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For those who lost their lives on September 11, 2001, and the
men and women fighting the war on terror



Preface

In the months after September 11, 2001, in the aftermath of the attacks on the
World Trade Center in New York, counterterrorism became a research interest
for a broad range of Western scholars, statisticians among them. At the same
time, the U.S. government, still in shock, repeated the same question during
multiple hearings in Washington, D.C.: “All the data was out there to warn
us of this impending attack, why didn’t we see it?” Data became a large part
of the response to 9/11 as Americans tried to regain a rational grip on their
world. Data from flight recorders was collected and analyzed, timelines were
assembled to parse out explanations of what happened, sensitive data was
removed from government websites, and the White House debated what data
to release to investigators and the American public. “Data” was a frequently
heard term in the popular media, one of the many things that we had to
protect from the terrorists, and one of the most important things that we
could use to defeat them.

In the statistical community, professionals wondered how they could help
the government prevent terror attacks in the future by developing and ap-
plying advanced statistical methods. The federal government is a sizable con-
sumer and producer of statistical data, as the 9/11 commission report noted.

The U.S. government has access to a vast amount of information.
When databases not usually thought of as “intelligence,” such as cus-
toms or immigration information, are included, the storehouse is im-
mense. But the U.S. government has a weak system for processing and
using what it has. [KH04, pp. 416–417]

Additionally, government decision-makers are often skeptical about statis-
tics. Understanding that the Washington audience wasn’t always receptive,
the statistical community pondered how to put what they knew to work for
the country. They felt specially qualified to help decision-makers see the im-
portant patterns in the oceans of data and detect the important anomalies
in the seemingly homogeneous populations. At a round-table luncheon at the
Joint Statistical Meetings in San Francisco in 2003, almost two years after
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9/11, a dozen statisticians ate and pondered the same questions. “How do we
get in the door?” “How do we get someone to let us help?”

It was hard to get in the door, because Washington was still trying to
figure out what a response to terrorism in the homeland would begin to look
like. The threat paradigm had shifted enough that no one quite knew what
the appropriate questions were, let alone the appropriate responses. Poten-
tial bioterrorism is a case in point. Dread diseases like smallpox had been
conceptualized and studied as diseases, as public health problems, and as po-
tential battlefield weapons, but had not been extensively studied as agents
terrorists might set loose in a major population center. When a set of anthrax
mailings followed close on the heels of the World Trade Center bombings, it
was as if our world-view had been fractured. Many old questions of interest
faded away, many new ones appeared, others were yet to be discovered. Biolo-
gists, epidemiologists, biostatisticians, public health experts, and government
decision-makers woke up the next day wondering where to begin. The same
was true across many fronts and many lines of inquiry in those months. The
U.S. government wound up organizing an entirely new Department of Home-
land Security to address the raft of new problems that emerged after 9/11.
In the decision-maker’s estimation, the new problems were different enough
that existing structures like the Federal Bureau of Investigation, Centers for
Disease Control and Prevention, and Immigration and Naturalization Services
were not sufficient or appropriately specialized to address this new threat.

At the time of this writing, the science of counterterrorism is also still un-
folding. The government has begun to engage the country’s research commu-
nity through grants and collaborative opportunities, but across the sciences,
and in statistics, the interesting problems and viable methodologies are still in
a very speculative stage. Speculative is also exciting, though. Researchers feel
lucky to be able to help define the landscape of a new research enterprise. This
book encompasses a range of approaches to new problems and new problem
spaces. The book is divided into four sections pertinent to counterterrorism:
game theory, biometric authentication, syndromic surveillance, and modeling.
Some of the chapters take a broad approach to defining issues in the specific
research area, providing a more general overview. Other chapters provide de-
tailed case studies and applications. Together they represent the current state
of statistical sciences in the area of counterterrorism.

Game theory has long been seen as a valuable tool for understanding
possible outcomes between adversaries. It played an important role in cold
war decision and policymaking, but the opening section of this book rethinks
game theory for the age of terrorism. In a world of asymmetric warfare, where
your adversary is not a country with national assets and citizens at risk in
the event of retaliation, the stakes are different. The section on game theory
presented in this text provides an overview of statistical research issues in
game theory and two articles that look specifically at game theory and risk
analysis.
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Biometric authentication has become a more prominent research area since
9/11 because of increased interest in security measures at border entry sta-
tions and other locations. Authentication of fingerprints, faces, retinal scans,
etc., is usually an issue in the context of identity verification, i.e., does this
passport match the person in front of me who is trying to use it? Beyond the
logistics of collecting the information on everyone who applies for a passport
or visa, storing it on the identity documents in a retrievable form, upgrading
the computer equipment at all border crossings, and training border police
to use the new technology, the issues of accurate identification are still to be
worked out. Security agencies would also like to be able to use face recognition
to pick known terrorists or criminals out of crowds using video cameras and
real-time analysis software. The stakes for false positives are high — a man
suspected as a potential terrorist bomber was held down by police and shot in
the head in the London subway in 2005, and many individuals have wound up
in long-term detention under the mere suspicion that they were members of
terrorist organizations. Current technological shortcomings also have strong
cultural implications: fingerprint authentication works less well with laborers
who have worn skin and calluses on their hands; retinal scans work better
with blue eyes than with brown. The section on biometric authentication in
this book provides an overview of the history of its use with law enforcement
and the courts and outlines some of the challenges faced by statisticians de-
veloping methods in this area. The two papers both address reducing error
rates, specifically for authentication, although there are a myriad of other
applications.

Syndromic surveillance has long been an issue of interest for biostatisti-
cians, epidemiologists, and public health experts. After 9/11, however, more
government funding became available to study issues related to sudden out-
breaks of infectious diseases that might be the result of bioterrorism. Tradi-
tionally, research in this area would have looked at things like normal seasonal
influenza cases, perhaps with an eye to preparing for possible flu pandemics
caused by more virulent strains. But in the case of a bioterrorist incident, the
concerns are a little different. For example, you want to be able to detect an
outbreak of smallpox or cluster of anthrax infections as soon as possible so
you can begin to respond. This may involve collecting and monitoring new
data sources in near real-time: hospital admissions of patients with unusual
symptoms, spikes in over-the-counter sales of cold medicines, etc. Collecting,
integrating, and analyzing such new types of data involves the creation of
new infrastructure and new methodologies. The section in this book on syn-
dromic surveillance provides an overview of challenges and research issues in
this growing area and includes articles on monitoring multiple data streams,
evaluating statistical surveillance methods, and the spatiotemporal syndromic
analysis.

Modeling is the bread and butter for many working statisticians and nat-
urally is being applied to address issues in counterterrorism. Many of the
speculative questions researchers and decision-makers have about terrorism
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can be more practically and efficiently tested in computer models as opposed
to actual physical experiments. As the section overview points out, “we cannot
expose a population to a disease or chemical attack and see what happens.”
This overview highlights the main issues addressed in the section and sug-
gests future research directions. The section includes articles on developing
large disease simulations, analyzing distributed databases, modeling of the
concentration field in a building following release of a contaminant, and mod-
eling the sensitivity of radiation detectors that might be deployed to screen
cargo.

We would like to thank David Banks for suggesting this monograph, Sallie
Keller-McNulty and Nancy Spruill for their ongoing support, and Hazel Kutac
for her tireless editorial and production work.
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Game Theory in an Age of Terrorism:
How Can Statisticians Contribute?

Ronald D. Fricker, Jr.

Department of Operations Research, Naval Postgraduate School,
rdfricker@nps.edu

In The Law of Loopholes in Action [Gel05], David Gelernter argues that “ev-
ery loophole will eventually be exploited; every loophole will eventually be
closed.” His thesis applied to terrorism means that terrorists will find secu-
rity loopholes via continual exploration and that, once discovered, specific
defensive measures have to be put in place to close each loophole.

The net effect of the Law of Loopholes, as anyone who flies regularly
today knows, is an ever-expanding set of security rules and requirements.
Such rules and requirements are useful for helping prevent the reoccurrence of
a particular type of incident. But, when a determined adversary’s focus is on
causing general destruction and mayhem, then as one loophole is plugged, the
adversary simply shifts its attention and energies to looking for and trying to
exploit a different loophole.

The problem, of course, is that it is impossible to defend all potential tar-
gets (and their associated loopholes) against all threats all of the time. While
it is important to implement certain new and improved defensive tactics, pre-
cisely because it is impossible to protect everything at all times, it is equally
as important (and arguably more important) to implement offensive strategies
to deter and disrupt these adversaries.

The question is, how to identify effective offensive and defensive strategies
and tactics?

One approach is through the use of game theory, the mathematically based
study and analysis of adversarial conflicts. The classic text The Compleat
Strategyst [Wil66] characterizes games of strategy as having the following char-
acteristics:

• A conflict: the participants (e.g., individuals, organizations, countries;
known as “players” in game theory parlance) are at cross-purposes or
have opposing interests.

• Adversarial reaction and interaction: each player has some control over the
course of the conflict or its outcome via one or more decisions.
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• Outside forces: some aspects of the conflict are outside of the players’
control and may be governed by chance or are unknown.

These characteristics clearly apply to the problem of thwarting terrorists and
defeating terrorism.

The first extensive treatment of game theory was Theory of Games and
Economic Behavior by John von Neumann and Oskar Morgenstern [VM44] in
1944. The seminal work on the subject, “Zur Theorie der Gesellschaftsspiele”
by von Neumann [von28], was written in 1928. John von Neumann charac-
terized the difference between games such as chess and games of strategy by
saying “Chess is not a game. Chess is a well-defined form of computation.
You may not be able to work out the answers, but in theory there must be a
solution, a right procedure in any position. Now real games are not like that
at all. Real life is not like that. Real life consists of bluffing, of little tactics of
deception, of asking yourself what is the other man going to think I meant to
do. And that is what games are about in my theory” [Pou92].

Game theoretic methods provide a structured way to examine how two
adversaries will interact under various conflict scenarios. The results often
provide insight into why real-world adversaries behave the way they do. In
the middle and late 20th century, a great deal of game theoretic research
focused on analyzing the arms race, nuclear brinkmanship, and Cold War
strategies [Pou92]. While in the pre-9/11 era, game theory was also applied
to terrorism, post-9/11 this work has expanded [SA03].

1 Game Theory Applied to Terrorism

In what is surely a gross oversimplification of the field (apologies to game the-
orists in advance), there are three broad categories of game theoretic methods
applicable to the analysis of terrorism:

1. Classic games can generally be illustrated in a tabular form in which
the players, their strategies, and their “payoffs” are completely specified.
These types of games are often studied to determine whether there are
a pair of strategies that result in an equilibrium between the two players
(a “saddle point”) and how the players will behave given the existence or
absence of a saddle point.

2. Repetitive (or repeated) games, which are games that occur over time and
the opponents repeatedly interact in a series of conflicts. These games
are studied to gain insight into how players behave and react to their
opponent’s behavior and which behavioral strategies result in favorable or
unfavorable final outcomes.

3. Tabletop games consisting of the simulation of an adversarial interaction
with two or more actual (human) players using rules, data, and procedures
designed to depict a conflict. “Tabletop” refers to the manner of older
war games in which a battle was played out using miniature markers and
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maps on a table, much like the board game Risk. These types of games are
generally less structured than the previous types, meaning the players have
a much larger set of strategies available than can be easily tabularized.

Recent applications of game theoretic methods to the study of terrorism in-
clude: assessing strategies for how nations allocate expenditures for terrorism
deterrence and the resulting implications for being attacked [AST87, SL68];
measures evaluating how various military employment policies/strategies en-
courage or discourage states from sponsoring terrorism [Art04]; assessing in-
surance risks via models that explicitly account for malicious terrorist in-
tent [Maj02]; determining whether or not a stated policy of nonnegotiation
with terrorist hostage-takers deters such behavior and under what conditions
[LS88]; and evaluating the effects of focusing national antiterrorism policy on
deterrence or prevention [SA03].

2 Statistics and Game Theory

In the parlance of game theory, much of classical statistics is a “one-person
game” because there is no adversary. Classic statistical problems, particu-
larly inferential problems, concern the estimation of an unobserved parameter
or parameters. In these problems, the “adversary” is nature, manifested as
randomness in some form or another, not as a willful opponent.

A frequent assumption in statistical methods, analyses, and models is that
the parameter or population under study is fixed and the most important un-
certainty to quantify is that which comes from sampling variability. Even in
those problems where the parameter may change over time, the usual assump-
tion is that the underlying mechanism that generates an outcome is unaffected
by that outcome. (For example, in a regression model we assume the depen-
dent variable does not or cannot affect the independent variable.) Neither of
these assumptions is likely to be true in a game theory problem, where the
population of interest is an intelligent adversary capable of changing its form,
tactics, and responses.

The upshot is that most statisticians are not used to thinking about prob-
lems such as those addressed by game theory. However, statisticians are used
to addressing problems in which uncertainty is either a natural component or
must be quantified, and there is a lot of uncertainty in game theoretic models
about deterring, detecting, and thwarting terrorists.

3 How Can Statisticians Contribute?

Game theoretic models tend to be fairly abstract models of reality. This has
not prevented the models from providing useful insights into strategies for
addressing certain types of conflicts, but it does lead to two specific questions:
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1. How well do the models fit observed data?
2. How can model uncertainty be quantified?

Both are questions that statisticians are well-suited to help address.
Possible ways statisticians could contribute to the further development of

game theoretic methods, both in general and for terrorist problems in partic-
ular, include the following.

• Game theory models, including the strategies and their payoffs, are often
defined in an ad hoc manner using expert judgment. A relevant statistical
question is, how might data from past incidents and other knowledge be
used to infer either the terrorist’s “game” or the strategies they perceive
or prefer? That is, how might a game be “fit” to observed data?

• The payoffs in game theory are utilities representing the desirability of the
various outcomes to the players. In the absence of information, the utilities
are often simply rankings of the various outcomes. A better methodology
would be to elicit utilities from policymakers or subject-matter experts,
much like one might elicit prior probabilities for a Bayesian analysis. Rel-
evant questions include, what is (are) the best way(s) to elicit the utilities
and how should utilities from multiple experts be combined?

• Once the payoffs are specified, the analysis of a game often treats them as
fixed and known. How might the games be created, analyzed, and evaluated
so that the uncertainty in payoffs is accounted for in the results, including
the specification of the optimal strategy?

• Tabletop games are often useful for developing new insights and/or out-of-
the-box potential strategies, but they also often can only explore a small
portion of the “game space.” Relevant questions include how to charac-
terize and account for the uncertainty in game design (e.g., a terrorist op-
ponent’s capabilities) and how statistical methods might be used to help
design a series of games to best explore the “capabilities/strategy space.”

• Finally, for new types of games that incorporate uncertainty, as well as for
a set or series of more traditional games, how can graphical methods be
employed to best display important game results, including appropriate
depictions of uncertainty and variability?

The two chapters that follow this one discuss and examine how risk anal-
ysis can be combined with game theory. In “Combining Game Theory and
Risk Analysis in Counterterrorism: A Smallpox Example,” Banks and An-
derson describe how to use risk analysis to generate random payoff matrices,
which are then used to estimate the probability that a given strategy is op-
timal. In “Game-Theoretic and Reliability Methods in Counterterrorism and
Security,” Bier discusses the literature on reliability and risk analytic methods
for rare events, game theory, and approaches for combining the two methods
for defending complex systems against terrorist attack.

These two efforts represent a promising start towards addressing some of
the problems described above. Yet more remains to be done.
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Combining Game Theory and Risk Analysis in
Counterterrorism: A Smallpox Example

David L. Banks1 and Steven Anderson2

1 Institute of Statistics and Decision Sciences, Duke University,
banks@stat.duke.edu

2 Center for Biologics Evaluation and Research, U. S. Food and Drug
Administration, AndersonSt@cber.fda.gov

1 Introduction

The U.S. government wishes to invest its resources as wisely as possible in
defense. Each wasted dollar diverts money that could be used to harden crucial
vulnerabilities, prevents investment in future economic growth, and increases
taxpayer burden. This is a classic conflict situation; a good strategy for the
player with fewer resources is to leverage disproportionate resource investment
by its wealthy opponent. That strategy rarely wins, but it makes the conflict
sufficiently debilitating that the wealthy opponent may be forced to consider
significant compromises.

Game theory is a traditional method for choosing resource investments in
conflict situations. The standard approach requires strong assumptions about
the availability of mutual information and the rationality of both opponents.
Empirical research by many people [KT72] shows that these assumptions fail
in practice, leading to the development of modified theories with weaker as-
sumptions or the use of prior probabilities in the spirit of Bayesian decision
theory. This paper considers both traditional game theory (minimax solu-
tion for a two-person, zero-sum game in normal form) and also a minimum
expected loss criterion appropriate for extensive-form games with prior prob-
abilities. However, we emphasize that for terrorism, the zero-sum model is at
best an approximation; the valuation of the wins and the losses is likely to
differ between the opponents.

Game theory requires numerical measures of payoffs (or losses) that cor-
respond to particular sets of decisions. In practice, those payoffs are rarely
known. Statistical risk analysis allows experts to determine reasonable proba-
bility distributions for the random payoffs. This paper shows how risk analysis
can support game theory solutions and how Monte Carlo methods provide in-
sight into the optimal game theory solutions in the presence of uncertainty
about payoffs.
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Our methodology is demonstrated in the context of risk management for
a potential terrorist attack using the smallpox virus. The analysis we present
here is a simplified version that aims at methodological explanation rather
than analysis or justification of specific healthcare policies. As a tabletop
exercise, the primary aim is only to provide a blueprint for a more rigorous
statistical risk analysis. The underlying assumptions, modeling methods used
here, and any results or discussion of the modeling are based on preliminary
and unvalidated data and do not represent the opinion of the Food and Drug
Administration (FDA), the Department of Health and Human Services, or
any branch of the U.S. government.

2 Game Theory for Smallpox

The smallpox debate in the United States has focused upon three kinds of
attack and four kinds of defense. The three attack scenarios suppose that
there might be:

• No smallpox attack,
• A lone terrorist attack on a small area (similar to the likely scenario for

the anthrax letters), or
• A coordinated terrorist attack upon multiple population centers.

The four defense scenarios that have been publicly considered by U.S. agency
officials are:

• Stockpile smallpox vaccine,
• Stockpile vaccine and develop biosurveillance capabilities,
• Stockpile vaccine, develop biosurveillance, and inoculate key personnel,

and
• Provide mass vaccination to nonimmunocompromised citizens in advance.

Although there are many refinements that can be considered for both the
attack and the defense scenarios, these represent the possibilities discussed in
the public meetings held in May and June 2002 [McK02].

Suppose that analysts used game theory as one tool to evaluate potential
defense strategies. Then the three kinds of attack and four kinds of defense
determine a classic normal-form payoff matrix for the game (Table 1).

Table 1. Attack—defense cost matrix

No Attack Single Attack Multiple Attack
Stockpile Vaccine C11 C12 C13

Biosurveillance C21 C22 C23

Key Personnel C31 C32 C33

Everyone C41 C42 C43
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The Cij entries are the costs (or payoffs) associated with each combination
of attack and defense, and we have used abbreviated row and column labels
to identify the defenses and attacks, respectively, as described before.

For each of the 12 attack–defense combinations, there is an associated
cost. These costs may include dollars, human lives, time, and other resources.
For our calculation, all of these costs are monetized, according to principles
detailed in Sect. 3. The monetized value of a human life is set to $2.86 million,
following the Department of Transportation’s figures for cost–benefit analyses
of safety equipment.

Note that there is very large uncertainty in the Cij values. Portions of the
cost (e.g., those associated with expenses already entailed) may be known, but
the total cost in each cell is a random variable. These random variables are not
independent, since components of the total cost are common to multiple cells.
Thus it is appropriate to regard the entire game theory table as a multivariate
random variable whose joint distribution is required for a satisfactory analysis
that propagates uncertainty in the costs through to uncertainty about best
play.

Classical game theory [Mye91, Chap. 3] determines the optimal strategies
for the antagonists via the minimax theorem. This theorem asserts that for
any two-person cost matrix in a strictly competitive game (which is the sit-
uation for our example), there is an equilibrium strategy such that neither
player can improve their expected payoff by adopting a different attack or
defense. This equilibrium strategy may be a pure strategy, in which case opti-
mal play is a specific attack–defense pair. This happens when the attack that
maximizes the minimum damage and the defense that minimizes the maxi-
mum damage coincide in the same cell. Otherwise, the solution is a mixed
strategy, in which case the antagonists pick attacks and defenses according
to a probability distribution that must be calculated from the cost matrix.
There may be multiple equilibria that achieve the same expected payoff, and
for large matrices it can be difficult to solve the game.

Alternatively, one can use Bayesian decision theory to solve the game.
Here a player puts a probability distribution over the actions of the oppo-
nent, and then chooses their own action so as to minimize the expected cost
[Mye91, Chap. 2]. Essentially, one just multiplies the cost in each row by the
corresponding probability, sums these by row, and picks the defense with the
smallest sum. This formulation is easier to solve, but it requires one to know
or approximate the opponent’s probability distribution, and it does not take
full account of the mutual strategic aspects of adversarial games (i.e., the
assigned probabilities need not correspond to any kind of “if I do this, then
he’ll do that” reasoning). Bayesian methods are often used in extensive-form
games, where players make their choices over time, conditional on the actions
of their opponent.

In developing our analysis of the smallpox example we make two assump-
tions about time. First, we use only the information available by June 1, 2002;
subsequent information on the emerging program costs is not included. This
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keeps the analysis faithful in spirit to the decision problem actually faced
by U.S. government policymakers in the spring of 2002 (their initial plan was
universal vaccination, but ultimately they chose the third scenario with stock-
piling, biosurveillance, and very limited vaccination of some first responders).
Second, all of the estimated cost forecasts run to October 1, 2007. The like-
lihood of changing geopolitical circumstances makes it unrealistic to attempt
cost estimates beyond that fiscal year.

3 Risk Analysis for Smallpox

Statistical risk analysis is used to estimate the probability of undesirable situ-
ations and their associated costs. In the same way that it is used in engineering
(e.g., for assessing nuclear reactor safety [Spe85]) or the insurance industry
(e.g., for estimating the financial costs associated with earthquakes in a spe-
cific area [Bri93]), this paper uses risk analysis to estimate the costs associated
with different kinds of smallpox attack/defense combinations.

Risk analysis involves careful discussions with domain experts and struc-
tured elicitation of their judgments about probabilities and costs. For smallpox
planning, this requires input from physicians, public health experts, mathe-
matical epidemiologists, economists, emergency response administrators, gov-
ernment accountants, and other kinds of experts. We have not conducted the
in-depth elicitation from multiple experts in each area that is needed for a fully
rigorous risk analysis; however, we have discussed the cost issues with repre-
sentatives from each area, and we believe that the estimates in this section are
sufficiently reasonable to illustrate, qualitatively, the case for combining sta-
tistical risk analysis with game theory for threat management in the context
of terrorism.

Expert opinion was typically elicited in the following way. Each expert
was given a written document with background on smallpox epidemiology
and a short description of the attacks and defenses considered in this paper.
The expert often had questions; these were discussed orally with one of the
authors and, to the extent possible, resolved on the basis of the best available
information. Then the expert was asked to provide a point estimate of the
relevant cost or outcome and the range in which that value would be expected
to fall in 95% of similar realizations of the future. If these values disagreed
with those from other experts, then the expert was told of the discrepancy
and invited to alter their opinion. Based on point estimate and the range, the
authors and the expert chose a distribution function with those parameters,
which also respected real-world requirements for positivity, integer values,
known skew, or other properties. As the last step in the interview, the expert
was given access to all the other expert opinions obtained to that point and
asked if there were any that seemed questionable; this led, in one case, to an
expert being recontacted and a subsequent revision of the elicitation. But it
should be emphasized that these interviews were intended to be short and did
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not use the full range of probes, challenges, and checks that are part of serious
elicitation work.

The next three subsections describe the risk analysis assumptions used to
develop the random costs for the first three cells (C11, C21, C31) in the game
theory payoff matrix. Details for developing the costs in the other cells are
available from the authors. These assumptions are intended to be represen-
tative, realistic, and plausible, but additional input by experts could surely
improve upon them. Many of the same costs arise in multiple cells, intro-
ducing statistical dependency among the entries. (That is, if a given random
payoff matrix assumes an unusually large cost for stockpiling in one cell of
the random table, then the same high value should appear in all other cells
in which stockpiling occurs.)

3.1 Cell (1,1): Stockpile Vaccine/No Attack Scenario

Consider the problem of trying to estimate the costs associated with the (1,1)
cell of the payoff matrix, which corresponds to no smallpox attack and the
stockpiling of vaccine. This estimate involves combining costs with very dif-
ferent levels of uncertainty.

At the conceptual level, the cost C11 is the sum of four terms:

C11 = ETdry + ETAvent + ETAcamb + VIG + PHIS,

where ETdry and ETAvent are the costs of efficacy and safety testing for
the Dryvax and Aventis vaccines, respectively; ETAcamb is the cost of new
vaccine production and testing from Acambis; VIG is the cost of producing
sufficient doses of vaccinia immune globulin to treat adverse reactions and
possible exposures; and PHIS is the cost of establishing the public healthcare
infrastructure needed to manage this stockpiling effort.

There is no uncertainty about ETAcamb; the contract fixes this cost at
$512 million. But there is substantial uncertainty about ETdry and ETAvent
since these entail clinical trials and may require follow-on studies; based on
discussions with experts, we believe these costs may be realistically mod-
eled as independent uniform random variables, each ranging between $2 and
$5 million. There is also large uncertainty about the cost for producing and
testing sufficient doses of VIG to be prepared for a smallpox attack; our dis-
cussions suggest this is qualitatively described by a normal random variable
with mean $100 million and a standard deviation of $20 million. There is
great uncertainty about PHIS (which includes production of bifurcated inoc-
ulation needles, training, storage costs, shipment readiness costs, etc.). Based
on the five-year operating budget of other government offices with analogous
missions, we assume this cost is normally distributed with mean $940 million
and standard deviation $100 million.
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3.2 Cell (2,1): Biosurveillance/No Attack Scenario

Biosurveillance programs are being piloted in several major metropolitan ar-
eas. These programs track data, on a daily basis, from emergency room ad-
mission records to quickly discover clusters of disease symptoms that suggest
bioterrorist attack. Our cost estimates are based upon discussions with the
scientists working in the Boston area [RKD02] and with the Pittsburgh team
that developed monitoring procedures for the Salt Lake City Olympic games.

The cost C21 includes the cost C11 since this defense strategy uses both
stockpiling of vaccine and increased biosurveillance. Thus

C21 = C11 + PHIB + PHM + NFA × FA,

where PHIB is the cost of the public health infrastructure needed for bio-
surveillance, including the data input requirements and software; PHM is the
cost of a public health monitoring center, presumably at the Centers for Dis-
ease Control and Prevention, that reviews the biosurveillance information on a
daily basis; NFA is the number of false alarms from the biosurveillance system
over five years of operation; and FA is the cost of a false alarm.

For this exercise, we assume that PHIB is normally distributed with mean
$900 million and standard deviation $100 million (for a five-year funding hori-
zon); this is exclusive of the storage, training, and other infrastructure costs
in PHIS, and it includes the cost of hospital nursing-staff time to enter daily
reports on emergency room patients with a range of disease symptoms (not
just those related to smallpox). PHM is modeled as a normal random variable
with mean $20 million and standard deviation $4 million (this standard de-
viation was proposed by a federal administrator and may understate the real
uncertainty). False alarms are a major problem for monitoring systems; it is
difficult to distinguish natural contagious processes from terrorist attacks. We
expect about one false alarm per month over five years in a national system
of adequate sensitivity, and thus FA is taken to be a Poisson random variable
with mean 60. The cost for a single false alarm is modeled as a normal random
variable with mean $500,000 and standard deviation $100,000.

3.3 Cell (3,1): Key Personnel/No Attack Scenario

One option, among several possible policies that have been discussed, is for
the United States to inoculate about 500,000 key personnel, most of whom
would be first-responders in major cities (i.e., emergency room staff, police,
and public health investigators who would be used to trace people who have
come in contact with carriers). If chosen, this number is sufficiently large that
severe adverse reactions become a statistical certainty.

The cost of this scenario subsumes the cost C21 of the previous scenario,
and thus

C31 = C21 +
NKP × IM

25, 000
+ PAE × NKP × AEC,
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where NKP is the number of key personnel; IM is the cost of the time and
resources needed to inoculate 25,000 key personnel and monitor them for
adverse events; PAE is the probability of an adverse event; and AEC is the
average cost of one adverse event.

We assume that NKP is uniformly distributed between 400,000 and
600,000 (this reflects uncertainty about how many personnel would be des-
ignated as “key”). The IM is tied to units of 25,000 people, since this is a
one-time cost and represents the number of people that a single nurse might
reasonably inoculate and maintain records upon in a year. Using salary tables,
we approximate this cost as a normal random variable with mean $60,000 and
standard deviation $10,000.

The probability of an adverse event is taken from Anderson [And02], which
is based upon Lane et al. [LRN70]; the point estimate for all adverse events
is 0.293, but since there is considerable variation and new vaccines are com-
ing into production, we have been conservative about our uncertainty and
assumed that the probability of an adverse event is uniformly distributed be-
tween 0.15 and 0.45. Of course, most of these events will be quite minor (such
as local soreness) and would not entail any real economic costs.

The AEC is extremely difficult to estimate. For purposes of calculation,
we have taken the value of a human life to be $2.86 million (the amount
used by the National Highway Transportation Safety Administration in cost–
benefit analyses of safety equipment). But most of the events involve no cost,
or perhaps a missed day of work that has little measurable impact on produc-
tivity. After several calculations and consultations, this analysis assumes that
AEC can be approximated as a gamma random variable with mean $40 and
standard deviation $100 (this distribution has a long right tail).

4 Analysis

The statistical risk analysis used in Sect. 3, albeit crude, shows how expert
judgment can generate the random payoff matrices. The values in the cells of
such tables are not independent, since many of the cost components are shared
between cells. In fact, it is appropriate to view the table as a matrix-valued
random variable with a complex joint distribution.

Random tables from this joint distribution can be generated by simulation.
For each table, one can apply either the minimax criterion to determine an
optimal strategy in the sense of von Neumann and Morgenstern [VM44], or
a minimum expected loss criterion to determine an optimal solution in the
sense of Bayesian decision theory [Mye91, Chap. 2]. By doing this repeatedly,
for many different random tables, one can estimate the proportion of time
that each defense strategy is superior.

Additionally, it seems appropriate to track not just the number of times
a defense strategy is optimal, but also weight this count by some measure of
the difference between the costs of the game under competing defenses. For
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example, if two defenses yield game payoffs that differ only by an insignificant
amount, it seems unrealistic to give no credit to the second-best strategy.
For this reason we also use a scoring algorithm in which the score a strategy
receives depends upon how well separated it is from the optimal strategy.
Specifically, suppose that defense strategy i has value Vi on a given table.
Then the score Si that strategy i receives is

Si = 1 − Vi

max Vj
,

and this ensures that strategies are weighted to reflect the magnitude of the
monetized savings that accrue from using them. The final rating of the strate-
gies is obtained by averaging their scores from many random tables.

4.1 Minimax Criterion

We performed the simulation experiment described above 100 times and com-
pared the four defense strategies in terms of the minimax criterion. Although
one could certainly do more runs, we believe that the approximations in the
cost modeling are so uncertain that additional simulation would only generate
spurious accuracy.

Among the 100 runs, we found that the Stockpile strategy won 9 times,
the Biosurveillance strategy won 24 times, the Key Personnel strategy won 26
times, and the Vaccinate Everyone strategy won 41 times. This lack of a clear
winner may be, at some intuitive level, the cause of the widely different views
that have been expressed in the public debate on preparing for a smallpox
attack.

If one uses scores, the results are even more ambiguous. The average score
for the four defense strategies ranged between 0.191 and 0.326, indicating that
the expected performances were, on average, quite similar.

From public policy standpoint, this may be a fortunate result. It indicates
that in terms of the minimax criterion, any decision is about equally defensi-
ble. This gives managers flexibility to incorporate their own judgment and to
respond to extra scientific considerations.

4.2 Minimum Expected Loss Criterion

The minimax criterion may not be realistic for the game theory situation
presented by the threat of smallpox. In particular, the normal-form game
assumes that both players are ignorant of the decision made by their opponent
until committed to a course of action. For the smallpox threat, there has
been a vigorous public discussion on what preparations the United States
should make. Terrorists know what the United States has decided to do, and
presumably this will affect their choice of attack. Therefore the extensive-form
version of game theory seems preferable. This form can be thought of as a



Combining Game Theory and Risk Analysis 17

decision tree, in which players alternate their moves. At each stage, the player
can use probabilistic assessments about the likely future play of the opponent.

The minimum expected loss criterion requires more information than does
the minimax criterion. The analyst needs to know the probabilities of a suc-
cessful smallpox attack conditional on the United States selecting each of the
four possible defenses. This is difficult to determine, but we illustrate how one
can do a small sensitivity analysis that explores a range of probabilities for
smallpox attack.

Table 2 shows a set of probabilities that we treat as the baseline case.
We believe it accords with a prudently cautious estimate of the threat of a
smallpox attack.

Table 2. Baseline probabilities of attack for different defenses

No Attack Single Attack Multiple Attack
Stockpile Vaccine 0.95 0.040 0.010
Biosurveillance 0.96 0.035 0.005
Key Personnel 0.96 0.039 0.001
Everyone 0.99 0.005 0.005

To interpret Table 2, it says that if the United States were to only stockpile
vaccine, then the probability of no smallpox attack is 0.95, the probability of a
single attack is 0.04, and the probability of multiple attacks is 0.01. Similarly,
one reads the attack probabilities for other defenses across the row. All rows
must sum to one.

The minimum expected loss criterion multiplies the probabilities in each
row of Table 2 by the corresponding costs in the same row of Table 1, and
then sums across the columns. The criterion selects the defense that has the
smallest sum.

As with the minimax criterion, one can simulate many payoff tables and
then apply the minimum expected loss criterion to each. In 100 repetitions,
Stockpile won 96 times, Biosurveillance won 2 times, and Vaccinate Everyone
won twice. The scores showed roughly the same pattern, strongly favoring the
Stockpile defense.

We now consider two alternative sets of probabilities shown in Tables 3
and 4. Table 3 is more pessimistic and has larger attack probabilities. Table 4
is more optimistic and has smaller attack probabilities. A serious sensitivity
analysis would investigate many more tables, but our purpose is illustration
and we doubt that the quality of the assessments that underlie the cost matrix
can warrant further detail.

For Table 3, 100 simulation runs found that Stockpile won 15 times, Bio-
surveillance won 29 times, Key Personnel won 40 times, and Vaccinate Ev-
eryone won 16 times. In contrast, for Table 4, the Stockpile strategy won 100
times in 100 runs. The scores for Table 3 ranged from 18.2 to 38.8, which are
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Table 3. Pessimistic probabilities of attack for different defenses

No Attack Single Attack Multiple Attack
Stockpile Vaccine 0.70 0.20 0.10
Biosurveillance 0.80 0.15 0.05
Key Personnel 0.85 0.10 0.05
Everyone 0.90 0.05 0.05

Table 4. Optimistic probabilities of attack for different defenses

No Attack Single Attack Multiple Attack
Stockpile Vaccine 0.980 0.0100 0.0100
Biosurveillance 0.990 0.0050 0.0050
Key Personnel 0.990 0.0050 0.0050
Everyone 0.999 0.0005 0.0005

quite similar. In contrast, for Table 4 nearly all the weight of the score was
on the Stockpile defense.

These results show that the optimal strategy is sensitive to the choice of
probabilities used in the analysis. Determining those probabilities requires in-
put from the intelligence community and the judgment of senior policymakers.

5 Conclusions

This paper has outlined an approach combining statistical risk analysis with
game theory to evaluate defense strategies that have been considered for the
threat of smallpox. We believe that this approach may offer a useful way of
structuring generic problems in resource investment for counterterrorism.

The analysis in this paper is incomplete.

1. We have focused upon smallpox, because the problem has been framed
rather narrowly and quite definitively by public discussion. But a proper
game theory analysis would not artificially restrict the options of the ter-
rorists, and should consider other attacks, such as truck bombs, chemical
weapons, other diseases, and so forth (which would get difficult, but there
may be ways to approximate). It can be completely misleading to seek a
local solution, as we have done.

2. Similarly, we have not fully treated the options of the defenders. For ex-
ample, heavy investment in intelligence sources is a strategy that protects
against many different kinds of attacks and might well be the superior
solution in a less local formulation of the problem.

3. We have not considered constraints on the resources of the terrorists. The
terrorists have limited resources and can invest in a portfolio of different
kinds of attacks. Symmetrically, the United States can invest in a portfolio
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of defenses. This aspect of the problem is not addressed — we assume that
both parties can fund any of the choices without sacrificing other goals.

4. The risk analysis presented here, as discussed previously, is not adequate
to support public policy formulation.

Nonetheless, despite these limitations, the methodology has attractive fea-
tures. First, it is easy to improve the quality of the result through better risk
analysis. Second, it automatically raises issues that have regularly emerged
in policy discussions. Third, it captures facets of the problem that are not
amenable to either game theory or risk analysis on their own, because clas-
sical risk analysis is not used in adversarial situations and because classical
game theory does not use random costs.

Appendix: Background on Smallpox

Although the probability that the smallpox virus (Variola major) might be
used against the United States is thought to be small, the public health and
economic impact of even a limited release would be tremendous. Any serious
attack would probably force mass vaccination programs, causing additional
loss of life due to adverse reactions. Other economic consequences could easily
be comparable to those of the attacks of September 11, 2001.

A smallpox attack could potentially be initiated through infected humans
or through an aerosol [HIB99]. In 12 to 14 days after natural exposure patients
experience fever, malaise, body aches, and a body rash [FHA88]. During the
symptomatic stages of the disease the patient can have vesicles in the mouth,
throat, and nose that rupture to spread the virus during a cough or sneeze.
Person-to-person spread usually occurs through inhalation of virus-containing
droplets or from close contact with an infected person. As the disease pro-
gresses, the rash spreads to the head and extremities and evolves into painful,
scarring vesicles and pustules. Smallpox has a mortality rate of approximately
30%, based on data from the 1960s and 1970s [Hen99].

Various mathematical models of smallpox spread exist and have been used
to forecast the number of people infected under different exposure conditions
and different public health responses [KCW02, MDL01]. There is considerable
variation in the predictions from these models, partly because of differing as-
sumptions about the success of the “ring vaccination” strategy that has been
planned by the Centers for Disease Control and Prevention (CDC) [CDC02],
and this is reflected in the public debate on the value of preemptive inocu-
lation versus wait-and-see preparation. However, the models are in essential
agreement that a major determinant of the size of the epidemic is the number
of people who are exposed in the first attack or attacks.

The current vaccine consists of live vaccinia or cowpox virus and is effective
at preventing the disease. Also, vaccination can be performed within the first
2 to 4 days postexposure to reduce the severity or prevent the occurrence of
the disease [Hen99].
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Vaccination is not without risk; the major complications are serious in-
fections and skin disease such as progressive vaccinia, eczema vaccinatum,
generalized vaccinia, and encephalitis. Approximately 12 people per million
have severe adverse reactions that require extensive hospitalization, and about
one-third of these die — vaccinia immune globulin (VIG) is the recommended
therapy for all of these reactions except encephalitis. Using data from Lane et
al. [LRN70], we estimate that 1 in 71,429 people suffer postvaccinial encephali-
tis, 1 in 588,235 suffer progressive vaccinia, 1 in 22,727 suffer eczema vaccina-
tum, and 1 in 3,623 suffer generalized vaccinia. Additionally, 1 in 1,656 people
suffer accidental infection (usually to the eye) and 1 in 3,289 suffer some other
kind of mild adverse event, typically requiring a person to miss a few days
of work. Other studies give somewhat different numbers [NLP67a, NLL67b].
People who have previously been successfully vaccinated for smallpox are less
likely to have adverse reactions, and people who are immunocompromised
(e.g., transplant patients, those with AIDS) are at greater risk for adverse
reactions [CDC02, Guide B, parts 3, 5, and 6].

Because the risk of smallpox waned in the 1960s, vaccination of the U.S.
population was discontinued in 1972. It is believed that the effectiveness of a
smallpox vaccination diminishes after about 7 years, but residual resistance
persists even decades later. It has been suggested that people who were vacci-
nated before 1972 may be substantially protected against death, if not strongly
protected against contracting the disease [Coh01].

The United States currently has about 15 million doses of the Wyeth
Dryvax smallpox vaccine available. The vaccine was made by scarification of
calves with the New York City Board of Health strain and fluid containing
the vaccinia virus was harvested by scraping [RMK01]. Recent clinical trials
on the efficacy of diluted vaccine indicate that both the five- and ten-fold
dilutions of Dryvax achieve a take rate (i.e., a blister forms at the inoculation
site, which is believed to be a reliable indicator of immunization) of at least
95%, so the available vaccine could be administered to as many as 150 million
people should the need arise [FCT02, NIA02].

The disclosure by the pharmaceutical company Aventis [Ens02] of the
existence in storage of 80 to 90 million doses of smallpox vaccine that were
produced more than 30 years ago has added to the current stockpile. Testing
is being done on the efficacy of the Aventis vaccine stock, including whether
it, too, could be diluted if needed.

Contracts to make new batches of smallpox vaccine using cell culture tech-
niques have been awarded to Acambis. The CDC amended a previous contract
with Acambis in September 2001 to ensure production of 54 million doses by
late 2002. Another contract for the production of an additional 155 million
doses was awarded to Acambis in late November 2001, and the total cost
of these contracts is $512 million. After production, additional time may be
needed to further test the safety and efficacy of the new vaccine [RMK01].
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1 Introduction

After the September 11, 2001, terrorist attacks on the World Trade Center and
the Pentagon, and the subsequent anthrax attacks in the United States, there
has been an increased interest in methods for use in security and counter-
terrorism. However, the development of such methods poses two challenges to
the application of conventional statistical methods. One is the relative scarcity
(fortunately) of empirical data on severe terrorist attacks. The second is the
intentional nature of such attacks [BS98].

In dealing with extreme events (i.e., “events that are both rare and severe”
[BHL99], such as disasters or failures of highly redundant engineered systems),
for which empirical data are likely to be sparse, classical statistical methods
have been of relatively little use. Instead, methods such as reliability analysis
were developed, using decomposition [Rai68, Arm85] to break complex sys-
tems down into their individual components (such as pumps and valves) for
which larger amounts of empirical failure-rate data may be available. Reliabil-
ity analysis has become an important tool for analyzing and protecting against
threats to the operability of complex engineered systems. Beginning with the
Reactor Safety Study [NRC75], modern risk-analysis methods [Bie97, BC01]
built on the techniques of reliability analysis, adding consequence-analysis
models to allow for estimation of health and safety impacts as well as loss of
functionality. Quantification of risk-analysis models generally relies on some
combination of expert judgment [Coo91] and Bayesian rather than classical
statistics to estimate the parameters of interest in the face of sparse data
[BHL99, BFH04]. Zimmerman and Bier [ZB02] argue that “Risk assessment
in its current form (as a systems-oriented method that is flexible enough to

∗ This article is a revision of an article originally published in Modern Statistical and
Mathematical Methods in Reliability (2005), World Scientific Publishing Company
[Bie05].
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handle a variety of alternative conditions) is a vital tool for dealing with
extreme events.”

However, the routine application of reliability and risk analysis by itself is
not adequate in the security domain. Protecting against intentional attacks
is fundamentally different from protecting against accidents or acts of na-
ture (which have been the more usual focus of engineering risk analysis). In
particular, an intelligent and adaptable adversary may adopt a different offen-
sive strategy to circumvent or disable our protective security measures. Game
theory [Dre61, FT91] provides a way of taking this into account analytically.

Thus, security and counterterrorism can benefit from a combination of
techniques that have not usually been used in tandem. This paper discusses
approaches for applying risk and reliability analysis and game theory to the
problem of defending complex systems against attacks by knowledgeable and
adaptable adversaries.

2 Applications of Risk and Reliability Analysis to
Security

Early applications of engineering risk analysis to counterterrorism and security
include Martz and Johnson [MJ87] and Cox [Cox90]. More recently (following
September 11), numerous risk analysts have proposed its use for homeland
security [PG02, Gar03, Zeb03, ZHN04]. Because security threats can span
such a wide range, the emphasis has been mainly on risk-based decision-
making (i.e., using the results of risk analyses to target security investments
at the most likely and most severe threats) rather than on detailed models of
particular types of threats.

Much of this work [HML98, EFW00a, EFW00b, EHL01] has been di-
rected specifically towards threats against critical infrastructure, beginning
even before September 11, due to concerns raised by the President’s Com-
mission on Critical Infrastructure Protection [Pre97], among others. In par-
ticular, Haimes et al. [HML98] provide a useful taxonomy of methods for
protecting infrastructure systems from terrorism, grouping countermeasures
into four categories: (1) security — restricting access to key sites or facilities;
(2) redundancy — providing alternate means for performing key functions;
(3) robustness — making systems stronger or less sensitive to upset; and
(4) resilience — ensuring that key systems and/or functions can be restored
quickly. For more recent applications of risk analysis to critical infrastructure,
see Haimes [Hai02a, Hai02b], Haimes and Longstaff [HL02], and Lemon and
Apostolakis [LA04]. There has also been some effort to adapt earthquake risk
modeling techniques to security problems [Ise04, Wer04].

In the reliability area, Levitin and colleagues have by now amassed a
large body of work applying reliability analysis to problems of security
[Lev02, Lev03a, Lev03b, LL00, LL01, LL03, LDX03]. Much of this work com-
bines reliability analysis with optimization, to identify the most cost-effective
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risk reduction strategies. Examples include determining the optimal physical
separation of components that are functionally in parallel with each other and
the optimal allocation of physical protection to various hierarchies of a sys-
tem (e.g., hardening the system as a whole, or its subsystems, or individual
components).

Risk and reliability analyses (and the concomitant approach of risk-based
decision-making) have a great deal to contribute to ensuring the safety
(risk analysis) and functionality (reliability analysis) of complex engineered
systems. In particular, they provide “a systematic approach to organizing
and analyzing scientific knowledge and information for potentially hazardous
activities or for substances that might pose risks under specified circum-
stances” [NRC94], by integrating information on a wide variety of possible
threats within a single framework and quantifying the frequency and severity
of those threats. Furthermore, basic reliability analysis results can be use-
ful in security analysis even if they were not initially developed with that
in mind. For example, results on least-cost diagnosis of coherent systems
[Ben81, CQK89, CCS96] can be readily adapted to yield results on optimal
attack strategies. Moreover, the recognition that risk may often be unknown
to within an order of magnitude or more (almost certainly more than that,
in the case of security threats) imposes some discipline on the analysis pro-
cess, suggesting that the majority of the modeling effort should probably be
devoted to analyzing the dominant contributors to risk. This means that com-
plex models of phenomena that are unlikely to contribute much to the overall
level of risk can often be replaced by much simpler approximations.

However, unlike in applications of risk analysis to problems such as the risk
of nuclear power accidents, the relationship of recommended risk-reduction ac-
tions to the dominant risks emerging from the analysis is not straightforward.
In most applications of risk analysis, risk reduction actions follow the usual
“80/20 rule” (originally due to Pareto) — the decision-maker can review a list
of possible actions, ranked based on the magnitude of risk reduction per unit
cost, and choose the most cost-effective, typically getting something on the
order of 80% of the benefit for perhaps 20% of the cost. This does not work
so well in the security context (especially if the potential attacker can readily
observe system defenses), since the effectiveness of investments in defending
one component can depend critically on whether other components have also
been hardened (or, conversely, if the attacker can easily identify alternative
targets that have not yet been hardened).

Risk and reliability analyses are clearly important in identifying the most
significant security threats, particularly in complex engineered systems (whose
vulnerabilities may depend on networks of interdependencies that cannot be
readily identified without detailed analysis). However, in the security con-
text, the results of such analyses do not lead in a straightforward manner
to an application of the Pareto principle. In particular, risk and reliability
analyses generally assume that the threat or hazard is static, whereas in the
case of security, the threat is adaptive and can change in response to the de-
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fenses that have been implemented. Therefore, simply rerunning an analysis
with the same postulated threat but assuming that some candidate security
improvements have been implemented will in general significantly overesti-
mate the effectiveness of the candidate improvements — in many cases, by an
extremely large margin. For example, in an analysis of asymmetric warfare
against civilian targets, Ravid [Rav02] argues that since the adversary can
change targets in response to defensive investments, “investment in defensive
measures, unlike investment in safety measures, saves a lower number of lives
(or other sort of damages) than the apparent direct contribution of those mea-
sures.” Game theory provides one natural way of addressing this limitation in
the applicability of risk and reliability analyses to security.

3 Applications of Game Theory to Security

Due to its value in understanding and modeling conflict, game theory has a
long history of being applied to security-related problems, beginning with
military applications [Dre61]; for specific examples see Haywood [Hay54],
Berkovitz and Dresher [BD59, BD60], and Leibowitz and Lieberman [LL60].
It has also been extensively used in political science [Bra75, Bra85, BK88];
e.g., in the context of arms control. Recently, there have also been exploratory
applications of game theory and related ideas to computer security, Anderson
[And01], Burke [Bur99], Chaturvedi et al. [CGM00], Cohen [Coh99], Schneier
[Sch00, Sch01].

With respect to applications of game theory and related methods to secu-
rity in general, there is a large body of work already, much of it by economists
[BR00, FL02, FL03, AS01, SA03, ES04, SE04, KZ03, LZ05]. Much of the work
in this area until now has been designed to provide “policy insights” [SA03];
i.e., to inform policy-level decisions such as public versus private funding of
defensive investments [LZ05], or the relative merits of deterrence and other
protective measures [FL02, FL03, KZ03, SE04].

Of course, the events of September 11 have resulted in greater interest in
this type of work. Perhaps more significantly with respect to the topic of this
paper, there has also recently been interest in using game theory not only to
explore the effects of different policies, but also to generate detailed guidance
in support of operational-level decisions; e.g., determining which assets to
protect or how much to charge for terrorism insurance.

For example, Enders and Sandler [ES04] study substitution effects in ter-
rorism, observing that “installation of screening devices in U.S. airports in
January 1973 made skyjackings more difficult, thus encouraging terrorists to
substitute into other kinds of hostage missions.” Similarly, they note that:
“If the government were to secure its embassies or military bases, then at-
tacks against such facilities would become more costly on a per-unit basis. If,
moreover, the government were not at the same time to increase the security
for embassy and military personnel when outside their facilities, then attacks
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directed at these individuals (e.g., assassinations) would become relatively
cheaper” (and hence presumably more frequent).

Clearly, security improvements that appear to be cost-justified without
taking into account the fact that attacks may be deflected to other targets
may turn out to be wasteful (at least from a public perspective) if they merely
deflect attacks to other targets of comparable value. For example, anthrax
sterilization equipment installed in every post office in the country (which
was considered, but fortunately never implemented), if publicly known, might
never sterilize a single anthrax spore, since terrorists could deliver anthrax
just as effectively by Federal Express, United Parcel Service, or even bicycle
courier. In fact, such deflection of risk to other targets was not considered
by the U.S. Postal Service in evaluating the cost-effectiveness of proposed
security-improvement measures [CKS03].

In an application of what Shubik [Shu87] (see also Smith and von Win-
terfeldt [SV04]) calls “conversational” game theory, the Brookings Institu-
tion [OOD02] has recommended that “policymakers should focus primarily
on those targets at which an attack would involve a large number of casual-
ties, would entail significant economic costs, or would critically damage sites
of high national significance.” While game theory is not explicitly mentioned
in the Brookings report, game-theoretic thinking clearly underlies this recom-
mendation.

The Brookings recommendation constitutes a reasonable “zero-order” sug-
gestion about how to prioritize targets for investment. Under this type of
“weakest-link” model, defensive investment is allocated only to the target(s)
that would cause the most damage if attacked. Importantly, though, such
weakest-link models tend to be unrealistic in practice. For example, Arce M.
and Sandler [AS01] note that the extreme solutions associated with weakest-
link models “are not commonly observed among the global and transnational
collective action problems confronting humankind.” In particular, real-world
decision-makers will generally want to “hedge” by investing in defense of ad-
ditional targets to cover contingencies such as whether they have failed to
correctly estimate which targets will be the most attractive to the attackers.

Moreover, it is important to go beyond the zero-order heuristic of protect-
ing only the most valuable assets (or those that would do the most damage
if successfully attacked), to also take into account the success probabilities of
attacks against various possible targets. This can be important, since terror-
ists appear to take the probability of success into account in their choice of
targets; for example, Woo [Woo03] has observed that “al-Qaeda is sensitive to
target hardening,” and that “Osama bin Laden has expected very high levels
of reliability for martyrdom operations.” Thus, even if one choice of target is
potentially more damaging than another, it may not merit as much defensive
investment as a target that is less valuable but more vulnerable (and hence
may have a greater likelihood of being attacked).

Models that take the success probabilities of potential attacks into ac-
count include Bier and Abhichandani [BA03], Bier et al. [BNA05], Major
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[Maj02], and Woo [Woo02, Woo03]. The results by Bier and colleagues repre-
sent weakest-link models, in which at equilibrium the defender invests in only
those components that are most vulnerable (i.e., have the highest probability
of being successfully attacked), or would cause the highest expected damage
given an attack (taking into account both the success probability of an attack
and the value of the component). In particular, in a series system, we assume
that the attacker chooses which target to attack to maximize either the suc-
cess probability of the attack [BA03], or more generally the expected damage
of the attack [BNA05]. Therefore, it is never worthwhile for the defender to
invest in any components other than those perceived as most attractive by
the attacker.

By contrast, the models proposed by Major [Maj02] and Woo [Woo02,
Woo03] achieve the more realistic result of hedging at optimality. In partic-
ular, Major [Maj02] assumes that the defender allocates defensive resources
optimally, but that the attacker does not know this and randomizes the choice
of targets to protect against the possibility that the allocation of defensive re-
sources was suboptimal. The result is that the attacker’s probability of choos-
ing any particular target is “inversely proportional to the marginal effective-
ness of defense . . . at that target.” Moreover, since the attacker randomizes
in choosing which asset to target, the optimal defensive investment involves
hedging (i.e., positive defensive investment even in assets that are not “weak-
est links”).

Woo [Woo02, Woo03] extends the model introduced by Major and pro-
vides one possible strategy for estimating the values of the parameters in the
resulting model. In particular, Major [Maj02] treats the values of the various
potential targets as being exogenous. While O’Hanlon et al. [OOD02] were
able to estimate the values of various potential targets to roughly an order of
magnitude quite soon after September 11, obtaining more accurate estimates
of asset values can itself be a difficult and time-consuming task. Therefore,
Woo [Woo02, Woo03] assumes simply that the various types of targets have
been rank-ordered in value by terrorism experts. He then converts these ordi-
nal rankings into cardinal estimates of the targets’ attractiveness to terrorists
using Fechner’s law [WE92, Fec1860]. This is a concept from the early days of
psychophysics according to which “an arithmetic progression in perceptions
requires a geometrical progression in their stimuli” [Woo02]. Fechner’s log-
arithmic relationship of perception to stimulus is certainly plausible in this
application, but is a somewhat ad hoc assumption; moreover, it may be more
plausible to assume that perceived attractiveness is a logarithmic function
of one or more cardinal measures of damage (such as lives lost or economic
impact) than of ordinal rankings.

The basic game analyzed by Major and Woo involves simultaneous play by
attackers and defenders, so the assumption that the attacker cannot readily
observe the defender’s investment makes sense in that context. (Note that it
is still somewhat heroic to assume that the attacker can observe the marginal
effectiveness of possible defensive investments. In practice, even the defender
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may not know the effectiveness of investments that have not been seriously
considered for implementation!) However, many types of defenses (such as se-
curity guards) are either public knowledge or readily observable by attackers;
moreover, some defenses (such as hardening of large buildings or installation
of anthrax sterilization equipment in post offices) are not only observable, but
also involve large capital outlays, and hence are difficult to change in response
to evolving defender perceptions about likely attacker strategies. In such sit-
uations, it seems counterintuitive to assume that the attacker can observe
the marginal effectiveness of defensive investments in each possible target,
but cannot observe which defenses the defender has actually implemented.
Presumably, in cases of sequential play (in which the defender commits to
a particular choice of defensive investments, and the attacker observes these
before selecting an attack strategy), those defenses that have already been
implemented should be easier to observe than the hypothetical effectiveness
of defenses that have not been implemented.

Since the basic premise underlying the models of Major and Woo is of
questionable applicability in cases of sequential play (which are likely to be
commonly encountered in practice), recent work [BOS05] achieves the same
goal (i.e., an optimal defensive strategy that allows for hedging in equilibrium)
in a different manner. In particular, in this model, attackers and defenders are
assumed to have different valuations for the various potential targets. This is
reasonable given the observation by Woo [Woo03] that “If a strike against
America is to be inspirational [to al-Qaeda], the target should be recognizable
in the Middle East”; thus, for example, attacks against iconic targets such
as the Statue of Liberty or the Sleeping Beauty Castle at Disneyland may
be disproportionately attractive to attackers relative to the economic damage
and loss of life that they would cause. Moreover, while defenders may well
prefer that attackers choose targets that are difficult and costly to attack,
the attackers most likely care more about such factors than the defenders
do. In addition to allowing attacker and defender valuations to differ, the
proposed model assumes that attackers can observe defensive investments
perfectly (which is conservative, but perhaps not overly so), but that defenders
are uncertain about the attractiveness of each possible target to the attackers.
This last assumption is reasonable in light of the fact that lack of knowledge
about attacker values, goals, and motivations is precisely one of the reasons
for gathering intelligence about potential attackers.

