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Preface to the Second Edition

Computer experiments continue to increase in popularity as surrogates for and ad-
juncts to physical experiments. Since the publication of the first edition, there have
been many methodological advances and software developments to implement these
new methodologies. These advances have motivated our desire to update the book,
and in this second edition, we have attempted to accomplish several things. First, we
have included many of the advances in the design and analysis of computer experi-
ments that have occurred since the first edition. Unfortunately, the subject continues
to advance rapidly, and we will undoubtedly be “out-of-date” when this edition ap-
pears, but we hope this edition will be a useful resource by providing the material
for understanding the foundations of the subject, by presenting methodology that
we have found useful in our collaborations, and by pointing out the directions of
other methodological advances in Chapter Notes sections. Second, we have tried to
improve the presentation of the basic material on computer experiments and Gaus-
sian processes with additional simulations and examples. The motivation for these
changes have come from users and our own recognition of discussions needing im-
provement. Third, we have tried to write the majority of the text at an overview
level that is accessible to readers with Masters-level training in Statistics while also
discussing topics in sufficient detail to be useful for practitioners and researchers.
While both objectives are not always simultaneously possible, we hope that all read-
ers will be able to gain from the book.

To aid practitioners, the Chapter Notes provides lists of software that can be
used to implement procedures discussed in this book. We make no claim of the
completeness of these lists nor do our comments review its accuracy or ease of use.
As of the publication date of this book, all links were tested and functioned properly
but they may be updated at any time by those who maintain them. Indeed, many
programs are in continuous development and web searches will provide up-to-date
information about them as well as other packages that have been developed since
the publication of this book.

The authors would like to thank colleagues who have either critiqued versions
of this material or made use of it in courses. In particular, we thank Jeff Wu and
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viii Preface to the Second Edition

Roshan Joseph Vengazhiyil at Georgia Tech, David Steinberg at Tel Aviv Univer-
sity, Peter Marcy at Los Alamos National Laboratory, Peter Qian at the University
of Wisconsin, and Jai-Hyun Byun at Gyeongsang National University. We give spe-
cial thanks to our Ohio State colleague Angela Dean who carefully read parts of
the manuscript and made numerous suggestions. Several Ohio State graduate stu-
dents provided criticisms to drafts of the second edition as well as help with com-
putations including Gang Han, Josh Svenson, Jeff Lehman, Fang-Fang Sun, Eric
Lam, Arun Kumar, Soma Roy, Marian Frazier, Aaron Quan, Yulei Zhang, Erin
Leatherman, Casey Davis, and Po-Hsu Allen Chen. Data contributors to the sec-
ond edition include Shan Ba and William Myers at Procter & Gamble Company,
and the Advanced Strategic Computing (ASC) program at Los Alamos National
Laboratory. Co-workers/fellow researchers whose questions motivated some of the
methodological advances described in the text include Derek Bingham at Simon
Fraser University; Angela Dean, Chris Hans, and Matt Pratola at the Ohio State
University; and Dave Higdon at Virginia Tech University.

We would like to thank those who have taken short courses that we have given
on this material. Their queries have helped focus our presentation of some of this
material. Finally, we would like to thank the staff at Springer Verlag for their en-
couragement and patience in the writing of this book. Any errors in the book are the
responsibility of the authors; they would appreciate being informed.

Columbus, OH, USA Thomas J. Santner
Santa Fe, NM, USA Brian J. Williams
Columbus, OH, USA William I. Notz
May 2018



Preface to the First Edition

Many physical processes are difficult or impossible to explore directly by conven-
tional experimental methods. As computing power has increased, it has become
possible to model some of these processes by sophisticated computer code. In such
cases, the code can serve as a proxy for the physical process. As in a physical exper-
iment, one can vary the inputs to the code and observe how the output is affected.
Such studies are called computer experiments and are becoming increasingly popu-
lar surrogates for and adjuncts to physical experiments.

Much of the methodology for designing, modeling, and analyzing computer ex-
periments can only be found in research papers. Our goal in writing this book is to
make these methods accessible to a more general audience. To accomplish this, we
have tried to keep the mathematics at a level that will be understandable to readers
with Masters-level training in Statistics. This has been a challenging task. Gaus-
sian processes are a popular way to model the output of computer experiments, but
Gaussian process models are mathematically complex and likely to be unfamiliar to
many readers. We provide an introduction to these models and present references
for those who wish to study additional mathematical details of such processes. In
other chapters, we relegate mathematical details to notes at the chapter end.

To make the book useful to practitioners, we provide software that can be used
to fit the models we discuss in this book. Instructions for how to use this software
can be found in Appendix C. Samples of the use of the software are interspersed
throughout the book.

We would like to acknowledge several people for their contributions in bring-
ing this book to completion. Don Bartel and members of the Biomechanics group
at Cornell University and the Hospital for Special Surgery galvanized our initial
interest in the area of computer experiments to investigate problems of prosthesis
design. Several graduate students provided valuable criticism on early drafts and
help with the computations including Jeff Lehman, Wei Zhao, Ofelia Marin, and
Zhenhuan Cui. John Kimmel provided encouragement throughout the process; sev-
eral anonymous reviewers gave us constructive suggestions. Antonia Orrant, Frank
Ganz, and Frank McGuckin of Springer Verlag were the production and technical
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assistance team that brought the work to print. Rob Tibshirani provided a critical
Perl script that helped automate the compilation of the author index. The work of
Brian J. Williams was supported by the Statistics Group at the RAND Corporation
through core funding provided by James Thomson, President and Chief Executive
Officer, and Michael Rich, Executive Vice President of RAND.

Columbus, OH, USA Thomas J. Santner
Santa Fe, NM, USA Brian J. Williams
Columbus, OH, USA William I. Notz
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Chapter 1
Physical Experiments and Computer
Experiments

1.1 Introduction

Experiments have long been used to study the relationship between a set of inputs to
a physical system and the resulting output. Termed physical experiments in this text,
there is a growing trend to replace or supplement the physical system used in such
an experiment with a deterministic simulator. The resulting investigation is called
a computer simulator experiment or more simply a computer experiment. The de-
terministic simulator, also called a computer model, implements in computer code
a mathematical model relating input and output variables. A typical mathematical
model might be a set of coupled partial differential equations, while common meth-
ods for solving the mathematical system include finite element (FE) and computa-
tional fluid dynamics (CFD) algorithms. This book describes methods for designing
and analyzing research investigations that use computer simulator platforms, either
alone or in combination with a physical experiment.

Historically, statistical science has devised numerous widely-used methodolo-
gies for designing physical experiments and for analyzing the resulting data to an-
swer specific research questions. The process of designing a study to address such
a question must decide which variables are to be observed and the role that each
plays, e.g., as an explanatory variable or a response variable. The gold standard of
data collection for establishing a cause and effect relationship uses a prospective de-
sign for the relevant physical experiment. Agriculture was one of the first sciences to
apply widely, prospective designed experiments. Over time, alternative methods of
conducting experiments have been developed to answer questions in subject matter
areas having diverse constraints. For example, controlled clinical trials are used to
compare medical therapies, while case–control studies were developed to answer
questions in epidemiology.

The classical treatment of responses from a physical experiment considers them
to be stochastic with a mean value that depends on a set of experimenter-selected
treatment variables where knowledge of the effect of the treatment variables is the
primary objective of the research study. However, many physical experiments also
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consider the effects of other types of input variables. Environmental (“noise”) vari-
ables describe either the operating conditions of an experimental subject/unit em-
ploying a given treatment or the conditions under which a manufacturing process is
conducted. As an example of an environmental variable, consider an agricultural
field trial of several test varieties that is conducted in multiple locations having
different average growing season temperatures and rainfall. A blocking factor is
a qualitative environmental variable that identifies identical groups of experimental
material. Examples of blocking factors would be the use of gender or ethnicity to
group subjects in a cancer clinical trial. Confounding variables are another type of
input that can be present in a physical experiment. Confounding variables are un-
recognized by the experimenter but actively affect the mean output of a physical
system. Confounding variables have the potential to mask or exaggerate the effect
of a treatment variable. For example, when an active confounding variable has val-
ues that are correlated with those of an inert treatment variable, the effect can be
incorrectly attributed to the treatment variable.

Faced with these potential complications, statisticians have developed a variety
of (design) strategies to increase the validity of treatment comparisons in physical
experiments. One method is randomization which means the treatments are assigned
to experimental units at random and are applied in a random order. A randomized
experimental design has a smaller chance that the effect of a treatment variable will
be misinterpreted due to the presence of a highly correlated and active confound-
ing variable. Another technique to increase experimental validity is blocking which
means that the experimental units are grouped to be as similar as possible. An ex-
perimental design that allocates treatments in a balanced way within blocks allows
for valid within-block treatment comparisons. Using adequate replication is a third
technique for increasing the validity of an experiment. Roughly, adequate replication
means that an experiment is run on a sufficiently large scale to prevent unavoidable
“measurement” variation in the output from obscuring treatment differences.

As for physical experiments, the inputs to a simulator used in a computer exper-
iment can be classified according to the role they play (treatment, environmental,
or other). In the computer experiment literature, treatment variables are most often
called control variables. Computer simulators often include a class of variables not
found in physical systems which are called model or calibration variables in this
book. Examples of model variables are unknown rates of change, the friction be-
tween materials, and material properties. Model variables are often only partially
known from previous research with uncertainty specified in a probability distribu-
tion reflecting expert opinion. Where it is useful to differentiate the types of variables
to a simulator, this book will use the notation xc to denote control variables, xe to
denote environmental variables, and xm to denote model variables.

Computer simulator experiments have additional characteristics not found in
physical experiments. The first is that they yield deterministic output, at least up
to “numerical noise.” The simulator produces the same answer if run twice using
the same set of inputs. For this reason, blocking the runs into groups that represent
“more nearly similar” experimental units is irrelevant. Indeed, none of the tradi-
tional principles of blocking, randomization, and replication used when conducting
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a physical experiment is relevant when conducting a computer simulator experi-
ment.

Second, many computer experiments can be time-consuming to conduct. It would
not be unusual for a detailed finite element model to run for 12 or more hours; the
same is true of computational fluid dynamics models.

Third, the output of a computer simulator, being based on a mathematical model
of the input/output relationship, can exhibit bias because either the mathematical
model omits elements of the physics or biology that characterize this relationship
or the numerical method used to implement the mathematical model lacks accuracy
for some subdomain of the input space. One purpose of calibrating a simulator to
data from an appropriate physical experiment is to estimate the simulator bias.

A fourth feature of many computer experiments is that the number of input vari-
ables can be quite large—20 or 30 inputs for some applications and hundreds of in-
puts for others. One reason for the large number of inputs to some codes is that they
contain control, environmental, and model variables. As a simple example, consider
the biomechanical design of a knee implant to minimize the maximum strain that
occurs at the bone × prosthesis boundary of a knee implant. Multiple variables are
required to describe the prosthesis geometry and its material properties (the control
inputs for the biomechanical engineer). Among other subject-specific quantities, the
strain depends on the magnitude of the load (an environmental input) and the friction
between the prosthesis and the bone (a model input).

Using experiments based on simulator platforms alone or in conjunction with
physical systems can have substantial advantages. For example, the process of cal-
ibration using simulator and physical system data, yields an estimated bias of the
simulator. Examining the bias can suggest where improvements can be made to the
simulator. Another advantage is that, in some applications, computer simulator ex-
perimentation can be feasible when physical experimentation is either not possible
or is very limited. For example, the number of input variables may be too large
to consider performing a physical experiment, there may be ethical reasons why a
physical experiment cannot be run, or it may simply be economically prohibitive to
run an experiment on the scale required to gather sufficient information to answer a
particular research question. In such cases, depending on the amount of fundamen-
tal physics or biology implemented in the simulator, there are a growing number of
scientific and technological investigations that have been conducted using simulator
platforms.

The remainder of this chapter will provide several motivating examples that il-
lustrate key features of computer experiments and show their broad application.
Section 1.4 will provide an overview of the remainder of the book.

1.2 Examples of Computer Simulator Models

This section presents several examples where computer simulator models are used.
The examples are meant to illustrate the elements of computer simulator experi-
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ments that have been sketched in Sect. 1.1. They also show the breadth of applica-
tion of such models. The details of the mathematical models implemented by the
computer code will not be given, but references to the subject matter literature will
be provided. The first examples have univariate output, then several examples il-
lustrate applications with multivariate output, and the final two examples describe
settings that produce functional output.

Example 1.1 (Temporal Evolution of Fires in Enclosed Areas). Deterministic com-
puter models are used in many areas of fire protection design including egress (exit)
analysis. This example describes one of the early “zone” computer models that is
used to predict the fire conditions in an enclosed room. Cooper (1980) and Cooper
and Stroup (1985) provided a mathematical model and its implementation in FOR-
TRAN for describing the evolution of a fire in a single room with closed doors and
windows that contains an object that has been ignited at a point below the ceiling
(see Sahama and Diamond (2008) for a simplified description of the mathematical
model). The room is assumed to contain a small leak at floor level to prevent the
pressure from increasing in the room. The fire releases both energy and hot com-
bustion by-products. The rate at which energy and the by-products are released is
allowed to change with time. The by-products form a plume which rises toward the
ceiling. As the plume rises, it draws in cool air, which decreases the plume’s tem-
perature and increases its volume flow rate. When the plume reaches the ceiling, it
spreads out and forms a hot gas layer whose lower boundary descends with time.
There is a relatively sharp interface between the hot upper layer and the air in the
lower part of the room which, in this model, is considered to be at air temperature.
The only interchange between the air in the lower part of the room and the hot up-
per layer is through the plume. The model used by these programs can therefore be
thought of as a two-zone model.

The Cooper and Stroup (1985) code is called ASET (Available Safe Egress
Time). Walton (1985) implemented their model in BASIC, calling his computer
code ASET-B; he intended his program to be used in the first generation of personal
computers available at that time of its development. ASET-B is a compact, easy-to-
run program that solves the same differential equations as does ASET but using a
simpler numerical technique.

The inputs to ASET-B are

• the room ceiling height and the room floor area,
• the height of the burning object (fire source) above the floor,
• a heat loss fraction for the room (e.g., which depends on the insulation in the

room),
• a material-specific heat release rate, and
• the maximum time of the simulation run.

The program outputs are the temperature of the hot smoke layer and its distance
above the fire source as a function of time.

Since these early efforts, computer codes have been written to model the evolu-
tion of wildfires as well as fires in confined spaces. As typical examples of this work,
see Lynn (1997), Cooper (1997) and Janssens (2000), and the references therein.
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The publications of the Building and Fire Research Laboratory of NIST contain
a wealth of material about mathematical modeling of fires (see http://fire.nist.gov/
bfrlpubs). The review article by Berk et al. (2002) describes statistical approaches
for the evaluation of computer models for wildfires. Sahama and Diamond (2001)
give a case study using the statistical methods introduced in Chap. 3 to analyze a set
of 50 observations computed from the ASET-B model.

To provide a sense of the effect of each of these variables on the evolution of the
fire, the simulations run below fix the heat release rate to correspond to fire material
that constitutes a “semi-universal” fire. This heat release profile corresponds to a
fire in a “fuel package consisting of a polyurethane mattress with sheets and fuels
similar to wood cribs and polyurethane on pallets and commodities in paper cartons
stacked on pallets” (Birk (1997)). Then the remaining four factors were varied using
a “Sobol´ design” (Sobol´ designs are described in Sect. 5.6.1). The response for this
example is the time, to the nearest second, for the fire to reach 5 ft above the burning
fuel package.

Scatterplots were constructed of each input versus the time required by the hot
smoke layer to reach 5 ft above the fire source. Only room area showed strong vi-
sual associations with the output; Fig. 1.1 shows this scatterplot (see Fig. 3.3 for
scatterplots of all four inputs versus the time to reach 5 ft above the fire source).
This makes intuitive sense because more by-product is required to fill the top of a
large room, and, hence, longer times are required until this layer reaches a point
5 ft above the fire source. The data from this example will be used later to illustrate
several analysis methods. �

Example 1.2 (Formation of Pockets in Sheet Metal). Montgomery and Truss (2001)
discussed a computer model that determines the failure depth of symmetric rectan-
gular pockets that are punched in automobile-grade steel sheets; the failure depth is
the depth at which the sheet metal tears. Sheet metal, suitably formed in this manner,
is used to fabricate many parts of automobiles. This application is but one of many
examples of computer models used in the automotive industry.

Rectangular pockets are formed in sheet metal by pressing the metal sheet with
a punch (the target shape) into a conforming die. There are six inputs to the Mont-
gomery and Truss (2001) code, all of which are engineering design variables. These
variables can either be thought of as characteristics of the punch/die machine tool
used to produce the pockets or, in most cases, as characteristics of the resulting
pockets.

Five of the variables can be easily visualized in terms of the pocket geometry.
In a top view of the pocket, Fig. 1.2 illustrates the length l and the width w of the
rectangular pocket. In a side view of the pocket, Fig. 1.3 shows the fillet radius f
which is the radius of the circular path that the metal follows as it curves from the
flat upper metal surface to the straight portion of the pocket wall; the length of this
region (measured horizontally on the pocket floor) is denoted R in both the side and
top views of the pocket. The same fillet radius is followed as the straight portion
of the pocket wall curves in a circular manner to the pocket floor; the length of
this region (measured horizontally on the pocket floor) is denoted r in both views.
Viewed from the top in Fig. 1.2 and from the side in Fig. 1.3, the clearance c is the

http://fire.nist.gov/bfrlpubs
http://fire.nist.gov/bfrlpubs
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Fig. 1.1 Scatterplot of room area versus the time for the hot smoke layer to reach 5 ft above the
fire source

horizontal distance during which the side wall of the rectangular pocket descends
linearly. In terms of the punch/die machine tool, the clearance is the distance be-
tween the punch and the die when the punch is moved to its maximum depth within
the die. The punch plan view radius p is described in Fig. 1.2. Shown in Fig. 1.3, the
lock bead distance d is measured at the pocket edge on the top metal surface; the
machine tool fixes the sheet metal at the top of the pocket so that it cannot stretch
beyond distance d from the pocket edge.

To provide a sense of the (marginal) effect of each of these variables on the failure
depth, the failure depth was plotted versus each of the six explanatory inputs for the
set of 234 runs analyzed by Montgomery and Truss (2001). Two of these scatterplots
are shown in Fig. 1.4; they are representative of the six marginal scatterplots. Five
variables are only weakly related to failure depth, and the panel in Fig. 1.4 showing
failure depth versus fillet radius is typical of these cases. One variable, clearance,
shows a strong relationship with failure depth. �
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Fig. 1.2 Top view of the pocket formed by a punch and die operation. The floor of the pocket is the
innermost (rounded-corner) rectangle. The letters R, s, and r correspond to the similarly labeled
horizontal distances in the Fig. 1.3 side view
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Fig. 1.3 Side view of part of a symmetric pocket formed by a punch and die operation. The angled
side wall is created by the same fillet radius at the top by the die and at the bottom by the edge of
the punch

Example 1.3 (Water Flow Through a Borehole). In their studies of uncertainty anal-
ysis, Harper and Gupta (1983) and Worley (1987) used a simple model of the flow
of water through a borehole that is drilled from the ground surface through two
aquifers. This model is based on the assumptions: no groundwater gradient, steady
state flow from the upper aquifer into the borehole and from the borehole into the
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Fig. 1.4 Top panel: scatterplot of failure depth (millimeters) versus clearance for 234 runs of the
computer code described in Example 1.2; bottom panel: failure depth versus fillet radius for the
same data

lower aquifer, laminar fluid flow in parallel layers with no disruption between lay-
ers, and isothermal (constant temperature) flow through the borehole. Let yB(x) be
the flow rate through the borehole in m3/year. The Harper and Gupta (1983) and
Worley (1987) model is

yB(x) =
2πTu(Hu − Hl)

�n(r/rw)
[

1 + 2LTu

�n(r/rw) r2
wKw
+ Tu

Tl

]

where the x inputs are labeled

rw = radius of the borehole (m), rw ∈ [0.05, 0.15]

Tu = transmissivity of the upper aquifer (m2/year), Tu ∈ [63,070, 115,600]
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r = radius of influence (m), r ∈ [100, 50,000]

Hu = potentiometric head of the upper aquifer (m), Hu ∈ [990, 1110]

Tl = transmissivity of the lower aquifer (m2/year), Tl ∈ [63.1, 116]

Hl = potentiometric head of the lower aquifer (m), Hl ∈ [700, 820]

L = length of the borehole (m), L ∈ [1120, 1680]

Kw = hydraulic conductivity of the borehole (m2/year), Kw ∈ [9855, 12,045] .

Here yB(x) is not a computationally intensive computer model but rather is an
analytic function with eight inputs. The ranges of each input are quite different.
Because it is rapidly computable, yB(x) is useful for demonstrating some of the
methodology discussed later in the book. For example, it allows us to quickly assess
the accuracy of predictions at test sites by means of direct yB(x) comparisons. It is
also useful for comparing new methodology to existing procedures. �

Example 1.4 (Injection Molding). Injection molding (IM) is one of the most impor-
tant manufacturing methods for mass-producing precision plastic components that
might be used in automobiles and appliances. This example describes part of a larger
study to determine the manufacturing conditions, the “process control variables,” to
best achieve target dimensions for a suite of test parts fabricated by IM. Roughly,
the steps of the IM process to fabricate plastic components are to first melt plastic
pellets, then to inject the molten plastic material into a mold, and lastly to allow the
molded material to cool for a specified length of time.

The goal is to find molding process conditions that minimize the relative shrink-
age of the length, width, and thickness of a specified segment of a test sample. The
relative shrinkage is defined as the absolute value of the difference between the tar-
get and manufactured measurement divided by the target measurement. To simplify
the description of this example and the subsequent calibration in Chap. 8, only the
width of a particular test sample will be considered.

Given adequate resources, a series of experiments might be conducted during
routine production to minimize the relative shrinkage of fabricated test pieces. Un-
fortunately, it is often not feasible to run experiments that change the process con-
trol variables during standard production, and thus this approach was not used here.
Instead, the physical system data used in this example were collected at an injec-
tion molding laboratory located on The Ohio State University campus. The control
variables used in the physical experimentation, and their notation, were: (1) the melt
temperature (Tmelt), (2) the packing time (tpack), (3) the packing pressure (Ppack), and
(4) the cooling time (tcool). The units of measurement of each control variable and its
range are listed in Table 1.1. A total of 19 distinct settings of (Tmelt, tpack, Ppack, tcool)
were used in a physical experiment, shown in Table 1.2 along with the observed
data. The boxplot in the right portion of Fig. 1.5 shows the distribution of the relative
shrinkages of the widths of test pieces manufactured using the 19 process control
variable settings.
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Variable Symbol Type Low High
Melting temperature (◦C) Tmelt Control 180 220
Packing time (s) tpack Control 10 30
Packing pressure (MPa) Ppack Control 30 44
Cooling time (s) tcool Control 25 50
HTC flow (W/m2 K) Calibration 1200 1800
HTC pack (W/m2 K) Calibration 20,000 30,000
HTC open (W/m2 K) Calibration 2000 3000

Table 1.1 Control and calibration input variables for the IM process of Example 1.4

Tmelt tpack Ppack tcool yp(xp)
184 14 42.67 50 0.0057
184 14 32.14 36 0.0056
184 14 42.67 36 0.0057
184 28 42.67 36 0.0051
184 21 37.41 43 0.0048
184 14 32.14 50 0.0067
184 28 32.14 50 0.0061
184 28 42.67 50 0.0049
184 28 32.14 36 0.0066
216 14 42.67 36 0.0046
216 28 42.67 36 0.0047
216 14 42.67 50 0.0041
216 14 32.14 36 0.0054
216 21 37.41 43 0.0046
216 28 42.67 50 0.0038
216 28 32.14 36 0.0048
216 14 32.14 50 0.0056
216 28 32.14 50 0.0052
200 21 37.41 43 0.0054

Table 1.2 The 19 distinct combinations of control factor settings used in the physical experiment
of Example 1.4 and the corresponding relative shrinkage of the width of the test part

Alternative to experimenting with an existing manufacturing process or conduct-
ing an off-line study, many molders experiment using a computer simulator of the
molding process (see Zhou (2013)). The simulator employed in this example is
Moldex3D, a commercial package that implements a mathematical model which
treats the plastic melt as a generalized Newtonian fluid (Villarreal-Marroquı́n et al.
(2017), and the references therein provide more information about the mathemat-
ical model; see also http://www.moldex3d.com). The inputs to Moldex3D include
the four process control variables together with three variables used to calibrate the
simulator output to the physical output; the calibration variables are the heat transfer
coefficients (HTC) of the mold during flow, packing, and cooling. In the manufactur-
ing setting, the HTCs cannot be determined with 100% accuracy, but expert opinion
about their possible values is listed as the ranges in Table 1.1. This example uses
combined physical system and simulator data to form calibrated predictors of the
mean output from the physical system at arbitrary control inputs (see Sect. 8.3).

http://www.moldex3d.com
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Fig. 1.5 Boxplots of the relative shrinkages of the widths of test pieces from the 35 simulator run
outputs (left) and 19 physical system observations (right) of Example 1.4

A 35 run space-filling maximin Latin hypercube design was selected at which
to run the simulator (see Sect. 5.4 for a description of maximin Latin hypercube
designs). The space-filling character of these seven inputs can be seen in the scat-
terplot matrix of Fig. 1.6 which shows all 21

(

=
(

7
2

))

2-D projections of these seven
variables. The left side of Fig. 1.5 is a boxplot of the computed relative shrinkages
of the width of the test piece for the 35 runs. The fact that the 35 outputs for the
simulator are systematically greater than those from the physical experiment is vi-
sual evidence of a bias in the simulator code that appears to require more adjustment
than mere manipulation of the HTCs. �

Example 1.5 (Design of Prosthetic Devices). Biomechanical engineers have used
computer simulators to understand the performance of total joint replacements for
decades. Their simulator models supplement clinical studies and limited physical
experiments. Simulator models are used for design comparisons and optimization.

Two important difficulties that limit the use of many simulator models are their
long running times and their difficult validation. For example, even using a fast
workstation, a single run of many simulator codes can require hours or even days.
The validation of a simulator is the process of ensuring that the theoretical model
which is the basis for the simulator correctly describes joint performance.

As a simple example of a biomechanics simulator, Chang (1998) and Chang et al.
(2001) study the design of a reduced midstem “bullet” tip prosthesis. As illustrated
in Fig. 1.7, the total length of the stem was fixed at 100 mm, and its maximal di-
ameter at the tip was 16 mm. Figure 1.7 also illustrates the biomechanical design
variables which were the length b ∈ [25 mm, 75 mm] of the maximum diameter
portion of the stem and diameter of the reduced midshaft d ∈ [7 mm, 13 mm].

The finite element code of Chang (1998) considers five inputs, x. Two are the
design variables (b, d) described in the previous paragraph. The remaining three
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Fig. 1.6 Scatterplot matrix of all 2-D projections of the control and calibration inputs for the 35
simulator runs of Example 1.4

Fig. 1.7 Biomechanical engineering design variables b and d for variation of a Ranawat–Burstein
hip prostheses having a fixed stem length of 100 mm and a maximum diameter of 16 mm

inputs are patient-specific variables which allowed for differences in the simulated
performance of each (b, d) design over a population of patients. The patient-specific
variables were

• Θ, the joint force angle (the load itself was fixed),
• E, the elastic modulus of the (cancellous) bone surrounding the implant, and
• F, the bone-implant interface friction.
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Figure 1.8 illustrates the (Θ, E) inputs. The range of values of the three patient inputs
in human populations were determined from the orthopedic literature. For example,
the joint force angle was determined in telemetric hip force studies (Kotzar et al.
(1995)).

Fig. 1.8 Two of the patient-specific inputs to the simulator of Chang et al. (2001): Θ, the joint
force angle, and E, the elastic modulus of the bone surrounding the implant

The simulator produced two outputs for each design × patient condition, x =
(b, d, Θ, E, F). One output is femoral stress shielding, denoted by ys(x), and a second
is implant toggling, denoted by yt(x). The femoral stress shielding measures the
amount of the load that is deflected from the top of the femur near the neck of the
prosthesis. While maximizing shielding might be thought to be good, the opposite
is true. Because bone is a living organism that reacts to its environment, shielding
the femur from stress causes it to lose bone stock, and hence the femur weakens
over time. Implant toggling measures the flexing of the implant in the coronal plane
of the body (a vertical plane that divides the body into its anterior and posterior
sections). Implant toggling should also be minimized because excessive flexing in
the coronal plane can cause implant loosening.

The simulator outputs ys(x) and yt(x) are competing objectives. Flexible prosthe-
ses minimize stress shielding but permit the prosthesis toggling and thus increase the
chance of loosening. A prostheses that is too stiff will not toggle in the coronal plane
but will shield the bone that is near the neck of the prosthesis causing this section
of the bone to be gradually resorbed by the body and weakened. The modified bone
structure can be more fragile than that of a normal person and can fracture more
easily under the stress of, say, a fall. Combining multiple objectives is typically
problematic, and Sect. 6.3 describes the Pareto approach for doing so. �
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Example 1.6 (Stability of Acetabular Cups Under Cyclic Loading). This example,
taken from Ong et al. (2008), is drawn from the biomechanical engineering liter-
ature. It illustrates a simulator with multivariate output that has both control and
environmental inputs. Ong et al. (2008) study the design of the so-called acetabular
cup which is a component of a prosthetic total hip replacement. The acetabular cup
is located in the hip socket (“acetabulum”) of the pelvis. The head of the femoral
component of the prosthesis conforms to the cup and rotates within it (see the Xray
in Fig. 1.9).

Fig. 1.9 MRI of a total hip replacement that shows the femoral component and acetabular cup.
The acetabular cup is located in the pelvis (Credit: NIADDK, 9AO4 (Connie Raab-contact); NIH)

One cause of failure of the hip prosthesis is the loosening of the acetabular cup
over time. Cup loosening is caused by the buildup of polyethylene debris from the
interior of the cup which is, in turn, the result of friction between the femoral head
and the cup interior. Cup designs that have relatively little movement between the
pelvic bone and back of the cup are less likely to “suction” debris into this space
and are considered desirable.

The 3-D finite element simulator used to study alternative cup designs had 12
inputs that can be grouped as

• two engineering design (“control”) inputs that described deviations of the cup
from sphericity in two directions,

• two variables that captured patient loading,
• one input that described model assumptions (a friction coefficient),
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• seven inputs that measured surgical skill in placement of the cup and the reaming
of the hemispherical bed in the pelvic bone for the acetabular cup.

The cartoon in Fig. 1.10 illustrates the engineering design, cup placement, and load-
ing variables. In more detail, Table 1.3 lists all the inputs, the domain of possible
values for the engineering design inputs, and gives the distributions used in Ong
et al. (2008) to describe the relative frequency of occurrence of the loading inputs,
the level of surgical skill, and the subject expert beliefs about the value of friction
in this application.

cup

rp

re

cup

cup

θacetabulum

acetabulum

p

F

Fig. 1.10 Left panel, schematic of two engineering design variables, the cup equatorial diameter
(2 × rθ) and the cup eccentricity (2 × rθ − 2 × rρ); center panel, one of the surgical inputs, p the
depth of cup insertion; right panel, two inputs, F and θ, describing patient loading

The simulator calculated four (related) outputs that are proxy measures of the cup
stability under loading (termed total potential ingrowth area, change in gap volume,

Input Parameter Input range or distribution
Bioengineering design variables

1 Cup equatorial diam. (mm) {56, 57, 58, 59}
2 Cup eccentricity (mm) {0, 1, 2}

Patient-specific environmental variables
3 Gait load magnitude (BW) Chi-square truncated
4 Gait load polar direction (deg) Truncated Normal distribution

Model input
5 Density/modulus relative weight Trangular(0, 1)

Surgical environmental variables
6 Cup penetration–insertion (mm) Truncated Normal distribution
7 Nominal reaming deviation at equator (mm) Truncated Normal distribution
8 Nominal reaming deviation at pole (mm) Truncated Normal distribution
9 Frequency of undulations (cross-section) U(4, 9)
10 Frequency of undulations (transverse section) DU{4, 5, 6, 7}
11 Peak amplitude of undulations (mm) U(0.85, 1.15)
12 Rate of undulation decay U(0.85, 1.15)

Table 1.3 Biomechanical design inputs (#1 & #2) and their input domains; environmental vari-
ables (#3-#12) and a brief description of the distribution of the occurrence of each in the population
studied in Ong et al. (2008). Here U(a, b) denotes the uniform distribution over the interval (a, b);
DU{a1, . . . , ad} denotes the discrete uniform distribution over the values {a1, . . . , ad}; and Tr(a, b)
denotes the triangular distribution centered at (a + b)/2
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gap volume, and cup relative motion in Ong et al. (2008)). Among other issues, the
sensitivity of the outputs to each input will be determined in later examples. �

Example 1.7 (Flyer Plate Experiments). In a flyer plate experiment, a plane shock
wave is forced through a stationary target sample of a material. Flyer plate exper-
iments are conducted to learn about the behavior of materials in high strain-rate
environments. In the data analyzed in later sections, the target material is the ele-
ment tantalum for which data from a single physical experiment was available.

Figure 1.11 is a cartoon that provides more detail about the test apparatus used in
a flyer plate experiment. A shock wave is caused by an (aluminum) impactor plate
that is forced into a target plate by the detonation of a high explosive charge in a
closed test chamber. The output of the experiment is the velocity of the free surface
of the target plate measured as a function of time. The free surface of the target plate
is the face opposite the surface that is hit by the impactor plate. In Fig. 1.11 the free
surface is located on the bottom outside of the test chamber. A set of “shorting-pin
detectors” measures the velocity of the face as a function of time.

Fig. 1.11 Diagram of flyer plate experiment with an accelerated aluminum impactor: (1) lens-
shaped high-explosive charge; (2) correcting lens; (3) main charge; (4) impactor plate; (5) shield
from a standard material; (6) target sample; (7) shorting-pin detectors; (8) peripheral steel ring
(adapted from Trunin (1998))

The computer simulator of a flyer plate experiment that was used throughout this
example was based on a two-dimensional hydrodynamic mathematical model (with
code developed at Los Alamos National Laboratory). The code incorporated physics
models that required specification of model parameters that would be unknown in
a corresponding physical experiment. Broadly, there are three physics models that
were implemented in the simulator: an equation of state (EOS) model, a material
strength model, and a material damage model. The EOS model states the math-
ematical relationship between two or more states associated with a given material,
such as the material’s temperature, volume, or internal energy. The material strength
model specifies the behavior of a solid material under the action of external load-
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ing; the so-called “Preston–Tonks–Wallace (PTW)” model (Preston et al. (2003)) is
used by the code. The material damage model describes the amount of spallation
on the free surface; spallation is the process by which fragments of material (the
“spall”) are discharged from the free surface of the target plate. Spall can be due to
impact or stress. The spall acts as a secondary projectile with velocities that can be
a substantial fraction of the speed of the stress wave impacting the material.

Each code run (and the physical experiment) produced functional data—the ve-
locity profile of the free surface at 136 time points. A generic velocity profile of the
free surface of a target material is shown in the left panel of Fig. 1.12. The veloc-
ity profile from a set of simulator runs for tantalum is shown in the right panel of
Fig. 1.12.
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Fig. 1.12 Left panel, nomenclature for the components of a free-surface velocity profile; right
panel, free-surface velocity profiles from 128 runs of a simulator for a flyer plate experiment using
tantalum

The simulator had ten inputs; Table 1.4 lists the inputs and their ranges. The
following sections analyze the results from 128 code runs. Figure 1.13 shows that
the input settings fill each 1-D and 2-D projection of the input space. The inputs
were selected according to an orthogonal array-based Latin hypercube design—see
Sect. 5.3.

In Chap. 8 on calibration, the data from the simulator runs and the physical ex-
periment are used to infer tantalum’s material properties, i.e., the parameters of its
equations of state, its material strength, and its material damage. �

Example 1.8 (Location × Time Profile of the Concentration of a Chemical from a
Bi-location Spill). Bliznyuk et al. (2008) present a pseudo-diffusion model for the
location × time evolution of the concentration of a chemical caused by a pair of
pollutant spills. The model considers a long narrow channel and allows the spills to
occur at different locations and times. Let (s, t) denote a generic location and time
where the concentration is to be measured.

The mathematical model assumes that diffusion is the only transport modality.
The diffusion rate in the channel is denoted D. For simplicity their model assumed
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Domain
Input Symbol Description Min Max

1 ε Perturbation of EOS table from nominal −5% +5%
2 θ0 Initial strain hardening rate 2.78 × 10−5 0.0336
3 κ Material constant in thermal activation energy term

(relates to the temperature dependence) 0.438 1.11
4 γ Material constant in thermal activation energy term

(relates to the strain-rate dependence) 6.96 × 10−8 6.76 × 10−4

5 y0 Maximum yield stress (at 0 K) 0.00686 0.0126
6 y∞ Minimum yield stress (at ∼ melting temp) 7.17 × 10−4 0.00192
7 s0 Maximum saturation stress (at 0 K) 0.0126 0.0564
8 s∞ Minimum saturation stress (at ∼ melting temp) 0.00192 0.00616
9 Pmin Spall strength −0.055 −0.045

10 vs Flyer plate impact velocity 329.5 338.5

Table 1.4 Inputs to flyer plate simulator: input 1 specifies the equation of state model; inputs 2–8
specify the material strength model; input 9 specifies the material damage model

0 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
0

0.5
1
0

0.5
1
0

0.5
1
0

0.5
1
0

0.5
1
0

0.5
1
0

0.5
1
0

0.5
1
0

0.5
1
0

0.5
1

Fig. 1.13 Scatterplot of all pairs of the normalized inputs used in the flyer plate simulator runs

both spills contained the same mass M of the pollutant. Denoting the location and
time of the first spill by (s, t) = (0, 0), the concentration profile depends on the
location and time of the 2nd spill which are denoted by (s, t) = (L, T ). The ranges
of the inputs (M, D, L, T ) are as follows:

M = common mass of the pollutant spilled, M ∈ [7, 13]

D = diffusion rate in the channel, D ∈ [0.02, 0.12]
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L = location of the second spill, L ∈ [0.01, 3.0]

T = time of the second spill, T ∈ [0.01, 30.295] .

The simulator output is functional—the location × time concentration profile
over (s, t) ∈ (0, 3) × (0, 60). For a spill made under conditions (M, D, L, T ), let
y((s, t) | M, D, L, T ) denote the concentration of the pollutant at (s, t). For example,
Fig. 1.14 plots the concentration over (s, t) ∈ (0, 2.5) × (0, 60) when (M, D, L, T ) =
(10, 0.07, 1.505, 30.1525). This figure shows that the first spill has little impact on
concentrations for (downstream) locations s, 1.0 ≤ s ≤ 2.5, and longer times t,
20 ≤ t ≤ 30.15; the concentration is essentially back to pre-spill levels at these
points. The impact of the spill at (L, T ) = (1.505, 30.1525) is more dramatic; the
chemical diffuses to both sides of the spill location, increasing the concentration
of the chemical and causing a noticeable increase in the concentration for times t,
30.15 ≤ t ≤ 60. �
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Fig. 1.14 Location, time, and concentration of a chemical in a channel having diffusion rate of
0.07 at locations s, 0 < s < 2.5 and times t, 0 < t < 60, resulting from a pair of spills each of mass
10 at (s, t) = (0, 0) and (s, t) = (1.505, 30.1525)

This subsection concludes with short sketches of several computer simulator
models that involve larger numbers of input variables than the models described
earlier in this section. These examples will also serve to broaden the reader’s appre-
ciation of the breath of scientific and engineering applications of simulator models.
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Booker et al. (1997) describe an effort to design a helicopter blade with “optimal”
geometry. While the main purpose of their report was the development of an opti-
mization algorithm used to minimize a function of the computer model outputs, their
application is of interest because the geometric specification of the rotor contained
31 input variables. The objective function was a measure of the rotor vibration that
combined the forces and moments on the rotor. Each run of the computer simula-
tor required very little time (10–15 min). However, the computer code provided a
limited accuracy solution of the mathematical equations that describe the forces and
moments on the rotor blade, than would a more detailed finite element code.

The rotor blade design application raises the broad question of how to combine
runs of a fast-simulator code with those of slower but gold standard code for the
same output. This issue will be addressed in Sect. 2.4. Chapter 8 will describe cali-
bration methodology for combining information from multiple sources.

Lempert et al. (2002) describe a computer code used in public policy decision
making. The objective of their research was to contrast the effects of several na-
tional policies for curbing the effect of greenhouse gases based on an “integrative”
model of the future that links the world economy to the population and to the state
of the environment. Lempert et al. (2002) utilized the so-called Wonderland model
which quantifies the state of the future over a window of (typically) 100 years, us-
ing several output measures, one of which is a “human development index.” The
model is integrative in that, for example, the pollution at a given time point depends
on the user-specified innovation rate for the pollution abatement, the current pop-
ulation, the output per capita, environmental taxes, and other factors. The human
development index is a weighted average of a discounted annual improvement of
four quantities including, for example, the (net) output per capita. In all, the sim-
ulator based on the Wonderland model has roughly 30 input variables; the inputs
specify different public policies, initial world conditions, and evolution rates.

An additional source of motivating examples is Berk et al. (2002) who report
on a workshop that discussed computer models in four diverse areas: transportation
flows, wildfire evolution, the spatiotemporal evolution of storms, and the spread of
infectious diseases.

1.3 Some Common Types of Computer Experiments

The previous section suggests the breadth of applications that employ computer
simulator experiments. This section will describe three types of common simulator
settings. To set notation, let x denote the simulator input, X the input domain, and
y(x) a real-valued simulator output. The first setting, called a homogeneous-input
simulator, is one in which all inputs are of the same type, usually either control,
environmental, or model variables. The second setting will describe some special
cases of simulators having mixed-input x. The third subsection describes several
settings where simulators have multiple outputs.
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1.3.1 Homogeneous-Input Simulators

First, suppose that x consists exclusively of control variables, i.e., x = xc. In this
case one important objective is to predict y(x) “well” for all x in some subdomain of
X so that alternative values of the control variables can be compared. One intuitive
basis for judging a proposed predictor ŷ(x) is its integrated squared error

∫

X

[

ŷ(x) − y(x)
]2 w(x) dx, (1.3.1)

where w(x) is a nonnegative weight function that quantifies the importance of each
x ∈ X. For example, w(x) = 1 weights all parts of X equally. If I{x ∈ A}, A ⊂ X,
is the function which equals 1 for x ∈ A and is 0 otherwise, then w(x) = I{x ∈ A}
ignores the complement of A and weights all points in A equally.

Unfortunately, (1.3.1) cannot be calculated because y(x) is unknown. Later chap-
ters will replace

[

ŷ(x) − y(x)
]2 by a posterior mean squared value computed under

a certain prior model for y(x) and obtain an approximation of (1.3.1) that can be
computed.

The problem of predicting y(x) well over a specified subregion of X can be
thought of as a global objective. In contrast, most local goals focus on finding “inter-
esting” parts of the input domain X where the importance of x depends on y(x). An
example of such a goal is to identify (any) x, where y(x) equals some target value.
More formally suppose

L(t0) = {x ∈ X | y(x) = t0}

denotes the level set of all input values where y(x) attains a given target value t0.
The objective stated above is that of finding any x ∈ L(t0). Another example of a
local objective is to find extreme values of y(x). The problem of finding any x in the
set

M =
{

x ∈ X
∣

∣

∣ y(x) ≥ y(x�) for all x� ∈ X
}

is that of determining any input that attains the global maximum of y(x). There is
a large literature discussing solutions to problems of finding global optima of black
box simulators (see Dixon and Szego (1978); Bernardo et al. (1992); Mockus et al.
(1997); Mockus (1998); Jones et al. (1998); Trosset and Padula (2000); Regis and
Shoemaker (2005); Vazquez and Bect (2010); Picheny et al. (2013); Gramacy et al.
(2016) and the references therein).

As for control-only input simulators, there is a similarly large literature dis-
cussing problems when x depends only on environmental variables. Perhaps the
simplest application is when the inputs have a known distribution representing input
uncertainty, and the goal is to determine the probability distribution of the simulator
output which quantifies the uncertainty in the response. Formally, let the upper case
notation x = Xe denote the distribution of the inputs when the objective is to find the
distribution of y(Xe). This problem is sometimes called uncertainty analysis or un-
certainty quantification (UQ) (Crick et al. (1988), Dandekar and Kirkendall (1993),
Helton (1993), O’Hagan and Haylock (1997), and O’Hagan et al. (1999) provide
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examples of UQ). In the spirit of this formalization, McKay et al. (1979) introduced
the class of Latin hypercube designs for choosing the training sites Xe at which
to evaluate y(xe) when the objective is to predict the mean of y(Xe), denoted by
E[y(Xe)]. The theoretical study of Latin hypercube designs has established a host
of asymptotic and empirical properties of E[y(Xe)] estimators (Stein (1987); Owen
(1992a, 1994); Loh (1996); Pebesma and Heuvelink (1999)) and enhancements of
such designs (Handcock (1991); Tang (1993, 1994); Ye (1998); Ye et al. (2000);
Butler (2001); Qian et al. (2006); Qian and Wu (2008); Qian (2009, 2012)).

A third case of homogeneous inputs is when x depends only on model variables,
i.e., x = xm. Occurring less frequently than the first two homogeneous input cases,
simulators used in climate modeling simulators have this setup where the mathemat-
ical model involves possibly many unknown parameters. If in addition, there are data
from the physical system modeled by the simulator, then calibrating the simulator
is an important problem.

1.3.2 Mixed-Input Simulators

This subsection focusses on what is arguably the most interesting of the mixed-input
cases. This is the situation when x consists of control and environmental inputs.
The section assumes that x = (xc, Xe) where, as in Sect. 1.3.1, Xe has a known
distribution.

For each xc, y(xc, Xe) is a random variable with a distribution that is induced by
the distribution of Xe. This is a familiar regression-type setting although the model
is more general. A simpler problem than determining the distribution of y(xc, Xe) is
to merely estimate the mean of y(xc, Xe), which will be denoted by

μ(xc) = E
[

y(xc, Xe)
]

where the expectation is with respect to the Xe distribution.
In some applications users would be interested in choosing the control inputs to,

say, minimize μ(xc). To describe this and related goals in a formal fashion, denote
the upper α quantile of the distribution of y(xc, Xe) by ξα = ξα(xc) where

P {y(xc, Xe) ≥ ξα} = α

(assuming for simplicity that there is a unique such upper α quantile). For example,
ξ.5(xc) denotes the median of the distribution of y(xc, Xe).

Consider analogs for μ(xc) of the three goals stated above for y(xc). The analog of
predicting y(xc) well over the xc domain is to predict μ(xc) well over the xc domain
in the sense of minimizing

∫

[

μ(xc) − μ̂(xc)
]2 w(xc) dxc (1.3.2)
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where μ̂(xc) denotes a generic predictor of μ(xc). To solve this problem, one must
not only choose a particular method of constructing μ̂(xc) but also a set of “training
sites” (xc, xe) to estimate the specific μ̂(xc). As in the case of (1.3.1), the criterion
(1.3.2) cannot be computed, but a Bayesian analog that has a computable mean will
be introduced in Chap. 6. The parallel of the problem of finding a control variable
to maximize y(xc) is that of determining an xc to maximize μ(xc), i.e., finding an xM

c

that satisfies
μ(xM

c ) ∈ argmax
xc

μ(xc).

Similarly, the analog of the problem of finding xc to attain a fixed target value
of y(xc) is straightforward to formulate for μ(xc). Of course, if the distribution of
y(xc, Xe) is skewed, the objectives described below might better be stated in terms
of ξ.5(xc).

Other problems are more relevant when the distribution of Xe is not known pre-
cisely. To illustrate, suppose that xM

c maximizes EGN [y(xc, Xe)] for a given nominal
Xe distribution, GN . Suppose, instead, that G � GN is the true Xe distribution. If

EG

[

y(xM
c , Xe)

]

	 max
xc

EG

[

y(xc, Xe)
]

,

then xM
c is (substantially) inferior to any x�

c that produces a larger mean value when
Xe has distribution G, i.e., EG[y(xM

c , Xe)] < EG[y(x�
c , Xe)]. From this perspective, a

control variable xc can be thought of as being “robust” against misspecification of
the Xe distribution if xc comes close to maximizing the mean over the nominal Xe

distribution, and xc is never far from achieving the maximum EG[y(x�
c , Xe)] for a

specified set of alternative Xe distributions, G. There are several heuristic methods
of defining a robust xc that embody this idea.

One of the earliest methods of defining a robust xc uses minimaxity (Huber
(1981)). Given a set G of possible Xe distributions that includes the “central” nomi-
nal distribution GN , let

μ(xc,G) = EG

[

y(xc, Xe)
]

denote the mean of y(xc, Xe) when Xe has distribution G ∈ G. Then

min
G∈G

μ(xc,G)

is the smallest mean value for y(xc, Xe) that is possible when Xe distributions come
from G. We say xG

c is G-robust provided

min
G∈G

μ(xG
c ,G) = max

xc

min
G∈G

μ(xc,G).

However mathematically satisfying their definition, G-robust choices of xc can be
criticized on at least three grounds. They are pessimistic; xG

c maximizes a worst-case
scenario for the mean of y(xc, Xe). Specifying a meaningful G for a given applica-
tion can be arbitrary. Finally, there can be substantial computational difficulties
determining G-robust xc.
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Lehman et al. (2004) give alternative definitions of robustness and provide se-
quential designs for identifying robust xc.

1.3.3 Multiple Outputs

To fix ideas, suppose that y1(·), . . . , ym(·) are the simulator outputs. This subsection
describes four of the many settings that lead to such data and formulates several
common problems that occur in multiple output settings.

In some cases, the outputs can be multiple simulators of the same physical quan-
tity; for example, Kennedy and O’Hagan (2000) study simulators based on coarser
and finer FE grids for the same response. In other cases the simulators could imple-
ment more or less detailed mathematical models describing the relationship between
the input/output variables.

A second situation that leads to multiple outputs is when y1(·), . . . , ym(·) are com-
peting responses. For example, the design of an airplane wing should both maximize
lift and minimize drag. A car is designed to minimize body weight (the single most
important factor in determining gas mileage) and maximize body strength (to in-
crease safety in a crash).

A third setting that leads to multiple outputs is when y1(·), . . . , ym(·) each contain
partial information about a common output. Arguably the most important example
of such a situation is described in Morris et al. (1993) and Mitchell et al. (1994) who
consider the prediction of a given y(x) for cases where the simulator provides y(x)
and all first partial derivatives of y(x). Regarding y1(x) = y(x) and y2(x), . . . , ym(x)
as the values of the partial derivatives of y(x) with respect to each component of x
produces the multiple outputs for each x. Intuitively, the partial derivatives should
provide auxiliary information that permits more precise prediction of future y(x)
values than predictions based on y(x) training data alone.

A final setting that produces multiple outputs is that of discretized functional
output. To fix ideas consider the simple case when the function output depends on
time, and for each input y(x) ≡ (y(x; t1), . . . , y(x; tm)) is a vector of m values at the
time points t1, . . . , tm. More general spatial or space × time outputs follow a similar
pattern. While smooth functional data can appear to be high dimensional when m is
large, the m × n data can often be reduced to a lower-dimensional representation as
will be seen in Chap. 8 during the discussion of model parameter calibration.

Depending on the nature of the simulator output, many scientific objectives can
be of interest in multivariate simulator data settings. Consider the scenario where
x = xc, y1(·) is the response of primary interest which is to be minimized, and
y2(·), . . . , ym(·) are competing objectives which are to be maximized. An approxi-
mate solution can be computed by solving the following constrained optimization
problem. First construct a feasible region of xc values by setting minimal (user-
specified) performance standards for y2(xc), . . . , ym(xc). Then solve

minimize y1(xc)
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subject to

y2(xc) ≥ M2

... (1.3.3)

ym(xc) ≥ Mm .

Here Mi denotes the lowest acceptable bound on the performance of yi(·), i =
2, . . . , m.

If, in addition to control variables, x contains environmental variables Xe,
then each yi(xc) in (1.3.3) can be replaced by μi(xc) = E[yi(xc, Xe)]. Lastly, if
y1(x), . . . , ym(x) are the outputs of different codes of varying accuracy for the same
response, then a typical goal would be to combine information from the various
outputs to better predict the true response or to predict the code that is regarded
as the most detailed. Further discussion of this idea is postponed until modeling
multiple response outputs is discussed in Sects. 2.5 and 3.5.

1.4 Organization of the Remainder of the Book

Before providing an overview of the book chapters, we describe the Notes sections
that conclude each chapter. Notes sections give an overview of some of the de-
velopments that extend the basic ones explained in this book. They list additional
references and give details for some of the topics that are sketched in the chapter.
Finally Notes sections list, as of the publication of this volume and consistent with
the authors’ knowledge and experience, software that is available to carry out the
analyses described in the chapter.

The remainder of the book is organized as follows. Chapter 2 describes the
stochastic process interpolating models that form the basis for most of the design
and analysis methodology that is presented in Chaps. 3–8. Both stationary models
and nonstationary models are included. The chapter develops intuition by showing
functions y(x) drawn from these models. Finally, it introduces process models for
multivariate output.

Using training data runs, Chap. 3 describes empirical best linear unbiased pre-
diction (EBLUP) methodology based on the Gaussian process model for predicting
simulator output at new inputs. It also presents methods for assessing uncertainty in
the predictions. The chapter compares EBLUP methods via simulation and presents
our recommended choice of predictor.

Chapter 4 parallels Chap. 3 in describing a fully Bayesian predictor of simulator
output. Both conjugate and non-conjugate cases are presented where the latter must
be implemented by appropriate sampling from the posterior.

Chapters 5 and 6 describe a wide variety of experimental designs for computer
simulator experiments, i.e., input sites at which to run code. Chapter 5 considers
space-filling designs, meaning designs that “spread” observations throughout the
input region. Among the designs examined are those based on simple random sam-
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pling, Latin hypercube designs, orthogonal arrays, distance-based designs, uniform
designs, and designs that combine multiple criteria. Grid and lattice designs are pre-
sented briefly at the end of Chap. 5. Chapter 6 considers designs based on statistical
criteria; in most cases approximations of the criteria depend on the availability of
a suitable interpolating process. The criteria include maximum entropy and mean
squared error of prediction. Chapter 6 also considers sequential strategies for de-
signing computer experiments to optimize simulator output and for other objectives.

Chapter 7 presents an introduction to tools for sensitivity analysis and the related
topic of variable screening. Sensitivity analysis methodology seeks to determine
for each input, whether that input is “active” or not. Both graphical and numerical
methods are presented. Variable screening is a decision procedure for determining
the subset of active inputs.

Finally, Chap. 8 discusses problems that occur when both simulator and physical
system data are available. These problems include inferring the calibration param-
eters of the simulator code based on the combined data and quantifying the uncer-
tainty in their values. Another important objective that is described in this chapter is
to combine simulator code and physical system data to predict the mean of the phys-
ical system output and to quantify the uncertainty of the prediction. Chapter 8 also
extends the Bayesian prediction of Chap. 4 to cases of multivariate and functional
simulator output.



Chapter 2
Stochastic Process Models for Describing
Computer Simulator Output

2.1 Introduction

Recall from Chap. 1 that x denotes a generic input to our computer simulator and
y(x) denotes the associated output. This chapter will introduce several classes of
random function models for y(x) that will serve as the core building blocks for the
interpolators, experimental designs, calibration, and tuning methodologies that will
be introduced in later chapters. The reason that the random function approach is
so useful is that accurate prediction based on black box computer simulator output
requires a rich class of y(x) options when only a minimal amount might be known
about the output function. Indeed, regression mean modeling of simulator output is
usually based on a rather arbitrarily selected parametric form.

While some readers will regard the process model as an extension of the familiar
regression model, others will see it as a Bayesian (prior) model for y(x). The process
model can be constructed to ensure smoothness and monotonicity features of y(x)
that are known before data are collected, and hence the process is a prior for y(x) (see
Oakley (2002) and Reese et al. (2004) for advice about eliciting prior information
and case studies about the formation of prior distributions for simulator models and
more generally Berger (1985) and O’Hagan (1994)).

The viewpoint taken in this book is Bayesian because the authors find this to be
the most philosophically satisfying approach, for example, the Bayesian interpre-
tation of an interval estimate of a predicted value describes the uncertainty in y(x)
given the training data. Unfortunately, it is not always possible to elicit informative
prior information. Thus our approach is not dogmatic; while the process model con-
trols the characteristics of the functions produced by our priors, our attitude is to
not rigidly believe them. Our approach is to choose flexible priors that are capable
of producing many shapes for y(·) and then let the Bayesian machinery direct the
details of the prediction and other inference processes.

The design and analysis of computer experiments are not the only statistical dis-
ciplines to use Bayesian methodology to analyze highly correlated y(x) data, of-
ten measured with error. Examples of scientific disciplines that produce such data
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are geostatistics (Matheron (1963), Journel and Huijbregts (1978)), environmental
statistics and disease mapping (Ripley (1981), Cressie (1993)), global optimization
(Mockus et al. (1997)), and statistical learning (Hastie et al. (2001)). Hence many
of the methodologies discussed in the literatures of these disciplines are relevant for
computer experiments.

In the following let X denote the input space for the unknown output y(x). The
function y(·) is regarded as a draw from a random function (“stochastic process”
or simply “process”) which is denoted by Y(·). This book will adopt a pragmatic
viewpoint in discussing stochastic process models rather than a measure-theoretic
one. However, it will enhance our understanding of the subject to know that a ran-
dom function is best thought of as a mapping from a sample space of elementary
outcomes, say Ω, to a given set of functions just as a random variable is a mapping
from a set of outcomes Ω to the real numbers. It will occasionally add clarity to
a discussion to write y(x) = Y(x, ω), ω ∈ Ω, recognizing that Y(·, ω) refers to a
particular function from X to IR1. Thus y(x) = Y(x, ω) is referred to as a draw or
realization of the random function Y(ω). One place where the introduction of the
underlying sample space Ω helps clarify ideas is when discussing the smoothness
properties of functions y(x) = Y(x, ω) drawn from a process.

To introduce the idea of a random function to readers who are not familiar with
this notion, our introduction is concluded with an example that illustrates a simple
method for generating a random quadratic function.

Example 2.1. Suppose y(x) on [−1,+1] is drawn from the mechanism

Y(x) = b0 + b1x + b2x2 , (2.1.1)

where b0, b1, and b2 are mutually independent with bi ∼ N(0, σ2
i ) for i = 0, 1, 2.

Functions drawn from Y(x) are simple to visualize. Every realization y(·) is a
quadratic equation (P[b2 = 0] = 0) that is symmetric about an axis other than the
y-axis (symmetry about the y-axis occurs if and only if b1 = 0 but P[b1 = 0] = 0).
The quadratic is convex with probability 1/2 and it is concave with probability 1/2
(because P[b2 > 0] = 1/2 = P[b2 < 0]). Figure 2.1 illustrates ten outcomes from
Y(x) when σ2

0 = σ2
1 = σ2

2 = 1.0.
For any x ∈ [−1,+1] the draws from (2.1.1) have mean zero, i.e.,

E [Y(x)] = E
[

b0 + b1x + b2x2
]

= E [b0] + E [b1] × x + E [b2] × x2

= 0 + 0 × x + 0 × x2 = 0 . (2.1.2)

Equation (2.1.2) says that for any x, the mean of Y(x) is zero over many drawings
of the coefficients (b0, b1, b2). Likewise for any x ∈ [−1,+1] the variance of Y(x) is

Var [Y(x)] = E
[(

b0 + b1x + b2x2
) (

b0 + b1x + b2x2
)]

= σ2
0 + σ2

1x2 + σ2
2x4 ≥ 0 . (2.1.3)
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Fig. 2.1 Ten draws from the random function Y(x) = b0 + b1 x + b2 x2 on [−1,+1], where b0, b1,
and b2 are independent and identically N(0, 1.0) distributed

Both features (2.1.2) and (2.1.3) can be seen in Fig. 2.1. For example, the effect of
(2.1.3) is seen in the greater spread in the y(−1) and y(+1) values compared with the
spread in the y(0) values after only ten function draws.

Additionally, the values of Y(x1) and Y(x2) at x1, x2 ∈ [−1,+1] are related, as can
be seen from

Cov [Y(x1), Y(x2)] = E
[(

b0 + b1x1 + b2x2
1

) (

b0 + b1x2 + b2x2
2

)]

= σ2
0 + σ2

1 x1x2 + σ2
2x2

1 x2
2 . (2.1.4)

The covariance (2.1.4) can be positive or negative. The sign of the covariance of
Y(x1) and Y(x2) can intuitively be explained as follows. The covariance is positive
for any x1 and x2 that are both positive or both negative, i.e., on the same side of
the y axis, the vertical line that passes through x = 0. Intuitively this is true for any
such x1, x2 because over many drawings of (b0, b1, b2), x1 and x2 both tend to be on
the same side of the axis of symmetry of Y(x) and thus Y(x1) and Y(x2) increase or
decrease together (see Fig. 2.1). The covariance formula can be negative if x1 and x2

are on the opposite sides of the origin so that the middle term in (2.1.4) is negative
and its value dominates the sum of the positive terms σ2

0 and σ2
2x2

1 x2
2. Intuitively,

one circumstance where this occurs is if σ2
0 is small (meaning the curves tend to fall

“near” the point (0, 0)), and σ2
2 is small (the curves are near linear for x close to 0),

and σ2
1 is large. In this case, the draws fluctuate between those with large positive

slopes and those with large negative slopes, implying that Y(x1) and Y(x2) tend to
have the opposite sign over many draws.

Because linear combinations of a fixed set of independent normal random vari-
ables have the multivariate normal distribution, the Y(x) model (2.1.1) satisfies the
following property. For each L > 1 and any choice of x1, . . . , xL ∈ X, the vec-
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tor (Y(x1), . . . , Y(xL)) is multivariate normally distributed. (See Appendix B for a
review of the multivariate normal distribution.)

The y(·) realizations have several critical limitations from the viewpoint of de-
scribing computer simulator output. First, Y(x) can only produce quadratic draws.
Second, the multivariate normal distribution of (Y(x1), . . . , Y(xL)) is degenerate
when L ≥ 4. The development in the remainder of the chapter provides more flexi-
ble random functions that retain the computational advantage that (Y(x1), . . . , Y(xL))
has a nondegenerate multivariate normal distribution. �

The remainder of this chapter is organized as follows. Sections 2.2–2.4 discuss
models for real-valued outputs. Section 2.2 reviews the frequently used class of
Gaussian process (GP) models, Sect. 2.3 discusses some nonstationary extensions of
the GP model, and Sect. 2.4 presents models for simulators having mixed quantita-
tive and qualitative inputs. Section 2.5 describes models for simulators that produce
multivariate or functional output.

2.2 Gaussian Process Models for Real-Valued Output

2.2.1 Introduction

Because of their analytical tractability, the most popular Y(x) processes for gener-
ating function draws in the computer experiments literature are Gaussian process
(GP) models, also called Gaussian random function models. In addition, mixtures
of GPs are used in Bayesian modeling, as considered in Chap. 4. Hence this section
emphasizes GP models although, as will be noted, some of the concepts that are
introduced apply to more general random function models.

Definition. Suppose that X is a fixed subset of IRd having positive d-dimensional
volume; Y(x), x ∈ X, is a GP provided that for any L ≥ 1 and any choice of
x1, . . . , xL in X, the vector (Y(x1), . . . , Y(xL)) has a multivariate normal distribution.

Any GP is determined by its mean function, μ(x) ≡ E[Y(x)], x ∈ X, and by its
covariance function

C(x1, x2) ≡ Cov [Y(x1), Y(x2)] , (2.2.1)

for x1, x2 ∈ X. To be consistent with the language used in time series analysis, some
authors call C(·, ·) the “autocovariance” function.

The GPs that are used in practice are nonsingular, which means that for any
choice of inputs, the covariance matrix of the associated multivariate normal dis-
tribution is nonsingular. Nonsingular multivariate normal distributions have the ad-
vantage that it is easy to compute the conditional distribution of one (or several)
of the Y(xi) variables given the remaining Y(x j). The empirical best linear unbi-
ased prediction methodology used in Chap. 3 requires that these conditional means
and conditional variances be known, and the fully Bayesian predictive distributions
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of Chap. 4 require that the entire Y(x) conditional distribution be known. In addi-
tion, draws from the most widely used GPs allow a greater spectrum of shapes than
the quadratic equations generated in Example 2.1. They also permit the modeler to
control the smoothness properties of the y(x) draws; in most of the scientific appli-
cations mentioned above, there is some information about the smoothness of y(·),
although perhaps only that it is a continuous function of the inputs.

There are two technical issues that will be addressed before introducing specific
GP models. The first issue has to do with the fact that GP models are defined by their
finite-dimensional distributions. In contrast, smoothness properties such as continu-
ity or differentiability depend on limiting operations and hence on knowledge that
the draw behaves in a desired fashion over an interval of values. In other words,
continuity and differentiability of y(x) as a function of x are sample path proper-
ties, i.e., they regard y(x) = Y(x, ω) as a function of x for fixed ω. Doob (1953)
introduced a property of stochastic processes called separability, which ensures that
that sample path properties of function draws are determined by finite-dimensional
distributions of the process. While the details of the exact meaning of separability
are outside the scope of this book, interested readers can consult Adler (1981) who
gives a mathematical definition of this property and additional discussion of its intu-
ition (page 15). For our purposes it suffices to know that given any random function
Y(·) on X, there is an equivalent separable random function Ys(·) on X such that

P
[

Y(x) = Y s(x)
]

= 1 for all x ∈ X.

Throughout this book, it is assumed that GP models have been chosen to be separa-
ble.

The second technical issue is statistical. Classical frequentist statistical methods
make inferences about a population based on sample draws from that population,
where it is to be emphasized that each draw corresponds to a different ω or member
of the population. Then statistical procedures are devised to have specified proper-
ties in hypothetical, repeated applications to the same population, e.g., the coverage
probability of a prediction interval refers to the performance of the statistical proce-
dure in repeated applications to a target population. In contrast, the “training data”
y(x1), . . . , y(xn) from n runs of a computer simulator are properly viewed as the val-
ues of y(x) = Y(x, ω) corresponding to a single ω. Thus training data gives partial
information about a single function Y(x, ω), its value at x1, . . . , xn, rather than the
values of n random variables corresponding to n different ω. In general, it need not
be the case that one can make inference about ω-defined population quantities from
data that come from a single ω. Ergodicity of a process is a property that permits
valid frequentist statistical inference of ω-defined quantities based on a single ω
draw (for a discussion of ergodicity from a statistical viewpoint, see Cressie (1993),
pages 52–58, and the additional references listed there). The technical details of this
concept are beyond the scope of this book. However, GPs that are “(strongly) sta-
tionary,” a stochastic repeatability which is defined next, are ergodic under a mild
condition which is stated below; attention will be restricted to such GPs throughout
the remainder of the text.
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Definition. The process Y(·) is (strongly) stationary provided that for any h ∈ IRd,
any L ≥ 1, and any x1, . . . , xL in X having x1+h, . . . , xL+h ∈ X, (Y(x1), . . . , Y(xL))
and (Y(x1 + h), . . . , Y(xL + h)) have the same distribution.

When applied to GPs, the stationarity of Y(·) is equivalent to requiring that
(Y(x1), . . . , Y(xL)) and (Y(x1 + h), . . . , Y(xL + h)) have the same mean vector and
same covariance matrix for any L ≥ 1 and x1, . . . , xL. In particular, GPs must have
the same marginal distribution for all x (taking L = 1); their mean and their vari-
ance must both be constant. Also, it is not difficult to show that the covariance of a
stationary GP must satisfy

Cov [Y(x1), Y(x2)] = C (x1 − x2) (2.2.2)

for a function C(·), called the covariance function of the process. This is a slight
abuse of the notation introduced in (2.2.1), because the function C(x1, x2) defined
in (2.2.1) for arbitrary GPs need not depend on the difference x1 − x2, whereas
covariance of a stationary GP depends only on the difference between the inputs.

The (constant) variance of a stationary process Y(x) can be expressed in terms of
its covariance function as Var[Y(x)] = Cov[Y(x), Y(x)] = C(0). Putting these two
facts together gives the following expression for the correlation of the stationary
Y(x),

Cor [Y(x1), Y(x2)] = C (x1 − x2) /C(0) .

Equation (2.2.2) means that all pairs x1 and x2 having common orientation and the
same interpoint distance will have the same covariance. For example, the three head-
and-tail pairs shown in the left-hand panel of Fig. 2.2 have the same covariance.

Fig. 2.2 Left panel: the tip and tail of each arrow have the same covariance for stationary pro-
cesses. Right panel: the origin and every point on the circle have the same correlation for isotropic
processes

Figure 2.3 illustrates the stochastic similarity of the five draws from two different
stationary Y(x); the behavior of y(x) over any subinterval of a given length is the
same as over any other disjoint subinterval of the same length. As a caution, the
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reader is warned that visually many y(x) do not “appear” to be consistent with a
stationary Y(x) model. For example, the y(x1, x2) in Fig. 2.4 behaves differently on
the periphery of (x1, x2) space than in the center of the input space.

Fig. 2.3 Five sets of draws from each of the two stationary processes

Fig. 2.4 A function y(x1 , x2) that visually appears to be inconsistent with a stationary model

A stationarity GP Y(x) with covariance function C(h) will be ergodic provided
C(h) → 0 as h → ∞ (Adler (1981), page 145). The correlation function examples
below satisfy this condition.

For completeness, our discussion of stochastic repeatability, i.e., stationarity, is
concluded by describing a stronger form of stationarity that is assumed frequently in
applications of spatial statistics but seldom in modeling computer simulator output.
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Suppose, possibly after transforming the inputs x, that Y(x) has constant mean and
covariance of the form

Cov [Y(x1), Y(x2)] = C (‖x1 − x2‖2) ,

where ‖h‖2 = (
∑

i h2
i )1/2 is Euclidean distance; such a process is said to be isotropic.

For isotropic models, every pair of points x1 and x2 having common interpoint dis-
tance must have the same covariance (and correlation) regardless of their orienta-
tion. For example, the origin and every point on the circle shown in the right-hand
panel of Fig. 2.2 would all have the same correlation for an isotropic Y(x). Because
the inputs to simulator models are usually measured on different scales, isotropic
models have been used infrequently to describe simulator output.

Later chapters will occasionally consider process models Y(·) that make only
moment rather than distributional assumptions (and hence should be thought of as
nonparametric). The most important such model for computer experiments is the
second-order stationary model. A process Y(x) having constant mean and constant
variance is second-order stationary provided its covariance function satisfies (2.2.2);
no assumption is made about the joint distribution of Y(x) at any single or finite set
of inputs;

Several approaches have been used in the literature to enhance random function
modeling while retaining (some) of the theoretical simplifications that stationarity
provides. The simplest of these techniques is to permit the mean of the stochastic
process generating y(x) to depend on x in the form of a regression equation while
assuming the residual variation follows a stationary GP. The corresponding process
has the form

Y(x) =
p

∑

j=1

f j(x) β j + Z(x) = f(x)β + Z(x), (2.2.3)

where f1(·), . . . , fp(·) are known regression functions, β = (β1, . . . , βp) is a vector
of unknown regression coefficients and Z(·) is a zero mean stationary GP over X.
Intuitively, the term f(x)β describes long-term trends in x, while Z(x) models
local deviations from the long-term trend.

The Y(·) model (2.2.3) is, of course, nonstationary. There has been considerable
development of alternative nonstationary models for y(x) which cannot be described
as a draw from Eq. (2.2.3). A brief review of some of this literature is provided in
Sect. 2.3.

2.2.2 Some Correlation Functions for GP Models

This subsection focuses on the GP, Z(·), that is introduced in the nonstationary Y(x)
model in Eq. (2.2.3). Again note that Z(·) is stationary with mean zero because all
nonzero mean terms are included in the regression function. Thus Z(·) is completely
determined by its covariance function C(·) which is defined in (2.2.2).
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In many applications, it is more convenient to separately describe the process
variance and process correlation function. For a stationary GP Z(x) having finite
covariance function C(·), the process variance is σ2

Z ≡ C(0) and the process corre-
lation function is defined to be

R(h) = C(h)/σ2
Z for h ∈ IRd

assuming Z(x) is nondegenerate, i.e., C(0) = σ2
Z > 0. Again assuming that σ2

Z > 0,
the process variance is sometimes more conveniently parameterized by the process
precision which is defined by λZ = 1/σ2

Z .
What properties must valid covariance and correlation functions of stationary GP

processes possess, assuming C(0) > 0? First, R(0) = 1 follows by definition. Be-
cause Cov[Y(x+h), Y(x)] = Cov[Y(x), Y(x+h)], both the covariance and correlation
functions must be symmetric about the origin, i.e.,

C(h) = C(−h) and R(h) = R(−h) . (2.2.4)

Both C(·) and R(·) must be positive semidefinite functions; stated in terms of R(·),
this means that for any L ≥ 1, and any real numbers w1, . . . , wL, and any inputs
x1, . . . , xL in X,

L
∑

i=1

L
∑

j=1

wiwj R(xi − x j) ≥ 0. (2.2.5)

The sum (2.2.5) must be nonnegative for a valid R(·) (C(·)) because the left-hand
side is the (scaled) variance of

∑L
i=1 wiY(xi). The correlation function R(·) is positive

definite provided > 0 holds in (2.2.5) for any L ≥ 1, any x1, . . . , xL in X, and any
(w1, . . . , wL) � 0.

How can one produce valid correlation (covariance) functions? Every function
that satisfies R(0) = 1 and the symmetry properties (2.2.4) and (2.2.5) is a valid
correlation function. Unfortunately, merely requiring these properties does not offer
a systematic method for constructing correlation functions. While a general study
of how to determine the form of valid stationary correlation functions is beyond the
scope of this book, one answer to this question is relatively simple to state. Bochner
(1955) showed that

R(h) =
∫

IRd
cos(hw) f (w) dw (2.2.6)

is a valid correlation function provided that f (w) is a symmetric density on IRd, i.e.,
f (w) = f (−w) for all w ∈ IRd. The f (w) in (2.2.6) is called the spectral density
corresponding to R(h).

It is straightforward to show that functions R(h) constructed using (2.2.6) satisfy
R(0) = 1 and the properties (2.2.4) and (2.2.5). For example,

R(0) =
∫

IRd
cos(0) f (w) dw = 1,
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because f (w) is a density function. Symmetry (2.2.4) holds because cos(−x) =
cos(x) for all real x. Positive semidefiniteness (2.2.5) is true because for any L ≥ 1,
any real numbers w1, . . . , wL, and any x1, . . . , xL,

L
∑

i=1

L
∑

j=1

wiwj R(xi − x j)

=

∫

IRd

L
∑

i=1

L
∑

j=1

wiwj cos(xi w − x
j w) f (w) dw

=

∫

IRd

L
∑

i=1

L
∑

j=1

wiwj

{

cos(xi w) cos(x
j w)

+ sin(xi w) sin(x
j w)

}

f (w) dw

=

∫

IRd

⎧
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f (w) dw

≥ 0 .

In sum, one method of constructing correlation functions is to choose a symmet-
ric density f (w) on IRd and evaluate R(h) using (2.2.6). A valid covariance function
with specified process variance σ2

Z > 0 and spectral density f (w) is obtained from
R(h) by

C(h) = σ2
Z R(h) .

Example 2.2. Arguably the simplest application of (2.2.6) is when d = 1 and f (w)
is the uniform density over a symmetric interval which is taken to be (−1/ξ,+1/ξ)
for a given ξ > 0. Thus the spectral density is

f (w) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ξ/2, −1/ξ < w < 1/ξ

0, otherwise
.

The corresponding correlation function is

R(h | ξ) =
∫ +1/ξ

−1/ξ

ξ

2
cos(hw) dw =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sin(h/ξ)
h/ξ

, h � 0

1, h = 0
,

which has scale parameter ξ. Figure 2.5, which plots R(h | ξ = 1/4π) over [−1,+1],
shows that this correlation can be used to describe processes that have both positive
and negative correlations. �
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Fig. 2.5 The correlation function R(h | ξ) = sin(h/ξ)/(h/ξ) over the interval [−1,+1] for ξ = 1/4π

There are additional tools that are useful for “building” covariance (correlation)
functions given a collection of known covariance (correlation) functions. Suppose
that C1(·) and C2(·) are valid covariance functions. Then their sum and product,

C1(·) +C2(·) and C1(·) × C2(·),
are also valid covariance functions. Intuitively, C1(·) + C2(·) is the covariance func-
tion of the sum of two independent processes, one with covariance function C1(·)
and the other with covariance function C2(·). Similarly, C1(·) × C2(·) is the covari-
ance function of the product of two independent zero-mean GPs with covariances
C1(·) and C2(·), respectively.

The product of two valid correlation functions, R1(·) and R2(·), is a valid corre-
lation function, but their sum is not (notice that R1(0) + R2(0) = 2, which is not
possible for a correlation function). Note, however, a convex combination of two
valid correlation functions is a valid correlation function. Correlation functions that
are the products of one-dimensional marginal correlation functions are sometimes
called separable correlation functions (not to be confused with the discussion of
process separability in Sect. 2.2.1).

This subsection concludes with the introduction of several families of correla-
tion functions that have been used in the literature to specify stationary Gaussian
stochastic processes (see also Journel and Huijbregts (1978), Mitchell et al. (1990),
Cressie (1993), Vecchia (1988), and Stein (1999)).

Example 2.3 (Gaussian Correlation Function). The normal (Gaussian) density is a
familiar symmetric density that can be used as a spectral density. To provide a simple
form for the resulting R(h), take the spectral density to be N(0, 2ξ), where ξ > 0 is
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given. Calculation gives

R(h | ξ) =
∫ +∞

−∞
cos(hw)

1
√

2π
√

2ξ
exp

{

−w2/(4ξ)
}

dw

= exp
{

−ξ h2
}

, h ∈ IR, (2.2.7)

which has rate parameter ξ. Because of its form, R(h | ξ) is usually called the Gaus-
sian correlation function. The (separable) Gaussian family

R(h | ξ) = exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
d

∑

j=1

ξ j h2
j

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, h ∈ IRd, (2.2.8)

is a legitimate correlation function because it is a product of valid correlation func-
tions. Separable Gaussian correlations are, far and away, the most popular family
of correlation models in the computer experiments literature.

Before describing the next parametric family of correlation functions, the reader
should note that the literature considers at least four equivalent parameterizations
of the Gaussian correlation function (see Sacks et al. (1989b), Higdon et al. (2008),
and MacDonald et al. (2015)). These are

exp
{

− (h/θ)2
}

= ρh2
= ρCh2

� = exp
{

−10τ h2
}

(2.2.9)

where C > 0 is a given constant (often C = 4 in examples) with (valid) values of the
parameters being θ > 0, ρ ∈ (0, 1), ρ� ∈ (0, 1), and τ ∈ (−∞,+∞). In words, θ is the
scale parameter version of (2.2.7), ρ is the correlation between two inputs for which
|h| = 1, and ρ� is the the correlation between two inputs for which |h| = 1/

√
C

(e.g., when C = 4 and d = 1, ρ� = Cor[Y(0), Y(1/2)]). Using simple algebra, the
parameter defining any of these correlations can be expressed in terms of any of the
other four parameters. The reasons that authors select a particular parameterization
are for their ease of interpretation, importance for prior specifications of Bayesian
methodology, and for their ability to enhance optimization of the likelihood and
related functions; Sect. 3.6.3 will discuss these issues further. �

Example 2.4 (Power Exponential Family). The Gaussian correlation functions are
special cases of power exponential correlations. The function

R(h | ξ) = exp {−ξ |h|p} , h ∈ IR, (2.2.10)

is said to be a power exponential correlation function provided ξ > 0 and 0 < p ≤ 2.
In addition to the Gaussian (p = 2) subfamily, the GP having correlation function
(2.2.10) with p = 1,

R(h | ξ) = exp {−ξ |h|} ,

is known as the Ornstein–Uhlenbeck process.
For later reference, note that every power exponential correlation function, 0 <

p ≤ 2, is continuous at the origin, and only the Gaussian correlation function is
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differentiable at the origin. In fact, the Gaussian correlation function is infinitely
differentiable at the origin. The d-dimensional separable version of the power expo-
nential correlation,

R(h | ξ) = exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
d

∑

j=1

ξ j |h j|pj

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, h ∈ IRd, (2.2.11)

is also a valid correlation function. �

Example 2.5 (Matérn Correlation Family). In his thesis, Matérn (1960) introduced
the correlation function that bears his name (see the Matérn (1986) reprint and Vec-
chia (1988) for related work). The Matérn correlation model has been used widely
to model environmental data (see Rodrı́guez-Iturbe and Mejı́a (1974); Handcock
and Stein (1993); Handcock and Wallis (1994) and especially Stein (1999)).

From the viewpoint of Bochner’s formula (2.2.6), the Matérn correlation function
arises by choosing the t distribution with parameters ν > 0 and ψ > 0,

f (w) =
Γ(ν + 1/2)

Γ(ν)
√
π

(

4ν
ψ2

)ν 1
(

w2 + 4ν/ψ2
)ν+1/2

, w ∈ IR,

as spectral density. The result is the two parameter correlation family

R(h | (ν, ψ)) =
1

Γ(ν)2ν−1

(

2
√
ν |h|
ψ

)ν

Kν

(

2
√
ν |h|
ψ

)

,

where Kν(·) is the modified Bessel function of order ν and ψ is a scale parameter.
The modified Bessel function arises as the solution of a certain class of ordinary
differential equations (Kreyszig (1999)). In general, Kν(t) is expressed in terms of
an infinite power series in t although it can be written in a simple form for some ν.

When ν = 1/2,

K1/2(t) =
√
π e−t/

√
2t with R(h | (1/2, ψ)) = e−

√
2 |h|/ψ,

which is a special case of the power exponential correlation function with p = 1
that was introduced earlier. Similarly, R(h | (ν, ψ)) → e−(h/ψ)2

as ν → ∞ so that the
Matérn correlation family includes the Gaussian correlation function in the limit.

A valid Matérn correlation for d-dimensional inputs is formed from any product
of one-dimensional Matérn correlation functions. For example, the family

R(h | (ν,ψ)) =
d

∏

i=1

1
Γ(ν)2ν−1

(

2
√
ν |hi|
ψi

)ν

Kν

(

2
√
ν |hi|
ψi

)

uses dimension-specific scale parameters ψ1, . . . , ψd and a common smoothness pa-
rameter ν. �
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Example 2.6 (Cubic Correlation Family). Cubic correlation functions have the form

R(h | ψ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 − 6

(

h
ψ

)2

+ 6

(

|h|
ψ

)3

, |h| ≤ ψ/2

2

(

1 − |h|
ψ

)3

, ψ/2 < |h| ≤ ψ

0, |h| > ψ

, (2.2.12)

for h ∈ IR, where ψ > 0. The spectral density that produces (2.2.12) is proportional
to

1
w4ψ3

{72 − 96 cos (wψ/2) + 24 cos(wψ)} .

In addition to being a piecewise cubic polynomial, R(h | ψ) has continuous deriva-
tives at all h ∈ IR; the right column of Fig. 2.8 shows the smoothness of R(h | ψ)
when ψ ∈ {0.5, 1.0, 10.0}. The cubic correlation function has compact support be-
cause R(h | ψ) = 0 whenever inputs x1 and x2 are sufficiently far apart, i.e., whenever
|x1 − x2| > ψ. Numerically, this property means that the correlation matrix of Z(x)
can have substantial numbers of zero entries which allows sparse matrix methods
to be used for operations such as matrix inversions. Anticipating Sect. 3.2 on best
linear unbiased prediction in computer experiments, using (2.2.12), leads to cubic
spline interpolating predictors.

As with previous examples,

R(h | ψ) =
d

∏

j=1

R(h j | ψ j), h ∈ IRd, (2.2.13)

is a multiple input separable generalization of the cubic correlation function. The
form (2.2.13) permits dimension-specific distances at which Z(·) values are uncor-
related. Other one-dimensional cubic correlation functions can be found in Mitchell
et al. (1990) and Currin et al. (1991). �

Example 2.7 (Bohman Correlation Family). In addition to the cubic correlation
function, other compactly supported correlation functions have been proposed in
the literature because of their computational tractability (see Kaufman et al. (2011)).
One important such function is the Bohman correlation function

R(h | ψ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

1 −
|h|
ψ

)

cos

(

π |h|
ψ

)

+
1
π

sin

(

π |h|
ψ

)

, |h| < ψ

0, ψ ≤ |h|
(2.2.14)

for h ∈ IR, where ψ > 0 is a fixed scale parameter (see also Gneiting (2002); Stein
(2008)). �
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2.2.3 Using the Correlation Function to Specify a GP with Given
Smoothness Properties

This subsection discusses smoothness properties of realizations of

Y(x) = f(x)β + Z(x)

in (2.2.3). This discussion can be separated into the analysis of the smoothness of the
regression term, f(x)β, and the smoothness of draws from the stationary GP, Z(·).
Determining the continuity and differentiability of the regression terms is straight-
forward, requiring standard calculus.

The remainder of this section will consider properties of realizations from Z(·)
which will be related to the covariance function of Z(·), say C(·). Because of its
technical ease, this treatment is initiated by considering mean square (MS) continu-
ity. Mean square properties describe the average performance over the sample paths
rather than the properties of individual sample paths, recognizing that the latter are
of greater interest when modeling computer simulator output.

Definition. Suppose W(·) is a stationary process with input domain X that has a
positive, finite second moment; W(·) is said to be MS continuous at x0 ∈ X provided

lim
x→x0

E
[

(W(x) − W(x0))2
]

= 0 .

The process is MS continuous on X provided it is MS continuous at every x0 ∈ X.

Suppose C(·) is the covariance function of the stationary process Z(·), then

E
[

(Z(x) − Z(x0))2
]

= 2 (C (0) − C (x − x0)) . (2.2.15)

The right-hand side of (2.2.15) shows that Z(·) is MS continuous at x0 provided
C(h) is continuous at the origin—in fact, Z(x) is MS continuous at every x0 ∈ X
provided C(h) is continuous at the origin.

Assume Z(x) has positive variance so that its correlation function satisfies C(0) =
σ2

Z > 0. Then the continuity condition C(h) → C(0) = σ2
Z > 0 as h → 0 is

equivalent to requiring

R(h) = C(h)/σ2
Z → 1.0 as h → 0 (2.2.16)

for the correlation function. All the correlation functions listed in Sect. 2.2.2 are
continuous at the origin.

Now consider the primary objective of this section that of identifying conditions
on the process that guarantee (with probability one) a target, “smoothness” property
holds for realizations z(x) from a Z(x) process. Let “Q” denote the desired property.
The goal is that

P
[

ω : Z(·, ω) has property Q
]

= 1 .

Such behavior is termed almost sure (a.s.) behavior of the sample draws.
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As the first example of such a condition, Adler (1981) (page 60) shows that the
sample draws of stationary GPs will be almost surely continuous provided a small
requirement is added to the continuity condition (2.2.16) that guarantees MS con-
tinuity. Stated in words, a.s. continuity holds for the draws from a stationary GP
provided R(h) converges to unity sufficiently fast as h → 0, i.e., for some c > 0,
ε > 0, and δ < 1,

1 − R(h) ≤ c
|�n (‖h‖2) |1+ε

for all ‖h‖2 < δ , (2.2.17)

where ‖ · ‖2 denotes Euclidean distance. Equation (2.2.17) is a stronger version of
R(h) → 1 because the factor | �n (‖h‖2) |1+ε → +∞ as h → 0.

As another example, consider the a.s. differentiability of draws from a stationary
process Z(x); a draw is a function Z(x, ω), x ∈ IRd, corresponding to ω ∈ Ω. Suppose
that the jth partial derivative of Z(x, ω) exists at x0 ∈ X for j = 1, . . .d, i.e.,

∇ j Z(x0, ω) = lim
δ→0

Z(x0 + e j δ, ω) − Z(x0, ω)

δ

exists where e j denotes the unit vector in the jth direction. Below, conditions are
stated for the covariance function that guarantee that the sample paths are a. s. dif-
ferentiable. As motivation for this condition, observe that the following heuristic
calculation gives the covariance of the slope of the secant of the Z(x) process at
inputs x1 and x2 in X. When the second partial derivative of C(·) exists,

Cov

[

1
δ1

(

Z(x1 + e j δ1) − Z(x1)
)

,
1
δ2

(

Z(x2 + e j δ2) − Z(x2)
)

]

=
1

δ1δ2

{

C(x1 − x2 + e j (δ1 − δ2)) − C(x1 − x2 + e j δ1)

− C(x1 − x2 − e j δ2) +C(x1 − x2)
}

→ − ∂2C(h)

∂h2
j

∣

∣

∣

∣

∣

∣

∣

h=x1−x2

as δ1, δ2 → 0.

This calculation suggests that the partial derivatives of Z(·) and the covariance func-
tion C(h) are linked. Indeed, the stationary GP Z(x) has a.s. jth partial derivative,
j = 1, . . . , d, provided

C(2)
j (h) ≡ ∂2C(h)

∂h2
j

exists and is continuous with C(2)
j (0) � 0 and R(2)

j (h) ≡ C(2)
j (h)/C(2)

j (0) satisfies

(2.2.17). In this case −C(2)
j (h) is the covariance function of the process ∇ jZ(x) and

R(2)
j (h) is its correlation function. Conditions that ensure higher-order Z(·) deriva-

tives exist can be iteratively developed in the same way.
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This section concludes by illustrating the effects of changing the parameters in
two of the correlation families introduced earlier. These effects will be shown in
draws from a zero mean, unit variance stationary GP over [0, 1] with the specified
correlation family. Of course, adding regression terms f(x)βwould further provide
flexibility in the types of functions y(x) that can be modeled, however the use of
regression terms will not be illustrated here.

Example 2.4 (Continued–Power Exponential Correlation). Figures 2.6 and 2.7
show z(x) draws from the power exponential correlation function (2.2.10).
Figure 2.6 fixes the rate parameter ξ = 1.0; it illustrates the effect of varying
the power, p, on the z(x) draws. Figure 2.7 fixes p = 2; it shows the effect of varying
ξ on the z(x) draws.

The bottom two rows of Fig. 2.6 have powers p < 2; it has been previously stated
that sample paths z(x) = Z(x, ω) for p < 2 are not differentiable which explains
the “wiggly” behavior of these z(x). The z(x) draws in the top row correspond to
p = 2.0; they are infinitely differentiable. Indeed, the z(x) draws in the top row of
Fig. 2.6 are very near the process mean of zero.

Figure 2.7 shows that the number of local maxima and minima of z(x) is con-
trolled by the rate parameter ξ when p = 2.0. As ξ increases, the correlations be-
tween each fixed pair of inputs decreases and the number of local maxima of z(x)
increases. Indeed, the process Z(x) “wiggles” more like white noise, as ξ → +∞.
The most extreme version of this phenomenon shown in Fig. 2.7 is the bottom row
where ξ = 100.0. �

Example 2.6 (Continued—Cubic Correlation). Recall that the cubic correlation
(and covariance) function (2.2.12) is twice continuously differentiable. Thus z(x)
draws from a GP with cubic correlation will be continuous and differentiable.
Figure 2.8 shows draws from this GP for different ψ. As the scale parameter ψ de-
creases, the domain where R(h) = 0 increases and hence the paths become more
like white noise, i.e., having independent and identically distributed Gaussian com-
ponents. As ψ increases, R(h) becomes near 1.0 for larger h ranges (see top row)
meaning that z(x) will also be more nearly flat over larger x ranges as its values
move nearly in lock step. �

2.3 Increasing the Flexibility of the GP Model

This section provides an overview of some of the strategies that have been suggested
in the literature for replacing the regression + stationary GP model:

Y(x) = f(x)β + Z(x) (2.3.1)

with more flexible Y(x) to produce broader classes of y(x) (see (2.2.3) for Y(x)
details). Consider Fig. 2.9 that illustrates two functions y(x) that would not be well
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Fig. 2.6 Left column: the effect of varying the power p in the power exponential correlation func-
tion (2.2.10) on sets of four draws from a zero mean, unit variance GP with fixed ξ ≡ 1.0; right
column: C(h) = exp(−|h|p), −2.0 ≤ h ≤ +2.0. Here p = 2.0 (top row), p = 0.75 (middle row), and
p = 0.20 (bottom row)

Fig. 2.7 Left column: the effect of varying the rate parameter ξ in the power exponential correlation
function (2.2.10) on sets of four draws from a zero mean, unit variance GP with fixed p ≡ 2.0; right
column: C(h) = exp(−ξ h2), −1.5 ≤ h ≤ +1.5. Here ξ = 4 (top row), ξ = 16 (middle row), and
ξ = 100 (bottom row)
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Fig. 2.8 Left column: the effect of varying the scale parameter ψ in the cubic correlation function
(2.2.12) on sets of four draws from a zero mean, unit variance GP; right column: cubic correlation
R(h | ψ), −2.0 ≤ h ≤ +2.0. Here ψ = 10.0 (top row), ψ = 1.0 (middle row), and ψ = 0.5 (bottom
row)

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y(
x)

Fig. 2.9 Left panel: a nonstationary function y(x) defined on [0, 20]; right panel: a nonstationary
function y(x1, x2) defined on [0, 1]2

modeled by a Y(x) of the form (2.3.1). The left-hand panel plots a y(x) with x ∈
[0, 20] for which the range of the function and its global trend on [0, 10] are visibly
different than on [10, 20]. Similarly in the right-hand panel of Fig. 2.9, the number of
local maxima and minima of y(x1, x2) is quite different in the “central” rectangular
portion of the input space than in its complement. Both y(x) show nonstationarity. In
practice, many environmental studies require nonstationary models as well as other
subject-matter work that involves phase changes or multiple boundary conditions
(Cressie and Wikle (2011); Bornn et al. (2012)).
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One method of producing nonstationary Y(x) is to convolve a stationary process
with a kernel. For example, Higdon et al. (1999) integrate white noise, the spatial
analog of a random sample of normal observations, against a Gaussian kernel to
produce a nonstationary Y(x). In the same spirit, Haas (1995) constructs Y(x) mod-
els as a moving window over a stationary process. Sampson and Guttorp (1992)
introduced another approach to producing nonstationary Y(x) that begins with a sta-
tionary process; they deformed the input x of a stationary process to form Y(x) (see
also Guttorp and Sampson (1994) and Guttorp et al. (1994)). Bornn et al. (2012)
adopt a related methodology to construct nonstationary Y(x) which regards Y(x)
as the projection of a higher-dimensional stationary process Y�(x�); they seek to
identify the additional dimensions to recover the stationarity process. Standard di-
mension reduction techniques can be employed to analyze the resulting expanded
model.

The remainder of this section will present two additional strategies for forming
flexible Y(x) models. These ideas will be employed in later sections.

2.3.1 Hierarchical GP Models

This subsection introduces hierarchical GP models. In addition as a tool for pro-
ducing a flexible Y(x), hierarchical models represent a fundamental paradigm shift
because they add information to the statement of a process model—hierarchical
models specify distributions to describe the likely model parameter values.

Example 2.8. This example illustrates the variety of y(x) that can be produced by a
simple hierarchical model. Suppose that output y(x), 0 ≤ x ≤ 1, can be described as
a draw from

Y(x) = β0 + Z(x), 0 ≤ x ≤ 1 , (2.3.2)

where Z(·) is a stationary Gaussian random field with zero mean, precision (inverse
variance) λZ , and Gaussian correlation function with parameterization

R(h | ρ) = ρh2

(see Eqs. (2.2.7) and (2.2.9)). The location of the intercept is determined by β0,
the range of the y(x) values is determined by λZ, the process precision, and the
number of local maxima and minima is determined by ρ. Rather than specifying a
single (β0, λZ, ρ), the hierarchical model takes draws of the model parameters from a
distribution that embodies knowledge about their values. For example, suppose that
it is assumed that the distributions for each parameter are mutually independent.
Further assume it is known that β0 is likely to be near 20 and the certainty in this
knowledge is described by β0 ∼ N(20, 42), while σZ is likely to be near 1.5 with
prior knowledge described by λZ ≡ 1/σ2

Z ∼ Γ(6.25, 25), while ρ ∼ Be(2, 3). Five
draws from this prior distribution produce the values listed in Table 2.1. Taking the
parameters from each row of Table 2.1 and forming a realization from (2.3.2) give
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the five y(x) draws shown in Fig. 2.10. Notice the greater variety of y(x) draws that
are possible from the hierarchical model compared with those from fixed parameter
GP models; in contrast each panel of Figs. 2.6, 2.7, and 2.8 plotted five draws from
a fixed parameter GP. �

Prior draw β0 ∼ N(20, 42) λZ ∼ Γ(6.25, 25) σZ ρ ∼ Be(2, 3)
1 15.73 0.43 1.52 0.50
2 16.76 0.35 1.68 0.33
3 8.22 0.21 2.19 0.01
4 25.75 0.17 2.44 0.12
5 21.30 0.14 2.66 0.81

Table 2.1 Five draws from informative [β0 , λZ , ρ] prior having mutually independent components

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 2.10 Five draws from (2.3.2), one corresponding to each of the rows in Table 2.1

Section 4.3 develops a fully Bayesian predictor based on a hierarchical model
whose top stage, given parameters (β, λZ, ρ), is

Y(x) =
p

∑

j=1

f j(x) β j + Z(x) = f(x)β + Z(x), (2.3.3)

where Z(·) is defined following (2.3.2). As in Example 2.8, the second-stage prior
distribution, [β, λZ, ρ], is specified in “pieces.” Suppose that it is reasonable to as-
sume that the regression effect parameters β, which specify global trends, and the
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precision λZ , which determines the magnitude of local deviations, are independent
of the correlation parameters ρ, which describe the number of local maxima and
minima. This means that

[β, λZ, ρ] = [β, λZ] × [ρ] = [β | λZ] × [λZ] × [ρ] ,

where the second equality holds because [β, λZ] = [β | λZ] × [λZ]. Thus the overall
prior can be determined from these three pieces.

Building a rational prior requires hard work. See Oakley (2002) for a method of
prior specification and a case study. Other examples of the construction of prior dis-
tributions for parameters can be found in the environmental literature. For example,
Handcock and Wallis (1994) build a prior distribution for correlation parameters in
their space–time model of the mean temperature of a region of the Northern USA.

The previous paragraph describes what might be thought of as an informative
[β, λZ] prior. In some applications, there may not be adequate subject matter knowl-
edge of the output to specify an informative prior. In cases where informative priors
cannot be readily formed, it is tempting to use so-called non-informative priors that
give “equal” weight to all the legitimate parameter values. The reader should be
warned that there is not always agreement in the statistical community about what
constitutes a non-informative prior, even for parameters having finite ranges. One
reason is that a prior based on an equal weighting of the parameter values on one
scale does not (ordinarily) correspond to an equal weighing of a 1-1 transform of
that parameter. For example, choosing ρ ∈ [0, 1] to have a uniform distribution over
[0, 1] is not the same as the prior choice θ ∝ 1 where ρ = exp(−θ). In addition,
not every choice of a non-informative prior pairs with the first-stage model (2.3.3)
to produce a legitimate posterior for y(·) (see Berger et al. (2001)). More will be
said about non-informative second-stage priors in Sects. 3.3.5 and 4.3 which dis-
cuss “posterior mode empirical best linear unbiased predictors.”

A third possible choice for a [β, λZ, ρ] prior is a “conjugate” prior. Conjugate pri-
ors have the property that their posterior distributions come from the same paramet-
ric family. Section 4.2 provides examples of conjugate second-stage distributions.

2.3.2 Other Nonstationary Models

Another method of enhancing (2.3.1) is to replace the regression term f(x)β by
a more flexible global trend model. The f(x)β model assumes that the researcher
knows the regression variables to be used in Y(x), i.e., knows additive functions
f (x) that provide the global behavior of y(x) aside from regression parameters.

For simplicity suppose that output y(x) is defined for x in a hyper-rectangle
X =×d

�=1[a�, b�]. In their proposal of calibration methodology, Chakraborty et al.
(2013) suggest using the nonparametric MARS regression function in place of
f(x)β (see Chap. 8). Arguably, a more straightforward Y(x) that allows the type
of behavior illustrated in Fig. 2.9 was introduced by Gramacy and Lee (2008); these
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authors used treed Gaussian processes (TGPs) to provide models that can repre-
sent nonstationary functions. The TGP model assumes that X can be partitioned
into hyper-rectangles so that within each partition, a partition-specific regression +
stationary model provides a reasonable description of y(x). For example, in the left-
hand panel of Fig. 2.9, the portions of y(x) on [0, 10] and on [10, 20] each appear to
be reasonably described by their own stationary processes. Similarly, the “central”
rectangular portion of the right-hand panel of Fig. 2.9 shows one type of behavior,
while the surrounding rectangles exhibit other types of stationary behavior.

Gramacy and Lee (2008) use the Bayesian tree methodology of Chipman et al.
(1998) to partition X. They extend the work of Chipman et al. (2002) to allow linear
trends independently within each of the regions. As always, the methodology for
prediction using such a model requires adequate data so that the separate stationary
models can be fit for each input partition (see Loeppky et al. (2009)).

2.4 Models for Output Having Mixed Qualitative
and Quantitative Inputs

Suppose the simulator produces deterministic output y(x, t) that depends on the
quantitative input variables x = (x1, x2, . . . , xd) and a qualitative variable having T
levels, here indexed by t. One can interpret y(x, t) as determining t different curves
or response surfaces, indexed by t.

If, in fact, the output depends on Q > 1 qualitative variables, with the qth qualita-
tive variable having Tq levels, assume that the T =

∏Q
q=1 Tq possible combinations

of levels are indexed by a single symbol taking on values from 1 to T (lexicograph-
ically ordered). This suppresses the inherent factorial structure, and this issue will
be considered later.

Model y(x, t) as a draw from

Y(x, t) =
p

∑

j=1

f j(x, t) β j + Zt(x) (2.4.1)

where all terms are as in (2.2.3) and Zt(x) is a mean zero, stationary GP with variance
σ2

Zt
. If each value of t is viewed as determining a separate response surface, one can

fit separate GP models to each of these response surfaces. However, if the response
surfaces are similar, perhaps it is possible to do better by developing predictors for
each surface that “borrow” information from the other surfaces. In multiple regres-
sion this is accomplished by using indicator variables to represent different response
surfaces. For example, one can use indicator variables to write a single multiple re-
gression model that represents several lines. This single model has more degrees of
freedom for error than fitting separate lines, although this comes at the expense of
having to assume the error variance is the same for each line.

Is it possible to mimic what is done in multiple regression and use indicator
variables to model the effects of qualitative inputs in GP models? What happens if
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indicator variables are added to our model and treated as though they are quantita-
tive? The use of indicator variables in the regression portion of (2.4.1) (in particular,
allowing some of the f j(x, t) to involve indicator variables) presents no difficulties.
Unfortunately, using indicator variables in the correlation function in a “naı́ve” man-
ner does create problems. To see this, consider the following. For 1 ≤ t ≤ T define

It(i) =

{

1 if i = t
0 otherwise

.

Treating these as quantitative, the Gaussian correlation function (see (2.2.8)) be-
comes

R((x1, t1), (x2, t2)) =
T

∏

l=1

exp
{

−ξ∗l (Il(t1) − Il(t2))2
}

×
d

∏

k=1

exp
{

−ξk (x1,k − x2,k)2
}

= exp
{

−ξ∗t1
}

× exp
{

−ξ∗t2
}

×
d

∏

k=1

exp
{

−ξk (x1,k − x2,k)2
}

= τt1τt2 ×
d

∏

k=1

exp
{

−ξk (x1,k − x2,k)2
}

for t1 � t2 where τt j = exp
{

−ξ∗t j

}

. Notice 0 < τt j < 1.
For an intuitive argument for why this approach is unsatisfactory, suppose T = 4

with response surfaces 1 and 2 very similar, response surfaces 3 and 4 very similar,
but response surfaces 1 and 3 very different. In particular, suppose 1 and 2 are very
similar in the sense that they are highly correlated implying that τ1τ2 is close to
1. In this case both τ1 and τ2 must be close to 1. Similarly, if 3 and 4 are highly
correlated, τ3τ4 should be close to 1, and hence both τ3 and τ4 must be close to 1.
However, if 1 and 3 are essentially uncorrelated, one would expect τ1τ3 to be close
to 0. But this is impossible if both τ1 and τ3 are close to 1. Of course, this assumes
the τi can be interpreted as correlations between response surfaces.

This suggests that a “naı́ve” use of indicator variables to represent qualitative
variables (similar to what is done in standard regression) imposes undesirable con-
straints on the “between response surfaces” correlations. One must model the qual-
itative variables more carefully, at least in terms of the correlation structure.

For simplicity, in what follows a constant mean model of the form

Y(x, t) = βt + Zt(x) (2.4.2)

is assumed.
One approach to incorporating indicator variables into the correlation function is

suggested by Kennedy and O’Hagan (2000). They assume one has a collection of
multi-fidelity computer simulations (simulations of differing degrees of accuracy),
each involving the same quantitative factors. These simulations are modeled collec-
tively by a single computer model with a common set of quantitative factors and a
single qualitative factor to describe the different degrees of accuracy of the simu-
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lations. This approach implicitly assumes that as the level of the qualitative factor
changes (increases), the fidelity increases. Thus, it may not be appropriate for the
general case of incorporating a qualitative variable.

An approach that is popular in the literature is introduced in Qian et al. (2008)
and Zhou et al. (2011). This approach assumes

Cor
[

Zt1 (x1), Zt2 (x2)
]

= τt1 ,t2

d
∏

i=1

exp
{

−ξi (x1,i − x2,i)2
}

(2.4.3)

where τt1,t2 is the “cross-correlation” between the response surfaces corresponding
to “categories” t1 and t2 of the qualitative variable. The T × T matrix τ = {τr.s} is
assumed to be a positive definite matrix with unit diagonal elements to guarantee
that the matrix of correlations whose i, jth entry is Cor[Zti (xi), Ztj(x j)] is a valid
correlation matrix. In addition, one assumes σ2

Zt
= σ2

Z for all t.

