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Foreword

The authors are to be congratulated for their new book Targeted Learning in Data
Science. The book is a welcome addition to the literature, merging two exciting
fields. It is a sequel text that builds on their earlier highly successful general treat-
ment of machine learning and causal inference in Targeted Learning (van der Laan
and Rose 2011). Given that both targeted learning and data science are rapidly evolv-
ing fields with fuzzy boundaries, to narrow the scope, we write from the perspective
of data scientists in the biomedical sciences and the manner in which targeted learn-
ing can help unify the foundations in this area, particularly, how targeted learning
addresses a key divide in causal foundations by connecting mechanistic modeling
and randomization-based inference.

To elaborate, in mechanistic modeling, practitioners seek to build an accurate
model of the underlying data-generating process. In other words, the entire distribu-
tion of the observed data unit or perhaps only relevant portions of this distribution
are modeled. For example, the conditional distribution of an outcome given treat-
ment type and baseline covariates may be explicitly modeled. This is at the heart
of traditional likelihood-based modeling, including common Bayesian approaches.
In mechanistic modeling, causality is often thought of informally, if at all, with a
primary focus instead on modeling or prediction. Historically, parsimony guides
the analysis, often via linearity assumptions on conditional mean models. More re-
cently, machine learning approaches have allowed the creation of more accurate
but computationally elaborate models. This has motivated some to characterize ap-
proaches to mechanistic modeling as being either model-based or algorithmic—see,
for example, Breiman et al. (2001). Model-based mechanistic modeling consists of
describing the data-generating process using relatively few parameters. Even despite
its inherent risk of model misspecification, this approach may be appealing since
in several cases, parsimonious models, even if wrong, provide useful descriptions
of key features of the data-generating process. Model-based approaches can suffer
when subject-level inference is of interest, since the simplifications made for the
sake of parsimony are generally incompatible with rich data-generating processes
and may not accurately capture population heterogeneity. In contrast, complex
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prediction algorithms often do facilitate accurate subject-level inference for use in
individual decision-making. However, they generally cannot be described parsimo-
niously and do not readily allow for inference on useful population summaries. Nev-
ertheless, irrespective of whether algorithmic prediction or parsimonious statistical
models are used, a model is built for the data-generating mechanism.

In contrast, many statistical approaches to causal inference focus on ancillary
randomization, or ideas based on ancillary randomization, to estimate marginal ef-
fects. The average treatment effect (ATE) is often the target of interest. The ATE is
a desirable estimand, as it summarizes the causal impact of a policy, such as what
the average benefit of treating patients with a particular drug would be. Research
in causal inference has focused on reducing the assumptions that more mechanistic,
model-based approaches would require to estimate the ATE or related causal esti-
mands. In such approaches, formally incorporating the randomization scheme, or
models of treatment assignment, is the price required to avoid the onerous modeling
assumptions to obtain causal estimates out of traditional methods.

It is fair to say that both algorithmic and machine learning approaches to
mechanistic models and robust causal marginal estimates have been revolutions in
statistics, dominating much of the zeitgeist of late. These two approaches both have
desirable aspects, yet little in common. A core appeal of targeted learning is the
formal unification of these approaches. Targeted learning of an ATE requires es-
timation of both the conditional mean outcome (i.e., outcome regression) and the
treatment assignment distribution (i.e., propensity score), but also yields robust es-
timation of marginal causal effects through the use of targeted minimum loss-based
estimation (TMLE). By performing this unification, targeted learning builds up a
theory of causal inference based on underlying mechanistic models (as discussed,
for example, in the foreword to van der Laan and Rose 2011, by Judea Pearl). This
underlying framework will be satisfying to data scientists, who tend to think more
mechanistically than researchers in causal inference, who base their foundations on
notions of experimentation. A key aspect of targeted learning is that while it is based
upon the estimation of underlying mechanistic models, it does not require knowing
or postulating simplistic models or model classes to be effective.

While the framework of targeted learning unifies these two disparate areas, the
specific implementation of the framework recommended in the text offers somewhat
of a free lunch similar to modeling treatment assignment probabilities (propensity
scores). Specifically, the mere act of modeling relationships between a treatment
and covariates is informative. This, of course, applies to targeted learning if the
target requires modeling treatment assignment. Similarly, the exercise of building
up several conditional outcome models in the pursuit of targeted learning will of-
ten be extremely illuminating about the data and setting. In other words, targeted
learning does not eliminate the nontargeted, informal learning that is so valuable in
model-based statistics. The authors explicitly encourage a very broad approach to
the conditional modeling and suggest model stacking/super learning as a method for
blending estimates. This approach, within the context of targeted learning, shatters
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the divide between model-based and algorithmic approaches to mechanistic mod-
eling, rendering the distinction between the two practically moot. It also eliminates
concern over inference after model selection, a key issue in more mechanistic ap-
proaches. All relevant models and algorithms can contribute to the stacked predic-
tion model in an objective, data-driven but a priori specified manner. This fact, in
conjunction with use of the targeting step of the TMLE procedure, essentially elim-
inates concerns over biased error rates due to model selection.

Another benefit is obtained by forcing researchers to actually specify the
marginal estimand of interest (the target). This has the mathematical benefit that
TMLE can improve estimation by modifying the output of the mechanistic model-
ing step to focus on the target of interest. This is in contrast to regular maximum
likelihood, for example, wherein a global, nontargeted assessment of fit is opti-
mized. Targeted learning has the practical benefits of focusing the discussion and
prompting an a priori specification of hypotheses. As a metaphor, in targeted learn-
ing, one cannot shoot an arrow and paint a bullseye around where it lands, since
the target must be pre-specified. It is worth emphasizing that the effect of interest
need not be formally causal, merely any global summary of the data-generating
mechanism. This is important in the context of neuroimaging and neuroscience
(some of our areas of interest), as scientists are often interested in “treatments,”
such as disease status or brain morphometry, that are not conceptually assignable.

Speaking of our areas of interest, the incorporation of the mechanistic and ma-
chine learning aspects of targeted learning is highly appealing in neuroscience
and neuroimaging data science, as mechanistic and model-based causal approaches
dominate. Many of the most popular techniques are model based: dynamic causal
modeling, Granger causality, and structural equation models (Friston et al. 2013;
Zhang et al. 2015; Chén et al. 2017; Friston et al. 2003; Penny et al. 2004). “Gener-
ative modeling” is a phrase that is used frequently in the neuroimaging literature to
(positively) motivate an approach. One could conjecture that the goals of a mecha-
nistic understanding of the brain and its disorders predispose the field toward more
mechanistic approaches to observational modeling.1 However, much less attention
has been paid to causal inference and excessive focus is placed on the single-final-
model based statistics that the authors rightly criticize. It is interesting to note that
our mechanistic understanding of the brain has led to artificial neural networks and
modern artificial intelligence through deep learning. These flexible approaches con-
tain large swaths of traditional statistical modeling as special cases and have come
to dominate data science, especially in tech-related industries. One could envision
applications of targeted learning to existing artificial intelligence systems to perform
on-the-fly causal analyses in lieu of formal time-consuming A/B tests.