The model of Bier et al. [BOS05] has several interesting features in addition
to the possibility of defensive hedging at equilibrium. First, it is interesting to
note that such hedging does not always occur. In particular, it will often be
optimal for the defender to put no investment at all into some targets even
if they have a nonzero probability of being attacked — especially when the
defender is highly budget constrained, and the various potential targets differ
greatly in their values (both of which seem likely to be the case in practice).
Moreover, in this model, if the allocation of defensive resources is suboptimal,
defending one set of targets could in principle deflect attacks to alternative
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targets that are simultaneously less attractive a priori to the attackers, but
also more damaging to the defenders. For example, making particular targets
less vulnerable to attack could lead terrorists to adopt attack strategies that
are more costly or difficult for them to implement, or would yield less publicity
benefit to the attackers, but are also more lethal. This could be an important
consideration, in light of the past substitution effects documented by Enders
and Sandler [ES04].

3.1 Security as a Game between Defenders

The work discussed above has primarily viewed security as a game between
an attacker and a defender, focusing on anticipating the effects of defensive
actions on possible attackers — although Anderson [And01] views informa-
tion security in part as a game between the providers of information security
products. However, it also makes sense to consider the effects of defensive
strategies adopted by one agent on the incentives faced by other defenders.
Some types of defensive actions (such as installation of visible burglar alarms
or car alarms) may actually increase risk to other potential victims. This type
of situation can lead to overinvestment in security when viewed from the per-
spective of society as a whole, because the payoff to any one individual or
organization from investing in security is greater than the net payoff to the
entire society. Conversely, other types of defensive actions — such as vacci-
nation [HAT94, Phi00], fire protection [OS02], installation of vehicle tracking
systems (if their installation in a particular vehicle is not readily observable by
potential car thieves) [AL98], or use of antivirus protection software [And01]
— decrease the risk to other potential victims. This type of situation can
be expected to result in underinvestment in security, since defenders may
attempt to “free ride” on the investments of others, and in any case are un-
likely to take positive externalities affecting other agents into account in their
decision-making.

To better account for situations in which security investment confers pos-
itive externalities, Kunreuther and Heal [KH03, HK03] proposed a model of
interdependent security where agents are vulnerable to “infection” from other
agents. For example, consider the supply chain for food and agricultural prod-
ucts, in which companies could be vulnerable to contamination introduced
upstream in the supply chain, and hence are vulnerable to the security weak-
nesses of other companies; Kunreuther and Heal have applied similar models
to airlines that are vulnerable to threats in checked baggage transferred from
partner airlines. In this context, not only will defensive investment on the
part of one agent benefit other agents, it may also be extremely costly or
difficult for agents to defend their own systems against infection spread (how-
ever unintentionally) by their partners, and they may therefore need to rely
on their partners to protect them against such threats. Kunreuther and Heal
consider in particular the case where even a single successful attack can be
catastrophic — in other words, where the consequences of a successful attack
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(e.g., business failure) are “so serious that it is difficult to imagine an alter-
native event with greater consequences.” In the context of this model, they
show that failure of one agent to invest in security can make it unprofitable
for other agents to invest in security, even when they would normally find it
profitable to do so. Moreover, they show that this game can in some cases
have multiple equilibrium solutions (e.g., an equilibrium in which all players
invest and another in which no players invest). Kunreuther and Heal [KH03]
discuss numerous possible coordinating mechanisms that can help to ensure
that all players arrive at the socially optimal level of defensive investment,
such as voluntary standards [And01], like those put forth by the International
Organization for Standardization, or contracts.

Recent work [BG05, ZB05] has extended these results to the case of attacks
occurring over time (according to a Poisson process), rather than the static
model assumed in the original analysis. In this model, differences in discount
rates among agents can lead some agents with low discount rates not to invest
in security when it would otherwise be in their interests to do so, if other
agents (e.g., with higher discount rates) choose not to invest in security. In
particular, when an agent has a high discount rate, future losses due to attacks
will have a low present value, so the agent will not find it worthwhile to invest
in security. When the agent has a moderately small discount rate, the losses
due to future attacks will tend to loom relatively large, so the agent will find
investing in security to be worthwhile. When the discount rate of the agent
is in the intermediate range, the agent will effectively be ambivalent about
whether to invest, and will prefer to invest only when other agents also invest.
Finally, when an agent’s discount rate is extremely small, then investing will
again be worthwhile only when other agents also invest. The reason for this
last (somewhat counterintuitive) result is that investing in security is assumed
to eliminate only the risk from direct attack, not the risk of “infection” from
other agents, and hence merely postpones rather than eliminates the loss from
an attack; at extremely low discount rates, merely postponing the loss is of
little value.

Differences in discount rates can arise for a variety of reasons, ranging
from participation in different industries with different typical rates of re-
turn, to risk of impending bankruptcy causing some agents to have extremely
short-time horizons, to myopia (adopting a higher discount rate than is in
the agent’s enlightened self-interest). As in the simpler model, coordinating
mechanisms (as well as efforts to counteract myopia) can be important here in
ensuring that the socially optimal level of investment is achieved when mul-
tiple equilibrium solutions are possible. Thus, heterogeneous time preferences
can complicate the task of achieving security in an interdependent world,
but an understanding of this phenomenon can help in identifying promising
solutions.
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4 Combining Reliability Analysis and Game Theory

We have seen that many of the recent applications of risk and reliability
analysis to security do not explicitly model the adaptive response of potential
attackers to defensive investments, and hence may vastly overstate both the
effectiveness and the cost-effectiveness of those investments. Similarly, much of
the existing game-theoretic security work focuses on nonprobabilistic games.
Moreover, even those models that explicitly consider the success probabilities
of potential attacks (e.g., [Maj02, Woo02, Woo03, KH03, HK03]) generally
consider individual assets or components in isolation, and fail to consider the
effect that disabling one or several components can have on the functionality
of the larger system of which they may be a part. Combining the techniques
of risk and reliability analysis with game theory could therefore be a fruitful
way of studying and protecting against intentional threats to complex systems
such as critical infrastructure.

Hausken [Hau02], an economist, has integrated probabilistic risk analy-
sis and game theory (although not in the security context), by interpreting
system reliability as a public good and elucidating the incentives of different
players responsible for maintaining particular components of a larger system.
In particular, he views security as a game between defenders responsible for
different portions of an overall system, and elucidates the relationships be-
tween the series or parallel structure of the system and classic games such
as the coordination game, the battle of the sexes, chicken, and the prisoner’s
dilemma [Hir83, Hir85].

Rowe [Row02], a risk analyst, argues that the implications of “the human
variable” in terrorism risk (in particular, the fact that terrorists can adapt in
response to our defenses) have yet to be adequately appreciated. He presents
a simple game-theory framework for addressing the need to evaluate possible
protective actions in light of terrorists’ ability to “learn from experience and
alter their tactics.” This approach has been used in practice to provide input
to prioritizing defensive investments among multiple potential targets and
multiple types of threats.

Banks and Anderson [BA03a] apply similar ideas to the evaluation of op-
tions for responding to the threat of bioterrorism (in particular, intentionally
introduced smallpox). The approach adopted by Banks and Anderson embeds
risk analysis (quantified using expert opinion) in a game-theoretic formulation
of the defender’s decision problem. This enables them to account for both the
adaptive nature of the threat and also the uncertainty about the costs and
benefits of particular defensive actions. They conclude that this approach
“captures facets of the problem that are not amenable to either game theory
or risk analysis on their own.”

Recent results by the author and colleagues [BA03, BNA05] use game
theory to explore the nature of optimal investments in the security of sim-
ple series and parallel systems as a building block to the analysis of more
complex systems. The results suggest that defending series systems against
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informed and determined attackers is an extremely difficult challenge. In a
series system, if the attacker knows about (or can observe) the system’s de-
fenses, the defender’s options for protecting a series system are extremely
limited. In particular, the attacker’s ability to respond strategically to the de-
fender’s investments deprives the defender of the ability to allocate defensive
investments according to their cost-effectiveness; rather, if potential attackers
know (or can readily learn) about the effectiveness of any defensive measures,
defensive investments in series systems must essentially equalize the strength
of all defended components to be economically efficient. This is consistent with
the observation by Dresher [Dre61] in the military context that, for optimal
allocation of defensive resources, “It is necessary that each of the defended
targets yield the same payoff to the attacker.”

This emphasizes the importance of redundancy as a defensive strategy. Es-
sentially, redundancy reduces the flexibility available to the attacker in choice
of targets (since the attacker must now disable multiple redundant compo-
nents to disable a system) and increases the flexibility available to the defender
(since the defender can now choose which of several redundant components
to defend, based on the cost-effectiveness of doing so). Traditional reliability
design considerations such as spatial separation and functional diversity are
also important components of defensive strategy to help ensure that attacks
against redundant components are likely to succeed or fail more or less inde-
pendently of each other (i.e., to ensure that redundant components cannot all
be disabled by the same type of attack).

It is clearly important in practice to extend the types of security models
described above to more complicated system structures (including both par-
allel and series subsystems), such as that shown below, rather than simple
parallel or series systems. Recent work [AB04] begins to address this chal-
lenge, at least under particular assumptions. However, achieving fully general
results (e.g., for arbitrary system structures and more general assumptions
about the effects of security investments on the costs and/or success proba-
bilities of potential attacks) is likely to be difficult and may require heuristic
approaches.

In addition, for reasons of mathematical convenience, the models developed
until now have generally assumed that the success probability of an attack on
a particular component is a convex function of the resources invested to de-
fend that component. While in many contexts this is a reasonable assumption
(e.g., due to declining marginal returns to defensive investments), it is clearly
not fully general. For example, certain types of security improvements (such
as relocating a critical facility to a more secure location) are “inherently dis-
crete” [KZ03], in the sense that they require some minimal level of investment
to be feasible. This will tend to result in step changes in the success probabil-
ity of an attack as a function of the level of defensive investment. Similarly,
if security investment beyond some threshold deters potential attackers from
even attempting an attack, then the likelihood of a successful attack could
decrease rapidly beyond that threshold. Such effects can result in the success
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probability of an attack being a nonconvex function of the defensive invest-
ment (at least in certain regions, e.g., when the level of investment is not too
large). This makes the problem of identifying the optimal level of defensive
investment more complicated and can change the nature of the optimal solu-
tions (e.g., increasing the likelihood that there will be multiple local optima,
and that not investing in security may be the optimal strategy).

Finally, it would, of course, be worthwhile to extend our models to include
the dimension of time, rather than the current static or “snapshot” view of
system security. This would allow us to model imperfect attacker information
(including, for example, Bayesian updating of the probability that an attack
will succeed based on a past history of successful and failed attacks) as well
as the possibility of multiple attacks over time.

5 Conclusions

As noted above, protecting engineered systems against intentional attacks is
likely to require a combination of game theory and reliability analysis. Risk
and reliability analysis by itself will likely not be sufficient to address many
critical security challenges, since it does not take into account the attacker’s
response to the implementation of reliability or security improvements. How-
ever, most current applications of game theory to security deal with individual
components or assets in isolation, and hence could benefit from the use of re-
liability analysis tools and methods to more fully model the risks to complex
networked systems such as computer systems, electricity transmission systems,
or transportation systems. In the long run, approaches that embed systems
reliability models in a game-theoretic framework may make it possible to take
advantage of the strengths of both approaches.
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Biometric identification is an old technology. Face recognition is a long-
standing tool in law enforcement; the Wild West wanted posters are just one
example. Signatures and handwriting have been accepted in United States law
courts to establish authorship since 1831 [US1831]. Fingerprints also have a
long history: Joao de Barros reports their use in China in the 14th century, and
Sir William Hershel used them in 1856 on contracts in India to prevent subse-
quent repudiation. And all statisticians should know that Sir Francis Galton
[Gal1892] wrote an influential book on fingerprints in 1892, which contains the
taxonomy of minutia that is still in use today. Work still continues on this:
Dass [Das04] applies Markov random field methods for fingerprint matching.

In the post 9/11 era, governments around the world are investigating bio-
metric identification as a means to discourage terrorism. (There are also direct
applications in preventing identity theft.) Countries are planning to provide
biometric authentication on passports, and secure facilities want biometric ac-
cess control. New techniques are based upon DNA samples, capillary patterns
in the iris of the eye, voice prints, acceleration patterns on pressure-sensitive
signature plates, and keystroke rhythms when typing passwords. But all of
these ideas require statistical justification and a legal framework.

The statistical justification concerns the probability of a false match and
the probability of a missed match. If the type I and type II error rates are
too large, then the method has little value. Often there are not single answers
for these estimates. For example, before DNA testing, blood type used to
be helpful in excluding suspects, but in general was not legally useful for
confirming identity. However, for some very rare blood types, it could be
extremely specific and highly probative. So there are circumstances in which
a method can work very much better than its average behavior. The converse
is also true; biometric distinctions between twins generally show much worse
performance than their average behavior.

The legal questions concern the use of the biometric technology. Biometric
methods that have no standing in law have limited applicability (but are still
being tested for some applications). One issue concerns the fact that suspects
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in the United States cannot be compelled to testify against themselves, and
thus need not provide DNA samples or signature specimens. A related issue is
the evolving body of privacy law — courts may decide that it is too intrusive
to require identification for the routine business of daily life, such as entering
a subway station or buying a car.

A more crucial issue is whether a court can even accept the biometric
match as evidence. It used to be that the legal standard for such evidence was
Frye v. United States [Fry23], a 1923 decision that held that “while courts will
go a long way in admitting expert testimony deduced from a well-recognized
scientific principle or discovery, the thing from which the deduction is made
must be sufficiently established to have gained general acceptance in the par-
ticular field in which it belongs.” This argument was used to exclude prosecu-
torial evidence based upon a precursor of the lie detector, but has subsequently
upheld the use of handwriting, fingerprint, and DNA evidence.

The legal landscape shifted recently when the Supreme Court upheld the
Ninth Circuit Court’s decision in Daubert v. Merrell Dow Pharmaceuticals Inc.
[Dau91]. That 1991 decision ruled that scientific evidence must be “subjected
to verification and scrutiny by others in the field” and established five criteria
that expert testimony must satisfy. In the context of biometric evidence, these
are generally taken to mean that the methods must be transparent, published,
and have validated estimates of type I and type II error.

One consequence of Daubert is a fresh skepticism of latent fingerprint evi-
dence. This is driven by several cases in which Federal Bureau of Investigation
(FBI) experts made a false match — the most conspicuous case was Brandon
Mayfield, the Oregon lawyer who was arrested in connection with the train
bombing in Madrid in 2004. When making a fingerprint identification, the
FBI protocol requires that two experts examine the match and agree on the
finding, where the determination of a match depends upon a complex set of
procedures involving “points of comparison” and other features. However, the
two experts do not work independently, and often have knowledge of infor-
mation that may be prejudicial (in Mayfield’s case, there were three experts,
and they knew he was a convert to Islam).

Another recent case was Stephen Cowans, who was convicted in 1997 of
shooting a police officer, but exonerated in 2004 when DNA evidence proved
that the FBI had incorrectly matched his fingerprint. Both the Mayfield and
the Cowans cases raise the statistical issue of search bias; as fingerprint li-
braries grow, the chance of finding a near match increases, and thus the prob-
ability of a false match must increase. Statisticians can help quantify this.

But these legal issues may not be so important for counterterrorism. Here
the Holy Grail for biometric identification is face recognition, and there are
reasons to believe that many applications would be juridically acceptable.
For example, intelligence agencies and the Department of Homeland Security
really want to have technology that allows people entering the United States
to be quickly checked against a library of terrorist photos; it seems unlikely
that such use would violate any protected rights.
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The following two papers are outstanding examples of how statistical re-
search has begun to address face recognition — but both papers describe
methods that could apply to more general problems. They represent solid
work that aims at understanding, estimating, and reducing the error rates
that have made biometric identification so problematic.

Mitra’s paper uses the MACE filter and builds statistical models in the
spectral domain for faces images. Her approach combines ideas in data mining
with traditional statistics and uses complexity penalties to determine appro-
priate model fits. The models allow for variation in illumination, which is one
of the many hard problems in this area. In contrast, Rukhin’s paper takes
a more synthetic approach. Using copula theory, he studies how algorithms
might be combined to achieve better error rates than any single algorithm act-
ing alone. Some of the methodology behind this relates to work on document
retrieval, which ranks the quality of match in a database. Another thread
relates to the theory of nonparametric measures of correlation. Both papers
demonstrate the kinds of contributions that statistical thinking can make to
hard problems of national importance.

But the problems these methods face are significant. Many people look
alike (Websites have sprung up to discuss the astonishing resemblance be-
tween Saruman the White, as played by Christopher Lee, and Sheik Yassin,
the founder of Hamas). For counterterrorism, algorithms need to work on peo-
ple who have shaved a beard or donned false eyeglasses, and the recognition
software must automatically correct for differences in lighting, expression, and
the angle of the photo. Even with the human eye, which is much more pow-
erful than any existing algorithm, the false-alarm rate might be too large for
border security purposes.
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1 Introduction

In the modern electronic information age, there is an ever-growing need to
authenticate and identify individuals for ensuring the security of a system.
Traditional methods of authentication and identification make use of identi-
fication (ID) cards or personal identification numbers (PINs), but such iden-
tifiers can be lost, stolen, or forgotten. In addition, these methods fail to
differentiate between an authorized person and an impostor who fraudulently
acquires knowledge or “token” of the authorized person. Security breaches
have led to losses amounting to millions of dollars in agencies like banks and
telecommunication systems that depend on token-based security systems.

In traditional statistical literature, the term biometrics or biometry refers
to the field of statistical methods applicable to data analysis problems in
the biological sciences, such as agricultural field experiments to compare the
yields of different varieties of a crop, or human clinical trials to measure the
effectiveness of competing therapies. Recently the term biometrics has also
been used to denote the unique biological traits (physical or behavioral of
individuals that can be used for identification), and biometric authentication
is the newly emerging technology devoted to verification of a person’s identity
based on his/her biometrics. The purpose of biometric authentication is to
provide answers to questions like the following:

• Is this person authorized to enter a facility?
• Is this individual entitled to access privileged information?
• Is the given service being administered only to enrolled users?

These questions are vital for ensuring security of many business and gov-
ernmental organizations. Since it relies on “something you are” rather than
“something you know or possess,” a biometric in principle cannot be stolen,
forgotten, or duplicated and is less prone to fraud than PINs and ID cards. For
all these reasons, the field of biometrics has been growing exponentially in re-
cent years (especially after the attacks of September 11, 2001), and the rapidly
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evolving technology is being widely used in forensics for criminal identifica-
tion in law enforcement and immigration, in experimental form in restricting
access to automated teller machines (ATMs) and computer networks, as well
as in various forms of e-commerce and electronic banking. Moreover, the re-
cent practice of recording biometric information (photo and fingerprint) of
foreign passengers at all U.S. airports and also the proposed inclusion of dig-
itized photos in passports show the growing importance of biometrics in U.S.
homeland security.

Typically used biometrics include face images, fingerprints, iris measure-
ments, palm prints, hand geometry, hand veins (physical traits), and voice-
print, gait, and gesture (behavioral traits). Generally, biometric systems are
composed of two parts: (1) the enrollment and (2) the identification part. The
former involves the registration of a user’s characteristic, which is subsequently
to be used as a criterion for classification purposes. This procedure involves
sample capturing with the help of digital cameras or similar devices, feature
extraction for developing a sample template, and storing the template with
the relevant database. The second part provides the user interface to have the
end user’s characteristic captured, compared to the existing templates, and
verified whether he or she is authentic or an impostor.

Face recognition is probably the most popular biometric-based method
because of its potential to be both accurate as well as nonintrusive and user-
friendly. It analyzes facial characteristics to verify whether the image belongs
to a particular person. Faces are rich in information about individual identity,
mood and mental state, and position relationships between face parts, such
as eyes, nose, mouth, and chin, as well as their shapes and sizes, are widely
used as discriminative features for identification. Much research has been done
on face recognition in the past decades in the field of computer science, and
yet face authentication still poses many challenges. Several images of a single
person may be dramatically different because of changes in viewpoint, color,
and illumination, or simply because the person’s face looks different from day
to day due to appearance-related changes like makeup, facial hair, glasses, etc.

Several authentication methods based on face images have been developed
for recognition and classification purposes. In face authentication, as in most
image processing problems, it is necessary to extract relevant discriminative
features that distinguish individuals. But one hardly knows in advance which
possible features will be discriminative. For this reason, most of the face au-
thentication systems today use some kind of efficient automatic feature extrac-
tion technique. Jonsson et al. [JKL99] used support vector machines (SVM)
to extract relevant discriminatory information from the training data and
build an efficient face authentication system, and Li et al. [LKM99] used lin-
ear discriminant analysis (LDA) for efficient face recognition and verification.
Liu et al. [LCV02] applied principal components analysis (PCA) for model-
ing variations arising in face images from expression changes and registration
errors by using the motion field between images in a video clip. Havran et
al. [HHC02] performed face authentication based on independent component
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analysis (ICA), and Palanivel et al. [PVY03] proposed a method for video-
based, real-time face authentication using neural networks. A recently devel-
oped face authentication system is the minimum average correlation energy
(MACE) filter [VSV02, SVK02]. The MACE filter was originally proposed
by Mahalanobis et al. [MVC87] as an effective automatic target recognition
tool, and Vijaya Kumar et al. [VSV02] first used it to authenticate a facial
expression database, obtaining impressive results. Savvides and Vijaya Kumar
[SV03] showed that the filter-based methods produce more accurate authenti-
cation results than traditional methods based on LDA and PCA, especially in
the presence of distortions such as illumination changes and partial occlusions.

The present chapter reports some initial work on establishing a firmer
statistical foundation for face authentication systems and in verifying the ac-
curacy of proposed methods in engineering and computer science, which are
mostly empirical in nature. Given the sensitive nature of their applications
today, it is imperative to have rigorous authentication systems where inaccu-
rate results may have a drastic impact. The layout of the chapter is as follows.
Section 2 describes some basic statistical tools that can be employed for eval-
uation of authentication techniques and Sect. 3 provides brief descriptions
of the databases used for our study. Section 4 introduces the MACE filter
authentication system along with its statistical aspects, and Sect. 5 discusses
statistical model-based systems and the associated challenges and comparison
with the MACE system.

2 Performance Evaluation of a Biometric System

In the design of a biometric, a primary consideration is to know how to mea-
sure the accuracy of such a system. This is critical for determining whether
the system meets the requirements of a particular application and how it will
respond in practice. Many statistical tools are available to help in this regard.
According to Shen et al. [SSK97], two important aspects of performance eval-
uation that need to be addressed for any practical authentication system are:

1. To determine the reliability of error rates, and
2. To determine how the nature and quality of data influence system perfor-

mance.

2.1 Decision Landscapes

Biometric identification fits squarely into the classical framework of statistical
decision theory. The result of a decision-making algorithm is a match score T

and a threshold τ . If T > τ , the system returns a match, otherwise if T ≤ τ ,
the system decides that a match has not been made. These decisions give rise
to four possible outcomes in any pattern recognition problem: either a given
pattern is, or is not, the target; and in either case, the decision made by the
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recognition algorithm may be either correct or incorrect. These are usually
referred to as (1) false accept (FA), (2) correct accept (CA), (3) false reject
(FR), and (4) correct reject (CR). Obviously the first and third outcomes are
errors (analogous to the type I and type II errors, respectively, that occur
commonly in hypothesis testing) and are the focus of the statistical aspects
of any biometric system performance.

To make this discussion more rigorous, let us denote by fA(x) and gI(y)
the density of the distribution of the match scores for the authentics and the
impostors, respectively. Then the false rejection rate (FRR) is defined as the
probability that T is less than τ given that T comes from the distribution of
the authentic user scores. The false acceptance rate (FAR), on the other hand,
is defined as the probability that T is greater than τ given that T belongs to
the impostor score distribution. Mathematically,

FRR = P (T ≤ τ |T ∈ Authentic) =
∫ τ

−∞ fA(x)dx, (1)

FAR = P (T > τ |T ∈ Impostor) =
∫∞

τ
gI(y)dy. (2)

When the underlying distributions are Gaussian, these probabilities have
closed-form solutions in terms of the z-scores. But generally they are unknown
and difficult to model. However, empirical estimates can be formed based on
observed samples in the following way:

p̂FRR =
#(T ≤ τ |T ∈ Authentic)

#Authentic
, p̂FAR =

#(T > τ |T ∈ Impostor)
#Impostor

, (3)

where p̂FRR and p̂FAR are respectively the estimators of FRR and FAR,
#Authentic and #Impostor are respectively the total number of authentic
and impostor user match scores. Often it is of interest to establish confidence
intervals for these estimates of error rates and conduct hypothesis tests of
whether the performance of the system under consideration meets or exceeds
the system design requirement (for example, to check whether the FAR and
FRR are below a prespecified threshold). Bolle et al. [BRP99, BPR00] suggest
the use of binomial distributions, normal approximations, and also bootstrap-
ping for estimating the error rate confidence intervals and developing tests
of significance. An alternative that can be used when score distributions are
bimodal is the beta-binomial distribution proposed by Schuckers [Sch03]. All
these approaches are based on a number of assumptions, which do not hold
in practice, and this calls for a much more thorough evaluation of the score
distributions along with the threshold criterion τ , which can be achieved with
the help of receiver operating characteristic (ROC) curves.

2.2 The Receiver Operating Characteristic Curve

The ROC curve, frequently used in engineering applications [Ega75] and in
measuring effectiveness of drugs in clinical studies [HM82], is obtained by
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plotting the different values that the FAR and FRR take with varying τ (the
decision threshold or the cutoff point). The position of the ROC on the graph
reflects the accuracy of the system, independent of any decision threshold that
may be used. It covers all possible thresholds, with each point on the curve
denoting the performance of the system for each possible threshold, expressed
in terms of the proportions of true and false positive and negative results for
that threshold. The curve would be higher for authentication devices that pro-
vide greater separation of the distributions for authentics and impostors (i.e.,
have higher accuracy) and lower for devices that provide lesser separations
(i.e., have lower accuracy). The ROC of random guessing lies on the diagonal
line.

The threshold adopted for a diagnostic decision is usually chosen so as to
minimize the net costs and benefits of the error rates for a given application.
For example, if security is the prime consideration, then τ will be so chosen as
to give a low FAR. Different thresholds thus reflect different trade-offs between
FAR and FRR — as τ increases, the FRR increases and FAR decreases and
vice versa as τ decreases. If all costs could be measured and expressed in
the same units, then this optimal threshold could be calculated for any ROC
curve.

The ROC curve yields a concise graphical summary of the performance of
any biometric authentication system. Figure 1 shows a typical ROC curve. A
similar ROC can be drawn for FRR, but it supplies no additional information
and hence does not require separate representation. A single measure of overall
performance that is often used for an authentication system is the equal error
rate (EER). This is defined as the point at which the FAR equals the FRR.

Moreover, combining ROC with modeling techniques can establish a
stronger statistical basis for the diagnostic evaluation of the performance of
an authentication system. Ishwaran and Gatsonis [IG00] exploited the corre-
spondence between ordinal regression models and ROC estimation technique
to develop hierarchical models for analyzing clustered data (with both het-
erogeneity and correlations) and used a Bayesian approach based on Markov
chain Monte Carlo (MCMC) methods to model fitting. Although their appli-
cation involved diagnostic radiology studies with multiple interpreters, some
type of variation on their approach should be adaptable to fit the authentica-
tion framework and can obviate the need for assumptions such as equality of
variances and independence underlying the binomial distributions [BPR00],
which seldom hold for real images.

2.3 Collection of Test Data

The quality of the test data and the conditions under which they are collected
influence any practical authentication system and must be taken into consid-
eration. Poor-quality data increases the noise variance in a model, which in
turn has an adverse effect on the ROC curves. Performance figures can be
very application, environment, and population dependent, and these aspects
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Fig. 1. An ROC curve showing the FRR.

should therefore be decided in advance. For instance, it is often helpful to
know beforehand what the recommended image quality and matching deci-
sion thresholds are for a particular target application of an authentication
system. These settings play a key role in determining the nature of the re-
quired database and hence in its collection procedure. Moreover, a knowledge
of expected error rates (even if approximate) is greatly advantageous as it di-
rectly tells us the number of test images to use. In most situations, however,
it is impossible to get hold of such prior information and may require some
preliminary testing of systems to determine which factors are most significant
and which may be safely ignored.

Enumerated below are a set of the factors that affect image quality and
need to be considered for collecting facial images for evaluating an automated
facial recognition system.

• Illumination — light intensity, light source angle, and background light.
• Pose created by camera angles.
• Movement of the subject — static, fast moving, or slow moving.
• Surroundings — crowded, empty, single subject, or multiple subjects.
• Spatial (number of pixels), gray-scale resolution, and clarity.
• Number of images collected from each individual.

All these different conditions affect any facial recognition system to a con-
siderable extent and often methods that work well under one given situation
do not work so well under other conditions. This calls for a refinement of the
methods to handle all possible situations. Thus an understanding of the par-
ticular database characteristics is imperative for comparing and contrasting
performance of different authentication systems.
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3 Face Image Databases

We consider two different face databases here. The first one is a part of the
“Cohn-Kanade AU-coded Facial Expression Database” [KCT00], consisting of
images of 55 individuals expressing four different kinds of emotions — neutral,
joy, anger, and disgust. Each person was asked to express one emotion at a
time by starting with a neutral expression and gradually evolving into its peak
form. The data thus consists of video clips of people showing an emotion,
each clip being broken down into several frames. Figure 2 shows some sample
images.

Fig. 2. Sample images of 7 subjects from the Cohn-Kanade database. Each column
shows the four expressions of a subject.

The second dataset used is the publicly available “CMU-PIE Database”
[SBB02], which contains 41,368 images of 68 people under 13 different poses,
43 different illumination conditions, and with 4 different expressions. This
dataset is hence more diverse than the Cohn-Kanade dataset, which makes
it more conducive to statistical analysis. Figure 3 shows some sample images
from this dataset. We will work with only a small subset of the PIE database
with neutral expressions but varying illumination.

Fig. 3. Sample images of 6 subjects from the CMU-PIE database. Each column
shows a subject under three different illumination conditions.
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The reason for considering these two particular databases is that they
represent the two most common conditions that occur in real images — ex-
pression variations and illumination variations. Hence any face authentication
system faces these challenges, and we wish to study how efficient the systems
we consider in this chapter are in handling them.

4 The MACE Filter

We first look at an existing authentication system called the minimum average
correlation energy (MACE) filter. It is based on a simple linear filter (so called
due to its application method, as is common in the engineering literature),
is easy to implement, and has been reported to produce impressive results
[VSV02]. We treat this only as an example of a typical face authentication
system that exists today, point out the relative drawbacks from a statistical
point of view, and describe simple tools to increase its statistical validity
and rigor. Moreover, this system serves as a baseline for comparison with the
model-based approach we propose in the next section.

The MACE filter is defined as:

hMACE = D−1X(X+D−1X)−1c, (4)

where X is a matrix of the vectorized 2D fast Fourier transforms (FFTs) of
the training images of a person (X+ denoting the conjugate transpose), D

is a diagonal matrix of the average power spectrum of the training images,
and c is a column vector of ones. A filter is synthesized for each person in
a database and applied to a test image via convolution. An inverse Fourier
transform on the result yields the final output. If the test image belongs to
an authentic person, a sharp spike occurs at the origin of the output plane
indicating a match, while for an impostor, a flat surface is obtained suggesting
a mismatch. A quantitative measure for authentication is the peak-to-sidelobe
ratio (PSR), computed as PSR = peak−mean

σ , where peak is the maximum
value of the final output, and the mean and the standard deviation σ are
computed from a 20 × 20 sidelobe region centered at the peak (excluding a
5×5 central mask). PSR values are high for authentics and considerably lower
for impostors. We do not include more details here owing to irrelevance and
space constraints, but an interested reader is referred to Vijaya Kumar et al.
[VSV02]. Figure 4 shows the MACE output for two images in the CMU-PIE
database (using three training images per person). In both cases, the image
has been so shifted as to display the origin at the center of the plane, as is
conventional in most engineering applications.

4.1 Advantages and Disadvantages

The MACE filter is a non-model-based empirical methodology involving
heuristics in the authentication procedure. The main drawback of the MACE
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PSR: 35.6599 PSR: 8.8697
(a) (b)

Fig. 4. MACE filter output for (a) an authentic and (b) an impostor.

authentication system is its sensitivity to distortions that occur commonly
in practice. Vijaya Kumar [Vij92] describes the technique by which distor-
tion tolerance can be built into the filter. The resulting filter is obtained by
replacing D in hMACE by αD +

√
1 − α2I, which is given by:

h = (αD +
√

1 − α2I)−1X[X+(αD +
√

1 − α2I)−1X]−1c, (5)

with α ∈ [0, 1]. α = 1 gives hMACE , while α = 0 gives a non-MACE filter.
It has been found to be effective for handling illumination changes (Savvides
and Vijaya Kumar [SV03]) but deteriorates considerably in the presence of
other perturbations. For example, when applied to images from the Cohn-
Kanade database, the results are not satisfactory. Figure 5 shows the ROC
curve obtained by plotting the FAR and the FRR for different thresholds on
the PSR values for the two datasets. While we observe an EER of 0.9% for a
threshold PSR value of around 20 for PIE, a relatively higher EER of 32% at a
threshold PSR value of around 30 is obtained for the Cohn-Kanade database,
which shows the inefficiency of MACE in the presence of expression varia-
tions. Moreover, the d′ statistics in Table 1 corroborate all these findings by
showing that the PIE database has a bigger separation between the authentic
and impostor PSRs than the Cohn-Kanade database and hence is easier to
authenticate. The d′ is a simple statistical measure defined as:

d′ =
µ1 − µ2√
(σ2

1 + σ2
2)

, (6)

where µ1 and µ2 are the means of the two distributions to be compared and σ1
and σ2 are the respective standard deviations. The two distributions can be
the distribution of the similarity measure for the authentics and the impostors,
and hence a bigger d′ signifies greater ease of authentication [BPR00].

Table 1. d′ statistics for the two datasets

Database # of Authentics # of Impostors d′

Cohn-Kanade 495 26730 1.0330
CMU-PIE 1365 87360 3.4521
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Fig. 5. ROC curve for authenticating the two databases. The descending curve rep-
resents the FAR and the ascending one represents the FRR. The point of intersection
of the two curves gives the EER.

The success of the MACE system also depends critically on selecting a
suitable training set [Vij92]. A bigger N is often required to be able to rep-
resent all possible distortions, which, on the other hand, makes computations
harder. So far, the choice of N has been solely based on experimental studies,
and it is sensitive to the nature of the images in a database. No concrete guide-
lines exist to show how the number of training images affects the error rates in
a given situation. Apart from this, the choices of the sidelobe dimension and
α, in the case of the distortion-tolerant MACE, are also based on experimen-
tation. So it is necessary to study their effects on the PSR values, and hence
on the authentication results. Similarly, no analysis has been reported so far
on how the PSR values and the results vary with the nature of the images
(e.g., levels of distortions, resolution). Moreover, some associated measures
of the variability in the PSR estimates like standard errors and confidence
intervals should be provided so as to assess their reliability. Given the signifi-
cance of PSR in the authentication process, developing its statistical aspects
is expected to establish a firmer basis for the entire MACE technology.

The semblance of the distortion-tolerant version of MACE with ridge
regression provides a scope for employing statistical methods like cross-
validation or bootstrapping for obtaining α rigorously. In particular, a tech-
nique similar to the one described by Golub et al. [GHW79] using the general-
ized cross-validation method to choose a good ridge parameter can be adapted
to estimate α. Alternative methods for introducing distortion tolerance into
the filter include shrinkage estimators like James-Stein, stabilizing techniques,
or Bayesian models. We do not explore this in depth in this chapter.

4.2 Statistical Analysis of PSR

Since PSR forms the MACE authentication score, its changes are closely re-
lated to changes in its performance and all statistical analyses should be based
on those. Some particular statistical aspects of PSR that we are interested in
investigating are: (1) determine the effect of different image properties (reso-
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lution, quality) and filter parameters (sidelobe dimension, number of training
images, α) on the PSR value and (2) develop standard errors, confidence
intervals for the PSR values and the error rates (FAR, FRR). Preliminary
exploratory studies show that authentication results deteriorate with increas-
ing resolution (Fig. 6), more training images (Fig. 7), and increasing sidelobe
dimension (Fig. 8). In all these cases, the impostor PSRs get inflated thus
causing an increased chance of false authentication.
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Fig. 6. PSR values for an authentic and an impostor using images of different
resolutions.
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Fig. 7. PSR values for an authentic and an impostor using different number of
training images.

The above exploratory analyses show quite clearly that the authentica-
tion performance of MACE is highly influenced by certain image properties
and filter parameters. The former depend on the database collection process,
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Fig. 8. PSR values for an authentic and an impostor using different dimensions for
the sidelobe region.

whereas the latter are chosen by a user of the system. The effect of all these
factors on the PSR values (and hence on the authentication) can be stud-
ied with the help of statistical regression models. The regression coefficients
will quantitatively determine to what extent the PSR value changes due to a
change in a particular covariate value (say, when the number of training im-
ages used increases by one). Such a model can thus predict the PSR value of an
observed image once its properties are known and can also help in determining
the optimal levels of the filter design parameters for the best authentication
results. It can therefore be used to provide guidelines for both the data col-
lection and the filter design procedures, so that one knows exactly what to
expect in a given situation.

The residuals from the fitted models can provide an estimate of the PSR
distribution also. This in turn helps to compute standard errors and con-
fidence intervals, which provide a means for assessing the reliability of the
values. Although PSR forms the MACE authentication criterion, it suffers
from a lack of a concrete threshold and is subjective. Moreover, the PSR dis-
tribution can be used to estimate the probabilities of false detection (FAR,
FRR), also to devise statistical tests to determine if the error rates meet a
specific criterion threshold, and to detect significant differences between the
authentic and impostor PSR values. Alternatively, asymptotic methods [like
central limit theorem (CLT)] can be used under some mild conditions for
simplifying computations.

A simple linear model with the logarithm of PSR as the response is:

log(PSRi) = β0 + β1x1i + β2x2i + . . . + βpxpi + εi, (7)
εi ∼iid N(0, σ2), i = 1, . . . , N,

where x1, . . . , xp are the p potential covariates, β0, β1, . . . , βp are the regression
coefficients, ε is the error or noise, and N is the number of observations. We use
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the logarithm transformation to adjust for nonnegative values (PSR values are
nonnegative) and achieve variance stabilization to some extent. The possible
covariates under consideration are enumerated in Table 2.

Table 2. The potential covariates for the regression models

Image Properties Filter Characteristics
Authentic/impostor (binary) Number of training images
Distortions like expression, illumination, Noise tolerance

noise, occlusion (categorical) parameter α
Image resolution Sidelobe dimension

We fitted a simple model using the PIE database with two binary co-
variates, one denoting balanced or unbalanced illumination and one denoting
whether the particular person is an authentic or an impostor. The model is:

log(PSRi) = 1.8378+1.9796×authentici +0.0193× illumi, i = 1, . . . , N. (8)

Both the covariates have a significant effect on PSR (p-values < 0.0001),
that of the variable denoting authenticity being much stronger. Some sample
predictions based on this model are reported in Table 3 and a histogram of
the residuals is presented in Fig. 9, which look to be approximately normal.

Table 3. Predicted PSR values for different covariate values in Model 1

Covariate Predicted log(PSR) Predicted PSR
Authentic & balanced illum. 3.8174 45.4858
Authentic & unbalanced illum. 3.8367 46.3722
Impostor & balanced illum. 1.8378 6.2827
Impostor & unbalanced illum. 1.8571 6.4051

Assumption Checks

A histogram of the residuals from the above model is shown in Fig. 9. They
are seen to be approximately normally distributed. Other model diagnostics
like Q–Q plots also did not show any major deviation from the assumption of
normality.

Figure 10 shows the histogram of all PSR and log(PSR) values from the
PIE database. The distribution of the raw PSR values is highly positively
skewed and has large variation, whereas log(PSR) seems to be more amenable
to a normal distribution (more symmetric although not perfectly). The vari-
ability is also considerably reduced and this justifies our use of log(PSR) as
the outcome variable instead of the raw PSR values. These observations are
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Fig. 9. Distribution of the residuals from the simple model.

Table 4. Skewness and kurtosis estimates for the PSR distributions

Variable Measure Authentic Impostor All Combined
PSR Skewness 1.2389 -0.1254 6.9209

Kurtosis 3.8564 3.0722 91.7597
log(PSR) Skewness 0.3437 -0.7087 0.3954

Kurtosis 2.8386 1.5201 4.1944

further corroborated by the sample skewness and kurtosis coefficients shown
in Table 4. They show more rigorously how far removed the combined PSR
distribution is from normality despite the separate authentic and impostor
distributions being relatively closer to normal distributions.

The assumption of independence across the PSR values from the differ-
ent images belonging to the same individual does not hold. However, the
PSR values for different individuals can be safely assumed to be independent,
thus representing a classical longitudinal data framework. But, on the other
hand, correlations introduce more parameters and increase the complexity of
the model. No drastic deviation from the linearity assumptions is observed.
Moreover, nonlinear models also make parameter interpretation more com-
plex. Thus overall, the linear models seemed to be useful and valid in provid-
ing the initial sample framework for understanding the behavior of the PSR
values. The violation of the independence assumption is the most critical that
needs to be addressed.

Confidence Intervals

The 95% confidence intervals for the authentic and impostor PSR and
log(PSR) values computed using the regression model are shown in Table
5. Note that, by varying the values of the covariates, similar confidence inter-
vals can be constructed for PSR values under different conditions, which will
provide really helpful guidelines to users of the MACE system.
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Fig. 10. Histograms of the PSR values (left) and log(PSR) values (right) from the
CMU-PIE database.

Table 5. 95% confidence intervals for authentic and impostor PSR values (both
raw and logarithm). The CIs for raw PSR are obtained by exponentiating those for
log(PSR)

Variable Lower 95% CI Upper 95% CI
Authentic log(PSR) 3.1004 4.0734
Impostor log(PSR) 1.0219 1.9949
Authentic PSR 22.2068 58.7564
Impostor PSR 2.7785 7.3515
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Table 6 shows the estimates of the error rates, the associated standard
errors, and 95% confidence intervals for the optimal values of FAR and FRR
in the CMU-PIE database (equal to the EER) computed using a binomial
distribution. Similar confidence intervals can also be calculated at the different
thresholds, but those at the EER are most important as it provides the overall
measure of performance for an authentication device.

Table 6. Means, standard deviations, and 95% confidence intervals for the error
rates from authenticating the PIE database using the MACE filter

Error rate p̂ σ̂ n Lower CI Upper CI
FRR 0.009 0.0026 1365 0.0040 0.0140
FAR 0.0086 0.0003 87360 0.0080 0.0092

5 Statistical Model-Based Systems

Studying the MACE system and the statistical aspects of the PSR values
obtained from it have given us an insight into the rudiments of a rigorous
authentication system. We now proceed to explore options for building sta-
tistical model-based tools. Research on face modeling has so far been more or
less confined to the spatial domain, some common models being Markov ran-
dom fields (MRF) [LZS01] and principal components analysis (PCA) [TP91].
However, these spatial models, despite providing a good fit to face data, are
inadequate for efficient classification since they largely ignore the phase com-
ponent of the face image spectrum, which plays a vital role in face-based
classification (discussed at length in the next section). This leads us to build
models directly in the spectral domain, a novel approach to authentication as
per our knowledge.

5.1 The Spectral Domain

Let x(n1, n2) denote the original 2D image. Then the image spectrum X is
defined by the discrete Fourier transform (DFT) [Lim90]:

X(j, k) =
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2)e−i2π(n1j/N1+n2k/N2)

(polar form)
= |X(j, k)|eiθx(j,k), j = 0, 1, . . . , N1 − 1,

k = 0, 1, . . . , N2 − 1, (9)

where |X(j, k)| is called the magnitude and θx(j, k) the phase. For a typical
image, these components are shown in Fig. 11. Many signal processing appli-
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Fig. 11. The Fourier domain components of a face image.

cations in computer engineering involve this frequency-domain representation
of signals, rather than the original signal itself in the spatial domain. Oper-
ations performed in one domain have corresponding operations in the other
(linearity, scaling, convolution, multiplication, symmetry, etc.), thus demon-
strating a link between the two domains. One of the primary reasons to prefer
the spectral domain is that it often simplifies computations considerably. For
example, the operation of convolution in the spatial domain is equivalent to
the simple multiplication operation in the spectral domain.

Hayes [Hay82] describes an experiment that dramatically illustrates that
phase captures more of the image intelligibility than magnitude. It consists of
reconstructing images of two people from their Fourier coefficients by swap-
ping their phase and magnitude components (Fig. 12). Clearly, both the recon-
structed images bear more resemblance to the original image that contributed
the phase. This establishes the significance of phase in face identification,
hence ignoring it in modeling may have severe consequences on authentica-
tion tools based on it.

Subject 1 Subject 2

Magnitude of Subject 1 + Phase of Subject 1 +
Phase of Subject 2 Magnitude of Subject 2

Fig. 12. The importance of phase.
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The Fourier transforms of most typical images have energy (analogous to
mass in the spatial domain) in the frequency domain concentrated in a small
region near the origin. This is because images usually have large regions where
the intensities change slowly [Lim90]. Thus any image can be modeled with-
out significant loss of quality and intelligibility from a small fraction of the
transform coefficients near the origin, a notion that is useful in any modeling
strategy. Figure 13 shows some images reconstructed by setting most of the
Fourier coefficients to zero. However, the high-frequency (low-energy) com-

Original 40% 16% 3%

Fig. 13. Reconstruction using a few Fourier coefficients.

ponents represent facial structures containing discriminating information for
recognition.

We thus aim at modeling the image spectrum directly to exploit the valu-
able information contained in it, especially in the phase. The goal therefore is
to generate statistical models to adequately represent an appropriate number
of frequency coefficients around the origin that retain identifiability to a rea-
sonable extent. For example, the last face in Fig. 13 has lost some fine details
and is less recognizable.

5.2 Analysis of the Image Spectrum

We will consider the PIE database for all the modeling experiments. Figure 14
shows how illumination varies over all the images of a person in this database.

Fig. 14. The 21 images of a person with illumination variations.

In the beginning, some exploratory analyses are performed to study the
behavior of the frequency components of an image. We first consider one-
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dimensional series of magnitude and phase components along a row or a col-
umn of the spectral plane. Without loss of generality, we chose the row that
passes through the origin of the spectrum. Let us define L

n,m
0,j and P

n,m
0,j re-

spectively as the log-magnitude and the phase at the jth frequency on the row
through the origin of the mth neutral image from the nth person, j = 1, 2, . . .,
n = 1, . . . , 65, m = 1, . . . , 21. We chose the logarithm of the magnitude to ac-
count for the nonnegativity. Figure 15 shows the plot of the logarithm of the
magnitudes for three images of a person for the chosen row. Note that these
plots exhibit a dominating trend component, which, however, is not present
in phase. This led us to construct the residual series for both the components
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Fig. 15. Plots of the log-magnitude series for the row through the origin of the
spectrum.

by subtracting the respective frequencywise means defined as:

L̄n
0,j =

1
21

21∑
m=1

Ln.m
0,j , P̄n

0,j = 1
21

∑21
m=1 Pn.m

0,j , ∀j, n. (10)

The residual series are then computed as:

Y
n,m
0,j = L

n,m
0,j − L̄n

0,j , Z
n,m
0,j = P

n,m
0,j − P̄n

0,j , ∀j, m, n. (11)

Figures 16 and 17 respectively show the residual log-magnitude and residual
phase of the images of a person for the row through the origin of the spectrum,
along with a plot of the respective means across the 21 frames of that person.
For space constraints, we include here only the plots for the first 8 frames.

All these plots show that both the log-magnitude and the phase com-
ponents are symmetric around the origin. The residual log-magnitude series
do not have a pronounced trend component as the original series (Fig. 15).
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Fig. 16. Residual log-magnitude series and the mean for the row through the origin
of the spectrum.
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Fig. 17. Residual phase series and the mean for the row through the origin of the
spectrum.

Although the magnitude series seems to have a similar structure across the
different frames, the phase series seemed to differ considerably across the dif-
ferent frames of a person that represent different illumination conditions. All
these observations suggest that the magnitude component has a clearer struc-
ture than phase, does not vary considerably with distortions, and it may be
possible to capture its variation with the help of simple quantities like the
mean, unlike phase. Figure 18 shows the 2D plots of the raw log-magnitude
and phase (not the residuals) for these eight frames of a person.
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Fig. 18. 2D plots of the logarithm of the magnitude spectrum (top) and phase
spectrum (bottom).

5.3 Difficulties in Phase Modeling

Perhaps the greatest challenge facing phase models is its “wrapping around”
property, which is depicted in a schematic in Fig. 19. The phase angle lies
in the range (−π, π), and any model based on stationarity assumptions fails
completely to represent this and hence loses discriminative information per-
taining to identification. All these make modeling the phase angle a difficult
task, but we have learned that ignoring even the slightest phase information
leads to drastic results. The magnitude, on the other hand, does not suffer
from these drawbacks and can be modeled using any traditional statistical
approach.

−π 0 π

θ

Fig. 19. The “wrapping around” property of the phase component. θ denotes the
phase angle.

The other difficulty in modeling involves representation of phase informa-
tion. It is a common practice in statistical modeling experiments to use some
representative measure as the suitable quantity to model, for example, the
mean or the principal components. This not only simplifies the model con-
siderably but also reduces model dimensionality to an extent. However, this
can only be applied in case a representative quantity exists that is able to
capture all the relevant variation present in the data at hand. To study to
what extent the image identifiability is captured by the mean log-magnitude
and mean phase or the corresponding principal components, we performed
some empirical analyses from which we concluded that although both mean
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and principal components are capable of representing magnitude information,
this is not possible with phase. Figures 20 and 21 show respectively recon-
structed images of a person with the mean Fourier components and using the
projections of the first five principal components.

(a) (b) (c) (d)

Fig. 20. (a) Original image, (b) reconstructed image using mean log-magnitude, (c)
reconstructed image using mean phase, (d) reconstructed image using both mean
log-magnitude and mean phase.

Person 1 Mag PC Phase PC

Fig. 21. Reconstructed images of two people using the projections of the top 5
principal components of log-magnitude and phase onto the original components.

Our exploratory analyses have thus shown that it is difficult to capture
phase information effectively with the help of a single quantity. Moreover,
phase is affected by variations in the images such as illumination and ex-
pression changes, and it is extremely difficult to understand how relevant
information is distributed among the phase components at the different fre-
quencies. Application of smoothing techniques and transformations also lose
crucial information and do not prove helpful.

5.4 An Initial Simple Model

Given that phase changes considerably with illumination variations, we de-
cided to take this into account by dividing the entire set of images for a person
into a number of subsets depending on the nature and amount of illumination
variations in them and building separate models for them. These subsets and
the constituent images are tabulated in Table 7. Note that this division is
subjective and done by eyeballing the images in Fig. 14.

We first look at the six images with completely balanced lighting. Figure 22
shows an original image and an image reconstructed using the mean phase and
the mean log-magnitude. The reconstructed image is much more identifiable
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than that obtained earlier using the mean across all the 21 images of a person
shown in Fig. 20.

Table 7. The division of the 21 images of a person into subsets of varying illumi-
nation. The numbers denote the image positions in Fig. 14 (rowwise)

Subset Images
Balanced 7,8,10,11,19,20
Right shadows 12,15,16,21
Left shadows 1,2,4,9,17,18
Overall dark 3,5,6,13,14

Fig. 22. Reconstructed images of a person using mean phase and mean log-
magnitude over the 6 images showing balanced lighting.

Encouraged by this, we proceed to fit the actual models. Our initial models
are independent bivariate Gaussians for log-magnitude and phase at each fre-
quency, one for each type of illumination condition for each person. Formally,
we can define these models as:

L
(m,n)
ij = µ

(m,n)
ij + ε

(m,n),
ij

P
(m,n)
ij = ν

(m,n)
ij + η

(m,n),
ij

i, j = 1, . . . , K, m = 1, . . . , 4, n = 1, . . . , N, (12)

where K denotes the number of frequencies that we wish to model, N the
total number of individuals in the dataset, and m a specific illumination sub-
set. Lij and Pij are respectively the log-magnitude and phase for frequency
(i, j) for the mth illumination subset and the nth person, µij and νij are the
corresponding means, and εij and ηij are the respective error terms. We build
separate models for log-magnitude and phase since there does not seem to ex-
ist any significant cross-correlation among these two components, and we do
this separately for each individual in the database. The errors are distributed
as:

ε
(m,n)
ij ∼ N(0, σ

2(m,n)
1,ij ), η

(m,n)
ij ∼ N(0, σ

2(m,n)
2,ij ), (13)

and they are independent of each other. The frequencywise mean and variance
parameters are estimated from all the sample images in each subset for each
person.
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The reconstructed images using the simulated models for the two Fourier
components for the balanced lighting subset are shown in Fig. 23. They re-
semble the original image to an appreciable extent and moreover, we observe
that it is sufficient to model only a few lower-frequency components around
the origin (a 50×50 grid around the origin). Figure 24 shows the images using
simulated models for only the low-frequency components based on the other
three subsets of images. As expected, the images that are overall dark are the
hardest to model.

(a) (b)

Fig. 23. Reconstructed images with the simulated phase and log-magnitude com-
ponents from Gaussian distributions using (a) all frequency components and (b)
components within a 50 × 50 region around the origin and zeroing out higher fre-
quencies.

(a) (b) (c)

Fig. 24. Reconstructed images using simulated phase and log-magnitude compo-
nents from Gaussian distributions within a 50 × 50 region around the origin using
images in (a) right shadows, (b) left shadows, (c) overall darkness.

The simulation results are found to deteriorate much if we use the same
standard deviation across all the frequencies in the 50 × 50 grid (assuming
homoscedasticity), particularly for phase. This is clearly evident from the
reconstructed images appearing in Fig. 25, which are much worse than those
shown in Fig. 23. These correspond to the case with balanced lighting, but
similar poor results are obtained for the other subsets, too.

This model can also help us study the illumination effects. Let us rewrite
the model means as:

µ
(m,n)
ij = µ

(n)
ij + α

(m,n),
ij

ν
(m,n)
ij = ν

(n)
ij + β

(m,n)
ij , i, j = 1, . . . , K, m = 1, . . . , 4, n = 1, . . . , N, (14)

so that αij and βij respectively denote the effects of the four subsets repre-
senting illumination variations. µ

(n)
ij is then the common mean effect (over
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(a) (b)

Fig. 25. Simulated images from independent Gaussian distribution using same stan-
dard deviation across frequencies within a 50 × 50 grid around origin for (a) log-
magnitude, (b) log-magnitude and phase.

all the 21 images of each person) and the illumination effects can then be
estimated by µ̂ij

(n) − µ̂ij
(m,n). By isolating these effects, we can study how il-

lumination changes affect the Fourier domain components and also study how
these changes occur over the entire spectral plane since lights do not affect all
regions uniformly.

Classification Results

Given that we obtain satisfactory model fit, the next step is to use these
models for classification. If f(L(m,n)

ij ) and g(P (m,n)
ij ) respectively denote the

probability densities of the above Gaussian distributions, the conditional like-
lihoods of log-magnitude and phase for each person and each subset are:

f(L|n, m) = ΠK
i=1Π

K
j=1f(L(m,n)

ij ),

f(P |n, m) = ΠK
i=1Π

K
j=1g(P (m,n)

ij ), m = 1, . . . , 4, n = 1, . . . , 65. (15)

In a Bayesian framework, the conditional likelihood or posterior probability of
a test image belonging to a specific person under a given illumination condition
is:

f(n, m|L) ∝ f(L|n, m)p(n, m),
f(n, m|P ) ∝ f(P |n, m)p(n, m), (16)

where p(n, m) denotes the prior joint probability for each subset for each
person, assumed to be uniform for the time being. The normalizing constants
here are f(L) =

∑
m,n f(L|n, m)p(n, m) and f(P ) =

∑
m,n f(P |n, m)p(n, m)

respectively for magnitude and phase. Since these are the same across all m, n,
we can safely ignore them for the purpose of classification. Then according to
Bayes’ rule, a particular image with predetermined illumination condition m0
is then assigned to class C if:

C = arg max
n

{f(n, m0|L) × f(n, m0|P )} . (17)

We obtain perfect classification results using this simple likelihood-based
classification scheme, yet this model is restrictive given that it requires the
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illumination condition of a test image to be determined manually prior to
training and classification. Given the vast amount of data usually available,
it is imperative that such a process be automated for the method to be useful
in practice. This leads us to consider a more flexible modeling approach using
mixture models, which we present in the next section. Nevertheless, the model
here acts as a useful baseline for our future modeling endeavors.

5.5 Gaussian Mixture Models

As any continuous distribution can be approximated arbitrarily well by a
finite mixture of Gaussian densities, mixture models provide a convenient
semiparametric framework in which to model unknown distributional shapes
[MP00]. It can handle situations where a single parametric family is unable
to provide a satisfactory model for local variations in the observed data. The
model framework is briefly described below.