Example 2.9. We consider the simple setting of a single qualitative variable with
T = 2 levels and a single quantitative variable x, with 0 ≤ x ≤ 1. Figure 2.11 shows
four draws from the constant mean model (2.4.2) with correlation as in (2.4.3). We
set β1 = 0 (black curve), β2 = 1 (red curve), σ2

Z = 1, and ξ = 50. A value of ξ = 50
guarantees a moderate amount of “wiggliness.” In (a), the cross-correlation, τ1,2, is

Fig. 2.11 Realizations for cross-correlation equal to (a) τ1,2 = 0.9, (b) τ1,2 = −0.9, (c) τ1,2 = 0.1,
and (d) τ1,2 = −0.1
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0.9, in (b) the cross-correlation is −0.9, in (c) the cross-correlation is 0.1, and in (d)
the cross-correlation is −0.1. Figure 2.11 provides some insight into the model.

Each level of the qualitative variable corresponds to a curve representing a draw
from a GP like those in Fig. 2.7. The term “cross-correlation” suggests that this
parameter controls how correlated (similar) pairs of curves are. The figure supports
this. For both (a) and (b), the cross-correlation is large. In (a) the two curves are
similar. In (b) the two curves reflect what we might intuitively regard as strongly
negatively correlated curves. For both (c) and (d), the cross-correlation is small, and
the curves are much more dissimilar. �

Several special cases of this model are mentioned by Qian et al. (2008). Each
reduces the number of parameters one needs to fit the model. The simplest case
assumes τti ,t j = τ for i � j. This is sometimes referred to as the exchangeable
model.

Another case (see McMillan et al. (1999)) assumes

τti ,t j =
(

exp
{

−(ξ∗i + ξ∗j )
}

I{i � j}
)

where ξ∗i and ξ∗j are positive and I{i � j} is the indicator function. Note that the
McMillan et al. (1999) structure is the same as in the naive use of indicator variables
described previously. This was shown to have undesirable properties in general.

A third special case is a Kronecker product structure. Suppose there are J quali-
tative variables, and the jth qualitative variable has T j levels. Let t = (t1, t2, . . . , tJ)

denote the vector of qualitative variable levels for an input that has qualitative vari-
able j at level t j for j = 1, . . . , J. A legitimate correlation function is

Cor
[

Zt1 (x1), Zt2 (x2)
]

=

J
∏

j=1

τ j,t1 j ,t2 j

d
∏

i=1

exp
{

−ξi (x1,i − x2,i)
2
}

where τ j, the T j × T j matrix with (r, s)th entry τ j,r,s, is positive definite with unit
diagonal entries. This corresponds to taking τ = τ1 ⊗ · · · ⊗ τJ , where ⊗ is the Kro-
necker product. This case reduces the number of τti ,t j parameters in the general case
of the model given in (2.4.3). It also “imposes” a sort of multiplicative main effects
structure on the τti ,t j and in this way takes into account the factorial structure.

Qian et al. (2008) consider additional forms for τ and for the τti ,t j that assume the
levels of the qualitative factor can be organized into similar groups and that allow
for ordinal qualitative factors.

The flexibility of the formulation in Qian et al. (2008) makes the model attractive.
However, this model makes some assumptions about the different response surfaces
determined by t. In particular, in the correlation structure given in (2.4.3), the cor-
relation parameters ξk and the process variance σ2

Z are the same for all values of t.
This implies that the “shape” of the local variation as a function of the quantitative
variables is the same for all t. If this is not the case, this model may perform worse
than simply fitting separate GP models to each curve.

Zhang (2014) describes a method for incorporating qualitative variables into the
correlation function that is “equivalent” to the correlation structure in (2.4.3). For
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1 ≤ p ≤ T define

Ip(i) =

{

1 if i = p
0 otherwise

,

and for 1 ≤ p, q ≤ T − 1,

Wp,q(i) =

{

Ip(i) + Iq(i) if p � q
Ip(i) if p = q

.

Let

Cor
[

Zt1 (x1), Zt2 (x2)
]

=

T−1
∏

p,q=1

exp
{

−ξ∗p,q
(

Wp,q(t1) − Wp,q(t2)
)2

}

×
d

∏

k=1

exp
{

−ξk (x1,k − x2,k)2
}

. (2.4.4)

One can show, assuming ξ∗p,q = ξ∗q,p and that the τi, j in (2.4.3) are > 0, that for
i � j, i < T, j < T ,

−�n(τi, j) = ξ∗i,i + ξ∗j, j − 4ξ∗i, j + 2
T−1
∑

q=1,q�i

ξ∗i,q + 2
T−1
∑

q=1,q� j

ξ∗j,q ;

and for i � j, i = T, j < T ,

−�n(τT, j) = ξ∗j, j + 2
T−1
∑

q=1,q� j

ξ∗j,q ;

and for i � j, i < T, j = T ,

−�n(τi,T ) = ξ∗i,i + 2
T−1
∑

q=1,q�i

ξ∗i,q .

Also for i � j, i < T, j < T ,

ξ∗i, j =
1
4

(

�n(τi, j) − �n(τT, j) − �n(τi,T )
)

;

and for i < T ,

ξ∗i,i = −
1
2

T
∑

q=1,q�i

�n(τi,q) +
1
2

T−1
∑

q=1,q�i

�n(τT,q) .

Thus when the τi, j are > 0 in (2.4.3), there is a one-to-one correspondence between
the τi, j, i � j, and the ξ∗p,q , p < T, q < T , in the sense that given the τi, j it is possible
to determine the corresponding ξ∗p,q and vice versa.
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The correlation function in (2.4.4) is the separable version of the Gaussian corre-
lation function (2.2.8) expressed as a function of the Wp,q(·) (representing the quali-
tative variables) and x (representing the quantitative variables). Chapter 3 describes
software for fitting GP models with quantitative inputs in which the Gaussian cor-
relation function is assumed, and one advantage of (2.4.4) is that this same software
can be used to fit GP models with both qualitative and quantitative inputs.

Another way to incorporate qualitative variables into (2.4.2) is inspired by how
one can characterize the multivariate normal distribution (and more generally by
models for multiple correlated GPs). Let N1(x), N2(x), . . . , NS (x) be S independent,
identically distributed mean zero, stationary GPs with variance σ2

Z . Assume each
satisfies

Cor [Ni(x1), Ni(x2)] =
d

∏

k=1

exp
{

−ξk (x1,k − x2,k)2
}

for 1 ≤ i ≤ S . Assume for 1 ≤ t ≤ T

Zt(x) =
S

∑

i=1

at,i Ni(x)

for some constants at,i. Then

(Z1(x), . . . , ZT (x)) = A(N1(x), . . . , NS (x))

where A is the T × S matrix with ai, j as its (i, j)th entry.
This yields the Qian et al. (2008) model provided τ = AA. Qian et al. (2008)

use this representation to prove that τ must be a positive definite symmetric matrix
with unit diagonal entries for the correlation structure in their model to be valid.
But, by analogy with multivariate normal methods, there is much more that can be
done with this representation.

The exchangeable model is produced by assuming

Zi(x) =
√
τ N1(x) +

√
1 − τ Ni+1(x) .

This indicates that the Y(x, i) in (2.4.2) are composed of a common overall trend (the
N1(x) term) and independent realizations of a “treatment effect” trend (the Ni+1(x)
terms). Both the overall trend and treatment effect trends are of the same magnitude
for each Y(x, i). Notice that the exchangeable model could be interpreted as having
a one-way ANOVA structure.

To represent the Kronecker product structure, let

N j(x) = (N j
1(x), . . . , N j

T j
(x))

where the N j
i (x) components are independent, identically distributed mean zero,

stationary GPs with process variance σ2
Z . Let A j be a T j × T j matrix satsfying τ j =

A j A
j . Then in our general formulation A(N1(x), . . . , NS (x)) becomes
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One can impose a factorial structure on the Y(x, i) in (2.4.2). For example, sup-
pose the Y(x, i) are determined by two factors F and G with f and g levels, respec-
tively. Suppose Y(x, i) corresponds to F at level φ and G at level γ. Let

Zi(x) = aμ
i Nμ(x) + aF

i NF
φ(x) + aG

i NG
γ (x) ,

where Nμ(x) is an overall mean effect (trend), NF
φ(x) is the effect of level φ of F, and

NG
γ (x) is the effect of level γ of G. This looks like a two-factor main effects model.

If one does not require A to satisfy τ = AA, then the formulation

(Z1(x), . . . , ZT (x)) = A(N1(x), . . . , NS (x))

allows the Zi(x) to have different variances.
Another application of this representation of the Qian et al. (2008) model is to

an analysis that is suggestive of factor analysis. Estimate the matrix τ and find a
parsimonious matrix A so that τ = AA. Note that A is only determined up to
multiplication by an orthogonal matrix. The form of A may suggest some sort of
factorial structure, or perhaps that the Y(x, i) depend mostly on a relatively small
number of the Nj(x).

Remark: In the hypersphere parameterization of τ discussed in Zhou et al. (2011),
they essentially use τ = AA with A being lower triangular, guaranteeing the
uniqueness of A.

Example 2.10. Zhou et al. (2011) consider a simple example involving three curves
on x ∈ [0, 1] having a single qualitative variable t with three levels:

y(x, t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

cos

(

6.8πx
2

)

if t = 1

− cos

(

7πx
2

)

if t = 2

cos

(

7.2πx
2

)

if t = 3

.

These curves are displayed in Fig. 2.12.
Both the functional forms of the three curves and Fig. 2.12 suggest that the three

are highly pairwise correlated and that the GP model,

Y(x, t) = β0 + Zt(x)

with
Zt(x) = atN1(x), t = 1, 2, 3,

and a1 = a3 = −a2, may adequately describe these curves. �
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Fig. 2.12 Function curves at t = 1 (solid line), t = 2 (dashed line), and t = 3 (dashed dotted line)

This section concludes by describing a hierarchical model approach for incor-
porating qualitative variables. Again let y(x, t) denote a deterministic output that
depends on the quantitative input x = (x1, x2, . . . , xd) and a single qualitative input
t ∈ {1, . . . , T }. In brief, Han et al. (2009a) assume that the y(x, t) have “similar”
dependences on x for different levels t.

In more detail, Han et al. (2009a) apply a model that they term the hierarchical
quantitative-qualitative variable (HQQV) model to describe y(x, t). The first stage of
the HQQV model assumes that (2.4.2) holds given βt, σ2

t , and correlation parameters
ρt,k, t ∈ {1, . . . , T }, and k ∈ {1, . . . , d} where the Zt(·) are mutually independent with

Cor [Zt(x1), Zt(x2)] =
d

∏

k=1

ρ
(x1,k−x2,k)2

t,k .

Recall ρt j determines the smoothness of y(x, t) for the jth input x j. They choose
β1, . . . , βT to have a non-informative prior distribution proportional to 1. Han et al.
(2009a) scale the responses in each (qualitative input) level to have standard error 1.
They choose σ2

1, . . . , σ
2
T to be independently and identically distributed as inverse

gamma with parameters selected to have support in an interval about 1. In the spirit
of Christiansen and Morris (1997) and Wallstrom (2007), they assume, for each
input k ∈ {1, . . . , d}, that ρ1,k, . . . , ρT,k are independently and identically distributed
as beta(αk, γk). The intuition behind this is that the dependence structure of the kth

input is “similar” for all surfaces y(x, t). They use a two-step procedure to obtain
empirical estimates of the (αk, γk).

First, they estimate ρ1,k, . . . , ρT,k separately based on the data at each level t,
t = 1, . . . , T , yielding ρ̂1,k, . . . , ρ̂T,k. Second, they chose parameters αk and γk so that
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the mean of the Beta(αk, γk) prior is

M = max
{

ρ̂1,k, . . . , ρ̂T,k
}

but truncated to have a lower bound of 0.005 and an upper bound of 0.995, i.e.,

αk

αk + γk
= median {0.005, M, 0.995} .

In a similar way, they set the variance of beta(αk, γk) equal to the sample variance
of ρ̂1,k, . . . , ρ̂T,k but bounded above by 0.004. These two equations determine αk and
γk.

The reasoning behind this empirical prior for {ρ1,k, . . . , ρT,k} is as follows. When
the experimental design is not space-filling, or when the number of training data
points in level t differs from those in the other levels, an estimate of ρt,k can be
close to 0. If ρ̂t,k is near 0, then the prediction of the output at level t will converge
quickly, in dimension k for the quantitative input, to the process mean, and thus
the prediction errors can be undesirably large. With the assumption that the correla-
tion structures of the processes at all levels of the qualitative input are similar, this
conservatively avoids this problem by letting M = max{̂ρ1,k, . . . , ρ̂T,k} be the mean
of Beta(αk, γk) when M ∈ [0.005, 0.995]. Han et al. (2009a) also assume that the
(β1, . . . , βT ), (σ2

1, σ
2
2, . . . , σ

2
T ), and (ρ1,k, . . . , ρT,k) are mutually independent. They

describe how to perform prediction at unknown inputs based on this model.

2.5 Models for Multivariate and Functional Simulator Output

2.5.1 Introduction

This subsection describes GP models Y(x) = (Y1(x), Y2(x), . . . , Ym(x)) for multivari-
ate output y(x) = (y1(x), y2(x), . . . , ym(x)). Section 2.4 described one setting where
such a model is necessary, namely, that in which the data have mixed quantitative
and qualitative inputs and the levels of the qualitative inputs correspond to the m out-
puts. Another setting requiring a multivariate model was described in Example 1.6
of Sect. 1.2 and is reviewed here.

Example 1.6 (Continued). As an example of multivariate data, recall the 3-D fi-
nite element simulator of Ong et al. (2008) that produced m = 4 related out-
puts y1(x), y2(x), y3(x), and y4(x) each of which measured an aspect of acetabu-
lar cup stability under loading (total potential ingrowth area; change in

gap volume; gap volume; and cup relative motion). There were 12 inputs to
this model; they can be grouped into those inputs that determine the mechanical de-
sign of the cup, those that describe the surgical skill with which the cup is inserted,
and inputs that describe the environment where it will operate.
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Figure 2.13 displays all six pairs of the m = 4 outputs corresponding to 39 runs of
the code. Several of the outputs are highly related, for example, the plot of change
in gap volume × cup relative motion shows a strong linear trend. �
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Fig. 2.13 Matrix scatterplot of m = 4 outputs for Example 1.6 based on n = 39 runs

“Functional data” are a third type of data that are essentially multivariate; data
are functional provided each output is a function, say of the argument t ∈ T . The
notation used to describe functional output is y(x, t), where x denotes controllable
inputs, while the computed response corresponding to a given x0, y(x0, t), is a func-
tion of t ∈ T . For example, Fig. 1.14 shows the concentration of a chemical pol-
lutant over a location × time grid (the T ), for a specific selection of the inputs
(M, D, L, T ) that describe the characteristics of the chemical spill. Functional data
are ordinarily computed at a finite t grid.

A common way to reduce functional data to multivariate output is to model the
functional output only at a few physically important “landmark” values of t ∈ T .
Another method to reduce the highly dependent (in t) functional outputs to low-
dimensional multivariate data is by using an appropriate basis; the latter method
will be illustrated in Sect. 2.5.4.

In practice, two types of multivariate training data are collected for prediction
and other inferences. The first type of training data is when all m outputs have been
evaluated at n inputs x1, . . . , xn; the second type is when only a subset of the m
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outputs have been evaluated at each of the n inputs. The second case occurs when
there are multiple codes not all of which need be run at the same set of inputs.

The outputs for the first case will be denoted by y(x1), . . . , y(xn) and model values
by Y1 ≡ Y(x1), . . . , Yn ≡ Y(xn). The notation for second case is more complex. As
in the first case, let x1, . . . , xn denote the set of all inputs at which any code runs
have been made. Let 1 ≤ �i

1 < · · · < �i
mi

≤ m denote the indices of the output
functions at which xi has been calculated, i = 1, . . . , n. For example, it might be
that only y1(xi), y3(xi), and y5(xi) have been computed for xi when there are m = 6
possible outputs; thus mi = 3 and �i

1 = 1, �i
2 = 3, and �i

3 = 5. Denote the vector of
calculated outputs at xi by yi = (y�i

1
(xi), . . . , y�i

mi
(xi)), for i = 1, . . . , n. The model

values associated with the yi runs will be denoted by Yi, i = 1, . . . , n.
The multivariate GP models described below for Y(x) = (Y1, . . . , Yn) yield valid

multivariate normal distributions; this means that Y(x) has a positive semi-definite
covariance matrix. (An arbitrarily selected parametric form for the individual cross-
covariances

Cov
[

Y�i (xi), Y�q(xq)
]

, for i � q ,

need not produce a positive semi-definite covariance matrix for Y(x).) In addition
to the covariance matrix being positive semi-definite, it is desired that a valid GP
for Y(x) embody whatever smoothness properties are known marginally about each
response yi(·), 1 ≤ i ≤ m, and also what is known about the dependencies among
the m outputs. The former might mean that the model might have a certain degree
of smoothness and contain terms that describe specified large-scale trends in certain
inputs. The latter, for example, might require that competing outputs yi(x) and y j(x)
be negatively correlated because larger values of yi(x) are associated with lower
values of y j(x).

Sections 2.5.2 and 2.5.3 describe constructive methods that produce valid multi-
variate GP models (Y1(x), Y2(x), . . . , Ym(x)). Section 2.5.4 introduces basis methods
for functional simulator data.

2.5.2 Modeling Multiple Outputs

This section describes GP models for Y(x) that have marginal distributions of the
form

Yi(x) = fi (x)βi + Zi(x) , (2.5.1)

for i = 1, . . . , m where Zi(·) is a mean zero GP whose other properties de-
pend on the details of the definition of Z(x) = (Z1(x), . . . , Zm(x)). The linear
model fi (x)βi represents the global trend of the Yi(x) process; here f i(x) =
( fi,1(x), fi,2(x), . . . , fi,pi (x)) is a pi × 1 vector of known regression functions and
βi = (βi,1, . . . , βi,pi )

 is a pi × 1 vector of unknown regression parameters. Letting
β = (β1 , . . . , β


m) denote the

(∑m
1 pi

)

× 1 vector of all regression parameters, the
mean of Y(x) can be written in matrix form as
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E[Y(x)] = F(x) β ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1 (x) 01×p2 · · · 01×pm

01×p1 f2 (x) · · · 01×pm

...
...

. . .
...

01×p1 01×p2 · · · fm(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

β . (2.5.2)

An important special case of (2.5.2) is when all the outputs use the same regression
functions but with component-specific regression parameters, i.e., f 1(x) = · · · =
f m(x) = f (x) and thus p1 = · · · = pm = p, say. An important special case of the
common regression mean model is f 1(x) = · · · = f m(x) = 1 which produces Yi(x)
with constant but component-specific means.

This subsection focuses on the nonseparable linear model of coregionalization
(NLMC) for Z(x). The NLMC model is extremely flexible; it is used in both com-
puter experiments (Svenson and Santner (2016) and Fricker et al. (2013)) and geo-
statistical applications of spatial statistics (Banerjee et al. (2008)).

An NLMC model for Z(x) has the following representation. Select a symmetric
m × m positive-definite matrix A then set

Z(x) = AN(x) (2.5.3)

where, as in Sect. 2.4, N1(x), N2(x), . . . , Nm(x) are m independent, mean zero, unit
variance stationary GPs, but Ni(x) is allowed to have its own correlation function
Ri(h), 1 ≤ i ≤ m.

Combining the mean and covariance assumptions from the previous paragraphs,
the cross-covariance matrix of

Y(x) = F(x) β + AN(x) (2.5.4)

corresponding to x1 � x2 is the m × m matrix

Cov [Y(x1), Y(x2)] = ADA (2.5.5)

where D = diag(R1(x1 − x2), . . . , Rm(x1 − x2)) denotes the diagonal matrix

⎡

⎢

⎢

⎢
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⎢
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⎢

⎢
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R1(x1 − x2) 0 · · · 0

0 R2(x1 − x2) · · · 0

...
...

. . .
...

0 · · · 0 Rm(x1 − x2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎥

⎥

⎥

⎥
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⎥
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⎥

⎦

.

In particular, the covariance matrix of Y(x) is

Cov [Y(x), Y(x)] = AA . (2.5.6)

The literature contains a number of important special cases of (2.5.3) correspond-
ing to particular forms of A and assumptions about {Ri(h)}mi=1. For example, when
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A = diag(a11, . . . , amm) is diagonal then the cross-covariance matrix (2.5.5) reduces
to

Cov [Y(x1), Y(x2)] = diag
(

a2
11R1(x1 − x2), . . . , a2

mmRm(x1 − x2)
)

,

showing that Y(x) has independent components and Var[Yi(x)] = a2
ii, 1 ≤ i ≤ m.

Another special case of the NLMC model is when R1(h) = · · · = Rm(h) = R(h), in
which case the cross-covariance matrix is

Cov [Y(x1), Y(x2)] = A diag(R(x1 − x2), . . . , R(x1 − x2)) A

= R(x1 − x2) AA

which is the separable covariance model of Conti and O’Hagan (2010).
Arguably the most critical limitation of the NLMC model is seen in the covari-

ance formula (2.5.6); the association among Y1(x), . . . , Ym(x) is the same for all
points x of the input space. More flexible models that allow A in (2.5.4) to depend
on x, and hence the relationship among Y1(x), . . . , Ym(x) to vary with x, have been
considered in the literature (Gelfand et al. (2004), Chen et al. (2014a)).

Example 2.11. Kennedy and O’Hagan (2000) used a spatial autocorrelation model
to describe the output of a set of multi-fidelity computer codes y1(x), . . . , ym(x). Let
i = m denote the highest fidelity code and smaller values of i denote successively
lower fidelity (less complex) codes. Let Yi(x) denote the process model for the ith

level of the code, i = 1, . . . , m. The object is to predict ym(x) using the runs from all
fidelities.

The Kennedy and O’Hagan (2000) model views the observed data as a draw from
Y(x) = (Y1(x), . . . , Ym(x)) which relates the output at level i, yi(x), to the immediate
lower fidelity output yi−1(x) plus a refinement, i.e.,

Yi(x) = ρi−1Yi−1(x) + Δi(x) , i = 2, . . . , m, (2.5.7)

where ρi−1, 0 < ρi−1 < 1, is a constant that describes the amount of common be-
havior in the lower and higher fidelity codes and Δi(x) is a process, independent of
Yi−1(x), that describes the enhancements of yi(x) over yi−1(x). This model can be
embellished by allowing a separate regression for each stage of the model.

Assuming that y1(x) can be described as a draw from Δ1(x), the autoregressive
model (2.5.7) is of the form (2.5.4). A small amount of algebra shows

Yi(x) =
i−1
∏

j=1

ρ j Δ1(x) +
∑

�≤i−1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

i−1
∏

j=�

ρ j Δ�(x)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+ Δi(x) (2.5.8)

for i = 2, . . . , m. Equation (2.5.8) implicitly defines the A matrix in (2.5.4) in terms
of (Δ1(x), . . . , Δm(x)). �
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2.5.3 Other Constructive Models

Constructive approaches have also been used to form process models for prediction
in other settings. Two of these applications are environmental science (Ver Hoef
and Barry (1998); Higdon (1998)) and computer experiments (Morris et al. (1993);
Mitchell et al. (1994)).

Models for environmental science applications typically describe one or more un-
known smooth surfaces which are observed with measurement error. As an example,
Ver Hoef and Barry (1998) modeled the observed spatial processes to be moving av-
erages over white noise processes. Let y(x) = (y1(x), . . . , ym(x)) denote the observed
data at input x. To describe their Y(x) model for y(x), let {W0(x), W1(x), . . . , Wm(x)}
denote mutually independent, mean zero, white noise processes. For i = 1, . . . , m
set

Zi(w) =
√

1 − ρ2
i Wi(w) + ρiW0(w − ςi),

where −1 ≤ ρi ≤ 1 and ςi is a shift parameter that determines the cross-correlation
function among the {Zi}mi=1 processes as seen in the following formula. Fixing i1 � i2
calculation gives

Cor
[

Zi1 (w + ςi1 ), Zi2 (w + ςi2 )
]

= ρi1ρi2 ,

but is zero otherwise; thus nonzero cross-correlations can only occur when inputs
are separated by the amount ςi1−ςi2 . Ver Hoef and Barry (1998) assume the observed
yi(x) is a draw from

Yi(x) = μi +

∫

fi(w − x) Zi(w) dw + σi ξi(x) ,

which is a process mean μi plus the integrated Zi(x) processes with respect to a
(moving average) function fi(h) plus a measurement error, i = 1, . . . , m. The mea-
surement error, σi ξi(x), is based on the zero mean, unit variance white noise pro-
cesses ξi(x) which are taken to be mutually independent, for 1 ≤ i ≤ m, and also
independent of Z(x); thus σ2

i is the measurement error variance. Each fi(h) is taken
to be square integrable which ensures that Yi(x), i = 1, . . . , m, is second-order sta-
tionary. Ver Hoef and Barry (1998) found that it is possible to reproduce many
commonly used variogram models with this type of moving average construction.

Turning attention to computer experiments applications, consider a setting in
which the simulator code produces y(x) and the first partial derivatives (“adjoints”)
of y(x). Suppose that the input space for the code is denoted X ⊂ IRd and that y(x)
has first partial derivatives of all orders. Let

y( j)(x) = ∂y(x)/∂x j

denote the jth partial derivative of y(x) for 1 ≤ j ≤ d. In the general notation
introduced above, there are m = 1 + d outputs and y1(x) = y(x), y2(x) = y(1)(x), . . .,
and ym(x) = y(d)(x).
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Morris et al. (1993) and Mitchell et al. (1994) consider a multivariate model
for the setting of the previous paragraph in which the prior information about y(x)
is specified by a Gaussian process Y(·) and the prior about the partial derivatives
y( j)(x) is obtained by considering the “derivative” processes of Y(·). Suppose that
the prior for y(x) is

Y(x) = f(x)β + Z(x),

where each component of f(x) = ( f1(x), . . . , fp(x)) has first partial derivatives with
respect to all components x j, 1 ≤ j ≤ d, and Z(x) is a stationary Gaussian process
with zero mean, variance σ2

Z , and separable Gaussian correlation function

R(w) =
d

∏

j=1

exp
{

−ξ j w2
j

}

.

A “natural” model for the partial derivative y( j)(x) is

Y ( j)(x) = lim
h→0

Y(x1, . . . , x j−1, x j + h, x j+1, . . . , xd) − Y(x)

h
, (2.5.9)

which exists under differentiability conditions for R(·) that are satisfied for the prod-
uct of Gaussian correlation functions (Parzen (1962)). The fact that linear combi-
nations of multivariate normal random variables are again multivariate normal sug-
gests that the limit (2.5.9) will have the same behavior, which applies here. Under
appropriate conditions, the “partial derivative” process Y( j)(x) has mean equal to
∂ f(x)β

∂x j
=

∑p
�=1 β� ∂ f�(x)/∂x j. To complete the statement of the joint distribution

of (Y(x), Y (1)(x), . . . , Y (d)(x)), formulas are required for the cross-covariances be-
tween Y(x) and each Y ( j)(x). General formulas for the cross-covariances are known
even when the Y(x) process need not be stationary but has covariance function
Cov[Y(x1), Y(x2)] = σ2

Z R(x1, x2); these are

Cov
[

Y(x1), Y ( j)(x2)
]

= σ2
Z

∂R(x1, x2)
∂x2, j

(2.5.10)

for 1 ≤ j ≤ d and

Cov
[

Y (i)(x1), Y ( j)(x2)
]

= σ2
Z

∂2R(x1, x2)
∂x1,i ∂x2, j

(2.5.11)

for 1 ≤ i ≤ j ≤ d (Morris et al. (1993)).

2.5.4 Models for Simulators Having Functional Output

Examples 1.7 and 1.8 illustrate functional output. Example 1.1, on the temporal evo-
lution of a fire in a closed room, is another example whose output is fundamentally
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functional. This is because the ASETB simulator computes both temperature and
plume height as a function of the time from the initiation of the fire. Figure 2.14
shows the rise in temperature for one of the fire scenarios as a function of time.
In the initial description of the Example 1.1 output, a landmark value was selected
from the plume height × time curve (the time at which the smoke plume descended
to 5 ft above the fire source).

In the general case, let X ⊂ IRd denote the space of controllable inputs x and
T ⊂ IRm the domain of the functional output which is assumed to be a finite set. For
a fixed x, let y(x) = {y(x; t) : t ∈ T ⊂ IRm} denote the m code outputs. Multivariate
data is typically lower dimensional with “small” m than is functional data where m
can be very “large.”
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Fig. 2.14 ASETB simulation of the Temperature × Time curve of a contained fire in a room with
characteristics: heat loss fraction = 0.75375, fire height = 1.87 ft, room height = 8.15 ft, and room
area = 205.69 ft2

The primary idea used in modeling functional output y(x) is already seen in
Fig. 2.14—y(x; t1), . . . , y(x; tm) are closely related. Typical multivariate data such
as those plotted in Fig. 2.13 need not be inherently ordered and are typically less
closely related than functional data.

Thus most papers in the literature analyze functional data by selecting a set of pb

basis vectors b1, . . . , bpb where each bi is m × 1 and approximate

y(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y(x; t1)
...

y(x; tm)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≈
pb

∑

�=1

b� w�(x) . (2.5.12)

For highly correlated output, (2.5.12) is typically a very economical representation
requiring few basis functions to provide a close approximation to y(x). The coeffi-
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cients w1(x), . . . , wpb (x) contain the information in y(x). Ideally, the basis functions
are selected to be orthogonal so that w1(x), . . . , wpb (x) can be reasonably modeled
as independent.

If training data are collected at xtr
1 , . . . , xtr

n with associated outputs y(xtr
1 ), . . . ,

y(xtr
n ) then a prediction model ŵ�(x) is built for each � = 1, . . . , pb using the methods

of Sects. 3.1–3.4 based on the “output” w�(xtr
1 ), . . . , w�(xtr

n ). The function y(xte) at
the test site xte is predicted by

ŷ(xte) =
pb

∑

�=1

b� ŵ�(xte).

Several practical issues must be resolved in order to carry out the prediction
method described above: a basis system must be selected, a method of determining
the coefficients w�(x) (usually to minimize the approximation error for a given pb),
and the number of basis vectors pb to be used. Several methods have been used in the
literature to identify basis vectors. These include the singular value decomposition
applied to a standardized version of the m × n matrix:

[

y(xtr
1 ) · · · y(xtr

n )
]

(see Sect. 8.4.1), a wavelet basis formed from the same matrix (Bayarri et al.
(2007)), and a radial basis function approximation (Bliznyuk et al. (2008)). Once
the basis system has been selected as well as the method of choosing the associated
w�(x) for a given pb, one simple choice of pb is the smallest value so that

max
1≤i≤n

∥

∥

∥

∥

∥

∥

∥

y(xtr
i ) −

pb
∑

�=1

b� ŵ�(xtr
i )

∥

∥

∥

∥

∥

∥

∥

2

< ε

for some given error bound ε > 0 where ‖·‖2 denotes Euclidian distance. Another
method comes from multivariate analysis: select pb so that the proportion of the
total variability of y(xtr

1 ), . . . , y(xtr
n ) explained by

∑pb

�=1 b� w�(x) is sufficiently large.

2.6 Chapter Notes

There are many sources that expand the overview material provided in this chap-
ter, particularly for Gaussian processes which are introduced in Sect. 2.2. Abraham-
sen (1997) is an approximately 60-page document that is available on the web; it
presents an introduction to GPs, with descriptions of their sample properties and
figures that provide the reader with an visual understanding of the sample paths
produced by many different correlation families. To describe the smoothness of
draws from a general processes is beyond the scope of this book (however, see
Cramér and Leadbetter (1967), Adler (1990), Yaglom (1986)). Stein (1999) focuses
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on the relationship between the correlation function of a stationary GP Y(x) and the
smoothness properties of its realizations y(x).

The earlier sections have centered their discussion on the cases of quantitative
and qualitative inputs for real-valued, multivariate output and functional output. Par-
ticularly in cases of functional output, the inputs to simulation models can also be
functional. For example, the forces exerted on a prothetic joint can vary in magni-
tude and angle of application over a gait cycle. Morris (2012, 2014) treat both design
issues and prediction for such cases.

Several papers have proposed alternative multivariate models based on the corre-
lation models presented Sect. 2.2. Gneiting et al. (2010) develop multivariate models
for the Matérn correlation function.



Chapter 3
Empirical Best Linear Unbiased
Prediction of Computer Simulator
Output

3.1 Introduction

This chapter and Chap. 4 discuss techniques for predicting output for a computer
simulator based on “training” runs from the model. Knowing how to predict com-
puter output is a prerequisite for answering most practical research questions that in-
volve computer simulators including those listed in Sect. 1.3. As an example where
the prediction methods described below will be central, Chap. 6 will present a se-
quential design for a computer experiment to find input conditions x that maximize
a computer output which requires prediction of y(x) at all untried sites.

To fix ideas, this section uses “training” data (xtr
i , y(xtr

i )), 1 ≤ i ≤ ns, of the
simulator to predict y(xte) where xte is a “test” input. The (ns + 1) data are assumed
to be a draw from the regression plus stationary Gaussian process model of Chap. 2
which is repeated here for convenience:

Y(x) =
p

∑

j=1

f j(x) β j + Z(x) = f(x) β + Z(x), (3.1.1)

where f (x) are known regression functions, β ∈ IRp are unknown regression coef-
ficients, and Z(·) is a stationary Gaussian process (GP) with zero mean, unknown
process variance σ2

Z > 0, and known correlation function R(·).
At first view, the problem of determining y(xte) based on training data might

be considered as one of point estimation of a fixed population quantity, y(xte). In-
stead, our viewpoint of regarding the entire function as drawn from a process Y(x)
is consistent with formulating the problem as one of predicting the random variable
Y(xte) given the partial information about the draw contained in the training data
Y(xtr

1 ), . . . , Y(xtr
ns

).
Section 3.2 describes two statistical approaches to the prediction problem: best

linear unbiased prediction (BLUP) and minimum mean squared prediction error
(MSPE) methodology. Using slightly different versions of the model (3.1.1), both
methodologies produce the same class of predictors, but the result changes with the

© Springer Science+Business Media, LLC, part of Springer Nature 2018
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correlation structure of the GP which is typically unknown in practical problems.
Section 3.3 presents empirical adaptions of the BLUP (called “EBLUP”s) which
can be used in unknown correlation settings. The chapter concludes with a simula-
tion study that compares the mean squared prediction errors of empirical best linear
unbiased predictors corresponding to different correlation parameter estimators in a
test bed of examples and makes recommendations.

3.2 BLUP and Minimum MSPE Predictors

3.2.1 Best Linear Unbiased Predictors

To explain best linear unbiased prediction in a somewhat general setting, consider a
generic setup in which it is desired to predict a random variable Y0 based on training
data Ytr = (Y1, . . . , Yn). Let ̂Y0 = ̂Y0(Ytr) denote an arbitrary predictor of Yte based
on Ytr. The class of linear unbiased predictors (LUPs) of Y0 with respect to a given
family F of (joint) distributions for (Y0, Ytr) are those ̂Y0 = a0+ aYtr which satisfy

E
[

̂Y0

]

= E [Y0] , for all F ∈ F , (3.2.1)

where E[·] denotes expectation under F(·). The condition that (3.2.1) holds is termed
“unbiasedness” of ̂Y0 for Yte with respect to F .

This section is concerned with identifying best LUPs of Y0 in the sense of min-
imizing the mean squared prediction error (MSPE). The MSPE of the Y0 predictor
̂Y0 at F is

MSPE
(

̂Y0, F
)

≡ E
[

(

̂Y0 − Y0

)2
]

. (3.2.2)

Definition. The LUP ̂Y0 = a0 + aYtr of Y0 is a best LUP (BLUP) with respect to
F provided

MSPE
(

̂Y0, F
)

≤ MSPE
(

Y�
0 , F

)

, for all F ∈ F ,

for any alternative LUP Y�
0 .

Example 3.1 (LUPs for a Location Parameter Model). This simple example illus-
trates how the choice of F determines the unbiasedness of linear predictors. Sup-
pose that F is specified for the data by the model statement

Yi = β0 + εi

for 0 ≤ i ≤ n, where β0 is a given nonzero value and {εi}ni=0 are uncorrelated zero
mean random variables with unknown variance σ2

ε > 0. This model specifies the
first two moments of (Y0, Ytr). An alternate statement of F is that Y0, Y1, . . . , Yn are
uncorrelated with given mean β0 and unknown (positive) variance.

Letting a = (a1, . . . , an), the predictor ̂Y0 = a0 + aYtr is unbiased with respect
to F provided:
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E
[

̂Y0

]

= E

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a0 +

n
∑

i=1

aiYi

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= a0 + β0

n
∑

i=1

ai

set
= E [Y0] = β0 (3.2.3)

for all σ2
ε > 0. Because (3.2.3) is independent of σ2

ε , ̂Y0 is unbiased provided (a0, a)
satisfies

a0 + β0

n
∑

i=1

ai = β0 (3.2.4)

for the given β0. One set of (a0, a) satisfying (3.2.4) are those for which a0 = β0

and
∑n

i=1 ai = 0; one such a is a1 = · · · = an = 0 which gives the (data inde-
pendent) predictor ̂Y0 = β0. Other LUPs result by choosing a0 = 0 and any a for
which

∑n
i=1 ai = 1; for example, the sample mean of Y1, . . . , Yn is the LUP of Y0

corresponding to a1 = · · · = an = 1/n.
Turning attention to finding the LUP of Y0 with smallest MSPE, first observe that

the MSPE of the LUP ̂Y0 = a0 + aYn is

E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 +

n
∑

i=1

aiYi − Y0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2⎤
⎥

⎥

⎥

⎥

⎥

⎥

⎦

= E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 +

n
∑

i=1

ai (β0 + εi) − β0 − ε0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2⎤
⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 + β0

n
∑

i=1

ai − β0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

+ σ2
ε ×

n
∑

i=1

a2
i + σ2

ε

= σ2
ε ×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +
n

∑

i=1

a2
i

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.2.5)

≥ σ2
ε . (3.2.6)

Equality holds in (3.2.5) because ̂Y0 is unbiased, and equality occurs in (3.2.6) if
and only if a0 = β0 and a1 = · · · = an = 0, which shows that

̂Y0 = β0

is the unique BLUP for F . For this example, as is often the case for BLUPs, ̂Y0

depends heavily on F and, indeed, changes with each different β0. �

Returning to the problem that motivates this chapter, consider predicting y(xte)
based on (xtr

i , y(xtr
i )), 1 ≤ i ≤ ns, where the data satisfy model (3.1.1) and the corre-

lation function R(·) is known. Using a slight change of notation in which the predic-
tor is denoted by ŷ(xte) rather than ̂Y(xte) to be more suggestive of this application,
Sect. 3.6.1 shows that
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ŷ(xte) = ŷte ≡ ftêβ + rteR−1
tr (Ytr − Ftr

̂β) (3.2.7)

is the BLUP of Y(xte) with respect to the family of distributions (3.1.1). In (3.2.7):

• Rtr =
(

R(xtr
i − xtr

j )
)

is the ns × ns matrix of known correlations of model outputs
at all pairs of training data inputs;

• Ftr is the ns × p known matrix whose ith row is
(

f1(xtr
i ), . . . , fp(xtr

i )
)

, 1 ≤ i ≤ ns;

• ̂β =
(

F
tr R−1

tr Ftr

)−1
F

tr R−1
tr Ytr is the generalized least squares estimator of β;

• fte =
(

f1(xte), . . . , fp(xte)
)

is the 1 × p vector of known regressors at the test data
input;

• rte =
(

R(xte − xtr
1 ), . . . , R(xte − xtr

ns
)
)

is the 1 × ns vector of known correlations of
Y(xte) with each training data model output Y(xtr

i ).

The uncertainty in the predictor ŷ(xte) can be quantified by its root MSPE, i.e.,
the square root of

MSPE = s2(xte) = E
[

(

Y(xte) − ŷ(xte)
)2

]

.

The expectation is with respect to the distribution of
(

Y(xte), Ytr) (from (3.2.7), ŷ(xte)
is a function of Ytr). In Sect. 3.6.1, the MSPE of ŷ(xte) is derived to be

s2(xte) = σ2
Z

{

1 − rteR−1
tr rte + hQ−1h

}

, (3.2.8)

where h = f te−F
tr R−1

tr rte and Q = F
tr R−1

tr Ftr. The uncertainty quantification (3.2.8)
is known only up to the scalar σ2

Z for the model discussed in this subsection, where
it has been assumed that β ∈ IRp and σ2

Z > 0, while both rte and Rtr are known.
In sum, because the BLUP (3.2.7) depends on the correlation structure, a quantity

that is not known in detail in most practical applications, the formula (3.2.7) is of
limited direct application. However both (3.2.7) and (3.2.8) are of use in applied
work where estimated correlation functions and process variance are used in place
of known ones.

The next subsection will show that (3.2.7) also arises as the result of invoking a
second classical statistical principle for identifying optimal predictors, that of min-
imum MSPE prediction; this methodology allows predictors of arbitrary form but
considers a more restricted process model than in the derivation of the BLUP.

3.2.2 Best MSPE Predictors

Again, initially consider the generic case in which it is desired to predict Y0 based
on training data Ytr = (Y1, . . . , Yn).
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Definition. The predictor ̂Y0 of Y0 is a minimum (best) MSPE predictor at F pro-
vided

MSPE
(

̂Y0, F
)

≤ MSPE
(

Y�
0 , F

)

for any alternative predictor Y�
0 where (3.2.2) defines the MSPE.

Predictors of practical importance will simultaneously minimize the MSPE for many
distributions F.

Theorem 3.1 is the fundamental theorem of prediction; it states that the condi-
tional mean of Y0 given Ytr is the minimum MSPE predictor of Y0 based on Ytr

(provided the moments referred to below exist). The expectation notation refers to
the distributions of (Y0, Ytr) induced by F.

Theorem 3.1. Suppose that (Y0, Ytr) have distribution F. Then

̂Y0 = E
[

Y0

∣

∣

∣ Ytr
]

(3.2.9)

is the best MSPE predictor of Y0.

Proof: Choose an arbitrary competing predictor Y�
0 = Y�

0 (Ytr); then

MSPE
(

Y�
0 , F

)

= E
[

(Y�
0 − Y0)2

]

= E
[

(

Y�
0 −̂Y0 + ̂Y0 − Y0

)2
]

= E
[

(

Y�
0 −̂Y0

)2
]

+MSPE
(

̂Y0, F
)

+ 2E
[(

Y�
0 − ̂Y0

) (

̂Y0 − Y0

)]

≥ MSPE
(

̂Y0, F
)

+ 2E
[(

Y�
0 − ̂Y0

) (

̂Y0 − Y0

)]

(3.2.10)

= MSPE
(

̂Y0, F
)

, (3.2.11)

where (3.2.10) holds because E[(Y�
0 −̂Y0)2] ≥ 0. Equality holds in (3.2.11) because

E
[(

Y�
0 − ̂Y0

) (

̂Y0 − Y0

)]

= E
[

(

Y�
0 − ̂Y0

)

E
[

(

̂Y0 − Y0

)
∣

∣

∣

∣
Ytr

]]

= E
[(

Y�
0 − ̂Y0

) (

̂Y0 − E
[

Y0

∣

∣

∣ Ytr
])]

= E
[(

Y�
0 − ̂Y0

)

× 0
]

= 0 ,

completing the proof. �
Best MSPE predictors must be unbiased with respect to any F for which (3.2.9)

holds because
E

[

̂Y0

]

= E
[

E
[

Y0

∣

∣

∣ Ytr
]]

= E [Y0] .

Hence, best MSPE predictors represent a strengthening of the BLUP criterion in that
the class of predictors considered are not merely those linear in the training data but
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can be arbitrary. The next example shows that improvements in MSPE are possible
by increasing the class of predictors beyond linear ones.

Example 3.2. Suppose that (Y0, Y1) has the joint distribution given by the density

f (y0, y1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1/y2
1 , 0 < y1 < 1, 0 < y0 < y2

1

0 , otherwise.

It is straightforward to calculate that the conditional distribution of Y0 given Y1 = y1

is uniform over the interval (0, y2
1). Hence the best MSPE predictor of Y0 is the center

of this interval, i.e.,
̂Y0 = E [Y0 | Y1] = Y2

1/2

which is nonlinear in Y1.
We compare the best MSPE predictor with the BLUP of Y0 for this same f (y0, y1)

model for (Y0, Y1). The BLUP is that a0+a1Y1 which minimizes E[(a0+a1Y1−Y0)2]
among those (a0, a1) that satisfy the unbiasedness requirement E[a0+a1Y1] = E[Y0].
Unbiasedness leads to the requirement

a0 + a1
1
2
=

1
6

or a0 =
1
6
− a1

1
2
.

Applying calculus to minimize the MSPE

E

⎡

⎢

⎢

⎢

⎢

⎢

⎣

((

1
6
− a1

1
2

)

+ a1Y1 − Y0

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

shows that a1 = 1/2 and hence a0 = 1/6 − a1/2 = −1/12, i.e., ̂YL
0 = − 1

12 +
1
2 Y1 is

the BLUP of Y0.
Figure 3.1 shows that the predictors ̂Y0 and ̂YL

0 are very close for all y1 ∈ (0, 1).

The MSPE of ̂Y0 is

E
[

(

Y0 − Y2
1/2

)2
]

= E
[

E
[

(Y0 − Y2
1/2)2

∣

∣

∣ Y1

]]

= E [Var [Y0 | Y1]]

= E
[

Y4
1/12

]

(3.2.12)

= 1/60 � 0.01667 .

The inner term in (3.2.12), Y4
1/12, is the variance of the uniform distribution over

(0, y2
1). A similar calculation gives

E
[

(

̂YL
0 − Y0

)2
]

= 0.01806 > 0.01667

as theory dictates, but the difference is small, as Fig. 3.1 suggests. �
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Fig. 3.1 For example 3.2, the predictors ̂Y0 (solid blue) and ̂YL
0 (solid red) versus y1 ∈ (0, 1)

Example 3.3. Returning to the GP setting with known correlation, momentarily as-
sume that both β and σ2

Z are also known. Then the joint distribution of Yte = Y(xte)
and Ytr = (Y(xtr

1 ), . . . , Y(xtr
ns

)) (given β, σ2
Z , and R(·)) is multivariate normal:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Yte

Ytr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∼ N1+ns

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

fte
Ftr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

β , σ2
Z

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 rte
rte Rtr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3.2.13)

Now, assuming that the design matrix Ftr is of full column rank p and that Rtr is
positive definite, Theorems 3.1 and B.2 show that

ŷte = E
[

Yte
∣

∣

∣ Ytr
]

= fteβ + rteR−1
tr

(

Ytr − Ftrβ
)

(3.2.14)

is the best MSPE predictor of y(xte).
The class of distributions F for which (3.2.14) is the minimum MSPE predictor

is, again, embarrassingly small. The best MSPE predictor is altered when either β
or R(·) changes; however, ŷte is the same for all σ2

Z > 0. �

Example 3.4. Consider a second version of the regression plus stationary GP model
in which β is unknown and σ2

Z is known (although this is not needed in the calcula-
tion below). Assume that the data follow a two-stage model specified as follows.

View (3.2.13) as specifying the conditional distribution of (Yte, Ytr) given β, i.e.,
[(Yte, Ytr) | β] is the first stage of a two-stage model. The second stage of the model
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puts an arbitrary prior on β, which will be denoted by [β]. The best MSPE predictor
of Yte is

ŷte = E
[

Yte
∣

∣

∣ Ytr
]

= E
[

E
[

Yte
∣

∣

∣ Ytr, β
]
∣

∣

∣

∣
Ytr

]

= E
[

fteβ + rte R−1
tr

(

Ytr − Ftrβ
)

∣

∣

∣

∣
Ytr

]

and the last expectation is with respect to the conditional distribution of β given Ytr.
Thus

ŷte = fte E
[

β
∣

∣

∣ Ytr
]

+ rte R−1
tr

(

Ytr − Ftr E
[

β
∣

∣

∣ Ytr
])

is the minimum MSPE predictor of Y(xte) for any two-stage model whose first stage
is given by (3.2.13) and has arbitrary second stage β prior for which E[β |Ytr] exists.

Of course, the explicit formula for E[β |Ytr], and hence ŷte, depends on the β
prior. For example, when β has the non-informative prior

[ β ] ∝ 1,

the conditional distribution [β |Ytr] can be derived by observing
[

β
∣

∣

∣ Ytr = ytr
]

∝
[

ytr
∣

∣

∣ β
]

×
[

β
]

∝ exp

{

−
1

2σ2
Z

(

ytr − Ftrβ
)

R−1
tr

(

ytr − Ftrβ
)

}

× 1

∝ exp

{

−
1

2σ2
Z

(

βF
tr R−1

tr Ftrβ − 2βF
tr R−1

tr ytr
)

}

= exp

{

−1
2
βA−1β + νβ

}

,

where A−1 = F
tr(σ

2
Z Rtr)−1Ftr and ν = F

tr(σ
2
Z Rtr)−1ytr . Notice that rank(A) = p

under the continuing assumption that F has full column rank p. Applying (B.1.4) of
Appendix B gives

[

β
∣

∣

∣ Ytr
]

∼ Np

(

(F
tr R−1

tr Ftr)−1F
tr R−1

tr Ytr , σ2
Z (F

tr R−1
tr Ftr)−1

)

because the σ2
Z terms cancel in the expression for the mean of [β |Ytr]. Thus the best

MSPE predictor of Y0 under this two-stage model is

ŷte = fte ̂β + rte R−1
tr

(

Ytr − Ftr
̂β
)

, (3.2.15)

where ̂β = (F
tr R−1

tr Ftr)−1F
tr R−1

tr Ytr which is the BLUP as stated in Sect. 3.2.1. �
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3.2.3 Some Properties of ŷ(xte)

We conclude this discussion of the BLUP (3.2.7) by describing several of its prop-
erties that are straightforward to demonstrate.

• The BLUP is linear in the training data Ytr: linearity follows by substituting ̂β
into ŷte yielding

ŷte =
[

fte(F
tr R−1

tr Ftr)−1F
tr R−1

tr

+ rteR−1
tr (Ins − Ftr(F

tr R−1
tr Ftr)−1F

tr R−1
tr )

]

Ytr (3.2.16)

≡ a
∗ Ytr ,

where (3.2.16) defines a∗.
• The BLUP is unbiased with respect to (3.1.1): for any β ∈ IRp and every σ2

Z > 0,

E
[

ŷte
]

= a
∗ E

[

Ytr
]

= a
∗ Ftrβ

=
[

fteIp + rteR−1
tr (Ftr − Ftr Ip)

]

β (3.2.17)

= fteβ = E
[

Y(xte)
]

,

where (3.2.17) holds from algebra after substituting for a∗ from (3.2.16). As
shown in Sect. 3.6.1, the unbiasedness of (3.2.7) is the key fact that permits the
straightforward derivation of its variance optimality.

• The BLUP interpolates the training data (xtr
i , Y(xtr

i )), 1 ≤ i ≤ ns. First, notice

that ŷte can be regarded as the sum of the regression predictor ftêβ plus the “cor-
rection” rteR−1

tr

(

Ytr − Ftr
̂β
)

. Suppose that xte = xtr
i for some fixed i, 1 ≤ i ≤ ns.

Then f te = f(xtr
i ) and

rte =
(

R(xtr
i − xtr

1 ), R(xtr
i − xtr

2 ), . . . , R(xtr
i − xtr

ns
)
)

which is the ith row of Rtr. Thus R−1
tr rte = (0, . . . , 0, 1, 0, . . . , 0) = ei, the ith unit

vector because this product is the ith column of R−1
tr Rtr = Ins , the ns × ns identity

matrix. Hence

rteR−1
tr

(

Ytr − Ftr
̂β
)

= ei
(

Ytr − Ftr
̂β
)

= Y(xtr
i ) − f(xtr

i )̂β

and so
ŷ(xte) = f(xtr

i ) ̂β +
(

Y(xtr
i ) − f(xtr

i ) ̂β
)

= Y(xtr
i ) .

• Regarded as a function of xte, the BLUP is a linear combination of the “basis”
functions

{

R(xtr
i − xte)

}ns

i=1
and the regressors

{

f j(xte)
}p

j=1
From (3.2.7), the BLUP

depends on xte only through the vector rte = (R(xte − xtr
1 ), . . . , R(xte − xtr

ns
)) and

the regression coefficients f (xte),
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ŷ(xte) =
p

∑

j=1

̂β j f j(xte) +
ns

∑

i=1

di R
(

xte − xtr
i

)

, (3.2.18)

where d = (d1, . . . , dn) = R−1
tr (Ytr − Ftr

̂β). In the special case Y(x) = β0 + Z(x),
ŷ(xte) depends on xte only through the terms R(xte − xtr

i ). The “smoothness”
characteristics of ŷ(xte) are inherited from those of R(·). For xte “near” any xtr

i
(more precisely, in the limit as xte approaches xtr

i ), the behavior of ŷ(xte) depends
on that of R(·) at the origin.

For cases where the correlation function is known, this section has introduced
the predictor (3.2.7) that is justified using two classical criteria: best linear unbiased
prediction and minimum MSPE prediction. Unfortunately, this predictor is optimal
within a very restricted class of competing predictors. The next section will turn to
the problem of prediction for computer experiments in which the correlation struc-
ture is unknown.

3.3 Empirical Best Linear Unbiased Prediction of Univariate
Simulator Output

3.3.1 Introduction

Suppose it is desired to predict y(x) at the “test” input x = xte based on training
data (xtr

i , y(xtr
i )), 1 ≤ i ≤ ns, assuming that y(x) can be modeled as a draw from the

regression plus stationary Gaussian process model (3.1.1) which is repeated here,

Y(x) =
p

∑

j=1

f j(x) β j + Z(x) = f(x) β + Z(x), (3.3.1)

for convenience. Throughout it is assumed that the correlation function is parametric
with unknown parameters, i.e., R(·) = R(· | κ) for unknown correlation parameter κ.
Also assume that the model regression parameters β are unknown as is the Z(x)
process variance σ2

Z . For example, the power exponential correlation function

R(h) = exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
d

∑

j=1

ξ j |h j|pj

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

has d unknown rate (“length”) parameters ξ1, . . . , ξd and d unknown power parame-
ters, p1, . . . , pd. Then κ ≡ (ξ1, . . . , ξd, p1, . . . , pd) consists of 2 × d unknown param-
eters which are required to specify the correlation function.

The basic strategy of empirical best linear unbiased prediction (EBLUP) of y(xte)
is to apply the BLUP (3.2.7) with estimated correlation parameters, i.e.,
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ŷ(xte) = ŷte ≡ fte ̂β + r̂te ̂R
−1
tr

(

Ytr − Ftr
̂β
)

, (3.3.2)

where ̂Rtr =
(

R
(

xtr
i − xtr

j

∣

∣

∣ κ̂
))

is ns × ns, r̂te =
(

R
(

xte − xtr
i

∣

∣

∣ κ̂
))

is ns × 1, κ̂

is an estimator of κ, and ̂β = (F
tr

̂R
−1
tr Ftr)−1 F

tr
̂R

−1
tr Ytr. Several κ̂ will be de-

scribed in Sects. 3.3.2–3.3.5, and an example illustrating an EBLUP will be given
in Sect. 3.3.6. EBLUPs corresponding to specific methods of estimating κ will have
names prefixed by that estimation method, e.g., MLE-EBLUP and REML-EBLUP.
The reader should note that EBLUPs are not linear in the training data Ytr because
κ̂ is (typically) not linear in Ytr and hence neither are ̂Rtr or r̂te; also ŷ(xte) need not
be an unbiased predictor for y(xte) (although see Kackar and Harville (1984)).

This section describes four methods of estimating κ that have been proposed
in the literature; use of (3.3.2) leads to different EBLUPs. All except the “cross-
validation” estimator of κ require that the training data satisfy

[

Ytr
∣

∣

∣ β, σ2
Z , κ

]

∼ Nns

(

Ftrβ, σ
2
Z Rtr

)

.

Also note that while the predictor (3.3.2) does not require knowledge of σ2
Z , it will

be shown in Chap. 4, e.g., (4.2.8), that an estimate of σ2
Z is required to quantify

the uncertainty of the predictor at the new test input xte. Specific methods of esti-
mating σ2

Z will be provided in the subsections on estimating unknown correlation
parameters κ.

3.3.2 Maximum Likelihood EBLUPs

Arguably maximum likelihood estimation (MLE) is the most popular method of
estimating κ. Using the multivariate normal assumption for Ytr, the log likelihood
is, up to an additive constant,

�(β, σ2
Z , κ) = −1

2

[

ns �n
(

σ2
Z

)

+ �n (det(Rtr))

+
(

ytr − Ftrβ
)

R−1
tr (ytr − Ftrβ)/σ2

Z

]

, (3.3.3)

where det(Rtr) denotes the determinant of Rtr. Given κ, the MLE of β is its general-
ized least squares estimate

̂β =
(

F
tr R−1

tr Ftr

)−1
F

tr R−1
tr ytr (3.3.4)

and the MLE of σ2
Z is

̂σ2
Z =

1
ns

(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

. (3.3.5)
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Substituting (3.3.4) and (3.3.5) into (3.3.3) shows that the maximum of (3.3.3) over
β and σ2

Z is

�(̂β,̂σ2
Z , κ) = −1

2

[

ns �n
(

̂σ2
Z (κ)

)

+ �n (det (Rtr (κ))) + ns

]

,

where the dependence of σ2
Z and Rtr on κ is explicitly shown. Thus the MLE chooses

κ̂ to minimize
ns �n

(

̂σ2
Z (κ)

)

+ �n (det (Rtr (κ))) , (3.3.6)

where ̂σ2
Z is defined by (3.3.5). The predictor of y(xte) corresponding to κ̂ is denoted

as the MLE-EBLUP of y(xte).

3.3.3 Restricted Maximum Likelihood EBLUPs

Again assume that R(·) (and hence Rtr and rte) depends on an unknown finite vector
of parameters κ. Restricted (“residual”) maximum likelihood estimation (REML)
of variance and covariance parameters was introduced by Patterson and Thompson
(1971) as a method of determining less biased estimates of such parameters than
maximum likelihood estimation (see also Patterson and Thompson (1974)). Some
authors use the term marginal maximum likelihood estimates for the same concept.

The REML estimator of κ maximizes the likelihood of a maximal set of linearly
independent combinations of the Ytr where each linear combination is orthogonal
to Ftrβ, the mean vector of Ytr . Assuming that Ftr is of full column rank p, this
method first chooses an (ns − p) × ns matrix C of full row rank, ns − p, that satisfies
CFtr = 0. The REML estimator of κ is the maximizer of the likelihood of the
linearly transformed “data”:

W ≡ CYtr ∼ N
(

CFtrβ = 0 , σ2
Z C Rtr(κ) C

)

.

Notice W has the disadvantage that it contains p fewer “observations” than Ytr , but
it has the advantage that the distribution of W does not depend on the unknown β.

Example 3.5. As an example, consider the simplest linear model setting, that of in-
dependent and identically distributed N(β0, σ

2) observations Y1, . . . , Yn. In this case,
p = 1. The MLE of σ2 based on the Y1, . . . , Yn is

∑n
i=1(Yi −Y)2/n, which is a (down-

ward) biased estimator of σ2. One set of linear combinations having the orthogo-
nality property CF = 0 is obtained as follows. Let Y be the mean of Y1, . . . , Yn. The
linear combinations W1 = Y1 − Y , . . . , Wn−1 = Yn−1 − Y each have mean zero and
correspond to multiplying Yn by an easily described (n− 1)× n matrix C having full
row rank n − 1. Maximizing the likelihood based on W1, . . . , Wn−1 and expressing
the result in terms of Y1, . . . , Yn give
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̂σ2 =

n
∑

i=1

(Yi − Y)2/(n − 1) . (3.3.7)

The n− 1 divisor in the error sum of squares (3.3.7) produces an unbiased estimator
of σ2. �

Returning to the general case (3.3.1), it can be shown that the REML estimator
of κ is independent of the choice of linear combinations used to construct W subject
to the number of columns of C being maximal in the sense of C having rank n −
p (Harville (1974), Harville (1977)). With some algebra it can be shown that the
REML estimator of σ2

Z is

˜σ2
Z =

ns

ns − p
̂σ2

Z =
1

ns − p

(

ytr − Ftr
̂β
)

R−1
tr (κ)

(

ytr − Ftr
̂β
)

, (3.3.8)

where ̂σ2
Z is the MLE of σ2

Z (see formula (3.3.5)) and the REML estimator of κ is
the minimizer of

(ns − p) �n
(

˜σ2
Z

)

+ �n (det(Rtr(κ))) + �n
(

det
(

F
tr R−1

tr (κ)Ftr

))

. (3.3.9)

The predictor of y(xte) corresponding to the REML estimator of κ̂ is denoted as the
REML-EBLUP of y(xte).

3.3.4 Cross-Validation EBLUPs

Cross-validation is a popular method for choosing model parameters in paramet-
ric model settings. Important early references describing cross-validation are Allen
(1974), Stone (1974), and Stone (1977); Hastie et al. (2001) summarize recent ap-
plications.

Again assume that the correlation function is parametric with R(·) = R(· | κ) so
that Rtr = Rtr(κ) and rte = rte(κ). For i = 1, . . . , ns, let ŷ−i(κ) denote the predictor
(3.3.2) of y(xtr

i ) when κ is the true correlation parameter based on all the data ex-
cept (xtr

i , y(xtr
i )). The cross-validated estimator of κ minimizes the empirical mean

squared prediction error:

XV-PE(κ) ≡
ns

∑

i=1

(

ŷ−i(κ) − y(xtr
i )

)2
.

More general forms of the cross-validation criterion have been proposed by Golub
et al. (1979) and Wahba (1980). The predictor of y(xte) corresponding to the XV
estimator of κ̂ is denoted as the XV-EBLUP of y(xte).
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3.3.5 Posterior Mode EBLUPs

The motivation and form of the posterior mode EBLUP are as follows. Recall from
Theorem 3.1 that the minimum MSPE predictor of Y(xte) is E[Y(xte) |Ytr]. As de-
scribed in Sect. 4.3, in fully Bayesian settings where a prior is available for (β, σ2

Z , κ),
this conditional mean is often calculated from

E
[

Y(xte)
∣

∣

∣ Ytr
]

= E
[

E
[

Y(xte)
∣

∣

∣ Ytr, κ
] ∣

∣

∣ Ytr
]

, (3.3.10)

where the inner expectation on the right-hand side of (3.3.10) is regarded as a func-
tion of κ and the outer expectation is with respect to the (marginal) posterior distribu-
tion [κ |Ytr]. Sections 4.1 and 4.2 give several examples of closed-form expressions
for E[Y(xte) |Ytr, κ]. Even if E[Y(xte) |Ytr, κ] is known, the density of [κ |Ytr] gen-
erally cannot be expressed in closed form. One simple, but nevertheless attractive,
approximation to E[Y(xte) |Ytr] via the right-hand side of (3.3.10) is

E
[

Y(xte)
∣

∣

∣ Ytr, κ̂
]

, (3.3.11)

where κ̂ is the posterior mode of [κ |Ytr]. This approximation is based on the
(greatly) simplifying assumption that [κ |Ytr] is degenerate with mass located at
its mode (Gibbs (1997)).

The line of reasoning in the previous paragraph suggests estimating κ by the κ̂
that maximizes

[

κ
∣

∣

∣ Ytr
]

=
[Ytr | κ][κ]

[Ytr]
∝

[

Ytr
∣

∣

∣ κ
]

[κ] .

The posterior mode EBLUP of y(xte) is Eq. (3.3.11) where κ̂ is the posterior mode
of κ; this EBLUP is denoted as the PMode-EBLUP.

While the predictor (3.3.11) uses the correlation parameter that seems “most
likely” as judged by the posterior, choosing an informative prior for the κ parame-
ters is often problematic. Indeed, the harried but Bayesian-inclined user may wish
to compute the posterior mode κ̂ based on a non-informative prior for [κ], as will be
described in Sect. 4.3. The reader should be wary that the use of improper priors for
correlation parameters can lead to improper posteriors. Berger et al. (2001) prove
that, for isotropic correlation functions, many of the improper priors suggested in the
literature yield improper posteriors. It also proposes an improper prior for default
use whose posterior is proper.

3.3.6 Examples

Example 1.1 (Continued). Recall the data introduced in Sect. 1.2 giving the com-
puted time for a hot smoke layer (or smoke plume) to reach 5 ft above a fire source,
which is denoted y(x). The factors x which can affect y(x) are the height and area
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of the room, its heat loss fraction (a measure of how well the room retains heat),
and the height of the fire source above the room floor. The ranges for each input are
listed in Table 3.1.

Input Lower limit Upper limit

Heat loss fraction 0.6 0.9
Height of the fire source 1.0 3.0

Room height 8.0 12.0
Room area 81.0 256.0

Table 3.1 Ranges of the factors in Example 1.1 that potentially affect the time for a smoke plume
to reach 5 ft above a fire source

The same 40 points from a Sobol´ sequence that were considered earlier are
now used as training data for prediction. Alternative choices of space-filling designs
will be discussed in Chap. 5; indeed, the minimum interpoint distance of the

(

40
2

)

pairs of 4-D points, when scaled to [0, 1]4, is 0.22 versus the comparable value
of 0.41 for a design that maximizes the minimum interpoint distance between all
pairs of inputs (from a maximin symmetric Latin hypercube design, Sect. 5.3.3).
Nevertheless Fig. 3.2 shows that the 6 =

(

4
2

)

two-dimensional projections of the 40
inputs for this design are visually spread.

Fig. 3.2 Scatterplot matrix of the 40 input points used in Example 1.1
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Figure 3.3 shows the marginal scatterplots of each of the four input variables
versus the time for a fire to reach 5 ft above the fire source. Only room area appears
to have a strong marginal relationship with response time.
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Fig. 3.3 Scatterplots of the time for a fire to reach 5 ft above a fire source versus each of the inputs:
(1) heat loss fraction, (2) height of the fire source above the floor, (3) room height, and (4) room
area, using the data from Example 1.1

Suppose it is desired to predict y(x) for an x grid consisting of 320 = 4×4×4×5
equally spaced points over the ranges of the variables, heat loss fraction,room
height, fire height, and room area, respectively. Consider REML-EBLUP
prediction based on the stationary GP with constant mean β0, process variance σ2

Z ,
and Gaussian correlation function:

Cor[Y(x1), Y(x2)] = exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
d

∑

j=1

ξ j (x1, j − x2, j)2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (3.3.12)

The results of a REML-EBLUP fit to these data are ̂β0 = 49.5666, ̂σ2
Z = 397.29,

and ξ j estimates given in Table 3.2. Thus the rough “middle” of the time to reach
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5 ft above the floor is 50 s, and the range of y(x) is about 40 s (40 ≈ 2 ×
√

397).
Because the ranges of the inputs are quite different, it is problematic to interpret the
estimated ξ j. One method of providing an interpretation of the ξ j is to place each
input (x1, j, . . . , xns, j) on the range [0, 1] by the transformation

xs
i, j =

xi, j − min1≤i≤ns xi, j

r j

where r j = max1≤i≤ns xi, j − min1≤i≤ns xi, j is the range of the the jth input. Then

Cor[Y(x1), Y(x2)] = exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
d

∑

j=1

ξ j (x1, j − x2, j)2

⎫
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⎪

⎬

⎪

⎪

⎪

⎭

= exp

⎧

⎪
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⎪

⎨

⎪
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−
d

∑
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ξ j r2
j (xs
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2
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.

Thus exp{−ξ j r2
j } is the correlation between the times for two input configurations x1

and x2 that differ only in their jth component and for which the jth component values
are at their extreme, i.e., |x1, j − x2, j| = r j. Recalling that low correlations are asso-
ciated with greater functional “activity,” the fourth column of Table 3.2 shows that
room area has far and away the greatest impact on y(x) (is the most active input),
that room height and height of the fire source have similar but much less
activity than room area, and that heat loss fraction has very little impact on
y(x).

Input ̂ξ j ̂ξ jr2
j exp

(

−̂ξ j r2
j

)

Heat loss fraction 0.9852 0.0779 0.9250
Height of the fire source 0.0589 0.2141 0.8073
Room height 0.0122 0.1768 0.8380
Room area 0.0001 1.9343 0.1445

Table 3.2 REML estimates of the ξ j, j = 1, . . . , 4 in (3.3.12) and rough sensitivity measures,
exp(−ξ j r2

j ), for each input (smaller values associated with greater activity)

Numerous criteria can be used to measure the quality of the predictions at the
320 grid points. In this case, the true simulator output y(x) was computed for the
320-point test grid. The visual assessment between the true and predicted times for
the smoke plume to reach 5 ft above the ground is plotted in Fig. 3.4; there is a good
agreement across the entire range of y(x) values.

Cross-validation is a quantitative technique that is used when the prediction out-
put is not available as would ordinarily be the case. Cross-validation is based on
training data because the output is known for each training data input. The cross-
validated prediction of y(xtr

i ) is obtained by omitting (xtr
i , y(xtr

i )) from the training
data, fitting the model parameters using the remaining 39 points, and predicting
y(xtr

i ) based on this fit. One can plot the cross-validated predictions versus the true
values among other diagnostic methods. Here the cross-validated root mean squared
prediction error of the 40-point y(x) training data is calculated to be
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Cross-Val RMSPE = 0.6012 .

In this case the root mean squared prediction error can also be calculated for the
320-point test grid as

√

√

√

1
320

320
∑

i=1

(

y(xte
i ) − ŷ(xte

i )
)2
= 0.4217 .
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Fig. 3.4 Scatterplot of the true versus predicted times to reach 5 ft above a fire source for the
equispaced grid of 320 points used in Example 1.1

The cross-validated root mean squared prediction error provides a very adequate,
even worse-case, assessment of the predictive ability for this model and training
data. �

3.4 A Simulation Comparison of EBLUPs

3.4.1 Introduction

Which correlation function should be selected when choosing an EBLUP based on
a GP, and what method should be used to estimate the correlation parameters of this
function? How many runs should be made of the simulator, assuming it is expensive,
and what design should be used to collect the training data?
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These questions will be addressed in this section. The reader should be aware
that the discussion below on the strengths and drawbacks of various designs requires
the reader to be broadly familiar with space-filling and other experimental designs.
However, a detailed description of designs for simulator experiments is deferred
until Chap. 5 and 6. Hence the reader may wish to postpone a comprehensive reading
of the present section until completing these chapters. However much of the material
of this section is self-contained, and the reader can glean basic answers to the choice
of EBLUP as summarized in Sect. 3.4.4.

The section recommendations are based on our synthesis of previous studies of
predictive accuracy together with our additional simulation study which also con-
siders the empirical coverage of EBLUP-based prediction intervals.

3.4.2 A Selective Review of Previous Studies

There have been a number of previous studies of the predictive performance of
EBLUPs. The list below is not exhaustive but contains representative articles: Bursz-
tyn and Steinberg (2006), Liefvendahl and Stocki (2006), Ben-Ari and Steinberg
(2007), Johnson et al. (2008), Jones and Johnson (2009), Johnson et al. (2010),
Loeppky et al. (2010), Johnson et al. (2011), Williams et al. (2011), Silvestrini et al.
(2013), Bachoc (2013), Atamturktur et al. (2013), Atamturktur et al. (2015), and
Leatherman et al. (2018). The focus in this subsection is on the aspects of these
papers that describe their predictive accuracy for test functions that are either (1)
draws from a specified GP or (2) obtained by stochastically perturbing the coeffi-
cients of one (or more) given “central” analytic function(s) or (3) that contain only
a few active inputs so that the function is (nearly) constant in all other inputs.

In addition, these studies differ in one or more of the following factors:

1. The predictors compared: most studies include EBLUPs as the featured predictor,
but some also contrast standard parametric regression or nonparametric regres-
sion (such as multivariate adaptive regression splines);

2. For EBLUPs, differences in performance caused by:
(a) the assumed correlation function of the GP model: usually one (or more) of

the Gaussian, Matérn, and cubic correlations, and
(b) the method of estimating the unknown correlation parameters: typically MLE,

REML, or cross-validation;

3. The number of inputs, d;

4. The number of runs, ns, and the experimental design used to form the training
data: the design is typically one (or more) of:

(a) maximin Latin hypercube designs (LHDs) and maximin designs (see
Sects. 5.3 and 5.4), or

(b) minimum average reciprocal distance (ARD) designs and minimum ARD
LHDs (see Sects. 5.3 and 5.4), or
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(c) designs that minimize the integrated mean squared prediction error (IMSPE)

∫ E
[

(

ŷ(x) − Y(x)
)2

]

σ2
Z

dx, (3.4.1)

where Y(x) is a GP with constant mean, process variance σ2
Z , and Gaussian

correlation function R(h | ρ) =
∏d

i=1 ρ
h2

i
i and ŷ(x) is the EBLUP given in

(3.2.15) (of course, other correlation functions can be used; see Sect. 6.2.2),
or

(d) uniform designs (Sect. 5.6.2);

5. The test bed of functions used to both construct the training data and measure the
EBLUPs’ predictive performance, either analytic functions selected to be “typi-
cal” of applications in a certain discipline or as noted in the introduction above;

6. The statistical performance measures used to judge predictor performance, usu-
ally either:

(a) the empirical root MSPE (ERMSPE)

√

√

1
ne

ne
∑

i=1

(

y(xte
i ) − ŷ(xte

i )
)2

(3.4.2)

obtained from a set of ne evaluations of the test function y(x) at inputs
xte

1 , . . . , xte
ne

and where ŷ(x) is a given EBLUP or other predictor based on
training data from a particular design, or

(b) the empirical coverage of prediction intervals having a given nominal level,
e.g., 95% nominal prediction limits

ECov =
1
ne

ne
∑

i=1

I
{

y(xte
i ) ∈ ŷ(xte

i ) ± 1.96 × σ̃Z

}

(3.4.3)

where I{E} is 1 or 0 as the event E occurs or not,

˜σ2
Z =

1
ns − 1

(

ytr − Ftr
̂β
)

R−1
tr (̂κ)

(

ytr − Ftr
̂β
)

,

and κ̂ is the estimated correlation parameter (vector) of the selected correlation
function.

Some of the conclusions that have been reported in the literature are as follows:

1. Ben-Ari and Steinberg (2007) concluded that EBLUPs have superior prediction
abilities compared with nonparametric regressors.
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2. Liefvendahl and Stocki (2006) compared the predictive accuracy of maximin
LHDs and minimum ARD LHDs in two test examples. They find the minimum
ARD LHDs to be superior.

3. In a study of five design criteria used to predict draws from a stochastic process,
Bursztyn and Steinberg (2006) found that two-level fractional factorial designs
had consistently poor performance, while LHDs, lattice designs, and rotation
designs had essentially equivalent empirical IMSPEs (see Beattie and Lin (1997),
Bursztyn and Steinberg (2002), and the references therein). Other criteria led to
different designs being selected as superior.

4. In a comparison of five experimental designs to predict functions drawn from a
GP test bed with equally active inputs, Johnson et al. (2008) found that maximin
LHDs and minimum IMSPE designs provided the smallest empirical average
predicted variances.

5. When comparing designs using GP and cubic polynomial predictors Jones and
Johnson (2009) found that GP predictors based on a maximin LHD predicted
most accurately the values of the non-central F quantile test function with argu-
ments: the quantile of interest, the two degrees of freedom, and the non-centrality
parameter; the quantile function is the inverse of the non-central F cumulative
distribution function. Jones and Johnson (2009) concluded that the GP which
used training data determined by a maximin LHD had superior prediction accu-
racy compared to a cubic polynomial which used training data determined either
by a maximin LHD or D-optimal design.

6. In a study of two-stage designs which they call predictive maturity, Loeppky
et al. (2010) proposed to augment an initial design using batches of inputs se-
lected from several different methods including two distance-based metrics and a
process-based strategy. They compare their proposals to several intuitive schemes
by predicting the outputs at grid of inputs for (1) the (d = 2) Branin function (see
Example 6.2) and (2) draws from GPs with d = 3 and having inputs of unequal
activity. They consider two performance criteria: the ERMSPE and the maximum
prediction error over the prediction grid. They show that using either a maximin
distance criterion, a weighted maximin distance criterion, or an entropy criterion
(Sect. 6.2) provided the best improvement of the criteria considered. In related
studies, Atamturktur et al. (2013) and Atamturktur et al. (2015) study the predic-
tive maturity provided by batch augmented designs for validation experiments
used to verify the predictive accuracy of simulators that have been developed for
nuclear fuel design and other applications.

7. Johnson et al. (2011) compared the accuracy of EBLUP having either cubic or
Gaussian correlation functions; they based the training data on specific space-
filling designs and multiple run sizes. They measured the prediction accuracy of
four test functions having d ∈ {2, 3, 8} at a set of new, unevaluated input locations.
Johnson et al. (2011) concluded that prediction based on the GP model with the
Gaussian correlation function provides better accuracy than the cubic correlation
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function, especially for larger sample sizes. None of the designs compared (max-
imin LHD, uniform, IMSPE optimal, maximin) was substantially more accurate
than any other.

8. Bachoc (2013) compared the prediction accuracy of EBLUPs that use ML and
cross-validation (XV) estimation of the correlation parameters for the Gaussian,
the Matérn, and power exponential correlation families. See Sects. 3.3.2 and 3.3.4
for descriptions of ML and XV estimation, respectively, and Sects. 2.5 and 2.4 for
definitions of the Matérn and power exponential correlation functions. The Ba-
choc (2013) comparisons are both theoretical and empirical, the latter using two
test functions. Their studies conclude that XV estimation is more accurate than
ML estimation; also the Gaussian correlation function produces smaller errors
than does the power exponential function, while, for their examples, the Matérn
family parameters had large estimated ν, and its predictions are similar to the
Gaussian correlation function. As a small exception to this basic conclusion, the
authors show that when predicting test surfaces which are draws from a GP with
Gaussian correlation function, the ML-based EBLUP using the Gaussian corre-
lation function has better prediction accuracy than the XV-based EBLUP using
the Gaussian correlation function.

9. Leatherman et al. (2018) considered the design of a simulator experiment where
input–output data had previously not been collected. Given a desired number of
training data runs to be made, they compared two groups of space-filling LHDs
(maximin LHDs, denoted by MmLHDs, and minimum ARD LHDs, denoted by
mARDLHDs) and designs that minimize the local IMSPE-based criterion (3.4.1)
for a given ρ = (ρ1, . . . , ρd), among other designs. The training data from each de-
sign was used to determine an EBLUP based on a GP with Gaussian correlation
function using REML to estimate the correlation parameters. Their comparison
criterion was the ERMSPE in Eq. (3.4.2) computed using a space-filling set of in-
puts for each test function, y(x). Among their conclusions were that, for small to
moderate d (d ∈ {5, 8, 10}), sparse ns (ns/d ∈ {5, 10}), and smooth surfaces drawn
from a single stationary process or a mixture of stationary processes, space-filling
designs had worse prediction accuracy than locally IMSPE-optimal designs con-
structed for “small” ρ, specifically 0.25 = ρ1 = · · · = ρd (denote this design by
L0.25). For larger d both maximin LHDs and L0.25 performed equivalently and
better than other designs. However, for nonstationary surfaces, depending on the
location of the nontypical behavior, MmLHD and mARDLHD designs can yield
smaller prediction errors than the locally optimal L0.25 design or vice versa.

3.4.3 A Complementary Simulation Study of Prediction Accuracy
and Prediction Interval Accuracy

This subsection adds our own simulation study of EBLUP performance to those de-
scribed above. It uses two criteria to judge the performance of selected EBLUPs:
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the empirical prediction accuracy and the empirical coverage of EBLUP-based pre-
diction intervals.

As usual, the simulator output is denoted y(x1, . . . , xd). The EBLUPs considered
below differed according to the following factors:

• the Y(x) correlation function and method of estimating the correlation parameter:

(a) Gaussian correlation function with κ estimated by REML (denoted by R-
EBLUP-Gau in Figs. 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12),

(b) Gaussian correlation function with κ estimated by XV (denoted by X-EBLUP-
Gau in Figs. 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12),

(c) Cubic correlation function with κ estimated by REML (denoted by R-EBLUP-
Cub in Figs. 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12),

(d) Bohman correlation function with κ estimated by REML (denoted by R-
EBLUP-Boh in Figs. 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12).

As is known from the variance components literature, REML estimation would
presumably be superior to MLE if the fitted GP contained multiple regression
parameters and hence MLE is not considered in this study.

• the number of runs per input: letting d denote the number of simulator inputs,
ns = 10× d which is the recommendation of Loeppky et al. (2009)) or ns = 5× d
which is a more difficult prediction setting.

Ultimately time considerations limited the number of combinations of EBLUP
and test bed families that were considered. One limitation was that only maximin
Latin hypercube designs were used in this study. The number of values that com-
prise each design is ns × d which is large for d = 20 (ns × d = 4000 when
(ns, d) = (200, 20)). In such cases, any algorithm used to find maximin Latin hy-
percube designs will clearly produce an approximate design. Here the R package
slhd was used to determine the designs used in this study.

3.4.3.1 Performance Measures

The performance measures (3.4.2) and (3.4.3) were used to compare the predictors
run at a test set of ne inputs. When d = 2 the ne = 625 = 25 × 25 equally spaced
gridding of the input space was used, and when d = 20, a set of ne = 2000 points
which approximately maximized the minimum interpoint distance among the

(

2000
2

)

pairs of rows (see Sect. 5.4) was selected.

3.4.3.2 Function Test Beds

Four test beds of functions were simulated, two of which contained y(x) that ap-
peared visually to be stationary and two of which contained y(x) that were clearly
nonstationary. The accuracy and coverage results were similar for the two visually
stationary families and for the two nonstationary families. Hence only one visually
stationary and one nonstationary family will be presented here.
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In addition, d was taken to be either 2 (producing “easy” test bed problems), or
d = 20 (yielding “hard” test bed problems). The (ns, d) pairs used in this study are

(ns, d) ∈ {(10, 2), (20, 2), (100, 20), (200, 20)}.

Test Bed #1: The first group of functions were “near-cubic” surfaces. When d = 2,
the central surface was

y(x1, x2) = x3
1/3 − (R1 + S 1) x2

1/2 + (R1S 1) x1

+ x3
2/3 − (R2 + S 2) x2

2/2 + (R2S 2)x2 + A sin

(

2πx1x2

Z

)

, (3.4.4)

where the six model coefficients (R1, S 1), (R2, S 2), and (A, Z) were mutually inde-
pendent random variables. The values R1 and S 1 were uniformly distributed over
the interval (0, 0.5) (denoted R1 and S 1 ∼ U(0, 0.5)), R2 and S 2 ∼ U(0.5, 1.0),
A ∼ U(0, 0.05), and Z ∼ U(0.25, 1.0). The additive sine term has a scale factor Z
that provides between one and four oscillations in the product x1x2 with an ampli-
tude that ranges up to 0.05. The small amplitude coefficient of the sin(·) term, A,
assured that there were only minor deviations from the cubic model. Four y(x1, x2)
functions drawn using this stochastic mechanism are displayed in Fig. 3.5. These
surfaces are smooth but can contain a significant interaction.
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Fig. 3.5 Four of the 100 random y(x1 , x2) near-cubic surfaces (3.4.4)

When d = 20, the near-cubic test bed was generalized by adding sine terms for
ten randomly selected pairs (xi, x j) with i, j ∈ {1, . . . , 20} and i � j from the

(

20
2

)
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possible interaction pairs. This process yielded

y(x) =
20
∑

i=1, i odd

{

x3
i /3 − (R1i + S 1i) x2

i + (Ri S i) xi

}

+

20
∑

i=1, i even

{

x3
i /3 − (R2i + S 2i) x2

i + (R2i S 2i) xi

}

+

10
∑

j=1

{

A j ∗ sin

(

2π × xπ(1, j)xπ(2, j)

Z

)}

, (3.4.5)

where all stochastic terms are mutually independent, each R1i and S 1i is U(0, 0.5),
i ∈ {1, 3, . . . , 19}, each R2i and S 2i is U(0.5, 1.0), i ∈ {2, 4, . . . , 20}, A j ∼ U(0, 0.05),
and Z j ∼ U(0.25, 1), 1 ≤ j ≤ 10. The pairs (π(1, j), π(2, j)), 1 ≤ j ≤ 10,
are randomly selected without replication from the

(

20
2

)

distinct subsets of size 2
from {1, . . . , 20}.
Test Bed #2: The second group of test bed functions is a scaled and centered version
of the functions considered by Ba and Joseph (2012) and earlier by Xiong et al.
(2007); they are referred to as XB functions below. In brief, XB functions are smooth
but have different behavior in the middle of the input range than near its edges.
Hence they represent a significant challenge for stationary interpolation models.
The members of this test bed have the form

y(x) = C
d

∏

i=1

{

sin
(

Ai(zi − Bi)
4
)

× cos (2zi − Bi) + ((zi − Bi)/2)
}

, (3.4.6)

with zi = |xi − 0.5| and x ∈ [0, 1]d. A stochastic test bed was formed from (3.4.6)
by taking {Ai}di=1 to be i.i.d U(20, 35) and independent of {Bi}di=1 which are i.i.d.
U(0.5, 0.9). The constant C was selected so that the vast majority of function draws
varied over ±3. Here C was set equal to 10 for d = 2, and C was set equal to 1013

for d = 20. To better understand the members of this test bed, Fig. 3.6 plots four
XB y(x1, x2) functions drawn using this stochastic mechanism. The center of the
functions behaved differently than the edges, and thus y(x1, x2) is more challenging
to predict than function draws shown in Fig. 3.5.

3.4.3.3 Prediction Simulations

Figures 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 plot empirical RMSPEs and coverages
over the set of simulation factors. Good EBLUPs have low ERMSPEs and ECovs
close to their nominal 95% level. The large and small d cases provide different
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Fig. 3.6 Four of the 100 random y(x1 , x2) XB functions

perspectives on the EBLUPs studied as do the stationary and more difficult nonsta-
tionary surfaces.
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Fig. 3.7 For (ns , d) = (10, 2), left panel shows the distribution of ERMSPE for four EBLUPs over
100 near-cubic test functions (3.4.4) where each ERMSPE is based on 625 inputs in [0, 1]2; right
panel shows the distribution of 100 ECov values for the four EBLUPs where each ECov is the
proportion of 625 inputs in [0, 1]2 contained in nominal 95% prediction intervals

While each EBLUP method has strengths, the performance over all test beds
must be synthesized to provide recommended EBLUPs. For example, looking at
Fig. 3.8 alone suggests that for predictions from stationary “looking” surfaces with
(d, n) = (20, 2), the REML based on either the Gaussian, cubic, or Bohman corre-
lations has slightly better ERMSPE than the cross-validated Gaussian correlation
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Fig. 3.8 For (ns , d) = (20, 2), left panel shows the distribution of ERMSPE for four EBLUPs over
100 near-cubic test functions (3.4.4) where each ERMSPE is based on 625 inputs in [0, 1]2; right
panel shows the distribution of 100 ECov values for the four EBLUPs where each ECov is the
proportion of 625 inputs in [0, 1]2 contained in nominal 95% prediction intervals

function. However the empirical coverages, with a few exceptions, are better for the
compactly supported correlation functions. Views across the set of figures suggest
that REML based on cubic and Bohman correlation functions are comparable for
virtually all cases studied. For some of the larger d cases, only the cubic correlation
function was considered. After study of the entire set of performance measures, we
make the following recommendations.
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Fig. 3.9 For (ns , d) = (100, 20), left panel shows the distribution of ERMSPE for three EBLUPs
over 100 near-cubic test functions (3.4.5) where each ERMSPE is based on 2000 inputs in [0, 1]20;
right panel shows the distribution of 100 ECov values for the three EBLUPs where each ECov is
the proportion of the 2000 inputs in [0, 1]20 contained in nominal 95% prediction intervals
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Fig. 3.10 For (ns , d) = (200, 20), Left Panel shows the distribution of ERMSPE for three EBLUPs
over 100 near-cubic test functions (3.4.5) where each ERMSPE is based on 2000 inputs in [0, 1]20;
Right Panel shows the distribution of 100 ECov values for the three EBLUPs where each ECov is
the proportion of the 2000 inputs in [0, 1]20 contained in nominal 95% prediction intervals
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Fig. 3.11 For (ns , d) = (20, 2), left panel shows the distribution of ERMSPE for four EBLUPs
over 100 XB test functions (3.4.6) where each ERMSPE is based on 625 inputs in [0, 1]2; right
panel shows the distribution of the 100 ECov values for the four EBLUPs where each ECov is the
proportion of the 625 inputs in [0, 1]2 contained in nominal 95% prediction intervals
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Fig. 3.12 For (ns , d) = (200, 20), left panel shows the distribution of ERMSPE for three EBLUPs
over 100 XB test functions (3.4.6) where each ERMSPE is based on 2000 inputs in [0, 1]20; right
panel shows the distribution of 100 ECov values where each ECov is the proportion of the 2000
inputs in [0, 1]20 contained in nominal 95% prediction intervals
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3.4.4 Recommendations

1. For predicting smooth surfaces (including ones that can be viewed as draws from
a stationary process) having a “small” number of inputs d (say, d ≤ 5) based
on n ≤ 10d training runs, the XV-EBLUP with Gaussian correlation function is
recommended because this EBLUP produces prediction intervals for y(x) whose
empirical coverages are closer to their nominal coverages than other EBLUPs,
while its ERMSPE prediction accuracy is comparable to those of other EBLUPs.

2. For predicting smooth surfaces having a “large” number of inputs d (say, d ≥ 15)
based on n ≥ 10d training runs, the REML-EBLUP with Gaussian correlation
function is recommended because this EBLUP produces prediction intervals for
y(x) whose empirical coverages are closer to their nominal coverages and are
more tightly clustered about their empirical mean coverage than those of other
EBLUPs, while the ERMSPE of this EBLUP is slightly smaller than those of
other EBLUPs.

3. For predicting “complicated” functions, such as XB surfaces, having a “small”
number of inputs d (say, d ≤ 5), either the XV-EBLUP with Gaussian correla-
tion function or the REML-EBLUP with Gaussian correlation function is recom-
mended. When the function to be predicted has a “large” number of inputs d
(say, d ≥ 15), then the XV-EBLUP with Gaussian correlation function is recom-
mended. As above, these recommendations are based on the empirical closeness
of the EBLUP-based prediction intervals for y(x) to their nominal values, the
tightness of the empirical coverages about their mean, and the smallness of the
ERMSPEs.

3.5 EBLUP Prediction of Multivariate Simulator Output

This section derives EBLUPs when multiple outputs are produced from each set
of inputs. One setting where this occurs is when several simulators are available
for computing the same response as, for example, when there are both “fast” (less
accurate) and “slow” (more accurate) codes to compute an output. Such a hierarchy
of codes is natural when, for example, finite element models of varying mesh sizes
can be used to implement a mathematical model (Kennedy and O’Hagan (2000);
Qian and Wu (2008)).

Another application where multiple outputs occur is in Pareto optimization. In
such an application, the different outputs represent trade-off characteristics of a “sys-
tem” defined by x, e.g., the lift, strength, and weight of an aircraft wing. Pareto op-
timization is applied when it is desired to minimize simultaneously a set of outputs
y1(x), . . . , ym(x). Typically there is no xopt that simultaneously minimizes all out-
puts. The goal of Pareto optimization is to find the set of all inputs x for which all
inputs are not dominated simultaneously. Technically this means that the objective



96 Chapter 3 EBLUP Methodology

is to identify all x for which there does not exist another input, say x� for which
yi(x�) ≤ yi(x) for all i, with strict inequality for some i.

A third setting that produces multiple outputs is when both y(·) and its partial
derivatives (“adjoints”) are available. Many engineering codes are of this type. The
derivatives provide information about the y(·) surface. Example 3.7 considers this
situation.

Using the models introduced in Sect. 2.5, Sect. 3.5.1 uses these models to de-
scribe predictors for one of the several computed responses. Detailed examples are
given to conclude the section in 3.5.2. These multiple response models will be used
again in Sect. 6.3.4, where an algorithm will be presented that locates a minimizing
xmin of y1(x) that satisfies feasibility constraints defined by y2(·), . . . , ym(·).

3.5.1 Optimal Predictors for Multiple Outputs

For the sake of definiteness, consider the problem of predicting y1(·) at the input
xte, given output from all m codes, where each code has been evaluated at its own
unique set of training inputs (possibly the same set). To describe the training data,
for each output i, 1 ≤ i ≤ m, let xi

�, 1 ≤ � ≤ ni, denote the set of inputs at which yi(·)
has been computed, and let yni

i = (yi(xi
1), . . . , yi(xi

ni
)) denote the ni × 1 vector of all

evaluations of yi(·).
From the results of Sect. 3.2, the best MSPE predictor of y1(xte) based on this

training data is

ŷ1(xte) = E
[

Yte
1

∣

∣

∣ Yn1

1 = yn1

1 , . . . , Ynm
m = ynm

m

]

, (3.5.1)

where Yte
1 = Y1(xte) and Yni

i = (Yi(xi
1), . . . , Yi(xi

ni
)), for 1 ≤ i ≤ m. It is primarily

a bookkeeping problem to set up the proper identifications in the notation of these
earlier sections. The explicit formula for the conditional expectation (3.5.1) depends
on the joint distribution of (Y1(xte), Yn1

1 , . . . , Ynm
m ). The simplest cases for which one

can derive a formula for (3.5.1) are Gaussian models. First consider the (one-stage)
Gaussian model (3.5.2).

The one-stage Gaussian model assumes that all mean and covariance parameters
are known; it specifies the joint distribution of (Y0, Yn1

1 , . . . , Ynm
m ) to be the multivari-

ate normal distribution:
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Y0

Yn1

1
...

Ynm
m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∼ N1+
∑m

i=1 ni

(

Fβ , σ2
1 R�

)

, (3.5.2)

where F and R� are defined by



3.5 BLUPs and Empirical BLUPs 97

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1 (x0) · · · 01×pm

F1 · · · 0n1×pm

...
. . .

...
0nm×p1 · · · Fm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 r1 τ2 r12 · · · τm r1m

r1 R1 τ2 R12 · · · τm R1m
...

...
...

. . .
...

τm r1m τm R
1m τ2 τm R

2m · · · τ2
m Rm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

respectively, where

• τi = σi/σ1, 2 ≤ i ≤ m,
• f 1(x0) is the p1 × 1 vector of regressors for Y1(·) at x0,
• Fi =

(

fi (xi
�)

)

is the ni × pi matrix of regressors for the ni inputs, where yi(·) is
evaluated for 1 ≤ i ≤ m, and 1 ≤ � ≤ ni,

• β = (β1 , . . . , β

m), where βi is the pi × 1 vector of regression coefficients associ-

ated with Yni
i , 1 ≤ i ≤ m,

• Ri is the ni × ni matrix of correlations among the elements of Yni
i , 1 ≤ i ≤ m,

• r1 =
(

R1(x0 − x1
1), . . . , R1(x0 − x1

n1
)
)

is the n1×1 vector of correlations of Y1(x0)
with Yn1

1 ,

• r1i =
(

R1i(x0 − xi
1), . . . , R1i(x0 − xi

ni
)
)

is the ni × 1 vector of correlations of
Y1(x0) with Yni

i , 2 ≤ i ≤ m,
• Ri j is the ni × n j matrix of correlations between Yni

i and Ynj

j , 1 ≤ i < j ≤ m.

By Sect. 3.2, the conditional expectation (3.5.1) is given by

f0 β + r0 R−1 (yn − Fβ) (3.5.3)

with the identifications f0 =
[

f1 (x0) 01×(p−p1)

]

, r0 =
[

r1 τ2 r12 · · · τmr1m

]

, R is
the bottom right (

∑m
i=1 ni)×(

∑m
i=1 ni) submatrix of R�, yn is the (

∑m
i=1 ni)×1 vector of

observed outputs, and F and β are as in (3.5.2). In practice, the predictor (3.5.3) can
seldom be employed because it requires knowledge of marginal correlation func-
tions, the joint correlation functions, and the ratio of all the process variances.

However, empirical versions of (3.5.3) are of practical use. As in Sect. 3.3.2, as-
sume that each of the correlation matrices Ri, 1 ≤ i ≤ m, and cross-correlation
matrices Ri j, 1 ≤ i < j ≤ m, is known up to a finite vector of parameters. Suppose
that κi is the vector of unknown parameters for Ri(·) and κi j is the unknown pa-
rameter vector for Ri j(·). Then κ = (τ2, . . . , τm, κ1, . . . , κm, κ12, . . . , κm−1,m) contains
all the unknown parameters required to describe the correlations of Y1(x0) with the
training data.

As sketched in Sect. 4.3, a fully Bayesian predictor for this setup puts a prior
on [β, σ2

1, κ] and uses the mean of the predictive distribution (3.5.1) as the desired
predictor. For multiple response models, it is even more difficult analytically and
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numerically to construct this predictor than in the single response case, and we have
previously noted that the single response case can be very difficult indeed (Handcock
and Stein (1993)).

As in Sect. 3.3.2, we use the predictor

ŷ1(x0) = E
[

Y0

∣

∣

∣ Yn1
1 = yn1

1 , . . . , Ynm
m = ynm

m , κ̂
]

,

where κ̂ is estimated from (Yn1
1 , . . . , Ynm

m ) based on the Gaussian likelihood (or re-
stricted likelihood) induced from (3.5.2).

As developed in Sect. 3.4, this predictor can be obtained by first considering a
two-stage model in which κ is known. Suppose that the conditional distribution of
(Y0, Yn1

1 , . . . , Ynm
m ) given (β, σ2

1) is (3.5.2) and the marginal distribution of (β, σ2
1) is

the (non-informative) prior:

[ β, σ2
1 ] ∝ 1

σ2
1

.

The predictor, E[Y0 |Yn1

1 = yn1

1 , . . . , Ynm
m = ynm

m , κ], corresponding to this two-stage
model is

ŷ1(x0) = f0 ̂β + r0 R−1(Yn − F̂β) , (3.5.4)

where f 0, r0, R, Yn, and F are described following (3.5.3) and ̂β is the generalized
least squares estimator of β based on Yn. When κ is unknown, we estimate κ in
(3.5.4) using MLE or REML to produce an EBLUP of Y1(x0).

A final approach to modeling output is implicit from the models with univari-
ate output from simulators with both quantitative and qualitative inputs which are
discussed in Sect. 2.4. The basic model for output with qualitative and quantitative
inputs is given in (2.4.1) and can be viewed as a special case of the model for mul-
tivariate output described in Sect. 2.5. Comparing the models in (2.4.1) and (2.5.1),
one observes that they look similar with Y(x, i) and f j(x, i) in (2.4.1) being special
cases of Yi(x) and fi, j(x) in (2.5.1). However, univariate output from a simulator
with qualitative and quantitative variables has features that differ from multivari-
ate simulator output. In models with quantitative and qualitative inputs, the output
Y(x, i), for each value of i, represents the same measured property (e.g., failure depth
in the context of Example 1.2). For general multivariate output, the Yi(x) may rep-
resent very different measured quantities with possibly different units and scales.
For general multivariate output, for each x, there are m responses Y1(x), . . . , Ym(x).
For univariate output with quantitative and qualitative inputs, Y(x, i) need not be
observed at the same values of x as Y(x, j). Univariate output with quantitative and
qualitative variables looks more like general multivariate output if for each value of
the qualitative variable, we observe the response at the same set of inputs x.

3.5.2 Examples

Example 3.6 (A Simple Analytic Example). Consider predicting
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yg(x) = e−1.4x cos(7πx/2), x ∈ [0, 1]

based on a set of evaluations of yg(·) and

yp(x) = yg(x/(2 − x)), x ∈ [0, 1] .

The pair of functions is plotted in Fig. 3.13. A total of 7 training points were selected
for yg(x) and 11 training points for yp(x); five x input sites were common to the
yg(x) and yp(x) training data sets. Figure 3.13 denotes the locations of the yp(x)
inputs by open triangles and the locations of the yg(x) inputs by filled triangles.
By plotting the inputs along the bottom horizontal axis, the figure highlights the
relationship between the two input sets. The input set for yg(x) does not include any
x ∈ (0, 0.1) corresponding to its steeply decreasing, left-most section. In contrast,
the input x = 0.05 for yp(x) is in the region of steep yg(x) decrease. The accuracy
of predicting yg(·) for an EBLUP based on the yg(·) data alone is compared with the
accuracy of an EBLUP that uses both the yg(x) and yp(x) training data.

There are many possible bivariate models that can be proposed for describing
yg(x) and yp(x). This example illustrates prediction based on the constructive model
of Kennedy and O’Hagan (2000), who considered predicting the outcome of a finite
element code that uses a very fine grid based on output from the fine grid code and
from the output of a faster but less accurate code that is based on a coarser grid. In
this example, yp(·) represents the output from the fast, but poorer, code and yg(·) the
output from the slow, but good, code. Our goal is to predict the output of the good
code at 100 equispaced points over (0,1).
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Fig. 3.13 The functions yg(x) (solid) and yp(x) (dashed) on [0, 1]. The open triangles denote loca-
tions of training data for yp(x), and filled triangles denote locations of training data for yg(x)
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Consider the GP model for this setting in which yp(x) is regarded as a draw from

Yp(x) = fp (x)βp + Zp(x) , (3.5.5)

where the regression function fp (x) specifies the large-scale, nonstationary struc-
ture of yp(x) and Zp(·) is a stationary Gaussian process that determines the local
features of the code; Zp(x) is assumed to have zero mean, variance σ2

p, and correla-
tion function Rp(·).

The more accurate code, yg(x), is regarded as a draw from

Yg(x) = fg (x)βg + ρ Zp(x) + Za(x) . (3.5.6)

The relationship between the slow and fast codes can be made in at least two ways.
First, if the same regressors are used for both yp(x) and yg(x), i.e., fp (x) = fg (x),
then similar large-scale variation will be present in both yg(x) and yp(x). Second, the
small-scale variation of yp(x), Zp(x), is also present in Yg(x), perhaps with a scale
adjustment. Finally, Za(x) represents an “accuracy enhancement” in the good code.
Assume that the process Za(x) is a stationary Gaussian process with variance σ2

a and
correlation function Ra(·), independent of Zp(x).

The variances of Yp(x) and Yg(x) and their covariance are computed as

Cov
[

Yp(x1), Yp(x2)
]

= Cov
[

Zp(x1), Zp(x2)
]

= σ2
p Rp (x1 − x2)

Cov
[

Yg(x1), Yp(x2)
]

= Cov
[

ρ Zp(x1) + Za(x1), Zp(x2)
]

= σ2
p ρ Rp (x1 − x2)

Cov
[

Yg(x1), Yg(x2)
]

= Cov
[

ρ Zp(x1) + Za(x1), ρ Zp(x2) + Za(x2)
]

= ρ2Cov
[

Zp(x1), Zp(x2)
]

+ Cov [Za(x1), Za(x2)]

= σ2
p

(

ρ2 Rp (x1 − x2) + τ2 Ra (x1 − x2)
)

,

where τ2 = σ2
a/σ

2
p. Thus the variance of Yp(x) is Cov[Yp(x), Yp(x)] = σ2

p, and the
variance of Yg(x) is Cov[Yg(x), Yg(x)] = σ2

p (ρ2 + τ2). The correlation functions of
Yg(·) and Yp(·) are

Rg(h) ≡
ρ2 Rp(h) + τ2 Ra(h)

ρ2 + τ2
and Rp(h) ,

respectively, while their cross-correlation function is

R12(h) ≡
ρRp(h)
√

ρ2 + τ2
.

The components of the yg(x) predictor in (3.5.4) are now straightforward to identify.
To gain a feel for this model, consider (Yp(x), Yg(x)) draws from (3.5.5) to (3.5.6)

when both Yp(x) and Yg(x) have mean zero, σ2
a = 1.0 = σ2

p, and
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Ra(w) = Rp(w) = exp(−5.0 × w2) .

Figure 3.14 plots (Yp(x), Yg(x)) draws corresponding to four choices of ρ. Notice
how the two functions “move together” for positive ρ and in opposite directions for
negative ρ with the strength of the effect increasing in ρ. The draws in Fig. 3.14
suggest that, for the appropriate choice of parameters, this model may reasonably
produce data of the form shown in Fig. 3.13.

The EBLUPs for the data represented in Fig. 3.13 are based on a constant mean
regression model having the power exponential correlation function

R�(h) = exp (−ξ� |h|p� ) ,

with ξ� > 0 and 0 < p� ≤ 2 for � ∈ {p, a}. The EBLUP below uses a REML
correlation parameter estimate.

Table 3.3 lists the empirical root mean squared prediction error of the two yg(x)
predictors at a 100-point equispaced grid on (0, 1). The yg(x) predictor that uses both

Fig. 3.14 Draws of Yp(x) (solid) and Yg(x) (dashed) from the bivariate Gaussian process (3.5.5)–
(3.5.6); panel (a) uses ρ = 0.2, panel (b) uses ρ = 0.8, panel (c) uses ρ = −0.2, and panel (d) uses
ρ = −0.8
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outputs is a great improvement over that based on the yg(x) training data alone; the
ERMSPE is improved fivefold by using the yp(x) information. Figure 3.15 plots the
predicted yg(x) and the predictors based on the REML estimates of the correlation
parameters. Clearly, the yp(x) training data near the origin allows us to indirectly
“see” the sharp negative slope in yg(x) in this region. �

yg(x) data only yg(x) & yp(x) data

0.155 0.031

Table 3.3 Empirical root mean squared prediction errors of two REML-EBLUP predictors of
yg(x): yg(x) training data only versus combined yg(x) and yp(x) training data
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Fig. 3.15 The target function yg(x) (solid), the EBLUP based on yg(x) (dotted), and the EBLUP
based on (yp(x), yg(x)) (dashed) with correlation parameters estimated by REML

Example 3.7 (Prediction with Derivative Information). Consider a code having bi-
variate input x = (x1, x2) that also produces the partial derivates of y(·),

y(1)(x) = ∂y(x)/∂x1 and y(2)(x) = ∂y(x)/∂x2 .