1 Interestingly, the reverse, utilizing ideas from statistics creates hypothetical models of neural
organization, also appears to be true. Recent attempts at characterizing the brain as intrinsically
Bayesian represent exactly such a case (Knill and Pouget 2004).
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To summarize, this book will serve as a bridge for existing data scientists wanting
to engage in causal analyses and targeted estimates of marginal effects. It will also
help the causal statistical community understand key issues and applications in data
science.

Baltimore, MD, USA Brian Caffo
Seattle, WA, USA Marco Carone
December 2017



Preface

This book builds on and is a sequel to our book Targeted Learning: Causal Inference
for Observational and Experimental Studies (2011). Since the publication of this
first book on machine learning for causal inference, various important advances
in targeted learning have been made. We decided that it was important to publish a
second book that incorporated these recent developments. Additionally, we properly
position the role of targeted learning methodology within the burgeoning field of
data science.

This textbook for scholars in statistics, data science, and public health deals with
the practical challenges that come with big, complex, and dynamic data. It presents
a scientific roadmap to translate real-world data science applications into formal
statistical estimation problems by using the general template of targeted maximum
likelihood estimators. These targeted machine learning algorithms estimate quan-
tities of interest while still providing valid inference. Targeted learning methods
within data science are a critical component for solving scientific problems in the
modern age. The techniques can answer complex questions, including optimal rules
for assigning treatment based on longitudinal data with time-dependent confound-
ing, as well as other estimands in dependent data structures, such as networks. Tar-
geted Learning in Data Science contains demonstrations with software packages
and real data sets that present a case that targeted learning is crucial for the next
generation of statisticians and data scientists.

xi
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Key features of Targeted Learning in Data Science:

1. Represents essential data analysis tools for answering complex big data
questions based on real world data

2. Machine learning estimators that provide inference with data science
3. Introductory chapters present an accessible explanation of causal infer-

ence and targeted learning for complex longitudinal data
4. Filled with real world applications and demonstrations of (a) the trans-

lation of the real world application into a statistical estimation problem,
and (b) the targeted statistical learning methodology to answer scientific
questions of interest based on real data

5. Demonstrates targeted learning from experiments in which the data on the
different experimental units are dependent, such as those described by a
network

6. Deals with the practical challenges that come with big, complex, and dy-
namic data while maintaining strong theoretical foundation

Outline

Similar to our last book, Targeted Learning in Data Science is special as it contains
contributions from invited authors, yet is not a traditional edited text. As the authors,
we have again spent substantial time reworking each chapter to have consistent no-
tation, style, and a familiar road map. This led to a second cohesive book on targeted
learning that reads as one text.

Part I—Targeted Learning in Data Science: Introduction

In Chap. 1, we provide the motivation for targeted learning and a general overview
of its roadmap involving (1) data as a random variable; (2) a statistical model repre-
senting the true knowledge about the data experiment; (3) translation of the scientific
question into a statistical target parameter and (4) targeted minimum loss-based esti-
mation (TMLE) accompanied with inference. In Chap. 1 we also define our running
longitudinal example inspired by a “when to treat” application in HIV research.

In Chap. 2, we review causal models for longitudinal data and their utility in
defining a formal causal quantity/query representing the answer to the scientific
question of interest. We focus on causal quantities defined in terms of counter-
factual means of an outcome under a certain intervention rule. We present the g-
computation estimand that identifies the causal quantity as a function of the data
distribution, under the sequential randomization and positivity assumption. At this
point, we have defined the statistical model and estimand and thereby the statisti-
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cal estimation problem: under the causal model and identifiability assumptions, the
estimand equals the desired causal quantity, but either way it has a valid statistical
interpretation of interest.

The last two chapters in Part I focus explicitly on estimation. Chapter 3 presents
the sequential super learning approach to estimate the prediction of a counterfac-
tual outcome as a function of baseline covariates, an object of independent interest.
Since the expectation of this prediction function equals the (marginal) mean of the
counterfactual outcome, this sequential learning also provides the initial estimator
in the definition of the TMLE presented in Chap. 4. Chapter 4 presents the TMLE
of the counterfactual mean outcome in our running example. It demonstrates the
general roadmap for computing a TMLE in terms of the efficient influence curve, a
local least favorable submodel that uses the initial estimator as an off-set and loss
function whose score spans the efficient influence curve, and an iterative algorithm
iteratively updating the current estimator with the maximum likelihood estimator
of least the favorable submodel that uses as off-set the current estimator. Chapter 4
also demonstrates the general analysis of TMLE and formal inference in terms of
its influence curve.

Part II—Additional Core Topics

Part II concerns theoretical and methodological developments for the general
TMLE. There are many estimation problem for which the TMLE involves itera-
tively updating the initial estimator by iteratively maximizing the log-likelihood (or,
more generally, minimizing an empirical mean of a loss function) along the local
least favorable submodel through the current update. The iterative nature of such
a TMLE can result in unstable finite sample TMLE, especially in the case that the
data provides sparse information for the target parameter. In Chap. 5, we develop a
general one-step TMLE based on a so called universal (canonical) least favorable
submodel that is uniquely characterized by the canonical gradient/efficient influence
curve. We also develop this one-step TMLE for a multivariate target parameter, and
even for an infinite dimensional target parameter. The philosophy of this TMLE
strongly suggest that this one-step TMLE is more robust and stable than an iterative
TMLE. An example in survival analysis is worked out and simulations are used to
demonstrate the theory.

Chapter 6 presents a new general estimator of a parameter defined as the mini-
mizer of an expectation of a loss-function such as a conditional mean or conditional
density. We refer to this estimator as the highly adaptive lasso (HAL) estimator since
it can be implemented by minimizing the empirical risk over very high dimensional
linear combination of indicator basis functions under the constraint that the sum of
the absolute value of the coefficients is bounded by some constant, which itself is se-
lected with cross-validation. We show that this estimator is guaranteed to converge
to its true counterpart at a faster rate than n−1/4 in sample size n, even for complete
nonparametric models and high-dimensional data structures.
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In Chap. 7, we show that a TMLE that uses the HAL estimator as initial estima-
tor, or uses a super learner whose library contains this HAL estimator, is asymptoti-
cally efficient under very weak regularity conditions, as long as the strong positivity
assumption holds. The formulation of a TMLE relies on the computation of the effi-
cient influence curve. There are many estimation problems in which this object only
exists in an implicit form and is extremely hard to compute according to this im-
plicit form. In Chap. 8 we present a machine-learning based estimator of an efficient
influence curve which avoid the need for the analytic computation of the efficient
influence curve, and by using the HAL estimator we are guaranteed to estimate it
accurately. In particular, we show that this allows us to construct TMLE that could
not be formulated previously due to the immense complexity of its efficient influ-
ence curve. This is demonstrated with various censored data examples (e.g., interval
censored data and bivariate right-censored data).