Let (Y1, . . . ,Yn) be a random sample of size n where Yj is a p-dimensional
random vector with probability distribution f(yj) on IRp, and let θ denote
a vector of the model parameters to be estimated. A g-component mixture
model can be written in parametric form as:

f(yj;Ψ) =
g∑

i=1

πifi(yj,θi), (18)

where Ψ = (π1, . . . , πg−1, ξ
T )T contains the unknown parameters and ξ

is the vector of the parameters θ1, . . . ,θg known a priori to be distinct.
Here, θi represents the model parameters for the ith mixture component, and
π = (π1, . . . , πg)T is the vector of the mixing proportions with

∑g
i=1 πi = 1.

In case of Gaussian mixture models, the mixture components are multi-
variate Gaussian given by:

f(yj; θi) = φ(yj; µi, Σi) (19)

= (2π)−1|Σi|− 1
2 exp

{
− 1

2
(yj − µi)T Σ−1

i (yj − µi)
}

,

so that the parameters in Ψ are the component means, variances, and covari-
ances, and the mixture model has the form:

f(yj;Ψ) =
g∑

i=1

πiφ(yj; µi, Σi). (20)

Of the several methods used to estimate mixture distributions, we use the
MCMC-based Bayesian estimation method via posterior simulation (Gibbs
sampler), which is now feasible and popular owing to the advent of com-
putational power. According to Gelfand et al. [GHR90], the Gibbs sampler
provides more refined numerical approximation for performing inference than
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expectation maximization (EM). It yields a Markov chain {Ψ (k), k = 1, 2, . . .}
whose distribution converges to the true posterior distribution of the param-
eters. For our parameter estimates, we use the posterior mean, which could
be estimated by the average of the first N values of the Markov chain after
discarding a sufficient burn-in, of say N1. Thus our parameter estimates are:

E{Ψ̂|y} =
N∑

k=N1+1

Ψ(k)

(N − N1)
. (21)

The Phase Model

Owing to the difficulties associated with direct phase modeling (outlined in
Sect. 5.3), we use an alternative representation of phase for modeling purposes
derived as follows. First, we construct the “phase-only” images by removing
the magnitude component from the frequency spectrum of the images. Since
magnitude does not play as active a role in face identification, this is expected
not to affect the system significantly. We then use the real and imaginary parts
of these phase-only frequencies for modeling purposes. This is a simple and
effective way of modeling phase, and at the same time does not suffer from
the difficulties associated with direct phase modeling.

Let R
k,j
s,t and I

k,j
s,t respectively denote the real and the imaginary part at

the (s, t)th frequency of the phase spectrum of the jth image from the kth
person, s, t = 1, 2, . . ., k = 1, . . . , 65, j = 1, . . . , 21. We model (Rk,j

s,t , I
k,j
s,t ),

j = 1, . . . , 21 as a mixture of bivariate Gaussians whose density is given by
(20), for each frequency (s, t) and each person k. We model only a few low
frequencies within a 50 × 50 grid around the origin of the spectral plane since
they capture all the image identifiability [Lim90], thus achieving considerable
dimension reduction.

Classification Scheme

Classification of a new test image is done with the help of a MAP (maximum
a posteriori) estimate based on the posterior likelihood of the data. For a new
observation Y = (Rj , Ij) extracted from the phase spectrum of a new image,
if fk(yj;Ψ) denotes the Gaussian mixture models (GMM) for person k, we
can compute the likelihood under the model for person k as:

g(Y |k) = Πall freq.fk(yj;Ψ), k = 1, . . . , 65, (22)

assuming independence among the frequencies. The convention is to use log-
likelihoods for computational convenience to avoid numerical overflows and
underflows in the evaluation of (22). The posterior likelihood of the observed
data belonging to a specific person is given by:

f(k|Y ) ∝ g(Y |k)p(k), (23)
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where p(k) denotes the prior probability for each person, which can be safely
assumed to be uniform over all the possible people in the database. A partic-
ular image will then be assigned to class C if:

C = arg max
k

f(k|Y ). (24)

Classification and Verification Results

We use g = 2 components to represent the illumination variations in the im-
ages of a person. A key step in the Bayesian estimation method consists of the
specification of suitable priors for the unknown parameters in Ψ. We choose
suitable conjugate priors to ensure proper posteriors and simplified computa-
tions. We choose a burn-in of 2000 out of a total of N = 5000 iterations, by
visual inspection of trace plots.

Table 8 shows the classification results for our database using a different
number of training images. The training set in each case is randomly selected
and the rest used for testing. This selection of the training set is repeated 20
times (in order to remove selection bias) and the final errors are obtained by
averaging over those from the 20 iterations. The results are fairly good, which

Table 8. Error rates for GMM. The standard deviations are computed over the 20
repetitions in each case

# of Training Images # of Test Images Error Rate Standard Deviation
15 6 1.25% 0.69%
10 11 2.25% 1.12%
6 15 9.67% 2.89%

demonstrates that the GMM is able to capture the illumination variation
suitably. However, we notice that an adequate number of training images is
required for the efficient estimation of the parameters; in our case, 10 is the
optimal number of training images required. The associated standard errors in
each case also proves the consistency of the results. Increasing the number of
mixture components (g = 3 and g = 4) did not improve results significantly;
hence a two-component GMM represents the best parsimonious model in this
case.

Verification is performed by imposing a threshold on the posterior likeli-
hood of the test images, so that a person is deemed authentic if the likelihood
is greater than that threshold. Figure 26 shows the ROC curve obtained by
plotting the FAR and FRR with varying thresholds on the posterior likelihood
(for the optimal GMM with g = 2 and 10 training images). Satisfactory results
are achieved with an EER of approximately 0.3% at a threshold log-likelihood
value of −1700.
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Fig. 26. ROC curve for authentication based on the phase model. The lower curve
is the FAR.

Comparison of Model-Based Method with MACE

Our authentication experiments indicate that the mixture models yield better
results than the MACE system (EER = 0.9 for MACE as in Fig. 5(a) and
EER = 0.3 for mixture models). In applications as sensitive as authentication,
even this little improvement is of tremendous consequences, and this estab-
lishes that our approach is more efficient than the MACE system. Apart from
the results themselves, our model-based method uses the posterior likelihood
as the match score for the authentication procedure and is a deterministic sta-
tistical quantity having nice distributional properties (efficiency, consistency)
for constructing probability intervals and hypothesis tests. This greatly helps
in assessing the reliability of these results. The MACE score PSR has no clear
statistical interpretation of its own and this significantly limits its utility in in-
ference problems. Model-based methods also are better capable of accounting
for the image variability and hence are more flexible than MACE. We applied
it to images with illumination changes, but it is a fairly general framework and
can be easily extended to model other distortions such as noise and expres-
sion changes by defining the mixture components to represent different levels
of those. Such robustness is the primary advantage of model-based methods,
which is generally lacking in a non-model-based framework. Thus they are
free from all the heuristics present in the MACE process (Sect. 4.1).

One potential disadvantage of model-based techniques is that they usually
require more training samples than non-model-based methods. While MACE
can yield satisfactory results with only 3 training images, the mixture model
requires at least 10 for effective parameter estimation. So in case a sufficient
number of images is not present, our model will not perform adequately. The
training process is also time-consuming and is linear in the number of mix-
ture components. However, as we have seen, in many cases we can obtain a
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sufficiently robust representation using as few mixture components as two.
On the other hand, the number of training images required by MACE in a
given situation may vary from one dataset to another, and there is no concrete
way to determine the optimal number other than brute-force experimentation.
For example, for a database with extreme expression variations, many more
training samples will be required to synthesize an effective filter than that
required for images with illumination variations. For the model-based system,
on the other hand, the number of training images required in a given scenario
may not vary as much, and sufficiently robust models can be devised with
say 10 images in most cases. The implementation of the mixture model, how-
ever, is sufficiently fast, and this is what is crucial for a practical application.
For example, in an airport, there is already a stored database of the trained
templates (the fitted models, in this case) and when a person comes in at an
immigration checkpoint, his face image is captured and classified using the
MAP estimate, which can be done in realtime with no difficulties. This estab-
lishes that model-based systems are also useful from a practical point of view,
and coupled with the statistical rigor they possess, they prove to be much su-
perior to the MACE filter method and as such to any other non-model-based
method, which is very likely to suffer from similar drawbacks.

6 Discussion

Statistically based methods have the potential to be flexible and reliable,
both for handling large diverse databases and for providing a firm basis for
the results. Besides, statistical methods can help us understand the poten-
tial performance of an authentication system as the complexity of a system
changes (i.e., as the number of users increases) and assess the scalability of
the results obtained on small- to moderate-sized databases. Such systems are
henceforth expected to be more attractive to users and have wider applicabil-
ity than non-model-based and empirical approaches. Although such methods
are widely used and often found to yield satisfactory results, they are highly
sensitive to the nature of the images and deteriorate quickly. For instance,
the MACE filter yields good results but from a statistician’s perspective, it
still lacks rigor and validity and does not work as well in all situations, as
pointed out in this chapter. These drawbacks can be overcome with the help
of simple statistical tools. This chapter has shown that even simple models
can achieve much and lays the ground for the application of more refined mod-
eling strategies. Certain other tools to assess accuracies of different methods
in identification and verification include using appropriate variations on the
ROC tools that have proved so successful in other areas, for example, in poly-
graph testing [Com03] and in evaluating medical diagnostic tests [Cam94].

In principle, many of the techniques discussed in this chapter are also ap-
plicable in the study of authentication methods using other popular biometrics
such as fingerprints and multimodal systems. In particular, fingerprints are
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gradually gaining in importance as a reliable biometric due to their unique-
ness and permanence properties. Many authentication techniques have been
developed for fingerprints, but like face-based methods, they are mostly em-
pirical and not flawless. Venkataramani and Vijaya Kumar [VV03] applied
the MACE authentication method to the National Institute of Standards and
Technology (NIST) fingerprint database [Wat98] and claim perfect verifica-
tion rates. The adaptation of the modeling approaches outlined in this chapter
could also be expected to lead to similar gains in understanding as well as re-
fining authentication schemes, especially since very few statistical analyses
have been performed on fingerprint data.
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1 Introduction

This chapter explores the possibility of using nonparametric dependence char-
acteristics to evaluate biometric systems or algorithms that play an important
role in homeland security for the purpose of law enforcement, sensitive areas
access, borders and airport control, etc. These systems, which are designed to
either detect or verify a person’s identity, are based on the fact that all mem-
bers of the population possess unique characteristics (biometric signatures)
such as facial features, eye irises, fingerprints, and gait, which cannot be easily
stolen or forgotten. A variety of commercially available biometric systems are
now in existence; however, in many instances there is no universally accepted
optimal algorithm. For this reason it is of interest to investigate possible ag-
gregations of two or more different algorithms. Kittler et al. [KHD98] and
Jain et al. [JDM00, Sect. 6] review different schemes for combining multiple
matchers.

We discuss here the mathematical aspects of a fusion for algorithms in
the recognition or identification problem, where a biometric signature of an
unknown person, also known as probe, is presented to a system. This probe is
compared with a database of, say, N signatures of known individuals called the
gallery . On the basis of this comparison, an algorithm produces the similarity
scores of the probe to the signatures in the gallery, whose elements are then
ranked accordingly. The top matches with the highest similarity scores are
expected to contain the true identity.

A common feature of many recognition algorithms is representation of a
biometric signature as a point in a multidimensional vector space. The sim-
ilarity scores are based on the distance between the gallery and the query
(probe) signatures in that space (or their projections onto a subspace of a
smaller dimension). Because of inherent commonality of the systems, the sim-
ilarity scores and their resulting orderings of the gallery can be dependent for
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two different algorithms. For this reason, traditional methods of combining
different procedures, like classifiers in pattern recognition, are not appropri-
ate. Another reason for failures of popular methods like bagging and boosting
[Bre04, SFB98] is that the gallery size is much larger than the number of
algorithms involved. Indeed the majority voting methods used by these tech-
niques (as well as in analysis of multicandidate elections and social choice
theory [Ste93]) are based on aggregated combined ranking of a fairly small
number of candidates obtained from a large number of voters, judges, or classi-
fiers. The axiomatic approach [Mar93] to this fusion leads to the combinations
of classical weighted means (or random dictatorship).

As the exact nature of the similarity scores derivation is typically un-
known, the use of nonparametric measures of association is appropriate. The
utility of rank correlation statistics, like Spearman’s rho or Kendall’s tau, for
measuring the relationship between different face recognition algorithms, was
investigated by Rukhin and Osmoukhina [RO05]. In Sect. 2 the natural ex-
tensions of two classical rank correlation coefficients solely based on a given
number of top matches are presented. We demonstrate difficulties with using
these correlation coefficients for estimation of the correlation over the whole
gallery. A version of a scan statistic, which measures co-occurrence of rankings
for two arbitrary algorithms across the gallery, is employed as an alternative
characteristic. The exact covariance structure of this statistic is found for a
pair of independent algorithms; its asymptotic normality is derived in the
general case.

An important methodological tool in nonparametric dependence charac-
teristics studies is provided by the concept of copula [Joe90]. Special tail-
dependence properties of copulas arising in the biometric algorithms analysis
are established in Sect. 3. For common image recognition algorithms, the
strongest (positive) correlation between algorithms similarity scores is shown
to hold for both large and small rankings. Thus, in all observed cases the al-
gorithms behave somewhat similarly, not only by assigning the closest images
in the gallery but also by deciding which gallery objects are most dissimilar to
the given image. This finding is useful for the construction of new procedures
designed to combine several algorithms and also underlines the difficulty with
a direct application of boosting techniques.

As different recognition algorithms generally fail on different subjects, two
or more methods could be fused to get improved performance. Several such
methods for aggregating algorithms are discussed in Sect. 4. These methods
are based on different metrics on the permutation group and include a simple
version of linear fusion suggested by Rukhin and Malioutov [RM05].

Notice that the methods of averaging or combining ranks can be applied to
several biometric algorithms, one of which, say, is a face recognition algorithm,
and another is a fingerprint (or gait, or ear) recognition device. Jain et al.
[JBP99] discuss experimental studies of multimodal biometrics, in particular,
fusion techniques for face and fingerprint classifiers. Methods discussed in
Sect. 4 can be useful in a verification problem when a person presents a set
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of biometric signatures and claims that a particular identity belongs to the
provided signatures.

The continued example considered in this chapter comes from the FERET
(face recognition technology) program [PMR00] in which four recognition al-
gorithms each produced rankings from galleries in three FERET datasets of
facial images. It is discussed in detail in Sect. 5.

2 Correlation Coefficients, Partially Ranked Data, and
the Scan Statistic

One of the main performance characteristics of a biometric algorithm is the
percentage of queries in which the correct answer can be found in the top few,
say K, matches. To start quantifying dependence between two algorithms
for a large gallery size N , it seems sensible to focus only at the images in the
gallery receiving the best K ranks. The corresponding metrics for the so-called
partial rankings were suggested by Diaconis [Dia88] and studied by Critchlow
[Cri85]. A survey of these methods is given in Marden [Mar95, Chap. 11].

Let Xi and Yi, i = 1, . . . , N , be similarity scores given to the gallery
elements by two distinct algorithms on the basis of a given probe. We assume
that the similarity scores can be thought of as continuous random variables,
so that the probabilities of ties within the original scores are negligible.

In image analysis it is common to write similarity scores of each algorithm
in decreasing order, X(1) ≥ · · · ≥ X(N), Y(1) ≥ · · · ≥ Y(N), and rank them,
so that Xi = X(R(i)), and Yi = Y(S(i)). Thus, X(1) is the largest and X(N)
is the smallest similarity score while the rank of the largest similarity score
is 1, and that of the smallest score is N . We use the notation R and S for
the vectors of ranks R = (R(1), . . . , R(N)) and S = (S(1), . . . , S(N)), which
can be interpreted as elements of the permutation group SN . Given a ranking
R, introduce the new ranking R̃ by giving the rank (N + K + 1)/2 to all
images not belonging to the subset of the best K images (which maintain
their ranks). More specifically, new ranks R̃i are obtained from the formula

R̃(i) =
{

R(i) if R(i) ≤ K
N+K+1

2 otherwise.

This assignment preserves the average of the largest N − K ranks, so that∑N
i=1 R̃(i) =

∑N
i=1 R(i) = N(N + 1)/2. Define the analogue of the Spearman

rho coefficient for partial rankings of two algorithms producing rankings R
and S as the classical rho coefficient for the rankings R̃(i) and S̃(i),

�̃S =

∑N
i=1

(
R̃(i) − N+1

2

)(
S̃(i) − N+1

2

)
√∑N

i=1

(
R̃(i) − N+1

2

)2 ∑N
i=1

(
S̃(i) − N+1

2

)2
.
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The advantage of this definition is that by using the central limit theorem
for linear rank statistics one can establish, for example, asymptotic normality
of the Spearman coefficient when N → ∞. A general result (Theorem 2) is
formulated later.

The analogue of the Kendall tau coefficient for partial rankings is similarly
defined. Namely, for the rankings R̃(i) and S̃(i)

�̃K =

∑
i,j sign

(
(R̃(i) − R̃(j))(S̃(i) − S̃(j))

)
K(2N − K − 1)

.

The denominator, K(2N − K − 1) = K(N − 1) + (N − K)K, can be inter-
preted as the total number of different pairs formed by the ranks R̃(i) and
S̃(i). Unfortunately, both of these partial correlation coefficients exhibit the
same problem of drastically underestimating the true correlation for small and
moderate K.

In accordance with the FERET protocol, four algorithms (I:MIT, March
96; II:USC, March 97; III:MIT, Sept 96; IV:UMD, March 97) have produced
similarity scores of items from a gallery consisting of N = 1196 images with
234 probe images. The rank correlation matrix based on Spearman rho coef-
ficients is

S =

⎛⎜⎜⎝
1 0.189 0.592 0.340

1 0.205 0.324
1 0.314

1

⎞⎟⎟⎠ .

Disappointingly, both coefficients �̃S and �̃K have very small values for small
and moderate K (see Fig. 1). Although they have the tendency to increase as
K increases, the largest value of �̃S (for two most correlated MIT methods I
and III) was only 0.29 for K = 50.

Another definition of the correlation coefficient for partially ranked data
can be obtained from a distance d(R,S) on the coset space SN/SN−K of par-
tial rankings. The list of the most popular metrics [Dia88] includes Hamming’s
metric dH , Spearman’s L2, Footrule L1, Kendall’s distance, Ulam’s distance,
and Cayley’s distance. With d̄ = maxR,S d(R,S), let

�d = 1 − 2
d(R,S)

d̄

be such a correlation coefficient. One can show that, as N → ∞, �d → −1
even for independent R, S, when d is the Kendall metric or the Spearman
metric (including L1 Footrule). For moderate N , d(R,S) has the expected
value too close to d̄ for �d to be of practical use. Indeed small variability of
�d makes it similar in this regard to the coefficient based on Cayley’s distance
[DG97].

To understand the reasons for failure of partial rank correlation charac-
teristics the following scan (or co-occurrence) statistic was employed. For two
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algorithms producing similarity scores Xi and Yi with rankings R and S, put
for a fixed M and u = 1, . . . , N − M + 1,

T (u) = card {i : u ≤ R(i), S(i) ≤ u + M − 1}. (1)

For independent Xi and Yi both R and S are uniformly distributed over
the permutation group SN . In this case one only needs to consider Wr =
S
(
R−1(r)

)
. Let Y[i] be the similarity score of the second algorithm corre-

sponding to X(i). These statistics are called concomitants of order statistics
X(1), . . . , X(n). Thus, Wr is the rank of X(i), whose concomitant Y[i] has the
rank r, and

T (u) =
∑

u≤r,s≤u+M−1

I(Wr = s),

where I(·) is the indicator function. The random variable T (u) counts the
common ranks between u and u + M − 1. Therefore, in the uniform case it
follows a hypergeometric distribution with parameters (N,M,M),

P (T = t) =

(
M

t

)(
N − M

M − t

)
(

N

M

) , t = 0, 1, . . . , M.

The behavior of the scan statistic for biometric data is very different from
that for independent R and S. Indeed, for all datasets in FERET, the scan
statistic exhibits a “bathtub” effect, i.e., its typical plot looks bowl-shaped
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Fig. 1. The plot of the partial Spearman rho coefficient for algorithms I and III as
a function of K. The solid line represents the limiting value 0.592.
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(see Fig. 2). The readings of the scan statistic T (u) for the correlated scores
are much larger than the corresponding values based on independent scores
for both small and large u. These values for independent scores would oscillate
around the mean E(T ) = M2/N . As the variables T (u) must be positively
correlated, the covariance function is of interest.

0 200 400 600 800 1000 1200
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0
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Fig. 2. The plots of the scan statistic for algorithms in the FERET study.

Theorem 1. If the random scores Xi and Yi, i = 1, . . . , N, are independent,
then the covariance function of T (u), for 0 ≤ h ≤ N−1, 1 ≤ u ≤ N−M−h+1,
has the form

Cov(T (u), T (u + h)) =

⎧⎪⎪⎨⎪⎪⎩
[(M − h)N − M2]2

N2(N − 1)
, h < M,

M4

N2(N − 1)
, h ≥ M.

For independent scores neither the covariance between T (u) and T (u+h),
nor the mean of T (u) depends on u; T (u) is then a stationary process, and
the bathtub effect cannot take place.
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3 Copulas and Asymptotic Normality

To study the structure of dependence of a pair of algorithms, one can employ
the concept of copula defined for two random variables X and Y with cumu-
lative distributions functions FX and FY , respectively. In our context X and
Y represent random similarity scores of the algorithms. Copula is a function
C(u, v), 0 < u, v < 1, such that

P (FX(X) ≤ u, FY (Y ) ≤ v) = CX,Y (u, v) = C(u, v).

Copulas are invariant under monotone transformations, i.e., if α and β are
strictly increasing, then Cα(X),β(Y )(u, v) = CX,Y (u, v). In this sense, copulas
describe the structure of dependence. Each copula induces a probability dis-
tribution with uniform marginals on the unit square. Nelsen [Nel99] discusses
further properties of copulas and methods for their construction.

We assume that the joint distribution of FX(X) and FY (Y ) is absolutely
continuous, and refer to its density, c(u, v), as copula density. On the basis
of a sample, (X1, Y1), . . . , (XN , YN ), this function can be estimated by the
empirical copula density,

cN

(
i

N
,

j

N

)
=
{

1/N, if
(
X(i), Y(j)

)
is in the sample,

0, otherwise.

Note that cN is a probability mass function assigning the weight 1/N to the
point (R(i)/N, S(i)/N), where both R(i) and S(i) are the ranks of Xi and Yi,
respectively. The empirical copula is defined as

CN

(
i

N
,

j

N

)
=

i∑
p=1

j∑
q=1

cN

( p

N
,

q

N

)
.

As the exact distribution of the scan statistic (1) for general (dependent)
scores appears to be intractable, we give the limiting distribution of T (u)
when N → ∞,

u

N
→ λ,

M

N
→ a, with 0 < λ < 1 − a, 0 < a < 1. (2)

With C(u, v) denoting the copula for (X, Y ),

N−1
u+M−1∑

r=u

P (Wi = r) → P (λ ≤ FX(X) ≤ λ + a, λ ≤ FY (Y ) ≤ λ + a)

= C(λ + a, λ + a) + C(λ, λ) − C(λ + a, λ) − C(λ, λ + a),

which gives the asymptotic behavior of the mean of the scan statistic.
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Theorem 2. Under regularity conditions R1–R5 in [RO05] when N → ∞, the
distribution of

√
N
(

T (u)
N − ∫ λ+a

λ

∫ λ+a

λ
c(s, t) ds dt

)
converges to the normal

distribution with zero mean and with variance

σ2 = Var
(
I(λ ≤ U ≤ λ + a)I(λ ≤ V ≤ λ + a) + I(U ≤ λ)

∫ λ+a

λ

c(λ, v)dv

−I(U ≤ λ + a)
∫ λ+a

λ

c(λ + a, v)dv + I(V ≤ λ)
∫ λ+a

λ

c(u, λ)du

−I(V ≤ λ + a)
∫ λ+a

λ

c(u, λ + a)du
)
.

Here λ and a are defined in (2), and U and V are random variables with the
joint distribution function C(u, v) and the joint density c(u, v).

Theorem 2 suggests that the observed bathtub behavior of the scan statistics
reflects the form of the underlying copula for the scores. The copulas with
a bowl-shaped function of u,

∫ (u+M)/N

u/N

∫ (u+M)/N

u/N
c(s, t) ds dt, appear in all

FERET algorithm pairs. These copulas correspond to mixtures of two uni-
modal copulas: one with the bulk of the mass concentrated at the origin (0, 0)
(small ranks), and the second one concentrated around (1, 1) (large ranks). In
other terms, the density c(u, v) is bimodal: one peak is at (0, 0) and another
at (1, 1). The set {(u, v) : c(u, v) ≥ c} is a union of two sets: C0, which is
star-shape about (0, 0), and C1, which is star-shape about (1, 1).

In particular, the distribution having such a copula satisfies the definition
of left (right) tail monotonicity of one random variable U in another random
variable V [Nel99]. Namely, P (U ≤ u|V ≤ v) is a nondecreasing function of
v for any fixed u. Also P (U > u|V > v) is a nondecreasing function of v for
any fixed u. Each of these conditions implies positive quadrant dependence:
P (U ≤ u, V ≤ v) ≥ P (U ≤ u)P (V ≤ v), (i.e., C(u, v) ≥ uv) and under
these monotonicity conditions, Spearman’s rho is larger than Kendall’s tau,
which must be positive. All these properties have been observed in all FERET
datasets.

In practical terms, tail monotonicity properties mean that the strongest
correlations between algorithms’ similarity scores happen for both large and
small rankings. Thus, in all observed cases the algorithms behave somewhat
similarly not only by assigning the closest images in the gallery, but also
by deciding which gallery object is most dissimilar to the given image. The
explored algorithm pairs behave more or less independently one from another
only in the middle range of the rankings. In the FERET experiment only
algorithms I and III (both MIT algorithms, MIT, March 96, and MIT, Sept
96) showed fairly high correlation even for the medium ranks. This finding
leads to the conclusion that the partial correlation coefficients, which are
based only on small ranks, in principle, cannot capture the full dependence
between algorithms.
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Verification of the suppressed regularity conditions in Theorem 2 for spe-
cific families of copulas is usually straightforward. For example, for α > 0, β ≥
1,

C(u, v) = Cα,β(u, v) =
{[(

u−α − 1
)β +

(
v−α − 1

)β
]1/β

+ 1
}−1/α

(3)

satisfies these regularity conditions ensuring the asymptotic normality of the
statistic T (u). This family, for an appropriate choice of α and β, fits the
observed similarity scores fairly well.

The next result concerns the asymptotic behavior of the partial correlation
coefficient.

Theorem 3. The asymptotic distribution of
√

N(�̃S −µ�) is normal with zero
mean and variance σ2

�. Here a = limN→∞ K/N ,

µ� =
(

a3

12
− a2

4
+

a

4

)−1

×
[ a∫

0

a∫
0

uv c(u, v) du dv − 1
2

a∫
0

a∫
0

(u + v) c(u, v) du dv +
a

2

a∫
0

1∫
a

u c(u, v) du dv

+
a

2

1∫
a

a∫
0

v c(u, v) dv du +
1
4
C(a, a)(a + 1)2 − a2

4
(2a + 1)

]
,

σ2
� =

(
a3

12
− a2

4
+

a

4

)−2

×Var

([(
U − 1

2

)
I(U ≤ a) +

a

2
I(U > a)

] [(
V − 1

2

)
I(V ≤ a) +

a

2
I(V > a)

]

+

a∫
U

a∫
0

v c(u, v) dv du +
1
2
(a + 1)(C(U, a) + C(a, V )) +

a∫
V

a∫
0

u c(u, v) du dv

)
.

U and V are random variables with joint distribution function C(u, v), and
the joint density c(u, v).

Genest et al. [GGR95] discuss pseudo-likelihood estimation of copula pa-
rameters. The pseudo-loglikelihood is l(α, β, u, v) = log cα,β(u, v). To estimate
the parameters α and β, one has to maximize

N∑
i=1

l

(
α, β,

Si

N + 1
,

Ri

N + 1

)
,
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Fig. 3. The plot of the estimated theoretical copula for algorithms II and IV with
α = 0.084, β = 1.227.

which leads to the likelihood-type equations for α̂ and β̂. The complicated form
of these equations prevents an explicit form of the estimator. However, the
numerical computation is quite feasible. The resulting estimators are asymp-
totically normal, if in (3) α < 1

2 , αβ < 1
2 , and β < 2.

Figures 3 and 4 portray the empirical and theoretical copulas for (3) with
pseudo-likelihood estimated α and β.

4 Averaging of Ranks via Minimum Distance and Linear
Aggregation

A possible model for the combination of, say J , dependent algorithms rep-
resentable by their random similarity scores X1, . . . , XJ , involves their joint
copula CX1,...,XJ

(u1, . . . , uJ), such that

CX1,...,XJ
(u1, . . . , uJ) = H(F−1

1 (u1), . . . F−1
J (uJ)),

where F1, . . . FJ are marginal distribution functions, and H is the joint dis-
tribution function of X1, . . . , XJ .

If (Xj
1 , . . . , X

j
N ) are similarity scores produced by the jth algorithm, the

similarity scores of the aggregated algorithm are defined by a convex combi-
nation of N -dimensional random vectors Fj = (F−1

j (Xj
1), . . . , F−1

j (Xj
N )), i.e.,
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the score given to the kth element of the gallery is
∑J

j=1 wjF
−1
j (Xj

k), k =
1, 2, . . . , N . To find nonnegative weights (probabilities) w1, . . . , wJ , such that
w1 + · · · + wJ = 1, we take

tr

⎛⎝Var(
J∑

j=1

wjFj)

⎞⎠ =
∑
j,	

wjw	tr (Cov(Fj , F	))

as the objective function to be minimized. With the vectors w = (w1, . . . , wJ)T ,
e = (1, . . . , 1)T , and the matrix S formed by elements tr (Cov(Fj , F	)), the
optimization problem reduces to the minimization of wT Sw under condition
wT e = 1 with the solution

w0 =
S−1e

eT S−1e
(4)

(assuming that S is nonsingular).
The matrix S can be estimated from archive data, for example, as the rank

correlation matrix based on Spearman rho coefficients in Sect. 2. Another
possibility is to use the pseudo-likelihood estimators of copula parameters
(say, α and β in (3)) as discussed in the previous section by plugging them
into the formula for Cov(Fj , F	). This typically involves additional numerical
integration.

A different (but related) approach is to think of the action of an algorithm
(its ranking) as an element of the permutation group SN . Since the goal is to

Fig. 4. The plot of the empirical copulas for algorithms II and IV.
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combine J algorithms whose actions πj can be considered as permutations of
a gallery of size N , the “average permutation,” π̂, of π1, . . . , πJ can be defined
by the analogy with classical means. Namely, if d(π, σ) is a distance between
two permutations π and σ, then π̂ is the minimizer (in π) of

∑J
j=1 d(πj , π).

However, this approach does not take into account different precisions of dif-
ferent algorithms. Indeed, equal weights are implicitly given to all πi, and the
dependence structure of algorithms, which are to be combined, is neglected.

To form a fusion of dependent algorithms, a distance d((π1, . . . , πJ),
(σ1, . . . , σJ)), on the direct product SN

⊗ · · ·⊗SN of J copies of the per-
mutation group can be used. Then the combined (average) ranking π̂ of ob-
served rankings π1, . . . , πJ is the minimizer of d((π1, . . . , πJ), (π, . . . , π)). The
simplest metric is the sum

∑J
j=1 d(πj , π), as above.

To define a more appropriate distance, we associate with a permutation
π the N × N permutation matrix P with elements pi	 = 1, if � = π(i); = 0,
otherwise. A distance between two permutations π and σ can be defined as
the matrix norm of the difference between the corresponding permutation
matrices. For a matrix P, one of the most useful matrix norms is ||P ||2 =
tr(PPT ) =

∑
i,	 p2

i	. For two permutation matrices P and S corresponding to
permutations π and σ, the resulting distance d(π, σ) = ||P − S|| essentially
coincides with Hamming’s metric,

dH(π, σ) = N − card {i : π(i) = σ(i)}.

For a positive definite symmetric matrix C, a convenient distance
d((π1, . . . , πJ), (σ1, . . . , σJ)) is defined as

dC((π1, . . . , πJ), (σ1, . . . , σJ)) = tr((Ψ − Σ)C(Ψ − Σ)T ),

with Ψ = P1 ⊕ · · · ⊕ PJ denoting the direct sum of permutation matrices
corresponding to π1, . . . , πJ , and Σ having a similar meaning for σ1, . . . , σJ .

The optimization problem, which one has to solve for this metric, consists
of finding the permutation matrix Π minimizing the trace of the block ma-
trix formed by submatrices (Pj − Π)Cjk(Pk − Π)T , with Cjk, j, k = 1, . . . , J

denoting N ×N submatrices of the partitioned matrix C. In other terms, one
has to minimize

J∑
j=1

tr((Pj − Π)Cjj(Pj − Π)T )

= tr

⎛⎝Π
∑

j

CjjΠ
T

⎞⎠− 2tr

⎛⎝Π
∑

j

CjjP
T
j

⎞⎠+ tr

⎛⎝∑
j

PjCjjP
T
j

⎞⎠ .

Matrix differentiation shows that the minimum is attained at the matrix

Π0 =

⎡⎣∑
j

PjCjj

⎤⎦⎡⎣∑
j

Cjj

⎤⎦−1

.
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The matrix ΠT
0 is stochastic, i.e., eT Π0 = eT , but typically it is not a per-

mutation matrix, and the problem of finding the closest permutation matrix,
determined by a permutation π, remains. In this problem with Π0 = {p̂i	} we
seek the permutation π̂, which maximizes

∑
i p̂iπ(i),

π̂ = arg max
π

∑
i

p̂iπ(i).

An efficient solution to this problem can be obtained from the Hungarian
method for the assignment problem of linear programming (see Bazaraa et al.
[BJS90, Sect. 10.7] for details).

In this setting one has to use an appropriate matrix C, which must be
estimated on the basis of the training data; C−1 is the covariance matrix of
all permutations π1, . . . , πJ in the training sample.

A simpler aggregated algorithm suggested by Rukhin and Malioutov
[RM05] can be defined by the matrix P , which is a convex combination of
the permutation matrices P1, . . . , PJ , P =

∑J
j=1 wjPj . Again the problem is

that of assigning nonnegative weights w1, . . . , wJ , such that w1 + · · ·+wJ = 1,
to matrices P1, . . . , PJ . The fairness of all (dependent) algorithms can be in-
terpreted as E(Pi) = µ with the same “central” matrix µ (in average, for
a given probe, all algorithms measure the same quantity), the main differ-
ence between them is the accuracy. The optimal weights w0

1, . . . , w0
J minimize

E||∑j wj(Pj −µ)||2. Let Σ denote the positive definite matrix formed by the
elements Etr((Pk − µ)(Pj − µ)T ), k, j = 1, . . . , J. The optimization problem
still consists in minimization of wT Σw under condition wT e = 1. The solution
has the form

w0 =
Σ−1e

eT Σ−1e
,

provided that Σ is nonsingular.
The “covariance matrix” Σ can be estimated by, say, Σ̂, from the available

training data. Note that for all k,

E(tr(PkPT
k )) = E

(∑
r,q

δrπ(q)

)
= N,

and for k �= j,

E(tr(PjP
T
k )) = E(card {� : πk(�) = πj(�)}).

Also the training data can be used to estimate µ by the sample mean µ̂ of all
matrices in the training set.

Thus, to implement this linear fusion, these estimates are employed to get
the estimated optimal weights,

ŵ =
Σ̂−1e

eT Σ̂−1e
. (5)
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After these weights have been determined from the available data and
found to be nonnegative, define a new combined ranking π̂0 on the basis of
newly observed rankings π1, . . . , πJ as follows. Let the N -dimensional vector
Z = (Z1, . . . , ZN ) be formed by coordinates Zi =

∑J
j=1 ŵjπj(i), representing

a combined score of element i. Put π0(i) = � if and only if Zi is the �th
smallest of Z1, . . . , ZN . In other terms, π0 is merely the rank corresponding
to Z. In particular, according to π0, the closest image in the gallery is k0 such
that

J∑
j=1

ŵjπj(k0) = min
k

J∑
j=1

ŵjπj(k).

This ranking π0 is characterized by the property

N∑
i=1

⎛⎝ J∑
j=1

ŵjπj(i) − π0(i)

⎞⎠2

= min
π

N∑
i=1

⎛⎝ J∑
j=1

ŵjπj(i) − π(i)

⎞⎠2

,

i.e., π0 is the permutation that is the closest in the L2 norm to
∑J

j=1 ŵjπj

(see Theorem 2.2, p. 29 in Marden [Mar95]).
If some of the weights ŵ are negative, they must be replaced by 0, and the

remaining positive weights are to be renormalized by dividing by their sum.
This method can be easily extended to the situation discussed in Sect. 2 when
only partial rankings are available.

A more general approach is to look for matrix-valued weights Wi. These
matrices must be nonnegative definite and sum up to identity matrix, W1 +
· · · + Wk = I. The optimization problem remains as above.

The solution has the following, a bit more complicated, form. Let R be the
kN ×kN matrix formed by N ×N blocks of the form E(PiP

T
j ), i, j = 1, . . . , k.

Partition the inverse matrix Q = R−1 in a similar way into submatrices
Qij , i, j = 1, . . . , k. Then the optimal solution is

W 0
i =

∑
j

Qij

⎡⎣∑
	,j

Qij

⎤⎦−1

.

After the matrix P̂ =
∑

i W 0
i Pi has been found, the combined algorithm ranks

the gallery elements as follows:

p̂(i) = arg max
j

pij .

This solution is more computationally intensive as the dimension kN is large,
and the matrix R can be ill-conditioned.

5 Example: FERET Data

To evaluate the proposed fusion methods, four face-recognition algorithms
(I–IV), introduced earlier, were run on three 1996 FERET datasets of facial



Recognition Problem of Biometrics 95

images, dupI (D1), dupII training (D2), and dupII testing (D3) (see Table 1)
yielding similarity scores between gallery and probe images. The set D1 was
discussed already in Sect. 2; the gallery consists of N = 1196 images, and 234
probe images were taken between 540 and 1031 days after its gallery match.
For the sets D2 and D3 the probe image was taken before 1031 days. The
similarity scores were used for training and evaluating the new classifiers; all
methods were trained and tested on different datasets.

The primary measures of performance used for evaluation were the recog-
nition rate, or the percentage of probe images classified at rank 1 by a method,
and the mean rank assigned to the true images. Moreover, the relative recog-
nition abilities were differentiated by the cumulative match characteristic
(CMC) curve, which is a plot of the rank against the cumulative match score
(the percentage of images identified below the rank). Finally, the receiver oper-
ating characteristic (ROC) curves were used for measuring the discriminating
power of classifiers by plotting the true positive rate against the false positive
rate for varying thresholds. The area under the ROC curve can be used as
another quantitative measure of performance.

Table 1. Size of FERET datasets

D1 D2 D3
Gallery size 1196 552 644
Probe size 234 323 399

Both methods of weighted averaging (4) and (5) produced similar weights.
For example, the weights obtained from the correlation matrix S based on
Spearman rho coefficients for the training set D1 are w = (0.22, 0.32, 0.22, 0.24),
while the weights via (4) are w = (0.24, 0.27, 0.24, 0.25).

These two methods outperformed all but the best of constituent algo-
rithms, II. On different pairs of training and testing datasets, the overall
recognition rate of these methods fell short of this algorithm by 15% in the
worst case and surpassed it by 2% in the best case (Table 2). The mean ranks
of the two algorithms were generally within 5 ranks of each other.

Table 2. Percentage of images at rank 1

Dataset Weights (5) I II III IV
D2 D3 48.6 26.0 59.8 47.1 37.1
D3 D2 67.2 48.4 65.7 72.4 61.4
D1 D3 36.3 17.1 52.1 26.1 20.9

In terms of CMC curves, the methods of weighted averaging of ranks (4) or
(5) improved on all but the best of constituent algorithms, II, which was better
in the range of ranks from 1 to 30. It looks like this phenomenon is general for
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linear weighting, namely, for small ranks the best algorithm outperforms (4)
and (5) for all weights giving this particular algorithm a weight smaller than
1. However, the weighted averaging method (4) was better than all of the four
algorithms in the interval of ranks larger than 30 in the D2 dataset (Fig. 4).
For each of these methods there was about an 85% chance of the true image
being ranked 50 or below, which significantly narrowed down the number of
possible candidates from more than 1000 images to only 50.

0 100 200 300 400 500 600
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0.4

0.5
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0.9

1

Fig. 5. Graphs of the cumulative match curves for algorithms I–IV (marked by *,
+,o, x) and the linear aggregation (5) (marked by −).

The experiment showed that the weights derived from training for the
different algorithms were all very close, which suggested that equal weights
might be given to the different rankings. Although a simple averaging of ranks
is a viable alternative to weighted averaging in terms of its computational
efficiency, in our examples it was consistently inferior to method (4) or (5),
and the benefit of training seems apparent.
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Part III

Syndromic Surveillance
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Statistical and data analysis issues for new surveillance paradigms are quickly
emerging in public health. Among the key factors motivating their evolution
and development are

1. New requirements and resources to address a perceived bioterrorism threat
as well as emerging diseases.

2. Information system technology growth in general.
3. Recognition of surveillance integration as a priority.
4. Widely available data with unrealized potential for useful information.

The term syndromic surveillance is used here somewhat as a catch-all for refer-
ring to new surveillance system paradigms and should be interpreted broadly
[MH03, Hen04]. Biosurveillance has a much longer history for naturally occur-
ring morbidity and mortality (i.e., infectious diseases, birth defects, injuries,
immunization coverage, sexually transmitted diseases, HIV, medical product
adverse events, etc.) than for deliberately malicious exposures. The profes-
sional relationships and established roles among public health levels (local,
state, and federal) must be considered carefully as the context in which pub-
lic health surveillance activity and system maturity take place. To ignore this
extant infrastructure in advancing surveillance methodology involves the risk
of developing irrelevant ideas because they may not be feasible to implement.
However, if we do not extend beyond our applied creativity, we risk stag-
nation and incompetence. The balance is to identify the right size research,
development, and implementation steps that will enable palatable progress
and then take these steps quickly, frequently, and repeatedly in the same di-
rection. Implementation of national scope public health information system
change is extremely complex. This is a prologue designed to introduce and
sensitize the reader to factors that may serve as enablers in that complexity
for taking advantage of how to best consider the concepts asserted in the rest
of the articles dealing with biosurveillance.
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1 Evaluation

There is a growing body of literature on evaluation of “syndromic surveillance”
that ranges broadly. Topics include

1. Advice on what to consider as a framework [CDC04]
2. Assessment of specific data source validity [FSS04]
3. Algorithm performance [MRC04, SD03, BBC05]
4. General policy discourse [Rei03, SSM04]
5. Activity overview, etc. [BBC05]

The breadth of this subtopic attests to the interest of evaluation for a
relatively immature area in public health surveillance system development. It
does not seem reasonable to expect meaningful evaluative conclusions about
surveillance systems (e.g., cost/benefit utility) without a means to rigorously
evaluate system components individually.

Consider that for modern biosurveillance systems, there are

1. Information technology process segments for recording electronic transac-
tions and moving data.

2. Data preprocessing functions that include structuring an accessible ana-
lytic database architecture and ensuring data quality.

3. Data analysis components to apply methods for inference as well as de-
duction.

4. Support tools that operate in a decision theoretic framework for combining
evidence, other information, and communication to facilitate action in
near realtime.

To acquire useful evaluation measures for a surveillance system, subcategories
are required so that specific enough objectives could be established. By this ap-
proach, evaluation for the provincial notion of “whether or not” to do surveil-
lance gets replaced with the more practical notion of “how to do it better.”
Also, system complexity is reduced by decomposition. A risk here is to over-
segregate interdependent activities and create operational stovepipes among
professional skill sets. Good management and leadership must be alert and
proactive to prevent maladaptive marginalization of system development, data
management, statistical subject matter or end-user professionals in evaluation
research and subsequent development activities for surveillance. This is essen-
tial in order to “conquer” after dividing; or more specifically in this context,
to make sense out of algorithm performance characteristics after considering
them separately from other operational surveillance components.

Since much of the data used for public health surveillance are not collected
specifically for that purpose and/or are spontaneously generated, (1) they are
referred to as “secondary” or “opportunistic,” (2) the data require substan-
tial preprocessing for analytic use, (3) a sample-to-population mapping is
not probabilistically defined, and therefore, (4) the analytic signal detection
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methodologies are empirical in nature and do not lend themselves to conclu-
sions bearing well-defined inferential quantities such as confidence intervals
or p-values. There is generally no sampling design to define the probabilistic
relationship between the data and a specified population of interest, and a
design-based guide for an analytic strategy in a traditional sense is absent.
Therefore effective use of these systems is primarily empirical.

Detection algorithm performance evaluation in an empirical setting is
problematic when events for detection are rare. In the absence of recorded
events of importance to train upon, thoughtful and informed simulation is
much needed to accelerate learning. Ideally, a realistically described scenario
can be translated into representation in data as a response to people’s be-
havior. Characteristics of the scenario that would affect representation in the
data could be modified with a consequential data representation. Monte Carlo
iterations of the simulated signal structured over real data absent of events
of interest could then be cycled with detection activities recorded. Thus, the
usual means to evaluate a statistical detection approach for its operating char-
acteristics under varying conditions could be established. What frequently
takes place is that the people or groups who develop and promote a detection
approach are the same ones who establish the simulation and the evaluation
criteria and interpret the outcome. This is certainly a reasonable first step but
this process leaves too much opportunity for scientific confounding — design-
ing the evaluation criteria to fit the object of evaluation. A more objective
approach would serve to advance the field more effectively.

In addition to (1) well-defined signals of importance, (2) the use of sim-
ulation, and (3) increased objectivity, the results of evaluation studies for
surveillance system performance are of much greater practical value if they
consider the realistic operational conditions under which data analysts must
make decisions. Three considerably influential factors are data “lag time,”
“time alignment,” and the “unlinked multiple data source” problem. Two
ways that data lag time can be considered are (1) the average time between a
population event (e.g., patient encounter or some other health-seeking behav-
ioral event) and the event’s data representation in an analytic system interface
or (2) the proportion of data available at the time a decision is needed (versus
at some later time). “Time alignment” refers to the differential health-seeking
behavior times relevant for various data sources that may be available in one
analytic system. For example, if one were able to view time series signals in
response to a population exposure that caused illness, it may appear earlier
for sales data than for emergency department (ED) data. The reasoning is
that people may generally purchase products for self-treatment before their
symptoms would be severe enough to warrant a trip to the ED. The “unlinked
data source” problem is an issue for the secondary use of data sources when
record linkage is either not possible or avoided for other reasons. Given that
much of the data used in automated surveillance is gathered for some other
purpose (treating patients, billing, market analysis, inventory, etc.) and that
protecting individual confidentiality is a motive, broad linkage of records is
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not generally feasible. Therefore, the extent of information overlap is unknown
across data streams. For example, if a system uses over-the-counter sales, ED,
and laboratory test order data, it is not known to what extent the same people
and their reactions to illness are manifest in the different sources. Without
consideration of these operational realities, simulations for determining oper-
ating characteristics of new surveillance paradigms are incomplete at best and
of marginal practical value.

2 Coordination for Information Exchange among
Jurisdictions: BioSense

This is an aspect of analyzing and using information that easily goes unno-
ticed or is not well understood by the technical data analysis professionals who
develop the analytic methodologies of surveillance systems. In public health
as well as many public service industries, local jurisdictions are the primary
users of information systems relating to situational awareness and their po-
tential need to respond in their communities. When situations cross juris-
dictional borders, coordinating response becomes a shared challenge. When
public health threats cross state borders, the federal government becomes
responsible for coordinating information. The time and efficiency of meet-
ing this challenge are facilitated greatly through the use of technology stan-
dards [Bra05]. Conversely, multiple and diverse system outputs are difficult to
exchange and consequently interpret. Thus, considering the potential public
health threat that bioterrorism poses, there is a critical need for standards in
data coding and preprocessing, data management procedures, analytic algo-
rithms, data monitor operating procedures, and documentation of anomaly
investigations. Further, since it could be any part of the nation that is at risk,
these standards need to be national in scope. The Centers for Disease Con-
trol and Prevention has launched an initiative called BioSense to serve as a
platform for standards development as part of the Public Health Information
Network [Loo04]. BioSense is intended to provide a national safety net ensur-
ing that early detection is enabled in all major metropolitan areas and works
to support and integrate with existing regional surveillance systems. Require-
ments, data characteristics, threshold tolerances for response potential, etc.
will likely continue to be different among local areas but it is certainly in
our interests to enable rapid exchange of analytic results across jurisdictions.
The goal is to have standard statistical and other data analytic conceptual
approaches that can be tailored to local needs using various user-defined set-
tings, results from which can be described coherently in a way that provides
interoperable information for national situation awareness.
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3 An Open Issue: Null Hypothesis Dilemma

An open question that is worth consideration in both advancing probabilistic
methods for surveillance data analysis relates to the type I and type II error
concepts. If we consider the null condition to be the assumption of “no event
of importance in progress” and the alternative to be supported when there is
sufficient data to conclude that a countermeasure response is needed, then the
type I error is defined to be falsely concluding that a response is needed when
in fact it is not necessary. This seems like the less important “mistake” in that
if something were occurring that warranted a reaction and we did not respond,
lives would be lost and precious time would have passed in stopping an event
of importance. Thus, our general approach to controlling the type I error using
“alpha” for threshold setting is questionable in this setting. On the other hand,
being overly conservative at the expense of allowing too many false alerts may
fatigue readiness resulting in an inability to respond when truly needed. The
goal is to strike an informed balance between sensitivity maintenance and false
alert toleration. Currently implemented surveillance systems in public health
are based on inferential concepts that use p-values for thresholds under the
null assumption that the situation is expected with relation to the temporal
and/or geographical context. Given the situational consequences of failing
to alert to true events and too frequently alerting to unimportant events,
more refined bases for conclusions must be established as standard operating
procedures using decision theoretic approaches and specifying risk and utility
functions.

4 Summary and Directions

What has been commonly referred to as “syndromic surveillance” is not well-
defined and is quickly growing out of its previous characterization. The imple-
mentation of new operational models for early event detection and subsequent
situational awareness is creating opportunities for statistical and other data
analytic applications in public health. Challenges include the following:

• There is little collective working experience with secondary data use among
analysts.

• Data systems are new relative to the statistical methodologies employed.
• Data management tasks are large and the human resource skill sets for

accomplishing those tasks are rare and underrated.
• Successful information system operations require close communications

among staff of several interdependent disciplines.
• Analysis of these data requires inductive and deductive reasoning in com-

bination (results may be difficult to communicate concisely).
• Multiple data streams:

1. How can we best approach analysis: multiunivariate or multivariate?
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2. There is a knowledge gap for population behavioral response patterns
(the time alignment question).

The practice of binning population events into categories of likely associ-
ation with syndromes relating to known serious biological agents, counting,
comparing, and looking for patterns is currently the basis for most of the work
in this area. This seems a logical first iteration of maturity for a surveillance
system to enable earlier detection than would be possible otherwise. There
is a need to apply decision science concepts to support end-user’s threshold
determination. The use of prior knowledge in a Bayesian framework and more
refined pattern recognition seems like a promising direction for detection re-
finement, especially as more detailed data can be consolidated and means
to process it are built. As more diverse data sources are integrated (human
health, animal health, plant health, water quality, Internet traffic, utilities,
intelligence, etc.), analytic approaches and applied methodologies for com-
bining evidence from multiple and often conflicting sources will become even
more important [SF02]. In the meantime, simulation appears to be the most
promising method for accelerating available working knowledge of empirical
surveillance.

In the chapters of Part III that follow, Shmueli and Fienberg provide an
informed listing and brief conceptual characterization for a spectrum of detec-
tion approaches that either have already been implemented or hold promise for
utility in surveillance. Their attention is primarily on the statistical method-
ologies and use of data from multiple sources, a logical focus given the current
state of systems in application. Stoto et al. continue in this topic by creatively
comparing the empirical detection performance of algorithms using simulated
changes in patterns embedded in real health care data from Washington, DC.
Finally, Forsberg et al. develop in an elegant historical context, the elucidation
of how to take advantage of the space and time dimensions simultaneously in
identifying clusters of events.
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1 Introduction

A recent review of the literature on surveillance systems revealed an enor-
mous number of research-related articles, a host of websites, and a relatively
small (but rapidly increasing) number of actual surveillance systems, espe-
cially for the early detection of a bioterrorist attack [BMS04]. Modern bioter-
rorism surveillance systems such as those deployed in New York City, western
Pennsylvania, Atlanta, and Washington, DC, routinely collect data from mul-
tiple sources, both traditional and nontraditional, with the dual goal of the
rapid detection of localized bioterrorist attacks and related infectious diseases.
There is an intuitive notion underlying such detection systems, namely, that
detecting an outbreak early enough would enable public health and medical
systems to react in a timely fashion and thus save many lives. Demonstrating
the real efficacy of such systems, however, remains a challenge that has yet
to be met, and several authors and analysts have questioned their value (e.g.,
see Reingold [Rei03] and Stoto et al. (2004) [SSM04, SFJ06]). This article
explores the potential and initial evidence adduced in support of such sys-
tems and describes some of what seems to be emerging as relevant statistical
methodology to be employed in them.

Public health and medical data sources include mortality rates, lab re-
sults, emergency room (ER) visits, school absences, veterinary reports, and
911 calls. Such data are directly related to the treatment and diagnosis that
would follow a bioterrorist attack. They might not, however, detect the out-
break sufficiently fast. Several recent national efforts have been focused on
monitoring “earlier” data sources for the detection of bioterrorist attacks or
other outbreaks, such as over-the-counter (OTC) medication sales, nurse hot-
lines, or even searches on medical websites (e.g., WebMD). This assumes that
people who are not aware of the outbreak and are feeling sick, would gen-
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erally seek self-treatment before approaching the medical system and that
an outbreak signature will manifest itself earlier in such data. According to
Wagner et al. [WRT03], preliminary studies suggest that sales of OTC health
care products can be used for the early detection of outbreaks, but research
progress has been slow due to the difficulty that investigators have in acquir-
ing suitable data to test this hypothesis for sizable outbreaks. Some data of
this sort are already being collected (e.g., pharmacy and grocery sales). Other
potential nontraditional data sources that are currently not collected (e.g.,
browsing in medical websites, automatic body sensor devices) could contain
even earlier signatures of an outbreak.3

To achieve rapid detection there are several requirements that a surveil-
lance system must satisfy: frequent data collection, fast data transfer (elec-
tronic reporting), real-time analysis of incoming data, and immediate report-
ing. Since the goal is to detect a large, localized bioterrorist attack, the col-
lected information must be local, but sufficiently large to contain a detectable
signal. Of course, the different sources must carry an early signal of the attack.
There are, however, trade-offs between these features; although we require fre-
quent data for rapid detection, too frequent data might be too noisy to the
degree that the signal is too weak for detection. A typical solution for too
frequent data is temporal aggregation. Two examples where aggregation is
used for biosurveillance are aggregating OTC medication sales from hourly
to daily counts [GSC02] and aggregating daily hospital visits into multiday
counts [RPM03]. A similar trade-off occurs between the level of localization
of the data and their amount. If the data are too localized, there might be
insufficient data for detection, whereas spatial aggregation might dampen the
signal.

Another important set of considerations that limit the frequency and lo-
cality of collected data relate to confidentiality and data disclosure issues
(concerns over ownership, agreements with retailers, personal and organiza-
tional privacy, etc.). Finding a level of aggregation that contains a strong
enough signal, that is readily available for collection without confronting le-
gal obstacles, and yet is sufficiently rapid and localized for rapid detection, is
clearly a challenge. We describe some of the confidentiality and privacy issues
briefly here.

There are many additional challenges associated with the phases of data
collection, storage, and transfer. These include standardization, quality con-
trol, confidentiality, etc. [FS05]. In this paper we focus on the statistical chal-
lenges associated with the data monitoring phase, and in particular, data in
the form of multiple time series. We start by describing data sources that are

3 While our focus in this article is on passive data collection systems for syndromic
surveillance, there are other active approaches that have been suggested (e.g.,
screening of blood donors [KPF03]), as well as more technological fixes, such as
biosensors [Sul03] and “Zebra” chips for clinical medical diagnostic recording,
data analysis, and transmission [Cas04].
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collected by some major surveillance systems and their characteristics. We
then examine various traditional monitoring tools and approaches that have
been in use in statistics in general, and in biosurveillance in particular. We
discuss their assumptions and evaluate their strengths and weaknesses in the
context of biosurveillance. The evaluation criteria are based on the require-
ments of an automated, nearly real-time surveillance system that performs on-
line (or prospective) monitoring of incoming data. These are clearly different
than for retrospective analysis [SB03] and include computational complexity,
ease of interpretation, roll-forward features, and flexibility for different types
of data and outbreaks.

Currently, the most advanced surveillance systems routinely collect data
from multiple sources on multiple data streams. Most of the actual statistical
monitoring, however, is typically done at the univariate time series level, us-
ing a wide array of statistical prediction methodologies. Ideally, multivariate
methods should be used so that the data can be treated in an integrated way,
accounting for the relationships between the data sources. We describe the
traditional statistical methods for multivariate monitoring and their short-
comings in the context of biosurveillance. Finally, we describe monitoring
methods, in both the univariate and multivariate sections, that have evolved
in other fields and appear potentially useful for biosurveillance of traditional
and nontraditional temporal data. We describe the methods and describe their
strengths and weaknesses for modern biosurveillance.