Assume the multivariate GP model for a function and its partial derivatives given in
Sect. 2.5.3 with product power exponential correlation function

R(h1, h2) = exp{−ξ1 h2
1} × exp{−ξ2 h2

2} .

Let x1 = (x1,1, x1,2) and x2 = (x2,1, x2,2). Applying the formulas (2.5.10) and (2.5.11)
gives the pairwise joint covariances of Y(·), Y (1)(·), and Y (2)(·):

Cov
[

Y(x1), Y ( j)(x2)
]

= −2 ξ j (x1, j − x2, j) σ
2
Z R(x1 − x2) ,
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Cov
[

Y ( j)(x1), Y ( j)(x2)
]

=
(

2 ξ j − 4 ξ2
j (x1, j − x2, j)2

)

σ2
Z R(x1 − x2)

for j = 1, 2, and

Cov
[

Y (1)(x1), Y (2)(x2)
]

= 4 ξ1 ξ2 (x1,1 − x2,1) (x1,2 − x2,2) σ2
Z R(x1 − x2) .

Using these covariance functions, the EBLUP based on y(x), y(1)(x), and y(2)(x) can
be computed from (3.5.4) with appropriate code to estimate the scale parameters
(ξ1, ξ2) and to implement the predictor.

As a specific numerical example, let

y(x1, x2) = 2x3
1x2

2

on [−1, 1]2, which is displayed in Fig. 3.16. The cubic and quadratic characters of
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Fig. 3.16 The function y(x1 , x2) = 2x3
1 x2

2 on [−1, 1]2

y(·) in x1 and x2, respectively, are clearly visible on this domain. The first partial
derivatives of y(·) are

y(1)(x1, x2) = ∂y(x1, x2)/∂x1 = 6x2
1x2

2

and
y(2)(x1, x2) = ∂y(x1, x2)/∂x2 = 4x3

1x2 .
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Consider the 14-point training data displayed in Fig. 3.17. This set of locations
has the intuitive feature that it allows us to “learn” about y(x) and its partial deriva-
tives over the the entire input space—the design is “space-filling.” Space-filling de-
signs are discussed in detail in Chap. 5.

x1
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Fig. 3.17 Fourteen-point training design on [−1, 1]2

We illustrate the benefit of adding the derivative information by predicting y(·)
on the 1521 (= 392) grid of points [−0.95 (0.05) 0.95]2 by first using the pre-
dictor of y(·) based on y(·) alone and then by using the predictor of y(·) based
on (y(·), y(1)(·), y(2)(·)). The regression function for Y(·) is taken to be constant, β0.
We measure the accuracy of the generic predictor ŷ(·) of y(·) by its empirical root
mean squared prediction error (ERMSPE) at the 1521-point test grid, which is
defined to be

ERMSPE(̂y) =

√

√

√

1
1521

1521
∑

i=1

(

y(xi) − ŷ(xi)
)2.

Table 3.4 summarizes the estimated model parameters and ERMSPEs for the
two predictors. Figure 3.18 displays the predictor of y(·) based on the 14-point
training set evaluations of y(·); this predictor has ERMSPE equal to 0.3180. Fig-
ure 3.19 plots the predictor of y(·) based on the 14-point training set evaluations
of (y(·), y(1)(·), y(2)(·)); it has ERMSPE equal to 0.2566. The fit based on y(·) and
its derivatives both is more visually appealing (compare prediction of the x1 edges
with those of the true surface in Fig. 3.16) and has a 24% smaller ERMSPE than
that based on y(·) alone. �
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Predictor based on
y(·)

(

y(·), y(1)(·), y(2)(·)
)

̂ξ1 0.7071 13.4264
̂ξ2 10.9082 8.7060
̂β0 0.00 0.00

ERMSPE 0.3180 0.2566

Table 3.4 Empirical RMSPEs at the 392 points on the grid [−0.95 (0.05) 0.95]2 for the EBLUPs
based on y(·) alone and (y(·), y(1)(·), y(2)(·))

Example 3.8 (An Analysis Based on a Qualitative and Quantitative (QQ) Input
Model). This example, courtesy of the Procter & Gamble Company, illustrates the
analysis of computer experiments with QQ inputs. Engineers at the Procter & Gam-
ble Company conducted a computer experiment to model a particular part of an oral
care packing line. The computer simulation involved nine continuous variables and
one three-level qualitative variable representing three types of a particular equip-
ment part. The engineers used a 132-run optimal sliced Latin hypercube design
with 44 runs at each of the three levels of the categorical variable. See Sect. 5.3.2
for an introduction to sliced Latin hypercube designs and Ba et al. (2015) for optimal
sliced Latin hypercube designs, including the example discussed here.

The model of Qian et al. (2008) and Zhou et al. (2011) for qualitative and quanti-
tative inputs, discussed in Sect. 2.4, was assumed. In order to use standard software
for fitting a stationary Gaussian process model, the method in Zhang (2014) was em-
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Fig. 3.18 Prediction surface based on y(·) using the 14-point exploratory design and the power
exponential correlation function



106 Chapter 3 EBLUP Methodology

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3

−2

−1

0

1

2

3

x2
x1

Fig. 3.19 Prediction surface based on (y(·), y(1)(·), y(2)(·)) using the 14-point exploratory design and
the exponential correlation function

ployed. There are T = 3 levels of the qualitative variable, and hence, as described
in Sect. 2.4 (above (2.4.4)), one must create variables W1,1(i), W1,2(i), and W2,2(i),
1 ≤ i ≤ 3, to represent the qualitative variable. Following the procedure described
above (2.4.4), the resulting values for these variables as a function of i are:

W1,1(i) : W1,1(1) = 1 , W1,1(2) = W1,1(3) = 0 ,

W1,2(i) : W1,2(1) = W1,2(2) = 1 , W1,2(3) = 0 , and

W2,2(i) : W2,2(1) = W2,2(3) = 0 , W2,2(2) = 1 .

These are treated as three additional quantitative variables. Assuming a constant
mean function and a Gaussian correlation function, a stationary Gaussian process
model (3.1.1), with 12 quantitative predictor variables (the original nine plus W1,1,
W1,2, and W2,2), was fit to the data using the software package JMP. In place of
JMP, one could use any software that fits a stationary Gaussian process model with
constant mean function and Gaussian correlation function. The estimates of the cor-
relation parameters ξ∗1,1, ξ∗1,2, and ξ∗2,2 corresponding to W1,1, W1,2, and W2,2 were
found to be ξ∗1,1 = 0.0011942, ξ∗1,2 = 221.98592, and ξ∗2,2 = 0.117032. Using the
expressions given below (2.4.4), the estimates of the cross-correlation parameters
τi, j in (2.4.3) are τ1,2 = 0.8885, τ1,3 ≈ 0, and τ2,3 ≈ 0. The response surfaces
corresponding to the qualitative variable at values 1 and 2 are strongly correlated,
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but neither is correlated with the response surface corresponding to the qualitative
variable at value 3.

A plot of the JMP jackknife predictions versus the actual values of the response
is shown in Fig. 3.20, with the points corresponding to the three values of the quali-
tative variable represented by different plotting symbols with unique colors. As can
be seen in Fig. 3.20, the response surface corresponding to level 3 of the qualitative
variable has the worst fit. The root mean squared prediction errors of the jackknife
predictor are

All Curves 0.4233
For Curve 1 0.3162
For Curve 2 0.2885
For Curve 3 0.5953

.

These values show that the QQ model has similar predictive ability for Curves 1 and
2, while the outputs for Curve 3 are not predicted as well �
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3.6 Chapter Notes

3.6.1 Proof That (3.2.7) Is a BLUP

Assume that the Yte = Y(xte) and the training data Ytr satisfy

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Yte

Ytr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∼ N1+ns

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

fte
Ftr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

β , σ2
Z

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 rte
rte Rtr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟
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where the correlation matrices Rtr and rte are known. Because the argument in
(3.2.17) shows that unbiased requires that a0 + aFtrβ = fteβ must hold for all
β, the linear predictor ŷ(xte) = a0 + aYtr is unbiased for Y(xte) provided

a0 = 0 and F
tr a = f te . (3.6.1)

In particular, algebra shows that

b =
[

fte(F
tr R−1

tr Ftr)−1F
tr R−1

tr

+ rteR−1
tr

(

Ins − Ftr(F
tr R−1

tr Ftr)−1F
tr

)

R−1
tr

]

(3.6.2)

used to construct ŷ(xte) in (3.2.7) satisfies the unbiased condition.
Now fix an arbitrary LUP of Y(xte), say aYtr . Let Ztr ≡ Ytr − Ftrβ and Zte ≡

Yte − fteβ be the test and training GP values centered to have mean zero. Then the
MSPE of aYtr is

E
[

(

aYtr − Yte
)2

]

= E
[

(

a(Ftrβ + Ztr) − ( fteβ + Zte)
)2

]

= E
[

(

(aFtr − fte)β + aZtr − Zte
)2

]

= E
[

aZtr(Ztr)a − 2aZtrZte + (Zte)2
]

(3.6.3)

= σ2
Z aRtr a − 2σ2

Z arte + σ2
Z

= σ2
Z

(

aRtr a − 2arte + 1
)

, (3.6.4)

where (3.6.3) follows from (3.6.1). Thus the BLUP chooses a to minimize

aRtr a − 2arte (3.6.5)

subject to
F

tr a = f te . (3.6.6)

The method of Lagrange multipliers can be used to minimize the quadratic objec-
tive function (3.6.5) subject to linear constraints (3.6.6). We find (a, λ) ∈ IRn+p to
minimize

aRtr a − 2arte + 2λ(F
tr a − f te) . (3.6.7)

Calculating the gradient of (3.6.7) with respect to (a, λ) and setting it equal to the
zero vector give the system of equations:

F
tr a − f te = 0

Rtr a − rte + Ftrλ = 0

or
⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 F
tr

Ftr Rtr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ

a

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f te

rte

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,
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which implies, using formula (B.5.1) for the inverse of a block matrix, that

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ

a

⎞

⎟

⎟
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⎟

⎠

=
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⎢

⎢

⎢

⎢

⎢

⎣

0 F
tr

Ftr Rtr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1 ⎛

⎜
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⎜

⎜

⎜

⎝

f te
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⎟

⎠

=
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⎢

⎢

⎢

⎣
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tr

R−1
tr FtrQ−1 R−1
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tr
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⎥

⎥

⎥

⎥
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f te
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⎞

⎟

⎟

⎟
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⎟
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,

where Q = F
tr R−1

tr Ftr. After a small amount of algebra, the a solution is seen to be
(3.6.2). �

3.6.2 Derivation of Formula 3.2.8

From the MSPE (3.6.4) and using (3.6.2), it must be shown that

σ2
Z

(

1 + bRtr b − 2brte

)

= σ2
Z

(

1 − rteR−1
tr rte + hQ−1h

)

,

where Q = F
tr R−1

tr Ftr, h = f te − F
tr R−1

tr rte, and

b = fteQ−1F
tr R−1

tr + rteR−1
tr

(

Ins − FtrQ−1F
tr

)

R−1
tr .

Equivalently, it must be shown that

bRtr b − 2brte = −rteR−1
tr rte + hQ−1h . (3.6.8)

Equality (3.6.8) can be proved using straightforward matrix algebra.

3.6.3 Implementation Issues

This section considers the choice of parameterization of the Gaussian correlation
function. Recall the five parameterizations of the Gaussian correlation function,

R(h | params ) = exp
{

−ξ h2
}

= exp
{

− (h/θ)2
}

= ρh2
= ρ4h2

� = exp
{

−10τh2
}

,

introduced in Sect. 2.2.2 where the valid values of the model parameters are ξ > 0,
θ > 0, ρ ∈ (0, 1), ρ� ∈ (0, 1), and τ ∈ (−∞,+∞). Note that optimizations involving
the parameters of these correlation functions based on ξ or θ are bounded below over
(0,+∞) and those that use ρ or ρ� are over a bounded interval, while one involving
τ is unbounded.
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Papers that use Bayesian methodology tend to use the ρ or ρ� parameterizations
because these forms simplify the interpretation of the parameters and hence the task
of specifying prior information about the parameters (Higdon et al. (2004, 2008)).

Papers that use empirical/plug-in methodology tend to use one of the other three
parameterizations. Most problems that the three forms seek to navigate concern the
optimization of the likelihood (3.3.6) or REML likelihood (3.3.9) for “active” in-
puts. To illustrate the differences implicit in using the parameterizations, suppose it
is desired to estimate the correlation parameter for a function y(x) whose x ∈ [0, 1]
is very active. The input x will be active only if the GP model for y(x) has the feature
that Cor[Y(0), Y(1)] is quite small. For example, consider the five draws from zero
mean, unit variance, and GP Y(x), x ∈ [0, 1], with

Cor [Y(0), Y(1)] = 0.0005

which are plotted in Fig. 3.21. Given adequate data, any reasonable estimator of
Cor[Y(0), Y(1)] should be small.

Likelihoods tend to have multiple local minima for parameterizations that result
in estimated values near a boundary of the model parameter space and hence are nu-
merically difficult to identify. MacDonald et al. (2015) illustrate this phenomenon
with plots of the likelihood for several data sets with active inputs. Returning to the
example introduced in the previous paragraph, a small amount of algebra shows that
when ρ = 0.0005, then the equivalent values of the other parameters are ξ = 7.60,
θ = 0.132, ρ� = 0.150, and τ = 0.8809. Notice that ρ� = 0.150 is more centrally
located in [0, 1] than is ρ = 0.0005 which makes this parameter “easier” to estimate.
A similar statement is true for the τ parameterization. In sum, the parameterizations
R(h) = ρ4h2

� and R(h) = exp
{

−10τh2
}

pull estimates of parameters correspond-
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Fig. 3.21 Five draws from a stationary GP with zero mean, unit variance, and Cor[Y(0), Y(1)] =
0.0005
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ing to active inputs toward the center of their parameter space allowing searches
of local minima to be conducted more efficiently than for the correlation function
R(h) = exp

{

−ξ h2
}

. Lastly, note that the factor 4 is not critical and can be replaced
by another positive value depending on the anticipated activity of the inputs.

The issue of estimating the parameters associated with active inputs can be ex-
acerbated when there are many inputs. For example, consider finding the MLE or
REML of the correlation parameters when the product power exponential correla-
tion model is assumed and there are d = 20 inputs. Because each input has un-
known scale and power parameters, the determination of the MLE or REML of
these parameters requires a 40-dimensional optimization. High-dimensional likeli-
hood surfaces can have many local maxima, making global optimization difficult.
Furthermore, typical algorithms used to perform such optimization require repeated
evaluation of the determinant and inverse of the n × n correlation matrix R. The
Cholesky decomposition provides the most numerically stable method of calculat-
ing these quantities (Harville (1997)). Nevertheless, the repeated evaluation of the
determinant and inverse of the correlation matrix at different correlation parameters
is the most time-consuming aspect of algorithms that estimate correlation param-
eters. Indeed, methods that sequentially add data and update correlation parameter
estimates must optimize an appropriate likelihood repeatedly.

As an example, Williams et al. (2000) report the times to maximize the REML
likelihood which is required during the execution of their global optimization algo-
rithm. In a six-dimensional input case, they fit the Matérn correlation function with
a single shape parameter and separate range parameters for each input (a seven-
dimensional κ correlation parameter). When 50 training points were used, their op-
timization of the κ likelihood (3.3.9) required 2140 s of Sun Ultra 5 CPU time, and
this optimization required 4230 s of CPU time for 82 training points. Fitting the
power exponential model was faster with 1105 s of CPU time required for the 50-
point case and 3100 s of CPU time for the 82-point case. To ease the computational
burden, applications that require a sequence of correlation parameter estimates for
increasing n often re-estimate these parameters only periodically, for example, af-
ter every fifth point is added to the design. A more rational plan is to re-estimate
the correlation parameters more often for small n when the estimates might be less
stable and then less frequently for large n. For sufficiently large n, these estimators
become intractable to calculate.

Many algorithmic approaches have been used successfully to estimate correlation
parameters and expected improvement surfaces. Among these are the Nelder–Mead
simplex algorithm (Nelder and Mead (1965)), branch and bound algorithms (Jones
et al. (1998), Franey et al. (2011)), stochastic global optimization algorithms (Rin-
nooy Kan and Timmer (1984)), and quasi-Newton algorithms starting from one or
more carefully selected initial points (e.g., Leatherman et al. (2014), MacDonald
et al. (2015)). Appendix C summarizes several of these approaches.

As one specific example of an algorithm used to provide high-dimensional MLE
and REML parameter estimation, Welch et al. (1992) proposed using a dimensional-
ity reduction scheme to perform a series of presumably simpler optimizations. This
approach is particularly useful in high-dimensional MLE and REML parameter es-
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timation problems. The idea is to consider a sequence of optimizations by constrain-
ing the number of free parameters allowed in each optimization (minimization in the
pseudo code below) where only “important” input variables are allowed to possess
their own unconstrained correlation parameters. To illustrate, consider finding the
REML of the correlation parameter κ = (κ1, . . . , κd) in some GP model. First, scale
each of the d inputs to have the same range. At each stage of the process, let C de-
note the indices of the variables having common values of the correlation parameters
for that step, and let C \ { j} denote the set difference of C and { j}. In the following
meta-code, S0 is an initialization step, while S1 and S2 are induction steps.

S0 Set C = {1, 2, . . . , d}, i.e., κ1 = · · · = κd = κ. Maximize (3.3.9) as a function of κ,
and denote the resulting log likelihood by �0.

S1 For each j ∈ C, maximize (3.3.9) under the constraint that variables κh with
h ∈ C \ { j} have a common value and κ j varies freely. Denote the log likelihood
evaluated at the estimated κ by � j.

S2 Let jmax denote that j ∈ C producing the largest increase in � j − �0.
S3 If � jmax − �0 represents a “significant” increase in the log likelihood as judged by

a stopping criterion, then update C to be C \ jmax, �0 to be � jmax , and fix κ jmax at its
value estimated in S1. Continue the next iteration at step S1. Otherwise, stop the
algorithm, and estimate the correlation parameters to be the values produced by
the previous iteration.

Variations are, of course, possible in this and most basic algorithms. For example,
two-dimensional optimizations are used in every cycle of S1 because all κ jmax esti-
mated in previous cycles are fixed in subsequent ones. Instead, S1 could allow the
κ j values previously estimated to vary freely along with the next individual κ j to be
estimated.

In sum, the primary feature of a successful algorithm for maximizing the likeli-
hood or REML likelihood is that it must be capable of identifying a global maxi-
mum/minimum when the surface to be optimized has many local maxima/minima.
Current proposals use a combination of local search Newton or quasi-Newton algo-
rithms with starting values determined by some form of global search. In a recent
article, Butler et al. (2014) give a survey of algorithms for MLE/REML estimation
and a new proposal based on these two-stage ideas.

3.6.4 Software for Computing EBLUPs

The authors of this volume provide a partial list of software for fitting EBLUPs to
the GP models described in this chapter, without endorsing any particular package.
The programs below differ in:

• the correlation functions fit,
• the mean models that can be used,
• the correlation parameter estimation methods available,
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• the UQ measures produced, and
• their prediction capabilities.

The list below is not a review nor a comparison of the accuracy and features of the
programs. Most pieces of software are in continuous development and web searches
will provide up-to-date information about the software as well as other packages
that have been developed since the publication of this book.

1. DiceKriging (an R package),
2. CPErK (written in C and the unix scripting language),
3. DACE (a MATLAB program available at

http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=1460),
4. Dakota (http://dakota.sandia.gov),
5. GaSP (available from W. Welch),
6. GPfit (an R package),
7. GPMfit (a MATLAB version of GPfit available at

https://sourceforge.net/projects/gpmfit),
8. JMP,
9. SAS Proc Mixed,

10. MUCM website contains a list of Bayesian and Frequentist software for predic-
tion and calibration
(http://www.mucm.ac.uk/Pages/MCSGSoftware.html)

3.6.5 Alternatives to Kriging Metamodels and Other Topics

3.6.5.1 Alternatives to Kriging Metamodels

This chapter has discussed predicting outputs from computer experiments using
kriging metamodels. Making use of the regression term in the model (3.1.1) allows
one to fit “nonstationary” data by including known regression functions to describe
long-term trends and a GP to describe small-scale deviations. The text has described
a number of alternatives to estimating the model parameters for the kriging model.

Several competitors to the kriging model and its prediction have been proposed
in the literature. The list below gives several options along with references.

• Polynomial chaos expansions (a polynomial response surface model). See, for
example, Blatman and Sudret (2010).

• Neural networks. See, for example, Vicario et al. (2016).
• Radial basis functions and other basis functions. See, for example, Buhmann

(2003) and Chakraborty et al. (2017).
• Splines. See, for example, Ben-Ari and Steinberg (2007), Reich et al. (2009), and

Stripling et al. (2013).

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=1460
http://dakota.sandia.gov
https://sourceforge.net/projects/gpmfit
http://www.mucm.ac.uk/Pages/MCSGSoftware.html


114 Chapter 3 EBLUP Methodology

More importantly, there have been a number of proposals for fitting adaptive,
flexible emulators to data from y(x) which are nonstationary. A selection of these
approaches is sketched below.

• Gramacy and Lee (2008) describe a tree-based method of dividing the input space
and fitting different GP models within each subdivision of the input space that has
been identified (treed Gaussian processes).

• Joseph et al. (2008) introduce blind kriging, a method that relaxes the assumption
that the regression functions fi(x) in (3.1.1) be known. Rather it selects regression
functions from a candidate set using a variable selection method.

• Ba and Joseph (2012) also replace the regression model in (3.1.1). They propose
using an independent GP to describe large-scale behavior of y(x) over different
parts of the input space and a second GP to describe small-scale deviations.

• Davis (2015) develops a Bayesian prior for the composite GP of Ba and Joseph
(2012), an MCMC algorithm for implementing the model, and shows its useful-
ness in applications such as variable screening.

3.6.5.2 Testing the Covariance Structure

Although this topic has not been discussed, there are methods for testing the ap-
propriateness of some aspects of the covariance structure of GP models. References
include Mitchell et al. (2005), Li et al. (2008), and Bastos and O’Hagan (2009).



Chapter 4
Bayesian Inference for Simulator Output

4.1 Introduction

In Chap. 3 the correlation and precision parameters are completely unknown for
the process model assumed to generate simulator output. In contrast this chapter
assumes that the researcher has prior knowledge about the unknown parameters that
is quantifiable in the form of a prior distribution. The source of the prior knowledge
is usually a combination of expert opinion and previous experience with data from
similar physical systems. The prior is simplest to determine if the parameters are
selected to be interpretable quantities for the simulator output, e.g., parameters that
govern the “overall” mean output, its range, or the number of local maxima and
minima all would be amenable to elicit prior knowledge.

The following notation is used to state the objectives of this chapter. Let y(x)
denote the simulator output; let ytr = (y(xtr

1 ), . . . , y(xtr
ns

)) denote the (known)
simulator outputs evaluated at the ns “training” inputs xtr

1 , . . . , xtr
ns

; and let yte =

(y(xte
1 ), . . . , y(xte

ne
)) denote the (unknown) simulator outputs which are to be pre-

dicted at ne “test” inputs xte
1 , . . . , xte

ne
. Finally, let Yte = (Y(xte

1 ), . . . , Y(xte
ne

)) and
Ytr = (Y(xtr

1 ), . . . , Y(xtr
ns

)) denote the process models for the test and training data,
respectively.

The Bayesian models used in this chapter are two-stage hierarchical models.
Here, the top-most stage specifies a conditional distribution for

(

Yte, Ytr) given the
model parameters. Then a distribution for the unknown parameters is specified, us-
ing the ideas mentioned in the first paragraph of this section.

Specifically, the top stage of the Bayesian model used in this chapter assumes that
(

yte, ytr) can be viewed as a draw from a regression + stationary Gaussian process
(GP) model
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(4.1.1)

given the unknown model parameters ϑ. In Sect. 4.2.1, the parameter ϑ is β; in
Sect. 4.2.2, ϑ is (β, λZ); and in Sect. 4.3, ϑ is (β, λZ, κ).
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A second stage of the Bayesian model specifies the information that is known
aboutϑ in the form of a prior distribution, denoted

[

ϑ
]

. Inference about the unknown
model parameters ϑ can be obtained from the conditional distribution of ϑ given
the training data, i.e., from the posterior distribution [ϑ | Ytr]. For example, the
mean and standard deviation of [ϑ | Ytr] are, respectively, the Bayesian estimate of
ϑ and a quantification of the uncertainty of the estimate. Similarly, the predictive
distribution of Yte, defined to be [Yte | Ytr], captures the information about Yte that
is contained in Ytr . For example, when (4.1.1) holds it is a fundamental result in
multivariate analysis that, given Ytr and ϑ,

[

Yte
∣

∣

∣ Ytr = ytr ,ϑ
]

∼ Nne

(

Fteβ + Rte,tr R−1
tr

(

ytr − Ftrβ
)

, λ−1
Z

(

Rte − Rte,tr R−1
tr R

te,tr

))

(see Lemma B.2). The density of [Yte | Ytr = ytr], denoted π(yte | ytr), can be calcu-
lated using

π
(

yte
∣

∣

∣ ytr
)

=

∫

π
(

yte,ϑ
∣

∣

∣ ytr
)

dϑ =
∫

π
(

yte
∣

∣

∣ ϑ, ytr
)

π
(

ϑ
∣

∣

∣ ytr
)

dϑ (4.1.2)

where π(yte,ϑ | ytr) and π(ϑ | ytr) are the density functions of [Yte,ϑ | Ytr = ytr] and
[ϑ | Ytr = ytr], respectively. As above, the mean of the predictive distribution,

ŷte
= E

[

Yte
∣

∣

∣ Ytr
]

,

is the Bayes estimator of yte, while the diagonal elements of Cov[Yte | Ytr] quantify
the predictive uncertainty in each component of yte. Unfortunately in most practical
applications of Bayesian methodology, the predictive [Yte | Ytr] can only be sampled.
In such cases, the mean, ŷte, and covariance Cov[Yte | Ytr] are estimated from the
samples drawn from [Yte | Ytr].

To facilitate reading this chapter, the following notation used throughout is sum-
marized next.

• [W] denotes the distribution of W (where needed, π(w), E[W], and Cov[W]
denote the (joint) probability density function of W, the mean of W, and the
variance-covariance matrix of W, respectively);

• Fte is the ne×p matrix whose ith row consists of the (known) regression functions
for the input xte

i , i = 1, . . . , ne;
• Ftr is the ns × p matrix of known regression functions for the ns training data

inputs;
• β denotes a p×1 vector of regression coefficients: β is unknown for all the models

considered in this chapter;
• κ denotes the vector of parameters that determine a given correlation function: κ

can be known or unknown depending on the model considered;
• Rte is the ne × ne correlation matrix Cor[Yte, Yte];
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• Rte,tr is the ne × ns cross-correlation matrix Cor[Yte, Ytr];
• Rtr is the ns × ns correlation matrix Cor[Ytr , Ytr];
• ϑ denotes the vector of all unknown parameters for the model under discussion;
• λZ (λ−1

Z ) denotes the precision (variance) of the GP that describes deviations from
the regression.

The chapter is organized as follows. Section 4.2 presents the densities and mo-
ments of [ϑ | Ytr] and [Yte | Ytr] for so-called “conjugate” cases which are ϑ = β and
ϑ = (β, λZ) in this chapter. A model is called conjugate if the prior and posterior dis-
tributions of

[

ϑ
]

come from the same parametric family. Analytic expressions for the
densities of posterior quantities can be given for conjugate models. Unfortunately
the situations ϑ = β and ϑ = (β, λZ) are usually not directly useful in applications.
Nevertheless, the posterior for the ϑ = β setting is straightforward to derive and
will be given in detail to provide the reader with a sense of the analysis for more
complicated cases. Section 4.3 presents posterior results when ϑ = (β, λZ, κ), which
is useful in practical settings.

4.2 Inference for Conjugate Bayesian Models

4.2.1 Posterior Inference for Model (4.1.1) When ϑ = β

Assume that the training and test data can be described as draws from the regression
+ stationary GP model (4.1.1) in which the regression coefficient is unknown but the
process precision and correlations are known, i.e., ϑ = β. Theorem 4.1 provides the
posterior parameter distribution [β | Ytr] and predictive distribution [Yte | Ytr] for two
choices of second-stage β priors. The first prior, denoted Case (a), is a multivariate
normal prior which can be regarded as an informative choice. The second prior,
Case (b), can be thought of as a non-informative prior. The non-informative prior
can be regarded as the limit of normal priors in which the precision tends to zero.
More formally the predictive distribution for Case (b) is obtained by letting the
prior precision λβ → 0 in the predictive distribution for prior (a). The Bayesian
predictor for the test data given the training data, E[Yte | Ytr], and the uncertainty
quantification Cov[Yte | Ytr] have closed forms for both priors.

Theorem 4.1. Suppose (Yte, Ytr) follows a two-stage hierarchical model with top
stage
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where β is unknown while λZ and all correlations are known.

(a) Suppose that
[β] ∼ Np

(

bβ, λ
−1
β Vβ

)
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is the second-stage model with (known) prior parameter (Vβ, bβ, λβ), where Vβ is a
positive definite matrix, bβ ∈ IRp, and λβ > 0. Then the posterior distribution of β is

[

β
∣

∣

∣ Ytr = ytr
]

∼ Np

(

μβ|tr,Σβ|tr
)

,

where

μβ|tr =
(

λZ F
tr R−1

tr Ftr + λβ V−1
β

)−1
×

(

λZ F
tr R−1

tr ytr + λβ V−1
β bβ

)

, (4.2.1)

and
Σβ|tr =

(

λZ F
tr R−1

tr Ftr + λβV−1
β

)−1
. (4.2.2)

The predictive distribution of Yte is
[
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]

∼ Nne
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)

, (4.2.3)

with mean (vector)
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, (4.2.4)

and covariance matrix
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(b) Suppose that
π(β) ∝ 1

on IRp, then the posterior distribution of β is

[

β
∣
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∣ Ytr = ytr
]

∼ Np

(

̂β ≡
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F
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tr Ftr

)−1
×
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)

.

The predictive distribution of Yte is
[

Yte
∣

∣

∣ Ytr = ytr
]

∼ Nne

(

μte|tr,Σte|tr
)

, (4.2.6)

where the mean μte|tr is the modification of (4.2.4) which replaces μβ|tr by ̂β and the

covariance Σte|tr is the modification of (4.2.5) which replaces λβ

λZ
V−1

β by the p × p
matrix of zeros.

The proof of Theorem 4.1 is given in Sect. 4.4. It requires straightforward calcula-
tions to implement the right-hand integral in the general strategy of (4.1.2).
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4.2.1.1 Posterior Inference About β

Consider inferences about β that are provided by the mean and covariance matrix
of [β | Ytr] under prior (a). The posterior mean of β depends only on the ratio λβ/λZ

because

μβ|tr = λ−1
Z

(

F
tr R−1

tr Ftr + V−1
β λβ/λZ

)−1
× λZ

(

F
tr R−1

tr ytr + V−1
β bβ λβ/λZ

)

=
(

F
tr R−1

tr Ftr + V−1
β λβ/λZ

)−1
×

(

F
tr R−1

tr Ftr
̂β + V−1

β bβ λβ/λZ

)

.

When the prior precision parameter of β is equal to the process precision of Y(x),
i.e., λβ = λZ , the posterior mean simplifies further to

μβ|tr =
(

F
tr R−1

tr Ftr + V−1
β

)−1
×

(

F
tr R−1

tr Ftr
̂β + V−1

β bβ

)

= Ω̂β + (Ip −Ω) bβ (4.2.7)

where Ω =
(

F
tr R−1

tr Ftr + V−1
β

)−1 (

F
tr R−1

tr Ftr

)

, which shows that the posterior mean

is a matrix “convex combination” of the BLUP of β, ̂β, and its prior mean, bβ. In
contrast, the posterior covariance,

Σβ|tr =
[

λZ F
tr R−1

tr Ftr + λβV−1
β

]−1
= λ−1

Z

[

F
tr R−1

tr Ftr + V−1
β λβ/λZ

]−1
,

depends on both λZ and λβ or equivalently on λZ and λβ/λZ (which has been noted
that the ratio = 1 when λβ = λZ).

4.2.1.2 Predictive Inference at a Single Test Input xte

To provide additional insight about the nature of the Bayesian predictor, consider
the case of a single test input. Throughout this discussion, the predictive mean is
regarded as a function of random training data Ytr. For both priors (a) and (b) the
predictive mean is linear in Ytr, is an unbiased predictor of Y(xte), i.e., the predictive
mean equals the mean of Y(xte), and it interpolates the training data.

Consider prior (a) and let xte denote the test input, μte|tr(xte) the Bayes predictor
in (4.2.4), and σ2

te|tr(xte) the real-valued version of the posterior covariance Σte|tr in
(4.2.5). Algebra shows that μte|tr(xte) is linear in Ytr and, with additional calculation,
that it is an unbiased predictor of Y(xte), i.e., μte|tr(xte) has the same mean as Y(xte).
Continuity and other smoothness properties of μte|tr(xte) are inherited from those of
the correlation function R(·) and the regressors { f j(·)}p

j=1 because

μte|tr(xte) = f(xte)μβ|tr + rteR−1
tr (Ytr − Ftrμβ|tr)

=

p
∑

j=1

f j(xte) μβ|tr, j +

ns
∑

i=1

di R(xte − xtr
i ) ,
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where μβ|tr, j is the jth element of μβ|tr and di is the ith element of the ns × 1 vector
R−1

tr (Ytr − Ftrμβ|tr). Previously, Sect. 3.3.1 had observed linearity and unbiasedness
of the BLUP (3.2.7) which is the posterior mean for prior (b). Lastly, the predictive
mean μte|tr(xte) interpolates the training data. For prior (a) this is true because when
xte = xtr

i for a given i ∈ {1, . . . , ns}, f (xte) = f (xtr
i ), and rte R−1

tr = ei , the ith unit
vector. Thus

μte|tr(xte) = f(xtr
i ) μβ|tr + rteR−1

tr (Ytr − Ftrμβ|tr)

= f(xtr
i ) μβ|tr + ei (Ytr − Ftr μβ|tr)

= f(xtr
i ) μβ|tr + (Yi − f(xtr

i )μβ|tr)

= Yi .

A similar argument holds for the predictive mean for prior (b).
For prior (b) the posterior variance σ2

te|tr(xte) simplifies to

σ2
te|tr(xte) = λ−1

Z

{

1 − rteR−1
tr rte + h(F

tr R−1
tr Ftr)−1h

}

(4.2.8)

where h = f te − F
tr R−1

tr rte. Equation (4.2.8) was given previously as the variance of
the BLUP (3.2.7). For prior (a), the posterior variance has a form similar to (4.2.8)
with one modification. Using matrix identities and algebra shows

σ2
te|tr(xte) = λ−1

Z

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 −
(

fte rte
)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− λβ

λZ
V−1

β F
tr

Ftr Rtr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1 ⎛

⎜

⎜

⎜

⎜

⎜

⎝

f te

rte

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

= λ−1
Z

{

1 −
[

− fteQ−1 f te + 2 fteQ−1F
tr R−1

tr rte

+ rte{R−1
tr − R−1

tr FtrQ−1F
tr R−1

tr }rte

]}

(4.2.9)

= λ−1
Z

{

1 − rteR−1
tr rte + fteQ−1 f te − 2 fteQ−1F

tr R−1
tr rte

+ rteR−1
tr FtrQ−1F

tr R−1
tr rte

}

= λ−1
Z

{

1 − rteR−1
tr rte + hQ−1h

}

, (4.2.10)

where h = f te − F
tr R−1

tr rte and

Q = F
tr R−1

tr Ftr +
λβ

λZ

V−1
β ; (4.2.11)

the equality in (4.2.9) follows from Lemma B.3.
Intuition suggests that the posterior variance of Y(xte) given the training data Ytr

should be zero whenever xte = xtr
i , 1 ≤ i ≤ ns because y(xtr

i ) is known exactly at
all the training data sites and there is no measurement error term in the stochastic
process model. Recall that σ2

te|tr(xte) = 0 whenever xte is a training input was shown
previously for (4.2.8), the posterior variance under prior (b). To see that σ2

te|tr(xte) =
0 also holds for prior (a) when xte is a training input, fix xte = xtr

1 to simplify
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notation. In this case, recall that rteR−1
tr = e1 , and observe that f te = f (xte) = f (xtr

1 ).
From (4.2.10) and recalling Q is given by (4.2.11),

σ2
te|tr(xtr

1 ) = λ−1
Z

{

1 − rte R−1
tr rte + ( f(xtr

1 ) − rteR−1
tr Ftr)Q−1( f (xtr

1 ) − F
tr R−1

tr rte)
}

= λ−1
Z

{

1 − e1 rte(xtr
1 ) + ( f(xtr

1 ) − e1 Ftr)Q−1( f (xtr
1 ) − F

tre1)
}

= λ−1
Z

{

1 − 1 + ( f(xtr
1 ) − f(xtr

1 ))Q−1( f (xtr
1 ) − f (xtr

1 ))
}

= λ−1
Z {1 − 1 + 0} = 0.

Perhaps the most important use of (4.2.3) or (4.2.6) in Theorem 4.1 is to provide
pointwise predictive uncertainty bands for y(xte) by using the fact that conditionally,

Y(xte) − μte|tr(xte)

σte|tr(xte)
∼ N(0, 1) . (4.2.12)

Equation (4.2.12) gives the posterior prediction interval

P
{

Y(xte) ∈ μte|tr(xte) ± σte|tr(xte) zα/2
∣

∣

∣ Ytr
}

= 1 − α,

where zα/2 is the upper α/2 critical point of the standard normal distribution (see
Appendix A). As a special case suppose xte ∈ (a, b), then

μte|tr(xte) ± σte|tr(xte) zα/2

are pointwise 100(1 − α)% prediction bands for y(xte), a < xte < b. The prediction
band calculation is illustrated in the following example.

Example 4.1 (Damped Sine Curve). This example illustrates the effect of the prior
[β] on the mean of the predictive distribution μte|tr(xte) in Theorem 4.1. Consider the
damped cosine function

y(x) = e−1.4x cos(7πx/2) , 0 < x < 1,

which is shown as the solid curve in Fig. 4.1. The figure also shows training data
taken at ns = 7 values which are shown as filled circles.

For any xte ∈ (0, 1), the predictive distribution of Y(xte) is based on the hierarchi-
cal Bayes model whose first stage is the stationary stochastic process

[

Y(x) | β0
]

= β0 + Z(x) , 0 < x < 1,

where β0 ∈ IR is unknown; the correlation function governing Z(x) is taken to be
R(h) = exp{−10.0 × h2}.

To apply prior (a) of Theorem 4.1, assume that β0 ∼ N(bte, (λβ)−1 × v2
te) where

vte = 1, bte is the known prior mean, and λβ is the known prior precision. For any
xte ∈ (0, 1), the Bayesian predictor of y(xte) given Ytr = ytr is the posterior mean
(4.2.4) which reduces to
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Fig. 4.1 The function y(x) = exp{−1.4x} × cos(3.5πx) (solid curve); a seven-point training data set
(filled circles); the Bayesian predictor μte|tr = μβ|tr + rte R−1

tr (ytr − 1ns μβ|tr) in (4.2.13) and (4.2.14)
for λβ = 0 (blue), for λβ = 10 (red), and for λβ = 100 (green)

μte|tr(xte) = μβ|tr + rteR−1
tr

(

ytr − 1ns μβ|tr
)

, (4.2.13)

where μβ|tr is the posterior mean of β0 given ytr,

μβ|tr =

(

1ns
R−1

tr ytr + bteλβ/λZ

)

(

1ns
R−1

tr 1ns + λβ/λZ

)

= ω bte + (1 − ω) (1ns
R−1

tr 1ns
)−1(1ns

R−1
tr ytr)

= ω bte + (1 − ω) ̂β0, (4.2.14)

the scalar analog of the convex combination (4.2.7) for ω = λβ/[λZ1
ns

R−1
tr 1ns +λβ] ∈

(0, 1).
The effect of the β0 prior precision, λβ, on the β0 posterior mean, μβ|tr, can be

substantial. Suppose there is a fixed process precision λZ. As the prior precision
increases, i.e., λβ → ∞, then ω → 1 and μβ|tr → bβ. The posterior mean of β0

guesses the prior mean and ignores the data. Similarly, as the β0 prior precision
decreases, i.e., λβ → 0, then ω → 0 and μβ|tr → ̂β0 so that the predictor uses only
the data and ignores the prior information. Calculation gives ̂β0 = 0.372 for the
training data in Fig. 4.1. Fix bβ = 5 and λZ = 6. Then μβ|tr → 5 as λβ → ∞ and
μβ|tr → 0.372 as λβ → 0.

In contrast, the impact of the λβ prior precision on the mean of the posterior of
Y(xte), μte|tr(xte), can be relatively minor. Consider the same prior as in the previous
paragraph and the training data of Fig. 4.1. Figure 4.1 shows that the effect of chang-
ing the prior precision on μte|tr(xte) is small. This behavior can be seen analytically
from

μte|tr(xte) = rteR−1
tr ytr + (1 − rte R−1

tr 1ns ) μβ|tr (4.2.15)



4.2 Inference for Conjugate Bayesian Models 123

which shows that μte|tr(xte) depends on the prior only through the posterior mean
μβ|tr which is multiplied by the factor (1 − rteR−1

tr 1ns ). Figure 4.2 shows that the
factor (1 − rteR−1

tr 1ns ) is very small in the center of the training data and even at its
extremes only rises to about 0.04. Thus μte|tr(xte) depends primarily on the first term
of (4.2.15) and hence is relatively unaffected by λβ. �
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Fig. 4.2 The factor (1 − rte R−1
tr 1ns ) versus xte ∈ (0, 1)

4.2.2 Posterior Inference for Model (4.1.1) When ϑ = (β, λZ)

This section considers a more challenging model where both β and λZ in the re-
gression + stationary GP model are unknown. Theorem 4.2 provides the predictive
distribution of Yte for informative and non-informative (β, λZ) priors. In both cases
the

[

Yte | Ytr] posterior distribution is a location shifted and scaled multivariate t dis-
tribution (see Appendix B.4 for the definition of this distribution). The degrees of
freedom are greater when either β or λZ have an informative prior than when they
have a non-informative one.

The informative prior considered in this subsection is stated in terms of the two
factors of [β, λZ] = [β | λZ]×[λZ]. Theorem 4.2 assumes that [β | λZ] is the multivariate
normal distribution with known mean bβ and known scale matrix Vβ. Lacking more
definitive information, Vβ is often taken to be diagonal, if not simply the identity
matrix. The marginal symmetry of each normal prior model makes strong assump-
tions; for example, it says that each component of β is equally likely to be less than
or greater than the corresponding component of bβ. The non-informative β prior is
taken to be the (improper) intuitive choice
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π(β | λZ) ∝ 1

used in Theorem 4.1.
The informative [λZ] prior is taken to be a gamma distribution with specified

mean and variance. The gamma prior can be made quite diffuse when its parameters
yield a large mean and variance; operationally such a prior can be viewed as “non-
informative.” A more familiar non-informative prior for λZ is “Jeffreys prior”

π(λZ) ∝
1
λZ

, λZ > 0

(see Jeffreys (1961), who gives arguments for this choice).

Theorem 4.2. Suppose (Yte, Ytr) follows the two-stage conditional model in which
[(Yte, Ytr) | (β, λZ)] is given by (4.1.1), ns > p, and all correlations are known.

(a) If [β, λZ] has prior specified by

[β | λZ] ∼ Np

(

bβ, λ
−1
Z Vβ

)

and [λZ] ∼ Γ(c, d)

with known bβ, Vβ, c, and d, then the posterior distributions of β and λZ are

[λZ | Ytr = ytr] ∼ Γ((2c + ns)/2, da
1) and

[β | Ytr = ytr] ∼ Tp

(

2c + ns, μβ|tr, 2da
1Σβ|tr/(2c + ns)

)

,

where

• da
1 =

(

2d +
(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

+
(

̂β − bβ

)
Σ−1

π

(

̂β − bβ

)

)

/2,

• G = F
tr R−1

tr Ftr ,
• ̂β = G−1F

tr R−1
tr ytr,

• Σπ = G−1 + Vβ,

• Σβ|tr =
(

G + V−1
β

)−1
, and

• μβ|tr =
(

G + V−1
β

)−1 (

Ĝβ + V−1
β bβ

)

= Σβ|tr
(

Ĝβ + V−1
β bβ

)

.

The predictive distribution of Yte is
[

Yte
∣

∣

∣ Ytr = ytr
]

∼ Tne

(

2c + ns, μte|tr, 2da
1 Mte|tr/(2c + ns)

)

where

• μte|tr = Fteμβ|tr + Rte,tr R−1
tr

(

ytr − Ftrμβ|tr
)

,

• Mte|tr = Rte − Rte,trR−1
tr R

te,tr + HteΣβ|trH
te, and

• Hte = Fte − Rte,tr R−1
tr Ftr .

(b) Suppose the [β, λZ] prior is determined by independent β and λZ, where [β] ∝ 1,
and [λZ] has either the informative prior (b.1) or non-informative prior (b.2) as
given in the following table:
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[λZ] prior Γ(c, d) 1/λZ

Case designation (b.1) (b.2)
.

For (b.1) the posterior distributions of β and λZ are

[λZ | Ytr = ytr] ∼ Γ((2c + ns − p)/2, db.1
1 ) and

[β | Ytr = ytr] ∼ Tp

(

2c + ns − p, ̂β, 2db.1
1 G−1/(2c + ns − p)

)

where G and ̂β are defined as for prior (a) and

db.1
1 =

(

2d +
(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

)

/2 .

For (b.1) the predictive distribution of Yte is
[

Yte
∣

∣

∣ Ytr = ytr
]

∼ Tne

(

2c + ns − p, μte|tr, 2db.1
1 Mte|tr/(2c + ns − p)

)

where

• μte|tr = Fte
̂β + Rte,tr R−1

tr

(

ytr − Ftr
̂β
)

, and

• Mte|tr = Rte − Rte,tr R−1
tr R

te,tr + HteG−1H
te.

For (b.2) the posterior distributions of β and λZ are

[λZ | Ytr = ytr] ∼ Γ((ns − p)/2, db.2
1 ) and

[β | Ytr = ytr] ∼ Tp

(

ns − p, ̂β, 2db.2
1 G−1/(ns − p)

)

where db.2
1 =

(

(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

)

/2.

For (b.2) the predictive distribution of Yte is
[

Yte
∣

∣

∣ Ytr = ytr
]

∼ Tne

(

ns − p, μte|tr, 2db.2
1 Mte|tr/(ns − p)

)

where μte|tr and Mte|tr are defined as in (b.1).

At first glance, the formulas for the various posterior distributions given in The-
orem 4.2 can leave the reader overwhelmed. However, there is intuition that can
provide meaning to the formulas for the degrees of freedom, the mean, and the
covariance matrix of the Yte predictive distribution. Similar discernment can be pro-
vided concerning the [β | Ytr] and [λZ | Ytr] posterior distributions. The insight is
based on the fact that the mean and variance-covariance matrix of W ∼ Tm(ν, μ,Σ)
are μ and νΣ/(ν − 2), respectively, provided ν > 1 and ν > 2.

Starting with the degrees of freedom (dof) for the Yte predictive distribution, re-
gard its base value to be ns− p as would be the dof for an ordinary regression having
p regressors and based on ns observations. The base value is augmented by p ad-
ditional degrees of freedom when β has the informative normal prior and is further
augmented by 2c degrees of freedom when λZ has the informative gamma prior.
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Thus the value of the dof is ns − p+ p+2c = 2c+ns for prior (a) because both priors
are informative. Similar formulas explain the two (b) prior cases. The bottom line is
that inferences become “more precise” in the sense of larger values of the dof, when
either of the priors is informative.

The mean of the Yte predictive distribution is the same for the informative and
non-informative β priors of Theorems 4.1 and 4.2. In the known λZ setting of Theo-
rem 4.1, formulas (4.2.4) and (4.2.6) give the predictive mean to be

μte|tr = Fte μβ|tr + Rte,trR−1
tr

(

ytr − Ftr μβ|tr
)

where μβ|tr is the mean of the conditional [β | Ytr = ytr] distribution, which depends
on whether the β prior is informative or not. Examination of the μte|tr formula for
λβ = λZ shows it is identical to that of Theorem 4.2 for the two β prior cases. Thus
the Bayesian predictor of the mean of Yte is independent of the λZ prior for these
two specific cases but depends on the β prior.

As in the discussion following Theorem 4.1, consider interpreting the posterior
covariance when there is a single test input xte which reduces the posterior covari-
ance matrix to the real-valued posterior variance σ2

te|tr(xte) = Var(Y(xte) | Ytr = ytr).
Recall that when λZ is known and λβ = λZ,

σ2
te|tr(xte) = λ−1

Z

{

1 − rteR−1
tr rte + hQ−1h

}

, (4.2.16)

where h = f (xte) − F
tr R−1

tr rte and

Q = F
tr R−1

tr Ftr + V−1
β or Q = F

tr R−1
tr Ftr,

according as the β prior is informative or non-informative. Now compare (4.2.16)
to the posterior variance in Theorem 4.2 for unknown λZ. For simplicity the expres-
sions below assume [β] ∝ 1, but a similar intuition holds for the informative β prior.
For the gamma and Jeffreys prior, respectively, algebra shows that

σ2
te|tr(xte) = K

{

1 − rteR−1
tr rte + h

(

F
tr R−1

tr Ftr

)−1
h
}

, (4.2.17)

where K =
(

2d +
(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

)

/(2c+ns− p) (for the gamma prior)

and K =
(

(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

)

/(ns − p) (for Jeffreys prior). The factor

of (4.2.17) in braces is the same as that in (4.2.16). Both K expressions can be
viewed as estimates of λ−1

Z , the Y(x) process variance. For the Jeffreys prior, K is
the weighted residual sum of squares

(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

ns − p
(4.2.18)

divided by the usual degrees of freedom and is recognizable as the frequentist esti-
mate of λ−1

Z . For the gamma prior,
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K =
d
c
×

2c
2c + ns − p

+

(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

ns − p
×

ns − p
2c + ns − p

which is a convex combination of the frequentist estimate (4.2.18) and d/c. The
ratio c/d is the prior mean of λZ, and hence its reciprocal is a prior estimate of λ−1

Z .
For fixed c and d, the weight on the frequentist component increases as the amount
of data, ns, increases. When the ratio d/c is fixed, the weight on d/c increases as
c → ∞, which makes intuitive sense because the prior precision increases in this
case.

Using the posterior variance formulas for the case of a single input xte, Theorem
4.2 gives the 100(1 − α)% pointwise prediction bands,

P
{

Y(xte) ∈ μte|tr(xte) ± σte|tr(xte) tα/2
dof

∣

∣

∣ Ytr
}

= 1 − α,

for y(xte) where tα/2
dof is the upper α/2 critical point of the standard t distribution with

dof degrees of freedom (see Appendix A), and dof = 2c+ ns − p or ns − p according
as the informative or non-informative prior is appropriate for λZ .
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Fig. 4.3 The left and right panels plot, as base information, the damped cosine function and the
ns = 7 training data points (as solid circles) of Example 4.1. Both panels plot, as dashed blue
curves, 95% pointwise prediction bands (4.2.19) for y(xte) at ne = 103 equally spaced xte values in
(0, 1) but based on different assumed correlation structures. The left panel intervals assume ξ = 10
in (4.2.20), while the right panel intervals assume ξ = 75 in (4.2.20)

Example 4.1 (Continued). Recall the damped cosine function and training data of
Example 4.1 which are replotted in both panels of Fig. 4.3. The left and right panels
show the 95% pointwise prediction bands

μte|tr ± t0.05/2
6 ×

√

(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

7 − 1
×

{

1 − rteR−1
tr rte + h2/Q

}

(4.2.19)

for the non-informative prior (b.2) of Theorem 4.2 but for different Y(x) models.
In both panels the first stage of the Y(x) model assumes a GP with constant mean
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(p = 1) and correlation function of the (Gaussian) form

R(w | ξ) = exp
{

−ξ w2
}

. (4.2.20)

The left panel bands were computed under the assumption that ξ = 10.0, and the
right panel bands assumed ξ = 75.0. When x1 � x2 the Y(x1) and Y(x2) correlation
is (much) nearer zero, i.e., nearer independence, for ξ = 75.0 (right panel) than for
ξ = 10.0 (left panel). Intuitively, the prediction bands should be wider when the
Y(x) model is closer to the independence model than for the model which states that
the Y(x) march more closely in lockstep. This feature is clearly seen by comparing
the left and right panels of Fig. 4.3.

Three other features can be seen in Fig. 4.3. For any ξ, the bands have zero width
at each of the training data inputs. The predictor μte|tr(xte) is relatively insensitive
to the choice of ξ for any xte that interpolates the training data. For inputs that
extrapolate the training data, here xte near 0 or 1, the choice of ξ can substantially
impact the value of μte|tr(xte). �

4.3 Inference for Non-conjugate Bayesian Models

This section describes Bayesian posterior inference for the (non-conjugate) regres-
sion + stationary GP model (4.1.1) of Sect. 4.1 in which ϑ = (β, λZ, κ) are unknown
parameters. Sections 4.2.1 and 4.2.2 assumed that the correlation function, R(· | κ),
of the stationary interpolating GP was known and hence the correlation matrices
Rte, Rtr, and Rte,tr in (4.1.1) were also known. This section drops the assumption
that κ is known.

For the remainder of these introductory paragraphs, assume it is desired to predict
y(x) at the single input xte. To illustrate the difficulties of the unknown κ case, recall
that when κ is known, Theorems 4.1 and 4.2 give, for certain priors, expressions
for the Bayesian predictor of y(xte), μte|tr(xte) = μte|tr(xte | κ), and for the posterior
variance (MSPE) of the predictive distribution,

σ2
te|tr(xte) = σ2

te|tr(xte | κ) = E
[

(

μte|tr(xte | κ) − Y(xte)
)2

∣

∣

∣

∣
Ytr

]

,

which is a measure of the model uncertainty in the prediction. Both expressions
μte|tr(xte | κ) and σ2

te|tr(xte | κ) explicitly show that κ is known by the conditioning
notation.

When κ is unknown and estimated by κ̂, a “natural” predictor of y(xte) is the plug-
in expression μte|tr(xte | κ̂). A naive quantification of the uncertainty in μte|tr(xte | κ̂)
is the plug-in variance, σ2

te|tr(xte | κ̂). However, the plug-in posterior variance is
different than

MSPE(μte|tr(xte | κ̂), κ) = Eκ
[

(

μte|tr(xte | κ̂) − Y(xte)
)2

]

,
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which is the frequentist expression for the uncertainty of μte|tr(xte | κ̂). Zimmerman
and Cressie (1992) show that when the underlying Y(x) is a GP,

σ2
te|tr(xte | κ̂) ≤ MSPE(μte|tr(xte | κ̂), κ) (4.3.1)

under mild conditions. Thus the naive estimator σ2
te|tr(xte | κ̂) underestimates the true

uncertainty of the plug-in predictor. The amount of the underestimate is most severe
when the underlying GP has weak correlation.

This section describes the Bayesian alternative to plug-in methodology for ana-
lyzing the case of unknown κ. The Bayesian approach assumes that a prior distribu-
tion is available for κ that provides information about likely values of this parameter.
As motivation for the practical benefit of this approach, Handcock and Stein (1993)
analytically carried out the Bayesian calculations for a specific two-input example
using several regression models and correlation functions. They reported that, as
suggested by (4.3.1), for most cases studied the y(xte) prediction bands based on
the Bayesian predictor and Bayesian variance were wider than the intervals based
on plug-in quantities. The plug-in interval had particularly poor performance rela-
tive to the Bayes interval when κ̂ was determined by an eye-fit to the “variogram”
associated with the correlation function.

4.3.1 The Hierarchical Bayesian Model and Posterior

The first stage of the assumed hierarchical Bayesian model is the (conditional) re-
gression + stationary GP model of Sect. 4.1 which assumes that the training and test
data be modeled as a draw from
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where ϑ ≡ (β, λZ, κ).
The second stage of the hierarchical Bayesian model specifies the [ϑ] prior. Be-

low, p denotes the number of regression coefficients and d the number of inputs.
This chapter assumes that knowledge about the regressor β and scale parameter λZ

are independent of the correlation information κ so that

[ϑ] = [β, λZ, κ] = [β, λZ][κ]. (4.3.2)

Example 4.2 (An Informative Prior). Suppose that the correlations among the com-
ponents of Y(x) are specified by the separable Gaussian correlation function

R(h) =
d

∏

k=1

ρ
h2

k

k (4.3.3)
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so that κ = (ρ1, . . . , ρd). Recall that (4.3.3) uses one of the equivalent versions of
the Gaussian correlation function given in (2.2.9). Consider the informative prior in
Part (a) of Theorem 4.2 which uses

[

β, λZ

]

=
[

β | λZ

]

[λZ] and specifies

[β | λZ] ∼ Np

(

bβ, λ
−1
Z Vβ

)

and [λZ] ∼ Γ(c, d) (4.3.4)

with known bβ, Vβ, and (c, d). Additionally, suppose the (ρ1, . . . , ρd) prior chooses
the d components independently and identically distributed as Be(aρ, bρ) with speci-
fied aρ > 0 and bρ > 0 (hence with common known mean and variance). Then under
the assumption (4.3.2), the

[

β, λZ, κ
]

prior density is proportional to

λ
p/2
Z exp

(

−λZ

2
(β − bβ)V−1

β (β − bβ)
)

× λc−1
Z exp(−dλZ)

×
d

∏

k=1

ρ
aρ−1
k (1 − ρk)bρ−1 . (4.3.5)

If subject matter considerations suggest different prior means and uncertainties for
the correlation parameters, the prior (4.3.5) can modified in a straightforward man-
ner as long as independent beta distributions provide a reasonable description of the
individual correlations. Of course more complicated [ρ1, . . . , ρd] priors may also be
required in some applications. �

Example 4.3 (A Non-informative Prior). Assume the Gaussian correlation function
(4.3.3) of Example 4.2 and the non-informative [β, λZ] prior

[β, λZ] ∝
1
λZ

from Part (b) of Theorem 4.2. Using the same beta prior for (ρ1, . . . , ρd) as in (4.3.5),
the

[

β, λZ, κ
]

prior density is proportional to

1
λZ

×
d

∏

k=1

ρ
aρ−1
k (1 − ρk)bρ−1 .

In this example and in Example 4.2, it is useful to regard the t posterior distribu-
tions given in Theorem 4.2 as conditional on κ and indicate this fact by the notation
[Yte | Ytr, κ]. �

The information about Yte contained in Ytr is specified by the predictive distribu-
tion

[

Yte
∣

∣

∣ Ytr
]

=

∫

[

Yte, (β, λZ, κ)
∣

∣

∣ Ytr
]

dβ dλZ dκ

=

∫ (∫

[

Yte
∣

∣

∣ Ytr, (β, λZ, κ)
] [

(β, λZ, κ)
∣

∣

∣ Ytr
]

dβ dλZ

)

dκ . (4.3.6)
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As noted in Examples 4.2 and 4.3, the integral (4.3.6) can be simplified in cases
where the [β, λZ] prior satisfies (one of) the assumptions in Theorem 4.2 because
the inner integral has a closed form. The predictive distribution becomes

[

Yte
∣

∣

∣ Ytr
]

=

∫

[

Yte, κ
∣

∣

∣ Ytr
]

dκ =
∫

[

Yte
∣

∣

∣ Ytr, κ
] [

κ
∣

∣

∣ Ytr
]

dκ (4.3.7)

where [Yte | Ytr , κ] is the appropriate t density from Theorem 4.2. However, even the
simpler integration (4.3.7) can be prohibitive, usually because of the intractability
of the integrand or the complicated κ prior.

Bayesian inference about the model parameters is based on the posterior of the
parameters. For example, the marginal posterior of the correlation parameters can
be computed using

[

κ
∣

∣

∣ Ytr
]

=

∫

[

β, λZ, κ
∣

∣

∣ Ytr
]

dβ dλZ, (4.3.8)

where the integrand in (4.3.8) is determined from
[

β, λZ, κ
∣

∣

∣ Ytr
]

∝
[

Ytr
∣

∣

∣ β, λZ, κ
]

[

β, λZ, κ
]

.

The marginal posterior of β or λZ or the joint posterior of combinations of these pa-
rameters can be obtained in a similar fashion. In particular, Eq. (4.3.8) for the poste-
rior of κ involves a p+1 dimensional integration which is ordinarily less complicated
than the integration (4.3.6) and can be carried out in closed form for “simple” priors.

Example 4.2 (Continued). Consider an arbitrary prior, [κ], for the (ρ1, . . . , ρd) cor-
relations in (4.3.3), and assume the informative prior specified by (4.3.4) for [β, λZ].
It can be shown that the (marginal) [κ | Ytr] posterior has kernel

[

κ
∣

∣

∣ Ytr
]

∝ [κ]
(b1)a1 (det(Rtr))1/2 (det(G))1/2 (det(Σπ))1/2

(4.3.9)

where

• a1 = (2c + ns)/2,
• b1 =

(

2d + (Ytr − Ftr
̂β)R−1

tr (Ytr − Ftr
̂β) + (̂β − bβ)Σ−1

π (̂β − bβ)
)

/2 = da
1,

• G = F
tr R−1

tr Ftr

• ̂β = G−1F
tr R−1

tr Ytr, and
• Σπ = G−1 + Vβ.

When a non-informative prior in β is specified, [β] ∝ 1, an analogous expression
for (4.3.9) can be derived by setting det(Σπ) = 1. For (b.1) in Theorem 4.2, a1 =

(2c+ns− p)/2 and b1 = db.1
1 . For (b.2) in Theorem 4.2, a1 = (ns− p)/2 and b1 = db.2

1 .
The ρ parameters in [κ | Ytr] appear in Rtr , and so (4.3.9) is analytically intractable
for most [κ] prior distributions. Markov chain Monte Carlo (MCMC) algorithms,
two of which are described in Appendix D, give one option to sample [κ | Ytr]
numerically. The mean and standard deviation of the κ posterior distribution give a
Bayesian estimate of κ and a quantification of the uncertainty in estimating κ. �
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As suggested by (4.3.9), there does not exist a familiar closed form density for
[β, λZ, κ | Ytr]. In practice, a combination of two MCMC algorithms can be em-
ployed to create draws from the [β, λZ, κ | Ytr] posterior distribution: the Gibbs al-
gorithm and the Metropolis–Hastings (MH) algorithm (Appendix D). These draws,
for example, can be used to estimate the marginal

[

κ | Ytr] posterior. Additionally
the (possibly high-dimensional) integrals (4.3.6) (or 4.3.7) can be approximated to
determine

[

Yte | Ytr]. Once
[

Yte | Ytr] is approximately determined, the Bayesian al-
ternatives to μte|tr (̂κ) and Σte|tr (̂κ),

E
[

Yte
∣

∣

∣ Ytr
]

and

Σte|tr ≡ E
[

(

Yte − E
[

Yte
∣

∣

∣ Ytr
]) (

Yte − E
[

Yte
∣

∣

∣ Ytr
]) ∣

∣

∣

∣
Ytr

]

,

can be estimated.

4.3.2 Predicting Failure Depths of Sheet Metal Pockets

Example 1.2 (Continued). Recall that Montgomery and Truss (2001) described a
simulator that computes the failure depth of a symmetric rectangular pocket that is
punched in automobile steel sheets as a function of d = 6 manufacturing conditions.
This example compares the EBLUP and (fully) Bayesian predictors based on a 60
run set of training data drawn from the 234 simulator runs that are available. The
remaining 174 simulator runs are used as test data to compare the predictions of the
two predictors and the corresponding coverages.

The 60 run training data was selected by standardizing all inputs to [0, 1] and
choosing that subset which approximately maximized the minimum Euclidean inter-
point distance among all

(

234
60

)

subsets of size 60. Below, y60 denotes the 60 run

training data set and y174 the true values of the test data; the y174 values are used to
compare prediction methodologies and their coverages.

The EBLUP predictions for this example are based on estimating the parameters
in the model

[

Y(x) | β0, λZ, ρ
]

= β0 + Z(x) (4.3.10)

where Z(x) is a zero mean stationary GP with process precision λZ (in the notation
of this section) and Gaussian correlation function

Cor [Y(x1), Y(x2)] =
6

∏

�=1

ρ
4 (x1,�−x2,�)2

�
.

Scaling and shifting the d = 6 model inputs to [0,1] to provide numerical stability,
the REML estimates of the ρ parameters are

(0.88, 0.97, 0.79, 0.87, 0.96, 0.99) (4.3.11)
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where the estimated ρ in (4.3.11) are in the order

1 Clearance (c)
2 Fillet radius (r)
3 Punch plan view radius (p)
4 Width of pocket (w)
5 Length of pocket (l)
6 Lock bead distance (d)

.

Formula (3.3.8) is used to estimate σ2
Z ≡ 1/λZ as ̂σ2

Z = 9263.2, and the expression
following (3.3.2) is used to estimate β0 yielding ̂β0 = 22.8. Figure 4.4 plots the
simulated y174 values versus their predicted EBLUPs. Visually the predictions are
symmetrically distributed about the line y = x with similar magnitudes for the pre-
diction errors of both large and small simulated failure depths. Quantitatively, the
empirical root mean squared prediction error, the ERMSPE, of the REML-EBLUP
is 17.46 (see definition (3.4.2)).
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Fig. 4.4 Scatterplot of the 174 computed failure depths y174 versus their REML-EBLUP predic-
tions; the line y = x

Letting y(x1), . . . , y(x174) denote the 174 simulated test values, the empirical cov-
erage of these test values by nominal pointwise 95% intervals is the proportion of
the 174 simulated outputs that are covered by a 95% prediction interval, i.e.,

1
174

174
∑

k=1

I
{

y(xk) ∈
(

ŷ(xk) ± 2 × s(xk)
) }
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where I{·} is the indicator function which takes the value 1 if its argument is true
and 0 otherwise. For this test set, the coverage of the REML-EBLUP is 61% which
is substantially less than the target value of 95%.

Now consider fully Bayesian prediction. To facilitate the specification of the
prior, the y60 training data are centered about their mean and scaled by their standard
deviation yielding

e(xi) ≡
y(xi) − Mean(y60)

StdDev(y60)
, i = 1, . . . , 60 ,

where Mean(y60) and StdDev(y60) are the sample mean and sample standard devia-
tion of the training data, respectively. In terms of these (standardized) residuals, the
y60 training data are

y(xi) = Mean(y60) + StdDev(y60) × e(xi), i = 1, . . . , 60 .

The vector of residuals
e60 = (e(x1), . . . , e(x60))

has sample mean zero and sample standard deviation (and sample variance) equal
to 1. Predictions will be made of the residuals for the 174-point test data.

The Bayesian model that is fit below regards e60 as a draw from Y(x) where the
likelihood stage of the model is

[

Y(x) | λZ, ρ
]

= 0 + Z(x)

and Z(x) is described below (4.3.10). To simplify sampling, the prior assumes inde-
pendent λZ and ρ priors and, further, that the ρi, i = 1, . . . , 6, are also independent.
The λZ prior is selected to reflect the fact that values near 1 are consistent with the
(sample) variance of e60. The ρi priors are assumed to be i.i.d. Be(1, 0.1) distribu-
tions which therefore have mean 0.9 = 1/1.1 but support over the entire interval
(0, 1); the large mean values states that there is relatively little prior belief that each
input is active. Putting the components together, the [λZ, ρ] prior used in this exam-
ple is assumed proportional to

λ4
Z exp(−5λZ) × I[0.3,+∞) {λZ} ×

6
∏

k=1

1
(1 − ρk).9

,

where the indicator function I[0.3,+∞){λZ} truncates λZ to (0.3,+∞) to prevent poste-
rior draws having extremely large 1/λZ.

After applying Graves (2011) to tune the proposal distribution of the MH algo-
rithm used to make draws from the (λZ, ρ) posterior, this Bayesian model was fit us-
ing 10,500 burn-in draws followed by 10,000 production draws from the (λZ, ρ) pos-
terior (see Appendix D). The predictors and prediction sets are based on 200 equally
spaced draws from the 10,000 posterior draws yielding (λs

Z , ρ
s), s = 1, . . . , 200.
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For each test data input xte
i , i = 1, . . . , 174, and posterior parameter draw, the

posterior mean

es(xte
i ) = E

[

Y(xte
i )

∣

∣

∣ λs
Z , ρ

s
]

= rs
(

xte
i

)

R−1
s e60

was computed. The correlation parameter used to compute rs and Rs is ρs. The
mean (or median) of e1(xte

i ), . . . , e200(xte
i ) is the predicted value of e(xte

i ), which is
denoted ê(xte

i ).
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Fig. 4.5 Scatterplot of the 174 computed failure depths y174 versus their Bayesian predictions; the
line y = x

Letting ê174 denote the vector of predicted residuals for the 174 test inputs, the
Bayesian prediction of y174 is

ŷ174
= Mean(y60) + StdDev(y60) × ê174 . (4.3.12)

Figure 4.5 plots the computed y174 versus their Bayesian predictions ŷ174. The visual
impression is similar to that for the REML-EBLUP predictions. The empirical root
mean squared prediction error (ERMSPE) of the Bayesian predictor is 17.14 (which
is virtually identical to the 17.46 ERMSPE for the REML-EBLUP predictor).

The strength of Bayesian predictors is that, compared with plug-in predictors
which treat the correlation parameters as known, the uncertainty that the Bayesian
methodology builds into its assessment tends to make coverage statements for pre-
dicted y(xte

i ) based on wider intervals than those in Chap. 3. In this example the 2.5
and 97.5% sample quantiles of e1(xte

i ), . . . , e200(xte
i ) form the basis of nominal 95%

intervals for y(xte
i ) based on (4.3.12). In this case, calculation shows 75% of the 174

simulated values are contained in the resulting intervals. While still less than the
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nominal 95%, the greater width of the Bayesian interval more correctly reflects the
uncertainty in the correlation and precision parameters than the coverage provided
by the EBLUP intervals. �

4.4 Chapter Notes

4.4.1 Outline of the Proofs of Theorems 4.1 and 4.2

The strategy for proving Theorems 4.1 and 4.2 was introduced at the begin-
ning of Sect. 4.2. To review, suppose that (Yte, Ytr) has a conditional distribution
[(Yte, Ytr) | ϑ] given an unknown parameter ϑ and the conditional distribution
[ϑ | Ytr] can be determined. (Throughout the notation suppresses any dependence
on known parameters.) Then

[

Yte,ϑ
∣

∣

∣ Ytr
]

=
[

Yte
∣

∣

∣ Ytr,ϑ
]

×
[

ϑ
∣

∣

∣ Ytr
]

and calculating the Yte marginal of [Yte,ϑ | Ytr] provides the required predictive
distribution.

Proof of Theorem 4.1

The predictive densities (4.2.3) and (4.2.6) in Theorem 4.1 require straightforward
calculations in order to implement the right-hand integral of (4.1.2) which, in this
case, is

π
(

yte
∣

∣

∣ ytr
)

=

∫

π
(

yte
∣

∣

∣ β, ytr
)

π
(

β
∣

∣

∣ ytr
)

dβ . (4.4.1)

During the process of calculating the integrand in (4.4.1), the appropriate posterior
density π(β | ytr) will be identified for the β priors considered by the theorem.

The left-hand factor in the integrand of (4.4.1) is the density π(yte | β, ytr) which
is immediate as the conditional normal distribution

[

Yte
∣

∣

∣ β, ytr
]

∼ Nne

(

μte|tr,β,Σte|tr,β
)

, (4.4.2)

where

μte|tr,β = Fteβ + Rte,tr R−1
tr (ytr − Ftrβ) and Σte|tr,β = λ−1

Z

(

Rte − Rte,tr R−1
tr R

te,tr

)

(see Appendix B).
The right-hand factor π(β | ytr) is derived by observing

π
(

β
∣

∣

∣ ytr
)

∝ π
(

ytr
∣

∣

∣ β
)

× π (β) ,

calculating the right-hand side, and retaining the terms involving β to determine the
kernel of π(β | ytr). For Case (a) this calculation yields
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π
(

β
∣

∣

∣ ytr
)

∝ exp

{

−
1
2

(ytr − Ftrβ)λZ R−1
tr (ytr − Ftrβ)

−1
2

(β − bβ)λβV−1
β (β − bβ)

}

∝ exp

{

−1
2
β A−1β + νβ

}

,

where A−1 =
[

λZ F
tr R−1

tr Ftr + λβV−1
β

]

and ν =
[

λZ F
tr R−1

tr ytr + λβV−1
β bβ

]

. From
Lemma B.1,

[

β
∣

∣

∣ ytr
]

∼ Np

(

Aν = μβ|tr, A = Σβ|tr
)

, (4.4.3)

where μβ|tr and Σβ|tr are defined by (4.2.1) and (4.2.2) respectively. A similar but
simpler argument applies to Case (b) and gives

[

β
∣

∣

∣ ytr
]

∼ Np

(

(

F
tr R−1

tr Ftr

)−1
×

(

F
tr R−1

tr ytr
)

, λ−1
Z

(

F
tr R−1

tr Ftr

)−1
)

.

For either Case (a) or (b), the remainder of the proof requires the evaluation of
(4.4.1) whose integrand is proportional to

exp

{

−1
2

[

(

yte − D1β − d2

)
D3

(

yte − D1β − d2

)

+ β D4β − 2d
5 β

]

}

∝ exp

{

−
1
2

(yte)D3yte + d
6 yte + (yte)D7β −

1
2
β D8β + d

9 β

}

where the matrices D1, D3, D4, D7, D8 and vectors d2, d5, d6, d9 are obtained
from the terms in π(yte | β, ytr) and π(β | ytr) and all coefficients are functionally
independent of β and yte. Thus

π
(

yte
∣

∣

∣ ytr
)

∝ exp

{

−
1
2

(yte)D3 yte + d
6 yte

}

×
∫

IRp
exp

{

−
1
2
β D8β +

[

(yte) D7 + d
9

]

β

}

dβ

∝ exp

{

−1
2

(yte)D3 yte + d
6 yte

}

× exp

{

1
2

(yte)D7 D−1
8 D

7 yte + d
9 D−1

8 D
7 yte

}

= exp

{

−1
2

(yte)D10 yte + d
11 yte

}

using (B.1.2) of Appendix B.1 to evaluate the integral, which shows that π(yte | ytr) is
multivariate normally distributed with mean μte|tr = D−1

10 d11 and covariance matrix
Σte|tr = D−1

10 . Algebra recovers the expressions (4.2.4) and (4.2.5) for Case (a) and
those described below (4.2.6) for Case (b). �
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Proof of Theorem 4.2

In spirit, the proof of Theorem 4.2 with ϑ = (β, λZ) is similar to that of Theorem 4.1
but requires substantially more algebraic manipulation because of the presence of
λZ. Cases (a) and (b) of Theorem 4.2 consider three [β, λZ] priors. Only Case (a) will
be discussed here, i.e.,

[β | λZ] ∼ Np

(

bβ, λ
−1
Z Vβ

)

and [λZ] ∼ Γ(c, d)

with known bβ, Vβ, c, and d. The remaining cases use similar arguments but are less
complicated because the [β, λZ] prior is simpler.

Theorem 4.2 gives the predictive distribution of the ne test outputs yte =

(y(xte
1 ), . . . , y(xte

ne
)) based on the ns training outputs ytr = (y(xtr

1 ), . . . , y(xtr
ns

)). It
also provides the posterior distributions of λZ and β which summarize the in-
formation about these model parameters given the training data. To simplify the
exposition below, some of the notation introduced in Theorem 4.2 is repeated, and
several additional pieces of notation are defined.

• G = F
tr R−1

tr Ftr,
• ̂β = G−1F

tr R−1
tr ytr ,

• Σπ = G−1 + Vβ,

• Σβ|tr =
(

F
tr R−1

tr Ftr + V−1
β

)−1
=

(

G + V−1
β

)−1
,

• μβ|tr =
(

G + V−1
β

)−1 (

Ĝβ + V−1
β bβ

)

= Σβ|tr
(

F
tr R−1

tr ytr + V−1
β bβ

)

,

• SStr =
(

ytr − Ftr
̂β
)

R−1
tr

(

ytr − Ftr
̂β
)

, and

• SSP =
(

̂β − bβ

)
Σ−1

π

(

̂β − bβ

)

.

As usual, let (Yte, Ytr) denote the process model for (yte, ytr). Recall that (Yte, Ytr)
follows a two-stage hierarchical model with first-stage
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⎟

⎟

⎠

, (4.4.4)

where β and λZ are unknown while the correlation parameters, κ, are known. Just
as the results in Theorem 4.1 should be regarded as conditional on λZ and κ, the
calculations below are conditional on the correlation parameters. This fact was used
in Sect. 4.3.

In overview, the conditional densities π(λZ | ytr) and π(β | ytr) are computed by
finding the conditional density π(β, λZ | ytr) and calculating the marginals

π
(
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∣

∣

∣ ytr
)

=

∫
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=
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0
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∣
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)

dλZ. (4.4.5)
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As for Theorem 4.2, this task is simplified because only terms in π(β, λZ | ytr) in-
volving β and λZ need be determined in order to perform the integrations in (4.4.5)
and hence to determine the posterior density kernels.

Start with
π

(

β, λZ

∣

∣

∣ ytr
)

∝ π
(

ytr
∣

∣

∣ β, λZ

)

× π (β, λZ)

and recognize that the kernel of π(ytr | β, λZ) is immediate from (4.4.4) as
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,

while the joint prior is

π (β, λZ) ∝ λ
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Calculation gives
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The key to computing (4.4.5) is to show that Q1 + Q2 can be rewritten as

SStr + SSP +
(

β − μβ|tr
)
Σ−1

β|tr

(

β − μβ|tr
)

, (4.4.6)

where SStr and SSP are defined in the list of symbols on page 138. Notice that SStr

and SSP are independent of β, while the third term is a quadratic form in β. Hence
from formulas (4.4.5) and (4.4.6),
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From the density of the multivariate normal distribution, formula (B.1.3) shows
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This yields
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. (4.4.7)

Recognizing that Eq. (4.4.7) is the kernel of the gamma density with shape parame-
ter c + ns/2 and rate parameter (2d + SStr + SSP)/2 confirms the λZ posterior stated
in Theorem 4.2.

Analogously, the β posterior can be computed by applying (4.4.6) to the second
equation of (4.4.5) producing
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which can be integrated using
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Omitting terms that do not depend on β or λZ gives
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(4.4.8)

Comparing the kernel (4.4.8) with (B.4.1) shows π(β | ytr) has the p-variate t density
with 2c+ns degrees of freedom, location parameterμβ|tr, and scale matrix (2d+SStr+

SSP)Σβ|tr/(2c + ns) as stated in Theorem 4.2.
Lastly, the predictive density of Yte can be obtained from
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From (4.4.2), π(yte | ytr, β, λZ) is ne-variate multivariate normal with mean μte|tr,β =
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. The
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density π(β | ytr, λZ) is given by (4.4.3) taking λβ = λZ, while, from (4.4.7), the
posterior π(λZ | ytr) is gamma with shape parameter c + ns/2 and rate parameter
(2d + SStr + SSP)/2. Thus the integral is based on terms whose forms are similar to
those used in the λZ and β posterior calculations. Algebra again gives the result.

To provide some of the algebraic details required to prove (4.4.6),
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by noting that the cross product term is zero, i.e.,
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Fixing SStr and expanding the individual ̂β, β, and bβ terms in (4.4.9) and also in
Q2 give
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where (4.4.11) follows by adding and subtracting μβ|trΣ
−1
β|trμβ|tr to (4.4.10) and

(4.4.12) follows from (4.4.11) by substituting
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Identity (4.4.13) can be shown by expanding the left hand as
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applying the definition of μβ|tr, and then expanding this quadratic form into three

terms. Now simplify the quadratic term in bβ using Σβ|tr =
(

V−1
β + G

)−1
= Vβ −
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Vβ
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to show it is equal to 2b
β Σ

−1
π

̂β. The resulting sum simplifies to the right-hand side
of (4.4.13).

4.4.2 Eliciting Priors for Bayesian Regression

How can prior parameters be selected in a Bayesian analysis? Generic advice is
given in Gelman et al. (2013) and specific advice for the hierarchical regression +
stationary GP in Oakley (2002). Ideally, one should base prior parameter choices on
both expert opinion and external simulator output for the same or a similar physical
system to the y(x) being emulated. Both expert opinion and especially the exami-
nation of external simulator data should focus on the observable characteristics of
the output. These characteristics should include, among other y(x) features: its max-
imum and minimum values, its range, the number of local maxima and minima, the
relative activity of the inputs, and slope information as specific inputs vary.

4.4.3 Alternative Sampling Algorithms

Section 4.3 has emphasized the use of the Metropolis–Hastings algorithm, the Gibbs
algorithm, and a Gibbs algorithm that includes MH draws for steps where the con-
ditional may not be known. For example, the latter would typically be the case for
the regression+ stationary GP model when drawing correlation parameters from the
conditional of the correlation parameters given the data, the regression coefficients,
and the precision parameters.

There have been a number of alternatives to the Metropolis–Hastings algorithm
that have been used in the computer experiments literature. We point only to the
Delayed Rejection Adaptive Metropolis (DRAM) algorithm of Haario et al. (2006)
and the overview tutorial article Andrieu and Thoms (2008) as a starting place for
interested readers.

4.4.4 Software for Computing Bayesian Predictions

The authors of this volume provide a partial list of software for fitting the Bayesian
GP models described in this chapter, without endorsing any particular package. The
majority of the programs below use the Gaussian correlation function. As always,
the authors make no claim of completeness of the list nor are the comments a review
of the accuracy and features of the programs. Indeed, many of them are in continu-
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ous development, and web searches will provide up-to-date information about any
particular program as well as others that have been developed since the publication
of this book.

1. GPMSA (Gaussian Process Models for Simulation Analysis) is a MATLAB pro-
gram that provides Bayesian prediction for both univariate and multivariate sim-
ulator output: http://go.osu.edu/GPMSA

2. tgp is a R package for fitting Bayesian Treed GP Models
3. Stan is a programming language that implements full Bayesian statistical infer-

ence; it is coded in C++ with both R language and MATLAB interfaces: http://
mc-stan.org

4. The Gaussian Processes Web Site lists both references and software for fitting
hierarchical GP models: http://www.gaussianprocess.org.

5. Dakota is a software package developed at Sandia National Laboratories for de-
sign optimization, parameter estimation, uncertainty quantification, and sensitiv-
ity analysis. Bayesian emulation (prediction and uncertainty quantification) of
computer simulation models has been added to recent versions of Dakota: http://
dakota.sandia.gov

6. MUCM (Managing Uncertainty in Complex Models) is a resource concerned
with issues of uncertainty in computer simulation models including uncertainty
quantification, uncertainty propagation, uncertainty analysis, sensitivity analy-
sis, and calibration. The website http://www.mucm.ac.uk/Pages/MCSGSoftware.
html contains a list of Bayesian and frequentist software for prediction, calibra-
tion, and other Bayesian procedures.

7. SHELF (SHeffield ELicitation Framework) is a package of documents, tem-
plates, and software to carry out elicitation of probability distributions for un-
certain quantities from a group of experts: http://tonyohagan.co.uk/shelf.

http://go.osu.edu/GPMSA
http://mc-stan.org
http://mc-stan.org
http://www.gaussianprocess.org
http://dakota.sandia.gov
http://dakota.sandia.gov
http://www.mucm.ac.uk/Pages/MCSGSoftware.html
http://www.mucm.ac.uk/Pages/MCSGSoftware.html
http://tonyohagan.co.uk/shelf


Chapter 5
Space-Filling Designs for Computer
Experiments

5.1 Introduction

This chapter and the next discuss how to select inputs at which to compute the
output of a computer experiment to achieve specific goals. The inputs one selects
constitute the “experimental design.” As in previous chapters, the inputs are referred
to as “runs.” The region corresponding to the values of the inputs that is to be studied
is called the experimental region. A point in this region corresponds to a specific set
of values of the inputs. Thus, an experimental design is a specification of points
(runs) in the experimental region at which the response is to be computed.

This chapter begins by reviewing some of the basic principles of classical experi-
mental design and then presents an overview of some of the strategies that have been
employed in computer experiments. For details concerning classical design see, for
example, the books by Atkinson and Donev (1992), Box and Draper (1987), Dean
et al. (2017), Pukelsheim (1993), Silvey (1980), and Wu and Hamada (2009).

5.1.1 Some Basic Principles of Experimental Design

Suppose that one observes a response and wishes to study how that response varies
as one changes a set of (potentially) explanatory inputs (“factors”). In physical ex-
periments, there are a number of issues that can make such a study problematic.
First, the response may be affected by factors other than the inputs that have been
selected for study. Unless one can completely control the effects of these additional
factors, repeated observations at the same values of the inputs will vary as these ad-
ditional factors change. The effects of additional factors can either be unsystematic
(random) or systematic. Unsystematic effects are usually referred to as random error
(or as “measurement error” or as “noise”). Systematic effects are often referred to
as bias. There are strategies for dealing with both random error and bias.
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Replication and blocking are two techniques used to estimate and control the
magnitude of random error. Replication (observing the response multiple times at
the same set of inputs) allows one to directly estimate the magnitude and distribu-
tion of random error. Also, the sample means of replicated responses have smaller
variances than the individual responses. Thus, the relation between these means and
the inputs gives a clearer picture of the effects of the inputs because uncertainty
from random error is reduced. In general, the more observations one has, the more
information one has about the relation between the response and the inputs.

Blocking involves sorting experimental material into, or running the experiment
in, relatively homogeneous groups called blocks. The corresponding analysis ex-
plores the relation between the response and the inputs within blocks and then com-
bines the results across blocks. Because of the homogeneity within a block, the
observed random error is less within a block than between blocks and the effects
of the inputs more easily seen. There is an enormous body of literature on block
designs, including both statistical and combinatorial issues. General discussions in-
clude John (1980), John (1987), Raghavarao (1971), or Street and Street (1987).

Bias is typically controlled by randomization and by exploring how the response
changes as the inputs change. Randomization is accomplished by using a well-
defined chance mechanism to assign the input values as well as any other factors
that may affect the response and that are under the control of the experimenter, such
as the order of experimentation, to experimental material. Factors assigned at ran-
dom to experimental material will not systematically affect the response. By basing
inferences on changes in the response as the input changes, bias effects “cancel,” at
least on average.

Replication, blocking, and randomization are basic principles of experimental
design for controlling random error and bias. However, random error and bias are
not the only problems that face experimenters. Another problem occurs when one
is interested in studying the effects of several inputs simultaneously and the input
selections are (inadvertently) highly correlated. This sometimes occurs in observa-
tional studies. If, for example, the observed values of two inputs are positively cor-
related so that they increase together simultaneously, then it is difficult to distinguish
their effects on the response. Was it the increase in just one or some combination of
both that produced the observed change in the response? This problem is sometimes
referred to as collinearity. Using an orthogonal design can overcome this problem.
In an orthogonal design, the values of the inputs at which the response is observed
are uncorrelated. An orthogonal design allows one to independently assess the ef-
fects of the different inputs. There is a large body of literature on finding orthogonal
designs, generally in the context of factorial experiments. See, for example, Hedayat
et al. (1999).

Another problem that can be partly addressed (or at least detected) by careful
choice of an experimental design occurs when the assumptions one makes about
the nature of the relation between the response and the inputs (the statistical model)
are incorrect. For example, suppose one assumes that the relationship between the
response and a single input is essentially linear when, in fact, it is highly nonlinear.
Inferences based on the assumption that the relationship is linear will be incorrect.
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It is important to be able to detect strong nonlinearities, and one will need to ob-
serve the response with at least three different values of the input in order to do so.
The error that arises because the assumed model is incorrect is sometimes referred
to as model bias. Diagnostics, such as scatterplots and quantile plots, are used to
detect model bias. The ability to detect model bias is improved by careful choice
of an experimental design, for example, by observing the response at a wide variety
of values of the inputs. In general, one would like to select designs that enable one
to detect violations of the fitted model and lead to inferences that are relatively in-
sensitive to model bias. This usually requires specifying both the model one intends
to fit to the data as well as the form of an alternative model whose bias one wishes
to guard against; thus designs for model bias are selected to protect against certain
types of bias. Box and Draper (1987) discuss this issue in more detail.

In addition to general principles, such as replication, blocking, randomization, or-
thogonality, and the ability to detect model bias, there exist very formal approaches
to selecting an experimental design. The underlying principle is to consider the pur-
pose of the experiment and the statistical model for the data and choose the design
accordingly. If one can formulate the purpose of the experiment in terms of opti-
mizing a particular quantity, one can then ask what inputs one should observe the
response at to optimize this quantity. For example, if one is fitting a straight line to
data, one might wish to select the design so as to give the most precise (minimum
variance) estimate of the slope. This approach to selection of an experimental design
is often referred to as optimal design. See Atkinson and Donev (1992), Pukelsheim
(1993), or Silvey (1980) for more on the theory of optimal design. In the context
of the linear model, popular criteria involve minimizing some function of the co-
variance matrix of the least squares estimates of the parameters. Some common
functions are the determinant of the covariance matrix (the generalized variance),
the trace of the covariance matrix (the average variance), and the average of the
variance of the predicted response over the experimental region. A design minimiz-
ing the first criterion is called D-optimal, a design minimizing the second is called
A-optimal, and a design minimizing the third is called I-optimal. In many exper-
iments, especially experiments with multiple objectives, it may not be clear how
to formulate the experiment goal in terms of some quantity that can be optimized.
Furthermore, even if one can formulate the problem in this way, finding the optimal
design may be quite difficult.

In many experiments all the inputs at which one will observe the response are
specified in advance. These are sometimes referred to as a single-stage or one-stage
experimental designs. However, there are good reasons for running experiments in
multiple stages. Box et al. (1978) (page 303), advocate the use of sequential or
multistage designs:

In exploring a functional relationship it might appear reasonable at first sight to adopt a
comprehensive approach in which the entire range of every factor was investigated. The re-
sulting design might contain all combinations of several levels of all factors. However, when
runs can be made in successive groups, this is an inefficient way to organize experimental
programs. The situation relates to the paradox that the best time to design an experiment is
after it is finished, the converse of which is that the worst time is at the beginning, when the
least is known. If the entire experiment was designed at the outset, the following would have
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to be assumed known: (1) which variables were the most important, (2) over what ranges
the variables should be studied, (3) in what metrics the variables and responses should be
considered (e.g., linear, logarithmic, or reciprocal scales), and (4) what multivariable trans-
formations should be made (perhaps the effects of variables x1 and x2 would be most simply
expressed in terms of their ratio x1/x2 and their sum x1 + x2).

The experimenter is least able to answer such questions at the outset of an investigation
but gradually becomes more able to do so as a program evolves.

All the above arguments point to the desirability of a sequence of moderately sized
designs and reassessment of the results as each group of experiments becomes available.

5.1.2 Design Strategies for Computer Experiments

Computer experiments based on simulator codes differ from traditional physical ex-
periments in that repeated observations at the same set of inputs yield, aside from
numerical error, identical responses. Hence replication is unnecessary. The greatest
uncertainty in running a computer experiment arises because one only knows the
exact form of the input-response relationship of the simulator code at the inputs
of the experimental design (although the response can be computed at any addi-
tional input). Functional models that are used to describe and extend the simulator-
determined relationship to parts of the experimental region where runs have not
been made are approximations to the true relationship. The discrepancy between
the response produced by the simulator code and the response predicted by an ap-
proximating model, both run at the same input, is the error in the approximating
model. In the previous subsection such error was referred to as model bias.

Based on these observations, two principles for selecting designs in the types of
computer experiments considered here are the following:

1. Designs should not take more than one observation at any set of inputs. (But
note that this principle assumes the computer code remains unchanged over time.
When a design is run sequentially and the computer code is written and executed
by a third party, it may be good policy to duplicate one of the design points
in order to verify that the code has not been changed over the course of the
experiment.)

2. Because one does not know the true relationship between the response and in-
puts, designs should allow one to fit a variety of models and should provide in-
formation about all portions of the experimental region.

If a priori one believes that interesting features of the true model are just as likely
to be in one part of the experimental region as another, if one’s goal is to be able
to do prediction over the entire range of the inputs and if one is running a single-
stage experiment, it is plausible to use designs that spread the points (inputs, runs)
at which one observes the response evenly throughout the region.

There are a number of ways to define what it means to spread points evenly
throughout a region and these lead to various types of designs. This chapter dis-
cusses a number of these design principles. Among the designs considered are de-
signs based on selecting points in the experimental region by certain sampling meth-
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ods; designs based on measures of distance between points that allow one to quantify
how evenly spread points are; designs based on measures of how close points are
to being uniformly distributed throughout a region; and designs that are a hybrid of
or variation on these designs. All the designs in this chapter will be referred to as
space-filling or exploratory designs.

The term “space-filling” is used widely in the literature on computer experiments.
It seems that in most cases, space-filling is meant in an intuitive sense and as a
synonym for “evenly spread.” However, it also has a more technical meaning. It can
refer to a method for generating designs for any run size ns, such that as ns increases,
the method produces designs that are increasingly dense in the design space (in
other words, fill the design space). Vazquez and Bect (2011) analyze the limiting
properties of the prediction variance for such designs. In particular, assuming the
GP model is correct, for sufficiently large sample sizes, Vazquez and Bect (2011)
show that no design will outperform certain space-filling designs (those with an
asymptotic fill distance of O(1/n1/d

s )) in terms of the rate at which the maximum
of the mean square prediction error decreases as ns increases. This provides some
theoretical justification for using space-filling designs.

When runs of a computer experiment are expensive or time-consuming so that
observing the response at a “large” number of inputs is not possible, what is a rea-
sonable sample size that will allow one to fit the models described in Chaps. 2–4?
One early rule-of-thumb suggested by Chapman et al. (1994) and Jones et al. (1998)
is to use a sample size of 10d when the input space is of dimension d. However,
because the “volume” of the design space increases as a power of d, 10d points
becomes a very sparse sample as d increases. Obviously ten points evenly spread
over the unit interval are much more densely distributed than 100 points in the ten-
dimensional unit cube. So is the 10d rule of thumb reasonable? Loeppky et al. (2009)
carefully investigate this issue and conclude that a sample size of 10d is a reasonable
rule-of-thumb for an initial experiment when d ≤ 5. When the response is sensitive
to relatively few of the inputs, the rule is also reasonable for an initial experiment
for d up to 20 or even larger. Loeppky et al. (2009) also discuss diagnostics one can
use to determine whether additional observations are needed (beyond those recom-
mended by the 10d rule-of-thumb) and approximately how many might be needed
to improve overall fit. They point out that one should always check the accuracy
of the predictor fitted to the data and if it is poor, additional observations (perhaps
many) may be needed.

In the spirit of Loeppky et al. (2009), a rough argument about the adequacy of the
10d rule-of-thumb is as follows. Suppose that polynomial models provide a reason-
able class of approximations for a set of simulator code input–output relationships.
The minimum number of points needed to uniquely determine a response surface of
order r in d variables (including all monomials of order r or less) is

(

r + d
r

)

. (5.1.1)
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For a second-order response surface (r = 2), the 10d rule-of-thumb exceeds equa-
tion (5.1.1) up to d = 16. For a third-order response surface, the 10d rule-of-thumb
exceeds Eq. (5.1.1) only up to d = 4. For a fourth-order response surface, the 10d
rule-of-thumb is greater than Eq. (5.1.1) only for d = 2. Also, for an input–output
relation such as y = sin(cπx), 0 ≤ x ≤ 1, the 10d rule won’t allow for enough ob-
servations in one dimension to produce an adequate predictor for large c, assuming
one has no prior knowledge of the functional form of this relationship.

While many real-life applications are not as complicated as those suggested in the
previous paragraph, there are cases when using an experimental design of size 10d
can be inadequate. For example, Chen et al. (2011) discuss a simulator experiment
concerning bistable laser diodes in which the d = 2 response surface is quite rough
over a portion of the design space and would require substantially more than 20
(10d) observations to accurately approximate.

In practice, the true model that describes the relation between the inputs and
the response is unknown. However, if the models to be fit to the data come from a
sufficiently broad class, one may be willing to assume some model in this class is
(to good approximation) “correct.” In this case it is possible to formulate specific
criteria for choosing a design and adopt an optimal design approach. Because the
models considered in the previous chapters are remarkably flexible, this approach
seems reasonable for these models. Thus, Chap. 6 discusses some criterion-based
methods for selecting designs.

5.2 Designs Based on Methods for Selecting Random Samples

In the language of Sect. 1.1, the designs described in this section are used in cases
when all components of x are control inputs as well as in cases when x contains both
control and environmental inputs. However, most of these designs were originally
motivated by their usefulness in applications where the inputs were all environmen-
tal variables; in this case the inputs are denoted by X to emphasize their random
nature. Let y(·) denote the output of the code. When the inputs are environmental
variables, the most comprehensive objective would be to find the distribution of the
random variable Y = y(X) when X has a known distribution. If, as is often the case,
this is deemed too difficult, the easier problem of determining some aspect of its
distribution such as its mean E[Y] = μ or its variance is considered. Several of the
designs introduced in this section, in particular the Latin hypercube design, were de-
veloped to solve the problem of estimating μ in such a setting. However, the reader
should bear in mind that such designs are useful in more general input settings.
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5.2.1 Designs Generated by Elementary Methods for Selecting
Samples

Intuitively, one would like designs for computer experiments to be space-filling
when prediction accuracy over the entire experimental region is of primary inter-
est. The reason for this is that interpolators are used as predictors (e.g., the BLUP
or its Bayesian counterparts such as those that arise as the means of the predictive
distributions derived in Chap. 4). Hence, the prediction error at any new input site is
a function of its location relative to the design points. Indeed, Sect. 3.2 showed that
the prediction error is zero at each of the design points. For this reason, designs that
are not space-filling, for example, designs that concentrate points on the boundary
of the design space, can yield predictors that perform quite poorly in portions of the
experimental region that are sparsely observed.

Deterministic strategies for selecting the values of the inputs at which to observe
the response choose values so they are spread evenly throughout or fill the exper-
imental region. There are several methods that might be used to accomplish this,
depending on what one means by “spreading points evenly” or “filling the experi-
mental region.”

A very simple strategy is to select points according to a regular grid pattern
superimposed on the experimental region. For example, suppose the experimen-
tal region is the unit square [0, 1]2 = [0, 1] × [0, 1]. If one wishes to observe
the response at 25 evenly spaced points, one might consider the grid of points
{0.1, 0.3, 0.5, 0.7, 0.9} × {0.1, 0.3, 0.5, 0.7, 0.9}.

In the general case, there are several statistical strategies that one might adopt
to construct a design having a given number of runs. One possibility is to select a
simple random sample of points from the experimental region. In theory, there are
infinitely many points between 0 and 1, and this makes selecting a simple random
sample problematic. In practice, one only records numbers to a finite number of
decimal places, and thus, the number of points between 0 and 1 can be regarded as
finite. Therefore, one can assume the experimental region consists of finitely many
points and select a simple random sample of these.

Simple random sampling in computer experiments can be quite useful. If the in-
puts are sampled according to some distribution (e.g., a distribution describing how
the inputs are distributed in a given application), one can get a sense of how the
corresponding outputs are distributed, and this can serve as the basis for inferences
about the distribution of the output. However, for many purposes, other sampling
schemes, such as stratified random sampling, are preferable to simple random sam-
pling. Even if the goal is simply to guarantee that the inputs are evenly distributed
over the experimental region, simple random sampling is not completely satisfac-
tory, especially when the sample sizes are relatively small. With small samples in
high-dimensional experimental regions, the sample will typically exhibit some clus-
tering and fail to provide points in large portions of the region.

To improve the chances that inputs are spread “evenly” over the experimental re-
gion, one might use stratified random sampling. If a design consisting of ns runs of
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the simulator is desired, one would divide the experimental region into ns strata,
spread evenly throughout the experimental region, and randomly select a single
point from each. Varying the size and position of the strata, as well as sampling
according to different distributions within the strata, allows considerable flexibility
in selecting a design. This may be more or less useful, depending on the purpose of
the computer experiment. For example, one may wish to explore some portions of
the experimental region more thoroughly than others. However, if the goal is simply
to select points that are spread evenly throughout the experimental region, spacing
the strata evenly and sampling each according to a uniform distribution would seem
the most natural choice.

If the output is thought to depend on only a few of the inputs (sometimes referred
to as “factor sparsity”), then one might want to be sure that points are evenly spread
across the projection of the experimental region onto these factors. A design that
spreads points evenly throughout the full experimental region will not necessarily
have this property. Alternatively, if one believes the model is well approximated
by an additive model (a model that is the sum of terms that are each a function of
only one of the inputs), a design that spreads points evenly across the range of each
individual input (the one-dimensional projections) might be desirable. For ns runs
of the simulator, it can be difficult to guarantee that a design has such projection
properties, even with stratified sampling. Latin hypercube sampling, the topic of the
next subsection, is a way to generate designs that spread observations evenly over
the range of each input separately.

5.2.2 Designs Generated by Latin Hypercube Sampling

Designs generated by Latin hypercube sampling are called Latin hypercube designs
(LHD) throughout this book. Consider the simple case where the experimental re-
gion is the unit square [0, 1]2. To obtain an LHD consisting of ns points, divide each
axis [0, 1] into the ns equally spaced intervals [0, 1/ns), . . . , [(ns − 1)/ns, 1]. This
partitions the unit square into n2

s cells of equal size. Now, fill these cells with the
integers 1, 2, . . . , ns so as to form a Latin square, i.e., by an arrangement in which
each integer appears exactly once in each row and in each column of this grid of
cells (see the left panel of Fig. 5.1). Select one of the integers at random. In each of
the ns cells containing this integer, select a point at random. The resulting ns points
are an LHD of size ns; the right panel of Fig. 5.1 is an example of an LHD of run
size ns = 3 that can be constructed from the Latin square in the left panel.

Every LHD has points that are spread evenly over the values of each individual
input variable. Of course, an LH sample could select points that are spread evenly
along the diagonal of the square (see Fig. 5.3). Although the points in such a sam-
ple have projections that are evenly spread out over the values of each input vari-
able separately, we would not regard them as evenly spread out over the entire unit
square. Furthermore, recalling the discussion of space-filling in Sect. 5.2.1, LHDs
consisting of ns points along the diagonal do not become dense in the unit cube as
ns increases.
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A general procedure for obtaining an LH sample of size ns from X = (X1, . . . ,
Xd) when X1, . . . , Xd are independently distributed will now be described. (Stein
(1987) discusses the implementation of LH sampling when X has dependent com-
ponents, but this case is not considered here.) First consider the case where each Xi

component is uniformly distributed over [0, 1] and an LH sample of size ns is to be
selected. Divide the [0, 1] domain of each Xk, 1 ≤ k ≤ d, into ns intervals. The set
of all possible Cartesian products of these intervals constitutes a partitioning of the
d-dimensional sample space into nd

s “cells.” Select ns cells from the nd
s population

of cells in such a way that the projections of the centers of each of the cells onto
each of the d axes yield ns distinct points; then choose a point at random in each
selected cell.

Now consider the general case where Xk has marginal distribution Fk(·) and finite
support [ak, bk], 1 ≤ k ≤ d. An LH sample over

∏d
k=1[ak, bk], is constructed as

follows. Scale and shift each marginal random variable using Xk =
Xk−ak
bk−ak

so that
now Xk can be assumed to have support [0, 1]; the inverse transform is used to place
the support back on the original scale. Divide the kth axis into ns parts, each of which
has equal probability, 1/ns, under Fk(·); thus the division points for the kth axis are

F−1
k

(

1
ns

)

, . . . , F−1
k

(

ns − 1
ns

)

.

To choose ns of the nd
s cells so created, let Π = (Π jk) be an ns × d matrix having

permutations of {1, 2, . . . , ns} as columns which are randomly selected from the set
of all possible permutations. Then the “lower left-hand” coordinates of the jth cell
in IRd are

F−1
k

(

n−1
s

(

Π jk − 1
))

, k = 1, . . . , d , j = 1, . . . , ns ,

with the convention F−1
k (0) = 0. For j = 1, . . . , ns, let X jk, k = 1, . . . , d, denote the

kth component of the jth vector, X j. Then define the LH sample to have values

X jk = F−1
k

(

1
ns

(

Π jk − 1 + U jk

)

)

,

where the {U jk} are independent and identically distributed U[0, 1] deviates, for
j = 1, . . . , ns and k = 1, . . . , d. In sum, the jth row of Π identifies the cell that X j is
sampled from, while the corresponding (independently generated) uniform deviates
determine the location of X j within the sampled cell. (The use of non-equal width
probability intervals has been explored by Mease and Bingham (2006) and Dette
and Pepelyshev (2010).)

Example 5.1. Suppose X = (X1, X2) is to be uniformly distributed over [0, 1]2 so that
F−1

k (w) = w, 0 < w < 1. To obtain an LH sample of size ns = 3, say X j = (X j1, X j2),
j = 1, 2, 3, compute
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X jk = F−1

(

1
3

(

Π jk − 1 + U jk

)

)

=
1
3

(

Π jk − 1 + U jk

)

for j = 1, 2, 3, k = 1, 2, Π = (Π jk) is 3 × 2, and U = (U jk) has independent U(0, 1)
components. The actual X sample depends on the randomly selected Π and the
{U jk} j,k.

