
measure the correlation between test questions scored as correct (1) or incorrect (0)
and the overall score on the test for N students. A low or negative point-biserial
correlation coefficient indicates that the students with the highest scores on the test
answered the question incorrectly and the students with the lowest scores on the
test answered the question correctly, alerting the instructor to the possibility that the
question failed to discriminate properly and might be faulty.

Example

To illustrate the calculation of a point-biserial correlation coefficient, consider the
dichotomous data listed in Table 8.20 for N = 20 objects where variable x is the
dichotomous variable and variable y is an unspecified interval-level variable. The
point-biserial correlation is often expressed as

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
,

where n0 and n1 denote the number of y values coded 0 and 1, respectively, N =
n0 +n1, ȳ0 and ȳ1 denote the means of the y values coded 0 and 1, respectively, and
sy is the sample standard deviation of the y values given by

sy =
√√√√ 1

N − 1

N∑
i=1

(
yi − ȳ

)2
.

For the example data listed in Table 8.20, n0 = n1 = 10,

ȳ0 = 1

n0

n0∑
i=1

yi = 99 + 99 + · · · + 89

10
= 88.40 ,

ȳ1 = 1

n1

n1∑
i=1

yi = 98 + 98 + · · · + 60

10
= 95.60 ,

sy =
√√√√ 1

N − 1

N∑
i=1

(
yi − ȳ

)2 =
√

1,456

20 − 1
= 8.7539 ,
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and

rpb = ȳ1 − ȳ0

sy

√
n0n1

N(N − 1)
= 95.60 − 88.40

8.7539

√
(10)(10)

20(20 − 1)
= +0.4219 .

It should be noted that rpb can also be calculated simply as the Pearson product-
moment correlation (rxy ) between dichotomous variable x and interval variable y.
However, using this approach there are

M = N ! = 20! = 2,432,902,008,176,640,000

possible arrangements of the observed data to be considered. A much more efficient
approach is to consider the data listed in Table 8.20 as two groups of observations,
as shown in Table 8.21 and compute the difference between the means of the groups.
Note that it is not necessary that n0 = n1.

For the grouped scores listed in Table 8.21, there are only

M = N !
n0! n1! = 20!

10! 10! = 184,756

Table 8.20 Example (0, 1)

coded data for the
point-biserial correlation
coefficient

Variable Variable

Object x y Object x y

1 0 99 11 1 86

2 0 99 12 1 90

3 1 98 13 0 97

4 1 98 14 0 95

5 1 97 15 1 92

6 0 89 16 0 98

7 0 95 17 1 86

8 0 94 18 1 85

9 1 92 19 0 94

10 1 60 20 0 96

Table 8.21 Example data
with the y values arranged in
two groups of n0 = n1 = 10

0 1

99 98

99 98

98 97

97 92

96 92

95 92

95 90

94 86

94 86

89 60
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possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, making an exact permutation analysis possible. If all arrangements
of the N = 20 observed scores occur with equal chance, the exact probability value
of rpb = +0.4219 computed on the M = 184,756 possible arrangements of the
observed data with n0 = n1 = 10 preserved for each arrangement is

P(rpb ≥ ro|H0) = number of rpb values ≥ ro

M
= 5,648

184,756
= 0.0306 ,

where ro denotes the observed value of rpb.

8.7.2 Biserial Correlation

Whereas the point-biserial correlation measures the association between an interval-
level variable and a dichotomous variable that is a true dichotomy, such as correct
or incorrect, biserial correlation measures the association between an interval-level
variable and a variable that is assumed to be continuous and normally distributed,
but has been dichotomized, such as IQ dichotomized into “below 100” and “above
100” or height dichotomized into “below 70 inches” and “above 70 inches.” The
biserial correlation coefficient is a special case of Jaspen’s coefficient of multiserial
correlation for an ordinal-level variable and an interval-level variable when the
ordinal scale has only two ranks. See Sect. 8.8.1 for a discussion of Jaspen’s
coefficient of multiserial correlation. The biserial correlation coefficient is given by

rb = (ȳ1 − ȳ0)pq

uSy

,

where p and q denote the proportions of all y values coded 0 and 1, respectively,
ȳ0 and ȳ1 denote the means of the y values coded 0 and 1, respectively, Sy is the
standard deviation of the y values given by7

Sy =
√√√√ 1

N

N∑
i=1

(
yi − ȳ

)2
,

and u is the ordinate of the unit normal distribution at the point of division between
the p and q proportions under the distribution given by

u = exp(−z2/2)√
2π

.

7Note that, in this case, the sum of squared deviations is divided by N , not N − 1.
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Written in raw terms without the p and q proportions,

rb = (ȳ0 − ȳ1)n0n1

N2uSy

,

where n0 and n1 denote the number of y values coded 0 and 1, respectively, and
N = n0 + n1. The biserial correlation may also be written in terms of the point-
biserial correlation coefficient,

rb = rpb
√

pq

u
= rpb

√
n0n1

Nu
,

where, in this application, the point-biserial correlation coefficient is given by

rpb = (ȳ1 − ȳ0)
√

pq

Sy

.

Example

To illustrate the calculation of the biserial correlation coefficient, consider the
small set of data given in Table 8.22 where N = 7 subjects are scored on Work
Effectiveness (y) and are classified into Type A (0) and Type B (1) personalities
(x). For the data listed in Table 8.22, n0 = 3, n1 = 4, p = n0/N = 3/7 = 0.4286,
q = n1/N = 4/7 = 0.5714,

ȳ0 = 1

n0

n0∑
i=1

yi = 20 + 40 + 60

3
= 40.00 ,

ȳ1 = 1

n1

n1∑
i=1

yi = 63 + 77 + 83 + 57

4
= 70.00 ,

Sy =
√√√√ 1

N

N∑
i=1

(
yi − ȳ

)2 =
√

2,778.8571

7
= 19.9243 ,

Table 8.22 Example (0, 1)

coded data for the biserial
correlation coefficient

Subject Type Effectiveness

1 0 20

2 0 40

3 0 60

4 1 63

5 1 77

6 1 83

7 1 57
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the standard score that defines the lower p = 0.4286 of the unit-normal distribution
is z = −0.1799,

u = exp(−z2/2)√
2π

= exp[−(−0.1799)2/2]√
2(3.1416)

= 0.3925 ,

and

rb = (ȳ1 − ȳ0)pq

uSy

= (70.00 − 40.00)(0.4286)(0.5714)

(0.3925)(19.9243)
= +0.9395 .

For the data listed in Table 8.22, the point-biserial correlation coefficient is

rpb = (ȳ1 − ȳ0)
√

pq

Sy

= (70.00 − 40.00)
√

(0.4286)(0.5714)

19.9243
= +0.7451 ,

and in terms of the point-biserial correlation coefficient, the biserial correlation
coefficient is

rb = rpb
√

pq

u
= +0.7451

√
(0.4286)(0.5714)

0.3925
= +0.9395 .

For the scores listed in Table 8.22, there are only

M = N !
n0! n1! = 7!

3! 4! = 35

possible, equally-likely arrangements in the reference set of all permutations of the
observed scores, making an exact permutation analysis possible. Since M = 35 is a
small number, it will be illustrative to list all M arrangements of the observed data
and the associated values of rb in Table 8.23. Note that in the formula for the biserial
correlation coefficient,

rb = (ȳ1 − ȳ0)pq

uSy

,

p, q , u, and Sy are invariant under permutation. Therefore, the permutation
distribution can be based entirely on ȳ1 − ȳ0. The M = 35 arrangements of the
observed data, along with associated rb and ȳ1 − ȳ0 values are listed in Table 8.23.
The two arrangements in Table 8.23 indicated with an asterisk (i.e., arrangements
1 and 5) possess values of ȳ1 − ȳ0 and an rb value equal to or greater than the
observed value of ȳ1 − ȳ0 = +30.0000 and rb = +0.9395, respectively. The two
values of ȳ1 − ȳ0 that are equal to or greater than ȳ1 − ȳ0 = +30.0000 are the
observed value in Arrangement 1 with ȳ1 − ȳ0 = +30.0000 and Arrangement 5
with ȳ1 − ȳ0 = +31.7500; the two values of rb equal to or greater than the observed
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Table 8.23 Listing of all M = 35 arrangements of the observed data in Table 8.22 and associated
rb and ȳ1 − ȳ0 values

Arrangement x = 0 x = 1 rb ȳ1 − ȳ0

1∗ 20, 40, 60 63, 77, 83, 57 +0.9395 +30.0000

2 20, 40, 63 60, 77, 83, 57 +0.8847 +28.2500

3 20, 40, 77 60, 63, 83, 57 +0.6289 +20.0833

4 20, 40, 83 60, 63, 77, 57 +0.5193 +16.5833

5∗ 20, 40, 57 60, 63, 77, 83 +0.9943 +31.7500

6 20, 60, 63 40, 77, 83, 57 +0.5193 +16.5833

7 20, 60, 77 40, 63, 83, 57 +0.2636 +8.4167

8 20, 60, 83 40, 63, 77, 57 +0.1540 +4.9167

9 20, 60, 57 40, 63, 77, 83 +0.6289 +20.0833

10 20, 63, 77 40, 60, 83, 57 +0.2413 +6.6667

11 20, 60, 83 40, 60, 77, 57 +0.0992 +3.1667

12 20, 60, 57 40, 60, 77, 83 +0.5741 +18.3333

13 20, 77, 83 40, 60, 63, 57 −0.1566 −5.0000

14 20, 77, 57 40, 60, 63, 83 +0.3184 +10.1667

15 20, 83, 57 40, 60, 63, 77 +0.2088 +6.6667

16 40, 60, 63 20, 77, 83, 57 +0.1540 +4.9167

17 40, 60, 77 20, 63, 83, 57 −0.1018 −3.2500

18 40, 60, 83 20, 63, 77, 57 −0.2114 −6.7500

19 40, 60, 57 20, 63, 77, 83 +0.2636 +8.4167

20 40, 63, 77 20, 60, 83, 57 +0.1566 −5.0000

21 40, 63, 83 20, 60, 77, 57 −0.2662 −8.5000

22 40, 63, 57 20, 60, 77, 83 +0.2088 +6.6667

23 40, 77, 83 20, 60, 63, 57 −0.5219 −16.6667

24 40, 77, 57 20, 60, 63, 83 −0.0470 −1.5000

25 40, 83, 57 20, 60, 63, 77 −0.1566 −5.0000

26 60, 63, 77 20, 40, 83, 57 −0.5219 −16.6667

27 60, 63, 83 20, 40, 77, 57 −0.6315 −20.1667

28 60, 63, 57 20, 40, 77, 83 −0.1566 −5.0000

29 60, 77, 83 20, 40, 63, 57 −0.8873 −28.3333

30 60, 77, 57 20, 40, 63, 83 −0.4123 −13.1667

31 60, 83, 57 20, 40, 63, 77 −0.5219 −16.6667

32 63, 77, 83 20, 40, 60, 57 −0.9421 −30.0833

33 63, 77, 57 20, 40, 60, 83 −0.4671 −14.9167

34 63, 83, 57 20, 40, 60, 77 −0.5767 −18.4167

35 77, 83, 57 20, 40, 60, 63 −0.8325 −26.5833

value of rb = +0.9395 are the observed value in Arrangement 1 with rb = +0.9395
and Arrangement 5 with rb = +0.9943.

If all arrangements of the N = 7 observed values occur with equal chance, the
exact upper-tail probability value of rb = +0.9395 computed on the M = 35
possible arrangements of the observed data with n0 = 3 and n1 = 4 preserved
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for each arrangement is

P(rb ≥ ro|H0) = number of rb values ≥ ro

M
= 2

35
= 0.0571 ,

where ro denotes the observed value of rb. More efficiently, the exact probability
could alternatively be based on ȳ1 − ȳ0, as is shown in the last column of Table 8.23.

Asymptotic probability values cannot be expected to be very accurate with only
N = 7 observations, but it is instructive to compare the exact probability value with
the probability value obtained with conventional means. The biserial correlation
coefficient is asymptotically distributed as N(0, 1) with standard error given by

srb = 1√
N

(√
pq

u
− r2

b

)
.

For the data listed in Table 8.22,

srb = 1√
7

(√
(0.4286)(0.5714)

0.3925
− 0.93952

)
= 0.1429 .

Then, under the null hypothesis that the population parameter, ρb, is zero,

z = rb − ρb

srb
= +0.9395 − 0.00

0.1429
= 6.5729 ,

yielding an approximate probability value of P = 2.4672×10−11. This is, of course,
an unfair comparison as asymptotic probability values cannot be expected to yield
accurate results with a sample size of N = 7. However, the comparison illustrates
the application of exact permutation statistical methods to very small samples.

Improper Norming

In extreme cases, the biserial correlation coefficient will sometimes be greater than
unity, as is easily demonstrated. Consider the small set of data given in Table 8.24
where N = 8 objects are scored on variable y and classified into two types (0 and 1)
on variable x. For the example data listed in Table 8.24, n0 = 3, n1 = 5, N = 8,

Table 8.24 Example
extreme data for the biserial
correlation coefficient

Object x y

A 0 1

B 0 2

C 0 3

D 1 4

E 1 5

F 1 6

G 1 7

H 1 8
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p = n0/N = 3/8 = 0.3750, q = n1/N = 5/8 = 0.6250,

ȳ0 = 1

n0

n0∑
i=1

yi = 1 + 2 + 3

3
= 2.00 ,

ȳ1 = 1

n1

n1∑
i=1

yi = 4 + 5 + 6 + 7 + 8

5
= 6.00 ,

ȳ = 1

N

N∑
i=1

yi = 1 + 2 + 3 + 4 + 5 + 6 = 7 + 8

8
= 4.50 ,

Sy =
√√√√ 1

N

N∑
i=1

(
yi − ȳ

)2 =
√

42.00

8
= 2.2913 ,

the standard score that defines the lower 0.3750 proportion of the unit-normal
distribution is z = −0.3186,

u = exp(−z2/2)√
2π

= exp[−(−0.3186)2/2]√
2(3.1416)

= 0.3792 ,

and

rb = (ȳ1 − ȳ0)pq

uSy

= (6.00 − 2.00)(0.3750)(0.6250)

(0.3792)(2.2913)
= +1.0790 .

8.8 Measures of Ordinal-Interval Association

In many research situations it is desired to find the degree of association between
two variables, one measured on an ordinal scale and the second measured on an
interval scale. Because the Pearson product-moment correlation is inappropriate
in such situations, researchers commonly degrade the interval-level variable to an
ordinal-level variable and apply one of the non-parametric rank-order measures of
association such as Spearman’s ρ or Kendall’s τb. The dangers of “scaling down” a
quantitative variable are well documented [51, p. 205]. The multiserial correlation
coefficient, introduced by Nathan Jaspen [36] in 1946, is a widely used procedure
designed to provide an estimate of the degree of association between an ordinal-
level variable and an interval-level variable.
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8.8.1 Jaspen’s Index of Ordinal-Interval Association

Jaspen’s multiserial correlation coefficient is simply the Pearson product-moment
correlation coefficient between an interval-level variable, Y , and a transformation
of an ordinal-level variable, X [36]. The procedure requires the assumption that
the rank categories of the ordinal variable are based on an underlying normally
distributed interval-level scale. Thus, the multiserial coefficient is highly sensitive
to the assumption of normality. Once the assumption is satisfied, percentile ranks
are converted to standard scores through an inverse normal probability function.
For the procedure to be valid, it is necessary to also assume that each score in a
given rank category of the ordinal variable is at the mean of that category on the
corresponding underlying interval scale. Given N values on the interval variable
and k disjoint, ordered categories on the ordinal variable, the mean standard score
of the underlying scale for a given category is given by

Z̄j = YLj − YUj

pj

for j = 1, . . . , k ,

where YLj and YUj are the lower and upper ordinates of the segment of the
N(0, 1) distribution corresponding to the j th ordered category, and where pj is
the proportion of cases in the j th of k categories. Given the obtained values of
Z̄j , j = 1, . . . , k, and the original N values of the interval-level variable, a
standard Pearson product-moment correlation between the Y and Z̄ values yields
the multiserial correlation.

However, the resulting multiserial correlation coefficient is usually biased. It is
possible to estimate, by means of an appropriate transformation, the correlation
between the interval-level variable Y and the continuum hypothesized to underlie
the ordinal-level variable X. The transformation is essentially a correction for
grouping. As a result of classifying the underlying interval-level values into k

ordinal categories, the multiserial correlation coefficient obtained from the grouped
data will be smaller than the corresponding Pearson product-moment correlation
coefficient that would have been obtained had the interval-level values been
available for both variables. The appropriate transformation to obtain a corrected
multiserial correlation coefficient is to divide the obtained multiserial correlation
coefficient by the assumed correlation between the underlying interval-level variable
and the midpoints of the k ordinal categories. The assumed correlation is simply the
standard deviation of the Z̄ scores corresponding to the midpoints of the ordinal
categories and is given by

SZ̄ =
⎛
⎝ 1

N

k∑
j=1

nj Z̄
2
j

⎞
⎠

1/2

.
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Table 8.25 Example data for
Jaspen’s multiserial
correlation coefficient with
N = 10 integer-level values
in k = 4 ranked categories

Rank category

4 3 2 1

4 5 2 1

4 3

3 2

3

3

Example 1

To illustrate the calculation of Jaspen’s multiserial correlation coefficient, consider
the small set of data given in Table 8.25 where N = 10 interval-level values are
listed in k = 4 disjoint, ordered categories.

Table 8.26 illustrates the calculation of Jaspen’s multiserial correlation. The
first column (Xj ) in Table 8.26 lists the k = 4 ordered categories of variable
X. The second column (nj ) lists the number of observations in each category for
j = 1, . . . , k. The third column (pj ) lists the proportion of observations in each
category for j = 1, . . . , k, e.g., for rank categories 4 and 3,

p4 = n4

N
= 1

10
= 0.10 and p3 = n3

N
= 5

10
= 0.50 .

The fourth column (Pj ) lists the cumulative proportion of observations in each
category for j = 1, . . . , k, e.g., for rank category 3, P3 = p4 +p3 = 0.10+0.50 =
0.60. The fifth column (zj ) lists the standard score that defines the cumulative
proportion from the fourth column under the unit-normal distribution for j =
1, . . . , k, e.g., for rank category 4, the standard score that defines the lowest (left
tail) of the normal distribution is z = −1.2816. The sixth column (YLj ) lists the
height of the ordinate at the standard score listed in the fifth column below the
segment in question of the unit-normal distribution for j = 1, . . . , k, e.g., for rank
category 3,

YL3 = exp(−z2/2)√
2π

= exp[−(−0.2533)2/2]√
2(3.1416)

= 0.3863 .

Table 8.26 Calculation of the mean standard scores for the k = 4 ordinal categories in Table 8.25

Xj nj pj Pj zj YLj
YUj

Z̄j

4 1 0.10 0.10 −1.2816 0.1755 0.0000 +1.7550

3 5 0.50 0.60 +0.2533 0.3863 0.1755 +0.4216

2 3 0.30 0.90 +1.2816 0.1755 0.3863 −0.7027

1 1 0.10 1.00 +1.0000 0.0000 0.1755 −1.7550

Total 10 1.00
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The seventh column (YUj ) lists the height of the ordinate at the standard score listed
in the fifth column above the segment in question of the unit-normal distribution for
j = 1, . . . , k, e.g., for rank category 3,

YU3 = exp(−z2/2)√
2π

= exp[−(−1.2816)2/2]√
2(3.1416)

= 0.1755 .

The last column (Z̄j ) in Table 8.26 lists the average standard scores for the k

categories for j = 1, . . . , k, e.g., for rank category 4,

Z̄4 = YL4 − YU4

p4
= 0.1755 − 0.0000

0.10
= +1.7550 .

The multiserial correlation is simply the Pearson product-moment correlation
between the Y interval-level values given in Table 8.25 and the Z̄ values given
in Table 8.26. Table 8.27 lists the Y , Z̄, Y 2, Z̄2, and Y Z̄ values, along with the
corresponding sums. For the summations given in Table 8.27, the Pearson product-
moment correlation between the Y interval-level values and the transformed Z̄

values is

rY Z̄ =
N

N∑
i=1

YiZ̄i −
N∑

i=1

Yi

N∑
i=1

Z̄i

√√√√√
⎡
⎣N

N∑
i=1

Y 2
i −

(
N∑

i=1

Yi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

Z̄2
i −

(
N∑

i=1

Z̄i

)2 ⎤
⎦

= (10)(7.9349) − (30)(0.00)√[
(10)(102) − 302

][
(10)(8.5301) − 0.002

] = +0.7843 .

Table 8.27 Calculation of
the sums needed for the
product-moment correlation
between variables Y and Z̄

Rank Y Z̄ Y 2 Z̄2 Y Z̄

4 4 +1.7550 16 3.0800 +7.0200

3 5 +0.4216 25 0.1777 +2.1080

4 +0.4216 16 0.1777 +1.6864

3 +0.4216 9 0.1777 +1.2648

3 +0.4216 9 0.1777 +1.2648

3 +0.4216 9 0.1777 +1.2648

2 2 −0.7027 4 0.4938 −1.4054

3 −0.7027 9 0.4938 −2.1081

2 −0.7027 4 0.4938 −1.4054

1 1 −1.7550 1 3.0800 −1.7550

Sum 30 0.0000 102 8.5301 +7.9349
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Then, the correction for grouping is

SZ̄ =
⎛
⎝ 1

N

k∑
j=1

nj Z̄
2
j

⎞
⎠

1/2

=
{

1

10

[
(1)(+1.7550)2 + (5)(+0.4216)2 + (3)(−0.7027)2

+ (1)(−1.7550)2
]}1/2

= 0.9236

and the corrected multiserial correlation coefficient is

rc = rY Z̄

SZ̄

= +0.7843

0.9236
= +0.8492 .

Typically, Monte Carlo resampling permutation methods are utilized for corre-
lation analyses since there are M = N ! possible arrangements to be considered,
making exact permutation methods impractical. The usual method is to randomly
shuffle either the Y values or the Z̄ values a large number of times. Alternatively,
random samples of size N can be drawn without replacement from either the N

observed Y values or the N observed Z̄ values. Let ro indicate the observed value
of rc. Then, based on L = 1,000,000 random arrangements of the observed data
under the null hypothesis, there are 12,300 |rc| values equal to or greater than
|ro| = 0.8492, yielding a Monte Carlo resampling two-sided probability value of
P = 12,300/1,000,000 = 0.0123.

In comparison, for the correlation data listed in Table 8.27 there are only N ! =
10! = 3,628,800 possible, equally-likely arrangements in the reference set of all
permutations of the observed scores, making an exact permutation analysis possible.
If all arrangements of the N = 10 observed bivariate scores occur with equal
chance, the exact two-sided probability value of |rc| = 0.8492 computed on the
M = 3,628,800 possible arrangements of the observed data is 49,091/3,628,800 =
0.0135.

In contrast to the exact and resampling permutation probability values, rc is
distributed as Student’s t under the null hypothesis with N − 2 degrees of freedom.
If the population parameter, ρc, is assumed to be zero, then for the observed data
given in Table 8.25 on p. 485,

t = rc − ρc√
1 − r2

c

N − 2

= +0.8492 − 0.00√
1 − (0.8492)2

10 − 2

= +4.5484 ,

and with N − 2 = 10 − 2 = 8 degrees of freedom the approximate two-sided
probability value of rc = +0.8492 is P = 0.1878×10−2.
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Some investigators have recommended that the corrected rc value be converted
to a standard score with Fisher’s z transform and evaluated with the N(0, 1)

distribution. For the observed value of rc = +0.8490, Fisher’s z is

z = tanh−1(rc)√
1

N − 3

= tanh−1(+0.8492)√
1

10 − 3

= +1.2533

0.3780
= +3.3159

yielding an approximate two-sided probability value of P = 0.9135×10−3.

Example 2

For a second, more realistic, illustration of Jaspen’s multiserial correlation coeffi-
cient, consider the data listed in Table 8.28 where N = 32 interval-level values are
listed in k = 4 ordered categories.

Table 8.29 illustrates the calculation of Jaspen’s multiserial correlation. The
first column (Xj ) in Table 8.29 lists the k = 4 ordered categories of variable
X. The second column (nj ) lists the number of observations in each category for
j = 1, . . . , k. The third column (pj ) lists the proportion of observations in each

Table 8.28 Intelligence test
scores for k = 4 ranks in
hypnotic susceptibility

Susceptibility

4 3 2 1

136 144 139 128

131 137 134 111

126 134 133 104

116 131 132 103

129 130 103

126 129 101

122 123 101

117 117

111 116

109 112

106

Table 8.29 Calculation of the mean standard scores for the k = 4 ordinal categories in Table 8.28

Xj nj pj Pj zj YLj
YUj

Z̄j

4 4 0.1250 0.1250 −1.1503 0.2059 0.0000 +1.6472

3 10 0.3125 0.4375 −0.1573 0.3940 0.2059 +0.6022

2 11 0.3438 0.7813 +0.7766 0.2951 0.3940 −0.2880

1 7 0.2188 1.0000 +1.0000 0.0000 0.2951 −1.3487

Total 32 1.0000
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category for j = 1, . . . , k, e.g., for rank categories 4 and 3,

p4 = n4

N
= 4

32
= 0.1250 and p3 = n3

N
= 10

32
= 0.3125 .

The fourth column (Pj ) lists the cumulative proportion of observations in each
category for j = 1, . . . , k, e.g., for rank category 3, P3 = p4 + p3 = 0.1250 +
0.3125 = 0.4375. The fifth column (zj ) lists the standard score that defines the
cumulative proportion from the fourth column under the unit-normal distribution
for j = 1, . . . , k, e.g., for rank category 4, the standard score that defines the
lowest (left tail) of the normal distribution is z = −1.1503. The sixth column (YLj )
lists the height of the ordinate at the standard score listed in the fifth column below
the segment in question of the unit-normal distribution for j = 1, . . . , k, e.g., for
rank category 3,

YL3 = exp(−z2/2)√
2π

= exp[−(−0.1573)2/2]√
2(3.1416)

= 0.3940 .

The seventh column (YUj ) lists the height of the ordinate at the standard score listed
in the fifth column above the segment in question of the unit-normal distribution for
j = 1, . . . , k, e.g., for rank category 3,

YU3 = exp(−z2/2)√
2π

= exp[−(−1.1503)2/2]√
2(3.1416)

= 0.2059 .

The last column (Z̄j ) in Table 8.29 lists the average standard scores for the k

categories for j = 1, . . . , k, e.g., for rank category 4,

Z̄4 = YL4 − YU4

p4
= 0.2059 − 0.0000

0.1250
= +1.6472 .

The multiserial correlation is the Pearson product-moment correlation between
the Y interval-level values given in Table 8.28 and the Z̄ values given in Table 8.29.
Table 8.30 lists the Y , Z̄, Y 2, Z̄2, and Y Z̄ values, along with the corresponding sums.
For the summations given in Table 8.30, the Pearson product-moment correlation
between the Y interval-level values and the transformed Z̄ values is

rY Z̄ =
N

N∑
i=1

YiZ̄i −
N∑

i=1

Yi

N∑
i=1

Z̄i

√√√√√
⎡
⎣N

N∑
i=1

Y 2
i −

(
N∑

i=1

Yi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

Z̄2
i −

(
N∑

i=1

Z̄i

)2 ⎤
⎦

= (32)(189.4757)− (3,891)(0.00)√[
(32)(478,029) − 3,8912

][
(32)(28.1428) − 0.002

] = +0.5094 .
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Table 8.30 Calculation of the sums needed for the product-moment correlation between variables
Y and Z̄

Rank Y Z̄ Y 2 Z̄2 Y Z̄

4 136 +1.6472 18,496 2.7133 +224.0192

131 +1.6472 17,161 2.7133 +215.7832

126 +1.6472 15,876 2.7133 +207.5472

116 +1.6472 13,456 2.7133 +191.0752

3 144 +0.6022 20,736 0.3626 +86.7168

137 +0.6022 18,769 0.3626 +82.5014

134 +0.6022 17,956 0.3626 +80.6948

131 +0.6022 17,161 0.3626 +78.8882

129 +0.6022 16,641 0.3626 +77.6838

126 +0.6022 15,876 0.3626 +75.8772

122 +0.6022 14,884 0.3626 +73.4684

117 +0.6022 13,689 0.3626 +70.4574

111 +0.6022 12,321 0.3626 +66.8442

109 +0.6022 11,881 0.3626 +65.6398

2 139 −0.2880 19,321 0.0829 −40.0320

134 −0.2880 17,956 0.0829 −38.5920

133 −0.2880 17,689 0.0829 −38.3040

132 −0.2880 17,424 0.0829 −38.0160

130 −0.2880 16,900 0.0829 −37.4400

129 −0.2880 16,641 0.0829 −37.1520

123 −0.2880 15,129 0.0829 −35.4240

117 −0.2880 13,689 0.0829 −33.6960

116 −0.2880 13,456 0.0829 −33.4080

112 −0.2880 12,544 0.0829 −32.2560

106 −0.2880 11,236 0.0829 −30.5280

1 128 −1.3487 16,384 1.8190 −172.6336

111 −1.3487 12,321 1.8190 −149.7057

104 −1.3487 10,816 1.8190 −140.2648

103 −1.3487 10,609 1.8190 −138.9161

103 −1.3487 10,609 1.8190 −138.9161

101 −1.3487 10,201 1.8190 −136.2187

101 −1.3487 10,201 1.8190 −136.2187

Sum 3,891 0.0000 478,029 28.1248 +189.4757
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Then, the correction for grouping is

SZ̄ =
⎛
⎝ 1

N

k∑
j=1

nj Z̄
2
j

⎞
⎠

1/2

=
{

1

32

[
(4)(+1.6472)2 + (10)(+0.6022)2 + (11)(−0.2880)2

+ (7)(−1.3487)2
]}1/2

= 0.9375

and the corrected multiserial correlation coefficient is

rc = rY Z̄

SZ̄

= +0.5094

0.9375
= +0.5434 .

Because there are

M = N ! = 32! = 263,130,836,933,693,530,167,218,012,160,000,000 ,

or in words, 263 million, billion, billion, billion possible arrangements of the
observed values, an exact permutation analysis is not possible and a Monte Carlo
resampling analysis is mandated. Let ro indicate the observed value of rc . Then,
based on L = 1,000,000 random arrangements of the observed data under the null
hypothesis, there are 3,069 |rc| values equal to or greater than |ro| = 0.5434, yielding
a Monte Carlo resampling two-sided probability value of P = 3,069/1,000,000 =
0.3069×10−2.

In contrast to the permutation probability value, rc is distributed as Student’s
t under the null hypothesis with N − 2 degrees of freedom. If the population
parameter, ρc, is assumed to be zero, then for the observed data in Table 8.28,

t = rc − ρc√
1 − r2

c

N − 2

= +0.5434 − 0.00√
1 − (0.5434)2

32 − 2

= +3.5455 ,

and with N − 2 = 32 − 2 = 30 degrees of freedom the approximate two-sided
probability value of rc = +0.5434 is P = 0.1308×10−2.

If rc is converted to a standard score with Fisher’s z transform and evaluated with
the N(0, 1) distribution, Fisher’s z is

z = tanh−1(rc)√
1

N − 3

= tanh−1(+0.5434)√
1

32 − 3

= +0.6090

0.1857
= +3.2796

yielding an approximate two-sided probability value of P = 0.1039×10−2.
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8.9 A Generalized Measure of Association

As noted, vide supra, and in previous chapters, a common problem in data analysis
is the measurement of the degree of association between a nominal independent
variable and a dependent variable that may be nominal, ordinal, or interval. Some
representative examples are the measured associations between religious affiliation
(Catholic, Jewish, Protestant) and voting behavior (Democrat, Republican, Lib-
ertarian, Independent), between Sex (Female, Male) and any attitudinal question
that is Likert-scaled (Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree),
and between marital status (Divorced, Separated, Married, Single, Widowed) and
number of work days missed each year (0, 1, 2, . . .). Additionally, interest may
be in the degree of association between a nominal independent variable and a
multivariate dependent variable such as a person’s position in a three-dimensional
matrix defined by occupational prestige, income in dollars, and years of education,
where the researcher may not want to suffer the loss of information engendered by
compositing the three measurements into a univariate index such as socioeconomic
status (SES). In this section a generalized measure of association for nominal
independent variables is presented, in which any number and/or combination of
nominal, ordinal, or interval dependent variables can be accommodated.