2 Types of Data Collected in Surveillance Systems

Several surveillance systems aimed at rapid detection of disease outbreaks
and bioterror attacks have been deployed across the United States in the last
few years, including the Realtime Outbreak and Disease Surveillance system
(RODS) and National Retail Data Monitor (NRDM) in western Pennsylvania,
the Early Notification of Community-Based Epidemics system (ESSENCE) in
the Washington, DC, area (which also monitors many Army, Navy, Air Force,
and Coast Guard data worldwide), the New York City Department of Health
and Mental Hygiene (NYC-DOHMH) system, and recently the BioSense sys-
tem by the Centers for Disease Control and Prevention. Each system collects
information on multiple data sources with the intent of increasing the cer-
tainty of a true alarm by verifying anomalies found in various data sources
[PMK03]. All of these systems collect data from medical facilities, usually at
a daily frequency. These include emergency rooms admissions (RODS, NYC-
DOHMH), visits to military treatment facilities (ESSENCE), and 911 calls
(NYC-DOHMH). Nontraditional data include OTC medication and health-
care product sales at grocery stores and pharmacies (NRDM, NYC-DOHMH,
ESSENCE), prescription medication sales (ESSENCE), HMO billing data
(ESSENCE), and school/work absenteeism records (ESSENCE). We can think
of the data in a hierarchical structure; the first level consists of the data source
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(e.g., ER or pharmacy), and then within each data source there might be mul-
tiple time series, as illustrated in Fig. 1.

This structure suggests that series that come from the same source should
be more similar to each other than to series from different sources. This can
influence the type of monitoring methods used within a source as opposed
to methods for monitoring the entire system. For instance, within-source se-
ries will tend to share variation sources such as holidays, closing dates, and
seasonal effects. Pharmacy holiday closing hours will influence all medication
categories equally but not school absences. From a modeling point of view this
structure raises the question whether a hierarchical model is needed or else
all series can be monitored using a flat multivariate model. In practice, most
traditional multivariate monitoring schemes and a wide range of applications
consider similar data streams. Very flexible methods are needed to integrate all
the data within a system that is automatic, computationally efficient, timely,
and with low false alarms. In the following sections we describe univariate
and multivariate methods that are currently used or can potentially be used
for monitoring the various multiple data streams. We organize and group the
different methods by their original or main field of application and discuss
their assumptions, strengths, and limitations in the context of biosurveillance
data.

ER admissions 
(ICD-9 codes) 

Over-the-counter 
medication sales 

Nurse hotlines 

Respiratory

School absence 

Cough

Viral infection 

Analgesics  

Cough relief

Nasal decongestant

Allergy treatment

Data Source Information collected 

Fig. 1. Sketch of data hierarchy; each data source can contain multiple time series.
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3 Monitoring Univariate Data Streams

The methods used in biosurveillance borrow from several fields, with statistical
process control being the most influential. Methods from other fields have also
been used occasionally, with most relying on traditional statistical methods
such as regression and time series models. Although different methods might
be more suitable for different data streams or sources, there are advantages
to using a small set of methods for all data streams within a single surveil-
lance system. This simplifies automation, interpretability, and coherence, and
the ability to integrate results from multiple univariate outputs. The princi-
ple of parsimony, which balances performance and simplicity, should be the
guideline.

We start by evaluating some of the commonly used monitoring methods
and then describe other methods that have evolved or have been applied in
other fields, which are potentially useful for biosurveillance.

3.1 Current Common Approaches

Statistical Process Control

Monitoring is central to the field of statistical process control. Deming, She-
whart, and others revolutionized the field by introducing the need and tools
for monitoring a process to detect abnormalities at the early stages of pro-
duction. Since the 1920s the use of control charts has permeated into many
other fields including the service industry. One of the central tools for pro-
cess control is the control chart, which is used for monitoring a parameter of
a distribution. In its simplest form the chart consists of a centerline, which
reflects the target of the monitored parameter and control limits. A statistic
is computed from an iid sample every time point, and its value is plotted on
the chart. If it exceeds the control limits, the chart flags an alarm, indicating
a change in the monitored parameter. Statistical methods for monitoring uni-
variate and multivariate time series tend to be model-based. The most widely
used control charts are Shewhart charts, moving average (MA) charts, and cu-
mulative sum (CuSum) charts. Each of these methods specializes in detecting
a particular type of change in the monitored parameter [BL97].

We now briefly describe the different charts. Let yt be a random sample
of measurements taken at time t (t = 1, 2, 3, . . .). In a Shewhart chart the
monitoring statistic at time t, denoted by St, is a function of yt:

St = f(yt). (1)

The statistic of choice depends on the parameter that is monitored. For in-
stance, if the process mean is monitored, then the sample mean (f(yt) = yt)
is used. If the process variation is monitored, a popular choice is the sample
standard deviation (f(yt) = st). The monitoring statistic is drawn on a time
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plot, with lower and upper control limits. When a new sample is taken, the
point is plotted on the chart, and if it exceeds the control limits, it raises an
alarm. The assumption behind the classic Shewhart chart is that the monitor-
ing statistic follows a normal distribution. This is reasonable when the sample
size is large enough relative to the skewness of the distribution of yt. Based on
this assumption, the control limits are commonly selected as ±3 standard de-
viations of the monitoring statistic (e.g., if the sample mean is the monitoring
statistic, then the control limits are ±3σ/

√
n) to achieve a low, false-alarm

rate of 2φ(−3) = 0.0027. Of course, the control limits can be chosen differently
to achieve a different false-alarm rate. If the sample size at each time point is
n = 1, then we must assume that yt are normally distributed for the chart to
yield valid results. Alternatively, if the distribution of f(yt) (or yt) is known,
then a valid Shewhart chart can be constructed by choosing the appropriate
percentiles of that distribution for the control limits as discussed in [SFJ06].

Shewhart charts are very popular because of their simplicity. They are very
efficient at detecting moderate-to-large, spike-type changes in the monitored
parameter. Since they do not have a “memory,” a large spike is immediately
detected by exceeding the control limits. However, Shewhart charts are not
useful for detecting small spikes or longer-term changes. In those instances
we need to retain a longer “memory.” One solution is to use the “Western
Electric” rules. These rules raise an alarm when a few points in a row are too
close to a control limit, even if they do not exceed it. Although such rules are
popular and are imbedded in many software programs, their addition improves
detection of real aberrations at the cost of increased false alarms. The trade-off
turns out to be between the expected time-to-signal and its variability [SC03].

An alternative is to use statistics that have longer memories. Three such
statistics are the MA, the exponentially weighted moving average (EWMA),
and the CuSum. MA charts use a statistic that relies on a constant-size window
of the k last observations:

MAt =
k∑

j=1

f(yt−j+1)/k. (2)

The most popular statistic is a grand mean (
∑k

j=1 yt−j+1/k). These charts are
most efficient for detecting a step increase/decrease that lasts k time points.

The original CuSum statistic defined by 1
σ

∑t
i=1(yt − µ) keeps track of

all the data until time t [HO98]. However, charts based on this statistic are
awkward graphically. A widely used adaptation is the tabular CuSum, which
restarts the statistic whenever it exceeds zero. The one-sided tabular CuSum
for detecting an increase is defined as

CuSumt = max{0, (y∗
t − k) + CuSumt−1}, (3)

where y∗
t = (yt−µ)/σ are the standardized observations, and k is proportional

to the size of the abnormality that we want to detect. This is the most efficient
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statistic for detecting a step change in the monitored parameter. However, it is
less useful for detecting a spike since it would be masked by the long memory.
In general, time series methods that place heavier weight on recent values are
more suitable for short-term forecasts [Arm01].

The EWMA statistic is similar to the CuSum, except that it weights the
observations as a function of their recency, with recent observations taking
the highest weight:

EWMAt = αyt +(1−α)EWMAt−1 = α

t−1∑
j=0

(1−α)jf(yt−j)+(1−α)EWMA0,

(4)
where 0 < α ≤ 1 is the smoothing constant [Mon01]. This statistic is best
at detecting an exponential increase in the monitored parameter. It is also
directly related to exponential smoothing methods (see below). For further
details on these methods, see Montgomery [Mon01]. In biosurveillance, the
EWMA chart was used for monitoring weekly sales of OTC electrolytes to
detect pediatric respiratory and diarrheal outbreaks [HTI03] and is used in
ESSENCE II to monitor ER admissions in small geographic regions [Bur03a].

Since the statistic in these last three cases is a weighted average/sum
over time, the normality assumption of yt is less crucial for adequate perfor-
mance due to the central limit theorem, especially in the case of the EWMA
[RS04b, ACV04]. The main disadvantage of all these monitoring tools is that
they assume statistical independence of the observations. Their original and
most popular use is in industrial process control where samples are taken
from the production line at regular intervals, and a statistic based on these
assumably independent samples is computed and drawn on the control chart.
The iid assumption is made in most industrial applications, whether correct
or not. Sometimes the time between samples is increased to minimize corre-
lation between close samples. In comparison, the types of data collected for
biosurveillance are usually time series that are collected on a frequent basis to
achieve timeliness of detection, and therefore autocorrelation is inherent. For
such dependent data streams the use of distribution-based or distribution-free
control charts can be misleading in the direction of increased false-alarm rates
[Mon01, p. 375].

A common approach to dealing with autocorrelated measurements is to
approximate them using a time series model and monitor the residual error
using a control chart [GDV04]. The assumption is that the model accounts
for the dependence and therefore the residuals should be nearly independent.
Such residuals will almost never be completely independent, however, and
the use of control charts to monitor them should be done cautiously. This
is where time series analysis emerges in anomaly detection applications in
general, and in biosurveillance in particular. Moreover, because the forecast
at every time point is used to “test” for anomalies, we need to deal with the
multiple testing problem for dependent tests and possibly use variations on
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the new literature on false discovery rates (FDR) to control familywise type
I errors [BH95, EST01].

Time Series Methods

The most well-known class of time series models used by statisticians is au-
toregressive moving average (ARMA) models. Conceptually they are similar
to regressing the current observations on a window of previous observations
while assuming a particular autocovariance structure. An ARMA(p,q) model
is defined as

yt = µ +
p∑

i=1

αiyt−i + εt −
q∑

j=1

θjεt−j , (5)

where αi and θj are parameters and εt−q . . . εt are white noise (having mean 0
and standard deviation σε). To fit an ARMA model, the modeler must deter-
mine the order of the autoregression p and the order of the MA component,
q. This task is not straightforward and requires experience and expertise (for
example, not every selection of p and q yields a causal model). After p and q

are determined, there are p + q + 1 parameters to estimate, usually through
nonlinear least squares (LS) and conditional maximum likelihood. The pro-
cess of selecting p and q and estimating the parameters is cyclical [BJR94]
and typically takes several cycles until a satisfactory model is found. Some
software packages do exist that have automated procedures for determining p

and q and estimating those parameters.
ARMA models can combine external information by adding predictors in

the model. This allows to control for particular time points that are known to
have a different mean by adding indicators with those time points. Such mod-
ifications are especially useful in the biosurveillance context, since effects such
as weekend/weekday and holidays are normally present in medical and non-
traditional data. ESSENCE II, for instance, uses an autoregressive model that
controls for weekends, holidays, and postholidays through predictors [Bur03a].

ARMA models assume that the series is stationary over time (i.e., the
mean, variance, and autocovariance of the series remain constant throughout
the period of interest). In practice, fitting of an ARMA model to data usually
requires an initial preprocessing step where the data are transformed in one
or more ways until a stationary or approximately stationary series emerges.
The most popular generalization of ARMA models for handling seasonality
and trends is to add a differencing transformation, thereby yielding an au-
toregressive integrated moving average (ARIMA) model of the form

(1−α1B−α2B
2−. . .−αpB

p)[(1−B)d(1−Bs)Dyt−µ] = (1−θ1B−. . .−θqB
q)εt,

(6)
where B is the back-shift operator (Byt = yt−1), d > 0 is the degree of
nonseasonal differencing, D > 0 is the degree of seasonal differencing, and
s is the length of a seasonal cycle. Determining the level of differencing is
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not trivial, and over- and underdifferencing can lead to problems in modeling
and forecasting [CR96]. Although this model allows flexibility, in practice
the model identification step is complicated and highly data specific, and
requires expertise of the modeler. Another disadvantage of ARIMA models is
their computational complexity. With thousands of observations, the method
requires considerable computer time and memory [SAS04b].

To summarize, the common statistical approach towards monitoring has
been mostly distribution based. Recent advances in data availability and
collection in the process industry have led authors such as Willemain and
Runger [WR96] to emphasize the importance of model-free methods. It ap-
pears, though, that such methods have already evolved and have been used in
other fields! Next, we describe a few such methods that are distribution-free.

3.2 Monitoring Approaches in Other Fields

Monitoring methods have been developed and used in other fields such as ma-
chine learning, computer science, geophysics, and chemical engineering. Also,
forecasting, which is related to monitoring, has had advances in fields such as
finance and economics. In these fields there exist a wealth of very frequent au-
tocorrelated data; the goal is the rapid detection of abnormalities (“anomaly
detection”) or forecasting, and the developed algorithms are flexible and com-
putationally efficient. We describe a few of the methods used in these fields
and evaluate their usefulness for biosurveillance.

Anomaly detection in machine learning emphasizes automated and usually
model-free algorithms that are designed to detect local abnormalities. Even
within the class of model-free algorithms, there is a continuum between those
that are intended to be completely “user-independent” and those that require
expert knowledge integration by the user. An example for the former is the
symbolic aggregate approximation (SAX), which is a symbolic representation
for time series that allows for dimensionality reduction and indexing [LKL03].
According to its creators, “anomaly detection algorithms should have as few
parameters as possible, ideally none. A parameter free algorithm would pre-
vent us from imposing our prejudices, expectations, and presumptions on the
problem at hand, and would let the data itself speak to us” [KLR04]. In bio-
surveillance there exists expert knowledge about the progress of a disease,
its manifestation in medical and public health data, etc. An optimal method
would then be distribution-free and parsimonious, but would allow the inte-
gration of expert knowledge in a simple way.

Exponential Smoothing

Exponential smoothing (ES) is a class of methods that is very widely used
in practice (e.g., for production planning, inventory control, and marketing
[PA89]) but not so in the biosurveillance field. ES has gained popularity mostly
because of its usefulness as a short-term forecasting tool. Empirical research by
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Makridakis et al. [MAC82] has shown simple exponential smoothing (SES)
to be the best choice for one-step-ahead forecasting, from among 24 other
time series methods and using a variety of accuracy measures. Although the
goal in biosurveillance is not forecasting, ES methods are relevant because
they can be formulated as models [CKO01]. Nontraditional biosurveillance
data include economic series such as sales of medications, health-care prod-
ucts, and grocery items. Since trends, cycles, and seasonality are normally
present in sales data, more advanced ES models have been developed to ac-
commodate nonstationary time series with additive multiplicative seasonal-
ity/linear/exponential/dampened trend components. A general formulation
of an ES model assumes that the series is comprised of a level, trend (the
change in level from last period), seasonality (with M seasons), and error.
To illustrate the model formulation, estimation, and forecasting processes,
consider an additive model of the form

yt = local mean + seasonal factor + error, (7)

where the local mean is assumed to have an additive trend term and the error
is assumed to have zero mean and constant variance. At each time t, the
smoothing model estimates these time-varying components with level, trend,
and seasonal smoothing states denoted by Lt, Tt, and St−i(i = 0, . . . , M − 1),
respectively.4 The smoothing process starts with an initial estimate of the
smoothing state, which is subsequently updated for each observation using
the updating equations:

Lt+1 = α(yt+1 − St+1−M ) + (1 − α)(Lt + Tt),
Tt+1 = β(Lt+1 − Lt) + (1 − β)Tt, (8)
St+1 = γ(yt+1 − Lt+1) + (1 − γ)St+1−M ,

where α, β, and γ are the smoothing constants. The m-step-ahead forecast at
time t is

ŷt+m = Lt + mTt + St+m−M . (9)

A multiplicative model of the form Yt = (Lt−1+tTt−1)St−i εt can be obtained
by applying the updating equations in (8) to log(yt). The initial values L0,
T0, and the M seasonal components at time 0 can be estimated from the
data using a centered MA (see Pfeffermann and Allon [PA89] and the NIST
Handbook [NIS04] for details). The three smoothing constants are either de-
termined by expert knowledge, or estimated from the data by maximizing
a well-defined loss function (e.g., mean of squared one-step-ahead forecast
errors).

From a modeling point of view, many ES methods have ARIMA, seasonal
ARIMA (SARIMA), and structural models equivalents, and they even in-
clude a class of dynamic nonlinear state space models that allow for changing
4 The smoothing state is normalized so that the seasonal factors St−i for i =

0, 1, . . . , M sum to zero for models that assume additive seasonality, and average
to one for models that assume multiplicative seasonality [CY88].
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variance [CKO01]. Table 1 summarizes some of these equivalences. It is note-
worthy that some of the SARIMA equivalents are so complicated that they
are most unlikely to be identified in practice [CKO01]. Furthermore, Chatfield
et al. [CKO01] show that there are multiple generating processes for which a
particular ES method is optimal in the sense of forecast accuracy, which ex-
plains their robust nature. The advantage of these models is their simplicity of
implementation and interpretation, their flexibility for handling many types
of series, and their suitability for automation [CY88] because of the small
number of parameters involved and the low computational complexity. They
are widely used and have proved empirically useful, and automated versions of
them are available in major software packages such as the high-performance
forecasting module by SAS R©[SAS04a].

Table 1. The equivalence between some exponential smoothing and (seasonal)-
ARIMA models. The notation ARIMA(p, d, q)(P, D, Q)s corresponds to an
ARIMA(p,d,q) with seasonal cycle of length s, P -order autoregressive seasonality,
seasonal differencing of order D, and seasonal MA of order Q

Exponential Smoothing Method ARIMA/SARIMA Equivalent
Simple exponential smoothing ARIMA(0,1,1)
Holt’s (double) linear trend method ARIMA(0,2,2)
Damped-trend linear method ARIMA(1,1,2)
Additive Holt-Winters (triple) method SARIMA(0,1,p+1)(0,1,0)p

Multiplicative Holt-Winters (triple) [KSO01]’s dynamic nonlinear
method state-space models

Singular Spectral Analysis

The methods of singular spectral analysis (SSA) were developed in the geo-
sciences as an alternative for Fourier/spectral analysis and have been used
mostly for modeling climatic time series such as global surface temperature
records [GV91], and the Southern Oscillation Index that is related to the
recurring El Niño/Southern Oscillations conditions in the Tropical Pacific
[PGV95, YSG00] . It is suitable for decomposing a short, noisy time series
into a (variable) trend, periodic oscillations, other aperiodic components, and
noise [PGV95].

SSA is based on an eigenvalue-eigenvector decomposition of the estimated
M -lag autocorrelation matrix of a time series, using a Karhunen-Loeve de-
composition. The eigenvectors, denoted by �1, . . . , �M , are called empirical
orthogonal functions (EOFs) and form an optimal basis that is orthonormal
at lag zero. Usually a single EOF is sufficient to capture a nonlinear oscil-
lation. Using statistical terminology, principal components analysis (PCA) is
applied to the estimated autocorrelation matrix, so that projecting the EOFs
on the time series gives the principal components (Λ1, . . . , ΛM ):
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Λk(t) =
M∑
i=1

y(t + i)�k(i), (10)

and the eigenvalues reflect the variability associated with the principal com-
ponents [GY96]. The next step in SSA is to reconstruct the time series using
only a subset K of the EOFs:

yK(t) =
1

Mt

∑
k∈K

M∑
i=1

Λk(t − i)�k(i), (11)

where Mt is a normalizing constant (for details, see [GV91]). Choosing K is
done heuristically or by Monte Carlo simulations.

SSA is used mostly for revealing the underlying components of a time
series and separating signal from noise. However, it can be used for forecasting
by using low-order autoregressive models for the separate reconstructed series
[PGV95]. This means that SSA can be used for biosurveillance and monitoring
in general by computing one-step-ahead forecasts and comparing them to the
actual data. If the distance between a forecast and an actual observation is
too large, a signal is triggered.

Although SSA assumes stationarity (by decomposing the estimated auto-
correlation matrix), according to Yiou et al. [YSG00], it appears less sensitive
to nonstationarity than spectral analysis. However, Yiou et al. [YSG00] sug-
gested a combination of SSA with wavelets to form multiscale SSA (MS-SSA).
The idea is to use the EOFs in a data-adaptive fashion with a varying window
width, which is set as a multiple of the order M of the autocorrelation ma-
trix. After applying the method to synthetic and real data, they conclude that
MS-SSA behaves similarly to wavelet analysis, but in some cases it provides
clearer insights into the data structure. From a computational point of view,
MS-SSA is very computationally intensive, and in practice a subset of window
widths is selected rather than exhaustively computing over all window widths
[YSG00].

Wavelet-Based Methods

An alternative to ARIMA models that has gained momentum in the last
several years is wavelet decomposition. The idea is to decompose the time
series y(t) using wavelet functions:

y(t) =
N∑

k=1

akφ(t − k) +
N∑

k=1

m∑
j=1

dj,kψ(2jt − k), (12)

where ak is the scaled signal at time k at the coarsest scale m, dj,k is the
detail coefficient at time k at scale j, ψ is a scaling function (known as the
“father wavelet”), and φ is the mother wavelet function.
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This method is very useful in practice, since data from most processes
are multiscale in nature due to “events occurring at different locations and
with different localization in time and frequency, stochastic processes whose
energy or power spectrum changes with time and/or frequency, and variables
measured at different sampling rates” [Bak98]. In traditional process control,
the solution is to use not a single control chart but to combine different con-
trol charts (such as Shewhart-CuSum [Luc82] and Shewhart-EWMA charts
[LS90]) to detect shifts at different scales. This, of course, leads to increased
alarm rates (false and true). The wavelet decomposition method offers a more
elegant and suitable solution. Aradhye et al. [ABS03] used the term multi-
scale statistical process control (MSSPC) to describe these methods. Wavelet
methods are also more suitable for autocorrelated data, since the wavelet
decomposition can approximately decorrelate the measurements. A survey
of wavelet-based process monitoring methods and their history is given in
Ganesan et al. [GDV04]. Here we focus on their features that are relevant to
biosurveillance.

The main application of wavelets has been for denoising, compressing,
and analyzing image, audio, and video signals. Although wavelets have been
used by statisticians for smoothing/denoising data (e.g., [DJ95], for den-
sity estimation [DJK96], nonparametric regression [OP96], and other goals
[PW00]), they have only very recently been applied to statistical process mon-
itoring. The most recent developments in wavelet-based monitoring meth-
ods have been published mainly within the area of chemical engineering
[SCR97, HLM98, ABS03]. The main difference between chemical engineer-
ing processes and biosurveillance data (traditional and nontraditional) is that
in the former the definitions of normal and abnormal are usually well-defined,
whereas in the latter it is much harder to establish such clear definitions. In
that sense wavelets are even more valuable in biosurveillance because of their
nonspecific nature. Aradhye et al. [ABS03] have shown that using wavelets
for process monitoring yields better average performance than single-scale
methods if the shape and magnitude of the abnormality are unknown.

The typical wavelet monitoring scheme works in four main steps:

1. Decompose the series into coefficients at multiple scales using the discrete
wavelet transform (DWT). The DWT algorithm is as follows:
• Convolve the series with a low-pass filter to obtain the approximation

coefficient vector a1 and with a high-pass filter to obtain the detail
coefficient vector d1. If we denote the low-pass decomposition filter by
h = [h0, h1, . . . , hn], then the ith component of the high-pass decom-
position filter, g, is given by gi = (−1)ihn−i.

• Downsample the coefficients. Half of the coefficients can be eliminated
according to the Nyquist rule, since the series now has a highest fre-
quency of π/2 radians instead of π radians. Discarding every other
coefficient downsamples the series by two, and the series will then
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have half the number of points. The scale of the series is now doubled
[Pol].

• Reconstruct the approximation vector A1 and detail vector D1 by up-
sampling and applying “reconstruction” filters (Inverse-DWT). The set
of low-pass and high-pass reconstruction filters are given as hn∗ = h−n

and gn∗ = g−n.
If an orthogonal wavelet is used, then the original signal can be com-
pletely reconstructed by simple addition: Y = A1 + D1. The second level
of decomposition is obtained by applying this sequence of operations to
the first level approximation A1. The next levels of decomposition are
similarly obtained from the previous level approximations.

2. Perform some operation on the detail coefficients dk (k = 1, . . . , m). Var-
ious operations were suggested for monitoring purposes. Among them:
• Thresholding the coefficients at each scale for the purpose of smoothing

or data reduction [LLW02].
• Forecasting each of the details and the mth approximation at time

t + 1. This is done by fitting a model such as an autoregressive model
[GSC02] or neural networks [AM97] to each scale and using it to obtain
one-step-ahead forecasts.

• Monitoring Am and D1, D2, . . . , Dm by creating control limits at each
scale [ABS03].

3. Reconstruct the series from the manipulated coefficients. After m levels
of decomposition, an orthogonal wavelet will allow us to reconstruct the
original series by simple addition of the approximation and detail vec-
tors: Y = Am + D1 + D2 + . . . + Dm. If thresholding was applied, the
reconstructed series will differ from the original series, usually resulting
in a smoother series. In the case of single-scale monitoring [ABS03] use
the control limits as thresholds and reconstruct the series only from the
coefficients that exceeded the thresholds. In the forecasting scheme, the
reconstruction is done to obtain a forecast of the series at time t + 1 by
combining the forecasts at the different scales.

4. Perform some operation on the reconstructed series. Aradhye et al.
[ABS03] monitor the reconstructed series using a control chart. In the
forecasting scheme the reconstructed forecast is used to create an upper
control limit for the incoming observation [GSC02].

Although DWT appears to be suitable for biosurveillance, it has several
limitations that must be addressed. The first is that the downsampling causes
a delay in detection and thus compromises timeliness. This occurs because
the downsampling causes a lag in the computation of the wavelet coefficients,
which increases geometrically as the scale increases. An alternative is to avoid
the downsampling stage. This is called stationary- or redundant-DWT. Al-
though it solves the delay problem, it introduces a different challenge; it does
not allow the use of orthonormal wavelets, which approximately decorrelate
the series. This means that we cannot treat the resulting coefficients at each
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scale as normally distributed, uncorrelated, and with equal variance. Arad-
hye et al. [ABS03] conclude that for detecting large shifts it is preferable
to use stationary-DWT if the series is uncorrelated or moderately correlated,
whereas for highly nonstationary or autocorrelated series the use of downsam-
pling is preferable. Both models perform similarly in detecting small changes.
For further discussion of this issue and empirical results see Aradhye et al.
[ABS03].

The second issue is related to the boundaries of the series, and especially
the last observation. Since DWT involves convolving the series with filters, the
beginning and end of the series need to be extrapolated (except when using the
Haar). One approach is to use boundary-corrected wavelets. These have been
shown to be computationally impractical [GDV04]. Another approach is to use
an extrapolation method such as zero padding, periodic extension, and smooth
padding. In surveillance applications the end of the series and the type of
boundary correction are extremely important. Extrapolation methods such as
zero padding and periodic extension (where the beginning and end of the series
are concatenated) are clearly not suitable, since it is most likely that the next
values will not be zeros or those from the beginning of the series. More suitable
methods are the class of smooth padding, which consist of extrapolating the
series by either replicating the last observation or linearly extrapolating from
the last two values. An alternative would be to use exponential smoothing,
which is known to have good forecasting performance in practice.

Finally, although wavelet-based methods require very little user input for
the analysis, there are two selections that need to be made manually, namely,
the depth of decomposition and the wavelet function. Ganesan et al. [GDV04]
offer the following guidelines based on empirical evidence: the depth of de-
composition should be half the maximal possible length. Regarding choice of
wavelets, the main considerations are good time-frequency localizations, num-
ber of continuous derivatives (determine degrees of smoothness), and a large
number of vanishing moments. We add to that computational complexity and
interpretability. The Haar, which is the simplest and earliest wavelet func-
tion, is best suited for detecting step changes or piecewise constant signals.
For detecting smoother changes, a Daubechies filter of higher order is more
suitable.

4 Monitoring Multiple Data Streams

Modern biosurveillance systems such as the ones described earlier routinely
collect data from multiple sources. Even within a single source there are usu-
ally multiple data streams. For instance, pharmacy sales might include sales
of flu, allergy, and pain-relief medications, whereas ER visits record the daily
number of several chief complaints. The idea behind syndromic surveillance
is to monitor a collection of symptoms to learn about possible disease out-
breaks. Therefore we expect multivariate monitoring methods to be superior
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to univariate methods in actual detection, since the hypothesized signal can be
formulated in a multivariate fashion. Optimally, multivariate models should
detect changes not only in single data streams but also in the functional rela-
tionships between them.

4.1 Merging Data Sources: Why Use Aggregated Data?

One of the main reasons for treating biosurveillance data at the aggregated
level is the issue of privacy associated with individuals whose data are being
used. Medical and public health data systems of relevance for surveillance sys-
tems are typically subject to formal rules and/or legal restrictions regarding
their use in identifiable form (e.g., as provided for by the Health Insurance
Portability and Accountability Act of 1996, Public Law 104-191 (HIPAA)
under its recently issued and implemented privacy and confidentiality rules),
although there are typically research and other permitted uses of the data pro-
vided that they are de-identified. The HIPAA Safe Harbor de-identification,
for instance, requires the de-identification of 18 identifiers including name,
social security number, zip code, medical record number, age, etc. The re-
moval of such information clearly restricts the possibility of record linkage
across data sources, although it also limits the value of the data for statistical
analysis and prediction, especially in connection with the use of spatial algo-
rithms [Won04]. Similar legal restrictions apply to prescription information
from pharmacies. Other public and semipublic data systems, such as school
records, are typically subject to a different form of privacy restriction but
with similar intent. Finally, grocery and OTC medication sales information
is typically the property of the commercial interests that are wary of shar-
ing data in individually identifiable form even if there are no legal strictures
against such access. Solutions do exist that would potentially allow record
linkage to at least some degree (e.g., by using a trusted broker and related
data sharing agreements) (see the discussion in Gesteland et al. [GGT03]).
While the practical solution of independently and simultaneously monitor-
ing the separate sources, especially at the aggregate level, avoids the issue of
record linkage and privacy concerns, it also leads to loss of power to detect the
onset of a bioterrorist attack! Thus ultimately, if the syndromic surveillance
methodology is to prove successful in early detection of a bioterrorist attack,
the HIPAA and other privacy rules will need to be adjusted either to allow
special exceptions for this type of data use, or to recognize explicitly that
privacy rights may need to be compromised somewhat to better protect the
public as a whole through the increased utility of the use of linked multiple
data sources.

A separate reason for using aggregated data is the difficulty of record
linkage from multiple sources: “identifiers” that are attached to records in
different sources will usually differ at least somewhat. Linking data from two
or more sources either requires unique identifiers that are used across systems
or variables that can be used for record linkage. In the absence of unique
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identifiers, matching names and fields, especially in the presence of substantial
recording error, poses substantial statistical challenges. For further discussion
of these issues see Fienberg and Shmueli [FS05] and especially Bilenko et al.
[BMC03].

4.2 Current Common Approaches

Monitoring multiple time series is central in the fields of quality/process con-
trol, intrusion detection [Ye02], and anomaly detection in general. When the
goal is to detect abnormalities in independent series, then multiple univariate
tools can be used, and then merged to form a single alarm mechanism. How-
ever, the underlying assumption behind the data collected for biosurveillance
is that the different sources are related and are measuring the same phe-
nomenon. In this case, multivariate methods are more suitable. The idea is to
detect not only abnormalities in single series, but also abnormal relationships
between the series (also termed “counterrelationships”). In the following we
describe multivariate methods that have been used in different applications
for the purpose of detecting anomalies.

Statistical Process Control

The quality control literature includes several multivariate monitoring meth-
ods. Some are extensions of univariate methods, such as the χ2 and Hotelling
T 2 control charts, the multivariate CuSum chart, and the multivariate EWMA
chart [ASJ97]. The multivariate versions are aimed at detecting shifts in single
series as well as counterrelationships between the series. As in the univariate
case, they are all based on the assumptions of independent and normally dis-
tributed observations. Also, like their univariate counterparts they suffer from
problems of underdetection. In practice they are sometimes combined with a
Shewhart chart, but this solution comes at the cost of slowing down the de-
tection of small shifts [ASJ97]. When the multiple series are independent of
each other, they do not require a multivariate model to monitor counterre-
lationships. An example is monitoring multiple levels of activity in an infor-
mation system to detect intrusions, where Ye [Ye02] found that the different
activity measures were not related to each other, and therefore a simple χ2

chart outperformed a Hotelling T 2 chart. A multivariate model is still needed
here, however, instead of a set of univariate control charts. One reason is the
inflated false-alarm rate that results from multiple testing. If each of p uni-
variate charts has a false-alarm probability α, then the combined false-alarm
probability is given by

1 − (1 − α)p. (13)

One solution is to use a small enough α in each univariate chart; however, this
approach becomes extremely conservative and is impractical for the moderate
to high number of series collected by biosurveillance systems. This issue is also
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related to the problem of interpreting an alarm by the multivariate control
chart. Although it may seem intuitive to determine which of the univariate
measures is causing the alarm by examining the univariate charts, this is not a
good approach not only because of the α-inflation but also because the alarm
might be a result of changes in the covariance or correlation between the vari-
ables. Solutions for the α inflation based on Bonferroni-type adjustments have
been shown to be conservative. A better approach is to decompose the moni-
toring statistic into components that reflect the contribution of each variable
[Mon01]. For example, if the monitoring statistic is the Hotelling T 2, then for
each variable i (i = 1, . . . , n) we compute

di = T 2 − T 2
(i), (14)

where T 2
(i) is the value of the statistic for all the p− 1 variables except the ith

variable. This is another place where the use of FDR methodology may be
appropriate and of help. One also needs to consider monitoring the covariance
in parallel.

Other methods within this approach have tried to resolve the shortcomings
of these control charts. One example is using Shewhart and CuSum charts to
monitor “regression-adjusted variables,” which is the vector of scaled residuals
from regressing each variable on the remaining variables [Haw91]. Another
example is a Bayesian approach for monitoring a multivariate mean (with
known covariance matrix), where a normal prior is imposed on the process
mean. A quadratic form that multiplies the posterior mean vector and the
posterior covariance matrix is then used as the monitoring statistic [Jai93].

The second statistical approach towards multivariate monitoring is based
on reducing the dimension of the data and then using univariate charts to
monitor the reduced series and the residuals. PCA and partial least squares
(PLS) are the most popular dimension reduction techniques. In PCA, principal
components are linear combinations of the standardized p variables. We denote
them by PC1, . . . , PCp. They have two advantages. First, unlike the original
variables the principal components are approximately uncorrelated. Second,
in many cases a small number of components captures the variability in the
entire set of data [NIS04]. Kaiser’s rule of thumb for determining the number of
components that is needed to capture most of the variability is to retain only
components associated with an eigenvalue larger than 1 [Kai60]. There are
alternatives, such as the number of components that explain a sufficient level
of variability. In quality control usually the first two components, PC1, PC2,
are plotted using a Hotelling-T 2 chart, but the number of components (k) can
be larger. A second plot monitors the “residuals” using

Q =
p∑

i=k+1

PC2
i

λi
, (15)

where λi is the eigenvalue corresponding to the ith principal component
(which is also equal to its variance). Bakshi [Bak98] points out that these
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charts suffer from the same problems of T 2 charts, as described above, in the
sense of being insensitive to small changes in the process. Solutions are to mon-
itor these statistics using a CuSum or EWMA scheme. The main shortcoming
of these charts is their reliance on the assumption that the observations fol-
low a multivariate normal distribution. In practice, multivariate normality is
usually difficult to justify [CLL00]. This is especially true in biosurveillance
where the different data sources come from very diverse environments.

Time Series Models

The multivariate form of ARMA models is called vector-ARMA models. The
basic model is equivalent to (5), except that yt (t = 1, 2, . . .) are now vectors.
This structure allows for autocorrelation as well as cross-correlation between
different series at different lags. In addition to the complications mentioned
in relation to ordinary ARMA models, in vector-ARMA the number of α and
θ parameters is larger ((p + q + 1) multiplied by the number of series). The
parameter covariance matrix to be estimated is therefore much larger. Since
estimating the MA part adds a layer of complication, vector-AR models are
more popular. In the context of biosurveillance, vector-AR models have advan-
tages and disadvantages. Their strength lies in their ability to model lagged
and counterrelationships between different series. This is especially useful for
learning the pattern of delay between, for instance, medication sales and ER
visits. However, vector-AR models have several weaknesses that are especially
relevant in our context. First, their underlying assumption regarding the sta-
tionarity of the data is almost never true in data streams such as sales and
hospital visits. This nonstationarity becomes even more acute as the frequency
of the data increases. Second, although in some cases a set of transforma-
tions can be used to obtain stationarity, this preprocessing stage is highly
series-specific and requires experience and special attention from the modeler.
Furthermore, the application of different transformations can cause the series
that were originally aligned to lose this feature. For example, by differentiat-
ing one series once and another series three times, the resulting series are of
different length. Finally, any series that cannot be transformed properly into
a stationary series must be dropped from the analysis. The third weakness of
vector-AR models is that they are hard to automate. The model identifica-
tion, estimation, and validation process is computationally heavy and relies on
user expertise. Automated procedures do exist in software such as SAS (the
VARMAX procedure [SAS00]). For determining the order of the model they
use numerical measures such as Akaike information criterion (AIC), criterion
final prediction error (FPE), and Bayesian information criterion (BIC). How-
ever, it is not guaranteed that the chosen model is indeed useful in a practical
sense, and experienced statisticians would insist on examining other graphical
measures such as auto- and cross-correlation plots to decide on the order of
the model.
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Estimation of the vector-AR parameters can be done using maximum like-
lihood. More often, for computational reasons, it is framed as an ordinary
regression model and estimated using LS. Casting an AR model in the form
of a regression model is an approximation in that in a regression model the
predictors are assumed to be constant, whereas in an AR process they are a
realization of a stochastic process. The parameter estimates are still consis-
tent and asymptotically unbiased estimates for the AR model [NS01]. Thus,
this estimation method is suitable for sufficiently long series, as is the case
in typical biosurveillance data. However, collinearity and overparametrization
are typical problems. One solution is to use a Bayesian approach and to im-
pose priors on the AR coefficients [Ham94]. An alternative used by Bay et al.
[BSU04] is to use ridge regression. The basic idea is to zero estimates that are
below a certain threshold. Ridge regression yields biased estimates, but their
variance is much smaller than their LS counterparts [MS75]. The estimated
parameters are those that solve the equation

β = (X ′X + λI)−1X ′y, (16)

where λ ≥ 0 is the ridge parameter and I is the identity matrix. In the context
of a vector-AR model we set y = yt (the multiple measurements at time t)
and X is the matrix of lagged measurements at lags 1, . . . , p.

As with univariate ARIMA models, the stationarity assumption, the need
in expert knowledge in model identification and estimation, the computa-
tional complexity, and overparametrization limit the usefulness of multivariate
ARIMA models for integration into automated biosurveillance systems.

4.3 Alternative Approaches

Multichannel Singular Spectral Analysis

A generalization of SSA to multivariate time series, called multichannel-SSA
(M-SSA), was described by Ghil and Yiou [GY96] and applied to several
climate series. The idea is similar to the univariate SSA, except that now the
lag-covariance matrix is a block-Toeplitz matrix T , where Tij is an M × M

lag-covariance matrix between series i and series j.
From a practical point of view, as the space increases in the number of

series (L) and/or window width (M), the diagonalization of T , which is a
(T ×M)×(T ×M) matrix, becomes cumbersome. Solutions include projecting
the data onto a reduced subspace using PCA, undersampling the data to
reduce M , and using expert knowledge to reduce the frequencies of interest.
To give a feeling of the dimensions that can be handled, Plaut and Vautard
[PV94] applied M-SSA to L = 13 series of 5-day observations, with M = 40
(equivalent to a maximum lag of 200 days).

There are several reasons why M-SSA should be investigated for biosurveil-
lance. First, climatic data and syndromic data share components such as
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weekly, seasonal, and annual patterns. Second, its relative insensitivity to the
stationarity assumption makes it attractive for biosurveillance data. Finally,
the ability to generalize it to the analysis of multiple time series (although
computationally challenging) is useful not only for monitoring purposes but
also for shedding light on the cross-relationship between different biosurveil-
lance series, both within a data source and across data sources. The SSA-MTM
toolkit is a software package for applying M-SSA (and other techniques), and
is freely available at http://www.atmos.ucla.edu/tcd/ssa/.

Multivariate Wavelet Method

DWT has proven to be a powerful tool for monitoring nonstationary uni-
variate time series for abnormalities of an unknown nature. Several authors
created generalizations of the univariate method to a multivariate monitoring
setting mostly by combining it with PCA. The most recent method, by Bakshi
[Bak98], uses a combination of DWT and PCA to create a multiscale principal
components analysis (MSPCA) for online monitoring of multivariate observa-
tions. The idea is to combine the ability of PCA to extract the cross-correlation
between the different series with the wavelets’ ability to decorrelate the auto-
correlation within each series. As with control chart methodology, there are
two phases: In phase I it is assumed that there are no abnormalities, and the
control limits for the charts are computed. In phase II new data are monitored
using these limits. The process used in MSPCA consists of

1. Decomposing each univariate series using DWT (the same orthonormal
wavelet is used for all series).

2. Applying PCA to the vectors of coefficients in the same scale, indepen-
dently of other scales.

3. Using T 2- and Q-charts to monitor the principal components at each scale.
During phase I the control limits for these charts are computed.

4. Combining the scales that have coefficients exceeding the control limits
to form a “reconstructed multivariate signal” and monitoring it using T 2-
and Q-charts. During phase I the control limits for these two charts are
computed. In phase II the reconstructed series is obtained by combining
the scales that indicate an abnormality at the most recent time point.

The idea is that a change in one or more of the series will create a large
coefficient first at the finest scale, and as it persists, it will appear at coarser
scales (similar to the delay in detecting spike changes with CuSum and EWMA
charts). This might cause a delay in detection, and therefore the reconstructed
data are monitored in parallel. The overall control chart is used for raising
an alarm, while the scale-specific charts can assist in extracting the features
representing abnormal operation.

As in the univariate case, the downsampling operation causes delays in
detection. Bakshi [Bak98] therefore suggests using a stationary-wavelet trans-
form, which requires the adjustment of the control limits to account for the
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coefficient autocorrelation that is now present and its effect on the global false-
alarm rate. An enhancement to the Bonferroni-type adjustment suggested by
Bakshi [Bak98] would be to use the more powerful FDR approach, which
controls the expected proportion of false positives.

Multivariate Exponential Smoothing

Although research and application of univariate exponential smoothing is
widespread there is a surprising scant number of papers on multivariate expo-
nential smoothing, as a generalization of the univariate exponential smoothing
methods. Two papers that have addressed this topic are Pfeffermann and Al-
lon [PA89] and Harvey [Har86]. Since then, it appears, there has been little
new on the topic.

The generalized exponential smoothing model suggested by Harvey [Har86]
includes linear and polynomial trends and seasonal factors and can be esti-
mated using algorithms designed for the univariate case. Pfeffermann and Al-
lon [PA89] suggest a generalization of the Holt-Winters additive exponential
smoothing, simply by expressing the decomposition and updating equations
in matrix form. The only additional assumption is that the error term εt is
assumed to have E(εt) = 0, Var(εt) = Σ, and E(εtε

′
t−i) = 0 for i > 0. The

set of updating equations are given by

Lt+1 = A(Yt+1 − St+1−M ) + (I − A)(Lt + Tt),
Tt+1 = B(Lt+1 − Lt) + (I − B)Tt, (17)
St+1 = C(Yt+1 − Lt+1) + (I − C)St+1−M ,

where A, B, and C are three convergent matrices of smoothing constants. The
m-step-ahead forecast at time t is

Ŷt+m = Lt + mTt + St+m−M . (18)

These are similar to the univariate smoothing updating and prediction equa-
tions. In fact, the updating equations can be written as weighted averages of
estimates derived by the univariate components and correction factors based
on information from the other series (the off-diagonal elements of the ma-
trices A, B, and C). Pfeffermann and Allon [PA89] show that the forecasts
from this model are optimal under particular state space models. They also
illustrate and evaluate the method by applying it to two bivariate time se-
ries: one related to tourism in Israel, and the other on retail sales and pri-
vate consumption in Israel. They conclude that the multivariate exponential
smoothing (MES) forecasts and seasonal estimates are superior to univari-
ate exponential smoothing and comparable to ARIMA models for short-term
forecasts. Although the model formulation is distribution free, to forecast all
series the specification of the smoothing matrices and initial values for the
different components requires a distributional assumption or prior subjective



Monitoring Multiple Data Streams for Biosurveillance 131

judgments (which are much harder in a multivariate setting). This is the most
challenging part of the method. However, once specified, this process need not
be repeated. Also, once specified, the estimated smoothing matrices can shed
light on the cross-relationships between the different time series in terms of
seasonal, trend, and level components.

Data Depth

The pattern recognition literature discusses nonparametric multivariate mod-
els such as those associated with data depth methodology. This approach
was developed through techniques at the interface between computational
geometry and statistics and is suitable for nonelliptically structured multi-
variate data [Liu03]. A data depth is a measure of how deep or how central
a given point is with respect to a multivariate distribution. The data depth
concept leads to new nonparametric, distribution-free multivariate statistical
analyses [RS04a], and in particular, it has been used to create multivariate
monitoring charts [Liu03, LS02]. These charts allow the detection of both a
location change and a scale increase in the process simultaneously. In prac-
tice, they have been shown to be more sensitive to abnormalities relative to a
Hotelling-T 2 chart in monitoring aviation safety, where the data are not mul-
tivariate normal [CLL00]. There are several control charts that are based on
data depth measures, the simplest being the r chart. In this time-preserving
chart the monitoring statistic is the rank of the data depth measure, denoted
by r. Liu and Singh [LS93] proved that r converges in distribution to a U(0,1)
distribution. Therefore, the lower control limit on the r-chart equals the α of
choice, and if the statistic exceeds this limit, it means that the multivariate
observation is very far from the distribution center, and a flag is raised. The
computation of the data depth measures becomes prohibitively intensive as
the dimension of the space increases. Solutions have been to use probabilistic
algorithms [CC03].

4.4 Spatial Approaches to Biosurveillance

A different approach to monitoring multiple data sources has been to focus on
the spatial information and look for geographical areas with abnormal counts.
Two major approaches have been used for monitoring biosurveillance data us-
ing a spatial approach. Both operate on discrete, multidimensional temporal
datasets. The first method uses the algorithm What’s Strange About Recent
Events (WSARE), which is applied in RODS and uses a rule-based technique
that compares recent emergency department admission data against data from
a baseline distribution and finds subgroups of patients whose proportions have
changed the most in the recent data [WMC03]. In particular, recent data are
defined as all patient records from the past 24 hours. The definition of the base-
line was originally the events occurring exactly five, six, seven, and eight weeks
prior to the day under consideration (WSARE version 2.0) [WMC02]. Such
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a comparison eliminates short-term effects such as day-of-week, and longer-
term seasonal effects (by ignoring weeks that are farther in the past). The
baseline was then modified to include all historic days with similar attributes
(WSARE version 2.5), and in the current version (WSARE 3.0) a Bayesian
Network represents the joint distribution of the baseline [WMC03]. One limi-
tation of WSARE is that it is practically limited to treating a maximum of two
rules (i.e., variables), due to computational complexity [WMC02, WMC03].
Another computational limitation is the randomization tests used to account
for the multiple testing, which are also computationally intensive. Finally,
WSARE can use only discrete data as input, so that continuous information
such as age must be categorized into groups. This, of course, requires expert
knowledge and might be specific to the type of data monitored and/or the
outbreak of interest.

A different method, implemented in ESSENCE II and in the NYC-
DOHMH system, is the spatial-temporal scan statistic [Kul01], which com-
pares the counts of occurrences at time t in a certain geographical location
with its neighboring locations and past times, and flags when the actual counts
differ consistently from the expected number under a nonhomogeneous Pois-
son model. The purely spatial approach is based on representing a geographical
map by a uniform two-dimensional grid and aggregating the records within
families of circles of varying radii centered at different grid points. The un-
derlying assumption is that the number of records in a circle come from a
nonhomogeneous Poisson process with mean qpij where q is the underlying
disease rate and pij is the baseline rate for that circle. The purely spatial scan
statistic is the maximum likelihood ratio over all possible circles, thereby
identifying the circle that constitutes the most likely cluster. This requires
the estimation of the expected number of cases within each circle and outside
of it given that there is no outbreak. The p-value for the statistic is obtained
through Monte Carlo hypothesis testing [Kul01]. The spatial-temporal scan
statistic adds time as another dimension, thereby forming cylinders instead
of circles. The varying heights of the cylinders represent different windows in
time. The multiple testing is then accounted for both in space and in time do-
mains. Lawson [Law01] mentions two main challenges of the spatial-temporal
scan statistic, which are relevant to biosurveillance. First, the use of circular
forms limits the types of clusters that can be detected efficiently. Second, the
timeliness of detection and false-alarm rates need further improvement. In
an application of the scan statistic to multiple data sources in ESSENCE II,
Burkom [Bur03b] describes a modified scan-statistic methodology where the
counts from various series are aggregated and used as the monitored data,
and these are assumed to follow an ordinary Poisson model. A few modifi-
cations were needed to address features of biosurveillance data. The uniform
spatial incidence is usually inappropriate and requires the estimation of ex-
pected counts for each of the data sources (which is challenging in and of
itself); the aggregation of counts from disparate sources with different scales
was adjusted by using a “stratified” version of the scan statistic. It appears
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that such data-specific and time-varying tailoring is necessary and therefore
challenges the automation of this method for biosurveillance.

Both methods are flexible in the sense that they can be applied to differ-
ent levels of geographical and temporal aggregation and for different types of
diseases. With respect to automation and user input the two methods slightly
differ. In the scan-statistic methods the user is required to specify the max-
imal spatial cluster size (represented by the circle radius) and the maximal
temporal cluster length (represented by the cylinder height). In addition, since
neither the Poisson nor the Bernoulli model is likely to be a good approxima-
tion of the baseline counts in each area, a nonhomogeneous Poisson will most
likely be needed. This requires the specification of the relevant variables and
the estimation of the corresponding expected counts inside and outside each
cylinder. For WSARE the user need only specify the time window that is used
for updating the Bayesian network. Finally, the major challenge in these two
spatial methods as well as other methods (e.g., the modified Poisson CuSum
method by Rogerson [Rog01]) is their limitation to monitoring only count
data and the use of just categorical covariates.

5 Concluding Remarks

The collection of data streams that are now routinely collected by biosurveil-
lance systems is diverse in its sources and structure. Since some data sources
comprise multiple data streams (e.g., different medication sales or different
chief complaints at ER admission), there are two types of multivariate rela-
tionships to consider: “within sets” and “across sets.” Data streams within a
single source tend to be qualitatively more similar to each other as they are
measured, collected, and stored by the same system and share common influ-
encing factors such as seasonal effects. Data streams across different sources
are obviously less similar, even if the technical issues such as frequency of
measurement and missing observations are ignored. The additional challenge
is that the signature of a disease or bioterrorism-related outbreak is usually
not specified and can only be hypothesized for some of the data sources (e.g.,
how does a large-scale anthrax attack manifest itself in grocery sales?). Stoto
et al. [SFJ06] discuss the utility of univariate methods in biosurveillance by
comparing univariate and multivariate Shewhart and CuSum chart perfor-
mance. Their discussion and analyses are provocative, but there is need for a
serious testbed of data to examine the utility of the different approaches.

The task of monitoring multivariate time series is complicated even if we
consider a single data source. Traditional statistical approaches are based on
a range of assumptions that are typically violated in syndromic data. These
range from multivariate normal distribution, independence over time, to sta-
tionarity. Highly advanced methods that relax these assumptions tend to be
very complicated, computationally intensive, and require expert knowledge to
apply them to real data. On the other hand, advances in other fields where au-
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tomation and computational complexity is important, and where nonstation-
ary data are typical, have been in the direction of nonparametric model-free
methods. They are also aimed at detecting an abnormality, without specify-
ing its exact nature. Methods such as wavelets, data depth, and exponential
smoothing have proven successful in anomaly detection in various applica-
tions and superior to traditional monitoring methods. We therefore believe
that they should be investigated for use with biosurveillance data.

Exponential smoothing models appear to be a promising class of methods
for biosurveillance because of their simplicity, interpretability, easy automa-
tion, inherent one-step-ahead forecast notion, adaptiveness, and parsimony.
They can also handle missing values, which are probable in biosurveillance
data. Although their generalization to multivariate monitoring has not been
researched or applied to data as widely, it appears to be potentially useful as
a basis for a monitoring tool that can be used for biosurveillance. Multiscale
(wavelet) methods do not require preprocessing, perform better in detecting
unspecified abnormality patterns, and are suitable for nonstationary data.
A few challenges remain with these methods, such as boundary correction.
Data depth does not assume a multivariate normal distribution of the ob-
servations although it still suffers from high computational complexity for
high-dimensional data.

Another issue that is related to monitoring is the cross-correlation struc-
ture between different data sources. Although we know that an increase in
deaths is preceded by an increase in ER visits, and both are preceded by a
possible increase in medication sales, the exact structure of this relationship
is unknown. The direct modeling of such relationships has been attempted by
Najmi and Magruder [NM04, NM05], who use a filtering approach to model
the time-dependent correlations between clinical data and OTC medication
sales. They find that respiratory illness data can be predicted using OTC
sales data. In general, the degree to which this structure is visible through
multivariate time series methods differs; vector-AR models and M-SSA yield
a cross-correlation matrix, which directly shows the relationship. Multivari-
ate exponential smoothing gives estimates of the relationships between the
level, trend, and seasonal components of the different series. In contrast, in
MSPCA the relationship between the series is indirect and requires examining
the loadings related to peaking coefficients. A pragmatic approach would use
a collection of analysis and monitoring methods to examine the different types
of information that they reveal.

There are many other data-analytical methods that can be used as a basis
for monitoring, e.g., biologically inspired techniques widely used in the arti-
ficial intelligence area such as neural networks and genetic and evolutionary
algorithms. Their application in real-time forecasting has proven empirically
useful (e.g., Cortez et al. [CAR02]) and they tend to be computationally effi-
cient, easily automated, and very flexible. But the proof of the pudding is in
the eating, and any method needs to be subjected to serious reality checks.
Unfortunately, in the area of biosurveillance these can usually only come from
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simulations. The methods that we describe here have the potential of being
useful for biosurveillance from a theoretical point of view as well as from
their usefulness in practical applications in other fields. However, it is diffi-
cult to assess their actual performance for biosurveillance in the absence of
relevant databases involving bioterror attacks to test them on. This situa-
tion can change only through the collection of new and elaborate data from
surveillance systems where we are observing no attacks, and then overlaying
attacks through some kind of simulation. In such simulations we can actu-
ally carry out tests of methodology. For example, Goldenberg et al. [GSC02]
seeded their data with the “footprint” of the onset of an anthrax attack in
OTC-medication sales data and were able to achieve high rates of detection,
although at the expense of a relatively high rate of false alarms. Stoto et al.
[SSM04] demonstrated that many methods were able to detect a similar kind
of “fast”-onset outbreak (except at peak flu season!), but that none was espe-
cially good at detecting “slow”-onset outbreak. Thus the real challenge is to
find a set of flexible yet powerful monitoring tools that are useful in detecting
multiple bioterrorism disease signatures with high accuracy and relatively low
false-alarm rates. We hope that the methodology described here represents a
first step in this direction.
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Since the terrorist attacks on September 11, 2001, many state and local health
departments around the United States have started to develop syndromic
surveillance systems. Syndromic surveillance — a new concept in epidemiol-
ogy — is the statistical analyses of data on individuals seeking care in emer-
gency rooms (ER) or other health care settings with preidentified sets of
symptoms thought to be related to the precursors of diseases. Making use
of existing health care or other data, often already in electronic form, these
systems are intended to give early warnings of bioterrorist attacks or other
emerging health conditions. By focusing on symptoms rather than confirmed
diagnoses, syndromic surveillance aims to detect bioevents earlier than would
be possible with traditional surveillance systems. Because potential bioterror-
ist agents such as anthrax, plague, brucellosis, tularemia, Q-fever, glanders,
smallpox, and viral hemorrhagic fevers initially exhibit symptoms (“present”
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in medical terminology) of a flulike illness, data suggesting a sudden increase
of individuals with fever, headache, muscle pain, and malaise might be the
first indication of a bioterrorist attack or natural disease outbreak. Syndromic
surveillance is also thought to be useful for early detection of natural disease
outbreaks [Hen04].

Research groups based at universities, health departments, private firms,
and other organizations have proposed and are developing and promoting a
variety of surveillance systems purported to meet public health needs. These
include methods for analysis of data from healthcare facilities, as well as re-
ports to health departments of unusual cases. Many of these methods involve
intensive, automated statistical analysis of large amounts of data and intensive
use of informatics techniques to gather data for analysis and to communicate
among physicians and public health officials [WTE01]. Some of these systems
go beyond health care data to include nonhealth data such as over-the-counter
(OTC) pharmaceutical sales and absenteeism that might indicate people with
symptoms who have not sought health care [Hen04].