To envision the pattern of the LH sample, divide the unit interval in each dimen-
sion into [0,1/3), [1/3,2/3), and [2/3,1], yielding a partition of [0, 1]× [0, 1] into nine
squares (cells) of equal area. In the LH sample, each of these subintervals will be
represented exactly once in each dimension. For simplicity of discussion, suppose
one labels these subintervals as 1, 2, and 3 in the order given above. One possible
LHD would involve points randomly sampled from the (1,1), (2,3), and (3,2) squares
and another possible design from the (1,2), (2,3), and (3,1) squares. Figure 5.1 plots
the cells selected by the second design. These two selections correspond to the per-
mutations

Π =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1
2 3
3 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and Π =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2
2 3
3 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.2.1)

Note that in each dimension, each subinterval appears exactly once. Because each
subinterval is of length 1/3, the addition of U jk/3 to the left-hand boundary of the
selected subinterval serves merely to pick a specific point in it. �

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

1

3

1

2

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(1,2)

(2,3)

(3,1)

Fig. 5.1 Left panel: a 3 × 3 Latin square; right panel: the Latin hypercube sample (1,2), (2,3), and
(3,1) which can be constructed from the Latin square

In the computer experiment setting, the input variables are not regarded as ran-
dom for purposes of determining the experimental design and hence are denoted
x = (x1, x2, . . . , xd). As in Example 5.1, suppose that each input variable has
been scaled to have domain [0,1]. Denoting the kth component of x j by x j,k for
k = 1, . . . , d, suppose one obtains an LHD from a givenΠ as follows:

x j,k =
Π jk − 0.5

ns
, j = 1, . . . , ns; k = 1, . . . , d .
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This corresponds to taking U jk = 0.5 for each j = 1, . . . , ns and k = 1, . . . , d rather
than as a sample from a U[0, 1] distribution. The “cells” are now identified with all
d-dimensional Cartesian products of the intervals {[0, 1

ns
), [ 1

ns
, 2

ns
), . . . , [1 − 1

ns
, 1]},

and each x j is sampled from the center of the cell indicated by the jth row ofΠ . An
example of an LHD for ns = 5 and d = 2 is given in Fig. 5.2 with its associated Π
matrix.
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Fig. 5.2 A space-filling Latin hypercube design and the corresponding permutation Π

As mentioned previously, LHDs need not be space-filling over the full experi-
mental region. To illustrate this point visually, consider the LHD for ns = 5 and
d = 2 that is shown in Fig. 5.3, which one might not view as space-filling.
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Fig. 5.3 A non-space-filling Latin hypercube design and the corresponding permutation Π

One consequence of computing responses at this set of inputs is that one would
expect a predictor fitted using this design to generally perform well only for x1 ≈ x2.
For example, consider the deterministic function



156 Chapter 5 Space-Filling Designs

y(x1, x2) =
x1

1 + x2
, X = [0, 1] × [0, 1] .

The MLE-EBLUP (Sect. 3.3) was fitted to the observed responses using the training
data for both of the designs shown in Figs. 5.2 and 5.3. The predictor was based on
the stochastic process

Y(x1, x2) = β0 + Z(x1, x2),

where Z(·) is a zero mean Gaussian process (GP) with unknown process variance
and product power exponential correlation function (2.2.11).

The prediction error |y(x1, x2)− ŷ(x1, x2)| was calculated on a grid of 100 equally
spaced (x1, x2) points for each design. Figure 5.4 plots a comparison of the pre-
diction errors for the two designs where the symbol “1” (“0”) indicates that the
prediction error for the design of Fig. 5.3 is larger (smaller) than the prediction error
for the design of Fig. 5.2. The space-filling design of Fig. 5.2 clearly yields a better
predictor over most of the design space except near the diagonal where the LHD in
Fig. 5.3 collects most of its data.
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Fig. 5.4 Comparison of the LHDs in Figs. 5.2 and 5.3. The plotting symbol “1” (“0”) at location
(x1, x2) means that the LHD in Fig. 5.2 had lower (higher) mean squared prediction error than the
LHD in Fig. 5.3

It is apparent from this discussion that although all LHDs possess desirable
marginal properties, only a subset of these designs are truly “space-filling.” Sec-
tion 5.3 will discuss design criteria that have been successfully applied to select
space-filling LHDs for use in computer experiments.

LHDs have been used extensively in the computer experiments literature; see, for
example, Welch et al. (1992) and Bernardo et al. (1992). Other examples include
Kennedy and O’Hagan (2001), Butler (2001), and Craig et al. (2001). Because of
their widespread use, it is worth examining in some detail the properties of LHDs
in the setting where all inputs are environmental variables.

Designs based on LH sampling were introduced by McKay et al. (1979) as a
competitor to simple random sampling and stratified sampling when estimating the
mean, variance, or distribution function of an output random variable. Stein (1987)
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and Owen (1992a) established additional large sample properties of LH sampling
for estimating the mean E[Y]. Looking carefully at some of the results in these
papers will provide greater insight into the actual properties of LHDs. It will then
be worthwhile to reconsider their use in computer experiments.

5.2.3 Some Properties of Sampling-Based Designs

Suppose that a random vector of inputs X = (X1, . . . , Xd) to the computer output y(·)
is distributed according to the known joint distribution F(·) over the experimental
region X ≡ [0, 1]d ⊂ IRd (possibly after shifting and rescaling). Based on a sample
X1, X2, . . . , Xns from the distribution F(·), suppose one is interested in estimating
the mean of g(Y), assumed to exist and finite, where g(·) is a known function of the
real-valued argument and Y = y(X). This mean is

μ = E[g(Y)] =
∫

X
g(y(x)) dF(x).

Now consider the properties of the naive moment estimator

T = T
(

y(X1), . . . , y(Xns )
)

=
1
ns

ns
∑

j=1

g(y(X j))

when X1, X2, . . . , Xns are either a simple random sample, a stratified random sam-
ple, or a Latin hypercube sample. To derive the properties of T , assume that the
coordinates of X are independent, each with cumulative distribution function F(·).
Let

σ2 = Var[g(Y)] .

For clarity denote the estimator T by TR when simple random sampling is used,
by TS when stratified random sampling is used, and by TL when LH sampling is
used. McKay et al. (1979) show the following:

Theorem 5.1. 1. If proportional sampling is used, i.e., if the sample size for stratum
i is proportional to the probability under F(·) of a point belonging to stratum i, then
Var[TS ] ≤ Var[TR]. 2. If y(x1, . . . , xd) is monotonic in each of its arguments and
g(w) is a monotonic function of w ∈ IR, then Var[TL] ≤ Var[TR].

Section 5.7.1 of the Chapter Notes provides a proof of the second part of this
theorem.

At this point a few cautions are in order. First, these results show only that for
estimating the expected value of g(Y) over the experimental region, designs based
on proportional sampling are better than those based on simple random sampling,
and, under certain conditions, LHDs are better than those based on simple random
sampling. Designs based on LH sampling need not always be better than designs
based on simple random sampling nor is it known whether designs based on LH
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sampling are better than other types of designs, such as stratified sampling. Note,
however, that the formulas derived in McKay et al. (1979) do allow one to compare
designs based on LH and stratified proportional sampling.

Second, in most computer experiments, one does not know the relationship be-
tween the output y(x) and the component inputs x1, . . . , xd. It is unlikely that one
would be willing to assume this relationship is monotonic. And if one makes such
an assumption, the conditions on g(·) given in Theorem 5.1 imply that the extrema
of g(·) are on the boundary of the experimental region. If, as is often the case, one
is interested in finding the extrema of g(·) and one knows the extrema are on the
boundary of the experimental region, one would want to take observations near or
on the boundary rather than using an LHD.

Third, the above properties are relevant if one is interested in estimating the ex-
pected value of g(Y) over the experimental region. To illustrate, let I{E} denote the
indicator function (1 or 0, as E is true or false) and y f ixed be a given point in IR.
Then setting g(y) = y yields the mean of Y over the experimental region, while set-
ting g(y) = I{y ≤ y f ixed} produces the cumulative distribution function of Y at y f ixed.
However, finding the expected value of g(Y) over the experimental region is not
usually the goal in computer experiments. More typically, the goal is to fit a model
that approximates g(·) over the experimental region or to determine the points in the
experimental region that are extrema of g(·). Thus, although LHDs are quite popular
in computer experiments, the above results do not indicate whether they have good
properties in many of the situations where computer experiments are conducted.
Better justification for the use of LHDs comes from the results to be discussed next.

Additional properties of sample means based on Latin hypercube samples have
been established by Stein (1987) and Owen (1992a). The remainder of this sec-
tion takes g(y) = y and uses Y = 1

ns

∑ns

j=1 y(X j) to estimate E[y(X)] where, re-
call, X1, X2, . . . , Xns is a random sample with distribution X. Let Fi(·) denote the
marginal distribution of Xi, the ith coordinate of X. As above, assume the coordi-
nates of X are independent so

F(x) =
d

∏

i=1

Fi(xi).

For 1 ≤ j ≤ d, let X− j denote X omitting X j,

F− j(x− j) =
d

∏

i=1,i� j

Fi(xi)

the distribution function of X− j, x− j the corresponding argument extracted from x,
and X− j denote the support of F− j(·). Assuming

∫

X y2(x) dF(x) < ∞, decompose
y(x) as follows. Define

μ =

∫

X
y(x) dF(x) and α j(x j) =

∫

X− j

(y(x) − μ) dF− j(x− j) .
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Then μ is the overall mean, the {α j(x j)} are the “main effect” functions correspond-
ing to the coordinates of x, and r(x) = y(x) − μ −

∑d
i=1 αi(xi) is the residual (from

additivity) of y(x). These quantities are continuous analogs of an “analysis of vari-
ance” decomposition of y(x). Further reason for this designation is the fact that

∫ 1

0
α j(x j) dF j(x j) = 0 and

∫

X− j

r(x) dF− j(x− j) = 0

for any x j and all j (see also Sect. 7.4).
Stein (1987) shows that for large samples, Var[Y] is smaller under LH sampling

than simple random sampling unless all main effect functions are 0. To be precise,
Stein (1987) proves the following expansions for the variance of Y under the two
sampling schemes:

Theorem 5.2. Under Latin hypercube sampling and simple random sampling we
have

VarLHS

[

Y
]

=
1
ns

∫

X
r2(x) dF(x) + o(n−1

s ) and

VarS RS

[

Y
]

=
1
ns

∫

X
r2(x) dF(x) +

1
ns

d
∑

i=1

∫ bi

ai

α2
i (xi) dFi(xi) + o(n−1

s ) ,

respectively.

The implication of this expansion is that, unless all α j(·) are identically 0, in the limit
LH sampling has a smaller (order 1/ns) variance than simple random sampling.

Further, not only can the variance of Y be estimated but also the normality of
Y can be established. For simplicity, assume X = [0, 1]d and that F(·) is uniform.
More general cases can often be reduced to this setting by appropriate transforma-
tions. Owen (1992a) shows that Y computed from inputs based on LH sampling
is approximately normally distributed for large samples under mild conditions; he
proves:

Theorem 5.3. If y(x) is bounded, then under LH sampling,
√

ns (Y − μ) tends in
distribution to N

(

0,
∫

X r2(x) dx
)

as ns → ∞.

Theorem 5.3 can be used as the basis for statistical inference about μ. Owen (1992a)
also provides estimators of the asymptotic variance

∫

X
r2(x) dx

to facilitate application of these results to computer experiments.
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Section 5.7.2 of the Chapter Notes describes the use of LHDs in a generalization
of these constant mean results to a regression setting, which has potential for use in
computer experiments.

5.3 Latin Hypercube Designs with Additional Properties

Figure 5.3 displays an LHD that would probably not be considered space-filling in
[0, 1]2 because the points lie along a straight line and are perfectly correlated. By
comparison, the LHD in Fig. 5.2 appears more space-filling in [0, 1]2, and the points
appear much less correlated. ls it possible to identify special types of LHDs, or ex-
tensions of LHDs, that have desirable properties? For example, are there LHDs that
are space-filling in X or that have space-filling projections onto subspaces of dimen-
sion greater than 1? As in the previous section, assume (after possible rescaling) that
X = [0, 1]d.

5.3.1 Latin Hypercube Designs Whose Projections Are
Space-Filling

One extension of LHDs, based on what are known as orthogonal arrays, produces
designs with attractive projection properties. An ns × d matrix O all of whose en-
tries come from a given set of s symbols are said to be an orthogonal array (OA) of
strength t (t ≤ d) provided that in every ns × t submatrix of O, all st possible rows
appear the same number of times. The collection of all ns × d OAs having entries
from a set of s symbols of strength t is denoted OA(ns, d, s, t). If O ∈ OA(ns, d, s, t),
the common number of times that all st possible rows appear in any ns × t subma-
trix is denoted by λ. For detailed discussions of the properties, applications, and
construction of orthogonal arrays, see Raghavarao (1971), Hedayat et al. (1999), or
Wu and Hamada (2009). A large library of OAs is available at the website http://
neilsloane.com/oadir/maintained by Neal Sloane.

Example 5.2. The simplest OA has strength t = 1. For example, any s × d matrix
each of whose columns are the integers 1, 2, . . . , s in some order is an OA(s, d, s, 1)
(with λ = 1). For example, if s = 5 and d = 2,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3 5
4 2
2 1
1 3
5 4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1
2 2
3 3
4 4
5 5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

http://neilsloane.com/oadir/
http://neilsloane.com/oadir/
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are both OA(5, 2, 5, 1) arrays. Orthogonal arrays of strength t > 1 are more chal-
lenging to construct. It is easy to check that

O =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.3.1)

is an OA(9, 3, 3, 2), again with λ = 1. Geometrically, the same nine points result
from projecting the 3-D points of the OA onto any 2-D subspace. �

Every OA having strength t = 1 and λ = 1 can be transformed into an LHD as
follows. Continuing Example 5.2, suppose that O = (O j,k) ∈ OA(s, d, s, 1) which
necessarily has λ = 1. Then let X be the s × d matrix with entry

x j,k =
O j,k − 0.5

s

in row j and column k, j = 1, . . . , s and k = 1, . . . , d. The s rows of X determine s
points in [0, 1]d. By construction, X is an s-point LHD in [0, 1]d (see the discussion
following (5.2.1)). Notice that the two OA(5, 2, 5, 1) designs in Example 5.2 produce
the LHDs in Figs. 5.2 and 5.3.

Because of this connection between orthogonal arrays having t = 1 = λ and
LHDs, it will not be completely surprising to learn that orthogonal arrays of strength
t ≥ 2 can be used to define extensions of LHDs. In particular, orthogonal arrays of
strength t ≥ 2 can be used to generate designs with the property that all projections
of the points in the design onto any t (or fewer) dimensions are “space-filling.” Owen
(1992b) and Tang (1993) describe two approaches to use orthogonal arrays to form
LHDs with higher dimensional, space-filling projections.

The Owen (1992b) procedure for generating an ns-run space-filling design in
[0, 1]d from the columns of an ns×d orthogonal array is as follows. Suppose that the
generating orthogonal array has strength t, then projections of the resulting design
in t or fewer of the coordinates will form a regular grid. Example 5.3 illustrates the
method in d = 3 dimensions starting with an orthogonal array of strength t = 2.

Example 5.3. Start with the 9 × 3 OA O in (5.3.1) which has s = 3 symbols and
strength t = 2. To construct a design on the unit cube [0, 1]3 from O, divide the cube
into a 3×3×3 grid of 27 equi-volume cells. Label the cells using (1,1,1) to denote the
cell [0, 1

3 ]× [0, 1
3 ]× [0, 1

3 ], (1,1,2) to denote the cell [0, 1
3 ]× [0, 1

3 ]× [ 1
3 ,

2
3 ], (1,1,3) to

denote the cell [0, 1
3 ] × [0, 1

3 ]× [ 2
3 , 1], . . . , and (3,3,3) the cell [ 2

3 , 1]× [ 2
3 , 1]× [ 2

3 , 1].
Each row of O corresponds to one of these 27 cells. The points in the centers of
the nine cells form a nine-run design on [0, 1]3. Projected onto any 2-D subspace,
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the design forms a regular 3 × 3 grid. Projected onto any 1-D subspace (axis), the
design produces a regular grid at the centers of the intervals [0, 1

3 ], [ 1
3 ,

2
3 ], and [ 2

3 , 1];
there are three runs projecting onto each grid point (hence the 1-D projections are
not space-filling in the way in which LHDs are). Selecting a point at random from
each of these cells results in a design whose projections onto any two-dimensional
subspace, while not a regular grid, is space-filling within the nine blocks of the
subspace. This random selection of points would prevent the 1-D projections from
yielding multiple points at the same locations. �

Alternatively, Tang (1993) uses an OA to specify a restricted permutation of
{1, 2, . . . , ns} so that t and lower dimensional subspaces have similar space-filling
projections to those of Owen (1992b). Fix O ∈ OA(ns, d, s, t). A permutation Π
of the integers 1, . . . , ns is selected for each column of O as follows. Suppose that
λ is the number of times that each of the st rows appears in any ns × t subarray
of O. Then each k ∈ {1, . . . , s} appears λst−1 times in every column of O. Fix a
column, and replace the λst−1 occurrences of k by a permutation of the integers
(k− 1)λst−1 + 1, (k− 1)λst−1 + 2, . . . , kλst−1. The LHD formed from thisΠ will have
projections onto all subspaces of dimension ≤ t uniformly distributed (including,
of course, univariate projections). Tang (1993) refers to an LHD constructed in this
way as an OA-based LHD. Note that in the step for constructing Π from the ini-
tial orthogonal array, many choices are possible for the permutations; hence from a
given initial orthogonal array, many OA-based LHDs can be constructed. One can
impose an additional desirable criterion to select among the resulting LHDs.

Example 5.4. Start with the OA(4, 2, 2, 2)

O =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1
1 2
2 1
2 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

To obtainΠ , in each column of O, replace the symbol 1 with a random permutation
of the integers {1, 2} and the symbol 2 with a random permutation of the integers
{3, 4}. For example, suppose that in column 1, the first occurrence of the symbol
1 is replaced by 1 and the second occurrence of the symbol 1 is replaced by 2.
Also replace the first occurrence of the symbol 2 in column 1 by 4 and the second
occurrence of the symbol 2 by 3. Then in column 2 replace the first occurrence of
the symbol 1 by 2 and the second occurrence of the symbol 1 by 1, and replace the
first occurrence of the symbol 2 in column 2 by 3 and the second occurrence of the
symbol 2 by 4. This gives the LHD

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2
2 3
4 1
3 4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�

Example 5.5. Again start with the 9×3 OA O in (5.3.1). To obtainΠ , in each column
replace the symbol 1 with a random permutation of the integers {1, 2, 3}, the symbol
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2 with a random permutation of the integers {4, 5, 6}, and the symbol 3 by a random
permutation of the integers {7, 8, 9}. As illustrated in Example 5.4, the permutations
can be different in each column. For example, use (1, 3, 2), (3, 2, 1), and (2, 1, 3) for
the 1’s in columns 1, 2, and 3, respectively. Use (6, 5, 4), (4, 5, 6), and (5, 4, 6) for
the 2’s in columns 1, 2, and 3, respectively. Finally use (9, 7, 8), (8, 7, 9), and (7, 9,
8) for the 3’s in columns 1, 2, and 3, respectively. This gives the LHD

⎛
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⎜
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⎜

⎜

⎜

⎜
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⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎝

1 3 2
3 4 5
2 8 7
6 2 4
5 5 9
4 7 1
9 1 8
7 6 3
8 9 6
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⎟

⎠

. (5.3.2)

Selecting a random point from each of the cells of the (scaled) version of the
LHD (5.3.2) gives the three 2-D projections shown in Fig. 5.5. These plots show
that 2-D projections of the OA-based LHD are space-filling in the sense of placing
one run in each of the nine equal-sized square cells of [0, 1]2. �
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Fig. 5.5 The three 2-D projections of a scaled and randomized version of the OA-based LHD given
in (5.3.2)

Another way to think about an OA-based LHD is that the structure of the or-
thogonal array is used to restrict the placement of the points within the unit hyper-
cube (for this discussion assume that our interest is in LHDs on the d-dimensional
unit hypercube). In the context of the previous discussion, for the kth column of
O ∈ OA(ns, d, s, t), consider the non-overlapping division of [0, 1] into s equal
length intervals of the form [0, 1

s ) ∪ [ 1
s ,

2
s ) ∪ · · · ∪ [ s−1

s , 1]. Because O is an or-
thogonal array, each of the s symbols appears equally often in each column; let r
denote the number of times each symbol appears in a given column. For a given
level l j = 0, 1, . . . , s − 1 define the non-overlapping division of the interval [ l j

s ,
l j+1

s )
into the r subintervals
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[

l j

s
+

i
sr

,
l j

s
+

i + 1
sr

)

, i = 0, 1, . . . , r − 1.

For column k let pk1 , pk2 , . . . , pkr , be a random permutation of the integers
0, 1, . . . , r − 1. Then the r points corresponding to level l j are randomly (or system-
atically) placed one each in the Cartesian product of intervals

[

l j

s
+

pki

sr
,

l j

s
+

pki + 1

sr

)

, k = 1, 2, . . . , d.

Notice for each column of OA(ns, d, s, t) that ns = rs and the Latin hypercube in-
tervals [ i

ns
, i+1

ns
) are identical to the substratification described so that the resulting

array, with placement of points imposed by the strength t orthogonal array, is indeed
an LHD with t-dimensional projection properties consistent with OA(ns, d, s, t).

Although the methods above extend the projection properties of LHDs to higher
dimensions, they have the drawback that the base OAs exist only for certain values
of ns and d. Indeed, because ns must be be a constant multiple of st, they need not
be available for the larger s and t that would be desirable in some computer experi-
ment applications. Recently Loeppky et al. (2012) introduced a more flexible class
of designs, called projection array-based designs that have space-filling properties
analogous to OA-based LHDs but which exist for all run sizes.

Another criterion for selecting space-filling LHDs is based on examining the
correlations of the input variables. The idea for this approach is the observation
that scatterplots of uncorrelated variables “appear” more space-filling than do plots
of highly correlated variables. This suggests that a possible strategy for avoiding
LHDs that do not appear to be space-filling in [0, 1]d is to select those for which the
points are uncorrelated. The Owen (1992b) and Tang (1993) methods for construct-
ing LHDs with an underlying orthogonal array structure can be viewed as assuring
that, in some dimensions, the points in the LHD appear uncorrelated. Section 5.3.3
gives a fuller discussion of orthogonal LHDs. Finally, Cioppa and Lucas (2007)
explore methods for forming nearly orthogonal designs, not necessarily LHDs, for
arbitrary numbers of runs.

5.3.2 Cascading, Nested, and Sliced Latin Hypercube Designs

Cascading LHDs, nested LHDs, and sliced LHDs are LHDs with additional prop-
erties. Introduced in Handcock (1991), cascading LHDs allow one to explore both
the local (in small subregions) and the global (over the entire experimental region)
behavior of the response. Cascading LHDs can be described as follows. Generate
an LHD. At each point of this design, consider a small region around the point. In
this small region, generate a second LHD. The result is a cluster of small LHDs and
is called a cascading Latin hypercube design.

Qian (2009) introduced nested LHDs. A nested LHD having ns runs and a lay-
ers is an LHD with the property that it can be used to generate a series of a − 1
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successively smaller LHDs having fewer runs. One application of nested LHDs is
to computer experiments involving codes with multiple levels of accuracy, in which
experiments with higher levels of accuracy are more expensive (and hence are ob-
served at fewer points) than those of lower accuracy. An ns-run nested LHD can be
used to determine the points at which the lowest accuracy experiment is run. The
successively smaller layers of this LHD can be used to determine the points at which
the successively higher accuracy experiments are run. Using a nested LHD guaran-
tees that the points at which any particular level-of-accuracy experiment is run are
also observed at all lower accuracy experiments. See Kennedy and O’Hagan (2000),
Qian et al. (2006), and Qian and Wu (2008) for more on such experiments.

Nested LHDs with a given number of run sizes need not exist. For example,
suppose one uses an LHD consisting of ns runs in IRd. After fitting a predictor to
the data, suppose one decides the fit is inadequate and wishes to make ms additional
runs of the computer simulator. Is it possible to select the ms runs in such a way that
the resulting set of ns + ms runs is an LHD? The answer is no. Figure 5.6 displays
a two-point LHD in two dimensions with the two points randomly placed in two of
the four cells (outlined by the solid lines). This cannot be extended to a three-point
LHD in two dimensions, because both points are in the same cell when the design
space is partitioned into nine cells (outlined by the dashed lines). However, the two-
point LHD could be extended to a four-point LHD in two dimensions because the
two points would now be in two separate cells when the design space is partitioned
into 16 cells.

Fig. 5.6 A two-point LHD that cannot be extended to a three-point LHD. Points are placed at
random in the four cells for a two-point LHD. The cells are outlined by the solid lines. The dashed
lines outline the nine cells for a three-point LHD. Notice both points are in the same cell
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Returning to the case of the previous paragraph, one might ask when will a nested
LHD having ns and ms runs exist? Suppose the runs of the original LHD were cho-
sen at random in the ns cells and ms = ans for some positive integer a. Then it
is possible to add the ms points in such a way the ms + ns points form an LHD.
In the initial LHD, the domain of each input variable must be subdivided into ns

intervals. Subdivide each of these ns intervals into a + 1 intervals so that now the
domain of each input variable is subdivided into (a + 1)ns intervals. The Cartesian
product of these intervals constitutes a partitioning of the d-dimensional input space
into [(a + 1)ns]d cells. Each of the ns points in the original design is in exactly one
of these cells. Choose a subset of (a + 1)ns cells in such a way that they include
the ns cells containing points from the original design and so that the projections of
the centers of all (a + 1)ns points onto each component axis yield (a + 1)ns distinct
points on the axis. In terms of the method described before Example 5.1, this will
mean that one can select only certain (a + 1)ns × d matrices Π having permutations
of {1, 2, . . . , (a+1)ns} as columns. Notice that if in the original LHD the points were
chosen at the center of the ns cells, it is still possible to add ms points in such a way
that the resulting design is an LHD with points at the center of cells, provided a is
even.

Qian (2009) also investigated the properties of nested LHDs for estimating the
means of functions and showed that nested LHDs can outperform i.i.d. sampling
under conditions analogous to those in Theorem 5.1.

Instead of adding points to an existing LHD in such a way that the result is also
an LHD, one could consider the “reverse” problem. Do there exist LHDs with the
property that they can be divided into several smaller LHDs? One possibility is to
generate an ans-point LHD as described in the previous paragraphs. First generate
an ns-point LHD. Add (a − 1)ns points as described in the previous paragraphs to
generate an ans-point LHD. By construction, the resulting design is both an LHD
and contains a subset of ns points (the starting design) which is also an LHD. More
generally, one could start with an ns-point LHD, extend it to an a1ns-point LHD,
then extend this a1ns-point LHD to an a1a2ns-point LHD, and continue on to an
a1a2 · · · abns-point LHD. The final design contains subsets of points that are ns-
point, a1ns-point, a1a2ns-point, . . . ,, and a1a2 · · · ab−1ns-point LHDs.

Qian (2012) introduced another type of LHD which he called a sliced LHD. A
sliced LHD for d inputs with ns = ams runs has the property that the LHD can
be subdivided into a LHDs of size ms × d. These a divisions of the ns-run LHD
are called slices and the original ns-run LHD a sliced LHD. The motivation for
such a design results from considering a computer experiment having one or more
quantitative inputs and a single qualitative input having a values. Each slice provides
a space-filling design for ms runs of the code at a fixed value of the qualitative
variable. If the qualitative variable has no significant effect on the response, the
slices collapse into a larger LHD.

Qian (2012) showed that sliced LHDs can outperform both i.i.d. sampling and
standard LH sampling in terms of variance reduction in settings where one wishes
to estimate a weighted average of expected values of a functions under conditions
analogous to those in Theorem 5.1.



5.3 Special Latin Hypercube Designs 167

Two recent extensions of LHDs can be found in Ba and Joseph (2011) and Joseph
et al. (2015). Ba and Joseph (2011) discussed a class of designs, called multilayer
designs, that have good space-filling properties. These designs are an alternative to
LHDs and are developed by splitting two-level factorial designs into multiple layers.
Joseph et al. (2015) introduced a maximum projection criterion that produces LHDs
with good projection properties (see Sect. 5.4).

5.3.3 Orthogonal Latin Hypercube Designs

Another attempt to find LHDs that have additional good properties is due to Ye
(1998). He discussed a method for constructing LHDs for which all pairs of columns
are orthogonal to each other, where a pair of columns is defined to be orthogonal if
their inner product is zero. Recall that the columns of an ns×d LHD are formed from
an ns×d matrixΠ whose columns are permutations of the integers {1, 2, . . . , ns}. By
restricting to only certain permutations of {1, 2, . . . , ns}, Ye (1998) was able to gen-
erate LHDs with columns, once properly reflected and rescaled, that are orthogonal;
he terms these orthogonal Latin hypercubes (OLHs). Ye’s method of construction
for ns = 2m−1 and d = 2m − 2 where m is an integer > 1 is as follows.

Let e be the 2m−1 × 1 column vector with entries {1, 2, . . . , 2m−1}. Ye (1998) uses
the notation (r s) to represent the permutation of rows of e (more generally, the
permutation of the rows of any column vector) obtained by transposing rows r and s.
For example, if m = 3, then e = (1, 2, 3, 4) and (1 3) of e is (3, 2, 1, 4). Products
of such permutations denote the permutation resulting from applying each in turn,
i.e., applying their composition. For example, (2 4)(1 3) of e = (1, 2, 3, 4) is
(2 4) of (3, 2, 1, 4), namely, (3, 4, 1, 2).

For a given integer m > 1, Ye (1998) defines the m − 1 permutations

Ak =

2m−k−1
∏

j=1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2k−1
∏

i=1

(

( j − 1)2k + i j2k + 1 − i
)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, k = 1, . . . , m − 1

where
∏

represents the product (or composition) of permutations. For example, if
m = 3,

A1 =

2
∏

j=1

(( j − 1)2 + 1 j2)

= (1 2)(3 4)

A2 =

2
∏

i=1

(i 4 + 1 − i)

= (1 4)(2 3) .
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Next, let M be the 2m−1 × (2m − 2) matrix with columns
[

e A1e · · · Am−1e Am−1 A1e · · · Am−1 Am−2e
]

.

For example, if m = 3, M is the 4 × 4 matrix

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 2 4 3
2 1 3 4
3 4 2 1
4 3 1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

For a given integer k between 1 and m − 1, let

Bm−k =

(

−1
1

)

, Bi =

(

1
1

)

for all i � m − k and define

ak =

m−1
⊗

j=1
B j

where ⊗ is the Kronecker product. For example, if m = 3, with k = 1,

a1 =

(

1
1

)

⊗
(

−1
1

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1
1

−1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and with k = 2,

a2 =

(

−1
1

)

⊗
(

1
1

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1
−1

1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Use � to denote the elementwise product of two vectors, for example,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1
1

−1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1
−1

1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
−1
−1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Next, denote the 2m−1 × 1 vector of 1s by 1. Ye (1998) defined S to be the 2m−1 ×
(2m − 2) matrix with columns

[

1 a1 · · · am−1 a1 � a2 · · · a1 � am−1

]

.

For example, when m = 3,

S =
[

1 a1 a2 a1 � a2

]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Let T = M � S. For example, when m = 3,

T = M � S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −2 −4 3
2 1 −3 −4
3 −4 2 −1
4 3 1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Consider the (2m + 1) × (2m − 2) matrix O whose first 2m−1 rows are T, whose
next row consists of all 0s, and whose last 2m−1 rows are the “mirror image” of T,
namely, the rows of −T in reverse order. For example, when m = 3,

O =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −2 −4 3
2 1 −3 −4
3 −4 2 −1
4 3 1 2
0 0 0 0

−4 −3 −1 −2
−3 4 −2 1
−2 −1 3 4
−1 2 4 −3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From O remove the row consisting of all 0s and rescale levels to be equidistant. Let
O∗ denote the resulting 2m × (2m − 2) matrix. For example, when m = 3,

O∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.5 −1.5 −3.5 2.5
1.5 0.5 −2.5 −3.5
2.5 −3.5 1.5 −0.5
3.5 2.5 0.5 1.5

−3.5 −2.5 −0.5 −1.5
−2.5 3.5 −1.5 0.5
−1.5 −0.5 2.5 3.5
−0.5 1.5 3.5 −2.5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Ye (1998) showed that the columns of O are orthogonal to each other, the ele-
mentwise square of each column of O is orthogonal to all the columns of O, and that
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the elementwise product of every two columns of O is orthogonal to all columns in
O. In other words, if O is used as the design matrix for a second-order response
surface, all estimates of linear, bilinear, and quadratic effects are uncorrelated with
the estimates of linear effects. The same holds true for O∗. Note that the elements of
O and of O∗ are no longer positive integers. However, each column is a permutation
of the entries in the first column, hence both can be considered LHDs.

Ye (1998) also showed that the construction described above can be modified to
yield additional OLHs. First, one can replace e by any of its permutations. Second,
one can reverse any of the signs of any subset of columns of O or O∗. The resulting
arrays are all OLHs in the sense of having all the properties mentioned prior to
Example 5.3.

5.3.4 Symmetric Latin Hypercube Designs

Unfortunately, OLHs exist only for very limited values of ns, namely, ns = 2m or
ns = 2m + 1, m ≥ 2. Ye et al. (2000) introduced a more general class of LHDs,
called symmetric LHDs, to overcome this limitation. An LHD is called a symmetric
LHD if it has the following property: in an ns × d LHD with levels 1, 2, . . . , ns, if
(a1, a2, . . . , ad) is one of the rows, then (ns + 1 − a1, ns + 1 − a2, . . . , ns + 1 − ad)
must be another row. Ye et al. (2000) did not discuss the construction of symmetric
LHDs, but when ns is an even integer, one obtains a symmetric LHD as follows.
The first row can be any 1 × d vector (a11, a12, . . . , a1d) where the a1 j are elements
of {1, 2, . . . , ns}. The second row is (ns + 1 − a11, ns + 1 − a12, . . . , ns + 1 − a1d).
The third row can be any 1× d vector (a31, a32, . . . , a3d) where a3 j can be any of the
integers 1, 2, . . . , ns that is not equal to either a1 j or ns + 1 − a1 j. The fourth row is
(ns + 1 − a31, ns + 1 − a32, . . . , ns + 1 − a3d). Continue on in this manner, adding the
odd rows so that the entries in column j have not yet appeared in the previous rows
of the column. The even rows have entries ns + 1 minus the entry in the previous
row.

When ns is an odd integer, let the first row be ( ns+1
2 , ns+1

2 , . . . , ns+1
2 ). The sec-

ond row can be any 1 × d vector (a21, a22, . . . , a2d) where the a2 j are elements of
{1, 2, . . . , ns} except ns+1

2 . The third row is (ns+1−a21, ns+1−a22, . . . , ns+1−a2d).
The fourth row can be any 1×d vector (a41, a42, . . . , a4d) where a4 j can be any of the
integers 1, 2, . . . , ns that is not equal to ns+1

2 , a2 j or ns + 1 − a2 j. Continue on in this
manner, adding the even rows so that the entries in column j have not yet appeared
in the previous rows of the column. The odd rows have entries ns+1 minus the entry
in the previous row.

Note that the non-space-filling LHD in Fig. 5.3 is a symmetric LHD, so symmet-
ric LHDs need not be “good” LHDs.

Example 5.6. To construct a symmetric LHD with ns = 10 (an even integer) and
d = 3, suppose the process is started with the row (1, 6, 6). Following the algorithm
described previously, one might obtain the following symmetric LHD,
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⎜

⎜

⎜

⎜

⎜

⎝

1 6 6
10 5 5

2 2 3
9 9 8
3 1 9
8 10 2
4 3 4
7 8 7
5 7 1
6 4 10
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⎟

⎟
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⎟
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⎟

⎟
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⎟

⎟

⎟
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⎠

.

To construct a symmetric LHD with ns = 9 (an odd integer) and d = 3, suppose one
begins with rows (5, 5, 5) and (1, 6, 6). Following the algorithm described previously,
one might obtain the following symmetric LHD,

⎛
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⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜
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⎜

⎜

⎜

⎜

⎜

⎝

5 5 5
1 6 6
9 4 4
2 2 3
8 8 7
3 1 9
7 9 1
4 3 8
6 7 2
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�

Ye et al. (2000) pointed out that symmetric LHDs have certain orthogonality
properties. In a polynomial response surface, least squares estimation of the linear
effect of each variable is uncorrelated with all quadratic effects and bilinear inter-
actions (but not necessarily with the linear effects of other variables). This follows
from results in Ye (1998) because OLHs have the same symmetry properties as
symmetric LHDs but also possess additional orthogonality that guarantees that lin-
ear effects are uncorrelated.

These orthogonality properties of OLHs and symmetric LHDs are useful if one
plans to fit second-order or higher response surface models to the data using stan-
dard least squares. However, if one intends to fit a predictor, such as the EBLUP
discussed in Chap. 3, in which the generalized least squares estimate of the regres-
sion parameters is used, the benefits of orthogonality are less clear.

Symmetric LHDs form a subclass of all LHDs. As noted earlier, one can apply
additional criteria to select a particular design from the class of all ns×d LHDs, from
the class of all ns ×d OLHs, or from the class of all ns ×d symmetric LHDs. For the
latter, Ye et al. (2000) proposed a column-wise exchange algorithm that replaces a
symmetric LHD with another symmetric LHD, allowing one to search the class of
ns × d symmetric LHDs for a design that optimizes some additional property of the
design.
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LHDs that are optimal under an additional criterion are often symmetric LHDs.
When searching for an LHD that is optimum for that criterion, restricting the search
to the smaller class of symmetric LHDs often provides an easier search, and the
result will often yield the global optimum over the class of all LHDs. This strategy
was first proposed in Park (1994).

5.4 Designs Based on Measures of Distance

This subsection considers criteria for selecting a design that are based on a mea-
sure or metric that quantifies the spread of a set of points. While distance-based
criteria can be applied without further restrictions, they can also be used to find de-
signs within a subset of all designs. For example, one common strategy is to find an
optimal distance-based design in the class of LHDs.

Let X denote the input space for a given simulator. For all rectangular X, i.e,

X =
d×

�=1
[a�, b�],

it will be assumed that the domain of each input has been normalized to the inter-
val [0,1]; otherwise inputs with larger ranges can dominate the computation of a
maximin design, say. Thus, the transformation

x� =
x� − a�

b� − a�
, � = 1, . . . , d ,

is used to scale and shift the input space to [0, 1]d; the inverse transform is used to
place the computed design on the scale of the original design problem.

Also, let ρp(·, ·) be a metric on X. One important metric used in the design liter-
ature is the pth order distance between x1, x2 ∈ X which is defined by

ρp(x1, x2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d
∑

�=1

∣

∣

∣x1,� − x2,�

∣

∣

∣

p

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1/p

(5.4.1)

for p ≥ 1. Rectangular (“Manhattan”) and Euclidean distances are the cases p = 1
and p = 2, respectively. The order p is always assumed fixed in the discussion below.
Recall that a design, denoted D, consisting of ns points is a set {x1, x2, . . . , xns } with
x� ∈ X, � = 1, . . . , ns.

The first way in which points in D might be regarded as spread over X is to
require that every point in X be as close as possible to a point in D. This notion is
made precise by defining the distance between an arbitrary input site x ∈ X and D
to be

ρp(x,D) = min
xi∈D

ρp(x, xi)
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which is the closest any point in D is to x. An ns-point design DmM is defined to be
a minimax distance design if the maximum distance between arbitrary points x ∈ X
and the candidate design DmM is a minimum over all designs D whose input vectors
x� ∈ X, � = 1, . . . , ns; namely,

max
x∈X

ρp(x,DmM) = min
D

max
x∈X

ρp(x,D).

If the goal of a computer experiment is good prediction over all of X, and if pre-
diction variance at a point x0 increases as the distance between x0 and D increases,
intuitively a design D for which no point is far from any x0 ∈ X should perform
well. In other words, a minimax design would seem to be a sensible choice if the
goal is good prediction (minimizing the maximum prediction variance) over X. The
difficulty is that finding minimax designs involves computing the maximum dis-
tance between a candidate design D and all points in X. This is computationally
challenging. One might try to find an approximately minimax design by restricting
the computation to a finite grid of points in X. See Tan (2013) for a discussion of
this approach.

A second method to measure the spread of the ns points in a design is by the
distance of the closest two points in the design, i.e., by

min
x1,x2∈D

ρp(x1, x2). (5.4.2)

A design that maximizes (5.4.2) is said to be a maximin distance design and is
denoted by DMm; thus

min
x1,x2∈DMm

ρp(x1, x2) = max
D⊂X

min
x1,x2∈D

ρp(x1, x2). (5.4.3)

In an intuitive sense, therefore, DMm designs guarantee that no two points in the
design are too close, and hence the design points are spread over X.

One criticism of the maximin principle is that it judges the goodness of a design
by the minimum distance between all

(

ns
2

)

pairs of input vectors rather than using all
possible differences. Figure 5.7 illustrates such a pair of designs both of which have
as their three smallest minimum interpoint distances 0.300, 0.361, and 0.412. The
only difference in the two designs is that the point (0.2, 0.2) in the left panel design
has been moved to (0.025, 0.025) in the right panel, but because of this change, the
design in the right panel is, intuitively, more space-filling than the design in the
left panel. More careful inspection of these designs shows that the fourth smallest
interpoint distance is greater for the right panel design than the left panel design.
By using a more comprehensive definition of minimaxity in which the number of
pairs of the inputs with smallest, second smallest, etc. distances are accounted for,
Morris and Mitchell (1995) were able to rank cases of equal minimum inter-point
distance and eliminate such anomalies. In sum, despite this initial criticism, Mm
designs are often visually attractive and can be justified theoretically under certain
circumstances (Johnson et al. (1990)).
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Fig. 5.7 Two designs on [0, 1]2 with the same minimum interpoint distance of 0.30

Mm designs on [0, 1]d can be computed by solving the mathematical program-
ming problem

max z

subject to

z ≤ ρp(xi, x j) , 1 ≤ i < j ≤ ns (5.4.4)

0d ≤ x� ≤ 1d, 1 ≤ � ≤ ns

in which an additional decision variable z has been added to the unknown
x1, . . . , xns ; z is a lower bound for all distances in (5.4.4). While this problem
can be solved by standard nonlinear programming algorithms for “small” ns, the
computational difficulty with this approach is that the number of constraints on z
grows on the order of n2

s (see Stinstra et al. (2003)).

Example 5.7. Figure 5.8 displays four-point maximin and minimax designs with Eu-
clidean distance (p = 2 in (5.4.1)). The differences in the two designs reflect the ef-
fect of the different design criteria. Maximin designs tend to push points out toward
the boundary of X. This is not surprising because there is more “space” to spread
out points at the boundary. �
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Fig. 5.8 Left panel: a four-point maximin design on [0, 1]2 with respect to Euclidean distance;
right panel: a four-point minimax design on [0, 1]2
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A third approach to spreading points in the design space is to consider the dis-
tribution of distances between all pairs of input vectors and not merely the distance
between the closest pair of input vectors. One example of a criterion that uses this
approach chooses the design to minimize the average of the reciprocals of the dis-
tances between all pairs of design points, the so-called average reciprocal distance
(ARD) of the design. The ARD of design D is defined to be

m(p,λ)(D) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
(

ns
2

)

∑

xi,x j∈D

[

1
ρp(xi, x j)

]λ
⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1/λ

, λ ≥ 1 . (5.4.5)

The combinatorial coefficient
(

ns
2

)

is the number of different pairs of rows in the
design. For example, when λ = 1, the criterion function m(p,1)(D) is inversely pro-
portional to the harmonic mean of the distances between design points.

For fixed (p, λ), an ns × d design Dav is a minimum ARD (mARD) design if

m(p,λ)(Dav) = min
D⊂X

m(p,λ)(D) . (5.4.6)

The optimality condition (5.4.6) favors designs that possess nonredundancy in the
location of input sites; specifically the criterion does not allow design points xi and
x j that are (simultaneously) the same in all coordinates, i.e., with xi = x j. When λ =
1, the optimality condition (5.4.6) selects designs which maximize this harmonic
mean, of course, preventing any “clumping” of design points. The nonredundancy
requirement can be seen even more clearly for large values of λ. Taking λ → ∞, the
criterion function (5.4.5) limit is

m(p,∞)(D) = max
xi,x j∈D

1
ρp(xi, x j)

. (5.4.7)

Minimizing the right hand side of (5.4.7) is equivalent to maximizing (5.4.2). Thus,
an ns-point design DMm satisfying condition (5.4.6) for the limiting distances as
λ → ∞, namely,

m(p,∞)(DMm) = min
D⊂X

m(p,∞)(D) ,

is a maximin distance design as defined previously:

max
D⊂X

min
xi ,x j∈D

ρp(xi, x j) =
1

m(p,∞)(DMm)
.

Example 5.8. Figure 5.9 displays minimum ARD designs on [0, 1]2 for (ns, d) =
(6, 2) with Euclidean distance for λ = 1 and for λ = ∞; by (5.4.7) the λ = ∞ design
is a Mm design for this Euclidean distance case. Both designs concentrate points on
or near the boundary of [0, 1]2 so that the projections of the design points onto either
axis produces multiple observations in 1-D. If the output depends primarily on one
of the inputs, say x1, this means that such a design will not fully explore x1 space.
This defect can be remedied by restricting the class of available designs to include
only, say, LHDs. Figure 5.2 is an example of a mARD within the class of LHDs for
p = 1 = λ. �
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Fig. 5.9 Minimum ARD designs on [0, 1]2 with respect to Euclidean distance for p = 2 and left
panel: λ = 1.0; right panel: λ = ∞

As noted above, neither the Mm nor the mARD optimal designs need have pro-
jections onto spaces of dimension < d which are nonredundant. To reiterate, con-
sider a computer experiment involving d = 5 inputs, only three of which (say) are
active. In this event, a desirable property of an optimal ns × 5 design is nonredun-
dancy of input sites projected onto the three-dimensional subspace of the active
inputs. Such designs can be generated by computing the criterion values (5.4.5) for
each relevant projection of the full design D and averaging these to form a new
criterion function which is then minimized by choice of design D. The approach
is implemented by the Algorithms for the Construction of Experimental Designs
(ACED) software of Welch (1985), among other packages. The Welch (1985) soft-
ware was used to compute the optimal designs of this section.

Formally, one version of the projection approach sketched in the previous para-
graph can be described as follows. Let J ⊆ {1, 2, . . . , d} denote the set of subspace
dimensions for which nonredundancy of input sites is desired. For example, if 2 ∈ J,
then it is desired that projecting the design onto every 2-D subspace of [0, 1]d results
in a space-filling set of points. For each j ∈ J, let {S k j} denote the kth design in an
enumeration of all j-dimensional projections of D for k = 1, . . . ,

(

d
j

)

. Because the

maximum distance between any two points in [0, 1]d is j1/p, it is essential that the
ρp(·, ·) distance between points in a j-dimensional projection be normalized by this
maximum distance in order for distances across different dimensional projections to
be comparable. For k = 1, . . . ,

(

d
2

)

and j ∈ J define the minimum distance for the
projected design Dk j to be
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min
x�

h ,x
�
�
∈Dk j

ρp(x�
h , x�

� )

j1/p

where x�
h and x�

� denote the projections of xh and x� onto the subspace determined
by j and k. Given p define the J-minimum of the design D to be

ρJ(D) = min
j∈ J

min
k∈{1,...,(d

j)}
min

x�
h ,x

�
� ∈Dk j

ρp(x�
h , x�

� )

j1/p
(5.4.8)

and given p and λ define the J-average reciprocal distance to be

avJ(D) =
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. (5.4.9)

An ns-point design DMmP is said to be a J-maximin design with respect the pro-
jection criterion (5.4.8) provided

ρJ(DMmP) = max
D

ρJ(D),

while Davp is said to be a J-minimum ARD design with respect to the projection
criterion (5.4.9) if

avJ(Davp) = min
D⊂X

avJ(D) . (5.4.10)

As for maximin and minimum ARD designs, the optimal J-maximin and J-
minimum ARD designs (5.4.10) will also be more nearly space-filling if the class
of designs searched is restricted to LHDs.

Example 5.9. As an example, let (ns, d) = (10, 3) and fix p = λ = 1. A J-minimum
ARD design in the class of LHDs was generated for J = {2, 3}. Figure 5.10 presents
a 3-D scatterplot of the design and 2-D scatterplot of the projection of the design
onto the (x2, x3) subspace. Note that, because LHDs are nonredundant in each one-
dimensional subspace by definition, 1 � J. �

The final example of a distance-based criterion that will be described in this book
is the maximum projection (MaxPro) design introduced by Joseph et al. (2015). As
do J-maximin and J-minimum ARD designs, MaxPro designs take into account
projections. As for J-maximin and J-minimum ARD designs, the MaxPro design
criterion can be used to construct a design from scratch or to augment a given design.

MaxPro designs are defined in terms of a criterion which is a weighted version
of the pth order metric (5.4.1). The weighted pth order metric is defined by

ρp(x1, x2; w) =

⎡

⎢

⎢

⎢

⎢

⎢
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d
∑
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∣
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∣x1, j − x2, j

∣
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∣
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⎤
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⎥

⎦

1/p
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Fig. 5.10 Left panel: a 3-D plot of a ns = 10 point J-minimum ARD within the class of LHDs
when p = λ = 1 and J = {2, 3}. Right panel: projection of left panel design onto x2-x3 plane

for x1 and x2 in X. For example, if w1 = 1 and wj = 0, j ≥ 2, then ρp(x1, x2; w) is the
pth order metric for the projection onto the x1 subspace. Similarly, if w1 = 1/2 = w2

while wj = 0, j ≥ 3, then ρp(x1, x2; w) is (0.5 ×) the pth order metric for the
projection onto the (x1, x2) subspace.

Now suppose that π(w) is a given distribution that describes the importance of
the weights w = (w1, w2, . . . , wd), where w is constrained to the (d − 1)-dimensional
simplex

Sd−1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w : w1, . . . , wd−1 ≥ 0,
d−1
∑

j=1

wj ≤ 1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

and wd = 1 −
∑d−1

j=1 wj. The MaxPro criterion chooses D to minimize

∫

Sd−1

∑

xi,x j∈D:i� j

1

ρk
p(xi, x j; w)

π(w) dw . (5.4.11)

Unfortunately the criterion (5.4.11) can be computationally demanding; hence
Joseph et al. (2015) recommend using a uniform (on the simplex) weight function
π(w), Euclidean distance (p = 2), and k = p × d for which they show (5.4.11) is,
aside from constants,

∑

xi ,x j∈D:i� j

1
∏d

�=1(xi,� − x j,�)2
,

which can be computed rapidly.

Example 5.10 (Comparison of a Maximum Projection Design and a J-Minimum
ARD). Consider an experiment with d = 4 inputs that is to be run using ns = 10
points. Table 5.1 lists the MaxPro 10 × 4 design constructed using the R software
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MaxPro and the J-minimum ARD with J = {1, 2}, p = 2, and λ = 1 that was
constructed using the R software concad. The MaxPro design is meant to cover all
possible projections and hence can be appropriate for simulator outputs having ar-
bitrary numbers of interacting inputs, while the J-minimum ARD design is meant
to provide well-spread projections for simulator output that contains up to 2-D in-
teractions. Figures 5.11 and 5.12 are scatterplot matrices of all 2-D projections and
histograms of the 1-D projections for the two designs. Both designs appear well-
spread over all six 2-D projections although the J-minimum ARD emphasizes the
edges of the design variables a bit more than the MaxPro design.

MaxPro design J-minimum ARD
x1 x2 x3 x4 x1 x2 x3 x4

0.05 0.75 0.45 0.15 0.00 1.00 0.67 0.63
0.15 0.15 0.55 0.75 0.94 0.07 1.00 0.00
0.25 0.55 0.05 0.45 0.62 0.37 0.00 1.00
0.35 0.65 0.85 0.95 0.29 0.62 0.16 0.22
0.45 0.35 0.65 0.05 0.81 0.79 0.44 0.84
0.55 0.95 0.25 0.65 0.17 0.24 0.86 0.42
0.65 0.25 0.95 0.55 0.44 0.01 0.31 0.73
0.75 0.05 0.15 0.25 0.72 0.92 0.93 0.11
0.85 0.85 0.75 0.35 0.99 0.56 0.56 0.51
0.95 0.45 0.35 0.85 0.08 0.70 0.06 0.05

Table 5.1 A 10 × 4 MaxPro design (left four columns) and 10 × 4 J-minimum ARD design with
J = {1, 2} and (p, λ) = (2, 1) (right four columns)

In addition to a comparison by their visual appearance, the designs can be com-
pared numerically in a large number of ways, most of which the designs were not
constructed to optimize. One exception to the previous sentence is a comparison
using the ARD in (5.4.10) when (p, λ) = (2, 1) and J = {1, 2}; for this criterion
the J-minimum ARD design achieves the ARD of 3.260 (and 4.132 and 3.006 for
J = {1}, J = {1, 2, 3}, respectively), while the MaxPro design has ARD of 3.501 (and
4.287 and 3.245 for J = {1}, J = {1, 2, 3}). This is to be expected because (5.4.10)
is the criterion to be minimized by the J-minimum ARD design. The comparison
shows that the MaxPro design is 93% (= 3.260/3.501) as efficient as the design
specifically created for the ARD criterion.

Other distance metrics provide a different picture. Comparing the minimum pair-
wise row distances for any projection requires calculating a minimum distance over
(

10
2

)

= 45 pairs of rows. Intuitively minimal point distances which are large suggest
a better design. The minimum 4-D pairwise row distance for the MaxPro design
is 0.574 which is larger (better) than the 0.299 minimum 4-D distance for the J-
minimum ARD design. There are four 3-D projections for each design (onto the
dimensions (x1, x2, x3), . . . , (x2, x3, x4)) which are listed in Table 5.2. The MaxPro
design maximizes all four projections. Similarly there are six possible (and mini-
mal) 2-D projections for each design which are listed in Table 5.3. Half are larger
for each design.
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Fig. 5.11 Scatterplot matrix of a 10 × 4 MaxPro design

Fig. 5.12 Scatterplot matrix of a J-minimum ARD with J = {1, 2}
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Of course, the bottom line of design is to facilitate the accurate prediction of
simulator output functions having certain characteristics. In some application areas,
this comparison may be best assessed by a simulation study that empirically assesses
prediction accuracy for functions having the desired attributes. �

Col Col Col MaxPro design J-minimum ARD design
1 2 3 0.374 0.246
1 2 4 0.374 0.282
1 3 4 0.346 0.256
2 3 4 0.374 0.213

Table 5.2 Minimum Euclidean distances for all 3-D projections of the 10 × 4 MaxPro and the
J-minimum ARD designs with J = {1, 2}; the maximum value for each projection is in bold face

Col Col MaxPro design J-minimum ARD design
1 2 0.141 0.158
1 3 0.141 0.212
1 4 0.141 0.233
2 3 0.224 0.128
2 4 0.224 0.129
3 4 0.224 0.130

Table 5.3 Minimum pairwise Euclidean distances for all 2-D projections of the 10 × 4 MaxPro
and the J-minimum ARD designs with J = {1, 2}; the maximum value for each projection is in
bold face

One final note when using distance-based criteria concerns the choice of metric.
Euclidean distance is a common choice. For the GP model, Euclidean distance is
reasonable if the model is isotropic or if there is no prior information about the rela-
tive sizes of the correlation parameters. However, if there is prior information about
the correlation parameters, Mahalanobis distance or some sort of weighted distance,
with weights determined by the correlation parameters, may be more appropriate.
See Williams et al. (2011) where the use of Mahalanobis distance is considered in
the context of a sequential design strategy.

5.5 Distance-Based Designs for Non-rectangular Regions

Sections 5.2–5.4 described criteria for constructing space-filling designs when the
input region is hyper-rectangular. However non-rectangular input regions occur nat-
urally in many applications when the range of one or more inputs depends on the
values of other inputs. As an example, Hayeck (2009) studied the effects of four in-
put variables on the functioning of a total elbow prosthesis using a simulator model.
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One input was a biomechanical engineering design variable, and three were envi-
ronmental variables. The biomechanical variable was the tip displacement (x1, in
mm), and the environmental variables were the rotation, at the tip, of the implant
axis about the lateral axis (x2 in degrees), the rotation of the implant axis, at the tip,
about the anterior axis (x3 in degrees), and the rotation about the implant axis (x4 in
degrees). The following constraints were imposed on the four input variables based
on anatomical considerations

0 ≤ x1 ≤ 10
−10 ≤ 5x2 + 2x3 ≤ 10
−10 ≤ −5x2 + 2x3 ≤ 10
−15 ≤ x4 ≤ 15 .

(5.5.1)

These constraints state, among other things, that the maximum tip displacement is
10 mm and the rotation about the implant axis is ±15◦. The outputs of the computa-
tional simulation were various stresses and strains in the elbow.

This section focusses on finding (approximate) maximin distance (Mm) and
the minimum ARD (mARD) designs for non-rectangular input regions (see (5.4.3)
and (5.4.6), respectively). For definiteness, the majority of this section restricts at-
tention to input regions that are bounded polytopes, i.e., to designs
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where
Axi ≤ b , (5.5.2)

for i = 1, . . . , ns and A and b are known. Bounds on individual variables, e.g., that
0 ≤ x1 ≤ 1, are assumed to be included in the polytope constraints.

For example, the Hayeck (2009) input region (5.5.1) is the polytope defined by
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and
b = (10, 0, 10, 10, 10, 10, 15, 15) .

Before describing several of the approaches that have been proposed in the lit-
erature for finding Mm and mARD designs, we reiterate the recommendation made
in Sect. 5.4 that, because inputs with different scales can cause the computation of
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a Mm design to be dominated by those inputs having larger ranges, all inputs in a
bounded non-rectangular problem be scaled and shifted to the interval [0,1]. For ex-
ample, for the bounded polytope Ax ≤ b, the jth input has maximum and minimum
which are the solutions to

max x j subject to Ax ≤ b and min x j subject to Ax ≤ b .

Second, maximin designs need not have “space-filling” projections onto subsets of
the input variables although selecting designs using the J-maximin or J-minimum
ARD criterion or from the class of LHDs can (partially) eliminate this problem.

In principle, maximin designs for the case of inputs that satisfy (5.5.2) can be
solved by modifying the mathematical programming problem (5.4.4) to

max z

subject to

z ≤ ρ2(xi, x j) , 1 ≤ i < j ≤ ns

Ax� ≤ b , 1 ≤ � ≤ ns .

Other constraints on the x� can be handled similarly. However the simultaneous
solution for D becomes prohibitive as ns × d grows.

In the spirit of Morris and Mitchell (1995), Trosset (1999) replaced the pairwise
row minimum in (5.4.3) by

max
i< j

φ(ρp(xi, x j)) (5.5.3)

where φ(w) is a strictly decreasing function such as φ(w) = 1/w. For large λ, a
design that maximizes
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(5.5.4)

subject to Ax ≤ b is an approximate maximin design subject to the polytope con-
straint because (5.5.4) converges to (5.5.3) as λ → ∞.

Stinstra et al. (2003) introduced a mathematical program for finding maximin
designs and an algorithm for approximately solving the mathematical programming
problem; the formulation can allow non-rectangular input regions. Their algorithm
solves a sequence of ns subproblems to update a current feasible set of points xc =
(

xc
1, . . . , xc

ns

)

in the order xc
1, . . . , xc

ns
. Fix i with 1 < i < ns and assume that xc

� has

been previously updated to xc+1
� , for 1 ≤ � < i. Then xc

i is determined by solving

max w

subject to

w ≤ ρ2(x, xc+1
� ) , � < i

w ≤ ρ2(x, xc
�) , � > i

Axi ≤ b
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for (w�, x�) and setting xc+1
i = x�. The algorithm is modified in an obvious way for

i ∈ {1, ns}. This cycle of ns steps is repeated until a given minimum improvement in
(5.4.1) occurs or a computational budget is exhausted.

In contrast to the row-by-row construction of a Mm design used by Stinstra
et al. (2003), Draguljić et al. (2012) employed a column-by-column construction
of D to form space-filling designs for input regions that are bounded polytopes.
Their algorithm allows user specified criteria; the R program concad of Draguljić
(see Sect. 5.7) allows the Mm, mARD, or a criteria that combines the Mm and
mARD metrics. Their designs also satisfy the requirement that the design is “non-
collapsing” in each input. A design is non-collapsing when the projection of the
design onto each input has no exact duplicates.

Lastly, the method of Tan (2013) for finding minimax designs over finite design
spaces, mentioned in Sect. 5.4, includes situations in which the finite design space
appears non-rectangular.

5.6 Other Space-Filling Designs

5.6.1 Designs Obtained from Quasi-Random Sequences

Quasi-random sequences are intended to produce finite sequences of points that fill
the d-dimensional unit hypercube and have the property that a design with sample
size ns is obtained from the design of sample size ns − 1 by adding a point to the
design. Although introduced for numerically evaluating multidimensional integrals,
they also allow one to generate space-filling designs.

Several such sequences have been proposed, including Halton sequences (Hal-
ton (1960)), Sobol´ sequences (Sobol´ (1967, 1976)), and Niederreiter sequences
(Niederreiter (1988)). Appendix E presents some details for constructing the sim-
plest of these sequences, the Halton sequence, as well as Sobol´ sequences.

Example 5.11. In Sect. 3.3, Sobol´ sequences were used to select the values of the
environmental variables and compared to other methods. The left-hand panel of
Fig. 5.13 displays 1 of the 6, 2-D projections of the 40-point Sobol´ sequence in the
standardized d = 4 variables that were used as inputs to generate the fire contain-
ment data of Example 1.1; see Fig. 3.2 for the complete set of 6 2-D projections.
The corresponding 2-D projection for the same input pair of the 40-point maximin
LHD is shown in the right-hand panel of the same figure. It is clear from Fig. 5.13
that the maximin LHD has projections which are spread more evenly than the de-
sign based on the Sobol´ sequence. Thus, if it is important that the design be evenly
spread out, the LHD appears to be preferable. On the other hand, the design based
on the Sobol´ sequence appears to exhibit a greater variety of interpoint distances
(distances between pairs of points in the design) than the LHD. If a greater variety
of interpoint distances provides more information about the correlation parameters
(and hence allows one to better estimate these parameters), then designs based on
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a Sobol´ sequence (or other types of sequences that have been used in numerical
integration) may be preferable to the LHD. �
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Fig. 5.13 Left panel: 2-D projection of the 40-point Sobol´ sequence on [0, 1]4 (when standardized,
these two inputs are to be used as the inputs for room area × heat loss fraction); right panel: 2-D
projection of the 40-point maximin LHD on [0, 1]4 (the standardized values of these inputs are
used as the inputs for room area × heat loss fraction)

Suppose one uses a space-filling design consisting of ns points in the unit cube.
After fitting a predictor to the data generated by the simulator, suppose one decides
the fit is inadequate and ms additional runs of the computer simulator are necessary.
Is it possible to select the ms runs in such a way that the resulting set of ns +ms runs
is space-filling?

In Sect. 5.2 we saw that for LHDs this is only possible in special cases. However,
because of the method of construction, this is possible for designs generated by
Halton, Sobol´, and Niederreiter sequences. Thus, if the initial ns design consists
of the first ns points in one of these sequences, simply add the next ms points in
the sequence to generate the larger design. To the extent that Halton, Sobol´, and
Niederreiter sequences are space-filling, both the initial and final designs will also
be space-filling (although the degree to which the designs look space-filling will
depend on the particular values of ns and ms).

This ability to add points so that both the initial and final design are reasonably
space-filling makes quasi-random sequences such as Halton, Sobol´, and Niederre-
iter sequences appear attractive in the context of sequential experimentation. How-
ever, quasi-random sequences are usually space-filling only in the sense described
in Sect. 5.1, namely, as the number of points in the sequence increases, the se-
quence becomes increasingly dense in the design space (here assumed to be the
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d-dimensional unit cube). As Fig. 5.13 suggests, quasi-random sequences need not
look particularly space-filling for small to moderate sample sizes. Furthermore, if
the number of runs is not a power of 2 (assuming the common case of base 2 for
the construction of the sequence described in Appendix E), then subsequent points
do not necessarily fill in the most empty part of input space. Finally, such sequences
can have bad projection properties. Liefvendahl and Stocki (2006) show in some an-
alytic test problems that the statistical accuracy of predictors based on designs gen-
erated by the minimum ARD criterion is superior to that based on designs produced
by a Sobol´ sequence. For these reasons, designs based on quasi-random sequences
are much less popular in practice than other space-filling designs.

5.6.2 Uniform Designs

In Sect. 5.2 we considered criteria for selecting a space-filling design based on sam-
pling methods and, in Sects. 5.4 and 5.5, criteria based on distances between points.
In this section, we consider a third intuitive design principle based on comparing the
distribution of the points in a design to the uniform distribution.

As in Sect. 5.2.2, suppose that the vector of inputs is d-dimensional and denoted
by x = (x1, . . . , xd). Also again assume that x must fall in the d-dimensional hy-
percube X = [0, 1]d, possibly after recentering and rescaling of the inputs. Let
D = {x1, x2, . . . , xns} denote the set of ns points at which we will observe the re-
sponse y(x). If we wish to emphasize that x is a random variable, we will use the
notation X. This would be the case, for example, if we are interested in E[y(X)].
Below we take X ∼ F(·) where

F(x) =
d

∏

i=1

xi (5.6.1)

is the uniform distribution on [0, 1]d (other choices of distribution function are pos-
sible).

Fang et al. (2000, 2006) discuss the notion of the discrepancy of a design D,
which measures the extent to which D differs from a completely uniform distribu-
tion of points. To be specific, let Fns be the empirical distribution function of the
points in D, namely,

Fns (x) =
1
ns

ns
∑

i=1

I {Xi ≤ x} , (5.6.2)

where I{E} is the indicator function of the event E and the inequality is with respect
to the componentwise ordering of vectors in IRd. The L∞ discrepancy, sometimes
called star discrepancy or simply discrepancy, is denoted D∞(D) and is defined as

D∞(D) = sup
x∈X

| Fns (x) − F(x) | . (5.6.3)
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This is perhaps the most popular measure of discrepancy and is the Kolmogorov–
Smirnov statistic for testing fit to the uniform distribution.

Example 5.12. Suppose d = 1 and X = [0, 1] is the unit interval. It is not too difficult
to show that the ns point set

D =
{

1
2ns

,
3

2ns
, . . . ,

2ns − 1
2ns

}

has discrepancy D∞(D) = 1/2ns because F(x) = x in this case. �

Another important measure of discrepancy is the Lp discrepancy of D which is
denoted by Dp(D) and defined by

Dp(D) =

[∫

X

∣

∣

∣Fns (x) − F(x)
∣

∣

∣

p
dx

]1/p

.

The L∞ discrepancy of D is a limiting case of Lp discrepancy obtained by letting p
go to infinity.

Niederreiter (1992) discussed the use of discrepancy for generating uniformly
distributed sequences of points by quasi-Monte Carlo methods. Designs taking ob-
servations at sets of points with small discrepancies would be considered more uni-
form or more spread out than designs corresponding to sets with larger discrepan-
cies. Uniform designs take observations at a set of points that minimizes Dp.

Other than the fact that it seems intuitively reasonable to use designs that are
spread uniformly over X = [0, 1]d, why might one consider using a uniform design?
One reason that has been proposed is the following. Suppose we are interested in
estimating the mean of g(y(X)),

μ = E
[

g(y(X))
]

=

∫

X
g(y(x)) dx ,

where g(·) is some known function. We consider the properties of the naı́ve moment
estimator

T = T (y(X1), . . . , y(Xns )) =
1
ns

ns
∑

j=1

g(y(X j)) .

The Koksma–Hlawka inequality (Niederreiter (1992)) gives an upper bound on the
absolute error of this estimator, namely,

| T (y(x1), . . . , y(xns )) − μ | ≤ D∞(D) V(g) ,

where V(g) is a measure of the variation of g that does not depend on D (see page
19 of Niederreiter (1992) for the definition of V(g)). For fixed g(·), this bound is a
minimum when D has minimum discrepancy. This suggests that a uniform design
may control the maximum absolute error of T as an estimator of μ. Also, because
this holds for any g(·), it suggests that uniform designs may be robust to the choice
of g(·).
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However, just because an upper bound on the absolute error is minimized, it does
not necessarily follow that a uniform design minimizes the maximum absolute error
over X or has other desirable properties. Furthermore, in the context of computer
experiments, we are usually not interested in estimating μ. Thus, the above is not a
completely compelling reason to use a uniform design in computer experiments as
discussed here.

Wiens (1991) provided another reason for considering uniform designs. Suppose
one believes the response y(x) follows the regression model

y(x) = β0 +

k
∑

i=1

βi fi(x) + ϕ(x) + ε ,

where the { fi} are known functions, the βi unknown regression parameters, ϕ is an
unknown function representing model bias, and ε is Gaussian random error. Wiens
(1991) shows that under certain conditions on ϕ, the uniform design is best in the
sense of maximizing the power of the overall F test of the regression.

Fang et al. (2000) provided yet another reason why one may wish to use uniform
designs. They note that in orthogonal designs, the points are typically uniformly
spread out over the design space. Thus, there is the possibility that uniform designs
may often be orthogonal. To explore this further, they use computer algorithms to
find designs that minimize a variety of measures of discrepancy and in doing so
generate a number of orthogonal designs. Efficient algorithms for generating designs
that minimize certain measures of discrepancy, therefore, may be useful in searching
for orthogonal designs.

Fang et al. (2000) discussed a method for constructing (nearly) uniform designs.
In general, finding a uniform design is not easy. One way to simplify the problem is
to reduce the domain of X, perhaps to a finite set of candidate points. Obviously, a
uniform design over this reduced domain may not be uniform over X, but suitable
selection of a reduced domain may yield designs which are nearly uniform.

A related way to simplify the problem is to reduce the set of candidate designs
to some large, finite set. For example, one could restrict attention to only LHDs and
then select the one with the minimum discrepancy from the uniform distribution.

As previously, for purposes of what follows, assume X = [0, 1]d. Based on the
uniform design for d = 1 given in Example 5.12, one might proceed as follows. Let
Π = (Πi j) be an ns × d matrix such that each column of Π is a permutation of the
integers {1, 2, . . . , ns}. Let X(Π) = (xi, j) be the ns × d matrix defined by

xi, j = (Πi j − 0.5)/ns ,

for all i, j. The ns rows of X define ns points in X = [0, 1]d. Hence, each matrix
Π determines an ns-point design. For example, when d = 1, if Π = (1, 2, . . . , ns),
then

X(Π) =

(

1
2ns

,
3

2ns
, . . . ,

2ns − 1
2ns

)

,
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which is the uniform design in d = 1 dimension. Note that the ns rows of X(Π) cor-
respond to the sample points of an LHD with points at the centers of each sampled
cell. One might search over the set P of all possible permutations Π , selecting the
Π that produces the ns-point design with minimum discrepancy. One would hope
that this choice of design is nearly uniform over X. Fang et al. (2000) describe two
algorithms for conducting such a search. Bratley et al. (1994) is an additional source
for an algorithm that can be used to generate low-discrepancy sequences of points
and hence (near) uniform designs.

The discrepancies D∞ for two designs that appear to be equally uniform may not
be the same. The following example illustrates such a case.

Example 5.13. Suppose d = 2, X = [0, 1]2, and consider the class of all designs
generated by the set of permutations P introduced in the previous paragraph. One
member of this class of designs is

Ddiag =

{(

1
2ns

,
1

2ns

)

,

(

3
2ns

,
3

2ns

)

, . . . ,

(

2ns − 1
2ns

,
2ns − 1

2ns

)}

.

This ns-point design takes observations along the diagonal extending from the origin
to the point (1, 1). Intuitively, we would expect Ddiag to be a poor design, because
it takes observations only along the diagonal and does not spread observations over
[0, 1]2. To compute the discrepancy of Ddiag, we first compute the empirical dis-
tribution function Fns for Ddiag at an arbitrary point x = (x1, x2) in [0, 1]2. Notice
that points in Ddiag have both coordinates equal and it is straightforward to show
from (5.6.2) that

Fns (x1, x2) =
number of pts. in Ddiag with first coordinate ≤ min{x1, x2}

ns
.

Notice that Fns (·, ·) is constant almost everywhere except for jumps of size 1/ns at
points for which one of the coordinates takes one of the values 1

2ns
, 3

2ns
, . . . , 2ns−1

2ns
. In

particular, Fns (x1, x2) has value m
ns

(1 ≤ m ≤ ns) on the set

Xm =

{

(x1, x2) ∈ [0, 1]2 :
2m − 1

2ns
≤ min{x1, x2} <

2m + 1
2ns

}

.

Recall from (5.6.1) that F(·) is the uniform distribution,

F(x) = x1x2

on X = [0, 1]2. On Xm, the minimum value of F(x) is
(

2m−1
2ns

)2
and the supremum of

F(x) is 2m+1
2ns

. This supremum is obtained in the limit as ε → 0 along the sequence

of points
(

2m+1
2ns

− ε, 1
)

. Thus, over Xm, the supremum of
∣

∣

∣Fns (x) − F(x)
∣

∣

∣ is either
∣

∣

∣

∣

m
ns
−

(

2m−1
2ns

)2
∣

∣

∣

∣
or

∣

∣

∣

∣

m
ns
− 2m+1

2ns

∣

∣

∣

∣
= 1

2ns
. For 1 ≤ m ≤ ns, it is not difficult to show that
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∣

∣

∣

∣

∣

∣

∣

m
ns

−
(

2m − 1
2ns

)2
∣

∣

∣

∣

∣

∣

∣

>
1

2ns
.

Hence, over the set of all points x for which Fns (x) has value m
ns

, the supremum of
∣

∣

∣Fns (x) − F(x)
∣

∣

∣ is

m
ns

−
(

2m − 1
2ns

)2

=
nsm − m2 + m

n2
s

− 1
4n2

s
,

and this occurs at the point ( 2m−1
2ns

, 2m−1
2ns

) ∈ Ddiag. Using calculus, one can show that

the value of m that maximizes nsm−m2+m
n2

s
− 1

4n2
s

is ns+1
2 if ns is odd, and ns

2 if ns is even.
If ns is odd, one obtains

D∞(Ddiag) = sup
x∈X

∣

∣

∣Fns (x) − F(x)
∣

∣

∣ =
1
4
+

1
2ns

and if ns is even,

D∞(Ddiag) =
1
4
+

1
2ns

− 1
4n2

s
.

However, notice that when ns is odd, any design corresponding to a permutation in
P taking ns+1

2 of its observations at points which are less than or equal to (1/2, 1/2)
(under componentwise ordering of vectors) will have support on a set with a dis-
crepancy that is greater than or equal to that of Ddiag. To see this, simply notice this
discrepancy must be at least equal to the value of

∣

∣

∣Fns (x) − F(x)
∣

∣

∣ at x = (1/2, 1/2),
which is equal to D∞(Ddiag). Likewise, if ns is even, any design taking half of its
observations at points less than or equal to

(

ns−1
2ns

, ns−1
2ns

)

will have support on a set
with a discrepancy that is greater than or equal to that of Ddiag. Thus, Ddiag is more
uniform than any such design, even if such a design spreads points more evenly over
[0, 1]2 than simply placing them along the diagonal.

Now consider the ns-point design,

Dantidiag =

{(

1
2ns

,
2ns − 1

2ns

)

,

(

3
2ns

,
2ns − 3

2ns

)

, . . . ,

(

2ns − 1
2ns

,
1

2ns

)}

.

This design takes observations along the antidiagonal that runs from the point (0, 1)
to the point (1, 0). For this design, we notice that when ns is odd, Fns (x) = 0 at
x =

(

1
2 − ε, ns+2

2ns
− ε

)

and so, at this x,

∣

∣

∣Fns (x) − F(x)
∣

∣

∣ =

(

1
2
− ε

) (

ns + 2
2ns

− ε

)

.

In the limit as ε → 0,
∣

∣

∣Fns (x) − F(x)
∣

∣

∣ →
1
4
+

1
2ns

.
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One can show that this is, in fact, the supremum value of
∣

∣

∣Fns (x) − F(x)
∣

∣

∣ for
Dantidiag, hence its discrepancy is D∞(Dantidiag) = 1

4 +
1

2ns
. Notice that 1

4 +
1

2ns
is

also the value of D∞(Ddiag), so D∞ considers Ddiag and Dantidiag equally uniform
when ns is odd.

When ns is even, by considering the point x =
(

ns+1
2ns

− ε, ns+1
2ns

− ε
)

, one can show
that in the limit as ε → 0,

∣

∣

∣Fns (x) − F(x)
∣

∣

∣ → 1
4
+

1
2ns
+

1
4n2

s
.

In this case, D∞(Dantidiag) is at least as large as 1
4 +

1
2ns
+ 1

4n2
s
. Notice that this quantity

is larger than the discrepancy of Ddiag when ns is even, so in this case Ddiag is a
more uniform design than Dantidiag. Most readers would consider both designs to be
equally uniform. �

This example shows that discrepancy, at least as measured by D∞, may not ad-
equately reflect our intuitive notion of what it means for points to be evenly spread
overX. Other measures of discrepancy may perform better. In view of Wiens (1991),
uniform designs may be promising, but additional study of their properties in the
context of computer experiments is needed. In addition, it is not clear to what extent
our intuitive notions of points being evenly spread over X correspond to objective
measures of the performance of a design.

It should be noted that in Fang et al. (2000), the design Ddiag is eliminated from
consideration because only matrices Π of rank d are considered, and the matrix Π
corresponding to Ddiag is of rank 1. Fang et al. (2006) includes an extensive discus-
sion of uniform designs. Also see the list of software in Sect. 5.7.4 for constructing
uniform designs.

5.7 Chapter Notes

5.7.1 Proof That TL is Unbiased and of the Second Part
of Theorem 5.1

The notation of Sect. 5.2.3 carries over to this subsection. Computation of E[TL] is
facilitated by the following description of how the LH sample is constructed. For
each i, divide the range [0, 1] of the ith coordinate of X into ns intervals of equal
marginal probability 1

ns
under F. Sample once from each of these intervals and let

these sample values be denoted Xi1, Xi2, . . . , Xins . Form the d × ns array

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

X11 X12 . . . X1ns

X21 X22 . . . X2ns

...
Xd1 Xd2 . . . Xdns

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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and then randomly permute the elements in each row using independent permuta-
tions. The ns columns of the resulting array are the LH sample. This is essentially
the procedure for selecting an LH sample that was discussed in Sect. 5.2.2. Another
way to select an LH sample is as follows. The Cartesian product of the d subinter-
vals [0, 1] partitions X into nd

s cells, each of probability 1/nd
s . Each of these nd

s cells
can be labeled by a set of d coordinates

mi = (mi1, mi2, . . . , mid),

where 1 ≤ i ≤ nd
s and mi j is a number between 1 and ns corresponding to which

of the ns intervals of [0, 1] is represented in cell i. For example, suppose ns = 3,
d = 2, and F(·) is uniform. The interval [0, 1] is divided into the three intervals
[0, 1

3 ), [ 1
3 ,

2
3 ), and [ 2

3 , 1]. Similarly for [a2, b2]. In this case the cell [ 1
3 ,

2
3 ) × [ 1

3 ,
2
3 )

would have cell coordinates (2, 2).
To obtain an LH sample, select a random sample of ns of the nd

s cells, say
mi1 , mi2 , . . . , mins

, subject to the condition that for each j, the set {mi� j}ns

�=1 is a per-
mutation of the integers 1, 2, . . . , ns. A single point from each of these ns cells is
then randomly selected. For an LH sample obtained in this manner, the density of
X, given X ∈ cell i, is

f (x | X ∈ cell i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

nd
s f (x) if x ∈ cell i

0 otherwise
.

Thus, the distribution of the output y(X) under LH sampling is

P
[

y(X) ≤ y
]

=

nd
s

∑

i=1

P
[

y(X) ≤ y | X ∈ cell i
]

P [X ∈ cell i]

=

nd
s

∑

i=1

∫

cell i and y(x) ≤ y
nd

s f (x)

(

1

nd
s

)

dx

=

∫

y(x)≤y
f (x) dx ,

which is the same as for random sampling. Hence E[TL] = μ.
To compute Var[TL], the sampling procedure is viewed as follows. First the Xi

are selected independently and randomly according to the distribution of F from
each of the nd

s cells. Next the sample of ns cells is selected independently as de-
scribed above, letting

Wi =

{

1 if cell i is in the sample
0 otherwise
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and
Gi = g(y(Xi)) .

Then

Var [TL] = Var

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
ns

ns
∑

j=1

G j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1
n2

s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

nd
s

∑

i=1

Var [Wi Gi]

+

nd
s

∑

i=1

nd
s

∑

j=1, j�i

Cov
[

Wi Gi, W j G j

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Some additional properties of the Wi must be invoked to compute the variances
and covariances on the right-hand side of this expression. These results follow from
the fundamental rule that the probability of an event is the proportion of samples
in which the event occurs. First, P[Wi = 1] = ns/nd

s = 1/nd−1
s , so Wi is Bernoulli

with probability of success 1/nd−1
s . Second, if Wi and W j correspond to cells having

at least one common cell coordinate, then these two cells cannot both be selected,
hence E[Wi W j] = 0. Third, if Wi and W j correspond to cells having no cell coordi-
nates in common, then

E
[

Wi W j

]

= P
[

Wi = 1, W j = 1
]

=
1

nd−1
s (ns − 1)d−1

.

This follows from the fact that, taking order into account, there are nd
s (ns − 1)d

pairs of cells with no coordinates in common, and in a sample of size ns, there are
ns(ns − 1) such pairs.

Using the fact that for two random variables Z and V , Var[Z] = E[Var[Z |
V]] + Var[E[Z | V]],

Var [Wi Gi] = E [Var [Wi Gi | Wi]] + Var [E [Wi Gi | Wi]]

= E
[

W2
i Var [Gi | Wi]

]

+ Var [Wi E [Gi | Wi]]

= E
[

W2
i Var [Gi]

]

+ Var [Wi E [Gi]] (5.7.1)

= E
[

W2
i

]

Var [Gi] + E2 [Gi] Var [Wi] ,

where the fact that Xi (and hence Gi) and Wi are independent is used in (5.7.1)
above. Letting

μi = E[g(y(Xi))] = E
[

g(y(X)) | X ∈ cell i
]
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and recalling that Wi is Bernoulli,

nd
s

∑

i=1

Var [Wi Gi] =
nd

s
∑

i=1

{

E
[

W2
i

]

Var [Gi] + E2 [Gi] Var [Wi]
}

=
1

nd−1
s

nd
s

∑

i=1

{

E
[

(Gi − μi)2
]

+

(

1 − 1

nd−1
s

)

μ2
i

}

=
1

nd−1
s

nd
s

∑

i=1

{∫

cell i
(g(y(x)) − μ + μ − μi)

2 nd
s f (x) dx

+

(

1 − 1

nd−1
s

)

μ2
i

}

= ns Var
[

g(y(X))
]

− 1

nd−1
s

nd
s

∑

i=1

{

(μ − μi)2 −
(

1 − 1

nd−1
s

)

μ2
i

}

.

Because W� and G� = g(y(X�)) are independent, then for i � j,

Cov
[

Wi Gi, W j G j

]

= E
[

Wi Gi W j G j

]

− E [Wi Gi] E
[

W j G j

]

= E
[

Wi W j

]

E
[

Gi G j

]

− E [Wi] E [Gi] E
[

W j

]

E
[

G j

]

= E
[

Wi W j

]

E [Gi] E
[

G j

]

− 1

nd−1
s

E [Gi]
1

nd−1
s

E
[

G j

]

= E
[

Wi W j

]

μi μ j −
1

n2d−2
s

μi μ j .

Hence

nd
s

∑

i=1

nd
s

∑

j=1, j�i

Cov
[

Wi Gi, W j G j

]

=

nd
s

∑

i=1

nd
s

∑

j=1, j�i

{

E
[

Wi W j

]

μi μ j −
1

n2d−2
s

μi μ j

}

.

Recall that E[WiW j] = 0 if cells i and j have at least one common cell coordinate.
Let R denote the nd

s (ns − 1)d pairs of cells (with regards to order) having no cell
coordinates in common. On this set,

E
[

Wi W j

]

=
1

nd−1
s (ns − 1)d−1

,

giving

Var

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
ns

ns
∑

j=1

G j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1
n2

s

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ns Var
[

g(y(X))
]

− 1

nd−1
s

nd
s

∑

i=1

(μ − μi)2
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+
1

nd−1
s

(

1 − 1

nd−1
s

) nd
s

∑

i=1

μ2
i

+
1

nd−1
s (ns − 1)d−1

∑

R

μi μ j −
1

n2d−2
s

nd
s

∑

i=1

nd
s

∑

j=1, j�i

μi μ j

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Notice that

nd
s

∑

i=1

μi =

nd
s

∑

i=1

E
[

g(y(X)) | X ∈ cell i
]

=

nd
s

∑

i=1

∫

cell i
g(y(x)) nd

s f (x) dx

= nd
s

∫

X
g(y(x)) f (x) dx = nd

s μ .

So

Var

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
ns

ns
∑

j=1

G j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1
ns

Var
[

g(y(X))
]

− 1

nd+1
s

nd
s

∑

i=1

(

μ2 − 2μi μ + μ2
i

)

+

(

1

nd+1
s

−
1

n2d
s

) nd
s

∑

i=1

μ2
i

+
1

nd+1
s (ns − 1)d−1

∑

R

μi μ j −
1

n2d
s

nd
s

∑

i=1

nd
s

∑

j=1, j�i

μi μ j

= Var [TR] +
1
ns

μ2 − 1

n2d
s

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

nd
s

∑

i=1

μi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2

+
1

nd+1
s (ns − 1)d−1

∑

R

μi μ j

= Var [TR] −
ns − 1

ns
μ2

+

(

ns − 1
ns

) (

1

nd
s (ns − 1)d

)
⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

R

μi μ j

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= Var [TR]
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−
(

ns − 1
ns

) (

1

nd
s (ns − 1)d

)
⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

R

μ2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

(

ns − 1
ns

) (

1

nd
s (ns − 1)d

)
⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

R

μi μ j

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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+

(

ns − 1
ns

) (

1

nd
s (ns − 1)d

)

×
∑

R

(μi − μ)(μ j − μ) (5.7.2)

≤ Var [TR] ,

provided the last term in (5.7.2) is less than or equal to 0. Thus, whether LH sam-
pling is superior to simple random sampling depends on the sign of this term, which
in turn depends on the nature of g and f . Note also that LH sampling is superior to
stratified random sampling with proportional sampling if

(

ns − 1
ns

) (

1

nd
s (ns − 1)d

)

∑

R

(μi − μ)(μ j − μ) < − 1
ns

I
∑

i=1

pi(μ − τi)
2 ,

where the input space has been partitioned into I disjoint strata {S i}, pi = P[X ∈ S i]
is the probability of sampling from S i, and τi = E[g(y(X)) | X ∈ S i] is the ith stratum
mean. McKay et al. (1979) prove that under the assumptions of Theorem 5.1, if
y(x1, . . . , xd) is monotonic in each of its arguments and g(w) is a monotonic function
of w, then

∑

R(μi − μ)(μ j − μ) ≤ 0. This completes the proof of Theorem 5.1. �

5.7.2 The Use of LHDs in a Regression Setting

Owen (1992b) presents a multivariate extension of Theorem 5.3 and its applica-
tion to computer experiments when fitting a regression to output data (rather than
the constant mean described in Sect. 5.2.3). The basis for the application is the
following multivariate version of Theorem 5.3. The setting is as follows. Sup-
pose that X has independent components with distribution function F(·), y(X) =
(y1(X), . . . , yk(X)), Y = 1

ns

∑ns

i=1 y(Xi) and μ =
∫

X y(x) dx.

Corollary 5.1. Let r�(x) be the residual from additivity for y�(x) (see the discussion
preceding Theorem 5.2 for the definition of the residual from additivity) and define

σi j =

∫

X
ri(x) r j(x) dF(x).



5.7 Chapter Notes 197

Let Σ be the d × d matrix whose (i, j) entry is σi j. Then
√

ns (Y − μ) tends in
distribution to Nk(0,Σ) as ns → ∞.

Let Z(x) be a vector-valued function for which a linear model Z(x)β is an appro-
priate approximation to Y(x). The “population” least squares value of β is

βPOP ≡
[∫

X
Z(x)Z(x) dF(x)

]−1 ∫

X
Z(x)Y(x) dF(x).

Assuming
∫

X Z(x)Z(x) dF(x) is known or easily computable (e.g., this would be
the case for polynomial regression), βPOP is estimated by

̂βPOP =

[∫

X
Z(x)Z(x) dF(x)

]−1 1
ns

ns
∑

i=1

Z(Xi)Y(Xi).

The variance of ̂βPOP is of the “sandwich” form

[∫

X
Z(x)Z(x) dF(x)

]−1

Σ

[∫

X
Z(x)Z(x) dF(x)

]−1

,

where Σ is defined in Corollary 5.1 above using the jth element of Z(x)Y(x) in
place of Y j(x) in the definition of r j(x). Appealing to Theorem 5.2, one might argue
to the extent that Z(x)Y(x) is additive, the regression may be more accurately
estimated from a LHD than from a design based on a simple random sample.

Owen (1992b) discusses some other estimators of βPOP. The point is that when a
linear model is likely to provide a good approximation to y(x), using a LHD fol-
lowed by regression modeling is not an unreasonable approach to predicting simu-
lator output.

5.7.3 Other Space-Filling Designs

The methods discussed in this chapter are not the only ones that generate space-
filling designs. The literature on numerical integration contains numerous sugges-
tions for constructing evenly spaced designs. Niederreiter (1992) contains a wealth
of information about such designs, including their mathematical properties.

As mentioned in Sect. 5.2.1, one possibility is to choose points on a regularly
spaced grid superimposed on the experimental region. For example, if the experi-
mental region is X = [0, 1]d, the d-fold Cartesian product of the ns point set

S =

{

1
2ns

,
3

2ns
, . . . ,

2ns − 1
2ns

}

would be a grid consisting of nd
s points. Grid designs consist of an array of evenly

spaced points, but projections onto subspaces have many replicated points.



198 Chapter 5 Space-Filling Designs

An improvement over grids is obtained by the method of good lattice points. Such
designs are appealing in that they appear evenly spaced and in some cases have
attractive properties in numerical integration. Niederreiter (1992) discusses these
designs in more detail. Bates et al. (1996) consider lattice designs in the context of
computer experiments.

Nets form another class of designs that appear space-filling and which are pop-
ular in numerical integration. See Niederreiter (1992) and Owen (1995) for more
details.

Because these designs are intended for use in numerical integration, they are
generally used in situations where a large sample size is employed. Their properties
tend to be for large numbers of observations and their small-sample behavior is not
clear (and thus their usefulness in computer experiments in which the total number
of observations is constrained to be small).

5.7.4 Software for Constructing Space-Filling Designs

The designs discussed in this chapter must be produced numerically. Below is a
partial list of software that will generate these designs.

1. Software for generating randomly selected Latin Hypercube Designs is avail-
able in both R and MATLAB. The R package DiceDesign will generate random
LHD designs, (nearly) maximin LHD designs, and LHD designs with low dis-
crepancy. It will also generate maximin designs.

2. The stand-alone program ACED can generate maximin designs within the class
of LHD designs.

3. JMP will generate LHD and maximin designs for rectangular, user-specified
design regions and for any (ns, d). For LHD designs, JMP chooses points
so that the design is (nearly) maximin subject to a constraint that maintains
even spacing between factor levels. JMP refers to maximin designs as sphere-
packing designs. JMP will generate two types of designs with good distance-
based properties for rectangular and for non-rectangular regions. One type of
design is called a “fast flexible filling design.” Designs can be generated for
regions determined by user-specified linear constraints on the inputs. The al-
gorithm produces designs with good properties using the minimax distance
criterion or the MaxPro criterion. The other design type is designated “min-
imum potential designs.” Designs can be generated for spherical regions for
any (ns, d). To generate any of these designs, run the Space Filling Design
command under the DOE menu.

4. Dakota is a software package developed at Sandia National Laboratories for
the analysis of data from predictive simulations. This package will gener-
ate several types of space-filling designs including orthogonal array designs,
LHDs, and orthogonal array-based LHDs. Dakota can be downloaded from
http://dakota.sandia.gov

http://dakota.sandia.gov
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5. The DiceDesign package in R will generate uniform designs under a variety
of discrepancies including the L2 discrepancy, the centered L2 discrepancy, and
the star discrepancy.

6. The R package SLHD will generate optimal sliced LHDs. See Ba et al. (2015)
for a discussion of optimal sliced LHDs, the description of an algorithm to
construct such designs, and earlier references to this class of designs.

7. The R package MaxPro generates maximum projection designs either unre-
stricted, within the class of LHDs, or to augment a given design using the
MaxPro criterion. See Joseph et al. (2015) for a discussion of maximum pro-
jection designs and the construction of such designs.

8. The stand-alone C code of Brian Williams, available at http://go.osu.edu/
LHDesigns, will generate optimal designs for the following scenarios:

(a) Given the set of dimensions J ⊂ {1, . . . , d} over which projections are of
interest, the C code oalhs will construct a design that maximizes the mini-
mum (normalized) interpoint distance (5.4.8) in the class of OA-based LHDs
based on a given starting OA. It can also construct a design that maximizes
the average reciprocal distance (5.4.9) for the same class of OA-based LHDs.
The website http://neilsloane.com/oadir, maintained by Neal Sloane, contains
a comprehensive library of known OAs. These designs are also available at
http://go.osu.edu/OrthogonalArrays.

(b) Given the set of dimensions J ⊂ {1, . . . , d} over which projections are of in-
terest, the C code slhs will construct a design that maximizes the minimum
(normalized) interpoint distance (5.4.8) in the class of symmetric LHDs (see
Sect. 5.3.3) of a given number of runs. It can also construct a design that max-
imizes the average reciprocal distance (5.4.9) for the same class of symmetric
LHDs

9. The R program concad computes optimum distance designs of a given number
of runs for bounded polygonal input regions, i.e., regions of points x that satisfy
Ax ≤ b for given A and b. The concad package can be used with a maximin
or minimum ARD criteria or a compromise criterion involving both maximin
and minimum ARD optimality. Contact D. Draguljić (ddraguljic@gmail.com)
to obtain the concad package.

10. The R function runif.sobol will generate Sobol´ sequences and the function
runif.halton will generate Halton sequences. (See the R documentation for the
details of the bases used in the construction and the required R packages.)

11. The MATLAB function haltonset can generate Halton sequences, while the
sobolset function will construct Sobol´ sequences. Both functions require
the Statistics toolbox. One can also find online MATLAB code for generating
Niederreiter sequences. For example, see http://people.sc.fsu.edu/∼jburkardt/
m src/niederreiter2/niederreiter2.m.

12. The open-source GSL library contains code for generating Sobol´ and Nieder-
reiter sequences which can be accessed using an appropriate calling routine
in C.

http://go.osu.edu/LHDesigns
http://go.osu.edu/LHDesigns
http://neilsloane.com/oadir
http://go.osu.edu/OrthogonalArrays
http://people.sc.fsu.edu/~jburkardt/m_src/niederreiter2/niederreiter2.m
http://people.sc.fsu.edu/~jburkardt/m_src/niederreiter2/niederreiter2.m
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13. JMP will generate uniform designs. JMP uses the centered L2 discrepancy
measure of Hickernell (1998). To generate uniform designs, one must run the
Space-Filling Design command under the DOE menu.

14. The R package minimaxdesign generates minimax designs and minimax pro-
jection designs (using clustering and the particle swarm optimization (PSO)
algorithms).

5.7.5 Online Catalogs of Designs

The Mathematics Department of Hong Kong Baptist University maintains the web-
site http://www.math.hkbu.edu.hk/UniformDesign with information about uniform
designs, including lists of publications about uniform designs and tables of uniform
designs. In addition there are websites that provide catalogs of designs that are opti-
mal under distance or other criteria. Of these, http://www.spacefillingdesigns.nl is
particularly rich.

http://www.math.hkbu.edu.hk/UniformDesign
http://www.spacefillingdesigns.nl


Chapter 6
Some Criterion-Based Experimental
Designs

6.1 Introduction

Chapter 5 considered designs that attempt to spread observations “evenly” through-
out the experimental region. Such designs were called space-filling designs. Recall
that one rationale for using a space-filling design is the following. If it is believed
that interesting features of the true model are just as likely to be in one part of the
input region as another, observations should be taken in all portions of the input
region. There are many heuristic criteria for producing designs that might be con-
sidered space-filling; several of these were discussed in Chap. 5. However none of
the methods was tied to a statistical justification, and no single criterion was singled
out as best.

Physical experiments have a long history for choosing designs to satisfy sta-
tistical criteria. An example are designs selected to “minimize” the variances of
estimators of the mean model parameters. Specifically, suppose it is known that a
second-order response surface mean model adequately approximates the output of
a physical experiment. The design for an experiment satisfying such a mean model
might be selected according to one of the many criteria proposed for second-order
response surfaces. One such criterion is D-optimality; a D-optimal design minimizes
the determinant of the covariance matrix of the least squares estimators of the regres-
sion parameters. This is equivalent to minimizing the volume of the confidence el-
lipsoid for the regression parameters. Many other criteria have been proposed in the
statistical literature that are tailored to answering specific inference questions. For
example, a researcher may be interested in minimizing the integrated mean squared
prediction error or minimizing the squared bias of model predictions (with respect
to some true model).

This chapter considers some statistical criteria that have been used to construct
experimental designs for computer experiments. Constructing designs according to
such criteria is often more difficult than in linear model settings because these crite-
ria are functions of the unknown parameters of the Gaussian process models. Ana-
lytic results are difficult to obtain and have been found in only a few special cases.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
T. J. Santner et al., The Design and Analysis of Computer Experiments,
Springer Series in Statistics, https://doi.org/10.1007/978-1-4939-8847-1 6
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The details of such results are very technical and beyond the scope of this book.
Here the criteria are described, and methods are identified for finding good designs
according to these criteria. This is an active area of research.

6.2 Designs Based on Entropy and Mean Squared Prediction
Error Criterion

6.2.1 Maximum Entropy Designs

To introduce the notion of entropy, let X be a random variable taking a finite number
of values. For simplicity, take these values to be 1, 2, . . . , n. Let pi be the probability
that X = i. Define the entropy of X to be

H(X) = −
n

∑

i=1

pi × �n (pi) , (6.2.1)

where �n(·) denotes the natural logarithm and p × �n (p) is defined to be 0 when
p = 0. This definition can be extended to a continuous random variable X having
probability density function f (·) by defining the entropy of X to be

H(X) = −
∫

X
f (x) × �n ( f (x)) dx

where, again, f (x) × �n ( f (x)) is defined to be 0 whenever f (x) = 0.
What does entropy represent and why is this particular function used to measure

entropy? Entropy is intended to be a measure of the unpredictability of a random
variable. Intuitively, if all outcomes of a random variable X are equally likely, i.e.,
p1 = p2 = · · · = pn = 1/n, then X is maximally unpredictable, and a reasonable
definition of entropy should assign maximum value to this distribution. If X takes on
a single value with probability 1, then X is completely predictable and should have
minimum entropy. That entropy achieves this intuition is seen by first considering
X which is a constant with probability one. Then H(X), defined by (6.2.1), equals
0. This is the smallest possible value of H(X) because H(X) ≥ 0 for every X since
all the pi are between 0 and 1. Now consider a discrete random variable X with
p1 = p2 = · · · = pn = 1/n; it is simple to compute that H(X) = �n(n). That this
is the largest possible value of H(X) can be established by noting that the function
f (x) = �n(x) is strictly concave on x > 0. Thus if X has n support points with
associated (positive) probabilities {p1, p2, . . . , pn}, then H(X) =

∑n
i=1 pi×�n (1/pi) <

�n
(

∑n
i=1 pi/pi

)

= �n (n). In sum, entropy can be thought of as a measure of the
uniformity and dispersion of the distribution of the random variable X.

Lindley (1956) tied entropy to the amount of information contained in an exper-
iment. His argument is based on one originally proposed by Shannon (1948). The
basic idea is the following. Consider a statistical model for a measured response that
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is determined by a parameter ξ. For example, in regression, ξ might be the vector
of regression parameters. In the Gaussian process models considered in this book, ξ
might represent the vector of correlation parameters.

For simplicity, assume the set of possible values of ξ, Ξ, is finite. Suppose that
knowledge about ξ is specified by a (prior or a posterior) probability mass function
that is denoted by πξ(·); similar definitions hold for continuous ξ distributions.

The goal is to measure the “information” about ξ, denoted I, that is contained
in the distribution πξ(·). Lindley describes I as the amount of information that must
be provided to “know” ξ. Assuming that I is taken to be real-valued, what intuitive
properties should it have? One heuristic property arises from considering the fol-
lowing two-stage description of the distribution of ξ. Let Ξ1 be a nonempty proper
subset of Ξ with total probability, P, that is strictly between 0 and 1, i.e.,

0 < P ≡
∑

ξ�∈ Ξ1

πξ(ξ�) < 1.

In the first stage, consider whether ξ ∈ Ξ1 or its complement. The distribution that
summarizes our knowledge of ξ at this stage is (P, 1−P). This provides, say, amount
I0 of information. The information provided in the second stage is, say, I1 or I2 ac-
cording to whether ξ ∈ Ξ1 or ξ is in the complement of Ξ1; I1 and I2 are calcu-
lated from the following distributions. Given ξ ∈ Ξ1, the conditional distribution
[

ξ | ξ ∈ Ξ1
]

(= πξ(·)/P) summarizes the knowledge about ξ. Given that ξ is in the
complement of Ξ1, the conditional distribution

[

ξ | ξ � Ξ1
]

(= πξ(·)/(1−P)) summa-
rizes the knowledge about ξ. Then (as Shannon (1948) argued) one should require
that the information provided in the first stage and the average (expected) amount of
information provided in the second stage add up to the total information I in πξ(·),
namely,

I = I0 + P I1 + (1 − P) I2. (6.2.2)

The additivity requirement (6.2.2) is the fundamental postulate for a measure of
information I in the distribution πξ(·). Shannon (1948) showed that

I =
∑

ξ�

πξ(ξ�) �n
(

πξ(ξ�)
)

is the only function having this property, apart from an arbitrary multiplying con-
stant and a mild continuity property. As for entropy, I can be extended to continuous
distributions with probability density functions πξ(·) by setting

I =
∫

ξ�
πξ(ξ

�) �n
(

πξ(ξ
�)

)

dξ� .

Information is typically viewed as the negative of a measure of entropy, namely,
I = −H. The above argument suggests that not only is H(X) a reasonable measure
of entropy, but it is the only measure of entropy having certain desirable properties.
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Shewry and Wynn (1987) used these ideas to develop the notion of maximum
entropy sampling when the design space is discrete. Let πξ(·) be the prior distribu-
tion for ξ, the parameter in the statistical model to be estimated. Observe a response
at the ns input sites D = {x1, x2, . . . , xns } and call D the experimental design. Let
πξ|D(·) denote the posterior distribution of ξ given the observations collected using
design D. The amount of information about ξ that is contained in the prior before
the experiment is

I =
∫

πξ(ξ�) �n
(

πξ(ξ�)
)

dξ�;

the amount of information about ξ after the experiment using design D is

ID =
∫

πξ|D(ξ�) �n
(

πξ|D(ξ�)
)

dξ�.

Thus ID − I is the change in information. Shewry and Wynn (1987) evaluated the
design D by its expected change in information. Using the fact that entropy is the
negative of information, Shewry and Wynn (1987) showed that the expected change
in information is maximized by that design which maximizes the entropy of the
observed responses at the points in the design. Such a design is called a maximum
entropy design.

In the case of the Gaussian process models, recall that the training data has the
conditional distribution

[

Yns | β
]

∼ Nns

(

Fβ, σ2
Z R

)

,

assuming σ2
Z and R are known. One can show that a maximum entropy design D

maximizes the determinant of the (unconditional) covariance of the observed re-
sponses Yns at the points in the design. In particular, assuming the Gaussian prior

[

β
]

∼ Np

(

b0, τ
2V0

)

,

the determinant of this marginal covariance matrix of Yns is
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If the β prior assumes these coefficients are known and fixed at b0, i.e., τ2 = 0, the
maximum entropy criterion reduces to

det
(

σ2
Z R

)

. (6.2.3)

Shewry and Wynn (1987) used the maximum entropy criterion to find designs
for certain spatial models. Currin et al. (1991) and Mitchell and Scott (1987) ap-
plied maximum entropy to selecting designs for computer experiments. There are
three points that the researcher should notice regarding the latter use. First, max-
imizing (6.2.3) is equivalent to maximizing det(R) because σ2

Z is independent of
the design. Second, R depends on the correlation function R(·) which is generally
parametric with unknown parameters. Third, the det(R) is maximized when R is
the identity matrix. The argument showing this last statement is as follows. Observe
that R is an ns × ns correlation matrix. All ns × ns correlation matrices have trace
equal to ns, which is the sum of their (necessarily nonnegative) eigenvalues. The
determinant of such a nonnegative definite matrix is maximized when the product
of the ns eigenvalues is maximized. Subject to the constraint that the sum is ns, this
occurs when the eigenvalues are all equal to 1. The only such correlation matrix is
the identity matrix.