8.9.1 Interval-Level Dependent Variables

Let � = {ω1, . . . , ωN } indicate a finite collection of N subjects, let x′
I =

[x1I , . . . , xrI ] denote a vector of r commensurate interval-level response measure-
ments for subject ωI for I = 1, . . . , N , and let S1, . . . , Sg represent an exhaustive
a priori partitioning of the N subjects comprising � into g disjoint, categories,
where ni ≥ 2 is the number of subjects in category Si , i = 1, . . . , g. In addition, let

�I,J =
[

r∑
k=1

(
xkI − xkJ

)2]v/2

be a symmetric difference function value of the r response measurements associated
with subjects ωI and ωJ , where v > 0. If v = 1, then �I,J is the ordinary Euclidean
distance between response measurements. Let

ξi =
(

ni

2

)−1 ∑
I<J

�I,J �i(ωI )�i(ωJ )

represent the average between-subject difference for all subjects within category Si ,
i = 1, . . . , g, where

∑
I<J is the sum over all I and J such that 1 ≤ I < J
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≤ N , and

�i(ωI ) =
⎧⎨
⎩

1 if ωI ∈ Si ,

0 otherwise .

Then the average within-category difference, weighted by the number of subjects ni

in category i for i = 1, . . . , g can be defined as

δ =
g∑

i=1

Ciξi ,

where

Ci = ni

N
for i = 1, . . . , g ,

and
∑g

i=1 Ci = 1. The null hypothesis states that equal probabilities are assigned to
each of the

M = N !
g∏

i=1

ni !

possible allocations of the N subjects to the g disjoint categories.
Whenever there are multiple response measurements for each subject, the

response variables may possess different units of measurement and must be made
commensurate, i.e., rescaled to attain a standardization among the multivariate
measurements. Let y′

I = [y1I , . . . , yrI ] for i = 1, . . . , N denote N non-
commensurate r-dimensional values, where r ≥ 2. The corresponding N Euclidean
commensurate r-dimensional values, x′

I = [x1I , . . . , xrI ] for I = 1, . . . , N , are
given by xjI = yjI /φj , where

φj =
∑
I<J

∣∣yjI − yjJ

∣∣ .

As defined, the Euclidean commensurated data have the desired property that

∑
I<J

∣∣xjI − xjJ

∣∣ = 1

for j = 1, . . . , r . Euclidean commensuration ensures that the resulting inferences
are independent of the units of the individual response measurements and invariant
to linear transformations of the response measurements.
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If δj denotes the j th value among the M possible values of δ, then the expected
value of δ under the null hypothesis H0 is defined by

E
[
δ|H0

] = μδ = 1

M

M∑
j=1

δj

and, since δ reflects differences within the g categories, the within-category measure
of association is given by

� = 1 − δ

μδ

.

� is a chance-corrected measure of association, reflecting the amount of associ-
ation in excess of what would be expected by chance. � attains a maximum value
of unity when the association between the nominal independent variable and the
interval dependent variable(s) is perfect, i.e., dependent variable scores are identical
within each of the g categories of the nominal independent variable. � attains a
value of zero when the association is equal to chance, i.e., E[�|H0] = 0. Like
all chance-corrected measures, � occasionally will be slightly negative when the
association is less than what is expected by chance.

Because � is based on a permutation structure, it requires no simplifying
assumptions about the underlying population distribution. Finally, � is completely
data dependent, i.e., all the information on which � is based is contained within the
available sample(s).

Univariate Example

Consider an example where it is desired to measure the degree of association
between Sex (a nominal-level independent variable) and Years of Education (an
interval-level dependent variable). Let N = 22 subjects, let g = 2 disjoint,
unordered categories with n1 = 10 Females and n2 = 12 Males, and let r = 1
dimension (Education) measured in years. The example univariate data are listed in
Table 8.31. The results of the data analysis given in Table 8.31 with Ci = ni/N for
i = 1, 2 and v = 1 are

ξ1 = 5.6000 , ξ2 = 5.0152 ,

δ = 5.2810, μδ = 5.7706, and

� = 1 − δ

μδ
= 1 − 5.2810

5.7706
= +0.0848 ,

indicating approximately 8% agreement above that expected by chance.
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Table 8.31 Listing of
example data with N = 22
subjects classified into g = 2
categories of the
nominal-level independent
variable Sex with n1 = 10
Females and n2 = 12 Males
and r = 1 dimension of the
interval-level dependent
variable Education, measured
in years

Subject Sex Education Subject Sex Education

1 Female 6 1 Male 12

2 Female 8 2 Male 12

3 Female 10 3 Male 16

4 Female 11 4 Male 16

5 Female 13 5 Male 16

6 Female 16 6 Male 18

7 Female 17 7 Male 18

8 Female 17 8 Male 21

9 Female 18 9 Male 22

10 Female 20 10 Male 22

11 Male 22

12 Male 26

As � is a simple linear transformation of δ, a test of significance for δ is also a
test of significance for �. Thus, the exact probability value for an observed value of
δ (δo) is the probability, under the null hypothesis, given by P(δ ≤ δo|H0). Under
the null hypothesis, each of the M possible arrangements of the N subjects over
the g categories of the nominal independent variable is equally probable with ni

fixed, i = 1, . . . , g. The exact probability value of the observed value of � is the
proportion of M possible values of � equal to or greater than the observed value of
� (�o), i.e.,

P(� ≥ �o|H0) = number of � values ≥ �o

M

or, equivalently, the proportion of δ values equal to or less than the observed value
of δ (δo), i.e.,

P(δ ≤ δo|H0) = number of δ values ≤ δo

M
.

There are only

M = N !
g∏

i=1

ni !
= 22!

10! 12! = 646,646

possible, equally-likely arrangements in the reference set of all permutations of
the observed univariate, interval-level data, making an exact permutation analysis
possible. If all M arrangements of the observed data occur with equal chance, the
exact probability value of �o = +0.0840 computed on the M = 646,646 possible
arrangements of the observed data with n1 = 10 and n2 = 12 preserved for each
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arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 26,024

646,646
= 0.0402 .

Multivariate Example

Consider a second example where it is desired to measure the degree of association
between Sex (a nominal-level independent variable) and scores on three dimensions
of the Semantic Differential (interval-level dependent variables). Let N = 15
subjects, let g = 2 disjoint, unordered categories with n1 = 8 Females and n2 = 7
Males, and let r = 3 dimensions of the Semantic Differential: Evaluative, Potency,
and Activity. The example multivariate data are listed in Table 8.32. The results of
the analysis of the data given in Table 8.32 with Ci = ni/N for i = 1, 2 and v = 1
are

ξ1 = 8.9158×10−3 , ξ2 = 5.9435×10−3 ,

δo = 7.5287×10−3, μδ = 1.7259×10−2, and

�o = 1 − δo

μδ

= 1 − 7.5287×10−3

1.7259×10−2 = +0.5638 ,

indicating approximately 56% agreement above that expected by chance.

Table 8.32 Listing of
example data with N = 15
subjects classified into g = 2
categories of the
nominal-level independent
variable Sex with n1 = 8
Females and n2 = 7 Males
and r = 3 dimensions of the
interval-level dependent
variable Semantic
Differential: Evaluative,
Potency, and Activity

Semantic Differential

Subject Sex Evaluative Potency Activity

1 Female 4.5 5.5 3.9

2 Female 2.4 6.0 2.7

3 Female 2.7 5.8 3.8

4 Female 3.6 6.5 4.5

5 Female 4.3 5.6 4.0

6 Female 2.5 5.9 2.8

7 Female 2.8 5.7 4.0

8 Female 3.5 6.4 4.4

9 Male 6.4 3.5 6.1

10 Male 5.6 4.2 5.5

11 Male 5.2 3.1 5.6

12 Male 6.2 3.6 6.0

13 Male 5.7 4.3 5.7

14 Male 5.2 3.0 5.8

15 Male 6.1 3.6 6.2
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There are only

M = N !
g∏

i=1

ni !
= 15!

8! 7! = 6,435

possible, equally-likely arrangements in the reference set of all permutations of
the observed multivariate, interval-level data, making an exact permutation analysis
possible. If all M arrangements of the observed data occur with equal chance, the
exact probability value of �o = +0.5638 computed on the M = 6,435 possible
arrangements of the observed data with n1 = 8 and n2 = 7 preserved for each
arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 1

6,435
= 0.1554×10−3 .

8.9.2 Ordinal-Level Dependent Variables

Researchers are often faced with the problem of measuring the degree of association
between a nominal-level independent variable and one or more ordinal-level
dependent variables. Three measures of association have been advanced specifically
for a nominal-level independent variable and a single ordinal-level dependent
variable: Cureton’s rank-biserial (rrb) correlation coefficient [14, 15], Freeman’s
θON [20], and Crittenden and Montgomery’s ν [13], which is simply a modification
of Freeman’s θON to ensure a proportional-reduction-in-error interpretation. None
of these measures has gained much popularity in the research literature. Cureton’s
rank-biserial correlation coefficient is defined only for a dichotomous nominal-
level variable; consequently, its utility is limited. As the sampling distributions
of both θON and ν are unknown, the development of corresponding tests of
significance has not been possible. In addition, as these three measures are all
Kendall-type coefficients, they are based on unweighted agreements and inversions
of pairwise differences between scores. Because the scoring system codes any
pairwise difference simply as the sign of the difference and ignores the magnitude
of the difference, a substantial amount of information is lost in the process of
measuring the association [63].

Although the focus of this section is on measuring the association between a
nominal-level independent variable and ordinal-level dependent variables, it should
be noted that Hubert has defined θNO, a modification of Freeman’s θON for an
ordinal-level independent variable and a nominal-level dependent variable [34].
Again, the sampling distribution remains unknown. In addition, a symmetric version
of Freeman’s θON has been independently proposed by Agresti [1], Crittenden
and Montgomery [13], Hubert [34], and Särndal [67], which they termed δ̂, I



498 8 Mixed-Level Variables

(Iota), θSYM, and κ , respectively. Agresti also developed the asymptotic sampling
distribution of δ̂ [1].

� is directly applicable, without modification, to a nominal-level independent
variable and any number of ordinal-level dependent variables. Ordinal variables, in
this context, include the range of dependent variables from (1) fully ranked data
wherein each subject is assigned a unique rank from 1 to N based on the conversion
of original interval-level scores to ranks, to (2) having N subjects associated with a
limited number of ordinal categories, i.e., N > g. The second case differs from the
first in that an investigator does not have original interval-level data to convert to
ranks, but encounters only a crude ordering of the subjects into categories, such as
Low, Medium, and High, in the data collection process. In such a case, a simple
assignment of ordered values, such as 1, 2, and 3, to low, medium, and high,
respectively, may be used, rather than the assigned values associated with tied ranks.

Univariate Example

Consider an example where it desired to measure the degree of association between
three competing Schools (a nominal-level independent variable) and Placement at
the finish of a race over 1,500 meters (an ordinal-level dependent variable). Let N =
18 runners, let g = 3 disjoint, unordered categories with n1 = 6 competitors from
Eton, n2 = 8 competitors from Harrow, and n3 = 4 competitors from Winchester,
and let r = 1 dimension of the ordinal dependent variable, Placement at the finish
of the race. The example univariate data are listed in Table 8.33. The results of the
analysis of the data given in Table 8.33 with Ci = ni/N for i = 1, 2, 3 and v = 1 are

ξ1 = 3.5333 , ξ2 = 5.3571 , ξ3 = 7.0000 ,

δo = 5.1143, μδ = 6.5425, and

�o = 1 − δo

μδ

= 1 − 5.1143

6.5425
= +0.2183 ,

indicating approximately 22% agreement above that expected by chance.

Table 8.33 Listing of
example data with N = 18
runners from g = 3 Schools
with n1 = 6, n2 = 8, n3 = 4
and r = 1 dependent
variable: Placement at the
finish of the race

Eton Harrow Winchester

10 1 3

13 2 6

15 4 9

16 5 16

17 7

18 8

11

14
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There are only

M = N !
g∏

i=1

ni !
= 18!

6! 8! 4! = 9,189,180

possible, equally-likely arrangements in the reference set of all permutations of
the observed univariate, ordinal-level data, making an exact permutation analysis
possible. If all M arrangements of the observed data occur with equal chance, the
exact probability value of �o = +0.2183 computed on the M = 9,189,180 possible
arrangements of the observed data with n1 = 6, n2 = 8, and n3 = 4 preserved for
each arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 192,034

9,189,180
= 0.0209 .

Multivariate Example

Consider a second example where it is desired to measure the degree of association
between Political Affiliation (a nominal-level independent variable) and scores on
two dimensions of Socioeconomic Status (ordinal-level dependent variables). Let
N = 20 subjects, let g = 2 disjoint, unordered categories with n1 = 8 Democrats
and n2 = 12 Republicans, and let r = 2 dependent variables where one variable is
Years of Education and the other variable is Occupational Prestige, both measured
in quintiles. The example multivariate data are listed in Table 8.34. The results of
the analysis of the data given in Table 8.34 with Ci = ni/N for i = 1, 2 and v = 1
are

ξ1 = 7.9204×10−3 , ξ2 = 4.7916×10−3 ,

δo = 6.0431×10−3, μδ = 8.3422×10−3 and

�o = 1 − δo

μδ

= 1 − 6.0431×10−3

8.3422×10−3 = +0.2756 ,

indicating approximately 28% agreement above that expected by chance.
There are only

M = N !
g∏

i=1

ni !
= 20!

8! 12! = 125,970



500 8 Mixed-Level Variables

Table 8.34 Listing of
example data with N = 20
subjects classified into g = 2
categories of the
nominal-level independent
variable Political Affiliation
with n1 = 8 Democrats and
n2 = 12 Republicans and
r = 2 dimensions of the
ordinal-level dependent
variable Socioeconomic
Status: Education, and
Prestige

Socioeconomic Status

Subject Political Affiliation Education Prestige

1 Democrat 5 3

2 Democrat 4 5

3 Democrat 5 4

4 Democrat 2 3

5 Democrat 2 5

6 Democrat 3 4

7 Democrat 4 2

8 Democrat 2 4

9 Republican 2 1

10 Republican 2 1

11 Republican 1 2

12 Republican 3 1

13 Republican 1 2

14 Republican 2 1

15 Republican 1 2

16 Republican 1 1

17 Republican 3 1

18 Republican 1 2

19 Republican 2 3

20 Republican 3 2

possible, equally-likely arrangements in the reference set of all permutations of
the observed multivariate, ordinal-level data, making an exact permutation analysis
possible. If all M arrangements of the observed data occur with equal chance, the
exact probability value of �o = +0.2756 computed on the M = 125,970 possible
arrangements of the observed data with n1 = 8 and n2 = 12 preserved for each
arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 2

125,970
= 0.1588×10−4 .

8.9.3 Nominal-Level Dependent Variables

While nominal-nominal measures of association would ordinarily be outside the
purview of this chapter, � is such a versatile measure of association, not only in
terms of levels of measurement but also in terms of multiple dependent variables,
that a brief example is included illustrating nominal-level dependent variables. �
is easily adapted to measure the degree of association between a nominal-level
independent variable and a nominal-level dependent variable.
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If the categories of the dependent variable are considered as r dimensions of that
variable, then each subject can be assigned a binary vector of length r with r − 1
values of 0 and a single value of 1 corresponding to the category of the dependent
variable in which the subject is classified, e.g., for four categories labeled “A,” “B,”
“C,” and “D” and a subject who is classified into category “C,” x′ = [ 0 0 1 0 ].

An alternative form of nominal-level data is the result of a question where the
subject is asked to “Check all categories that apply” [6]. In this case, a vector is
constructed in which a value of 1 is assigned to each checked category and a 0 is
assigned to each unchecked category, e.g., for four categories labeled “A,’ “B,” “C,”
and “D” and a subject who has checked “A” and “C,” x′ = [ 1 0 1 0 ] [5, 6].

Univariate Example

Consider an example where it is desired to measure the degree of association
between rural/urban Residence (a nominal-level independent variable) and Marital
Status (a nominal-level dependent variable). Let N = 24 subjects, let g = 2 disjoint
categories with n1 = 10 Rural residents and n2 = 14 Urban residents, and let
r = 4 dimensions of Marital Status: Divorced, Married, Single, and Widowed. The
example univariate data are listed in Table 8.35. The results of the analysis of the
data given in Table 8.35 with Ci = ni/N for i = 1, 2 and v = 1 are

ξ1 = 4.9841×10−3 , ξ2 = 1.1814×10−2 ,

δo = 8.9683×10−3, μδ = 1.0445×10−2, and

�o = 1 − δo

μδ

= 1 − 8.9683×10−3

1.0445×10−2 = +0.1414 ,

indicating approximately 14% agreement above that expected by chance.
There are only

M = N !
g∏

i=1

ni !
= 24!

10! 14! = 1,961,256

possible, equally-likely arrangements in the reference set of all permutations of the
observed nominal-level data, making an exact permutation analysis possible. If all
M arrangements of the observed data occur with equal chance, the exact probability
value of �o = +0.1414 computed on the M possible arrangements of the observed
data with n1 = 10 and n2 = 14 preserved for each arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 7,192

1,961,256

= 0.3667×10−2 .
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Table 8.35 Listing of example data with N = 24 subjects classified into g = 2 categories of
the nominal-level independent variable Rural/Urban Residence with n1 = 10 Rural residents and
n2 = 14 Urban residents and r = 4 dimensions of the ordinal-level dependent variable Marital
Status: Single, Married, Widowed, and Divorced

Marital Status

Subject Residence Single Married Widowed Divorced

1 Rural 0 0 0 1

2 Rural 0 1 0 0

3 Rural 0 1 0 0

4 Rural 0 1 0 0

5 Rural 0 1 0 0

6 Rural 0 1 0 0

7 Rural 0 1 0 0

8 Rural 0 1 0 0

9 Rural 0 1 0 0

10 Rural 1 0 0 0

11 Urban 0 0 0 1

12 Urban 0 0 0 1

13 Urban 0 0 0 1

14 Urban 0 1 0 0

15 Urban 0 1 0 0

16 Urban 1 0 0 0

17 Urban 1 0 0 0

18 Urban 1 0 0 0

19 Urban 1 0 0 0

20 Urban 1 0 0 0

21 Urban 0 0 1 0

22 Urban 0 0 1 0

23 Urban 0 0 1 0

24 Urban 0 0 1 0

8.9.4 Mixed Dependent Variables

A distinctive advantage of the permutation approach to measuring association
is the ability to analyze sets of dependent variables that are mixed: nominal-,
ordinal-, and/or interval-level. Each interval-level or ordinal-level dependent vari-
able contributes one dimension to the analysis and, as explained in Sect. 8.9.3, each
nominal-level dependent variable contributes one dimension for each category of
the variable.
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Multivariate Example

Consider an example where it is desired to measure the degree of association
between Religious Affiliation (a nominal-level independent variable) and Birth
Experience, measured as a mixture of three dependent variables: one interval-level,
one ordinal-level, and one nominal-level. Let N = 15 first-time mothers who have
recently given birth, let g = 3 disjoint, unordered categories with n1 = 4 Protestant
mothers, n2 = 5 Catholic mothers, and n3 = 6 Jewish mothers. In addition,
let r = 5 dimensions of the birth experience with Hours in Labor constituting
the interval-level dependent variable, Birth Weight (measured as Above-normal,
Normal, and Below-normal) constituting the ordinal-level dependent variable, and
type of Anesthesia (Local, General, and None) constituting the nominal-level
dependent variable. One of the r = 5 dimensions represents the interval-level
dependent variable, one dimension represents the ordinal-level dependent variable,
and three dimensions (one for each category) represent the nominal-level dependent
variable. The example multivariate data are listed in Table 8.36. The results of the
analysis of the data given in Table 8.36 with Ci = ni/N for i = 1, 2, 3 and v = 1
are

ξ1 = 3.0327×10−2 , ξ2 = 2.0490×10−2 , ξ3 = 1.8444×10−2 ,

δo = 2.2295×10−2, μδ = 2.8029×10−2, and

�o = 1 − δo

μδ

= 1 − 2.2295×10−1

2.8029×10−2
= +0.2046 ,

indicating approximately 20% agreement above that expected by chance.
There are only

M = N !
g∏

i=1

ni !
= 15!

4! 5! 6! = 630,630

possible, equally-likely arrangements in the reference set of all permutations of
the observed multivariate, mixed-level data, making an exact permutation analysis
possible. If all M arrangements of the observed data occur with equal chance, the
exact probability value of �o = +0.2046 computed on the M possible arrangements
of the observed data with n1 = 4, n2 = 5, and n3 = 6 preserved for each
arrangement is

P(� ≥ �o|H0) = number of � values ≥ �o

M
= 1,792

630,630
= 0.2842×10−2 .
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Table 8.36 Listing of example data with N = 15 subjects classified into g = 3 categories of the
nominal-level independent variable Religion with n1 = 4 Protestant mothers, n2 = 5 Catholic
mothers, and n3 = 6 Jewish mothers and r = 5 dimensions of the mixed-level dependent variables
Hours in Labor, Birth Weight measured as Above-normal (1), Normal (2), and Below-normal (3),
and Anesthesia: Local, General, and None

Anesthesia

Hours of Birth
Subject Religion labor weight Local General None

1 Protestant 20 Below 0 0 1

2 Protestant 15 Below 0 1 0

3 Protestant 10 Normal 0 0 1

4 Protestant 8 Below 0 1 0

5 Catholic 10 Below 0 1 0

6 Catholic 8 Normal 0 1 0

7 Catholic 8 Normal 0 1 0

8 Catholic 6 Above 0 1 0

9 Catholic 5 Above 0 0 1

10 Jewish 12 Below 1 0 0

11 Jewish 10 Normal 1 0 0

12 Jewish 5 Above 0 1 0

13 Jewish 5 Above 1 0 0

14 Jewish 5 Above 1 0 0

15 Jewish 4 Above 1 0 0

8.10 � and Existing Statistics

As is the case with any new statistical method, there exist certain relationships
between � and existing methods. It should be noted that the choice of

Ci = ni

N
for i = 1, . . . , g

is simply the number of subjects in the ith category of the nominal-level independent
variable divided by the total number of subjects. In the subsequent comparisons
with existing methods, the maximum likelihood argument based on the normal
distribution dictates that

Ci = ni − 1

N − g
for i = 1, . . . , g .

This alternative representation of Ci represents the number of degrees of freedom
associated with the ith category of the nominal-level independent variable divided
by the total degrees of freedom over all g disjoint categories. In a permutation
analysis, degrees of freedom are not relevant, as they are a consequence of fitting
parameters in a maximum likelihood context. In addition, it should be noted that
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v = 1, which is associated with ordinary Euclidean distances, is now replaced
with v = 2, which also results from the maximum likelihood argument based on
the normal distribution. Since the normal distribution assumption is irrelevant to a
permutation analysis, the use of v = 2 is unjustified. Finally, it should be noted that
� is a median-based measure of association when v = 1, whereas � is a mean-based
measure of association when v = 2.

For clarification, consider the pairwise sum of univariate (r = 1) symmetric
distance functions given by

∑
I<J

�I,J =
∑
I<J

∣∣xI − xJ

∣∣v ,

where x1, . . . , xN are univariate response variables and
∑

I<J is the sum over all
I and J such that 1 ≤ I < J ≤ N . Let x1,N ≤ · · · ≤ xN,N be the order statistics
associated with x1, . . . , xN . If v = 1, then the inequality given by

N∑
I=1

∣∣N − 2I + 1
∣∣∣∣xI,N − θ

∣∣ ≥
∑
I<J

∣∣xI − xJ

∣∣

holds for all θ and equality holds if θ is the median of x1, . . . , xN . If v = 2, then
the inequality given by

N

N∑
I=1

(
xI − θ

)2 ≥
∑
I<J

(
xI − xJ

)2

holds for all θ and equality holds if θ is the mean of x1, . . . , xN .

8.10.1 Interval-Level Dependent Variable

The permutation version of one-way analysis of variance (ANOVA) is a special
case of the permutation method with a single interval-level dependent variable.
Specifically,

� = (F − 1)(g − 1)

F (g − 1) + N − g
,

where r = 1, v = 2, and

Ci = ni − 1

N − g
for i = 1, . . . , g .
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In addition, the putative unbiased correlation ratio ε2 [38] is identical to � when
r = 1, v = 2, and Ci = (ni − 1)/(N − g). Since ε2, in an analysis of variance
context, is identical to the shrunken squared correlation coefficient r̂2 [12, p. 188] in
a regression context, then r̂2 is also identical to �. Finally, the permutation version
of one-way multivariate analysis of variance (MANOVA) is a special case of the
permutation method when r ≥ 2, v = 2,

Ci = ni − 1

N − g
for i = 1, . . . , g ,

and

�I,J =
[
(xI − xJ )′ �̂−1(xI − xj )

]v/2
,

where �̂ denotes the r×r variance-covariance matrix [53].

8.10.2 Ordinal-Level Dependent Variable

In the discussion in Sect. 8.10.1 pertaining to an interval-level dependent variable,
Kelley’s ε2 can be associated with a squared correlation coefficient involving
the Kruskal–Wallis test, where the rank-order statistics replace the interval-level
observations in the one-way analysis of variance. However, the requirement of a
complete ordering of all subjects from 1 to N precludes its use in many applications.
Consequently, the more general statistic, �, which is applicable to either fully
ranked or partially ranked observations, is potentially more useful. In addition, since
the Kruskal–Wallis test is the rank-order analog of one-way ANOVA, then the rank-
order analog of one-way MANOVA is attained by substitution.

8.10.3 Nominal-Level Dependent Variable

If

Ci = ni − 1

N − g
for i = 1, . . . , g ,

then

� = N − 1

N − g

(
ta − g − 1

N − 1

)
,
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where ta is Goodman and Kruskal’s test statistic associated with g categories
of a nominal-level independent variable (B) and r categories of a nominal-level
dependent variable (A) [4].

8.11 Coda

Chapter 8 examined exact and Monte Carlo resampling permutation statistical
methods applied to measures of association for two variables at different levels of
measurement, e.g., a nominal-level variable and an ordinal-level or interval-level
variable, and an ordinal-level variable and an interval-level variable. Included in
Chap. 8 were discussions of Freeman’s θ , Agresti’s δ̂, and Piccarreta’s τ̂ measures of
association for a nominal-level independent variable and an ordinal-level dependent
variable. Two special cases for a dichotomous nominal-level variable and an ordinal-
level variable were also considered: Whitfield’s S and Cureton’s rrb measures.
Pearson’s η2, Kelley’s ε2, and Hays’ ω̂2 measures of association for a nominal-
level variable and an interval-level variable were described. Two special cases
for a dichotomous nominal-level variable and an interval-level variable were also
considered: point-biserial and biserial correlation.

Also included in Chap. 8 was a discussion of Jaspen’s multiserial correlation
for an ordinal-level variable and an interval-level variable. Chapter 8 concluded
with a discussion of a generalized chance-corrected measure of association suitable
for a nominal-level independent variable and a nominal-level dependent variable,
a nominal-level independent variable and an ordinal-level dependent variable, a
nominal-level independent variable and an interval-level dependent variable, and a
nominal-level independent variable and any multivariate combination of nominal-,
ordinal-, and interval-level dependent variables.

Chapter 9 describes exact and Monte Carlo permutation statistical methods
applied to measures of association either specifically designed for or applied to 2×2
contingency tables. Included in Chap. 9 are discussions of permutation statistical
methods for Pearson’s φ2, Pearson’s tetrachoric correlation, Yule’s Q and Yule’s Y

measures, the odds ratio, Goodman and Kruskal’s ta and tb asymmetric measures,
Somers’ dyx and dxy asymmetric measures, simple percentage differences, and
Kendall’s τb measure of association.
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Chapter 9
Fourfold Contingency Tables, I

The statistical analysis of fourfold (2×2) contingency tables is so prevalent in the
current research literature, in such a wide variety of disciplines, that this chapter is
devoted entirely to the application of exact and Monte Carlo permutation statistical
methods to 2×2 contingency tables. A subclass of 2×2 contingency tables is
comprised of symmetrical 2×2 tables, where each marginal frequency total is equal
to N/2. The application of permutation statistical methods to symmetrical 2×2
contingency tables is reserved for Chap. 10.

The study of 2×2 contingency tables has a long and controversial history. As
far back as 1961, R.G. Francis published an entire book subtitled A Methodological
Discussion of the Two-by-Two Table [21]1 and as early as 1963 A.W.F. Edwards,
writing on measures of association for 2×2 contingency tables, commented that “the
literature on the interpretation of the 2×2 contingency table is voluminous” [15,
p. 109]. While 2×2 tables appear deceptively simple and uncomplicated at first
consideration, the analysis of 2×2 contingency tables is fraught with controversy
and has been for over a century. Indeed, so much so that in 2012 Stephen Senn
wryly observed in a bit of hyperbole that “statisticians have caused the destruction
of whole forests to provide paper to print their disputes regarding the analysis of
2×2 tables” [49, p. 33].

Part of the problem is that there is a plethora of different measures or, as
Kraemer et al. put it “there are just too many measures of 2×2 association” [36,
p. 259].2 Another part of the problem is the lack of consistency among the various
measures. Finally, the various measures are scaled differently when applied to 2×2
contingency tables. Some measures of 2×2 association range between −1 and +1,

1The full title of the book by Francis was The Rhetoric of Science: A Methodological Discussion
of the Two-by-Two Table.
2Emphasis added.
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such as Pearson’s φ and Goodman and Kruskal’s γ .3 Some measures range between
0 and 1, such as Goodman and Kruskal’s ta and tb. Some measures range between
0 and infinity, such as the odds ratio. Some measures range from 0 to a value that is
indeterminate, but is usually less than 1, such as Tschuprov’s T 2 and Cramér’s V 2.
And some measures are chance-corrected, ranging from a slightly negative value
when the association is less than expected by chance to +1, such as Cohen’s κ

measure of inter-rater agreement.
Several statistical measures of association were specifically developed for the

analysis of 2×2 contingency tables, e.g., Yule’s Q and Y measures of nominal-level
association, while other statistics were designed for larger contingency tables, but
often take on new meaning when applied to 2×2 tables, e.g., Somers’ dyx and dxy

measures of ordinal association. In this chapter both types of statistical measures
are considered. However, this approach necessitates some overlap and redundancy
with measures of association presented in previous chapters. Included in this chapter
are applications of permutation statistical methods to Pearson’s φ coefficient of
contingency, Pearson’s tetrachoric correlation coefficient, Yule’s Q and Yule’s Y

measures of nominal association, Leik and Gove’s d c
N measure, the odds ratio,

Goodman and Kruskal’s ta and tb asymmetric measures of nominal association,
Somers’ dyx and dxy measures of ordinal association, simple percentage differences,
and Kendall’s τb measure of ordinal association.

9.1 Fourfold Point Association

In 1954 Goodman and Kruskal argued that a researcher should choose a measure of
association that is conceptually meaningful for a particular analysis [23]. Others
including Costner [10], Duggan and Dean [13], Francis [21], Kang [29, 30],
Kim [35], and Leik and Gove [37] argued that the selected measure of association
should represent the form of the hypothesis as well as the degree of association.
Unfortunately, the link between the form of the hypothesis and measure of
association has largely been neglected [29].

9.1.1 Logical Models of Association

The basic logical models of a hypothesis structure are most easily demonstrated with
simple 2×2 contingency tables.4 Three logical models are represented in Table 9.1

3Depending on how Pearson’s φ is calculated, it may range between −1 and +1 or between 0
and 1.
4Kang [29, 30] demonstrated the logical models of hypotheses structures with 3×3 contingency
tables.
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Table 9.1 Three 2×2 contingency tables illustrating (1) a necessary and sufficient logical form,
(2) a necessary but not sufficient logical form, and (3) a sufficient but not-necessary logical form

Table 1 (N/S) Table 2 (N/S̄) Table 3 (N̄/S)

A Ā A Ā A Ā

B ab 0 B ab 0 B ab āb

B̄ 0 āb̄ B̄ ab̄ āb̄ B̄ 0 āb̄

where:

A denotes the presence of independent variable A,
Ā denotes the non-presence of independent variable A,
B denotes the presence of dependent variable B,
B̄ denotes the non-presence of dependent variable B,
ab denotes the proportion of cases in the joint category AB,
āb denotes the proportion of cases in the joint category ĀB,
ab̄ denotes the proportion of cases in the joint category AB̄, and
āb̄ denotes the proportion of cases in the joint category ĀB̄ .

For Table 1 in Table 9.1, A is both a necessary and sufficient condition for B

(A ⇐⇒ B). Thus, āb = ab̄ = 0, i.e., B if and only if A. For Table 2 in Table 9.1,
A is a necessary but not sufficient condition of B (B �⇒ A). Thus, āb = 0, i.e., A

must be present, but B need not always follow from A. For Table 3 in Table 9.1, A

is a sufficient but not-necessary condition for B (A �⇒ B). Thus, ab̄ = 0, i.e., if
A, then B; whenever A is present, B must follow, but B may also occur when A is
not present [29, p. 358].