There are a number of technological, logistical, and legal constraints to
obtaining appropriate data and effective operation of syndromic surveillance
systems [Bue04]. However, even with access to the requisite data and perfect
organizational coordination and cooperation, the statistical challenges in reli-
ably and accurately detecting a bioevent are formidable. The object of these
surveillance systems, of course, is to analyze a stream of data in realtime and
determine whether there is an anomaly suggesting that an incident has oc-
curred. All data streams, however, have some degree of natural variability.
These include seasonal or weekly patterns, a flu season that appears at a dif-
ferent time each winter or perhaps not at all, differences in coding practices,
sales promotions for OTC medications, and random fluctuations due to small
numbers of individuals with particular symptoms. Furthermore, for some nat-
ural outbreaks or bioterrorist attacks the “signal” (the number of additional
cases over baseline rates) may be small compared to the “noise” (the random
or systematic variation in the data). As a result, even the most effective sta-
tistical detection algorithms face a trade-off among three factors: sensitivity,
false positives, and timeliness.

The goals of this chapter are (1) to introduce the statistical issues in
syndromic surveillance, (2) to describe and illustrate approaches to evaluat-
ing syndromic surveillance systems and characterizing their performance, and
(3) to evaluate the performance of a couple of specific algorithms through
both abstract simulations and simulations based on actual data. Section 1
of this chapter introduces and discusses the statistical concepts and issues
in syndromic surveillance, illustrating them with data from an ER surveil-
lance system from the District of Columbia. Section 2 presents methods from
the statistical process control (SPC) literature, including variants on exist-
ing multivariate detection algorithms tailored to the syndromic surveillance
problem, and compares and contrasts the performance of univariate and mul-
tivariate techniques via some abstract simulations. Section 3 then compares
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the new multivariate detection algorithms with commonly used approaches
and illustrates the simulation approach to evaluation using simulations based
on actual data from seven Washington, DC, hospital ERs. We conclude with
a discussion about the implications for public health practice.

1 Background

Immediately following September 11, 2001, the District of Columbia Depart-
ment of Health (DC DOH) began a surveillance program based on hospital
ER visits. ER logs from nine hospitals are faxed on a daily basis to the health
department, where health department staff code them on the basis of chief
complaint, that is, the primary symptom or reason that the patient sought
care, recording the number of patients in each of the following syndromic
categories: death, sepsis, rash, respiratory complaints, gastrointestinal com-
plaints, unspecified infection, neurological, or other complaints. These data are
analyzed daily using a variety of statistical detection algorithms, and when
a syndromic category shows an unusually high occurrence, a patient chart
review is initiated to determine if the irregularity is a real threat.

Simply displaying the daily number of ER visits for any given symptom
group results in a figure in which day-to-day stochastic variation dominates
any subtle changes in numbers of cases over time. To address this problem,
the DC DOH employs a number of statistical detection algorithms to analyze
data on a daily basis and raise an “alarm” when the count is significantly
greater than expected, which may suggest a possible outbreak or attack. This
type of analysis can help to identify the onset of the annual influenza season.
The data also reveal indications of the “worried well” who sought care during
the 2001 anthrax attacks and a previously undetected series of gastrointestinal
illness outbreaks that occurred over a four-month period in different hospitals.
No single symptom group or detection algorithm consistently signaled each of
the events [SSM04].

1.1 Characterizing the Performance of Statistical Detection
Algorithms

Although it is possible to have different levels of certainty for an alarm, syn-
dromic surveillance algorithms typically operate in a binary fashion; on any
given day they either alarm or they do not. Operating in this way, the per-
formance of a detection algorithm in the context of a particular dataset can
be characterized according to its sensitivity, false-positive rate, and timeli-
ness. Sensitivity , sometimes called the true positive rate and similar to the
power of a statistical hypothesis test, is the probability that an outbreak will
be detected in a given period when there in fact is an outbreak. Clearly, a
surveillance system should have as much sensitivity as possible. Lowering the
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threshold at which an alarm is sounded can generally increase sensitivity, but
only at the expense of false positives.

A false positive occurs when an algorithm alarms on a day when there is
no actual outbreak. In medical or epidemiological terminology, specificity is 1
minus the probability of a false positive, or the probability that an alarm will
not be raised on a day that there is no outbreak. Ideally, the probability of
a false positive would be zero, but practically it is always positive. Intrinsic
variability in the data means that every methodology can alarm when in fact
there is no event.

It is usually possible to make the false-positive rate tolerably small. There
are two difficulties, however. First, lowering the false-positive rate generally
involves either decreasing sensitivity or lowering timeliness (or both). Second,
even with a very low false-positive rate for a single algorithm or system, it
is still possible — even likely — that in the aggregate the number of false
positives may be unacceptably large.

For example, sometime in the near future it is possible that thousands
of syndromic surveillance systems will be running simultaneously in towns,
cities, counties, states, and other jurisdictions throughout the United States.
Each of these jurisdictions might be looking at data in six to eight symptom
categories, separately from every hospital in the area, and so on. Suppose ev-
ery county in the United States had a detection algorithm in place that was
used daily and that had a 0.1% false-positive rate. Because there are approxi-
mately 3,000 counties, nationwide three counties a day on average would have
a false-positive alarm. While any particular county would only experience a
false positive about once every three years, which may be an acceptable rate
at the county level, is the nationwide false-positive rate acceptable? The im-
pacts of excessive false alarms are both monetary, as resources must respond
to phantom events, and operational, as too many false alarms desensitize re-
sponders to real events.

Because a rapid response to a bioterrorist attack or natural disease out-
break is essential to minimizing the health consequences, timeliness is an im-
portant characteristic of all surveillance systems. With its focus on symptoms
that occur before formal diagnosis, syndromic surveillance is specifically de-
signed to enhance timeliness. While timeliness does not have a well-established
definition to parallel sensitivity and specificity, we think of it as the speed at
which an algorithm alarms during an outbreak.

Stoto, Schonlau, and Mariano [SSM04] characterized the trade-off between
sensitivity and timeliness in a simulation study. Using the daily number of
admissions of patients with influenzalike illness (ILI) over a three-year period
to the emergency department of a typical urban hospital, which averages three
per day outside the winter flu season, they added a hypothetical number of
extra cases spread over a number of days to mimic the pattern of a potential
bioterror attack. A “fast” outbreak was defined as 18 additional cases over
three days — 3 on the first day, 6 on the second, and 9 on the third. A
simulated “slow” outbreak involved the same total number of cases, but they



Evaluating Statistical Methods for Syndromic Surveillance 145

were distributed over nine days as follows: 1, 1, 1, 2, 2, 2, 3, 3, 3. Each of these
simulated outbreaks was added on each day in the database outside the winter
flu season. Four different detection algorithms were examined. The first used
ER admissions from a single day; the others used data from multiple days
using various CuSum (cumulative sums) methods (such as those to be defined
in Sect. 2.3), with the algorithms varying in the weight they gave to more
recent data.

The simulation results suggest the minimum size and speed of outbreaks
that are detectable. Even with an excess of 9 cases over two days, which is
three times the daily average, there was only a 50% chance that the alarm
would go off on the second day of an outbreak. Figure 1 indicates how this
probability — the sensitivity of the algorithm — varies by day. In the slow
outbreak, when 18 cases were spread over nine days (see Fig. 2), chances were
no better than 50–50 that the alarm would sound by the ninth day.
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Fig. 1. Shaded bars correspond to four detection algorithms: the first using only one
day’s data, the other three combining data from multiple days. All four syndromic
surveillance methods worked equally well for fast-spreading bioterrorist attacks, but
had only about a 50–50 chance of detecting the outbreak by day two. See Stoto et
al. [SSM04] for more information.

1.2 Evaluation of Syndromic Surveillance Systems

There are a number of ways to evaluate syndromic surveillance systems, formal
and informal. For example, the Centers for Disease Control and Prevention’s
(CDC) “Framework for Evaluating Public Health Surveillance Systems for
Early Detection of Outbreaks” [CDC04a] offers a useful framework to guide
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Fig. 2. Methods that combine data from multiple days (the hatched bars) were
more effective at detecting slow-spreading attacks, but even the best method took
until day nine to have a 50–50 chance of detecting a slow outbreak. See Stoto et al.
[SSM04] for more information.

evaluation efforts. Other approaches focus on the completeness, timeliness,
and quality of the data [BBM04], or on how syndromic surveillance efforts re-
late to public health practice [Rei03]. The annual national syndromic surveil-
lance conference (see http://www.syndromic.org) offers many examples of
such evaluations.

Formal approaches tend to focus on characterizing the statistical perfor-
mance of detection algorithms applied to particular data streams. The Stoto,
Schonlau, and Mariano [SSM04] analysis described above illustrates the sim-
ulation approach, and Sect. 3 of this paper presents a more detailed example.
Both of these examples use real data as a baseline and add a simple simu-
lated outbreak. As a perhaps more realistic alternative, Stacey [Sta04] has
described an approach in which real data are used to model simulated out-
breaks for testing purposes.

The retrospective analysis of known natural outbreaks is an alternative
approach to evaluation. Siegrist and Pavlin [SP04], for instance, report on
an exercise in which four leading biosurveillance research teams compared the
sensitivity, specificity, and timeliness of their detection algorithms in two steps.
First, an outbreak detection team identified actual natural disease outbreaks
— eight involving respiratory illness and seven involving gastrointestinal ill-
ness — in data from five metropolitan areas over a 23-month period but did
not reveal them to the research teams. Second, each research team applied its
own detection algorithms to the same data, to determine whether and how
quickly each event could be detected. When the false-alarm rate was set at
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one every 2 to 6 weeks, the best algorithms from each research team were
able to detect all of the respiratory outbreaks; for two of the four teams de-
tection typically occurred on the first day that the outbreak detection team
determined as the start of the outbreak; for the other two teams, detection oc-
curred approximately three days later. For gastrointestinal illness, the teams
typically were able to detect six of seven outbreaks, one to three days after
onset. (Of course, as previously discussed, such detection times are partially a
function of the false-alarm rate — decreasing the false-alarm rate will increase
the detection time.)

One can also look at the epidemiological characteristics of various pathogens
to clarify the implications for syndromic surveillance [Bue04]. For instance,
Fig. 3 gives two examples that differentiate between attacks in which many
people are exposed at the same time, and those in which a contagious agent
might cause large numbers of cases in multiple generations. Example A (the
line with the triangles) illustrates what might be found if 90 people were
exposed to a noncontagious agent (such as anthrax) and symptoms first ap-
peared eight days on average after exposure. Example B (the line with the
squares) illustrates the impact of a smaller number of people (24) exposed to
a contagious agent (such as smallpox) with an average incubation period of 10
days. Two waves of cases appear, the second larger and 10 days after the first.
Because the two epidemic curves are similar on days one through three, it is
difficult to know what can be expected, but if the agent were contagious (Ex-
ample B), early intervention could save some or all of the second generation
of cases. In Example A, however, everyone would already have been exposed
by the time that the outbreak was detected.

1.3 Improving the Performance of Syndromic Surveillance

Faced with results like those in Figs. 1 and 2, one naturally asks whether more
effective systems can be developed. There are a number of alternatives that
could be considered and actually are the subject of current research.

Most detection algorithms can be characterized in three respects: (1) what
they assume as the background level and pattern of diseases or symptoms, (2)
the type of departures from normal that they are tuned to detect (an exponen-
tial increase in the number of cases, a geographic cluster of cases, and so on),
and (3) the statistical algorithm they use to determine when the data indicate
a departure from normal (i.e., an “anomaly”). Each presents opportunities to
improve the performance of detection algorithms. Ultimately, however, there
really is no free lunch. As is the case in other areas of statistics, there is an
inherent trade-off between sensitivity and specificity, and the special need for
timeliness makes it even more difficult in this application. Every approach to
increasing sensitivity to one type of attack is likely to cause a detection algo-
rithm to be less sensitive to some other scenario. To circumvent this trade-off,
we would have to have some knowledge about how a terrorist may attack.
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Fig. 3. Two epidemic curves that are similar on days one through three, but
then diverge. The line with the triangles results from a gamma distribution with
µ = 8 and σ = 4. The line with the squares simulates an infectious agent with a
mean latency of 10 days. It is made up of the sum of observations from two gamma
distributions, one with µ = 4 and σ = 2, and the second with µ = 14 and σ = 2.

Siegrist’s retrospective analysis [Sie04] summarizes the details of some of
the leading syndromic surveillance systems, illustrating each of the approaches
described below.

Background Level and Pattern

Models to adjust for background patterns can be simple or complex. At one
extreme, a method may assume a constant mean number of cases and standard
deviation over the entire year for each data series monitored. In other models,
the expected number of cases varies seasonally, in a constant weekly pattern
(reflecting availability of health services on weekends, for instance), or as
represented in an autoregressive process.

Syndromic surveillance systems typically compare current cases to the
number in the previous day or week, the number in the same day in the
previous year, or some average of past values. More sophisticated approaches
use statistical models to “filter” or reduce the noise in the background data
to try to make the signal more obvious so that an outbreak would be easier
to detect. For instance, if a hospital ER typically sees more ILI patients on
weekend days (when other facilities are not open), a statistical model can be
developed to account for this effect. With a long enough data series, annual
effects can also be incorporated. Some patterns are not so easy to adjust for,
however. Winter flu outbreaks, for instance, appear most years but vary in
size and timing.
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Departures from Routine Conditions

Better performance might also be obtained by carefully “tuning” the detection
algorithm to detect specific types of outbreaks or perhaps one might choose
to analyze a syndrome that is less common than ILI. Stoto, Schonlau, and
Mariano [SSM04] used the same methods, for instance, to analyze the data
on the number of patients with “Viral NOS” (NOS=not otherwise specified)
symptoms, which averaged 1 per day. Outside of the flu season, they were able
to detect a fast outbreak on day two 50% to 60% of the time, only a small
improvement over ILI. With a slow outbreak, however, integrated methods
had a 50% chance of detecting outbreaks on day 5 to 7, compared to day 9
for the same chance for ILI.

This improved performance, however, has a cost — it is only sensitive to
symptoms that ER physicians would classify as Viral NOS. The combination
of fever and rash is rare and suggests the early stages of smallpox. A syn-
dromic surveillance system set up to look at this combination would likely be
more effective than the results above suggest, but would only be sensitive to
smallpox and not terrorist agents that have other symptoms.

Data also can be analyzed geographically, tuning detection algorithms to
outbreaks that are focused in a small geographic area. For instance, if there
were an extra 18 cases of ILI in a city, and all lived in the same neighborhood,
that would surely be more informative than 18 cases scattered throughout the
city — it would suggest a biological agent released at night in that area. This
is only effective, however, for such a geographically focused attack. It would
not work if terrorists chose to expose people in an office building during the
workday or at an airport but the data were analyzed by home address.

Detection Algorithms

Finally, more sophisticated detection algorithms could lead to better perfor-
mance. The simplest detection algorithms focus on the number of excess cases
on a given day (the actual number minus some baseline value). If this is more
than some number of standard deviations, an alarm is sounded.

Within this simple statement, however, are many choices, each of which af-
fects the detection algorithm’s sensitivity, false-positive rate, and timeliness.
First, the normal background level and standard deviation must be deter-
mined. As indicated above, many choices — simple to complex — are possible
for these variables. Second, the observation period must be chosen. Syndromic
surveillance systems typically choose one day as the period for reasons of time-
liness; any longer period would require waiting for data before the detection
algorithm could be run. However, day-to-day variability in syndromic data
due to small numbers sometimes means that adequate sensitivity can only be
obtained at the cost of a high, false-positive rate. An alternative, therefore,
would be to aggregate data over the period of one week, or to use a running
average for the daily value. Both of these solutions are obviously less timely.
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Current syndromic surveillance systems are typically set up to monitor
eight or more separate sets of symptoms, perhaps in different geographical
areas and from different hospital ERs. Doing so increases sensitivity simply
because more conditions are monitored. If each set of symptoms has a 1% false-
positive rate, however, increasing the number monitored will also increase the
number of false positives.

One possibility is to pool data over multiple ERs, perhaps all hospitals in
a metropolitan area or state, and indeed that is what cities such as Boston
and New York are currently doing. If this results in both the signal and the
background increasing proportionally, it will result in a more effective system.
If, for instance, nine hospitals in the Washington area report daily, each with
a daily average of 3 ILI cases, and outbreaks were nine times as large in the
example above, the performance of detection algorithms would be substan-
tially improved. If, however, there were 18 extra cases of ILI in the city and
they all appeared in one hospital, this signal would be lost in the noise of the
entire city’s cases.

An alternative is to search for patterns in the set of symptoms; fever up
but rash down, for instance, might lead to better performing detection algo-
rithms. Statistical algorithms to determine whether a departure is sufficient to
signal an alarm range from simple to sophisticated. The sophisticated What’s
Strange About Recent Events (WSARE) system developed at the Real Out-
break and Disease Surveillance (RODS) lab, for instance, is based on Bayesian
belief networks [WMC03].

2 Statistical Process Control (SPC)

Quick detection of a change in a probability distribution is the fundamental
problem of statistical process control . The problem arises in any monitoring
situation, and lies at the foundation of the theory and practice of quality
control. SPC methods use data to evaluate whether distributional parame-
ters, such as the mean rate of a particular syndrome, have increased to an
unacceptable level.

The simplest and best understood version of the problem specifies a one-
parameter family of univariate distributions — the most studied family being
the normal distribution with unknown mean — and aims to detect a change
in the parameter from one value to another as quickly as possible after the
change occurs. A number of popular and successful algorithms have been
developed for this sort of problem, and a substantial body of theoretical and
experimental research has accumulated.

Our interest here is in extending these methods to the problem of syn-
dromic surveillance and, in particular, to the Washington, DC, ER data. That
SPC is appropriate for syndromic surveillance is not immediately obvious, par-
ticularly since a priori one would expect a successful methodology would have
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to account for seasonal and perhaps other cycles in the data, and that meth-
ods specifically designed to detect monotonic changes in incident rates would
outperform conventional SPC methods.

We address these and other issues below. In so doing, we introduce some
modified multivariate algorithms that may be applied to health-related data
for syndromic surveillance and then compare their performance to univariate
SPC methods, both using simulated and actual syndromic surveillance data.

2.1 SPC Background and Literature

Walter A. Shewhart [She31] developed the concept of the control chart , a
graphical statistical tool to help control the behavior of manufacturing pro-
cesses, and in so doing became one of the founders of the quality control
movement. Shewhart’s methodology defined a scientific, statistical framework
upon which to base decision-making and hence allow objective decisions to
be made about how to manage systems. The field of SPC has since grown
from Shewhart’s seminal work. An excellent introductory text to quality con-
trol and SPC is Introduction to Statistical Quality Control by Montgomery
[Mon85].

In addition to Shewhart’s methodology, the classical approaches to SPC
have generally been parametric and univariate. These include the CuSum
(“cumulative sum”) procedure of Page [Pag54] and Lorden [Lor71], the
Bayesian procedure of Shiryayev [Shi63, Shi73] and Roberts [Rob66], and
the EWMA (“exponentially weighted moving average”) procedure of Roberts
[Rob59].

The most basic SPC problem is that of monitoring a sequence of random
variables over time with the goal of raising an alarm as soon as possible after
the mean becomes too large. The CuSum has optimality properties if the
mean experiences a one-time jump increase from one known level to another.
However, syndromic surveillance is probably not realistically described by this
type of change. Rather, a disease outbreak or bioterrorism attack is likely to
be characterized by monotonically increasing numbers of people presenting to
an ER as the pathogen spreads or the fraction of those who were exposed who
develop symptoms increases (as illustrated in Fig. 3).

This difference would seem to cast doubt on the applicability of SPC to the
problem of syndromic surveillance. However, Chang and Fricker [CF99] com-
pared the performance of CuSum and EWMA versus a repeated generalized
likelihood ratio (GLR) test designed specifically for the monotone problem.
They found that the CuSum and EWMA, appropriately applied, performed
surprisingly well in comparison to the GLR test, usually outperforming it, and
concluded that the CuSum was probably the best overall choice. This result
provides some evidence that the simple SPC methods may perform well in
the syndromic surveillance problem.

Multivariate CuSum research has centered around detecting changes in
either the normal mean vector or the covariance matrix. Seminal work was by
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Hotelling [Hot47] in the manufacture of bomb sights in World War II who de-
veloped a Shewhart-like methodology for multivariate observations. More re-
cent research includes Pignatiello and Runger [PR90] and Healy [Hea87]. Pig-
natiello and Runger [PR90] and Crosier [Cro88], as well as other researchers,
have looked at the application of CuSum-like recursions to the product of
the observation vector and an assumed known covariance matrix. Others
have dealt with multivariate data by applying a number of individual uni-
variate algorithms, one to each marginal distribution [WN85], for example.
More detailed background information about multivariate SPC can be found
in [Alt85].

2.2 Some Notation and Terminology

In the simple case of detecting a shift from one specific distribution to another,
let f0 denote the in-control distribution, which is the desired or preferred state
of the system. For syndromic surveillance, for example, this could be the dis-
tribution of the daily counts of individuals diagnosed with a particular chief
complaint at a specific hospital or within a particular geographic region un-
der normal conditions. Let f1 denote the out-of-control distribution where,
under the standard SPC paradigm, this would be a particular distribution
representing a condition or state that is important to detect. Within the syn-
dromic surveillance problem, f1 might be a specific, elevated mean daily count
resulting from the release of a bioterrorism pathogen for example.

Let τ be the actual (unknown) time when the process shifts from f0 to f1
and let T be the length of time from τ to when an algorithm alarms (which
we call the delay). We use the notation Eτ (T |T ≥ 0) to indicate the expected
delay, which is the average time it takes an algorithm to alarm once the shift
has occurred. We also use the notation E∞(T ) to indicate the expected time
to a false alarm, meaning that τ = ∞ and the process never shifts to the
out-of-control distribution.

In the SPC literature, algorithms are compared in terms of the expected
time to alarm, where E∞(T ) is first set equally for two algorithms and then
the algorithm with the smallest Eτ (T |T ≥ 0), for a particular f1, is deemed
better. Often when conducting simulation comparisons, τ is set to be 0, so
the conditioning in the expectation is automatic.

The term average run length (ARL) is frequently used for the expected
time to alarm, where it is understood that when τ = ∞ the ARL denotes
the expected time to false alarm. Similarly, in simulation experiments, the
performance of various algorithms is compared by setting the expected time
to false alarms to be equal and then comparing ARLs when τ = 0, where it is
then understood that the ARL is the mean delay time. In general terms, an
algorithm with a smaller ARL has a higher sensitivity for detecting anomalies,
though this comes at the expense of an increased false-alarm rate.

For syndromic surveillance, the out-of-control situation can be more than
a jump change from f0 to f1. For example, if µ0 is the mean of f0, then one
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possible out-of-control situation might be a monotonic increase in the mean
so that for each time i > τ , µ1(i) = µ0 + (i − τ)δ, for some positive δ. Yet,
even for this type of out-of-control condition, algorithms can still be compared
using Eτ (T |T ≥ 0).

Note that the specific value of τ is generally irrelevant to the analysis.
What is important is how long an algorithm takes to alarm after time τ .
However, setting τ = 0 means that the algorithm is guaranteed to be in its
initial condition when the shift to f1 occurs (or starts to occur, in the case of
something other than a jump change), which may be a help or hindrance to
a particular algorithm.

Also, note that comparisons using the expected value are characterizing
the distribution of the delay via a single number. This has the advantage of
allowing many comparisons to be easily graphically summarized (as we will
show), but comes with all the inherent limitations of such summaries. Hence,
here we used both the ARL in our initial simulation investigations and then
subsequently used the distribution of the delay in the final simulations with
actual data.

2.3 Applying SPC to Syndromic Surveillance

This section presents two standard univariate algorithms (the Shewhart
and the CuSum) and two multivariate extensions of these two algorithms
(Hotelling’s T 2 and one of Crosier’s multivariate CuSums). Here we also dis-
cuss how to apply the univariate algorithms to multivariate syndromic surveil-
lance data and describe how we modified the multivariate algorithms to best
apply to the syndromic surveillance problem. We focus on the Shewhart and
CuSum algorithms, and not the EWMA, because the EWMA can be made
to perform very similarly to either of the Shewhart or CuSum through the
appropriate selection of the EWMA’s weighting parameter.

Furthermore, we chose to use Shewhart and CuSum SPC methods due to
the nature of our data. Specifically, for these particular data:

• The mean rates for each of the syndromic groups were quite constant, and
• The logarithmically transformed counts (not shown here) were quite nor-

mally distributed.

It is important to note that most SPC procedures, including those de-
scribed here, have been developed under the assumption that the observations
are independent. In industrial applications, this can often be reasonably well
achieved by taking observations sufficiently far apart in time. For syndromic
surveillance data that exhibit characteristics such as seasonal cycles or other
trends, which we were frankly surprised not to find in our data, other methods
such as the EWMA or those proposed by Nomikos and MacGregor [NM95]
might be more appropriate and effective.
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Univariate Shewhart Algorithm

Shewhart’s algorithm [She31] is probably the simplest and best known of
all SPC methods and is widely applied in industry. The basic idea is to se-
quentially evaluate one observation (or period) at a time, alarming when an
observation that is rare under f0 occurs. The most common form of the al-
gorithm, often known as the X̄ chart , alarms when the absolute value of an
observed sample mean exceeds a prespecified threshold h, often defined as the
mean value plus some number of standard deviations of the mean. There are
variants on the algorithm for monitoring the variability of processes and the
algorithm can be defined to only alarm for deviations in one direction.

For application to the syndromic surveillance problem, we assume that
only deviations in the positive direction that would indicate a potential out-
break are important to detect. For a univariate random variable X, and for
some desired probability p, the threshold h is chosen to satisfy∫

{x>h}
f0(x) dx = p.

The algorithm proceeds by observing values of Xi; it stops and concludes
Xi ∼ f1 at time τ̂ = inf{i : Xi > h}.

If the change to be detected is a one-time jump in the mean and the prob-
ability of an observation exceeding the threshold is known, then simulation is
not required as the delay is geometrically distributed and exact calculations
for the average run lengths can be directly calculated as E∞(T ) = 1/p and

Eτ (T |T ≥ 0) = E0(T ) =

[∫
{x>h}

f1(x) dx

]−1

.

Generally, however, it is quite simple to empirically estimate the ARLs via
simulation. For a particular f0, choose an h and run the algorithm m times,
recording for each run the time t when the first Xi > h (where each Xi is a
random draw from f0, of course). Estimate the in-control ARL as

̂E∞(T ) =
∑

t/m,

adjusting h and rerunning as necessary to achieve the desired in-control ARL,
where m is made large enough to make the standard error of ̂E∞(T ) acceptably
small. Having established the threshold h for that f0 with sufficient precision,
then for each f1 of interest rerun the algorithm n times (where n is often
smaller than m), drawing the Xis from f1 starting at time 1. As before, take
the average of t1, . . . , tn to estimate the expected delay.

For the multivariate syndromic surveillance problem, multiple univariate
algorithms are applied, one to each data stream. When comparing the perfor-
mance of simultaneous univariate algorithms applied to multivariate data to
a multivariate algorithm it is important to ensure that the expected times to
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false alarm are set equally. For multiple univariate algorithms running simul-
taneously, say j, one must choose how to set the j thresholds. If there is some
reason to make the combined algorithms more sensitive to changes in some
of the data streams, those thresholds can be set such that the probability of
exceeding the threshold(s) is greater in those data streams than in the others.
For the purposes of the simulations that follow in this chapter, there was no
reason to favor one data stream over another, so all the thresholds were set
such that the probability of false alarm was equal for all data streams.

Univariate CuSum Algorithm

The CuSum is a sequential hypothesis test for a change from a known in-
control density f0 to a known alternative density f1. The algorithm monitors
the statistic Si, which satisfies the recursion

Si = max(0, Si−1 + Li), (1)

where the increment Li is the log likelihood ratio

Li = log
f1(Xi)
f0(Xi)

.

The algorithm stops and concludes that Xi ∼ f1 at time τ̂ = inf{i : Si > h}
for some prespecified threshold h that achieves a desired ARL under the given
in-control distribution.

If f0 and f1 are normal distributions with means µ and µ+δ, respectively,
and unit variances, then (1) reduces to

Si = max(0, Si−1 + (Xi − µ) − k), (2)

where k = δ/2. This is the form commonly used, even when the underlying
data is only approximately normally distributed. For the DC hospital data
we examined, the log transformed data was generally very close to normally
distributed, so we applied (2) to log(Xi). Note that k may be set to values
other than δ/2 and frequently users specify a value for k rather than the mean
of f1. What is relevant to the performance of the CuSum is that when the
process shifts to a state where E(Xi) > µ + k, then the expected value of
the incrementXi − µ − k is positive and the CuSum Si tends to increase and
subsequently exceed h relatively quickly.

Note that, since the univariate CuSum is “reflected” at zero, it is only
capable of looking for departures in one direction. If it is necessary to guard
against both positive and negative changes in the mean, then one must simul-
taneously run two CuSums, one of the form in (2) to look for changes in the
positive direction, and one of the form

Si = max(0, Si−1 − (Xi − µ) − k),
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to look for changes in the negative direction. For the syndromic surveillance
problem, we are only interested in looking for increases in rates, so we only
use (2).

As with the univariate Shewhart, multiple univariate CuSum algorithms
must be applied, one to each data stream, for the multivariate syndromic
surveillance problem. As with the univariate Shewhart algorithms, for the
purposes of our simulations, there was no reason to favor one data stream
over another, so all the thresholds were set such that the probability of false
alarm was equal in all data streams and so that the resulting expected time
to false alarm for the combined set of univariate algorithms was equal to the
expected time to false alarm of the multivariate algorithm.

Multivariate Shewhart Algorithm (Modified Hotelling’s T 2)

Hotelling [Hot47] introduced the T 2 (sometimes referred to as the χ2) algo-
rithm. For multivariate observations Xi ∈ IRd, i = 1, 2, . . ., compute

T 2
i = X′

iΣ
−1Xi,

where Σ−1 is the inverse of the covariance matrix. The algorithm stops at
time τ̂ = inf{i : Ti > h} for some prespecified threshold h.

We refer to this as a multivariate Shewhart algorithm since it only looks
at data from one period at a time. Like the original univariate Shewhart X̄

algorithm, because it only uses the most recent observation to decide when to
stop, it can react quickly to large departures from the in-control distribution,
but will also be relatively insensitive to small shifts. Of course, it also requires
that the covariance matrix is known or well-estimated.

For the syndromic surveillance problem, it is desirable to focus the T 2

algorithm on the detection of increases in incident rates. We accomplish that
by modifying the stopping rule for the T 2 so that it meets two conditions:
(1) Ti > h and (2) Xi ∈ S, where S is a particular subspace of IRd that
corresponds to disease outbreaks, for example an increase in one or more data
streams.

For the purposes of the syndromic surveillance simulations, we defined S
as follows. Choose values s1, s2, . . . , sd such that∫ ∞

x1=s1

∫ ∞

x2=s2

· · ·
∫ ∞

xd=sd

fo(x)dx ≈ 0.99,

and then define S = {x1 > s1, x2 > s2, . . . , xd > sd}.
For example, consider an in-control distribution following a bivariate nor-

mal distribution with some positive correlation, so that the probability con-
tour for the density of f0 is an ellipse with its main axis along a 45-degree line
in the plane. Then you can think about S as the upper right quadrant that
almost encompasses the 99% probability ellipse.
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The idea of using this region for S is that if f1 represents a shift in the
mean vector in any direction corresponding to an increase in one or more
of the data streams, then the modified T 2 algorithm will have an increased
probability of alarming, which should result in a decreased expected time
to alarm. On the other hand, if f1 represents a condition where the mean
vector corresponds to a decrease in one or more of the data streams, then
the probability of alarming will decrease and the algorithm will have less of a
chance of producing an alarm.

Multivariate CuSum Algorithm (Modified Crosier’s MCuSum)

The abbreviation MCuSum, for multivariate CuSum, is used here to refer to
the algorithm proposed by Crosier [Cro88] that at each time i considers the
statistic

Si = (Si−1 + Xi − µ)(1 − k/Ci), if Ci > k, (3)

where k is a statistical distance based on a predetermined vector k, k =
{k′Σ−1k}1/2 and Ci = {(Si−1 + Xn − µ)′Σ−1(Si−1 + Xi − µ)}1/2. If Ci ≤
k, then reset Si = 0. The algorithm starts with S0 = 0 and sequentially
calculates

Yi = (S′
iΣ

−1Si)1/2.

It concludes that Xi ∼ f1 at time τ̂ = inf{i : Yi > h} for some threshold
h > 0.

Crosier proposed a number of other multivariate CuSum-like algorithms
but generally preferred (3) after extensive simulation comparisons. Pignatiello
and Runger [PR90] proposed other multivariate CuSum-like algorithms as
well, but found that they performed similarly to (3).

It is worth noting that Crosier derived his algorithm in an ad hoc manner,
not from theory, but found it to work well in simulation comparisons. Healy
[Hea87] derived a sequential likelihood ratio test to detect a shift in a mean
vector of a multivariate normal distribution that is a true multivariate CuSum.
However, while we found Healy’s algorithm to be more effective (had shorter
ARLs) when the shift was to the precise f1 mean vector, it was less effective
than Crosier’s for detecting other types of shifts, including mean shifts that
were close to but not precisely the specific f1 mean vector.

In this application we prefer Crosier’s algorithm to Healy’s since it seems
to be more effective at detecting a variety of departures from the in-control
mean vector and the types of shifts for the syndromic surveillance problem
are not well-defined. That is, if we knew the type of departure to look for,
we could design a detection algorithm that would have more power to detect
that specific signal. However, given that the types of signals will vary, we have
opted for Crosier’s method because it is robust at detecting many types of
departures well.

We also prefer Crosier’s formulation for the syndromic surveillance prob-
lem as it is easy to modify to look only for positive increases. In particular, in
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our simulations, when Ci > k we bound Si to be positive in each data stream
by replacing (3) with Si = (Si,1, . . . , Si,d) where

Si,j = max[0, (Si−1,j + Xi,j − µj)(1 − k/Ci)],

for j = 1, 2, . . . , d.

2.4 Performance Comparisons via Abstract Simulations

Before evaluating the performance of the methods using actual data, we com-
pared their performance using simulated data from normal and multivariate
normal distributions. The purpose of these simulations was to:

1. Compare and contrast the performance of the methods under known, ideal
conditions;

2. Gain some insight into how they performed as the dimensionality of the
data changed; and

3. Reach some preliminary conclusions about how best to implement the
algorithms for the real data.

In these simulations, we compared the performance by average run length,
first setting the ARL under the in-control distribution (i.e., E∞(T ), the ex-
pected time to false alarm) equally, and then comparing the ARL performance
under numerous out-of-control distributions resulting from various shifts in
the mean vector at time 0 (i.e., E0(T )).

For example, Fig. 4 illustrates the improved performance of the modified
T 2 algorithm and the modified MCuSum regardless of dimensionality and size
of (a positive) mean shift. Here (and in the other figures in this section) the in-
control distribution is a six-dimensional multivariate normal centered at the
zero vector with unit variance in all the dimensions and covariance � = 0.3
between all the dimensions; that is, the in-control distribution is

f0 = N

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
1 0.3 0.3 0.3 0.3 0.3

0.3 1 0.3 0.3 0.3 0.3
0.3 0.3 1 0.3 0.3 0.3
0.3 0.3 0.3 1 0.3 0.3
0.3 0.3 0.3 0.3 1 0.3
0.3 0.3 0.3 0.3 0.3 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ .

The out-of-control distributions are the same as the in-control distributions
but with components of the mean vector shifted as indicated on the horizontal
axis for the number of dimensions shown in the key. So, for example, the
darkest line is for a mean vector that was shifted in all six dimensions from
0.0 — no shift — on the left to 3.4 on the right.

The vertical axis in Fig. 4 is the difference (∆) between the ARL for the
unmodified algorithm and the modified algorithm for a given mean vector shift
(measured only at the values indicated on the horizontal axis). Positive values
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indicate the modified algorithm had a smaller ARL and so performed better,
so that for a particular out-of-control condition the modified algorithm had
a shorter time to alarm. A difference of 0 at mean shift = 0.0 indicates that
the false-alarm rates (equivalently, the in-control ARLs) were set equally for
each algorithm before comparing the expected time to alarm for various out-
of-control mean vector shifts (within the bounds of experimental error, where
a sufficient number of simulation runs were conducted to achieve a standard
error of approximately 2.5 on the estimated in-control ARLs).

Figure 4 shows, as expected, that the modified algorithms perform better
than the original algorithms at detecting positive shifts regardless of whether
the shift occurs in one dimension, in all the dimensions, or in some number
of dimensions in-between, and for all magnitudes of shift. As the number of
dimensions experiencing a shift of a given size increases, the modified algo-
rithms do considerably better. However, for the largest shifts, the performance
of the original algorithms approaches that of the modified algorithms.

Not shown here, the results for other low-to-moderate values of �, from
� = 0 to � = 0.9, are very similar. Only for large � and small shifts in
a low number of dimensions does the original MCuSum algorithm best the
modified algorithm. However, in our actual data the covariances between chief
complaints, both within and between hospitals, whether aggregated or not,
tended to be quite low, generally less than 0.1 and never greater than 0.3.

A further benefit of the modified algorithms, at least in terms of syn-
dromic surveillance, is that they will not alarm if incidence rate(s) decrease.
While a decrease in rates might be interesting to detect for some purposes,
for the purpose of syndromic surveillance such detection would constitute a
false alarm. In addition, because these multivariate algorithms only look for
positive shifts, they can be directly compared to multiple one-sided univariate
algorithms operating simultaneously.

Given that the modified T 2 performs better than the original T 2 for this
problem, Fig. 5 focuses the performance of the modified T 2 as compared to
six one-sided Shewhart algorithms operating simultaneously. The comparison
is shown in two different ways: in terms of the distance of a shift measured in
the direction of one or more of the axes (“on axes” in the left graph), or in
terms of the distance of a shift “off axes” (right graph). At issue is that the
univariate algorithms are direction specific, meaning they are designed to look
for shifts along the axes. The multivariate algorithms are direction invariant,
meaning they are just as effective at detecting a shift of distance x whether
the shift occurs in the direction of one or more axes (“on axes”) or in some
other direction (“off axes”).

The left-side graph of Fig. 5, constructed just like Fig. 4, shows that six
simultaneous univariate Shewharts are more effective (have shorter ARLs)
than the modified T 2 when the shift occurs on axes. At best, for large shifts,
the ARL of the modified T 2 is equivalent to the multiple univariate Shewharts,
and for smaller shifts (roughly > 0.0 to 1.0) the multiple univariate Shewharts
are clearly better.
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Fig. 4. Performance comparison of the T 2 and MCuSum algorithms versus their
modified counterpart algorithms. The modified algorithms (T 2 on the left and
MCuSum on the right) perform better than the original algorithms at detecting
positive shifts regardless of whether the shift occurs in one dimension, in all the
dimensions, or in some number of dimensions in-between, and for all magnitudes of
shift.

Fig. 5. Performance comparison of the modified T 2 algorithm versus multiple
simultaneous univariate Shewhart algorithms for � = 0.3. The multiple simultaneous
Shewhart algorithms generally have smaller ARLs except for small “off axis” shifts.

The graph on the right side of Fig. 5 is constructed differently. The hori-
zontal axis of this graph shows the distance of the shift, where the shift is in
the number of dimensions indicated in the key, and was constructed so that
the projection of the shift onto the axes for those dimensions was equal. That
is, for a shift of distance l in n dimensions, the mean vector component for
each of the affected dimensions shifted from 0 under f0 to l/

√
n under f1

(and where in the other 6–n dimensions, the mean vector components remain
unchanged at 0).
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This type of shift is the most extreme off-axis type of shift (meaning for
a given distance l, the maximum projection on the nonzero axes was the
smallest) and here we see a result similar to Fig. 5, except that the modified
T 2 does better than the simultaneous univariate Shewhart algorithms for very
small shifts.

Why is the distinction between the two types of shifts (on-axes versus
off-axes) relevant? Well, if each of the types of bioterrorism events to be de-
tected will manifest itself in the data being monitored as a separate increase
in one of the data streams, such as ER admit counts for a particular chief
complaint, then thinking about and optimizing the detection algorithm to
look specifically for shifts along the axes makes sense. On the other hand,
for a bioterrorism event that will manifest itself as changes in a number of
dimensions of the data being monitored, such as with less specific health data
that in combination may increase, it makes sense to provide for an event that
manifests itself more like a latent variable and hence appearing most strongly
in some off-axes direction.

Fig. 6. Performance comparison of the modified MCuSum algorithm versus mul-
tiple simultaneous univariate CuSum algorithms. The modified MCuSum tends to
have smaller ARLs whether the shift is along the axes (left) or whether the shift is
off the axes (right).

Given that the goal is a robust methodology to guard against either possi-
bility, the results for the simultaneous univariate Shewharts versus the mod-
ified T 2 are mixed. However, the results for the modified MCuSum versus
simultaneous univariate CuSums presented in Fig. 6 differ in that the mod-
ified MCuSum is generally better than the simultaneous univariate CuSums
regardless of whether the shift is on- or off-axis. In particular, in the left graph
of Fig. 6 the modified MCuSum performance is substantially better for small
shifts (roughly > 0.0 to 0.5 or so), equivalent for large shifts (roughly > 3.0),
and only marginally degraded for other shifts, with an ARL difference of less
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than 1. As expected, in the right graph of Fig. 6 the modified MCuSum per-
formance is better than or, for very large shifts, equivalent to the simultaneous
univariate CuSums.

Though not shown here, these results also hold for a range of low to mod-
erate correlations, from � = 0 to � = 0.6. Hence, these results would tend
to indicate that the modified MCuSum would be preferable to simultaneous
univariate CuSums for detecting a variety of types of mean shifts. What re-
mains, then, is a comparison of the modified MCuSum to either the multiple
univariate Shewharts or the modified T 2 in those scenarios where each does
better.

Fig. 7. Performance comparison of the modified MCuSum algorithm to multiple
simultaneous univariate Shewhart algorithms (left) and to the modified T 2 algorithm
(right). Whether the shift is on-axes or off-axes, the modified MCuSum algorithm
performs better than the preferred Shewhart-type algorithm.

Figure 7 provides this comparison: to the simultaneous univariate She-
wharts when the shift is on-axes (left graph) and to the modified T 2 when
the shift is off-axes (right graph). In both cases, the modified MCuSum al-
gorithms’ performance is better. Our conclusion, then, is a preference for the
modified MCuSum, at least in these simulations for a jump change in the
mean vector of multivariate normal distributions with moderate covariance.
In the next section, then, we further examine the performance of these meth-
ods using real data and more realistic shifts to evaluate the performance of
the algorithms.
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3 A Simulation Study Using DC ER Syndromic
Surveillance Data

One would expect that a properly designed multivariate algorithm would
be more effective — particularly, more sensitive and timely when the false-
positive rate is controlled — than standard univariate methods. However, as
the previous section demonstrated, some multivariate methods are better than
others, and there are situations in which simultaneous univariate algorithms
are preferable. Furthermore, since the evaluations in the SPC literature tend
to focus on a jump change in the mean, as did the evaluations in the preceding
section, it does not necessarily follow that those results will directly apply to
the syndromic surveillance problem in which the mean will likely change in
some monotonically increasing fashion. Hence, to evaluate the univariate and
multivariate algorithms described in Sect. 2, we also conducted a simulation
study on data from the DC Department of Health ER syndromic surveillance
system and then evaluated how the algorithms performed under a series of
outbreak scenarios.

3.1 Data and Methods

As baseline data for our simulation study we used data on the daily number
of ER admissions for four syndromic group “chief complaints” (unspecified
infection, rash, respiratory complaints, and gastrointestinal complaints) from
seven Washington, DC, hospitals with relatively complete data. Of the eight
syndromic groups available, these four were chosen because they are the most
common and, in univariate analyses, are most effective at detecting disease
outbreaks. The data on the resulting 28 data streams (4 syndromic groups
x 7 hospitals) span the period of September 2001 through May 2004 (with
missing data imputed as required [SJF04] to simplify the comparisons of the
detection algorithms).

This data provides the naturally occurring incident rates and variation
in the hospital ERs for the four syndromic groups. We then “seeded” these
data in various ways, meaning we added extra cases to the data, to simulate a
bioterrorism event. In the base case, Scenario A, we seeded the data adding 1
additional observation on day τ , 2 additional on day τ +1, and so on up to 10
on day τ +9 for each of the 28 data streams resulting in a total of 1,540 extra
cases over 10 days. Scenario A is intended to represent a bioterrorism event
that manifests itself in multiple ways across the entire population. Hence, all
of the chief complaints increase in all the hospital ERs.

In contrast, we defined Scenario C to represent a situation in which the
outbreak shows up in one syndromic group only, so we only seeded the “un-
specified infection” syndromic group only for all seven hospitals adding 1
additional observation on day τ , 2 additional on day τ + 1, and so on up to
10 on day τ + 9 (for a total of 385 extra cases).
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Since the total number of cases added in Scenario C is only one-quarter
of that of the base scenario, we also constructed Scenario CA in which the
seed was increased to 4 on day τ , 8 on day τ + 1, and so on, resulting in
220 extra unspecified infection cases in each of seven hospitals, which is a
total of 1,540 extra cases over 10 days. Hence, like Scenario C, Scenario CA
represents an event that manifests itself in only one syndromic group but with
the magnitude of Scenario A.

Scenarios D and DA repeat this with a focus on hospitals rather than
syndromic groups. In Scenario D we seeded the data adding 1 additional
observation on day τ , 2 additional on day τ + 1, and so on up to 10 on day
τ + 9 for every syndromic group but in only one medium-sized hospital. In
Scenario DA, the seed was increased to 7 on day τ , 14 on day τ + 1, and so
on, resulting in 385 extra cases in each syndromic group in only one hospital.
So, Scenarios D and DA represent an outbreak in a smaller geographic region,
with Scenario D being of a smaller magnitude and Scenario DA having the
magnitude of Scenario A.

These five scenarios were chosen to represent the extremes of a range of
ways in which a real bioevent might occur. (As the gap in the naming conven-
tion suggests, we investigated other scenarios as well, but do not present them
here.) Some might regard Scenario C, in which the outbreak is concentrated
in only one syndromic group, as the most likely of the scenarios. However,
we expect that any real outbreak will look like some combination of these
scenarios, so detection algorithms that work well across the test scenarios are
likely to be effective in actual practice.

Given these scenarios, we then compared the performance of the algo-
rithms described in Sect. 2.3 and a trend-adjusted CuSum (see Stoto et al.
[SSM04] for additional detail) applied in two ways. First, we applied simul-
taneous univariate algorithms or one multivariate algorithm to the individual
28 data streams, setting the detection threshold empirically so that the prob-
ability of an alarm outside the flu season (i.e., the false-alarm rate) was 1%.
Second, as an alternative to reduce the dimensionality of the problem, we
first summed the total number of cases across all hospitals in each of the four
syndromic groups and then applied either simultaneous univariate algorithms
or a multivariate algorithm to the resulting four data streams (again setting
the false-alarm rates equal at 1%).

To carry out the simulation we began by setting τ = 1 and adding the
appropriate seed on days 1 through 10 of the dataset. We repeated this setting
τ = 2 and adding the appropriate seed on days 2 through 11, and so on,
until we had created 970 alternative datasets. We then applied the detection
algorithms to each alternative dataset and calculated the proportion of times
that each algorithm alarmed on day τ through τ + 9, the first day of the
simulated bioevent to the 9th day after the simulated bioevent, to estimate
the sensitivity of the detection algorithm. Because we expect performance to
differ by season, the results are calculated separately for the flu season (defined
as December 1–April 30) and the rest of the year.
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3.2 Results

Figure 8 compares the performance of the modified MCuSum (“MV” in the
key) and simultaneous univariate CuSum methods (“Z” in the key) outside of
the flu season for all five scenarios — just one summary result of the many sim-
ulations we ran. Unlike the graphs presented in the previous section, showing
estimated ARLs for various changes in the mean, Fig. 8 plots the probability
of detection (which can be interpreted as an estimated probability of alarm)
for each algorithm under each scenario by day of the outbreak.

Note first that the probability of detection on day 0, that is, the day before
the outbreak begins, is 1% for each detection algorithm, the false-alarm rate
we set. Focusing first on Scenario A (in which the seed appears in all 28 data
streams), the results show that in 18% of the sample datasets the simultaneous
univariate CuSum algorithms (dashed line with open circles) alarm on day 2
of the outbreak, increasing to 67% on day 3 and 100% on day 4 and higher. In
this scenario, the modified MCuSum (solid line with open circles) does slightly
better. The probabilities of alarming on days 2, 3, and 4 are 36%, 93%, and
100%, respectively.

Fig. 8. Comparison of the modified MCuSum (“MV” in the key, solid lines in the
graph) and the simultaneous univariate CuSums (“Z” in the key and dashed lines
in the graphs) in terms of probability of outbreak detection by day of outbreak for
Scenarios A, C, CA, D, and DA previously defined.



166 Michael A. Stoto et al.

In Scenario C (closed circles), in which the simulated outbreak is concen-
trated in only one syndromic group and consequently involves only one-quarter
the number of cases of Scenario A, both detection algorithms not surprisingly
do less well. On day 4 of the simulated outbreak the univariate CuSums have
only a 77% probability of alarming, and the modified MCuSum only a 27%
probability of alarming. The results for Scenario CA (triangles), however,
show that most of the reason for the poorer performance is that there are
fewer excess cases. In this scenario the univariate and multivariate CuSum
algorithms have 100% and 98% probabilities of alarming, respectively, by day
2. Note that in Scenario C by day 4 a total of 10 excess cases of unspecified
infection have been seen in each hospital, and in Scenario CA there are 40
excess cases. The average daily number of such cases in the baseline data is
less than 1 for two of the hospitals, between 3 and 6 for four hospitals, and
over 30 for one hospital in the analysis.

Scenarios D and DA, in which the outbreak is concentrated in only one
hospital, show similar results. In Scenario D, which involves only one-seventh
the number of cases as Scenario A (open circles), the univariate CuSums
alarm probability reaches 62% only on day 5, and the modified MCuSum only
reaches 52% on that day. With the same number of cases as in Scenario A,
the performance of both algorithms improves under Scenario DA (squares).
Both reach a 100% alarm rate by day 2.

Comparing the performance of the two CuSum algorithms across these
scenarios, it is difficult to conclude that one is better than the other. The
modified MCuSum does noticeably better than the univariate CuSums in
Scenario A (solid versus dashed lines with open circles, respectively), but
worse in Scenario C (closed circles). In the other scenarios their performance
is similar.

To summarize this type of comparison for all of the algorithms we tested,
we calculated a performance index, defined as ΣiProb(detection on day i) for
i = 1 to 10. This is essentially the area under the curve in Fig. 8. In Scenario
A, for instance, the performance index for the modified MCuSum is 8.34 and
for the univariate CuSums is 7.90. In Scenario C, the situation is reversed:
5.99 versus 7.04. To get a sense of the range of the performance index, the
best performance represented in Fig. 8 is the modified MCuSum in Scenario
DA, with a performance index of 9.37, and the worst is the modified MCuSum
in Scenario D, with a performance index of 5.68.

Table 1 displays the performance index for 12 detection algorithms for the
five scenarios. “Z” results are univariate analyses operating on all 28 data
streams, and “C” results sum the syndromic group data over seven hospitals
(resulting in four data streams). In both cases we investigate simultaneous
univariate Shewhart (1a and 3a), CuSum (1b and 3b), and trend-adjusted
CuSum (1c and 3c) algorithms. “MV” results are multivariate algorithms,
and “CMV” results are for multivariate algorithms but with the data summed
across hospitals as in the C results: Hotelling’s T 2 (5a, 6a), the modified T 2

(5b, 6b), and the modified MCuSum (7, 8).
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Table 1. Comparison of performance of the univariate and multivariate algorithms
for the five scenarios using a performance index of ΣiProb(detection on day i) for
i = τ to τ+9. The “Z” results (1a, 1b, and 1c) are simultaneous univariate algorithms
operating simultaneously on all 28 series. The “C” results (3a, 3b, and 3c) are also
simultaneous univariate algorithms operating on syndromic group data summed over
the seven hospitals. “MV” results (5a, 5b, and 7) and “CMV” results (6a, 6b, and 8)
are multivariate algorithms operating on the 28 data streams and the summed four
data streams, respectively. These include Hotelling’s T 2 (5a and 6a), the modified
T 2 (5b, 6b), and the modified MCuSum (7 and 8)

Scenario
Performance Indices A C CA D DA
“Z” Algorithms
1a – Shewhart 6.34 5.76 9.18 3.30 9.34
1b – CuSum 7.90 7.04 9.20 5.89 9.17
1c – Trend-adjusted CuSum 1.64 0.68 9.34 0.24 9.34

“C” Algorithms
3a – Shewhart 8.03 4.78 9.08 0.67 8.03
3b – CuSum 2.00 0.16 0.94 0.49 2.00
3c – Trend-adjusted CuSum 8.22 5.97 9.08 0.62 8.22

“MV” Algorithms
5a – Hotelling’s T 2 6.71 3.27 8.71 0.87 9.03
5b – Modified T 2 7.40 4.30 8.22 1.87 9.03
7 – Modified MCuSum 8.34 5.99 9.07 5.68 9.37

“CMV” Algorithms
6a – Hotelling’s T 2 7.63 0.92 7.68 0.29 7.63
6b – Modified T 2 8.00 1.35 7.76 0.52 8.00
8 – Modified MCuSum 8.43 0.58 6.42 1.75 8.43

As displayed in Table 1, these results suggest that no one or two detection
algorithms clearly dominate the others across all five of the scenarios tested.
However, the two best are the simultaneous univariate CuSums and modified
MCuSum algorithms (Z-1b and MV-7), which are the focus of Fig. 8. Each
has a performance index in the 8 to 10 range for scenarios A, CA, and DA,
but in the 5 to 7 range for scenarios C and D.

Pooling data across hospitals is a common way to analyze multiple data
streams, the rationale being that the signal is more likely to emerge above the
random variability. Our results, however, suggest that at least for the scenarios
we used, algorithms operating on the pooling data (the C and CMV results)
were less effective than those same algorithms operating on the unpooled data
(Z and MV results).

Among the unpooled data for the simultaneous univariate algorithms (the
Z results), the standard CuSum algorithm (1b) performs at least as well
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and usually better than the Shewhart algorithm (1a) and the trend-adjusted
CuSum (1c). That the CuSum performs better than the Shewhart algorithm
should be expected since the CuSum is better at detecting small changes
and, in our scenarios, the outbreaks all begin with relatively small increases
early on. However, in contrast, with the pooled data (C results) the standard
CuSum (3b) performs substantially less well than the alternatives (3a and 3c).

Stoto et al. [SJF04] extend these results by investigating other detection
algorithms and performance outside the flu season and perform various sen-
sitivity analyses.

It should be noted that these results are potentially sensitive to many
arbitrary choices that had to be made in the details of the detection algorithms
tested and the design of the simulation. The performance of CuSum methods,
for instance, depends on the choice of the parameter k, and may be better
or worse for fast- or slow-growing outbreaks. The CuSum also depends on
the estimated mean count µ̂0 used as the baseline to calculate departures
for each series. The trend-adjusted CuSum method depends on the weighting
parameter λ in the exponentially weighted moving average.

In addition, we chose to set the false-alarm rate to 1% outside the flu sea-
son, which we arbitrarily defined as December 1–April 30; a different set of
dates may have given different results. Our simulated outbreaks used seeds of
the same size in every hospital, ignoring substantial variability in the back-
ground ER admission rates; again, a different and possibly more realistic
choice might lead to different results. Finally we should note that the results
also depend on the particular dataset used as the baseline for the simula-
tion. The results are likely to apply to similar data in the future, but may be
different for syndromic surveillance systems in cities other than Washington,
DC.

These results show roughly similar performance for the simultaneous uni-
variate CuSum and modified MCuSum algorithms, with one better than the
other or both having similar performance characteristics depending on the sce-
nario. In contrast, the abstract simulations in Sect. 2.4 show that the modified
MCuSum has a clear advantage when the shift to be detected is “off-axes”
and seems to show some performance improvements over the simultaneous
univariate CuSum algorithm even when the shifts are on-axes. Whether these
differences are the result of the simulation choices (jump change in the mean
versus gradual increase, for example) or some other factor or factors remains
to be determined.

However, some conclusions are clear:

• CuSum and CuSum-like algorithms are preferable to Shewhart and
Shewhart-like algorithms for syndromic surveillance applications.

• For multivariate algorithms, appropriately modifying the algorithms to
look only for increases in rates, such as we did in Sect. 2.3, provides addi-
tional detection power in syndromic surveillance applications.
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• When designing, implementing, and comparing syndromic surveillance al-
gorithms it is critical to ensure the appropriate thresholds are chosen to
achieve a common aggregate false-alarm rate.

• While the CuSum algorithms generally performed better than the others
we evaluated, unless the bioevent is so large so as to be obvious, a syn-
dromic surveillance system will take some time to detect the incident —
likely on the order of 2 to 5 days, depending on the size of the incident,
for a system using data similar to what we have evaluated here.

4 Discussion

Out of concern about the possibility of bioterrorist attacks, many health de-
partments throughout the United States and elsewhere are energetically de-
veloping and implementing a variety of syndromic surveillance systems. Our
analyses suggest that while these systems may be valuable, their effective-
ness for this purpose has not yet been demonstrated, and health departments
ought to be cautious in investing in this area and take the time and effort to
evaluate the performance of proposed systems in their own setting.

The central problem is that syndromic surveillance has been sold on the
basis that it is able to detect outbreaks hours after people begin to develop
symptoms, but our analyses suggest that unless the number of people affected
is exceptionally large, it is likely to be a matter of days before enough cases
accumulate to trigger detection algorithms. Of course, if the number of people
coming to emergency departments is exceptionally large, sophisticated detec-
tion systems are simply not needed — the incident will be obvious. Further,
the window (in terms of number of excess cases and time) between what is rea-
sonably detectable with a syndromic surveillance system, and what is obvious,
may be small.