One application where the design can force R to be an identity matrix occurs
when the correlation function has compact support, such as the cubic correlation
function or the Bohman correlation function. In such a case it may be possible to
choose the ns input sites D = {x1, x2, . . . , xns} so that all are uncorrelated and hence
R is the identity matrix. In this case, D would be a maximum entropy design. For
example, suppose ns = 4, d = 2, X = [0, 1]2 and a separable cubic correlation
function with correlation parameters ψ1 < 1 and ψ2 < 1 (see (2.2.12)). A design
taking observations at the corners of [0, 1]2 would be a maximum entropy design.

One strategy for applying the maximum entropy principle in the case of arbi-
trary unknown R(·) is to apply the following two-stage procedure. In the first stage,
the researcher uses one of the designs discussed in Chap. 5, e.g., an LHD, and esti-
mates the unknown correlation parameters based on the first-stage data. The second
stage treats the estimated parameter values as true and applies the maximum en-
tropy criterion to determine a new design. Another strategy might be to carry out a
robustness study among designs that are locally maximum entropy; an example of
this approach is described in the next subsection.

Currin et al. (1991) described an algorithm adopted from DETMAX (Mitchell
(1974)) for finding a maximum entropy design when the correlation function is
known. Johnson et al. (1990) suggested that, in a limiting sense as the correlation
tends to 0, maximum entropy designs are maximin distance designs.

Figure 6.1 shows three 20-point maximum entropy designs in d = 2 dimensions
when (x1, x2) ∈ [0, 1]2. The designs are calculated assuming the Gaussian correla-
tion function

R(h1, h2) =
2

∏

i=1

exp(−ξi h2
i ) ,
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where ξ = (ξ1, ξ2) > 0 is known. The three panels of Fig. 6.1 correspond to
ξ = (1, 1) in panel (a), ξ = (25, 25) in panel (b), and ξ = (1, 25) in panel (c).
The designs in both (a) and (b) appear space-filling with the caveat that the points
in (a) appear to be distributed closer to the boundary than those in (b). The de-
sign in panel (c) has projections onto the x2-axis that are more spread out than the
projections onto the x1-axis. Intuitively, this seems sensible because the larger ξ2

correlation parameter in the Gaussian correlation function means that the process
has more volatile (rougher) realizations in x2 (see Fig. 2.6). The greater volatility in
x2 requires projections onto the x2 axis to be more finely spread out. Mahalanobis
distance, rather than Euclidean distance, is perhaps a more appropriate metric in
terms of assessing “space-fillingness” of a design when the Gaussian correlation
function is used.

Figure 6.1 raises some interesting issues. First, if the correlation function is be-
lieved to be isotropic (as in panels (a) and (b)), maximum entropy designs may be
relatively insensitive to the actual values of the correlation parameters. Second, for
small values of the correlation parameters, points in a maximum entropy design are
clustered a bit closer to the boundary. Third, if the correlation function is strongly
non-isotropic (as in panel (c)), the projections of points of a maximum entropy de-
sign onto different coordinates may be quite different. The design itself need not
look particularly space-filling. Prior knowledge about the level of activity of the dif-
ferent inputs (via the correlation parameters) is essential for selecting a good design.
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Fig. 6.1 Maximum entropy designs on [0, 1]2 obtained by maximizing (6.2.3). In panel (a), ξ =
(1, 1); in panel (b), ξ = (25, 25); and in panel (c), ξ = (1, 25)

6.2.2 Mean Squared Prediction Error Designs

Consider the setting of Sect. 3.3 and suppose that the deterministic response y(x),
x ∈ X ⊂ IRd is a realization of a stochastic process Y(x) according to (2.2.3). Let
D = {x1, x2, . . . , xns } denote an ns-point design. Assume the BLUP ŷ(x) based on
D (see (3.2.7)) is used to predict the response at input x.
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Sacks et al. (1989a) considered two design criteria, each based on minimizing a
functional of the MSPE of ŷ(x) which the reader will recall is given by

MSPE
[

ŷ(x)
]

= E
[
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)2
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(see Sect. 3.2). The first criterion function is the Integrated Mean Squared Prediction
Error (IMSPE) which is defined to be the MSPE “averaged” over X as follows:

I
(

D, ŷ
)

=

∫

X

MSPE
[

ŷ(x)
]

σ2
Z

w(x) dx, (6.2.5)

where w(·) is a specified nonnegative weight function satisfying
∫

X w(x) dx = 1.
An ns-point design Dimspe is IMSPE-optimal if it minimizes the IMSPE criterion
function, i.e.,

I
(

Dimspe, ŷ
)

= min
D⊂X

I
(

D, ŷ
)

.

Because the reciprocal of σ2
Z is a multiplicative factor in I(Dimspe, ŷ), the same

Dimspe is optimal for all σ2
Z . Using the formula for the MSPE given in (6.2.4),

I(D, ŷ) can be written as
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The expression (6.2.6) simplifies under certain conditions. For example, suppose
X = [a1, b1]×· · ·×[ad, bd]; the ith regressor fi(x) has the product form

∏

j fi j(x j), i =
1, . . . , p, for real-valued functions fi j(·) or is the sum of such functions; the corre-
lation ri(x) has the product form

∏

j ri j(x j), i = 1, . . . , ns, for real-valued functions
ri j(·); and the weight function w(x) has the product form

∏

j w j(x j) for real-valued
functions wj(·). Then the multidimensional integral in (6.2.6) simplifies to a product
of one-dimensional integrals, which is useful in reducing the amount of computa-
tion required by an optimal design algorithm. These conditions on r(·) and f (·) are
satisfied if, for example, a polynomial regression model is used for the linear model
portion of Y(·) and a product correlation structure is assumed, such as the product
power exponential correlation (2.2.11).

Constructing an IMSPE-optimal design requires minimizing I(D, ŷ) as a func-
tion of the ns × d inputs of the desired design. In practice, ns × d can be large as
researchers seek to have an adequate number of runs to explore simulators with
control, environmental, and other types of inputs. Welch et al. (1992) used a quasi-
Newton algorithm to search for an IMSPE-optimal design. Quasi-Newton algo-
rithms are susceptible to being caught in a local optimum and must be used with
multiple starting designs. Leatherman et al. (2014) found that using a direct search
particle swarm algorithm was effective in identifying promising starting designs for
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the quasi-Newton algorithm. Nevertheless, the computation of IMSPE-optimal de-
signs can only be accomplished for relatively small ns × d, say less than 150.

Figure 6.2 shows three 20-point IMSPE-optimal designs in d = 2 dimensions for
a uniform weight function when (x1, x2) ∈ [0, 1]2. Each design assumes the constant
mean GP model with Gaussian correlation function

R(h1, h2) =
2

∏

i=1

exp(−ξi h2
i ) ,

where ξ = (ξ1, ξ2) > 0 is known. The three panels of Fig. 6.2 correspond to ξ =
(1, 1) in panel (a), ξ = (25, 25) in panel (b), and ξ = (1, 25) in panel (c). Both (a)
and (b) designs appear space-filling, but the points in (a) are closer to the boundary
than those in (b). In case (c) the projections onto the x2-axis are more “spread out”
than the projections onto the x1-axis. The behavior is similar to that seen in Fig. 6.1
for maximum entropy designs, and similar comments apply here. If the correlation
is decidedly non-isotropic, the design may be sensitive to the actual values of the
correlation parameters.
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Fig. 6.2 IMSPE-optimal designs on [0, 1]2 for the constant mean model obtained by minimiz-
ing (6.2.6) for the uniform weight function. In panel (a), ξ = (1, 1); in panel (b), ξ = (25, 25); and
in panel (c), ξ = (1, 25)

The IMSPE criterion function (6.2.5) requires knowledge of the correlation func-
tion R(·). In computer experiment applications, the correlation structure often de-
pends on unknown parameters. Thus, in practice, the true IMSPE-optimal design
cannot be computed. To overcome this problem, several approaches can be used
to find approximate IMSPE designs. First, one can pick plausible values for the
unknown parameters and pretend these are the true values. In the optimal design
literature, such designs are referred to as locally optimal. Second, one can use a
minimax approach. Find the design that minimizes the maximum MSPE, the max-
imum computed over all values of the unknown parameters. This approach will
be discussed shortly. Third, one can employ a Bayesian approach, finding the de-
sign that minimizes the expected value of the MSPE, the expectation taken with
respect to a prior on the unknown parameters. The Bayesian approach is discussed
in Sect. 6.5.2. Fourth, one could use a two-stage procedure. In the first stage, data is
collected using one of the designs discussed in Chap. 5, for example, an LHD. Based
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on the first-stage data, the unknown correlation parameters are estimated. The sec-
ond stage determines an IMSPE-optimal design treating the estimates as the true
parameter values.

The second MSPE-based criterion introduced by Sacks et al. (1989a) employed
a minimax approach to find an approximate IMSPE design. Assume x ∈ [0, 1]d and
y(x) can be described as a draw from a GP Y(x) with isotropic Gaussian correlation
function

R(h1, . . . , hd) =
d

∏

i=1

exp(−ξ h2
i ) , (6.2.7)

with unknown rate parameter ξ > 0. Sacks et al. (1989a) conducted a robustness
study to identify a value of ξ for generating an IMSPE-optimal design that performs
well over a range of possible ξ values. Let aξ(·) denote the coefficient vector of the
BLUP ŷξ(x) in (3.2.7). This notation explicitly indicates the dependence of these
coefficients on the correlation parameter.

To give additional details about this approach, suppose ξ2 ≥ 0 is assumed in
computing the BLUP ŷξ2 (x) but that ξ1 ≥ 0 is the true value of the correlation
parameter governing Y(x). Welch et al. (1992) showed that the MSPE of ŷξ2 (x) can
be calculated as

MSPEξ1

[

ŷξ2 (x)
]

= σ2
Z

[

1 + a
ξ2

(x)Rξ1 aξ2 (x) − 2aξ2
(x)rξ1 (x)

]

.

Consider the IMSPE criterion function

Iξ1

(

Dξ2 , ŷξ2

)

=

∫

X

MSPEξ1

[

ŷξ2 (x)
]

σ2
Z

dx (6.2.8)

(assuming a uniform weight function w(·)). The Sacks et al. (1989a) robust method
of choosing ξ proceeds as follows:

1. Select Ξ to be a finite set of possible values for the correlation parameter. Both
large and small parameter values should be included in Ξ.

2. Assume that the correlation parameter has value ξA ∈ Ξ. Set ξ1 = ξ2 = ξA

in (6.2.8) and calculate an IMSPE-optimal design DξA

imspe. Do this for each ξA ∈ Ξ.
The representation (6.2.6) for IξA (DξA , ŷξA ) can be used to perform the required
minimization, where R = RξA , r(·) = rξA (·), and w(·) ≡ 1.

3. For each ξT ∈ Ξ and ξA ∈ Ξ set ξ1 = ξT and ξ2 = ξA in (6.2.8) and calculate
IξT (DξA

imspe, ŷξA ). Here, ξT represents the true value of the correlation parameter

governing Y(x). Then IξT (DξT

imspe, ŷξT ) ≤ IξT (DξA

imspe, ŷξA). Define the relative ef-

ficiency of strategy (DξA

imspe, ŷξA ) under ξT as follows:

effξT

(

DξA

imspe, ŷξA

)

=
IξT

(

DξT

imspe, ŷξT

)

IξT

(

DξA

imspe, ŷξA

) .

Calculate these efficiencies for each ξT ∈ Ξ and ξA ∈ Ξ.
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4. Choose the design Dξ∗A
imspe that is robust in the sense of maximizing the minimum

efficiency:

min
ξT ∈Ξ

effξT

(

Dξ∗A
imspe, ŷξ∗A

)

= max
ξA∈Ξ

min
ξT ∈Ξ

effξT

(

DξA

imspe, ŷξA

)

.

Sacks et al. (1989a) considered the efficacy of their robustness approach in a se-
ries of examples. In the first of these, they find that the design D1

imspe corresponding
to ξ = 1 was most robust. This design reduced an empirical measure of integrated
squared error by a factor of 8–10 relative to a competing strategy using least squares
prediction based on a 32 factorial design.

The robustness approach to design construction assumes that predictions are to be
made using test functions drawn from an isotropic GP, either the one used to form
the predictor or one with different rate parameters. In a study of IMSPE-optimal
designs with space-filling and other designs, Leatherman et al. (2018) compared
designs based on their empirical mean squared prediction error (EMSPE),

EMSPE (D) =
1
g

g
∑

i=1

(

ŷE(xi) − y(xi)
)2

,

for a set of test bed functions, y(x); the g prediction inputs, x1, . . . , xg are a set
of “space-filling” inputs that are y(x)-specific. Some test bed functions are drawn
from a (broader) class of GPs (than used by Sacks et al. (1989a)), while others are
selections from various random parameter function classes including nonstationary
ones. The Leatherman et al. (2018) comparisons concluded that using the IMSPE-
optimal design corresponding to (6.2.7) with ξ = −�n(0.5) (exp(−ξ) = 0.5) provides
smaller prediction errors than do IMSPE-optimal designs corresponding to other
correlation values and this IMSPE-optimal design is also superior to the widely
used maximin LHD designs.

Picard and Williams (2013) utilized a multistage approach to IMSPE-optimal
design in the context of an adaptive importance sampling algorithm for rare event
estimation with simulators y(x) allowing only a limited budget of runs. The goal is
to estimate P[y(X) ≥ T ] for a given threshold T via importance sampling, with in-
puts x distributed according to a known distribution [X]. A first-stage space-filling
designD1 (such as an LHD) specifies simulator runs used to estimate the correlation
parameters κ of the BLUP, resulting in the EBLUP ŷ(x | κ̂1,D1). A parametric im-
portance density g1(·) (e.g., multivariate normal) is estimated from samples X ∼ [X]
satisfying ŷ(X | κ̂1,D1) ≥ T . A second-stage design D2 is then found that minimizes
the criterion (6.2.5), calculated using κ̂1 and D1 ∪ D2. The weight function w(x) is
taken to be the product of the marginal components g1i(xi) of the importance density
g1(x), allowing the reduction of (6.2.6) to a product of one-dimensional integrals.
This design approach is motived by the desire to achieve targeted improvement of
the BLUP’s predictive capability in the region of input space responsible for rare
events, thereby increasing the efficiency of importance density updates and ulti-
mately estimation of P[y(X) ≥ T ]. Once D2 is determined, new simulator runs are
obtained, and the correlation parameters are updated to κ̂2. The EBLUP and impor-
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tance density are updated to ŷ(x | κ̂2,D1 ∪ D2) and g2(·), respectively. This process
continues until minimal improvement in the estimate of P[y(X) ≥ T ] is achieved or
the budget of simulator runs is exhausted.

There are other criteria for selecting designs that are based on the MSPE. This
section concludes by describing one of these, the maximum mean squared prediction
error criterion. As above, let y(x) be an output function defined on input domain
X, D an n-point design, and ŷ(x) the BLUP of y(x). The maximum mean squared
prediction error (MMSPE) criterion function is defined as follows:

M
(

D, ŷ
)

= max
x∈X

MSPE
[

ŷ(x)
]

σ2
Z

. (6.2.9)

The design Dmmpse is MMSPE-optimal if it minimizes the worst case prediction error
over X, i.e., it minimizes

M
(

Dmmspe, ŷ
)

= min
D⊂X

M
(

D, ŷ
)

.

The MMSPE criterion function (6.2.9) depends on any unknown correlation pa-
rameters but is independent of the process variance. Hence the same design is op-
timal for all σ2

Z . When X is a continuous region, the determination of an MMSPE-
optimal design can be extremely computationally intensive, as a d-dimensional max-
imization of a complicated function is required for each design considered by an
algorithm. As do IMSPE-optimal designs, MMSPE-optimal designs tend to locate
points away from the boundary of the design space.

The IMSPE and MMSPE design criteria are generalizations of the classical A-
optimality and G-optimality criteria. To see this, suppose that Z(x) in (2.2.3) is a
white noise process, so that R = I, where I is the identity matrix. Then Yns , the
vector of the training data, follows the traditional regression model with random
error used in response surface modeling for physical experiments. In this case, the
IMSPE criterion function (6.2.5) simplifies to

I (D, ŷ
) − 1 =

∫

X
f(x)(FF)−1 f (x) w(x) dx

= tr
(

W(FF)−1
)

,

where

W =
∫

X
f (x) f(x) w(x) dx

is a positive definite p × p weight matrix. A design minimizing

tr
(

W(FF)−1
)

is called L-optimal (see Pukelsheim (1993)). Thus, the IMSPE-optimal designs are
the L-optimal designs when Z(x) is a white noise process.
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L-optimal designs are related to A-optimal designs as follows. Let H be a p × p
square root of W; that is, W = HH. Then,

tr
(

W(FF)−1
)

= tr
(

H(FF)−1H
)

so a design is L-optimal if and only if it is A-optimal for the parameter subsystem
Hβ.

From Eq. (6.2.4), the MMSPE criterion function (6.2.9) simplifies to

M
(

D, ŷ
)

− 1 = max
x∈X

f(x)(FF)−1 f (x) .

A design minimizing
max
x∈X

f(x)(FF)−1 f (x)

is called G-optimal. Thus, the MMSPE-optimal designs are the G-optimal designs
when Z(x) is a white noise process.

In sum, our experience is that maximum entropy, IMSPE-optimal, and MMSPE-
optimal designs are not used by practitioners as frequently as maximin LHDs, pri-
marily because LHDs are relatively easy to construct for any sample size. However,
IMSPE-optimal designs deserve strong consideration.

6.3 Designs Based on Optimization Criteria

6.3.1 Introduction

This subsection describes several sequential experimental design strategies that have
been proposed for the important problem of finding an input x ∈ X that “optimizes”
the output of a computer simulator. Depending on the application, one or more sim-
ulators, y1(x), . . . , ym(x) (m ≥ 1) may be of interest. In some applications, the yi(·)
are the objects of direct interest, while in other applications, either integrals or linear
combinations of the yi(·) are of interest. As illustrated in Sect. 1.2, an example of the
latter occurs when x consists of both control and environmental components, i.e.,
x = (xc, xe). In this case, suppose that the environmental variables have a known
probability distribution, which is specified either by the probability mass function
wj = P{ Xe = xe, j } on ne support points {xe, j} or by the probability density function
w(·). Then the quantities of interest are

μi(xc) ≡
ne

∑

j=1

wj yi(xc, xe, j)

(

or ≡
∫

yi(xc, xe) w(xe) dxe

)

, (6.3.1)

which is the mean of yi(·) with respect to the distribution of the Xe variables for
i = 1, . . . , m.
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Sections 6.3.2–6.3.4 consider problems of optimizing a single output y1(·)
(m = 1); two specific problems of this sort are considered. The first is that of min-
imizing y1(x) as a function of all the input variables x. In the second, x consists
of control and environmental components, and the goal is to find control variable
combinations xc,min that minimize μ1(·). Section 6.3.5 considers the case of multiple
outputs (m ≥ 2); it describes two methods of locating a minimizer xmin of y1(·)
that satisfies feasibility constraints on y2(·), . . . , ym(·). It also presents a method for
finding control variable combinations xc,min that minimize μ1(·), subject to feasibil-
ity constraints on μ2(·), . . . , μm(·). Section 6.3.6 discusses Pareto optimization for
multiple outputs.

The optimization algorithms presented in this section utilize multiple experimen-
tal design stages. The idea of these methods is to use first-stage data to obtain initial
information about the entire response surface, while each additional stage takes ac-
count of all previous information to obtain an experimental design consistent with
the optimization objective. A quantitative criterion is implemented by each algo-
rithm for the purpose of deriving the experimental design in each stage.

6.3.2 Heuristic Global Approximation

Bernardo et al. (1992) proposed a sequential strategy for optimizing integrated cir-
cuit designs. Conceptually, their algorithm should be thought of as minimizing a
single function, y1(·), over inputs x ∈ X; thus this is an m = 1 problem. Their
method sequentially refines the region of the input space where an optimum appears
to be located. Computational considerations limit the number of model runs they
could make and necessitate the use of a surrogate predictor for model output. In
overview, the algorithm is implemented as follows.

1. Postulate an approximating model for the data-generating process.

Bernardo et al. (1992) adopted the stochastic process model of Sect. 2.3, with
power exponential correlation function, which Sect. 3.3 has shown is substantially
more flexible than standard polynomial models and implicitly accounts for nonlin-
earities in the inputs and complex interactions.

2. Design an initial experiment and collect the required data. Estimate model pa-
rameters and calculate the response predictor.

Bernardo et al. (1992) recommended initial designs containing at least three runs
per estimated model parameter (in contrast, Loeppky et al. (2009) recommended
larger initial designs having ten observations per input variable). Latin hypercube
designs are run at the initial and each subsequent stage of this algorithm. As has
been seen in Sect. 5.2.2, designs based on Latin hypercube samples have attractive
marginal projection properties, while Sect. 5.4 shows that maximin distance LHDs
provide a more uniform distribution of points for higher-dimensional projections
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than do randomly selected LHDs. Bernardo et al. (1992) used an empirical BLUP
based on their stochastic process model as a computationally inexpensive surrogate
for the true model output.

3. Check prediction accuracy and visualize the fitted models. If the prediction accu-
racy is sufficient, predict the global optimizer based on an EBLUP. Otherwise, go to
Step 4.

Prediction accuracy is judged by computing the empirical root mean square pre-
diction error (see (3.4.2)) for a set of randomly selected points in the analysis region
and also by examining the range of predicted values. Thus this assessment of predic-
tion accuracy depends on the particular application. In their circuit design example,
Bernardo et al. (1992) compared the ERMSPE to the maximum allowable limit of
variability in the reference current. In general, prediction accuracy is measured by
the values of the ERMSPE relative to typical values of the response as dictated by
the particular physical application under study.

4. Choose a subregion for the next experiment, and go to Step 1.

If additional stages are required, they are run on a subregion of the previous stage
that contains the current predicted optimum. Sensitivity analysis methodology de-
scribed in Sect. 7.1 provides a mechanism for quantifying the importance of input
variables. In particular, main effect and interaction plots provide guidance for sup-
plying reasonable input variable ranges to the next stage. Inactive inputs can be set
equal to nominal values, which reduces the dimension of the input variable space
in subsequent stages. For model fitting, Bernardo et al. (1992) discarded data from
previous stages for inputs falling outside the subregion of the current stage. Once
the response predictor attains the accuracy requirement, a confirmatory run is made
at the location of the predicted optimum. If the actual results at the predicted opti-
mum violate problem specifications, adjustments are made to the statistical model,
and the algorithm continues until an acceptable solution is obtained. For example,
in their integrated circuit study, Bernardo et al. (1992) added linear regression terms
to the statistical model in response to a failed confirmatory run. This leads to in-
creased prediction accuracy and a successful confirmatory run terminating the algo-
rithm.

6.3.3 Mockus Criteria Optimization

Mockus et al. (1978) considered the problem of finding an optimal sequential al-
gorithm to determine an x that minimizes the output, y1(·), of a computer code. In
terms of the introductory framework of Sect. 6.3.1, m = 1. The method assumes that
x consists exclusively of control variables.

The algorithms studied by Mockus et al. (1978) assumed that the output is to
be evaluated at a given number of input sites N + 1. Let Dn = {x1, . . . , xn} and
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Yn
1 = (y1(x1), . . . , y1(xn)) denote the set of input sites at stage n (the experimental

design) and the corresponding vector of outputs, respectively. The input selected at
stage (n+ 1) is allowed to depend on all the information that is previously available,
i.e., xn+1 = dn(Yn

1,Dn) for n = 1, . . . , N and some function dn(·, ·). Let d0(·) be a
function that specifies the initial input based on the information available at that
stage, i.e., x1 = d0(·). Formally, each d = (d0, . . . , dN) is a sequential algorithm.

The statement of the criterion and the derivation of an optimal algorithm assumes
that a prior Y1(·) has been specified for y1(·). Mockus et al. (1978) took this prior to
be a stationary Gaussian process defined on the input space X. An algorithm d∗ is
optimal, provided it minimizes the expected deviation of Y1(xN+1) from the global
minimum of Y1(·) in the sense of achieving

min
d

E
[

Y1(xN+1(d)) − min
x∈X

Y1(x)
]

, (6.3.2)

where xN+1(d) denotes the xN+1 produced using algorithm d. Note that the expec-
tation in (6.3.2) is with respect to the Y1(·) prior on y1(·); also the argument of the
expectation must be nonnegative, which makes the expectation itself nonnegative.
Mockus et al. (1978) presented an N-dimensional dynamic program that, in prin-
ciple, produces a d∗ that attains (6.3.2). Unfortunately, this sequential algorithm is
essentially computationally infeasible.

Mockus et al. (1978) and Mockus et al. (1994) proposed an alternative one-stage,
myopic algorithm that mimics the operation of the full dynamic programming solu-
tion to (6.3.2). For a given input xb, design Dn, and corresponding Yn

1, compute

μ
(

xb

∣

∣

∣ Yn
1, Y1(xa)

)

= E
[

Y1(xb)
∣

∣

∣ Yn
1, Y1(xa)

]

,

where Y1(xa) is a hypothetical observation at the candidate input xa. This quantity
is the mean output at xb given current data and the hypothetical observation at xa.
The Mockus update step selects xn+1 to satisfy

xn+1 ∈ arg min
xa∈X

E

[

min
xb∈X

μ
(

xb

∣

∣

∣ Yn
1, Y1(xa)

) ∣

∣

∣ Yn
1

]

.

In principle, the algorithm seeks an input xa that achieves

min
xb∈X

μ
(

xb

∣

∣

∣ Yn
1, y1(xa)

)

.

However because y1(xa) is unknown, this output is approximated by replacing y1(xa)
by Y1(xa) and computing the expectation of the resulting expression conditional on
the available data, Yn

1. Iterations are executed until convergence is obtained. Un-
fortunately, this algorithm is also computationally infeasible for computationally
expensive y1(·) due to the need for repeated evaluation of y1(·).
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6.3.4 Expected Improvement Algorithms for Optimization

In contrast to the criteria described in the previous subsection (having difficult or
impossible implementations), the next two subsections describe implementable but
heuristic algorithms for three problems of global optimization. In this subsection,
an algorithm is given for global minimization of an output y1(x) as a function of all
the input variables x. An extension of this algorithm to settings involving stochastic
simulators y1(·) is presented. Then a global optimization algorithm will be presented
for the case when there are both control and environmental variables and the goal is
to find the control variable combination that optimizes the mean output with respect
to the environmental variables. In Sect. 6.3.5, constrained optimization algorithms
will be discussed in the setting where there are multiple outputs and the goal is
to minimize one of the outputs subject to constraints determined by the remaining
outputs.

6.3.4.1 Schonlau and Jones Expected Improvement Algorithm

Schonlau et al. (1998) and Jones et al. (1998) developed sequential design strategies
to find xmin ∈ arg minx∈X y1(x), where y1(x) is an unknown function. Their basic se-
quential design, termed the efficient global optimization (EGO) algorithm, adds one
input site at each stage and is initiated by computing y1(x) on a space-filling set of
n inputs so that initial information about y1(·) is available over a wide portion of the
input space. An experimental design such as the maximin distance LHD (Sect. 5.4)
is utilized for initial exploration of y1(·). As usual, let yn

1 denote the vector of outputs
corresponding to the initial n-point experimental design; these n runs are referred to
as training data.

Schonlau et al. (1998) assumed a Gaussian prior for y1(x), say Y1(x), of the form
on the right-hand side of (3.1.1) with process variance σ2

1 and a uniform prior distri-
bution for the regression parameters β. Let Yn

1 denote the prior associated with the
vector of outputs yn

1. Their algorithm is based on the fact that when σ2
1 is known,

[

Y1 (x0)
∣

∣

∣ Yn
1 = yn

1

]

∼ N
(

ŷ1(x0), s2
1(x0)

)

, (6.3.3)

where ŷ1(x0) is the BLUP (3.2.7) and

s2
1(x0) = σ2

1

{

1 − r0 R−1r0 + h
0

(

FR−1 F
)−1

h0

}

(6.3.4)

is the mean squared prediction error of the BLUP. Here h0 = f 0 − FR−1 r0, while
the vectors, f 0 and r0, and the matrices, F and R, are defined below (3.2.7). In
practice, the correlation parameters and σ2

1 are estimated by maximum likelihood or
restricted maximum likelihood as, say, described in Sect. 3.3.2.

The algorithms in both papers are based on a measure of “improving” the min-
imum of y1(x) that is available after the output has been calculated for n inputs.
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Let
yn

min = min
i=1,...,n

y1(xi)

denote the minimum output that has been evaluated after n runs of the computer
code. Consider a potential site x at which to evaluate the code. Compared with the
current smallest known minimum value of y1(·), define the amount of improvement
in y1(·) at x to be zero if y1(x) ≥ yn

min, i.e., y1(x) provides no improvement over
yn

min. If y1(x) < yn
min, the amount of improvement at x is defined to be the difference

yn
min − y1(x). Hence, in principle, the improvement at x is defined to be

Improvement at x =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yn
min − y1(x), yn

min − y1(x) > 0

0, yn
min − y1(x) ≤ 0 .

(6.3.5)

As for the Mockus algorithm, this is an “in principle” definition because y1(x) is
unknown (although yn

min is known from the training data). However, there is infor-
mation about the value of y1(x) that is available from the posterior of Y1(x) given Yn

1
in (6.3.3). Hence a probabilistically based improvement function can be defined by

In(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yn
min − Y1(x), yn

min − Y1(x) > 0

0, yn
min − Y1(x) ≤ 0

, (6.3.6)

for x ∈ X. The random variable In(x) depends (solely) on the random quantity Y1(x).
The algorithm below summarizes the amount of improvement possible at each in-
put site x by its expected improvement with respect to the posterior distribution of
[Y1(x) | Yn

1].

Example 6.1. Suppose that the input space X is one-dimensional and that Fig. 6.3
shows the posterior densities of [yn

min − Y1(x) | Yn
1 = yn

1] for x ∈ {x1, x2, x3}. Ex-
amining the conditional density of yn

min − Y1(x) shows that x1 is a good candidate
for exploration because this density is concentrated on positive values. This fact
suggests that y1(x1) is likely to be lower than yn

min. On the other hand, x2 is not a
promising site for exploration because the posterior density of yn

min − Y1(x2) is con-
centrated on negative values. The posterior density of yn

min − Y1(x3) has relatively
heavy tails, and much of the support of the density is again over the positive num-
bers; thus, x3 is also a reasonable candidate for exploration. The heavy tails of the
posterior density of yn

min − Y1(x3) are a result of the fact that the MSPE at site x3,
s2

1(x3) from (6.3.4), is large. Taking another observation at x3 would decrease the
MSPE s2

1(x3) based on all n + 1 outputs. In general, an input x for which s2
1(x) is

large can yield large values of the expected improvement. �

It is straightforward to show that the expected improvement satisfies E[In(x) | Yn
1]

= 0 for x in the input training data Dn. This result coincides with our intuition that
there is no benefit in recomputing y1(x) at previously investigated x. If x � Dn,
some algebra shows that

E
[

In(x)
∣

∣

∣ Yn
1

]

= s1(x)

{

yn
min − ŷ1(x)

s1(x)
Φ

(

yn
min − ŷ1(x)

s1(x)

)

+ φ

(

yn
min − ŷ1(x)

s1(x)

)}
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Fig. 6.3 The conditional (posterior) density of yn
min − Y1(x) given Yn

1 for x ∈ {x1, x2, x3}. The
improvement function In(·) is plotted as a solid line

= (yn
min − ŷ1(x)) Φ

(

yn
min − ŷ1(x)

s1(x)

)

+ s1(x) φ

(

yn
min − ŷ1(x)

s1(x)

)

, (6.3.7)

where Φ(·) and φ(·) are the N(0, 1) distribution and density function, respectively.
By examining the terms in (6.3.7), it can be seen that the posterior expected im-
provement is “large” for those x having either

• a predicted value at x that is much smaller than the best minimum computed so
far, i.e., ŷ1(x) 	 yn

min, or
• having much uncertainty about the value of y1(x), i.e., when s1(x) is large relative

to |yn
min − ŷ1(x)|.

These observations quantify the discussion in Example 6.1 about the operation of the
algorithm. Candidate inputs are judged attractive if either there is high probability
that their predicted output is below the current observed minimum or there is a large
uncertainty (relative to |yn

min − ŷ1(x)|) in the predicted output.
Starting with a space-filling design, the expected improvement algorithm updates

the current input set Dn as follows.

Given the specified absolute tolerance εa, if

max
x∈X

E
[

In(x) |Yn
1

]

< εa,

then stop and predict xmin by an input site x̂min ∈ {x1, . . . , xn} satisfying
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y1(̂xmin) = min
i=1,...,n

y1(xi) . (6.3.8)

Otherwise, select an xn+1 ∈ X to maximize E[In(x) |Yn
1]. Set Dn+1 = Dn ∪ {xn+1},

Yn+1
1 = ((Yn

1), y1(xn+1)), and increment n. Continue with the next update.

When the algorithm stops, instead of predicting xmin by an input site x̂min ∈
{x1, . . . , xn} satisfying (6.3.8) one could predict xmin by an input site x̂min ∈ X that
minimizes the y1(x) EBLUP based on Dn.

Example 6.2 (EGO Algorithm Applied to the Branin Function). The Branin function
has two inputs x = (x1, x2) ∈ X = [−5, 10] × [0, 15] and is given by the formula

y(x1, x2) =

(

x2 −
5.1
4π2

x2
1 +

5
π

x1 − 6

)2

+ 10

(

1 − 1
8π

)

cos(x1) + 10.

Figure 6.4 plots the Branin function. As suggested by the figure, y(x1, x2) has three
global minima

y(π, 2.275) = y(3π, 2.475) = y(−π, 12.275) = 0.39789.

The EGO algorithm seeks to find any of these global minimizers.
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Fig. 6.4 The Branin function over the domain [−5, 10] × [0, 15]

Starting with 21 input runs from a maximin LHD, the EGO algorithm was
applied (as implemented in the SPACE package). SPACE added 12 points se-
quentially and then terminated. Figure 6.5 color codes these 33 (21 + 12) inputs,
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while Fig. 6.6 uses the same color coding to show the maximum expected improve-
ment associated with the 12 added inputs. Figure 6.5 identifies four groups of in-
puts: the initial 21-point maximum LHD design (in blue); inputs #22 and #23 (in
red) which explore parts of X where there is great uncertainty about the form of
the function; inputs #24, #25, and #26 (in orange) which provide local searches
near two of the global minima; and the final set of seven inputs, #27–#33 (in
green) which explore the three global minima but provide little further decrease
in the maximum expected improvement. The minimizing x selected by EGO is
x̂min = (3.14042, 2.27273) with associated output y(̂xmin) = 0.39790 which has a
relative error of 0.000025 = |0.39790− 0.39789|/0.39789. �
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Fig. 6.5 The [−5, 10] × [0, 15] domain of the Branin function with a total of 33 inputs x at which
y(x) is calculated. Inputs #1–#21 (hollow blue circles) are the initial maximin LHD, and inputs
#22–#33 are sequential EGO additions. The initial sequential inputs add #22 and #23 (solid red
squares); inputs #24–#26 (solid orange squares) provide large decreases in maximum expected im-
provement; inputs #27–#33 (solid green squares) explore the three global minima but provide little
further decrease in the maximum expected improvement. The maximum expected improvement
for each of the 12 points added by EGO is shown in Fig. 6.6

Jones et al. (1998) (and Schonlau et al. (1998)) adopted the power exponential
correlation structure of (2.2.11) for the Gaussian process Y1(·) with one range and
one smoothness parameter per input. They estimate these parameters by the method
of maximum likelihood. Upon completion of each update step, the correlation pa-
rameters of the stochastic model can optionally be updated. The updating procedure
can be computationally expensive, particularly for large designs.

Schonlau et al. (1998) provided a modification of the expected improvement al-
gorithm that allows multiple input sites (“batches”) to be generated at each stage
(see also Schonlau (1997)). When multiple observations are taken in a stage, the
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Fig. 6.6 The maximum expected improvement for each of the 12 points added by EGO which are
color coded as in Fig. 6.5

correlation parameter updates take place at the end of the stage. Specifically, given
a current design of size n and q iterates to be added, Schonlau et al. (1998) recom-
mended updating the s1(x) coefficient in (6.3.7) after each iterate, but not updating
the s1(x) term in the expressions (yn

min − ŷ1(x))/s1(x). This heuristic forces all pre-
viously sampled inputs to be avoided, including the previous iterates of the current
stage, as s1(·) is 0 at these inputs. The empirical BLUP and MSPE are updated sub-
sequent to the correlation parameters at the completion of each stage. If X is finite,
the expected improvement algorithm will converge to the global minimum under
the assumption that εa (or εr) = 0. Schonlau (1997) demonstrated the effectiveness
of this algorithm for a suite of test problems where εa (or εr) > 0.

Schonlau et al. (1998) also considered a generalization of the expected improve-
ment criterion in which the improvement (6.3.6) is replaced by

Ig
n(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(yn
min − Y1(x))g, if Y1(x) < yn

min

0, otherwise
,

for a given g ∈ {0, 1, 2, . . .}. Larger values of g are associated with a more global
search. This can be seen by examining Fig. 6.3. Provided In(x) ≥ 1, Ig1

n (x) ≥ Ig2
n (x)
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for each input x when g1 ≥ g2. Therefore, greater weight will be placed on the
tails of the conditional distribution of Y1(·) given Yn

1 for larger g values. Thus the
global potential for large improvement is given increased quantitative importance.
The quantity E[In(·) |Yn

1] in the stopping rule for the expected improvement algo-
rithm is replaced by E[Ig

n(·) |Yn
1]1/g so that the tolerance limits εa and εr have approx-

imately the same interpretation for any g. Schonlau et al. (1998) provided recursive
relations for computing E[Ig

n(x) |Yn
1].

6.3.4.2 Picheny Expected Quantile Improvement Algorithm

The EGO algorithm must be modified when the simulator y1(x) is stochastic to
account for the outputs y1(xi) on the design Dn no longer being deterministic (i.e.,
repeated runs on the same design result in different outputs). The minimum output
yn

min on Dn is also no longer deterministic. To account for simulator stochasticity,
the GP prior Y1(·) for y1(·) is augmented with an independent zero mean Gaussian
white noise process (the nugget effect),

˜Y1(x) = Y1(x) + ε1(x) ,

having covariance function

C1(x1, x2) = σ2
Z R1(x1, x2) + τ2I{x1 = x2}

with R1(·, ·) a correlation function (see Sect. 2.2.2) and I{·} the indicator function
that takes the value 1 if x1 = x2 and 0 otherwise. The nugget effect relaxes the exact
interpolation property of GP models which is necessary for stochastic simulators.
The value of τ2 may vary by simulator run (e.g., the run at input xi takes the value
τ2

i ). In the discussion below, it is assumed that τ2 is unknown but homogeneous

throughout X and can therefore be estimated from the observed outputs ˜Y
n
1 along

with all other unknown parameters.
In this scenario, Picheny et al. (2013) proposed minimizing the β-quantile of the

predictive distribution [Y1(x) | ˜Y
n
1], given by

qn(x) = ŷ1(x) + Φ−1(β) s1(x)

for Φ(·) the standard normal distribution function and {̂y1(x), s1(x)} the mean and
standard deviation of the predictive distribution [Y1(x) | ˜Y

n
1]. The analog of yn

min in
this approach is qn

min = min{qn(x1), . . . , qn(xn)}, the minimum value of the β-quantile

on Dn. The quantity qn
min is deterministic given observed data ˜Y

n
1 on Dn.

Letting Qn+1(x) denote the random β-quantile based on observed data ˜Y
n
1 and un-

observed future output ˜Y1(x), a probabilistically based quantile improvement func-
tion can be defined by
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IQ
n (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

qn
min − Qn+1(x), qn

min − Qn+1(x) > 0

0, qn
min − Qn+1(x) ≤ 0

for x ∈ X. The function IQ
n (x) represents the random amount the β-quantile would

be reduced if the (n+ 1)st evaluation of the simulator is made at input x. Because its
value cannot be known precisely, the expected quantile improvement (EQI) function
given previously calculated data ˜Y

n
1 takes its place as the criterion for selecting the

next run,

E
[

IQ
n (x)

∣

∣

∣

∣

˜Y
n
1

]

=
(

qn
min − ŷQ(x)

)

Φ

(

qn
min − ŷQ(x)

sQ(x)

)

+ sQ(x) φ

(

qn
min − ŷQ(x)

sQ(x)

)

.

Here, φ(·) is the standard normal density function, and {̂yQ(x), sQ(x)} are the mean
and standard deviation of the predictive distribution [Qn+1(x) | ˜Yn

1].
An input xn+1 satisfying

xn+1 ∈ arg max
x∈X

E
[

IQ
n (x)

∣

∣

∣

∣

˜Y
n
1

]

is selected as the next design point at which to run the simulator. This process con-
tinues until the expected quantile improvement is sufficiently small or a budget of N
allowable simulator runs is expended.

As with EGO, the first term of E[IQ
n (x) | ˜Y

n
1] targets local search (̂yQ(·) 	 qn

min
favored), while the second term targets global search (sQ(·) large). A quantile β ≥ 0.5
is chosen to evaluate the EQI criterion. Calculation of EQI requires specification of
the nugget effect associated with the unobserved future output ˜Y1(x). Picheny et al.
(2013) suggested setting this future variance to τ2/(N − n) when there are n runs
in the current design. EQI will initially explore the space of designs globally and
transition to a more local search as the simulation budget is consumed. If simulator
runs are deterministic leading to adoption of a GP prior having no nugget effect, the
EQI algorithm simplifies to EGO.

6.3.4.3 Williams Environmental Variable Mean Optimization

Williams et al. (2000) extended the expected improvement algorithm to input set-
tings involving both control inputs, xc, and environmental inputs, xe. Their goal was
to find a control variable input that minimizes the mean, μ1(·), of y1(xc, xe) averaged
over xe support points (the left-hand side of (6.3.1)). The proposed sequential design
is especially useful in applications with “expensive” y1(·) outputs.

Assume, for simplicity, that the input domain of x = (xc, xe) has the form X =
Xc × Xe where Xc denotes the domain of the control variables and Xe denotes the
domain of the environmental variables. Assume that the environmental variable is
discrete with a finite number, ne, of support points. Let xe, j, j = 1, . . . , ne, denote
the support points and {wj}, j = 1, . . . , ne the corresponding probabilities (weights).
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The mean μ1(xc) =
∑ne

j=1 wj y1(xc, xe, j) is the weighted output y1(xc, xe, j) summed
over the ne support values; μ1(xc) inherits the prior process defined by

M1(xc) ≡
ne

∑

j=1

wj Y1(xc, xe, j),

where Y1(xc, xe) has the Gaussian prior used by Schonlau et al. (1998) and Jones
et al. (1998).

Let Dn = {(xc,i, xe,i) , 1 ≤ i ≤ n} denote a generic n-point experimental design;
{xc,i , 1 ≤ i ≤ n} denotes the control variable portions of this design. Williams et al.
(2000) based their algorithm on the theoretical analog of (6.3.5)

Improvement at xc =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μn
min − μ1(xc), μn

min − μ1(xc) > 0

0, μn
min − μ1(xc) ≤ 0

,

where μn
min = mini=1,...,n μ1(xc,i). Notice that, in contrast to the known value of yn

min
used in (6.3.6), μn

min is never directly calculated (as is the case with μ1(·)). The
corresponding probability-based improvement function is

In(xc) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Mn
min − M1(xc), Mn

min − M1(xc) > 0

0, Mn
min − M1(xc) ≤ 0

,

where Mn
min = mini=1,...,n M1(xc,i) . The prior (and posterior) of Mn

min is used to pre-
dict μn

min. Thus the estimation of the expected improvement is more challenging than
in Schonlau et al. (1998) or Jones et al. (1998).

In outline, the Williams et al. (2000) algorithm to minimize μ1(·) consists of the
following steps:

1. Select an initial experimental design Dn, and compute the vector of model out-
puts, Yn

1, at each design point.
2. Estimate the vector of correlation parameters (by, say, (restricted) maximum like-

lihood or under the Bayesian framework by the mode of their joint posterior
distribution).

3. Select xc,n+1 ∈ Xc to maximize the expected improvement,

xc,n+1 ∈ arg max
xc∈Xc

E
[

In(xc)
∣

∣

∣ Yn
1

]

.

4. Given xc,n+1, select xe,n+1 ∈ Xe to minimize the mean squared prediction error
given Yn

1,

xe,n+1 ∈ arg min
xe∈Xe

E
[

(

̂Mn+1
1 (xc,n+1) − M1(xc,n+1)

)2
∣

∣

∣

∣
Yn

1

]

,
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where ̂Mn+1
1 (·) is the conditional mean of M1(·) based on the data Yn

1 and the
latent observation Y1(xc,n+1, xe).

5. Determine if the algorithm should be stopped. If so the global minimizer in the
control variable space is predicted to be the global minimizer of the conditional
mean of M1(·) based on the data Yn

1. If not, set Dn+1 = Dn ∪
{

(xc,n+1, xe,n+1)
}

,
calculate the code y1(·) at (xc,n+1, xe,n+1), increment n to n + 1, and go to Step 2
(correlation parameter estimation).

The correlation parameter estimation in Step 2 can be extremely time-consuming,
particularly for “large” experimental designs and/or high-dimensional inputs. A
sensible modification of this algorithm is to update the correlation parameters fre-
quently in the initial iterations and reduce the update rate as additional design points
are added. In this way, the correlation parameters are repeatedly updated at the stage
of the algorithm when they are least stable and the most substantial learning about
the response surface occurs. As the response surface in the region of the optimum
becomes predicted more accurately, correlation parameter updates become less nec-
essary.

The expected improvement required in Step 3 cannot be expressed in closed form
because Mn

min is not known. However, because the posterior of Mn
min given Yn

1 is
known, Williams et al. (2000) presented a Monte Carlo algorithm for approximat-
ing E[In(xc) |Yn

1]. The mean squared error of prediction criterion for environmental
variable selection, required in Step 4 of the algorithm, has a computationally conve-
nient closed form.

Because the correlation parameters are re-estimated at each stage, the sequence
of maximum expected improvements need not be monotone decreasing. Thus the
stopping rules recommended in Williams et al. (2000) are based on observing a se-
quence of “small” maximum expected improvements relative to the history of such
improvements established as the algorithm progresses. For example, moving av-
erages and ranges of groups of observed expected improvements can be tracked,
and the algorithm stopped, when these statistics reach a problem-specific thresh-
old established relative to their initial observed values. The stopping criteria should
ideally be met by two or more successive values of the moving average and range,
suggesting stabilization of the expected improvement sequence.

6.3.5 Constrained Global Optimization

Schonlau et al. (1998) proposed an algorithm based on expected improvement to
solve problems of constrained optimization. In this section, it is convenient to label
the output functions y1(·), . . . , yk+1(·) so that m = k + 1 in our general notation.
With this notation, the goal is to minimize y1(x) subject to x satisfying k constraints
li ≤ yi(x) ≤ 0 for i = 2, . . . , k + 1. The algorithm below requires all outputs be
computed at each input. Let (Y1(x), . . . , Yk+1(x)) denote the stochastic process model
for (y1(x), . . . , yk+1(x)).
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Schonlau et al. (1998) proposed using the (probability-based) improvement
function

Ig
c,n(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(yn
min − Y1(x))g, Y1(x) < yn

min and li ≤ Yi(x) ≤ ui

for i = 2, . . . , k + 1

0, otherwise

(6.3.9)

so that any constraint violation leads to zero improvement. As usual, yn
min is the min-

imum of the y1(x) responses observed on the current experimental design. Schonlau
et al. (1998) assumed that the objective and constraint processes are mutually inde-
pendent; under this assumption, the conditional expected improvement is given by

E
[

Ig
c,n(x)

∣

∣

∣ Yn
1, . . . , Yn

k+1

]

= E
[

Ig
n(x)

∣

∣

∣ Yn
1

]

×

P
[

l2 ≤ Y2(x) ≤ u2

∣

∣

∣ Yn
2

]

× · · · × P
[

lk+1 ≤ Yk+1(x) ≤ uk+1

∣

∣

∣ Yn
k+1

]

,

where conditionally given the observed data Yn
i , Yi(x) has a Gaussian distribution

which is the analog of (6.3.3).
Gramacy et al. (2016) proposed an expected improvement algorithm for con-

strained optimization of complex simulators motivated by the augmented La-
grangian numerical optimization framework (see Nocedal and Wright (2006)). The
goal is to minimize y1(x) for x ∈ X subject to x satisfying k constraints yi(x) ≤ 0 for
i = 2, . . . , k + 1. This is accomplished by minimizing the augmented Lagrangian,

LA(x; λ, ρ) = y1(x) +
k

∑

i=1

λi yi+1(x) +
1

2ρ

k
∑

i=1

max {0, yi+1(x)}2 ,

where ρ > 0 is a penalty parameter and λi ≥ 0 for i = 1, . . . , k are Lagrange
multipliers.

The optimization algorithm is iterative: Given (ρ j−1, λ j−1), the subproblem

min
x

{

LA(x; λ j−1, ρ j−1) : x ∈ X
}

(6.3.10)

is solved, yielding candidate solution x j. The penalty parameter and Lagrange mul-
tipliers are then updated as follows,

λ
j
i = max

{

0, λ j−1
i +

1
ρ j−1

yi+1(x j)

}

, i = 1, . . . , k

ρ j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρ j−1 , if yi+1(x j) ≤ 0 for all i = 1, . . . , k
1
2ρ

j−1 , otherwise
,

and the iterations continue until user-monitored stopping criteria are met.
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This optimization algorithm is prohibitively expensive to implement using only
direct calculations of the objective and constraint functions due to the computational
expense required. Application of the EGO algorithm to the augmented Lagrangian
LA(·) thus presents itself as an option for achieving computational feasibility. The
process representation of LA(·) takes the following form. Given (λ, ρ),

Y(x) = Y1(x) +
k

∑

i=1

λi Yi+1(x) +
1

2ρ

k
∑

i=1

max {0, Yi+1(x)}2 . (6.3.11)

The EGO algorithm could then be implemented with the expected improve-
ment (6.3.7), using Y(·) from (6.3.11) rather than Y1(·). However, Gramacy et
al. (2016) discuss limitations associated with using the EGO algorithm directly
on LA(·). In particular, nonstationary GP models are likely needed to provide an
adequate surrogate for LA(·) due to the square and max operations involved in its
computation.

Instead, Gramacy et al. (2016) recommend building individual GP surrogates for
Y1(·), Y2(·), . . . , Yk+1(·), assuming these processes are mutually independent, and cal-
culating a Monte Carlo estimate of expected improvement based on (6.3.6). Suppose
calculations of the objective and constraint functions have already been made for n
input vectors x1, . . . , xn, generating data vectors Yn

1 = yn
1, . . . , Yn

k+1 = yn
k+1 along

with the induced evaluations of LA(·) at these inputs, denoted Yn = yn. Consider N
samples generated from the joint distribution

[

Y1(x), Y2(x), . . . , Yk+1(x)
∣

∣

∣ yn
1, yn

2, . . . , yn
k+1

]

=
[

Y1(x)
∣

∣

∣ Yn
1 = yn

1

]

× · · · ×
[

Yk+1(x)
∣

∣

∣ Yn
k+1 = yn

k+1

]

,

where equality holds due to mutual independence of the individual processes. De-
noting these samples by Y j

i (x) for i = 1, . . . k + 1, j = 1, . . . , N, and letting yn
min be

the smallest observed value of the augmented Lagrangian (i.e., the smallest element
of yn), the expected improvement is estimated as

̂E
[

In(x)
∣

∣

∣ yn
1, yn

2, . . . , yn
k+1

]

=
1
N

N
∑

j=1

(

yn
min − Y j(x)

)

I
{

Y j(x) < yn
min

}

where I{·} is the indicator function and

Y j(x) = Y j
1(x) +

k
∑

i=1

λi Y j
i+1(x) +

1
2ρ

k
∑

i=1

max
{

0, Y j
i+1(x)

}2
.

Maximization of ̂E[In(x) | yn
1, yn

2, . . . , yn
k+1] with respect to x replaces the subprob-

lem (6.3.10) in the iterations of the above optimization algorithm.
Both of these approaches to constrained optimization can be extended to ac-

commodate correlated constraint functions. The expanded statistical model requires
a valid cross-correlation structure as discussed in Sect. 2.5. The additional model
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complexity increases the computational burden involved in fitting the statistical
model, with possible benefits including increased flexibility in modeling the physi-
cal system and increased efficiency in finding a constrained optimum.

One paper that models the objective and constraint functions as dependent is
Williams et al. (2010). Their methodology assumes that there is a single constraint
function. Let y1(xc, xe) and y2(xc, xe) denote the simulator objective and simulator
constraint functions, respectively. As earlier in the section, the environmental input
is assumed to have ne support points; the jth input denoted xe, j has associated prob-
ability wj, j = 1, . . .ne. Let μ1(xc) and μ2(xc) denote the means of y1(xc, xe) and
y2(xc, xe) with respect to the environmental input distribution. The goal is

minimize μ1(xc)
subject to

μ2(xc) ≤ B .

Williams et al. (2010) modeled (y1(x), y2(x)) as a draw from a bivariate spatial au-
toregressive process (Y1(x), Y2(x)) (see (2.5.7)). The Y prior induces the distribution

Mi(xc) ≡
ne

∑

j=1

wj Yi(xc, xe, j)

on μi(xc), i = 1, 2. Their algorithm is based on the modification

Ic,n(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Mn�
min − M1(xc), M1(xc) < Mn�

min and M0.05
2 (xc) ≤ B

0, otherwise

of the improvement (6.3.9) where M0.05
2 (xc) denotes the 0.05 quantile of the distri-

bution of M2(xc) and Mn�
min = min{ M1(xc,i) : 1 ≤ i ≤ n and M0.05

2 (xc,i) ≤ B }. The
idea is that values of M1(xc,i) from the current experimental design are included in
the computation of the M1 minimum only if there is strong evidence that xc,i satis-
fies the constraint. This restriction is meant to enhance the chance of finding a global
minimum of μ1(·) at which the constraint on μ2(·) holds.

The algorithm proceeds in a fashion similar to the single-objective optimization
algorithm of Sect. 6.3.4. Once the algorithm is stopped, the constrained optimizer
is predicted by solving the constrained optimization problem with the EBLUPs of
M1(·) and M2(·). The correlation parameters can be intermittently estimated as the
algorithm progresses, substantially reducing computation time while sacrificing lit-
tle in terms of prediction accuracy. The Williams et al. (2010) algorithm extends
without difficulty to lower bound or two-sided constraints.
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6.3.6 Pareto Optimization

Assume that m simulator outputs y(x) = (y1(x), . . . , ym(x)), m ≥ 2, can be calcu-
lated for x in a common input space X. Let Y denote the range of y(x) as x varies
over X. It is desired to find a (single) x that simultaneously minimizes all yi(x),
i = 1, . . . , m. Typically, this objective is not possible. Instead, the following frame-
work named after Vilfredo Pareto is adopted. Pareto used it to identify compromise
choices of x for simultaneous “minimization” of a set of outputs.

Define a partial ordering of x1, x2 ∈ X by saying that x1 weakly dominates x2,
denoted x1 � x2, if yi(x1) ≤ yi(x2) for all i = 1, . . . , m. If at least one inequality
yi(x1) < yi(x2) is strict, then x1 is said to dominate x2, denoted x1 � x2. Similarly,
for y(x1) and y(x2) in Y, it will be said that y(x1) weakly dominates y(x2), y(x1) �
y(x2), if yi(x1) ≤ yi(x2) for all i = 1, . . . , m. If at least one inequality is strict, then
y(x1) is said to dominate y(x2), denoted y(x1) � y(x2).

An input x ∈ X is Pareto optimal if and only if there is no x′ ∈ X such that x ≺ x′

or, in other words, there is no x′ that simultaneously decreases y1(x), . . . , ym(x).
Such x are also called nondominated inputs; analogously, the image y(x) of a non-
dominated x is sometimes referred to as a nondominated output. The set of all Pareto
optimal points in X is referred to as the Pareto Set; denote the Pareto Set by PX. The
corresponding image of PX in Y is referred to as the Pareto Front and is denoted
PY. Either of PY and PX sets can be uncountable.

Example 6.3 (Pareto Set and Front). The so-called MOP2 function has a d = 2
dimensional input space X = [−2, 2]2 and m = 2 objective functions which are

y1(x1, x2) = 1 − exp

{

−
∑2

i=1

(

xi − 1√
2

)2
}

y2(x1, x2) = 1 − exp

{

−
∑2

i=1

(

xi +
1√
2

)2
}

.

(6.3.12)

Considered individually, each of y1(x) and y2(x) has global minimum equal to zero
with minimizer x1 = 1/

√
2 = x2 for y1(x) and x1 = −1/

√
2 = x2 for y2(x). However,

small y1(x) values correspond to large y2(x) values and vice versa. The Pareto Set,
the collection of nondominated x, can be shown to be the line segment

PX =

{

x : − 1
√

2
≤ x1 = x2 ≤ 1

√
2

}

,

which is plotted as a black line within the green input space X shown in Fig. 6.7. The
range space (Pareto Front) Y (PY) is the green area (black curve) shown in Fig. 6.8.
�
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Fig. 6.8 Y and the Pareto Front (black curve) for the MOP2 function

The goal of this section is to show how “update rules” based on maximizing a
quality improvement measure, denoted QI (x), can be used to sequentially design a
set of simulator runs to find a Pareto optimum of y(x). The expected improvement,
introduced earlier, is one important quality improvement measure. More realisti-
cally, these methods allow a researcher to approximate PY and PX.

The improvement functions used for Pareto optimization are tailored to this prob-
lem. Among others Emmerich et al. (2006), Keane (2006), Forrester et al. (2007),
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Bautista (2009), and Svenson and Santner (2016) proposed heuristic improvement
functions to guide the selection of new x inputs which are on or near the Pareto
Set of the given problem. Before discussing specific improvement criteria, a gen-
eral algorithm will be sketched that uses a generic QI (x) for Pareto optimization of
y(x) = (y1(x), y2(x), . . . , ym(x)) when x = (x1, . . . , xn) ∈ X ⊂ IRd.

6.3.6.1 Basic Pareto Optimization Algorithm

Assume that y(x) can be modeled as a draw from the process Y(x) = (Y1(x), . . . ,
Ym(x)); for technical simplicity many papers assume that the components of Y(x)
are stochastically independent although this is not critical (see Svenson and Santner
(2016) for an example using dependent Yi(x)). The steps of the algorithm are as
follows:

1. Evaluate y(x) for inputs x from an initial space-filling design Dn ⊂ X. Let ym,n =
[

y(x1) · · · y(xn)
]

denote the m × n matrix whose ith column is the m vector of
outputs run at xi, i = 1, . . . , n.

2. Estimate the unknown Y(x) process parameters based on ym,n.
3. Based on ym,n, calculate the Pareto Set, denoted Pn

X, and the Pareto Front, de-
noted Pn

Y. In words, Pn
X is the set of nondominated inputs in Dn and Pn

Y is the set
of nondominated outputs in ym,n.

4. Find
xn+1 ∈ max

x
QI (x) .

5. Evaluate y(xn+1). If the budget has been exhausted or a stopping criterion has
been met, terminate the algorithm. Otherwise, repeat steps 2–5 with ym,n+1 =
[

y(x1) · · · y(xn) y(xn+1)
]

.

This section will be completed by describing several methods that have been pro-
posed in the literature for defining QI (x) in terms of a given improvement function
I∗(y(x)). Then a selection of heuristically motivated I∗(y(x)) will be listed.

• Method 1—Expected Improvement: Define the quality improvement associ-
ated with I∗(·) to be

QIE (x) = E
[

I∗(Y(x)) | Ym,n = ym,n] ; (6.3.13)

QIE(x) replaces the unknown y(x) by Y(x) and computes the expectation of
I∗(Y(x)) with respect to the posterior distribution [Y(x) | Ym,n = ym,n]. QIE(x)
is the natural extension of the expected improvement in (6.3.7).

• Method 2—Improved Expectation: Method 2 uses the quality indicator

QII (x) = I∗
(

E
[

Y(x) | Ym,n = ym,n]) , (6.3.14)
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which interchanges the expectation and I∗(Y(x)) in (6.3.13). Equation (6.3.14)
is usually much simpler to compute than (6.3.13). The reader should note that
Method 1 and Method 2 produce the same result if I∗(y(x)) is linear in y(x).

• Method 3—Combined Expected Improvement and Improved Expectation:
Suppose that I∗(y(x)) is the form G (y(x))×H (y(x)). Method 3 chooses the qual-
ity improvement indicator to be

QIC(x) = E
[

G(Y(x)) | Ym,n = ym,n] × H
(

E
[

Y(x) | Ym,n = ym,n]) . (6.3.15)

The quality improvement function QIC(x) has been proposed for use in cases
where it is possible to compute the expectation of G(Y(x)), while that involving
H(Y(x)) is “difficult.” The formula (6.3.15) ignores any stochastic dependence
between G(Y(x)) and H(Y(x)).

Formally, Method 3 generalizes both Methods 1 and 2 in that Method 3 becomes
Method 1 if H (y(x)) = 1, while Method 3 becomes Method 2 when G (y(x)) = 1.
As of the writing of this text, there is little theoretical basis for selecting among the
three Methods to “best” find PX/PY. However, there is much empirical evidence that
shows improvement-based methods provide effective sequential designs for solving
practical problems.

From a computational viewpoint, Method 1 is implemented by one of two
schemes. Either one attempts to find an analytic expression for (6.3.13) as, for ex-
ample, in (6.3.7). Alternatively, if analytic evaluation is not possible, one can turn to
Monte Carlo methods by simulating a large number of draws from the distribution
of

[

Y(x) | Ym,n = ym,n], evaluating the improvement function at each draw, and av-
eraging these values. The strong law of large numbers will guarantee convergence
to (6.3.13) at any given x.

Turning attention to improvement functions, Keane (2006) introduced the sim-
plest of all improvement functions which is

I∗K (y(x)) = I {y(x) ∈ Rn} ,

where I{·} is the indicator function that takes the value 1 if y(x) ∈ Rn and 0 otherwise
and Rn denotes the region of the output space that is not dominated by the current
Pareto Front, i.e.,

Rn =
{

y(x) : x ∈ X; y(x) � z, ∀ z ∈ Pn
Y

}

.

The Method 1 improvement is trivial to calculate as

QIK(x) = P
[

Y(x) ∈ Rn | Ym,n = ym,n] ,

so that the method maximizes the probability of improving on the current Pareto
Front as the update criterion. While simple to explain, the probability of improve-
ment is not a very effective expected improvement function for Pareto optimiza-
tion. Based on numerical studies, Keane (2006), Forrester et al. (2007), and Bautista
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(2009) showed that using the probability of improvement tends to add outputs that
are “clumped” together.

Keane (2006) also introduced the distance-weighted version

I∗KW (y(x)) = I {y(x) ∈ Rn} × min
xi∈Pn

X

√

√

m
∑

k=1

(yk(x) − yk(xi))
2

of I∗K (y(x)) with the goal of balancing exploration of the input space and exploitation
of the surrogate approximation in the search for nondominated sets. Keane (2006)
used Method 3 to form the quality improvement function

QIKW (x) = P
[

Y(x) ∈ Rn | Ym,n]

× min
xi∈Pn

X

√

√

m
∑

k=1

(

E
[

Yk(x) | Ym,n = ym,n] − yk(xi)
)2

for Pareto optimization. This quality improvement function can substantially out-
perform the probability of improvement, as the distance-based improvement cri-
terion is larger for outputs that are farther from the current Pareto Front. There-
fore, the magnitude of improvement is taken into consideration. This encourages
the sequentially-added outputs to be more spread out in Y than when using the
probability of improvement.

Svenson (2011) presented examples that show use of QIKW (y(x)) can be less effi-
cient than improvement functions based on the maximin fitness function, introduced
by Balling (2003) to compare different finite sets of inputs using the � ordering in
multi-objective function settings. The initial modification of fitness as an improve-
ment function is

I∗F (y(x)) = −max
xi∈Pn

X

min
j=1,...,m

(

y j(x) − y j(xi)
)

= min
xi∈Pn

X

max
j=1,...,m

(

y j(xi) − y j(x)
)

(6.3.16)

proposed in Bautista (2009). That I∗F (y(x)) is a heuristic choice of improvement
function can be seen because if I∗F (y(x)) > 0, then y(x) is not dominated by any
vectors in Pn

Y; if I∗F (y(x)) < 0, then y(x) is dominated by at least one vector in Pn
Y;

and if I∗F (y(x)) = 0, then y(x) is weakly dominated by at least one vector in Pn
Y.

As discussed in Svenson and Santner (2016), a potential drawback of (6.3.16)
is that I∗F (y(x)) need not equal zero for x in the region dominated by the currently
available outputs y(xi), i = 1, . . . , n. Jones et al. (1998) and Schonlau (1997) used
improvement functions which are zero in the currently dominated region; this fea-
ture accounts for their ability to provide both local and global criteria in the search
for global optima.
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Svenson and Santner (2016) modified I∗F (y(x)) in (6.3.16) to be zero in the cur-
rently dominated region by proposing the use of

I∗T F (y(x)) = min
xi∈Pn

X

max
j=1,...,m

(

y j(xi) − y j(x)
)

I

{

min
xi∈Pn

X

max
j=1,...,m

(

y j(xi) − y j(x)
)

> 0

}

which they call the truncated maximin fitness function improvement function. To
select each new input x, they maximize the Method 1 expected improvement

QIE(x) = E
[

I∗T F(Y(x)) | Ym,n = ym,n] (6.3.17)

conditional on the previous function evaluations.

Example 6.3 (Continued). While the Keane and distance-weighted Keane improve-
ment functions are straightforward to understand, I∗T F (y(x)) is more difficult to dis-
cern. Consider the MOP2 function (6.3.12) whose domain and output space are
shown in Fig. 6.9. Suppose that y(x) has been calculated at the ten x values plotted
in the left panel of Fig. 6.9; the corresponding y(x) outputs are shown in the right
panel of the same figure. Recall that the true Pareto Set for the MOP2 function is
the line segment shown in blue in the left panel of Fig. 6.9, while the corresponding
true Pareto Front is the blue curve in the right panel. The Pareto Set and Front based
(only) on the ten data values are the three red points in these same two panels; recall
that the Pareto Front consists of those y(x j) that are not dominated by any other
point in {y(xi)}10
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Fig. 6.9 Left panel: a design containing n = 10 inputs x = (x1, x2) in [−2,+2]2 (black and red);
the Pareto Set (in red) for the MOP2 function determined from the ten design points; the true
Pareto Set for the MOP2 function (blue line). Right panel: the MOP2 function outputs (y1(x), y2(x))
corresponding to the ten-point design (black and red); the three (y1(x), y2(x)) pairs that form the
Pareto Front (in red) determined from the ten design points; the true Pareto Front for the MOP2
function (blue curve)
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Consider the first update to the ten-point design in Fig. 6.9 that is deter-
mined using the truncated maximin fitness function. Using the independent GP
models for y1(x) and y2(x), calculation gives the Method 1 expected truncated
maximin fitness function (6.3.17) that is plotted in Fig. 6.10. The maximum of
E[I∗T F(Y(x)) | Ym,n = ym,n] is 0.295 which occurs at x = (−0.1,−0.25). The aug-
mentation of the (y1(x), y2(x)) scatterplot corresponding to adding (−0.1,−0.25)
to the design is shown as a red cross (+) in Fig. 6.11. The new (y1(x), y2(x)) point
is “nearly” on the true Pareto Front and fills the void between the two right most
Pareto Front points (in red) obtained from the ten point starting design. �
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Fig. 6.10 Plot of QIE(x1, x2) = E[I∗TF (Y(x1, x2)) | Ym,n = ym,n] versus x1 and x2 for the ten-point
design shown in Fig. 6.9

Other reasonable improvement functions are possible. For example, the “hyper-
volume indicator” improvement is discussed in the Chapter Notes in Sect. 6.5. Also
see Coello Coello et al. (2006) for additional general discussion of Pareto opti-
mization. Svenson and Santner (2016) discussed theoretical properties of several
Pareto optimization improvement functions. Svenson and Santner (2016) and Sven-
son (2011) made empirical comparisons of the accuracy of estimated Pareto Fronts
and Pareto Sets using the Basic Pareto Optimization Algorithm with different im-
provement functions and methods of constructing the associated quality indicator.
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Fig. 6.11 Augmented (y1(x), y2(x)) plot of the MOP2 function shown as a red+ corresponding to
adding a single x to the ten points shown in Fig. 6.9

6.4 Other Improvement Criterion-Based Designs

6.4.1 Introduction

Section 6.3 discussed sequential strategies for finding optima, in various senses, of
simulator output. All the algorithms described in this section continue this theme by
applying heuristic improvement criteria to form quality indicator functions which
are used to update designs sequentially. For any specific goal, there may be many
improvement criteria that are sensible. The next subsections describe how this im-
provement strategy has been implemented for problems of contour estimation, per-
centile estimation, and “global fit.” In all three problems, the authors assume a
continuous real-valued response y(x) that can be described as a draw from a GP
model Y(x) with constant mean, say β, and specified parametric correlation func-
tion (see (2.2.3)). In practice, the power exponential or Gaussian correlation func-
tions are often assumed. The emphasis in this section is on the improvement criteria
and the algorithm for generating a design, rather than numerical implementation
issues.
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6.4.2 Contour Estimation

Ranjan et al. (2008) considered the goal of determining a contour of y(x), i.e., of

{x ∈ X : y(x) = a} , (6.4.1)

where a is a user-specified constant and y(x) is a simulator output in their method-
ology. Based on n training data outputs yn, let

ŷ(x0) = ̂β + r̂0 ̂R
−1 (

yn − 1n ̂β
)

(6.4.2)

denote the MLE-EBLUP of y(x0) and

s2(x0) = ̂σ2
Z

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − r̂0 ̂R
−1

r̂0 +
(1 − 1

n
̂R

−1
r̂0)2

1n ̂R
−1

1n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

denote the estimated variance of (6.4.2). Herêβ is the usual generalized least squares
estimator of β; r̂0 is the estimate of the vector of correlations between x0 and the
training data inputs; ̂R is an estimate of the correlation matrix R of Yn, the n × 1

model for yn; 1n is the n × 1 vector of 1’s; and ̂σ2
Z is the MLE of σ2

Z (see (3.2.7)
and (3.2.8)).

Ranjan et al. (2008) proposed the use of a probability-based improvement func-
tion built from

i(x) = α2s2(x) − min
{

(y(x) − a)2, α2s2(x)
}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α2 s2(x) − (y(x) − a)2, if y(x) ∈ (a − α s(x), a + α s(x))

0 , otherwise
(6.4.3)

where α > 0 is a constant used to tune the sequential update method alluded to
below (see also Roy and Notz (2014)). It is easy to see that the maximum possible
i(x) improvement is α2 s2(x). Equation (6.4.3) suggests that the improvement at x
has a “confidence interval” interpretation. An improvement occurs if the interval
y(x) ± α s(x) includes a.

The probability-based improvement function obtained from i(x) is

I(x) = α2S 2(x) − min
{

(Y(x) − a)2, α2S 2(x)
}

where S 2(x) is defined in terms of the random variables Y(x) and Yn. The condi-
tional expected I(x) given the training data is used to sequentially add design points
x to an existing design. Using the fact that the conditional distribution of Y(x) given
the training data Yn at stage n is approximately N

(

ŷ(x), s2(x)
)

, Ranjan et al. (2008)
adopted Method 1 expected improvement to form the quality indicator
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E
[

I(Y(x)) | Yn] =
[

(αs(x))2 − (̂y(x) − a)2
]

[

Φ

(

a − ŷ(x)
s(x)

+ α

)

−Φ

(

a − ŷ(x)
s(x)

− α

)]

+ 2(̂y(x) − a) s2(x)

[

φ

(

a − ŷ(x)
s(x)

+ α

)

− φ

(

a − ŷ(x)
s(x)

− α

)]

−
∫ a+αs(x)

a−αs(x)
(y − ŷ(x))2 φ

(

y − ŷ(x)
s(x)

)

dy , (6.4.4)

where Φ(·) and φ(·) denote the cumulative distribution function and probability den-
sity function of the standard normal distribution, respectively.

Although not immediately obvious, it turns out that the expected improve-
ment (6.4.4) has both a local search component and a global search component. The
constant α determines the extent to which the search is local versus global. Larger
values of α produce a more global search. The greatest improvement is achieved for
points x∗ where ŷ(x∗) is close to a and s(x∗) is large. The examples in Ranjan et al.
(2008) showed the effectiveness of using (6.4.4) to guide the sequential selection of
inputs to identify the contour (6.4.1). As anticipated, their algorithm adds points that
are near the true contour (local search) and occasionally points that are in regions of
high uncertainty (global search).

6.4.3 Percentile Estimation

Roy and Notz (2014) extended the results of Ranjan et al. (2008) to estimate per-
centiles of y(x) when the inputs have a known distribution that is denoted by X.
As motivation, recall Example 1.3 which describes a simulator for the flow of wa-
ter, y(x), through a borehole with eight characteristics x. Suppose that the simulator
inputs are not known exactly but only up to a distribution that specifies their uncer-
tainty. Let X denote the random inputs having this uncertainty distribution. Then the
induced distribution y(X) describes the uncertainty in the water flow. In fact, when
the actual range of values of the output y(x) is not well known, it may not be possi-
ble to specify what one means by a “large” value of y(x) other than by specifying a
large percentile.

Given p, 0 < p < 1, the goal of Roy and Notz (2014) was to estimate the pth

percentile, ζp, of the y(X) distribution, i.e.,

P
[

y(X) ≤ ζp

]

= p .

For simplicity, Roy and Notz (2014) assumed that X is uniformly distributed over X,
but their results can be easily modified to handle any known continuous distribution.
In the following discussion, the same model and the same notation as in Sect. 6.4.2
are used.

Roy and Notz (2014) discussed two types of improvement criteria. One is a confi-
dence interval-inspired approach which is motivated as follows. Given there is a fair
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idea about the location of the pth percentile ζp, one should look at inputs for which
the output lies in an interval about ζp to refine our estimate of ζp. The other approach
is a hypothesis testing-inspired approach; one selects design points at which the re-
sponse is not “significantly different” from ζp. For either approach, Roy and Notz
(2014) used the following algorithm:

1. Generate a large random sample from the distribution of the input variables.
(They use a large maximin distance Latin hypercube sample in their examples.)

2. Use the EBLUP based on the training data to predict the values of the output for
this large sample.

3. Numerically estimate ζp from the ordered vector of predicted values obtained in
Step 2.

6.4.3.1 Approach 1: A Confidence Interval-Based Criterion

Given the current estimate of the pth percentile value, ζp, of the induced distribution
of the output variable, define the theoretical improvement at any untried x to be

i(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h
(

y(x) − ζp, 1/s(x)
)

, if y(x) ∈ (ζp − αs(x), ζp + αs(x))

0 , otherwise
, (6.4.5)

where α > 0, and h(w, v) is a decreasing function of |w| and v. According to (6.4.5), if
the current estimate of the pth percentile, ζp, lies within αs(x) units of the response at
input site x, the improvement at that design point is set equal to h(y(x)− ζp, 1/s(x)).
If not the improvement is set equal to 0. The corresponding probability-based im-
provement function, I(x), is obtained by replacing y(x) with Y(x).

As an example, suppose

h
(

y(x) − ζp, 1/s(x)
)

= (αs(x))g − (y(x) − ζp)g ,

where g is a positive even integer. The theoretical improvement (6.4.5) becomes

i(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(αs(x))g − (y(x) − ζp)g, if y(x) ∈ (ζp − αs(x), ζp + αs(x))

0 , otherwise
, (6.4.6)

and the corresponding probability-based improvement function, Ig(x), is obtained
by replacing y(x) with Y(x). Formally, the improvement (6.4.3) of Ranjan et al.
(2008) is a special case of (6.4.6) when ζp = a and g = 2. Roy and Notz
(2014) showed that the relative amounts of local versus global search in their
probability-based improvement criterion Ig(x) can be controlled by changing g and
α. From (6.4.6) it is clear that, at any iteration, increasing α results in a wider in-
terval of candidate design points (leading to a more global search) from which one
may pick the most “informative.” The use of g to control the relative amount of local
versus global search was inspired by Schonlau et al. (1998).
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The Method 1 expected improvement quality indicator (6.3.13) corresponding to
(6.4.6) is derived in Roy and Notz (2014). For example, when g = 2

E
[

I(x) | Yn] =
[

(αs(x))2 − (̂y(x) − ζp)2
]

×
[

Φ

(

ζp − ŷ(x)

s(x)
+ α

)

−Φ

(

ζp − ŷ(x)

s(x)
− α

)]

+ 2(̂y(x) − ζp) s2(x)

[

φ

(

ζp − ŷ(x)

s(x)
+ α

)

− φ

(

ζp − ŷ(x)

s(x)
− α

)]

−
∫ ζp+αs(x)

ζp−αs(x)
(y − ŷ(x))2 φ

(

y − ŷ(x)
s(x)

)

dy .

6.4.3.2 Approach 2: A Hypothesis Testing-Based Criterion

A hypothesis testing inspired improvement function can be derived from the “theo-
retical” discrepancy

dε(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

y(x) − ζp

)2
+ ε

s2(x)
, if s(x) � 0

∞ , otherwise

(6.4.7)

between the current estimate of the pth percentile, ζp, and y(x) where ε > 0. The
corresponding probability-based discrepancy is

Dε(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

Y(x) − ζp

)2
+ ε

s2(x)
, if s(x) � 0

∞ , otherwise

.

The idea is to choose that design site at which the response is not significantly
different from the pth percentile, ζp. The negative (or reciprocal) of Dε (x) is an
improvement function.

The intuition behind this discrepancy is as follows. First, if a particular design site
has already been observed, the mean squared prediction error, s2(x), at that point is
zero; hence the discrepancy is set equal to infinity. Second, suppose there are two
competing design sites x1 and x2 and the responses at both x1 and x2 are equal to the
current estimate of the pth percentile, ζp. The value of the theoretical discrepancy in
Eq. (6.4.7) without the ε term is zero for both x1 and x2 and thus does not consider
the associated uncertainties s2(x1) and s2(x2). Including ε results in nonzero values
of the theoretical discrepancy; that value x1 or x2 having the larger s2(x) will have
smaller value of the theoretical discrepancy. Thus, selecting the design site with the
smallest value of the theoretical discrepancy ensures that the design site with the
highest mean squared prediction error is selected. Increasing the value of ε leads
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to a more global search. As discussed above, the inclusion of ε ensures that design
sites with higher values of s2(x) are selected over other candidate sites.

Roy and Notz (2014) proposed a quality indicator based on a Method 1 expected
discrepancy. They used examples to demonstrate the effectiveness of their method
and to emphasize the need for a sufficiently large initial sample size in its imple-
mentation.

6.4.4 Global Fit

A very challenging problem is developing criteria for the goal of producing a predic-
tor of the simulator output that has “good” overall fit, i.e., gives “good” predictions
over the entire input space, X.

Lam and Notz (2008) proposed the following probability-based improvement
function to provide good overall fit. For each x ∈ X, set

I(x) = (Y(x) − y(x j∗ ))2 ,

where x j∗ is the training input closest (in Euclidean distance) to x. Hence y(x j∗) is
known. The intuition behind this criterion is to place high value on “informative”
regions in the domain that will help improve the global fit of the model. By infor-
mative Lam and Notz (2008) mean regions with significant error in the response
values.

The Method 1 expected improvement for this probability-based improvement
function is

E
[

I(Y(x)) | Yn] =
(

ŷ(x) − y(x j∗ )
)2
+ s2(x) . (6.4.8)

The expected improvement in (6.4.8) consists of two search components—local and
global. The local component of E[I(y(x))] is large at x where ŷ(x) has the largest
increase over its nearest sampled point. The global component is large for points
with the largest s2(x), i.e., points about which there is large uncertainty that tend to
be far from existing sampled points.

Lam and Notz (2008) compared the performance of this criterion with sequen-
tial and fixed-sample implementations of design criteria based on mean squared
prediction error, changes in measures based on cross-validation error, entropy, and
a space-filling design. Their method performs well on response surfaces that look
“nonstationary,” by which they mean surfaces that have regions of high volatility
(appear very rough) as well as regions that are very flat. It performs satisfactorily in
examples where the response surface looks like the realization of a stationary GP.

Loeppky et al. (2010) investigated strategies for adding design points in batches
to improve the global fit of the GP model. They refer to this as “emulator maturity,”
the idea being that one seeks to improve the emulator (predictor) of the physical
process by adding observations from the computer simulation (and, perhaps, from
the physical process itself). They consider several strategies. One is the one-at-a-
time sequential strategy using the expected improvement criterion of Lam and Notz
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(2008). Others are batch sequential implementations of the entropy criterion, inte-
grated mean squared prediction error, maximum mean squared prediction error, and
two proposed distance-based strategies that add points in batches to maintain some
degree of “space-fillingness.” Also considered is a one-stage symmetric LHD that
takes a total number of observations equal to the total taken by the batch strategies.
The surprising result is that in the examples considered by Loeppky et al. (2010),
the one-stage symmetric LHD is never outperformed in controlling average predic-
tion errors and rarely outperformed in controlling maximum prediction errors. The
reason this is surprising is that many of the batch strategies make use of the observa-
tions from the first stage, while the one-stage design does not. It seems counterintu-
itive that ignoring information that determines the predictor should lead to improved
performance. The reasons are unclear, but the following may be relevant.

First, it may be that there are better improvement criteria and batch strategies for
obtaining good global fit than those studied by Loeppky et al. (2010). If so, these
“better strategies” might at least be competitive with the one-stage design. Second,
the test function used in the study varies smoothly with each input and has most
of its output variation explained by relatively simple effects. Thus, the (stationary)
GP model appears to be a reasonable model for the test function. As discussed in
Sect. 5.1.2, assuming the GP model is correct, for sufficiently large sample sizes, no
design will outperform space-filling designs (space-filling in the sense that as the
sample size increases, the design becomes dense in X) in terms of the rate at which
the maximum of the mean squared prediction error decreases as ns increases. So
to the extent that the output from the computer simulator resembles a realization
of a GP model, space-filling designs should perform well in terms of producing
predictors with good overall global fit for large sample sizes.

Less clear is the possible performance of various design strategies when the sim-
ulator output does not look like the realization of a (stationary) GP model. EBLUPs
based on the GP model are interpolators, so EBLUPs will often provide good global
fit with enough data. Whether theoretical results about the asymptotic performance
of space-filling designs for the GP model are valid when the true response does not
resemble a realization of a GP model is not clear. And to what extent asymptotic
results provide insight into performance for smaller sample sizes is also not clear.
More research and more extensive testing on a variety of response surfaces with dif-
fering features (some that appear to be realizations of a GP model, some that have
distinctly nonstationary features) might improve understanding of the behavior of
different design criteria.

6.5 Chapter Notes

While the references in the individual sections provide additional details concerning
the procedures discussed in that section, Notz (2015) gives an overview of additional
methods based on expected improvement.
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6.5.1 The Hypervolume Indicator for Approximations to Pareto
Fronts

Several quality measures have been introduced for comparing different approxima-
tions to a given Pareto Front, PY, and also to provide improvement functions I(x).
This subsection will illustrate these ideas using one such measure called the “hy-
pervolume indicator”; Zitzler et al. (2008) gives a detailed survey of this topic and
other quality measures. Below, the hypervolume indicator will be defined, and then
two applications of this indicator will be described.

To define the hypervolume indicator, one must first extend the idea of (weak)
dominance of one point in a given set Y by another point in Y (see Sect. 6.3.6) to
one subset of points in Y by another subset of points in Y. Suppose that A and B
are subsets of Y; A is said to (weakly) dominate B, denoted A � B (A � B), if every
point in B is dominated by one or more points in A. Now consider A ⊂ Y and fix
a reference point υ which is weakly dominated by every y ∈ Y. The hypervolume
indicator of A is defined to be

IH (A, υ) =
∫

Y
I {y | y � υ, A � {y}} dy

where I{·} is the indicator function. In words, IH (A, υ) is the volume of the set of
points in Y that are dominated by one or more points from A but also dominate the
reference point υ. As an example, the green area of Fig. 6.12 illustrates IH (A, υ) for
a finite set of points in 2-D.

The most important property of the hypervolume indicator, used to compare ap-
proximations to a given Pareto Front, is its strict monotonicity with respect to domi-
nance. This means that for sets A1 and A2 with A1 � A2, then IH(A1, υ) > IH(A2, υ).

Fig. 6.12 The filled circles form a five-point set A; the filled square is the reference point υ; and
the shaded region is IH (A, υ)
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While there are alternate quality measures, say I(A), that have the weak monotonic-
ity property, i.e., I(A1) ≥ I(A2) whenever A1 � A2, the hypervolume indicator and
a related indicator, the weighted hypervolume indicator, are the only known quality
measures that are strictly monotonic (Zitzler et al. (2008)).

Despite its strict monotonicity, the hypervolume indicator has three disadvan-
tages when used as a quality measure for comparing approximations to a Pareto Set.
First, the value of IH (A, υ) depends on the scaling of the outputs. Second, IH (A, υ)
requires the user know an upper bound υ on the output space. And, lastly, IH (A, υ)
is computationally expensive; according to Fonseca et al. (2006), the best known
algorithms for calculating the hypervolume indicator have running times that are
exponential in m, the number of components of y(x). All three of these disadvan-
tages are addressed by papers that use the hypervolume indicator for comparisons
of regions or to define an improvement criterion.

Turning attention to comparing approximations to a Pareto Front, suppose that
two approximations have been formed by determining the nondominated simulator
evaluations, y(x), that have been determined by two different methods of estimat-
ing the Pareto Front. Because the estimated Fronts are comprised of function eval-
uations, they must necessarily have smaller hypervolume indicators than the true
Pareto Front. The approximation having the larger value of the hypervolume is con-
sidered better.

The second application of the hypervolume indicator is to define an improvement
criterion. Emmerich et al. (2006) defined the hypervolume improvement criterion as

I
H
(y(x)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, y(x) � Pn
Y or y(x) � υ

IH

(

{y(x)} ∪ Pn
Y, υ

)

− IH

(

P
n
Y, υ

)

, otherwise
(6.5.1)

for a suitable reference point υ. Then the next point in the sequential design is ob-
tained by maximizing the expected value of a probabilistic version of (6.5.1).

6.5.2 Other MSPE-Based Optimal Designs

Leatherman et al. (2018) discussed designs that minimize a weighted version of the
IMSPE criterion and hence can be viewed as Bayesian designs. Let MSPEκ [̂yκ(x)]
be an extended version of the MSPE notation (6.2.4) which emphasizes that κ is the
correlation under which both the EBLUP ŷκ(x) and the MSPE are calculated. The
Leatherman et al. (2018) criterion chooses D to minimize

WI(D) =
∫ (∫

X
MSPEκ [̂yκ(x)] dx

)

π(κ) dκ ,

with respect to a weight π(κ) on κ (π(κ) is a prior if one is Bayesian). An n-point de-
sign Dwimpse is WIMSPE-optimal if it minimizes WI(D). WIMSPE-optimal designs
can be extremely time-consuming to construct. While WIMSPE-optimal designs
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can provide smaller EMSPE prediction for test bed functions than designs which
are IMSPE-optimal against a single κ, the examples of Leatherman et al. (2018)
suggested that the magnitude of the improvements are often not worth the compu-
tation cost of determining the design.

In a similar spirit, Leatherman et al. (2017) recommended specific IMSPE-
optimal designs for calibrated prediction of the mean of a physical process based
on combined physical system observations and simulator output.

Weaver et al. (2016) developed an approach to optimizing computationally ex-
pensive Bayesian design criterion functions such as WI(D). Let Λ(D) denote an
arbitrary design criterion function, typically represented as an integral of a utility
(or loss) function with respect to the joint distribution of uncertain parameters and
unobserved future data. Evaluation of Λ(D) for a single proposed design D may
involve both Monte Carlo simulation and MCMC, both computationally intensive
procedures indicating that a limited budget of design criterion realizations will be
available for design optimization. The method involves taking a portion of this bud-
get to build an initial GP surrogate for the stochastic Λ(D) and then invoking the
EQI of Picheny et al. (2013) to sequentially optimize Λ(·) over designs D using the
remainder of the budget.

6.5.3 Software for Constructing Criterion-Based Designs

The designs discussed in this chapter must be produced numerically. Below is a
partial list of software packages that will generate these designs.

1. JMP 12 will produce maximum entropy designs and IMSPE-optimal designs in
the space-filling design option under the DOE menu. The Gaussian correlation
function is assumed. For both designs, the user must specify the values of the
correlation parameters, ξ.

2. Leatherman gives MATLAB code for finding IMSPE- and weighted IMSPE-
optimal designs (https://www2.kenyon.edu/Depts/Math/Leatherman/CompExp
Desgs Pred/). The software constructs the design under the assumption that
all data come from a stationary Gaussian process with Gaussian correlation
function. For IMSPE-optimal designs, the user must specify the values of the
correlation parameters. For weighted IMSPE-optimal designs, the user must
specify a beta distribution to weight the correlation parameters.

3. The DiceDesign package in R will generate maximum entropy designs given
values for the correlation parameters for a correlation matrix based on a spherical
variogram. A description of the DiceDesign package is available at
http://cran.r-project.org/web/packages/DiceDesign/DiceDesign.pdf

4. Dakota is a software package developed at Sandia National Laboratories for the
analysis of data from predictive simulations. The package allows one to imple-
ment the sequential design strategies of Schonlau et al. (1998) and Jones et al.
(1998), sometimes referred to as efficient global optimization (EGO). Dakota

https://www2.kenyon.edu/Depts/Math/Leatherman/CompExpDesgs_Pred/
http://cran.r-project.org/web/packages/DiceDesign/DiceDesign.pdf
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can be downloaded from http://dakota.sandia.gov. This package also implements
a variety of other optimization methods.

5. SPACE (Stochastic Process Analysis of Computer Experiments) is code writ-
ten by Matthias Schonlau that also implements the strategies of Schonlau et al.
(1998) and Jones et al. (1998). The code can be found at
http://www.schonlau.net/space.html.

6. The max EQI function distributed with the R package DiceOptim utilizes an evo-
lutionary search algorithm with a Newton or quasi-Newton optimization method
(see Appendix C) to maximize the EQI function of Picheny et al. (2013). A de-
scription of the DiceOptim package is available at
http://cran.r-project.org/web/packages/DiceOptim/DiceOptim.pdf

7. The laGP package in R implements blackbox constrained optimization via aug-
mented Lagrangians as described in Gramacy et al. (2016), in addition to other
tasks involving inference with GPs. A description of the laGP package is avail-
able at http://bobby.gramacy.com/r packages/laGP

8. Svenson (2011) describes MATLAB code that implements sequential designs for
Pareto optimization.

http://dakota.sandia.gov
http://www.schonlau.net/space.html
http://cran.r-project.org/web/packages/DiceOptim/DiceOptim.pdf
http://bobby.gramacy.com/r_packages/laGP


Chapter 7
Sensitivity Analysis and Variable
Screening

7.1 Introduction

This chapter discusses sensitivity analysis and the related topic of variable screen-
ing. The setup is as follows. A vector of inputs x = (x1, . . . , xd) is given which
potentially affects a “response” function y(x) = y(x1, . . . , xd). Sensitivity analysis
seeks to quantify how variation in y(x) can be apportioned to the inputs x1, . . . , xd

and to the interactions among these inputs. Variable selection is more decision ori-
ented in that it seeks to simply determine, for each input, whether that input is “ac-
tive” or not. However, the two notions are related and variable screening procedures
use some form of sensitivity analysis to assess the activity of each candidate input.
Hence sensitivity analysis will be described first and then, using sensitivity analysis
(SA) tools, two approaches to variable selection will be presented.

To fix ideas concerning sensitivity analysis, consider the function

y(x1, x2) = x1 + x2. (7.1.1)

with domain (x1, x2) ∈ (0, 1) × (0, 2). One form of sensitivity analysis is based on
examining the local change in y(x) as x1 or x2 increases by a small amount starting
from (x0

1, x0
2). This change can be determined from the partial derivatives of y(·) with

respect to x1 and x2; in this example,

∂y(x1, x2)
∂x1

= 1 =
∂y(x1, x2)

∂x2
,

so that we can assert that small changes in the inputs parallel to the x1 or the x2 axes
starting from any input have the same effect on y(·).

A more global assessment of the sensitivity of y(x) with respect to any com-
ponent xi, i = 1, . . . , d, examines the change in y(x) as xi ranges over its do-
main for fixed values of the remaining inputs. In the case of (7.1.1), for fixed
x0

1 it is easy to see that the range of y(x0
1, x2) as x2 varies over (0, 2), is 2 =

maxx2 y(x0
1, x2) − minx2 y(x0

1, x2) = y(x0
1, 2) − y(x0

1, 0) which is twice as large as
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1 = maxx1 y(x1, x0
2) − minx1 y(x1, x0

2), the range of y(x1, x0
2) over x1 for any fixed x0

2.
Thus this second method of assessing sensitivity concludes that y(x1, x2) is twice as
sensitive to x2 as x1.

This example illustrates two of the approaches that have been used to assess
the influence of inputs on a given output. Local sensitivity analysis measures the
change in the slope of the tangent to y(x) at x in the direction of a given input axis j,
fixing the remaining inputs. Global sensitivity analysis measures the change in y(x)
as one (or more inputs) vary over their entire domain when the remaining inputs
are fixed. As the example above shows, the different criteria can lead to different
conclusions about the sensitivity of y(x) to its inputs. When it is determined that
certain inputs have relatively little effect on the output, we can set these inputs to
nominal values and reduce the dimensionality of the problem allowing us to perform
a more exhaustive investigation of a predictive model with a fixed budget for runs.

Sensitivity analysis is also useful for identifying interactions between variables.
When interactions do not exist, the effect of any given input is the same regardless
of the values of the other inputs; in this case, the relationship between the output
and inputs is said to be additive and is readily understandable (Fig. 7.1). When in-
teractions exist, the effects of some inputs on the output will depend on the values
of other inputs (Fig. 7.1).
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Fig. 7.1 Left panel, a function y(x1, x2) with no x1 × x2 interaction; right panel, a function y(x1 , x2)
having x1 × x2 interaction

The remainder of this chapter is organized as follows. Sections 7.2–7.6 empha-
size methods of quantifying the global sensitivity analysis of a code with respect
to each of its inputs and then estimating these sensitivity indices. They will also
describe a companion method of visualizing the sensitivity of a code to each in-
put based on elementary effects. An efficient class of designs called one-at-a-time
designs will be introduced for estimating elementary effects. Section 7.7 describes
alternative approaches and provides additional details for some of the topics pre-
sented in the earlier sections.
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7.2 Classical Approaches to Sensitivity Analysis

7.2.1 Sensitivity Analysis Based on Scatterplots and Correlations

Possibly the simplest approach to sensitivity analysis uses familiar graphical and
numerical tools. A scatterplot of each input versus the output of the code provides
a visual assessment of the marginal effect of each input on the output. The prod-
uct moment correlations between each input and the output indicate the extent to
which there is linear association between the outputs and the input. Scatterplots are
generally more informative than correlations because nonlinear relationships can be
seen in plots, whereas correlations only indicate the presence of straight-line rela-
tionships.

As an example, Fig. 1.4 on page 8 plots the failure depth of pockets punched into
sheet metal (the output) versus clearance and versus fillet radius, two characteristics
of the machine tool used to form the pockets. The scatterplot of failure depth versus
clearance shows an increasing trend, suggesting that failure depth is sensitive to
clearance. However, in the scatterplot of failure depth versus fillet radius, no trend
appears to be present, suggesting that failure depth may not be sensitive to fillet
radius.

One limitation of marginal scatterplots is that they do not allow assessment of
possible interaction effects. Three graphical methods that can be used to explore
two-factor interaction effects are three-dimensional plots of the output versus pairs
of inputs, two-dimensional plots that use different plotting symbols to represent the
(possibly grouped) values of a second input, and a series of two-dimensional plots
each of whose panels use only the data corresponding to a (possibly grouped) value
of the second input. The latter are called “trellis plots.” Graphical displays that al-
low one to investigate three-way and higher interactions are possible but typically
require some form of dynamic ability to morph the figure and experience in inter-
pretation (see, e.g., Barton (1999)).

7.2.2 Sensitivity Analysis Based on Regression Modeling

Regression analysis provides another sensitivity analysis methodology that builds
on familiar tools. The method below is most effective when the design is orthogonal
or nearly orthogonal and a first-order linear model in the inputs x1, . . . , xd (nearly)
explains the majority of the variability in the output.

The regression approach to sensitivity analysis first standardizes the output y(x)
and all the inputs x1, . . . , xd. If ns runs of the simulator code have been made, each
variable is standardized by subtracting that variable’s mean and dividing the differ-
ence by the sample standard deviation. For example, fix an input j, 1 ≤ j ≤ d, and
let x1, j, . . . , xns, j denote the values of this variable for the ns runs. Let x j denote the

8
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mean of x1, j, . . . , xns, j and s j their standard deviation. The standardized value of xi, j

is defined to be

x�
i, j =

xi, j − x j

s j
, 1 ≤ i ≤ ns.

In a similar fashion, standardize the output values yielding y�
i , 1 ≤ i ≤ ns. Now fit

the first-order regression model

y� = β�
0 + β�

1 x�
1 + · · · + β�

d x�
d (7.2.1)

to the standardized variables. The regression coefficients in (7.2.1) are called the
standardized regression coefficients (SRCs); β�

j measures the change in y� due to
a unit standard deviation change in input j. Because all variables have been placed
on a common scale, the magnitudes of the estimated SRCs indicate the relative
sensitivity of the output to each input. The output is judged most sensitive to those
inputs whose SRCs are largest in absolute value.

The validity of the method depends on the overall fit of the regression model, as
indicated by standard goodness-of-fit measures such as the coefficient of determina-
tion R2. If the overall fit is poor, the SRCs do not reflect the effect of the inputs on
the output. In addition, regression-based methods are most effective when the input
design is orthogonal or at least space-filling so that changes in the output due to one
input cannot be masked by changes in another.

Example 1.2 (Continued). Recall the data introduced in Sect. 1.2 that described the
failure depth for a computational model of the operation of punching symmetric
rectangular pockets in automobile steel sheets. Table 7.1 lists the regression coef-
ficients for model (7.2.1). This analysis is likely to be reasonable because the R2

associated with the fitted model is 0.9273. The estimated regression coefficients
suggest that the output is most sensitive to Clearance and then, equally so, to the
two inputs Fillet Radius and Punch Plan View Radius. The other inputs are of lesser
importance. �

Input Est. β�
i in (7.2.1)

Clearance 0.8705
Fillet radius 0.2490
Punch plan view radius 0.2302
Width 0.0937
Length 0.0681
Lock bead distance 0.0171

Table 7.1 Estimated SRCs for the fitted standardized model (7.2.1)

Example 1.1 (Continued). Recall the data introduced in Sect. 1.2 of the computed
time for a fire to reach 5 ft above a fire source. The inputs affecting this time were
the room area, room height, heat loss fraction, and height of the fire source above
the room. Figure 3.3 on page 82 shows the marginal relationship between the output
and each input based on a 40-point Sobol´ design. From these plots, it appears that

82
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the output is most sensitive to room area and not very sensitive to the remaining
inputs. We perform a sensitivity analysis of the output function based on the 40-
point training data for this example. Fitted model (7.2.1) has R2 = 0.98 suggesting
that the output is highly linear in the four inputs and the regression approach to
sensitivity analysis is likely to be accurate. Table 7.2 lists the regression coefficients
for this model. These values suggest that the single most important input is Room
area, followed by Fire height, Room height, and lastly Heat loss fraction. �

Input Est. β�
i in (7.2.1)

Heat loss frac. 0.1283
Fire height 0.5347
Room height 0.3426
Room area 0.9066

Table 7.2 Estimated SRCs for the fitted standardized model (7.2.1)

There are a number of variants on regression-based models. Partial correlation
coefficients (PCCs) between the output and the inputs can be used to assess sensi-
tivity. PCCs measure the strength of the linear relationship between the output and
a given input, after adjusting for any linear effects of the other inputs. The relative
sizes of PCCs are used to assess the sensitivity of the output to the inputs.

As for SRCs, the same two circumstances will compromise the validity of PCCs.
If the overall fit of the model is poor, or there is a high degree of collinearity among
the predictors, PCCs need not provide accurate information about the sensitivity of
the output to the inputs.

A third variant of the regression approach finds rank transforms of both the in-
puts and the outputs. The rank transformation is carried out as follows. Suppose that
a variable has N values; assign rank 1 to the lowest value, rank 2 to the next lowest,
and rank N to the largest value. Use the average rank for ties. Then fit a first-order
regression model to the transformed data. The estimated standardized regression co-
efficients or partial correlations are used to assess the sensitivity of the output to the
inputs. Once again, if the overall fit of the first-order regression model is poor or
collinearity masks the effects of one or more inputs, the use of standardized regres-
sion coefficients or partial correlations need not adequately describe the sensitivity
of the output to the inputs.

In practice, it has been observed that fitted regression models based on rank trans-
formed data often have higher R2 values than based on standardized data. This phe-
nomenon can occur because the rank transformation can remove (certain) nonlin-
earities present in the original data. Thus, when monotone (but nonlinear) trends
are present, there are some advantages to conducting a sensitivity analysis using the
rank transformed data. However, when one uses the rank transformed data, one must
keep in mind that the resulting sensitivity measures give information on the sensi-
tivity of the rank transformed output to the rank transformed inputs, rather than on
the original variables.
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A method that takes explicit account of the statistical significance of the esti-
mated regression coefficients is a stepwise regression algorithm applied to the stan-
dardized inputs. For example, if a forward stepwise regression is used, the first
variable entered would be considered the most influential input, the second vari-
able entered would be considered the second most influential input, etc. As is usual
in stepwise regression, one continues until the amount of variation explained by
adding further variables is not considered meaningful according to some criterion
selected by the user. Criteria such as the mean squared error, the F-statistic for
testing whether the added variable significantly improves the model, Akaike’s In-
formation Criterion (the “AIC”), the coefficient of determination R2, or the adjusted
R2 can be used to determine when to stop the stepwise regression. For more on step-
wise regression, see any standard text on regression, for example, Draper and Smith
(1981).

Whether one uses standardized or rank transformed data, there is no information
about possible interactions or non-monotone effects of variables if only first-order
models are fit. If one has reason to believe that interactions are present, or that the
relation between the output and some of the inputs is nonlinear and non-monotone,
these regression methods will not give reliable information about sensitivities. One
may wish to consider fitting higher-order models such as a second-order response
surface to the output. Such a model allows one to explore second-order (quadratic)
effects of inputs and two-factor interaction (cross-product) effects. For more on re-
sponse surface methods, see Box and Draper (1987).

7.3 Sensitivity Analysis Based on Elementary Effects

The elementary effects (EEs) of a function y(x) = y(x1, . . . , xd) having d inputs
measure the sensitivity of y(x) to each x j by directly evaluating the change in y(x)
when x j alone is altered. From a geometric viewpoint, EEs are the slopes of secant
lines parallel to each of the input axes. In symbols, given j ∈ {1, . . . , d}, the jth EE
of y(x) at distance Δ is

d j(x) =
y(x1, . . . , x j−1, x j + Δ, x j+1, . . . , xd) − y(x)

Δ
.

Specifically, d j(x) is the slope of the secant line connecting y(x) and y(x+Δe j) where
e j = (0, 0, . . . , 1, 0, . . . , 0) is the jth unit vector. For “small” Δ, d j(x) is a numerical
approximation to the jth partial derivative of y(x) with respect to x j evaluated at
x and hence is a local sensitivity measure. However, in most of the literature, EEs
are evaluated for “large” Δ at a widely sampled set of inputs x and hence are global
sensitivity measures measuring the (normalized) overall change in the output as each
input moves parallel to its axis.

Example 7.1. To gain intuition about the interpretation of EEs, consider the follow-
ing simple analytic “output” function:
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y(x) = 1.0 + 1.5x2 + 1.5x3 + 0.6x4 + 1.7x2
4 + 0.7x5 + 0.8x6 + 0.5x5 × x6 (7.3.1)

of d = 6 inputs where x = (x1, x2, x3, x4, x5, x6), and x j ∈ [0, 1] for j = 1, . . . , 6.
Notice that y(x) is functionally independent of x1, is linear in x2 and x3, is nonlinear
in x4, and contains an interaction in x5 and x6.

Straightforward algebra gives the value y(x+Δe j)− y(x), j = 1, . . . , 6, and hence
the EEs of y(x) can be calculated analytically as

1. d1(x) = 0,

2. d2(x) = 1.5 = d3(x),

3. d4(x) = +0.6 + 1.7Δ + 3.4x4,

4. d5(x) = +0.7 + 0.5x6, and d6(x) = +0.8 + 0.5x5.

The EEs for this example are interpreted as follows. The EE of the totally inactive
variable x1 is zero because y(x) is functionally independent of x1. The EEs of the
additive linear terms x2 and x3 are the same nonzero constant, 1.5, and hence (7.3.1)
is judged to be equally sensitive to x2 and x3. The EE of the quadratic term x4

depends on both the x4 and Δ; hence for fixed Δ, d4(x) will vary with x4 alone.
Lastly, for the interacting x5 and x6 inputs, the EE d5(x) depends on x6, while d6(x)
depends on x5.

In general, the EEs of additive linear terms are local sensitivity measures. The
global sensitivity viewpoint assesses the sensitivity of y(x) to input x j by the change
in y(x) as x j moves over its range. For example, suppose that the range of x3 were
modified to be [0, 2]. Then the larger range of x3 compared with x2 would mean that
any reasonable assessment of the global sensitivity of y(x) should conclude that x3

is “more active” than x2. �

EEs can be used as an exploratory data analysis tool, as follows. Suppose that
each d j(x), j = 1, . . . , d, has been computed for r vectors, say x j

1, . . . , x j
r . Let d j

and S j denote the sample mean and sample standard deviation, respectively, of
d j(x j

1), . . . , d j(x j
r). Then as Morris (1991) states, an input x j having

• a small d j and small S j is non-influential;
• a large d j and small S j has a strong linear effect on y(x);
• a large S j (and either a large or small d j) either has a nonlinear effect in x j or x j

has strong interactions with other inputs.