9.1.2 Fourfold Contingency Tables

Fourfold contingency tables constitute a special case of proper norming. Noting
that Pearson’s φ fails to norm properly unless marginal sets are identical, in 1959
Cureton proposed a modification that possessed always-attainable limits of ±1 [12].
An alternative solution was developed by Berry, Martin, and Olson in 1974 that
not only permitted φ to norm properly between ±1, but also provided intermediate
values possessing operational interpretations [2]. Following the notation of Berry
et al., Pearson’s fourfold point measure of association is usually calculated from a
2×2 contingency table such as presented in Table 9.2. where A and Ā and B and
B̄ represent the presence and absence of variables A and B, respectively, p and q

Table 9.2 Notation for a
2×2 contingency table

A Ā Total

B α β p

B̄ γ δ q

Total p′ q ′



514 9 Fourfold Contingency Tables, I

represent row proportions, p′ and q ′ represent column proportions, and α denotes
the joint-presence proportion for p and p′. Then

φ = α − pp′√
pqp′q ′ (9.1)

is Pearson’s mean-square contingency measure of association between variables A

and B, [12, 18, p. 421].5

The definition of φ in Eq. (9.1) has two weaknesses. First, φ varies between the
limits of ±1 if and only if p = q = p′ = q ′ [11, p. 283]. When variables A

and B possess the same shape, p = p′ or p = q ′, but are asymmetrical, p �= p′
and p′ �= q ′, one or the other of the limits, −1 or +1, may be attained, but not
both [18, p. 422].6 Second, if the marginal sets are unbalanced, i.e., p �= p′ and
p �= q ′, φ necessarily understates the degree of association present. Consequently,
its interpretation is problematic; see discussions by Quinn McNemar [40, p. 198]
and Joy Guilford [25, p. 342].

As discussed previously in Chap. 3, Sect. 3.1.1, φ may be expressed as a function
of Pearson’s chi-squared test statistic; for a 2×2 contingency table,

φ =
√

χ2

N
, (9.2)

where N denotes not only the total number of cases, but also the maximum value
of chi-squared for a 2×2 contingency table where p = p′ or p = q ′. Therefore,
like Tschuprov’s T 2 and Cramér’s V 2, Pearson’s φ may be interpreted as a function
of the ratio of an empirically determined chi-squared value to its maximum value,
computed under conditions required by a logical model [21, p. 98]. In this case, the
logical model requires that p = p′ or p = q ′. It is just this restriction on φ that
limits its utility as a measure of association. Because χ2 = N only when p = p′ or
p = q ′, the use of φ is appropriate only under the same ideal conditions. However,
the maximum value of chi-squared need not be determined only under these ideal
conditions, except when the logical model demands it. If the form of the logical
model changes, the conditions for the maximum value of chi-squared change and,
consequently, the conditions for Pearson’s φ also change.

If the logical form of the research hypothesis, H1, posits that A is both a
necessary and sufficient condition (N/S) for B, P {B|A} = P {A|B} = 1, then
by definition β = γ = 0, p = p′ or p = q ′, and χ2

max = N . The φ coefficient
of association is then correctly given by Eq. (9.2). If, however, the logical form
of H1 posits that A is a necessary but not sufficient condition (N/S̄) for B, then

5Because a 2×2 contingency table has only one degree of freedom, it is sufficient to analyze only
one cell; in this case, the cell labeled α.
6For a discussion of the importance of shape in analyzing contingency tables, see Nunnally [42,
p. 145].
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P {B|Ā} = β = 0, p = α, and q ′ = δ. The maximum value of chi-squared for a
2×2 contingency table can be shown to be

χ2
max = Npq ′

qp′ .

Then, since

φ =
√

χ2

χ2
max

, (9.3)

substitution into Eq. (9.3) yields

φ′ = α − pp′

pq ′ . (9.4)

If the logical form specifies that A is a sufficient but not-necessary condition (N̄/S)
for B, then P {B̄|A} = γ = 0 and

φ′ = α − pp′

qp′ .

Under each of the three logical models, N/S, N/S̄, and N̄/S, φ′ will norm
properly between ±1, attaining +1 when the cell proportions agree with those
specified by the logical model implicit in H1; −1 when the cell proportions are in
complete disagreement; and 0 when statistical independence, α = pp′, is present.
Moreover, intermediate values of φ′ acquire clear and meaningful interpretations.

To illustrate, assume that H1 posits that the presence of A is a necessary but not
sufficient condition for B, i.e., P {B|Ā} = β = 0. Let the Total variation in the table
be measured as the difference between (1) the value of α = pq ′ + pp′, and (2) the
value of α implied by H0: α = pp′. Thus, the Total variation is given by

(
pq ′ + pp′)− (

pp′) = pq ′ ,

which is the denominator in Eq. (9.4). The Unexplained variation is the difference
between the value of α implied by H1 and the observed value of α given by

(
pq ′ + pp′)− α .

The Explained variation is the Total variation minus the Unexplained variation given
by

(
pq ′)− (

pq ′ + pp′ − α
) = α − pp′ ,
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which is the numerator in Eq. (9.4). Thus, the ratio of Explained to Total variation is

α − pp′

pq ′ = φ′

and is identical to Eq. (9.4).
This formulation permits φ′ to be interpreted as the percentage of variation

explained or, alternatively, as the proportionate reduction in error in predicting the
form of a joint distribution by some logical model, as compared with the distribution
implied by statistical independence, a justification espoused by Costner [10, p. 351].
Finally, it should be noted that if the observed value of φ′ does not fall between
the values of α implied by H0 and H1, φ′ will yield a negative value indicating
that the observed distribution is contrary in logical form to the one implied by H1.
Thus, valid values of the modified φ′ test statistic vary only between 0 and 1, in the
conventional manner of measures of association for qualitative variables.

9.2 Pearson’s Mean-Square Measure of Association

In 1900, in his seventh contribution to the series on “Mathematical contributions
to the theory of evolution,” Karl Pearson proposed the mean-square contingency
coefficient, φ [43], although the φ coefficient was not made explicit until 1912 when
Yule clarified it in his formative article in Journal of the Royal Statistical Society
titled “On the methods of measuring association between two attributes” [53]. See
Chap. 3, Sect. 3.1.1, for a more detailed description of Pearson’s φ measure of
contingency.

The fundamental idea of the φ coefficient was to consider a scatterplot of points
for two variables, such as for the Pearson product-moment correlation coefficient,
then divide the points into quadrants using the means of the two variables, which
coincidentally corresponded to the medians of the two variables, as a bivariate
normal distribution was assumed. Figure 9.1 illustrates the procedure for variables
x and y, resulting in the 2×2 contingency table given in Table 9.3.

Using the notation given in Table 9.4, φ is calculated as

φ = ad − bc√
(a + b)(c + d)(a + c)(b + d)

.

The expression ad − bc is used in many measures of association applied to 2×2
contingency tables, where it is sometimes called the “tetra difference.” It is, of
course, simply a determinant of order two.

For the small set of frequency data given in Table 9.3,

φ = (2)(2) − (4)(4)√
(6)(6)(6)(6)

= −12√
1,296

= −0.3333 .
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Fig. 9.1 Simulated
scatterplot of N = 10 objects
in a two-dimensional space

Table 9.3 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 2 4 6

1 4 2 6

Total 6 6 12

Table 9.4 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

The value for Pearson’s φ is often squared for ease in interpretation; thus, φ2 =
(−0.3333)2 = 0.1111.

Pearson’s φ coefficient is actually a product-moment coefficient of correlation
when the two categories of each variable are coded 0 and 1, respectively, as in
Table 9.3, and is easily demonstrated. The frequency data given in Table 9.3 are
dummy-coded (0, 1) in Table 9.5, where Objects 1 and 2, coded (0, 0), represent
the two objects in row 1 and column 1 of Table 9.3; Objects 3 through 6, coded
(0, 1), represent the four objects in row 1 and column 2; Objects 7 through 10,
coded (1, 0), represent the four objects in row 2 and column 1; and Objects 11 and
12, coded (1, 1), represent the two objects in row 2 and column 2 of Table 9.3. For
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Table 9.5 Example
dummy-coded (0, 1) values
from the 2×2 contingency
table given in Table 9.3

Variable

Object x y

1 0 0

2 0 0

3 0 1

4 0 1

5 0 1

6 0 1

7 1 0

8 1 0

9 1 0

10 1 0

11 1 1

12 1 1

the binary-coded data listed in Table 9.5, N = 12,

N∑
i=1

xi =
N∑

i=1

x2
i = 6,

N∑
i=1

yi =
N∑

i=1

y2
i = 6,

N∑
i=1

xiyi = +2 ,

and the squared Pearson product-moment correlation coefficient for variables x and
y is

r2
xy =

(
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

)2

⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

=
[
(12)(+2) − (6)(6)

]2
[
(12)(6) − 62

][
(12)(6) − 62

] = 0.1111 ,

which is identical to the value of Pearson’s φ2.
It is also widely recognized that φ2 is a simple function of Pearson’s chi-squared

test of independence, where

φ2 = χ2

N
and χ2 = Nφ2 .

For the frequency data given in Table 9.3, the value of χ2 is given by

χ2 =
r∑

i=1

c∑
j=1

(
Oij − Eij

)2
Eij

,
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where Oij denotes the observed cell frequencies, i = 1, . . . , r and j = 1, . . . , c,
and Eij denotes the expected cell values given by

Eij = ni.n.j

N
for i = 1, . . . , r and j = 1, . . . , c ,

where ni. denotes a marginal frequency total for the ith row, i = 1, . . . , r , summed
over all columns, and n.j denotes a marginal frequency total for the j th column,
j = 1, . . . , c, summed over all rows.

For the frequency data given in Table 9.3,

E11 = E12 = E21 = E22 = (6)(6)

12
= 3.00 ,

χ2 =
r∑

i=1

c∑
j=1

(
Oij − Eij

)2
Eij

= (2 − 3.00)2

3.00
+ (2 − 3.00)2

3.00
+ (4 − 3.00)2

3.00
+ (2 − 3.00)2

3.00
= 1.3333 ,

and

φ2 = χ2

N
= 1.3333

12
= 0.1111 .

Because of the manner in which Pearson’s φ was initially constructed with
equivalent marginal frequency totals, vide supra, φ measures strong monotonicity
and can only obtain the limits of −1 and +1 indicating perfect negative and positive
association, respectively, when the marginal frequency distributions are equivalent,
e.g., {5, 5} and {5, 5} or {6, 4} and {6, 4} [53, p. 584]. This marginal restriction of
Pearson’s φ greatly limits the interpretation of the test statistic and, consequently,
its utility, as noted by Yule in 1912 [53, p. 596].

9.3 Pearson’s Tetrachoric Measure of Correlation

In 1900, in the same article on “Mathematical contributions to the theory of
evolution” in which he introduced the φ measure of mean-square contingency,
Karl Pearson proposed the tetrachoric correlation coefficient [43]. The fundamental
idea of the tetrachoric correlation coefficient was to consider the 2×2 contingency
table as a double dichotomization of a bivariate standard normal distribution, and
then solve for the parameter such that the volumes of the distribution equal the
joint probabilities of the contingency table [16]. Pearson considered the tetrachoric
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correlation coefficient as one of his most important contributions to the theory of
statistics, along with his system of continuous curves and the chi-squared test of
independence [7].

The tetrachoric correlation coefficient is a product-moment correlation coeffi-
cient between two normally distributed variables, each of which is measured on
a dichotomous scale [43]. Whereas the tetrachoric correlation coefficient is typi-
cally employed to measure the correlation between two independent dichotomous
variables, it can also be used to assess the reliability of a single judge when the
same two judges independently rate N objects on a dichotomous scale [5, 20]. In
addition, the tetrachoric correlation coefficient is often used to measure inter-rater
agreement [52] and is preferred by some researchers over Cohen’s [9] unweighted
kappa measure of inter-rater chance-corrected agreement for this purpose [28].

Because of the extensive calculations necessary to compute the tetrachoric
correlation coefficient, it has never been a popular statistic, despite its usefulness.
With the advent of high-speed computing, the tetrachoric correlation coefficient has
seen a resurrection in fields such as psychology, psychopathology, radiology, and
genetics [24]. The tetrachoric correlation coefficient has been especially popular in
psychology where quantitative variables measured on a dichotomous scale include
test items scored as correct/incorrect, assessment of students having/not-having a
learning disability, students passing/not-passing a motor skills or other test, and
children classified as having/not-having attention deficit hyperactivity disorder or
other emotional or behavioral problems.

An asymptotic approximation to the standard error of the tetrachoric correlation
coefficient was given by Pearson in 1913 [44]. However, the accuracy and, therefore,
utility of Pearson’s standard error has repeatedly been called into question. For
example, in 1961 Kendall and Stuart noted that the sampling distribution and the
standard error of the tetrachoric correlation coefficient were not known with any
precision, and they further observed that it was not known for what sample size the
standard error may safely be used [34, p. 306]. Permutation tests have long been
used to assess the assumptions of asymptotic tests and the quality of theoretical
standard errors [14, 19, 22, 46, 47, 48]. In this section an exact permutation pro-
cedure for the tetrachoric correlation coefficient is introduced and the permutation
approach is compared with the traditional asymptotic approach [39].

The tetrachoric correlation coefficient is, quite possibly, the single most difficult
correlation coefficient to calculate [39, p. 430]. Following Brown [6], denote the
four cell frequencies of a 2×2 contingency table as a, b, c, and d as in Table 9.6,
where N = a + b + c + d . Let z1 and z2 denote the standard normal deviates of the

Table 9.6 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N
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marginal probabilities, i.e.,

z1 = �−1
(

a + c

N

)

and

z2 = �−1
(

a + b

N

)
,

where � is the cdf of the standard normal distribution. Then Pearson’s tetrachoric
correlation coefficient, rtet, is the correlation that satisfies

a

N
=
∫ z2

−∞

∫ z1

−∞
φ(x1, x2, rtet)dx1dx2 , (9.5)

where φ(x1, x2, rtet) is the bivariate normal pdf given by

φ(x1, x2, rtet) =
[

2π
(

1 − r2
tet

)1/2
]

exp

[
−x2

1 − 2x1x2rtet + x2
2

2
(
1 − r2

tet
)

]
,

and where x1 = z1 and x2 = z2 define the point that divides the bivariate normal
distribution into four quadrants with probabilities corresponding to the probabilities
of the four cells in the 2×2 contingency table [8]. When only one cell possesses a
zero frequency, the zero is traditionally changed to 0.5 and all other cell frequencies
are correspondingly adjusted to maintain the original row and column marginal
frequency totals.

When a = d = 0, rtet = −1 and when b = c = 0, rtet = +1. When z1 = z2 = 0,
then an explicit solution exists where

rtet = − cos

(
2πa

N

)
.

In all other cases, rtet must be found by iteration as a root of Eq. (9.5). Pearson [43]
and Everitt [17] approximated the bivariate normal integral by the tetrachoric series
expansion

I =
∫ z2

−∞

∫ z1

−∞
φ(x1, x2, rtet)dx1dx2

=
(

a + b

N

)(
a + c

N

)
+

∞∑
j=1

r
j
tet

j ! φ(z1, z2, 0)vj−1wj−1 ,

where v0 = 1, v1 = z1, and

vj = z1vj−1 − (j − 1)wj−2 for j > 1 ,
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and w0 = 1, w1 = z2, and

wj = z2wj−1 − (j − 1)wj−2 for j > 1 ,

respectively.
The standard error of rtet is given by

stet =
[
N3/2φ(z1, z2, rtet)

]−1[
(a + d)(b + c)

4
+ (a + c)(b + d)�2

2

+ (a + b)(c + d)�2
1 + 2(ad − bc)�1�2 − (ab)(cd)�2

− (ac − bd)�1

]1/2

, (9.6)

where

�1 = �

[
z1 − z2rtet(
1 − r2

tet
)1/2

]
− 1

2

and

�2 = �

[
z2 − z1rtet(
1 − r2

tet
)1/2

]
− 1

2

[45]. Under the null hypothesis, E[rtet] = 0, Eq. (9.6) simplifies to

s0 =
[
N5/2φ(z1, z2, 0)

]−1 [
(a + b)(a + c)(b + c)(b + d)

]1/2
.

It is well known that the sampling distributions of correlation coefficients
sampled from populations with parameter ρ �= 0 are skewed. Because there is no
provision for transforming stet into a test statistic that is symmetrically distributed,
as is true for the Fisher z transformation for the ordinary Pearson product-moment
correlation coefficient, the only reasonable approach is the assumption of the null
hypothesis H0: ρtet = 0 [26]. In any case, the Fisher z transformation for the
Pearson product-moment correlation coefficient has been shown to perform poorly
for skewed and heavy-tailed distributions [1]. Under H0:ρtet = 0, the test statistic
given by

T = rtet

s0

is distributed as Student’s t with N − 2 degrees of freedom, under the assumption
of normality [17].
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9.3.1 A Permutation Test for Tetrachoric Correlation

Permutation tests possess certain advantages over conventional statistical tests
because permutation tests are completely data-dependent and are free of the usual
assumptions associated with traditional asymptotic tests. As noted previously, there
are two types of permutation statistical tests: exact permutation tests and Monte
Carlo resampling permutation tests. Exact permutation tests consider all possible
arrangements of the observed data, whereas Monte Carlo permutation tests consider
a random sample of all possible arrangements. Given the observed row and column
marginal frequency totals of a 2×2 contingency table, it is necessary to generate
only all possible values of a single cell; for example, cell a where the lower and
upper limits of cell a are given by

L = max(0, a − d) and U = min(a + b, a + c) ,

respectively. A tetrachoric correlation coefficient is then calculated for each of
the M = U − L + 1 possible values of cell a. Let ro denote the tetrachoric
correlation coefficient calculated on the observed data and let ri denote a tetrachoric
correlation coefficient calculated on each possible arrangement of the observed data,
i = L, . . . , U . The probability of ro is given by

P =
U∑

i=L

�(ri) ,

where, if ro is positive,

�(ri) =
⎧⎨
⎩

P(a|a + b, a + c,N) if ri ≥ ro ,

0 otherwise ,

or, if ro is negative,

�(ri) =
⎧⎨
⎩

P(a|a + b, a + c,N) if ri ≤ ro ,

0 otherwise ,

and the hypergeometric probability for a 2×2 contingency table is given by

P(a|a + b, a + c,N) =
(

a + c

a

)(
b + d

b

)(
N

a + b

)−1

= (a + b)! (c + d)! (a + c)! (b + d)!
N ! a! b! c! d! .

If ro = 0, P = 1.00 as direction is undefined.
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9.3.2 Example 1

Consider the example frequency data given in Table 9.7 with N = 80 observations,
where the observed value of Pearson’s tetrachoric correlation coefficient is rtet =
+0.4027.

For the frequency data given in Table 9.7,

L = max(0, a − d) = max(0, 30 − 20) = max(0, 10) = 10

and

U = min(a + b, a + c) = min(30 + 10, 30 + 20) = min(40, 50) = 40 .

Consequently, there are only M = U −L+1 = 40−10+1 = 31 possible, equally-
likely arrangements in the reference set of all permutations of cell frequencies in
Table 9.7 given the observed row and column marginal frequency distributions,
{40, 40} and {50, 30}, respectively, making an exact permutation analysis feasible.
Since M = 31 is a reasonable number, it will be illustrative to list the 31 sets of cell
frequencies, rtet values, and associated hypergeometric point probability values in
Table 9.8, where the rows with hypergeometric point probability values associated
with rtet values equal to or greater than the value of the observed test statistic are
indicated with asterisks.

If the M = 31 possible arrangements in the reference set of all permutations
of the frequency data given in Table 9.7 occur with equal chance, the exact
probability value of rtet under the null hypothesis is the sum of the hypergeometric
point probability values associated with rtet = +0.4027 or greater. Based on the
hypergeometric probability distribution, the exact upper-tail probability value is

P = 0.1317×10−1 + 0.4046×10−2 + 0.9829×10−3 + 0.1865×10−3

+ 0.2719×10−4 + 0.2984×10−5 + 0.2391×10−6 + 0.1340×10−7

+ 0.4912×10−9 + 0.1042×10−10 + 0.9555×10−13 = 0.0184 .

Table 9.7 Example data for
variables x and y with
categories dummy-coded as 0
and 1

y

x 0 1 Total

0 30 10 40

1 20 20 40

Total 50 30 80
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Table 9.8 Cell frequencies,
rtet values, and exact
hypergeometric point
probability values for
M = 31 possible
arrangements of the observed
data in Table 9.7

Cell frequency

Table n11 n12 n21 n22 rtet Probability

1∗ 40 0 10 30 +0.9636 0.9555×10−13

2∗ 39 1 11 29 +0.9428 0.1042×10−10

3∗ 38 2 12 28 +0.8999 0.4912×10−9

4∗ 37 3 13 27 +0.8529 0.1340×10−7

5∗ 36 4 14 26 +0.8012 0.2391×10−6

6∗ 35 5 15 25 +0.7447 0.2984×10−5

7∗ 34 6 16 24 +0.6838 0.2719×10−4

8∗ 33 7 17 23 +0.6187 0.1865×10−3

9∗ 32 8 18 22 +0.5499 0.9829×10−3

10∗ 31 9 19 21 +0.4777 0.4046×10−2

11∗ 30 10 20 20 +0.4027 0.1317×10−1

12 29 11 21 19 +0.3251 0.3421×10−1

13 28 12 22 18 +0.2456 0.9500×10−1

14 27 13 23 17 +0.1646 0.1204

15 26 14 24 16 +0.8255 0.1644

16 25 15 25 15 0.0000 0.1824

17 24 16 26 14 −0.8255 0.1644

18 23 17 27 13 −0.1646 0.1204

19 22 18 28 12 −0.2456 0.9500×10−1

20 21 19 29 11 −0.3251 0.3421×10−1

21 20 20 30 10 −0.4027 0.1317×10−1

22 19 21 31 9 −0.4777 0.4046×10−2

23 18 22 32 8 −0.5499 0.9829×10−3

24 17 23 33 7 −0.6187 0.1865×10−3

25 16 24 34 6 −0.6838 0.2719×10−4

26 15 25 35 5 −0.7447 0.2984×10−5

27 14 26 36 4 −0.8012 0.2391×10−6

28 13 27 37 3 −0.8529 0.1340×10−7

29 12 28 38 2 −0.8999 0.4912×10−9

30 11 29 39 1 −0.9428 0.1042×10−10

31 10 30 40 0 −0.9636 0.9555×10−13

Sum 1.0000

For comparison, define test statistic T = rtet/s0. The standard error of rtet under
the null hypothesis H0:ρtet = 0 is s0 = 0.1789 and the observed test statistic is

T = rtet

s0
= +0.4027

0.1789
= +2.2510 .

Based on Student’s t distribution with N − 2 = 80 − 2 = 78 degrees of freedom,
the asymptotic upper-tail probability value of T = +2.2510 is P = 0.0136.
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9.3.3 Example 2

While the marginal frequency distributions in Example 1 do not differ greatly,
given similar row and column marginal frequency distributions, {40, 40} and
{50, 30}, respectively, consider a second example where both the row and column
marginal frequency distributions are highly skewed, as in Table 9.9 with N = 80
observations and row and column marginal frequency distributions, {70, 10} and
{70, 10}, respectively. For the frequency data given in Table 9.9, the observed value
of Pearson’s tetrachoric correlation coefficient is rtet = +0.8125.

There are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(70, 70) − max(0, 66 − 6) + 1 = 70 − 60 + 1 = 11

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies in Table 9.9 given the observed row and column marginal frequency dis-
tributions, {70, 10} and {70, 10}, respectively, making an exact permutation analysis
feasible. Since M = 11 is a very small number of arrangements, it will be illustrative
to list the 11 sets of cell frequencies, rtet values, and associated hypergeometric point
probability values in Table 9.10, where the rows with hypergeometric probability

Table 9.9 Example data for
variables x and y with
categories dummy-coded as 0
and 1

y

x 0 1 Total

0 66 4 70

1 4 6 10

Total 70 10 80

Table 9.10 Cell frequencies,
rtet values, and exact
hypergeometric point
probability values for
M = 11 possible
arrangements of the observed
data in Table 9.9

Cell frequency

Table n11 n12 n21 n22 rtet Probability

1∗ 70 0 0 10 +1.0000 0.6074×10−12

2∗ 69 1 1 9 +0.9884 0.4251×10−9

3∗ 68 2 2 8 +0.9535 0.6600×10−7

4∗ 67 3 3 7 +0.8951 0.3990×10−5

5∗ 66 4 4 6 +0.8125 0.1169×10−3

6 65 5 5 5 +0.7046 0.1852×10−2

7 64 6 6 4 +0.5693 0.1672×10−1

8 63 7 7 3 +0.4026 0.8737×10−1

9 62 8 8 2 +0.1956 0.2580

10 61 9 9 1 −0.0777 0.3950

11 60 10 10 0 −0.2697 0.2409

Sum 1.0000
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values associated with rtet values equal to or greater than the value of the observed
test statistic are indicated with asterisks.

If the M = 11 possible arrangements in the reference set of all permutations
of the frequency data given in Table 9.9 occur with equal chance, the exact
probability value of rtet under the null hypothesis is the sum of the hypergeometric
point probability values associated with rtet = +0.8125 or greater. Based on the
hypergeometric probability distribution, the exact upper-tail probability value is

P = 0.1169×10−3 + 0.3990×10−5 + 0.6600×10−7 + 0.4251×10−9

+ 0.6074×10−12 = 0.1210×10−3 .

For comparison, the standard error of rtet under the null hypothesis H0:ρtet = 0
is s0 = 0.2886 and the observed test statistic is

T = rtet

s0
= +0.8125

0.2886
= +2.8153 .

Based on Student’s t distribution with N − 2 = 80 − 2 = 78 degrees of freedom,
the asymptotic upper-tail probability value of T = +2.8153 is P = 0.3084×10−2.

9.4 Exact and Asymptotic Probability Values

It is obvious from the results in Examples 1 and 2 that the marginal distributions
can affect the asymptotic probability values of rtet with sample size held constant. In
Example 2 with skewed row and column marginal frequency distributions, {70, 10}
and {70, 10}, respectively, the ratio of the asymptotic and exact probability values
is 0.3084×10−2/0.1210×10−3 = 25.62, while in Example 1 with row and column
marginal frequency distributions, {40, 40} and {50, 30}, respectively, the ratio of
the asymptotic and exact probability values is only 0.0136/0.0184 = 0.74. Long,
Berry, and Mielke investigated the effects of sample sizes and marginal frequency
distributions on the exact and asymptotic probability values for rtet [39].

The conventional approach for establishing a probability value for rtet under
H0: ρtet = 0 employs Student’s t distribution with N − 2 degrees of freedom. The
permutation approach provides an alternative to the t distribution that is distribution
free. Tables 9.11 and 9.12 present comparisons between exact probability values
(Pe) and probability values based on Student’s t distribution (Pt ) for a variety of
marginal proportions and two sample sizes, N = 10 and N = 50 [39]. The marginal
proportions in Tables 9.11 and 9.12 range from 0.5/0.5 to 0.9/0.1 and are identical
for both rows and columns. For example, given N = 10 and marginal proportions
of 0.6/0.4 in Table 9.11, the row and marginal frequency distributions are {6, 4} and
{6, 4}, respectively.
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Table 9.11 Tetrachoric correlation coefficients (rtet) with marginal proportions, cell frequencies
for cell a, exact probability values (Pe), probability values based on Student’s t distribution (Pt ),
and absolute differences between the probability values (|Pe − Pt |), with N = 10

Marginal
proportions Cell a rtet Pe Pt |Pe − Pt |
0.5/0.5 0 −1.0000 0.0040 0.0394 0.1355

1 −0.8090 0.1032 0.0710 0.0322

2 −0.3090 0.5000 0.2756 0.2244

3 +0.3090 0.5000 0.2756 0.2244

4 +0.8090 0.1032 0.0710 0.0322

5 +1.0000 0.0040 0.0394 0.0355

0.6/0.4 2 −0.6990 0.0714 0.1032 0.0318

3 −0.3979 0.4524 0.2282 0.2242

4 +0.2629 0.5476 0.3095 0.2381

5 +0.7963 0.1190 0.0780 0.0411

6 +1.0000 0.0048 0.0424 0.0376

0.7/0.3 4 −0.3449 0.2917 0.2738 0.0179

5 +0.0817 0.7083 0.4427 0.2656

6 +0.7482 0.1833 0.1052 0.0782

7 +1.0000 0.0083 0.0531 0.0448

0.8/0.2 6 +0.1222 1.0000 0.4273 0.5727

7 +0.6060 0.3778 0.1877 0.1901

8 +1.0000 0.0222 0.0800 0.0578

0.9/0.1 8 +0.7366 1.0000 0.2242 0.7758

9 +1.0000 0.1000 0.1554 0.0554

Approximating a skewed discrete probability distribution with a symmetrical
continuous distribution is fraught with danger. To illustrate the problems with the
use of Pt in assessing tetrachoric correlation, consider the difference between Pe and
Pt for N = 10 and 0.8/0.2 marginal proportions in Table 9.11. Given the observed
row and column marginal frequency totals, {8, 2} and {8, 2}, respectively, there are
only three possible arrangements of cell frequencies, i.e., a = 6, 7, and 8, with rtet
values of +0.1222, +0.6060, and +1.000, respectively. It is obvious that the upper-
tail probability of rtet = +0.1222 must be P = 1.00 since all three coefficients are
positive and rtet = +0.1222 is the smallest of the three coefficients. Specifically,
the hypergeometric point probability value for cell a = 6 is p = 0.6222, for cell
a = 7 the hypergeometric point probability is p = 0.3556, and for cell a = 8 the
hypergeometric point probability is p = 0.0222. Thus, the cumulative probability
of an observed rtet value as large or larger than rtet = +0.1222 is

P = 0.6222 + 0.3556 + 0.0222 = 1.00 .
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Table 9.12 Tetrachoric correlation coefficients (rtet) with marginal proportions, cell frequencies
for cell a, exact probability values (Pe), probability values based on Student’s t distribution (Pt ),
and absolute differences between the probability values (|Pe − Pt |), with N = 50

Marginal
proportions Cell a rtet Pe Pt |Pe − Pt |
0.5/0.5 0 −1.0000 0.0000 0.0000 0.0000

5 −0.8090 0.0000 0.0003 0.0003

10 −0.3090 0.1289 0.0853 0.0436

15 +0.3090 0.1289 0.0853 0.0436

20 +0.8090 0.0000 0.0003 0.0003

25 +1.0000 0.0000 0.0000 0.0000

0.6/0.4 10 −0.9087 0.0000 0.0001 0.0001

15 −0.3979 0.0692 0.0433 0.0260

20 +0.2629 0.1883 0.1267 0.0617

25 +0.7963 0.0000 0.0005 0.0005

30 +1.0000 0.0000 0.0000 0.0000

0.7/0.3 20 −0.7378 0.0014 0.0021 0.0007

25 +0.0817 0.4925 0.3704 0.1221

30 +0.7482 0.0005 0.0019 0.0014

35 +1.0000 0.0000 0.0001 0.0001

0.8/0.2 30 +0.4662 0.0825 0.0565 0.0261

35 +0.6060 0.0181 0.0205 0.0024

40 +1.0000 0.0000 0.0006 0.0006

0.9/0.1 40 0.0000 1.0000 0.5000 0.5000

45 +1.0000 0.0000 0.0097 0.0097

However,

T = rtet

s0
= 0.1222

0.6455
= 0.1893

and the one-sided probability of rtet = +0.1222, based on Student’s t distribution
with N − 2 = 10 − 2 = 8 degrees of freedom is Pt = 0.4273, indicating that only
approximately 43% of possible rtet values are as large or larger than rtet = +0.1222,
yielding a difference of |Pe − Pt | = |1.00 − 0.4273| = 0.5727.

It is abundantly evident from even a cursory inspection of Tables 9.11 and 9.12
that two factors are contributing to the poor performance of Student’s t distribution:
sample size and disproportionate marginal frequency totals. Tables 9.13 and 9.14
examine these two factors, respectively.