In Chap. 9 we present a general class of data-adaptive target parameters, which
allows a statistician to mine the data to determine the target parameter of inter-
est while obtaining valid confidence intervals. Specifically, we present a cross-
validated TMLE (CV-TMLE) of this data-adaptive target parameter, develop the
formal asymptotics theorem, and demonstrate this CV-TMLE in a variable impor-
tance analysis for continuous variables. Following this, in Chap. 10, we propose a
general class of collaborative TMLE (C-TMLE) for targeted selection of the nui-
sance parameter estimator among a continuum of candidate estimators. We show
that it is theoretically superior to a TMLE that estimates the nuisance parameter
with an estimator (e.g., super learner) that is optimized for estimation of the nui-
sance parameter itself. C-TMLEs are of enormous practical importance due to their
ability to protect the TMLE against using fits of the nuisance parameter that are
harmful for the performance of the TMLE (e.g., a fit of a propensity score that in-
cludes instrumental variables unknown to the user).

Part III—Randomized Trials

Part III is concerned with TMLE for randomized controlled trials (RCTs), including
cluster randomized controlled trials (CRTs). Chapter 11 develops a TMLE of the
locus-specific causal effect of vaccination on time to HIV infection due to a virus
that matches or mismatches the vaccination at this locus. Results of such an analysis
allows one to evaluate the effectiveness of the vaccination at various loci and thereby
directs future improvements of the vaccination. The TMLE utilizes baseline covari-
ates and time-dependent covariates to gain efficiency and to allow for informative
censoring. The method is demonstrated on an HIV vaccination RCT.

Chapter 12 considers the TMLE of the sample average treatment effect, which
is defined as the sample average of the individual causal effects over the individ-
uals in the actual sample. Robust statistical inference is studied in detail and the
methods are evaluated with simulations. It is demonstrated theoretically and practi-
cally that the sample average treatment effect can be estimated at greater precision
than the population average treatment effect. It is also argued that the sample aver-
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age treatment effect has the advantage that it does not require viewing the sample
as a random sample from some target population. The importance of the latter is
demonstrated with CRTs involving comparing treated and nontreated communities
that represented a certain geographic region in East Africa that cannot be viewed as
a random sample.

Chapter 13 presents a novel data-adaptive TMLE for a CRTs in the common sit-
uation that the number of communities is small (e.g., 30). Remarkably, this TMLE
still uses super learning to estimate the outcome regression with a library of sim-
ple candidate targeted regressions adjusting for one or two potentially important
covariates. The cross-validation criterion that is used to select the best estimator
among the candidate regression estimators is aimed at minimizing the variance of
the TMLE. The superior practical performance of this data-adaptive TMLE relative
to a simple marginal estimator is demonstrated with a simulation study. This chap-
ter is important in that it demonstrates the key concepts of TMLE also apply to very
small sample sizes.

Part IV—Observational Data

Part IV concerns the analysis of observational studies with TMLE. Chapter 14 de-
velops TMLE of the causal effect of stochastic interventions for a single time-point
data structure (W, A,Y). It focuses on stochastic interventions that depend on the un-
known treatment mechanism. Chapters 15 and 16 represent powerful applications of
the longitudinal TMLE to complex observational longitudinal studies. Chapter 15
evaluates the causal effect of different breast feeding regimens on child development
in the PROBIT study, also dealing with cluster sampling. Chapter 16 evaluates dif-
ferent intensification rules for controlling glucose level on long-term time-to-event
outcomes in diabetes patients, based on a large Kaiser Permanente database. Chap-
ter 17 concerns causal mediation analysis in longitudinal studies. Specifically, it de-
velops a novel TMLE for estimation of the causal natural direct or indirect effect of
a point treatment on a survival outcome controlling for a time-dependent mediator,
while allowing for right-censoring affected by time-dependent covariates.

Part V—Online Learning

Part V concerns the development of scalable online super learning and scalable on-
line TMLE for online time-series dependent data. As a special case, it includes
i.i.d. data that is ordered artificially, in which case one can run the online esti-
mators over various orderings of the data set. Chapter 18 presents an online su-
per learner for time-series dependent data and develops its optimality by estab-
lishing an oracle inequality for the online cross-validation selector. The statistical
model assumes Markov dependence and stationarity, but leaves the stationary data-
generating mechanism unspecified. Chapter 19 develops online TMLE for time-
series dependent data of the causal impact of stochastic or deterministic interven-
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tions on certain treatment nodes in the time-series on a future outcome. These online
estimators can be applied to a single time series, in which case the asymptotics are
based on the number of time points. The models and methods developed in this part
will generate much future research due to the importance of online data, scalabil-
ity, and time series dependence. In particular, in the era of precision medicine, the
option to learn from experiments and data collected on a single subject is of great
importance.

Part VI—Networks

Part VI concerns TMLE of the causal effect of stochastic or deterministic interven-
tions on an average outcome for a finite (large) population of interconnected units
in which the network structure is observed over time: i.e., for each unit, we know at
each time point the set of friends it potentially depends upon. Chapter 20 introduces
a causal and statistical model for longitudinal network data and develops a TMLE
of the desired causal effect when one observes on each unit baseline covariates W, a
treatment A, and an outcome Yt at various time points t. Chapter 21 focuses on the
special case that one only observes the outcome at one point in time t, presumable
shortly after A. In this special case it is shown that the TMLE exists in closed form
and it is supported by an R package. Many interesting issues are discussed in detail,
and simulations are presented evaluating the practical performance of the TMLE.
Chapter 21 extends much of the causal inference literature for the point treatment
data structure (W, A,Y) for i.i.d. data by allowing that (1) the outcome Y of a unit
is affected by the treatment A and baseline covariates W of its friends, and (2) that
the treatment of the unit is affected by the baseline covariates of its friends. Formal
asymptotic theory establishing the asymptotic normality of the TMLE is reviewed
as well. We note that both Parts V and VI develop TMLE and its theory for sample
size one problems where one only observes a single realization of a complex experi-
ment involving possibly a single unit over many time points or many interdependent
units at a finite set of time points.

Part VII—Optimal Dynamic Rules

The three chapters in Part VII concern estimation of the dynamic treatment alloca-
tion rule that optimizes the mean outcome. The chapter focus on the case that one
observes on each subject baseline covariates W, binary treatment A, and outcome
Y , but generalizations have been worked out in accompanying articles. Chapter 22
develops a super learner of the optimal rule, a TMLE of the counterfactual mean
under the optimal rule, and a TMLE of the data-adaptive target parameter defined as
the counterfactual mean under the estimate of the optimal rule. Chapter 23 extends
this work to the optimal rule under resource constraints.