Although an increasing number of statistically sophisticated detection al-
gorithms have been developed, there is a limit to their efficacy. More generally,
detection algorithms can be tuned to particular types of outbreaks (e.g., those
that are geographically focused), but are only effective if the terrorists choose
a matching method of exposing people. Moreover, as Stoto, Schonlau, and
Mariano [SSM04], Reingold [Rei03], and others have pointed out, the value of
an alarm system is limited by what happens when the alarm goes off. Simply
knowing that there are an excess number of people with flulike symptoms is
not enough, in itself, to initiate or guide a public health response.

Syndromic surveillance systems, however, can serve other public health
purposes. The information technology that has been developed in many cities
and states is truly impressive, and many health departments have worked hard
to build relationships with hospitals and other entities in their communities
to get access to data. The resulting systems and relationships would have
additional value for detecting food-borne disease and other outbreaks. For
many public health issues, for instance, knowing what is happening in a matter
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of days rather than weeks or months would indeed be a major advance for
state and local health departments. During the cryptosporidium outbreak in
Milwaukee in 1993, for instance, a syndromic surveillance system would have
made health officials aware of the outbreak weeks/months before they actually
were [MNG98].

Indeed, syndromic surveillance might prove to be most useful in determin-
ing the arrival of influenza in a community each year and in helping to de-
termine whether pandemic flu has emerged. Nationally, influenza surveillance
is based on a network of sentinel physicians who report weekly on the pro-
portion of their patients with influenzalike symptoms, plus monitoring deaths
attributed to influenza or pneumonia in 122 cities. Laboratory analysis to de-
termine whether a case is truly the flu, or to identify the strain, is only rarely
done [CDC04b]. Whether the flu has arrived in a particular state or local
area, however, is largely a matter of case reports, which physicians often do
not file. Pandemic influenza, in which an antigenic shift causes an outbreak
that could be more contagious and/or more virulent, and to which few people
are immune by virtue of previous exposure, is a growing concern [WW03].
Syndromic surveillance of flulike symptoms might trigger more laboratory
analysis than is typically done and hasten the public health response.
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1 Introduction

The word surveillance is a conjunction of the French root sur and the Latin
vigilare to yield the meaning: to watch over. It is easier to terrorize the ignorant
than the well-informed, so vigilance, and in particular active surveillance, is
an important component of counterterrorism. This chapter shows how we can
apply particular statistical methods to the task of biosurveillance to improve
our ability to withstand bioterrorism.

History has taught us that biological weapons have been used throughout
time and across the world. For example, as early as the sixth century B.C.,
the Assyrians poisoned the wells of their enemies with rye ergot, and Solon of
Athens during the siege of Krissa poisoned the water supply with the purgative
hellebore. But sometimes the effects of the biological weapons were much more
widespread: during the siege of Caffa in 1347 the Tartar forces of Kipchak khan
Janibeg, after laying siege to the Genoese city for a year, were decimated by
the plague (Pasteurella pestis) that had infected northern China. As a parting
gift, Janibeg catapulted infested corpses into the city. The Italians were of
course infected, but hoping to escape, four Genoese ships sailed for home and
brought the plague to Europe. It is unknown how many individuals were killed
by the plague, but some estimate that as many as 40% of the total population
were killed, with some areas affected even more severely.

These modes of attack persisted through the ages. Even as recently as
World War II, the Japanese Unit 732 under the direction of Shiro Ishii spread
the bubonic plague in northern China [Har02], so it does not seem that we
have seen the last of this kind of warfare. Indeed, as recently as 1984 (and
as close to home as Oregon) members of the Rajneeshee, an Indian religious



174 Laura Forsberg et al.

cult, contaminated salad bars in The Dalles with Salmonella typhimurium
in an attempt to keep local citizens from voting. This resulted in over 750
people being poisoned and 40 being hospitalized, but a disturbing aspect of
this attack is that the public health system in place at the time did not detect
that a bioterrorist attack had taken place. It was over one year after the
poisoning, when some cult members bragged about their actions, that it came
to light that the poisoning had been intentional.

Undoubtedly it is best to prevent bioterrorist attacks, but if that is not
possible, then it is beneficial to detect them as soon as possible, in the hope
that this would allow the early introduction of remedial action. That the
current state of public health alertness is not optimal was proven further
by the cryptosporidium infection of the water supply in Milwaukee in 1993.
One of the two water treatment plants was contaminated, but this was not
recognized until at least two weeks after the onset of the outbreak [MHP94].
As a result, it is estimated that more than 400,000 people were afflicted,
including over 100 deaths. It is of some comfort that this was not due to a
bioterrorist attack, but troubling that it took so long to admit to such a major
change: according to the Morbidity and Mortality Weekly Report published
by the Centers for Disease Control and Prevention (CDC), “the outbreak
. . . in Milwaukee was the largest documented waterborne disease outbreak in
the United States since record keeping began in 1920.” As the CDC further
notes, the fact that “the extent to which waterborne disease outbreaks are
unrecognized and underreported is unknown” is disturbing.

The detection and reporting of outbreaks can be placed in the classical
statistical hypothesis testing framework: the null hypothesis is that normalcy
reigns, and the alternative is that there is an outbreak. The two types of pos-
sible errors are not reporting an outbreak on the one hand and raising a false
alarm on the other. Assuming daily (or perhaps more frequent) observations,
since the process is ongoing we must also consider the timeliness of detection.
The data available for analysis depends on the situation; we concentrate here
on syndromic surveillance.

Syndromic surveillance, as the term is normally used, refers to observing
patients with particular syndromes that are chosen because of their association
with the early symptoms of certain diseases. It may also include several non-
traditional data sources, such as nurse hotline call volume or over-the-counter
(OTC) pharmaceutical sales; however, we restrict our attention here to the
automated collection of emergent disease cases, grouped into syndromes. Ex-
amples of such syndromes include influenzalike illness (ILI), upper respiratory
infections (URIs), or gastrointestinal (GI) syndrome. Syndromic surveillance
is attractive in its potential for early detection of disease outbreaks, since syn-
dromes precede definitive diagnosis of disease, but the method suffers in its
lack of specificity for any particular disease.

Traditional methods typically consider the number of patients, but as the
outbreak of anthrax at Sverdlovsk [MGH94] proves, knowing also where the
patients were located when they were afflicted is a very powerful piece of
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evidence. Another example is the Milwaukee outbreak mentioned above. Mil-
waukee at the time had two water plants, one servicing predominantly the
northern part of the city and the other the southern part of the city. During
a particular time period, the excessive number of those patients reporting to
the city’s hospitals with gastrointestinal complaints were predominantly from
the southern part of the city, the part serviced by the polluted water plant.
Thus we argue that knowing where the patients originate may prove to be
useful information (we have shown [OFB04] that there is an increase in the
power of detection if we not only consider the temporal aspect of the series of
patients reporting to hospitals, but also consider their spatial distribution).
So we demonstrate in the remainder of this chapter how to combine the two
streams of information: the number of patients and their addresses. As noted
in a recent review [BMS04], “the routine application of space-time analytic
methods may detect aberrations in bioterrorism surveillance data with greater
sensitivity, specificity, and timeliness,” an idea that is supported by previous
work [OFB04, OBP05].

2 Temporal Surveillance

Temporal surveillance of syndromic data depends first on establishing a base-
line pattern of behavior, then detecting departures from this baseline (usu-
ally an excess in the number of patients). For example, on a daily basis let
Ni, i = 1, . . . , T , denote the time series of the number of patients registered
with a particular set of syndromes over a particular time period of length
T . Figure 1 is a plot of four years of respiratory syndrome data from Cape
Cod, Massachusetts. These data represent all patients reporting to three local
hospitals and who complain of upper respiratory syndromes. Syndrome as-
signments were made on the basis of ICD-9 codes, according to the commonly
used ESSENCE-II classifications [LBP04]. To make the graph more compre-
hensible, we aggregate the number of patients over an unweighted seven-day
moving average. This has the further advantage of eliminating a day-of-week
effect, and we use this as our basic time series. Although we lose some pre-
cision in not modeling at the daily level (for example we do not account for
public holidays, a predictable deviation from the behavior of other days), we
have chosen this path for the sake of clarity of presentation. It is important to
note that aggregation or moving averages ordinarily result in a loss of timeli-
ness. For this reason, a more sophisticated modeling effort would be required
for a sensitive and timely system. However, for the modeling aims that we
choose to demonstrate here, the moving average will suffice and allows for a
more clear illustration of techniques.

There is a clear seasonal pattern that is typical of respiratory disease,
with a pronounced spike in the “flu season” months of December, January,
and February. The timing and magnitude of this spike change from year to
year, posing a challenge for establishing a seasonal baseline. This may result
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Fig. 1. Four years of syndromic data from Cape Cod, MA.

in poor model fit for years that are atypical. Moreover, the choice of historical
data used to estimate baseline may influence estimates of model parameters.
Despite research into stochastic models that are flexible enough to accommo-
date these challenges [Mad05, RCS03], the standard approach used by CDC
and others [BBF05, RM03, HTS03] is similar to what we describe here.

A typical surveillance approach attempts to model the process, then per-
forms a daily prediction of what should be expected to compare with what is
observed. The traditional approach (used by CDC for influenza surveillance)
is Serfling’s method [Ser63]. This is an ordinary regression of the form

Nt = µ + αt + β cos
(

2πt

365
+ θ

)
+ εt.

Although this method is adequate for capturing the seasonal component
of baseline, it is not suitable for making predictions because it does not take
into account the autocorrelation of the individual observations. Moreover, by
ignoring the pronounced spikes in the winter months, this method is prone
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to sounding an alarm at the beginning of every flu season. While this may
serve its purpose for detecting the onset of an epidemic of influenza, it is
deficient if the goal is to detect an additional signal (such as a bioterror attack)
superimposed on the spikes that commonly occur in the winter months.

To improve upon Serfling’s method, and to simulate a genuine prospective
surveillance system, we use the first year of data to fit a simple seasonal
model. This model consists of a sinusoidal term of period one year, reflecting
the annual cycle of respiratory disease. An additional three indicator terms for
the months of December, January, and February are also included to account
for the increased volume during influenza season. There are several cautionary
points when following such a regression modeling approach.

Our model is
Nt = µ + δt + sin (

2πt

12
) + ηt,

where

δt =

⎧⎪⎪⎨⎪⎪⎩
µjan, if January
µfeb, if February
µdec, if December
0, otherwise.

These terms were fit to the first year’s data using a standard linear regres-
sion model. The residuals from this model are autocorrelated, and so we fit an
autoregressive (AR) model [BD02] to the residuals. Here we consider models
of the form

ηt = α1ηt−1 + · · · + αkηt−p + εt,

where ηt is the seasonal residual (after subtracting the seasonal mean as fitted
above from the observed data). Note that we omit the intercept from the model
here since we work under the assumption that the departures from seasonal
baseline are mean zero. Importantly, the remaining residuals εt form a new
time series whose elements are not correlated. Parameter estimation as well
as order selection is easily handled in most statistical packages.

Fitting this model to the first year’s data, we simulated prospective tem-
poral surveillance by extending the seasonal component forward in time and
applying the AR model to the observed residuals to obtain one-step-ahead
prediction for each day. The residuals from these predictors form the basis
for a test statistic that detects departures from baseline. Figure 2 shows the
remaining three years of residuals. In practice, model parameters would be es-
timated more frequently than once every four years; however, for the purposes
of illustration we have restricted attention to one round of model-fitting.

Having created residuals that are independent over time, we can now use
known techniques to monitor the series. For example, the CuSum control
process is intended for independent data; this approach has been followed
successfully in a syndromic surveillance setting [MKD04], and weighting mod-
ifications along these lines has also been suggested [RPM03]. But one should
not stop here, as there is still other information potentially available in the
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data. For example, if patients’ addresses are available, we may wish to exploit
that information. The following section considers one such statistic designed
to study the spatial distribution of the data.

3 The M-Statistic

In conjunction with monitoring the temporal series, one should expect to gain
greater power to detect outbreaks or abnormal patterns in disease incidence
by also investigating the spatial distribution of the locations of the cases. Sev-
eral statistics have been proposed for the detection of spatial anomalies (for
a review, see Brookmeyer and Stroup [BS04] and Kulldorff [Kul98]). Many of
these statistics were designed for retrospective surveillance to detect spatial
clusters of diseases associated with long incubation periods, usually cancers
[AB96]. As described in the introduction, recent events have led to a growing
interest in methods of spatial surveillance that can be performed in real time
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to detect outbreaks and unusual patterns in diseases with a short incubation
period. In what follows we describe the M -statistic, which is useful and effec-
tive for implementation in the detection of spatial anomalies and that works
well in conjunction with the temporal monitoring described in the previous
section.

Let X = {X1, . . . , Xn} be the locations of n cases on the plane and let
d = {d1, . . . , d(n

2)} be the
(
n
2

)
interpoint distances, or the distances between

pairs of points in X. Experience has shown that the distribution of these
distances between hospital patients is remarkably stable over time [OBP05].
This would suggest that we can empirically construct an expected, or null,
distribution of the distances and expect that it would be stable through time
for a given space. Therefore, to detect spatial anomalies, one might consider
some measure of the difference between the observed distribution of interpoint
distances for any X and the expected distribution of interpoint distances.
There are many metrics that could be used for such a comparison. Several of
these were explored by Bonetti and Pagano [BP05], leading to the adoption
of one of these methods, the M -statistic.

The M -statistic calculates deviations of the empirical cumulative distribu-
tion function (ecdf) of the distances from the expected cdf via a Mahalanobis
type distance. This approach has several appealing features that will now be
described. One such feature is that we can rely upon the theory of U processes
in the development of this statistic. Consider the ecdf given by

Fn(d) =
1
n2

n∑
i=1

n∑
j=1

1(d(Xi, Xj) ≤ d)

=
(

n − 1
n

)(
n

2

)−1 ∑
i<j

1(d(Xi, Xj) ≤ d) +
1
n

=
(

n − 1
n

)
Un(d) +

1
n

,

where Un(d) =
(
n
2

)−1 ∑
i<j 1(d(Xi, Xj) ≤ d) is a U statistic of order two, with

symmetric kernel ψ(i, j; d) = 1(d(Xi, Xj) ≤ d) [Hoe48, Lee90]. One approach
to measuring the difference between the cdfs is to discretize the distribution of
the distances such that the ecdf and expected cdf can be represented by k × 1
vectors of cumulative probabilities such that the kth entry is 1. A statistic
can be formulated as

M∗ = (Fn(b) − F (b))�Σ−
F (Fn(b) − F (b)),

where Σ−
F is the generalized inverse of the rank k − 1 variance covariance

matrix of Fn(·) and b is the (k − 1) × 1 vector of the bin cutoffs used to
discretize the cdfs. In Bonetti and Pagano [BP05], the authors prove that as
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n goes to infinity, Fn(·) converges weakly to a multivariate normal random
variable with zero mean vector and variance covariance matrix

ΣF = {σa,b}, σa,b = Cov[1(d(X1, X2) ≤ da, d(X1, X3) ≤ db)], a, b = 1, . . . , k.

Then,

σa,b = E{1(d(X1, X2) ≤ da, d(X1, X3) ≤ db)}
−E{1(d(X1, X2) ≤ da)} E{1(d(X1, X3) ≤ db)}.

One can also consider using the successive differences of the cdf to perform
the same test. Therefore, in place of Fn(·), we consider

fn = (Fn(b1), Fn(b2) − Fn(b1), . . . , Fn(bk−1) − Fn(bk−2), 1 − Fn(bk−1)).
Then, we can consider the test statistic

M̃ = (fn − f)�Σ−(fn − f),

where Σ− is the generalized inverse of the variance covariance matrix of fn.
As fn is a linear transform of Fn(·), fn is also normal with zero mean vec-
tor and variance covariance matrix that is the appropriate transform of ΣF .
Additionally, M̃ converges weakly to a chi-square random variable with k − 1
degrees of freedom (the rank of Σ) [BP05]. Implementation of this statistic
requires estimation of Σ, as we are usually unable to specify its exact form.
We describe two methods of estimation. The first method relies on the theory
of U statistics. Accordingly, the covariance matrix of Fn(b) can be estimated
consistently by

σ̂a,b = 4

{
1(
n
3

) ∑
1≤i<j<k≤n

h(Xi,Xj ,Xk; qa, qb)

−
⎡⎣ 1(

n
2

) ∑
1≤i<j≤n

1(d(Xi,Xj) ≤ qa)

⎤⎦⎡⎣ 1(
n
2

) ∑
1≤i<j≤n

1(d(Xi,Xj) ≤ qb)

⎤⎦},

where

h(Xi,Xj ,Xk; qa, qb) = 6−1
∑

�

[1(d(X�1 ,X�2) ≤ qa, d(X�1 ,X�3) ≤ qb)] ,

is the symmetrized kernel computed over the collection � = {(�1, �2, �3)} of
the six permutations of the indices (i, j, k) (see Bonetti and Pagano [BP05]).
In the calculation of this estimator, for efficiency the triple sum should be
implemented as a single loop by making use of (fast) matrix multiplications
for the inner sums. An example of this appears in Forsberg et al. [FBJ05]. To
estimate the covariance matrix of fn(b), an appropriate linear transform can
be applied to Σ̂F .
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The second estimator, which we use in the examples below, is calculated by
resampling the historical data. This will be described in greater detail below.

In practice we estimate fn(b) by the observed counts in each bin and
calculate

M = (o − e)T S−(o − e),

where o and e are the k×1 vectors of observed and expected counts and S− is
the generalized inverse of the estimate of the k×k variance covariance matrix
of o. We use resampling methods to implement this statistic, as the asymptotic
results described above converge slowly. These resampling methods will now
be described.

First, it is necessary to determine a method of discretizing the interpoint
distance distribution, so as to represent it by a vector of cell counts. We
prefer to bin the data into equiprobable bins, to avoid sparse cell counts
and to increase the power [OBF05]. Power is maximized by choosing k to be
approximately 50% to 75% of n [FBP05]. The cutoff points for the bins are
selected by sampling from historical data to obtain an estimate of the null
distribution of the distances. The cutoff points, or bin breaks, are determined
as the { 1

k , . . . , k−1
k } quantiles of this distribution.

Next, we obtain an estimate of the variance covariance matrix of the cell
counts, S. Again this is obtained by resampling m times from historical data
and computing

S =
1
m

m∑
i

(oi − e)(oi − e)T ,

where oi is the vector of observed cell counts from the ith sample and e are
the expected cell counts (ej =

(
n
2

)
/k, j = 1, . . . , k) for the k cells.

Once the S matrix has been estimated, it is possible to get an estimate
of the null distribution of the M -statistic via resampling. Again we resample
from historical data and obtain the null distribution of M . From this we can
extract a (1 − α)100% critical value for M .

These calculations can be computationally intensive and care must be
taken in the number of samples to take in calculating the bin breaks, S and
the null distribution of M , as well as the number of bins, k. However, when
done correctly [BFO03, OFB04], we obtain all the needed information for the
computation of a statistic that has been shown to be powerful for detecting
spatial anomalies [OBF05]. This statistic has many features that make it
particularly useful for syndromic surveillance. For instance, this statistic is
capable of detecting a wide array of spatial anomalies that would create an
aberration in the interpoint distance distribution. Further, the M -statistic is
easily adapted to the data source on hand, for example exact address locations,
census tracts, zip codes, or any other form of location data. An additional
strength of the M -statistic is the ability to combine it with N , the number of
cases, and obtain a bivariate statistic that simultaneously considers temporal
and spatial behavior, as we next show.
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4 Bivariate Spatiotemporal Surveillance

An appealing theoretical aspect of the M -statistic is its asymptotic indepen-
dence from the number of cases observed. Thus we would expect that a tem-
poral test statistic would remain approximately independent from the values
of the spatial test statistic M . To verify this result when applied to real data,
we examined the joint distribution of M and the residuals obtained from our
temporal model (Sect. 2). Figure 3 is a scatterplot of the joint test statistics
for N and M , showing approximate independence (correlation � = 0.047, 95%
CI (-0.004,0.098)).

A bivariate test statistic for the joint test statistics can be formulated in
a number of ways. To use the information available, i.e., both the number
of patients and their locations, we need a bivariate test statistic. We are
motivated by the asymptotic independence of M and N , but we need to know
the particular alternative hypotheses against which we wish to have power.
Here we choose a compromise hypothesis that will guard against a shift in
both the number of patients and an increase in M . This seems to work well
for a number of alternative hypotheses.

The joint values of N and M provide us with additional information re-
garding the nature of a disease outbreak. Referring to Fig. 1, we see that the
flu season in year 2 was especially large in magnitude. The case volume far
exceeded predictions and thus we can consider this an outbreak of respiratory
disease in Cape Cod. The corresponding values for M , however, do not indi-
cate any deviation from spatial baseline. Thus we learn that the outbreak is
pandemic to the region and not specific to a particular location within Cape
Cod.

Conversely, there is a period of roughly three weeks (days 709–728) where
the case volume is essentially as predicted. However, high values of M on those
days indicate a localized outbreak that is not sufficient in extent to qualify
as a temporal aberration. This type of outbreak might be a candidate for
investigation by local public health authorities. It is also worth noting that
a local release of a biological agent (e.g., anthrax, smallpox) might exhibit a
similar spatial pattern. Using distance-based methods of mapping (Sect. 5),
Fig. 7 illustrates the local nature of this outbreak. The dynamic nature of spa-
tiotemporal patterns of disease is more dramatically illustrated when viewed
sequentially (e.g., as images projected together to form a movie). Although it
is not possible to display animated images here, there is more to learn when
considering these patterns dynamically (see Ozonoff et al. [OBF04] for further
discussion).

5 Locating Clusters

Having used the methods described above, suppose that in a particular in-
stance we decide that the null hypothesis of normalcy should be rejected. The
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Fig. 3. Plot of spatial statistic (M) versus temporal residuals.

next step then is to study the available spatial data to determine whether
the deviation from the null hypothesis is due to an exogenous cluster(s), or
not, and if it is, to locate and describe the cluster(s). Here we outline such
a detection method that is based on using the distribution of the distances
between points, in keeping with the methods in the rest of this chapter.

We concentrate on the plane, but these methods extend directly to higher-
dimensional spaces [GP05]. Consider a closed region R that contains the ob-
served points. Construct C a circle surrounding R. For N > 1, divide the
circumference of C into N equal arcs described by the points on the circum-
ference: (c1, c2, ..., cN ). We label these as observing points because from each ci

we observe the distribution of the distances to points in R and compare these
with what we expect to see under the null distribution. We then aggregate
these results over the N points to identify possible clusters in R.

For illustration, suppose that on a given day we observe n cases in R,
located at points (x1, x2, ..., xn), and assume, for the sake of discussion, that
all n observed locations are different (continuous data). We are interested in
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knowing whether (x1, x2, ..., xn) is a random sample from the null distribution
of points in R. So choose an observing point ci, i ∈ {1, ..., N}, and an obser-
vation xj , j ∈ {1, ..., n}, and let dij be the Euclidean distance between ci and
xj . Suppose the distribution of these distances under the null hypothesis is
Fi(d) with associated density function fi(d). Define the associated estimator
F̂i(d) = 1

n

∑n
k=1 I(dik ≤ d), where I(.) is the Heaviside function I(x) = 0 if

x < 0 and = 1 if x ≥ 0.
The Fi(d) are either given or we can estimate them to any degree of accu-

racy via resampling or Monte Carlo methods applied to the null distribution
of distances between ci and points in R, for each i.

For a given distance dij and a fixed constant 0 < k < 1, and letting A be
the subset of R intersecting with the annulus bounded by radii (dij − h

2 ) and
(dij + h

2 ), we next find h as the smallest value such that∫
A

fidµ =
1
k

,

where dµ is the ordinary Lebesgue measure on the Euclidean plane. The quan-
tity 1/k represents the proportion of points in A under the null. To estimate
it from the observed (x1, . . . , xn), we look at the proportion of observations
at a distance from ci within h of dij (see Fig. 4):

F̂i(dij +h)− F̂i(dij −h) =
1
n

n∑
k=1

I(xk ∈ A) =
1
n

n∑
k=1

I(dij −h < dik ≤ dij +h).

We can then calculate the deviation from the null by defining

γij =
√

n

(
1
n

n∑
l=1

I(dij − h < dil ≤ dij + h) − 1
k

)
.

Notice that by decomposing γij into
√

n(F̂i(dij + h) − Fi(dij + h)) −√
n(F̂i(dij − h) − Fi(dij − h)) we see that for a fixed dij , γij ∼ N(0, σ2)

as n → ∞, assuming that the observed points are distributed according to f .
Hence γij incorporates whether there are too many or too few observations

in the region of R covered by the strip. Of course, this will not tell us alone
whether xj is part of a cluster, yet we can aggregate similar information when
looking from other observing points. For that, define Γ : IR → IR by

Γ (xj) =
1
N

N∑
i=1

γij.

In Fig. 5, we look at xj from five different observing points. Each strip covers a
fraction of the density of distances from the considered observing point under
the null (1/k in each case). The strips overlap more and more as they get
closer to xj , hence the estimation of the deviation from the null will be more
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Fig. 4. Estimating deviation from null.

precise as we increase the number of points on C. The same process can be
repeated for all other observations and in fact Γ can be estimated at all points
in R.

This method was applied to respiratory syndrome data from Cape Cod,
Massachusetts. In particular we consider the large outbreak during the flu
season of year 2. As mentioned in Sect. 4, the case volume exceeds by far
the expected, but the M-statistic detects no spatial aberration. Figure 6 gives
a representation of the estimation of Γ during that period. We use 40 ob-
serving points circumscribing the Cape Cod region. In the figure, triangles
correspond to case locations for the time period studied. The void region in
the western part of Cape Cod corresponds to Otis Air Force Base, where mil-
itary personnel receive care within the Air Force system and thus no patients
are represented from the base in this dataset. The values of Γ throughout
the Cape are displayed with different levels of gray, with darker shades corre-
sponding to higher values. Confirming the results from the bivariate analysis
above, we can see that there is no significant deviation from the null spatially,
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Fig. 5. Aggregating over all observing points.

hence the increase in the report of flu cases was distributed evenly throughout
the Cape according to the null.

Conversely, during the three-week period between days 709 and 728, the M-
statistic indicates a localized outbreak, which was not detected as a temporal
aberration. In Fig. 7 we see that Γ takes higher values in the eastern portion
of Cape Cod. The region delimited by the black solid contour indicates a
significant spatial aberration.

Coming back to the method presented, and letting some of the parameters
approach infinity, a few observations can be made. In Fig. 5 we can see that the
five strips do not cover the whole region R. Part of the observed points are not
taken into account when calculating Γ (xj). We can increase N , the number of
fixed points, and also increase k so that all the strips intersect only around xj

while remaining large enough to include all the observed data. In fact we can
rewrite Γ (xj) as follows: first we assume that k is large enough so that the
strips are close to being arcs (that can be achieved if we suppose that we can
sample as much or as little as possible from the null, i.e., the null distribution
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Fig. 6. Regionwide outbreak of respiratory illness on Cape Cod during year 2 of
the study period. This outbreak displays no significant spatial deviations.

is continuous in R); also we assume N large enough so that each observation
xj′ other than xj is contained in exactly two strips (both corresponding to
the two observing points intersecting C and the right bisector of [xj , xj′ ]).
Letting νij be the number of observations in strip i corresponding to dij , we
can rewrite Γ (xj) as follows:

Γ (xj) =
1
N

N∑
i=1

√
n

(
νij

n
− 1

k

)
=

√
n

Nn

(
N∑

i=1

νij

)
−

√
n

k
.

Now given that all the strips only intersect at xj , the νij will sum to
N + 2(n − 1). Hence

Γ (xj) =
√

n

Nn
(N + 2n − 2) −

√
n

k
.

As mentioned earlier we can also estimate Γ for every point in R, and so
for x ∈ R\{x1, ..., xn},
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Fig. 7. A localized outbreak of respiratory illness (days 709–728).

Γ (x) =
√

n

Nn
(N + 2n) −

√
n

k
.

Letting k → ∞ and N → ∞, for all x ∈ R we have Γ (x) → 1√
n
. Note that as

k → ∞ and N → ∞, the strips become arcs and there are infinitely many of
them. They all intersect at x and cover the rest of the region twice.

6 Conclusion

We have shown in this chapter not only how to look at the number of patients
entering into the surveillance system, but also to consider from whence they
came. The statistic used to measure the goodness-of-fit of the spatial distri-
bution we consider is the M-statistic. This statistic has the advantage that its
distribution, for large numbers of patients, is approximately independent of
the number of patients, so it affords us a two-dimensional statistic (one spatial
and one temporal) to simultaneously evaluate departures from normalcy.
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The M-statistic is based on the distances between patients. We use the
fact that in practice this distance distribution is stationary and deviations
from this stationarity would indicate a disturbance that might prove worth
investigating.

As research into distance-based methods and other methods of spatiotem-
poral methods continues, visualization and disease mapping will become in-
creasingly important since it provides public health officials and decision-
makers additional information, possibly on a real-time or near real-time ba-
sis. Our approach to disease mapping, a logical outgrowth of our work on
distance-based methods, can be seen as one approach to this important prob-
lem.
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Modeling



Modeling and Simulation for Defense and
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1 Introduction

Modeling is an essential (and sometimes the only) problem-solving tool in
defense and national security applications. Of course, modeling is important
and useful to industry as well, partly because contractors are doing much of
the actual defense work (research and development, combat support, security,
etc.), but also because industrial applications are similar to those in defense in
their structure and requirements. Thus, this group of papers will be of interest
to a wide audience.

The term modeling can mean many things and has broad applicability, as
we will see from the four papers in this section. Modeling can mean trans-
forming various behaviors, rules, phenomena, etc. into computer codes for the
purposes of simulating some complex (or maybe simple) system. Modeling
also pertains to the creation and specification of the rules and mathematical
expressions that govern the phenomena of interest. Finally, when we carry out
regression, probability density estimation, classification, or some other esti-
mation method, then we are also doing modeling, because we are estimating
(or creating) a model of some process or phenomenon.

2 Summary of Papers

The first paper describes the underlying models for a simulation of smallpox
transmission in a large city. It is called EpiSims, and it was developed at the
Los Alamos National Laboratory by expanding an existing simulation pack-
age that models the movement of individuals in large metropolitan areas. The
authors describe the original simulation program called TRANSIMS (Trans-
portation Analysis Simulation System), the models for spreading an infectious
disease, and how this can be used to provide information to policymakers.

This paper illustrates an essential application of modeling and simulation.
It is not possible to conduct physical experiments in the spread of infectious
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diseases, such as smallpox, HIV-AIDS, hemorrhagic fevers, etc., or the out-
come of a chemical, biological, radiological, nuclear (CBRN) attack. In other
words, we cannot expose a population to a disease or chemical attack and
see what happens. Thus, to understand the problem and possible outcomes,
we have to rely on computer simulations and the models that are used to
build them. The goal of the EpiSims experiment had to do with understand-
ing the various courses of action in the case of a smallpox attack, such as
mass vaccination, targeted vaccination in conjunction with quarantining, and
self-isolation.

The EpiSims paper also addresses many important issues in modeling and
simulation. First, this is an interesting application of the reuse of existing mod-
els and how we can adapt them to other problems. While the initial version of
EpiSims models the spread of smallpox, the creators made the simulation and
disease models somewhat modular, so other diseases and biological attacks
could be implemented easily. Second, they have an excellent description of
how such models are built. The authors went to subject-matter experts and
to the literature on smallpox and present a thoughtful discussion of the limita-
tions of the models. Finally, this application shows how modeling, simulation,
and statistics can help decision-makers.

The second paper describes a modeling methodology that would also help
decision-makers understand what to do in the case of a suspected biological
or chemical attack. The focus is on modeling the concentration field of a con-
taminant in a building. The subsequent model would be used to help make
decisions regarding sampling the site for the presence of a contaminant and
decontamination. The authors describe several methods for modeling spore
dispersal, such as computational fluid dynamics, multizone modeling, and
geostatistical modeling techniques. They also show the need for a multidis-
ciplinary approach to this problem and the important role that statisticians
play.

The next paper addresses a type of modeling many statisticians are fa-
miliar with: regression. The authors look at the issue of privacy and security
when decision-makers need to combine or make use of data that are stored in
multiple, distributed databases. The ability to make connections and to dis-
cover threats using all available information is critical to homeland defense.
This is one of the lessons learned from the September 11 attacks. However,
due to privacy, security, and domain issues, owners of the databases do not
want to openly share their data.

Using regression as an application, the authors illustrate how one can
perform secure regression without actually integrating or knowing all of the
data. They show secure multiparty computation in both a horizontal (agencies
have the same attributes on disjoint sets of records) and a vertical (agencies
have different attributes on the same records) fashion.

The final paper is similar to the second paper in that it describes the is-
sues involved with modeling physical phenomena. In particular, they discuss
passive detectors of radiation emitted from cargo or passenger vehicles. This
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is an important problem for national security and counterterrorism, since po-
tential weapons include nuclear and radiological devices hidden in our vast
transportation system. One of the interesting issues brought up in this paper
concerns threat models. This is an important consideration with modeling and
problem-solving, in general. If we are not modeling the correct threat, then
we are solving the wrong problem. For example, if a denial-of-service cyber-
attack is not a viable threat, we should really be investigating and modeling
something else.

3 Research Directions in Modeling

In addition to the main topic, many important research issues are presented
in these papers:

1. Estimating normal background signals and system behavior.
2. The impact of model uncertainty on the results.
3. Modeling complicated phenomena (e.g., infectious disease spread, trans-

port of contaminants in an occupied building).
4. Computational issues when integrating databases.
5. The adaptation of existing models and simulations for other uses.

However, as with most interesting and relevant topic areas, there are many
open research directions and problems.

One very important area is the modeling of human behavior based on
culture and other demographic information. Such models could be used to
predict enemy and terrorist behavior and to enhance our decision-making
tools. Such models exist in the social and psychological disciplines, but efforts
should be made to translate these into computational models. Research in this
area will also help in establishing and modeling appropriate threat scenarios.

Researchers can help ensure our national security by developing new meth-
ods and technologies in statistical data mining for the automatic integration
of disparate types of data. Faced with massive amounts of data generated by
persistent sensors and surveillance, decision-makers need tools that not only
integrate data from diverse sources and of different types, but also provide
an estimate of significance. We need to expand our notions of what types of
data provide information and develop models that exploit nontraditional data
sources (databases, open-source, Web-based, symbolic, images, etc). Statisti-
cal data mining techniques for discovering trends in enemy activities, links
among objects, and hidden models of behavior will be needed to support in-
tent analyses and to develop courses of action. In this context, the exploitation
of textual data seems particularly promising and necessary. To realize the full
potential of processing web-based and open-source information we must be
able to convert free-form text to other structures that allow us to employ our
computational tools and techniques. As an example of recent work that ap-
plies graph theoretic techniques and visualization to knowledge discovery and
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to the creation of information threads based on collections of documents, see
Solka et al. [SBW05].

As with any modeling, users and researchers must be concerned about
validation (how accurately a model represents the real world) and verification
(a model implementation is correct) of models. This can be very difficult to
do when the models involve the spread of disease, a CBRN attack, or human
behavior. Also, the use of sensitivity analysis and residual analysis are often
neglected areas of research in modeling.

Models and simulations are just some of the tools in our toolbox, and they
should be combined with others for maximum effect. Thus, more research
needs to be done on methodologies for combining experimental data, data from
models and simulations, and expert opinion. In applications such as these, we
need to be concerned about understanding the effect of model errors and how
these propagate through the system, especially when sources are combined.
Additionally, it would be interesting to develop techniques and methods for
experimental design, when our experiment includes multiple sources, such as
observed and simulated data.

In conclusion, I offer the following websites for those who want more in-
formation on modeling and simulation in defense:

• The Defense Modeling and Simulation Office (DMSO) has a website at
https://www.dmso.mil/public/. This is an excellent entry point for all
modeling and simulation in the Department of Defense.

• For more information on verification and validation, see the website at
http://vva.dmso.mil/.

• The EpiSims paper shows how important it is to reuse models and simula-
tions. To facilitate this, the Department of Defense provides a searchable
repository of modeling and simulation resources. This can be found at
http://www.msrr.dmso.mil/. Agencies that provide information to this
repository include the Department of Defense, Missile Defense Agency,
Defense Intelligence Agency, and others.

• For information on Department of Defense research thrusts in data min-
ing and modeling, readers are encouraged to visit the following websites.
For Navy programs, see http://www.onr.navy.mil, Air Force programs
can be found at http://www.afosr.af.mil, and Army research in these
areas is described at http://www.aro.army.mil. The Defense Advanced
Research Projects Agency, Information Exploitation Office (IXO), sup-
ports efforts also. Visit http://www.darpa.mil for more information.
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1 Introduction

In the wake of September 11, 2001, and the anthrax mailings that followed
it, the U.S. government and other organizations had a keen recognition of
the need for emergency preparedness and strategies for disaster mitigation. In
particular, concern focused on the potential for additional terrorist attacks,
including the threat of an attack using a biological agent like smallpox, bot-
ulism, or plague. Decision-makers had a renewed interest in learning how they
could best respond to such a terrorist attack, and scientists and public health
experts wanted to contribute to the effort to answer such questions.

Before September 11, 2001, various role-playing simulations had been used
to study responses to incidents involving bioterrorism (see, for example, In-
glesby et al. [IGO01] and O’Toole et al. [OMI02]). Although playing these
game scenario-type exercises was instructive, they required extensive plan-
ning and resources even if only played once. Furthermore, this approach did
not facilitate the investigation of multiple scenarios. In the post-September
11, 2001, context, detailed information that could inform decision-making was
needed, and the need for it was urgent. In such a setting, computer simulation
models could efficiently provide decision-makers with information about the
strengths and weaknesses of different response strategies that could be used
in the event of a bioterrorist attack.

The foundation of such an epidemiological simulation model had been de-
veloped by Los Alamos National Laboratory (LANL) researchers. This foun-
dation was the Transportation Analysis Simulation System (TRANSIMS)
[BBB99] that was created to model the mobility of individuals in large
metropolitan areas. During its development, researchers realized that TRAN-
SIMS could form the basis of an epidemiological simulation tool that could
model the spread of disease in urban areas. In the aftermath of September 11,
2001, the U.S. Office of Homeland Security (OHS) asked LANL to develop
this new technology, named EpiSims, to study response strategies that might
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be used if there were a bioterrorist attack involving smallpox. As part of this
effort, individuals in the LANL Statistical Sciences Group reviewed and pa-
rameterized some of the models that underlay EpiSims and researched and
parameterized possible response strategies. This proved challenging as the ex-
isting literature didn’t contain all of the information needed to use EpiSims to
study response strategies in the event of a bioterrorist attack using smallpox.
Moreover, OHS required a quick turnaround, so the results presented to them
could not be based on the in-depth analysis one would ideally perform.

A key objective of the work for OHS was to avoid using models that were
only applicable to smallpox and instead to ensure that they depended on
parameter values that could be adjusted so that the resulting disease would
behave like different biological agents. In particular, the U.S. Centers for Dis-
ease Control and Prevention (CDC) had identified six biological agents that
could likely be used as bioterrorist weapons: anthrax, botulism, certain hemor-
rhagic fevers, plague, smallpox, and tularemia. The disease and transmission
models described below are designed to be flexible so that they may be used
to model multiple diseases such as these. But for purposes of providing infor-
mation to OHS, the focus was on smallpox as LANL developed end-to-end
capability for EpiSims.

Following September 11, 2001, a number of researchers published work pre-
senting mathematical or simulation models of smallpox. Specifically, Bozzette
et al. [BBB03], Eichner [Eic03], Epstein et al. [ECC02], Halloran et al.
[HLN02], Kaplan et al. [KCW02], Kaplan [Kap04], Kretzschmar et al.
[KVW04], Legrand et al. [LVB03], Meltzer et al. [MDL01], and Nishiura and
Tang [NT04] used such models to assess different response strategies in the
event of a bioterrorist attack using smallpox, with Bozzette et al. [BBB03]
and Epstein et al. [ECC02] also considering preevent vaccination strategies.
Ferguson et al. [FKE03] provided an overview of some of the issues inherent
in modeling smallpox and a review of the models presented in Bozzette et
al. [BBB03], Halloran et al. [HLN02], Kaplan et al. [KCW02], and Meltzer et
al. [MDL01]. While some studies assumed homogeneous mixing of the pop-
ulation [KCW02, Kap04, LVB03, MDL01, NT04], others modeled different
transmission mechanisms based on the type of contact between an infectious
individual and a susceptible individual [BBB03, Eic03, KVW04], or struc-
tured populations of individuals that incorporated different types of contact
[ECC02, HLN02]. However, to our knowledge no other existing model is
grounded on a structured population of individuals as large as or as detailed
as that which underlies EpiSims via the TRANSIMS technology. In addi-
tion, EpiSims explicitly incorporates two manifestations of smallpox (ordinary
smallpox, which has a 30% mortality rate, and hemorrhagic smallpox, which is
almost always fatal) and two subgroups (pregnant women and certain individ-
uals with HIV infections) presumed to suffer from more severe manifestations
of smallpox at a higher rate than the general population.

These smallpox models, including EpiSims, reflect varying levels of detail.
In any given situation, the granularity of the chosen model could depend on
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the timeframe and/or resources available for completing the study of interest,
the level of detail required for the analysis, or the characteristics of the dis-
ease under study. The necessity of providing results within a short timeframe
or via limited resources can require use of a simple model that may be fit
quickly and easily. In terms of the results of interest, if one wants to study
transmission among different subpopulations that are defined by region or
demographic characteristics, those subpopulations and their contact patterns
must be reflected in the model. As an example of the importance of disease
characteristics, the transmission of some diseases may be more contact-pattern
dependent than for others. For example, transmission of a disease in which
infectious individuals are immobilized and close contact is required for trans-
mission is much more dependent on contact patterns in the locations of the
infectious individuals (most likely their homes or health care facilities) than
would be transmission of a disease in which infectious individuals are mo-
bile and close contact is not required for transmission. Finally, if information
about the accuracy of results given varying times and costs to produce them
is available, this may inform model choice as well.

This paper describes TRANSIMS, the work the authors and their collab-
orators performed in the development of EpiSims, the information EpiSims
simulations provided to decision-makers in OHS, and some example output
that is representative of that from an EpiSims simulation. A companion paper
[MW05] discusses this work for a general audience. The work presented in this
paper is our own and that of our collaborators on the EpiSims project.

2 TRANSIMS

Previous to our EpiSims work, TRANSIMS had been used to create a model
of the activity, including mobility, patterns of the roughly 1.6 million people
who travel in the metropolitan Portland, OR, area on a typical weekday. In
using TRANSIMS to model the activity patterns in Portland, a population
of synthetic individuals was constructed that matched the actual Portland
population at the census block group level in terms of certain demographic
variables including household size, age of head of household, and annual house-
hold income. (A census block group is a cluster of blocks that usually includes
about 250–550 dwelling units.) Next, each individual was assigned a set of
daily activities that described his or her activities in Portland on a typical
weekday. For example, a person may take a child to day care, go to work, go
out to lunch, leave work, go to the grocery store, pick another child up from
sports practice, and then return home. Such daily activities were based on
daily activity surveys collected from individuals in the actual Portland popu-
lation. Once daily activities such as these had been assigned to each synthetic
individual, locations for the activities were determined. TRANSIMS includes
roughly four locations per city block, which are used to approximate the lo-
cations at which individuals perform different activities. Next, each synthetic
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individual was assigned a mode of transportation to be used in traveling from
one activity to the next. With this, the transportation flow of the synthetic
Portland population resulted. In building the model, iteration at each step
occurred until the result was sufficiently close to that of the actual Portland
population before moving on to the next step in the modeling process. Once
fitted, TRANSIMS provided a second-by-second snapshot of the locations of
all of the 1.6M synthetic individuals in virtual Portland. The idea behind
EpiSims is to overlay an infectious disease model on the resulting activity
patterns so that researchers can observe how the disease spreads through the
population as infectious individuals infect susceptible individuals during daily
activities involving typical contact patterns.

The development of EpiSims required the addition of several capabilities
to TRANSIMS. These included abilities to model (1) the transmission of the
disease of interest from an infectious individual to a susceptible individual via
a transmission model, (2) the progress of the disease within an infected indi-
vidual via a disease model, and (3) response strategies that might be used in
the event of a terrorist attack or other outbreak. Since certain demographic
information about the synthetic individuals in the TRANSIMS population
was available, the disease and transmission models could incorporate parame-
ters that depended on relevant individual-level variables such as age, immune
status, and other health-related variables. The response strategies to be in-
vestigated were modeled as functions of parameters that reflected public com-
pliance with the requests of public health officials, readiness to respond to an
outbreak of smallpox, and the extent to which the response strategy could
realistically be fully implemented.

3 Disease and Transmission Models for EpiSims

EpiSims was envisioned as a general framework for modeling infectious dis-
eases, and initial disease and transmission models for EpiSims had been de-
veloped previous to our EpiSims work and the interest in using EpiSims to
model smallpox [EGK04]. These models were functions of parameters that
could be set to reflect the transmission and disease course characteristics of
different infectious diseases. However, it was unclear whether they could be
used to model smallpox.

In the initial EpiSims disease model synthetic individual i in the TRAN-
SIMS population has a “disease load” Li(t) that varies with time t during
the course of his infection with the disease under study. The disease load de-
scribes the progress of the disease within the individual, with greater values
indicating a sicker individual. In addition, an individual’s infectiousness at a
given time depends on his disease load at that time. Specified values of the
disease load correspond to an individual who has become infected with the
disease of interest, is experiencing symptoms of the disease, is sick at home, is
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capable of infecting others, or has just died as a result of the disease. Changes
in an individual’s disease load are modeled as piecewise exponential.

The initial EpiSims transmission model describes how susceptible individ-
uals are infected with the disease of interest. In this model, the environment
in a given location has a disease load associated with it that results from indi-
viduals at the location who shed disease load into it or from contamination of
the location. In particular, individual i sheds a fraction of his disease load Rs

i

into his location per unit time. Thus, infectious individual i with a constant
disease load Li(t) sheds Li(t) × Rs

i disease particles into the environment per
unit time. If susceptible individual j is in an environment with a positive dis-
ease load, then he absorbs a fraction of the available load in the environment,
Ra

j , per unit time.
Determining whether these disease and transmission models could be used

to model smallpox involved a review of the available smallpox literature. Based
on how these models would need to function in the EpiSims machinery, a list of
bioagent factors that covered a range of characteristics relevant to the disease
model, the transmission model, and the response strategies was developed.
Using the bioagent factors to guide the literature review helped ensure that
it would uncover all of the aspects of smallpox that EpiSims needed to incor-
porate. Thus, the suitability of the existing disease and transmission models
for modeling smallpox could be assessed.

The bioagent factors covered characteristics such as the agent type (virus
or bacteria), transmission mechanisms, the virulence of the agent, exis-
tence of different disease manifestations, symptoms, diagnostic confounds,
treatments, whether a vaccine existed for the agent, survival outside the
host, and the course of the disease in the host. For a broad range of
agents that might be used in a bioterrorist attack, much of this informa-
tion was available from online CDC sources (for current information, see
http://www.bt.cdc.gov/agent/agentlist.asp). In addition, a recent se-
ries of consensus documents published in the Journal of the American Medi-
cal Association outlined what was known about various agents from a medical
and public health perspective and their potential use as bioterrorist weapons,
with Henderson et al. [HIB99] a consensus statement concerning smallpox.
The literature review also drew heavily on Fenner et al. [FHA88] and a few
other sources.

The literature review led to the development of a diagrammatic disease
model that was used in conjunction with the piecewise exponential disease
model. The diagrammatic disease model was intended to be general to the
extent that it depended on parameters that could be set so that the result-
ing disease course would reflect different diseases. The diagrammatic disease
model, shown in Fig. 1, describes the course of the disease within an indi-
vidual from his exposure to the disease through recovery or death. In the
case of smallpox, an individual is initially exposed to the disease when he
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has absorbed enough smallpox virions3 to develop a smallpox infection. Next,
based on the individual’s characteristics, a smallpox infection may develop.
Individuals who do not develop a smallpox infection would include those who
have recently received a successful smallpox vaccination. If a smallpox infec-
tion is present, it may be a clinical infection or a subclinical infection, with
subclinical infections those in which the individual has evidence of a smallpox
infection based on a diagnostic test, but does not develop any other symptoms.
An individual who has been previously vaccinated may develop a subclinical
case of smallpox. If the individual develops a clinical case of smallpox, any
of several manifestations may be present. Possible manifestations of small-
pox include ordinary smallpox; modified smallpox and variola sine eruptione,
which are less severe than ordinary smallpox; and two very severe forms, hem-
orrhagic smallpox and flat-type smallpox, which are almost always fatal. Our
simulations for OHS included ordinary smallpox and hemorrhagic smallpox.
Depending on the manifestation of smallpox, a different disease course ensues
that includes an asymptomatic incubation period and, in the case of ordinary
and several other manifestations of smallpox, a prodromal period in which
the individual suffers from a high fever and other symptoms followed by the
development and progression of smallpox pustules. Lastly, the individual may
either recover or die from his smallpox infection. As indicated in Fig. 1, an
individual’s disease course may depend on relevant health and background
characteristics such as his vaccination history and immunocompromisation
status. An individual’s disease course informs his infectiousness.

The piecewise exponential disease model and the diagrammatic disease
model worked in concert in EpiSims. The diagrammatic disease model was
used to determine whether an individual developed a smallpox infection and,
if so, the manifestation of smallpox from which he suffered and the particulars
of his disease course such as the lengths of the incubation and prodromal peri-
ods, whether he recovered or died, and if he died, the point in his disease course
at which he died. This information then determined how the disease load Li(t)
of the individual progressed with time, with this progression modeled using
the piecewise exponential disease load model. Since an individual’s infectious-
ness depends on his disease load, its parameterization needed to reflect how
infectiousness varies with disease course for different disease manifestations.

The first step in parameterizing the EpiSims disease and transmission
models was to expand the review of the available information about small-
pox, with an emphasis on uncovering data and information relevant to these
models. In terms of the disease models, Fenner et al. [FHA88] included many
datasets that provided information that linked disease manifestation and/or
disease outcome (recovery or death) to demographic variables such as age,
gender, pregnancy status, and vaccination history. Detailed descriptions of

3 A virion is a complete virus particle capable of causing infection.



Modeling and Parameterization for a Smallpox Simulation Study 205

Fig. 1. Diagrammatic disease model. This model describes the course of smallpox
from an individual’s exposure to it through his eventual outcome, which may be
either recovery or death.4

the disease courses for different manifestations of smallpox were also available
in this source.

Less information was available for modeling individual disease loads and
the transmission of smallpox from an infectious individual to a susceptible
individual. In Fenner et al. [FHA88, p. 191], it is reported that “transmission
was usually direct, by the implantation of infective droplets on to the nasal,
oral, or pharyngeal mucous membrane, or the alveoli of the lung, or less com-
monly indirect, as an airborne infection or from fomites.”5 It was believed
that an individual was most infectious during his first week with pustules,
with transmission almost never occurring before the pustules appeared and

4 This figure is reprinted with permission from Chance. Copyright 2005 by the
American Statistical Association. All rights reserved.

5 A fomite is an object that may serve as a means of transmitting a disease from
one individual to another.
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infectivity decreasing substantially during the later stages of the disease that
followed the first week of pustules [FHA88, p. 189]. From an epidemic manage-
ment perspective, an individual was isolated until after the last scab resulting
from a pustule had separated from his body; however, the consensus appeared
to be that actual infectiousness had declined substantially before that time
[FHA88, p. 185].

Fenner et al. [FHA88] also included information about the conditions un-
der which smallpox was more or less likely to be transmitted. Closer contact
made transmission more likely. For example, a susceptible individual was more
likely to be infected by an infectious individual if he shared a room with the
smallpox victim than if he merely shared a dwelling unit with him [FHA88,
p. 191]. Transmission was even less likely if the susceptible individual merely
lived in the same housing compound as the infectious individual [FHA88, p.
191]. Some of the information in Fenner et al. [FHA88] about the conditions
under which smallpox might be transmitted from an infectious individual to a
susceptible individual seemed contradictory. For example, they report “espe-
cially in India, long-distance movements by train or bus of patients suffering
from smallpox, with an overt rash, used to occur frequently, yet infection of
casual fellow-travelers was rare indeed — so rare that instances of it were
deemed worthy of special report” [FHA88, p. 191]. However, in another case,
a visitor to a hospital housing an individual with smallpox contracted small-
pox despite spending only 15 minutes in the hospital in areas away from the
isolation corridor where the smallpox patient was being housed [FHA88, p.
192]. As discussed below, such discrepancies required resolution, and CDC
researchers offered expert opinion that was crucial to this resolution.

Once this information had been compiled, it was compared to that needed
to parameterize EpiSims for smallpox. In terms of the disease models, the
available literature yielded estimates of many parameter values. However, for
other subjects such as the likely disease courses and mortality probabilities
for immunosuppressed individuals, additional information was needed. Specif-
ically, individuals with different types of immunosuppression (i.e., those with
HIV infections, those undergoing chemotherapy, and recent organ transplant
recipients) were not prevalent in the population when smallpox was endemic,
so information about their likely response to smallpox infection was largely
unavailable. In terms of the transmission model, the available information
helped ground our understanding of smallpox transmission mechanisms and
could guide development of the transmission model. However, the detailed un-
derstanding of the conditions under which smallpox transmission was possible
that was needed for our modeling was not uncovered in the literature. Since
EpiSims was intended to model smallpox transmission by utilizing the social
contact patterns provided by TRANSIMS, the probability of smallpox trans-
mission given a distance between an infectious individual and a susceptible
individual, the duration and other characteristics of their contact, and the dis-
ease stage of the infectious individual needed to be specified. Determination



Modeling and Parameterization for a Smallpox Simulation Study 207

of whether fomites were a substantial source of transmission was also needed
so that they could be incorporated in our transmission model if necessary.

Next, a list of information required to parameterize EpiSims for smallpox
was compiled, and each item was assigned a priority based on the availability
of data and information pertaining to it. Consultation with several smallpox
experts at the CDC followed.

The CDC smallpox experts were invaluable in terms of their ability to
provide information useful for parameterization of the transmission model.
For example, they advised that after an infectious person left an area, any
fomites were practically uninfectious. Thus, EpiSims could reasonably ex-
clude fomites as a method of transmission of smallpox. They also affirmed
that, absent other factors such as centralized ventilation systems that may
cause smallpox virions to travel farther than they otherwise would, smallpox
transmission typically requires close (≤ 6.5 feet or 2 meters) contact. They
also provided information about the duration of contact typically necessary
for smallpox to be transmitted from one person to another given close contact.
To account for transmission that occurs via close contact and for transmission
that might occur at greater distances, large locations in EpiSims were divided
into sublocations. In EpiSims, transmission of smallpox occurred more quickly
within a sublocation than between sublocations.

For the disease models, the CDC smallpox experts reaffirmed and as nec-
essary revised our understanding of the smallpox disease course for different
smallpox manifestations and furnished information about the likely course
of smallpox in immunosuppressed individuals. They further advised that our
simulations should include pregnant women because smallpox tends to man-
ifest more severely in pregnant women than in most other individuals. Our
study also incorporated the subgroup of individuals with HIV infections who
were likely to suffer from the more severe manifestations of smallpox. Since
neither of these populations was included in the original TRANSIMS pop-
ulation, their frequency in the metro Portland, OR, population needed to
be estimated so that they could be reflected in the population of synthetic
TRANSIMS individuals.

Following this exchange with the CDC smallpox experts, our parameter
values were finalized with additional consultation as needed. Parameterization
of the disease models followed a two-step process. First, parameter values for
the diagrammatic disease model were developed. Once the diagrammatic dis-
ease model was parameterized, it was translated into the language of the
disease load model so that individuals were symptomatic, staying home sick,
infectious, and recovered or dead at appropriate times in their disease courses
and so that an individual’s infectiousness varied appropriately with his disease
manifestation and disease course. The disease load thresholds for an infected
individual, a symptomatic individual, an individual who was staying home
sick, an individual who was infectious, and an individual who had just died
were set to common values for all individuals, with an individual’s disease
load Li(t) varying appropriately given his disease manifestation. The disease
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models were stochastic so that different individuals with the same manifes-
tation of smallpox might experience different disease courses, e.g., different
lengths of the incubation and prodromal periods.

For the transmission model, Rs
i varied across individuals to reflect the

different levels of infectiousness that correspond to different disease manifes-
tations and Ra

i varied across individuals to reflect how the length of contact
required for a susceptible individual to become infected with smallpox might
vary.

With these parameter values, EpiSims could be implemented for smallpox
and its course through the TRANSIMS model of the Portland, OR, population
and the efficacy of different response strategies could be observed.