Example 7.1 (Continued). To illustrate, consider y(x) given by (7.3.1). Suppose that
y(x) is evaluated for each row of Table 7.3. Table 7.3 contains five blocks of seven
rows each; the first row of every block is in boldface font. The difference between
the y(x) values computed from consecutive pairs of rows within each block provide
one d j(x) value. Note that every such pair of rows differs by ±0.3 in a single x j

location. In all, these output function evaluations provide r = 5 d j(x) evaluations
for five different x. The construction of the input table, “the design” of these runs,
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x1 x2 x3 x4 x5 x6

0.50 0.60 0.50 0.40 0.50 0.35
0.80 0.60 0.50 0.40 0.50 0.35
0.80 0.90 0.50 0.40 0.50 0.35
0.80 0.90 0.80 0.40 0.50 0.35
0.80 0.90 0.80 0.10 0.50 0.35
0.80 0.90 0.80 0.10 0.20 0.35
0.80 0.90 0.80 0.10 0.20 0.05
0.85 0.3 0.9 0.65 0.3 0.40
0.55 0.30 0.90 0.65 0.3 0.40
0.55 0.00 0.90 0.65 0.30 0.40
0.55 0.00 0.60 0.65 0.30 0.40
0.55 0.00 0.60 0.95 0.30 0.40
0.55 0.00 0.60 0.95 0.60 0.40
0.55 0.00 0.60 0.95 0.60 0.10
0.65 0.00 0.35 0.75 0.45 0.60
0.35 0.00 0.35 0.75 0.45 0.60
0.35 0.3 0.35 0.75 0.45 0.60
0.35 0.3 0.05 0.75 0.45 0.60
0.35 0.3 0.05 0.45 0.45 0.60
0.35 0.3 0.05 0.45 0.75 0.60
0.35 0.3 0.05 0.45 0.75 0.90
0.9 0.05 0.35 0.05 0.4 1.0

0.60 0.05 0.35 0.05 0.40 1.00
0.60 0.35 0.35 0.05 0.40 1.00
0.60 0.35 0.05 0.05 0.40 1.00
0.60 0.35 0.05 0.35 0.40 1.00
0.60 0.35 0.05 0.35 0.10 1.00
0.60 0.35 0.05 0.35 0.10 0.70
0.40 0.35 0.60 0.00 0.35 0.60
0.10 0.35 0.60 0.00 0.35 0.60
0.10 0.05 0.60 0.00 0.35 0.60
0.10 0.05 0.90 0.00 0.35 0.60
0.10 0.05 0.90 0.30 0.35 0.60
0.10 0.05 0.90 0.30 0.05 0.60
0.10 0.05 0.90 0.30 0.05 0.30

Table 7.3 An OAT design with r = 5 complete tours for a d = 6 input function with domain [0, 1]6

and |Δ| = 0.30

will be discussed in the subsequent paragraphs. Here, only the interpretation of the
plot is considered.

Figure 7.2 plots the d j and S j values from the individual EEs computed in the
previous paragraph. Because S 1 = 0 = S 2 = S 3, the plot shows that d1(x), d2(x),
and d3(x) are each constant and have values 0.0, 1.5, and 1.5, respectively, (as the
theoretical calculations showed). Hence these (d j, S j) points are interpreted as say-
ing that y(x) is functionally independent of x1 and contains an additive linear term
in each of x2 and x3. Because S j > 0 for j = 4, 5, and 6, the corresponding d j(x)
values vary with x. Hence one can conclude that either y(x) is not linear in x j or that
x j interacts with the other inputs. �
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Fig. 7.2 Plot of dj and S j values for the EEs computed for function y(x) in (7.3.1) using the design
in Table 7.3

How should one select inputs in order to efficiently estimate EEs of y(x)? By
definition, each d j(x) requires two function evaluations. Hence, at first impulse, one
might think a total of 2 × r function evaluations would be required to estimate r
EEs. Morris (1991) proposed a more efficient one-at-time (OAT) sampling design
for estimating the EEs when the input region is rectangular. This method is particu-
larly useful for providing a sensitivity analysis of an expensive black-box computer
simulator.

To introduce the method, consider evaluating an arbitrary function of five inputs:

y(x) = y(x1, x2, x3, x4, x5), x ∈ [0, 1]5

at each of the six (input) rows listed in Table 7.4. The y(x) evaluations for Runs 1
and 2 can used to compute d1(0.8, 0.7, 1.0, 0.7, 0.7) for Δ = −0.3. Similarly the y(x)
differences for the succeeding consecutive pairs of rows provide, in order, estimates
of d2(x), d3(x), d4(x), and d5(x) for different x but each using |Δ| = 0.3.

Run x1 x2 x3 x4 x5

1 0.8 0.7 1.0 0.7 0.7
2 0.5 0.7 1.0 0.7 0.7
3 0.5 1.0 1.0 0.7 0.7
4 0.5 1.0 0.7 0.7 0.7
5 0.5 1.0 0.7 1.0 0.7
6 0.5 1.0 0.7 1.0 0.4

Table 7.4 Six input vectors at which a function of five inputs (x1, x2, x3, x4, x5) is to be evaluated
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In general, a tour of the input space is a (d+1)×d matrix having the property that
successive rows differ in a single input by a given ±Δ and each input is varied for
one pair of consecutive rows. Tours are determined by a starting x, by a permutation
of (1, 2, . . . , d) that specifies the input to be modified in successive pairs of rows, by
the choice of a Δ > 0, and by a d × 1 vector (±1, . . . ,±1) of directional movements
for Δ in the successive pairs of rows. For example, the first tour in Table 7.4 uses
starting vector x = (0.8, 0.7, 1.0, 0.7, 0.7), alters the inputs in succeeding rows in the
order (1, 2, 3, 4, 5) with Δ = 0.3 and signs (−1,+1,−1,+1,−1). Each row of the tour
is a valid input of the function because it is an element of [0, 1]5.

For a given distance |Δ|, a Morris (1991) OAT design is a collection of tours with
each tour starting at a randomly selected point of the input space. In his examples
Morris (1991) selects the magnitude of Δ to be 30% of the common range of each
scaled variable, takes a random permutation of (1, . . . , d), makes a random selection
of the directional sign to be associated with each input, and selects the starting x
randomly from a gridding of the input space; the above are restricted so that every
row of the design is a valid input.

Example 1.3 (Continued). This example constructs EEs based on an OAT design for
the borehole function. For convenience the formula, inputs, and input ranges of the
borehole function are repeated in (7.3.2) and Table 7.5:

y(x) =
2πTu(Hu − Hl)

�n(r/rw)
[

1 + 2LTu

�n(r/rw)r2
wKw
+ Tu

Tl

] . (7.3.2)

Notation Input Units Range
Radius of influence r m [100, 50000]
Radius of the borehole rw m [0.05, 0.15]
Transmissivity of the upper aquifer Tu m2/year [63070, 115600]
Potentiometric head of the upper aquifer Hu m [990, 1110]
Transmissivity of the lower aquifer Tl m2/year [63.1, 116]
Potentiometric head of the lower aquifer Hl m [700, 820]
Length of the borehole L m [1120, 1680]
Hydraulic conductivity of borehole Kw m/year [9855, 12045]

Table 7.5 Inputs and ranges of the borehole function from (7.3.2)

A Morris OAT design with r = 5 tours based on random starting points was
constructed where Δ was selected to be approximately 40% of the range of each
input. The OAT design is listed in Table 7.6 with the starting points in bold font.

The d j and S j values computed from this design, j = 1, . . . , 8, are listed in Ta-
ble 7.7. A plot of the (d j, S j) is shown in Fig. 7.3 using the labels in Table 7.7. From
the signs and magnitudes of the EEs, it is seen that the annual flow rate increases
greatly in rw, increases at a slower rate in Hu, and decreases in Hl and L. None of r,
Tu, Tl, or Kw appear to be important determinants of the annual flow rate. The large
S 2 suggests that the effect of rw is either nonlinear or has strong interactions with
other inputs. �
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r rw Tu Hu Tl Hl L Kw

14483 0.098 103714 109.37 1032.4 764.2 1660.8 9899.2
14483 0.098 82702 109.37 1032.4 764.2 1660.8 9899.2
14483 0.098 82702 88.214 1032.4 764.2 1660.8 9899.2
14483 0.098 82702 88.214 1032.4 812.2 1660.8 9899.2
14483 0.098 82702 88.214 1080.4 812.2 1660.8 9899.2
14483 0.098 82702 88.214 1080.4 812.2 1436.8 9899.2
34123 0.098 82702 88.214 1080.4 812.2 1436.8 9899.2
34123 0.098 82702 88.214 1080.4 812.2 1436.8 10775
34123 0.058 82702 88.214 1080.4 812.2 1436.8 10775
2083.8 0.144 87266 112.05 1004.5 755.3 1419.8 11771
2083.8 0.104 87266 112.05 1004.5 755.3 1419.8 11771
2083.8 0.104 66254 112.05 1004.5 755.3 1419.8 11771
2083.8 0.104 66254 90.886 1004.5 755.3 1419.8 11771
2083.8 0.104 66254 90.886 1004.5 755.3 1643.8 11771
2083.8 0.104 66254 90.886 1004.5 707.3 1643.8 11771
2083.8 0.104 66254 90.886 1052.5 707.3 1643.8 11771
2083.8 0.104 66254 90.886 1052.5 707.3 1643.8 10895
21724 0.104 66254 90.886 1052.5 707.3 1643.8 10895
12003 0.116 105837 100.82 1041.6 747.3 1329.3 11638
12003 0.116 105837 100.82 1041.6 747.3 1329.3 10762
12003 0.076 105837 100.82 1041.6 747.3 1329.3 10762
12003 0.076 105837 100.82 1041.6 747.3 1553.3 10762
12003 0.076 105837 100.82 993.64 747.3 1553.3 10762
12003 0.076 105837 100.82 993.64 795.3 1553.3 10762
31643 0.076 105837 100.82 993.64 795.3 1553.3 10762
31643 0.076 105837 79.665 993.64 795.3 1553.3 10762
31643 0.076 84825 79.665 993.64 795.3 1553.3 10762
28171 0.110 81111 91.96 1060.3 735.2 1148.3 10275
8531.3 0.110 81111 91.96 1060.3 735.2 1148.3 10275
8531.3 0.110 81111 113.11 1060.3 735.2 1148.3 10275
8531.3 0.110 81111 113.11 1060.3 735.2 1372.3 10275
8531.3 0.110 81111 113.11 1108.3 735.2 1372.3 10275
8531.3 0.110 81111 113.11 1108.3 783.2 1372.3 10275
8531.3 0.110 81111 113.11 1108.3 783.2 1372.3 11151
8531.3 0.110 102123 113.11 1108.3 783.2 1372.3 11151
8531.3 0.070 102123 113.11 1108.3 783.2 1372.3 11151
35115 0.098 90980 64.703 1055.5 726.7 1238.8 11527
35115 0.098 69968 64.703 1055.5 726.7 1238.8 11527
35115 0.098 69968 64.703 1103.5 726.7 1238.8 11527
35115 0.058 69968 64.703 1103.5 726.7 1238.8 11527
35115 0.058 69968 64.703 1103.5 726.7 1238.8 10651
15475 0.058 69968 64.703 1103.5 726.7 1238.8 10651
15475 0.058 69968 64.703 1103.5 774.7 1238.8 10651
15475 0.058 69968 85.863 1103.5 774.7 1238.8 10651
15475 0.058 69968 85.863 1103.5 774.7 1462.8 10651

Table 7.6 A Morris OAT design for the borehole function (7.3.2) with r = 5 tours and d = 8
inputs. The boldface rows denote the start of a tour consisting of nine runs

A number of enhancements have been proposed to the basic Morris (1991) OAT
design. Campolongo et al. (2007) suggest ways of making OAT designs more space-
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Input dj S j

1 r −1.80e−06 1.81e−06
2 rw 1436.5 275.25
3 Tu 4.55e−09 3.15e−09
4 Tl 2.58e−03 2.3257e−03
5 Hu 0.222 0.068
6 Hl −0.184 0.079
7 L −0.041 0.023
8 Kw 6.81e−03 2.5132e−03

Table 7.7 The dj and S j values for the borehole function based on the OAT design in Table 7.6
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Fig. 7.3 Plot of (dj, S j) from Table 7.7 for the seven smallest dj values

filling. They propose selecting the desired number, r, of tours to maximize a heuris-
tic distance criterion between all pairs of tours. Their R package sensitivity im-
plements this criterion; it was used to construct the design in Table 7.3. Pujol (2009)
proposed a method of constructing OAT designs whose projections onto subsets
of the input space are not collapsing. This is important if y(x) depends only on a
subset of “active” inputs. For example, suppose that y(x) depends (primarily) on
x j where j ∈ {1, 3, 5} and other x� are “inactive.” If multiple x inputs from the se-
lected EE design have common x j for j ∈ {1, 3, 5}, then y(x) evaluations at these x
would produce (essentially) the same output and hence little information about the
input–output relationship. Campolongo et al. (2011) introduced an OAT design that
spreads starting points using a Sobol´ sequence and differential Δ for each pair of
input vectors. Finally Sun et al. (2013) introduced an OAT design that can be used
for non-rectangular input regions and is an alternative method to Campolongo et al.
(2007) for spreading the secant lines of the design over the input space.
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7.4 Global Sensitivity Analysis

Often one of the first tasks in the analysis of simulator output y(x) is the rough
assessment of the sensitivity of y(x) to each input xk. In a combined physical sys-
tem/simulator setting, the analogous issue is the determination of the sensitivity of
the mean response of the physical system to each input.

Sobol´ (1990, 1993) and Welch et al. (1992) described plotting methods to make
such an assessment. They introduced the use of main effect plots and joint effect
plots. They also define various numerical “sensitivity indices” (SIs) to make such
assessments. This section will define these effect plots. It will also describe a func-
tional ANOVA decomposition of the output y(x) that is used to define “global SIs.”

More formal variable screening methods have been developed for computer sim-
ulators by Linkletter et al. (2006) and Moon et al. (2012). The methodology in both
papers assumes training data are available to construct a Gaussian process (GP)
emulator of the output at arbitrary input sites (with Gaussian correlation function).
Linkletter et al. (2006) use the (posterior distribution of the) estimated process corre-
lation for each input to assess its impact on y(x), while Moon et al. (2012) calculate
each input’s “total effect” index for the same purpose.

To ease the notational burden, from this point on assume that y(x) has a hyper-
rectangular input domain which is taken to be [0, 1]d. If the input domain of y(x) is
∏d

j=1[a j, b j], one should apply the methods below to the function

y� (x1, . . . , xd) = y (a1 + x1(b1 − a1), . . . , ad + xd(bd − ad)) .

When the input domain is not a hyper-rectangle, there are several papers that con-
sider analogs of the effect function definitions and sensitivity indices defined below;
however this topic is an area of active research (e.g., Loeppky et al. (2013)).

Section 7.4.1 introduces (uncentered) main effect and joint effect functions for
a given y(x), which are weighted y(x) averages. Then Sect. 7.4.2 describes an
ANOVA-like expansion of y(x) in terms of centered and orthogonalized versions
of the main and joint effect functions. Section 7.4.3 defines sensitivity indices for
individual inputs and groups of inputs in terms of the variability of these functional
ANOVA components. Section 7.5 provides methods for estimating these plots and
indices based on a set of y(x) runs. The emphasis in Sect. 7.5 will be on methods
for simulators having “expensive” code runs so that limited amounts of training data
are available.

7.4.1 Main Effect and Joint Effect Functions

Given a weight function of the form w(x) =
∏d

k=1 gk(xk) where gk(·) is a probability
density function on [0, 1], denote the overall mean of y(·) with respect to w(x) by
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y0 ≡
∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd)

d
∏

k=1

gk(xk) dxk .

Thus y0 can be interpreted as the expectation E[y(X)] where X = (X1, . . . , Xd) has
joint probability density

∏d
k=1 gk(xk). The weighted mean is useful, for example, in

scientific settings where the output depends on inputs that are not known exactly but
whose uncertainty can be specified by independent input distributions. If the uncer-
tainty in X can be specified by a weight function w(x) that has nonindependent in-
put components, then analogs of some of the results below still hold; settings where
the results hold for general w(x) will be described in this section. For notational
simplicity, the development below assumes that the weight function corresponds to
independent and identically distributed U(0, 1) components so that

y0 ≡
∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd)

d
∏

k=1

dxk . (7.4.1)

Similarly, the kth main effect function of y(x), k = 1, . . . , d, is defined to be

uk(xk) =
∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd)

∏

��k

dx� = E
[

y(X) | Xk = xk
]

, (7.4.2)

which is the average y(x) value for fixed xk. The expectation notation uses the fact
that the components of X are independent.

The idea of averaging y(x) when a single input is fixed can be extended to fixing
multiple inputs. Select a non-empty subset Q of {1, . . . d} for which the complement
{1, . . .d} \ Q is also non-empty (so that the integral (7.4.3) averages over at least
one input variable). Let xQ denote the vector of xk with k ∈ Q, arranged in order of
increasing k. Define the joint effect function of y(x1, . . . , xd) when xQ is fixed to be

uQ(xQ) =
∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd)

∏

��Q

dx� = E
[

y(X) | XQ = xQ

]

, (7.4.3)

which is the average y(x1, . . . , xd) value when the components of xQ are held con-
stant. For completeness, set

u1,2,...,d(x1, . . . , xd) ≡ y(x1, . . . , xd)

(when Q = {1, . . .d}).
For any Q ⊂ {1, . . . , d}, it is straightforward to see that the mean of the joint effect

function uQ

(

xQ

)

with respect to all arguments XQ is y0, i.e.,

E
[

uQ

(

XQ

)]

=

∫ 1

0
· · ·

∫ 1

0
uQ(xQ) dxQ = y0 . (7.4.4)
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The mean of uQ

(

xQ

)

with respect to any collection of xk whose indices k form a
proper subset of Q will vary and, in particular, need not be zero. Hence the uQ

(

xQ

)

are sometimes called uncentered effect functions. In contrast, the ANOVA-type cen-
tered versions of the uQ(xQ) that are defined in the next subsection have zero mean
with respect to any set of xk, with k ∈ Q.

Effect functions uQ(xQ) can be defined for nonindependent weight functions by
the conditional expectation operation in (7.4.3). However, their interpretation and
usefulness are more limited than in the independence case.

Example 7.2. Suppose y(x1, x2) = 2x1 + x2 is defined on [0, 1]2. Then the overall
mean and uQ effect functions are

y0 =

∫ 1

0

∫ 1

0
(2x1 + x2) dx2 dx1 = 1.5,

u1(x1) =
∫ 1

0
(2x1 + x2) dx2 = 0.5 + 2x1,

u2(x2) =
∫ 1

0
(2x1 + x2) dx1 = 1.0 + x2, and

u12(x1, x2) = y(x1, x2) = 2x1 + x2.

Illustrating the fact (7.4.4) that y0 is the mean of every uQ(XQ) with respect to XQ, it
is simple to calculate that

∫ 1

0
u1(x1) dx1 =

∫ 1

0
u2(x2) dx2 =

∫ 1

0

∫ 1

0
u12(x1, x2) dx1 dx2 = 1.5.

As shown in Fig. 7.4, plots of the main effect functions provide accurate infor-
mation of how this simple function behaves in x1 and x2. �
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Fig. 7.4 Plots of the main effect functions u1(x1) and u2(x2) for y(x1, x2) = 2x1 + x2
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Example 7.3. The so-called g-function with d inputs is defined to be

y(x1, . . . , xd) =
d

∏

k=1

|4xk − 2| + ck

1 + ck
, (7.4.5)

where x ∈ [0, 1]d and c = (c1, . . . , cd) has nonnegative components (Saltelli and
Sobol´ (1995)).

Note that y(x) is a product of functions of each input and does not involve stand-
alone “linear” terms in any inputs. As the definition of the effect function states,
and this example is meant to emphasize, ui(xi) contains the contributions of every
xi component no matter whether they appear as a stand-alone term or as part of an
interaction.

For fixed c ≥ 0, the value of

q(x) =
|4x − 2| + c

1 + c

over x ∈ [0, 1] is a pair of line segments, one over [0, 1/2] and the second over
[1/2, 1], defined by q(1/2) = c/(1 + c) and q(0) = (2 + c)/(1 + c) = q(1). The
function q(x) is symmetric about x = 1/2. It is straightforward to determine that

∫ 1

0

|4x − 2| + c
1 + c

dx = 1.0 , (7.4.6)

for every c ≥ 0 because this integral is the sum of the areas of two identical trape-
zoids (triangles when c = 0). The value of c determines how “active” x is in q(x).
Figure 7.5 shows this effect by plotting three q(x) with c ∈ {0, 5, 25}. The variable x
is more active for q(x) having smaller c.

Returning to the g-function with arbitrary numbers of inputs, (7.4.5), and arbi-
trary vector of parameters c = (c1, . . . , cd) ≥ 0, the main and joint effect functions
of y(x) are simple to calculate using (7.4.6). The overall mean is

y0 =

∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd)

d
∏

k=1

dxk =

d
∏

k=1

∫ 1

0

|4xk − 2| + ck

1 + ck
dxk = 1.0 .

The kth main effect function is

uk(xk) =
|4xk − 2| + ck

1 + ck
× 1 =

|4xk − 2| + ck

1 + ck
, k = 1, . . . , d .

Thus the main effect plots of individual inputs have essentially the symmetric form
shown in Fig. 7.5.

In a similar way, given a non-empty subset Q of {1, . . .d},

uQ(xQ) =
∏

k∈Q

|4xk − 2| + ck

1 + ck
. (7.4.7)
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For example,

u12(x1, x2) =
|4x1 − 2| + c1

1 + c1
× |4x2 − 2| + c2

1 + c2
, (7.4.8)
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Fig. 7.5 The function |4x−2|+c
1+c for c = 0 (solid line), c = 5 (dotted line), and c = 25 (dashed line)
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Fig. 7.6 Joint effect function (7.4.8) for c1 = 0.25 and c2 = 10.0
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which is plotted in Fig. 7.6 for c1 = 0.25 and c2 = 10.0. Clearly this function shows
that x1, the input associated with the smaller ci, is more active than x2. Visualizations
of higher-order effect functions, while more difficult to display effectively, can also
be made. �

In sum, plots of main effect functions (xi, ui(xi)) and joint effect functions
(

(xi, x j), ui j(xi, x j)
)

can be used to provide a rough visual understanding of the
change in the averaged y(x) with respect to each single input or pairs of inputs.
Section 7.5 will describe methods of estimating the uQ(xQ) based a set of training
data obtained from the output function.

7.4.2 A Functional ANOVA Decomposition

The uncentered uQ(xQ) describe average y(x) values; uQ(xQ) values are on the same
scale and in the same range as y(x). The sensitivity indices that we shall define
shortly, assess the variability of (a centered version) of the uQ(xQ). Viewed with
this objective in mind, the (uncentered) joint effect functions have an important de-
fect that limits their usefulness for constructing sensitivity indices. Namely, when
viewed as functions of random Xi inputs, different effect functions are, in general,
correlated. For example, if X1 and X2 are independent U(0, 1) random variables,
Cov[u1(X1), u2(X2)] need not equal 0.

Thus Sobol´ (1990, 1993) advocated the use of a functional ANOVA-like de-
composition of y(x) that modifies the uncentered joint effect functions to produce
uncorrelated and zero mean versions of the uQ(xQ). These centered effect functions
will be used to define sensitivity indices. Specifically, Sobol´ (1993) advocated use
of the y(x) decomposition:

y(x) = y0 +

d
∑

k=1

yk(xk) +
∑

1≤k< j≤d

yk j(xk, x j) + · · · + y1,2,...,d(x1, . . . , xd) (7.4.9)

where x1, . . . , xd are the components of x and the terms of (7.4.9) are defined as
follows. For any fixed k, k = 1, . . . , d, define

yk(xk) = uk(xk) − y0 =

∫ 1

0
· · ·

∫ 1

0
y(x)

∏

��k

dx� − y0 (7.4.10)

to be the centered main effect function of input xk. For any fixed (k, j), 1 ≤ k < j ≤
d, define

yk j(xk, x j) = uk j(xk, x j) − yk(xk) − y j(x j) − y0

=

∫ 1

0
· · ·

∫ 1

0
y(x)

∏

��k, j

dx� − yk(xk) − y j(x j) − y0 (7.4.11)
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to be the centered interaction effect uk j(xk, x j). Higher-order interaction terms are
defined in a recursive manner; if Q is a non-empty subset of {1, . . .d},

yQ(xQ) = uQ(xQ) −
∑

E

yE(xE) − y0 , (7.4.12)

where the sum is over all non-empty proper subsets E of Q; E ⊂ Q is proper pro-
vided E � Q. For example, if y(x) has three or more inputs,

y123(x1, x2, x3) = u123(x1, x2, x3) − y12(x1, x2) − y13(x1, x3) − y23(x2, x3)

− y1(x1) − y2(x2) − y3(x3) − y0 .

In particular,

y1,2,...,d(x1, x2, . . . , xd) = u1,2,...,d(x1, x2, . . . , xd) −
∑

E

yE(xE) − y0

= y(x1, x2, . . . , xd) −
∑

E

yE(xE) − y0 ,

where the sum is over all non-empty proper subsets E of {1, . . . , d}. This final equa-
tion is the decomposition (7.4.9). Notice that even if the effect functions are y(x)
averages defined in terms of an arbitrary weight function, (7.4.9) still holds by con-
struction (see Hoeffding (1948) who implicitly uses this expansion or Van Der Vaart
(1998) who derives it from an alternate point of view).

However, if the weight function is defined by mutually independent input compo-
nent distributions, Sect. 7.7 shows that the centered effect functions have two prop-
erties that make them extremely useful for defining sensitivity indices. First, each
yQ(xQ), Q ⊂ {1, . . . , d}, has zero mean when averaged over any collection of xi whose
indices i are a subset of Q. Suppose that Q = {i1, . . . , is} and ik ∈ Q, then

E
[

yi1,...,is (xi1 , . . . , Xik , . . . , xis )
]

=

∫ 1

0
yi1,...,is (xi1 , . . . , xis ) dxik = 0 , (7.4.13)

for any fixed values xi� , i� ∈ Q \ {ik}. The second property of the yQ(xQ) is that they
are orthogonal meaning that for any (i1, . . . , is) � ( j1, . . . , jt),

Cov
[

yi1,...,is (Xi1 , . . . , Xis ), y j1,..., jt (X j1 , . . . , X jt )
]

=

∫ 1

0
· · ·

∫ 1

0
yi1,...,is (xi1 , . . . , xis ) × y j1,..., jt (x j1 , . . . , x jt )

∏

�

dx� = 0 , (7.4.14)

where the product in (7.4.14) is over all � ∈ {i1, . . . , is} ∪ { j1, . . . , jt}.

Example 7.2 (Continued). Using y0, and the uQ(·) effect functions calculated previ-
ously, algebra gives

y1(x1) = u1(x1) − y0 = 0.5 + 2x1 − 1.5 = −1 + 2x1 ,
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y2(x2) = u2(x2) − y0 = 1.0 + x2 − 1.5 = −0.5 + x2 , and

y12(x1, x2) = u12(x1, x2) − y1(x1) − y2(x2) − y0 = 0 .

The function y12(x1, x2) = 0 states that there is no interaction between x1 and x2.
Calculus allows one to verify the properties (7.4.13) and (7.4.14) for this example
because

E
[

y1(X1)
]

=

∫ 1

0
(−1 + 2x1) dx1 = 0 ,

E
[

y2(X2)
]

=

∫ 1

0
(−0.5 + x2) dx2 = 0 ,

E
[

y12(X1, x2)
]

= 0 = E
[

y12(x1, X2)
]

,

as well as, for example, Cov[y1(X1), y12(X1, X2)] = 0. �

Example 7.3 (Continued). Recalling formula (7.4.7), the centered effect function

yk(xk) = uk(xk) − y0 =
|4xk − 2| + ck

1 + ck
− 1 =

|4xk − 2| − 1
1 + ck

,

for 1 ≤ k ≤ d, while

yk j(xk, x j) = uk j(xk, x j) − yk(xk) − y j(x j) − y0

=
|4xk − 2| + ck

1 + ck
×
|4x j − 2| + c j

1 + c j
− |4xk − 2| − 1

1 + ck
−
|4x j − 2| − 1

1 + c j
− 1,

for 1 ≤ k < j ≤ d. �

When X1, . . . , Xd are mutually independent, the corrected effects can be used to
partition the variance of y(X) into components of variance that define global sensi-
tivity indices. As always we take X1, . . . , Xd to have independent U(0, 1) distribu-
tions. Recalling that

y0 = E
[

y(X)
]

,

the total variance, V , of y(X) is

V ≡ E
[

(y(X) − y0)2
]

= E
[

y2(X)
]

− y2
0 .

Recalling that for any subset Q ⊂ {1, . . . , d}, yQ(XQ) has mean zero,

VQ ≡ Var
[

yQ(XQ)
]

= E
[

y2
Q(XQ)

]

denotes the variance of the term yQ(XQ) in (7.4.9). Using (7.4.9) and the fact that the
covariances of different yQ(XQ) terms are zero, we calculate

V = E
[

(y(X) − y0)2
]



7.4 Global Sensitivity Indices 267

= E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d
∑

k=1

yk(Xk) +
∑

k< j

yk j(Xk, X j) + · · · + y1,2,...,d(X1, . . . , Xd)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2⎤
⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

d
∑

k=1

E
[

y2
k(Xk)

]

+
∑

k< j

E
[

y2
k j(Xk, X j)

]

+ · · · + E
[

y2
1,2,...,d(X1, . . . , Xd)

]

+
∑

E
[

yE(XE) yE�(XE�)
]

, (7.4.15)

where the sum in (7.4.15) is over all non-empty subsets E and E� of {1, . . . , d} for
which E � E�. Thus

V =
d

∑

k=1

E
[

y2
k(Xk)

]

+
∑

k< j

E
[

y2
k j(Xk, X j)

]

+ · · ·

+ E
[

y2
1,2,...,d(X1, . . . , Xd)

]

=

d
∑

k=1

Vk +
∑

k< j

Vk j + · · · + V1,2,...,d . (7.4.16)

It should be reiterated that the sum (7.4.16) requires that the covariances of different
yQ(XQ) terms be zero which was a consequence of the independence of the individual
input distributions.

The functional decomposition (7.4.9) can, in a more formal way, be modified to
result in the classical ANOVA decomposition of a model with d quantitative factors.
Suppose that, instead of X taking a uniform distribution over [0, 1]d, the input factor
space is regarded as the discrete set of points {0, 1

n−1 , . . . ,
n−2
n−1 , 1}d with a discrete

uniform distribution over these n values. This would arise, for example, if the inputs
formed an nd factorial with n levels for each factor that are coded 0, 1

n−1 , . . . ,
n−2
n−1 ,

1. Replacing each integral over [0, 1] that defines a term in (7.4.9) by an average
over the n discrete values, y0 becomes y, the overall mean of all the y(·), the {yi}i
become the usual ANOVA estimates of main effects in a complete factorial, the
{yi j}i j become the usual ANOVA estimates of two-factor interactions in a complete
factorial, and so on. Finally, it is clear that V in (7.4.16) is the mean corrected sum
of squares of all the y(·), Vi is the sum of squares for the ith factor, and so forth.
Thus, the decomposition (7.4.16) is the usual ANOVA decomposition into sums of
squares for main effects and higher-way interactions.

7.4.3 Global Sensitivity Indices

For any subset Q ⊂ {1, . . . , d}, define the sensitivity index (SI) of y(x) with respect
to the set of inputs xk, k ∈ Q, to be
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S Q =
VQ

V
.

In particular, the sensitivity index corresponding to Q = {k} is called the first-
order or main effect sensitivity index and is denoted by S k; intuitively, S k measures
the proportion of the variation V that is due to input xk. The sensitivity index cor-
responding to Q = {k, j}, 1 ≤ k < j ≤ d, is called the two-way sensitivity index of
the kth and jth inputs; it is denoted by S k j. S k j measures the proportion of V that
is due to the joint effects of the inputs xk and x j. Higher-order sensitivity indices,
simply called joint effect sensitivity indices, are defined analogously. From (7.4.16)
the sensitivity indices satisfy

d
∑

k=1

S k +
∑

1≤k< j≤d

S k j + · · · + S 1,2,...,d = 1 .

We illustrate these definitions and the interpretations of SIs with examples.

Example 7.2 (Continued). For y(x1, x2) = 2x1 + x2, recall that y1(x1), y2(x2), and
y12(x1, x2) calculated previously, give

V = Var
[

y(X1, X2)
]

= Var [2X1 + X2] = 4/12 + 1/12 = 5/12 ,

V1 = Var
[

y1(X1)
]

= Var [−1 + 2X1] = 4/12 ,

V2 = Var
[

y2(X2)
]

= Var [−0.5 + X2] = 1/12 , and

V12 = Var
[

y12(X1, X2)
]

= Var [0] = 0 ,

so that V = V1 + V2 + V12 and

S 1 =
4/12
5/12

= 0.8, S 2 =
1/12
5/12

= 0.2, and S 12 = 0.0.

The interpretation of these values coincides with our intuition about y(x1, x2): x1 is
more important than x2, while there is no interaction between x1 and x2. The only
deviation from our intuition is that, based on the functional relationship, the reader
might have assessed that x1 was twice as important as x2, whereas the variance
computations used by global sensitivity indices rely on the fact that Var[2X1] =
4Var[X1]. �

Before considering additional examples, we use the S Q sensitivity indices to de-
fine the so-called total sensitivity index (TSI) of y(x) with respect to a given input
xk, 1 ≤ k ≤ d; Tk is meant to include interactions of xk with all other inputs. The
total sensitivity of input k is defined to be sum of all the sensitivity indices involving
the kth input; in symbols,

Tk = S k +
∑

j<k

S jk +
∑

j>k

S k j + · · · + S 1,2,...,d . (7.4.17)

For this example, when d = 3,
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T2 = S 2 + S 12 + S 23 + S 123. (7.4.18)

By construction, Tk ≥ S k, k = 1, . . . , d. The difference Tk − S k measures the influ-
ence of xk due to its interactions with other variables. From (7.4.17), the calculation
of Tk appears to require the determination of a total of

∑d−1
j=0

(

d−1
j

)

variances, VQ.
However there is at least one method of making this computation more efficient
which we describe next.

For arbitrary Q ⊂ {1, . . . , d}, let

Vu
Q = Var

[

uQ(XQ)
]

= Var
[

E
[

y(X) | XQ

]]

(7.4.19)

be the variance of the uncorrected effect. The quantity Vu
Q can be interpreted as the

average reduction in uncertainty in y(x) when xQ is fixed because

Vu
Q = Var

[

y(X)
]

− E
[

Var
[

y(X) | XQ

]]

.

Consider two special cases of the uncorrected effect function variances.
From (7.4.10), the variance of the uncorrected effect function uk(xk) of the input xk

is
Vu

k = Var
[

yk(Xk) + y0
]

= Vk.

Thus the main effect sensitivity index of input xk, S k, can also be computed using

S k =
Vu

k

V
. (7.4.20)

Using (7.4.11) and the orthogonality property (7.4.14), the variance of the uncor-
rected effect uk j(xk, x j) is

Vu
k j = Var

[

yk(Xk) + y j(X j) + yk j(Xk, X j) + y0

]

= Vk + V j + Vk j . (7.4.21)

Equation (7.4.21) contains both the variance of the main effects and the variance of
the interaction effect of inputs xk and x j. Thus Vu

Q � VQ when Q contains more than
one input.

Equation (7.4.21) can be extended to arbitrary Q. We illustrate the usefulness of
this expression by developing a formula for Tk where k ∈ {1, . . . , d} is fixed. When
used as a subscript, let −k denote the set {1, . . . , d} − {k}; for example, X−k is the
vector of all components of X except Xk. Then

Vu
−k = Var [u−k (X−k)]

= Var
[

y1,2,...,k−1,k+1,...,d (X−k) + · · · + y1 (X1) + y2 (X2) + · · ·
+yk−1 (Xk−1) + yk+1 (Xk+1) + · · · + yd (Xd) + y0

]

= Var

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

Q: k �Q

yQ

(

XQ

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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=
∑

Q: k �Q

VQ . (7.4.22)

Equation (7.4.22) is the sum of all VQ components not involving the subscript k in
the variance decomposition (7.4.16). Thus V − Vu

−k is the sum of all VQ components
that do involve the input xk. Hence Tk can be expressed as

Tk =
V − Vu

−k

V
. (7.4.23)

Thus if one is interested in estimating the d main effect SIs and the d total effect SIs,
{S k}k and {Tk}k, only 2d uncorrected effect variances (7.4.19) need be computed.

Example 7.3 (Continued). Recall the g-function with d inputs is

y(x) =
d

∏

k=1

|4xk − 2| + ck

1 + ck
. (7.4.24)

The S k and Tk SIs are calculated as follows. Using the fact that if X ∼ U(0, 1),

Var [ |4X − 2| ] = 16 Var [ |X − 1/2| ]

= 16
{

E
[

(X − 1/2)2
]

− (E [ |X − 1/2| ])2
}

= 1/3 .

Hence the total variance of y(x) is

V = Var
[

y(X)
]

= Var

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d
∏

�=1

|4X� − 2| + c�

1 + c�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d
∏

�=1

(

|4X� − 2| + c�

1 + c�

)2
⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1

=

d
∏

�=1

E

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

|4X� − 2| + c�

1 + c�

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

− 1

=

d
∏

�=1

{

Var

[

|4X� − 2| + c�

1 + c�

]

+ 1

}

− 1

=

d
∏

�=1

{

1
(1 + c�)2

Var [ |4X� − 2| ] + 1

}

− 1

=

d
∏

�=1

(

1
3(1 + c�)2

+ 1

)

− 1 .
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For k = 1, . . . , d, the numerator of S k is the variance of the first-order effect
function yk(Xk)

Vk = Var
[

yk(Xk)
]

= Var

[

|4Xk − 2| + ck

1 + ck

]

=
1

3(1 + ck)2
,

and hence

S k = Vk/V =
1

3(1+ck)2

∏d
�=1

(

1
3(1+c�)2 + 1

)

− 1
. (7.4.25)

In a similar fashion, for fixed k = 1, . . . , d, the uncorrected effect function

u−k(x−k) =
∏

��k

|4X� − 2| + c�

1 + c�

has variance

Vu
−k = Var [u−k(X−k)]

= Var

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∏

��k

|4X� − 2| + c�

1 + c�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
∏

��k

(

1
3(1 + c�)2

+ 1

)

− 1

using algebra similar to that in the derivation of V . Hence, after some simplification,

Tk =
V − Vu

−k

V
=

(

1
1+3(1+ck)2

)

∏d
�=1

(

1
3(1+c�)2 + 1

)

∏d
�=1

(

1
3(1+c�)2 + 1

)

− 1
. (7.4.26)

As a specific example, consider the d = 2 case illustrated in Fig. 7.6 where c1 = 0.25
and c2 = 10.0. Calculation of (7.4.25) and (7.4.26) give the values in Table 7.8.

k S k Tk

1 0.9846 0.9873
2 0.0127 0.0154

Table 7.8 Main effect and total effect sensitivity indices for the function (7.4.24) when d = 2 and
(c1 , c2) = (0.25, 10.0)

The estimated S k and Tk in Table 7.8 are interpreted as saying that (1) x1 is a far
more active input than x2 and (2) there is virtually no interaction between x1 and x2

because S 12 = T1 − S 1 = T2 − S 2 = 0.0027. Figure 7.6, which plots the joint effect
function for this example, qualitatively verifies the correctness of the k = 1 and
k = 2 rows of Table 7.8. For each x0

2 ∈ [0, 1], {y(x1, x0
2) : 0 ≤ x1 ≤ 1} has a v-shaped
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profile that is independent of x0
2; for each x0

1 ∈ [0, 1], {y(x0
1, x2) : 0 ≤ x2 ≤ 1} is a

horizontal line with height depending on x0
1. �

Example 7.4. This section concludes with an example that shows both the strength
and weakness of trying to summarize the behavior of a potentially complicated func-
tion by (several) real numbers. Consider

y(x1, x2, x3) = (x1 + 1) cos(πx2) + 0x3 = cos(πx2) + x1 cos(πx2) + 0x3

defined on [0, 1]3. The formula shows that y(x) has a term depending only on x2,
an x1 by x2 “interaction” term, and does not depend on x3. Figure 7.7 plots (x1, x2)
versus y(x1, x2, 0.5) (which is the same for any other x3 ∈ [0, 1]). Any reasonable
measure of the sensitivity of y(x) to its inputs should show that x3 has zero influence
on y(x), while both x1 and x2 are influential.

10.80.60.4
x2

0.2000.2x1

0.40.60.81
-2

-1

-0.5

0

0.5

1

1.5

-1.5

y(
x 1,x

2,0
.5

)

Fig. 7.7 The function y(x1, x2, 0.5) = (x1 + 1) cos(πx2) versus x1 and x2

Using the facts that

∫ 1

0
cos(πx) dx = 0 and

∫ 1

0
cos2(πx) dx =

1
2
,

it is straightforward to compute that the overall mean is

y0 =

∫ 1

0

∫ 1

0

∫ 1

0
(x1 + 1) cos(πx2) dx1 dx2 dx3 = 0

and the uncentered effect functions are
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u1(x1) =
∫ 1

0

∫ 1

0
(x1 + 1) cos(πx2) dx2 dx3 = 0 ,

u2(x2) =
∫ 1

0

∫ 1

0
(x1 + 1) cos(πx2) dx1 dx3 =

3
2

cos(πx2) , and

u3(x3) =
∫ 1

0

∫ 1

0
(x1 + 1) cos(πx2) dx1 dx2 = 0 .

Because y0 = 0, the centered effects y1(x1), y2(x2), and y3(x3) are the same as u1(x1),
u2(x2), and u3(x3), respectively. That y3(x3) = 0 is expected, while y1(x1) = 0 may
be unexpected. However, in this artificial example, for each fixed (x1, x3) = (x0

1, x0
3),

the function y(x0
1, x2, x0

3) is antisymmetric about x2 = 1/2 and is constant with inte-
gral zero with respect to x2. Letting −Q denote the set {1, . . .d} \ Q in an extension
of the −k notation, any function y(x) with constant average value over the inputs x−Q

has constant mean uQ(xQ) with respect to the inputs xQ.
Returning to the specifics of this example, the variance of y(X1, X2, X3) is

V = Var [(X1 + 1) cos(πX2)]

= E
[

(X1 + 1)2 cos2(πX2)
]

= E
[

(X1 + 1)2
]

E
[

cos2(πX2)
]

=
7
6
,

which gives the main effect sensitivities

S 1 =
Var [u1(X1)]

V
= 0 = S 3

while

S 2 =
Var

[

3
2 cos(πX2)

]

V
=

27
28

≈ 0.964 .

The zero main effect for x1 is, perhaps, unexpected. It is due to the fact that the
integral of y(x1, x2) over the x2-term is zero; any other function with a centered
interaction term would also have S 1 = 0, e.g., y(x) = x1(x2−0.5). The large value of
0.964 for the main effect of x2 also may not be consistent with the readers’ intuition.
This large value illustrates again that S k depends on every xk term that comprises
the y(x) formula, not merely additive terms β × xi.

To continue the example, we compute the total effects for each input using the
formula (7.4.23). First, note that

u−1(x−1) = u23(x2, x3) =
∫ 1

0
y(x1, x2, x3) dx1 = 1.5 cos(πx2) ,

and similarly

u−2(x−2) = u13(x1, x3) = 0 , and u−3(x−3) = u12(x1, x2) = (x1 + 1) cos(πx2)

so
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Vu
−1 = Var [1.5 cos(πX2)] = 9/8, Vu

−2 = 0, and Vu
−3 = V = 7/6

yielding

T1 =
V − Vu

−1

V
=

6
7

(

7
6
− 9

8

)

=
1

28
≈ 0.036, T2 = 1, and T3 = 0.

The result that T3 = 0 implies that S 13 = 0 = S 23 = S 123 as one expects from the
functional form of y(x). Indeed the remaining interaction must be S 12 = T1 − S 1 =

T2 − S 2 = 1/28 from (7.4.18). This small value for the S 12 interaction may, again,
not be consistent with the reader’s intuition but shows that once the main effect
functions are subtracted from u12(x1, x2), there is very little variability in y12(x1, x2).

Indeed, it is interesting to note that for this example the variances of the cen-
tered and uncentered functions y12(x1, x2) and u12(x1, x2), respectively, can be quite
different. In this case calculation gives

y12(x1, x2) = (x1 − 0.5) cos(πx2)

so that V12 = Var[y12(X1, X2)] = 1/24 	 7/6 = Var[u12(X1, X2)] = Vu
12. In general,

the 2-d sensitivity index for inputs xi and x j, S i j, subtracts the associated main effect
functions which can greatly reduce the variance of the averaged function values. �

7.5 Estimating Effect Plots and Global Sensitivity Indices

For simplicity, this section will assume that the input space is rectangular and has
been scaled and shifted to [0, 1]d. The section will describe how quadrature, em-
pirical (plug-in) Bayesian, and fully Bayesian methods can be used to estimate ef-
fect plots and main effect and total effect sensitivity indices based on training data,
(xi, y(xi)), i = 1, . . . , ns. With one exception, these methods assume that y(x) can be
modeled as a realization of the regression plus stationary GP,

Y(x) =
∑

(�1 ,...,�d)∈L
β�1 ...�d

d
∏

j=1

x
� j

j + Z(x) , (7.5.1)

where β = {β�1...�d }�1...�d is the vector of regression coefficients (ordered, say, lex-
icographically), the powers �1, . . . , �d are specified nonnegative integers, L is the
collection of d-tuples corresponding to each term in the regression model, and Z(x)
is a zero mean stationary GP with process variance σ2

Z and separable correlation

Cor [Z(xr), Z(xs)] =
d

∏

j=1

R
(

xr, j − xs, j

∣

∣

∣ κ j

)

, (7.5.2)
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for 1 ≤ r, s ≤ ns, which is defined by the parametric correlation function R(· | ·).
Here κ j is the correlation parameter (possibly a vector) associated with the jth input;
κ = (κ1, . . . , κd) denotes the vector of all the correlation parameters.

Note that the mean of the Y(x) process in (7.5.1) is of the regression form

p
∑

j=1

β j f j(x) =
∑

(�1 ,...,�d)∈L
β�1 ...�d

d
∏

j=1

x
� j

j

where, for simplicity, the regression functions are polynomials. More complicated
regression functions can be used in the estimators derived below, but formulas for
many of these cases have not been worked out.

For example, the methods described below can be applied to both the Gaussian
correlation function,

RG(h | ξ ) = exp
{

−ξ h2
}

, (7.5.3)

where ξ > 0, and the cubic correlation function

RC(h | ψ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 − 6
(

h
ψ

)2
+ 6

( |h|
ψ

)3
, |h| ≤ ψ

2

2
(

1 − |h|
ψ

)3
, ψ

2 < |h| ≤ ψ

0, ψ < |h|

, (7.5.4)

where ψ > 0. The estimated effect plots and sensitivity indices can also be derived
for the separable Bohman, the separable Matern, and the separable power exponen-
tial correlation functions using the methods described below.

7.5.1 Estimating Effect Plots

Given output function y(x) = y (x1, . . . , xd), recall that for fixed k ∈ {1, . . . , d}, the
main effect (ME) plot for input xk displays (xk, uk(xk)), 0 ≤ xk ≤ 1, where

uk(xk) =
∫ 1

0
· · ·

∫ 1

0
y (x1, . . . , xd)

∏

��k

dx�

=

∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd) dx−k = E

[

y(X) | Xk = xk
]

. (7.5.5)

Here uk(xk) is the average value of y(x) when the kth input is fixed at xk and the
averaging is over all possible values for inputs x j, j � k. More generally, one can
examine changes in the average value of y(x) when two (or more) inputs are fixed
in a 3-D joint effect (JE) plot of (xk, x j, uk j(xk, x j)), 0 ≤ xk, x j ≤ 1, where
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uk j(xk, x j) =
∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd)

∏

��k, j

dx� .

Two methods of predicting uk(xk) based on training data will be described. The
first uses quadrature, and the second is a Bayesian predictor. Both methods can be
extended to estimate joint effect or higher-effect function(s).

Naive quadrature estimates uk(xk) using the definition of the integral to form

ûk(xk) =
∑

Δ�

ŷ(x�
1 , . . . , x�

k−1, xk, x�
k+1, . . . , x�

d ) Vol(Δ�), 0 ≤ xk ≤ 1, (7.5.6)

where ŷ(x) is a predictor of y(x) and the sum is over a set of disjoint hyper-
rectangles Δ� that partition the (x1, . . . , xk−1, xk+1, . . . , xd) domain and (x�

1 , . . . , x�
k−1,

x�
k+1, . . . , x�

d ) ∈ Δ�. In principle ŷ(x) can be any predictor of y(x); for example, ŷ(x)
can be based on ordinary least squares regression, a neural net, or one of the kriging
predictors described in Chap. 3 where the latter depends on what is known about
the model parameters. Of course, the accuracy of ûk(xk) depends on the accuracy of
ŷ(x) and the number of volume elements.

A kriging predictor of y(x) is appropriate to use in (7.5.6) if y(x) can be de-
scribed as a realization of a GP having form (7.5.1) with separable correlation
function (7.5.2). Assume the most frequently occurring case in which (β, σ2

Z , κ)
is unknown. In this situation, recall that when viewed as a function of the in-
put x = (x1, . . . , xd), an EBLUP of y(x) based on estimated correlation parameter
(̂κ1, . . . , κ̂d) has the form

ŷ(x) = d0(x) +
ns

∑

i=1

di

d
∏

j=1

R
(

x j − xi, j

∣

∣

∣ κ̂ j

)

(7.5.7)

where the coefficients {di}i are described below (3.2.18) and, in particular,

d0(x) =
∑

(�1,...,�d)∈L

̂β�1...�d

d
∏

j=1

x
� j

j

with ̂β elements that are obtained from the weighted least squares estimator of β
using estimated parameters, say the REML of κ. In this case

ûk(xk) =
∫ 1

0
· · ·

∫ 1

0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

(�1,...,�d)∈L

̂β�1 ...�d

d
∏

j=1

x
� j

j +

ns
∑

i=1

di

d
∏

j=1

R
(

x j − xi, j

∣

∣

∣ κ̂ j

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

dx−k

=
∑

(�1,...,�d)∈L

̂β�1...�d x�k

k

∏

j�k

(

� j + 1
)−1
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+

ns
∑

i=1

di R
(

xk − xi,k

∣

∣

∣ κ̂k

)
∏

j�k

∫ 1

0
R

(

x j − xi, j

∣

∣

∣ κ̂ j

)

dx j, 0 ≤ xk < 1.

(7.5.8)

In some cases the one-dimensional integrals in (7.5.8) have a closed-form expres-
sion. For example, for the Gaussian correlation function (7.5.3),

∫ 1

0
R

(

x j − xi, j

∣

∣

∣ κ̂ j

)

dx j =

∫ 1

0
exp

{

−̂κ j (x j − xi, j)2
}

dx j

=

√
π

√

κ̂ j

{

Φ
(

(1 − xi, j)
√

2̂κ j

)

−Φ
(

(0 − xi, j)
√

2̂κ j

)}

where Φ(·) is the standard normal cumulative distribution function (see Chen et al.
(2005)). Svenson et al. (2014) provide closed-form expressions for (7.5.8) for the
cubic (7.5.4) and Bohman correlation functions (2.2.14).

The idea of the Bayesian estimator of uk(xk) is to replace y(·) by Y(·) in the
integral (7.5.5) that defines uk(xk) yielding a process Uk(xk). Then the posterior
estimate uk(xk) is the conditional mean of Uk(xk) given the data. In more detail, fix
xk ∈ [0, 1]. This estimator is obtained by observing that, conditionally given model
parameters, the integral

Uk(xk) =
∫ 1

0
· · ·

∫ 1

0
Y(x1, . . . , xd)

∏

��k

dx� = EX−k
[Y(X) | Xk = xk] (7.5.9)

of the GP Y(x) is a GP under mild assumptions (see Yaglom (1962) or Adler (1990)).
The subscript X−k in EX−k

[·] denotes averaging with respect to the i.i.d. U(0, 1) dis-
tributions of the {X�}��k. Intuitively (7.5.9) is a GP because Uk(xk) is approximately
a linear combination of Y(x) values and a linear combination of multivariate normal
random variables has a multivariate normal distribution.

Used below, the (conditional) mean, variance, and covariance of Uk(xk) given the
model parameters can be obtained by interchanging appropriate integrals as follows.
The mean of Uk(xk) is

EY [Uk(xk)] = EY

[

EX−k
[Y(X) | Xk = xk]

]

= EX−k

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

(�1 ,...,�d)∈L
β�1 ...�d

d
∏

j=1

x
� j

j

∣

∣

∣

∣

∣

∣

∣

∣

Xk = xk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
∑

(�1,...,�d)∈L
β�1...�d x�k

k

∏

j�k

∫ 1

0
x
� j

j dx j

=
∑

(�1,...,�d)∈L
β�1...�d x�k

k

∏

j�k

(

� j + 1
)−1

. (7.5.10)
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When EY[Y(x)] = β0, (7.5.10) simplifies to EY [Uk(xk)] = β0. The conditional co-
variance of Uk(xk) can be calculated as follows for an arbitrary separable correlation
function, R(· | κ). Let xi = (xi,1, . . . , xi,k−1, xi,k, xi,k+1, . . . , xi,d) for i = 1, 2, then

CovY

[

Uk(x1,k), Uk(x2,k)
]

=

CovY

⎡

⎢

⎢

⎢

⎢

⎢

⎢
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· · ·
∫
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dx1, j ,
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· · ·
∫

Y(x2)
∏

j�k

dx2, j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= σ2
Z

∫

· · ·
∫

R ( x1, x2 | κ) dx1,−k dx2,−k

= σ2
Z R

(

x1,k, x2,k

∣

∣

∣ κk

)
∏

j�k

[∫ 1

0

∫ 1

0
R

(

x1, j, x2, j

∣

∣

∣ κ j

)

dx1, j dx2, j

]

,

(7.5.11)

with the process variance of Uk(xk) being the special case

σ2
U ≡ CovY [Uk(xk), Uk(xk)] = σ2

Z

∏

j�k

[∫ 1

0

∫ 1

0
R

(

x1, j, x2, j

∣

∣

∣ κ j

)

dx1, j dx2, j

]

.

(7.5.12)
Closed-form formulas for CovY[Uk(x1,k), Uk(x2,k)] are known for the Gaussian, cu-
bic, and Bohman correlation functions (Chen et al. (2005, 2006); Svenson et al.
(2014)).

Returning to the description of the Bayesian predictor of uk(xk), suppose for the
remainder of this section, that the GP (7.5.1) is

Y(x) = β0 + Z(x),

given (β0, σ
2
Z , κ) and thus Y(x) has conditionally the mean β0. As usual, let yns =

(y(x1), . . . , y(xns ))
 denote the training data which are observed at inputs x1, . . . , xns

and that Yns is the corresponding model vector.
It can be shown that given model parameters,

(

Uk(xk), Y(x1), . . . , Y(xns )
)

has the
joint multivariate normal distribution
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,

where all components of the covariance can be calculated using methods similar to
those in (7.5.10)–(7.5.12) and are known because (β0, σ

2
Z , κ) is known. In particular,

the variance σ2
U is given by (7.5.12); the cross-covariance ΣUns is the 1 × ns vector

with ith component CovY[Uk(xk), Y(xi)], 1 ≤ i ≤ ns; ΣnsU = Σ

Uns

; and Σnsns is the
ns × ns matrix of variances and covariances of Yns . By interchanging expectations,
the cross-covariance can be calculated for separable correlation functions (7.5.2) as
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CovY [Uk(xk), Y(x1)] = CovY

[∫

· · ·
∫

Y(x) dx−k, Y(x1)

]

= σ2
Z R

(

xk − x1,k

∣

∣

∣ κk

)
∏

j�k

∫

R
(

x j − x1, j

∣

∣

∣ κ j

)

dx j

at generic inputs x1 = (x1,1, . . . , x1,d) and xk ∈ [0, 1]. Formulas for CovY[Uk(xk),
Y(x1)] are known for the Gaussian, cubic, and Bohman correlation functions (Chen
et al. (2005, 2006); Svenson et al. (2014)). Thus the (posterior mean) Bayes estima-
tor of uk(xk) is

ûk(xk) = EY

[

Uk(xk)
∣

∣

∣ Yns , (β0, σ
2
Z , κ)

]

which is
ûk(xk) = β0 + ΣUnsΣ

−1
nsns

(

Yns − 1nsβ0
)

. (7.5.13)

The empirical Bayes estimator of uk(xk) plugs estimated parameters into the for-
mula (7.5.13) for ûk(xk). When the parameters (β0, σ

2
Z , κ) can be described by a

prior distribution [β0, σ
2
Z , κ] then

ûk(xk) = EY

[

Uk(xk) | Yns
]

= E[(β0,σ
2
Z ,κ) | Yns ]EY

[

Uk(xk)
∣

∣

∣ Yns , (β0, σ
2
Z , κ)

]

= E[(β0,σ
2
Z ,κ) | Yns ]

[

β0 + ΣUnsΣ
−1
nsns

(

Yns − 1nsβ0
)

]

where the (outer) expectation is with respect to the posterior of the parameters given
the calculated output data. In practice, ûk(xk) is approximated by averaging (7.5.13)
over draws from the (β0, σ

2
Z , κ) posterior distribution (see Oakley (2009), Moon

(2010), Svenson (2011)).

Example 7.3 (Continued). Consider the g-function (7.4.5) with d = 4 and c =
(0.1, 1.0, 2.0, 5.0). Recall that the kth main effect function of the g-function is

uk(xk) =
|4xk − 2| + ck

1 + ck
.

Figure 7.8 shows the ME plots u1(x1), u2(x2), u3(x3), and u4(x4) for this example.
The activity of the inputs is inversely ordered according to their ci values so that x1,
corresponding to c1 = 0.1, is the most active and x4, corresponding to c4 = 5.0, is
least active.

Suppose that ns = 40 points are selected in [0, 1]4 according to a MmLHD.
Figure 7.9 plots the empirical version of (7.5.13) based on a GP with Gaussian cor-
relation function and REML covariance parameter estimates. The estimated uk(xk),
k = 1, . . . , 4, are qualitatively consistent with the true main effect functions; how-
ever they differ in two respects. First, they do not capture the extreme behavior of
the true ME functions at the endpoints and center of the input; this is to be ex-
pected because kriging estimators tend to not capture the extreme behavior of the
true y(x). Second, the estimated uk(xk) is rounded at its minimum which is caused
by the fact the Gaussian correlation structure produces estimates that are infinitely
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Fig. 7.8 Main Effect Plots of u1(x1), u2(x2), u3(x3), and u4(x4) for the g-function when c =
(0.1, 1.0, 2.0, 5.0)

differentiable at all inputs xk. The true uk(xk) is continuous but not differentiable at
its minimizer xk = 1/2. �
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Fig. 7.9 Empirical Bayes estimated main effect plots for u1(x1), u2(x2), u3(x3), and u4(x4) for
Example 7.3 based on REML correlation parameter estimates obtained from a 40-point MmLHD
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Example 1.3 (Continued). As a final example, the estimated main effect plots are
presented for the eight inputs of the borehole function

y(x) =
2πTu(Hu − Hl)

�n(r/rw)
[

1 + 2LTu

�n(r/rw)r2
wKw
+ Tu

Tl

] .

The inputs of the borehole function and their ranges are listed in Table 7.5.
Recall that examination of the EEs based on a 45 run design containing 5 tours

showed that the annual flow rate increased greatly in rw, increased (at a slower rate)
in Hu, and decreased in Hl and L.

Figure 7.10 shows that annual flow rate increases by about 140 m3/year as rw

increases from 0.05 to 0.15; the annual flow rate increases by roughly 30 m3/year
as Hu increases from 990 to 1110; and it decreases by about 30 m3/year as Hl and
L increase over their ranges. The ME plots do not provide information about inter-
action among the inputs, although joint effect plots would allow an assessment of
input interaction.

A useful addition to the ME plot is to show the range of annual flow rates
for fixed values of one or more inputs. To illustrate, consider rw, the input hav-
ing the greatest influence on annual flow rate. Fix a grid of 20 equally spaced
rw values; for each given r�w in the grid, Fig. 7.11 displays side-by-side box-
plots of the estimated y(r, r�w , Tu, . . . , Kw) values when the seven remaining inputs,
(r, Tu, . . . , Kw), vary over their ranges. This plot is constructed by, first, determining
the EBLUP of y(r, rw, Tu, . . . , Kw) and, second, by evaluating the EBLUP at a set
of (r, r�w , Tu, . . . , Kw) where the seven unconstrained inputs are selected according
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Fig. 7.10 Estimated main effect plots of u1(x1), . . . , u8(x8) for the borehole function using the
empirical version of (7.5.13) based on REML correlation parameter estimates
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to a space-filling design. In this example, the R package slhd of Ba (see Ba et al.
(2015)) was used to select an approximate 70 × 7 maximin Latin hypercube design
(based on the ten samples/input rule of thumb). The medians of each boxplot are
joined by line segments. The piecewise linear curve verifies that the estimated
ME curve at each fixed r�w is indeed the average of y(r, r�w , Tu, . . . , Kw) over the
remaining inputs. More importantly, it shows how the conditional uncertainty in
y(r, rw, Tu, . . . , Kw) increases greatly as rw increases.

Contrast the conditional annual flow rate given rw with that given Hl. Recall that
the ME plot shows that the annual flow rate decreases moderately as Hl increases.
Figure 7.12 displays the analogous side-by-side boxplots of estimated annual flow
rates conditional on fixed Hl values. The trend in the medians clearly shows a de-
crease in the annual flow rate, verifying the Fig. 7.10 ME plot for Hl. In addition, a
decrease in variability in the conditional annual flow rate is clearly visible. Further-
more the decrease in variability is seen to be caused by the fact that large annual
flow rates are less possible as Hl increases. �
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Fig. 7.11 Estimated range of the annual flow rate conditional on rw, for 20 rw inputs. The joined
medians of the boxplots reproduce the estimated ME curve for rw that is given in Fig. 7.10

7.5.2 Estimating Global Sensitivity Indices

Analogous to the first method described in Sect. 7.5.1, one estimator of S k and Tk

in (7.4.20) and (7.4.23), respectively, can be obtained by replacing y(x) in the vari-
ance expressions V , Vu

k , and Vu
−k, k = 1, . . . , d, by a predictor ŷ(x). To illustrate,
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Fig. 7.12 Estimated range of annual flow rate conditional on Hl, for 20 Hl inputs. The joined
medians of the boxplots reproduce the estimated ME curve for Hl that is given in Fig. 7.10

consider estimating the simplest of these quantities, the total variance

V = Var
[

y(X)
]

= E
[

y2 (X)
]

−
(

E
[

y (X)
])2
= E

[

y2 (X)
]

− y2
0

which can be obtained by estimating y0 and E[y2(X)]. To estimate y0, substi-
tute (7.5.7) into the definition of y0 to obtain

ŷ0 =

∫ 1

0
· · ·

∫ 1

0
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dx j (7.5.14)

where

d0 =
∑

(�1,...,�d)∈L

̂β�1...�d

d
∏

j=1

(

� j + 1
)−1

.

This same one-dimensional integral in (7.5.14) occurred in the previous section
in (7.5.8) and, as noted there, will have a closed-form expression for certain cor-
relation functions. The plug-in estimate of E[y2(X)] is
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The squared integrand in (7.5.15) is
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. (7.5.16)

The integrals of the terms in (7.5.16) can be expressed as products of one-
dimensional integrals. Similar, though more complicated expressions can be derived
for estimating Vu

k and Vu
−k, k = 1, . . . , d.

Process-based estimators can also be formed for S k and Tk, 1 ≤ k ≤ d, using
either fully Bayesian or empirical/plug-in Bayesian methods to handle unknown pa-
rameters (see Oakley (2009), Moon (2010), Svenson (2011)). In outline, the method
is as follows.

The values of Vu
k and Vu

−k in (7.4.20) and (7.4.23) that are required to estimate S k

and Tk can be obtained from

Vu
Q = Var

[

E
[

Y(X) | XQ

]]

where Q = {k}. The inner expectation is over X−Q, and the outer variance is over XQ.
The Bayesian estimator of Vu

Q is the posterior mean of Vu
Q given the observed code

runs Yns ; that is,
̂Vu

Q = EY

[

Vu
Q

∣

∣

∣ Yns
]

(7.5.17)

where EY [· | Yns ] denotes the conditional expectation of Vu
Q , a function of the Y(x)

process, given Yns .
Formulas for (7.5.17) are complicated but known for GP models Y(x) having the

form (7.5.1) with polynomial mean and separable Gaussian, Bohman, or cubic cor-
relation function. They are also known if the observed data contains measurement
error (see Chen et al. (2005)) and Svenson et al. (2014)).

Example 7.3 (Continued). Recall from (7.4.25) that for the g-function (7.4.24),

S k =

1
3(1+ck)2

∏d
�=1

(

1
3(1+c�)2 + 1

)

− 1

and
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Tk =

(

1
1+3(1+ck)2

)

∏d
�=1

(

1
3(1+c�)2 + 1

)

∏d
�=1

(

1
3(1+c�)2 + 1

)

− 1
.

These sensitivity indices are listed in Table 7.9 for the case d = 4 and c =
(0.1, 1.0, 2.0, 5.0).

k S k Tk

1 0.6174 0.7000
2 0.1868 0.2493
3 0.0830 0.1158
4 0.0208 0.0297

Table 7.9 ME and TE sensitivity indices for the function (7.4.24) when d = 4 and c =
(0.1, 1.0, 2.0, 5.0)

Using the same n = 40 points that were employed to construct the estimated main
effect plots in Fig. 7.9, the sensitivity indices were estimated using both a plug-
in REML estimate in (7.5.17) based on the constant mean, Gaussian correlation
GP and its fully Bayesian analog. The results are listed in Table 7.10. In this case,
a comparison with the true values for these training data shows that the plug-in
predictor does a bit better than the fully Bayesian predictor by producing six of the
eight predictors with smaller absolute errors. Of course no general conclusions can
be deduced from this single example using one training data set. �

Plug-in predictor Fully Bayesian predictor
k ̂S k ̂Tk ̂S k ̂Tk

1 0.6229 0.7431 0.5375 0.6857
2 0.1592 0.2620 0.1460 0.2825
3 0.0626 0.1522 0.0857 0.2330
4 0.0042 0.0536 0.0024 0.1128

Table 7.10 Estimated main effect and total effect sensitivity indices for the function (7.4.24) when
d = 4 and c = (0.1, 1.0, 2.0, 5.0)

Example 1.3 (Continued). The estimated EEs and ME plots for the eight inputs to
the borehole function

y(x) =
2πTu(Hu − Hl)

�n(r/rw)
[

1 + 2LTu

�n(r/rw)r2
wKw
+ Tu

Tl

]

were presented earlier. Table 7.11 lists the estimated main effect and total effect
sensitivity indices for each of the eight inputs.

From the ME sensitivity indices in Table 7.11, about 83% of the variability in the
borehole function is due to changes in rw; about 4% is due to individual changes in
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Input ̂S k ̂Tk

r 2.26e−06 6.05e−06
rw 0.832 0.869
Tu 4.35e−06 7.97e−06
Tl 3.00e−06 5.81e−06
Hu 0.040 0.052
Hl 0.040 0.052
L 0.039 0.052

Kw 0.010 0.013

Table 7.11 Estimated main effect and total effect sensitivity indices for the eight inputs to the
borehole function in Example 1.3

each of Hu, Hl, and L. The differences between the total SIs and the main effect SIs
are small, and so there are no large interactions among the factors, although rw does
appear to have some small interactions with other inputs. �

Example 1.2 (Continued). Recall that in this example the simulator computes the
failure depth for a sheet metal pocket formed under the manufacturing conditions
described by six input variables (Montgomery and Truss (2001)). Figure 7.13 plots
the failure depth versus each of the six inputs for the simulator data. These marginal
plots suggest that clearance is the most important factor with larger clearances being
associated with greater failure depths; fillet radius is less strongly but nevertheless
positively associated with increasing failure depth, while none of the other inputs
appears strongly associated with failure depth.

Applying the sensitivity tools introduced in this chapter, the main effect plots
shown in Fig. 7.14 clearly show that increasing the clearance over its range raises
the average failure depth over 150mm. Increasing the fillet radius or punch plan view
radius over their ranges appears to increase the average failure depth by roughly
40mm. In contrast, the average failure depth is nearly constant in lock bead distance.

Table 7.12 lists the estimated main effect and total effect sensitivity indices for
each of the six inputs. As anticipated, the input clearance explains, far and away,
the greatest proportion of the variability in y(x) with fillet radius and punch plan
view radius being the next most important inputs. Pocket width, pocket length, and
lock bead distance are unimportant. The differences between the total effect SIs and
main effect SIs are all small, suggesting that there is minimal interaction among the
inputs. �

7.6 Variable Selection

Because sophisticated computer simulators can have many inputs that describe, e.g.,
engineering design choices, environmental conditions, and uncertain model parame-
ters, one important goal of the initial analysis of simulator output is the identification
of those inputs which have a “significant” impact on the output. These variables are
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Input ̂S k ̂Tk

Clearance 0.7211 0.7657
Fillet radius 0.0881 0.1144

Punch plan view radius 0.0951 0.1276
Pocket width 0.0175 0.0385
Pocket length 0.0102 0.0429

Lock bead distance 0.0003 0.0057

Table 7.12 Estimated main effect and total effect sensitivity indices for the six inputs on the failure
depth in Example 1.2

termed “active” inputs. The goal of identifying active inputs is termed variable se-
lection. Variable selection is a decision-oriented objective that uses, among other
tools, the sensitivity analysis methods described in Sects. 7.1–7.5.

This section describes two methods for performing variable selection based on
simulator output y(x) having inputs x = (x1, . . . , xd). Both methods assume some
knowledge is available about y(x): either a prior is known for y(x) (as in Chap. 4)
or, more simply, the monotonicity of y(x) as a function of each xk is (roughly)
obtainable. Linkletter et al. (2006) used a Bayesian analysis to identify active in-
puts given output from ns simulator runs, y(x1), . . . , y(xns ); here xi = (xi,1, . . . , xi,d),
i = 1, . . . , ns. The method assumes a GP prior for y(x). Moon et al. (2012) proposed
a two-stage design and analysis methodology to identify active inputs which is es-
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Fig. 7.13 Failure depth versus six potential input factors
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Fig. 7.14 Estimated main effect plots of the six input factors

pecially useful for cases with a large number of inputs d. The Moon et al method
extended “group screening” methodology, originally developed for physical system
experiments, to simulator output. The method assumes that either past experience
with outputs similar to y(x) or subject matter experts can inform the researcher of
those inputs xi which increase (and decrease) y(x).

Using either the Linkletter et al. (2006) or Moon et al. (2012) procedures, once
the active and low-active inputs have been identified, future runs of the simulator
code can marginally sample the active inputs more comprehensively and the less
active inputs more sparingly. Indeed, an investigator might use but one setting of a
low-active input, say the center of its range.

The variable selection procedure of Linkletter et al. (2006) is based on the as-
sumption that, after standardizing the simulator outputs y(x1), . . . , y(xns ) to have
sample mean zero and unit sample variance, y(x) can be regarded as a draw from a
zero mean stationary GP with Gaussian covariance function

Cov [Y(x1), Y(x2)] = λ−1
Z

d
∏

k=1

ρ
4 (x1,k−x2,k)2

k . (7.6.1)

Linkletter et al. (2006) also recenter and rescale each input so that x1,k, . . . , xns,k

satisfy mini xi,k = 0 and maxi xi,k = 1, so that ρk can be interpreted as the correlation
between Y(x1) and Y(x2) for any x1 and x2 that differ only in their kth component
by half the range of xk, k = 1, . . . , d.

The Linkletter et al. (2006) procedure is based on the observation that if ρk

in (7.6.1) equals (or is near) 1 then y(x) draws from the process must be (nearly)
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functionally independent of xk, for k = 1, . . . , d, i.e., xk is an inert (low-active) input
to y(x). The method has two further key features. The first is the assumption that ρk

has a prior of the form

[

ρk
]

∼ γ U[0, 1] + (1 − γ) I{ρk = 1} (7.6.2)

where γ ∈ (0, 1) and I{ρk = 1} is the indicator function which equals 1 when ρk = 1
and is zero otherwise. Termed a “slab and spike” prior, the parameter γ in (7.6.2)
is the prior probability that an input is active (Savitsky et al. (2011) and the ref-
erences therein give additional uses of slab and spike priors in variable selection).
Linkletter et al. (2006) chose γ to reflect “effect sparsity,” meaning that a relatively
low proportion of the inputs will be active; they take γ = 0.25 in examples. The
second feature is their use of an inert input that creates a benchmark (“reference dis-
tribution”) against which the correlations of the d inputs are compared. Moon et al.
(2012) also use benchmark distributions, and hence this topic is discussed in more
detail below.

Moon et al. (2012) adapt the research on group screening that has appeared in the
physical experiment and stochastic simulation experiment literatures, to address de-
terministic computer simulator experiments (see Kleijnen (1987), Lewis and Dean
(2001), Vine et al. (2005), Kleijnen et al. (2006), and Morris (2006) for recent work
and reviews of the former). Stage 1 of the Moon et al. (2012) procedure uses the
knowledge about the monotonicity of y(x) to group similar-acting inputs x1, . . . , xd.
The initial set of runs varies all members of a group in a common manner. The pro-
cedure uses total effect sensitivity indices (TSIs) to identify the input groups that
show low activity and eliminates them from further consideration. The remaining
groups are assumed to contain one or more active inputs. Stage 2 samples the indi-
vidual inputs in the active groups. It identifies active inputs by comparing the TSIs
of each input to a benchmark TSI distribution created by adding a low noise input
to the data.

In more detail, both Linkletter et al. (2006) and Moon et al. (2012) add an input,
xd+1, to the input data and analyze the d + 1 input data

y�(x, xd+1) = y(x) + βd+1xd+1 , (7.6.3)

where xd+1 ∈ [0, 1]. In their examples, Linkletter et al. (2006) used an inert input,
i.e., βd+1 = 0, to describe the benchmark activity level but mention the possibility
of using a low-active input such as (7.6.4) with βd+1 � 0. They decide whether each
input is active (or not) by forming multiple, say 500, data sets each with randomly
selected xd+1,1, . . . , xd+1,n and taking a given number of draws, say 1000, from the
posterior distribution of ρ1, . . . , ρd+1. For each k ∈ {1, . . . , d}, they compare the me-
dian of the distribution of all posterior draws of ρk (combined over data sets) to an
upper quantile, say the upper 10% quantile, of the 500 medians of the ρd+1 posterior
draws (one median from each data set). Input xk is declared active if the the median
of the ρk draws is below the selected quantile of the ρd+1 medians.

Moon et al. (2012) take βd+1 to be a fraction of the range of the training data, i.e.,
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βd+1 =

(

max
1≤i≤n

y(xi) − min
1≤i≤n

y(xi)
)

× τ , (7.6.4)

where τ ∈ (0, 1) is specified. Moon et al. (2012) performed a sensitivity and
specificity study of their procedures’ probability of correctly detecting high- and
low-active inputs in a test bed of y(x) and recommended τ = 0.14 for their
procedure. They construct their benchmark distribution by selecting the vectors
(

x1,d+1, . . . , xns,d+1
)

to be orthogonal to the input vectors for the d input variables.
In both stages they compare the TSI for each variable to that of the low-active input.

Example 1.2 (Continued). Recall that in this example the simulator computes the
failure depth for a sheet metal pocket formed under the manufacturing conditions
described by six input variables (see page 5). This example applied the Linkletter
et al. (2006) variable selection procedure to the approximate ns = 60 run training
data set identified in Sect. 4.3.

The benchmark distribution for the posterior ρ draws was formed from the low-
active input,

(

max
1≤i≤60

y(xi) − min
1≤i≤60

y(xi)
)

× 0.14 × xd+1

= (283.34 − 10.76) × 0.14 × x7 = 38.16 × x7, (7.6.5)

which was added to the failure depth data. One hundred data sets, each of size
ns = 60, were formed by adding (7.6.5) to the original failure depth as in (7.6.3),
creating y�(x, x7) outputs with seven inputs.

The Linkletter et al procedure was applied to the 100 y�(x, x7) data sets which
were each centered and standardized to facilitate their modeling as draws from a
zero mean GP having Γ(5, 5) prior for the process precision, and independent and
identically distributed slab and spike priors (7.6.2) with γ = 0.25 for ρ1, . . . , ρ7.
The MCMC sampler took 4000 burn-in runs of the parameters and 4000 production
runs for each of the 100 data sets. A subset of 200 posterior draws was kept from
each production run where these were spaced 20 samples apart. This resulted in
20,000 (200×100) posterior draws for each of the six ρ parameters. The medians of
the ρ parameter posterior draws are listed in Table 7.13. The upper 5, 10, and 15%
quantiles of the 100 medians of the ρ7 reference distribution were 0.9844, 0.9812,
and 0.9781, respectively.

Boxplots of the posterior draws of ρ1, . . . , ρ6 are shown in Fig. 7.15 along with
horizontal reference lines marking the 5, 10, and 15% quantiles of the benchmark
distribution. From most to least important, the procedure identifies clearance, pocket
width, punch plan view radius, and fillet fadius as active inputs. Neither pocket
length nor lock bead distance greatly influences failure depth, at least over the input
ranges that this simulator has been run. �

5
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Input Median
Clearance 0.7765

Fillet radius 0.9464
Punch plan view radius 0.9005

Pocket width 0.8641
Pocket length 1.0000

Lock bead distance 1.0000

Table 7.13 Medians of the 20,000 posterior draws of the correlation parameters ρ1, . . . , ρ6
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Fig. 7.15 Boxplots of ρ1, . . . , ρ6 posterior draws that are combined from 100 failure depth data
sets obtained by adding (7.6.5) to the failure depths. The horizontal lines are of the posterior draws
of the 5, 10, and 15% upper quantiles of 100 medians of the ρ7 draws

7.7 Chapter Notes

This chapter is but an introduction to the large and growing literature on sensitiv-
ity analysis. Readers wishing a more comprehensive discussion of local and global
sensitivity measures can consult the classical resources Saltelli et al. (2000, 2004),
among others.

7.7.1 Designing Computer Experiments for Sensitivity Analysis

Saltelli et al. (2000, 2010), Saltelli (2002), Chen et al. (2005), Helton et al. (2006),
Morris et al. (2006, 2008), Marrel et al. (2009), and Storlie et al. (2009) and the
references therein propose designs for computer experiments and method of mo-
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ments estimators of the variance terms that comprise sensitivity indices and hence
of the sensitivity indices themselves. These methods can be thought of as replacing
the assumption that the output can be represented as a draw from a certain process
with the additional sampling that is required to provide moment estimators of the
required means and variances in the sensitivity indices.

Storlie and Helton (2008) and the references therein describe smoothing and
metamodel-based methods. Sobol´ and Kucherenko (2009) provide links between
derivative-based measures and Sobol´ indices.

Campbell (2001) and Campbell et al. (2005, 2006) provide definitions of sen-
sitivity indices for multivariate and functional output and methods for estimating
these indices.

7.7.2 Orthogonality of Sobol´ Terms

Among other authors, Van Der Vaart (1998) (Sect. 11.4) shows that any component
of (7.4.9), say yQ(XQ), where Q ⊂ {1, 2, . . . , d}, must have zero mean when integrated
with respect to any input Xi, with i ∈ Q, and any pair of terms in (7.4.9) must be
pairwise orthogonal. We give a proof of these two facts that uses the notation and
definitions of Sect. 7.4.

Lemma 7.1. For Q = { j1, . . . , js} ⊆ {1, . . . , d},
∫ 1

0
yQ(xQ) dx jk = 0 (7.7.1)

for any jk ∈ Q.

Proof: The proof proceeds by induction on the number of elements in Q. When
Q = { j}, say, then from (7.4.1), (7.4.2), and the definition of y0, (7.7.1) holds for
any main effect function y j(x j). Suppose that Q ⊆ {1, . . . , d} contains two or more
elements, and assume that (7.7.1) holds for all proper subsets E ⊂ Q. Fix � ∈ Q, and
let Q\� denote the set difference of Q and {�}, which is non-empty by definition of Q.
Partition the non-empty subsets of Q into the collection U+ of subsets E that contain
�, and the collection U− of subsets E that do not contain �; note that Q\� ∈ U−. Then
by the definition (7.4.12) of yQ(xQ),

∫

yQ(xQ) dx� =

∫

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uQ(xQ) −
∑

E⊂Q

yE(xE) − y0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

dx�

=

∫

uQ(xQ) dx� −
∑

E∈U+

∫

yE(xE) dx� (7.7.2)

−
∑

E∈U−

yE(xE) − y0 ,
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where the third and fourth terms use the fact that their integrands do not depend on
x� (because � � E for E ∈ U−).

By definition of uQ(xQ), the first term of (7.7.2) is
∫

uQ(xQ) dx� =

∫ ∫

y(xQ, x−Q) dx−Q dx� = u Q\�(xQ\�) .

The second term of (7.7.2) is zero since (7.7.1) holds for all proper subsets of Q by
assumption. This gives that (7.7.2) is

∫

yQ(xQ) dx� = u Q\�(xQ\�) − 0 −
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

E∈U− ;E�Q\�

yE(xE) + y Q\�(x Q\�)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− y0 ,

which is zero by definition of y Q\�(xQ\�). �
Notice that Lemma 7.1 implies that the mean of each yQ(XQ) with respect to XQ is

zero, i.e., E[yQ(XQ)] = 0 for any Q ⊆ {1, . . . , d}. This is a stronger form of centering
than that of uQ(XQ) by y0 which also satisfies E[uQ(xQ) − y0] = 0 but for which
∫ 1

0

(

uQ(xQ) − y0
)

dx jk need not be zero for any jk ∈ Q.
Lemma 7.1 also implies that the orthogonality in (7.4.14) holds. Suppose that

(i1, . . . , is) � ( j1, . . . , jt); pick any integer k that is in exactly one of (i1, . . . , is) or
( j1, . . . , jt) (there has to be at least one such integer), and integrate

∫ 1

0
· · ·

∫ 1

0
yi1,...,is (xi1 , . . . , xis ) × y j1,..., jt (x j1 , . . . , x jt )

∏

�

dx�

in the order: k and then over (i1, . . . , is) ∪ ( j1, . . . , jt) \ k (in any order). The inner
integral is zero and thus (7.4.14) holds.

7.7.3 Weight Functions g(x) with Nonindependent Components

While one can formally define average y(x) values with respect to an arbitrary
weight function g(x) by

uk(xk) =
∫ 1

0
· · ·

∫ 1

0
y(x1, . . . , xd) g(x)

∏

��k

dx�

and an analog of the Sobol´ decomposition (7.4.9), neither the orthogonality (7.4.14)
nor zero mean properties (7.4.13) need hold. This situation is similar to that in
ANOVA modeling with “unbalanced” data.
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7.7.4 Designs for Estimating Elementary Effects

There have been numerous advances in the design of experiments for estimating ele-
mentary effects. Pujol (2009) introduced a non-collapsing OAT design, i.e., a design
for which projections of the input vectors of the design are not identical. Campo-
longo et al. (2007) propose a criterion for spreading the set of complete tours to
more fully explore the input space; they also suggest that using |d j| = 1

r

∑r
i=1 |d j(x j

i )|
in place of d j and S j gives equivalent information and a simpler analysis tool.

Campolongo et al. (2011) introduce radial OAT designs that spread starting
points by using a Sobol´ sequence and allow for differential Δ for each input. Sun
et al. (2013) describe an alternative method to Campolongo et al. (2011) for spread-
ing tours widely over the input space (and hence to facilitate more accurate descrip-
tions of the output function); they also describe an experimental design that can be
used to provide elementary effects for non-rectangular input regions.

7.7.5 Variable Selection

Other y(x) predictors have been used in conjunction with variable selection, for
example, blind kriging and the Bayesian composite Gaussian process predictor
(Joseph et al. (2008); Davis (2015)). However the papers discussed in Sect. 7.6 make
explicit use of reference distributions and how to apply design to enhance variable
selection.

An entirely different approach to reducing the dimension of the input space is de-
scribed in Russi (2010) and Constantine et al. (2014). These authors propose reduc-
ing the dimensionality of a problem by identifying the “active subspace” of inputs,
i.e., finding a linear transformation T for which the output depends only on Tx.

7.7.6 Global Sensitivity Indices for Functional Output

Campbell et al. (2005) describe an approach to defining sensitivity indices for func-
tional output. In outline, the idea of the method is described in the following para-
graphs. The notation used in this section is as follows. The m×1 multivariate output

y(x) =
(

y1(x), . . . , ym(x)
)

is observed at inputs x1, . . . , xns ; note that for later ease
of notation, the individual outputs are denoted by a superscript rather than a sub-
script. As usual assume the inputs have a rectangular domain that has been scaled
so that xi ∈ [0, 1]d, i = 1, . . . , ns. Finally, it is convenient to let yi denote the m × 1
vector y(xi). While the sensitivity analysis tools described below can be applied to
the case of low-dimensional multivariate y(x) output that result from one or more
simulator codes run at x, these methods are primarily thought of as tools applied to
functional output recorded at a discretized set of domain values.
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Applying standard multivariate data reduction, let k1, . . . , kp denote an orthogo-
nal basis representation of y1, . . . , yns

(assuming ns ≥ p); each k� is an m× 1 vector.
For smooth functional outputs, one can often find such a basis that captures 99% of
the variability in the data but has p 	 m which results in an enormous reduction
in the dimension of y(x). In practice, a basis {k�}p

�=1 can often be obtained from a
singular value decomposition of the (row-centered) m × n matrix

[

y1 y2 · · · yns

]

.

Let w1(xi), . . . , wp(xi) denote the corresponding coefficients in the basis representa-
tion of yi so that the approximation

y(xi) ≈ k1 w1(xi) + · · · + kpwp(xi), i = 1, . . . , ns (7.7.3)

has high accuracy. For simplicity of notation, assume that equality holds in (7.7.3),
although only approximate equality will hold in y-expressions involving the basis
vectors.

Applying the Sobol´ decomposition (7.4.9) to the coefficient functions w1(x), . . . ,
wp(x) results in the formula

w�(x) = w�
0 +

d
∑

i=1

w�
i (xi) +

∑

1≤i< j≤d

w�
i, j(xi, x j) + · · · + w�

1,2,...,d(x)

for � = 1, . . . , p, where x = (x1, . . . , xd) and the zero mean and uncorrelated compo-
nent functions are defined as in (7.4.1). Thus the variance of w�(x) can be expressed
as the sum of the variances of the w�

Q(x) components

V� ≡ Var [w�(X)] =
d

∑

k=1

V�
k +

∑

k< j

V�
k j + · · · + V�

1,...,d, (7.7.4)

using the variance decomposition (7.4.16) where V�
Q = Var[w�

Q(XQ)] for non-empty
Q ⊂ {1, . . . , d}.

The goal of sensitivity analysis applied to multivariate output data is to divide
the total variance of y(x),

V ≡
m

∑

�=1

∫

[0,1]d

[

y�(x) −
∫

[0,1]d
y�(x) dx

]2

dx

=

∫

[0,1]d
y(x)y(x) dx −

(∫

[0,1]d
y(x) dx

) (∫

[0,1]d
y(x) dx

)

,

into constituents that are attributable to changes in one or more sets of inputs. This
is done component by component of y(x) but results in simple algebraic expressions
when stated in terms of the basis vectors and coefficients of (7.7.3).

To illustrate, the vector of overall means of y(x) is the m × 1
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y0 =

∫

[0,1]d
y(x) dx.

For k = 1, . . . , d, the kth main effect of y(x) is the vector of kth main effects of the
y(x) components

yk(xk) =
∫

y(x)
∏

q�k

dxq − y0 .

Similar expressions hold for higher-order joint effect functions associated with y(x).
Beginning with V , main effect and higher-order effect components of y(·) are

expressed using (7.7.3). First, it is straightforward to show that substituting (7.7.3)
for y(x) and using (7.7.4) gives

V =
p

∑

�=1

λ�V
�

where λ� ≡ k� k�. The overall mean is

y0 = k1 w1
0 + · · · + kpwp

0 .

The vector of kth main effects of y(x), yk(xk) is

yk(xk) = k1 w1
k(xk) + · · · + kpwp

k (xk) .

The (k, j)th joint effect vector of y(x) is

yk, j(xk, x j) = k1 w1
k, j(xk, x j) + · · · + kpwp

k, j(xk, x j) ,

for 1 ≤ k < j ≤ d. Similar expressions hold for higher-order effect functions.
The kth main effect variance component is the sum of the variances of the com-

ponents of the main effect vector yk(xk) which can be expressed as

Vk =

p
∑

�=1

λ�V
�
k , k = 1, . . . , d.

The (k, j)th joint effect variance component is

Vk j =

p
∑

�=1

λ�V
�
k j, 1 ≤ k < j ≤ d .

Similar expressions hold for higher-order effects.
Finally, functional sensitivity indices are defined for the kth input by

S k = Vk/V, k = 1, . . . , d ,

and the (k, j)th pair of inputs by
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S k j = Vk j/V, 1 ≤ k < j ≤ d .

Higher-order sensitivity indices can be defined analogously.

7.7.7 Software

The commercial software JMP produces plug-in estimated main effect plots for GP
models with Gaussian or cubic correlation functions. It provides plug-in estimates
of the main effect (ME), total effect (TE), and pairwise joint effect global sensitivity
indices.

Based on a constant mean GP with Gaussian correlation function, the program
GPMSA (http://go.osu.edu/GPMSA) produces (fully) Bayesian estimates of the ef-
fect functions of any order as well as estimates of the ME and TE global sensitivity
indices.

http://go.osu.edu/GPMSA


Chapter 8
Calibration

8.1 Introduction

Ideally, every computer simulator should be calibrated using observations from the
physical system that is modeled by the simulator. Roughly, calibration uses data
from dual simulator and physical system platforms to estimate, with uncertainty,
the unknown values of the calibration inputs that govern the physical system (and
which can be set in the simulator). Another objective of calibration is to predict the
mean of the physical system observations based on the data from both platforms.

Unfortunately, observations on the physical system need not be always available.
In some cases this is due to the cost of conducting the desired physical system
experiment and in others to ethical considerations. Even when experiments using
the full physical system are not possible, sometimes subsystem experiments can be
conducted. In yet other cases, experiments can be run using an approximation to the
ideal physical system experiment; an example of the latter occurs in biomechanical
applications where cadaver joints are used in place of the joints of living subjects.

This chapter describes a method for calibrating a computer simulator based on
physical system observations. To begin this discussion, two examples from Sect. 1.2
will be reviewed that contain the elements present in calibration problems. Ex-
ample 1.4 described the optimization of an injection molding process for mass-
producing precision plastic components such as plastic camera bodies as discussed
by Villarreal-Marroquı́n et al. (2017). Their goal was to minimize shrinkage in a
range of plastic test components by setting four manufacturing process control vari-
ables: the melting time of the plastic pellets; the time to pack the mold; the pressure
used during packing; and the time that a part is cooled in the mold. Data were avail-
able from both a physical system experiment using an injection molding machine
and from a computer experiment that used a commercial code (Moldex3D) which
simulates the molding process. In addition to the manufacturing process control
variables, the simulator required the specification of three heat transfer coefficients
(HTCs) of the mold during flow, packing, and cooling; these values were not com-
pletely known, but expert opinion of their value was available. The second illustra-

© Springer Science+Business Media, LLC, part of Springer Nature 2018
T. J. Santner et al., The Design and Analysis of Computer Experiments,
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tion of the dual experimental platform elements required by calibration methodol-
ogy is given in Example 1.7. This example described the behavior of materials in a
high strain rate environment where the output is functional. Specifically the output
was the velocity of a free surface at 136 time points. Because the physical exper-
iment is run for a single condition that is mimicked by the simulator, one should
think of the unstated control input(s) being fixed at one value. The simulator had
10 calibration parameters corresponding to unknown model and material property
assumptions about the flyer plate (see Table 1.4). The calibration parameters were
varied over 128 configurations of model/material values in the simulator runs.

The features from both examples that are common to all calibration problems
are:

• a single set of control inputs that can be modified or observed in both the physical
system and its simulator;

• an additional set of calibration inputs to the simulator that specify the character-
istics of the model implemented or conditions under which the physical system
operates;

• a real-valued, multivariate, or functional output both computed by the simulator
and observed from the physical system.

A more detailed description of calibration data will be given in Sects. 8.2 and 8.4.
One final example that allows calibration will be presented to suggest the wide

range of applications of this methodology. Bayarri et al. (2007) describe data used
to determine the yield stress and other material properties of a spot weld. Spot welds
are formed between two pieces of sheet metal by tightly compressing the sheets be-
tween a pair of electrodes and applying a high voltage so as to melt the metal at the
compressed point forming a “nugget” at the weld site. The important factors that de-
termine the size of the nugget produced by this process include the load/pressure at
the weld site, the thickness of the metal pieces, the voltage applied, and the electrical
resistance between the electrodes. Both physical system data from a series of manu-
factured spot welds and from a computer simulator of this process were available to
construct a predictor of the mean size of the nugget produced in the manufacturing
process.

Before describing calibration methodology, two additional terms, verification
and validation, will be introduced that can be confused easily with each other and
with the process of calibration. Both terms are used in the setting where there is
a computer simulator that is meant to implement a mathematical model of a given
physical system.

Validation is the process of insuring that a given mathematical model correctly
represents a specified physical system. In engineering, the terminology “validation”
often means the process of selecting a set of “calibration” inputs at which to run a
simulator so that the simulator most accurately mimics the modeled physical system
for a range of the control inputs.

Verification is the process of determining that a given computer software cor-
rectly solves a specified mathematical model over a stated range of inputs. For ex-
ample, the MASA (Manufactured Analytical Solution Abstraction) software that is
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distributed at http://pecos.ices.utexas.edu/software provides software verification of
partial differential equation solvers in multiple dimensions.

Both verification and validation of a simulator are essential first steps in its use.
Many engineering, scientific, and other sectors have developed procedures to ensure
that the codes used in their arenas have been thus vetted. Two examples are:

• The mission of the Center for Predictive Engineering and Computational Science
at the University of Texas, Austin (http://pecos.ices.utexas.edu), is to develop
and apply tools and techniques for making reliable computational predictions of
complex systems, mainly in the physical sciences and engineering.

• The US FDA is in the process of establishing guidelines for the verification and
validation of the computational models of medical devices (https://cstools.asme.
org/csconnect/CommitteePages.cfm?Committee=100108782).

Sections 8.2 and 8.3 introduce, for real-valued outputs, the Kennedy and
O’Hagan (2001) model and present cautions about the use of this method, es-
pecially for making inference about calibration parameters. Sections 8.4 and 8.5
extend the calibration methodology to functional output. Section 8.6 provides sup-
plementary information about calibration methodology, including references to
software implementations.

8.2 The Kennedy and O’Hagan Calibration Model

8.2.1 Introduction

This section describes the Kennedy and O’Hagan (2001) calibration model (the
“KOH” model) and several approaches that use it for statistical inference. Then
Sect. 8.3 will adopt one of these methods, a fully Bayesian approach of the KOH
model as described by Higdon et al. (2004) and Higdon et al. (2008). A simple
analytic example will be presented that illustrates the methods and provides a cau-
tion about how the model can be misused. Finally a real-data example will be given
which illustrates calibration methodology.

8.2.2 The KOH Model

The KOH model assumes that the output from both a physical experiment and a
computer simulator experiment of that system is available. Each input to these ex-
periments is either a control input or a calibration input. Control inputs can be set by
the researcher; all inputs to a (completely randomized) physical experiment are con-
trol variables. The model assumes that all control inputs to the physical experiment
can also be set in simulator runs. In addition, the simulator requires specification

http://pecos.ices.utexas.edu/software
http://pecos.ices.utexas.edu
https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100108782
https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100108782
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of physical constants such as growth rates or material properties that are collec-
tively termed calibration parameters and are not known exactly. In the examples of
Chap. 1, the heat transfer coefficients in the injection molding model of Example 1.4
and the elastic moduli of the component materials in the flyer plate experiment of
Example 1.7 are calibration parameters.

More formally, let n denote the number of observations that are taken from a
physical system when the control variables have been set to xp

1 , . . . , xp
n , respec-

tively. Assume that every xp
i = (xp

i,1, . . . , xp
i,d) consists of d input variables. Let

yp(xp
1), . . . , yp(xp

n ) denote the resulting physical system observations (the yp(xp
i ) are

often termed field data). Similarly let m denote the number of simulator runs made.
Let the input settings for the m runs be denoted (xs

1, t1), . . . , (xs
m, tm) where xs

i =

(xs
i,1, . . . , xs

i,d) is the control portion of the ith simulator input and t i = (ti,1, . . . , ti,q)

is the calibration portion of this input. The control inputs in xp and xs represent the
same variables. The simulator outputs will be denoted ys(xs

1, t1), . . . , ys(xs
m, tm). The

notation used by the KOH model is summarized in Table 8.1.

Symbol Quantity denoted

n Number of experimental runs using the physical system
m Number of simulator runs
d Number of control inputs
x d × 1 vector of control inputs, either to a physical system or a simulator
q Number of calibration parameters (inputs)
t q × 1 vector of calibration parameters

yp(x) Physical system observation conducted at (control) input x
ys(x, t) Output from a simulator run at control input x and calibration parameter t

Table 8.1 Notation used to describe the data employed in calibration

The KOH model has two important features. First, it allows for imperfect sim-
ulators, i.e., when using the same set of control inputs, the KOH model permits
the simulator output to deviate from the mean of the physical experiment. Further,
such deviation is permitted even if the simulator is run using the “true” values of
the calibration inputs. Second, it assumes that the simulator is sufficiently accurate
and that subject-matter experts can place a prior on the calibration parameters that
is consistent with the values used by the physical system. In other words, the model
is Bayesian with a prior assumed to be based on subject-matter expert opinion of
the unknown model parameters and also on the unknown calibration parameters.
Example 8.1 presents a simple example of the model elements.

KOH uses a two-stage hierarchical Bayesian model to link the simulator runs
and the physical system observations. Similar to the two-stage hierarchical model
described in Chap. 4, the probabilistic mechanism used in this chapter can be viewed
as selecting a set of model parameters from a specified distribution and, given these
parameters, choosing ys(xs, t) and yp(xp) as the realizations of the parameterized
stochastic model.

This chapter assumes the outputs ys(xs
1, t1), . . . , ys(xs

m, tm) of the m simulator runs
can, conditionally, be viewed as values of a function ys(x, t) which has been drawn
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from a stationary Gaussian process (GP) Y s(x, t). This chapter assumes that the GP
has mean β0, process precision λs, and m × m correlation matrix Rs whose (i, j)th

element is Rs

(

(xs
i , t i), (xs

j, t j)
)

where

Rs ((x1, t1), (x2, t2)) =
d

∏

k=1

(ρx
k)(x1,k−x2,k)2

q
∏

�=1

(ρt
�)

(t1,�−t2,�)2
(8.2.1)

(see Sect. 2.2.2). The vectors ρx = (ρx
1, . . . , ρ

x
d) and ρt = (ρt

1, . . . , ρ
t
q) are referred to

as the correlation parameters of this model. In sum, Ys(x, t) is conditionally a GP
given parameters

(

β0, λs, ρx, ρt) which will be denoted informally by
[

Y s(xs, t)
∣

∣

∣ β0, λs, ρ
x, ρt

]

∼ GP
(

β0, λs, (ρx, ρt)
)

(8.2.2)

assuming the correlation Rs (·, ·) in (8.2.1).
In some cases it can be useful to allow the generalization:

E
[

Y s(xs, t)
∣

∣

∣ β, λs, ρ
x, ρt

]

=

p
∑

j=1

f j(xs, t) β j = f(xs, t) β (8.2.3)

of the constant mean model (8.2.2), where the regression functions f j(x, t), j =
1, . . . , p, are known and β ∈ IRp is unknown. The extension (8.2.3) provides a non-
stationary GP whose analysis requires more notation than that of the constant mean
GP but no additional theoretical development.

Despite the availability of this generalization, in practice Ys(xs, t) is often as-
sumed to have mean zero after the simulator data is standardized to have sample
mean zero. Similarly, the Gaussian correlation function (8.2.1) can be replaced by
one of its equivalent parameterizations, as listed in (2.2.9). However, not all para-
metric forms of the correlation function are equally interpretable and hence are not
equally straightforward to specify priors.

The observations yp(xp
1), . . . , yp(xp

n) are assumed to conditionally follow the re-
gression model:

Y p(xp
i ) = μ(xp

i ) + ε(xp
i ), i = 1, . . . , n , (8.2.4)

given μ(xp) and λε > 0. Here μ(xp) denotes the mean response of the physical
system when the control variables are set at xp and ε(xp

1 ), . . . , ε(xp
n) are independent

N(0, σ2
ε ) measurement errors with unknown variance σ2

ε (precision λε ≡ 1/σ2
ε ). The

enhancement that (8.2.4) provides over the usual regression model is that the form
of μ(xp) is nonparametric and unspecified.

The KOH model gives μ(xp) a GP prior which is defined indirectly in terms of
a bias (or discrepancy) function. To define the bias, let θ denote the “true” value of
the calibration parameter in the physical system. In this case, the Bayesian model
assumes that our knowledge about θ can be quantified by a prior distribution deter-
mined by subject-matter experts. While there may be a single true value, in some
applications, the true value of the calibration parameter can vary from one physical
experiment to the next. For example, in determining the distribution of stresses at
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the bone prosthesis of a joint replacement, it is reasonable to assume that, across a
target patient population, there is a distribution of bone elasticities (hence stresses)
rather than a single bone elasticity for all patients. In such a case, it is reasonable
to regard the mean of this distribution as θ. In either of the two settings described
above, the notation Θ is used to denote a random vector endowed with either the
Bayesian prior for θ or the θ target distribution. The bias of the simulator is defined
to be

δ(xp) ≡ μ(xp) − ys(xp, θ) , (8.2.5)

i.e., the error in the simulator when run at the true value of the calibration parameter.
Using the same hierarchical modeling approach as for the simulator model,

let Ω = (β, λ, ρ,Θ), denote the set of all parameters including λδ > 0 and
ρδ = (ρδ

1, . . . , ρ
δ
d) ∈ (0, 1]d. Here λ denotes (λs, λε , λδ), and ρ denotes (ρx, ρt, ρδ).

Conditionally given Ω, the bias function δ(x) is assumed to be a realization from

[Δ(x) | Ω ] ∼ GP
(

0, λδ, ρ
δ
)

;

Δ(x) is assumed to have (conditional) n×n correlation matrix Rδ with (i, j)th element:

Rδ

(

xp
i , xp

j

)

=

d
∏

�=1

(ρδ
�)

(

xp
i,�−xp

j,�

)2

. (8.2.6)

In addition, Δ(x) is assumed conditionally independent of Ys(x,Θ) and the measure-
ment error ε(x). Thus givenΩ, μ(xp) = δ(xp) + ys(xp, θ) is modeled as a realization
from the process

M(xp) = Δ(xp) + Y s(xp,Θ)

which is a sum of independent GPs and hence a GP. Similarly given Ω

Y p(xp) = M(xp) + ε(xp) = Δ(xp) + Y s(xp,Θ) + ε(xp) (8.2.7)

is the sum of a GP and an independent measurement error.

8.2.2.1 Alternative Views of Calibration Parameters

Before continuing with illustrations of the Bayesian calibration methodology in the
remainder of this chapter, the reader should observe the following caveats regarding
the definition of θ.

In some applications, simplified theoretical physics or biology models are used
to construct the simulator. Thus even if expert knowledge is available about θ in
the physical system, that information may not accurately describe the functioning
of these parameters in the simplified simulator.

In other applications, simulation models are mechanistic with unknown param-
eters representing material properties, say, of the model components. As an exam-
ple, consider a deterministic biomechanical model of a joint that substitutes springs
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for ligaments and uses inputs that specify the stiffnesses and other characteristics
for each spring. While such inputs are tempting to use as calibration parameters,
it would be difficult or impossible to state prior distributions for their values, al-
though it might be feasible to specify the range of each. In other cases, numerical
tuning parameters might be considered as calibration parameters, but again it would
be difficult to specify priors for such quantities. In such settings it makes sense to
define target values of t to be θ values that minimize some metric that measures
the difference between ys(x, θ) and either μ(x) or yp(x). Termed engineering vali-
dation by some, an early statistical paper that implicitly adopts this formulation is
Cox et al. (2001). More recently Tuo and Wu (2016) and Plumlee (2017) studied
this idea in much greater detail. Han et al. (2009b) proposed a method for settings
in which some elements of t have priors provided by subject-matter experts, while
others are selected by a suitable metric between the quantity to be predicted and a
given predictor.

Example 8.1 (A Simple Analytic Example). This toy example illustrates an “alter-
native” calibration situation as discussed in the previous paragraph. There are two
objectives. It will demonstrate the formal Bayesian calibration procedure that is in-
troduced in the following section. The example will also illustrate the influence of
the prior parameters of the bias function and show the consequences of using the
Bayesian methodology with inaccurate prior information.

This example uses a single control variable which, to simplify notation, is de-
noted by x throughout rather than xp or xs. It uses a real-valued calibration parame-
ter which is denoted t.