Chapter 24 proposes a group sequential adaptive randomized design in which the
randomization probabilities for the next group of subjects are based on an estimate
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of the optimal treatment rule based on the data collected on the previously recruited
subjects. In this manner, one simultaneously learns the optimal rule and allocates
treatment according to the best estimate of the optimal rule. In this type of group se-
quential targeted adaptive design, a novel TMLE is developed for the counterfactual
mean under the optimal rule. It is shown that this TMLE is asymptotically consistent
and normally distributed, under the single assumption that one succeeds in learning
the optimal rule. If the latter does not hold, one still obtains valid inference for the
data-adaptive target parameter defined as the counterfactual mean under the estimate
of the optimal rule: that is, just as one always obtains valid inference for the average
treatment effect in an RCT, we preserve this guarantee for the much more complex
causal question: “What is the counterfactual mean outcome under this estimate of
an optimal rule we learned based on the data?” The problem tackled in Chap. 24 is
a low dimensional version of the long standing multiple bandit problem.

Part VIII—Special Topics

Part VIII dives into some important special topics in the field of targeted learning.
Targeted learning has largely focused on pathway differentiable target parameters.
Chapter 25 studies the estimation of a nonpathwise differentiable target parame-
ter such as a density at a point. It approximates the target parameter with a family
of pathwise differentiable parameters indexed by a bandwidth. Subsequently, it de-
velops a CV-TMLE and a selector for the bandwidth. In addition, it demonstrates
that the resulting CV-TMLE is asymptotically normally distributed at an unknown
adaptive rate that depends on the underlying smoothness of the data density. It also
develops asymptotically valid confidence intervals. This chapter opens up a general
approach for targeted learning of nonpathwise differentiable target parameters while
still providing formal statistical inference.

Chapter 26 reviews the theory of higher-order influence functions for higher-
order pathwise differentiable target parameters and demonstrates that the TMLE
framework easily allows the construction of higher-order TMLE. The benefit of
higher-order pathwise differentiability is that it allows one to develop estimators
based on higher-order Taylor expansions so that one only needs to assume that a
higher-order remainder is negligible, instead of having to assume that a second-order
remainder is negligible. However, unfortunately, most target parameters for realistic
models are only first order pathwise differentiable. If the target parameter is only
first-order pathwise differentiable, then we show that a second-order TMLE based
on an approximate and tuned second-order influence function can yield significant
finite sample improvements relative to the regular TMLE that only targets the first
order efficient influence function.

Sensitivity analysis has as its goal to set an upper bound for the difference be-
tween the estimate of the estimand and the causal quantity of interest. It naturally
concerns statistical bias due to using a biased estimator of the estimand and iden-
tifiability bias due to violation of causal assumptions that were needed to identify
the causal quantity from the observe data distribution. Many sensitivity analysis are
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made confusing by using biased estimators (e.g., regression in parametric models).
Therefore, one wants to use estimators such as TMLE based on highly adaptive su-
per learners to provide maximal guarantee for honest statistical inference concerning
the estimand. Given that this is achieved, there is still need for sensitivity analysis
with respect to the nontestable assumptions. Once again, many methods proposed
in the literature utilize parametric sensitivity models so that the interpretation of the
sensitivity parameters (whose bounds are presumably provided by external knowl-
edge) completely depend on the correctness of these models. Therefore, in order to
make sensitivity analysis transparent and helpful it is important to use a well-defined
sensitivity parameter. Chapter 27 presents such a nonparametric sensitivity analysis
approach so that the sensitivity parameter is nonparametrically interpretable. A real
case study is used to demonstrate the power and transparency of this approach.

The nonparametric bootstrap generally fails to consistently estimate the sample
distribution of an estimator when the estimator uses machine learning, such as the
typical TMLE for realistic statistical models. Since the bootstrap picks up second-
order variability of the estimator that is not captured by first order asymptotics, it is
important that the bootstrap is also an option for the TMLE. Chapter 28 proposes
a targeted bootstrap method for estimation of the limit distribution of an asymptot-
ically linear estimator. The targeted bootstrap estimates the sampling distribution
of the estimator by resampling from a TMLE estimator P∗

n of the data distribution
P0 that targets the variance of the influence curve of the estimator. This general ap-
proach is demonstrated for the TMLE of a counterfactual mean for the point treat-
ment data structure (W, A,Y). The failure of the nonparametric bootstrap and the
superior performance of this targeted bootstrap is evaluated in a simulation study.

Chapter 29 considers the fast computation of (inefficient) TMLE by replacing the
TMLE based on all the data by a TMLE based on a controlled random sample of
much smaller size from the database. The sampling probabilities are allowed to be a
function of a measurement that is available for all and easy to compute. It works out
the optimal sampling probabilities that maximize efficiency of the TMLE. One can
now consider group sequential designs where one adjusts the sampling probabilities
based on past data so that the design minimizes the variance of the TMLE. This
general approach can be used to scale TMLE to large data sets.

Finally, Chap. 30 presents a historical philosophical view on the books topics.
In his essay “The Predicament of Truth: On Statistics, Causality, Physics and the
Philosophy of Science” the author discusses some main implications of recent de-
velopments in data science, for statistics and epistemology. He shows that these
developments give rise to a specific, uncomfortable vision on science, which seems
hardly adequate for both statistics and the philosophy of science. He then shows
that, given this antistatistical and antiepistemic stance, improving the relation be-
tween statistics and philosophy of science could be considered a matter of well-
understood self-interest, but it appears that such a liaison is highly problematic. It
would seem that nowadays preoccupations with truth advance along at least two
distinct lines with separate roles for epistemology and research methodology, thus
inducing a rigid and regrettable demarcation, which also applies to other epistemo-
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logical key issues, including causality. The role and significance of targeted learning
in this debate is analyzed in detail and a few initial steps toward a philosophy of data
science are made.

Appendix

Lengthy proofs of fundamental results are deferred to our Appendix. Specifically, in
Sect. A.1 we present the general analysis of the CV-TMLE for data-adaptive target
parameters (Chap. 9). Section A.2 establishes three fundamental results for media-
tion analysis (Chap. 17). In Sect. A.3, we provide the proof of the oracle inequal-
ity of the online super learner for time-series dependent data (Chap. 18). Lastly,
in Sect. A.4, we provide first order Taylor expansions of causal target parameters
based on their canonical gradient for time series data, which provide the basis for
the analysis of the TMLE (Chap. 19).
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Abbreviations and Notation

Frequently used abbreviations and notation are listed here.