4 Response Strategies

Early in the project, different response strategies that could be investigated
in the simulation study for OHS were outlined. These included mass vaccina-
tion, targeted vaccination combined with quarantine, and self-isolation. Mass
vaccination, as the name implies, is a response strategy in which the entire
population is vaccinated as quickly as possible. Targeted vaccination combined
with quarantine is a response strategy based on techniques used during the
smallpox eradication campaign. Under this strategy, an individual suffering
from smallpox is interviewed to determine the individuals with whom he has
had contact while sick. Following the interview, the individual with smallpox
is quarantined to prevent the infection of further individuals and his household
members and contacts are located, vaccinated, and placed under quarantine.
Vaccination within several days of smallpox exposure may prevent infection
with smallpox or reduce the severity of a resulting smallpox infection, in-
cluding the probability that an infected individual dies. Thus, strategies that
include a vaccination component can be effective at controlling a smallpox
outbreak and reducing the severity of symptoms of those who contract small-
pox. In addition, targeted vaccination focuses vaccination resources on those
individuals most in need of them. Under the self-isolation strategy, individu-
als isolate themselves in their homes, thus reducing the number of individuals
they may infect with smallpox. This strategy was included to assess the effi-
cacy of individuals isolating themselves without any other overt public health
response. Information about such a strategy could be useful in the event that
public health resources were not immediately available to implement one of
the other responses, but could broadcast public health announcements en-
couraging voluntary self-isolation. Finally, a baseline case in which there was
no response to the presence of smallpox in the community was included.

The response strategies also required parameterization. Our simulations
needed to reflect the amount of time between the initial detection of smallpox
in the community and the implementation of the response strategy, the efficacy
with which the response strategy could be implemented, and the extent of
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compliance with it. For example, under a mass vaccination campaign, it is
unlikely that every individual in the population will be vaccinated; some will
refuse vaccination or never be found. Similarly, not all individuals will comply
with a request to go to a central quarantine facility.

Infectious disease specialists at the CDC provided expert opinion on issues
such as the amount of time it might take to mount a public health response
to an outbreak of smallpox, the willingness of individuals to comply with a
contact tracer requesting information about people with whom he has had
contact, and the percentage of contacts an individual might remember based
on the duration and proximity of contact. This information was reflected in
the response strategies used in the simulation study for OHS.

5 Results for Decision-makers

Information related to the relative efficacy of and the resources required to
implement the different response strategies was of interest to OHS. For the
OHS study, each simulation ran for 70 days, with day 1 being the day on
which smallpox virions were released and the initial cohort of individuals
was infected. Each simulation was summarized statistically and graphically.
Total counts and maximum daily counts of individuals who were infected,
symptomatic, infectious, at home sick, vaccinated, in a centralized quarantine
facility, or who recovered or died were presented as were graphical daily counts
of individuals who became infected, were infectious, recovered, died, were
vaccinated, or were in a centralized quarantine facility.

Outcomes that describe the course of smallpox through the population,
e.g., counts of individuals who became infected, symptomatic, or who died or
recovered during the course of the outbreak, provide information about the
severity of the smallpox outbreak, while information pertaining to vaccina-
tion, isolation, and disease outcomes (recovery or death) could guide resource
planning. For example, the total number of vaccinations given provides in-
formation about the total number of vaccine doses needed to implement the
response strategy under a given scenario, and the maximum daily number
of individuals vaccinated provides information about the number of individ-
uals trained in smallpox vaccination techniques necessary to implement the
response strategy under the scenario. The total number of people who die
from smallpox provides information about both the magnitude of the small-
pox outbreak and the need for resources, e.g., mortuary facilities.

Figure 2 displays example results similar to those that might result from
an EpiSims simulation. As in the results forwarded to OHS, they cover the
initial 70 days that smallpox is present in the TRANSIMS population, with
day 1 being the day on which the initial cohort of individuals is infected with
smallpox. The upper plot in Fig. 2 describes the course of smallpox in the
population, with the line denoted by triangles displaying the number of people
who are infectious each day and the line denoted by plus signs presenting the
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number of people who become infected each day. The day is indicated on the
horizontal axis of the graph. The lower graph in Fig. 2 displays the number of
people vaccinated each day as part of the targeted vaccination and quarantine
response strategy considered in these example results.

As indicated in the upper plot, the scenario begins with a cohort of 2300
individuals who are infected with smallpox on day 1. The relationship between
the daily counts of infectious individuals and the daily counts of individuals
who became infected with smallpox in the upper plot in Fig. 2 indicates
how smallpox spreads and then is contained by the targeted vaccination and
quarantine strategy. The first wave of smallpox is indicated by the first peak
in each of the two lines on the upper plot. During the beginning of the first
wave of smallpox, each infectious individual infects more than one susceptible
individual on average. However, when the targeted vaccination and quarantine
program is instituted, a dramatic decrease in the number of people infected per
day follows. During the second wave of the smallpox outbreak, indicated by
the second peak in the number of infectious individuals, very few susceptible
individuals are infected, with further spread of the disease stopped by roughly
day 55. Thus, the targeted vaccination and quarantine strategy is effective in
stopping the spread of smallpox in this example.

The lower graph in Fig. 2 provides information about the targeted vacci-
nation program used to contain smallpox in these example results. Because
the targeted vaccination strategy involves vaccinating contacts of individuals
with smallpox, the trend in the daily counts of vaccinated individuals mim-
ics the daily counts of infectious individuals. However, many more people are
vaccinated than become infectious, indicating that on average an individual
suffering from smallpox has contact with more than one susceptible individ-
ual while he is sick. Exactly 12,000 individuals are vaccinated on the peak
day of the vaccination program, with 133,000 people vaccinated during the
course of the smallpox outbreak. Information such as this could be used to
guide resource planning related to the necessary number of doses of vaccine
and individuals trained to give smallpox vaccinations required to implement
this hypothetical targeted vaccination and quarantine strategy.

6 Conclusion

To provide information to OHS within its desired timeframe, the work dis-
cussed herein, the steps necessary to implement it in EpiSims, and a 167-page
report detailing the initial EpiSims smallpox simulations were completed over
six months starting in late 2001 and ending in mid-2002. The results of the
study emphasized that self-isolation, or the voluntary isolation of individuals
at home when they are sick, can be an important means of controlling the
disease either as part of a broader response strategy or on its own; that the
amount of time it takes to mount a response to the presence of smallpox in the
community is important, particularly if there is no self-isolation of individuals
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Fig. 2. Example output representative of that from an EpiSims smallpox simulation.
In this hypothetical example, the response is targeted vaccination and quarantine.
The upper plot describes the course of smallpox in the population over its first 70
days using daily counts of individuals who are infectious and of individuals who
become infected with smallpox. The lower plot provides the number of individuals
vaccinated each day during the same time period.
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in the population; and that both mass vaccination and targeted vaccination
and quarantine can be efficacious responses, with the more effective strategy
depending on the characteristics of the incident.

Given the timeframe for this study, many of the statistical issues inherent
in this work could not be grappled with, despite a profound appreciation of
their importance. Key statistical issues not addressed in this paper include
computer model validation or rigorous ascertainment of whether the TRAN-
SIMS and EpiSims models produce realistic results; sensitivity analyses that
investigate the sensitivity of the simulation results to the specification and
parameterization of the models underlying them; the design of computer ex-
periments involving simulations such as those performed for the OHS smallpox
study; parameter estimation via the combination of data and expert opinion;
the careful quantification of uncertainty so that simulation results incorporate
replication error and the uncertainty inherent in the parameter values used
for the study; and the use of Monte Carlo variance reduction techniques to
produce more precise estimates of the quantities under investigation.

Since the completion of the initial EpiSims study for OHS, the EpiSims
technology has been further developed. Eubank et al. [EGK04] discuss how
the contact patterns modeled by TRANSIMS could be used in developing
response strategies. EpiSims has also been chosen as one of the modeling
systems in the National Institutes of Health’s Modeling of Infectious Disease
Agent Study (MIDAS) that supports development of computation disease
models that are accessible to a wide range of researchers.
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1 Introduction

Following the anthrax outbreaks of October–December 2001, there has been
an increasing awareness of the potential for biological and chemical contami-
nant releases in a closed environment such as an office building. Characterizing
the spread and distribution of such contaminants so as to minimize worker
exposure to them, and to maximize the effectiveness of field procedures used
in removing contaminants, has been a priority. During the anthrax outbreaks,
for example, extensive environmental sampling was done by the Centers for
Disease Control and Prevention (CDC)/National Institute for Occupational
Safety and Health (NIOSH) with over 100 individuals involved in taking ap-
proximately 10,000 environmental samples. Between 4% and 50% of environ-
mental samples taken from a given site were positive, depending on location
sampled [SMW03]. Thus there was a high degree of variability in sample re-
sults depending on sampling location. Further, many sites continue to undergo
remediation to remove all traces of Bacillus anthracis. If optimal sampling lo-
cations could be determined where bacteria were most likely present, and if
∗ The findings and conclusions in this report are those of the authors and do not

necessarily represent the views of the National Institute for Occupational Safety
and Health or the National Center for Health Statistics.
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environmental sampling were done at these locations, it is possible that the
cost of complete building remediation could be significantly reduced. Decon-
tamination efforts, including those continuing ones in postal facilities, are not
only associated with the direct and indirect economic impacts of current sam-
pling procedures, but also with the psychological costs such as:

• Loss of faith in management claims about safety of the work environment
and subsequent strained relations between labor and management.

• Postal system processing delays and imbalances in the use of institutional
resources.

• Loss of work time, wasteful use of medical services, and lawsuits.

Various approaches may be used to characterize the spread and distribu-
tion of contaminants in a building. Two such approaches are computational
fluid dynamics (CFD) and multizone (MZ) modeling. In CFD simulations,
contaminant release information (such as from a mail sorting machine or digi-
tal bar code sorting machine) is used to form a set of boundary conditions. The
equations for conservation of mass, momentum, and energy for dispersion of
the contaminant (gas, liquid droplets, or solid particles) throughout the envi-
ronment are solved iteratively on a high-resolution mesh until the imbalances
in the equations (the residuals) decrease to an acceptably small number (it-
erative convergence). MZ modeling is a coarser rendering of the conservation
laws and is more practical for buildings because it is less computationally
burdensome. It is a network model dividing the space into zones that may
also have architectural relevance such as rooms. The zones are connected by
an airflow path that is often the heating, ventilation, and air conditioning
(HVAC) system.

Real transport of contaminants in occupied spaces is a complicated phe-
nomenon, made up of knowable and unknowable features, particularly when
trying to reconstruct a past event. Dispersion may occur via mechanisms that
can be modeled deterministically: airflow in a ventilation system, air move-
ment due to pressure differences between areas, temperature gradients, and
via activities that are difficult or impossible to characterize, such as office mail
delivery and sorting, or foot traffic.

Another approach, initially developed for identification of metal ore de-
posits, has been through adaptation of geostatistical models for identifica-
tion of concentrations of environmental contaminants. CFD modeling of the
concentration field of a contaminant is a deterministic approach while the
geostatistical approach is a probabilistic one.

It has been suggested that, once a concentration field for the contaminant
is known, an algorithm could be developed so as to optimize the taking of
further environmental samples by intensively sampling locations where there
would likely be a high probability of extreme concentrations of contaminant
present. Such an algorithm could implement taking additional environmental
samples in locations adjacent to those where extreme levels of contaminant
were present as determined in previously sampled locations. Such a process
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using information from previous sampling locations to determine the next
sampling location is called adaptive sampling [KWG03a, KWG03b].

In this paper, we consider approaches to modeling of the concentration
field in a building following release of a contaminant and subsequent environ-
mental sampling procedures for decontamination of that site. We first consider
dispersion characteristics and concentration levels of contaminants that might
be released in the workplace. We then consider models of the concentration
field using probabilistic approaches such as geostatistical or spatial techniques,
and deterministic ones such as CFD. A procedure for site characterization
and decontamination incorporating adaptive sampling is introduced. Finally,
investigation of contaminant dispersion in a room is proposed using mathe-
matical modeling of tracer gas concentrations in a ventilation chamber, and
limitations and advantages of the modeling process are discussed.

2 Dispersion of Contaminants in the Workplace

2.1 Example — Dispersion of Anthrax Spores

Investigators have determined that Bacillus anthracis spores contained in a
letter arriving at a postal facility can be aerosolized during the operation and
maintenance of high-speed, mail-sorting machines, potentially exposing work-
ers and possibly entering HVAC systems [CDC02c]. Spores could be trans-
ported to other locations in the facility through the ventilation system, by
airflow differentials between work areas, or during everyday work activities
as shown in Fig. 1. In a building such as a postal processing and distribu-
tion facility, factors such as the use of compressed air to clean work surfaces,
movement of personnel and carts throughout the building, and a large-volume
building with multiple doors being opened and closed may also alter venti-
lation patterns and change contaminant transport patterns. Indeed, among
environmental samples taken at postal processing and distribution facilities
by investigators from the NIOSH, positive samples for Bacillus anthracis were
obtained at diverse locations including furniture and office walls. Some of these
locations were some distance away from the mail-sorting machine (Table 1)
[SMW03]. Because of the potentially ubiquitous distribution of contaminants,
recommendations for protecting building environments from airborne chem-
ical, biological, or radiological (CBR) attack have been developed [NIO02].
These include maintenance and control of the building ventilation and filtra-
tion systems, isolation of areas where CBR agents might enter the building
(lobbies, mailrooms, loading docks, and storage areas), and control of pres-
sure/temperature relationships governing airflow throughout the building.

Environmental Sampling for Anthrax

Recognized techniques for collecting environmental samples to detect the pres-
ence of Bacillus anthracis include wipe, swab, and vacuum surface sampling
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techniques [CDC02b]. Environmental samples are cultured and then tested
for the presence of the bacillus [CDC02a]. Often only binary outcomes (pres-
ence/absence of anthrax spores) are reported following culture, although con-
tinuous measures such as concentration (spores per area sampled) may some-
times be reported [SHT02].

• Complex flow systems

• Turbulent flow production

Doors, people, fans, ventilation,

temperature gradients

Ventilation system

Overall multi-path

transport of contaminant

• Complex flow systems

• Turbulent flow production

Doors, people, fans, ventilation,

temperature gradients

Ventilation system

Overall multi-path

transport of contaminant

Fig. 1. Possible contaminant transport mechanisms.

Table 1. Anthrax environmental sampling results by location at postal processing
and distribution facilities*

# of # and
Sampling Location Samples Percent Positive

Mail-sorting devices 435 151 (34.7%)
Other postal machines/equipment 288 59 (20.5%)
Office furniture 49 20 (40.8%)
Office equipment 32 8 (25.0%)
Ventilation system 26 10 (38.5%)
Windows 24 11 (45.8%)
Mailbag/pouch/box 16 13 (81.3%)
Wall/wall boxes 14 2 (14.3%)
Floor 5 2 (40.0%)

*Surface samples taken by NIOSH investigators.
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2.2 Contaminant Distributions

The behavior of contaminants in occupational settings has been studied ex-
tensively [LBL77, Rap91]. Concentrations of contaminants such as aerosols or
dusts in occupational and environmental samples are commonly considered to
follow a lognormal distribution with probability density function:

p(c) =
e−(log((c−θ)/m))2/(2σ2))

(c − θ)σ
√

2π
c ≥ θ; m, σ > 0, (1)

where c is the contaminant concentration, σ is the shape parameter, θ is the
location parameter, and m is the scale parameter. Typically we consider θ = 0
and m = 1 for the standard lognormal distribution:

f(c) =
e−(log(c))2/(2σ2))

(cσ
√

2π)
c ≥ θ; σ > 0. (2)

The lognormal distribution is completely determined by the median or
geometric mean (GM) and geometric standard deviation (GSD). Conditions
appropriate for the occurrence of lognormal distributions in environmental
and occupational data are [LBL77]:

• The concentrations cover a wide range of values, often several orders of
magnitude.

• The concentrations lie close to a physical limit (zero concentration).
• The standard deviation of the measured concentration is proportional to

the measured concentration.
• A positive probability exists of very large values (or data “spikes”) occur-

ring.

It should be noted that the distribution of contaminants in a building
environment following an airborne CBR attack might not necessarily follow
a standard lognormal distribution considered above, however, due to outside
factors affecting dispersion. Such factors could include airflow in the HVAC
system, airflow in the occupied space driven by the ventilation system, air
movement due to pressure differences between room areas and temperature
gradients, and general office activities such as mail delivery, sorting, or general
foot traffic (see Fig. 1).

A hypothetical lognormal distribution of anthrax spores in environmental
samples collected using a high-efficiency particulate air (HEPA) vacuum in
work areas of a postal facility is shown in Fig. 2. The curve in Fig. 2 was
developed using measured values of c = 8.93 (GM of spore concentrations)
and σ = 1.87 (GSD of spore concentrations).
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Fig. 2. Hypothetical lognormal distribution of anthrax spore concentrations in work
areas of a postal facility.

3 Remediation: How Clean Is Clean?

The desired concentration levels of contaminants may determine methods used
during remediation, and thus the cost of remediation of any facility. Thus the
extent of the cleanup effort may well be determined by contaminant levels
deemed to be acceptable by governments, workers, and employers. For some
agents any presence is unacceptable. This is the case for anthrax spores, for
which there are currently no occupational or environmental exposure stan-
dards, resulting in the massive remediation efforts, closings of certain postal
facilities, and large numbers of samples taken to test for the presence or re-
moval of anthrax following the anthrax investigations of October–December,
2001. It should be remembered that even with large numbers of samples, un-
certainty still may exist since the limits of detection of present sampling and
analytical methods for anthrax spores are unknown and because of limita-
tions on the number of locations tested. In addition, there are currently no
validated sampling and analytical methods specifically for Bacillus anthracis
in environmental samples.

Some evidence on lethal contaminant levels comes from event outbreaks,
epidemiological case–control studies, and animal studies. For the anthrax ex-
ample, information about the quantity of spores needed for health effects
comes from an accidental release of anthrax spores in Sverdlovsk, Russia, in
1979 [Gui99]. From epidemiological analysis, the number of spores calculated
to cause infection in half the exposed population (LD50) was found to be
between 8,000 and 40,000 spores, and the typical incubation period was 2–6
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days with an illness duration of 3–5 days [BB02, BB03]. Extrapolation from
animal data suggests that the LD50 is 2,500 to 55,000 inhaled spores [IOH02].
Inhalation anthrax is often fatal, whereas cutaneous anthrax usually is not.
Such information has been used to model the extent of an anthrax epidemic,
and to determine the role public health measures such as vaccination may
play in minimizing an epidemic [BB03, JE01, MGH94].

Alternatives may exist for deciding that a building is “clean” other than
requiring complete removal of a contaminant. Statistically, a building might
be declared “clean” following remediation efforts: (a) if the upper 99% confi-
dence limit for the average concentration (spore count) is less than a threshold
determined by experiment, or (b) if the probability of obtaining a determi-
nation greater than the threshold is small enough, say less than α. In setting
appropriate limits, it should also be remembered that the probabilities in (a)
and (b) will be affected by environmental sampling and analytical limitations
in spore detection. Therefore high inferential limits and low threshold values
are desirable. In the anthrax example where any presence is unacceptable, the
threshold value would be 0 spores.

It should be mentioned that in certain cases, such as during a first response
effort where the presence of contaminant is known and the sources must be
quickly identified, it may be that an entirely statistically based sampling strat-
egy may be undesirable or impractical. This case is in contrast to ones in which
characterization and estimation of contaminant levels are needed, for which
the modeling approaches discussed here may be used. In first response cases,
the rationale for clearance sampling might be based on an empirical approach
(observation, good practices). Since sample size and surface sampling areas
cannot be calculated based on known risk, sampling in such situations might
better be determined based on practical experience, observation, and good
industrial hygiene practices, guided by statistical considerations.

4 Approaches to Modeling the Concentration Field

4.1 Probabilistic Methods

Geostatistical models originally developed in the mining industry for identifi-
cation of high concentrations of materials have been adapted for identification
of high concentrations of environmental contaminants [WE92]. Examples of
models that may be of interest for these data include kriging models that make
use of variogram estimates. Suppose that the measurement of a contaminant
at location si is Z(si). For a shift value of h, a model of the form

Var(Z(si + h) − Z(si)) = 2γ(h) (3)

has been found useful. The quantity 2γ(h) on the right-hand side is called the
variogram. For the prediction problem, measurements are taken at {si, i =
1, 2, . . . , n}. The measurements are assumed to follow the model Z(si) =
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µ(si)+δ(si), for a nonrandom systematic component µ(si) and error δ(si). The
predictor is P (Z) = Σi=1,2,...,nλiZ(si), where Σi=1,2,...,nλi = 1 [Cre93]. The
optimal predictor in ordinary kriging minimizes the mean square prediction
error over the class of linear predictors by using the variogram of the data and
assuming that µ(si) is constant. There are many variants of this procedure,
including use of the logarithms of the measurements Z, application of robust
procedures, kriging on ranks, and replacement of the mean µ(si) by a linear
combination of known functions.

In the applications of interest here, geostatistical methods could be used
as follows. After an initial phase of sampling in a contaminated building, these
methods could be used to predict locations of high levels of contaminant, and
these locations could then be used in a second sampling phase. An applica-
tion of this sort has been described by Englund and Heravi [EH94]. In the
present work, differences from that study are the use of these methods in an
indoor environment, with biological contaminants, which are distributed in
three dimensions. The inclusion of knowledge of ventilation systems, build-
ing geometry, and effect of human occupation makes this new application a
considerable challenge.

4.2 Computational Fluid Dynamics

CFD is a powerful deterministic model of contaminant transport that re-
quires solving conservation laws in scenarios such as rooms. One approach,
the control volume method, involves division of the physical space of the
room into discrete control volumes called cells. The partial differential equa-
tions (Navier–Stokes equations) that govern fluid motion are integrated over
each control volume to form simplified algebraic equations. To illustrate us-
ing φ for a general scalar variable such as mass, a momentum component, or
energy, the continuum form of the general steady-state conservation equation
is [BFK03, BCS03, Flu98]∮

�φ−→v • d−→A =
∮

Γφ � φ • d−→A +
∫

SφdV, (4)

where
� = fluid density−→v = velocity vector
φ = scalar variable−→A = surface area vector
Sφ = source of φ per unit volume
Γφ = diffusivity for φ

V = cell volume
When this partial differential equation is discretized in the control volume

method, it becomes
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Nfaces∑
f

vfφfAf =
Nfaces∑

f

Γφ(�φ)nAf + SφV, (5)

where
f = cell face
Nfaces = number of faces enclosing cell
φf = value of φ convected through face f

vf = mass flux through face f

Af = area of face f

(�φ)n = magnitude of the gradient of φ normal to face f

V = cell volume
The algebraic equations are then solved iteratively, starting at the bound-

aries of the physical space. The calculations are repeated until the conservation
laws are satisfied to an acceptable degree in each cell. The degree of imbalance,
called the “residual,” in the conservation law is computed as the difference
between the value of a variable in a cell and the value that would be expected
based on what is flowing into and out of that cell via adjacent cells. A global
measure of the imbalance in the conservation law is formed by summing the
residuals for all cells, then dividing by the sum of the variable in all the cells.
This quantity is termed a “normalized residual.”

Sensitivity of CFD models to boundary conditions (e.g., building geome-
try and HVAC parameters) represents both strengths and limitations of the
method. While accurate reconstructions of contaminant transport and depo-
sition are practical in simple environments, real buildings and the activities
therein are often prohibitively complex and uncertain. A simplified approach
for airflow in buildings, known as MZ modeling, treats building zones as nodes
and the HVAC system as links in a network model [DW02, pp. 131–154]. San-
dia National Laboratories has developed this method intensely, beginning in
1995, in response to the sarin gas release in Tokyo’s subway system. Their
technology has been refined now to the point where building blueprints (CAD
(computer-aided design) drawings) are used to more rapidly develop flow mod-
els that incorporate detailed physics of contaminant behavior. Such informa-
tion helps optimize detector placement, emergency response strategies, and
decontamination tactics [SNL03]. It is also possible to combine a local CFD
model with a building-scale MZ model. Sextro et al. [SLS02], for example,
modeled the spread of anthrax in buildings using a combination of MZ and
CFD modeling.

The results of these numerical models are a predicted concentration field
that can be treated as a population, from which sparser samples can be drawn,
for the evaluation of statistical approaches to estimating a complete field. The
fidelity of the numerically predicted fields must be assessed before they can be
used as a meaningful population of concentration values. The authenticity of
CFD solutions can be decomposed into two areas, verification and validation.
The American Institute of Aeronautics and Astronautics defines verification
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as “the process of determining that a model implementation accurately rep-
resents the developer’s conceptual description of the model and the solution
to the model.” Validation is defined as “the process of determining the degree
to which a model is an accurate representation of the real world from the per-
spective of the intended uses of the model” [OT02]. The following verification
and validation tests would be performed.

Spatial Discretization. The solutions are brought to convergence using the
second-order upwind scheme. Also, the results from the original grid are com-
pared to a new grid where the number of cells has increased by a factor of 8 in
regions of large gradients. This grid convergence test will be evaluated using
Roache’s grid convergence index (GCI):

GCI = FS

∣∣∣∣f2 − f1

1 − rp

∣∣∣∣ , (6)

where FS = 3 is a safety factor designed to approximate errors in convergence
in the coarse-grid and fine-grid studies, f2 is the coarse-grid solution, f1 the
fine-grid solution, r the ratio of cell sizes, and p the order of the discretization
[Roa98, pp. 107–136].

Solution Convergence. The solution process is iterated until the normalized
residuals for each conservation equation are less than 10−3. The second-order
solution will require adjustment of the under-relaxation parameters in order
to converge to this level.

Experimental Measurements. A CFD simulation of a space that is also
characterized experimentally provides a basis for comparison of variables such
as velocity and concentration. Concentration is a useful endpoint variable to
determine whether contaminant transport has been simulated accurately. If
not, the velocity field agreement may be used to understand how to improve
the contaminant transport simulation.

The verifications and validations should be looked at as a set. Experimental
measurements by themselves are not a sufficient yardstick of CFD accuracy,
given that experiments also have error and that agreement between CFD and
experiment can occur by chance.

5 Adaptive Sampling for Site Characterization and
Decontamination

In general, adaptive sampling refers to sampling designs in which the proce-
dure for selecting sites or units to be included in a second sample may depend
on values of interest observed or predicted from previous samples. With this
in mind, the primary application of an adaptive sampling procedure is to
capture as many of the units of interest as possible in the sample based on
a well-established linking mechanism. In the anthrax example, the main pur-
pose of the adaptive sampling procedure is to identify units of a given building
with concentration of spores above the threshold for remediation.
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As with MZ modeling, the discretization of a building into adaptive sam-
pling units may be done room by room or by another rule with contaminant
transport relevance, such as connection via the ventilation system. It is desir-
able to choose units small enough to be relatively homogeneous with respect
to the level of contamination within, while not making the total number of
units impractically large.

To maximize the number of sampled units with concentration above the
threshold, the procedure could be composed of several rounds of adaptive
sampling depending on the outcomes during the survey. At the first round, an
initial sample of n units is taken, which could be any probability sample, for
instance, a simple random sample, a stratified random sample, or a systematic
sample. The sampling units could be defined as a volumetric grid of spatial
units of uniform dimensions for the building, which are then indexed. It may be
convenient to have this grid coincide with an equal or lower frequency subset of
the numerical grid, though the numerical grids are often not spatially uniform.
Interpolation between grid points then becomes necessary. If the concentration
population was formed by a MZ model, the sampling units can coincide with
the zones. We then examine each unit in the initial sample to determine if it
contains “above the threshold level of spores.” When it does, we add units
that are connected by some linking mechanism, such as a ventilation system,
ordinary foot traffic, interoffice mail distribution route, or adjacency to other
units that may contain the spores above the threshold. In other words, if
adjacency is the linking mechanism and there are grid units in the initial
sample that contain spore concentrations in excess of a prescribed threshold,
add grid units adjacent to each contaminated sample grid unit according to a
fixed “neighboring units” pattern. Continue to add units adjacent to these grid
units in excess of the predefined threshold value until no other units need be
added. Note that the threshold could be chosen to be 0, but that the resulting
sample sizes required might be large. Alternatively, it is possible that the
modeling proposed in Sect. 4 above can provide information concerning which
units to add to the screening sample. We continue applying the procedure until
all the units that are connected by the linking mechanism are exhausted.

The collection of the sampled units (created by an adaptive sampling pro-
cedure) with spore concentrations greater than the threshold value is called
a network. We could have multiple networks of various sizes in the building.
If a unit with concentration of spores above the threshold is selected in the
initial sample and is not connected to any other unit with concentration above
the threshold by the established linking mechanism, then this unit would be
considered as a network by itself. We can have k networks where k does not
exceed the initial sample size n.

All grid units in the k networks are units with above the threshold concen-
tration of spores and should be decontaminated. After the initial remediation
based on the findings of the first round of adaptive sampling procedure, an-
other sample of units could be selected randomly from the area that was not
covered in the first round of networking. The adaptive sampling procedures
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would be applied in a similar fashion as before. If units with concentration of
spores above threshold are found in this round, they are decontaminated and
further sampling would be done of the area not covered in the previous two
rounds. If no unit above the threshold is found in the second round, we stop
the sampling. In other words, if no unit in the initial sample contains a con-
centration of spores above the threshold in the first round, one might consider
declaring that there is no evidence that the site is not clear and stop further
environmental sampling. Alternatively, a second sample could be chosen for
further verification of the initial findings.

After decontaminating those units with levels above the threshold, as found
in the successive adaptive sampling procedures, a new sample from the whole
building should be taken. At this point a nonparametric statistical approach
or asymptotic distribution theory could be used to test the hypothesis whether
spore concentrations in the decontaminated areas are elevated relative to the
whole building sample. In this case it should be noted that the remaining
contaminants no longer have the distribution they had before remediation.
From the concentration field previously generated, draw a “screening” or ini-
tial sample of grid units of sufficient size to estimate the proportion of spatial
grid units that contain lethal spore concentrations with acceptable precision
and reliability. For example, to determine the number of grid units to be ini-
tially considered, one might use the criterion that we want to be 98% confident
that estimated contaminant concentrations will have an absolute error of 1%
or less. If the sampling results are binary (indicating only whether spores are
present or absent), then an appropriate criterion might be that the fraction
of grid units (or the total number of grid units) with spores present should be
estimated with 98% confidence. It should be noted that the method used in
assigning selection probabilities to the grid units is an important part of this
approach and that confidence levels will be greater for subsequent samples.

Katzoff et al. [KWG03a] have used computer simulation procedures to
study adaptive sampling procedures, assuming a critical spore count per unit
was required. They found that the final sample of units with lethal spore
counts was orders of magnitude greater for adaptive procedures than for the
corresponding nonadaptive procedures. Their results also showed that consid-
eration of the sources of contamination was important, as was the importance
of an understanding of the airflow in and between the various subunits.

A sampling scheme to characterize the extent of site decontamination need
not be adaptive, but could be based on expert judgment or probabilistic mod-
els as discussed in Sects. 3 and 4 above. By subtracting expected values of
concentration of the contaminant (from CFD and MZ models) from observed
values measured using monitors, residuals may be obtained for examination.
These could be modeled to obtain information about model goodness of fit
and covariance structure of the observations. If the number of samples is suf-
ficiently large, geostatistial techniques such as variogram estimation may also
be used to model the information in these residuals. The aim of this pro-
cess is the approximate validation of the deterministic approaches, followed
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by the improvement of these approximations by statistical means. This will
ensure that the distribution of contaminants in the building environment is
understood.

Environmental sampling thus has important uses:

• Identification of areas of high concentrations of contaminant.
• Comparison of results from adaptive sampling with results from CFD and

MZ models.

Successful modeling of precleanup data may also help identify the location of
the sources of the contaminant, if that is unknown. This can be useful both
for the cleanup operation and for law enforcement.

6 Modeling Contaminant Dispersion: Proposed
Investigations

Experimental data may be used to validate and improve CFD models of con-
taminant concentrations as described in Sect. 5. Contaminant transport ex-
periments in buildings can validate and improve MZ modeling. Then, the nu-
merical models can be used to validate and enhance the statistical approaches
such as adaptive sampling and kriging. Adaptive sampling is one of a family
of techniques, including kriging, that estimate a field at a spatial resolution
higher than what is initially known. CFD may be useful to investigate the
accuracy of such estimates, through its high-resolution rendering of fields.
These may be viewed as populations, from which samples may be drawn for
the adaptive sampling process whose estimates can then be compared to the
population. Also, CFD shares with MZ the prediction of transport. Whereas
an adaptive sampling routine might look neutrally in all directions from a
local maximum to find other high values, the numerical airflow model would
predict that higher values occur downwind of a source. In the case of an MZ
model of a multiroom system, adjacent rooms fed by different air handlers
may have very different concentrations, whereas a neutral adaptive routine
would assume a spatial correlation.

The following is a more detailed look at preliminary experiments in a
single room in the ventilation laboratory, performed for the purpose of gener-
ating a concentration field to compare with CFD. An outline of the proposed
experiment is shown in Fig. 3.

The experimental layout and geometry of the ventilation chamber are
shown in Fig. 4. As indicated, concentrations of tracer gas are measured in
real time at both locations A and B. Distances between measuring points and
velocities at airflow boundaries are also shown in Fig. 4.

Results of measurements taken in the ventilation chamber are shown in
Table 2 and Fig. 5.

For this example, measurements taken at locations A and B were fit to a
negative exponential model of the form
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for further environmental sampling
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model concentration field

(spatial modeling)

Use deterministic approach to

model concentration field (CFD)
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Fig. 3. Outline of proposed experiment.
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Fig. 4. Experimental layout and CFD geometry viewed from top of room.
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C(t) = β0(1 − exp(−β1t)), (7)

where C(t) is concentration at time t, to generate Fig. 5. Notice that the
range of measured concentrations is larger at location A than at location B,
and that concentration at stationarity is greater at location A (29.2 mg/m3 in
the fitted model, versus 28.1 mg/m3 for location B), and that it took longer to
reach this value at location A (118 seconds versus 66 seconds at location B).
Since location A is farther from the source, a long-term diffusion action may
be responsible for the longer time to stationarity. The main and more rapid
transport mechanism in this room under mixing ventilation is convection. A
range of concentrations was measured at both locations.

Concentration (mg/m3)

Time (seconds)

Location A

Location B

Concentration (mg/m3)

Time (seconds)

Location A

Location B

Fig. 5. Predicted concentration* versus time at two monitoring locations. Concen-
trations predicted under a negative exponential model (7).

Table 2. Results of fitting observed data to negative exponential growth curve

Location B Location A
Observed concentrations (mg/m3) 13.6 – 33.9 16.8 – 31.3
Fitted model

Parameter β0 29.2 28.1
Parameter β1 0.11 0.20
Time to reach β0 (seconds) 118 66
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Experimental measurements taken in the ventilation chamber may be mod-
eled using an equation of the form of (7), but one in which error and autocor-
relation of measurements would also be taken into account. Predictions from
such a model could be compared to concentrations from CFD predictions.
Once the CFD predictions are validated, the entire field produced by CFD
can be used as a source for adaptive sampling. The predictions obtained from
adaptive sampling from the CFD grid of values will be compared to CFD mean
values. If the use of adaptive sampling can be demonstrated successfully, CFD
will be used to generate grids for a variety of contaminant situations, on which
further adaptive sampling will be carried out and compared to CFD predic-
tions. CFD calculations will be performed using Fluent 6 software. Fluent 6 is
a commercial code that has been widely used in academia, government, and
industry for many years [Flu98].

6.1 Modeling Dispersion of Tracer Gas in a Room — Limitations
and Further Research

As mentioned earlier, the tracer gas experiment has limitations that include
the following issues:

• Location: The point source(s) in the tracer gas experiment are known and
fixed, whereas source location may be an unknown in a real attack.

• Agent: The tracer is a gas measured in air, whereas the contaminant of
interest may be an aerosol in air or deposited on surfaces.

• Generality: Can agreement of this particular experiment with CFD model-
ing say anything about expected agreement in other rooms, building floors,
and whole buildings?

The question of whether experimental validation of the CFD techniques
in one situation says anything about accuracy in another situation deserves
some attention. It is not proposed to use a CFD solution for the test room as
information for the wider field of contaminants and potentially contaminated
environments. Rather, the specifics of the process of arriving at the CFD
solution, when validated, provide information about how that same process
would perform for airflow in another occupied space. To require laboratory
validation for every new situation is an unnecessary burden. The aim is to
first validate CFD in a situation that is feasibly measurable, then to also ap-
ply CFD in the situation of interest not amenable to direct validation. CFD
is capable of tracking particles of any reasonable aerodynamic diameter from
their source to their fate on a surface. Its ability to accurately predict a tracer
gas field in a test room says much about the fidelity of computed particle
paths in a building. On the other hand, CFD/MZ methods may provide im-
perfect predictions in a real-world workplace. Perhaps by combining data and
CFD/MZ values, predictions of concentrations of contaminants in unsampled
units may be obtained that are better than those produced by either geo-
statistical methods or CFD/MZ methods by themselves. Since there is also
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no guarantee that the assumptions required for second-order stationarity and
ergodicity (which ensure convergence of the average of the sample values to
the mean for large samples) will be met, it may be that alternative modeling
approaches including transformation of data or considerations of lognormality
may be needed. Furthermore, even if residuals in the modeling process appear
to be appropriate, systematic components may still not be completely taken
into account.

For instance, if our initial sample can be viewed as a grid, then we could
perhaps combine median polish kriging (which adjusts the mean for rows and
columns in the data) with estimates from the CFD/MZ data in one statistical
model to provide smoothed estimates of mean concentrations at the sampled
locations. To the extent that the modeled CFD/MZ data explain all variation,
the additional contribution from the rows and columns might be unnecessary.
Another plus of this approach would be that it does not seem to require
stationary data. If the explanatory components from the model adjust for all
changes in the mean, then the residuals will be stationary [Cre93]. Variograms
can be fit to the residuals and these can be combined with the mean structure
(from the model for the fitted mean) to obtain the full model for prediction of
unsampled locations, in order to determine sampling locations for the second
phase of sampling. Another advantage of using the median polish method is
the use of medians protects against outliers. A somewhat different approach
using medians has been discussed by Kafadar and Morris [KM02].

7 Understanding Contaminant Fields: The Need for
New Multidisciplinary Approaches

Understanding the distribution and dispersion characteristics of contaminants
that might be released during a terrorist attack poses great challenges. Not
only are the types of contaminants varied, including chemical, biological, as
well as radiological agents, but standard techniques may not be applicable
and appropriate ones must be developed.

An important issue is how and when to carry out probability sampling
for further characterization of results obtained following initial judgmental
sampling (first response), and for determination of the extent of site decon-
tamination. It may be that at some facilities, where anthrax (or some other
toxic substance) will very likely be found, expert judgment alone can be used
to choose a sampling location that yields a positive result, such as on the
surface of a return air grille. However, for other locations, where the presence
of the substance is less likely, the need for probability sampling is greater. The
question is how to sample and how many samples to take, to accurately assess
the risk to workers. Epidemiological information such as where an index case
spent time can be helpful, but limiting sampling to a specific area is often hard
to justify, due to the variety of pathways for contaminant transport. The same
is true for the influence of the ventilation system. The field of inquiry quickly
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expands then to the entire space where contamination is possible. Therefore,
response teams initially rely on necessarily sparse sampling of large spaces.

Although initial environmental samples might be considered to be taken
at random locations in a given area, other kinds of probability samples can be
taken later to characterize the concentration field — for instance, systematic
samples. One approach might be to set up a uniform grid in the area under
question and designate sample locations on the grid. Modeling of the con-
taminant concentration field using a deterministic approach such as CFD or
a probabilistic spatial analysis approach could help to determine appropriate
sampling locations on the grid. Some researchers [Tho02] have demonstrated
the utility of systematically sampling on a uniform grid to determine contam-
inant concentrations, using results to determine locations for further sampling
in an adaptive procedure. In actual practice there might be a rule such as,
take one sample from every room in a building.

The approach presented here for modeling the concentration field to direct
further environmental sampling represents the marriage of two complementary
disciplines, fluid dynamics and statistical science. Such an analytic approach
not only adds validity and worth to each, but may also serve as a model for
analyses of other aerosols and/or agents. It is also an example of the need for
multidisciplinary approaches in understanding contaminant distributions and
subsequent environmental sampling and decontamination efforts. CFD has
been used in combination with other epidemiological findings to model air-
borne transmission of the Severe Acute Respiratory Syndrome virus (SARS),
for example Yu et al. [YLW04].

While CFD can be further developed to account for patterns of airflow,
deposition, and resuspension of particles around furniture, office or postal
sorting machines, it is not clear that it is the most efficient method, since de-
terministic models get very complicated (expensive) as the details reach ever
smaller resolved scales. Furthermore, accounting for the contaminant trans-
port induced by normal human activity may be unknowable in a deterministic
sense. While MZ is more practical for large buildings, it is a less complete de-
terministic model. In view of the limitation of both numerical techniques,
statistical methods of generating the concentration field for a contaminant
may be helpful in understanding contaminant distribution for site decontam-
ination. The use of the lognormal distribution to characterize contaminant
concentrations was introduced in Sect. 3. Kriging and geostatistical analy-
ses represent alternative approaches to modeling the concentration field of
a contaminant. Another approach for dynamic modeling of transport of air-
flows (air contaminants) in buildings is the method of Markov chain models or
use of stochastic differential equations. Markov chains can be used to model
turbulent diffusion and advection of indoor contaminants [Nic01]. Ideally the
numerical/deterministic and the statistical/empirical methodologies (such as
geostatistical displays) can complement each other in setting appropriate lo-
cations to apply adaptive sampling techniques.
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Conclusions concerning concentrations of contaminants require sampling.
Adaptive sampling provides a novel means of using spatial correlation to iden-
tify locations of high concentrations of lethal substances. The use of CFD/MZ
and geostatistical methods to identify potential locations at which to sample
can enhance adaptive sampling through identification of metaspatial or non-
proximal correlations based on airflow and containment patterns.

Such multidisciplinary approaches will be useful in understanding the con-
centration field of contaminants and in determining methods most appropriate
to site characterization and remediation. They will also be of value in other
potentially hazardous situations such as characterizing the quality of air in
offices or the extent of lead dust or respirable silica in construction/demolition
activities.
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1 Introduction

A continuing need in the contexts of homeland security, national defense, and
counterterrorism is for statistical analyses that “integrate” data stored in mul-
tiple, distributed databases. There is some belief, for example, that integration
of data from flight schools, airlines, credit card issuers, immigration records,
and other sources might have prevented the terrorist attacks of September 11,
2001, or might be able to prevent recurrences.

In addition to significant technical obstacles, not the least of which is poor
data quality [KSS01, KSB05], proposals for large-scale integration of multiple
databases have engendered significant public opposition. Indeed, the outcry
has been so strong that some plans have been modified or even abandoned.
The political opposition to “mining” distributed databases centers on deep,
if not entirely precise, concerns about the privacy of database subjects and,
to a lesser extent, database owners. The latter is an issue, for example, for
databases of credit card transactions or airline ticket purchases. Integrating
the data without protecting ownership could be problematic for all parties; the
companies would be revealing who their customers are, and where a person is
a customer would also be revealed.

For many analyses, however, it is not necessary actually to integrate the
data. Instead, as we show in this paper, using techniques from computer sci-
ence known generically as secure multiparty computation, the database hold-
ers can share analysis-specific sufficient statistics anonymously, but in a way
that the desired analysis can be performed in a principled manner. If the sole
concern is protecting the source rather than the content of data elements, it
is even possible to share the data themselves, in which case any analysis can
be performed.
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The same need arises in nonsecurity settings as well, especially scientific
and policy investigations. For example, a regression analysis on integrated
state databases about factors influencing student performance would be more
insightful than individual analyses, or complementary to them. Yet another
setting is proprietary data; pharmaceutical companies might all benefit, for
example, from a statistical analysis of their combined chemical libraries, but
do not wish to reveal which chemicals are in the libraries [KFL05].

The barriers to integrating databases are numerous. One is confidentiality;
the database holders — we term them “agencies” — almost always wish to
protect the identities of their data subjects. Another is regulation; agencies
such as the Census Bureau (CB) and Bureau of Labor Statistics (BLS) are
largely forbidden by law to share their data, even with each other, let alone
with a trusted third party. A third is scale; despite advances in networking
technology, there are few ways to move a terabyte of data from point A today
to point B tomorrow.

In this paper we focus on linear regression and related analyses. The re-
gression setting is important because of its prediction aspect; for example,
vulnerable critical infrastructure components might be identified using a re-
gression model. We begin in Sect. 2 with background on data confidentiality
and on secure multiparty computation. Linear regression is treated for “hori-
zontally partitioned data” in Sect. 3 and for “vertically partitioned data” in
Sect. 4. Two methods for secure data integration and an application to secure
contingency tables appear in Sect. 5, and conclusions are given in Sect. 6.

Various assumptions are possible about the participating parties, for ex-
ample, whether they use “correct” values in the computations, follow compu-
tational protocols, or collude against one another. The setting in this paper
is that of agencies wishing to cooperate but to preserve the privacy of their
individual databases. While each agency can “subtract” its own contribution
from integrated computations, it should not be able to identify the other agen-
cies’ contributions. Thus, for example, if data are pooled, an agency can of
course recognize data elements that are not its own, but should not be able
to determine which other agency owns them. In addition, we assume that the
agencies are “semihonest;” each follows the agreed-on computational proto-
cols, but may retain the results of intermediate computations.

2 Background

In this section we present background from statistics (Sect. 2.1) and computer
science (Sect. 2.2).

2.1 Data Confidentiality

From a statistical perspective, the problem we treat lies historically in the
domain of data confidentiality or, in the context of official statistics, statis-
tical disclosure limitation (SDL) [DJD93, WD96, WD01]. The fundamental
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dilemma is that government statistical agencies are charged with the inher-
ently conflicting missions of both protecting the confidentiality of their data
subjects and disseminating useful information derived from their data, to
Congress, other federal agencies, the public, and researchers.

In broad terms, two kinds of disclosures are possible from a database of
records containing attributes of individuals or establishments. An “identity
disclosure” occurs when a record in the database can be associated with the
individual or establishment that it describes even if the record does not contain
explicit identifiers. An “attribute disclosure” occurs if the value of a sensitive
attribute, such as income or health status, is disclosed. This may be an issue
even without identity disclosure; for instance, if a doctor is known to specialize
in treating AIDS, then attribute disclosure may occur for his or her patients.
Attribute disclosure is often inferential in nature, and may not be entirely
certain. It is also highly domain-dependent.

To prevent identity disclosures, agencies remove explicit identifiers such
as name and address or Social Security number, as well as implicit identi-
fiers, such as “Occupation = Mayor of New York.” Often, however, this is not
enough. Technology poses new threats, through the proliferation of databases
and software to link records across databases. Record linkage, which is shown
pictorially in Fig. 1, produces identity disclosures by matching a record in
the database to a record in another database containing some of the same at-
tributes as well as identifiers. In one well-known example [Swe97], only three
attributes — date of birth, 5-digit zip code of residence, and gender — pro-
duced identity disclosures from a medical records database by linkage to public
voter registration data.

Identity disclosure can also occur by means of rare or extreme attribute
values. For example, female Korean dentists in North Dakota are rare, and an
intruder — the generic term for a person attempting to break confidentiality
— could recognize such a record, or a family member may recognize another
family member from household characteristics, or an employer could recognize
an employee from salary, tenure, and geography. Establishments (typically,
corporations and other organizations) are especially vulnerable in data at high
geographical resolution. The largest employer in a county is almost always
widely known, so that county-level reporting of both numbers of employees
and health benefits expenditures does not protect the latter.

There is a wealth of techniques [DLT01, FCS94, FW98, WD96, WD01] for
“preventing” disclosure. In general, these techniques preserve low-dimensional
statistical characteristics of the data, but distort disclosure-inducing, high-
dimensional characteristics. Aggregation — especially geographical aggrega-
tion [KLS01, LHK01] — is a principal strategy to reduce identity disclosures.
The CB and several other federal agencies do not release data at aggregations
less than 100,000. Another is top-coding ; for example, all incomes exceeding
$10,000,000 could be lumped into a single category. Cell suppression is the
outright refusal to release risky — usually, small count — entries in tabu-
lar data. Data swapping interchanges the values of one or more attributes,
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such as geography, between data records. Jittering adds random noise to val-
ues of attributes such as income. Microaggregation groups numerical data
records into small clusters and replaces all elements of each cluster by their
(componentwise) average [DA95, DN93]. Even entirely synthetic databases
may be created, which preserve some characteristics of the original data, but
whose records simply do not correspond to real individuals or establishments
[DK01, RRR03, Rei03a]. Analysis servers [GKR05], which disseminate anal-
yses of data rather than data themselves, are another alternative, as is the
approach described in this paper.

Much current research focuses on explicit disclosure risk — data utility for-
mulations for SDL problems [DFK02, DKS03, DKS04, DS04, GKS05, KKO05,
Tro03]. These enable agencies to make explicit trade-offs between risk and
utility.

Fig. 1. Pictorial representation of record linkage. The upper record, in the purported
protected database, is linked to a record in the external database that has the same
values of attributes A1, A2, A3, and A5, but also contains an identifier. If only
one record in the external database matches, then the value of A6 is known for the
subject of that record. In practice, surprisingly few attributes are needed.

2.2 Secure Multiparty Computation

The generic secure multiparty computation problem [GMW87, Gol97, Yao82]
concerns agencies 1, . . . , K with values v1, . . . , vK that wish to compute a
known function f(v1, . . . , vK) in such a manner that no agency j learns no
more about the other agencies’ values than can be determined from vj and
f(v1, . . . , vK). In practice, absolute security may not be possible, so some
techniques for secure multiparty computation rely on heuristics [DZ02] or
randomization.

The simplest secure, multiparty computation, and the one used in Sect. 3
for secure regression, is to sum values vj held by the agencies: f(v1, . . . , vK) =∑K

j=1 vj . Let v denote the sum. The secure summation protocol [Ben87], which
is depicted graphically in Fig. 2, is straightforward in principle, although a
“production quality” implementation presents many challenges. Number the
agencies 1, . . . , K. Agency 1 generates a very large random integer R, adds R

to its value v1, and sends the sum to agency 2. Since R is random, agency 2
learns effectively nothing about v1. Agency 2 adds its value v2 to R+v1, sends
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the result to agency 3, and so on. Finally, agency 1 receives R+v1+ · · ·+vK =
R + v from agency K, subtracts R, and shares the result v with the other
agencies. Here is where cooperation matters. Agency 1 is obliged to share v

with the other agencies.
Figure 2 contains an extra layer of protection. Suppose that v is known to

lie in the range [0, m), where m is a very large number, say 2100, that is known
to all the agencies. Then R can be chosen randomly from {0, . . . , m − 1} and
all computations performed modulo m.

To illustrate, suppose that the agencies have income data and wish to
compute the global average income. Let nj be the number of records in agency
j’s database and Ij be the sum of their incomes. The quantity to be computed
is

Ī =

∑
j Ij∑
j nj

,

whose numerator can be computed using secure summation on the Ij ’s, and
whose denominator can be computed using secure summation on the nj ’s.

This method for secure summation faces an obvious problem if, contrary
to our assumption, some agencies were to collude. For example, agencies j −1
and j +1 can together compare the values they send and receive to determine
the exact value of vj . Secure summation can be extended to work for an
honest majority; each agency divides vj into shares, and secure summation
is used to calculate the sum for each share individually. However, the path
used is altered for each share so that no agency has the same neighbor twice.
To compute vj , the neighbors of agency j from every iteration would have to
collude.

3 Horizontally Partitioned Data

As the name connotes, this is the case where the agencies have the same at-
tributes on disjoint sets of data subjects [KLR04a, KLR05]. Examples include
state-level drivers license databases and data on individuals held by their
countries of citizenship.

3.1 The Computations

We assume that there are K > 2 agencies, each with the same numerical data
on its own nj data subjects — p predictors Xj and a response yj — and that
the agencies wish to fit the usual linear model

y = Xβ + ε (1)

to the “global” data
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Fig. 2. Values computed at each agency during secure computation of a sum initi-
ated by agency 1. Here v1 = 29, v2 = 5, v3 = 152, and v = 187. All arithmetic is
modulo m = 1024.

X =

⎡⎢⎣ X1

...
XK

⎤⎥⎦ and y =

⎡⎢⎣ y1

...
yK

⎤⎥⎦ . (2)

Figure 3 shows such horizontal partitioning for K = 3 agencies. Each Xj is
nj × p.

We embed the constant term of the regression in the first predictor: X
j
1 ≡ 1

for all j. To illustrate the subtleties associated with distributed data, the usual
strategy of centering the predictors and response at their means does not work
directly, at least not without another round of secure computation. The means
needed are the global, not the local, means, which are not available.5

Under the condition that

Cov(ε) = σ2I, (3)

the least-squares estimator for β is of course

5 They could, of course, be computed using secure summation, as in the average
income example in Sect. 2.2.
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β̂ = (XT X)−1XT y. (4)

To compute β̂ without data integration, it is necessary to compute XT X and
XT y. Because of the horizontal partitioning of the data in (2),

XT X =
K∑

j=1

(Xj)T Xj . (5)

Therefore, agency j simply computes its own (Xj)T Xj , a local sufficient statis-
tic that has dimensions p × p, where p is the number of predictors, and these
are combined entrywise using secure summation. This computation is illus-
trated with K = 3 in Fig. 3. Of course, because of symmetry, only

(
p
2

)
+ p

secure summations are needed. Similarly, XT y can be computed by secure,
entrywise summation of the (Xj)T yj .

Finally, each agency can calculate β̂ from the shared values of XT X and
XT y. Note that no agency learns any other agency’s (Xj)T Xj or (Xj)T yj ,
but only the sum of these over all the other agencies.

The least-squares estimator S2 of σ2 in (3) also can be computed securely.
Since

S2 =
(y − Xβ̂)T (y − Xβ̂)

n − p
, (6)

and XT X and β̂ have been computed securely, the only thing left is to com-
pute n and yT y using secure summation.

With this method for secure regression, each agency j learns the global
XT X and XT y. This creates a unilateral incentive to “cheat”; if j contributes
a false (Xj)T Xj and (Xj)T yj but every other agency uses its real data, then
j can recover ∑

i	=j

(Xi)T Xi

and ∑
i	=j

(Xi)T yi,

and thereby the regression for the other agencies, correctly. Every other
agency, by contrast, ends up with an incorrect regression. Research on means
of preventing this is under way at the National Institute of Statistical Sciences
(NISS). Exactly what is learned about an agency’s database from one regres-
sion — and whether that regression compromises individual data elements —
requires additional research.

Virtually the same technique can be applied to any model for which “suffi-
cient statistics” are additive over the agencies. One such example is generalized
linear models of the form (1), but with Σ = Cov(ε) not a diagonal matrix.
The least-squares estimator for β in the GLM is

β∗ = (XT Σ−1X)−1XT Σ−1y,
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which can be computed using secure summation, provided that Σ is known
to all the agencies. Exactly how Σ would be known to all the agencies is less
clear.

Another example is linear discriminant analysis [HTF01]; extension to
other classification techniques also remains a topic for future research.

Fig. 3. Pictorial representation of the secure regression protocol for horizontally
partitioned data. The dimensions of various matrices are shown.

3.2 Example

We illustrate the secure regression protocol of Sect. 3.1 using the “Boston
housing data” [HR78]. There are 506 data cases, representing towns around
Boston, which we partitioned, purely for illustrative purposes, among K = 3
agencies representing, for example, regional governmental authorities. An al-
ternative, more complicated partition of chemical databases occurs in [KFL05].

The database sizes are comparable: n1 = 172, n2 = 182, and n3 = 152.
The response y is median housing value, and three predictors were selected:
X1 = CRIME per capita, X2 = IND[USTRIALIZATION], the proportion of
nonretail business acres, and X3 = DIST[ANCE], a weighted sum of distances
to five Boston employment centers.

Figure 4 shows the results of the computations of their respective (Xj)T Xj

and (Xj)T yj performed by the three agencies. The agencies then use the
secure regression protocol to produce the global values

XT X = (X1)T X1 + (X2)T X2 + (X3)T X3

=

⎡⎢⎢⎣
506.00 1828.44 5635.21 1920.29
1828.44 43970.34 32479.10 3466.28
5635.21 32479.10 86525.63 16220.67
1920.29 3466.28 16220.67 9526.77

⎤⎥⎥⎦
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and

XT y = (X1)T y1 + (X2)T y2 + (X3)T y3

=

⎡⎢⎢⎣
11401.60
25687.10
111564.08
45713.87

⎤⎥⎥⎦ .

These global objects are shared among the three agencies, each of which can
then calculate the estimated values of the regression coefficients.

Figure 5 contains these estimators, as well as the estimators for the three
agency-specific local regressions. The intercept is β̂CONST, the coefficient cor-
responding to the constant predictor X1. Each agency j ends up knowing
both, but only, the global coefficients and its own local coefficients. To the
extent that these differ, it can infer some information about the other agen-
cies’ regressions collectively, but not individually. In this example, agency 2
can detect that its regression differs from the global one, but is not able to
determine that agency 1 is the primary cause for the difference. Agency 3 is
unaware that the regressions of both agency 1 and agency 2 differ from the
global regression.