Table 9.13 lists |Pe −Pt | values for five marginal proportions—0.5/0.5, 0.6/0.4,
0.7/0.3, 0.8/0.2, and 0.9/0.1—with common rtet values for N = 10, 20, 50,
100, 500, and 1,000. As in Tables 9.11 and 9.12, the marginal proportions in
Table 9.13 are identical for both rows and columns. The rtet values for each marginal
proportion were chosen simply for convenience and provide illustrations of the
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Table 9.13 |Pe − Pt | values for five marginal proportions with common rtet values for N = 10,
20, 50, 100, 500, and 1,000

Marginal proportions (rtet)

0.5/0.5 0.6/0.4 0.7/0.3 0.8/0.2 0.9/0.1
N (+0.3090) (+0.2629) (+0.0817) (+0.6060) (+0.2649)

10 0.2244 0.2381 0.2656 0.1901 –

20 0.1329 0.1513 0.1948 0.0616 –

50 0.0436 0.0617 0.1221 0.0024 0.1611

100 0.0097 0.0200 0.0819 0.0012 0.0781

500 0.0000 0.0000 0.0222 0.0000 0.0032

1,000 0.0000 0.0000 0.0083 0.0000 0.0010

Table 9.14 Marginal proportions, cell frequencies for cell d, exact skewness values (γtet), exact
probability values (Pe), probability values based on Student’s t distribution (Pt ), and absolute
differences between the probability values (|Pe − Pt |), with N = 50

Marginal
proportions Cell d rtet γtet Pe Pt |Pe − Pt |
0.50/0.50 0 −1.00 0.0000 0.0011 0.0260 0.0249

0.60/0.40 3 −0.79 0.0296 0.0168 0.0399 0.0231

0.70/0.30 8 −0.58 0.2040 0.0775 0.0771 0.0004

0.80/0.20 18 −0.34 0.5730 0.2267 0.1845 0.0422

0.90/0.10 48 −0.06 1.1653 0.5159 0.4405 0.0754

0.94/0.06 88 +0.09 1.5907 1.0000 0.4118 0.5882

0.95/0.05 108 +0.13 1.7570 1.0000 0.3733 0.6267

0.96/0.04 138 +0.18 1.9766 1.0000 0.3355 0.6645

0.97/0.03 188 +0.23 2.2952 1.0000 0.2993 0.7007

0.98/0.02 288 +0.30 2.8267 1.0000 0.2671 0.7329

0.99/0.01 588 +0.39 4.0270 1.0000 0.2461 0.7539

effect in increasing sample sizes on |Pe − Pt | differences. Inspection of the column
values in Table 9.13 reveals that |Pe − Pt | is large with small sample sizes up to
N = 50 and in some cases even for N = 100. The blank values in Table 9.13 under
the marginal proportions 0.9/0.1 are missing because there are too few choices with
N = 10 or 20 and marginal proportions of 0.9/0.1.

Table 9.14 lists |Pe − Pt | values for 11 marginal proportions—0.50/0.50,
0.60/0.40, 0.70/0.30, 0.80/0.20, 0.90/0.10, 0.94/0.06, 0.95/0.05, 0.96/0.04,
0.97/0.03, 0.98/0.02, and 0.99/0.01—and demonstrates the effect of increasingly
unequal marginal proportions on Pe − Pt . As in Tables 9.11, 9.12, and 9.13, the
marginal proportions in Table 9.14 are identical for both rows and columns. For the
results given in Table 9.14, a series of 2×2 contingency tables was constructed with
cell a = 0, cell b = 6, cell c = 6, and cell d as listed in the second column.
The results in Table 9.14 demonstrate that as the marginal proportions become
more unequal, |Pe − Pt | increases, indicating that Pt becomes more inaccurate
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with increasingly unequal marginal proportions, despite increasing sample sizes as
indicated in the second column of Table 9.14.

The relationship between marginal proportions and |Pe − Pt | is associated with
the level of skewness (γtet) of rtet. The values of γtet in the fourth column of
Table 9.14 were obtained from the permutation distribution generated from all
possible arrangements of cell frequencies with fixed marginal frequency totals.
A comparison of the first and fourth columns in Table 9.14 demonstrates the
relationship between skewness and marginal proportions; viz., as the marginal
proportions become increasingly unequal, γtet increases. The relationship can be
summarized as follows. Given a 2×2 contingency table where either b = c or
a = d and N is much larger than a + b = M , then the approximate skewness of rtet
is either N1/2/M or −N1/2/M , respectively. Thus, the skewness of the tetrachoric
correlation distribution may be arbitrarily large in either the positive or negative
direction. Therefore, as γtet increases, |Pe − Pt | increases.

Under H0:ρtet = 0, the test statistic T = rtet/s0 is distributed as Student’s t dis-
tribution with N−2 degrees of freedom, under the assumption of normality. The use
of the standard error, s0, and the t distribution was called into question by Kendall
and Stuart [32]. In particular, the appropriateness of the t distribution is problematic
for small samples and/or widely disproportionate marginal frequency totals. In
such cases, an exact permutation test provides a data-dependent distribution-free
alternative that is accurate for both small sample sizes and disproportionate marginal
frequency distributions.

9.5 Yule’s Q Measure of Association

Developed specifically for the measurement of nominal-level association in 2×2
contingency tables, Yule’s Q measure entered the statistical literature under a cloud
of controversy. In 1912 G. Udny Yule published a paper titled “On the methods of
measuring association between two attributes” in Journal of the Royal Statistical
Society [53].7 In this formative paper Yule introduced a new statistic for 2×2
contingency tables that he called Q,8 although Yule had earlier mentioned Q in
a paper published in Philosophical Transactions of the Royal Society of London in
1900 [53]. Contained within this lengthy paper of 74 pages was strong criticism
of the work of Karl Pearson and biometrician David Heron on the analysis of
contingency tables. Pearson, in particular, was greatly offended and a vitriolic

7Earlier in 1912, on 23 April, Yule had presented a paper on the same topic to the Royal Statistical
Society, where the discussants were Francis Ysidro Edgeworth, Charles Percy Sanger, Reginald
Hawthorn Hooker, Major Greenwood, and Ernest Charles Snow.
8The symbol Q was taken from the initial letter of the surname of Lambert Adolphe Jacques
Quetelet, the 19th century Belgium astronomer, mathematician, statistician, and sociologist [53,
p. 436].
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Fig. 9.2 Graphics for necessary and sufficient (N/S), necessary but not sufficient (N/S̄), and
sufficient but not-necessary (N̄/S) conditions

response soon followed from Pearson and Heron in Biometrika. The ascerbic
rejoinder consisted of a remarkable 157 folio pages [45].

The nature of the controversy involved whether attributes that were dichotomous
were truly discrete, such as true and false, or were obtained from some underlying
continuous distribution, such as arbitrarily dividing age into young and old. George
Udny Yule, a former student of Karl Pearson, favored the approach of an inherently
discrete underlying distribution [16]. In his 1912 article Yule criticized Pearson’s
tetrachoric correlation coefficient and its assumption of underlying continuous
variables.9 The debate was especially caustic with Pearson and Heron responding,
in part:

The recent paper by Mr Yule entitled “On the Methods of Measuring Association between
Two Attributes” calls for an early reply on two grounds,—first because of its singularly
acrimonious tone is to us wholly inexplicable, not to say unusual, and secondly because we
believe that, if Mr. Yule’s views are accepted, irreparable damage will be done to the growth
of modern statistical theory. Mr Yule has invented a series of statistical methods which are
in no case based on a reasoned theory, but which possess the dangerous fascination of very
easy and ready application, and therefore are at once seized upon as applicable to all sorts
of problems by those who are without adequate training in statistical theory, or without the
mathematical knowledge requisite to weigh cautiously their logical basis [45, pp. 159–160].

There was more to the controversy between Yule and Pearson than just the
disagreement over discrete and continuous distributions. Yule strongly advocated
coefficients of association that could attain ±1 under all of three conditions, such as
illustrated in Fig. 9.2, where a 0 indicates a zero cell frequency and an x indicates
a non-zero cell frequency. For the first 2×2 table, on the left in Fig. 9.2, A is both
a necessary and sufficient condition for B. Thus, ĀB = AB̄ = 0, i.e., B if and
only if A. For the second 2×2 table, in the middle in Fig. 9.2, A is a necessary but
not sufficient condition of B. Thus, ĀB = 0, i.e., A must be present, but B need
not always follow from A. For the third 2×2 table, on the right in Fig. 9.2, A is a
sufficient, but not-necessary condition for B. Thus, AB̄ = 0, i.e., whenever A is
present, B must follow, but B may also occur when A is not present.

9It should be noted that Pearson’s tetrachoric correlation coefficient in question was notoriously
difficult to calculate at the time.
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Table 9.15 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

Yule contended that his statistic, Q, achieved ±1 under all three conditions,
but Pearson’s statistic, rtet, could only achieve ±1 under the conditions in the
first table (N/S) in Fig. 9.2, i.e., A is a necessary and sufficient condition of B,
arguing that the greatest possible negative value was not in general the same as the
greatest possible positive value unless the marginal frequency distributions were
identical [53, p. 585]. In addition, Yule was especially proud of the fact that Q was
unaltered by multiplying or dividing “either or both of the columns of the table by
any arbitrary factor” [53, p. 587] and argued that “this is a most important property”
of measures of association [53, p. 587].

It is important to point out that however rancorous the exchange between
Yule and Pearson, Yule wrote Pearson’s obituary for the Royal Society [54] and,
according to Kendall [31], Yule was deeply affected by Pearson’s passing on 27
April 1936 [16].10 The only reference to their controversy in Yule’s obituary is a
brief mention of their disagreement:

As concerns the further developments of methods applicable to unmeasured characters,
I have been too much engaged in the controversy to give an objective opinion. Through
nearly all that work run two assumptions: (1) that the quantitative classification represents
a grouping of a scalar variable; (2) that the table of double entry represents a grouping of
normally distributed frequency. Both seem to me often false, and consequently dangerous.
But that is a personal and may be an uncharitable judgment. Time will settle the question in
due course [55, p. 84].

Originally developed for categorical data, Yule’s Q is often also used for ordinal-
level data [53]. For a 2×2 contingency table, such as given in Table 9.15, Yule’s Q

is given by

Q = ad − bc

ad + bc
.

To illustrate the calculation of Yule’s Q measure of association, consider the
example frequency data given in Table 9.16 with N = 100 observations, where

10Karl Pearson was elected Fellow of the Royal Society in 1896. A longer, very detailed,
affectionate obituary of 39 pages was written by Yule and Filon in 1936 and is well worth reading
to gain insight into the life and accomplishments of Karl Pearson and his relationship to G. Udny
Yule [55].



534 9 Fourfold Contingency Tables, I

Table 9.16 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 30 10 40

1 30 30 60

Total 60 40 100

Yule’s Q is

Q = ad − bc

ad + bd
= (30)(30) − (10)(30)

(30)(30 + (10)(30)
= +0.50 .

For 2×2 contingency tables, Yule’s Q is a simple function of Kendall’s S test
statistic and is identical to Goodman and Kruskal’s γ statistic [23]. Thus, Yule’s Q

is also given by

Q = S

C + D
,

where C and D denote the number of concordant and discordant pairs, respectively,
and S = C − D. Thus, for the frequency data given in Table 9.16 where

C = ad = (30)(30) = 900 and D = bc = (10)(30) = 300 ,

the observed value of Yule’s Q is

Q = C − D

C + D
= S

C + D
= 900 − 300

900 + 300
= 600

1200
= +0.50 .

For the frequency data given in Table 9.16, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(40, 60) − max(0, 30 − 30) + 1 = 40 − 0 + 1 = 41

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{40, 60} and {60, 40}, respectively, making an exact permutation analysis feasible.
Since M = 41 is a reasonable number of arrangements, it will be illustrative
to list the 41 sets of cell frequencies, Yule’s Q coefficients, and the associated
hypergeometric point probability values in Table 9.17, where the rows with hyper-
geometric point probability values associated with Q values equal to or greater than
the observed Q value are indicated with asterisks.

If the M = 41 possible arrangements given in Table 9.17 occur with equal
chance, the exact probability value of Q under the null hypothesis is the sum
of the hypergeometric point probability values associated with Q = +0.50 or
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Table 9.17 Cell frequencies,
Q values, and exact
hypergeometric point
probability values for
M = 41 possible
arrangements of the observed
data in Table 9.16

Cell frequency

Table n11 n12 n21 n22 Yule’s Q Probability

1∗ 40 0 20 40 +1.0000 0.3049×10−12

2∗ 39 1 21 39 +0.9728 0.2323×10−12

3∗ 38 2 22 38 +0.9409 0.8032×10−9

4∗ 37 3 23 37 +0.9040 0.1681×10−7

5∗ 36 4 24 36 +0.8621 0.2397×10−6

6∗ 35 5 25 35 +0.8148 0.2485×10−5

7∗ 34 6 26 34 +0.7622 0.1409×10−4

8∗ 33 7 27 33 +0.7042 0.1194×10−3

9∗ 32 8 28 32 +0.6410 0.5803×10−3

10∗ 31 9 29 31 +0.5728 0.2277×10−2

11∗ 30 10 30 30 +0.5000 0.7293×10−2

12 29 11 31 29 +0.4230 0.1925×10−1

13 28 12 32 28 +0.3425 0.4215×10−1

14 27 13 33 27 +0.2591 0.7704×10−1

15 26 14 34 26 +0.1736 0.1180

16 25 15 35 25 +0.0870 0.1519

17 24 16 36 24 0.0000 0.1648

18 23 17 37 23 −0.0864 0.1510

19 22 18 38 22 −0.1712 0.1167

20 21 19 39 21 −0.2538 0.7626×10−1

21 20 20 40 20 −0.3333 0.4204×10−1

22 19 21 41 19 −0.4092 0.1953×10−1

23 18 22 42 18 −0.4808 0.7630×10−2

24 17 23 43 17 −0.5477 0.2500×10−2

25 16 24 44 16 −0.6098 0.6841×10−3

26 15 25 45 15 −0.6667 0.1557×10−3

27 14 26 46 14 −0.7184 0.2928×10−4

28 13 27 47 13 −0.7650 0.4523×10−5

29 12 28 48 12 −0.8065 0.5687×10−6

30 11 29 49 11 −0.8431 0.5763×10−7

31 10 30 50 10 −0.8750 0.4649×10−8

32 9 31 51 9 −0.9025 0.2941×10−9

33 8 32 52 8 −0.9259 0.1431×10−10

34 7 33 53 7 −0.9455 0.5238×10−12

35 6 34 54 6 −0.9615 0.1398×10−13

36 5 35 55 5 −0.9744 0.2614×10−15

37 4 36 56 4 −0.9843 0.3242×10−17

38 3 37 57 3 −0.9915 0.2460×10−19

39 2 38 58 2 −0.9964 0.1327×10−20

40 1 39 59 1 −0.9991 0.1746×10−24

41 0 40 60 0 −1.0000 0.7275×10−28

Sum 1.0000
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greater. Based on the hypergeometric probability distribution, the exact upper-tail
probability value is

P = 0.3049×10−12 + 0.2323×10−12 + 0.8032×10−09 + 0.1681×10

+ 0.2397×10−06 + 0.2485×10−05 + 0.1409×10−04 + 0.1194×10−03

+ 0.5803×10−03 + 0.2277×10−02 + 0.7293×10−02 = 0.0103 .

9.6 Yule’s Y Measure of Association

In the same 1912 paper, “On the methods of measuring association between two
attributes,” in which Q was first presented, Yule introduced a second measure of
association for 2×2 contingency tables [53, p. 591]. Yule termed the new measure
the “coefficient of colligation” and identified it by the lowercase Greek letter omega,
ω, although it is customarily labeled as Yule’s Y in the current literature.11 The same
acrimonious exchange between Yule, on the one hand, and Pearson and Heron, on
the other, continued with the introduction of Y , based largely on the proper approach
to analyzing variables versus attributes.

Given the notation for a 2×2 contingency table in Table 9.18, Yule’s coefficient
of colligation is given by

Y =
√

ad − √
bc√

ad + √
bc

.

An advantage, noted by Yule, was that, unlike Q, Y could be directly compared with
Pearson’s product-moment correlation coefficient [53, p. 631].12

To illustrate the calculation of Yule’s Y measure of association, consider the
frequency data given in Table 9.19 with N = 15 observations where the observed

Table 9.18 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

11It should be noted that R.H. Hooker, in his discussion of Yule’s paper, took exception to
the term “colligation,” suggesting that Yule simply call his new coefficient the “coefficient of
association” [27].
12If N is even and each marginal frequency total is equal to N/2, then Yule’s Y and Pearson’s
product-moment correlation coefficient are equivalent.
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Table 9.19 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 6 2 8

1 3 4 7

Total 9 6 15

Table 9.20 Cell frequencies,
Y values, and exact
hypergeometric point
probability values for M = 7
possible arrangements of the
observed data in Table 9.19

Cell frequency

Table n11 n12 n21 n22 Yule’s Y Probability

1 2 6 7 0 −1.0000 0.5594×10−2

2 3 5 6 1 −0.5195 0.7832×10−1

3 4 4 5 2 −0.2251 0.2937

4 5 3 4 3 +0.0557 0.3916

5∗ 6 2 3 4 +0.3333 0.1958

6∗ 7 1 2 5 +0.6141 0.3357×10−1

7∗ 8 0 1 6 +1.0000 0.1394×10−2

Sum 1.0000

value of Yule’s coefficient of colligation is

Y =
√

(6)(4) − √
(2)(3)√

(6)(4) + √
(2)(3)

= 2.4495

7.3485
= +0.3333 .

For the frequency data given in Table 9.19, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(8, 9) − max(0, 6 − 4) + 1 = 8 − 2 + 1 = 7

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{8, 7} and {9, 6}, respectively, making an exact permutation analysis feasible. Since
M = 7 is a very small number of arrangements, it will be illustrative to list the seven
sets of cell frequencies, Yule’s Y coefficients, and the associated hypergeometric
point probability values in Table 9.20, where the rows with hypergeometric point
probability values associated with Y values equal to or greater than the observed Y

value are indicated with asterisks.
If the M = 7 possible arrangements in the reference set of all permutations

of the frequency data given in Table 9.19 occur with equal chance, the exact
probability value of Y under the null hypothesis is the sum of the hypergeometric
point probability values associated with Y = +0.3333 or greater. Based on the
hypergeometric probability distribution, the exact upper-tail probability value is

P = 0.1958 + 0.3357×10−1 + 0.1394×10−2 = 0.2308 .
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In contrast to Yule’s Y , for the frequency data given in Table 9.19, Yule’s Q is

Q = ad − bc

ad + bc
= (6)(4) − (2)(3)

(6)(4) + (2)(3)
= 18

30
= +0.60 .

The relationships between Q and Y are given by

Q = 2Y

1 + Y 2 and Y = Q

1 +√
1 − Q2

.

Thus, for the frequency data given in Table 9.19,

Q = 2(0.3333)

1 + 0.33332 = +0.60 and Y = 0.60

1 + √
1 − 0.602

= +0.3333 .

9.7 The Odds Ratio

While useful by itself, the odds ratio has become an important component of medical
research as well as more advanced statistical techniques.13 The natural log (ln) of
the odds ratio plays an important role in, for example, both logistic regression and
log-linear analysis. Importantly, the odds ratio constitutes a measure of effect size
unaffected by the proportional increases or decreases of the marginal frequency
totals, e.g., doubling all the cell frequencies does not affect the value of the odds
ratio [4, pp. 311–312].

In terms of the pairwise notation of Kendall, the odds ratio may be written as

ϕ = C

D
,

where C and D denote the number of concordant and discordant pairs, respec-
tively.14 More conventionally, given the notation of Table 9.15 on p. 533, the odds
ratio is given by

ϕ = ad

bc
.

To illustrate the calculation of the odds ratio, consider the frequency data given in
Table 9.21 with N = 18 observations, where the observed value of the odds ratio is

ϕ = (7)(6)

(2)(3)
= 7.00 ,

13The odds ratio is sometimes referred to as the “cross-product ratio.”
14There appears to be no standardized symbol for indicating the odds ratio; in this section, ϕ is
used to represent the odds ratio.
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Table 9.21 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 7 2 9

1 3 6 9

Total 10 8 18

Table 9.22 Cell frequencies,
odds ratios, and exact
hypergeometric point
probability values for M = 7
possible arrangements of the
observed data in Table 9.21

Cell frequency

Table n11 n12 n21 n22 Odds ratio Probability

1 1 8 9 0 0.0000 0.2057×10−3

2 2 7 8 1 0.0357 0.7404×10−2

3 3 6 7 2 0.1429 0.6911×10−1

4 4 5 6 3 0.4000 0.2419

5 5 4 5 4 1.0000 0.3628

6 6 3 4 5 2.5000 0.2410

7∗ 7 2 3 6 7.0000 0.6911×10−1

8∗ 8 1 2 7 28.0000 0.7404×10−2

9∗ 9 0 1 8 ∞ 0.2057×10−3

Sum 1.0000

indicating that a subject classified as y0 is 7 times as likely to be classified as x0 as
a subject classified as y1. For the frequency data given in Table 9.21, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(9, 10) − max(0, 7 − 6) + 1 = 9 − 1 + 1 = 9

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{9, 9} and {10, 8}, respectively, making an exact permutation analysis feasible. Since
M = 9 is a small number of arrangements, it will be illustrative to list the nine sets
of cell frequencies, odds ratios, and the associated hypergeometric point probability
values in Table 9.22, where the rows with hypergeometric point probability values
associated with odds ratios equal to or greater than the observed odds ratio are
indicated with asterisks.

If the M = 9 possible arrangements in the reference set of all permutations of the
frequency data given in Table 9.21 occur with equal chance, the exact probability
value of ϕ under the null hypothesis is the sum of the hypergeometric point
probability values associated with ϕ = 7.00 or greater. Based on the hypergeometric
probability distribution, the exact upper-tail probability value is

P = 0.6911×10−1 + 0.7404×10−2 + 0.2057×10−3 = 0.0767 .
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In contrast to the odds ratio, for the frequency data given in Table 9.21, Yule’s
Q is

Q = ad − bc

ad + bc
= (7)(6) − (2)(3)

(7)(6) + (2)(3)
= +0.75

and Yule’s Y is

Y =
√

ad − √
bc√

ad + √
bc

=
√

(7)(6) − √
(2)(3)√

(7)(6) + √
(2)(3)

= +0.4514 .

The relationships between ϕ and Q are given by

ϕ = 1 + Q

1 − Q
and Q = ϕ − 1

ϕ + 1
.

Thus, for the frequency data given in Table 9.21,

ϕ = 1 + 0.75

1 − 0.75
= 7.00 and Q = 7.00 − 1

7.00 + 1
= +0.75 .

The relationships between ϕ and Y are given by

ϕ = (Y + 1)2

(Y − 1)2 and Y =
√

ϕ − 1√
ϕ + 1

.

Thus, for the frequency data given in Table 9.21,

ϕ = (0.4514 + 1)2

(0.4514 − 1)2 = 7.00 and Y =
√

7.00 − 1√
7.00 + 1

= +0.4514 .

9.8 Goodman–Kruskal’s ta and tb Measures

In 1954 Leo Goodman and William Kruskal published the first of four formative
articles on measures of association for cross-classifications [23]. In this lead article
Goodman and Kruskal introduced new asymmetric measures of association for two
nominal-level variables that they called ta for when variable a is the dependent
variable and tb for when variable b is the dependent variable. See Chap. 4, Sect. 4.3
for a more detailed description of Goodman and Kruskal’s ta and tb measures of
association.
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A convenient calculation form for Goodman and Kruskal’s ta is given by

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

, (9.7)

where ni. denotes a marginal frequency total for the ith row, i = 1, . . . , r , summed
over all columns, n.j denotes a marginal frequency total for the j th column, j =
1, . . . , c, summed over all rows, and nij denotes an observed cell frequency, i =
1, . . . , r and j = 1, . . . , c. Thus,

ni. =
c∑

j=1

nij , n.j =
r∑

i=1

nij , and N =
r∑

i=1

c∑
j=1

nij .

As Goodman and Kruskal noted, it is clear that ta takes values between 0 and 1; it is
0 if and only if a and b are independent, and 1 if and only if knowledge of variable
b completely determines variable a [23, p. 760].

9.8.1 Example with Goodman and Kruskal’s ta

To illustrate the calculation of Goodman and Kruskal’s ta , consider the frequency
data given in Table 9.23, where, following Eq. (9.7), the observed value of ta is

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
20

(
82

12
+ 42

12
+ 22

8
+ 62

8

)
− 102 − 102

202 − 102 − 102
= 0.1667 ,

Table 9.23 Example data for
variables a and b with
categories dummy-coded 0
and 1

a

b 0 1 Total

0 8 4 12

1 2 6 8

Total 10 10 20
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Table 9.24 Cell frequencies,
ta values, and exact
hypergeometric point
probability values for M = 7
possible arrangements of the
observed data in Table 9.23

Cell frequency

Table n11 n12 n21 n22 G–K ta Probability

1∗ 2 10 8 0 0.6667 0.3572×10−3

2∗ 3 9 7 1 0.3750 0.9526×10−2

3∗ 4 8 6 2 0.1667 0.7502×10−1

4 5 7 5 3 0.0417 0.2401

5 6 6 4 4 0.0000 0.3500

6 7 5 3 5 0.0417 0.2401

7∗ 8 4 2 6 0.1667 0.7502×10−1

8∗ 9 3 1 7 0.3750 0.9526×10−2

9∗ 10 2 0 8 0.6667 0.3572×10−3

Sum 1.0000

indicating an approximately 17% reduction in the number of prediction errors, given
knowledge of the distribution of independent variable b over knowledge of the
distribution of dependent variable a only.

For the frequency data given in Table 9.23, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(12, 10) − max(0, 8 − 6) + 1 = 10 − 2 + 1 = 9

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{12, 8} and {10, 10}, respectively, making an exact permutation analysis feasible.
Since M = 9 is a very small number of arrangements, it will be illustrative to list
the nine sets of cell frequencies, ta values, and the associated hypergeometric point
probability values in Table 9.24, where the rows with hypergeometric probability
values associated with ta values equal to or greater than the observed ta value are
indicated with asterisks.

If the M = 9 possible arrangements in the reference set of all permutations of the
frequency data given in Table 9.23 occur with equal chance, the exact probability
value of ta under the null hypothesis is the sum of the hypergeometric point
probability values associated with ta = 0.1667 or greater. The hypergeometric point
probability values associated with τb values equal to or greater than the observed τb

value are indicated with asterisks in Table 9.24. Because the column marginals are
evenly divided at N/2 = 20/2, i.e., {10, 10}, the discrete permutation distribution
is symmetrical and the exact two-sided probability value is

P = 2
(
0.3572×10−3 + 0.9526×10−2 + 0.7502×10−1) = 0.1698 .



9.8 Goodman–Kruskal’s ta and tb Measures 543

9.8.2 Example with Goodman and Kruskal’s tb

For 2×2 contingency tables, Goodman and Kruskal’s ta and tb yield identical values.
Thus, for the frequency data given in Table 9.23,

tb =
N

r∑
i=1

c∑
j=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
20

(
82

10
+ 42

10
+ 22

10
+ 62

10

)
− 122 − 82

202 − 122 − 82 = 0.1667 ,

indicating an approximately 17% reduction in the number of prediction errors, given
knowledge of the distribution of independent variable a over knowledge of the
distribution of dependent variable b only.

If the

M = min(a + b, a + c) − max(0, a − d) + 1

= min(12, 10) − max(0, 8 − 6) + 1 = 10 − 2 + 1 = 9

possible, equally-likely arrangements in the reference set of all permutations
of the frequency data given in Table 9.23 occur with equal chance, the exact
probability value of tb under the null hypothesis is the sum of the hypergeometric
point probability values associated with tb = 0.1667 or greater. Based on the
hypergeometric probability distribution, the exact two-sided probability value is

P = 2
(
0.3572×10−3 + 0.9526×10−2 + 0.7502×10−1) = 0.1698 .

9.8.3 Goodman–Kruskal’s ta , tb, and χ2

Some interesting simplifications occur for Goodman and Kruskal’s ta and tb test
statistics, on the one hand, and χ2, on the other hand, when r = c = 2, i.e., fourfold
contingency tables,

ta = tb = χ2

N
= φ2 = r2

xy .
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For the frequency data given in Table 9.23, ta = tb = 0.1667 and χ2 = 3.3333.
Thus,

ta = tb = χ2

N
= 3.3333

20
= 0.1667 .

It is well known that χ2/N is equal to Pearson’s φ2, which is equal to Pearson’s r2
xy

when the two categories of variables x and y are dummy-coded 0 and 1. Thus,

ta = tb = χ2

N
= φ2 = r2

xy = 0.1667

for a 2×2 contingency table.

9.9 Somers’ dyx and dxy Measures

In 1962 Robert Somers published a brief article titled “On the measurement
of association” in American Sociological Review.15 Somers proposed two new
asymmetric measures of ordinal association that he labeled dyx , with variable y the
dependent variable, and dxy , with variable x the dependent variable. See Chap. 5,
Sect. 5.7 for a more detailed description of Somers’ dyx and dxy measures of
association.

Given the notation in Table 9.25, Somers’ dyx measure is given by

dyx = C − D

C + D + Ty

= S

C + D + Ty

,

where C denotes the number of concordant pairs, D denotes the number of
discordant pairs, Ty denotes the number of pairs tied on variable y that are not tied
on variable x, and S is Kendall’s test statistic. Given the notation in Table 9.25,

C = ad , D = bc , and Ty = ac + bd .

Table 9.25 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

15In a number of articles and textbooks, Somers’ last name is misspelled as “Sommers” [30, 38,
p. 223]
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9.9.1 Example with Somers’ dyx

To illustrate the calculation of Somers’ dyx measure of association, consider the
frequency data given in Table 9.26 with N = 30 observations, where the observed
value of Somers’ dyx is

dyx = C − D

C + D + Ty

= ad − bc

ad + bc + ac + bd
= ad − bc

(a + b)(c + d)

= (12)(7) − (8)(3)

(12 + 8)(3 + 7)
= +0.30 .

For the frequency data given in Table 9.26, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(20, 15) − max(0, 12 − 7) + 1 = 15 − 5 + 1 = 11

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 10} and {15, 15}, respectively, making an exact permutation analysis feasible.
Since M = 11 is a small number of arrangements, it will be illustrative to list
the 11 sets of cell frequencies, dyx values, and the associated hypergeometric
point probability values in Table 9.27, where the rows with hypergeometric point
probability values associated with dyx values equal to or greater than the observed
dyx value are indicated with asterisks.

If the M = 11 possible arrangements in the reference set of all permutations
of the frequency data given in Table 9.26 occur with equal chance, the exact
probability value of dyx under the null hypothesis is the sum of the hypergeometric
point probability values associated with dyx = +0.30 or greater. Based on the
hypergeometric probability distribution, the exact upper-tail probability value is

P = 0.9745×10−1 + 0.2249×10−1 + 0.2499×10−2

+ 0.9995×10−4 = 0.1225 .

Table 9.26 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 12 8 20

1 3 7 10

Total 15 15 30
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Table 9.27 Cell frequencies, dyx values, and exact hypergeometric point probability values for
M = 11 possible arrangements of the observed data in Table 9.26

Cell frequency

Table n11 n12 n21 n22 dyx Probability

1 5 15 10 0 −0.75 0.9995×10−4

2 6 14 9 1 −0.60 0.2499×10−2

3 7 13 8 2 −0.45 0.2249×10−1

4 8 12 7 3 −0.30 0.9745×10−1

5 9 11 6 4 −0.15 0.2274

6 10 10 5 5 0.00 0.3001

7 11 9 4 6 +0.15 0.2274

8∗ 12 8 3 7 +0.30 0.9745×10−1

9∗ 13 7 2 8 +0.45 0.2249×10−1

10∗ 14 6 1 9 +0.60 0.2499×10−2

11∗ 15 5 0 10 +0.75 0.9995×10−4

Sum 1.0000

9.9.2 Example with Somers’ dxy

Somers’ asymmetric measure of ordinal association with variable x considered to
be the dependent variable is given by

dxy = C − D

C + D + Tx
= S

C + D + Tx
,

where C denotes the number of concordant pairs, D denotes the number of
discordant pairs, Tx denotes the number of pairs tied on variable x that are not tied
on variable y, and S is Kendall’s test statistic. Given the notation in Table 9.25 on
p. 544,

C = ad , D = bc , and Tx = ab + cd .

To illustrate the calculation of Somers’ dxy , consider once again the frequency data
given in Table 9.26, where the observed value of Somers’ dxy is

dxy = C − D

C + D + Tx

= ad − bc

ad + bc + ab + cd
= ad − bc

(a + c)(b + d)

= (12)(7) − (8)(3)

(12 + 3)(8 + 7)
= +0.2667 .
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For the frequency data given in Table 9.26, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(20, 15) − max(0, 12 − 7) + 1 = 15 − 5 + 1 = 11

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{20, 10} and {15, 15}, respectively, making an exact permutation analysis feasible.
Since M = 11 is a small number of arrangements, it will be illustrative to list
the 11 sets of cell frequencies, dxy values, and the associated hypergeometric
point probability values in Table 9.28, where the rows with hypergeometric point
probability values associated with dxy values equal to or greater than the observed
dxy value are indicated with asterisks.

If the M = 11 possible arrangements in the reference set of all permutations of
cell frequencies in Table 9.26 occur with equal chance, the exact probability value
of dxy under the null hypothesis is the sum of the hypergeometric point probability
values associated with dxy = +0.2667 or greater. Based on the hypergeometric
probability distribution, the exact upper-tail probability value is

P = 0.9745×10−1 + 0.2249×10−1 + 0.2499×10−2

+ 0.9995×10−4 = 0.1225 .