A Treatment or exposure
A-IPCW Augmented inverse probability of censoring-weighted/weighting
A-IPW Augmented inverse probability weighted/weighting
C Censoring
CRT Community randomized trial
i.i.d. Independent and identically distributed
IPCW Inverse probability of censoring-weighted/weighting
IPW Inverse probability of weighted/weighting
LTMLE Longitudinal targeted maximum likelihood estimation/estimator
MLE Maximum likelihood substitution estimator of the g-formula

Not to be confused with nonsubstitution estimators using maximum
likelihood estimation. MLE is also known as g-computation

MSE Mean squared error
O Observed ordered data structure
P Possible data-generating distribution
p Possible density of data-generating distribution P0

P0 True data-generating distribution; O ∼ P0

p0 True density of data-generating distribution P0

Pn Empirical probability distribution; places probability 1/n on each
observed Oi, i . . . , n

RCT Randomized controlled trial
SCM Structural causal model
SE Standard error
SL Super learner
TMLE Targeted maximum likelihood estimation/estimator
W Vector of covariates
Y Outcome
Y1,Y0 Counterfactual outcomes with binary A
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xl Abbreviations and Notation

Uppercase letters represent random variables and lowercase letters are a specific
value for that variable. If O is discrete, p0(o) = P0(O = o) is the probability that O
equals the value o, and if O is continuous, p0(o) denotes the Lebesgue density of P0

at o. For simplicity and the sake of presentation, we will often treat O as discrete
so that we can refer to P0(O = o) as a probability. For a simple example, suppose
our data structure is O = (W, A,Y) ∼ P0 and O is discrete. For each possible value
(w, a, y), p0(w, a, y) denotes the probability that (W, A,Y) equals (w, a, y).

M Statistical model; the set of possible probability distributions for P0

P0 ∈ M P0 is known to be an element of the statistical model M

In this text we often use the term semiparametric to include both nonparametric
and semiparametric. When semiparametric excludes nonparametric, and we make
additional assumptions, this will be explicit. A statistical model can be augmented
with additional nonstatistical (e.g., causal) assumptions providing enriched inter-
pretation, often represented as {Pθ : θ ∈ Θ} for some parameterization θ → Pθ.
We refer to this as a model (e.g., the probability distribution of the observed data
O = (W, A,Y = YA) could be represented as a missing data structure on counterfac-
tual outcomes Y0,Y1 with missingness variable A, so that the probability distribution
of O is indexed by the probability distribution of (W,Y0,Y1) and the conditional dis-
tribution of treatment A, given (W,Y0,Y1)).

X = (Xj : j) Set of endogenous variables, j = 1, . . . , J
U = (UXj : j) Set of exogenous variables
PU,X Probability distribution for (U, X)
pU,X Density for (U, X)
Pa(Xj) Parents of Xj among X
fXj A function of Pa(Xj) and an endogenous UXj for Xj

f = ( fX j : j) Collection of fX j functions that define the SCM
MF Collection of possible PU,X as described by the SCM; includes non-

testable assumptions based on real knowledge; M augmented with
additional nonstatistical assumptions known to hold

MF∗ Model under possible additional causal assumptions required for
identifiability of target parameter

P → Ψ (P) Target parameter as mapping from a P to its value
Ψ (P0) True target parameter
Ψ̂ (Pn) Estimator as a mapping from empirical distribution Pn to its value
ψ0 = Ψ (P0) True target parameter value
ψn Estimate of ψ0

Consider O = (L0, A0, . . . , LK , AK , LK+1) ∼ P0.

Lk Possibly time-varying covariate at t = k; alternate notation L(k)
Ak Time-varying intervention node at t = k that can include both treat-

ment and censoring
Pa(Lk) =(Āk−1, L̄k−1)
Pa(Ak) =(Āk−1, L̄k)
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P0,Lk True conditional probability distribution of Lk, given Pa(Lk), under
P0

PLk Conditional probability distribution of Lk, given Pa(Lk), under P
Pn,Lk Estimate of conditional probability distribution P0,Lk of Lk

P0,Ak True conditional probability distribution of Ak, given Pa(Ak), un-
der P0

PAk Conditional probability distribution of Ak, given Pa(Ak), under P
Pn,Ak Conditional probability distribution of Ak, given Pa(Ak), under es-

timator Pn of P0

ε Fluctuation parameter
εn Estimate of ε
{Pε : ε} ⊂ M Submodel through P
H∗ Clever covariate
H∗

n Estimate of H∗

D(ψ)(O) Estimating function of the data structure O and parameters; short-
hand D(ψ)

D∗
0(O) Efficient influence curve; canonical gradient; alternate notation

D∗(P0)(O), D∗(P0) or D∗(O)
IC0(O) Influence curve of an estimator at P0, representing a function of O
ICn(O) Estimate of influence curve

We focus on the general data structure O = (L0, A0, . . . , LK , AK , LK+1) ∼ P0 in many
chapters, introduced on the previous page. In this setting, the following specific
notation definitions apply:

L0 Baseline covariates
L̄ = (L0, . . . , LK+1)
Ā = (A0, . . . , AK)
Ld Counterfactual outcome for regime d
d0 Optimal regime depending on P0

Q0,Lk True conditional probability distribution of Lk

QLk Possible conditional probability distribution of Lk

Qn,Lk Estimate of Q0,Lk

Q = (QL0 , . . . ,QLK+1 )
L(O,Q) Example of a loss function where it is a function of O and Q; alter-

nate notation L(Q)(O) or L(Q)
{Qε : ε} Submodel through Q
Q̄Lk Conditional mean of the probability distribution of Lk

G0,Ak True conditional probability distribution of Ak

GAk Possible conditional probability distribution of Ak

Gn,Ak Estimate of G0,Ak

Q̄0
n Initial estimate of Q̄0

Q̄1
n First updated estimate of Q̄0

Q̄k
n kth updated estimate of Q̄0

Q̄∗
n Targeted estimate of Q̄0 in TMLE procedure
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Ψ (Q0) Alternate notation for true target parameter when it only depends
on P0 through Q0

Ψ (Q∗
n) Targeted estimator of parameter

P f Expectation of f (O) under P, e.g., P0L(Q) =
∫

L(Q)(o)dP0(o)
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Chapter 1
Research Questions in Data Science

Sherri Rose and Mark J. van der Laan

The types of research questions we face in medicine, technology, and business
continue to increase in their complexity with our growing ability to obtain novel
forms of data. Much of the data in both observational and experimental studies is
gathered over lengthy periods of time with multiple measures collected at intermedi-
ate time points. Some of these data are streaming (such as posts on Twitter), images,
DNA sequences, or electronic health records. Statistical learning methods must be
developed and adapted for these new challenges.

In 2010, Google Flu Trends was touted as an shining example of collective
intelligence. Researchers claimed that their ability to predict flu in over two dozen
countries by using millions of user search terms had an accuracy of 97% and identi-
fied a flu spike 2 weeks earlier than the Centers for Disease Control and Prevention.
However, it was soon discovered that their techniques were frequently overpredict-
ing flu, aggregating across multiple illnesses, and had substantial problems related
to overfitting to the data. The initiative is not currently publicly active.