Agency j nj (Xj)T Xj (Xj)T yj

1 172

⎡⎢⎣ 172.00 49.03 1581.19 781.52
49.03 40.42 556.29 180.95

1581.19 556.29 23448.60 5631.35
781.52 180.95 5631.35 4186.07

⎤⎥⎦
⎡⎢⎣ 4057.90

909.24
32227.19
18996.12

⎤⎥⎦

2 182

⎡⎢⎣ 182.00 94.47 1563.50 746.12
94.47 160.90 1433.20 231.87

1563.50 1433.20 18970.98 5224.19
746.12 231.87 5224.19 3882.02

⎤⎥⎦
⎡⎢⎣ 4691.10

2299.13
37949.83
19193.18

⎤⎥⎦

3 152

⎡⎢⎣ 152.00 1684.95 2490.52 392.64
1684.95 43769.02 30489.61 3053.46
2490.52 30489.61 44106.05 5365.14
392.64 3053.46 5365.14 1458.68

⎤⎥⎦
⎡⎢⎣ 2652.60

22478.73
41387.06
7524.57

⎤⎥⎦
Fig. 4. Illustration of the secure regression protocol for horizontally partitioned
data using the “Boston housing data.” As discussed in the text, there are three
agencies, each of which computes its local (Xj)T Xj and (Xj)T yj . These are com-
bined entrywise using secure summation to produce shared global values XT X and
XT y, from which each agency calculates the global regression coefficients.
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Regression β̂CONST β̂CRIME β̂IND β̂DIST

Global 35.505 -0.273 -0.730 -1.016

Agency 1 39.362 -8.792 -0.720 -1.462
Agency 2 35.611 2.587 -0.896 -0.849
Agency 3 34.028 -0.241 -0.708 -0.893

Fig. 5. Estimated global and agency-specific regression coefficients for the parti-
tioned Boston housing data. The intercept is β̂CONST.

3.3 Model Diagnostics

In the absence of model diagnostics, secure regression loses appeal to statisti-
cians. We describe briefly two strategies for producing informative diagnostics.
The first is to use quantities that can be computed using secure summation
from corresponding local statistics. The second uses secure data integration
protocols from Sect. 5 to share synthetic residuals.

A number of diagnostics are computable by secure summation. These in-
clude:

1. The coefficient of determination R2.
2. The least-squares estimate S2 of the error variance σ2, which was noted

in (6).
3. Correlations between predictors and residuals.
4. The hat matrix H = X(XT X)−1XT , which can be used to identify X-

outliers.

For diagnosing some types of assumption violations, only patterns in re-
lationships among the residuals and predictors suggestive of model misspeci-
fication are needed, rather than exact values of the residuals and predictors.
Such diagnostics can be produced for the global database using secure data
integration protocols (Sect. 5) to share synthetic diagnostics. The synthetic
diagnostics are generated in three steps [Rei03b]. First, each agency simu-
lates values of its predictors. Second, using the global regression coefficients,
each agency simulates residuals associated with these synthetic predictors in
a way — and this is the hard part — that mimics the relationships between
the predictors and residuals in its own data. Finally, the agencies share their
synthetic predictors and residuals using secure data integration.

4 Vertically Partitioned Data

Vertically partitioned databases contain different sets of attributes for the
same data subjects. For example, one government agency might have em-
ployment information, another health data, and a third information about
education, but all for the same individuals.



Secure Statistical Analysis of Distributed Databases 247

In this section, we show how to perform regression analyses on vertically
partitioned data. One approach (Sect. 4.1) assumes that the database owners
are willing to share sample means and covariances, which allows them to per-
form much richer sets of analyses than mere coefficient estimation, including
inference for the coefficients, model diagnostics, and model selection. The sec-
ond approach (Sect. 4.2) solves directly the quadratic optimization problem
associated with computation of least-squares estimators. It entails less shar-
ing of information, but requires that all agencies have access to the response
attribute.

Two assumptions underlie this section. First, we assume that the agencies
know that they have data on the same subjects, or that there is a secure
method for determining which subjects are common to all their databases.
The second, and stronger, assumption is that agencies can link records without
error. Operationally, this requires in effect that the databases have a common
primary key, such as Social Security number. How realistic this assumption is
varies by context. For administrative and financial records, it may be sensible,
but it becomes problematic in situations where error-prone keys such as name
or address must be used.

For the remainder of the section, we assume that the agencies have aligned
their common data subjects in the same order.

4.1 Secure Matrix Products

This method [KLR04b], which is in the spirit of Du et al. [DHC04], computes
the off-diagonal blocks of the full data covariance matrix securely.

Since each such block involves only two agencies, we restrict attention
to two database owners, labeled agency A and agency B, that possess dis-
joint sets of attributes for the same n data subjects. Let agency A possess
n p-dimensional data elements XA

1 , . . . , XA
n , and let agency B possess n q-

dimensional data elements XB
1 , . . . , XB

n , so that the full data matrix is

[XA XB ] =

⎡⎢⎣XA
11 · · · XA

1p XB
11 · · · XB

1q
...

...
...

...
XA

n1 · · · XA
np XB

n1 · · · XB
nq

⎤⎥⎦ . (7)

We assume the two data matrices are of full rank; if not, the agencies remove
linearly dependent columns.

The agencies wish to compute securely and share the p × q-dimensional
matrix (XA)T XB . Assuming that they also share “diagonal blocks” of the co-
variance matrix, as we describe below, once they have done so, each possesses
the “full data” covariance matrix and may perform a variety of statistical
analyses of the integrated data.
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Computation of Secure Matrix Products

An optimal computational protocol ensures that neither agency learns more
about the other’s data by using the protocol than it would learn if an omni-
scient third party were to tell it the result. From the perspective of fairness,
the protocol should be symmetric in the amount of information exchanged. A
protocol that achieves both of these goals, at least approximately, is:

1. Agency A generates a set of g = � (n − p)/2� orthonormal vectors
Z1, Z2, . . . , Zg ∈ IRn such that ZT

i XA
j = 0 for all i and j, and sends

the matrix Z = [Z1Z2 · · ·Zg] to agency B.
2. Agency B computes

W = (I − ZZT )XB ,

where I is an identity matrix, and sends W to agency A.
3. Agency A calculates, and shares with agency B,

(XA)T W = (XA)T (I − ZZT )XB = (XA)T XB .

The latter equality holds since (XA
j )T Zi = 0 for all i and j.

A method for generating Z is presented in [KLR04b].
It might appear that agency B’s data can be learned exactly since agency

A knows both W and Z. However, W has rank (n − g) = (n − 2p)/2, so that
agency A cannot invert it to obtain XB .

To assess the degree of protection afforded by this protocol, we note that for
any matrix product protocol where (XA)T XB is learned by both agencies, in-
cluding protocols that involve trusted third parties, at a minimum each agency
knows pq constraints on the other’s data, one for each element of (XA)T XB .
In realistic settings, the number of data subjects is much greater than the
number of terms in the cross-product matrix: n � pq. Thus, the knowledge of
agency A about XB consists of pq constraints implied by (XA)T XB , and that
the XB

i lie in the g ≈ n/2-dimensional subspace given by W = (I −ZZT )XB .
Thus, agency A has a total of g + pq constraints on XB . Assuming n � pq,
we can say that agency A knows the approximately n/2-dimensional subspace
that the XB

i lie in. For large n, agency B’s data may be considered safe.
Correspondingly, agency B knows pq constraints on XA implied by

(XA)T XB , and that the Xi lie in the (n − g) ≈ n/2-dimensional subspace
orthogonal to Z. Thus, agency B has a total of n − g + pq constraints on
XA. Assuming n � pq and that g ≈ n/2, we can say that agency B knows
the approximately n/2-dimensional subspace that the XA

i lie in. For large n,
agency A’s data may be considered safe.

Since agency A and agency B can each place the other’s data in an ap-
proximately n/2-dimensional subspace, the protocol is symmetric in the infor-
mation exchanged. At higher levels, though, symmetry can break down. For
example, if agency A holds the response, but none of its other attributes is a
good predictor, whereas the attributes held by agency B are good predictors,
then arguably A learns more about B’s data than vice versa.
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The protocol is not optimal in the sense of each agency’s learning as little as
possible about the other’s data. From (XA)T XB alone, agency A has only pq

constraints on XB , rather than the approximately n/2 constraints described
above. The symmetry, however, implies a minimax form of optimality; the
total amount of information that must be exchanged is n (consider the extreme
case that agency A transmits its data to agency B, which computes (XA)T XB

and returns the result to A), and so each agency’s transmitting n/2 constraints
on its data minimizes the maximum information transferred.

Nor is the protocol immune to breaches of confidentiality if the agencies do
not use their real data. Moreover, disclosures might be generated because of
the values of the attributes themselves. A related problem occurs if one agency
has attributes that are nearly linear combinations of the other agency’s at-
tributes. When this happens, accurate predictions of the data subjects’ values
can be obtained from linear regressions built from the securely computed ma-
trix products.

Application to Secure Regression

Application of the secure matrix product protocol to perform secure linear
regression analyses is straightforward. Altering notation for simplicity, let the
matrix of all variables in the possession of the agencies be D = [D1, . . . , Dp],
with

Di =

⎡⎢⎣ di1
...

din

⎤⎥⎦ , 1 ≤ i ≤ p . (8)

The data matrix D is distributed among agencies A1, A2, . . . , AK . Each agency
Aj possesses its own pj columns of D, where

∑K
j=1 pj = p.

A regression model of some response attribute, say Di ∈ D, on a collection
of the other attributes, say D0 ⊆ D \ {Di}, is of the form

Di = D0β + ε, (9)

where ε ∼ N(0, σ2). As in Sect. 3, an intercept term is achieved by including
a column of ones in D0, which, without loss of generality, we assume is owned
by agency A1.

The goal is to regress any Di on some arbitrary subset D0 using secure
computation. For simplicity, we suppress dependence of β, ε, and σ2 on D0.
The maximum likelihood estimates of β and σ2, as well as the standard errors
of the estimated coefficients, can be obtained from the sample covariance
matrix of D, using for example the sweep algorithm [Bea64, Sch03]. Hence,
the agencies need only the elements of the sample covariance matrix of D

to perform the regression. Each agency computes and shares the on-diagonal
blocks of the matrix corresponding to its variables, and the agencies use secure
matrix computations as described above to compute the off-diagonal blocks.
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The types of diagnostic measures available in vertically partitioned data
settings depend on the amount of information the agencies are willing to share.
Diagnostics based on residuals require the predicted values, D0β̂. These can
be obtained using the secure matrix product protocol, since

D0β̂ = D0 [(D0)T D0]−1
(D0)T Di.

Alternatively, once the β̂ is shared, each agency could compute the portion
of D0β̂ based on the attributes in its possession, and these vectors can be
summed across agencies using secure summation.

Once the predicted values are known, the agency with the response Di

can calculate the residuals E0 = Di − D0β̂. If that agency is willing to share
the residuals with the other agencies, each agency can plot residuals versus its
predictors and report the nature of any lack of fit to the other agencies. Sharing
E0 also enables all agencies to obtain Cook’s distance measures, since these
are functions of E0 and the diagonal elements of H = D0[(D0)T D0]−1(D0)T ,
which can be computed securely, as noted in Sect. 3.

The agency with Di may be unwilling to share E0 with the other agencies,
since sharing could reveal the values of Di itself. In this case, one option is to
compute the correlations of the residuals with the independent variables using
the secure matrix product protocol. When the model fits poorly, these corre-
lations will be far from zero, suggesting model misspecification. Additionally,
the agency with Di can make a plot of E0 versus D0β̂, and a normal quantile
plot of E0, and report any evidence of model violations to the other agencies.
The number of residuals exceeding certain thresholds, i.e., outliers, also can
be reported.

Variations of linear regression can be performed using the secure matrix
product protocol. For example, to perform weighted least-squares regression,
the agencies first securely premultiply their variables by T 1/2, where T is the
matrix of weights, and then apply the secure matrix protocol to the trans-
formed variables. To run semiautomatic model selection procedures such as
stepwise regression, the agencies can calculate the covariance matrix securely,
then select models based on criteria that are functions of it, such as the F -
statistic or the Akaike information criterion.

It is also possible to perform ridge regression [HK70] securely. Ridge re-
gression shrinks the estimated regression coefficients away from the maximum
likelihood estimates by imposing a penalty on their magnitude. Written in
matrix form, ridge regression seeks the β̂ that minimizes

Ridge(λ) = (Di − D0β)T (Di − D0β) + λβT β, (10)

where λ is a specified constant. The ridge regression estimate of the coefficients
is

β̂R =
[
(D0)T D0 + λI

]−1
(D0)T Di. (11)

Since (D0)T D0 can be computed using the secure matrix product protocol,
[(D0)T D0 +λI]−1 can be obtained and shared among the agencies. The agen-
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cies also can share (D0)T Di securely, which enables calculation of the esti-
mated ridge regression coefficients.

4.2 Secure Least Squares

A second approach to vertically partitioned data entails less sharing of infor-
mation than for the secure matrix product protocol of Sect. 4.1, but requires
that all agencies possess the response attribute y. If this were not the case,
the agency holding y would be required to share it with the others, which
poses obvious disclosure risks.

We assume the model of (1), and that (3) holds. The least-squares esti-
mates β̂ of (4) are, by definition, the solution of the quadratic optimization
problem

β̂ = arg minβ (y − Xβ)T (y − Xβ). (12)

Denote by Ij the predictors held by agency Aj and assume that the Ij are
disjoint. If there were overlaps, the agencies would decide in advance which
one “owns” shared attribute. For a vector u, we write uIj for {ui}i∈Ij

. The
total number of attributes — predictors and response — remains p.

As in other protocols for secure multiparty computation, one agency must
assume a lead role in initiating and coordinating the process. This is a purely
administrative role and does not imply any information advantage or disad-
vantage. We assume that agency 1 is the designated leader.

Powell’s Algorithm

The basis of the computational protocol is Powell’s method [Pow64] for so-
lution of quadratic optimization problems with calculating, which in practice
means approximating numerically, derivatives. We will use it to calculate β̂
in (12) directly.

Powell’s method is a derivative-free numerical minimization method that
solves the multidimensional minimization problem by solving a series of one-
dimensional (“line search”) minimization problems. A high-level description
of the algorithm is as follows:

1. Start with a suitably chosen set of p vectors in IRp that serve as “search
directions.”

2. Start at an arbitrary starting point in IRp and determine the step size δ

along the first search direction s(1) that minimizes the objective function.
3. Move distance δ along s(1).
4. Move an optimal step in the second search direction s(2), and so on until

all the search directions are exhausted.
5. Make appropriate updates to the set of search directions and continue

until the minimum is obtained.

Specifically, the procedure for finding the minimizer of the function f(β)
consists of an initialization step and an iteration block as described below.
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Initialization: Select an arbitrary6 orthogonal basis s(1), . . . , s(p) for IRp. Also,
pick an arbitrary starting point β̃ ∈ IRp.

Iteration: Repeat the following block of steps p times.
• Set β ← β̃.
• For i = 1, . . . , p, find δ that minimizes f(β + δs(i)), and then set

β ← β + δs(i).
• For i = 1, . . . , (p − 1), set s(i) ← s(i+1).
• Set s(p) ← β − β̃.
• Find δ that minimizes f(β + δs(p)), and set β̃ ← β + δs(p).

Note that each iteration of the iteration block involves solving (p + 1) one-
dimensional minimization problems, to determine the δ’s.

Powell [Pow64] established the remarkable result that if f is a quadratic
function, then p iterations of the iteration block yield the exact minimizer
of f ! That is, solving p(p + 1) one-dimensional minimization produces the
minimizer of a quadratic function.

Application to Secure Regression

The gist of our approach [SKL04] is to apply Powell’s method to

f(β) = (y − Xβ)T (y − Xβ),

in order to solve (12). The complication, of course, is that no agency possesses
all of the data. The details are as follows.

1. Let s(1), . . . , s(p) ∈ IRp be p-dimensional vectors that will serve as a set
of search directions in IRp, to be used for finding the optimal estimate β̂.
The s(r) will be initially chosen and later updated in such a manner that
agency Aj knows only the s

(r)
Ij

components of each s(r).
2. Initially, s(r) are chosen as follows. Each Aj picks an orthogonal basis

{v(r)}r∈Ij
for IRdj . Then for r ∈ Ij let s

(r)
Ij

= v(r), and s
(r)
l = 0 for l �∈ Ij .

Each agency should pick its basis at random so that the other agencies
cannot guess it.

3. Let β̃ =
(
β̃I1 , . . . , β̃Ik

)
∈ IRp be the initial starting value of β obtained

by each Aj picking β̃Ij
arbitrarily.

4. Perform the Basic Iteration Block below p times. The final value of β̃ will
be the least-squares estimators β̂.

The Basic Iteration Block is:

1. Each Aj sets βIj ← β̃Ij .
2. For r = 1, . . . , p:

6 Powell’s original algorithm used the coordinate axis vectors as the basis, but any
orthogonal basis also suffices [Bre73].



Secure Statistical Analysis of Distributed Databases 253

a) Each Aj computes XIj βIj and XIj s
(r)
Ij

.
b) The agencies use secure summation to compute

z = y − Xβ = y −
K∑

j=1

XIj
βIj

and

w = Xs(r) =
K∑

j=1

XIj s
(r)
Ij

.

In (only) the first iteration of this block, for a given r, XIj
s
(r)
Ij

is
nonzero only for the agency that owns xr. Revealing this to all agencies
would be too risky, so only that particular agency, say Ar, will compute
w, but not reveal it to the others.

c) All agencies compute
δ = zT w/wT w.

In the first iteration, Ar computes this and announces it to the other
agencies.

d) Each Aj updates βIj ← βIj + δs
(r)
Ij

.

3. For r = 1, . . . , (p − 1), each Aj updates s
(r)
Ij

← s
(r+1)
Ij

.

4. Each Aj updates s
(p)
Ij

← βIj
− β̃Ij

.

5. z, w, and δ are computed as before, and each Aj updates βIj ← βIj +δs
(p)
Ij

.

After the regression coefficients are calculated and shared, the agencies
learn at least three useful quantities. The first of these, of course, is the global
coefficients β̂, enabling each agency to assess the effect of its variables on
the response variable after accounting for the effects of the other agencies’
variables. Agencies can also assess the size of effects of the other agencies’
variables. If an agency obtains a complete record for some individual, the
global regression equation can also be used for prediction of the response value.
A comparison of the globally obtained coefficients with the coefficients of the
local regression (i.e., the regression of y on XIj

) could also be informative.
Agencies also learn the vector of residuals e = y − Xβ̂, which is equal to

the final z in our iterative procedure. The residuals permit agencies to perform
diagnostic tests to determine if the linear regression model is appropriate. The
agencies can perform formal statistical tests or use simple visual diagnostics
[SKL04]. Finally, agencies can compute the coefficient of determination

R2 =
yT y − eT e

yT y
. (13)

To assess what is revealed by this protocol, consider any one step of the
iteration. The only information exchanged by the agencies is the z and w
vectors. The actual risk to the data x is less since there is some masking
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with components of the s vectors. Specifically, the vulnerability is highest in
the first step of the iteration since — because of the way we have chosen the
initial s — only one agency contributes to the sum w at each round of the basic
iteration block. We can reduce risk of disclosure by having the contributing
agency compute δ privately and announce it to the others. If we assume that
the agencies select their initial bases randomly, so that it is impossible for
the others to guess them, and if the summation is performed using the secure
summation protocol, then no private information is revealed if only z and w
are common knowledge.

If iterations were independent, then clearly the procedure would be secure.
However, the values that each agency contributes to the sum are functionally
related from one iteration to the next. The relationship is complex and difficult
to express, however, so that this complexity combined with the nature of the
secure sum protocol will make it impossible in practice for malicious agencies
to exploit the iteration-to-iteration dependency of the values to compromise
data privacy.

Whether the approach is feasible computationally has not been estab-
lished.

5 Secure Data Integration

The procedures described in Sects. 3 and 4 are tailored to regressions, or
more generally to statistical analyses for which there exist sufficient statistics
that are additive over the agencies. This makes the protocols efficient, but
obviously every time a new kind of analysis is needed, so are new algorithms.

If the agencies are concerned primarily with protecting which one holds
which data elements, then it is possible to construct an integrated database
that can be shared among the agencies, and on which any kind of analysis is
possible. There are, however, at least two problematic aspects of this. First,
it requires sharing individual data values, with attendant disclosure risks to
the data subjects. Second, secure data integration does not work in situations
when data values themselves are informative about their source. For instance,
it would not work with state-held databases containing zip codes. Nor would it
work, for example, for hospital databases containing income when the patient
populations have drastically different incomes.

Consider K > 2 agencies wishing to share the integrated data among
themselves without revealing the origin of any record, and without use of
mechanisms such as a trusted third party. We present two algorithms for
doing this, neither of which provides any confidentiality protection for data
subjects beyond what may already have been imposed by the agencies.

5.1 Algorithm 1

Algorithm 1 passes a continually growing integrated database among the agen-
cies in a known round-robin order, and in this sense is similar to secure
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summation, although multiple rounds are required. To protect the sources
of individual records, agencies are allowed or required to insert both real and
“synthetic” records. The synthetic data may be produced by procedures sim-
ilar to those for construction of synthetic residuals (see Sect. 3.3), by drawing
from predictive distributions fit to the data [KLR05], or by some other means.
Once all real data have been placed in the integrated database, each agency
recognizes and removes its synthetic data, leaving the integrated database.

The steps in Algorithm 1 are:

1. Initialization: Order the agencies by number 1 through K.
2. Round 1: Agency 1 initiates the integrated database by adding only syn-

thetic data. Every other agency puts in a mixture of at least 5% of its
real data and, optionally, synthetic data, and then randomly permutes
the current set of records. The value of 5% is arbitrary, and serves to
ensure that the process terminates in at most 21 rounds. Permutation
thwarts attempts to identify the source of records from their position in
the database.

3. Rounds 2, . . . , 20: Each agency puts in at least 5% of its real data or all
real data that it has left, and then randomly permutes the current set of
records.

4. Round 21: Agency 1, if it has data left, adds them, and removes its syn-
thetic records. In turn, each other agency 2, . . . , K removes its synthetic
data.

5. Sharing: The integrated data are shared after all synthetic data have been
removed.

The role of synthetic data is analogous to that of the random number R

in secure summation. Without it, agency 2 would receive only real data from
agency 1 in round 1. However, synthetic data do not protect the agencies
completely. In round 1, agency 3 receives a combination of synthetic data
from agency 1 and a mixture of synthetic and real data from agency 2. By
retaining this intermediate version of the integrated database, which semihon-
esty allows, and comparing it with the final version, which contains only real
data, agency 2 can determine which records are synthetic (they are absent
from the final version) and thus identify agency 2 as the source of some real
records. The problem propagates, but with decreasing severity. For example,
what agency 4 receives in round 1 is a mixture of synthetic data from agency
1, synthetic and real data from agency 2, and synthetic and real data from
agency 3. By ex post facto removal of the synthetic data, agency 4 is left with
real data that it knows to have come from either agency 2 or agency 3, al-
though it does not know which. There are also corresponding vulnerabilities
in the last round.

Algorithm 1 is rather clearly vulnerable to poorly synthesized data. For
example, if the synthetic data produced by agencies 1 and 2 are readily de-
tectable, then even without retaining intermediate versions of the database,
agency 3 can identify the real data received from agency 2 in round 1. There
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is no guaranteed way to eliminate risks associated with retained intermediate
computations in Algorithm 1, other than the agencies’ agreeing not to retain
intermediate versions of the integrated database. Alternatively, the agencies
may simply accept the risks, since only a controllably small fraction of the
data is compromised. Given the “at least 5% of real data” requirement in
Algorithm 1, agency 2 would be revealing 5% of its data to agency 3, agencies
2 and 3 would reveal collectively 5% of their data to agency 4, and so on.
Reducing 5% to a smaller value would reduce this risk, but at the expense of
requiring more rounds.

5.2 Algorithm 2

Algorithm 2 is more secure than Algorithm 1, but it is also much more com-
plex. In particular, while the algorithm will terminate in a finite number of
stages, there is no fixed upper bound on this number. By randomizing the
order in which agencies add data not only are the risks reduced but also
the need for synthetic data is almost obviated. In addition to a growing
integrated database, Algorithm 2 requires transmission of a binary vector
d = (d1, . . . , dK), in which dj = 1 indicates that agency j has not yet con-
tributed all of its data and dj = 0 indicates that it has.

Steps in Algorithm 2 are:

1. Initialization: A randomly chosen agency is designated as the stage 1
agency a1.

2. Stage 1: The stage 1 agency a1 initializes the integrated database with
some synthetic data and at least one real data record and permutes the
order of the records. If a1 has exhausted its data, it sets da1 = 0. Then,
a1 picks a stage 2 agency a2 randomly from the set of agencies j, other
than itself, for which dj = 1, and sends the integrated database and the
vector d to a2.

3. Intermediate stages 2, . . .: As long as more than two agencies have data
left, the stage � agency a	 adds at least one real data record and, optionally,
as many synthetic data records as it wishes, to the integrated database,
and then permutes the order of the records. If its own data are exhausted,
it sets da�

= 0. It then selects the stage � + 1 agency a	+1 randomly from
the set of agencies j, other than itself, for which dj = 1 and sends the
integrated database and the vector d to a	+1.

4. Final round: Each agency removes its synthetic data.

The attractive feature of Algorithm 2 is that because of the randomiza-
tion of the “next stage agency,” no agency can be sure which other agencies
other than possibly the agency from which it received the current integrated
database have contributed real data to it. The number and order of previous
contributors to the growing integrated database cannot be determined. Nor,
if it comes from the stage 1 agency, is there even certainty that the database
contains real data.
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In fact, to a significant extent, Algorithm 2 does not even need synthetic
data. The one possible exception is stage 1. If only real data were used, an
agency that receives data from the stage 1 agency knows that with probability
1/(K − 1) that it is the stage 2 agency, and would, even with this low prob-
ability, be able to associate them with the stage 1 agency, which is presumed
to be known to all agencies. The variant of Algorithm 2 that uses synthetic
data at stage 1 and only real data thereafter seems completely workable.

5.3 Application: Secure Contingency Tables

The algorithms for secure data integration have both direct uses, to do data
integration, and indirect applications. Here we illustrate the latter, using se-
cure data integration to construct contingency tables containing counts.

Let D be a database containing only categorical variables V1, . . . , VJ . The
associated contingency table is the J-dimensional array T defined by

T (v1, . . . , vJ) = #{r ∈ D : r1 = v1, . . . , rJ = vJ}, (14)

where each vi is a possible value of the categorical variable Vi,7 #{·} de-
notes “cardinality of ·,” and ri is the ith attribute of record i. The J-tuple
(v1, . . . , vJ) is called the cell coordinates. More generally, contingency tables
may contain sums of numerical variables rather than counts; in fact the pro-
cedure described below works in either case. The table T is a near-universal
sufficient statistic, for example for fitting log-linear models [BFH75].

While (14) defines a table as an array, this is not a feasible data structure
for large tables (with many cells, which are invariably sparse) with relatively
few cells having nonzero counts. For example, the table associated with the
CB “long form,” which contains 52 questions, has more than 1015 cells (1
gigabyte = 109) but at most approximately 108 (the number of households
in the USA) of these are nonzero. The sparse representation of a table is the
data structure of (cell coordinate, cell count) pairs(

v1, . . . , vJ , T (v1, . . . , vJ)
)

,

for only those cells for which T (v1, . . . , vJ) �= 0. Algorithms that use the sparse
representation data structure have been developed for virtually all important
table operations.

Consider now the problem of securely building a contingency table from
agency databases D1, . . . , DK containing the same categorical attributes for
disjoint sets of data subjects. Given the tools described in Sects. 3, 5.1, and
5.2, this process is straightforward. The steps:

1. List of Nonzero Cells: Use secure data integration (either protocol) to
build the list L of cells with nonzero counts. The “databases” being inte-
grated in this case are the agencies’ individual lists of cells with nonzero

7 For example, if V1 is gender, then possible values of v1 are “female” and “male.”
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counts. The protocols in Sects. 5.1 and 5.2 allow each agency not to reveal
in which cells it has data.

2. Nonzero Cell Counts: For each cell in L, use secure summation to
determine the associated count (or sum).

6 Discussion

In this paper we have presented a framework for secure linear regression and
other statistical analyses in a cooperative environment, under various forms
of data partitioning.

A huge number of variations is possible. For example, in the case of hori-
zontally partitioned data, to give the agencies flexibility, it may be important
to allow them to withdraw from the computation when the perceived risk be-
comes too great. Ideally, this should be possible without first performing the
regression. To illustrate, agency j may wish to withdraw if its sample size nj

is too large relative to the global sample size n =
∑K

i=1 ni, which is the clas-
sical p-rule in the statistical disclosure limitation (SDL) literature [WD01].
But, n can be computed using secure summation, and so agencies may “opt
out” according to whatever criteria they wish to employ, prior to any other
computations. It is even possible, under a scenario that the process does not
proceed if any one of the agencies opts out, to allow the opting out itself to
be anonymous. Opting out in the case of vertically partitioned data does not
make sense, however.

There are also more complex partitioning schemes. For example, initial
approaches for databases that combine features of the horizontally and verti-
cally partitioned cases are outlined in [RKK04]. Both data subjects and at-
tributes may be spread among agencies, and there may be many missing data
elements, necessitating expectation-maximization (EM)-algorithm-like meth-
ods. Additional issues arise, however, that require both new abstractions and
new methods. For example, is there a way to protect the knowledge of which
agencies hold which attributes on which data subjects? This information may
be very important in the context of counterterrorism if it would compromise
sources of information or reveal that data subjects are survey respondents.

Perhaps the most important issue is that the techniques discussed in this
paper protect database holders, but not necessarily database subjects. Even
when only data summaries are shared, there may be substantial disclosure
risks. Consequently, privacy concerns about data mining in the name of coun-
terterrorism might be attenuated, but would not be eliminated, by use of the
techniques described here. Indeed, while it seems almost self-evident that dis-
closure risk is reduced by our techniques, this is not guaranteed, especially
for vertically partitioned data. Nor is there any clear way to assess disclosure
risk without actually performing the analyses, at which point it is arguably
“too late.” Research on techniques such as those in Sects. 3–5 from this “tra-
ditional” SDL perspective is currently under way at NISS.
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1 Introduction

Following the 9/11/2001, terrorist attack on the United States, new counter-
terrorism measures have been implemented, and others have been considered.
Many of these measures aim to monitor for chemical, biological, or radiolog-
ical and nuclear weapons. Here we consider detectors that monitor cargo or
passenger vehicles for radioactive material. Potential weapons include nuclear
explosive devices and radiological dispersal devices (“dirty bombs”) that could
spread harmful radiation. Several detection options are potentially available,
but here we focus on those currently deployed that passively (without using
penetrating radiation to actively interrogate the vehicle) detect neutrons and
gamma and gamma rays.

Passive detectors are generally less expensive and more accepted than ac-
tive detectors, and debates regarding the appropriate resources for each of
the many newly considered threats should always include cost/benefit anal-
yses. Although a cost/benefit analysis of candidate vehicle-screening systems
is beyond our scope, we offer an initial assessment of passive detectors in the
context of a challenging “background suppression” phenomenon in which the
vehicles suppress the natural background, potentially lowering system sensi-
tivity.

The paper is organized as follows. Section 2 gives additional background.
Section 3 describes issues involved in determining the threat scenarios (type
of material, cargo, and shielding) most appropriate for deployed systems to
be expected to detect with high probability. A description of statistical issues
involved in the choice of detector characteristics and mode of operation is given
in Sect. 4. Our main topic is background suppression, which we describe in
detail in Sect. 5 in the context of the threat scenarios and operating mode
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discussion. Here we evaluate real detector data (sanitized to eliminate the
possibility of revealing system performance) in the presence of this challenging
phenomenon in which the vehicles suppress the natural background, lowering
system sensitivity. Methods to estimate the typical suppression shape and
magnitude and accommodate the resulting patterns in residuals are described,
illustrating how statistical methods are currently being developed and applied.

2 Background

Ideally, vehicle monitors deployed to protect against radioactive and nuclear
material would alarm only on materials that pose a significant threat, but
in practice the situation is complex. Complications include: the existence of
natural background radiation; the suppression of the natural background by
the vehicle; widespread transport of naturally occurring radioactive material
(NORM), such as that arising from cat litter, soils, vegetables, granite, con-
crete, and medical isotopes used in radiophamaceuticals [BF86]; and the fact
that the threat list is large with a huge range of expected threat signatures,
especially in the presence of background suppression. In addition, in deployed
systems, the radiation signatures of radioactive materials (NORM and threat)
are highly variable depending on strength, shielding, vehicle speed and prox-
imity, and signals from neighboring traffic lanes (“cross talk”).

Several candidate alarm rules should be considered, including one-at-a-
time thresholding and trend monitoring with sequential tests, or monitoring
for specific signatures using specific linear combinations of counts or forecast
errors. However, the complications mentioned imply that assessing and min-
imizing the false-positive rate for a given alarm rule or set of rules, which
includes nuisance alarms that occur due to NORM, will be difficult.

3 Characterization of Threat Scenarios

It is possible to broadly discuss threat scenarios without revealing sensitive
information. As an example, weapons-grade plutonium (WGPu) has two kinds
of radiation signatures that might in principle be detectable [BF86]. WGPu
generates neutrons via spontaneous fission of 240Pu, and those neutrons might
be detected. It also emits gamma radiation at many different energies, for
example, energies near 414 keV (414-keV gamma rays at these energies are
emitted when 239Pu decays). Of course, the detector size, vehicle speed, and
proximity and shielding characteristics determine the count rates of the WGPu
signal, and the background count rates must also be characterized.

Another potential threat is highly enriched uranium (HEU), which does
not passively emit neutrons, but does emit gamma radiation at several energies
(186 keV and 1001 keV, for example). However, the 186-keV gamma radiation
is less penetrating than the 414-keV gammas from WGPu and is therefore
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more difficult to detect through shielding. Furthermore, gamma spectra (the
relative count rates as a function of energy, with energy bins ranging typically
from 1 to 512, depending on detector type and resolution) are impacted in
difficult-to-predict ways by interactions of gammas with matter before or while
they interact with the detector. In general, HEU is relatively difficult to detect
using passive detectors. In addition to WGPu and HEU, there are many other
radioactive sources that could lead to major damage if released as a “dirty
bomb” using conventional explosives. Methods to detect these threats include
simple thresholding of gross count rates and count rate ratios using counts in
specific energy bins. Ideally, most NORM events would not trigger the alarm
rules, and statistical alarms (count rates reaching the alarm threshold due
simply to variation in detected count rates) would also be rare.

A threat scenario specifies how the radioactive or nuclear material is dis-
tributed in the vehicle (single “point” source, or spatially distributed for ex-
ample) and how the vehicle is packed (geometry and contents, because lighter
materials have more impact on neutrons while heavy materials such as lead
have more impact on the gammas). It is not our intent to exhaustively list
all threat scenarios or even all threat materials. However, it is important to
realize that sensitivity (the false-pass rate) and specificity (the false-fail rate)
are impacted by the scenario details in the library of events to be considered
on the threat list.

Assuming that subject experts reach agreement on the threat list, there
are typically two complementary approaches to system design and evalua-
tion. First, laboratory and field experiments can be conducted using real (or,
more commonly, surrogate) threat items loaded on different vehicles carry-
ing a range of cargo types, and transported through detectors to characterize
detector response to a range of source strengths and shapes (empirical ap-
proach). Second, computer models that have been calibrated to reproduce (to
within statistical uncertainty) count rates from controlled experiments can
simulate laboratory or field experiments (model approach).

Computer model uncertainty [STC04] clearly plays a role here. Although
real experimental data is typically favored because of model uncertainty, the
value of computer models is becoming more widely recognized. Sources of
model uncertainty include: (a) uncertainty in input parameters and (b) dis-
crepancies between the model and the physical system being evaluated. MCNP
(Monte Carlo N-Particle code) [MCNP] is one of the most commonly used
computer codes, and “perturbation cards” allow users to vary the value of
input parameters to assess the impact of uncertainty in the inputs. In some
cases, model predictions can be compared to measurements to partially assess
the impact of uncertainty sources of type (b), although generally total model
uncertainty is underestimated because of the difficulty of assessing type (b)
error sources. Much more remains to be done regarding computer model un-
certainty before MCNP-based threat and background suppression simulations
can provide a suitable testbed for alarm rule evaluation. Therefore, in Sect.
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5 we focus on methods to lower the alarm threshold without evaluating the
false-pass rates for specified threats.

4 Statistical Issues in the Choice of Detector
Characteristics and Mode of Operation

Vehicle monitors are similar to airport passenger security lines in that a pri-
mary lane screens all vehicles as they drive slowly through passive detectors.
Vehicle profiles such as those shown in Fig. 1 (low-energy gamma counts) are
collected during typically a few seconds to tens of seconds. Vehicles that cause
a primary alarm are sent for a more thorough secondary screening, where ad-
ditional hand-held gamma spectrometry equipment, or perhaps imaging capa-
bility and/or manual inspections are used. Figure 2 is similar to Fig. 1, but is
for the neutron counts, which are much lower than the gamma counts, having
many 0-valued and 1-valued counts prior to rescaling. The large fraction of 0
and 1 counts impacts the shape of the smooth curves.

There are two curves in each plot in Figs. 1 and 2, with differing smooth-
ness. The degree of smoothing is important and a practical criterion we use is
to select a degree of smoothing (strong smoothing means to use large windows,
for example, in moving average smoothers) that gives rise to the expected Pois-
son variation in the residuals. Specifically, we compute a candidate smooth fit
and the associated residuals. We then bin the smoothed value into 10 bins and
compute the residual variance in each bin. When a fit of the residual variance
to the average smoothed value in the corresponding bin indicates that the
variance is essentially equal to the mean, the candidate smoother is accepted.
Using this “variance approximately equal to mean” criterion for Fig. 1, the
first smoother (using smooth.spline in S-PLUS R©[Ins03] with 7 degrees of free-
dom (df) and weights equal to 1/count) is preferred over the second (which
has 3 df). Because vehicle suppression should be much smaller for neutrons,
a simple and reasonable criterion for neutron profile smoothers is that they
exhibit no or relatively small features (such as maxima or minima) in most
profiles. The features in the smooth curve using 7 df in Fig. 2 are difficult
to interpret and because we focus here on the gamma counts, we will not
pursue an explanation. However, it is possible that the 3-df smoother is more
appropriate for these neutron profiles.

The background gamma counts arise primarily from naturally occurring
uranium, thorium, and potassium in soil, concrete, and asphalt, and are par-
tially shielded by each vehicle. Notice in Fig. 1 that the number of time indices
ranges from approximately 20 to 200, which implies that profile lengths dif-
fer among vehicles, due to varying speeds. Also, the top left plot exhibits a
broad minimum, then a maximum, then another minimum. This pattern is
explained by variation in the amount of background shielding as a function
of the locations of the vehicle’s tires and vehicle shape. When no vehicle is
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Fig. 1. Three examples of vehicle profiles (low-energy gamma counts), each showing
scaled raw count rates (unspecified units) and two smooth curves (the solid one with
7 df and the dotted one with 3 df) fit to the raw profiles.

present, the background is more nearly constant over tens of minutes. Typ-
ically, a periodic background reading without any vehicle impacting count
rates can be used to establish a baseline. Alternatively, a few counts at the
beginning and end of each profile may serve as approximate backgrounds, al-
though there may still be a discernible effect of the vehicle on such pre- and
postsamples. In the case we consider below, this pre- and postbackground is
approximately 5% smaller than the periodic background, which is taken on
longer time periods (and which is therefore less noisy) and is taken without
any vehicle present. Position and motion sensors indicate when each vehicle
approaches the detector, triggering the collection of pre- and postcounts. The
5% difference between the periodic background and the pre/postbackground
indicates that there is some vehicle suppression in these pre/postcounts.

Regardless of whether the empirical or computer-model approach is used to
analyze threats, each threat scenario is characterized by the additional count
rate (if any) caused by the radioactive or nuclear material, such as shown in
Fig. 3 for a generic source. This generic detector exhibits both background
suppression and a signal from the material; note that alarm rules based on
simply thresholding the count rate would probably not alarm for this example
threat. Background suppression is caused by the fact that much of the natural
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Fig. 2. Three examples of vehicle profiles (neutron counts), each showing scaled
raw count rates (unspecified units) and two smooth curves (the solid one with 7 df
and the dotted one with 3 df) fit to the raw profiles.

background arises from the nearby ground (asphalt or concrete for example)
that is partially shielded by the vehicle while it is in the detector view.

Detector characteristics include: (1) the efficiency (the fraction of imping-
ing radiation that is detected), (2) size (the field of view), and (3) the energy
resolution. Resolution (see Fig. 4) is a measure of the width of an energy
peak at a specific energy (the width is often defined as the width where the
count rate is one-half of its maximum in that region). High-resolution detec-
tors are generally more costly, but they can more clearly separate key peaks,
and therefore better characterize radioactive material. Choice of detectors
thus entails trade-offs between cost and performance, as well as other fac-
tors. Also, in some contexts, lower resolution is better; one obvious reason
is the “bias–variance” trade-off in which fewer bins lead to better counting
statistics (reduced variance) at the expense of bias introduced by grouping
counts from multiple energies into one bin. More subtle reasons involve the
characteristics of the threat signals and are beyond our scope. Suffice it to say
that resolution studies rarely conclude that the highest possible resolution is
optimal, although sometimes it is very helpful if the resolution is high enough
to distinguish key energy peaks.

The mode of operation describes: (1) how vehicles pass by the detector
(speed, proximity, view angle), (2) what objects enter the detector field of
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view during a typical vehicle count, and (3) whether the declared cargo is
used to direct some vehicles to alternate scans, for example, vehicles that
declare NORM-containing cargo might be scanned in a special lane using
higher-resolution detectors.

It is a large task to develop a threat list library, but given this library, ana-
lysts can determine suitable detector characteristics and the associated mode
of operation. Our previous discussion (see Fig. 3, for example) should make it
clear that the library must consider the background in addition to the library
of events to be detected. If an event library is not explicitly developed, then
ad hoc procedures determine detector characteristics and mode of operation,
implicitly assuming some uncharacterized threat.

Assuming we have the library of events from the threat list coupled with
background and NORM events, one approach to choosing detector charac-
teristics and operation modes is to view the task as a pattern recognition
application. The most basic method to parameterize threat/background li-
braries is a collection of event vectors (“filters”) that serve as the patterns to
be detected. This is typically done by screening the collection of correlations
between a given vehicle profile and each event vector (matched filter) for large
values. Performance evaluation is complicated due to: (1) variable dimensions,
which require some type of stretching/compressing/interpolation, (2) library
size due to the coupling of background suppression and threat events, and
(3) relationships among coefficient vectors leading to correlations among the
correlations with each matched filter.

If derived features such as ratios of counts in different energy bins (such
ratios are thought to be useful because NORM events impact some ratios
differently than threat events do) are included as input features, the search
for effective pattern recognition strategies is made more complicated. Compli-
cations include the need to model the behavior of such ratios for each event
in the threat/background library and an increase in the dimension of the
candidate feature space used to discriminate among patterns. This candidate
feature space includes derived features (such as ratios), temporal patterns
among counts from multiple sensors, and choice of energy bins (aggregated
and/or omitted bins). There are good reasons to consider count ratio-based
alarm rules, but we are less optimistic about matched filters, as Sect. 5 shows.

5 The Impact of Background Suppression on System
Performance

Recall that nonthreat vehicle traffic contains a mix of nonradioactive cargo
and NORM in the presence of natural background. The natural background
sources are primarily in the concrete or asphalt road, so the vehicles sup-
press this background source to varying degrees depending on vehicle speed,
size, and density. One main task is to estimate the false-pass rate for threat-
carrying vehicles while maintaining a small false-fail rate for nonthreat vehi-
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Fig. 3. (a) Example (scaled) raw and smoothed vehicle profile, (b) a generic scaled
signal, (c) the combined effect (scaled) of background suppression and radiation
signal.
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cles. To complicate matters, in deployed systems, the radiation signatures of
radioactive materials (NORM and threat) are highly variable depending on
strength, shielding, vehicle speed and proximity, and signals from neighboring
traffic lanes (“cross talk”).

Figures 1 and 3 illustrate background suppression of gamma counts and
Fig. 3 suggests that there is an infinite number of threats (as characterized
by strength, distribution, shielding) and background suppression combina-
tions. In addition, nuisance alarms will occur due to NORM, resulting in a
complicated situation for assessing system performance. We want to evaluate
alarm rules (false-pass rate for a specified small, false-fail rate) and to support
that goal, this section gives quantitative results of the impact of background
suppression and a few candidate mitigation strategies.

Background suppression implies: (1) upper control limits should be lower
than they would be in the absence of suppression and (2) suppression-
corrected count rates make sequential control chart tests more difficult to
interpret because of the patterns arising in the residuals.

Concerning (2), note from the threat-scenario discussion that nearly all
signals to be detected from the event library involve higher count rates over
multiple time periods. Therefore, sequential tests will be more powerful (have a
lower false-pass rate) than one-period-at-a-time tests. One question for future
investigation is whether the event library is amenable to a custom set of
“matched filters” (coefficient vectors that scan the residuals to detect specific
patterns with high probability) or is better handled by generic sequential
tests such as Page’s CuSum [Pag54]. Another question is how to mitigate
the anticipated patterns in the residuals that arise due to the fact that not all
vehicle profiles exactly match the template suppression (see below). Sequential
tests can be applied to residuals having patterns or serial correlation [JB74],
but analysis is more difficult, and performance is generally degraded compared
to monitoring sequences of residuals that are independent in the zero-signal
case.

Concerning (1) and (2), with attention to the impact of the amount of data
smoothing, we show that “background suppression” will complicate sequential
testing, and in general, will lead to higher false-pass rates for a given, fixed
false-fail rate. Figure 5 plots the average aligned scaled (to have unit variance
and zero mean) smoothed suppression template (the template can be thought
of as an average vehicle profile) over 1210 example vehicle profiles for each of 4
levels of smoothing, and Fig. 6 plots the template (scaled) and the associated
99% upper control limit (UCL) for each. The notation smooth(1) denotes a
narrow window that includes the index of interest plus one pre- and post-
index, and similarly for smooth(3), smooth(7), and smooth(9). The 99% UCL
is computed using, on the square root scale, the template plus 3 times the
scalar-valued root mean squared error (RMSE), then transforming back to
the original scale, and then rescaling to have zero mean and unit variance.
The factor of 3 is justified because the residuals are approximately normally
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distributed (for the gamma counts) and the use of a scalar-valued RMSE is
justified on the square root scale.

Recall that profile lengths range from approximately 20 to over 200, and
150 is the approximate average length of these 1210 vehicles. Therefore, some
type of horizontal alignment is required to accommodate the varying profile
lengths. Here we use linear stretching or compressing plus interpolation. We
also report below that performance using more elaborate horizontal align-
ment (such as registration via nonlinear mapping to align key features such
as minima and maxima [RS97]) has not performed well enough to justify its
complexity. In this context, registering to local extrema means that a vehicle
profile from start to the first extremum is stretched or compressed to align
with the template profile from start to the first extremum. Similarly, the ve-
hicle profile from the first to the second extremum is stretched or compressed
to align with the template profile from the first to the second extremum. This
process is a nonlinear alignment of the test vehicle’s profile with the template
profile.

5.1 Performance Measures

One simple performance measure is the average (over all vehicles in the train-
ing data) RMSE of the residuals. We define the residual ri = Ci − Ti, where
Ci is the count rate (raw or smooth, depending on the context) at index i,
and Ti is the prediction (the estimate of the “template”) at index i. Note that
heavy smoothing suppresses the suppression template, but heavily smoothed
data is also expected to exhibit smaller RMSE around its template.

First we describe the best possible (BP) RMSE in a hypothetical situation
in which the smooth fit of each vehicle serves as its own template for future
profiles of the same vehicle. Physically, this corresponds to hypothetical re-
peats of the vehicle profile at the same speed, same vehicle lane, same time
of day, negligible lane-to-lane cross talk, and same cargo. In this case, the ob-
served variation should be essentially Poisson variation around the template.
We would compute each vehicle’s smooth profile, calculate the RMSE of the
original data around the smooth profile, and average over all vehicles. This is
what we will call the BP RMSE (which is unattainable in a realistic setting,
but serves as a useful benchmark for comparison).

Alternatively, use each vehicle’s smoothed, aligned profile (after some trial
and error, we selected length 150, which is approximately the average profile
length) to somehow compute an average (template) profile. We have tried
principal components and spline basis functions to compute each vehicle’s
template using vehicle length plus its pre- and postprofile counts to predict
its profile. Also, in exploratory mode, we fit the profile itself to principal
components or spline basis functions (see Sect. 5.4) but to date have found that
simple averaging is as effective as these other two methods. We also consider
averaging within groups, where groups can be defined using some type of
cluster analysis (see below). For example, vehicle profiles can be clustered via
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profile length, multidimensional scaling followed by model-based clustering
[BR93], or the number of extrema. Again we compute the RMSE for the
original (raw) counts around the template.

Figure 7 plots the average RMSE for a naive method, template methods
A and B, and the BP method. The naive method uses the average of the pre-
and postsamples as the template. Template method B uses the average of the
smoothed aligned profile to estimate the template. Template method A is the
same as B, but uses the square root of the counts to define the template, and
then transforms back to the original scale. The performance of method A is
significantly better (both practically and statistically on the basis of t-tests)
than that of B. The performance of more sophisticated methods (such as those
using clustering to define several classes of background) will fall between A
and BP.

Note that the square root transform will approximately stabilize the vari-
ance because the variation around the smoothed profile is approximately Pois-
son. An empirical check that this data is approximately Poisson with a drifting
mean was performed using smooth.spline in S-PLUS. In repeated application
of smooth.spline, we experimented with the df using simulated Poisson(µt)
with µt obtained from randomly selected smooth fits to real data; and, as
with the real data, the choice df = 7 led to the best agreement between vari-
ance of residuals and mean value of the smooth fit.

The RMSE of the smoothed data (rather than raw data) around the aver-
age template for the four detectors is 7.2, 6.9, 7.3, and 6.8, respectively, which
are all significantly smaller than the BP values shown in Fig. 7. In Fig. 6,
note that smooth(9) case has a slightly less suppressed (and therefore higher)
template, but has much smaller RMSE. However, more smoothing implies less
signal, so analyses to estimate the most effective amount of smoothing would
require a fully specified signal/background library as previously described (to
be presented elsewhere). Our approach here is to fix a reasonable amount
of smoothing and always compare methods that have the same amount of
smoothing.

5.2 Group-Specific Templates

Next we consider to what extent the UCL can be reduced by defining group-
specific templates. To date, we have not significantly reduced the RMSE using
clustering, as we indicate below. Figure 8 shows the template for each of the
four groups defined by the profile length. The RMSE within each group is
13.3, 13.5, 13.0, and 13.1, respectively, and the groups are defined as: group
1 is all profile lengths, group 4 is lengths 100 to 200, group 7 is length 135
to 165, and group 9 is 145 to 155. Note that these groups overlap, but our
intent is to evaluate the reduction in RMSE (if any) when profile lengths are
restricted to narrower ranges. We conclude (informally, without a formal test)
that restriction to similar-length profiles is not sufficient to achieve significant
reduction in RMSE.
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Fig. 5. The average aligned (scaled) suppression resulting from each of four levels
of smoothing.

We next use the number of extrema in the smoothed profile to define
groups. Figure 9 shows the average aligned profile for vehicles having 1, 2, . . . ,
7 extrema, and the legend gives the percentage of vehicle profiles among the
1210 having the corresponding number of extrema. More than 50% of profiles
have three extrema, in the order minimum, maximum, minimum, which is
expected on the basis of current MCNP calculations.

5.3 Sequential Testing

Assuming that we use sequential testing or matched filters to scan for signals
from the event library, it will be important that residuals around a template
behave approximately as independent, zero mean, constant variance residuals.
However, Figs. 10 and 11 illustrate our concern that patterns are likely to be
present in the residuals from most vehicle profiles. In Fig. 10, for a profile
of length 105, the raw counts, the smooth fit to the counts, the aligned-to-
length 150 fit, and the overall template based on all 1210 vehicles are shown.
Stretching from 105 to 150 and misfit to the overall template (despite the
min, max, min pattern in the vehicle’s individual smoothed profile) lead to
the pattern shown in the top plot in Fig. 11. The bottom plot in Fig. 11
illustrates that the pattern in the smooth fit to the residuals is not an artifact
of smooth.spline in S-PLUS. Figure 11 implies that serial correlation will be
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Fig. 6. The template (scaled) and 99% UCL for the same 4 levels of smoothing (top
left: 1, top right: 3, bottom left: 7, or bottom right: 9) as in Fig. 5.

present in many of our residual vectors, thus complicating the evaluation of
signals from the event/background library. This will be the subject of future
work.

It is simple to understand the source of patterns in residuals around an
average vehicle template. Although most vehicles (Fig. 8) exhibit the (min,
max, min) template, many do not; and among those that do, the distance
between extrema is not constant. Therefore, short series of consecutive positive
(or negative) residuals are often followed by series of negative (or positive)
residuals. These patterns make it difficult to effectively apply sequential tests
to detect signals such as the one shown in Fig. 3. Feature registration [RS97]
is one area for future research to mitigate these patterns in the residuals; in
this context, features will most likely be local extrema. Recall that our initial
efforts to align vehicle profiles (nonlinearly) to local extrema have not resulted
in improved performance. Also, most of our initial efforts have used smoothed
rather than raw counts. Example nonlinear alignment results from a random
subset of size 677 from the 1210 vehicles are as follows. If we consider only
vehicles that have one extremum (a minimum), then a subset of size 171 from
the 677 vehicles had an RMSE of 5.48 unregistered and 4.90 registered. If we
consider only vehicles that have three extrema (min, max, min), then a subset
of size 506 from the 677 had an RMSE of 5.17 unregistered and 4.87 registered.
The combined dataset of size 677 has an RMSE of 5.38 (unregistered). These
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Fig. 7. The average RMSE of the residuals (original scale) for each of four methods,
for four different, low-energy gamma detectors, each in a different location in the
same vehicle lane. The naive method uses the mean of the pre- and postcounts as
the template. The BP method assumes that each vehicle drives repeatedly through
the portal with the same speed and loading, and uses the smooth fit for each vehicle
as a vehicle-specific template. The resulting average RMSE is due entirely to Pois-
son variation. Method A transforms to the square root scale to define the average
template and then transforms back. Method B uses the original scale throughout.

are small reductions, but perhaps there will be less of a tendency for the
residuals to show patterns (to be determined).

5.4 Related Issues

We have suggested that vehicle profiles could be aligned on the basis of lo-
cations of minima and maxima. However, this raises the question: how much
of the vehicle’s profile should be used when either defining its group or inves-
tigating its fit to a template? Clearly for the purpose of understanding the
types of vehicle profiles to be expected, any such type of exploratory analysis
is valid. However, for unknown test vehicles, use of profile features implies
that we favor somewhat involved pattern recognition over simple threshold-
ing. Concerns regarding robustness, sensitivity to small threat items coupled
with a typical background suppression (such as Fig. 3), and ease-of-use arise.

Also, we have used the mean of pre- and postsamples to estimate the
magnitude of the suppression effect, but recall that the pre- and postsam-
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Fig. 8. The template for each of 4 groups defined by vehicle length. Group 1 is all
vehicles, group 4 is vehicles whose profile lengths are 100 to 200, group 7 is lengths
135 to 165, and group 9 is lengths 145 to 155.

ples are somewhat suppressed (by approximately 5%) relative to a periodic
background count that is much less impacted by vehicle suppression. How-
ever, cross talk between lanes can corrupt both the background counts and
the profile counts in a given lane. Currently, there is no automated procedure
to identify cross talk, but its effect has been noticed using retrospective data
analysis.

6 Summary

Physical models and mathematical and statistical sciences have already im-
proved the effectiveness of passive vehicle monitors but more can be done. For
example, analytical evaluation of proposed sensors (including active sensors)
could facilitate a cost/benefit analysis regarding the merit of using sensors
that can interrogate and in principle therefore detect weaker sources. We gave
qualitative descriptions of statistical issues involved in passive detector se-
lection and operation, then focused on the “background suppression” issue
using real data from existing vehicle monitors. The current alarm criteria are
essentially simple thresholds without concern about patterns in the residuals.
These thresholds ignore background suppression (which causes approximately
a 1.5 standard deviation suppression, averaged over the vehicle profile) and
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A vehicle belongs to group 1 if its smooth spectrum exhibits one extremum, and
similarly for groups 2 to 7. Notice that the group 3 (53% of the 1210 vehicle profiles)
spectrum resembles the expected template with the (min, max, min) shape.

therefore are less sensitive than thresholds that adapt to background suppres-
sion. If background suppression is to be accounted for, then an open question
is whether event/background libraries will be amenable to custom model-
and experiment-based matched filters or other pattern recognition tools. Re-
gardless of whether we attempt to correct for background suppression, the
presence of background suppression complicates both sequential testing and
pattern recognition methods due to the resulting patterns in the residuals.
We are experimenting with feature (extrema) registration to mitigate the
tendency for the residuals to show patterns, but it is possible (Sect. 5.4) that
this would lead to masking of small threat events. In this context, registering
to local extrema means that a vehicle profile from start to the first extremum
is stretched or compressed to align with the template profile from start to
the first extremum. Similarly, the vehicle profile from the first to the second
extremum is stretched or compressed to align with the template profile from
the first to the second extremum. This process is a nonlinear alignment of the
test vehicle’s profile with the template profile.

Other issues requiring statistical or mathematical rigor include: evalua-
tion of energy ratio and coincidence algorithms and their sensitivity to the
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threats of interest; spatial and/or temporal profiling algorithms to character-
ize point sources and perhaps help to resolve and reject NORM events (most
NORM would be a distributed source); exploratory data analysis to deter-
mine whether there is any value in using axle weight, image data, declared
cargo, and neighboring lane sensor data; customization of alarm criteria to
individual locations; the impact of model uncertainty on simulated threat sig-
nals and visualization of results. Also, alarming vehicles are sent through a
more thorough protocol that typically involves more energy channels and bet-
ter resolution using hand-held detectors, and this second check needs more
formal evaluation.
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