Table 9.28 Cell frequencies, dxy values, and exact hypergeometric point probability values for
M = 11 possible arrangements of the observed data in Table 9.26

Cell frequency

Table n11 n12 n21 n22 dxy Probability

1 5 15 10 0 −0.6667 0.9995×10−4

2 6 14 9 1 −0.5333 0.2499×10−2

3 7 13 8 2 −0.4000 0.2249×10−1

4 8 12 7 3 −0.2667 0.9745×10−1

5 9 11 6 4 −0.1333 0.2274

6 10 10 5 5 0.0000 0.3001

7 11 9 4 6 +0.1333 0.2274

8∗ 12 8 3 7 +0.2667 0.9745×10−1

9∗ 13 7 2 8 +0.4000 0.2249×10−1

10∗ 14 6 1 9 +0.5333 0.2499×10−2

11∗ 15 5 0 10 +0.6667 0.9995×10−4

Sum 1.0000
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9.10 Percentage Differences

Simple percentage differences are commonly used by the mass media to contrast
two groups in a simple-to-understand manner. However, percentage differences are
more sophisticated than is immediately apparent. Consider the frequency data given
in Table 9.29 and also consider Table 9.30 where the cell entries in Table 9.30 are
expressed as proportions of the column marginal frequency totals. For the proportion
data given in Table 9.30, the percentage difference for variable y is

Dy = |0.72 − 0.48| = |0.28 − 0.52| = 0.24 .

There are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(30, 25) − max(0, 18 − 13) + 1 = 25 − 5 + 1 = 21

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies in Table 9.29 given the observed row and column marginal frequency
distributions, {30, 20} and {25, 25}, respectively, making an exact permutation
analysis feasible. Since M = 21 is a reasonably small number of arrangements,
it will be illustrative to list the 21 sets of cell frequencies, the Dy values, and the
associated hypergeometric point probability values in Table 9.31, where the rows
with hypergeometric point probability values associated with Dy values equal to or
greater than the observed Dy value are indicated with asterisks.

If the M = 21 possible arrangements in the reference set of all permutations
of the frequency data given in Table 9.29 occur with equal chance, the exact
probability value of Dy under the null hypothesis is the sum of the hypergeometric
point probability values associated with Dy = 0.24 or greater. Because the column
marginals are evenly divided at N/2 = 50/2, i.e., {25, 25}, the discrete permutation

Table 9.29 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 18 12 30

1 7 13 20

Total 25 25 50

Table 9.30 Example data
from Table 9.29 with cell
entries expressed as
proportions of the column
marginal frequency totals

y

x 0 1

0 0.72 0.48

1 0.28 0.52

Total 1.00 1.00
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Table 9.31 Cell frequencies,
Dy values, and exact
hypergeometric point
probability values for
M = 21 possible
arrangements of the observed
data in Table 9.29

Cell frequency

Table n11 n12 n21 n22 Dy Probability

1∗ 5 25 20 0 0.80 0.1127×10−8

2∗ 6 24 19 1 0.72 0.9394×10−7

3∗ 7 23 18 2 0.64 0.3060×10−6

4∗ 8 22 17 3 0.56 0.5278×10−4

5∗ 9 21 16 4 0.48 0.5484×10−3

6∗ 10 20 15 5 0.40 0.3685×10−2

7∗ 11 19 14 6 0.32 0.1675×10−1

8∗ 12 18 13 7 0.24 0.5304×10−1

9 13 17 12 8 0.16 0.1193

10 14 16 11 9 0.08 0.1932

11 15 15 10 10 0.00 0.2267

12 16 14 9 11 0.08 0.1932

13 17 13 8 12 0.16 0.1193

14∗ 18 12 7 13 0.24 0.5304×10−1

15∗ 19 11 6 14 0.32 0.1675×10−1

16∗ 20 10 5 15 0.40 0.3685×10−2

17∗ 21 9 4 16 0.48 0.5484×10−3

18∗ 22 8 3 17 0.56 0.5278×10−4

19∗ 23 7 2 18 0.64 0.3060×10−6

20∗ 24 6 1 19 0.72 0.9394×10−7

21∗ 25 5 0 20 0.80 0.1127×10−8

Sum 1.0000

Table 9.32 Example data
from Table 9.29 with cell
entries expressed as
proportions of the row
marginal frequency totals

y

x 0 1 Total

0 0.60 0.40 1.00

1 0.35 0.65 1.00

distribution is symmetrical and, based on the hypergeometric probability distribu-
tion, the exact two-sided probability value is

P = 2
(
0.5304×10−1 + 0.1675×10−1 + 0.3685×10−2 + 0.5484×10−3

+ 0.5278×10−4 + 0.3060×10−6 + 0.9394×10−7 + 0.1127×10−8)
= 2(0.0741) = 0.1482 .

Percentage differences are asymmetric measures. For the proportions based on
the row marginal frequency totals given in Table 9.32, the percentage difference for
variable x is

Dx = |0.60 − 0.35| = |0.40 − 0.65| = 0.25 .
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There are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(30, 25) − max(0, 18 − 13) + 1 = 25 − 5 + 1 = 21

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies in Table 9.29 given the observed row and column marginal frequency
distributions, {30, 20} and {25, 25}, respectively, making an exact permutation
analysis feasible. Since M = 21 is a reasonably small number of arrangements,
it will be illustrative to list the 21 sets of cell frequencies, the Dx values, and the
associated hypergeometric point probability values in Table 9.33, where the rows
with hypergeometric point probability values associated with Dx values equal to or
greater than the observed Dx value are indicated with asterisks.

If the M = 21 possible arrangements of the frequency data given in Table 9.29
occur with equal chance, the exact probability value of Dx under the null hypothesis
is the sum of the hypergeometric point probability values associated with Dx =
0.25 or greater. Because the column marginals are evenly divided as N/2 = 50/2,
i.e., {25, 25}, the discrete permutation distribution is symmetrical and, based on the

Table 9.33 Cell frequencies,
Dx values, and exact
hypergeometric point
probability values for
M = 21 possible
arrangements of the observed
data in Table 9.29

Cell frequency

Table n11 n12 n21 n22 Dx Probability

1∗ 5 25 20 0 0.8333 0.1127×10−8

2∗ 6 24 19 1 0.7500 0.9394×10−7

3∗ 7 23 18 2 0.6667 0.3060×10−6

4∗ 8 22 17 3 0.5833 0.5278×10−4

5∗ 9 21 16 4 0.5000 0.5484×10−3

6∗ 10 20 15 5 0.4167 0.3685×10−2

7∗ 11 19 14 6 0.3333 0.1675×10−1

8∗ 12 18 13 7 0.2500 0.5304×10−1

9 13 17 12 8 0.1667 0.1193

10 14 16 11 9 0.0833 0.1932

11 15 15 10 10 0.00 0.2267

12 16 14 9 11 0.0833 0.1932

13 17 13 8 12 0.1667 0.1193

14∗ 18 12 7 13 0.2500 0.5304×10−1

15∗ 19 11 6 14 0.3333 0.1675×10−1

16∗ 20 10 5 15 0.4167 0.3685×10−2

17∗ 21 9 4 16 0.5000 0.5484×10−3

18∗ 22 8 3 17 0.5833 0.5278×10−4

19∗ 23 7 2 18 0.6667 0.3060×10−6

20∗ 24 6 1 19 0.7500 0.9394×10−7

21∗ 25 5 0 20 0.8333 0.1127×10−8

Sum 1.0000
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hypergeometric probability distribution, the exact two-sided probability value is

P = 2
(
0.5304×10−1 + 0.1675×10−1 + 0.3685×10−2 + 0.5484×10−3

+ 0.5278×10−4 + 0.3060×10−6 + 0.9394×10−7 + 0.1127×10−8)
= 2(0.0741) = 0.1482 .

For comparison, given the frequency data given in Table 9.29, Somers’ dxy is

dxy = C − D

C + D + Tx

= ad − bc

ad + bc + ab + cd
= ad − bc

(a + c)(b + d)

= (18)(13) − (12)(7)

(18 + 7)(12 + 13)
= 150

625
= 0.24

and Somers’ dyx is

dyx = C − D

C + D + Ty

= ad − bc

ad + bc + ac + bd
= ad − bc

(a + b)(c + d)

= (18)(13) − (12)(7)

(18 + 12)(7 + 13)
= 150

600
= 0.25 ,

demonstrating the equivalency between Somers’ dxy and dyx and corresponding
percentage differences, Dy and Dx , for 2×2 contingency tables [50].

It is easily demonstrated that, say, Somers’ dyx and the corresponding percentage
difference are equivalent. Given the notation in Table 9.25 on p. 544, the percentage
difference is

Dx = a

a + b
− c

c + d
= 18

30
− 7

20
= 0.25 .

Now,

Dx = a

a + b
− c

c + d
= ad − bc

(a + b)(c + d)
= ad − bc

ad + bc + ac + bd
.

Then, substituting C = ad , D = bc, and Ty = ac + bd , yields

Dx = C − D

C + D + Ty

= dyx .
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9.11 Kendall’s τb Measure of Ordinal Association

In 1948 Maurice Kendall introduced a strongly monotonic measure of ordinal
association given by

τb = C − D√
(C + D + Tx)(C + D + Ty)

,

where C denotes the number of concordant pairs, D denotes the number of
discordant pairs, Tx denotes the number of pairs tied on variable x but not tied
on variable y, and Ty denotes the number of pairs tied on variable y but not tied
on variable x [33, p. 35]. See Chap. 5, Sect. 5.4 for a more detailed description of
Kendall’s τb measure of association.

Given the notation in Table 9.34 for a 2×2 contingency table, the number of
concordant pairs is C = ad , the number of discordant pairs is D = bc, the number
of pairs tied on variable x is Tx = ab+cd , and the number of pairs tied on variable y

is Ty = ac + bd . To illustrate the calculation of Kendall’s τb for a 2×2 contingency
table, consider the frequency data given in Table 9.35, where

C = ad = (16)(8) = 128 ,

D = bc = (4)(8) = 32 ,

Tx = ab + cd = (16)(4) + (8)(8) = 128 ,

Ty = ac + bd = (16)(8) + (4)(8) = 160 ,

and

τb = C − D√
(C + D + Tx)(C + D + Ty)

= 128 − 32√
(128 + 32 + 128)(128 + 32 + 160)

= +0.3162 .

Table 9.34 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

Table 9.35 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 16 4 20

1 8 8 16

Total 24 12 36
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There are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(20, 24) − max(0, 16 − 8) + 1 = 20 − 8 + 1 = 13

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies in Table 9.35 given the observed row and column marginal frequency
distributions, {20, 16} and {24, 12}, respectively, making an exact permutation
analysis feasible. Because M = 13 is a small number of arrangements, it will
be illustrative to list the 13 sets of cell frequencies, τb values, and the associated
hypergeometric point probability values in Table 9.36, where the rows with hyper-
geometric point probability values associated with τb values equal to or greater than
the observed τb value are indicated with asterisks.

If the M = 13 possible arrangements in the reference set of all permutations of
the frequency data in Table 9.35 occur with equal chance, the exact probability value
of τb under the null hypothesis is the sum of the hypergeometric point probability
values associated with τb = +0.3162 or greater. Based on the hypergeometric
probability distribution, the exact upper-tail probability value is

P = 0.4982×10−1 + 0.1042×10−1 + 0.1216×10−2 + 0.6979×10−4

+ 0.1454×10−5 = 0.0615 .

Table 9.36 Cell frequencies,
τb values, and exact
hypergeometric point
probability values for
M = 13 possible
arrangements of the observed
data in Table 9.35

Cell frequency

Table n11 n12 n21 n22 τb Probability

1 8 12 16 0 −0.6325 0.1006×10−3

2 9 11 15 1 −0.5139 0.2147×10−2

3 10 10 14 2 −0.3953 0.1771×10−1

4 11 9 13 3 −0.2767 0.7515×10−1

5 12 8 12 4 −0.1581 0.1832

6 13 7 11 5 −0.0395 0.2705

7 14 6 10 6 +0.0791 0.2480

8 15 5 9 7 +0.1976 0.1417

9∗ 16 4 8 8 +0.3162 0.4982×10−1

10∗ 17 3 7 9 +0.4348 0.1042×10−1

11∗ 18 2 6 10 +0.5534 0.1216×10−2

12∗ 19 1 5 11 +0.6720 0.6979×10−4

13∗ 20 0 4 12 +0.7906 0.1454×10−5

Sum 1.0000
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For the frequency data given in Table 9.35, Somers’ dxy is

dxy = C − D

C + D + Tx

= ad − bc

ad + bc + ab + cd
= ad − bc

(a + c)(b + d)

= (16)(8) − (4)(8)

(16 + 8)(4 + 8)
= +0.3333 ,

Somers’ dyx is

dyx = C − D

C + D + Ty

= ad − bc

ad + bc + ac + bd
= ad − bc

(a + b)(c + d)

= (16)(8) − (4)(8)

(16 + 4)(8 + 8)
= +0.30 ,

and it is obvious that for 2×2 contingency tables, Kendall’s τb measure of
association is simply the geometric mean of Somers’ two asymmetric measures,
e.g.,

τb = √
dxydyx = √

(0.3333)(0.30) = ±0.3162 .

9.12 Kendall’s τb and Pearson’s rxy Measures

It is readily apparent that Goodman and Kruskal’s two asymmetric measures of
ordinal association, ta and tb, are equal to each other for any 2×2 contingency
table, and it is also well known that for a 2×2 contingency table both ta and
tb are equal to χ2/N , which, in turn, is equal to Pearson’s φ2 mean-squared
contingency coefficient and Pearson’s product-moment correlation coefficient r2

xy

when two variables, x and y, are dummy-coded (0, 1) [41, pp. 75, 325]. Thus, for
2×2 contingency tables,

ta = tb = χ2

N
= φ2 = r2

xy and
√

ta = √
tb =

√
χ2

N
= ±φ = ±rxy .

However, it is less well known that Kendall’s τb measure of ordinal association is
equivalent to Pearson’s product-moment correlation coefficient, rxy , for any 2×2
contingency table.
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Table 9.37 Notation for the
cross-classification of two
categorical variables, Xi for
i = 1, . . . , r and Yj for
j = 1, . . . , c

Y

X y1 y2 · · · yc Total

x1 n11 n12 · · · n1c n1.

x2 n21 n22 · · · n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

xr nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c N

Kendall’s τb measure of ordinal association is given by

τb = C − D√
(C + D + Tx)(C + D + Ty)

= S√
(C + D + Tx)(C + D + Ty)

,

where C denotes the number of concordant pairs, D denotes the number of
discordant pairs, Tx denotes the number of pairs tied on variable x but not tied
on variable y, and Ty denotes the number of pairs tied on variable y but not tied on
variable x.

Consider an r×c contingency table such as depicted in Table 9.37, where
categorical variables X and Y are cross-classified, nij denotes a cell frequency for
i = 1, . . . , r and j = 1, . . . , c, and N denotes the total of cell frequencies in the
table. Denote by a dot (·) the partial sum of all rows or all columns, depending on
the position of the (·) in the subscript list. If the (·) is in the first subscript position,
the sum is over all rows, and if the (·) is in the second subscript position, the sum
is over all columns. Thus, ni. denotes the marginal frequency total of the ith row,
i = 1, . . . , r , summed over all columns, and n.j denotes the marginal frequency
total of the j th column, j = 1, . . . , c, summed over all rows. It can easily be
demonstrated that the following relationships hold:

C + D + Tx = 1

2

⎛
⎝N2 −

c∑
j=1

n2
.j

⎞
⎠ (9.8)

and

C + D + Ty = 1

2

(
N2 −

r∑
i=1

n2
i.

)
. (9.9)

The importance of these relationships is that C + D + Tx and C + D + Ty are
completely determined by the marginal frequency totals.16

16Equations (9.8) and (9.9) are not specific to 2×2 contingency tables and are applicable to any
r×c contingency table.
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Table 9.38 Notation for
variables x and y, each with
two categories

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

Now consider a 2×2 contingency table, such as given in Table 9.38. Then,

C = ad ,

D = bc ,

C + D + Tx = 1

2

[
(a + b + c + d)2 − (a + c)2 − (b + d)2

]

= 1

2

(
2ab + 2ad + 2bc + 2cd

)

= ab + ad + bc + cd

= (a + c)(b + d) ,

C + D + Ty = 1

2

[
(a + b + c + d)2 − (a + b)2 − (c + d)2

]

= 1

2

(
2ac + 2ad + 2bc + 2bd

)

= ac + ad + bc + bd

= (a + b)(c + d) ,

and

τb = C − D√
(C + D + Tx)(C + D + Ty)

= ad − bc√
(a + c)(b + d)(a + b)(c + d)

=
√

χ2

N
= φ = rxy .

Thus, if ta = tb = r2
xy and τb = rxy , then Goodman and Kruskal’s ta and tb measures

are equal to the square of Kendall’s τb measure (τ 2
b ) for any 2×2 contingency table.
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9.12.1 Example

To illustrate the relationships between Pearson’s χ2, Pearson’s φ2, Pearson’s r2
xy ,

Goodman and Kruskal’s ta and tb, and Kendall’s τb test statistics, consider the 2×2
contingency table with N = 10 cases given in Table 9.39. For the frequency data
given in Table 9.39, Pearson’s chi-squared test statistic is given by

χ2 =
r∑

i=1

c∑
j=1

(
Oij − Eij

)2
Eij

,

where Oij denotes the observed cell frequencies, i, j = 1, 2, Eij denotes the
expected cell values given by

Eij = ni.n.j

N
for i, j = 1, 2 ,

the expected values are

E11 = (4)(7)

10
= 2.80 , E12 = (4)(3)

10
= 1.20 ,

E21 = (6)(7)

10
= 4.20 , E22 = (6)(3)

10
= 1.80 ,

and Pearson’s chi-squared test statistic is

χ2 =
r∑

i=1

c∑
j=1

(
Oij − Eij

)2
Eij

= (3 − 2.80)2

2.80
+ (1 − 1.20)2

1.20
+ (4 − 4.20)2

4.20
+ (2 − 1.80)2

1.80
= 0.0794 .

Then, Pearson’s mean-squared contingency coefficient is

φ2 = χ2

N
= 0.0794

10
= 0.0079 .

Table 9.39 Example 2×2
contingency data for variables
x and y with dummy (0, 1)
coding

y

x 0 1 Total

0 3 1 4

1 4 2 6

Total 7 3 10
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Table 9.40 Example
dummy-coded values from
the 2×2 contingency table in
Table 9.39

Variable

Object x y

1 0 0

2 0 0

3 0 0

4 0 1

5 1 0

6 1 0

7 1 0

8 1 0

9 1 1

10 1 1

It is well known that Pearson’s φ2 is equivalent to Pearson’s squared product-
moment correlation coefficient when the categories of variables x and y are
dummy-coded (0, 1). To illustrate the equivalency between Pearson’s φ2 and
Pearson’s r2

xy , consider the 2×2 contingency table given in Table 9.39, where the
row variable is denoted as x, the column variable is denoted as y, and the row and
column categories are both coded (0, 1) . The frequency data given in Table 9.39 are
recoded in Table 9.40, where Objects 1 through 3, coded (0, 0), represent the three
objects in row 1 and column 1; Object 4, coded (0, 1), represents the single object
in row 1 and column 2; Objects 5 through 8, coded (1, 0), represent the four objects
in row 2 and column 1; and Objects 9 and 10, coded (1, 1), represent the two objects
in row 2 and column 2 of Table 9.39.

For the binary-coded data listed in Table 9.40, N = 10,

N∑
i=1

xi =
N∑

i=1

x2
i = 6,

N∑
i=1

yi =
N∑

i=1

y2
i = 3,

N∑
i=1

xiyi = +2 ,

and the squared Pearson product-moment correlation coefficient for variables x and
y is

r2
xy =

(
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

)2

⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

=
[
(10)(+2) − (6)(3)

]2
[
(10)(6) − 62

][
(10)(3) − 32

] = 0.0079 ,

which is identical to the value for Pearson’s φ2 contingency coefficient.
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For the frequency data given in Table 9.39, Goodman and Kruskal’s tb is

tb =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
10

(
32

7
+ 12

7
+ 42

3
+ 22

3

)
− 42 − 62

102 − 42 − 62
= 0.0079 .

Similarly, Goodman and Kruskal’s ta is

ta =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
10

(
32

4
+ 12

4
+ 42

6
+ 22

6

)
− 72 − 32

102 − 72 − 32 = 0.0079 .

Now, consider Kendall’s τb measure. For the cell frequency values given in
Table 9.39,

τb = C − D√
(C + D + Tx)(C + D + Ty)

= (3)(2) − (1)(4)√
(7)(3)(4)(6)

= 0.0891 , (9.10)

which is the square root of φ2 = r2
xy = 0.0079. Thus, φ2 = r2

xy = ta = tb = τ 2
b =

0.0079.
Finally, consider a conventional calculation formula for Pearson’s product-

moment correlation coefficient given by

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

. (9.11)
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It is easily demonstrated that the numerator of Eq. (9.11),

N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi ,

is equal to C − D. Thus, for the binary-coded data listed in Table 9.40,

N = 10,

N∑
i=1

xi =
N∑

i=1

x2
i = 6,

N∑
i=1

yi =
N∑

i=1

y2
i = 3,

N∑
i=1

xiyi = +2 ,

and

N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi = (10)(2) − (6)(3) = +2 .

For the frequency data given in Table 9.39,

C = ab = (3)(2) = 6 ,

D = cd = (1)(4) = 4 ,

Tx = ab + cd = (3)(1) + (4)(2) = 11 ,

Ty = ac + bd = (3)(4) + (1)(2) = 14 ,

and C − D = 6 − 4 = +2. Now, consider the factor on the left side of the
denominator of Eq. (9.11),

N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2

,

which is equal to C + D + Ty . Thus,

N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2

= (10)(6) − 62 = 60 − 36 = 24

and

C + D + Ty = 6 + 4 + 14 = 24 .
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Similarly, consider the factor on the right side of the denominator of Eq. (9.11),

N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2

,

which is equal to C + D + Tx . Thus,

N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2

= (10)(3) − 32 = 30 − 9 = 21

and

C + D + Tx = 6 + 4 + 11 = 21 .

9.12.2 An Alternative Proof

A more rigorous proof of the equality of Kendall’s τb and Pearson’s rxy is offered
in this section. Consider Tables 9.38, 9.39, and 9.40, replicated for convenience
in Tables 9.41, 9.42, and 9.43, respectively. For the binary-coded data listed in
Table 9.43,

N = 10,

N∑
i=1

xi =
N∑

i=1

x2
i = 6,

N∑
i=1

yi =
N∑

i=1

y2
i = 3,

N∑
i=1

xiyi = +2 ,

Table 9.41 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

Table 9.42 Example 2×2
contingency data for variables
x and y with dummy (0, 1)
coding

y

x 0 1 Total

0 3 1 4

1 4 2 6

Total 7 3 10
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Table 9.43 Example
dummy-coded values from
the 2×2 contingency table in
Table 9.42

Variable

Object x y

1 0 0

2 0 0

3 0 0

4 0 1

5 1 0

6 1 0

7 1 0

8 1 0

9 1 1

10 1 1

and the Pearson product-moment correlation coefficient for variables x and y is

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2⎤
⎦

= (10)(+2) − (6)(3)√[
(10)(6) − 62

][
(10)(3) − 32

] = +0.0891 . (9.12)

From Tables 9.41 and 9.42,

N = a + b + c + d = 3 + 1 + 4 + 2 = 10 ,

N∑
i=1

xi =
N∑

i=1

x2
i = (0)(a + b) + (1)(c + d) = c + d = 4 + 2 = 6 ,

N∑
i=1

yi =
N∑

i=1

y2
i = (0)(a + c) + (1)(b + d) = b + d = 1 + 2 = 3 ,

N∑
i=1

xiyi = (0)(0)(a) + (0)(1)(b) + (1)(0)(c) + (1)(1)(d) = d = +2 ,
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N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

= (a + b + c + d)(d) − (c + d)(b + d)

= ad + bd + cd + d2 − bc − cd − bd − d2

= ad − bc = C − D ,

N

N∑
i=1

x2 −
(

N∑
i=1

xi

)2

= (a + b + c + d)(c + d) − c2 − 2cd − d2

= ac + ad + bc + bd + c2 + cd + cd + d2 − c2 − 2cd − d2

= (a + b)(c + d) = C + D + Ty ,

and

N

N∑
i=1

y2 −
(

N∑
i=1

yi

)2

= (a + b + c + d)(b + d) − b2 − 2bd − d2

= ab + ad + b2 + bd + cb + cd + bd + d2 − b2 − 2bd − d2

= (a + c)(b + d) = C + D + Tx .

Then, substituting into Eq. (9.12),

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2⎤
⎦

= C − D√
(C + D + Ty)(C + D + Tx)

= τb .
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9.13 Pearson’s Correlation Coefficient

Pearson’s product-moment correlation coefficient can be adapted for 2×2 contin-
gency tables when the two variables are dummy-coded (0, 1), as in Table 9.35 on
p. 552, replicated in Table 9.44 for convenience. See Chap. 7, Sect. 7.1 for a more
detailed description of Pearson’s product-moment correlation coefficient. Table 9.45
displays the N = 36 dummy-coded frequencies, where Objects 1 through 16, coded
(0, 0), represent the sixteen objects in row 1 and column 1 of Table 9.44; Objects 17
through 20, coded (0, 1), represent the four objects in row 1 and column 2; Objects
21 through 28, coded (1, 0), represent the eight objects in row 2 and column 1; and
Objects 29 through 36, coded (1, 1), represent the eight objects in row 2 and column
2. For the dummy-coded frequencies listed in Table 9.45, N = 36,

N∑
i=1

xi =
N∑

i=1

x2
i = 16 ,

N∑
i=1

yi =
N∑

1=1

y2
i = 12 ,

N∑
i=1

xiyi = +8 ,

Table 9.44 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 16 4 20

1 8 8 16

Total 24 12 36

Table 9.45 Example
dummy-coded values from
the 2×2 contingency table in
Table 9.44

Variable

Object x y

1 0 0
.
.
.

.

.

.
.
.
.

16 0 0

17 0 1
.
.
.

.

.

.
.
.
.

20 0 1

21 1 0
.
.
.

.

.

.
.
.
.

28 1 0

29 1 1
.
.
.

.

.

.
.
.
.

36 1 1
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and Pearson’s product-moment correlation coefficient is

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2⎤
⎦

= (36)(+8) − (16)(12)√[(36)(16) − 162][(36)(12) − 122] = +0.3162 .

It is well known that rxy is equal to Pearson’s φ coefficient for 2×2 contingency
tables; thus,

φ =
√

χ2

N
=
√

3.60

36
= √

0.1000 = ±0.3162 .

Also, Pearson’s rxy is equivalent to Kendall’s τb for 2×2 contingency tables, as
shown in Sect. 9.12.2. Thus,

τb = C − D√
(C + D + Tx)(C + D + Ty)

= 128 − 32√
(128 + 32 + 128)(128 + 32 + 160)

= +0.3162 .

There are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(20, 24) − max(0, 20 − 12) + 1 = 20 − 8 + 1 = 13

possible, equally-likely arrangements in the reference set of all permutations of
the cell frequencies in Table 9.44 given the observed row and column marginal
frequency distributions, {20, 16} and {24, 12}, respectively, making an exact per-
mutation analysis feasible. Because M = 13 is a small number of arrangements,
it will be illustrative to list the 13 sets of cell frequencies, rxy values, and the
associated hypergeometric point probability values in Table 9.46, where the rows
with hypergeometric point probability values associated with rxy values equal to or
greater than the observed value of rxy = +0.3162 are indicated with asterisks.

If the M = 13 possible arrangements of the frequency data given in Table 9.44
occur with equal chance, the exact probability value of rxy under the null hypothesis
is the sum of the hypergeometric point probability values associated with rxy =
+0.3162 or greater. Based on the hypergeometric probability distribution, the exact
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Table 9.46 Cell frequencies,
rxy values, and exact
hypergeometric point
probability values for
M = 13 possible
arrangements of the observed
data in Table 9.44

Cell frequency

Table n11 n12 n21 n22 rxy Probability

1 8 12 16 0 −0.6325 0.1006×10−3

2 9 11 15 1 −0.5139 0.2147×10−2

3 10 10 14 2 −0.3953 0.1771×10−1

4 11 9 13 3 −0.2767 0.7515×10−1

5 12 8 12 4 −0.1581 0.1832

6 13 7 11 5 −0.0395 0.2705

7 14 6 10 6 +0.0791 0.2480

8 15 5 9 7 +0.1976 0.1417

9∗ 16 4 8 8 +0.3162 0.4982×10−1

10∗ 17 3 7 9 +0.4348 0.1042×10−1

11∗ 18 2 6 10 +0.5534 0.1216×10−2

12∗ 19 1 5 11 +0.6720 0.6979×10−4

13∗ 20 0 4 12 +0.7906 0.1454×10−5

Sum 1.0000

upper-tail probability value is

P = 0.4982×10−1 + 0.1042×10−1 + 0.1216×10−2 + 0.6979×10−4

+ 0.1454×10−5 = 0.0615 .

9.14 Unstandardized Regression Coefficients

Consider once again the binary-coded data listed in Table 9.45. Given N = 36,

N∑
i=1

xi =
N∑

i=1

x2
i = 16 ,

N∑
i=1

yi =
N∑

1=1

y2
i = 12 , and

N∑
i=1

xiyi = +8 ,

the unstandardized regression equation for variable y, conditioned on variable x,
yields

byx =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 = (36)(+8) − (16)(12)

(36)(16) − 162 = +0.30
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and the unstandardized regression equation for variable x, conditioned on variable
y, yields

bxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2
= (36)(+8) − (16)(12)

(36)(12) − 122
= +0.3333 .

The unstandardized slopes are illustrated in Fig. 9.3 where, when variable y is
considered to be the dependent variable, the intercept is ayx = +0.20 and the slope
is byx = +0.30, and when variable x is considered to be the dependent variable, the
intercept is axy = +0.3333 and the slope is bxy = +0.3333.

It may be of some interest to note that when the two regression lines are drawn
on the same graph, assuming that the two variables, x and y, have been standardized
as in Fig. 9.3, there is a direct relationship between Pearson’s product-moment
correlation coefficient, rxy , and the acute angle, θ , expressed in degrees, between
the two regression lines. Specifically,

θ = 90◦ − 2 tan−1
√

byxbxy and rxy = tan

(
90◦ − θ

2

)
.

Fig. 9.3 Graphic depicting
the two regression lines for
the data listed in Table 9.45
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Table 9.47 Example data for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 16 4 20

1 8 8 16

Total 24 12 36

If the scatter of points is circular, rxy = 0 and θ = 90◦, so that the two regression
lines are orthogonal to each other, and if rxy = +1, then θ = 0◦ and the two
regression lines are superimposed on each other.

Thus, for the data given in Table 9.45,

θ = 90◦ − 2 tan−1√byxbxy = 90◦ − 2 tan−1
√

(+0.30)(+0.3333)

= 54.9032◦

and

rxy = tan

(
90◦ − θ

2

)
= tan

(
90◦ − 54.9032◦

2

)
= +0.3162 .

Now consider the frequency data given in Table 9.35 on p. 552, replicated in
Table 9.47 for convenience, where the percentage differences are

Dx = 16

20
− 8

16
= 0.30 and Dy = 16

24
− 4

12
= 0.3333 ,

and Somers’ two asymmetric measures are

dyx = (16)(8) − (4)(8)

(20)(16)
= 0.30 and dxy = (16)(8) − (4)(8)

(24)(12)
= 0.3333 .

Note that the percentage differences, the unstandardized regression coefficients, and
Somers’ two asymmetric measures are all equivalent for 2×2 contingency tables;
thus, for 2×2 contingency tables,

Dx = byx = dyx = 0.30 and Dy = bxy = dxy = 0.3333 .

It is not widely recognized that, given a 2×2 contingency table, a percentage
difference is really just the slope of a regression line [3], and that Somers’ dyx and
dxy measures thereby reduce to simple percentage differences.17

17Somers observed that dyx and dxy were equivalent to the corresponding percentage differences
in 2×2 contingency tables [50, p. 805].
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On the other hand, it is well known that the Pearson product-moment correlation
coefficient is simply the geometric mean of the slopes of the two regression lines,
i.e.,

rxy = √
byxbxy = √

(0.30)(0.3333) = ±0.3162 .

Therefore, for a 2×2 contingency table, rxy is also the geometric mean of Somers’
two asymmetric coefficients of association, i.e.,

rxy = √
dyxdxy = √

(0.30)(0.3333) = ±0.3162 ,

as well as the geometric mean of the two percentage differences, i.e.,

rxy = √
DxDy = √

(0.30)(0.3333) = ±0.3162 .

9.15 Pearson’s φ2 and Cohen’s κ Measures

Given a 2×2 contingency table and following the notation in Table 9.41 on p. 561,
replicated in Table 9.48 for convenience, where N = a + b + c + d , Pearson’s
mean-squared contingency coefficient may be defined as

φ2 = (ad − bc)2

(a + b)(c + d)(a + c)(b + d)
.