The $1 million Netflix Prize made a similarly large splash in the media and data
science communities by offering a large cash award to the team that improved their
movie recommendation algorithm. The winning team developed an algorithm that
made the Netflix recommendation system 10% better. However, Netflix never im-
plemented the winning team’s algorithm due to the engineering complexity involved
in deploying it. This Prize continues to be lauded as a prime example of the promise
of big data and collaborative teams in data science despite this failure.
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Data science is moving toward analytic systems that can take large data sets and
estimate quantities of interest both quickly and robustly, incorporating advances
from the fields of statistics, machine learning, and computer science. These two
recent examples demonstrate that underpinning a big data system of this nature
must be a methodological grounding in statistical theory combined with computa-
tional implementation that is fast, flexible, and feasible. This text on targeted learn-
ing is aligned with these goals and describes empirical techniques suitable for big
data to estimate a number of complex parameters while remaining computationally
feasible.

1.1 Learning from (Big) Data

Targeted learning focuses on efficient machine-learning-based substitution estima-
tors of parameters that are defined as features of the probability distribution of the
data, while additionally providing inference via bootstrapping or influence curves.
Targeted learning is a broad framework that includes targeted maximum likelihood
estimators (TMLEs) for effect estimation questions and super learning, an ensem-
bled machine learning technique, for prediction. TMLEs build on the literature in
loss-based estimation for infinite-dimensional parameters in order to target lower-
dimensional parameters, such as effect parameters. These estimators are constructed
such that the remaining bias for the effect target feature is removed. Super learning
is completely integrated into the estimation of the relevant components of the TMLE
algorithm. TMLEs have many desirable statistical properties, including being dou-
ble robust, well-defined substitution estimators. Targeted learning uniquely solves
the enormous challenge of combining data-adaptive estimation with formal statisti-
cal inference.

There has been a concerted effort in the scientific community to address issues
that can impact the soundness of research, including the design of experimen-
tal and nonexperimental studies and the statistical analyses used to evaluate
these studies. Targeted learning contributes critically to this area by focusing
on prespecified analytic plans and algorithms that make realistic assumptions
in more flexible nonparametric or semiparametric statistical models. The goal
is to take our knowledge about the data and underlying data-generating mech-
anism to precisely describe our observational unit and model, while accurately
translating the research question into a statistical estimation problem. Targeted
statistical learning machines then take our data and knowledge as inputs into
the system, while using rigorous a priori specified evaluation benchmarks and
estimators grounded in theory to produce interpretable policy-relevant results.
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This is all computationally efficient and practice focused. The idea being that
we take the theoretically optimal and make sure it translates into a fast and
user-friendly tool.

Over the last decade, targeted learning has been established as a reliable frame-
work for constructing effect estimators and prediction functions. The continued de-
velopment of targeted learning has led to new solutions for existing problems in
many data structures in addition to discoveries in varied applied areas. This has
included work in randomized controlled trials, parameters defined by a marginal
structural model, case-control studies, collaborative TMLE, missing and censored
data, longitudinal data, effect modification, comparative effectiveness research, ag-
ing, cancer, occupational exposures, plan payment risk adjustment, and HIV, as well
as others. In many cases, these studies compared targeted learning techniques to
standard approaches, demonstrating improved performance in simulations and real-
world applications.

1.2 Traditional Approaches to Estimation Fail

While there are many methods available for classic cross-sectional studies, such as
traditional parametric regression and several off-the-shelf statistical machine learn-
ing techniques, there is a dearth of methodology for the complex longitudinal studies
found in data science disciplines. These methods fail and their assumptions break
down in cross-sectional studies, and this is exacerbated when applied to complex
data types, such as those involving time-dependent treatments, networks, or stream-
ing data. This book aims to fill this gap, by presenting targeted learning methods tai-
lored to handle such difficult questions. The first Targeted Learning book addressed
the previously mentioned methods for cross-sectional studies and the first estimators
for TMLE in longitudinal studies, demonstrating the advantages of targeted learn-
ing approaches for many data structures. We present additional novel advances here,
hence the subtitle Causal Inference for Complex Longitudinal Studies.

The general wisdom has also been that statistical inference was not possible in the
context of data-adaptive (i.e., machine-learning-based) estimation in nonparametric
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or semiparametric models. Let’s make this statement more concrete. Suppose we
have computed a machine-learning-based fit of the conditional mean of a clinical
outcome as a function of a treatment and patient characteristics in an observational
study. We can use an ensemble learner for this; one that combines a library of algo-
rithms and relies on cross-validation, such as the super learner. This fit is mapped
into an estimate of the treatment-specific mean by (1) evaluating the predicted out-
come under the specified treatment condition and (2) averaging these predictions
across all n subjects in the sample.

Historically, the default approach has not been to use machine learning; instead
estimating the regression with a maximum likelihood estimator based on a paramet-
ric regression model. Under this setting, the resulting treatment-specific mean is a
simple function of the maximum likelihood estimator of the unknown regression
coefficients. As a consequence, if the regression model is correctly specified, this
maximum likelihood estimator of the treatment-specific mean is asymptotically lin-
ear. (This means that the maximum likelihood estimator minus the true treatment-
specific mean equals an empirical mean of its influence curve up to a negligible
remainder.) As a result, it is approximately normally distributed with mean the true
treatment-specific mean and variance equal to the variance of the influence curve
divided by the sample size. Confidence intervals are constructed analogue to con-
fidence intervals based on sample means. However, in practice, we know that this
parametric model is misspecified, and therefore the maximum likelihood estimator
is normally distributed, but biased, and the 95% CIs will have asymptotic coverage
equal to zero.

If we use a machine learning algorithm, as initially proposed above, then the
estimator of the treatment-specific mean will generally not be normally distributed
and will have a bias that is larger than 1/

√
n. Because of this, the difference between

the estimator and its true value, standardized by
√

n, converges to infinity! Since
the sampling distribution of the estimator is generally not well approximated by a
specified distribution (such as a normal distribution), statistical inference based on
such a limit distribution is not an option.

Remarkably, a minor targeted modification of the machine-learning-based fit
may make the resulting estimator of the treatment-specific mean asymptotically
linear with influence curve equal to the efficient influence curve. Thus, this minor
modification maps an initial estimator (of the data distribution, or its relevant part,
such as the regression function in our example) for which its substitution estimator
of the target parameter is generally overly biased and not normally distributed into
an updated estimator for which the substitution estimator is approximately unbiased
and has a normal limit distribution with minimal variance.