Suppose n = 5; observations yp(x) are taken from

Y p(x) = μ(x) + ε(x) , x ∈ [−5, 5] ,

at the x values listed in the first column of Table 8.2 where the quadratic expression
μ(x) = 0.1x2− x+0.4 is the mean output and ε(x) are measurement errors which, for
different x, are independent and identically (i.i.d.) normally distributed with mean
zero and variance 0.82. In symbols, the measurement errors are i.i.d. N(0, 0.82). As
always, stating the variance of the measurement error is equivalent to providing the
precision λε = 1/(0.82).

The data in Table 8.2 are taken to be the “physical system” data for this example;
they are plotted in Fig. 8.1. There are “substantial” deviations from the mean μ(x) in
the physical data.

x yp(x)
−5.0 +7.079
−2.5 +4.538

0 −1.539
2.5 −2.096
5.0 −0.824

.

Table 8.2 Five observations from the model yp(x) = 0.1x2 − x + 0.4 + N(0, 0.82)
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Fig. 8.1 μ(x) = 0.1x2 − x + 0.4 (blue); the n = 5 physical system yp(x) from Table 8.2 (red)

In addition, m = 15 runs are made using the “simulator”

ys(x, t) = t − 1.3 ∗ x .

For appropriate intercept t, the straight line ys(x, t) can roughly mimic the quadratic
μ(x) over the control input range x ∈ [−5, 5] where t ∈ [−5, 5] is taken to be the
calibration parameter. The (x, t) pairs are selected to form a 15 run maximin LHD
(see Fig. 8.2). The wide range of t values causes the simulator outputs to be widely
dispersed.
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Fig. 8.2 The m = 15 simulator inputs (x, t) at which ys(x, t) has been calculated
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The statistical goals are to predict the mean of the physical system, to quantify
the posterior uncertainty of the predicted mean, and to perform Bayesian inference
about the calibration parameter. �

Section 8.3 will describe the Bayesian methodology that is appropriate for cases
where all the calibration parameters can be given priors based on expert subject-
matter opinion. It will illustrate the methodology and inferences using the simple
Example 8.1 where answers can be visualized and then for Example 1.4.

8.3 Calibration with Univariate Data

Let yp = (yp(xp
1 ), . . . , yp(xp

n )) denote the n × 1 vector of physical system observa-
tions available for calibration and ys = (ys(xs

1, t1), . . . , ys(xs
m, tm)) the m × 1 vector

of associated computer simulator output. Then Y =
(

(yp), (ys)
) is the combined

(m + n) × 1 vector of physical system and simulator output.
Assuming (8.2.2) and (8.2.7), the kernel of the conditional log likelihood of Y is

�n
([

Y | Ω]
)

= −1
2
�n det (ΣY) − 1

2

{

(Y − β01m+n)Σ−1
Y (Y − β01m+n)

}

, (8.3.1)

where 1m+n is the (m + n) × 1 vector of ones and

ΣY = λ−1
s

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Rpp
s Rps

s

Rsp
s Rss

s

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ λ−1
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Rpp
δ 0n,m

0m,n 0m,m

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ λ−1
ε

⎡

⎢

⎢

⎢

⎢

⎢

⎣

In 0n,m

0m,n 0m,m

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (8.3.2)

In (8.3.2), 0r,c is the r × c matrix of zeros, and the remaining components are as
follows. The matrices Rpp

s and Rpp
δ are each n × n; their entries are the corre-

lations among the Y s(xp,Θ) and Δ(xp) terms, respectively; specifically, Rpp
s has

(i, j)th element Rs

(

(xp
i ,Θ), (xp

j ,Θ)
)

while Rpp
δ has (i, j)th element Rδ(xp

i , xp
j ), i, j =

1, . . . , n. The n × m matrix Rps
s =

(

Rs

(

(xp
i ,Θ), (xs

j, t j)
))

corresponds to cross prod-
ucts of Y s(xp

i ,Θ) with Y s(xs
j, t j), i = 1, . . . , n and j = 1, . . . , m; Rsp

s = (Rps
s );

Rss
s =

(

Rs

(

(xs
i , ti), (xs

j, t j)
))

is the m × m correlation matrix among the simulator
data Y s(xs

j, t j), j = 1, . . . , m. The form of (8.3.1) shows that [Y | Ω] is multivariate
normally distributed with each component having mean β0 and joint covariance ΣY.

Given the prior [Ω] for Ω, the expression (8.3.1) for the kernel of [Y | Ω] imme-
diately gives

[

Ω | Y
]

∝
[

Y | Ω] × [Ω] (8.3.3)

for the kernel of the posterior distribution of Ω given Y. In many cases, (8.3.3) will
not correspond to any well-known distribution, but MCMC methods can be used to
draw samples from it (see Appendix D).
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8.3.1 Bayesian Inference for the Calibration Parameter Θ

Samples from the (marginal) posterior [Θ | Y] of Θ can be obtained from sam-
ples drawn from [Ω | Y]; these draws provide a data-based update to the Θ prior.
The expectation E[Θ | Y] of the posterior provides a point prediction of the cal-
ibration parameter. If Θ is a real-valued parameter, say Θ, then either forming a
highest posterior density set for Θ or calculating upper and lower α/2 quantiles of
the [Θ | Y] distribution can be used to quantify the Bayesian uncertainty about Θ
as a 100 × (1 − α)% credible set. If Θ is a vector with q components, then forming
a joint credible set can be difficult, although a highest posterior density region can,
in principle, be generated. More simply, constructing 100 × (1 − α/q)% individual
credible intervals for each component of Θ yields a joint 100 × (1 − α)% credible
hyper-rectangle for the vector Θ.

8.3.2 Bayesian Inference for the Mean Response μ(x) of the
Physical System

Let x denote a vector of control variables. Recall from (8.2.7) that

Y p(x) = M(x) + ε(x) ,

where M(x) = Δ(x) + Y s(x,Θ). Bayesian inference for μ(x) is derived from the
posterior predictive distribution [M(x) | Y]. The usual Bayesian predictor of μ(x) is
the mean of the posterior distribution, i.e.,

μ̂(x) = E
[

M(x) | Y
]

= E
[

Δ(x) + Y s(x,Θ) | Y
]

. (8.3.4)

The conditional expectation is over the joint distribution of the unseen values of
Y s(·, ·) and Δ(·) as well as over the unknown Ω. Uncertainty bounds for prediction
of μ(x) can be obtained from the quantiles of the draws [M(x) | Y]. These bounds
describe the uncertainty due to not knowing δ(x), nor the form of the simulator
ys(x, t), nor the measurement error.

An MCMC method for computing (8.3.4) based on having available draws from
[Ω | Y] is

μ̂(x) = E
[

M(x) | Y
]

= E
[

E
[

M(x) | Y,Ω
]]

=

∫

E
[

M(x) | Y,Ω
] [

Ω | Y
]

dΩ

≈ 1
Nmcmc

Nmcmc
∑

q=1

E
[

M(x) | Y,Ωq] , (8.3.5)
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where Ωq = (βq
0, λ

q, ρq,Θq), q = 1, . . . , Nmcmc, are independent draws from [Ω | Y].
A formula to evaluate the mean of M(x) given (Y,Ω) is straightforward to state
upon recognizing that

[

M(x),Y | Ω
]

has a multivariate normal distribution because M(x) = Δ(x) + Y s(x,Θ) and all pro-
cesses are Gaussian and independent. Hence Lemma B.2 states that the distribution
of M(x) given (Y,Ω) is univariate normal with conditional mean and variance

E
[

M(x) | Y,Ω
]

= β0 + Σ

x,YΣ

−1
Y (Y − β01n+m) ,

where Σx,Y is the (n + m) × 1 vector

λ−1
s

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Rxp
s

Rxs
s

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ λ−1
δ

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Rxp
δ

0m,1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Here Rxp
s is the n × 1 vector of correlations of Y s(x,Θ) with Y s(xp

i ,Θ) which has ith

component Rs

(

(x,Θ), (xp
i ,Θ)

)

, i = 1, . . .n; Rxs
s is the m× 1 vector of correlations of

Y s(x,Θ) with Y s(xs
j, t j) which has jth component Rs

(

(x,Θ), (xs
j, t j)

)

, j = 1, . . .m;

Rxp
δ is the n × 1 vector of correlations of Δ(x) with Δ(xp

i ) having ith component
Rδ(x, xp

i ), i = 1, . . .n.
Level 100 × (1 − α)% uncertainty bounds for μ̂(x) are obtained by determining

the lower and upper α/2 quantiles of the draws E[M(x) | Y,Ωq], q = 1, . . . , Nmcmc.

8.3.3 Bayesian Inference for the Bias δ(x) and Calibrated
Simulator E[Ys(x, Θ) | Y]

Often it is of interest to predict the bias function to measure the magnitude of
the simulator code inaccuracies over the domain of the control inputs as well as
to identify those control variables (and their values) that produce the largest bi-
ases. Bayesian inference about δ(x) is based on examining the posterior distribution
[Δ(x) | Y]. In particular, the mean of the posterior, i.e.,

̂δ(x) = E
[

Δ(x) | Y
]

can be taken as a Bayesian prediction of δ(x).
A strategy similar to that for computing μ̂(x) can be used to determine

̂δ(x) = E
[

Δ(x) | Y
]

=

∫

E
[

Δ(x) | Y,Ω
] [

Ω | Y
]

dΩ
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≈ 1
Nmcmc

Nmcmc
∑

q=1

E
[

Δ(x) | Y,Ωq] , (8.3.6)

where Ωq = (βq
0, λ

q, ρq,Θq), q = 1, . . . , Nmcmc, are independent draws from [Ω | Y].
The conditional mean in (8.3.6) can be obtained using an analogous argument to
that for E[M(x) | Y,Ω] after observing that [Δ(x),Y | Ω] is multivariate normally
distributed. The conditional mean of Δ(x) given Y and Ω is

E
[

Δ(x) | Y,Ω
]

= λ−1
δ

(

Rxp
δ

)
Σ−1
Y (Y − β01n+m) (8.3.7)

which is substituted into (8.3.6). The quantiles of the draws E[Δ(x) | Y,Ωq] for
q = 1, . . . , Nmcmc provide uncertainty bounds for ̂δ(x).

The quantity
E

[

Y s(x,Θ) | Y
]

= E
[

E
[

Y s(x,Θ) | Y,Ω
]]

is called the calibrated simulator because it can be thought of as a predictor of the
simulator at x when evaluated at the true value of the calibration parameter, i.e., of
ys(x, θ). The unknown θ is replaced by an average over the posterior Θ draws, and
the unknown ys(x, t) is predicted using posterior draws of the remaining parame-
ters. Arguments similar to those in Eqs. (8.3.6) and (8.3.7) give an MCMC-based
estimate of the calibrated simulator as well as an uncertainty quantification of this
value.

The remainder of this chapter will first illustrate the Bayesian methodology pre-
sented above using the analytic Example 8.1 and then using the injection molding
Example 1.4 in Sect. 1.2.

Example 8.1 (Continued). In this example there is no value of the calibration param-
eter t that produces a simulator with zero error for all x ∈ [−5, 5], i.e., there is no t
for which

max { | μ(x) − ys(x, t) | : x ∈ [−5,+5] } = 0 .

Thus this example mimics applications where simplified physics or biology can
result in an imperfect simulator.

While the primary purpose of this example is to illustrate the results of a Bayesian
analysis in which “expert opinion” about θ is available, a short digression will first
be made by considering a value of t based on a metric that measures the difference
between μ(x) and ys(x, t), i.e., using engineering validation. Two simple metrics
select t to minimize

max { | μ(x) − ys(x, t) | : x ∈ [−5,+5] } or
∫ +5.0

−5.0
(μ(x) − ys(x, t))2 dx . (8.3.8)

Using the true μ(x) and ys(x, t), calculation shows that t = 1.23 minimizes the L2

distance on the right-hand side of (8.3.8); i.e., ys(x,+1.23) is the L2-calibrated pre-
dictor of μ(x). Figure 8.3 shows that ys(x, 1.23) is a reasonably accurate simulator
of μ(x) for all x ∈ [−5.0, 5.0] with the exception of x near +5.0 where the bias,
μ(x)−ys(x, 1.23), is greatest. Of course, in practice, neither μ(x) nor ys(x, t) is known.
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One data-based L2 calibration parameter is

t̂ = arg min
t

5
∑

�=1

(

yp(xp
� ) − ̂ys(xp

� , t)
)2

which leads to the predictor μ̂(x) = ̂ys(x, t̂ ) of μ(x) where ̂ys(x, t) is an EBLUP of
ys(x, t). This method of estimating t replaces μ(x) by yp(x), the L2 integral by the
sum over the five xp

� used to conduct the physical system experiment, and ys(x, t) by
̂ys(x, t).

Returning to the primary objective of this example, Bayesian calibration, the
user must first identify a prior distribution for the model parameters, Ω = (λε , λs,

λδ, ρ
x, ρt, ρδ, Θ

)

. To simplify the analysis, this example will use independent pri-
ors for each parameter. The precision parameters (λε , λs, λδ) will be given gamma
priors; the correlation parameters (ρx, ρt, ρδ) as well as the calibration parameter Θ
will be given beta priors. Two data transformations are introduced to streamline the
interpretability of certain prior parameters. The first transformation standardizes the
output from the simulator runs and the physical experiments. This transformation
will help specify the precision parameters. The simulator output is normalized by
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Fig. 8.3 The mean μ(x) = 0.1x2 − x + 0.4 (blue) and the L2 predictor ys(x, 1.23) = 1.23 − 1.3x
(red)

ys
std(xs

i , ti) =
ys(xs

i , ti) − ȳs

s(ys)
, i = 1, . . . , m , (8.3.9)

where

ȳs =
1
m

m
∑

i=1

ys(xs
i , ti)
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is the sample mean over the m simulation runs and s(ys) is the sample standard devi-
ation of these values. The transformed ys

std(·, ·) have sample mean of zero and sample
variance of unity. The physical system output is standardized using the simulator
values

yp
std(xs

i ) =
yp(xs

i ) − ȳs

s(ys)
, i = 1, . . . , n . (8.3.10)

Thus the conditional Y s(x, t) process that is fit to the standardized data is assumed
to have process mean that is zero and process variance, 1/λs, that is (near) unity.
Table 8.3 shows that a gamma prior distribution is assumed for the error precision,
λε , which has mean 100. The value 100 corresponds to an associated measurement
error standard deviation, σε , of 0.1. A σε = 0.1 is 10% of the assumed unit process
standard deviation σs of Y s(x, t).

Second, a transformation is performed on the inputs to facilitate specification of
the priors for ρx, ρt, and ρδ. By subtracting the minimum value of t1, . . . , tm from
each ti and dividing each difference by the range of t1, . . . , tm, the calibration inputs
for the simulator are modified to span [0, 1]. Analogous transformations are per-
formed for xs

1, . . . , xs
m and xp

1 , . . . , xp
n jointly to put each of the three sets of inputs

on [0, 1]. By examining Eq. (8.2.1), for example, this transformation implies that ρx

is the correlation between Y s(x1, t1) and Y s(x2, t2) when t1 = t2 and |x1 − x2| = 1,
i.e., are the extremes of the control input range. Expert opinion about the associa-
tion between such pairs of output can then be assessed. The correlation parameters
are assumed independent with common prior Be(5, 5); this prior has mean 0.5 and
substantial support (prior probability 0.96) over (0.2, 0.8). These assumptions are
summarized in Table 8.3.

Parameter Prior Parameter Prior

λε Γ(1, 0.01) λs Γ(5, 5)
ρx Be(5, 5) ρt Be(5, 5)
ρδ Be(5, 5) Θ TrN(0.50, 0.25)

Table 8.3 Prior distributions used in Example 8.1. The notation Γ(a, b) is defined by (B.2.1); the
notation Be(a, b) is defined by (B.3.1); TrN(0.50, (0.25)2) denotes the univariate normal distribu-
tion with mean 0.50 and standard deviation 0.25 that is truncated to (0,1)

Let (aδ, bδ) denote the parameters for the gamma prior of λδ. This example uses
three (aδ, bδ) to study the impact of the λδ prior; they are listed in Table 8.4. The
intuition about the impact of these priors is as follows. Given λδ, the standard devia-
tion of the Δ(x) process is 1/

√
λδ; draws from a Δ(x) having larger process standard

deviation will allow larger bias values. The effect of prior on the Δ(x) draws can be
intuited by observing that the mean value of the λδ values is E[λδ] = aδ/bδ. Thus the
δ(x) will (stochastically) have greater range for larger bδ/aδ. Table 8.4 has arranged
the three priors by increasing 1/

√
E[λδ] value.

The Metropolis–Hastings MCMC with adaptive training of proposal widths us-
ing Roberts and Rosenthal (2007) was used in the Bayesian inference below. The
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Prior aδ bδ E[λδ] = aδ/bδ Var(λδ) = aδ/(bδ)2 σδ ≈ 1/
√

E[λδ]
1 1300 2.08 625 300 0.04
2 12 2 6 3 0.41
3 0.5 2 0.25 0.125 2.00

Table 8.4 The three Γ (aδ, bδ) prior distributions for λδ used in Example 8.1

first 5000Ω draws were discarded as burn-in followed by 10,000 production draws.
Every 20th of the production runs was kept for inference, providing a total of 500
draws from the joint posterior of Ω.

The effect of the three λδ priors on the Bayesian inference can now be examined.
The left panels of Figs. 8.4, 8.5, and 8.6 plot the posterior draws of 1/

√
λδ. These

histograms use different horizontal scales to better show the effect of the prior. In
all cases the mean of the 1/

√
λδ posterior draws is very near 1/

√
E[λδ], with these

values being approximately 0.04, .40, and 2.0 for Priors 1, 2, and 3, respectively.
The smaller the posterior 1/

√
λδ draws, the smaller the estimated δ(x) and its

uncertainty limits (at any fixed x). The left panels of Figs. 8.7, 8.8, and 8.9 show
the differences in these quantities for Priors 1, 2, and 3. For Prior 1, the estimated
δ(x) is nearly zero with small 90% uncertainty bounds, while the estimated δ(x) has
range −2 to +4 for Prior 3 with 90% credible limits on the order of three units above
and below the estimated δ(x). The right panels of Figs. 8.7, 8.8, and 8.9 show the
cumulative effect of the prior on the predicted μ(x). For Prior 1, with nearly zero
estimated δ(x), the predicted μ(x) is essentially the averaged straight line,

μ̂(x) ≈ E
[

Y s(x, Θ) | Y
]

.
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Fig. 8.4 For Prior 1 Left panel: histogram of 500 1/
√
λδ values based on posterior draws from

[λδ | Y]. Right panel: histogram of 500 draws from the posterior distribution [Θ | Y] of the calibra-
tion parameter; the vertical black line t = 1.23 is the L2 calibration parameter and the vertical red
line t = 1.19 is the mean of the [Θ | Y] draws
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Fig. 8.5 For Prior 2 Left panel: histogram of 500 1/
√
λδ values based on posterior draws from

[λδ | Y]. Right panel: histogram of 500 draws from the posterior distribution [Θ | Y] of the calibra-
tion parameter; the vertical black line t = 1.23 is the L2 calibration parameter, and the vertical red
line t = 1.37 is the mean of the [Θ | Y] draws
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Fig. 8.6 For Prior 3 Left panel: histogram of 500 1/
√
λδ values based on posterior draws from

[λδ | Y]. Right panel: histogram of 500 draws from the posterior distribution [Θ | Y] of the calibra-
tion parameter; the vertical black line t = 1.23 is the L2 calibration parameter and the vertical red
line t = 0.52 is the mean of the [Θ | Y] draws

In contrast the “large” posterior 1/
√
λδ draws in Prior 3 result both in a large esti-

mated δ(x) and a predicted μ(x) which slavishly follows the physical observations.
For Prior 2 the posterior 1/

√
λδ draws produce a predicted μ(x) which is nearly

equal to the target mean of the physical system.
The impact of the prior on the predicted θ is less pronounced than on δ(x). His-

tograms of the 500 inference draws from the posterior [Θ | Y] are shown in the
right panels of Figs. 8.4, 8.5, and 8.6. Table 8.5 lists the median and 90% uncer-
tainty bounds based on these 500 draws. The width of the uncertainty bounds for θ
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Fig. 8.7 For Prior 1 Left panel: expected bias E[Δ(x) | Y] of the simulator at θ and 90% uncer-
tainty bounds. Right panel: the target function μ(x) = 0.1x2 − x + 0.4 (blue); the n = 5 physical
system observations yp(x) from Table 8.2 (black); the Bayesian-calibrated predictor μ̂(x) in (8.3.5)
(red); 90% uncertainty bounds for the estimated μ(x) at 30 equally spaced x (green)

increases with the prior range of the Δ(x) draws, i.e., it increases for Priors 1, 2, and
3. The bounds are narrowest for Prior 1 and widest for Prior 3. The central posterior
Θ values, a Bayesian prediction of θ, are somewhat stable and, for Priors 1 and 2,
favor a θ prediction which is a bit over 1.0; this conclusion is consistent with the
minimum L2 choice of calibration parameter, t = 1.23.

Prior Estimated θ Uncertainty bounds
1 1.26 (−0.52, 2.81)
2 1.40 (−1.06, 3.69)
3 0.52 (−3.00, 3.86)

Table 8.5 Bayesian prediction of θ with 90% uncertainty bounds

In sum, this example shows the importance of the careful specification of the
prior for calibration problems. Calibration based on unjustified priors can lead to
substantially inaccurate predictions and uncertainty quantification. �

Example 1.4 (Continued). Recall that this example studies an injection molding (IM)
process in which a melted thermoplastic polyolefin is injected into a form. The goal
of the example is to show how calibration can be performed for a real-valued out-
come; specifically, the calibration is performed to combine simulator and physical
experiment output to improve prediction of the relative shrinkage of the mean width
of a test part as a function of four control variables.

The data to perform this calibration were obtained from experiments involving a
physical IM system measured at 19 control variable settings (see Table 1.2). Addi-
tional data were obtained from a computational simulator of the IM process which



316 Chapter 8 Calibration

x

-3

-2

-1

0

1

2

3

4

5
Es

tim
at

ed
(x

)

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
x

-2

0

2

4

6

8

Fig. 8.8 For Prior 2 Left panel: expected bias E[Δ(x) | Y] of the simulator at θ and 90% uncer-
tainty bounds. Right panel: the target function μ(x) = 0.1x2 − x + 0.4 (blue); the n = 5 physical
system yp(x) from Table 8.2 (black); the Bayesian-calibrated predictor μ̂(x) in (8.3.5) (red); 90%
uncertainty bounds for the estimated μ(x) at 30 equally spaced x (green)
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Fig. 8.9 For Prior 3 Left panel: expected bias E[Δ(x) | Y] of the simulator at θ and 90% uncer-
tainty bounds. Right panel: the target function μ(x) = 0.1x2 − x + 0.4 (blue); the n = 5 physical
system observations yp(x) from Table 8.2 (black); the Bayesian-calibrated predictor μ̂(x) in (8.3.5)
(red); 90% uncertainty bounds for the estimated μ(x) at 30 equally-spaced x (green)

calculated the dimensions of a test part produced by arbitrary user-specified values
of the control variables. In addition to the four control inputs, the simulator required
specification of three heat transfer coefficients for the mold during the flow, pack-
ing, and cooling phases of fabrication. The heat transfer coefficients are difficult to
measure during the IM process and were used as calibration parameters for this ex-
ample. Measured relative width shrinkages were obtained from m = 35 simulator
runs based on a 35 × 7 space-filling design (see Fig. 1.6).

As in the previous example, Bayesian calibration will be performed using the
residuals from normalized versions of the simulator and physical experiment data.
Using Eqs. (8.3.9) and (8.3.10), the simulator and the physical experiment data are
both standardized by the mean and standard deviation of the simulator data. The
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left and right panels of Fig. 8.10 plot the relative shrinkage and normalized relative
shrinkage, respectively, of the width of the test pieces versus tPack, which will be
seen below to be the most active input.
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Fig. 8.10 Left panel: scatterplot of the relative shrinkages for the 35 simulator runs versus the
packing time, tPack, of the IM manufacturing process (blue); plot of observed relative shrinkages
for the 19 physical experiment outputs versus tPack (red). Right panel: scatterplot of normalized
relative shrinkages for the 35 simulator runs and the 19 physical experiment outputs

In addition to plotting the data, a sensitivity analysis is performed to gain addi-
tional understanding of these data. The sensitivity analysis was used to determine the
relative activity of the seven inputs on the simulated values of the normalized rela-
tive shrinkage (see Chap. 7). The main effect and total effect sensitivity indices (SIs)
from this computation are listed in Table 8.6. As measured by the total effect SI, the
most important control inputs are the packing time, tPack, and the packing pressure,
PPack, with tPack being the most important by far. Compared with the control inputs,
none of the three HTCs is important; compared among themselves, HTCopen is the
most important HTC. In future prediction of the mean, Tmelt and tCool will be fixed,
and slices of predictions of the mean surface will be plotted for varying tPack and
PPack.

As opposed to using subject-matter experts to suggest priors for the parameters of
the calibration model, this example will use independent and heuristically selected

Variable ME SI TE SI

Tmelt 0.0024 0.0044
tPack 0.9191 0.9234
PPack 0.0627 0.0639
tCool 0.0101 0.0118

HTC f low 0.0003 0.0004
HTCpack 0.0000 0.0000
HTCopen 0.0006 0.0011

Table 8.6 Main effect (ME) and total effect (TE) sensitivity indices (SIs) for the control and cal-
ibration inputs to the simulator output for the relative shrinkage of the width of the Example 1.4
test piece (based on 35 runs)
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parametric prior families for the model parameters. Where possible, the data will be
used to suggest values for the hyperparameters.

Consider the prior for the bias precision λδ as illustrated in the right panel of
Fig. 8.10. The scatterplot shows that, as tPack increases, the normalized relative
shrinkage decreases slightly for test parts produced in the physical experiments;
however, the normalized relative shrinkage is nearly constant for the simulator
runs. Thus the bias appears to decrease modestly from a value of about 8.0 when
tPack = 14 to about 5.0 when tPack = 28. Setting twice the conditional standard
deviation of δ(x), 2/

√
E[λδ], equal to 7.0 or equivalently E[λδ] = (2/7)2 = 0.08

allows bias magnitudes of sizes 5.0–8.0 to be easily attainable. As a second re-
quirement used to specify the pair of hyperparameters, the prior probability require-
ment P[0.018 ≤ λδ ≤ 0.16] = 0.90 is made. Thus the Bayesian analysis sets
(aδ, bδ) = (2.88, 36) which satisfies 2/

√
E[λδ] = 7.07 as well as the coverage

requirement.
To suggest hyperparameters for the precision, λε , of the measurement error in the

normalized relative shrinkages, a regression analysis of the normalized shrinkages
was conducted. The fitted mean of the regression was the main effects model in the
four control variables; 19 observations from the manufacturing system were used to
fit the regression. The estimated residual mean squared error was 0.80. The Bayesian
prior for λε was taken to be the Γ(0.08, 0.02) distribution. Thus the mean λε was
assumed to be 4, and (conditional) draws from the associated ε(x) process can be as
large as 2/

√
4 = 1.0 but can adapt substantially because this pair of hyperparameters

was also selected to satisfy P[0 ≤ λε ≤ 100] = 0.90.
All correlation parameters were taken to have Be(α, β) prior distributions with

hyperparameters (α, β). The hyperparameters for all ρx were taken to be the some-
what neutral value of (α, β) = (5, 5). The ρδ hyperparameters were set equal to (5, 1)
reflecting the belief that the simulator bias is relatively constant. Lastly, the ρt hyper-
parameters were also set equal to (5, 5). In sum, Table 8.7 lists the prior parameters
for the marginal priors adopted for this example.

A Metropolis–Hastings MCMC was run with 5000 burn-in Ω runs and 10,000
production runs. Every 20th production run was used for the inferences below, for a
total of 500 posterior [Ω | Y] values.

The inferences for the Bayesian analysis based on the 500 [Ω | Y] draws start with
Fig. 8.11 which is a histogram of the 500 draws of conditional standard deviation of
δ(x), 1/

√
λδ, obtained from the Ω posterior. These values roughly range from 2.0 to

8.0 and are consistent with the prior intuition given by examining Fig. 8.10.

Parameter Prior Parameter Prior

λε Γ(0.08, 0.02) λs Γ(5, 5)
ρx

1, ρx
2, ρx

3, ρx
4 i.i.d Be(5, 5) ρt

1, ρt
2, ρt

3 i.i.d Be(5, 5)
λδ Γ(2.88, 36) ρδ

1, ρδ
2, ρδ

3, ρδ
4 i.i.d Be(5, 1)

Θ1, Θ2, Θ3 i.i.d TrN(0.50, 10)

Table 8.7 Independent marginals of the prior distribution used in Example 1.4. The notation is the
same as used in Table 8.3
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Fig. 8.11 Histogram of 1/
√
λδ values from 500 posterior draws of λδ

Turning attention to inferences concerning the calibration parameters, Fig. 8.12
is a gray-scale histogram of the marginal posterior draws of the HTCs, a pair-
wise joint scatterplot of these draws, and 50 and 90% empirical joint bounds (in
blue) for each pair of HTCs. The uniformly distributed marginal plots show that
all three coefficients are not well specified, a finding that is consistent with the
sensitivity analysis which suggested none of the HTCs had great influence on
the simulated relative shrinkage. The joint posterior plot shows the pairs appear
uncorrelated.

The estimated bias function for the simulator output, on the unnormalized scale,
is shown in Fig. 8.13 over a grid of (tPack, PPack) values for fixed (Tmelt, tCool) =
(200, 43). The bias is nearly linear. It is constant in PPack and increases as the pack-
ing time, tPack, increases to a maximum of 6.5 × 10−3.

Lastly, calibrated predictions of the mean of the physical output, μ(Tmelt, tPack,
PPack, tCool), were made for the 19 physical system inputs (Tmelt, tPack, PPack, tCool).
Figure 8.14 is a scatterplot of these 19 predictions of μ(Tmelt, tPack, PPack, tCool)
versus the observed y(Tmelt, tPack, PPack, tCool). The scatter above and below the
predicted mean shows the measurement errors, and their distribution implies
the effectiveness of the bias correction across the spectrum of the observed
inputs. �

We conclude this section on the importance of the prior distribution in Bayesian
calibration by noting that Brynjarsdóttir and O’Hagan (2014) provide an additional
example of showing the importance of accounting for model discrepancy by us-
ing a realistic prior in order to produce posterior distributions that cover unknown
calibration parameters.
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Fig. 8.12 Gray-scale scatterplot of the joint posterior distribution of the mold heat transfer co-
efficients during the flow, packing, and cooling phases of manufacturing; empirical 50 and 90%
uncertainty sets for the joint values

Fig. 8.13 Estimated bias function δ(Tmelt, tPack, PPack, tCool) of the calibrated predictor of the mean
relative shrinkage of the width of a test piece for fixed (Tmelt, tCool) = (200, 43)
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Fig. 8.14 Predicted mean relative shrinkage of the width of a test piece, μ(Tmelt, tPack, PPack, tCool),
for the 19 observed inputs versus the observed values of y(Tmelt, tPack, PPack, tCool). The reference
line y = x is shown in red

8.4 Calibration with Functional Data

This section describes an extension of the KOH model to settings in which the sim-
ulation code (simulator) produces either functional or multivariate output data. The
proposed model is rather robust in that it includes numerical nugget effects to en-
hance fitting of an emulator to the simulator and simulator bias errors.

Transformations to the simulator and experimental data that enhance the
Bayesian prior specification are given in Sects. 8.4.1 and 8.4.2. Section 8.4.3 pro-
vides expressions for the log likelihood of both types of data; the final formulas
for the log likelihood are given by (8.4.51) and (8.4.67) for the cases of calibration
in which the simulator is allowed to differ from the true mean model of the phys-
ical data and in which any such differences are assumed negligible, respectively.
Section 8.5 provides a prior and methods to generate samples from the resulting
posterior. It describes methodology to use the posterior samples at unsampled inputs
for the following tasks:

Case 1: emulate the simulation output using only simulator data,
Case 2: emulate the calibrated simulator output modeling the simulator bias, and
Case 3: emulate the calibrated simulator output assuming no simulator bias.
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More detail is given in this section and Sect. 8.5 than in other sections of the book
to provide the interested reader with the information required to apply the Bayesian
calibration methodology described here.

8.4.1 The Simulation Data

Let ys(xs, t) denote an ms × 1 vector of simulation output that is calculated at input
setting (xs, t); the length of the simulation output vector is assumed to be the same
for all inputs. Each element of ys(xs, t) is associated with one or more index vari-
able(s) which is not included in xs. If the suppressed index is continuous, such as
time, space, or space and time, the output is referred to as functional. If it is cate-
gorical, such as a response indicator, the output is referred to as multivariate. For
example, the time traces in Example 1.7 or 1.8 would be considered functional data,
while the collection of individual scalar outputs in Example 1.6 would be consid-
ered multivariate data. The following discussion generally follows the development
of Higdon et al. (2008).

Suppose the simulator is run m times producing ys(xs
1, t1), . . . , ys(xs

m, tm). As in
the univariate case, the statistical modeling of these data is facilitated by standard-
izing them through centering and scaling. Let Y s denote the ms × m matrix of simu-
lation output arranged with one ms × 1 column for each input:

Y s =
[

ys(xs
1, t1) · · · ys(xs

m, tm)
]

.

The output is centered by subtracting from each element of Y s the mean of all the
elements of Ys in the same row, i.e.,

ys
= (1/m)Ys1m , (8.4.1)

where 1m is the m× 1 vector of ones. This operation yields the centered data matrix,

Y s,c = Ys − ys 1
m = Ys (Im − (1/m) Jm) ,

where Im is the m × m identity matrix and Jm = 1m1
m is the m × m matrix of ones.

The sample covariance matrix of Y s, Cs, is given by:

Cs =
1

m − 1
Ys (Im − (1/m)Jm) (Ys) .

Because all components of functional data have the same measurement unit, this
data is typically scaled by the sample standard deviation ςs of all the elements of
Y s,c. The sample mean of the elements of Y s,c is zero since, by construction, the ms

row means of Y s,c are all zero. Hence the sample variance (ςs)2 is proportional to
the sum of squares of the ms · m elements of Ys,c, which is given by (m − 1) tr(Cs),
i.e., by
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(ςs)2
=

m − 1
ms · m − 1

tr
(

Cs) . (8.4.2)

Denote the ms × m matrix of standardized functional output by

Y s,n =
1
ςs

Y s,c .

In contrast, the output components of multivariate data typically have different
measurement units. In this case each of the ms components of Y s,c is scaled sepa-
rately to obtain the standardized output

Y s,n =
(

Cs
d

)−1/2
Y s,c ,

where
Cs

d = diag(cs
11, cs

22, . . . , cs
msms

) (8.4.3)

and cs
ii is the ith diagonal element of Cs. The diag(·) operator produces a matrix with

its scalar (or matrix) arguments placed in the diagonal entries (or blocks) and with
zeros placed in every off-diagonal entry (or block).

A principal component decomposition is used frequently to derive a compact
basis representation of the centered and scaled ys(xs, t) output for the m-selected
(xs, t) inputs (other bases can be used). The singular value decomposition (SVD) of
the standardized output matrix Y s,n is a representation of the form

Ys,n = UsΣ s (V s) ,

where Us and V s are ms×ms and m×m orthonormal matrices containing the left and
right singular vectors of Y s,n, respectively, while Σ s =

(

Σ s
i j

)

is the ms×m rectangular
matrix whose diagonals are the corresponding singular values ordered from largest
to smallest and whose off-diagonal values are zero. Given ps ≤ min(ms, m − 1), the
best rank ps approximation to Y s,n based on minimizing the Frobenius norm (see
Stewart (1993)) is

Us
˜Σ

s
(Vs) ,

where ˜Σ
s

is obtained from Σ s by setting to zero all singular values less than the
ps largest. Because the squares of the singular values are the eigenvalues of the
sample covariance matrix Cs, the value of ps is chosen to be the smallest integer not
exceeding min(ms, m − 1) such that

∑ps

i=1

(

Σ s
ii

)2

∑min(ms ,m−1)
i=1

(

Σ s
ii

)2
=

∑ps

i=1

(

Σ s
ii

)2

tr
(

Cs) ≥ τ,

where τ is the desired fraction of the total variance, tr
(

Cs), that is to be explained.
Common choices of τ are 0.95 and 0.99.

Having determined the rank ps of the approximation to the standardized data
that explains a selected fraction of total variance, the matrices of the SVD are then
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partitioned as follows:

Us =
[

Us
1 Us

2

]

,

Vs =
[

V s
1 Vs

2

]

, and

˜Σ
s
=

[

˜Σ
s
11 0
0 0

]

,

where Us
1 contains the first ps columns of Us and Us

2 contains the remaining
columns, while Vs

1 contains the first ps columns of Vs and Vs
2 contains the remain-

ing columns, and lastly ˜Σ
s
11 is the ps × ps upper-left block diagonal matrix of ˜Σ

s
.

Define the matrix
Ks = (1/

√
m) Us

1
˜Σ

s
11 . (8.4.4)

Then the best rank ps approximation to the standardized data matrix Y s,n is

Ks
(√

m V s
1

)
.

In other words, the i-th standardized output vector ys,n(xs
i , ti) can be approximated

by a linear combination of the orthogonal column vectors of Ks, i.e., by

ys,n(xs
i , ti) ≈

ps
∑

j=1

ks
j ws

j(xs
i , ti) , i = 1, . . . , m ,

where
(

ws
1(xs

i , ti), . . . , ws
ps

(xs
i , t i)

)

is the ith row of
(√

m V s
1

)

, i.e., the ith column of
(√

m V s
1

)
, and ks

j is the j-th column of Ks. Because the columns of Vs
1 are or-

thonormal and the coordinates of each column must sum to zero due to standard-
ization of the output, the sample means and variances of {ws

j(xs
i , ti)}mi=1 are 0 and 1,

respectively, for all j = 1, . . . , ps.

Example 1.7 (Continued). Recall that flyer plate experiments measure the velocity
profile of a shock wave that is forced through a stationary target sample of a material,
in this example tantalum. Initially, this example studies the output from m = 128
runs of a simulator of the velocity profile that varied d = 10 material properties and
experimental conditions (Table 1.4) according to an orthogonal array-based Latin
hypercube design (Sect. 5.3). The right panel of Fig. 1.12 plots the 128 velocity
profiles.

Figure 8.15 shows the ps = 3 unscaled eigenvectors (columns of ςsKs) corre-
sponding to the three principal components selected by setting τ = 0.95, computed
from the full set of the 128 standardized simulation runs constituting the columns
of the matrix Y s,n. �

The representation of the standardized output in terms of the orthogonal columns
of a fixed matrix Ks weighted by coefficients that have sample mean 0 and sample
variance 1 suggests the statistical process model
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Fig. 8.15 Unscaled eigenvectors constituting the simulator basis model

Ys,n(xs, t) = Ks W s(xs, t) (8.4.5)

for the standardized ys,n(xs, t) over the (xs, t) input domain. Coefficient model
W s(xs, t) =

(

W s
1(xs, t), . . . , W s

ps
(xs, t)

)

is assumed to have mutually independent
components, each with mean zero. To complete the model, it is assumed that
(marginally) each W s

i (xs, t), i = 1, . . . , ps, is a GP with precision λs,i and corre-
lation function Rs,i(·, ·) that is specified by (8.2.1). Each component process could
be constrained to have variance 1 by setting λs,i = 1 for i = 1, . . . , ps; however, this
restriction is relaxed as described in Sect. 8.5.1 to require these precisions to take
values “near” 1.

In sum, the marginal process model is described in the notation (8.2.2) by

[

Ws
i (xs, t)

∣

∣

∣ λs,i, ρ
x,i, ρt,i

]

∼ GP
(

0, λs,i, (ρx,i, ρt,i)
)

for i = 1, . . . , ps , (8.4.6)

and jointly {W s
i (xs, t)}ps

i=1 are assumed to have covariance matrix

⎡

⎢
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⎥

⎥

⎥

⎥

⎥
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There are two caveats to this basic formulation. First, for numerical stability, the
diagonals of the covariance of the i-th coefficient process W s

i (xs, t) are augmented
by an independent, mean-zero Gaussian nugget effect process having precision λn,i,
resulting in the covariance function

Cov
[

W s
i (x1, t1), W s

i (x2, t2)
]

=
1
λs,i

Rs,i ((x1, t1), (x2, t2))

+
1
λn,i

I {(x1, t1) = (x2, t2)}

for i = 1, . . . , ps, where I{·} is the indicator function which takes the value 1 if its
argument is true, and 0 otherwise. The ps nugget effect processes are assumed to be
mutually independent.

Second, recall that the statistical model (8.4.5) excludes the ms − ps basis vec-
tors in Us

2 from the representation of standardized simulation output due to their
insignificance in explaining variation in the observed simulation output. The error
in excluding these basis vectors is termed the simulator basis noise. Similar to the
nugget effect processes, the value of the simulator basis noise is described as a draw
from a mean-zero multivariate normal random vector εs having covariance matrix
(1/λs,ε)Ims , resulting in an adjusted statistical model of standardized simulation out-
put:

Y s,n,ε(xs, t) ≡ Y s,n(xs, t) + εs = Ks W s(xs, t) + εs . (8.4.7)

The multivariate normal distribution is parameterized as in (B.1.1) of Appendix B.1.

Example 1.7 (Continued) (Case 1: Simulator Emulation). The matrix of simulation
runs Y s, having 128 columns, is partitioned into m = 127 simulation runs used to
train an emulator and 1 hold-out simulation run used to test the emulator. Figure 8.16
shows the centered training and test sets, along with a least squares fit to the centered
test run calculated assuming (8.4.7). Centering was accomplished by subtracting
the mean vector of the 127 training runs. Although the restriction to the ps = 3
dominant simulator basis vectors (Ks) yields slight overprediction in the flat portion
of the velocity profile, it appears that model (8.4.7) adequately captures the velocity
behavior of the test run in the more variable regions of the time domain. �

Applying (8.4.7) to the design locations at which standardized simulation output
is calculated yields

Y s,n,ε(xs
i , ti) = Ks W s(xs

i , ti) + εs
i , i = 1, . . . , m , (8.4.8)

where the simulator basis noise vectors {εs
i }

m
i=1 are modeled as being mutually inde-

pendent.
In the case where ps = ms, which is typical for multivariate applications, the sim-

ulator basis noise is extraneous, and model (8.4.5) will be assumed. Applying (8.4.5)
to the design locations at which standardized simulation output is calculated yields

Ys,n(xs
i , ti) = Ks W s(xs

i , t i) , i = 1, . . . , m . (8.4.9)
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Fig. 8.16 One hundred and twenty-seven centered simulation training runs (orange lines), centered
simulation test run (green dots), and the least squares fit to the centered simulation test run based
on the three input variable regressions from Ks (blue line)

Statistical models (8.4.5) and (8.4.7) are often referred to as emulator models, as
they provide a framework for representing simulation output and predicting it with
quantification of uncertainty at arbitrary input settings in the input domain. This
prediction capability will be described in Sect. 8.5.2.

Below, the collection of parameters requiring statistical inference for model (8.4.5)
is denoted by

Ωs =
(

λs,1, . . . , λs,ps , λn,1, . . . , λn,ps , ρ
x,1, ρt,1, . . . , ρx,ps , ρt,ps

)

. (8.4.10)

This parameter set is augmented by λs,ε for model (8.4.7):Ωs,ε = {Ωs, λs,ε}.

8.4.2 The Experimental Data

Let yp(xp
1 ), . . . , yp(xp

n ) denote the outputs for n physical system experiments. Recall
that the components of each xp and xs represent the same input variables; the su-
perscripts are used to indicate that distinct settings of the input vectors are allowed
when collecting physical observations versus simulation run outputs. Let mp,i de-
note the length of yp(xp

i ) for i = 1, . . . , n. In typical functional data applications,
the yp(xp

i ), i = 1, . . . , n, are observed on a less dense mesh of index variable(s) set-
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tings than are the simulations so that mp,i ≤ ms for each experiment. On the other
hand, applications with multivariate output are assumed to correspond to the same
responses as produced by simulations, so that mp,i = ms holds for all experiments.

The experimental output vector yp(xp
i ) is assumed to be realized from the follow-

ing statistical model:

Yp(xp
i ) = μ(xp

i ) + εp(xp
i ) , i = 1, . . . , n , (8.4.11)

where μ(xp
i ) denotes the mean response of the physical system when the control

variables are set at xp
i and realized on the mesh of index variable(s) corresponding

to the i-th experiment. The observation error for the i-th experiment involving the
physical system, εp(xp

i ), is assumed to be a mean-zero multivariate normal random
vector having precision matrix λp,εPp

i :

εp(xp
i ) ∼ Nmp,i

(

0mp,i ,
1

λp,ε

(

Pp
i

)−1
)

, i = 1, . . . , n , (8.4.12)

where 0r is an r × 1 vector of zeros. The mp,i × mp,i positive definite matrix Pp
i

is assumed fixed for i = 1, . . . , n, and the error terms εp(·) are mutually indepen-
dent across the n experiments. The formulation (8.4.11) represents the extension
of (8.2.4) to the functional data setting.

Analogous to the emulator development in Sect. 8.4.1, the experimental data
vectors are centered and scaled but using the summary statistics from the simu-
lation output. In the functional case, ms � mp,i, the mean simulation output vector
ys
= (1/m)Ys1m is interpolated onto the index variable(s) mesh corresponding to

the i-th experiment to produce the mp,i × 1 vector ys
i for i = 1, . . . , n. The i-th exper-

imental output vector is centered by subtracting this interpolated simulation mean:

yp,c(xp
i ) = yp(xp

i ) − ys
i , i = 1, . . . , n .

The standardized output from the i-th experiment is then obtained as

yp,n(xp
i ) = (1/ςs) yp,c(xp

i ) , i = 1, . . . , n ,

with ςs given by (8.4.2). In the multivariate case, mp,i = ms for i = 1, . . . , n, the
standardized output from the i-th experiment is given by

yp,n(xp
i ) =

(

Cs
d

)−1/2 (

yp(xp
i ) − ys

)

, i = 1, . . . , n ,

with Cs
d given by (8.4.3).

Adapting (8.4.11), the standardized experimental output yp,n(xp
i ), i = 1, . . . , n, is

therefore assumed to be a realization from the statistical model:

Yp,n(xp
i ) = μn(xp

i ) + εp,n(xp
i ) , (8.4.13)

where Yp,n(xp
i ) = (1/ςs)

(

Yp(xp
i ) − ys

i

)

is a vector of length mp,i
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μn(xp
i ) = (1/ςs)

(

μ(xp
i ) − ys

i

)

, and

εp,n(xp
i ) = (1/ςs) εp(xp

i )

in the functional case, while Yp,n(xp
i ) = (Cs

d)−1/2(Yp(xp
i ) − ys) is a vector of length

ms

μn(xp
i ) =

(

Cs
d

)−1/2 (

μ(xp
i ) − ys

)

, and

εp,n(xp
i ) =

(

Cs
d

)−1/2
εp(xp

i )

in the multivariate case. Hence setting

Pp,n
i = (ςs)2 Pp

i

in the functional case and

Pp,n
i =

(

Cs
d

)1/2
Pp

i

(

Cs
d

)1/2

in the multivariate case gives

εp,n(xp
i ) ∼ Nmp,i

(

0mp,i ,
1

λp,ε

(

Pp,n
i

)−1
)

(8.4.14)

for i = 1, . . . , n, under the assumption (8.4.12).
Because μ(·) (and therefore μn(·)) is not directly observable, models (8.4.11)

and (8.4.13) are of limited use. However, recognizing that the simulator was built to
provide a high-fidelity representation of the physical system, the simulation output
can be used to build a statistical model of μn(·).

As in Sect. 8.2, letting θ denote the unknown true value of the calibration pa-
rameter t in the physical system, the bias (discrepancy) of the simulator is defined
analogously to (8.2.5) by

δ(xp) ≡ μ(xp) − ys(xp, θ) ,

where the index variable(s) mesh is assumed to contain mp elements. The standard-
ized version of simulator bias is defined as follows:

δn(xp) ≡ μn(xp) − ys,n(xp, θ) , (8.4.15)

where δn(xp) = (1/ςs) δ(xp) and δn(xp) = (Cs
d)−1/2δ(xp) in the functional and mul-

tivariate cases, respectively.
The discrepancy δn(xp) is not directly observable. Thus it is modeled statistically

as a realization of
Δn(xp) = Dp Vp(xp) , (8.4.16)

where the mp × pδ matrix Dp contains a fixed linearly independent set of user-
selected basis vectors and Vp(xp) is a GP.
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As examples of Dp in (8.4.16), in functional cases, Dp often takes the form of a
kernel regression model. The index variable(s) domain is populated with pδ kernel
centers, and each column of Dp is determined by evaluating the kernel function on
the index variable(s) mesh at each kernel center. In the multivariate case mp = ms, it
is typical to choose pδ = ms and Dp = Ims , which represents the scenario in which
each scalar output is associated with its own discrepancy correction.

Example 1.7 (Continued). Figure 8.17 shows pδ = 9 unscaled kernel basis vec-
tors (columns of ςs Dp). The kernels were researcher selected to be normal density
functions with different center points and common standard deviation. Figure 8.17
plots the kernels at the ms = 136 mesh of time values over [0.9314 μs, 2.2816 μs],
the time interval used by the simulator runs (the one-dimensional index variable for
these data). Specifically, seven of the kernels, plotted with blue lines, had equally
spaced centers all contained within the domain of observed time points beginning at
0.9314 μs, ending at 2.2816 μs, and spaced at 0.225 μs. The remaining two kernels,
plotted with orange lines, were centered 0.225 μs below and above the lower and
upper boundaries of the time domain, respectively. These last two kernels provide
a buffer to assist with the adequate representation of discrepancy functions in the
vicinity of the boundaries. All nine kernels had common standard deviation equal to
the kernel center separation distance of 0.225 μs. The columns of Dp were normal-
ized for numerical stability by ensuring the maximal element of the matrix product
Dp (Dp) is 1. �
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Fig. 8.17 Unscaled kernel basis vectors ςs Dp constituting the discrepancy basis model

An example of Vp(xp) in (8.4.16), and the process assumed in this section, can be
motivated by applications in which the columns of Dp are partitioned into F groups
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G1, . . . ,GF , where pδ =
∑F

i=1 |Gi| with |Gi| denoting the size of group Gi. This would
be the situation in a functional case where each group represents a set of basis vec-
tors in a regression model of the discrepancy for distinct subregions of index vari-
able(s) space. Let Vp

i (xp) denote those coefficients of Vp(xp) that correspond to
Gi for i = 1, . . . , F. This section assumes the component processes {Vp

i (xp)}Fi=1 of
Vp(xp) are mutually independent. In addition, it assumes that the individual pro-
cesses {V p

i, j(xp)}|Gi |
j=1 constituting Vp

i (xp) can be modeled as mutually independent
GPs with the (i, j) process having mean zero, precision λδ,i, and correlation function
Rδ,i(·, ·) given by (8.2.6). In our earlier notation

[

V p
i, j(xp)

∣

∣

∣

∣
λδ,i, ρ

δ,i
]

∼ GP
(

0, λδ,i, ρ
δ,i

)

for j = 1, . . . , |Gi| . (8.4.17)

Below, the collection of parameters in the discrepancy model (8.4.16) requiring
statistical inference is denoted by

Ωδ =
(

λδ,1, . . . , λδ,F , ρ
δ,1, . . . , ρδ,F

)

.

In the functional case, F = 1 is often chosen to limit the number of discrepancy
parameters in Ωδ to a manageable size, as the extreme choice of F = pδ when pδ

is large results in a large number of discrepancy parameters required to adequately
model the simulator bias. In the multivariate case, F = ms is typically selected to
equip the discrepancy process for each scalar output with its own set of discrepancy
parameters. This does not result in an explosion of parameters, as the multivariate
case generally involves small to moderate output dimension ms.

Combining statistical models (8.4.5) and (8.4.16) and assuming independence
between the signal, W s(·), and discrepancy, Vp(·), processes, the definition of simu-
lator bias (8.4.15) suggests the statistical model

Mn(xp) = Ks W s(xp,Θ) + Dp Vp(xp)

for μn(xp) at arbitrary control input xp contained within the input domain. Here a
capitalΘ is used in place of the lowercase θ to indicate the unknown true calibration
parameter value that will be inferred statistically. A common input variable(s) mesh
is assumed for each term in this model.

The formulation of the previous paragraph allows for an extension of (8.4.13) to
a statistical model of the standardized output from the i-th experiment involving the
emulator model:

Yp,n(xp
i ) = Mn(xp

i ) + εp,n(xp
i )

= Ks
i W s(xp

i ,Θ) + Dp
i Vp(xp

i ) + εp,n(xp
i ) , (8.4.18)

for i = 1, . . . , n. Here the processes {W s(·), Vp(·), εp,n(·)} are assumed mutually inde-
pendent and independent across experiments. In the functional case, each column of
the Ks matrix in (8.4.4) defined on the index variable(s) mesh from the simulation
output must be interpolated onto the index variable(s) mesh corresponding to the
i-th physical experiment to produce the Ks

i matrix. The columns of the Dp
i matrix
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arise from evaluating the kernel function on the input variable(s) mesh correspond-
ing to the i-th experiment at each kernel center. In the multivariate case, Ks

i = Ks

with Ks given by (8.4.4) for i = 1, . . . , n. Furthermore, each Dp
i is set to a common

matrix of basis vectors Dp for i = 1, . . . , n, typically Dp = Ims .

Example 1.7 (Continued) (Case 2: Emulation of the Calibrated Simulator Output
Allowing for Simulator Bias). Figure 8.18 shows the centered data yp,c(xp

1 ) for the
n = 1 experiment available for calibration, superimposed on the m = 128 centered
simulation runs constituting the columns of Y s,c, and a least squares fit to yp,c(xp

1 )
calculated assuming (8.4.18).
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Fig. 8.18 One hundred and twenty-eight centered simulation runs (orange lines), centered exper-
imental data (green dots), and the least squares fit to the centered experimental data based on the
12 (3 + 9) input variable regression from Ks

1 and Dp
1 (blue line)

The matrices Ks
1 and Dp

1 of (8.4.18) were obtained by linearly interpolating each
column of Ks and Dp onto the mp,1 = 170 time points corresponding to the experi-
mental output (a rare instance in which the index variable mesh for the experimental
output is denser than that used by the simulator). The precision matrix Pp,n

1 of the
error process in Eq. (8.4.14) is taken to be I170. It is apparent that model (8.4.18),
composed of three simulator basis vectors (Ks

1) and nine discrepancy basis vectors
(Dp

1), adequately represents the variation in the experimental data with the excep-
tion of the observed sharp velocity increase in early time. If necessary, an improved
representation could be obtained by placing additional kernel basis vectors in this
region. �

Below, the complete set of parameters in (8.4.18) requiring statistical inference
is denoted by
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Ωp, d,ε = {Ωp, d, λp,ε} , (8.4.19)

where Ωp, d = {Θ,Ωs,Ωδ}. In the scenario for which it is assumed that δ(xp) ≡ 0 for
every xp in the input domain, the statistical model (8.4.18) reduces to

Yp,n(xp
i ) = Mn

0(xp
i ) + εp,n(xp

i )

= Ks
i W s(xp

i ,Θ) + εp,n(xp
i ) , i = 1, . . . , n . (8.4.20)

Example 1.7 (Continued) (Case 3: Emulation of the Calibrated Simulator Output
Assuming No Simulator Bias). Figure 8.19 shows centered data yp,c(xp

1 ) for the n = 1
experiment available for calibration, superimposed on the m = 128 centered simu-
lation runs constituting the columns of Ys,c, and a three variable least squares fit to
yp,c(xp

1 ) calculated assuming (8.4.20).
The matrix Ks

1 of (8.4.20) was obtained by linearly interpolating each column of
Ks onto the mp,1 = 170 time points corresponding to experimental output. The pre-
cision matrix Pp,n

1 of the error process (8.4.14) is taken to be I170. It is apparent that
model (8.4.20), composed of three simulator basis vectors (Ks

1) and no discrepancy
component, is able to capture the behavior in the experimental data reasonably well
between approximately 1.1 and 2.2 μs, but has considerable discrepancy at early
and late times. �
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Fig. 8.19 One hundred and twenty-eight centered simulation runs (orange lines), centered exper-
imental data (green dots), and the least squares fit to the centered experimental data based on the
three input variable regression from Ks

1 (blue line)

The complete set of parameters in (8.4.20) requiring statistical inference is de-
noted by
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Ωp, nod,ε = {Ωp, nod, λp,ε} , (8.4.21)

where Ωp, nod = {Θ,Ωs}.

8.4.3 Joint Statistical Models and Log Likelihood Functions

The goal of this section is to derive the joint statistical models that are used in
the Bayesian analysis presented in Sect. 8.5.1. The joint models combine (8.4.7)
for the standardized simulation output in Sect. 8.4.1 which includes the simulator
basis noise and those for the standardized physical experiment output in Sect. 8.4.2
both with and without simulator discrepancy. In the derivation below, recall that
ps denotes the number of mutually independent W s

i (·, ·), i = 1, . . . , ps, processes
that are used to describe the simulation output in (8.4.8) and the experimental mean
in (8.4.18) or (8.4.20). Also pδ denotes the number of discrepancy basis functions
where pδ =

∑F
i=1 |Gi| for the model that uses separately parameterized discrepancies

for F distinct subregions of the index variable space. For the result-oriented reader,
the log likelihood functions for the models with and without simulator basis error
are (8.4.51) and (8.4.67), respectively.

8.4.3.1 Joint Statistical Model That Allows Simulator Discrepancy

Let the m × ps matrix W s collect the basis coefficient processes in the emulator
model,

W s =
[

W s(xs
1, t1) W s(xs

2, t2) · · · W s(xs
m, tm)

]
,

while the n × ps matrix

Us =
[

W s(xp
1 ,Θ) W s(xp

2 ,Θ) · · · W s(xp
n ,Θ)

]
,

and the n × pδ matrix

Vp =
[

Vp(xp
1 ) Vp(xp

2) · · · Vp(xp
n )

]
,

denote the basis coefficient processes in the calibrated emulator model of the exper-
imental data mean and the discrepancy of the calibrated simulator mean from the
true mean, respectively (see Sects. 8.4.1 and 8.4.2).

When the simulator discrepancy is modeled statistically as in (8.4.18), the joint
statistical model will be specified in terms of the vector Zd:

Zd =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Vec
([

Vp Us

])

Vec (W s)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Vec
(

Vp

)

Vec (Us)

Vec (W s)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8.4.22)
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of length n(pδ + ps) +mps, where the Vec(·) operator is the column vector obtained
by stacking the column vectors of its matrix argument in order from left to right
(see Appendix B.5). In words, Zd first stacks V p

1 (xp
1 ), . . . , V p

1 (xp
n ), followed by the n

V p
2 (·) values, followed by the V p

3 (·) through V p
pδ

(·) values. The Us and W s matrices
are analogously stacked by grouping all coefficients in each of the ps columns of Us

and finally all coefficients in each of the ps columns of W s.
Because Zd is constructed from mean-zero GPs, conditional on Ωp,d, it is multi-

variate normally distributed with zero mean vector and covariance matrix:

ΣZ,d =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ΣV 0npδ,nps 0npδ,mps

0nps,npδ
ΣU ΣUW

0mps ,npδ
ΣUW ΣW

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8.4.23)

where 0r,s is the r × s matrix of zeros. The block matrix components of ΣZ,d them-
selves have block diagonal structures:

ΣV = diag(ΣV,1,ΣV,2, . . . ,ΣV,pδ
) ,

ΣU = diag(ΣU,1,ΣU,2, . . . ,ΣU,ps ) ,

ΣW = diag(ΣW,1,ΣW,2, . . . ,ΣW,ps ) , and (8.4.24)

ΣUW = diag(ΣUW,1,ΣUW,2, . . . ,ΣUW,ps ) . (8.4.25)

For k ∈ {1, . . . , pδ} and i, j = 1, . . . , n, the (i, j) element of ΣV,k is

Rδ,l(xp
i , xp

j )/λδ,l ,

where l ∈ {1, . . . , F} is chosen so that k ∈ Gl. For k ∈ {1, . . . , ps} and i, j = 1, . . . , n,
the (i, j) element of ΣU,k is

1
λs,k

Rs,k

(

(xp
i ,Θ), (xp

j ,Θ)
)

+
1

λn,k
I{xp

i = xp
j } .

For k ∈ {1, . . . , ps} and i, j = 1, . . . , m, the (i, j) element of ΣW,k is

1
λs,k

Rs,k

(

(xs
i , t i), (xs

j, t j)
)

+
1

λn,k
I
{

(xs
i , ti) = (xs

j, t j)
}

.

Finally, for k ∈ {1, . . . , ps}, i = 1, . . . , n, and j = 1, . . . , m, the (i, j) element of ΣUW,k

is
Rs,k

(

(xp
i ,Θ), (xs

j, t j)
)

/λs,k .

The vectors Yp,n and Ep,n of length my =
∑n

i=1 mp,i and the vectors Ys,n,ε and
Es of length msm collect the standardized physical experiment output, observation
errors, standardized simulation output, and simulator basis noise elements:

Yp,n =
[

Yp,n(xp
1 ) Yp,n(xp

2 ) · · · Yp,n(xp
n)

]
,
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Ep,n =
[

εp,n(xp
1 ) εp,n(xp

2) · · · εp,n(xp
n )

]
,

Y s,n,ε = Vec
([

Y s,n,ε(xs
1, t1) Y s,n,ε(xs

2, t2) · · · Y s,n,ε(xs
m, tm)

])

,

Es = Vec
([

εs
1 ε

s
2 · · · εs

m

])

,

respectively. Using the above notation, the joint statistical model takes the following
form:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Yp,n

Y s,n,ε

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Xp,d 0my,mps

0msm,n(pδ+ps) Xs

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Zd +

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ep,n

Es

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (8.4.26)

where Xp,d and Xs are defined implicitly by (8.4.18) and (8.4.8), respectively. From
the discussion preceeding (8.4.23), conditionally

[

Zd

∣

∣

∣Ωp,d
]

∼ Nn(pδ+ps)+mps

(

0n(pδ+ps)+mps ,ΣZ,d

)

.

Utilizing (8.4.14), the discussion above (8.4.7), and the assumed mutual indepen-
dence between simulator basis noise and observation error gives

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ep,n

Es

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

λp,ε, λs,ε

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∼ Nmy+msm

(

0my+msm,ΣE

)

independent of Zd, where

ΣE =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ−1
p,ε (Pp,n)−1 0my ,msm

0msm,my λ−1
s,εImsm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(8.4.27)

with
Pp,n = diag(Pp,n

1 , Pp,n
2 , . . . , Pp,n

n ) .

Collecting the regression matrices of (8.4.18) into a my×n(pδ+ps) block diagonal
matrix,

FDK = diag
([

Dp
1 Ks

1

]

,
[

Dp
2 Ks

2

]

, . . . ,
[

Dp
n Ks

n

])

,

and letting the n(pδ + ps) by n(pδ + ps) matrix Qn,pδ+ps
denote a vec-permutation

matrix as defined in Appendix B.5, Xp,d is given by

Xp,d = FDK Qn,pδ+ps
. (8.4.28)

This is seen by using the partitioning of Zd given in (8.4.22), noting that

Qn,pδ+ps
Vec

([

Vp Us

])

= Vec

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎣

V
p

U
s

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

via (B.5.4) of Appendix B.5 and finally observing that
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FDKVec

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎣

V
p

U
s

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
[

Mn(xp
1) Mn(xp

2) · · · Mn(xp
n )

]

as required. Similarly
Xs = (Im ⊗ Ks) Qm,ps

(8.4.29)

by again using the partitioning of Zd given in (8.4.22), noting that

Qm,ps
Vec (W s) = Vec

(

W
s

)

via (B.5.4) and finally observing that

(Im ⊗ Ks) Vec
(

W
s

)

= Vec
(

Ks W
s

)

by (B.5.5) of Appendix B.5, as required.
The joint statistical model (8.4.26) is of the form

Y = Cβ + ε , (8.4.30)

where β and ε are mutually independent with β ∼ N(0,Σβ) and ε ∼ N(0,Σε).
Inference for this statistical model will require computation of its log likelihood
function, which is the log of the probability density function of Y. The vector Y is
multivariate normally distributed assuming (8.4.30); therefore Y has log likelihood
function (up to an additive constant)

�(P; Y) = −1
2
�n det(Σε + CΣβC) − 1

2
Y(Σε + CΣβC)−1Y (8.4.31)

where P denotes whatever parameters are used to define Σβ and Σε.
If Y is high dimensional, the formula (8.4.31) for the log likelihood function is

of limited use, unless the covariance matrix Σε + CΣβC is structured in a way that
facilitates lower-dimensional inverse and determinant calculations. Such dimension
reduction does not apply to the joint statistical model (8.4.26). However, an alter-
native expression for the Y log likelihood function shows that dimension reduction
is possible for this model. Consider an equivalent form for the inverse of the matrix
Σε + CΣβC given by Lemma B.4 of Appendix B:

(

Σε + CΣβC
)−1
= Σ−1

ε − Σ−1
ε C

(

Σ−1
β + CΣ−1

ε C
)−1

CΣ−1
ε (8.4.32)

assuming all inverses on the right-hand side exist. The desired dimension reduction
uses (8.4.32) but further requires the matrix CΣ−1

ε C to be nonsingular, which holds
if the coefficient matrix C is of full column rank. To avoid this potential issue, the
matrix CΣ−1

ε C is replaced by

ΣΓ = CΣ−1
ε C + Γ (8.4.33)
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on the right-hand side of (8.4.32). Here Γ = diag(γ1, γ2, . . . , γc) where c is the num-
ber of columns of C and γi ≥ 0 for i = 1, . . . , c. That is, if necessary, a nonnegative
real number γi is added to the ith diagonal element of CΣ−1

ε C for i = 1, . . . , c. The
chosen value of γi should be sufficiently large so that ΣΓ is nonsingular, but other-
wise as small as possible to minimize the impact of replacing the matrix CΣ−1

ε C
by ΣΓ . The value 10−6 often performs well in practice. If C is of full column rank,
γi = 0 should be chosen for i = 1, . . . , c unless the matrix CΣ−1

ε C is ill-conditioned.
Using ΣΓ, (B.5.2) of Appendix B is invoked to obtain

(

Σ−1
β + CΣ−1

ε C
)−1

≈
(

Σ−1
β + ΣΓ

)−1
= Σ−1

Γ − Σ−1
Γ

(

Σβ + Σ
−1
Γ

)−1
Σ−1

Γ . (8.4.34)

Substituting (8.4.34) into (8.4.32) results in the ΣΓ-based approximate log likeli-
hood function:

�Γ(P; Y) = − 1
2
�n det(Σε) −

1
2
�n det(ΣΓ)

− 1
2

[

(Y − Ĉβ)Σ−1
ε (Y − Ĉβ) +̂β


Γ̂β

]

− 1
2
�n det(Σβ + Σ

−1
Γ ) − 1

2
̂β


(Σβ + Σ
−1
Γ )−1

̂β (8.4.35)

where
̂β = Σ−1

Γ CΣ−1
ε Y (8.4.36)

is the (approximate) generalized least squares estimator of β. Note that when C is of
full column rank andΓ = 0c,c is a feasible choice, algebra gives �(P; Y) = �0c,c (P; Y).

In this formulation,̂β assumes the role of “data” in the log likelihood calculation
if it does not depend on unknown parameters. Using (8.4.36), ̂β ∼ Nc(0c,Σ̂β), where

Σ
̂β = (Ic − Σ−1

Γ Γ)Σβ (Ic − ΓΣ−1
Γ ) + Σ−1

Γ − Σ−1
Γ ΓΣ

−1
Γ .

If the matrix C is of full column rank, allowing the choice Γ = 0c,c, then

Σ
̂β = Σβ + Σ

−1
Γ

and the last line of (8.4.35) is the log likelihood of the “data” ̂β up to an additive
constant. This holds approximately when Γ is “small,” as is expected in essentially
every application. Substantial dimension reduction in the calculation of (8.4.35) is
therefore possible when β is of considerably lower dimension than Y, and Σε is
fixed.

A second circumstance where dimension reduction is possible is when Σε has
a “simple” parameterization. Suppose that Σε = λ−1Σ0

ε for a given Σ0
ε; apply-

ing (8.4.33) with Γ = λr0Ic to calculate ̂β in (8.4.36) gives

̂β =
(

C
(

Σ0
ε

)−1
C + r0Ic

)−1
C

(

Σ0
ε

)−1
Y
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which does not depend on λ. The second line of (8.4.35) is given by

λ
(

(Y − Ĉβ)
(

Σ0
ε

)−1
(Y − Ĉβ) + r0 ̂β


̂β
)

and only a single computation of the fixed quadratic forms is required. The param-
eterization of the joint statistical model (8.4.26) also permits the desired dimension
reduction, as demonstrated below.

Noting that Qs,r = Q
r,s for vec-permutation matrices, calculation gives

CΣ−1
ε C =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λp,εQpδ+ps ,nF
DK Pp,nFDKQn,pδ+ps

0n(pδ+ps),mps

0mps,n(pδ+ps) λs,εQps ,m

(

Im ⊗ (Ks) Ks
)

Qm,ps

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In this scenario, the coefficient matrix Xs is of full column rank as long as ps ≤
min{ms, m − 1}, because then the columns of Ks are orthogonal by construction.
However, the coefficient matrix Xp,d is not guaranteed to be of full column rank
even with the requirement pδ ≤ mini=1,...,n

(

mp,i

)

− ps. Its column rank depends
on the discrepancy basis vectors constructed and their relationship to the simulator
basis vectors. Specifically, it is possible that at least one of the matrices

[

Dp
i Ks

i

]

for
i ∈ {1, . . . , n} is not of full column rank, in which case the matrix FDK will be of
reduced column rank. This suggests that only the upper-left block diagonal element
of CΣ−1

ε C needs to be adjusted to form ΣΓ . Taking

γ1 = γ2 = · · · = γn(pδ+ps) = λp,εr0 , and γn(pδ+ps)+1 = · · · = γnpδ+(n+m)ps = 0
(8.4.37)

as the diagonal elements of Γ in (8.4.33) and noting that Qs,rQr,s = Irs for vec-
permutation matrices, this adjustment involves replacing F

DK Pp,nFDK with

ΛDK ≡ F
DK Pp,n FDK + r0In(pδ+ps)

= diag

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

Dp
i

)
Pp,n

i Dp
i + r0Ipδ

(

Dp
i

)
Pp,n

i Ks
i

(

Ks
i

)
Pp,n

i Dp
i

(

Ks
i

)
Pp,n

i Ks
i + r0Ips

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, i = 1, . . . , n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(8.4.38)

Using ΛDK and the fact that (Ks) Ks = m−1
(

˜Σ
s
11

)2
, the matrix ΣΓ,d is obtained:

ΣΓ,d =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λp,εQpδ+ps ,nΛDKQn,pδ+ps
0n(pδ+ps),mps

0mps,n(pδ+ps) λs,ε m−1
(

(

˜Σ
s
11

)2
⊗ Im

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (8.4.39)

The lower-right block diagonal element of CΣ−1
ε C was reduced further in this ex-

pression using (B.5.6) of Appendix B.5. It follows that



340 Chapter 8 Calibration

Σ−1
Γ,d =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ−1
p,εQpδ+ps ,nΛ

−1
DKQn,pδ+ps

0n(pδ+ps),mps

0mps ,n(pδ+ps) λ−1
s,ε m

(

(

˜Σ
s
11

)−2
⊗ Im

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (8.4.40)

From (8.4.38), it is evident that computing Σ−1
Γ,d involves inverting n square matrices

of dimension (pδ + ps) and the square matrix ˜Σ
s
11 of dimension ps. These matrices

are all fixed, allowing their inverses to be computed once, stored, and accessed as
needed.

In the application of (8.4.26),̂β in (8.4.36) will be designated ̂Zd and

CΣ−1
ε Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λp,ε Qpδ+ps ,nF
DK Pp,nYp,n

λs,ε

(

(Ks) ⊗ Im

)

Qms ,mY s,n,ε

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where (B.5.6) was invoked to obtain the bottom entry. The vector ̂Zd follows:

̂Zd =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Qpδ+ps ,nΛ
−1
DK F

DK Pp,nYp,n

m Qps ,m

(

Im ⊗
(

˜Σ
s
11

)−2
(Ks)

)

Y s,n,ε

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8.4.41)

where again (B.5.6) was invoked to obtain the bottom entry.
Both entries of ̂Zd are subject to further simplification. Define the pδ × 1 vectors

{˜V
p
(xp

i )} and the ps × 1 vectors {˜U
s
d(xp

i )} for i = 1, . . . , n:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

˜V
p
(xp

i )

˜U
s
d(xp

i )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

Dp
i

)
Pp,n

i Dp
i + r0 Ipδ

(

Dp
i

)
Pp,n

i Ks
i

(

Ks
i

)
Pp,n

i Dp
i

(

Ks
i

)
Pp,n

i Ks
i + r0 Ips

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−1 ⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

Dp
i

)

(

Ks
i

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Pp,n
i Yp,n(xp

i ) .

Collecting these vectors into the n × pδ matrix ˜Vp and the n × ps matrix ˜Ud,s

˜Vp =
[

˜V
p
(xp

1 ) ˜V
p
(xp

2) · · · ˜V
p
(xp

n )
]

, (8.4.42)

˜Ud,s =
[

˜U
s
d(xp

1 ) ˜U
s
d(xp

2) · · · ˜U
s
d(xp

n )
]

, (8.4.43)

gives

Λ−1
DK F

DK Pp,nYp,n = Vec
(

[

˜Vp ˜Ud,s

])

. (8.4.44)

Property (B.5.4) can be invoked to simplify the top entry of ̂Zd. Utilizing (8.4.44)
and (B.5.4)

Qpδ+ps,nΛ
−1
DK F

DK Pp,nYp,n = Vec
([

˜Vp ˜Ud,s

])

. (8.4.45)

Define the ps × 1 vectors {˜W
s
(xs

i , ti)} for i = 1, . . . , m:
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˜W
s
(xs

i , t i) = m
(

˜Σ
s
11

)−2
(Ks) Y s,n,ε(xs

i , ti) .

Collecting these vectors into the m × ps matrix ˜W s

˜W s =
[

˜W
s
(xs

1, t1) ˜W
s
(xs

2, t2) · · · ˜W
s
(xs

m, tm)
]

, (8.4.46)

gives

m
(

Im ⊗
(

˜Σ
s
11

)−2
(Ks)

)

Y s,n,ε = Vec
(

˜W

s

)

by using (B.5.5). Invoking (B.5.4) yields

m Qps ,m

(

Im ⊗
(

˜Σ
s
11

)−2
(Ks)

)

Y s,n,ε = Vec
(

˜W s

)

. (8.4.47)

Substituting (8.4.45) and (8.4.47) into the top and bottom entries of (8.4.41), respec-
tively, gives

̂Zd =

⎛

⎜

⎜

⎜

⎜

⎜
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⎝

Vec
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˜Vp ˜Ud,s
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(

˜W s

)

⎞

⎟
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⎟

⎟

⎟

⎠

. (8.4.48)

The (n(pδ+ ps)+mps)×1 vector ̂Zd does not depend on any unknown parameters. If
the simulator and discrepancy basis representations are relatively efficient, namely,
ps 	 ms and (pδ + ps) 	 (my/n), then ̂Zd will have substantially reduced dimen-
sion compared with the physical experiment data and calculated simulation output
used to compute it. The development in Sect. 8.5.1 will clarify the added efficiency
obtained by using reduced “data” ̂Zd in log likelihood calculations.

Combining and simplifying (8.4.26), (8.4.27), (8.4.28), (8.4.29), (8.4.42), (8.4.43),
(8.4.46), and (8.4.48), along with (B.5.4) for the experimental data block and (B.5.5)
for the simulator block, yield

(Y − Ĉβ)Σ−1
ε (Y − Ĉβ) = λp,ε

n
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(8.4.49)

where ‖x‖2
A = xAx is the quadratic form operator. Employing (8.4.37),

Γ = diag(λp,εr0In(pδ+ps), 0mps,mps )

and utilizing (8.4.48) produce

̂β

Γ̂β = λp,ε r0

n
∑

i=1

(
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∥

2

Ips

)

. (8.4.50)
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Higdon et al. (2008) neglected this term under the presumption that r0 is small rel-
ative to the sum of the (estimated) squared coefficient norms. The sums in (8.4.49)
and (8.4.50) do not depend on any unknown parameters, implying they can be com-
puted once, stored, and accessed as needed.

Plugging (8.4.27), (8.4.39), (8.4.48), (8.4.49), (8.4.50), (8.4.23), and (8.4.40)
into (8.4.35), the (approximate) log likelihood function of Ωd, all is given by

�d(Ωd, all; Yp,n, Y s,n,ε, r0) =
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(
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̂Zd . (8.4.51)

Here Ωd, all = {Ωp,d,ε, λs,ε} is the collection of all unknown parameters appearing in
the joint statistical model (8.4.26), and r0 is defined as in (8.4.37). Additive constants
not depending on Ωd, all have been excluded from (8.4.51) as they have no effect on
statistical inference.

8.4.3.2 Joint Statistical Model Assuming No Simulator Discrepancy

When the simulator discrepancy is assumed to be identically zero, i.e., (8.4.20)
holds, the joint statistical model will be specified in terms of the vector

Znod =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Vec (Us)

Vec (W s)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(8.4.52)

of length (n + m)ps which omits the discrepancy coefficients. Because Znod is con-
structed from mean-zero GPs, conditionally on Ωp,nod, it is multivariate normally
distributed with zero mean vector and covariance matrix

ΣZ,nod =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ΣU ΣUW

ΣUW ΣW

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(8.4.53)

or, in an earlier notation,
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[

Znod

∣

∣

∣Ωp,nod
]

∼ N(n+m)ps

(

0(n+m)ps ,ΣZ,nod

)

.

The joint statistical model takes the following form:
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. (8.4.54)

The vectors Znod and
(

E
p,n, E

s

)
are assumed to be mutually independent.

Collecting the regression matrices of (8.4.20) into a my × nps block diagonal
matrix,

FK = diag(Ks
1, Ks

2, . . . , Ks
n) ,

Xp,nod is given by
Xp,nod = FK Qn,ps

. (8.4.55)

This is seen by using the partitioning of Znod given in (8.4.52), noting that

Qn,ps
Vec (Us) = Vec

(

U
s

)

via (B.5.4) and finally observing that

FKVec
(

U
s

)

=
[

Mn
0(xp

1 ) Mn
0(xp

2 ) · · · Mn
0(xp

n )
]

as required.
The joint statistical model (8.4.54) has the form (8.4.30), and thus the construc-

tion of the log likelihood function parallels the previous results for joint statistical
model (8.4.26). Only the matrix blocks affected by the statistical model of the phys-
ical observations change, as seen by comparing (8.4.54) and (8.4.26). Matrix blocks
determined by the statistical model of the simulation output remain the same as
above and are reproduced in simplied form below. The modified CΣ−1

ε C matrix is
given by

CΣ−1
ε C =

⎛

⎜
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⎠

.

The coefficient matrix Xp,nod will generally be of full column rank because the ma-
trices Ks

i for i = 1, . . . , n should be of full column rank as long as the value of ps

chosen satisfies ps ≤ mini=1,...,n mp,i. However, this inequality could be violated in
the rare circumstance of a sparse set of physical observations paired with a more
complex simulator. Furthermore, because the columns of Ks

i are interpolations of
the simulator basis vectors onto the index variable(s) settings corresponding to the
ith physical experiment, the rare possibility of at least one of these coefficient ma-
trices having reduced column rank (thus rendering FK of reduced column rank) is
allowed for in the formulation of ΣΓ,nod. Analogous to the formulation of ΣΓ,d, taking

γ1 = γ2 = · · · = γnps = λp,εr0 , and γnps+1 = · · · = γ(n+m)ps = 0 (8.4.56)
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the adjustment to the upper-left block diagonal element of CΣ−1
ε C involves replac-

ing F
K Pp,nFK with ΛK :

ΛK = diag
(

(

Ks
i

)
Pp,n

i Ks
i + r0 Ips , i = 1, . . . , n

)

. (8.4.57)

As discussed above, typical applications in this setting will allow r0 = 0 to be
chosen.

Using ΛK , the matrices ΣΓ,nod and Σ−1
Γ,nod are
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(8.4.58)
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. (8.4.59)

From (8.4.57), it is evident that computing Σ−1
Γ,nod involves inverting n square ma-

trices of dimension ps and the square matrix ˜Σ
s
11 of dimension ps. These matrices

are all fixed, allowing their inverses to be computed once, stored, and accessed as
needed.

In the application of (8.4.54),̂β in (8.4.36) will be designated ̂Znod and
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.

The vector ̂Znod with bottom entry obtained from (B.5.6) and the substitu-
tion (8.4.47) follows:

̂Znod =
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. (8.4.60)

Define the ps × 1 vectors {˜U
s
nod(xp

i )} for i = 1, . . . , n:
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Collecting these vectors into the n × ps matrix ˜Unod,s,

˜Unod,s =
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s
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s
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s
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, (8.4.61)

gives

Λ−1
K F

K Pp,nYp,n = Vec
(

˜U

nod,s

)

. (8.4.62)
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Utilizing (8.4.62) and (B.5.4)

Qps ,nΛ
−1
K F

K Pp,nYp,n = Vec
(

˜Unod,s

)

, (8.4.63)

and therefore upon substituting (8.4.63) into (8.4.60)
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. (8.4.64)

The (n + m)ps × 1 vector ̂Znod does not depend on any unknown parameters. Sub-
stantial dimension reduction is achieved by using ̂Znod as “data” in log likelihood
calculations when ps 	 min{ms, (my/n)}.

Leveraging (8.4.54), (8.4.27), (8.4.55), (8.4.29), (8.4.61), (8.4.46), and (8.4.64),
along with (B.5.4) for the experimental data block and (B.5.5) for the simulator
block, yields
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. (8.4.65)

Employing (8.4.56), Γ = diag(λp,εr0Inps , 0mps ,mps ), and utilizing (8.4.64) produce

̂β

Γ̂β = λp,ε r0
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. (8.4.66)

Higdon et al. (2008) neglected this term under the presumption that r0 is small rel-
ative to the sum of the (estimated) squared coefficient norms. The sums in (8.4.65)
and (8.4.66) do not depend on any unknown parameters, implying they can be com-
puted once, stored, and accessed as needed.

Plugging (8.4.27), (8.4.58), (8.4.65), (8.4.66), (8.4.64), (8.4.53), and (8.4.59)
into (8.4.35), the (approximate) log likelihood function of Ωnod, all is given by
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Here Ωnod, all = {Ωp,nod,ε, λs,ε} is the collection of all unknown parameters appearing
in the joint statistical model (8.4.54) and r0 is defined as in (8.4.56). Additive con-
stants not depending on Ωnod, all were excluded from (8.4.67) as they have no effect
on statistical inference.

8.5 Bayesian Analysis

Section 8.5.1 specifies one possible prior for the parameters of the functional mul-
tivariate calibration model introduced in Sect. 8.4 and provides a justification of
the prior. The final expressions for the log posteriors for the resulting discrepancy
and no discrepancy scenarios are given by (8.5.32) and (8.5.33), respectively. Sec-
tion 8.5.2 provides detailed methodology for using the posterior samples to imple-
ment the three emulation scenarios listed at the beginning of Sect. 8.4 and repeated
here for convenience: at unsampled inputs

Case 1: emulate the simulation output using only simulator data
Case 2: emulate the calibrated simulator output modeling the simulator bias, and
Case 3: emulate the calibrated simulator output assuming no simulator bias.

8.5.1 Prior and Posterior Distributions

The log likelihood functions derived in Sect. 8.4.3 are combined with log prior dis-
tributions specified below to form the log posterior distributions used in Bayesian in-
ference of all uncertain parameters for each modeling scenario previously described.
This subsection concludes with a brief discussion of MCMC methods that have been
used to sample these posterior distributions.

The specification of prior distributions given in the next paragraphs follows the
approach taken in Higdon et al. (2008). Numerical values for prior parameters are
suggested in this subsection, and their interpretation is discussed. Alternative (para-
metric) prior distributions and choices of parameter values can certainly be used.

First, the calibration parameter vector Θ is assigned a prior distribution:

[Θ] ∼ π(θ) , (8.5.1)

where π(·) is a probability density function. Common choices for this distribution
are uniform and multivariate normal. A uniform distribution allows the analyst to
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restrict each calibration parameter to a fixed, predefined interval or half interval.
Intervals defined in terms of some fixed percentage deviation from a nominal value
for each parameter are common in applications.

Example 1.7 (Continued) (Cases 2 and 3: Emulation of the Calibrated Simulator).
The equation of state, spall strength, and impact velocity parameters ε, Pmin, and
vs are assigned independent uniform prior distributions on the domains provided in
Table 1.4. The seven material strength parameters (with −�n(γ) in place of γ) are
assigned a multivariate normal prior distribution having means, standard deviations
(SDs), and correlation matrix given in Table 8.8. This distribution was obtained
by separately calibrating the Preston–Tonks–Wallace material strength model using
data from a different set of experiments that isolated the strength behavior of tanta-
lum. The prior distribution of the material strength parameters is truncated to their
joint domain given in Table 1.4. �

θ0 κ −�n(γ) y0 y∞ s0 s∞

Mean 0.00818 0.713 11.1 0.0098 0.0016 0.0225 0.00351

SD/0.001 1.787 38.6 516.0 0.413 0.106 11.4 0.385

Correlation matrix

θ0 1 −0.14 −0.0394 −0.176 −0.874 −0.473 0.0093

κ −0.14 1 0.726 0.607 0.26 0.102 0.207

−�n(γ) −0.0394 0.726 1 0.0373 −0.0394 0.0829 0.0521

y0 −0.176 0.607 0.0373 1 0.329 0.0104 0.312

y∞ −0.874 0.26 −0.0394 0.329 1 0.323 0.114

s0 −0.473 0.102 0.0829 0.0104 0.323 1 −0.66

s∞ 0.0093 0.207 0.0521 0.312 0.114 −0.66 1

Table 8.8 Prior distribution settings for material strength calibration parameters

Second, independent beta distributions are assigned to all correlation length pa-
rameters in Sects. 8.4.1 and 8.4.2, independent of Θ. In the simulator basis model,
the priors for the control and calibration input correlation parameters are taken to be

[ρx,i
j | ai j

s,ρ, bi j
s,ρ] ∼ Be(ai j

s,ρ, bi j
s,ρ) ; i = 1, . . . , ps , j = 1, . . . , d , (8.5.2)

[ρt,i
j | ai j

s,ρ, bi j
s,ρ] ∼ Be(ai j

s,ρ, bi j
s,ρ) ; i = 1, . . . , ps , j = d + 1, . . . , d + q , (8.5.3)

respectively, where the beta distribution Be(α, β) is parameterized as in (B.3.1) of
Appendix B.3. In the discrepancy basis model, the prior
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[ρδ,i
j | ai j

δ,ρ, bi j
δ,ρ] ∼ Be(ai j

δ,ρ, bi j
δ,ρ) ; i = 1, . . . , F , j = 1, . . . , d , (8.5.4)

is assumed.
Although the values of the fixed prior parameters are allowed to vary across

correlation length parameters, as indicated by the notation above, they will each
typically be set to common values as,ρ and bs,ρ in the simulator basis model and
aδ,ρ and bδ,ρ in the discrepancy basis model. This same reasoning is also used to
simplify the selection of prior parameters in other prior parameter settings intro-
duced below. In many applications, the principle of effect sparsity is reasonable to
assume, i.e., the output variation can be assumed to be dominated by only a few
input variables. In the absence of specific knowledge relevant to a particular ap-
plication, this principle will be enforced by choice of appropriate fixed parameter
settings for these beta prior distributions. If any correlation length parameter as-
sumes the value 1, variation of its corresponding input variable has no impact on
the associated GP. Therefore, effect sparsity can be enforced by adopting beta prior
distributions having means close to 1 with “small” variances. For example, setting
(as,ρ, bs,ρ) = (1, 0.1) = (aδ,ρ, bδ,ρ) defines a beta distribution having approximately
75% of its probability mass above 0.95.

Third, the prior for all precision parameters encountered in Sects. 8.4.1 and 8.4.2
is assumed independent of all correlation length parameters and Θ; the precision
parameters are assumed to have independent gamma distributions. For the simulator
basis model

[λs,i | ai
s,λ] ∼ Γ(ai

s,λ, ai
s,λ) ; i = 1, . . . , ps , and (8.5.5)

[λn,i | ai
n,λ, bi

n,λ] ∼ Γ(ai
n,λ, bi

n,λ) ; i = 1, . . . , ps , (8.5.6)

where the gamma distribution Γ(α, β) is parameterized as in (B.2.1) of Ap-
pendix B.2. Notice that the gamma prior distributions of {λs,i}ps

i=1 depend on the
single fixed parameter as,λ; this selection of equal a and b parameters causes these
prior distributions to have mean 1, implying that the simulator basis coefficient
processes all have variance 1 conditionally when their precision parameters, λs,i,
equal their prior means. This is consistent with the effect of simulation output
standardization forcing a variance of 1 on the observed simulator basis coefficients
as discussed in Sect. 8.4.1. Larger values of as,λ force the prior precisions of the
simulator basis coefficient processes to deviate less from 1; for example, when
as,λ = 5, approximately 75% of the prior probability mass falls in [0.5, 1.5], while
for as,λ = 10, approximately 90% of the prior probability mass falls in [0.5, 1.5].
The gamma prior for each λs,i is truncated below at 0.3 to prevent excessively large
simulator basis coefficient process variances.

The gamma prior distributions for the nugget parameter precisions, {λn,i}ps

i=1, are
chosen so that the mean nugget effects are “small,” but have large variances to allow
any of these effects to activate as necessary for numerical stability. For example,
(an,λ, bn,λ) = (3, 0.003) accomplishes this goal, yielding a “large” prior mean and
prior variance for λn,i (recall a large precision is a small variance, so that a mean-
zero nugget effect process having a large precision parameter will take values near
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zero with high probability). The gamma prior for each λn,i is truncated below at 60
to prevent the nugget effects from getting too “large.”

For the discrepancy basis model that allows different biases in F portions of the
input space, the prior

[λδ,i | ai
δ,λ, bi

δ,λ] ∼ Γ(ai
δ,λ, bi

δ,λ) , i = 1, . . . , F (8.5.7)

is assumed. Initially it is common to assume that the simulator is a good represen-
tation of physical reality, meaning the discrepancy should be close to zero across
the input domain; nonzero discrepancy δ(x) should be allowed to activate if this
assumption is incorrect, even in a part of the input domain. Both objectives are ac-
complished by establishing gamma prior distributions on the precision parameters
of the discrepancy basis coefficient processes that have large means and variances,
using the same reasoning as discussed in the context of the nugget effects above.
The choice (aδ,λ, bδ,λ) = (1, 0.001) enforces, initially, a universally small discrep-
ancy process with substantial flexibility for targeted activation through selection of
F > 1 coefficient groups, if necessary.

Finally, for the observational error of the physical experiment and the simulator
basis noise

[λp,ε | ap,ε, bp,ε] ∼ Γ
(

ap,ε, bp,ε

)

, independent of

[λs,ε | as,ε, bs,ε] ∼ Γ
(

as,ε, bs,ε
)

(and both independent of all other parameters). The prior distribution for observa-
tional error precision is often chosen to be diffuse (having a “large” variance) when
replicate physical experiments have been conducted; the prior pair (ap,ε, bp,ε) =
(1, 0.001) permits such behavior. This (ap,ε, bp,ε) choice allows the actual variabil-
ity in the replicates to inform this precision with minimal restriction. On the other
hand, when physical observations are scarce, the prior distribution of this precision
is typically chosen to be informative (having a “small” variance) with its probability
mass focused on an assumed level of observational error derived from subject-matter
expert assessment.

The simulator basis noise should typically be small if a sufficient number of
simulator basis vectors, ps, are chosen to represent simulation output. Therefore
the prior mean precision of the mean-zero simulator basis noise process is set to be
“large” as is the prior variance of this precision, to allow for activation of this process
in settings where greater simulator basis noise is present; for example, (as,ε, bs,ε) =
(5, 0.005) has these two features. However, the gamma prior of λs,ε is truncated
below at 60 to prevent simulator basis noise from becoming too “large.”

Example 1.7 (Continued). The behavior of the simulator and discrepancy basis co-
efficient processes (8.4.6) and (8.4.17) is governed by the correlation length param-
eters (8.5.2), (8.5.3), and (8.5.4), as well as the precision parameters (8.5.5), (8.5.6),
and (8.5.7). Table 8.9 provides the settings of the fixed parameters defining the prior
distributions of these correlation length and precision parameters. These choices are
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common across input dimensions (for the correlation length parameters) and coef-
ficient processes. In addition, the settings of the fixed parameters defining the prior
distributions of the simulator basis noise precision λs,ε and observation error preci-
sion λp,ε are also stated. The choices made for all of these parameters are seen to be
in line with the above discussion. Finally, it is noted that this analysis assumes an
F = 1 parameter group for the discrepancy basis coefficient processes (8.4.17). �

as,ρ bs,ρ as,λ an,λ bn,λ aδ,ρ bδ,ρ aδ,λ bδ,λ as,ε bs,ε ap,ε bp,ε

1 0.1 5 3 0.003 1 0.1 1 0.001 5 0.005 1 0.001

Table 8.9 Prior distribution settings for correlation length and precision parameters

Because the log posterior distribution is, by definition, the sum of the log prior
distribution and the log likelihood function, it is evident from the form of the log
likelihood functions (8.4.51) and (8.4.67) that the leading terms involving λs,ε and
λp,ε from these log likelihood functions can be grouped with the λs,ε and λp,ε terms
from the log prior distributions yielding an equivalent expression for the log poste-
rior distribution. Specifically, define the following constants:

ad,p,ε = ap,ε +
my − n(pδ + ps)

2
,

bd,p,ε = bp,ε +
1
2

n
∑

i=1

∥

∥

∥

∥
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i
˜V

p
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i
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i )
∥

∥

∥

∥
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∥

∥
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s
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, (8.5.8)

anod,p,ε = ap,ε +
my − nps

2
,

bnod,p,ε = bp,ε +
1
2

n
∑

i=1

∥

∥

∥

∥
Yp,n(xp

i ) − Ks
i
˜U

s
nod(xp
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Ips

, (8.5.9)

a′
s,ε = as,ε +

m(ms − ps)
2

,

b′
s,ε = bs,ε +

1
2

m
∑

i=1

∥

∥

∥

∥
Y s,n,ε(xs

i , ti) − Ks
˜W

s
(xs

i , t i)
∥

∥

∥

∥

2

Ims

,

where r0 is defined as in (8.4.37) or (8.4.56). The modified prior distributions of λp,ε

with and without modeling of simulator discrepancy become
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[λp,ε | ad,p,ε, bd,p,ε] ∼ Γ
(

ad,p,ε, bd,p,ε

)

, and (8.5.10)

[λp,ε | anod,p,ε, bnod,p,ε] ∼ Γ
(

anod,p,ε, bnod,p,ε

)

, (8.5.11)

respectively. In particular, when discrepancy is modeled, ap,ε > 0 must take a value
sufficiently large so that ad,p,ε > 0 is satisfied. This is automatic for any ap,ε > 0
when r0 = 0 is an allowable choice. The modified prior distribution of λs,ε takes the
form

[λs,ε | a′
s,ε, b′

s,ε] ∼ Γ
(

a′
s,ε, b′

s,ε

)

. (8.5.12)

Example 1.7 (Continued). Table 8.10 lists the settings of the parameters defining
the λp,ε prior distributions when the simulator discrepancy is modeled (8.5.10) and
when the simulator discrepancy is omitted (8.5.11). Observe that with high proba-
bility the modified prior precision λp,ε is larger when the simulator discrepancy is
modeled than when it is omitted (prior mean of 14.8 and standard deviation of 1.66
versus 2.078 and 0.226). This is a consequence of taking r0 = 0 in this analysis and a
smaller residual sum of squares (between the experimental data and its least squares
estimates) observed in Fig. 8.18 when compared with Fig. 8.19. These residual sums
of squares appear in (8.5.8) and (8.5.9), with the consequence that bd,p,ε 	 bnod,p,ε

in this analysis. The result is a smaller modified prior error variance when simulator
discrepancy is modeled than when it is omitted. The settings of the modified prior
distribution (8.5.12) of λs,ε are also given in Table 8.10. The amount of simulation
data that is available results in this distribution having a very sharp peak at its mean
value 21.7.

ad,p,ε bd,p,ε anod,p,ε bnod,p,ε a′s,ε b′s,ε

80 5.4 84.5 40.7 8520 392

Table 8.10 Modified prior distribution settings for λp,ε and λs,ε under Cases 2 and 3

In the case of emulating the simulation output based only on the 127 simula-
tor runs, the modified prior distribution of λs,ε is slightly different because of the
removal of a simulation run: a′

s,ε = 8450 and b′
s,ε = 393.

Recall from Table 8.9 that the initial gamma priors for λs,ε and λp,ε were chosen
to be diffuse. As seen in Table 8.10, the modified priors for these parameters allow
the size of the simulator and experimental data model residuals to influence the size
of the simulator basis noise and observational error processes. In this example, only
n = 1 experiment is available for calibration. Therefore, care should be exercised to
ensure simulator bias is not overfit by the discrepancy model, due to its considerable
impact on the observational error process through the modified prior for λp,ε. Ideally,
replicate experiments would be available to provide a pure estimate of observational
error through this modified prior distribution. �

Stated in terms of arbitrary given prior parameters, the log prior distribution
of Ωd, all (where the discrepancy is modeled statistically) is obtained by collect-
ing (8.5.1), (8.5.2), (8.5.3), (8.5.4), (8.5.5), (8.5.6), (8.5.7), (8.5.10), and (8.5.12)
yielding
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pd(Ωd, all; r0) = �n (π(θ))

+
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+ (ad,p,ε − 1) �n(λp,ε) − bd,p,ελp,ε

+ (a′
s,ε − 1) �n(λs,ε) − b′

s,ελs,ε , (8.5.13)

up to additive terms that do not change as a function of Ωd, all.
Analogously, the log prior distribution of Ωnod, all (where the discrepancy is as-

sumed to be negligible) is obtained by collecting (8.5.1), (8.5.2), (8.5.3), (8.5.5),
(8.5.6), (8.5.11), and (8.5.12) producing

pnod(Ωnod, all; r0) = �n (π(θ))

+
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)
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+ (anod,p,ε − 1) �n(λp,ε) − bnod,p,ελp,ε

+ (a′
s,ε − 1) �n(λs,ε) − b′

s,ελs,ε , (8.5.14)

up to additive terms that do not change as a function of Ωnod, all.
With the modified prior distribution (8.5.10) for the observation error and (8.5.12)

for the simulator basis noise incorporated into (8.5.13), the log likelihood func-
tion (8.4.51) reduces to

�d(Ωd, all; ̂Zd, r0) = −1
2
�n det

(

ΣZ,d + Σ
−1
Γ,d

)

− 1
2
̂Z

d

(

ΣZ,d + Σ
−1
Γ,d

)−1
̂Zd , (8.5.15)

while (8.4.67) takes a similarly reduced form after incorporation of the modified
prior distribution (8.5.11) for observation error and (8.5.12) for simulator basis noise
into (8.5.14)

�nod(Ωnod, all; ̂Znod, r0) =

−
1
2
�n det

(

ΣZ,nod + Σ
−1
Γ,nod

)

−
1
2
̂Z


nod

(

ΣZ,nod + Σ
−1
Γ,nod

)−1
̂Znod . (8.5.16)

If it is feasible to take r0 = 0 in (8.4.37) or (8.4.56), then (8.5.15) and (8.5.16) are
the log likelihood functions of reduced data ̂Zd and ̂Znod, respectively, as discussed
in Sect. 8.4.3 immediately following (8.4.36). When r0 > 0, this notation is main-
tained even though (8.5.15) and (8.5.16) only approximate the actual log likelihood
functions of the reduced data in this case.

By providing alternative expressions for the matrices ΣZ,d + Σ
−1
Γ,d and ΣZ,nod +

Σ−1
Γ,nod, the log likelihood functions (8.5.15) and (8.5.16) can be expressed in such a

way as to provide important computational improvements. These equivalent expres-
sions use the following matrix algebra identities. Consider the (generic) symmetric
matrix A partitioned as follows:
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(8.5.17)

and the determinant of A is can be computed as

det(A) = det (S11) det (A22) . (8.5.18)

When the simulator discrepancy is modeled statistically, take the A block entries
for ΣZ,d + Σ

−1
Γ,d from (8.4.23) and (8.4.40) to be
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and A22 = ΣWε where

ΣWε = diag
(

ΣWε,1,ΣWε,2, . . . ,ΣWε,ps

)

(8.5.19)

has diagonal blocks

ΣWε,i = ΣW,i + λ−1
s,εm

(

σ̃s
i,i

)−2
Im , i = 1, . . . , ps , (8.5.20)

for ˜Σ
s
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1,1, σ̃

s
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s
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)
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UW , (8.5.21)

yielding
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in (8.5.17). Consider the n × ps matrix ˜Td,s:
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where ˜U
i
d,s and ˜W

i
s are the ith columns of the matrices ˜Ud,s from (8.4.43) and

˜W s from (8.4.46), respectively, for i = 1, . . . , ps. Utilizing (8.5.23), (8.5.22),
and (8.5.20) gives
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The determinant formula (8.5.18) yields

det
(

ΣZ,d + Σ
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)

= det
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Σd|W
)

det (ΣWε) = det
(
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. (8.5.25)

Therefore, using (8.5.24) and (8.5.25), the log likelihood function (8.5.15) is equiv-
alently given by

�d(Ωd, all; ̂Zd, r0) =
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− 1
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s . (8.5.26)

The computational complexity of (8.5.26) for repeated evaluations at different pa-
rameter settings Ωd, all (excluding one-time calculations of quantities that can be
stored and accessed as needed) is O

(

(pδ + ps)3n3 + psm3
)

, while evaluation of the
log likelihood function without the dimension-reducing simplifications is of the or-
der O

(

(my + msm)3
)

. With ps 	 ms and (pδ + ps) 	 (my/n) as assumed previ-
ously, (8.5.26) therefore achieves a significant computational cost savings.

When the simulator discrepancy is assumed to be identically zero, take the A
block entries for ΣZ,nod + Σ

−1
Γ,nod from (8.4.53) and (8.4.59) to be

A11 = ΣU + λ−1
p,εQps ,nΛ

−1
K Qn,ps

, A12 = ΣUW , and A22 = ΣWε .

Using ΣU|W from (8.5.21), it is straightforward to calculate

S11 = Σnod|W = ΣU|W + λ−1
p,εQps ,nΛ

−1
K Qn,ps

(8.5.27)

in (8.5.17). Denote the n × ps matrix ˜Tnod,s to be
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where ˜U
i
nod,s is the ith column of the matrix ˜Unod,s from (8.4.61) for i = 1, . . . , ps.

Utilizing (8.5.28), (8.5.27), and (8.5.20) gives
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Apply (8.5.18) to show

det
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(8.5.30)
Therefore, using (8.5.29) and (8.5.30), the log likelihood function (8.5.16) is given
equivalently by
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The computational complexity of this function for repeated evaluation at differ-
ent parameter settings Ωnod, all is O(p3

sn
3 + psm3). Under the assumptions ps 	

min{ms, my/n}, (8.5.31) represents a significant computational cost savings over the
unsimplified log likelihood function, which has order O

(

(my + msm)3
)

.

When simulator discrepancy is modeled, the log posterior distribution of Ωd, all

given the standardized physical observations Yp,n and the standardized simulation
output Ys,n,ε is calculated by summing (8.5.13) and (8.5.26):

πd(Ωd, all |Yp,n, Ys,n,ε, r0) = pd(Ωd, all; r0) + �d(Ωd, all; ̂Zd, r0) , (8.5.32)

up to additive constants not depending on Ωd, all.

When simulator discrepancy is assumed negligible, the log posterior distribution
of Ωnod, all given Yp,n and Y s,n,ε is calculated by summing (8.5.14) and (8.5.31):

πnod(Ωnod, all |Yp,n, Ys,n,ε, r0) = pnod(Ωnod, all; r0) + �nod(Ωnod, all; ̂Znod, r0) , (8.5.33)

up to additive constants not depending on Ωnod, all.

In Case 1 applications where Bayesian emulation of the simulator is desired
based only on simulation output, the prior distribution and log likelihood function
are modified to include only the portion of the joint statistical model pertaining to
the simulation output. The parameters subject to statistical inference in this scenario
are the components of Ωs,ε = {Ωs, λs,ε}, and Ωs is defined in (8.4.10). The log prior
distribution (8.5.14) simplifies to
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up to additive constants that do not depend on Ωs,ε. The log likelihood func-
tion (8.5.31) reduces to
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1
2

ps
∑

i=1

�n det
(

ΣWε,i
)

−
1
2

ps
∑

i=1

(

˜W
i
s

)
Σ−1

Wε,i
˜W

i
s . (8.5.35)
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Fig. 8.20 Univariate and bivariate marginal posterior distributions for the calibration parameters
Θ under Cases 2 (left) and 3 (right)

The log posterior distribution of Ωs,ε given standardized simulation output Y s,n,ε is
calculated by summing (8.5.34) and (8.5.35):

πs(Ωs,ε |Ys,n,ε) = ps(Ωs,ε) + �s

(

Ωs,ε; Vec
(

˜W s

))

, (8.5.36)

again up to additive constants not depending on Ωs,ε.