Kraemer [36] suggested that Cohen’s unweighted measure of inter-rater agreement
may be defined more generally as

κk = ad − bc

(a + b)(c + d)(k) + (a + c)(b + d)(k − 1)
,

where k = 0 yields an index of specificity, i.e., the proportion of objects without the
desired attribute that are correctly identified by the test; k = 1 yields an index of
sensitivity, i.e., the proportion of objects with the desired attribute that are correctly
identified by the test; and k = 1/2 yields Cohen’s kappa measure [51].

Table 9.48 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N
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If k = 0

κ0 = ad − bc

(a + b)(c + d)(0) + (a + c)(b + d)(1 − 0)
= ad − bc

(a + c)(b + d)

and if k = 1

κ1 = ad − bc

(a + b)(c + d)(1) + (a + c)(b + d)(1 − 1)
= ad − bc

(a + b)(c + d)
.

Then it can be demonstrated that

φ2 = κ0κ1 and φ = √
κ0κ1 ,

establishing the relationship between Cohen’s unweighted kappa measure and
Pearson’s mean-squared contingency coefficient [36, 51].

9.15.1 Example

To illustrate the relationships between κk , φ2, and other measures, consider the
example frequency data given in Table 9.49 with N = 20 objects cross-classified
into four categories. For the frequency data given in Table 9.49,

φ2 = (ad − bc)2

(a + b)(c + d)(a + c)(b + d)
= [(8)(6) − (4)(2)]2

(12)(8)(10)(10)
= 0.1667 ,

κ0 = ad − bc

(a + c)(b + d)
= (8)(6) − (4)(2)

(10)(10)
= 0.40 ,

κ1 = ad − bc

(a + b)(c + d)
= (8)(6) − (4)(2)

(12)(8)
= 0.4167 ,

φ2 = κ0κ1 = (0.40)(0.4167) = 0.1667 ,

Table 9.49 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 8 4 12

1 2 6 8

Total 10 10 20
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and

φ = √
κ0κ1 = √

(0.40)(0.4167) = 0.4082 .

Since, for any 2×2 contingency table, φ2 = r2
xy , then

r2
xy = κ0κ1 and rxy = √

κ0κ1 .

Also, for any 2×2 contingency table,

φ2 = χ2

N
and Nφ2 = χ2 ,

then

χ2 = Nφ2 = Nκ0κ1 = (20)(0.40)(0.4167) = 3.3333

and

r2
xy = φ2 = κ0κ1 = χ2

N
= 3.3333

20
= 0.1667 .

Finally, it can be demonstrated that for any 2×2 contingency table, Kraemer’s
κ0κ1, Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, Pearson’s r2

xy , the unstandardized
regression coefficients byx and bxy , the square of Kendall’s τb measure, Goodman
and Kruskal’s tx and ty coefficients, Somers’ dyx and dxy asymmetric measures, and
percentage differences Dx and Dy are all inter-related. Thus, for the frequency data
given in Table 9.49, Kraemer’s κ0κ1 is

κ0κ1 =
[

ad − bc

(a + c)(b + d)

] [
ad − bc

(a + b)(c + d)

]

=
[
(8)(6) − (4)(2)

(10)(10)

] [
(8)(6) − (4)(2)

(12)(8)

]
= 0.1667 ,

Pearson’s chi-squared statistic is

χ2 = N(ad − bc)2

(a + b)(c + d)(a + c)(b + d)
= 20[(8)(6) − (4)(2)]2

(12)(8)(10)(10)
= 3.3333 ,

Pearson’s mean-squared contingency coefficient is

φ2 = χ2

N
= 3.3333

20
= 0.1667 ,
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Tschuprov’s T 2 is

T 2 = χ2

N
√

(r − 1)(c − 1)
= 3.3333

20
√

(2 − 1)(2 − 1)
= 0.1667 ,

Cramér’s V 2 is

V 2 = χ2

Nmin(r − 1, c − 1)
= 3.3333

20 min(2 − 1, 2 − 1)
= 0.1667 ,

and Pearson’s squared product-moment correlation coefficient is

r2
xy = (ad − bc)2

(a + b)(c + d)(a + c)(b + d)
= [(8)(6) − (4)(2)]2

(12)(8)(10)(10)
= 0.1667 .

The unstandardized regression coefficients, bxy and byx , are equivalent to κ0 and κ1,
respectively; thus,

bxy = ad − bc

(a + c)(b + d)
= (8)(6) − (4)(2)

(10)(10)
= 0.40

and

byx = ad − bc

(a + b)(c + d)
= (8)(6) − (4)(2)

(12)(8)
= 0.4167 .

Define the number of concordant pairs as C = ad , the number of discordant
pairs as D = bc, the number of pairs tied on variable x as Tx = ab + cd , and the
number of pairs tied on variable y as Ty = ac + bd . Then the square of Kendall’s
τb measure of ordinal association is identical to Kraemer’s κ0κ1; thus,

τ 2
b = (C − D)2

(C + D + Tx)(C + D + Yy)

= (ad − bc)2

(ad + bc + ac + bd)(ad + bc + ab + cd)

= [(8)(6) − (4)(2)]2

[(8)(6) + (4)(2) + (8)(2) + (4)(6)][(8)(6) + (4)(2) + (8)(4) + (2)(6)]
= 0.1667 .
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Goodman and Kruskal’s asymmetric measures, tx and ty , are also equivalent to
Kraemer’s κ0κ1; thus,

tx =
N

(
a2 + c2

a + c
+ b2 + d2

b + d

)
− (a + b)2 − (c + d)2

N2 − (a + b)2 − (c + d)2

=
20

(
82 + 22

10
+ 42 + 62

10

)
− 122 − 82

202 − 122 − 82 = 0.1667 ,

and

ty =
N

(
a2 + b2

a + b
+ c2 + d2

c + d

)
− (a + c)2 − (b + d)2

N2 − (a + c)2 − (b + d)2

=
20

(
82 + 42

12
+ 22 + 62

8

)
− 102 − 102

202 − 102 − 102 = 0.1667 .

Somers’ asymmetric dxy and dyx measures of ordinal association are equivalent
to κ0 and κ1, respectively; thus,

dxy = C − D

C + D + Tx

= ad − bc

ad + bc + (a)(b) + (c)(d

= (8)(6) − (4)(2)

(8)(6) + (4)(2) + (8)(4) + (2)(6)
= 0.40

and

dyx = C − D

C + D + Ty

= ad − bc

ad + bc + ac + bd

= (8)(6) − (4)(2)

(8)(6) + (4)(2) + (8)(2) + (4)(6)
= 0.4167 .

Finally, the simple percentage differences Dy and Dx are also equivalent to κ0
and κ1, respectively; thus,

Dy = a

a + c
− b

b + d
= ad − bc

(a + c)(b + d)
= (8)(6) − (4)(2)

(10)(10)
= 0.40

and

Dx = a

a + b
− c

c + d
= ad − bc

(a + b)(c + d)
= (8)(6) − (4)(2)

(12)(8)
= 0.4167 .
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9.16 Coda

Chapter 9 examined measures of association for 2×2 contingency tables. Included
in Chap. 9 were permutation statistical methods applied to Pearson’s φ coefficient
of contingency, Pearson’s tetrachoric correlation coefficient, Yule’s Q and Yule’s
Y measures of nominal association, Leik and Gove’s d c

N measure of nominal
association, the odds ratio, Goodman and Kruskal’s ta and tb asymmetric measures
of nominal association, Somers’ dyx and dxy measures of ordinal association, simple
percentage differences, and Kendall’s τb measure of ordinal association.

Chapter 10 continues the discussion of 2×2 contingency tables with consid-
eration of symmetrical 2×2 contingency tables, where each marginal frequency
total is equal to N/2. Included in Chap. 10 are permutation statistical methods
applied to Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, Pearson’s product-moment
correlation coefficient, Leik and Gove’s d c

N measure, Goodman and Kruskal’s ta
and tb asymmetric measures, Kendall’s τb and Stuart’s τc measures, Somers’ dyx

and dxy asymmetric measures, simple percentage differences, Yule’s Y measure of
nominal association, and Cohen’s unweighted and weighted κ measures of inter-
rater agreement.

Also included in Chap. 10 are extensions to multiple 2×2 contingency tables and
2×2×2 contingency tables, including the Mantel–Haenszel test for combined 2×2
contingency tables, Cohen’s kappa measure of inter-rater agreement, McNemar’s
and Cochran’s Q tests, Fisher’s exact test for 2×2×2 and 2×2×2×2 contingency
tables, and tests for interactions in 2×2×2 and 2×2×2×2 contingency tables.
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Chapter 10
Fourfold Contingency Tables, II

Chapter 10 of The Measurement of Association continues the discussion of fourfold
(2×2) contingency tables initiated in Chap. 9, but concentrates on symmetrical
2×2 contingency tables, where each marginal frequency total is equal to N/2. In
the same way that 2×2 contingency tables are special cases of r×c contingency
tables, symmetrical 2×2 contingency tables are special cases of fourfold tables.
Symmetrical 2×2 tables provide additional insight into the relationships among
various measures of association.

Included in Chap. 10 are exact and Monte Carlo permutation statistical methods
applied to Pearson’s φ2, Tschuprov’s T 2, Cramér’s V 2, Pearson’s rxy product-
moment correlation coefficient, Leik and Gove’s d c

N measure of nominal associ-
ation, Goodman and Kruskal’s ta and tb asymmetric measures, Kendall’s τb and
Stuart’s τc measures, Somers’ dyx and dxy asymmetric measures, simple percentage
differences, Dx and Dy , Yule’s Y measure of nominal association, and Cohen’s
unweighted and weighted κ measures of chance-corrected inter-rater agreement.

Also included in Chap. 10 are some extensions to multiple 2×2 contingency
tables and 2×2×2 contingency tables, including the Mantel–Haenszel test for
combined 2×2 contingency tables, Cohen’s kappa measure of chance-corrected
inter-rater agreement, McNemar’s and Cochran’s Q tests, Fisher’s exact test for
2×2×2 and 2×2×2×2 contingency tables, and tests for interactions in 2×2×2 and
2×2×2×2 contingency tables.

10.1 Symmetrical Fourfold Tables

A symmetrical fourfold contingency table is a 2×2 contingency table in which N is
even and each marginal frequency total is equal to N/2. To illustrate the analysis of
symmetrical fourfold contingency tables, consider the general layout of a 2×2 table,
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Table 10.1 Notation for
variables x and y with
categories dummy-coded 0
and 1

y

x 0 1 Total

0 a b a + b

1 c d c + d

Total a + c b + d N

Table 10.2 Example 2×2
contingency data for variables
x and y with categories
dummy-coded 0 and 1

y

x 0 1 Total

0 4 2 6

1 2 4 6

Total 6 6 12

such as given in Table 10.1, and an example 2×2 frequency table, such as given in
Table 10.2, where each marginal frequency total is equal to N/2 = 12/2 = 6.

10.1.1 Statistics φ2, T 2, and V 2

For the frequency data given in Table 10.2, Pearson’s chi-squared test statistic is
given by

χ2 = N

⎛
⎝ r∑

i=1

c∑
j=1

O2
ij

RiCj

− 1

⎞
⎠ ,

where Oij is the observed cell frequency for i, j = 1, 2, Ri denotes a row total for
i = 1, 2, and Cj denotes a column total for j = 1, 2. Thus, for the frequency data
given in Table 10.2,

χ2 = 12

[
42 + 22 + 22 + 42

(6)(6)
− 1

]
= 1.3333 .

Then, Pearson’s φ measure of association is given by

φ =
√

χ2

N
=
√

1.3333

12
= ±0.3333

and φ2 = (0.3333)2 = 0.1111. Alternatively, using the notation given in Table 10.1,

φ = ad − bc√
(a + b)(c + d)(a + c)(b + d)

= (4)(4) − (2)(2)√
(6)(6)(6)(6)

= +0.3333 .
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Tschuprov’s measure of nominal association is

T 2 = χ2

N
√

(r − 1)(c − 1)
= 1.3333

12
√

(2 − 1)(2 − 1)
= 0.1111

and T = √
T 2 = √

0.1111 = 0.3333. Also, Cramér’s measure of nominal
association is

V 2 = χ2

N
[

min(r − 1, c − 1)
] = 1.3333

12
[

min(2 − 1, 2 − 1)
] = 0.1111

and V = √
V 2 = √

0.1111 = 0.3333. Thus, Pearson’s φ, Tschuprov’s T , and
Cramér’s V are equivalent for a symmetrical 2×2 contingency table.

10.1.2 Pearson’s rxy Correlation Coefficient

Next, consider Pearson’s product-moment correlation coefficient given by

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2 ⎤
⎦

.

The binary-coded (0, 1) data listed in Table 10.3 were obtained from the frequency
data given in Table 10.2, where Objects 1 through 4, coded (0, 0), represent the four

Table 10.3 Example
dummy-coded (0, 1) values
from the 2×2 contingency
table in Table 10.2

Variable

Object x y

1 0 0

2 0 0

3 0 0

4 0 0

5 0 1

6 0 1

7 1 0

8 1 0

9 1 1

10 1 1

11 1 1

12 1 1
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objects in row 1 and column 1 of Table 10.2; Objects 5 and 6, coded (0, 1), represent
the two objects in row 1 and column 2; Objects 7 and 8, coded (1, 0), represent the
two objects in row 2 and column 1; and Objects 9 through 12, coded (1, 1), represent
the four objects in row 2 and column 2 of Table 10.2.

For the binary-coded data listed in Table 10.3,

N = 12 ,

N∑
i=1

xi =
N∑

i=1

x2
i =

N∑
i=1

yi =
N∑

i=1

y2
i = 6 ,

N∑
i=1

xiyi = +4 ,

Pearson’s product-moment correlation coefficient is

rxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

√√√√√
⎡
⎣N

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2 ⎤
⎦
⎡
⎣N

N∑
i=1

y2
i −

(
N∑

i=1

yi

)2⎤
⎦

= (12)(+4) − (6)(6)√
[(12)(6) − 62][(12)(6) − 62] = +0.3333 ,

and r2
xy = (+0.3333)2 = 0.1111.

10.1.3 Regression Coefficients

For the binary-coded data listed in Table 10.3, the slope (unstandardized regression
coefficient) of the regression line with variable y the dependent variable is

byx =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

N

r∑
i=1

x2
i −

(
r∑

i=1

xi

)2 = (12)(+4) − (6)(6)

(12)(6) − 62 = +0.3333

and the standardized regression coefficient with variable x the dependent variable is

β̂yx = byx

(
sx

sy

)
= +0.3333

(
0.5222

0.5222

)
= +0.3333 .
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Also the unstandardized regression coefficient with variable x the dependent
variable is

bxy =
N

N∑
i=1

xiyi −
N∑

i=1

xi

N∑
i=1

yi

N

r∑
i=1

y2
i −

(
r∑

i=1

yi

)2 = (12)(+4) − (6)(6)

(12)(6) − 62 = +0.3333

and the standardized regression coefficient with variable y the dependent variable is

β̂xy = bxy

(
sx

sy

)
= +0.3333

(
0.5222

0.5222

)
= +0.3333 .

Thus it is demonstrated that φ = T = V = rxy = byx = bxy = β̂yx = β̂xy for a
symmetrical 2×2 contingency table.

10.1.4 Leik and Gove’s d c
N
Statistic

Leik and Gove’s d c
N test statistic for two nominal-level variables is described in

detail in Chap. 4, Sect. 4.9. As noted by Leik and Gove, for symmetrical 2×2
contingency tables, d c

N is equivalent to the traditional chi-squared-based measures
such as Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2 [15, p. 291]. Test statistic
d c
N is based on three r×c contingency tables: one r×c contingency table containing

the observed cell frequency values, a second r×c contingency table containing the
expected cell frequency values, and a third r×c contingency table containing the
maximized cell frequency values. Here, the observed values of concordant pairs, C;
discordant pairs, D; pairs tied on variable x, Tx ; pairs tied on variable y, Ty ; and
pairs tied on both variables x and y, Txy , are indicated without primes, the expected
values of concordant pairs, C; discordant pairs, D; pairs tied on variable x, Tx ; pairs
tied on variable y, Ty ; and pairs tied on both variables x and y, Txy , are indicated
with a single prime (′), and the maximized values of concordant pairs, C; discordant
pairs, D; pairs tied on variable x, Tx ; pairs tied on variable y, Ty ; and pairs tied on
both variables x and y, Txy , are indicated with double primes (′′).

Consider d c
N for a symmetrical 2×2 contingency table, where

d c
N = T ′

y − Ty

T ′
y − T ′′

y

= T ′
x − Tx

t ′
x − T ′′

x

= T ′
xy − Txy

T ′
xy − T ′′

xy

= (C′ + D′) − (C + D)

(C′ + D′) − (C′′ + D′′)
.
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Table 10.4 Observed values
for a 2×2 contingency table
with categories
dummy-coded 0 and 1

y

x 0 1 Total

0 4 2 6

1 2 4 6

Total 6 6 12

For the observed data given in Table 10.2 on p. 578, replicated in Table 10.4 for
convenience, the observed values of C, D, Tx , Ty , and Txy are

C = ad = (4)(4) = 16 ,

D = bc = (2)(2) = 4 ,

Tx = ab + cd = (4)(2) + (2)(4) = 16 ,

Ty = ac + bd = (4)(2) + (2)(4) = 16 ,

Txy = 1

2

[
(a)(a − 1) + (b)(b − 1) + (c)(c − 1) + (d)(d − 1)

]

= 1

2

[
(4)(3) + (2)(1) + (2)(1) + (4)(3)

] = 14 ,

and

C + D + Tx + Ty + Txy = 16 + 4 + 16 + 16 + 14

= N(N − 1)

2
= 12(12 − 1)

2
= 66 .

Next, consider the expected values for the observed data in Table 10.4, given in
Table 10.5, where

E11 = E12 = E21 = E22 = (6)(6)

12
= 3 .

Table 10.5 Expected values
for the 2×2 contingency table
data in Table 10.4

y

x 0 1 Total

0 3 3 6

1 3 3 6

Total 6 6 12



10.1 Symmetrical Fourfold Tables 583

For the expected cell values given in Table 10.5,

C ′ = ad = (3)(3) = 9 ,

D ′ = bc = (3)(3) = 9 ,

T ′
x = ab + cd = (3)(3) + (3)(3) = 18 ,

T ′
y = ac + bd = (3)(3) + (3)(3) = 18 ,

T ′
xy = 1

2

[
(a)(a − 1) + (b)(b − 1) + (c)(c − 1) + (d)(d − 1)

]

= 1

2

[
(3)(2) + (3)(2) + (3)(2) + (3)(2)

] = 12 ,

and

C ′ + D ′ + T ′
x + T ′

y + T ′
xy = 9 + 9 + 18 + 18 + 12

= N(N − 1)

2
= 12(12 − 1)

2
= 66 .

Finally, consider the maximized cell frequencies for the data in Table 10.4, given
in Table 10.6. For the maximized values given in Table 10.6,

C ′′ = ad = (6)(6) = 36 ,

D ′′ = bc = (0)(0) = 0 ,

T ′′
x = ab + cd = (6)(0) + (0)(6) = 0 ,

T ′′
y = ac + bd = (6)(0) + (0)(6) = 0 ,

T ′′
xy = 1

2

[
(a)(a − 1) + (b)(b − 1) + (c)(c − 1) + (d)(d − 1)

]

= 1

2

[
(6)(5) + (6)(5)

] = 30 ,

Table 10.6 Maximized
values for the 2×2
contingency table data in
Table 10.4

y

x 0 1 Total

0 6 0 6

1 0 6 6

Total 6 6 12
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and

C ′′ + D ′′ + T ′′
x + T ′′

y + T ′′
xy = 36 + 0 + 0 + 0 + 30

= N(N − 1)

2
= 12(12 − 1)

2
= 66 .

Then, Leik and Gove’s d c
N measure is

d c
N = T ′

y − Ty

T ′
y − T ′′

y

= 18 − 16

18 − 0
= 0.1111 ,

or

d c
N = T ′

x − Tx

T ′
x − T ′′

x

= 18 − 16

18 − 0
= 0.1111 ,

or

d c
N = T ′

xy − Txy

T ′
xy − T ′′

xy

= 12 − 14

12 − 30
= 0.1111 ,

or

d c
N = (C ′ + D ′) − (C + D)

(C ′ + D ′) − (C ′′ + D ′′)
= (9 + 9) − (16 + 4)

(9 + 9) − (36 − 0)
= 0.1111 .

Thus it is demonstrated that φ2 = T 2 = V 2 = r2
xy = d c

N for a symmetrical 2×2
contingency table.

10.1.5 Goodman and Kruskal’s ta and tb Statistics

Goodman and Kruskal’s ta and tb measures of nominal association are discussed
in Chap. 4, Sect. 4.3. Consider the notation for a 2×2 contingency table given
in Table 10.7. For the frequency data given in Table 10.4 on p. 582, Goodman
and Kruskal’s asymmetric measure of association with variable a the dependent

Table 10.7 Notation for a
2×2 contingency data for
variables a and b with
dummy (0, 1) coding

a

b 0 1 Total

0 n11 n12 n1.

1 n21 n22 n2.

Total n.1 n.2 N
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variable is

ta =
N

c∑
j=1

r∑
i=1

n2
ij

n.j

−
r∑

i=1

n2
i.

N2 −
r∑

i=1

n2
i.

=
12

(
42 + 22 + 22 + 42

6

)
− 62 − 62

122 − 62 − 62
= 0.1111

and Goodman and Kruskal’s asymmetric measure with variable b the dependent
variable is

tb =
N

r∑
i=1

c∑
j=1

n2
ij

ni.

−
c∑

j=1

n2
.j

N2 −
c∑

j=1

n2
.j

=
12

(
42 + 22 + 22 + 42

6

)
− 62 − 62

122 − 62 − 62 = 0.1111 .

10.1.6 Kendall’s τb Statistic

Kendall’s τb measure of ordinal association is detailed in Chap. 5, Sect. 5.4. For the
frequency data given in Table 10.4 on p. 582, the number of concordant pairs is

C = ad = (4)(4) = 16 ,

the number of discordant pairs is

D = bc = (2)(2) = 4 ,

the number of pairs tied on variable x but not tied on variable y is

Tx = ab + cd = (4)(2) + (2)(4) = 16 ,

and the number of pairs tied on variable y but not tied on variable x is

Ty = ac + bd = (4)(2) + (2)(4) = 16 .
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Then, Kendall’s τb measure is

τb = C − D√
(C + D + Tx)(C + D + Ty)

= 16 − 4√
(16 + 4 + 16)(16 + 4 + 16)

= +0.3333 .

Alternatively, following the notation given in Table 10.1,

τb = ad − bc√
(a + b)(c + d)(a + c)(b + d)

= (4)(4) − (2)(2)√
(6)(6)(6)(6)

= +0.3333 .

10.1.7 Stuart’s τc Statistic

Stuart’s τc measure of ordinal association is discussed in Chap. 5, Sect. 5.5 and is
given by

τc = 2mS

N2(m − 1)
,

where m is the minimum number of rows or columns. For the frequency data given
in Table 10.4 on p. 582, m = min(r, c) = min(2, 2) = 2, the number of concordant
pairs is

C = ad = (4)(4) = 16 ,

the number of discordant pairs is

D = bc = (2)(2) = 4 ,

Kendall’s S is

S = C − D = 16 − 4 = +12 ,

and Stuart’s τc measure is

τc = 2mS

N2(m − 1)
= 2(2)(+12)

122(2 − 1)
= +0.3333 .
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10.1.8 Somers’ dyx and dxy Statistics

Somers’ dyx and dxy asymmetric measures of ordinal association are discussed in
Chap. 5, Sect. 5.7. For the frequency data given in Table 10.4 on p. 582, Somers’
asymmetric measure of association with variable y the dependent variable is

dyx = C − D

C + D + Ty

= 16 − 4

16 + 4 + 16
= +0.3333

and Somers’ asymmetric measure with variable x the dependent variable is

dxy = C − D

C + D + Tx

= 16 − 4

16 + 4 + 16
= +0.3333 .

Alternatively,

dyx = ad − bc

(a + c)(b + d)
= (4)(4) − (2)(2)

(6)(6)
= +0.3333

and

dxy = ad − bc

(a + b)(c + d)
= (4)(4) − (2)(2)

(6)(6)
= +0.3333 .

10.1.9 Percentage Differences

Percentage differences are discussed in Chap. 9, Sect. 9.10. For the frequency data
given in Table 10.4 on p. 582, the percentage difference for variable x is

Dx =
∣∣∣∣ a

a + b
− c

c + d

∣∣∣∣ =
∣∣∣∣46 − 2

6

∣∣∣∣ = |0.6667 − 0.3333| = 0.3333

and the percentage difference for variable y is

Dy =
∣∣∣∣ a

a + c
− b

b + d

∣∣∣∣ =
∣∣∣∣46 − 2

6

∣∣∣∣ = |0.6667 − 0.3333| = 0.3333 .
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10.1.10 Yule’s Y Statistic

Yule’s Y measure of nominal association is discussed in Chap. 9, Sect. 9.6. For the
frequency data given in Table 10.4 on p. 582, Yule’s coefficient of colligation is

Y =
√

ad − √
bc√

ad + √
bc

=
√

(4)(4) − √
(2)(2)√

(4)(4) + √
(2)(2)

= +0.3333 .

10.1.11 Cohen’s κ Statistic

Cohen’s unweighted kappa measure of inter-rater agreement is discussed in Chap. 4,
Sect. 4.5, and Cohen’s linear and quadratic weighted kappa measures of inter-rater
agreement are discussed in Chap. 6, Sect. 6.5. For the frequency data given in
Table 10.4 on p. 582, let Oii for i = 1, 2 denote the observed cell frequencies
on the principal diagonal and Eii for i = 1, 2 denote the expected cell frequencies
on the principal diagonal. Then, Cohen’s unweighted chance-corrected coefficient
of inter-rater agreement is

κ =

r∑
i=1

Oii −
r∑

i=1

Eii

N −
r∑

i=1

Eii

= (4 + 4) − (3 + 3)

12 − (3 + 3)
= +0.3333 .

Cohen’s weighted kappa measure of inter-rater agreement for b = 2 judges and
c categories is given by

κw = 1 −
N

c∑
i=1

c∑
j=1

wij nij

c∑
i=1

c∑
j=1

wijRiCj

, (10.1)

where nij denotes the observed cell frequencies, wij denotes the cell weights, Ri

and Cj denote the observed row and column marginal frequency totals for i, j =
1, . . . , c, and

N =
c∑

i=1

c∑
j=1

nij
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denotes the table frequency total. For Cohen’s unweighted kappa measure of inter-
rater agreement, the cell disagreement “weights” are given by

wij =
⎧⎨
⎩

0 if i = j ,

1 otherwise ,

and for Cohen’s weighted kappa measure of inter-rater agreement the cell disagree-
ment weights are given by

wij =
⎧⎨
⎩

0 if i = j ,

|i − j | otherwise ,

for linear weighting, and

wij =
⎧⎨
⎩

0 if i = j ,

(i − j)2 otherwise ,

for quadratic weighting. For the frequency data given in Table 10.4 on p. 582,
Cohen’s linear-weighted kappa measure of inter-rater agreement is κw = +0.3333
and Cohen’s quadratic-weighted kappa measure of inter-rater agreement is κw =
+0.3333.

10.2 Inter-relationships Among the Measures

The inter-relationships among the various measures for a symmetrical 2×2 contin-
gency table can be summarized as follows. The Pearson product-moment correlation
coefficient, rxy ; the unstandardized slopes of the two regression lines, byx and bxy ;
Yule’s coefficient of colligation, Y ; Pearson’s mean-square contingency coefficient,
φ; Tschuprov’s T measure; Cramér’s V measure; Kendall’s τb measure; Stuart’s
τc measure; Somers’ dyx and dxy asymmetric measures; the two percentage
differences, Dx and Dy ; and Cohen’s κ unweighted and weighted measures of
chance-corrected inter-rater agreement are all equivalent measures, i.e.,

rxy = byx = bxy = Y = φ = T = V = τb = τc = dyx = dxy

= Dx = Dy = κ = κw .

Also, Pearson’s squared product-moment correlation coefficient, r2
xy ; Pearson’s

mean-squared contingency coefficient, φ2; Tschuprov’s T 2 measure; Cramér’s V 2

measure; Leik and Gove’s d c
N measure; and Goodman and Kruskal’s tb and ta
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measures of association are all equivalent measures, i.e.,

r2
xy = φ2 = T 2 = V 2 = d c

N = tb = ta .

10.2.1 Notational Inconsistencies

Measures of association for 2×2 contingency tables in particular, and r×c contin-
gency tables in general, can be very confusing. First, some measures are denoted
by uppercase Latin letters, e.g., Yule’s Q and Y , Tschuprov’s T 2, and Cramér’s V 2;
some measures are denoted by lowercase Latin letters, e.g., Somers’ dyx and dxy ,
Leik and Gove’s d c

N , and Goodman and Kruskal’s ta and tb; and some measures are
denoted by lowercase Greek letters, e.g., Pearson’s φ, Kendall’s τb, and Cohen’s κ .
While it would be preferable to reserve Greek letters for population parameters that
are being estimated by sample statistics and Latin letters for sample statistics, once
symbols are in common use it is difficult to standardize usage.1 Second, certain
measures of association appear as squared, whereas others do not. In particular,
for the 2×2 case, the non-squared symbols tb and ta for Goodman and Kruskal’s
asymmetric measures of nominal association are equivalent to Pearson’s symmetric
measures φ2 and r2

xy . Third, some measures norm between 0 and 1 for 2×2
contingency tables, e.g., Goodman and Kruskal’s ta and tb; others norm between
−1 and +1, e.g., Kendall’s τb and Cramér’s V ; and still others norm between 0 and
∞, e.g., the odds ratio. Finally, some measures identify the two variables as x and
y, e.g., Somers’ dyx and dxy , while others identify the two variables as a and b, e.g.,
Kendall’s τa and τb.

10.3 Extended Fourfold Contingency Tables

In some cases, measures of association have been introduced to analyze fourfold
tables that have either been extended to analyze a series of 2×2 contingency tables
or redesigned to consider multidimensional contingency tables with two categories
in each dimension. In this section a small number of such measures are considered,
including the Mantel–Haenszel test, McNemar’s Q test, Cochran’s Q test, Cohen’s
chance-corrected measure of inter-rater agreement, Fisher’s exact probability test
for 2×2×2 contingency tables, and tests for interactions in 2×2×2 and 2×2×2×2
contingency tables

1It was not too many years ago that while μx and σ 2
x denoted the population mean and variance,

respectively, μ̂x and σ̂ 2
x denoted the unbiased sample-estimated population mean and variance. The

American Psychological Association presently recommends using M for the sample mean instead
of the conventional x̄.
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Table 10.8 General layout of a 3-way contingency table with r = 2 rows, c = 2 columns, and S

strata

Stratum Column 1 Column 2 Total Stratum total Table total

1 Row 1 n111 n121 n1.1

Row 2 n211 n221 n2.1

Total n.11 n.21 n..1

2 Row 1 n112 n122 n1.2

Row 2 n212 n222 n2.2

Total n.12 n.22 n..2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

S Row 1 n11S n12S n1.S

Row 2 n21S n22S n2.S

Total n.1S n.2S n..S

Row 1 Total n11. n12. n1..

Row 2 Total n21. n22. n2..

Column Total n.1. n.2.

Table Total n...

10.4 The Mantel–Haenszel Test

The Mantel–Haenszel test, developed by Nathan Mantel and William Haenszel in
1959, is a test of significance for S combined 2×2 contingency tables.2 Suppose
that a treatment is compared with a control in each of S strata, where the outcome
is binary: success or failure. Of interest is whether or not the treatment increases the
probability of success.

Let nijk denote the cell frequency for i, j = 1, 2 discrete categories and k =
1, . . . , S discrete strata for a 2×2×S contingency table. Table 10.8 illustrates a
three-way contingency table with r = 2 rows, c = 2 columns, and S strata. Denote
by a dot (·) the partial sum of all rows, all columns, or all strata, depending on the
position of the (·) in the subscript list. If the (·) is in the first subscript position, the
sum is over all rows; if the (·) is in the second subscript position, the sum is over all
columns; and if the (·) is in the third subscript position, the sum is over all strata.
Thus, ni.. denotes the marginal frequency total of the ith row, i = 1, 2, summed over
all columns and strata; n.j. denotes the marginal frequency total of the j th column,
j = 1, 2, summed over all rows and strata; n..k denotes the marginal frequency
total of the kth stratum, k = 1, . . . , S, summed over all rows and columns; and
n... denotes the table frequency total. The Mantel–Haenszel statistical model, under
the null hypothesis, states that the S 2×2 contingency tables are independent and
the marginal frequency totals for each of the 2×2 contingency tables are fixed [17].