1.3 Targeted Learning in Practice

There are high-profile examples of the benefits of targeted learning in varied real-
world analyses. For example, data scientists at Pandora implemented targeted learn-
ing to discover that streaming music spins increase music sales by 2.3% for new
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Table 1.1 Top five targeted learning effect estimates and estimates from parametric regression

Medical Targeted Parametric
condition learning regression

Multiple sclerosis 67,011 30,715
Congestive heart failure 19,904 4131
Lung, brain, and severe cancers 19,233 24,528
Major depressive and bipolar 15,398 3498
Chronic hepatitis 10,530 5539

music and 2.7% for catalog music. This study was discussed in Billboard Maga-
zine. One particular area where targeted learning has been used with frequency is in
health care. How can targeted learning improve health care? In work published in
Lancet Respiratory Medicine, investigators developed a super learner for intensive
care units to predict mortality with improved performance over severity scores. The
algorithm is available in a user-interface online for implementation by clinicians.
In another study, published in World Psychiatry, a novel function for predicting
PTSD after traumatic events was generated. This algorithm had extraordinary per-
formance, placing 96% of PTSD outcomes in the top 10% of predicted values. In a
recent computational health economics analysis using a large health record claims
database, the impact of individual medical conditions on total health care spending
was examined. Targeted learning estimators for effect estimation ranked the medical
condition categories based on their contributions to total health care spending, con-
trolling for demographic information and other medical conditions. The impact of
medical conditions on health care spending has largely been examined in parametric
regression formulas for plan payment risk adjustment and aggregated means without
confounder adjustment. The results of this study demonstrated that multiple scle-
rosis, congestive heart failure, severe cancers, major depressive and bipolar disor-
ders, and chronic hepatitis are the most costly medical conditions (see Table 1.1). In
contrast, parametric regression formulas for plan payment risk adjustment differed
nontrivially both in the size of effect estimates and relative ranks. If current risk-
adjustment formulas are not accurately capturing the incremental effects of medical
conditions, selection incentives to health insurers may remain. We refer to Sect. 1.6
for additional references to earlier work.

1.4 The Statistical Estimation Problem

We present a simplified in vitro fertilization (IVF) example here to introduce longi-
tudinal statistical estimation problems where we estimate the probability of success
(i.e., live birth resulting from embryo transfer) of a program of at most two IVF cy-
cles, controlling for time-dependent confounders. Infertility is a global public health
issue and various treatments are available. IVF is an increasingly common treatment
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method, but accurately assessing the success of IVF programs has proven challeng-
ing since they consist of multiple cycles.

1.4.1 Data

Consider vectors of covariates Lt, for each time t (t = 0, . . . ,T + 1). Baseline co-
variates are denoted by L0. We focus on a specific data structure for our IVF study,
for illustrative purposes, where we have interventions only at two sequential time
points. This data structure is a simple extension from cross-sectional data (the case
with an intervention at a single time point).

For our data structure, covariates at each time point t are L̄ = (L0, L1, L2), and
T = 1. The set of covariates L̄ is also referred to as the set of states in the sequen-
tial decision process literature, although subscript notation, such as L1:2 is also used
to indicate a specific subset of the covariate set. The covariates at L0 include ma-
ternal age, IVF unit, number of oocytes harvested, number of embryos transferred
or frozen, and indicators of pregnancy. L1 and L2 encode whether the IVF cycle
was successful or not. The set of interventions (also called “actions”) is denoted
by Ā = (A0, A1), where the random variable At is the intervention at time t. In the
IVF study, each At in Ā will be binary and indicates whether the IVF cycle was
attempted. By convention, if At = 0 then Lt+1 = 0 and if L1 = 1 then L2 = 1.

One can then represent the data on one randomly sampled subject as a time-
ordered data structure:

O = (L0, A0, L1, A1, L2),

where it is assumed that Lt occurs before At. We denote the final measurement L2 by
Y , which represents the outcome of interest. We consider the case of Y being binary
valued, for simplicity. The sample is comprised of n i.i.d. draws O1, . . . ,On of the
random variable O. Realizations of these random variables are denoted o1, . . . , on.
The probability distribution of O can be factorized according to the time-ordering
of the data:

p(O) = p(L0) × p(L1 | A0, L0) × p(Y | A1, L1, A0, L0)

× p(A0 | L0) × p(A1 | L1, A0, L0).

1.4.2 Model and Parameter

We assume a nonparametric statistical model M, which contains the possible set
of probability distributions, for the observed data-generating distribution. The pa-
rameter of interest, the probability of success (i.e., live birth resulting from embryo
transfer) of a program of at most two IVF cycles, can be written as
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Ψ (P0) = EP0

(∑
P0(Y = 1 | A0:1 = 1, L0:1 = l0:1)

× P0(L1 = 1 | A0 = 1, L0 = l0)
)
.

Under causal identifiability assumptions we discuss in Chap. 2, the causal parameter
can be written

P(Y(1,1) = 1),

and is equal to Ψ (P0), where Y(1,1) is the counterfactual outcome under the interven-
tion A0:1 = 1.

1.4.3 Targeted Minimum Loss-Based Estimators

A targeted minimum loss-based estimator (TMLE) can be established for this re-
search question to estimate P(Y(1,1) = 1). The TMLE framework is an incredibly
general system defined by a loss function, initial estimator, and least favorable sub-
model through the initial (or current) estimator. Precisely, it requires:

1. A target parameter defined as a mapping from a (typically) infinite dimensional
parameter of the probability distribution of the unit data structure into the param-
eter space,

2. Deriving the efficient influence curve of the pathwise derivative of the target
parameter,

3. Stipulating a loss function,
4. Specifying a least favorable submodel through an initial (or current) estimator of

the parameter such that the linear span of the loss-based score when the fluctua-
tion is zero includes the efficient influence curve, and

5. An algorithm for the iterative minimization of the loss-specific empirical risk
over the fluctuation parameters of the least favorable parametric submodel and
updating of the initial (or current) estimator.

The iterative minimization will be carried out until the maximum likelihood estima-
tors of the fluctuation parameters are close to zero. By the generalized loss-based
score condition on the submodel and loss function, the resulting TMLE of the in-
finite dimensional parameter solves the efficient score equation. This gives us the
basis for the double robustness and asymptotic efficiency of the corresponding sub-
stitution estimator of the target parameter. Targeted maximum likelihood estimators
are one type of TMLE. In Chap. 5, it is shown that one can always select a least
favorable submodel so that a single minimization of the loss-specific empirical risk
suffices to solve the efficient score equation. These special types of local least favor-
able submodels are called universal least favorable submodels.
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1.4.4 Other Common Estimation Problems

Rule-Specific Mean. When studying clinical questions in longitudinal observa-
tional data, it is often of interest to evaluate treatment rules that extend over time,
referred to as dynamic rules (sometimes regimes or regimens). The larger math-
ematical sciences context of dynamic rules falls within sequential decision theory,
where a key component is that the best intervention decision for a specific time point
may differ when one considers an immediate outcome versus a long-term outcome.
This type of decision making is common in statistics, especially for medical and
public health questions, and therefore methods to estimate the optimal dynamic rule
are of considerable importance. The rules considered may also have complex clas-
sifiers. For example, consider the question of when to start antiretroviral treatment
among therapy-naive HIV-infected individuals in the United States. Here, we wish
to consider a set of prespecified thresholds for CD4 count (e.g., 200–500 cells/mm3

in intervals of 50), where falling below the threshold indicates one should start an-
tiretroviral treatment. Each dynamic rule will be indexed by both a CD4 threshold.