The posterior distributions (8.5.32), (8.5.33), and (8.5.36) are not generally avail-
able in closed form. However, these distributions can be sampled using a technique
such as MCMC as described in Appendix D. In particular, Metropolis within Gibbs
algorithms is often effective, especially if the burn-in period is used to tune the ac-
ceptance rate of the Metropolis steps for each parameter as in Graves (2011). Such
an approach may be inadequate if there is a high degree of covariance among a sub-
set of parameters. In this case, an adaptive multivariate algorithm such as Delayed
Rejection Adaptive Metropolis (Haario et al. (2006)) may be necessary.

Example 1.7 (Continued). Consider Cases 2 and 3 where emulation of the cali-
brated simulator is desired. The left panel of Fig. 8.20 shows univariate and bi-
variate marginal posterior distributions of the calibration parameters Θ assum-
ing model (8.4.18) (which permits simulator discrepancy); the right panel shows
the analagous univariate and bivariate plots for model (8.4.20) (which assumes no
discrepancy). These results are based on 1000 MCMC samples from the posterior
distributions (8.5.32) and (8.5.33). The bivariate marginals were computed using
kernel density estimation. As expected, some differences are present in the marginal
posterior distributions between the two cases.

When the discrepancy is omitted but is not statistically zero throughout the index
variable (time) domain, as in this analysis, the potential exists for the calibration
process to compensate. Some parameters, particularly those exhibiting sensitivity in
regions of index variable space where discrepancy is present, may be driven to incor-
rect solutions in an effort to minimize the unaccounted for bias that exists between
the simulator and experimental data. Figure 8.21 compares the univariate marginal
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posterior distributions for parameters ε and Pmin. Free surface velocity is overall
most sensitive to the equation of state perturbation ε, and marginally this parameter
is calibrated similarly in both cases. However, the material damage parameter Pmin

is calibrated more tightly against its upper boundary in Case 3, in an attempt to min-
imize the unmodeled bias between the simulator and experimental data at late times
(after ≈ 2.1 μs) when spall strength becomes relevant. Observed differences of this
nature in calibration results for individual parameters may be one of several useful
tools to help diagnose candidate sources of simulator inadequacy. �

The resulting MCMC samples can then be used to make statistical inferences of
interest, such as prediction of the simulation output or the physical observations at
unsampled input settings, as discussed in the next subsection.
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Fig. 8.21 Univariate marginal posterior distributions for ε (left) and Pmin (right) under Cases 2
(blue) and 3 (orange)

8.5.2 Prediction

This subsection describes Bayesian methodology for Cases 1–3 listed at the begin-
ning of this section. Each of these three prediction problems can be placed within a
common statistical framework. Recall from Sect. 8.4.3 that, with or without simula-
tor bias, the joint statistical model of the simulation and experimental data, which is
denoted by the vector Y for this discussion, takes the form

Y = Cβ + ε , (8.5.37)
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where β and ε are mutually independent with β ∼ N(0,Σβ) and ε ∼ N(0,Σε).
Suppose now that the unobserved quantity

Y∗ = C∗β∗ + ε∗ , (8.5.38)

is to be predicted where β∗ and ε∗ are mutually independent with β∗ ∼ N(0,Σβ∗)
and ε∗ ∼ N(0,Σε∗ ). Assume further that (8.5.38) and (8.5.37) are connected via

⎛
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⎜

⎜

⎜
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⎠
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⎜
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and that (β∗, β), ε∗, and ε are mutually independent.
The joint distribution of (Y∗, Y) is readily obtained from the modeling assump-

tions of the previous paragraph:
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, (8.5.39)

where P denotes whatever parameters in Sect. 8.4.3 are used to define Σβ and Σε.
The matrices Σβ∗ , Σβ∗β, and Σε∗ are also assumed to depend only on the parameters
in P.

The predictive distribution of the unobserved Y∗ is defined to be the conditional
distribution of Y∗ given Y. From (8.5.39), this distribution, conditional on P, is
multivariate normal with mean vector and covariance matrix computed as described
in Lemma B.2 of Appendix B:

[Y∗ |Y,P] ∼ N
(

̂Y
∗
,ΣY∗ |Y

)

, (8.5.40)

where
̂Y
∗
= E[Y∗|Y,P] =

(

C∗Σβ∗β

)

C
(

Σε + CΣβC
)−1

Y (8.5.41)

and

ΣY∗ |Y = Cov[Y∗|Y,P]

= Σε∗ + C∗
[

Σβ∗ − Σβ∗βC
(

Σε + CΣβC
)−1

CΣβ∗β

]

(

C∗) . (8.5.42)

Integrating out parameters using their posterior distribution gives the predictive den-
sity function of Y∗ to be

p(Y∗ | Y) =
∫

p(Y∗ | Y,P) π(P | Y) dP , (8.5.43)

where p(Y∗ | Y,P) is the multivariate normal density function arising from (8.5.40)
and π(P | Y) is the posterior density of the parametersP conditional on the observed
data Y.
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Often the predictive density (8.5.43) is not expressible in closed form, typically
because the posterior density of P can be specified only up to its normalizing con-
stant. Using MCMC to obtain samples P1,P2, . . . ,PNmcmc from the posterior distri-
bution of P, the predictive density of Y∗ can be estimated as follows:

p̂(Y∗ | Y) = N−1
mcmc

Nmcmc
∑

i=1

p(Y∗ | Y,Pi) .

The estimated predictive density p̂(Y∗ | Y) is a mixture of multivariate normal den-
sity functions; it has mean

Y
∗
p̂ = N−1

mcmc

Nmcmc
∑

i=1

̂Y
∗
i

for ̂Y
∗
i = E[Y∗|Y,Pi], and covariance matrix

Σ∗p̂ = N−1
mcmc

Nmcmc
∑

i=1

Σi
Y∗|Y + N−1

mcmc

Nmcmc
∑

i=1

(

̂Y
∗
i − Y

∗
p̂

) (

̂Y
∗
i − Y

∗
p̂

)

for Σi
Y∗|Y = Cov[Y∗|Y,Pi]. Realizations Y∗

1, Y∗
2, . . . , Y∗

Nmcmc
from the predictive distri-

bution of Y∗ are obtained as follows:

Y∗
i ∼ N

(

̂Y
∗
i ,Σ

i
Y∗ |Y

)

,

for i = 1, . . . , Nmcmc.

The mean vector (8.5.41) and covariance matrix (8.5.42) can be simplified to
take advantage of dimension reduction in prediction, analogous to the dimension
reduction achieved in the log likelihood computations of Sect. 8.4.3. As before, this
dimension reduction is realized by utilizing an equivalent expression for the inverse
of the matrix Σε +CΣβC obtained by substituting (8.4.34) into (8.4.32). This gives

̂Y
∗
= C∗Σβ∗β

[

Γ +
(

I − ΓΣ−1
Γ

) (

Σβ + Σ
−1
Γ

)−1
]

̂β (8.5.44)

ΣY∗|Y = Σε∗ + C∗
(

Σβ∗ − Σβ∗βΣβ,ΓΣ

β∗β

)

(

C∗) (8.5.45)

after some algebra, where

Σβ,Γ = Γ − ΓΣ−1
Γ Γ +

(

I − ΓΣ−1
Γ

) (

Σβ + Σ
−1
Γ

)−1 (

I − Σ−1
Γ Γ

)

and the matrixΓ is defined below (8.4.33) and vector̂β by (8.4.36). In the remainder
of this subsection, the approach used by Higdon et al. (2008) is adopted and the
matrix Γ will be assumed negligible (Γ ≈ 0) except in the calculation of Σ−1

Γ . With
this simplification, (8.5.44) and (8.5.45) become

̂Y
∗
= C∗Σβ∗β

(

Σβ + Σ
−1
Γ

)−1
̂β (8.5.46)
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ΣY∗|Y = Σε∗ + C∗
(

Σβ∗ − Σβ∗β

(

Σβ + Σ
−1
Γ

)−1
Σβ∗β

)

(

C∗) . (8.5.47)

With the above simplification, the matrix inverse calculations in (8.5.46)
and (8.5.47) have order determined by the length of the reduced data vector ̂β
rather than by the length of the original data vector Y, resulting in considerable
computational savings.

8.5.2.1 Emulation of the Simulation Output Using Only Simulator Data

The first scenario described here is prediction of the simulation output at unsam-
pled input sites. This prediction scenario will be restricted to the case of observ-
ing simulator data only (and physical observations are not available). In this case,
P = Ωs,ε = {Ωs, λs,ε}, and Ωs are defined in (8.4.10).

Suppose the simulator is to be predicted at the m̃ input settings (̃xs
1,˜t1), (̃xs

2,˜t2),
. . . , (̃xs

m̃,˜tm̃). Let the m̃ × ps matrix

W∗
s =

[

W s (̃xs
1,˜t1) W s (̃xs

2,˜t2) · · · W s (̃xs
m̃,˜tm̃)

]

denote the corresponding basis coefficient processes in the emulator model. To pre-
dict realizations of W∗

s , consider the following settings: C∗ = Im̃ps , β
∗ = Vec

(

W∗
s
)

,
and Σε∗ = 0m̃ps ,m̃ps . Therefore, Σβ∗ = ΣW∗ for

ΣW∗ = diag
(

ΣW∗ ,1,ΣW∗ ,2, . . . ,ΣW∗ ,ps

)

.

For k ∈ {1, . . . , ps} and i, j = 1, . . . , m̃, the (i, j) element of ΣW∗ ,k is

1
λs,k

Rs,k

(

(̃xs
i ,˜t i), (̃xs

j,˜t j)
)

+
1

λn,k
I
{

(̃xs
i ,˜ti) = (̃xs

j,˜t j)
}

.

Because only simulator data are used for emulation, the following assignments
are made: Y = Y s,n,ε, C = Xs from (8.4.29), β = Vec (W s), and Σε = λ−1

s,εImsm.
Hence, Σβ = ΣW from (8.4.24), and Σβ∗β = ΣW∗W for

ΣW∗W = diag
(

ΣW∗W,1,ΣW∗W,2, . . . ,ΣW∗W,ps

)

.

For k ∈ {1, . . . , ps}, i = 1, . . . , m̃, and j = 1, . . . , m, the (i, j) element of ΣW∗W,k is

Rs,k

(

(̃xs
i ,˜ti), (xs

j, t j)
)

/λs,k .

Since Xs has full column rank by construction, Γ = 0mps ,mps . It follows that

ΣΓ = λs,ε m−1
(

(

˜Σ
s
11

)2
⊗ Im

)

.
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Combining (8.4.36) and (8.4.46), the reduced data vector is ̂β = Vec
(

˜W s

)

. Uti-
lizing (8.5.20), consider the m̃ × ps matrix

˜T
∗
w,s =

[

ΣW∗W,1Σ
−1
Wε,1

˜W
1
s ΣW∗W,2Σ

−1
Wε,2

˜W
2
s · · · ΣW∗W,psΣ

−1
Wε,ps

˜W
ps

s

]

,

where ˜W
i
s is the ith column of the matrix ˜W s for i = 1, . . . , ps. Invoking (8.5.19), the

mean vector (8.5.46) and covariance matrix (8.5.47) take the values

̂Y
∗
= ΣW∗WΣ

−1
WεVec

(

˜W s

)

= Vec
(

˜T
∗
w,s

)

(8.5.48)

ΣY∗ |Y = ΣW∗ − ΣW∗WΣ
−1
WεΣ


W∗W

= diag
(

ΣW∗ ,i − ΣW∗W,iΣ
−1
Wε,iΣ


W∗W,i , i = 1, . . . , ps

)

. (8.5.49)

For given parameter settings P, the elements of ̂Y
∗

and ΣY∗ |Y corresponding to each
test site take the form of the BLUP (3.2.7) and its variance (3.2.8) when the regres-
sion component is zeroed out, calculated individually for each basis coefficient.

Suppose Nmcmc draws Ωs,ε
1 , . . . ,Ωs,ε

Nmcmc
have been sampled from the posterior dis-

tribution (8.5.36). The ith sample, i = 1, . . . , Nmcmc, from the basis coefficient pro-
cesses is obtained by generating

Y∗
i, j ∼ Nm̃

(

ΣW∗W, jΣ
−1
Wε, j

˜W
j
s , ΣW∗ , j − ΣW∗W, jΣ

−1
Wε, jΣ


W∗W, j

)

(8.5.50)

for j = 1, . . . , ps, using the draw Ωs,ε
i to calculate the mean vector and covari-

ance matrix of the multivariate normal distribution in (8.5.50). Sampling proceeds
through i = 1, . . . , Nmcmc. Each of the Nmcmc posterior realizations of Ωs,ε requires
O((m3 + m̃3)ps) operations to generate a sample

{

Y∗
i, j

}ps

j=1
, which is only linear in the

number of simulator basis vectors retained due to the block diagonal structure of the
covariance matrix (8.5.49).

The samples of the basis coefficients are then easily transformed into samples
from the emulator itself. For the ith posterior realization Ωs,ε

i , arrange the ps basis
coefficient samples (8.5.50) into the ps × m̃ matrix W∗

i ,

W∗
i =

[

Y∗
i,1 Y∗

i,2 . . . Y∗
i,ps

]
.

Using Ks defined in (8.4.4), the m̃ columns of the matrix

Y∗,i
s,n = KsW∗

i

are samples from the emulator on the standardized scale, corresponding to the in-
put settings (̃xs

1,˜t1), (̃xs
2,˜t2), . . . , (̃xs

m̃,˜tm̃). In the functional case, these samples are
transformed back to the original scale using (8.4.1) and (8.4.2) as follows
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Y∗,i
s = ςsY∗,i

s,n + ys1
m̃ , (8.5.51)

while this transformation is modified slightly in the multivariate case using (8.4.3)
in place of (8.4.2),

Y∗,i
s =

(

Cs
d

)1/2
Y∗,i

s,n + ys1m̃ .

Upon completion of the sampling process, Nmcmc emulator samples will have been
generated for each of the m̃ input settings.

Example 1.7 (Continued). To illustrate Case 1 emulation, Fig. 8.22 shows the cen-
tered training and test data, along with Nmcmc = 1000 realizations of the centered
emulator evaluated at the parameter setting that generated the test set. Using (8.5.51)
and noting that m̃ = 1, the ith realization of the centered emulator is given by the
vector Y∗,i

s − ys.
The slight overprediction in the flat portion of the velocity profile seen in

Fig. 8.16 is significant relative to uncertainty in the emulator, while the velocity
behavior in the more variable regions of the time domain is captured adequately.
This suggests that more than three simulator basis vectors would be required to ac-
curately capture the low-variability constant velocity portion of the time domain for
this test run and presumably other test runs. �
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Fig. 8.22 Centered simulation training runs (orange lines), centered simulation test run (green
dots), and centered emulator realizations (blue lines)

If desired, simulator basis noise can be added to Y∗,i
s,n before transformation back

to the original scale. Generate independent samples
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ε∗,ij ∼ Nms

(

0ms ,
1

λi
s,ε

Ims

)

for j = 1, . . . , m̃, where ms is the size of the input variable(s) mesh and λi
s,ε is the

realized value of λs,ε from Ωs,ε
i . Collect these samples into the ms × m̃ matrix E∗

i ,

E∗
i =

[

ε∗,i1 ε
∗,i
2 · · · ε∗,im̃

]

,

calculate
Y∗,i

s,n,ε = Y∗,i
s,n + E∗

i ,

and substitute Y∗,i
s,n,ε for Y∗,i

s,n in the appropriate transformation of the previous para-
graph.

8.5.2.2 Emulation of the Calibrated Simulator Output Modeling the
Simulator Bias

The second scenario considered here is prediction of the calibrated simulator out-
put at unsampled input sites when simulator bias is accounted for statistically, as
described in Sect. 8.4.2. This prediction application uses both simulation output and
physical observations. In this case, P = Ωd, all = {Ωp,d,ε, λs,ε} and Ωp,d,ε is defined
in (8.4.19).

Suppose realizations of the calibrated simulator are desired at the ñ input set-
tings x̃p

1 , x̃p
2 , . . . , x̃p

ñ . The corresponding basis coefficient processes in the calibrated
simulator model are collected in the ñ × ps matrix U∗

s:

U∗
s =

[

W s (̃xp
1 ,Θ) W s (̃xp

2 ,Θ) · · · Ws (̃xp
ñ ,Θ)

]
. (8.5.52)

Notice that the random calibration parameter Θ has replaced the user-specified cal-
ibration parameter settings in the calibrated simulator. The discrepancy basis coef-
ficient processes associated with the above input settings are collected in the ñ × pδ

matrix
V∗

p =
[

Vp(̃xp
1 ) Vp(̃xp

2) · · · Vp (̃xp
ñ )

]
.

To predict realizations of these matrices, set C∗ = Iñ(pδ+ps), β
∗ = Vec

([

V∗
p U∗

s

])

,
and Σε∗ = 0ñ(pδ+ps),ñ(pδ+ps). By the definition of β∗, Σβ∗ = diag (ΣV∗ ,ΣU∗ ) for

ΣV∗ = diag
(

ΣV∗ ,1,ΣV∗ ,2, . . . ,ΣV∗ ,pδ

)

and

ΣU∗ = diag
(

ΣU∗ ,1,ΣU∗ ,2, . . . ,ΣU∗ ,ps

)

. (8.5.53)

For k ∈ {1, . . . , pδ} and i, j = 1, . . . , ñ, the (i, j) element of ΣV∗,k, i, j = 1, . . . , ñ is

Rδ,l(̃xp
i , x̃p

j )/λδ,l ,
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where l ∈ {1, . . . , F} is chosen so that k ∈ Gl. For k ∈ {1, . . . , ps} and i, j = 1, . . . , ñ,
the (i, j) element of ΣU∗ ,k is

1
λs,k

Rs,k

(

(̃xp
i ,Θ), (̃xp

j ,Θ)
)

+
1

λn,k
I {̃xp

i = x̃p
j } .

Because both simulation output and physical observations are used in this case,

Y =
(

Y
p,n, Y

s,n,ε

)
andΣε = ΣE from (8.4.27). Combining (8.4.22), (8.4.23), (8.4.28),

and (8.4.29) gives

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Xp,d 0my,mps

0msm,n(pδ+ps) Xs

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

β = Zd, Σβ = ΣZ,d, and Σβ∗β = ΣZ∗Z for

ΣZ∗Z =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΣV∗V 0ñpδ,nps 0ñpδ,mps

0ñps ,npδ
ΣU∗U ΣU∗W

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (8.5.54)

with

ΣV∗V = diag
(

ΣV∗V,1,ΣV∗V,2, . . . ,ΣV∗V,pδ

)

,

ΣU∗U = diag
(

ΣU∗U,1,ΣU∗U,2, . . . ,ΣU∗U,ps

)

, (8.5.55)

ΣU∗W = diag
(

ΣU∗W,1,ΣU∗W,2, . . . ,ΣU∗W,ps

)

. (8.5.56)

For k ∈ {1, . . . , pδ}, i = 1, . . . , ñ, and j = 1, . . . , n, the (i, j) element of ΣV∗V,k is

Rδ,l(̃xp
i , xp

j )/λδ,l ,

where l ∈ {1, . . . , F} is chosen so that k ∈ Gl. For k ∈ {1, . . . , ps}, i = 1, . . . , ñ, and
j = 1, . . . , n, the (i, j) element of ΣU∗U,k is

Rs,k

(

(̃xp
i ,Θ), (xp

j ,Θ)
)

/λs,k .

For k ∈ {1, . . . , ps}, i = 1, . . . , ñ, and j = 1, . . . , m, the (i, j) element of ΣU∗W,k is

Rs,k

(

(̃xp
i ,Θ), (xs

j, t j)
)

/λs,k .

Supposing, as discussed in Sect. 8.4.3, that the column space of Xp,d need not be of
full rank. The form of Γ adopted in (8.4.37) is also used in this prediction scenario,
namely,

Γ = diag
(

λp,εr0 In(pδ+ps), 0mps ,mps

)

.

It follows that ΣΓ = ΣΓ,d from (8.4.39).
Applying the notation in (8.4.36) and (8.4.48), the reduced data vector ̂β = ̂Zd.

Let
ΣZ∗VU|W = diag

(

ΣV∗V ,ΣU∗U|W
)

(8.5.57)
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where
ΣU∗U|W = ΣU∗U − ΣU∗WΣ

−1
WεΣ


UW , (8.5.58)

using (8.4.25) and (8.5.19). Invoking (8.5.22) and (8.5.23), the mean vector (8.5.46)
is given by

̂Y
∗
= ΣZ∗VU|WΣ

−1
d|WVec

([

˜Vp ˜Td,s

])

+ Vec
([

0ñ,pδ
˜T
∗
u,s

])

, (8.5.59)

where the ñ × ps matrix ˜T
∗
u,s is obtained using (8.5.20)

˜T
∗
u,s =

[

ΣU∗W,1Σ
−1
Wε,1

˜W
1
s ΣU∗W,2Σ

−1
Wε,2

˜W
2
s · · · ΣU∗W,psΣ

−1
Wε,ps

˜W
ps

s

]

, (8.5.60)

and ˜W
i
s is the ith column of the matrix ˜W s for i = 1, . . . , ps. The second term on the

right-hand side of ̂Y
∗

predicts the calibrated simulator using only simulation out-
put. The first term adjusts these predictions by bringing in additional information
simultaneously about discrepancy and the calibrated simulator directly from the ex-
perimental data.

Consider ΣZ∗|W = diag
(

ΣV∗ ,ΣU∗ |W
)

where

ΣU∗ |W = ΣU∗ − ΣU∗WΣ
−1
WεΣ


U∗W . (8.5.61)

The covariance matrix (8.5.47) is given by

ΣY∗|Y = ΣZ∗|W − ΣZ∗VU|WΣ
−1
d|WΣ


Z∗VU|W . (8.5.62)

The first term in ΣY∗|Y represents uncertainty in discrepancy and calibrated simu-
lator prediction using only simulation output, which is reduced by incorporating
information from the experimental data in the second term.

Suppose Nmcmc draws Ωd, all
1 , . . . ,Ωd, all

Nmcmc
have been sampled from the posterior

distribution (8.5.32). The ith sample from the basis coefficient processes is obtained
by generating

Y∗
i ∼ Nñ(pδ+ps)

(

̂Y
∗
,ΣY∗ |Y

)

,

using the realized valuesΩd, all
i to calculate the mean vector (8.5.59) and covariance

matrix (8.5.62) of this multivariate normal distribution. Sampling proceeds through
i = 1, . . . , Nmcmc. The ñ(pδ + ps) × 1 vector Y∗

i can be written

Y∗
i = Vec

([(

V∗
i

) (

U∗
i

)])

,

where

V∗
i =

[

Y∗
i,1 Y∗

i,2 · · · Y∗
i,pδ

]
and

U∗
i =

[

Y∗
i,pδ+1 Y∗

i,pδ+2 · · · Y∗
i,pδ+ps

]

for ñ × 1 vectors Y∗
i, j, j = 1, . . . , pδ + ps.
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Using (8.4.4), the ñ columns of the matrix

M∗,i
u,n = KsU∗

i

are samples from the calibrated emulator on the standardized scale, and

M∗,i
v,n = DpV∗

i

are samples from the discrepancy process on the standardized scale, correspond-
ing to the input settings x̃p

1 , x̃p
2 , . . . , x̃p

ñ . The input variable(s) mesh associated with
the rows of Ks is also utilized in the formulation of Dp, as discussed in Sect. 8.4.2
with regard to distinctions between the functional and multivariate data settings. In
the functional case, these samples are transformed back to the original scale us-
ing (8.4.1) and (8.4.2) as follows:

M∗,i
u = ςs M∗,i

u,n + ys1
ñ , (8.5.63)

M∗,i
v = ςs M∗,i

v,n , (8.5.64)

while this transformation is modified slightly in the multivariate case using (8.4.3)
in place of (8.4.2)

M∗,i
u =

(

Cs
d

)1/2
M∗,i

u,n + ys1ñ ,

M∗,i
v =

(

Cs
d

)1/2
M∗,i

v,n .

Upon completion of the sampling process, Nmcmc samples from the calibrated em-
ulator and discrepancy process will have been generated for each of the ñ input
settings.

Example 1.7 (Continued). For this Case 2 application, Fig. 8.23 shows the centered
data for the n = 1 experiment superimposed on the m = 128 centered simula-
tion runs and Nmcmc = 1000 realizations of the centered, calibrated emulator. Us-
ing (8.5.63) and noting that ñ = 1, the ith realization of the centered, calibrated
emulator is given by the vector M∗,i

u − ys.
Figure 8.24 shows 1000 realizations of the discrepancy. Using (8.5.64), the ith

realization of the discrepancy is given by the vector M∗,i
v . Simulator bias is clearly

present at early and late times, as indicated by systematic deviations of the discrep-
ancy realizations from the zero line. �

The predicted values of expected experimental output for the ith sample at the ñ
input settings are given by

M∗,i
p = M∗,i

u + M∗,i
v . (8.5.65)

Example 1.7 (Continued). Continuing the Case 2 illustration, Fig. 8.25 shows cen-
tered data for n = 1 experiment, superimposed on the m = 128 centered simulation
runs, and Nmcmc = 1000 realizations of centered expected experimental output. Us-
ing (8.5.65) and noting that ñ = 1, the ith realization of centered expected experi-
mental output is given by the vector M∗,i

p − ys.
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Fig. 8.23 Centered simulation runs (orange lines), centered experimental data (green dots), and
centered, calibrated emulator realizations (blue lines)
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Fig. 8.25 Centered simulation runs (orange lines), centered experimental data (green dots), and
centered expected experimental output realizations (blue lines)

Therefore, the discrepancy adjustment of the calibrated emulator appears to pro-
vide an adequate fit to expected experimental output except at very early times,
where the abrupt velocity jump in the experimental data is modeled at low fidelity
by the chosen discrepancy basis representation. This suggests that the posterior dis-
tribution of the calibration parameters Θ may be used for uncertainty quantification
in other applications involving these parameters, assuming it has been validated for
predicting independently generated test data. �

Predicted values of experimental output itself are obtained by adding observa-
tion error to the expected experimental output (8.5.65). This is accomplished by
assuming observation errors pertaining to future experiments can be independently
generated from a process having characteristics similar to that inferred from past
experimental output. To this end, assume

εp (̃xp
j ) ∼ Nms

(

0ms ,
1

λp,ε

(

˜P
p
j

)−1
)

, j = 1, . . . , ñ , (8.5.66)

where ms is the size of the input variable(s) mesh and ˜P
p
j is an ms × ms fixed preci-

sion matrix influencing the size of observation errors at the jth input setting x̃p
j . Let

the jth column of the ms × ñ error matrix E∗
i be a sample from the εp(̃xp

j ) process

for j = 1, . . . , ñ, assuming λp,ε takes its realized value λi
p,ε from Ωd, all

i . Predicted
experimental output for the ith sample is then given by

Y∗,i
p = M∗,i

p + E∗
i .
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8.5.2.3 Emulation of the Calibrated Simulation Output Assuming No
Simulator Bias

The final prediction scenario is to predict calibrated simulator output at unsampled
input sites when simulator bias is assumed negligible and is omitted from the sta-
tistical modeling framework. As in the second scenario, realizations of the cali-
brated simulator are desired at the ñ input settings x̃p

1 , x̃p
2 , . . . , x̃p

ñ . Also this predic-
tion application uses both simulation output and physical observations. In this case,
P = Ωnod, all = {Ωp,nod,ε, λs,ε} andΩp,nod,ε is defined in (8.4.21). This scenario closely
follows the development of the second scenario, and thus notation previously intro-
duced in that context is utilized below as required.

To predict realizations of U∗
s from (8.5.52), consider the following settings: C∗ =

Iñps , β
∗ = Vec

(

U∗
s
)

, and Σε∗ = 0ñps ,ñps . Hence, Σβ∗ = ΣU∗ from (8.5.53). Because

both simulation output and physical observations are available, Y =
(

Y
p,n, Y

s,n,ε

)
,

and Σε = ΣE from (8.4.27). Recalling (8.4.29), (8.4.52), (8.4.53), (8.4.55), (8.5.55),
and (8.5.56) gives

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Xp,nod 0my ,mps

0msm,nps Xs

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

β = Znod, Σβ = ΣZ,nod, and Σβ∗β = ΣU∗Z =
[

ΣU∗U ΣU∗W

]

. The column space of
Xp,nod will generally be of full rank. To allow for the rare possibility that this is not
the case, the form of Γ adopted in (8.4.56) is also used in this prediction scenario,
namely, Γ = diag

(

λp,εr0 Inps , 0mps,mps

)

. It follows that ΣΓ = ΣΓ,nod from (8.4.58).
Typical applications of this prediction scenario will allow r0 = 0.

Applying (8.4.36) and (8.4.64), the reduced data vector is ̂β = ̂Znod. Further,
invoking (8.5.27), (8.5.28), (8.5.58), and (8.5.60), the mean vector (8.5.46) is given
by

̂Y
∗
= ΣU∗U|WΣ

−1
nod|WVec

(

˜Tnod,s

)

+ Vec
(

˜T
∗
u,s

)

. (8.5.67)

The second term on the right-hand side of ̂Y
∗

predicts the calibrated simulator using
only simulation output. The first term adjusts these predictions by bringing in ad-
ditional information about the calibrated simulator directly from the experimental
data.

Using (8.5.61) the covariance matrix in (8.5.47) is given by

ΣY∗|Y = ΣU∗ |W − ΣU∗U|WΣ
−1
nod|WΣ


U∗U|W . (8.5.68)

The first term in ΣY∗ |Y represents uncertainty in calibrated simulator prediction using
only simulation output, which is reduced by incorporating information from the
experimental data in the second term.

Suppose that Nmcmc draws Ωnod, all
1 , . . . ,Ωnod, all

Nmcmc
have been sampled from the pos-

terior distribution (8.5.33). Then the ith sample from the basis coefficient processes
is obtained by generating

Y∗
i ∼ Nñps

(

̂Y
∗
,ΣY∗ |Y

)

,
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using the realized values Ωnod, all
i to calculate the mean vector (8.5.67) and covari-

ance matrix (8.5.68) of this multivariate normal distribution. Proceed sampling in
the order i = 1, . . . , Nmcmc. The ñps × 1 vector Y∗

i can be written

Y∗
i = Vec

(

(

U∗
i
))

,

where
U∗

i =
[

Y∗
i,1 Y∗

i,2 · · · Y∗
i,ps

]

for ñ × 1 vectors Y∗
i, j, j = 1, . . . , ps.

Using (8.4.4), the ñ columns of the matrix

M∗,i
u,n = KsU∗

i

are samples from the calibrated emulator on the standardized scale, corresponding
to the input settings x̃p

1 , x̃p
2 , . . . , x̃p

ñ . In the functional case, these samples are trans-
formed back to the original scale using (8.4.1) and (8.4.2) as follows:

M∗,i
u = ςs M∗,i

u,n + ys1
ñ . (8.5.69)

This transformation is modified slightly in the multivariate case by using (8.4.3) in
place of (8.4.2) producing

M∗,i
u =

(

Cs
d

)1/2
M∗,i

u,n + ys1ñ .

Upon completion of the sampling process, Nmcmc samples from the calibrated emu-
lator will have been generated for each of the ñ input settings.

Example 1.7 (Continued). Consider Case 3 emulation. Figure 8.26 shows the cen-
tered data for n = 1 experiment, superimposed on the m = 128 centered simu-
lation runs, and Nmcmc = 1000 realizations of the centered, calibrated emulator.
Using (8.5.69) and noting that ñ = 1, the ith realization of the centered, calibrated
emulator is given by the vector M∗,i

u − ys.
Although the velocity profile of the calibrated emulator demonstrates consid-

erable similarity to that of the experimental data, it is clear that simulator bias is
significant relative to uncertainty in the calibrated emulator over large portions of
the time domain. Comparing the velocity profiles of the calibrated emulators plotted
in Figs. 8.26 and 8.23, the assumption of no simulator discrepancy results in the cal-
ibration of Θ to more closely match experimental velocities at times corresponding
to greatest variability (approximately 1–1.2 μs and after 2 μs) than in Case 2 cali-
bration. This solution is compensated for by sacrificing prediction accuracy in the
flat portion of the velocity profile. In general, when substantial differences in cali-
brated emulator performance emerge from comparing the Cases 2 and 3 analyses,
attempts should be made to understand their source by examining the simulator, the
experimental data, and all statistical assumptions for potential inadequacies. �
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Fig. 8.26 Centered simulation runs (orange lines), centered experimental data (green dots), and
centered, calibrated emulator realizations (blue lines)

Predicted values of expected experimental output for the ith sample in this sce-
nario are provided by the calibrated emulator M∗,i

u . Predicted values of experimental
output itself for the ith sample are generated by sampling observation errors accord-
ing to (8.5.66) and the associated discussion, collecting these errors into the ms × ñ
matrix E∗

i , and adding this matrix to the predicted values of expected experimental
output,

Y∗,i
p = M∗,i

u + E∗
i .

8.6 Chapter Notes

8.6.1 Special Cases of Functional Emulation and Prediction

This subsection treats two common special cases of the KOH model extension to
functional outputs presented in Sects. 8.4 and 8.5.

• In some applications, it is not necessary to model simulator basis noise εs. This
is the case for any setting in which ps ≤ min{ms, m − 1} simulator basis vectors
are selected and all singular values from the SVD of Y s,n in Sect. 8.4.1 starting
with the (ps + 1)st largest take the value 0. In particular, this pertains to multi-
variate applications where ps = ms is chosen. The log prior and log likelihood
calculations of Sect. 8.5.1 carry over with the following modifications:
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1. Delete the term involving λs,ε from the log prior distributions (8.5.13), (8.5.14),
and (8.5.34).

2. Replace ΣWε with ΣW from (8.4.24) in every term of the log likelihood func-
tions (8.5.26), (8.5.31), and (8.5.35).

The log posterior distributions (8.5.32) and (8.5.33) that result from applying
these modifications are exact when the fixed ridge parameter r0 from (8.4.37)
or (8.4.56) takes the value zero. When r0 > 0, the log likelihood func-
tions (8.5.26) and (8.5.31) must be corrected by additional additive terms in-
volving r0 to obtain exact log likelihood calculations in this case. However, these
corrections are typically assumed to be negligible and ignored. The log posterior
distribution (8.5.36) is exact with these modifications applied.

• The mean vectors (8.5.48), (8.5.59), and (8.5.67) and the covariance matri-
ces (8.5.49), (8.5.62), and (8.5.68), of the Cases 1–3 conditional predictive dis-
tributions, respectively, are modified when simulator basis noise is assumed neg-
ligible by universally replacing ΣWε with ΣW .

• The KOH model for scalar output treated in Sects. 8.1–8.3 can be derived from
the KOH model for functional output with some modifications. The model of
simulation data sets ms = ps = 1, and therefore Ks = 1 in (8.4.9). The model of
experimental data sets mp,i = 1 and pδ = 1, implying Ks

i = Dp
i = 1 in (8.4.18)

for i = 1, . . . , n. The precision matrix λp,εPp
i of (8.4.12) reduces to a scalar

quantity λp,εpp
i for i = 1, . . . , n. The approach of simulator and experimental

data reduction via least squares with r0 = 0 reproduces the original data in the
case of scalar output. When simulator bias is modeled, the least squares proce-
dure implemented without modification would lead to the FDK matrix defined
above (8.4.28) having reduced column rank by construction. This is avoided
by setting FDK = In and adopting an alternative definition of Zd in (8.4.22),

Zd =

(

(

Vp + Us

)
,W

s

)
, where Vp and Us are n × 1 column vectors and W s is

a m × 1 column vector. Its covariance matrix ΣZ,d from (8.4.23) takes the form

ΣZ,d =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ΣV + ΣU ΣUW

ΣUW ΣW

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Summing the discrepancy and calibrated simulator coefficients in the scalar out-
put case implies using pδ + ps = 1 instead of 2 when computing quantities in
matrix blocks corresponding to the experimental data, resulting in Xp,d = In and
Xs = Im in (8.4.26). Using the redefined Zd above, the matrix Σd|W from (8.5.22)
becomes

Σd|W = ΣV + ΣU|W + λ−1
p,ε (Pp,n)−1 .

The vector Vec
([

˜Vp ˜Td,s

])

in (8.5.26) is replaced by Yp,n −ΣUWΣ
−1
WεY s,n,ε. When

simulator bias is assumed negligible, the pertinent modifications mentioned
above are made and ρδ = 0. Reduction to the scalar case carries through with-
out redefining any additional quantities. This is also true when emulation of the
simulator is desired based only on simulation output. Calculation of the log pos-
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terior distributions (8.5.32), (8.5.33), and (8.5.36) follows by incorporating the
relevant adjustments described above. Simulator basis noise is extraneous in the
scalar output case and is defined to be identically zero. Therefore, the adjustments
described in the first item are also applied when computing these log posterior
distributions. Because the least squares procedure reproduces the original data
for scalar output, no corrections to the prior distribution of observational error
precision are required when computing the log posterior distributions for Case 2
or 3: ad,p,ε = anod,p,ε = ap,ε and bd,p,ε = bnod,p,ε = bp,ε.

• Prediction in the scalar output case as presented in Sect. 8.3 follows from the
functional case by first applying the pertinent modifications of the previous item.
In Case 2, changes to ΣZ∗Z from (8.5.54) and ΣZ∗VU|W from (8.5.57) are also
required,

ΣZ∗Z =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΣV∗V 0ñ,m

ΣU∗U ΣU∗W

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and ΣZ∗VU|W =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΣV∗V

ΣU∗U|W

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Cases 1 and 3 carry through without additional modification. The adjustments of
the second item must also be made in each of the three cases as simulator basis
noise is eliminated for scalar output.

8.6.2 Some Other Perspectives on Emulation and Calibration

This subsection highlights several recent approaches to emulation and calibration of
simulators.

Conti and O’Hagan (2010) introduced a Bayesian emulator of functional simula-
tor output possessing a comparable computational burden to that required by the em-
ulators of scalar simulator output developed in Chap. 4. Such efficiency is achieved
by assuming the ms-variate GP model of functional simulator output Ys(xs, t) has
stationary, separable covariance structure,

Cov
[

Ys(xs
1, t1), Ys(xs

2, t2)
]

= Rs

(

(xs
1, t1), (xs

2, t2)
)

Σ ,

for Rs(·, ·) a correlation function such as that specified by (8.2.1) and Σ a gen-
eral symmetric, positive definite matrix. As a specific example, the simulator bias
model (8.4.16) is separable (with Σ = Dp (Dp)) when a single discrepancy ba-
sis group (F = 1) is specified. The separability assumption is restrictive, implying
that the correlation structure with respect to inputs (xs, t) separates from the cor-
relation between each scalar output element of the functional response. This may
be appropriate for simulators such as the flyer plate code that produce outputs over
a space–time index variable mesh, if the dominant physics of the simulator as ex-
pressed through input variations has a consistent effect on the output across the
entire mesh. Separability should be viewed with caution in multivariate applications
where the individual outputs represent different physical quantities.
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Overstall and Woods (2016) developed a general class of multivariate emula-
tors that include the Conti and O’Hagan (2010) emulator and the lightweight (linear
regression-based) emulator of Rougier (2007) as special cases. These emulators are
constructed to have separable covariance structure. Recognizing the potential limi-
tations of this restriction, extensions of the Bastos and O’Hagan (2009) diagnostics
to the multivariate output setting were proposed for assessment of emulator quality.
Furthermore, Bayesian model comparison is used to facilitate selection of an ap-
propriate linear regression mean function. Unordered categorical inputs are accom-
modated in the GP emulators arising from this framework by assuming the power
exponential correlation function (2.2.11) for continuous inputs and multiplying it by
a function that is exchangeable in the levels of the categorical inputs. Specifically,
the portion of the correlation function contributed by the d1 ×1 vector of categorical
inputs xq is

Rq(xq
1, xq

2 | ξq) = exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
d1
∑

i=1

ξq,i I{xq
1,i � xq

2,i}
⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where I{·} denotes the indicator function and ξq,i ≥ 0 for i = 1, . . . , d1. This approach
or any of the alternatives discussed in Sect. 2.4 can also be invoked to incorpo-
rate categorical inputs into the emulation and calibration methodology of Sects. 8.4
and 8.5.

Fricker et al. (2013) discuss emulators of multivariate simulator output based on
more flexible nonseparable covariance structures. They recommend two basic ap-
proaches to constructing nonseparable covariance functions. The first approach is to
convolve smoothing kernels with Gaussian white noise processes (see Sect. 2.5.3);
the second approach is to use variations of the nonseparable linear model of core-
gionalization (NLMC; see Sect. 2.5.2). For example, models (8.4.5) for the simula-
tor and (8.4.16) for the simulator bias are versions of the NLMC approach where
the coefficient processes are not restricted to have unit variance; the latter allows
additional flexibility for the between-output covariance matrices.

Paulo et al. (2012) took a NLMC approach to Bayesian calibration of computa-
tionally expensive simulators that have considerable similarities to the methodology
of this chapter when applied to multivariate output (i.e., ps = ms and Dp = Ims ). No-
table differences include taking Ks = Us in place of (8.4.4), estimating a constant
mean for each output via maximum likelihood (ML), replacing the parameters of
Ωs from (8.4.10)—excluding the nugget effect precisions—by their ML estimates,
and adopting a general symmetric, positive definite matrix for the covariance of the
experimental data in place of the more restrictive form (8.4.12) under the presump-
tion that sufficient replicate data is available to infer this matrix. This calibration
methodology restricts the collection of experimental data to a single setting of the
control variables xp (as was the case with the flyer plate experiment).

The framework of Paulo et al. (2012) allows for multiple sources of exper-
imental data and simulation models to inform on a common set of calibration
parameters, as does the methodology of this chapter. Specifically, suppose data
Y = {Y1, Y2, . . . , YL} is available from L sources, where Yi contains physical ob-
servations and simulation output corresponding to the ith source. Denote the set of
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calibration parameters appearing across all sources by Θ, and let Θi denote the sub-
set of Θ relevant to simulating the ith experiment. Let ζ = {ζ1, ζ2, . . . , ζL} collect
nuisance parameters (quantities that appear in the likelihood function but not in the
simulator, e.g., covariance parameters) across all sources. Assuming conditional in-
dependence of data across sources given Θ, the posterior distribution of (Θ, ζ) is
given by

π(θ, ζ |Y) ∝ π(θ)
L

∏

i=1

Li(θi, ζ i |Yi)
L

∏

i=1

pi(ζi)

assuming prior independence of Θ and ζ, and the components of ζ are mutually
independent. Here Li(θi, ζi |Yi) and pi(ζi) refer to the likelihood function of all pa-
rameters and the prior distribution of the nuisance parameters for the ith source,
respectively, and π(θ) denotes the prior distribution of the calibration parameters.
For any given source, the log likelihood function and log prior distribution are pro-
vided in Sect. 8.5, noting that only a single log prior distribution of the calibration
parameters is used in place of the source-specific log prior distributions of these
parameters.

Storlie et al. (2015) introduced the Bayesian smoothing spline (BSS) analysis
of variance (ANOVA) methodology (BSS-ANOVA) for emulation and calibration
of multivariate output from computationally expensive simulators. The basis of this
approach is the Sobol´ decomposition (7.4.9) of each simulator response function.
This decomposition is truncated for tractability, and each component remaining is
modeled as a mean-zero GP. For continuous inputs, the BSS-ANOVA covariance
function is adopted for each main effect component of the decomposition. Covari-
ance functions for two-factor and higher-order interactions are obtained as products
of the BSS-ANOVA covariance functions. Unordered categorical inputs are handled
in a similar fashion using a covariance function that enforces the ANOVA sum-to-
zero constraint. This construction results in each of the component processes satis-
fying the constraints (7.4.13) and (7.4.14).

A BSS-ANOVA surrogate for each simulator response function is constructed by
invoking the Karhunen–Loéve theorem to represent each component process as a
truncated sum of eigenfunctions weighted by coefficients having independent and
identically distributed mean-zero normal distributions. For each eigenfunction of
each component process, a general, positive definite covariance matrix is assumed
for the vector of corresponding coefficients collected across outputs. This results
in a multivariate emulator of the simulator having nonseparable covariance struc-
ture. For calibration, a similar multivariate BSS-ANOVA emulator is adopted for
the simulator bias functions of the KOH model, and MCMC is used to sample from
the joint posterior disribution of the calibration parameters Θ and other unknowns.
BSS-ANOVA scales linearly in the number of simulation runs, allowing it to be
used in applications characterized by a large amount of simulation data that would
present difficulties for the approach of Sect. 8.5.

Pratola and Hidgon (2016) extended the Bayesian Additive Regression Tree
(BART) nonparametric function estimation methodology to enable simulator cali-
bration in the possible presence of systematic bias. BART, equipped with a modified



8.6 Chapter Notes 377

error model, is fit to all the physical observations and simulator output simultane-
ously, with an addition to the set of input variables (index, control, and calibration)
to include an indicator variable of whether a record is a physical observation or
simulator output. A split on this indicator will only occur in one or more trees if the
simulator exhibits bias relative to the physical observations. This formulation allows
discrepancies to be modeled locally. That is, this modeling approach can detect if
model bias only pertains in a localized subset of the input variable domain, and
then provide inference as to its size. This approach also allows for straightforward
incorporation of categorical inputs, and does not require the initial specification of
a dimension-reducing basis representation such as that utilized in Sect. 8.4, as the
basis representation is automatically learned as part of the BART methodology.

Francom et al. (2018) developed methodology for emulating functional simulator
output that also achieves significant computational savings relative to the approach
of Sect. 8.5 for large data sets of simulation output (e.g., ≥ 103 simulator runs). A
statistical model similar to (8.4.8) is adopted that has a modified treatment of simu-
lator basis noise. Essentially, each basis coefficient Ws

i (·) is modeled using adaptive

splines that are fit to training data ˜W
i
s from (8.4.46), where the superscript i in-

dicates the ith column of ˜W s. Specifically, each basis coefficient is modeled using
BMARS (Bayesian Multivariate Adaptive Regression Splines) extended to allow
for unordered categorical inputs. Predictions of simulation output with uncertainty
are obtained by combining realizations of the basis coefficients applied to their re-
spective eigenfunctions with realizations of the simulator basis noise. Calibration is
conducted by first fitting a BMARS model to an estimate of simulator bias calcu-
lated by subtracting simulation output generated at the prior mean setting of Θ from
the physical observations and then using MCMC assuming fixed functional forms
for the emulator and discrepancy from their respective BMARS fits to sample from
the posterior of Θ, observational error variance, and a scale adjustment applied to
the fixed discrepancy function.

Bliznyuk et al. (2008) approached Bayesian calibration of computationally ex-
pensive simulators from a different perspective than that taken in this chapter. They
developed a surrogate model for the log posterior distribution of calibration param-
etersΘ and nuisance parameters ζ itself, rather than approximating this distribution
through an emulator model of the scalar, multivariate, or functional simulator out-
put. Their algorithm first estimates the posterior mode of (Θ, ζ) using a derivative-
free optimization algorithm. Next the log posterior distribution is estimated by a fit-
ted quadratic surface in the neighborhood of the posterior mode. This surface is used
to identify an approximate highest posterior density (HPD) region over which radial
basis functions (RBF) are employed to more accurately approximate the log poste-
rior surface. Quantities of interest for prediction are also generated at each training
run of the simulator conducted during this process. Finally, MCMC is carried out
on the RBF surrogate for the log posterior distribution restricted to the approximate
HPD region. Prediction with uncertainty is carried out by propagating MCMC sam-
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ples of (Θ, ζ) through a surrogate for the prediction quantities of interest developed
from the aforementioned training runs.

8.6.3 Software for Calibration and Validation

This subsection provides links to several software packages that can be used for
emulation and calibration of simulators.

• GPMSA (Gaussian Process Models for Simulation Analysis) fits GP-based sur-
rogate models for emulation, sensitivity analysis, and calibration of simulators
that produce scalar, multivariate, or functional output. The approach to statisti-
cal inference described in Sects. 8.4 and 8.5 is implemented in GPMSA, which
was used to analyze the simulation and observational outputs from the flyer plate
experiment. GPMSA can be obtained from http://go.osu.edu/GPMSA.

• Dakota is a multilevel parallel object-oriented software package for design opti-
mization, parameter estimation, uncertainty quantification, and sensitivity anal-
ysis. Dakota supports emulation, sensitivity analysis, and calibration of simu-
lators via several surrogate-based approaches. Dakota also maintains multiple
frameworks that facilitate the direct probing of faster simulators within sensi-
tivity analysis and calibration analyses. Dakota can be obtained from Sandia
National Laboratories at http://dakota.sandia.gov.

• QUESO (Quantification of Uncertainty for Estimation, Simulation, and Opti-
mization) is a C++ library containing a collection of algorithms and other func-
tionalities aimed at the solution of statistical inverse problems, the solution of
statistical forward problems, the validation of a model, and for the prediction of
quantities of interest from such a model along with the quantification of their
uncertainties. QUESO can be obtained from the University of Texas at Austin
Center for Predictive Engineering and Computational Science at http://pecos.
ices.utexas.edu/software.

• BACCO (Bayesian Analysis of Computer Code Output) is an R package imple-
mentation of the KOH model.

• SAVE (Simulator Analysis and Validation Engine) is an R package implementing
Bayesian statistical methodology for the analysis of complex computer models.
It allows for the emulation, calibration, and validation of computer models fol-
lowing the approach of Bayarri et al. (2007).

• BSS-ANOVA-UQ (Bayesian Smoothing Spline Analysis of Variance) is a file of
R functions that implement the KOH model using BSS-ANOVA emulators of
multivariate simulation output and simulator bias functions, following the ap-
proach of Storlie et al. (2015). BSS-ANOVA-UQ can be obtained from https://
drive.google.com/file/d/0B-yrHHWZVJPSTFRrc2ZKeVpZblE/edit.

• calibart is a C/C++ implementation of the BART calibration model and R wrap-
per functions for use within an R session, following the approach of Pratola and
Hidgon (2016). Software available for download at http://www.matthewpratola.
com/wp-content/uploads/2015/04/calibart.zip

http://go.osu.edu/GPMSA
http://dakota.sandia.gov
http://pecos.ices.utexas.edu/software
http://pecos.ices.utexas.edu/software
https://drive.google.com/file/d/0B-yrHHWZVJPSTFRrc2ZKeVpZblE/edit
https://drive.google.com/file/d/0B-yrHHWZVJPSTFRrc2ZKeVpZblE/edit
http://www.matthewpratola.com/wp-content/uploads/2015/04/calibart.zip
http://www.matthewpratola.com/wp-content/uploads/2015/04/calibart.zip
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• BASS (Bayesian Adaptive Spline Surface) is an R package for fitting Bayesian
adaptive spline surfaces and performing global sensitivity analyses of these mod-
els following the approach of Francom et al. (2018).

• SmartUQ is a commercial package that performs calibration. See https://www.
smartuq.com to find out more about the features of SmartUQ.

https://www.smartuq.com
https://www.smartuq.com
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List of Notation

A.1 Abbreviations

ARD – Average reciprocal distance (design) (Sect. 5.4)
BLUP – Predictor having minimum mean squared prediction error

in the class of predictors that are linear and unbiased (with
respect to some family of distributions) (Sect. 3.1)

ERMSPE – Empirical root mean squared prediction error (Sect. 3.4)
FE – Finite element
GP – Gaussian process; Gaussian random function (Sect. 2.2)
i.i.d. – Independent and identically distributed
IMSPE – Integrated mean squared prediction error (Sect. 6.2)
JE – Joint effect (plot or SI)
LHD – Latin hypercube design (Sect. 5.2)
LUP – Linear unbiased predictor (Sect. 3.2)
MCMC – Markov chain Monte Carlo
ME – Main effect (plot or SI)
MLE – Maximum likelihood estimator
MMSPE – Maximum mean squared prediction error (Sect. 6.2)
MmLHD – Maximin Latin hypercube design (Sect. 5.4)
mARD – Minimum ARD design (Sect. 5.4)
MSPE – Mean squared prediction error (Sect. 3.2)
REML – Restricted (or residual) maximum likelihood (estimator)

(Sect. 3.3)
RMSPE – Root mean squared prediction error
SI – Sensitivity index
TE – Total effect (plot or SI)
XV – Cross-validation (Sect. 3.3)
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A.2 Symbols

0r,c – r × c matrix of zeros
1n – n × 1 (column) vector of ones
\ – Set difference
(a)+ – max{a, 0} for a ∈ IR
(a)− – min{a, 0} for a ∈ IR
�a� – Smallest integer greater than or equal to a for a ∈ IR
�n(a) – Natural logarithm of a, a > 0
|a| – Absolute value of a for a ∈ IR
Be(α, β) – The beta distribution with probability density (B.3.1) (Ap-

pendix B.3)
(

n
j

)

– n!/( j!(n− j)!), for integer j with 0 ≤ j ≤ n is the number of
subsets of size j that can be drawn from n distinct objects

Cov[Y(x1), Y(x2)] – Process model covariance of Y(·)
D∞(D) – Star discrepancy (from the uniform distribution) given

by (5.6.3)
diag(a) – Diagonal matrix with elements a1, . . . , am, where a =

(a1, . . . , am)
det(W) – Determinant of the square matrix W
ξα(xc) – Upper α quantile of the distribution of ys(xc, Xe) induced by

random environmental variables Xe for fixed control vari-
able xc (Sect. 1.3.2)

e(xi) – The ith standardized residual based on data y(x1), . . . , y(xn)
(so that e(x1), . . . , e(xn) have sample mean zero and unit
sample variance)

ei – The ith unit column vector (0, . . . , 0, 1, 0, . . . , 0) where 1 is
in the ith position

E[·] – Expectation with respect to the process model under consid-
eration

f j(·) – The jth regression function in the mean of a stochastic pro-
cess model for Y(·)

Γ(α, β) – The gamma distribution with probability density (B.2.1)
which has mean α/β and variance α/β2 (Appendix B.2)

GP (μ, λZ, ·) – Gaussian process with mean μ, precision λZ, and either a
specified correlation function R(·) or the parameters of a
specified parametric correlation family

In – n × n identity matrix
I{E} – Indicator function of the event E which is defined to be 1 or

0 as E is true or false
Jn – n × n matrix of ones, i.e., Jn ≡ 1n1

n
−k – The set {1, . . . , d} \ k when d is a given positive integer and

k ∈ {1, . . . , d}
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κ – Vector of all unknown parameters in a correlation function
m – Number of outputs in a multiple response application

(Sect. 1.3.3)
μ(xc) – Mean of ys(xc, Xe) induced by random environmental vari-

ables Xe for fixed control variable xc (Sect. 1.3.2)
ne – Number of inputs at which predictions are to be made
np – Number of training runs available in a physical experiment
ns – Number of training runs available from a simulator experi-

ment
N(μ, σ2) – The univariate normal distribution with mean μ and variance

σ2

Np(μ,Σ) – The p-dimensional multivariate normal distribution with
mean vector μ and covariance matrix Σ (Appendix B.1)

A ⊗ B – Kronecker product of A and B
−Q – Given a positive integer d, the set difference {1, . . . , d} \ Q

when Q ⊂ {1, . . . , d}
ρ j – Correlation parameter in a Gaussian correlation model
R(·) – Correlation function (Sect. 2.2.2)
R – n × n matrix of pairwise correlations of Yn elements

(Sect. 3.2)
IR – Set of real numbers
rank(W) – Rank of the r × c matrix W
s(xte) – Root MSPE of ŷ(xte), the square root of

E
[

(

Y(xte) − ŷ(xte)
)2

]

· – Transpose of a vector or matrix
tr(W) – Trace of the square matrix W
θ – True values of the (unknown) model inputs to a simulator

(Sect. 8.2)
Θ – Random variable describing the prior uncertainty for θ

(Sect. 8.2)
Tν – The central univariate t distribution with ν degrees of free-

dom
tαν – Upper α quantile of the central univariate t distribution with

ν degrees of freedom, i.e., P{W ≥ tαν } = α where W ∼ Tν

Tp(ν, μ,Σ) – The p-dimensional non-central multivariate student t distri-
bution with ν degrees of freedom, location vector μ ∈ IRp,
and positive definite scale matrix Σ (Appendix B.4)

T1(ν, μ, σ) – The non-central univariate student t distribution with ν de-
grees of freedom, location μ ∈ IR, and scale parameter
σ > 0, a special case of the Tp(ν, μ,Σ) distribution (Ap-
pendix B.4)

U(a, b) – The uniform distribution over the interval (a, b)
Vec(A) – The rc × 1 column vector obtained from the r × c matrix

A having columns a1, . . . , ac by stacking ai over ai+1 for
i = 1, . . . , c − 1
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ϑ – Vector of all unknown parameters in a GP model (includ-
ing all unknown mean, variance/precision, and correlation
parameters)

xc – Vector of control (engineering) variables (Sect. 1.3.1)
xe – Vector of environmental (noise) variables (Sect. 1.3.1)
xm – Vector of model inputs to a computer simulator (Sect. 1.3.1)
x – Vector of all input variables used by a given computer sim-

ulator including whatever xc, xe, and xm are required
X – Sample space for the vector of all input variables x

(Sect. 1.3)
ξ – Vector of rate (or more descriptively, “roughness”) parame-

ters in the Gaussian or other correlation function
xte – Vector of inputs at which a prediction, such as ys(xte), is to

be made
xtr

i – ith training data vector of inputs
ys(·) – The output from running a computer simulator
yp(·) – The output from conducting a physical experiment
[X | Y] – Conditional distribution of X given Y

‖v‖p –
(

∑n
i=1 | vi |p

)1/p
, the p-norm of the vector v ∈ IRn; p = 1 is

sometimes called the Manhattan or taxicab norm, p = 2 is
the Euclidean norm

zα – Upper α quantile of the standard normal distribution, i.e.,
P{Z ≥ zα} = α where Z ∼ N(0, 1)
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Mathematical Facts

B.1 The Multivariate Normal Distribution

There are several equivalent ways of defining the multivariate normal distribution.
Because we mention both degenerate (“singular”) and nondegenerate (“nonsingu-
lar”) multivariate normal distributions, we will define this distribution by the stan-
dard device of describing it indirectly as the distribution that arises by forming
a certain function, affine combinations, of independent and identically distributed
standard normal random variables.

Definition. Suppose Z = (Z1, . . . , Zr) consists of independent and identically dis-
tributed N(0, 1) random variables, L is an m × r real matrix, and μ is an m × 1 real
vector. Then

W = (W1, . . . , Wm) = LZ + μ

is said to have the multivariate normal distribution (associated with μ, L).

It is straightforward to compute the mean vector of (W1, . . . , Wm) and the matrix of
the variances and covariances of the (W1, . . . , Wm) in terms of (μ,L) as

E[W] = μ and Cov[W] = E[(W − μ)(W − μ)] = LL.

As examples, suppose Z1 and Z2 are independent N(0, 1). First let

W =
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.

By definition, W has a multivariate normal distribution. However W1 and W2 are
“singular” in the sense that W1 and W2 are linearly dependent via W2 = 5(W1−2)/3.
Similarly,
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also has a multivariate normal distribution. However, in this case W1 and W2 are
“nonsingular” in the sense of being linearly independent.

This example illustrates the fundamental dichotomy in multivariate normal dis-
tributions. A multivariate normal distribution is nonsingular (nondegenerate) if the
rows of L are linearly independent, i.e, rank(L) = m, and it is singular (degenerate)
if the rows of L are linearly dependent, i.e, rank(L) < m.

Suppose W has the nonsingular multivariate normal distribution defined by μ ∈
IRm and m × r matrix L having rank m. Let

Σ = LL

denote the covariance matrix of W. Notice that Σ must be symmetric and positive
definite (the latter follows because if ‖ · ‖2 denotes Euclidean norm and z � 0, then
zΣ z = zLLz = ‖L z‖2

2 > 0 because rank(L) = m). In this case it can be shown
that W = (W1, . . . , Wm) has density

f (w) =
1

(2π)m/2(det(Σ))1/2
exp

{

−
1
2

(w − μ)Σ−1(w − μ)

}

(B.1.1)

over w ∈ IRm. We denote the fact that W has the nonsingular multivariate normal
distribution (B.1.1) by W ∼ Nm(μ,Σ). There are numerous algorithms for comput-
ing various quantiles associated with multivariate normal distributions. We note, in
particular, Dunnett (1989) who provides a FORTRAN 77 program for computing
equicoordinate percentage points of multivariate normal distributions having prod-
uct correlation structure (see also Odeh et al. (1988)).

Now suppose W has the singular multivariate normal distribution defined by
μ ∈ IRm and m × r matrix L where rank(L) = q < m. Then m − q rows of L can be
expressed as linear combinations of the remaining q rows of L, and the correspond-
ing m − q components of W − μ can be expressed as (the same) linear combinations
of the remaining q components of W − μ. Thus, in this case, the support of W is on
a hyperplane in a lower-dimensional subspace of IRm. Furthermore, the q compo-
nents of W used to express the remaining variables have a nonsingular multivariate
normal distribution with density on IRq. To illustrate the singular case, consider the
toy example above. Marginally, both W1 and W2 have proper normal distributions
with W1 = 3Z1 + 2 ∼ N(2, 9) and W2 = 5Z1 ∼ N(0, 25). Here m = 2 > 1 = q.
Given either W1 or W2, the other random variable can be expressed in terms of the
first. For example, given W1, W2 = 5(W1 − 2)/3 with probability one, or given W2,
W1 = 2 + 3W2/5 with probability one.

In the text we make use of the following integration formula, which is an appli-
cation of the fact that (B.1.1) is a density function.

Lemma B.1. For any n × 1 vector v and any n × n symmetric, positive definite
matrix A,

∫

IRn
exp

{

−
1
2

wA−1w + vw
}

dw = (2π)n/2(det(A))1/2 exp

{

1
2

vAv
}

. (B.1.2)
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To prove formula (B.1.2), consider the Nn(μ,Σ) multivariate normal density with
covariance matrix Σ = A and mean μ = Σv. Then

(2π)n/2(det(Σ))1/2 =

∫

IRn
exp

{

−1
2

(w − μ)Σ−1(w − μ)

}

dw (B.1.3)

=

∫

IRn
exp

{

−1
2

wΣ−1w + μΣ−1w − 1
2
μΣ−1μ

}

dw .

Substituting for Σ and μ and rearranging terms give the result. �

Perhaps more usefully, we can interpret the proof of Lemma B.1 as stating that
if W has density f (w), for which

f (w) ∝ exp

{

−1
2

w A−1w + vw
}

, then W ∼ Nn (Av, A) . (B.1.4)

We also require the following result concerning the conditional distribution of a
set of components of the multivariate normal distribution given the remaining ones.

Lemma B.2 (Conditional Distribution of the Multivariate Normal). Suppose
that
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where μ1 is m × 1, μ2 is n × 1, Σ1,1 is m × m, Σ1,2 = Σ

2,1 is m × n, and Σ2,2 is n × n.

Then the conditional distribution [W1 | W2] is

Nm

(

μ1 + Σ1,2Σ
−1
2,2

(

W2 − μ2
)

,Σ1,1 − Σ1,2Σ
−1
2,2Σ2,1

)

.

B.2 The Gamma Distribution

The univariate random variable W is said to have the gamma distribution with shape
parameter α > 0 and rate parameter β > 0 provided it has probability density
function

f (w) =
βα

Γ(α)
wα−1e−βw, w > 0. (B.2.1)

This distribution is denoted by W ∼ Γ(α, β); the mean and variance of the Γ(α, β)
distribution are α/β and α/β2, respectively. An important subfamily of the gamma
distributions is the chi-square set of distributions; the χ-square with ν degrees of
freedom, ν ∈ {1, 2, . . .}, is the Γ(ν/2, 1/2) distribution which is also denoted by χ2

ν .
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B.3 The Beta Distribution

The univariate random variable W is said to have the beta distribution with parame-
ters α > 0 and β > 0 provided it has probability density function

f (w) =
Γ(α + β)
Γ(α) Γ(β)

wα−1 (1 − w)β−1, 0 < w < 1. (B.3.1)

This distribution is denoted by W ∼ Be(α, β); the mean and variance of the Be(α, β)
distribution are α/(α+β) and αβ/(α+β)2(α+β+1), respectively. An important special
case of the beta distribution is α = 1 = β which yields the uniform distribution
over (0,1).

B.4 The Non-central Student t Distribution

This subsection defines the multivariate (and univariate) Student t distribution.
Throughout the section assume that μ ∈ IRm and Σ is a positive definite matrix.

Definition. For m ≥ 1, the random vector W = (W1, . . . , Wm) with joint probability
density

f (w) =
Γ((ν + m)/2)

(det(Σ))1/2(νπ)m/2Γ(ν/2)

(

1 +
1
ν

(w − μ)Σ−1(w − μ)

)−(ν+m)/2

(B.4.1)

for w ∈ IRm is said to have the nonsingular m-variate t distribution with ν degrees
of freedom, location parameter μ, and scale matrix Σ.

We denote the multivariate t distribution (B.4.1) by W ∼ Tm(ν, μ,Σ). The
Tm(ν, μ,Σ) distribution has mean vector μ provided ν > 1 and has covariance matrix
νΣ/(ν − 2) provided ν > 2. Notice that the fact that the joint density (B.4.1) cannot
be factored into terms each depending on a single wi shows that W1, . . . , Wm are de-
pendent even if Σ = Im. Alternatively, this dependence is clear from the following
representation of the m-variate t distribution. If X ∼ Nm(0,Σ), where Σ is m × m
symmetric and positive definite and X is independent of V ∼ ν/χ2

ν , then

W = (W1, . . . , Wm) ≡
(√

VX1, . . . ,
√

VXm

)

∼ Tm(ν, 0m,Σ).

The multiplication of each Xi by the common factor
√

V shows the Wi are depen-
dent. Two other stochastically equivalent ways of defining the m-variate t distribu-
tion also provide insight to the meaning of this distribution:

• Suppose that W ∼ Tm(ν, 0m, Im), Σ is positive definite with square root Σ1/2, and
μ is m × 1, then μ + Σ1/2W ∼ Tm(ν, μ,Σ).
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• Suppose Z = (Z1, . . . , Zm) has independent and identically distributed N(0, 1)
components, A is m×m of rank m, Z is independent of V ∼ ν/χ2

ν , and μ is m×1,
then W = μ +

√
V AZ ∼ Tm(ν, μ, AA).

The “usual” univariate t and unit variance multivariate t distribution are the spe-
cial cases

• T1(ν, 0, 1) and
• Tm(ν, 0m, R)

of (B.4.1) where R is positive definite with unit diagonal elements (Odeh et al.
(1988) and Kotz and Nadarajah (2004)).

B.5 Some Results from Matrix Algebra

The following formula for the inverse of a 2 × 2 partitioned matrix can be found as
a special case of Theorem 8.5.11 of Harville (1997), among many other sources.

Lemma B.3 (Inversion of a Partitioned Matrix—I). Suppose that B is a nonsin-
gular n × n matrix and

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

D A

A B

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where D is m × m and A is n × m. Then T is nonsingular if and only if

Q = D − AB−1 A

is nonsingular. In this case, T−1 is given by

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Q−1 −Q−1 AB−1

−B−1 AQ−1 B−1 + B−1 AQ−1 AB−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (B.5.1)

That (B.5.1) is T−1 can easily be verified by multiplication. To verify the “only if”
part of the lemma, see Harville (1997), for example.

The case of Lemma B.3 corresponding to D = 0 occurs frequently. If B is a
nonsingular n × n matrix and A is n × m, then

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 A

A B

⎤

⎥

⎥

⎥

⎥

⎥

⎦

has an inverse if and only if
AB−1 A

is nonsingular. In this case, T−1 is given by
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
(

AB−1 A
)−1 (

AB−1 A
)−1

AB−1

B−1 A
(

AB−1 A
)−1

B−1 − B−1 A
(

AB−1 A
)−1

AB−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Lemma B.4. Suppose that A is a nonsingular n×n matrix, C is a nonsingular m×m
matrix, and B is an arbitrary n×m matrix such that

(

B A−1B + C−1
)

is nonsingular.
Then

(

A + BCB)

is a nonsingular n × n matrix with inverse given by

(

A + BCB
)−1
= A−1 − A−1B

(

BA−1B + C−1
)−1

BA−1.

Proof: Multiply the right-hand expression by
(

A + BCB)

and verify that it is the
identity. �

Two important special cases of Lemma B.4 (corresponding to B = In) are

(A + C)−1 = A−1 − A−1
(

A−1 + C−1
)−1

A−1

(A + C)−1 = C−1 − C−1
(

A−1 + C−1
)−1

C−1 . (B.5.2)

Lemma B.5. Suppose that a � 0 and b � −a/n, then

• (aIn + bJn)−1 =
(

1
a In − b

a(a+nb) Jn

)

and

• det (aIn + bJn) = an−1(a + nb)

where In is the n × n identity matrix and Jn is the n × n matrix of ones.

The final concepts discussed in this appendix are those of the Vec operator and
vec-permutation matrices (Sects. 16.2 and 16.3 of Harville (1997) give an in-depth
discussion of these notions).

Given an r × c matrix A with (r × 1) columns a1, . . . , ac, Vec(A) is the rc × 1
vector obtained by stacking the columns of A in the order a1, . . . , ac, i.e.,

Vec(A) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1

a2
...

ac

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Vec-permutation matrices are used to streamline the derivation of the formulas
for the joint statistical model in Sect. 8.4. Given integers r ≥ 1 and c ≥ 1, the
vec-permutation matrix Qr,c is the rc × rc permutation matrix that satisfies

Vec(A) = Qr,cVec(A) (B.5.3)

for any r× c matrix A. In words, Qr,c permutes the elements of A which are listed in
column order in the rc× 1 vector Vec(A) to be those of A listed in row order, which
are the entries of the rc × 1 vector Vec(A).
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It can be shown that Qr,c is the permutation matrix that has [(i − 1)c + j]th row
equal to the [( j − 1)r + i]th row of the rc × rc identity matrix Irc for i = 1, . . . , r and
j = 1, . . . , c (Harville (1997)). For example, it is straightforward to calculate that
the 6 × 6 vec-permutation matrix

Q2,3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

satisfies (B.5.3) for any 2 × 3 matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a11 a12 a13

a21 a22 a23

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Three properties of the Vec operator and vec-permutation matrices used in this
text are stated next.

1. For any r1 × r2 matrix A,

Vec(A) = Qr2,r1
Vec(A) (B.5.4)

for vec-permutation matrix Qr2,r1
.

2. For any r1 × r2 matrix A, r2 × r3 matrix B, and r3 × r4 matrix C,

Vec(ABC) = (C ⊗ A)Vec(B). (B.5.5)

3. For any r1 × r2 matrix A and r3 × r4 matrix B,

(A ⊗ B)Qr2,r4
= Qr1,r3

(B ⊗ A) (B.5.6)

for vec-permutation matrices Qr1,r3
and Qr2,r4

.



Appendix C
An Overview of Selected Optimization
Algorithms

Optimization problems are required to implement many of the methodologies de-
scribed in this book. For example, EBLUP prediction assumes that unknown cor-
relation function parameters be estimated, typically by maximizing a likelihood or
REML likelihood. Maximizing an expected improvement must be carried out to im-
plement many of the adaptive designs described in Chap. 6. Similarly, designs con-
structed to optimize the criteria described in Chaps. 5 and 6 require maximization
or minimization.

These problems are often difficult because of the nonlinear character of the func-
tion to be optimized and because the function can have multiple local modes, and
depending on the parameterization, the function’s optima are only realized asymp-
totically.

Because a maximization problem can be turned into a minimization problem by
multiplying the objective by minus one, this section considers only algorithms for
minimizing a given

f (x) : X → IR.

The algorithms are often classified as seeking a “global” optimum if X is a Euclidean
space or a “constrained” optimum if X is a bounded subset of a Euclidean space.
Because most minimization algorithms are only guaranteed to find local minima, a
common strategy is to use the results of an algorithm that permits random searches
of the input domain X, to find many approximate local minima which are used as
starting points for runs of a Newton algorithm that can rapidly and accurately find
the local minimizer “close” to each given starting value; for example, Butler et al.
(2014) use the DIRECT algorithm to identify starting points for a gradient search
of maximum likelihood estimates of correlation parameters. The summary below
focuses on describing the update steps of the algorithms.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
T. J. Santner et al., The Design and Analysis of Computer Experiments,
Springer Series in Statistics, https://doi.org/10.1007/978-1-4939-8847-1

393

https://doi.org/10.1007/978-1-4939-8847-1


394 Appendix C Optimization

C.1 Newton/Quasi-Newton Algorithms

The Newton–Raphson (NR) algorithm is used to find zeros of a given function, say
g(x). To minimize f (x), the NR algorithm is applied to find x� satisfying the first-
order stationarity condition f ′(x�) = 0.

To illustrate this zero-finding algorithm, suppose that g(·) is a function of a single
variable x and g(x�) = 0. The update step of the algorithm is based on the first-order
Taylor approximation

g(x) ≈ g(x�) + g′(x�) (x − x�) (C.1.1)

for g(x). Given the algorithm is at xn, the update step sets xn+1 to be the solution of
L(xn+1) = 0 where L(x) = g(xn)+ g′(xn) (x− xn) is the linear approximation (C.1.1),
i.e., the line whose slope is the tangent to g(x) at xn and passes through the point
(xn, g(xn)). Solving L(xn+1) = 0 gives

xn+1 = xn − g(xn)/g′(xn).

Under conditions on the closeness of the starting value x1 of the algorithm to a
zero of g(x) and on the smoothness of g(x), the NR algorithm has the virtue that it
converges as the square of the difference between the zero and the approximation.
However, the NR method has several weaknesses as Fig. C.1 suggests. If the starting
point is too far from the global minimizer, NR may converge to a local minimum.
(The portion of the x region where the algorithm converges to a given local mini-
mizer is sometimes referred to as the domain of attraction to that minimizer.) The
algorithm can fail to converge. If a step produces an xn that is a stationary point of
g(x), the derivative will be zero at the next update, and NR will terminate due to a
division by zero.

Applied to the problem of minimizing a given f (·), the NR update for finding a
stationary point is

xn+1 = xn − f ′(xn)/ f ′′(xn).

When f (·) depends on d inputs, i.e., x = (x1, . . . , xd), the update formula becomes

xn+1 = xn − (H(xn))−1∇ f ′(xn),

where H(xn) is the d × d Hessian matrix whose (i, j)th element is
∂2 f (x)
∂xi ∂x j

. Lastly,

when the Hessian is difficult to compute, Quasi-Newton methods approximate it by
a variety of numerical differencing methods (see, e.g., Nocedal and Wright (2006)).
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Fig. C.1 Update step of the Newton–Raphson algorithm

C.2 Direct Search Algorithms

Direct search algorithms optimize f (x), x ∈ X in cases where first derivatives are
not available or are difficult to obtain. Such algorithms use only “direct” f (x) eval-
uations to identify promising directions to update a current guess xn of an optimal
input.

C.2.1 Nelder–Mead Simplex Algorithm

Arguably the most famous direct search algorithm used in statistical applications
is the Nelder–Mead simplex algorithm which was proposed to find a global min-
imum of a function f (x1, . . . , xd) of d input variables (Nelder and Mead (1965)).
The method is heuristic. To describe the update method of the algorithm, suppose
there are d = 2 input variables, say x = (x1, x2). The algorithm forms a triangle
whose vertices consist of three input pairs. The update step compares the function
values at these three vertices. The vertex with the largest f (x1, x2) value is deleted
and replaced with a new vertex which is selected along the line determined by the
midpoint of the remaining two points and the deleted input. The new input is de-
termined by calculating f (x) at trial input values that are reflections in the oppo-
site direction of the deleted input, the direction of apparent function descent, or,
if needed, expansions or contractions along the reflection line. Thus the algorithm
generates a sequence of triangles, along which the function values at the vertices
become “smaller.” The size of the triangles is reduced and the coordinates of the
minimum point are found. For problems with d inputs, the triangles consist of sim-
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plexes having d + 1 input vectors. The algorithm is provably convergent for small d
(Lagarias et al. (1998)) but can be slow to converge.

C.2.2 Generalized Pattern Search and Surrogate Management
Framework Algorithms

Booker et al. (1999) implemented a direct search algorithm called the Surrogate
Management Framework for the global minimization of an output f (x) from an
expensive computer model where the inputs are assumed to be located in a rect-
angular region X ⊂ IRd. The Surrogate Management Framework is adapted from
an earlier optimization algorithm devised for easily-computed functions which is
called the Generalized Pattern Search (GPS) algorithm, several of whose features
are described next.

GPS algorithms use a collection of vectors that forms a positive basis for IRd to
perform updates. A positive basis is a set of vectors in IRd such that every x ∈ IRd

can be written as a nonnegative linear combination of these vectors and no proper
subset of the spanning set is also a spanning set. Unlike the (usual) basis of a vector
space, the number of vectors in a positive basis for IRd is not unique.

The update step of the GPS algorithm requires a well-defined set of input variable
locations from which the next iterate is to be selected—this is called a mesh. The
mesh must be constructed in such a way that each element x0 of the mesh has a set
of neighbors for which the collection of differences between these neighbors and
x0 contains a positive basis for IRd. This condition ensures that at least one of these
difference vectors is a direction of descent at x0, provided the gradient of f (x) at
x0 is not equal to zero. This feature leads to desirable convergence properties of the
GPS.

For n = 0, 1, . . . let Mn denote the mesh on X corresponding to the nth update of
the GPS, and let xn ∈ Mn denote the input at the nth iterate. If xn is in the interior
of Mn, construct a subset Xn containing xn and a set of 2d inputs in Mn adjacent
to xn for which the differences between these inputs and xn form a maximal pos-
itive basis for IRd. If xn is on the boundary of Mn, then one constructs a positive
basis with fewer elements. By construction, Mn contains the required points to form
such a positive basis for any element xn. The subsets Xn are updated as the Mn are
incremented in the GPS algorithm.

Example C.1. Suppose d = 2, X = [0, 1]2, and M0 contains x0 ≡ (0.5, 0.5) together
with a lattice of four equally spaced points on [0, 1]2. If the distance between the
coordinates in each dimension is ε, M0 = {(0.5, 0.5), (0.5± ε, 0.5), (0.5, 0.5± ε)}. �

The GPS algorithm iterates between Search and Poll steps. The Search and Poll
steps of the GPS algorithm are global and local in nature, respectively. If no global
improvements can be found in a Search step, then local improvements are sought in
the following Poll step. If necessary, the mesh is refined to facilitate convergence
to a stationary point.
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Search: Utilizing a finite strategy, search Mn for an xt satisfying f (xt) < f (xn). If
the finite search is successful, set Mn+1 = Mn, xn+1 = xt, increment n, and repeat
Search. Otherwise, proceed to Poll.

Poll: If there exists xt ∈ Xn satisfying f (xt) < f (xn), set Mn+1 = Mn and xn+1 = xt .
If not, set Mn+1 = Mn/2 (where division by two indicates halving the mesh) and
xn+1 = xn. Increment n and continue with Search.

Example C.1 (Continued). The halved mesh of M0 is the equally spaced lattice
denoted by M1 = M0/2 where the horizontal or vertical distance between two
points in M1 is ε/2. If M0 = {(0.5, 0.5), (0.5 ± ε, 0.5), (0.5, 0.5 ± ε)}, then M1 is
{(0.5, 0.5), (0.5± ε/2, 0.5), (0.5, 0.5± ε/2)}. �

Booker et al. (1999) proved that a limit point of the sequence {xn} in X generated by
GPS is a stationary point of f (·) provided f (·) is continuously differentiable on X.

While the GPS algorithm is used to minimize easy-to-calculate functions, the
Surrogate Management Framework (SMF) is an adaptation of GPS designed to min-
imize expensive-to-calculate (computer simulator) outputs f (x). SMF algorithms
use an f (x) predictor. An SMF utilizing a selected EBLUP of f (x) is described in
the following paragraphs.

The EBLUP is first calculated from responses generated on an initial experimen-
tal design in the same way as most of the sequential algorithms described in Chap. 6.
Let ̂fn denote the EBLUP at iteration n. The critical feature of the SMF algorithm
is the selection of a trial set Tn within the stage n mesh, Mn; Tn typically consists
of a single point although this need not be the case. The trial set is determined us-
ing ̂fn, and several options are possible. One method is to construct Tn to contain
a minimizer obtained from a finite-difference quasi-Newton method applied to ̂fn.
The SMF algorithm iterates between Search and Poll steps, analogous to GPS,
with an additional Evaluate/Calibrate step that updates the predicted response as
the algorithm progresses.

Search: Choose a trial set Tn ⊂ Mn (Tn can depend on the predictor ̂fn of f (·)).
If Tn � ∅, it must contain at least one point at which f (·) is unknown. If Tn = ∅,
proceed to Poll.

Evaluate/Calibrate: Evaluate f (x) for x ∈ Tn. Stop evaluation if xt ∈ Tn is found
such that f (xt) < f (xn). Update ̂fn with the new output generated from these model
runs; set Mn+1 = Mn, xn+1 = xt, ̂fn+1 = ̂fn, increment n, and repeat Search. If not,
repeat Search with the updated ̂fn but without incrementing n.

Poll: Identical to the GPS Poll. In addition, prior to incrementing n, update ̂fn to
̂fn+1 with any new model runs.

Booker et al. (1999) show that SMF inherits the GPS convergence properties.
The efficiency of SMF is determined by how effective the search component of the
algorithm is implemented to find the trial set Tn.
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C.2.3 DIRECT Algorithm

The DIRECT optimization algorithm was introduced by Jones et al. (1993) to solve
(difficult) global minimization problems having a bounded hyper-rectangular input
region and a real-valued objective function. DIRECT requires no knowledge of the
objective function gradient. The name DIRECT comes from shortening the phrase
DIviding RECTangle, which describes the way the algorithm moves toward the op-
timum. Stated formally, given a, b ∈ IRN and ε > 0, DIRECT is meant to find xopt ∈ Ω
such that

f (xopt) ≤ inf f (x) + ε.

where Ω =
{

x ∈ IRN : ai ≤ xi ≤ bi, 1 ≤ i ≤ N
}

.
DIRECT samples points from rectangular regions in the domain and uses this

information to decide where to search next. The DIRECT algorithm is provably
convergent to the minimizer of the objective function under smoothness conditions
on f (x) (Jones et al. (1993)). As for the Nelder–Mead algorithm, global convergence
may come at the cost of a large and exhaustive search over the domain.

C.3 Genetic/Evolutionary Algorithms

C.3.1 Simulated Annealing

Simulated annealing is a global minimization algorithm for f (x) : X → IR that
can be used when f (x) has numerous local minima. The algorithm can also be used
when X is discrete, as would be the case in determining a maximin design within the
class of Latin hypercube designs (see Sect. 5.2). For example, Morris and Mitchell
(1995) used simulated annealing to find an LHD that maximized a criterion similar
to the ARD criterion defined in (5.4.5).

Unlike most of the previously sketched algorithms, each update step of simulated
annealing either moves in a direction that decreases f (x) or, with a specified prob-
ability, moves in a random direction that need not decrease f (x), a “bad” direction.
Myopically searching in directions that only decrease f (x) can lead to finding only
local minima. Allowing updates in randomly selected “bad” directions allows the al-
gorithm to move away from local minima and explore new parts of the input space
X that may contain a global minimum. After exploring many such random direc-
tions and observing that the f (x) declines only slowly, simulated annealing changes
its objective and limits the size of the permitted “bad” directions.

The heuristic employed by simulated annealing is derived by observing the an-
nealing of a physical process which involves melting a solid followed by slow cool-
ing to a minimum free energy state. During the cooling process, transitions are ac-
cepted to occur from a low- to a high-energy level through a Boltzmann probability
distribution. In the final steps, the algorithm may “quench” the process by accepting
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only directions that decrease f (x) in order to find a local minimum in the neighbor-
hood where a global optimum is to be found (see Press et al. (2007)).

C.3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithms were introduced in Kennedy and
Eberhart (1995) to find the global minimum of f (x) : X → IR. The behavior of
the algorithm mimics, in a sense, the behavior of a swarm of bees/ants searching for
a food source. The algorithm initializes a user-specified number of starting values
x, called “particles,” with the collection of all the particles called a “swarm.” The
algorithm searches X by updating each particle xi for a given number of steps; at the
conclusion of the steps for all particles, the algorithm selects the particle and step
location for that particle which minimizes f (·) as the desired minimizing x.

The update direction and distance of particle xi at the current step are determined
by three factors: (1) the value of xi which produced the particle-smallest value of f (·)
in the steps prior to the current one, (2) the value of that member of the swarm which
produced the swarm-smallest value of f (·) in the steps prior to the current one, and
(3) random movement. Thus PSO algorithms rely on randomness and “swarm com-
munication” to identify the minimizing x ∈ X. (See Yang (2010) for an introduction
to PSO.)

PSO algorithms have had many statistical applications. These include the compu-
tation of optimal designs for physical experiments using classical criteria (see Chen
et al. (2014b); Phoa et al. (2015) and the references therein) and the computation
of optimal designs for computer experiments (see Chen et al. (2013); Leatherman
(2013)). For example, Leatherman (2013) used the output of a PSO to identify start-
ing points for a gradient-based nonlinear optimizer (fmincon.m from the MATLAB
Optimization toolbox) to find designs that minimized the integrated mean squared
prediction error and weighted mean squared prediction error. This strategy is similar
to that of Butler et al. (2014).

PSO can be easily implemented and is computationally inexpensive because its
memory and CPU speed requirements are low; in addition it does not require gradi-
ent information of the objective function but only function values.



Appendix D
An Introduction to Markov Chain Monte
Carlo Algorithms

This appendix describes the Gibbs and the Metropolis–Hastings (MH) algorithms
for generating draws W = (W1, . . . , Wd) from a target density π(w). Both are ex-
amples of Markov chain Monte Carlo (MCMC) algorithms. Readers desiring to
learn additional details about MCMC algorithms can consult the following mate-
rial. Casella and George (1992) provide an introductory treatment of the Gibbs al-
gorithm, while Chib and Greenberg (1995) give an elementary description of the
MH algorithm. The book length treatments of Gilks et al. (1996), Liu (2008), and
Gelman et al. (2013) provide the theoretical properties of MCMC methods and dis-
cuss implementation issues.

The Gibbs algorithm assumes that all full conditionals of π(w) are known and
can be sampled. The full conditionals of π(w) are the d conditional distributions
π(wi | wC) where C = {1, . . . , d} � {i}, i = 1, . . . , d; wC denotes the sub-vector of w
having elements wj, j ∈ C.

Given integer M > 0, the Gibbs algorithm draws w1, . . . , wM as follows.

[Initialization] Randomly choose w0 in the support of π(w), set k = 1, and go to
Step 1.

[Step 1] Draw wk
1 from π(w1 | wk−1

C ), where C = {2, . . . , d}.
[Step 2] Draw wk

2 from π(w2 | wk
1, wk−1

C ), where C = {3, . . . , d}.
[Step 3] Draw wk

3 from π(w3 | wk
1, wk

2, wk−1
C ), where C = {4, . . . , d}.

...

[Step d] Draw wk
d from π(wd | wk

1, wk
2, . . . , wk

d−1). If k = M go to [Return]; other-
wise increment k to k + 1, and go to [Step 1].

[Return] w1, . . . , wM .

Under mild conditions, π(w) is the limiting distribution of the sequence draws as
M → ∞ (see Roberts and Smith (1994)).
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Example 4.2 (Continued). In this example from Chap. 4, there are test and training
data that follow a two-stage model with first-stage [(Yte, Ytr) | (β, λZ)] distribution
given by (4.1.1) and second stage (prior)

[β | λZ] ∼ Np

(

bβ, λ
−1
Z Vβ

)

and [λZ] ∼ Γ(c, d) .

The parameter (β, λZ) is unknown, and the correlation parameters are known. The
Gibbs algorithm for sampling from the posterior [β, λZ | ytr] is as follows.

The calculation in Sect. 4.1 uses fixed λZ and is thus conditional. It shows that
[

β
∣

∣

∣ Ytr, λZ

]

∼ Np

(

μβ|tr,Σβ|tr
)

, (D.0.1)

where

μβ|tr =
(

λZ F
tr R−1

tr Ftr + λZ V−1
β

)−1
×

(

λZ F
tr R−1

tr Ftr
̂β + λZ V−1

β bβ

)

=
(

F
tr R−1

tr Ftr + V−1
β

)−1
×

(

F
tr R−1

tr Ftr
̂β + V−1

β bβ

)

is independent of λZ and

Σβ|tr = Σβ|tr(λZ) = λ−1
Z

(

F
tr R−1

tr Ftr + V−1
β

)−1
.

The kernel of the [λZ | Ytr, β] conditional can be written as
[

λZ

∣

∣

∣ Ytr, β
]

∝
[

Ytr
∣

∣

∣ β, λZ

]

[β | λZ][λZ]

∝ λ
c+(ns+p)/2−1
Z exp

{

−λZ

2
(2d + Q1 + Q2)

}

(D.0.2)

where
Q1 = Q1(β) =

(

ytr − Ftrβ
)

R−1
tr

(

ytr − Ftrβ
)

and
Q2 = Q2(β) =

(

β − bβ

)
V−1

β

(

β − bβ

)

(see Proof of Theorem 4.2 in Sect. 4.4.1). This shows

[

λZ

∣

∣

∣ Ytr, β
]

∼ Γ
(

c + (ns + p)/2, d +
Q1 + Q2

2

)

.

Thus the Gibbs algorithm first selects λ0
Z > 0 and β0 ∈ IRp, sets k = 1, and

specifies a total number, M, of (β, λZ) draws. Each βk is updated as a draw from

Np

(

μβ|tr,Σβ|tr(λk−1
Z )

)

,

and λk
Z is updated as a draw from

Γ

(

c + (ns + p)/2, d +
Q1(βk) + Q2(βk)

2

)

.

This produces the sequence {βk, λk
Z}, k = 1, . . . , M, whose limit (as M → ∞) is a

draw from the joint conditional [β, λZ | ytr]. �
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In contrast to the Gibbs algorithm which requires that all full conditionals of the
W distribution be known, the MH algorithm requires only that the W density be
known up to a constant of proportionality, i.e., that W have density c × π(w) where
π(w) is known but c > 0 need not be known. To simplify notation, the description
below assumes c = 1, i.e., π(w) is the target density. However, the use of π(w) only
as a ratio in Step 2 of the MH algorithm (below) makes clear that the method does
not require knowledge of normalizing constants.

In overview, the MH algorithm forms the entire Wk+1 draw at once. In contrast,
the Gibbs algorithm made Wk+1 draws one subcomponent at a time. Users must
specify two quantities to implement the MH algorithm: the number of iterations,
M, that the algorithm will run and a proposal distribution. Each iteration of the
algorithm consists of three steps and returns the next w value. Thus at the conclu-
sion of the algorithm a sequence of values w1, . . . , wM is determined. The second
quantity that must be specified is the proposal distribution which will be denoted
q(· | ·). Suppose wk has been constructed at the conclusion of iteration k, q(wk | ·) is
a probability distribution used to generate a “candidate” value for wk+1, say wcand.
The q(wk | ·) notation may seem strange to readers who are more familiar with the
notation f (· | parameters) for a family of probability model densities given specific
parameter values. Here wk in q(wk | ·) plays the role of the conditioning quantity.
This notation is used in the MCMC literature because q(wk | ·) is the continuous
version of a transition probability matrix for a finite Markov chain in which one
moves from state i to a new state j with a probability Pi, j. Then, at the conclusion
of iteration k + 1, wk+1 is either set equal to the candidate, wcand, or remains at value
wk. Given M and q(· | ·), the MH algorithm is described as follows.

[Initialization] Randomly choose w1 in the support of π(w), set k = 1, and go to
Step 1.

[Step 1] Given the current value Wk = wk, let wcand be the value of a draw from
q(wk | ·) and U = u a draw from an independent U(0, 1) random variable.

[Step 2] Set

α = α(wk, wcand) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min

{

π(wcand) q(wcand | wk)
π(wk) q(wk | wcand)

, 1

}

, π(wk) q(wk | wcand) > 0

1, o.w.
.

[Step 3] Set

wk+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wcand, if u ≤ α(wk, wcand)

wk, if u > α(wk, wcand)
.

If k = M go to [Return], otherwise increment k to k + 1 and go to [Step 1].

[Return] w1, . . . , wM

As is true for the Gibbs algorithm, π(w) is the limiting distribution of the W se-
quence as M → ∞ under mild conditions (see Roberts and Smith (1994)).



404 Appendix D MCMC Algorithms

In practice, both Gibbs and MH algorithms discard an initial number of “burn-
in” draws w1, . . . , wM and treat the remainder as dependent draws from π(w). In the
examples of Chap. 4, a total of M = 10,000 draws were made of which the first 5000
were discarded as burn-in.

The choice of the transition kernel q(· | ·) is crucial to the success of the algorithm.
In Chaps. 4 and 8, q(wk | ·) was taken to be uniformly distributed about the center
point wk with a (support) width that is determined to provide a “good” acceptance
rate in Step 3. The uniform proposal distribution has the property that q(wcand | wk) =
q(wk | wcand) so that α(wk, wcand) is independent of q(· | ·). If the width of the proposal
distribution is “too small,” the proposals will be accepted with high probability, but
the wk sequence will move only slightly from iteration to iteration; a (very) large M
may be required to achieve the π(w) limiting behavior. If the width is “too large,”
the proposal can be “far” from the current wk and often be rejected; the result is a wk

sequence that is stuck on a few points. Typically, one must “train” the MH algorithm
by selecting the widths of the proposal distribution to achieve a target acceptance
rate. Gelman et al. (1996) show that in certain theoretical circumstances, a rate of
about 44% is optimal for a univariate w. Graves (2011) and Roberts and Rosenthal
(2007) present two different approaches for training an MH algorithm.

We conclude by noting that the Gibbs and MH algorithms can be blended. As
an example, assume that the correlation parameters ρ in the regression + station-
ary GP model in Example 4.2 are unknown. It is desired to generate draws from
[(β, λZ, ρ) | Ytr]. Each iteration of the Gibbs algorithm requires draws from the three
full conditionals [β | Ytr, λZ, ρ], [λZ | Ytr, β, ρ], and [ρ | Ytr , β, λZ]. The calculations
in Eqs. (D.0.1) and (D.0.2) with known ρ provide the full conditionals [β | Ytr, λZ, ρ]
and [λZ | Ytr, β, ρ], respectively. It is straightforward to generate draws from each.
The conditional [ρ | Ytr, β, λZ] does not have a recognizable form. However,

[

ρ
∣

∣

∣ Ytr , β, λZ

]

∝
[

Ytr
∣

∣

∣ β, λZ, ρ
]

× [ρ]

so that the desired conditional distribution is known up a normalizing constant. The
MH algorithm can be used to draw an observation from this distribution and pro-
vides the third step of a Gibbs algorithm for sampling from [(β, λZ, ρ) | Ytr].



Appendix E
A Primer on Constructing Quasi-Monte
Carlo Sequences

To construct a Halton sequence {x1, x2, . . . , xn} of n points on the d-dimensional
unit hypercube, begin by choosing d prime numbers or bases, b1, b2, . . . , bd. These
could be, for example, the first d prime numbers. The base b j is used to construct
the jth coordinate of each of x1, x2, . . . , xn, j = 1, . . . , d.

Next, select an integer m. Fix j ∈ {1, . . . , d}. Represent the integer m in base b j

as

m =
tm j
∑

k=0

a jk(m)bk
j for j = 1, . . . , d. (E.0.1)

where each a jk(m) ∈ {0, 1, . . . , (b j−1)} and tm j is the highest power of b j used in the
representation of m in base b j. Form x1, j by reversing the digits in the representation
of m in base b j and placing these reversed digits after a decimal point, i.e.,

x1, j =

tm j
∑

k=0

a j,tm j−k(m)bk−tm j−1
j for j = 1, . . . , d. (E.0.2)

Set m = m + i − 1 and repeat the above to form xi =
(

xi,1, . . . , xi,d
)

for i = 2, . . . , n.

Example E.1 (Constructing a Halton Sequence). We compute the first 5 (= n) points
in a two-dimensional Halton sequence (d = 2) corresponding to the bases b1 = 2
and b2 = 3. We take m = 4. The representation (E.0.1) of 4 in base 2 is 100 ( j = 1)
and is 11 in base 3 ( j = 2); here tm1 = 2 and tm2 = 1. Reversing the digits and adding
a decimal point give x1 = (.0012, .113) for Eq. (E.0.2) where the subscript indicates
the base. Converting to base 10,

.0012 = 0 × 2−1 + 0 × 2−2 + 1 × 2−3 = 1/8 = 0.125

and
.113 = 1 × 3−1 + 1 × 3−2 = 1/3 + 1/9 = 0.444.

Thus, the first point in the Halton sequence is x1 = (.125, .444).
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To compute x2, increase m by 1 to the value 5 (setting i = 2). The value 5 is
101 in base 2 and is 12 in base 3. Reversing the digits and adding a decimal point,
x2 = (.1012, .213). Converting to base 10,

.1012 = 1 × 2−1 + 0 × 2−2 + 1 × 2−3 = 1/2 + 1/8 = 0.625

and
.213 = 2 × 3−1 + 1 × 3−2 = 2/3 + 1/9 = 0.7784.

Thus, the second point in our Halton sequence is x2 = (.625, .778).
The next three points correspond to m = 6, 7, and 8. In base 2, these m are 110,

111, and 1000, respectively. In base 3, these are 20, 21, and 22. Reversing digits
and adding a decimal point gives x3 = (.0112, .023), x4 = (.1112, .123), and x5 =

(.00012, .223). Converting to base 10, one finds x3 = (.375, .222), x4 = (.875, .556),
and x5 = (.0625, .8889). Figure E.1 shows the resulting five-point design. �

Fig. E.1 An n = 5 point, d = 2 variable Halton sequence

Halton sequences are relatively easy to calculate and have been found to be ac-
ceptably uniform for lower dimensions (d up to about 10). For higher dimensions the
quality degrades rapidly because two-dimensional planes occur in cycles with de-
creasing periods. Methods for creating sequences that behave better (appear uniform
even in higher dimensions) have been developed by Sobol´ and further improved
by Niederreiter (Sobol´ (1967), Sobol´ (1976), Niederreiter (1988), and Lemieux
(2009)).
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Brynjarsdóttir J, O’Hagan A (2014) Learning about physical parameters: the impor-
tance of model discrepancy. Inverse Prob 30:114007 (24pp)

Buhmann MD (2003) Radial basis functions: theory and implementations. Cam-
bridge University Press, Cambridge

Bursztyn D, Steinberg DM (2002) Rotation designs: orthogonal first-order designs
with higher-order projectivity. J Appl Stoch Models Bus Ind 18:197–206

Bursztyn D, Steinberg DM (2006) Comparison of designs for computer experi-
ments. J Stat Plann Inf 136:1103–1119

Butler NA (2001) Optimal and orthogonal Latin hypercube designs for computer
experiments. Biometrika 88:847–857

Butler A, Haynes RD, Humphries TD, Ranjan P (2014) Efficient optimization of
the likelihood function in Gaussian process modelling. Comput Stat Data Anal
73:40–52

Campbell K (2001) Functional sensitivity analysis for computer model output. In:
Bodt BA, Wegman EJ (eds) Proceedings of the seventh U.S. army conference on
applied statistics. Army Research Laboratory, pp 35–46

Campbell KS, McKay MD, Williams BJ (2005) Sensitivity analysis when model
outputs are functions (tutorial). In: Hanson KM, Hemez FM (eds) Proceedings
of the SAMO 2004 conference on sensitivity analysis. Los Alamos National
Laboratory, Los Alamos, NM, pp 81–89. https://library.lanl.gov/cgi-bin/getdoc?
event=SAMO2004&document=samo04-proceedings.pdf

Campbell KS, McKay MD, Williams BJ (2006) Sensitivity analysis when model
outputs are functions. Reliab Eng Syst Saf 91:1468–472

Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sen-
sitivity analysis of large models. Environ Model Softw 22:1509–1518

Campolongo F, Saltelli A, Cariboni J (2011) From screening to quantitative sensi-
tivity analysis. A unified approach. Comput Phys Commun 43:39–52

Casella G, George E (1992) Explaining the Gibbs sampler. Am Stat 46:167–174
Chakraborty A, Mallick BK, McClarren RG, Kuranz CC, Bingham D, Grosskopf

MJ, Rutter EM, Stripline HF, Drake RP (2013) Spline-based emulators for radia-
tive shock experiments with measurement error. J Am Stat Assoc 108:411–428

https://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-proceedings.pdf
https://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-proceedings.pdf


410 References

Chakraborty A, Bingham D, Dhavala SS, Kuranz CC, Drake RP, Grosskopf MJ,
Rutter EM, Torralva BR, Holloway JP, McClaren RG, Malllick BK (2017) Em-
ulation of numerical models with over-specified basis functions. Technometrics
59:153–164

Chang PB (1998) Robust design and analysis of femoral components for total hip
arthroplasty. PhD thesis, Sibley School of Mechanical and Aerospace Engineer-
ing, Cornell University, Ithaca, NY

Chang PB, Williams BJ, Bawa Bhalla KS, Belknap TW, Santner TJ, Notz WI, Bartel
DL (2001) Robust design and analysis of total joint replacements: finite element
model experiments with environmental variables. J Biomech Eng 123:239–246

Chapman WL, Welch WJ, Bowman KP, Sacks J, Walsh JE (1994) Arctic sea ice
variability: model sensitivities and a multidecadal simulation. J Geophys Res
99(C1):919–935

Chen W, Jin R, Sudjianto A (2005) Analytical variance-based global sensitivity
analysis in simulation-based design under uncertainty. J Mech Des 127:875–876

Chen W, Jin R, Sudjianto A (2006) Analytical global sensitivity analysis and uncer-
tainty propogation for robust design. J Qual Technol 38:333–348

Chen RB, Wang W, Wu CFJ (2011) Building surrogates with overcomplete bases
in computer experiments with applications to bistable laser diodes. IEE Trans
182:978–988

Chen RB, Hsieh DN, Hung Y, Wang W (2013) Optimizing Latin hypercube designs
by particle swarm. Stat Comput 23(5):663–676

Chen PH, Dean A, Santner T (2014a) Multivariate Gaussian process interpolators
with varying-parameter covariance—with an application to Pareto front estima-
tion. Poster Presentation, 2014 meeting of the American Statistical Association

Chen RB, Chang SP, Wang W, Tung HC, Wong WK (2014b) Minimax optimal
designs via particle swarm optimization methods. Stat Comput 24:1063–1080

Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm. Am
Stat 49(4):327–335

Chipman H, George E, McCulloch R (1998) Bayesian CART model search (with
discussion). J Am Stat Assoc 93:935–960

Chipman H, George E, McCulloch R (2002) Bayesian treed models. Mach Learn
48:303–324

Christiansen CL, Morris CN (1997) Hierarchical Poisson regression modeling. J
Am Stat Assoc 92:618–632

Cioppa TM, Lucas TW (2007) Efficient nearly orthogonal and space-filling Latin
hypercubes. Technometrics 49:45–55

Coello Coello CA, Lamont GB, Van Veldhuizen DA (2006) Evolutionary algo-
rithms for solving multi-objective problems (genetic and evolutionary compu-
tation). Springer, New York, NY

Constantine PG, Dow E, Wang Q (2014) Active subspace methods in theory and
practice: applications to kriging surfaces. SIAM J Sci Comput 36(4):A1500–
A1524

Conti S, O’Hagan A (2010) Bayesian emulation of complex multi-output and dy-
namic computer models. J Stat Plann Inf 140(3):640–651



References 411

Cooper LY (1980) Estimating safe available egress time from fires. Technical report
80-2172, National Bureau of Standards, Washington

Cooper LY (1997) VENTCF2: an algorithm and associated FORTRAN 77 subrou-
tine for calculating flow through a horizontal ceiling/floor vent in a zone-type
compartmental fire model. Fire Safe J 28:253–287

Cooper LY, Stroup DW (1985) ASET—a computer program for calculating avail-
able safe egress time. Fire Safe J 9:29–45

Cox DD, Park JS, Singer CE (2001) A statistical method for tuning a computer code
to a data base. Comput Stat Data Anal 37(1):77–92

Craig PC, Goldstein M, Rougier JC, Seheult AH (2001) Bayesian forecasting for
complex systems using computer simulators. J Am Stat Assoc 96:717–729

Cramér H, Leadbetter MR (1967) Stationary and related stochastic processes. Wiley,
New York, NY

Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York,
NY

Cressie NA (1993) Statistics for spatial data. Wiley, New York, NY
Crick MJ, Hofer E, Jones JA, Haywood SM (1988) Uncertainty analysis of the

food chain and atmospheric dispersion modules of MARC. Technical report
NRPBR184, National Radiological Protection Board

Currin C, Mitchell TJ, Morris MD, Ylvisaker D (1991) Bayesian prediction of de-
terministic functions, with applications to the design and analysis of computer
experiments. J Am Stat Assoc 86:953–963

Dandekar R, Kirkendall N (1993) Latin hypercube sampling for sensitivity and un-
certainty analysis. In: American Statistical Association proceedings of the Section
on Physical and Engineering Sciences. American Statistical Association, Alexan-
dria, VA, pp 26–31

Davis C (2015) A Bayesian approach to prediction and variable selection using
nonstationary Gaussian processes. PhD thesis, Department of Statistics, The Ohio
State University, Columbus, OH

Dean AM, Voss D, Draguljic D (2017) Design and analysis of experiments, 2nd edn.
Springer, New York, NY

Dette H, Pepelyshev A (2010) Generalized Latin hypercube designs for computer
experiments. Technometrics 52:421–429

Dixon LCW, Szego GP (1978) The global optimisation problem: an introduction. In:
Dixon LCW, Szego GP (eds) Towards global optimisation, vol 2. North Holland,
Amsterdam, pp 1–15

Doob JL (1953) Stochastic processes. Wiley, New York, NY
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