2The test is often called the Cochran–Mantel–Haenszel test as William Cochran presented
essentially the same test in an earlier paper [5].
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Then, the probability for the n11k frequency of each of the 2×2 contingency tables
under the null hypothesis is the hypergeometric point probability value given by

p (n11k|n1.k, n.1k, n..k) =
(

n.1k

n11k

)(
n.2k

n12k

)(
n..k

n1.k

)−1

= n1.k! n2.k! n.1k! n.2k!
n..k ! n11k! n12k! n21k! n22k! , (10.2)

where n..k = n11k + n12k + n21k + n22k, n2.k = n..k − n1.k , n.2k = n..k − n.1k , and
k = 1, . . . , S.

The test statistic of interest is given by

T =
S∑

k=1

n11k ,

where the summation is over only one cell since for any 2×2 contingency table with
fixed marginal frequency totals the entry in any one cell determines the entries in
the remaining three cells.

Under the null hypothesis (H0) of the model in Eq. (10.2), the mean and variance
of test statistic T are given by

E [T |H0] =
S∑

k=1

n1.k n.1k

n..k

and

VAR (T |H0) =
S∑

k=1

n1.k n2.k n.1k n.2k

(n..k)2(n..k − 1)
,

respectively. The Mantel–Haenszel test statistic, corrected for continuity, is given
by

M =
(∣∣T − E[T |H0]

∣∣− 1
2

)2

VAR(T |H0)
.

The Mantel–Haenszel test statistic, M , is approximately distributed as Pearson’s
chi-squared with one degree of freedom as N → ∞.3

3The symbol M for the Mantel–Haenszel test should not be confused with the symbol M for the
number of possible, equally-likely arrangements of the observed data under the Fisher–Pitman
permutation model.
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10.4.1 Example Analysis

Consider the example data set given in Table 10.9 with r = 2 rows, c = 2 columns,
S = 3 strata, and n... = 74 total observations. For the data listed in Table 10.9, the
observed value of test statistic T is

To =
S∑

k=1

n11k = 2 + 2 + 4 = 8.00 ,

the expected value of T under the null hypothesis is

E[T |H0] =
S∑

k=1

n1.k n.1k

n..k

= (3)(7)

32
+ (4)(4)

24
+ (5)(5)

18
= 2.7118 ,

the variance of T is

VAR (T |H0) =
S∑

k=1

n1.k n2.k n.1k n.2k

(n..k)2(n..k − 1)

= (3)(29)(7)(25)

(32)2(32 − 1)
+ (4)(20)(4)(20)

(24)2(24 − 1)
+ (5)(13)(5)(13)

(18)2(18 − 1)
= 1.7272 ,

Table 10.9 General layout of a 3-way contingency table with r = 2 rows, c = 2 columns, and
S = 3 strata

Stratum Column 1 Column 2 Total Stratum total Table total

1 Row 1 2 1 3

Row 2 5 24 29

Total 7 25 32

2 Row 1 2 2 4

Row 2 2 18 20

Total 4 20 24

3 Row 1 4 1 5

Row 2 1 12 13

Total 5 13 18

Row 1 Total 8 4 12

Row 2 Total 8 54 62

Column Total 16 58

Table Total 74
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and the observed Mantel–Haenszel test statistic is

Mo =
(∣∣To − E[T |H0]

∣∣− 1
2

)2

VAR(T |H0)
=
(∣∣8.00 − 2.7118

∣∣− 1
2

)2

1.7272
= 13.2742 .

(10.3)

Mantel and Haenszel’s M test statistic is approximately distributed as Pearson’s chi-
squared with one degree of freedom. For the observed value of Mo = 13.2742 the
approximate chi-squared probability value is P = 0.2691×10−3.

In Eq. (10.3), E[T |H0], VAR(T |H0), and the correction factor, are all invariant
under permutation, leaving only variable T . Thus, for the data listed in Table 10.9
the approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the observed data under the null hypothesis is

P(M ≥ Mo|H0) = number of M values ≥ Mo

L

= P(T ≥ To|H0) = number of T values ≥ To

L
= 2,555

1,000,000

= 0.2555×10−2 .

10.4.2 Measures of Effect Size

Two types of measures of effect size have been proposed to represent the strength of
a treatment effect [32]. One type, designated the d-family, is based on one or more
measures of the differences between groups or levels of an independent variable.
Representative of the d-family is Cohen’s d , which calculates the effect size by
the number of standard deviations separating the means of the groups or levels [8].
The second type of measure of effect size, designated the r-family, represents some
sort of correlation between the independent variables. Measures in the r-family are
typically measures of correlation or association, the most prominent being Pearson’s
squared product-moment correlation coefficient. Since the Mantel–Haenszel test is
based on a 2×2×S contingency table, the d-family is not applicable.

The r-family measures of effect size contains two types of measures: putative
maximum-corrected and chance-corrected. Maximum-corrected measures of effect
size standardize the observed test statistic value by the maximum possible value of
the test statistic. Maximum-corrected measures of effect size are bounded between
0 and 1 and are interpretable as the proportion of the maximum possible value of the
test statistic. On the other hand, chance-corrected measures of effect size standardize
the observed test statistic value by the expected value of the test statistic. Chance-
corrected measures of effect size can attain a maximum value of +1, but may be
less than 0 when the test statistic value is less than expected by chance and are
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interpretable as the proportion above, or below, what is expected by chance. In 2010
Berry, Johnston, and Mielke developed two measures of effect size for the Mantel–
Haenszel test statistic: a maximum-corrected and a chance-corrected measure of
effect size [2].

Maximum-Corrected Measure of Effect Size

Let Mo and To denote the observed values of M and T , respectively. Then, the
maximum-corrected measure of effect size is given by Mo divided by the maximum
possible value of M . The maximum value of T for an observed 2×2×S contingency
table is given by

Tmax =
S∑

k=1

min(n1.k, n.1k) ,

where min(n1.k, n.1k) is the maximum value of n11k in the kth of S 2×2 contingency
tables. Thus, the maximum value of M is given by

Mmax =
(∣∣Tmax − E[T |H0]

∣∣− 1
2

)2

VAR(T |H0)

and the maximum-corrected measure of effect size for M is given by the observed
value of M divided by the maximum value of M , i.e.,

ESM = Mo

Mmax
.

For the frequency data given in Table 10.2 on p. 578, the maximum value of T is

Tmax =
S∑

k=1

min(n1.k, n.1k) = 3 + 4 + 5 = 12.00 ,

the maximum value of M is

Mmax =
(∣∣Tmax − E[T |H0]

∣∣− 1
2

)2

VAR(T |H0)
=
(∣∣12.00 − 2.7118

∣∣− 1
2

)2

1.7272
= 44.7162 ,

and the maximum-corrected measure of effect size is

ESM = Mo

Mmax
= 13.2742

44.7162
= 0.2969 ,
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indicating that Mo = 13.2742 accounts for approximately 30% of the maximum
value of M , given the observed row, column, and stratum marginal frequency
distributions, {12, 62}, {16, 58}, and {32, 24, 18}, respectively.

Chance-Corrected Measure of Effect Size

A chance-corrected measure of effect size for the Mantel–Haenszel test may be
given by statistic M , standardized by the expected value of M . Thus, the chance-
corrected measure is given by

ESC = M − E[M|H0]
Mmax − E[M|H0] = 1 − Mmax − M

Mmax − 1
,

where E[M] = 1 since the mean of a chi-squared distribution is equal to the degrees
of freedom and M is approximately distributed as chi-squared with one degree of
freedom. For the frequency data given in Table 10.2, the chance-corrected measure
of effect size is

ESC = 1 − 44.7162 − 13.2742

44.7162 − 1
= +0.2808 ,

indicating that Mo = 13.2742 accounts for approximately 28% above what is
expected by chance. In general, chance-corrected measures of effect size, such as
ESC, tend to slightly smaller values than maximum-corrected measures, such as
ESM, for the same set of data [2, pp. 398–399].

10.5 Cohen’s Kappa Measure

In 1960 Jacob Cohen introduced statistic kappa, an unweighted, chance-corrected
measure of inter-rater agreement between two judges for a set of c disjoint,
unordered categories [6]. In 1968 Cohen expanded kappa to include weight-
ing for measuring the agreement between two judges for a set of c disjoint,
ordered categories [7]. Unweighted kappa is discussed more completely in Chap. 4,
Sect. 4.5, and weighted kappa is discussed in detail in Chap. 6, Sect. 6.5. Whereas
unweighted kappa for categorical data did not distinguish among magnitudes of
disagreement, weighted kappa for ordinal-level data incorporated the magnitude of
each disagreement and provided partial credit for disagreements when agreement
was not complete [16]. Weighted kappa is easily extended to interval-level data [3].
The usual approach is to assign weights to each disagreement pair with larger
weights indicating greater disagreement. In the cases of both, unweighted and
weighted kappa, kappa is equal to +1 when perfect agreement between the two
judges occurs, 0 when agreement is equal to that expected under independence, and
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negative when agreement is less than expected by chance. Unweighted kappa and
weighted kappa are conventionally designated as κ and κw, respectively. Two forms
of weighting are popular for weighted kappa: linear weighting, in which category
disagreement weights progress outward linearly from the agreement diagonal, and
quadratic weighting, in which category disagreement weights progress outward
geometrically from the agreement diagonal. In keeping with the theme of this
chapter—fourfold contingency tables—κ and κw are extended to multiple judges
with c = 2 categories.

Consider first b = 2 judges and c = 2 categories. A generalized calculation
formula that applies to both unweighted and weighted kappa for b = 2 judges and
c categories is given by

κ = 1 −
N

c∑
i=1

c∑
j=1

wij nij

c∑
i=1

c∑
j=1

wijRiCj

, (10.4)

where nij denotes the observed cell frequencies, wij denotes the cell weights, Ri

and Cj denote the observed row and column marginal frequency totals for i, j =
1, . . . , c, and

N =
c∑

i=1

c∑
j=1

nij

denotes the table frequency total.
Given a c×c agreement table with N objects cross-classified by the ratings

of two independent judges into c disjoint categories, an exact permutation test
generates all M possible, equally-likely arrangements of the N objects in the
c2 cells, while preserving the total number of objects in each category, i.e., the
marginal frequency distributions. For each arrangement of cell frequencies with
fixed marginal frequency distributions, the kappa statistic, κ , and the exact point
probability, p(nij |ni., n.j , N), are calculated, where

p(nij |Ri,Cj ,N) =

(
c∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠

N !
c∏

i=1

c∏
j=1

nij !

is the conventional hypergeometric probability of a c×c contingency table.
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Let κo denote the value of the observed weighted kappa statistic and M denote
the total number of distinct cell frequency arrangements of the N objects in the c×c

agreement table, given fixed marginal frequency totals. Then the exact probability
value of κo under the null hypothesis is given by

P(κo|H0) =
M∑

k=1

�(κk) p(nij |Ri,Cj ,N) ,

where

�(κk) =
⎧⎨
⎩

1 if κk ≥ κo ,

0 otherwise .

When M is very large, exact permutation analyses quickly become impractical and
Monte Carlo resampling procedures become necessary. Let L denote a random
sample of all M possible values of κ . Then, under the null hypothesis the resampling
approximate probability value for the observed value of κ , κo is given by

P (κo) = 1

L

L∑
l=1

�l (κ) ,

where

�l (κ) =
⎧⎨
⎩

1 if κ ≥ κo ,

0 otherwise .

To calculate Cohen’s unweighted kappa with Eq. (10.4) on p. 597, the cell
disagreement “weights” are given by

wij =
⎧⎨
⎩

0 if i = j ,

1 otherwise .

To calculate Cohen’s weighted kappa with linear weighting, the cell disagreement
weights are given by

wij =
⎧⎨
⎩

0 if i = j ,

|i − j | otherwise .
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To calculate Cohen’s weighted kappa with quadratic weighting, the cell disagree-
ment weights are given by

wij =
⎧⎨
⎩

0 if i = j ,

(i − j)2 otherwise .

Thus, as demonstrated, for b = 2 judges and c = 2 categories, the cell disagreement
weights are the same for unweighted kappa (κ) and weighted kappa (κw) with either
linear or quadratic weighting.

10.5.1 Example 1

To illustrate the application of Cohen’s unweighted kappa with b = 2 judges and
c = 2 categories, consider the frequency data given in Table 10.10, where b = 2
independent judges have each assigned N = 123 observations to c = 2 disjoint,
unordered categories labeled Pro and Con. Assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then following
Eq. (10.4) on p. 597,

κ = 1 −
N

c∑
i=1

c∑
j=1

wij nij

c∑
i=1

c∑
j=1

wijRiCj

= 1 − 123
[
(0)(42) + (1)(23) + (1)(18) + (0)(40)

]
(0)(65)(60) + (1)(65)(63) + (1)(58)(60) + (0)(58)(63)

= +0.3343 ,

indicating approximately 33% agreement between the two judges above that
expected by chance.

For the frequency data given in Table 10.10, there are only

M = min(a + b, a + c) − max(0, a − d) + 1

= min(65, 60) − max(0, 42 − 40) + 1 = 60 − 2 + 1 = 59

Table 10.10 Example 2×2
contingency table for b = 2
independent judges and c = 2
disjoint categories

Judge 2

Judge 1 Pro Con Total

Pro 42 23 65

Con 18 40 58

Total 60 63 123
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possible, equally-likely arrangements in the reference set of all permutations of
the cell frequencies in Table 10.10 given the observed row and column marginal
frequency distributions, {65, 58} and {60, 63}, respectively, making an exact per-
mutation analysis possible. If the M = 59 possible arrangements of the frequency
data given in Table 10.10 occur with equal chance, the exact probability value of κ

under the null hypothesis is the sum of the hypergeometric point probability values
associated with κ = +0.3343 or greater.

Table 10.11 lists the n11 cell frequency values, unweighted kappa values,
and associated hypergeometric probability values for the frequency data given in
Table 10.10, where the n11 cell values associated with κ values equal to or greater

Table 10.11 Listing of the M = 59 possible arrangements of cell frequencies, unweighted kappa
values, and associated hypergeometric probability values for the data given in Table 10.10

n11 Kappa Probability n11 Kappa Probability

2 −0.9648 0.2825×10−32 32 +0.9505×10−2 0.1425

3 −0.9328 0.3441×10−29 33 +0.4198×10−1 0.1287

4 −0.8998 0.1520×10−26 34 +0.7446×10−1 0.1022

5 −0.8673 0.3462×10−24 35 +0.1069 0.7033×10−1

6 −0.8349 0.4760×10−22 36 +0.1394 0.4370×10−1

7 −0.8024 0.4333×10−20 37 +0.1719 0.2349×10−1

8 −0.7699 0.2775×10−18 38 +0.2044 0.1106×10−1

9 −0.7374 0.1305×10−16 39 +0.2368 0.4552×10−2

10 −0.7049 0.4660×10−15 40 +0.2693 0.1635×10−2

11 −0.6725 0.1295×10−13 41 +0.3018 0.5113×10−3

12 −0.6400 0.2855×10−12 42∗ +0.3343 0.1388×10−3

13 −0.6075 0.5078×10−11 43∗ +0.3667 0.3259×10−4

14 −0.5750 0.7388×10−10 44∗ +0.3992 0.6595×10−5

15 −0.5426 0.8888×10−9 45∗ +0.4317 0.1145×10−5

16 −0.5101 0.8928×10−7 46∗ +0.4642 0.1697×10−6

17 −0.4776 0.7548×10−7 47∗ +0.4966 0.2135×10−7

18 −0.4451 0.5410×10−6 48∗ +0.5291 0.2262×10−8

19 −0.4127 0.3306×10−5 49∗ +0.5616 0.2004×10−9

20 −0.3802 0.1732×10−4 50∗ +0.5941 0.1470×10−10

21 −0.3477 0.7814×10−4 51∗ +0.6265 0.8822×10−12

22 −0.3152 0.3047×10−3 52∗ +0.6590 0.4275×10−13

23 −0.2828 0.1031×10−2 53∗ +0.6915 0.1645×10−14

24 −0.2503 0.3034×10−2 54∗ +0.7240 0.4921×10−16

25 −0.2178 0.7788×10−2 55∗ +0.7564 0.1114×10−17

26 −0.1853 0.1747×10−1 56∗ +0.7889 0.1842×10−19

27 −0.1529 0.3433×10−1 57∗ +0.8214 0.2115×10−21

28 −0.1204 0.5913×10−1 58∗ +0.8539 0.1563×10−23

29 −0.8792×10−1 0.8941×10−1 59∗ +0.8863 0.6507×10−26

30 −0.5545×10−1 0.1188 60∗ +0.9188 0.1122×10−28

31 −0.2297×10−1 0.1387
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than the observed value of κ = +0.3343 are indicated with asterisks. Because there
is only one degree of freedom, it is sufficient to list the cell frequency values for
only one cell, n11. For the frequency data given in Table 10.10, the exact upper-tail
hypergeometric probability value of the observed κ value is

P = 0.1388×10−3 + 0.3259×10−4

+ · · · + 0.6507×10−26 + 0.1122×10−28 = 0.1793×10−3.

10.5.2 Example 2

Although weighted and unweighted kappa were originally formulated to compare
only two judges, both κ and κw can be generalized to accommodate multiple
judges [25]. However, with multiple judges an exact permutation analysis becomes
impractical except for very small sample sizes; therefore, a Monte Carlo resampling
permutation analysis is preferred when analyzing agreement data from multiple
judges. The analysis for b multiple judges may be conceptualized as a b-way
contingency table with c = 2 categories on each axis. Figure 10.1 illustrates a
2×2×2 contingency table with b = 3 judges and c = 2 disjoint, unordered
categories labeled Pro and Con.

To illustrate the application of Cohen’s kappa with multiple judges and c =
2 disjoint categories, consider the frequency data given in Table 10.12, where
b = 3 judges have independently assigned N = 254 observations to c = 2
categories labeled Pro and Con. A generalized calculation formula that applies to

Fig. 10.1 Graphic depiction
of a 2×2×2 contingency
table with b = 3 independent
judges and c = 2 disjoint
categories
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Table 10.12 Example
2×2×2 contingency table for
b = 3 independent judges and
c = 2 disjoint categories

Judge 3

Judge 1 Judge 2 Pro Con

Pro Pro 42 23

Con 18 40

Con Pro 41 29

Con 33 28

both unweighted and weighted kappa for b = 3 judges and c categories is given by

κ = 1 −
N2

c∑
i=1

c∑
j=1

c∑
k=1

wijknijk

c∑
i=1

c∑
j=1

c∑
k=1

wijkRiCjSk

, (10.5)

where nijk denotes the observed cell frequencies, wijk denotes the cell weights, Ri ,
Cj , and Sk denote the observed row, column, and slice marginal frequency totals for
i, j, k = 1, . . . , c, and

N =
c∑

i=1

c∑
j=1

c∑
k=1

nijk

denotes the table frequency total.
Given a c×c×c agreement table with N objects cross-classified by b = 3

independent judges, an exact permutation test involves generating all possible,
equally-likely arrangements of the N objects to the c3 cells, while preserving
the observed row, column, and slice marginal frequency distributions, {123, 131},
{135, 119}, and {134, 120}, respectively. For each arrangement of cell frequencies,
the kappa statistic, κ , and the exact hypergeometric point probability value under
the null hypothesis, p(nijk |Ri,Cj , Sk,N), are calculated, where

p(nijk |Ri,Cj , Sk,N) =

(
c∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠
(

c∏
k=1

Sk !
)

(N !)2
c∏

i=1

c∏
j=1

c∏
k=1

nijk !

[20].
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If κo denotes the value of the observed kappa test statistic, the exact probability
value of κo under the null hypothesis is given by

P(κo|H0) =
M∑
l=1

�l

(
nijk |Ri,Cj , Sk,N

)
,

where

�l

(
nijk |Ri,Cj , Sk,N

) =
⎧⎨
⎩

p(nijk |Ri,Cj , Sk,N) if κ ≥ κo ,

0 otherwise ,

and M denotes the total number of possible, equally-likely arrangements in the
reference set of all permutations of cell frequencies in Table 10.12 given the
observed marginal frequency distributions. When M is very large, as is typical
with multi-way contingency tables, exact tests are impractical and Monte Carlo
resampling becomes necessary, where a random sample, L, of the M possible
arrangements of cell frequencies provides for a comparison of κ test statistics
calculated on the L random tables with the κ test statistic calculated on the observed
table.

Unweighted Kappa

Unweighted kappa and weighted kappa, with either linear or quadratic weighting,
yield the same result when analyzing agreement data for b = 2 judges and c = 2
categories. For b > 2 judges and c = 2 categories, unweighted kappa and weighted
kappa usually yield different results, but weighted kappa with linear weighting and
weighted kappa with quadratic weighting yield the same result. For the frequency
data given in Table 10.12, assign the number 1 to the categories labeled “Pro” and
the number 2 to the categories labeled “Con.” Then the cell disagreement “weights”
for unweighted kappa are given by

wijk =
⎧⎨
⎩

0 if i = j = k ,

1 otherwise .

Following Eq. (10.5) on p. 602, Cohen’s unweighted kappa coefficient is κ =
+0.1862, indicating approximately 19% agreement among the b = 3 judges
above that expected by chance. If κo denotes the observed value of κ , the
approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the cell frequencies, given the observed row, column,
and slice marginal frequency distributions, {123, 131}, {135, 119}, and {134, 120},
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respectively, is

P(κ ≥ κo|H0) = number of κ values ≥ κo

L
= 2,250

1,000,000
= 0.0023 .

Weighted Kappa

For the frequency data given in Table 10.12, assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then the linear cell
disagreement weights are given by

wijk = |i − j | + |i − k| + |j − k|

and the quadratic cell disagreement weights are given by

wijk = (i − j)2 + (i − k)2 + (j − k)2

for i, j, k = 1, . . . , c. Table 10.13 lists the eight cell indices and the associated
linear and quadratic weights for a 2×2×2 agreement table, demonstrating that with
c = 2 categories, the linear and quadratic weights are identical.

Following Eq. (10.5) on p. 602, Cohen’s weighted kappa with linear weighting
is κw = +0.0342, indicating approximately 3% agreement among the b = 3
judges above that expected by chance. If κo denotes the observed value of κw, the
approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the cell frequencies, given the observed row, column,
and slice marginal frequency distributions, {123, 131}, {135, 119}, and {134, 120},
respectively, is

P(κw ≥ κo|H0) = number of κw values ≥ κo

L
= 190,610

1,000,000
= 0.1906 .

Table 10.13 Cells, linear
weights, and quadratic
weights for b = 3
independent judges and c = 2
disjoint categories

Weight

Cell Linear Quadratic

111 0 0

112 2 2

121 2 2

122 2 2

211 2 2

212 2 2

221 2 2

222 0 0
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Because with c = 2 categories the linear and quadratic weights are the same, the
results are identical with quadratic weighting, i.e., κw = +0.0342 and P = 0.1906.

10.5.3 Example 3

For this third example of Cohen’s chance-corrected measure of inter-rater agree-
ment, consider b = 4 judges who independently assign N = 76 observations to
c = 2 disjoint, unordered categories labeled Pro and Con. The frequency data are
given in Table 10.14.

A generalized calculation formula that applies to both unweighted and weighted
kappa for b = 4 judges and c categories is given by

κ = 1 −
N3

c∑
i=1

c∑
j=1

c∑
k=1

c∑
l=1

wijklnijkl

c∑
i=1

c∑
j=1

c∑
k=1

c∑
l=1

wijklRiCjSkLl

, (10.6)

where nijkl denotes the observed cell frequencies, wijkl denotes the cell weights, Ri ,
Cj , Sk , and Ll denote the observed row, column, slice, and level marginal frequency
totals for i, j, k, l = 1, . . . , c, and

N =
c∑

i=1

c∑
j=1

c∑
k=1

c∑
l=1

nijkl

denotes the table frequency total.
Given a c×c×c×c agreement table with N objects cross-classified by b = 4

independent judges, an exact permutation test involves generating all possible,
equally-likely arrangements of the N objects to the c4 cells, while preserving the

Table 10.14 Example
2×2×2×2 contingency table
for b = 4 independent judges
and c = 2 disjoint categories

Judge 4

Judge 1 Judge 2 Judge 3 Pro Con

Pro Pro Pro 5 2

Con 4 1

Con Pro 7 3

Con 9 2

Con Pro Pro 8 4

Con 1 9

Con Pro 7 3

Con 3 8
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observed row, column, slice, and level marginal frequency distributions, {33, 43},
{34, 42}, {39, 37}, and {44, 32}, respectively. For each arrangement of cell frequen-
cies, the kappa statistic, κ , and the exact hypergeometric point probability value
under the null hypothesis, p(nijkl |Ri,Cj , Sk, Ll,N), are calculated, where

p(nijkl |Ri,Cj , Sk, Ll,N) =

(
c∏

i=1

Ri !
)⎛
⎝ c∏

j=1

Cj !
⎞
⎠
(

c∏
k=1

Sk!
)(

c∏
l=1

Ll !
)

(N !)3
c∏

i=1

c∏
j=1

c∏
k=1

c∏
l=1

nijkl !

[20].
If κo denotes the value of the observed kappa test statistic, the exact probability

value of κo under the null hypothesis is given by

P(κo|H0) =
M∑
l=1

�l

(
nijkl |Ri,Cj , Sk, Ll,N

)
,

where

�l

(
nijkl |Ri,Cj , Sk, Ll,N

) =
⎧⎨
⎩

p(nijkl |Ri,Cj , Sk, Ll,N) if κ ≥ κo ,

0 otherwise ,

and M denotes the total number of possible, equally-likely arrangements in the
reference set of all permutations of cell frequencies in Table 10.14 given the
row, column, slice, and level observed marginal frequency distributions, {33, 43},
{34, 42}, {39, 37}, and {44, 32}, respectively. When M is very large, as is typical
with multi-way contingency tables, exact tests are impractical and Monte Carlo
resampling becomes necessary, where a random sample, L, of the M possible
arrangements of cell frequencies provides for a comparison of κ test statistics
calculated on the L random tables with the κ test statistic calculated on the observed
table.

Unweighted Kappa

For the frequency data given in Table 10.14, assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then the cell
disagreement “weights” for unweighted kappa are given by

wijkl =
⎧⎨
⎩

0 if i = j = k = l ,

1 otherwise .



10.5 Cohen’s Kappa Measure 607

Following Eq. (10.6) on p. 605, Cohen’s unweighted kappa coefficient is κ =
+0.0561, indicating approximately 6% agreement among the b = 4 judges above
that expected by chance. If κo denotes the observed value of κ , the approximate
Monte Carlo resampling probability value based on L = 1,000,000 random
arrangements of the cell frequencies, given the observed marginal frequency
distributions, is

P(κ ≥ κo|H0) = number of κ values ≥ κo

L
= 9,475

1,000,000
= 0.0095 .

Weighted Kappa

For the frequency data given in Table 10.14, assign the number 1 to the categories
labeled “Pro” and the number 2 to the categories labeled “Con.” Then the linear cell
disagreement weights are given by

wijkl = |i − j | + |i − k| + |i − l| + |j − k| + |j − l| + |k − l|
and the quadratic cell disagreement weights are given by

wijkl = (i − j)2 + (i − k)2 + (i − l)2 + (j − k)2 + (j − l)2 + (k − l)2

for i, j, k, l = 1, . . . , c.
Table 10.15 lists the 16 cell indices and the associated linear and quadratic

weights for a 2×2×2×2 agreement table. Note that for c = 2 categories, the linear
and quadratic weights are identical.

Table 10.15 Cells, linear
weights, and quadratic
weights for b = 4
independent judges and c = 2
disjoint categories

Weight

Cell Linear Quadratic

1111 0 0

1112 3 3

1121 3 3

1122 4 4

1211 3 3

1212 4 4

1221 4 4

1222 3 3

2111 3 3

2112 4 4

2121 4 4

2122 3 3

2211 4 4

2212 3 3

2221 3 3

2222 0 0



608 10 Fourfold Contingency Tables, II

Following Eq. (10.6) on p. 605, Cohen’s weighted kappa with linear weighting
is κw = +0.0654, indicating approximately 7% agreement among the b = 4
judges above that expected by chance. If κo denotes the observed value of κw, the
approximate Monte Carlo resampling probability value based on L = 1,000,000
random arrangements of the cell frequencies, given the observed row, column, slice,
and level marginal frequency distributions, {33, 43}, {34, 42}, {39, 37}, and {44, 32},
respectively, is

P(κw ≥ κo|H0) = number of κw values ≥ κo

L
= 3,967

1,000,000
= 0.0040 .

Because, with c = 2 categories, the linear and quadratic weights are the same, the
results are identical to those obtained with quadratic weighting, i.e., κw = +0.0654
and P = 0.0040.

10.6 McNemar’s and Cochran’s Q Tests for Change

In 1947 Quinn McNemar proposed a test for change over k = 2 time periods [18].
In 1950 William Cochran developed a test for change for k ≥ 2 time periods [4]. For
k = 2, Cochran’s Q test for related proportions is identical to McNemar’s Q test
for related proportions. The McNemar and Cochran Q tests are described in detail
in Chap. 4, Sects. 4.6 and 4.7, respectively.

10.6.1 McNemar’s Q Test for Change

Represent a 2×2 contingency table as in Table 10.16. Then, McNemar’s test for
change is given by

Q = (B − C)2

B + C
,

where B and C represent the two cells of change, i.e., Pro to Con and Con to Pro.

Table 10.16 Notation for a
2×2 cross-classification for
McNemar’s test for change

Time 2

Time 1 Pro Con Total

Pro A B A + B

Con C D C + D

Total A + C B + D N
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Illustration

To illustrate the calculation of probability values for McNemar’s Q test for change,
consider the frequency data given in Table 10.17, where N = 9 subjects have been
recorded as either Pro or Con on a specified issue at Time 1 and again on the same
issue at Time 2. For the frequency data given in Table 10.17, the observed value of
McNemar’s Q test statistic is

Q = (B − C)2

B + C
= (5 − 1)2

5 + 1
= 2.6667 .

The exact probability value of an observed value of Q, under the null hypothesis,
is given by the sum of the hypergeometric point probability values associated with
the Q values equal to or greater than the observed value of Q. For the frequency
data given in Table 10.17, there are only

M = min(A + B,A + C) − max(0, A − D) + 1

= min(7, 3) − max(0, 2 − 1) + 1 = 3 − 1 + 1 = 3

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the two cell frequencies of change, 5 and 1, and only two Q

values are equal to or greater than the observed value of Q = 2.6667. The exact
upper-tail probability of the observed Q value is P = 0.9167, i.e., the sum of the
hypergeometric point probability values associated with values of Q = 2.6667 or
greater.

More specifically, Table 10.18 displays the complete reference set of three
possible 2×2 contingency tables given the row and column marginal frequency
distributions, {7, 2} and {3, 6}, respectively. For Table A in Table 10.18, Q = 2.0000
and the associated hypergeometric point probability value is p = 0.0833. For

Table 10.17 Example
frequency data for
McNemar’s test for change
with N = 9 subjects

Time 2

Time 1 Pro Con Total

Pro 2 5 7

Con 1 1 2

Total 3 6 9

Table 10.18 Three possible
cell arrangements given the
marginal frequency
distributions {7, 2} and {3, 6},
Q values, and hypergeometric
point probability values

Table Frequency Q Probability

A 1 6

2 0 2.0000 0.0833

B 2 5

1 1 2.6667 0.5000

C 3 4

0 2 4.0000 0.4167
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Table B in Table 10.18, the observed table, Q = 2.6667 and the associated
hypergeometric point probability value is p = 0.5000. And for Table C in
Table 10.18, Q = 4.0000 and the associated hypergeometric point probability
value is p = 0.4167. Thus, the cumulative hypergeometric probability value for
Q = 2.6667 is the sum of the hypergeometric point probability values associated
with values of Q = 2.6667 or greater; in this case, the probability values associated
with Q = 2.6667 and Q = 4.0000, i.e., P = 0.5000 + 0.4167 = 0.9167.

McNemar’s Q test statistic is approximately distributed as chi-squared with 1
degree of freedom. While no responsible researcher would knowingly fit a chi-
squared distribution function to only three possible outcomes, small samples, such
as in Table 10.17, sometimes occur inadvertently. Suppose a researcher is employed
by a national food service provider and begins with a reasonable, but small sample
of subjects. As the research analysis proceeds, an interest develops in a subset of
subjects composed of only women, breast-feeding their first child, and residing
on a Native American reservation. Such unplanned small samples are relatively
common and are not suitable for a conventional analysis. The chi-squared value
for the observed data in Table 10.17 is χ2 = 0.3214 and the probability value is
P = 0.5708, which, as expected, is far removed from the exact probability value of
P = 0.9167.

Example

A more realistic example illustrating McNemar’s Q test for change is given in
Table 10.19, where N = 70 subjects were recorded as either Pro or Con on a
specified issue at Time 1 and again on the same issue at Time 2. At Time 1, 40
of the 70 subjects were in favor of the issue and 30 subjects were opposed. At Time
2, 50 subjects were in favor and 20 were opposed. Of those subjects that changed,
seven changed from Pro to Con and 17 changed from Con to Pro. For the frequency
data given in Table 10.19, McNemar’s test statistic is

Q = (B − C)2

B + C
= (7 − 17)2

7 + 17
= 100

24
= 4.1667 .

Table 10.19 Example
frequency data for
McNemar’s test for change
with N = 70 subjects

Time 2

Time 1 Pro Con Total

Pro 33 7 40

Con 17 13 30

Total 50 20 70
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For the frequency data given in Table 10.19, there are only

M = min(A + B,A + C) − max(0, A − D) + 1

= min(40, 50) − max(0, 33 − 13) + 1 = 40 − 20 + 1 = 21

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{40, 30} and {50, 20}, respectively, making an exact permutation analysis possible.
Since M = 21 is a reasonably small number of arrangements, it will be illustrative
to list the 21 sets of cell frequencies, McNemar’s Q values, and the associated
hypergeometric point probability values in Table 10.20, where the rows with
hypergeometric probability values associated with Q values equal to or greater than
the observed value of Q = 4.1667 are indicated with asterisks.

If the M = 21 possible arrangements of the frequency data given in Table 10.19
occur with equal chance, the exact probability of Q under the null hypothesis is the
sum of the hypergeometric point probability values associated with Q = 4.1667 or
greater. For the frequency data given in Table 10.19, the exact upper-tail probability

Table 10.20 Cell
frequencies, McNemar’s Q

values, and exact
hypergeometric point
probability values for
M = 21 possible
arrangements of the observed
data in Table 10.19

Cell frequencies

Table n11 n12 n21 n22 Q Probability

1 20 20 30 0 2.0000 0.8515×10−6

2 21 19 29 1 2.0833 0.2433×10−4

3 22 18 28 2 2.1739 0.3047×10−3

4 23 17 27 3 2.2727 0.2225×10−2

5 24 16 26 4 2.3809 0.1064×10−1

6 25 15 25 5 2.5000 0.3541×10−1

7 26 14 24 6 2.6316 0.8512×10−1

8 27 13 23 7 2.7778 0.1513

9 28 12 22 8 2.9412 0.2020

10 29 11 21 9 3.1250 0.2043

11 30 10 20 10 3.3333 0.1573

12 31 9 19 11 3.5714 0.9227×10−1

13 32 8 18 12 3.8462 0.4019×10−1

14∗ 33 7 17 13 4.1667 0.1379×10−1

15∗ 34 6 16 14 4.5455 0.3448×10−2

16∗ 35 5 15 15 5.0000 0.6305×10−3

17∗ 36 4 14 16 5.5556 0.8210×10−4

18∗ 37 3 13 17 6.2500 0.7309×10−5

19∗ 38 2 12 18 7.1429 0.4167×10−6

20∗ 39 1 11 19 8.3333 0.1350×10−7

21∗ 40 0 10 20 10.0000 0.1856×10−9

Sum 1.0000
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of the observed value of Q value is

P = 0.1379×10−1 + 0.3448×10−2 + 0.6305×10−3 + 0.8210×10−4

+ 0.7309×10−5 + 0.4167×10−6 + 0.1350×10−7 + 0.1856×10−9

= 0.0180 .

For comparison, the value of chi-squared for the frequency data given in Table 10.19
is χ2 = 5.6058 and with 1 degree of freedom, the probability value is P = 0.0179,
which compares favorably with the exact probability value of P = 0.0180.

10.6.2 Cochran’s Q Test for Change

Cochran’s Q test for k ≥ 2 treatments can be considered an extension of McNemar’s
Q test for k = 2 treatments or time periods. Cochran’s Q test is described more
completely in Chap. 4, Sect. 4.7.

Cochran’s Q test for the analysis of k treatment conditions (columns) and N

subjects (rows) is given by

Q =
(k − 1)

⎛
⎝k

k∑
j=1

C2
j − A2

⎞
⎠

kA − B
, (10.7)

where

Cj =
N∑

i=1

xij

is the number of 1s in the j th of k columns,

Ri =
k∑

j=1

xij

is the number of 1s in the ith of N rows,

A =
N∑

i=1

Ri , B =
N∑

i=1

R2
i ,
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and xij denotes the cell entry of either 0 or 1 associated with the ith of N rows and
the j th of k columns. The null hypothesis stipulates that each of the

M =
N∏

i=1

(
k

Ri

)

distinguishable arrangements of 1s and 0s within each of the N rows occurs with
equal probability, given that the values of R1, . . . , RN are fixed [21].

Example

To illustrate Cochran’s Q test for change, consider the binary data listed in
Table 10.21 consisting of the responses (1 or 0) for N = 9 subjects evaluated
over k = 3 time periods, where a 1 indicates success on a prescribed task and a
0 indicates failure. For the binary data listed in Table 10.21,

k∑
j=1

C2
j = 12 + 82 + 52 = 90 ,

A =
N∑

i=1

Ri = 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 2 = 14 ,

B =
N∑

i=1

R2
i = 22 + 22 + 22 + 22 + 11 + 12 + 12 + 12 + 22 = 24 ,

Table 10.21 Successes (1)
and failures (0) of N = 9
subjects on a series of k = 3
time periods

Time

Subject 1 2 3 Ri

1 0 1 1 2

2 0 1 1 2

3 0 1 1 2

4 0 1 1 2

5 0 1 0 1

6 0 1 0 1

7 1 0 0 1

8 0 1 0 1

9 0 1 1 2

Cj 1 8 5 14
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and, following Eq. (10.7) on p. 612, the observed value of Cochran’s Q is

Q =
(k − 1)

⎛
⎝k

k∑
j=1

C2
j − A2

⎞
⎠

kA − B
= (3 − 1)[(3)(90) − 142]

(3)(14) − 24
= 8.2222 .

For the binary data listed in Table 10.21, there are only

M =
N∏

i=1

(
k

Ri

)
=
(

3

1

)4(3

2

)5

= (34)(35) = 19,683

possible, equally-likely arrangements in the reference set of all permutations of the
observed binary data, making an exact permutation analysis feasible. Based on M =
19,683 arrangements of the observed data, there are 312 Q values equal to or greater
than the observed value of Q = 8.2222. If Qo denotes the observed value of Q, the
exact upper-tail probability value of the observed data is

P
(
Q ≥ Qo|H0

) = number of Q values ≥ Qo

M
= 312

19,683
= 0.0159 .

For comparison, under the null hypothesis Cochran’s Q is approximately distributed
as chi-squared with k − 1 degrees of freedom. The approximate probability of Q =
8.2222 with k − 1 = 3 − 1 = 2 degrees of freedom is P = 0.0164.

10.7 Fisher’s Exact Probability Test

Fisher’s exact probability test was independently developed by R.A. Fisher, Joseph
Irwin, and Frank Yates in the early 1930s [11, 14, 34]. Characteristically, Fisher’s
exact test is applied to 2×2 contingency tables, but can be generalized and extended
to more complex contingency tables. The eponymous exact test for 2×2 tables
and several extensions are detailed in Chap. 4, Sects. 4.11 and 4.12. In this chapter
on fourfold contingency tables, only 2×2 and 2×2×2 contingency tables are
considered.

10.7.1 Analysis of 2×2 Contingency Tables

Consider a 2×2 contingency table containing N cases, where xo denotes the
observed frequency of any cell and r and c represent the row and column marginal
frequency totals, respectively, corresponding to xo. Table 10.22 illustrates the
notation for a 2×2 contingency table.
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Table 10.22 Example
notation for a 2×2
contingency table

A1 A2 Total

B1 x r − x r

B2 c − x N − r − c + x N − r

Total c N − c N

Table 10.23 Example 2×2
contingency table for Fisher’s
exact test

A1 A2 Total

B1 13 2 15

B2 7 8 15

Total 20 10 30

Given the notation in Table 10.22, Fisher’s exact test for 2×2 contingency tables
is given by

P =
b∑

x=a

p(x|r, c,N) ,

where a = max(0, r + c − N), b = min(r, c), and the hypergeometric point
probability value is given by

p(x|r, c,N) =
(

c

x

)(
N − c

r − x

)(
N

r

)−1

= r! (N − r)! c! (N − c)!
N ! x! (r − x)! (N − r − c − x)! .

To illustrate Fisher’s exact probability test for a multi-way contingency table,
consider the 2×2 contingency table given in Table 10.23 where xo = 13, r = 15,
c = 20, and N = 30.

For the frequency data given in Table 10.23, there are only

M = min(r, c) − max(0, r + c − N) + 1

= min(15, 20) − max(0, 15 + 20 − 30) + 1 = 15 − 5 + 1 = 11

possible, equally-likely arrangements in the reference set of all permutations of cell
frequencies given the observed row and column marginal frequency distributions,
{15, 15} and {20, 10}, respectively, making an exact permutation analysis possible.
Table 10.24 lists the M = 11 possible values of x and associated hypergeometric
point probability values to nine decimal places.

The exact probability value is obtained by summing all the hypergeometric point
probability values equal to or less than the hypergeometric point probability value
of the observed table, indicated with asterisks in Table 10.24. Thus,

P = 0.022488756 + 0.002498751 + 0.000099950 = 0.025087457
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Table 10.24 Probability
values for M = 11 possible
arrangements of cell
frequencies in Table 10.23,
given the marginal frequency
distributions {15, 15} and
{20, 10}

x p(x|r, c,N)

5 0.000099950

6 0.002498751

7 0.022488756

8 0.097451274

9 0.227386307

10 0.300149925

11 0.227386307

12 0.097451274

13∗ 0.022488756

14∗ 0.002498751

15∗ 0.000099950

Total 1.000000000

for the upper tail of the distribution, i.e., the sum of the hypergeometric point
probability values associated with x = 13, 14, and 15. Since the probability
distribution is symmetric in this case, the exact hypergeometric probability value
is twice the probability of the upper tail, i.e., P = 2(0.0251) = 0.0502.

10.7.2 Analysis of 2×2×2 Contingency Tables

Analyses of multi-way contingency tables are more complex than simple two-way
tables; see Chap. 4, Sect. 4.12. For a two-way contingency table the degrees of
freedom are given by df = (r − 1)(c − 1), where r denotes the number of rows
and c denotes the number of columns. Thus, in the case of a 2×2 contingency table
the degrees of freedom are (2 − 1)(2 − 1) = 1 and only one cell frequency need
be permuted over its range. In the 2×2 example above, the chosen cell (A1B1) was
designated as x in Table 10.22.

For multi-way contingency tables the degrees of freedom are given by

df =
r∏

i=1

ci −
r∑

i=1

(ci − 1) − 1 ,

where r denotes the number of dimensions and ci denotes the number of categories
in each dimension, i = 1, . . . , r [24, p. 309]. Thus, for a 2×2×2 contingency table
with c = 2 disjoint categories in each of r = 3 dimensions,

df = 23 − 3(2 − 1) − 1 = 4 .

Consider a 2×2×2 contingency table where nijk denotes the cell frequency of
the ith row, j th column, and kth slice for i, j, k = 1, 2. Let A = n1.., B = n.1.,
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C = n..1, and N = n... denote the observed marginal frequency totals of the first
row, first column, first slice, and entire table, respectively, such that 1 ≤ A ≤ B ≤
C ≤ N/2. Also, let w = n111, x = n112, y = n121, and z = n211 denote four cell
frequencies of the 2×2×2 contingency table. Then, the probability for any specified
w, x, y, and z is given by

p(w, x, y, z|A,B,C,N) =[
A! (N − A)! B! (N − B)! C! (N − C)!]

× [
(N !)2 w! x! y! z! (A − w − x − y)! (B − w − x − z)!

(C − w − y − z)! (N − A − B − C + 2w + x + y + z)!]−1

[26].
The bounds for w, x, y, and z are

0 ≤w ≤ Mw ,

0 ≤x ≤ Mx ,

0 ≤y ≤ My ,

and

Lx ≤z ≤ Mz ,

respectively, where Mw = A, Mx = A−w, My = A−w − x, Mz = min(B −w −
x,C − w − y), and Lz = max(0, A + B + C − N − 2w − x − y). If wo, xo, yo,
and zo denote the values of w, x, y, and z in the observed contingency table, then
Fisher’s exact probability value for a 2×2×2 contingency table is given by

P =
Mw∑
w=0

Mx∑
x=0

My∑
y=0

Mz∑
z=Lz

p(w, x, y, z|A,B,C,N)ψ(w, x, y, z) ,

where

ψ(w, x, y, x) =
⎧⎨
⎩

1 if p(w, x, y, z) ≤ p(wo, xo, yo, zo) ,

0 otherwise .

To illustrate Fisher’s exact probability test, consider the 2×2×2 contingency
table given in Table 10.25 where N = 75 and the observed values of w, x, y,
and z are wo = 13, xo = 8, yo = 4, and zo = 18. For the frequency data
given in Table 10.25 there are M = 77,910 possible arrangements in the reference
set of all permutations of cell frequencies given the observed row, column, and
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Table 10.25 Example
2×2×2 contingency table for
Fisher’s exact test

Judge 3

Judge 1 Judge 2 Pro Con

Pro Pro 13 8

Con 4 11

Con Pro 18 5

Con 9 7

slice marginal distributions, {44, 31}, {44, 31}, and {44, 31}, respectively, making
an exact permutation analysis feasible. Fisher’s exact probability is the sum of the
hypergeometric point probability values equal to or less than the probability value
associated with the observed contingency table; in this case, there are 2,991 tables
with probability values equal to or less than the probability value of the observed
table, i.e., p = 0.1743×10−4, yielding P = 0.0384.

10.8 Contingency Table Interactions

It is occasionally necessary to test the independence among multiple classification
variables, each of which consists of two mutually exclusive classes, e.g., a 2×2×2
or 23 contingency table. In this section exact permutation procedures are described
for analyzing interactions in 2×2×2 and 2×2×2×2 contingency tables.

10.8.1 Analysis of 2×2×2 Contingency Tables

Mielke, Berry, and Zelterman provided a procedure for determining the exact
global probability value obtained from an examination of all possible arrangements
of the eight cell frequencies of a 2×2×2 contingency table, conditioned on the
observed marginal frequency totals [26]. An alternative approach that is not as
computationally intensive and, quite possibly, more fruitful is to examine the
first- and second-order interactions of a 2×2×2 table when the observed marginal
frequency totals are considered to be fixed [22]. This approach was first proposed by
Bartlett [1] and has been discussed by Darroch [9, 10], Haber [12, 13], Odoroff [27],
Plackett [29], Pomar [30], Simpson [33], and Zachs and Solomon [35]. In this
section an algorithm is described that computes the exact probability values of
the three first-order (two-variable) interactions and the single second-order (three-
variable) interaction.

The logic on which the algorithm is based was apparently first developed
by Lambert Adolphe Jacques Quetelet to calculate binomial probability values
in 1846 [31]. Beginning with a small arbitrary initial value, a simple recursion
procedure generates relative frequency values for all possible 2×2×2 contingency
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tables, given the observed marginal frequency totals. The desired exact probability
value is obtained by summing the relative frequency values equal to or less than the
observed relative frequency value and dividing the resultant sum by the unrestricted
relative frequency total.

Consider a sample of N independent observations arranged in a 2×2×2 con-
tingency table. Let nijk denote the observed cell frequency of the ith row, j th
column, and kth slice, and let pijk denote the corresponding cell probability
for i, j, k = 1, 2. Also let n.jk , ni.k , nij., n1.., n.j., n..k , and n... indicate the
observed marginal frequency totals of the 2×2×2 contingency table, and let the
corresponding marginals over pijk be indicated by p.jk , pi.k , pij., p1.., p.j., p..k , and
p..., respectively, for i, j, k = 1, 2. Because the categories are mutually exclusive
and exhaustive, n... = N and p... = 1.

Let r denote the number of dimensions and ci denote the number of categories
in each dimension, i = 1, . . . , r . Then for a 2×2×2 contingency table there are

r∏
i=1

ci −
r∑

i=1

(ci − 1) − 1

= (2)(2)(2) − [(2 − 1) + (2 − 1) + (2 − 1)] − 1 = 8 − 3 − 1 = 4

degrees of freedom and, consequently, four interaction terms to be considered: three
first-order and one second-order. Following Bartlett, the null hypotheses for the
three first-order interactions are

H0: p.11p.22 = p.12p.21 ,

H0: p1.1p2.2 = p1.2p2.1 ,

and

H0: p11.p22. = p12.p21.

[1]. The null hypothesis for the second-order interaction is

H0: p111p122p212p221 = p112p121p211p222

[1, 13, 28].
For simplicity, set x = n111, a = n.11, b = n1.1, c = n11., A = n1.., B = n.1.,

C = n..1, and N = n.... The point probability of x is given by

P(x|a, b, c,A,B,C,N) = [
A! (N − A)! B! (N − B)! C! (N − C)!]

× [
(N !)2 x! (a − x)! (b − x)! (c − x)! (A − b − c + x)!

(B − a − c + x)! (C − a − b + x)! (N − A − B − C + a + b + c − x)!]−1
.
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If H(k), given a, b, c, A, B, C, and N , is a recursively defined positive function,
then solving the recursive relation H(k + 1) = H(k) × g(k) yields

g(k) =
(a − k)(b − k)(c − k)(N − A − B − C + a + b + c − k)

(k + 1)(A − b − c + k + 1)(B − a − c + k + 1)(C − a − b + k + 1)
,

which may be used to enumerate the distribution of P(k|a, b, c,A,B,C,N), v ≤
k ≤ w, where

v = max(0, b + c − A, a + c − B, a + b − C) ,

w = min(a, b, c,N − A − B − C + a + b + c) ,

and where H(v) is initially set to some small value, such as 10−20. The total over
the completely enumerated distribution may be found by

T =
w∑

k=v

H(k) .

The exact second-order interaction probability value is found by

P =
w∑

k=v

H(k)Ik

T
,

where

Ik =
⎧⎨
⎩

1 if H(k) ≤ H(x),

0 otherwise .

A 2×2×2 Contingency Table Example

Table 10.26 depicts a 2×2×2 contingency table based on N = 76 responses to a
question (Yes, No) classified by gender (Female, Male), in two elementary school
grades (First, Fourth).

Table 10.26 Cross-
classification of yes/no
responses, categorized by
gender and elementary school
grade

Gender

Female Male

Grade Yes No Yes No

First 10 4 2 16

Fourth 6 11 15 12



10.8 Contingency Table Interactions 621

Table 10.27 provides the cell frequencies for Grade by Gender, conditioned
on Response. The first-order interaction probability value associated with the cell
frequencies in Table 10.27 is

P(a|a + b, a + c,N) =
(

a + c

a

)(
b + d

b

)(
N

a + b

)−1

=
(

31

14

)(
45

18

)(
76

32

)−1

= 32! 44! 31! 45!
76! 14! 18! 17! 27! = 0.8134 .

Table 10.28 provides the cell frequencies for Gender by Response, conditioned
on Grade. The first-order interaction probability value associated with the cell
frequencies in Table 10.28 is

P(a|a + b, a + c,N) =
(

a + c

a

)(
b + d

b

)(
N

a + b

)−1

=
(

33

16

)(
43

15

)(
76

31

)−1

= 31! 45! 33! 43!
76! 16! 15! 17! 28! = 0.2496 .

Table 10.29 provides the cell frequencies for Grade by Response, conditioned
on Gender The first-order interaction probability value associated with the cell

Table 10.27 Grade by
Gender, conditioned on
Response

Gender

Grade Female Male Total

First 14 18 32

Fourth 17 27 44

Total 31 45 76

Table 10.28 Gender by
Response, conditioned on
Grade

Response

Gender Yes No Total

Female 16 15 31

Male 17 28 45

Total 33 43 76

Table 10.29 Grade by
Response, conditioned on
Gender

Response

Grade Yes No Total

First 12 20 32

Fourth 21 23 44

Total 33 43 76
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frequencies in Table 10.29 is

P(a|a + b, a + c,N) =
(

a + c

a

)(
b + d

b

)(
N

a + b

)−1

=
(

33

12

)(
43

20

)(
76

32

)−1

= 32! 44! 33! 43!
76! 12! 20! 21! 23! = 0.4830 .

The second-order interaction probability value for the frequency data given in
Table 10.29 is P = 0.9036×10−3 and the global probability of a table this extreme
or more extreme than the observed table in Table 10.29 is P = 0.4453×10−2 [26].

10.8.2 Analysis of 2×2×2×2 Contingency Tables

Utilizing the recursion procedure presented in the previous example, it is possible to
analyze a 2×2×2×2 or 24 contingency table [23]. The conditional probability value
of a 2×2×2×2 contingency table is a special case of the conditional probability
of an r-way contingency table as defined in Mielke and Berry [20]. Zelterman,
Chan, and Mielke [36] provided an algorithm for the exact global probability value
obtained from an examination of all possible arrangements of the 16 cell frequencies
of a 2×2×2×2 contingency table, conditioned on the observed marginal frequency
totals. An alternative approach is to examine the first-, second-, and third-order
interactions in a 2×2×2×2 table when the observed marginal frequency totals are
considered to be fixed.

Let r denote the number of dimensions and ci denote the number of categories
in each dimension, i = 1, . . . , r , then for a 2×2×2×2 contingency table there are

r∏
i=1

ci −
r∑

i=1

(ci − 1) − 1

= (2)(2)(2)(2) − [(2 − 1) + (2 − 1) + (2 − 1) + (2 − 1)] − 1

= 16 − 4 − 1 = 11

degrees of freedom and, consequently, 11 interaction terms to be considered: six
first-order and four second-order, and one third-order. In this section, a procedure
is described for computing the exact probability values of the six first-order (two-
variable) interactions, the four second-order (three-variable) interactions, and the
single third-order (four-variable) interactions for a 2×2×2×2 contingency table.
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Following Mielke [19], let pi1i2i3i4 denote the probability of cell i1i2i3i4 in a
2×2×2×2 contingency table, where the index ij = 1 or 2 for j = 1, 2, 3, 4. The six
null hypotheses of no first-order interactions for a 2×2×2×2 contingency table are

H0: p1100p2200 = p1200p2100 ,

H0: p1010p2020 = p1020p2010 ,

H0: p1001p2002 = p1002p2001 ,

H0: p0110p0220 = p0120p0210 ,

H0: p0101p0202 = p0102p0201 ,

and

H0: p0011p0022 = p0012p0021 ,

where the usual summation convention is employed. Thus, p0101 is the sum over
indices i1 and i3. The four null hypotheses of no second-order interaction for a
2×2×2×2 contingency table are

H0: p1110p2210p1220p2120 = p1120p2220p1210p2110 ,

H0: p1101p2201p1202p2102 = p1102p2202p1201p2101 ,

H0: p1011p2021p1022p2012 = p1012p2022p1021p2011 ,

and

H0: p0111p0221p0122p0212 = p0112p0222p0121p0211 .

The null hypothesis of no third-order interaction for a 2×2×2×2 contingency table
is given by

H0: p1111p2211p1221p2121p1122p2222p1212p2112

= p1112p2212p1222p2122p1121p2221p1211p2111 .

Table 10.30 contains data from a 2×2×2×2 contingency table based on N =
1,356 responses classified on four dichotomous variables: A, B, C, and D. The
first-, second-, and third-order interaction exact probability values associated with
the data listed in Table 10.30 are given in Table 10.31.
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Table 10.30 Example data
for a 2×2×2×2 contingency
table

Variable

A B C D Frequency

1 1 1 1 187

1 1 1 2 15

1 1 2 1 42

1 1 2 2 40

1 2 1 1 256

1 2 1 2 42

1 2 2 1 34

1 2 2 2 62

2 1 1 1 177

2 1 1 2 14

2 1 2 1 30

2 1 2 2 63

2 2 1 1 194

2 2 1 2 27

2 2 2 1 52

2 2 2 2 121

N 1,356

Table 10.31 Interactions and
associated exact
hypergeometric probability
values for the data listed in
Table 10.30

Interaction Probability

A×B 0.3822×10−9

A×C 0.4891×10−3

A×D 0.8690×10−4

B×C 0.2181

B×D 0.5475×10−5

C×D 1.0000

A×B×C 0.4491

A×B×D 0.2792×10−1

A×C×D 0.7999

B×C×D 0.4021×10−2

A×B×C×D 0.6517×10−1

10.9 Coda

Chapter 10 applied exact and Monte Carlo permutation statistical methods to
measures of association for symmetrical 2×2 contingency tables. Included in
Chap. 10 were discussions of Pearson’s φ, Tschuprov’s T 2, and Cramér’s V 2

coefficients of contingency, Pearson’s product-moment correlation coefficient, Leik
and Gove’s d c

N measure, Goodman and Kruskal’s ta and tb asymmetric measures of
nominal association, Kendall’s τb and Stuart’s τc measures of ordinal association,
Somers’ dyx and dxy asymmetric measures of ordinal association, Yule’s Y measure
of nominal association, simple percentage differences, and Cohen’s unweighted and
weighted κ measures of inter-rater agreement.
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Chapter 10 concluded with an examination of extensions to multiple 2×2
contingency tables and 2×2×2 contingency tables, including the Mantel–Haenszel
test for combined 2×2 contingency tables, Cohen’s chance-corrected measure of
inter-rater agreement, McNemar’s and Cochran’s Q tests for change, Fisher’s exact
test for 2×2×2 and 2×2×2×2 contingency tables, and tests for interactions in
2×2×2 and 2×2×2×2 contingency tables.
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Epilogue

The purpose of The Measurement of Association: A Permutation Approach is
twofold. First, to introduce exact and Monte Carlo resampling permutation statisti-
cal methods for obtaining probability values for a variety of measures of association,
and second, to complement the authors’ previous work on Permutation Statistical
Methods: An Integrated Approach, which provided a synthesis of a number of tests
and measures under a common model given by the generalized Minkowski distance
function [2]. While Permutation Statistical Methods concentrated on statistical
tests of differences, such as two-sample t tests and various analysis of variance
designs, The Measurement of Association concentrates on statistical measures of
relationships, including association, agreement, and correlation.

In particular, two models of statistical inference are described and compared:
the conventional population model and the lesser-known permutation model. The
population model assumes random sampling from one or more fully specified
populations. Under the population model, the level of statistical significance that
results from applying a statistical test to the results of an experiment or survey
corresponds to the frequency with which the null hypothesis would be rejected
in repeated random sampling from a specified population or populations. Because
repeated sampling of the specified population(s) is usually impractical, it is assumed
that the sampling distribution of test statistics generated under repeated random
sampling conforms to an approximating theoretical distribution, such as the normal
distribution. The size of a statistical test is the probability under the null hypothesis
that repeated outcomes based on random samples of the same size are equal to or
more extreme than the observed outcome.

In contrast, the permutation model does not assume random sampling, but is
completely data-dependent, relying entirely on the observed data. Thus, a test
statistic is computed for the observed data and the observations are then permuted
over all possible arrangements of the observed data and the selected test statistic is
computed for each arrangement. The proportion of arrangements with test statistic
values equal to or more extreme than the observed test statistic yields the exact
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probability of the observed test statistic value. When the number of possible
arrangements of the observed data is very large, exact permutation methods are
impractical and Monte Carlo resampling permutation methods become necessary.
Resampling methods generate a random sample of all possible arrangements of the
observed data and the resampling probability is the proportion of arrangements with
test statistic values equal to or more extreme than the observed test statistic.

Throughout the book, emphasis is on permutation statistical methods, both exact
and Monte Carlo resampling methods. Permutation statistical methods have a long
history with beginnings in the 1920s and 1930s stemming from the early works
of R.A. Fisher, T. Eden and F. Yates, and E.J.G. Pitman [1]. Permutation methods
possess several advantages over conventional statistical methods.

1. Permutation statistical methods are entirely data dependent, in that all of the
information required for analysis is contained within the observed data set.

2. Permutation statistical methods do not depend on the assumptions associated
with traditional parametric tests, such as normality and homogeneity of variance.

3. Permutation statistical methods provide exact probability values based on the
discrete permutation distribution of equally-likely test statistic values, rather than
an approximate probability value based on a theoretical distribution, such as a
normal, chi-squared, t , or F distribution.

4. Although permutation statistical methods are suitable when a random sample is
obtained from a specified population, permutation methods are also appropriate
for nonrandom samples, such as are common in everyday research.

5. Permutation statistical methods are appropriate for analyzing entire populations,
as permutation methods are not predicated on repeated random sampling from a
specified population.

6. Permutation statistical methods can be defined for nearly any selected test
statistic. Thus, researchers have the option of using a wide variety of statistics,
including the majority of conventional statistics utilized in classical statistical
approaches.

7. Permutation statistical methods are ideal for small data sets, when hypothetical
distribution functions may provide very poor fits.

8. Appropriate permutation statistical methods are highly resistant to extreme
values, such as are common in demographic data, e.g., age at first marriage,
income, and so on. Consequently, the need for any data transformation is
mitigated in the permutation context and in general is not recommended, e.g.,
square root, logarithmic, arc cosine, and other transformations, including the
conversion of raw scores to ranks.

9. Permutation statistical methods provide data-dependent statistical inferences
only to the actual experiment or survey that has been analyzed, and are not
dependent on knowledge of a super population. On the other hand, if random
sampling from a specified population has been accomplished, then permutation
tests can provide inferences to the population.

The Measurement of Association is organized around the three traditional levels
of measurement, which have typically defined existing measures of association:
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nominal (categorical), ordinal (ranked), and interval level measurements. Chapter 1
introduced measures of association, correlation, and agreement. Chapter 2 provided
an overview of permutation statistical methods, including exact, Monte Carlo
resampling, and moment-approximation permutation methods. Chapter 3 focused
on exact and Monte Carlo resampling permutation statistical methods for measures
of association designed for two nominal-level (categorical) variables that are based
on chi-squared, e.g., Pearson’s φ2, Tschuprov’s T 2, and Cramér’s V 2.

Chapter 4 supplemented Chap. 3 with discussions of exact and Monte Carlo
permutation statistical methods for measures of association designed for two
nominal-level variables that are not based on chi-squared, e.g., Goodman and
Kruskal’s λa , λb, ta , and tb measures and Fisher’s exact probability test. Chapter 5
presented exact and Monte Carlo permutation statistical methods for measures of
association designed for two ordinal-level (ranked) variables that are based on pair-
wise comparisons of differences, e.g., Kendall’s τa and τb measures and Goodman
and Kruskal’s γ measure. Chapter 6 supplemented Chap. 5 with discussions of
exact and Monte Carlo permutation statistical methods for measures of association
designed for two ordinal-level variables that are not based on pairwise comparisons
of differences, e.g., Spearman’s rank-order correlation coefficient and Bross’s ridit
analysis.

Chapter 7 focused on exact and Monte Carlo permutation statistical methods
for measures of association designed for two interval-level variables, e.g., ordinary
least squares (OLS) and least absolute deviation (LAD) correlation and Pearson’s
intraclass correlation. Chapter 8 examined exact and Monte Carlo permutation
statistical methods for measures of association for two variables that are measured
at different levels of measurement: nominal-ordinal, nominal-interval, and ordinal-
interval, e.g., Freeman’s θ , Cureton’s rank-biserial correlation coefficient, and
Jaspen’s multiserial correlation coefficient.

Chapter 9 was confined to exact and Monte Carlo permutation statistical methods
for measures of association applied to 2×2 contingency tables, where levels of
measurement are less relevant, e.g., Yule’s Q and Y measures, Pearson’s tetrachoric
correlation coefficient, and simple percentage differences, Dx and Dy . Chapter 10
supplemented Chap. 9 with discussions of exact and Monte Carlo permutation statis-
tical methods for measures of association applied to symmetrical 2×2 contingency
tables, e.g., Pearson’s φ coefficient of contingency, Yule’s Y measure of nominal
association, Goodman and Kruskal’s ta and tb asymmetric measures of nominal
association, Somers’ dyx and dxy measures of ordinal association, percentage
differences, and Kendall’s τb measure of ordinal association. Also included in
Chap. 10 were extensions to multiple 2×2 contingency tables, including the Mantel–
Haenszel test for combined 2×2 contingency tables, Cohen’s unweighted and
weighted kappa measures of chance-corrected inter-rater agreement, McNemar’s
and Cochran’s Q tests for change, Fisher’s exact test for 2×2×2 and 2×2×2×2
contingency tables, and tests for interactions in 2×2×2 and 2×2×2×2 contingency
tables.

In this manner, permutation statistical methods, both exact and Monte Carlo
resampling, were applied to a wide variety of measures of association at the usual
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three levels of measurement. The result is a new approach to existing measures that
is entirely data-dependent, does not depend on the usual assumptions of normality
and homogeneity, is ideal for small samples, and is appropriate for both random and
nonrandom samples.
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