Let D = (d1, . . . , dK) be the set of dynamic rules we consider. Each dynamic
rule dk encodes a time sequence dk,t (t = 1, . . . ,T ) of rules, where dk,t represents the
function mapping a patient’s previously measured covariates L̄t to the treatment a(t)
that should be followed at time t. We suppress the subscripts on an individual rule d
for notational simplicity when removing it does not cause ambiguity. An individual
is said to be following rule d through time t if the interventions received are the
interventions indicated by rule d. Let Yd be the (counterfactual) value that would
have been observed had the subject been set to follow rule d at all time points. Our
goal is to determine the best dynamic rule d∗, i.e., the rule in D that maximizes
the expected value of the potential outcome Yd. We first consider the problem of
estimating, for each rule d ∈ D, the population mean of Y had everyone followed
rule d, i.e., E(Yd). Since Y is binary in our example data structure, this is equivalent
to the probability that Yd = 1. Under a set of strong identifiability assumptions,
including the assumption of no unmeasured confounders, E(Yd) can be represented
as a function of the observed data-generating distribution P, using the g-computation
formula:

Ψd(P) =
∑

l0

∑

l1

P(Y = 1 | A1 = d(l̄1), L̄1 = l̄1, A0 = d(l0))

× P(L1 = l1 | A0 = d(l0), L0 = l0)P(L0 = l0).

We provided sufficient detail here on the data structure and statistical estimation
problem for dynamic rules as we describe this study as a worked example in several
places in Chaps. 2–4

Community Randomized Trials. In community randomized trials we are inter-
ested in the setting that interventions are assigned to a small number of communities,
with covariate and outcome data collected on a random sample of individuals from
each of the communities. Drawing on our previous work in biased sampling, we can
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identify interesting parameters, such as causal contrasts, in these trials. This data
structure is described in more detail in Chap. 13.

Networks. Network data is increasingly common. Starting with disease transmis-
sion and then email and now exploding with social networks, we regularly observe
populations of causally connected units according to a network. The data structure
is typically longitudinal, with time-dependent exposures and covariates. These data
structures and parameters are described in more detail in Chaps. 20 and 21.

1.5 Roadmap for Targeted Learning

The first four chapters of this book provide critical foundational material on tar-
geted learning for longitudinal data, including the targeted learning road map and
prediction and causal inference estimation problems (Fig. 1.1). These first chapters
are guided introductions to main concepts through the focus on the data structure
O = (L0, A0, L1, A1, L2) ∼ P0, a nonparametric statistical model M, and the causal
parameter Ψd(P). This initial chapter motivated the need for new methods to han-
dle complex longitudinal data science problems and introduce the data, model, and
target parameter. The road map for targeted learning will be further explained in
Chaps. 2–4.

Defining the Model and Target Parameter. A structural causal model (SCM) is
a model for underlying counterfactual outcome data, representing the data one
would generate in an ideal experiment. This translates knowledge about the data-
generating process into causal assumptions. The SCM also generates the ob-
served data O and allows us to determine what additional assumptions are needed
in order to obtain identifiability of the causal effect from the observed data.

Super Learning for Prediction. We need flexible estimators able to learn from
complex data, and we introduce ensemble super learning for longitudinal struc-
tures. Super learning can be integrated within effect estimation or used as a
standalone tool for prediction problems. Some previous knowledge of cross-
validation and machine learning will be beneficial, such as Chap. 3 from the first
Targeted Learning book.

TMLE. With TMLE we are able to target (causal) effect parameters by making
an optimal bias–variance tradeoff for the parameter of interest, instead of the
overall probability distribution P0. These estimators have many desirable statis-
tical properties, and in some cases, are the only available estimators for certain
complex parameters.

This brief teaser is provided as a guidepost to the upcoming chapters so readers can
anticipate where we are headed, how the roadmap fits together, and why the material
is presented in this chronology.
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Fig. 1.1 Road map for targeted learning
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1.6 Notes and Further Reading

We motivated this first chapter by presenting the challenges of real-world data sci-
ence in Google Flu Trends and the Netflix Prize. More information about the history
of Google Flu Trends can be found in Wired magazine (Lazer and Kennedy 2015)
and the Netflix Prize background is described in Forbes (Holiday 2012). Crucial
foundational material on targeted learning can be found in the first Targeted Learn-
ing book published seven years ago (van der Laan and Rose 2011).

In Sect. 1.1 we discuss the many areas where targeted learning methods have led
to new solutions for existing problems. Explicit citations for these areas follow: ran-
domized controlled trials (Rubin and van der Laan 2008; Moore and van der Laan
2009a,b,c; Rosenblum and van der Laan 2009), parameters defined by a marginal
structural model (Rosenblum and van der Laan 2010a), case-control studies (van der
Laan 2008a; Rose and van der Laan 2008, 2009, 2014a,b), collaborative TMLE
(van der Laan and Gruber 2010; Gruber and van der Laan 2010a; Stitelman and
van der Laan 2010), missing and censored data (Stitelman and van der Laan 2010;
Rose and van der Laan 2011), effect modification (Polley and van der Laan 2009;
Stitelman and van der Laan 2011), longitudinal data (van der Laan 2010a; van der
Laan and Gruber 2012), networks (van der Laan 2014a), community-based interven-
tions (van der Laan 2010c), comparative effectiveness research (Neugebauer et al.
2014a; Kunz et al. 2017), variable importance for biomarkers and genomics (Bem-
bom et al. 2009; Wang et al. 2011a,b, 2014; Tuglus and van der Laan 2011; Wang
and van der Laan 2011), aging (Bembom and van der Laan 2007; Rose 2013), can-
cer (Polley and van der Laan 2009), occupational exposures (Chambaz et al. 2014),
health economics (Rose 2016; Rose et al. 2017; Shrestha et al. 2018), and HIV
(Rosenblum et al. 2009). The paper by Rose et al. (2017) is also an example of
the targeted learning framework in algorithmic fairness, accountability, and trans-
parency. They demonstrated how insurers could use drug claims with ensemble ma-
chine learning to identify ‘unprofitable’ enrollees, despite protections for preexisting
conditions, and then target them for disenrollment. The increasingly pervasive use
of algorithms in society has broad risks, for example, because there are typically bi-
ases imbedded within the data. For a short introduction to algorithmic fairness with
respect to criminal justice reform we refer readers to Lum (2017).

The computational health economics project summarized in Sect. 1.3 is discussed
in detail elsewhere (Rose 2018). The papers described in Sect. 1.3 are Peoples
(2014); Pirracchio et al. (2015); Kessler et al. (2014). A tutorial on TMLE in a point
treatment setting with continuous outcome, geared toward an applied public health
audience, has also been published (Schuler and Rose 2017). For a binary outcome,
see Chap. 4 of Targeted Learning (2011).

We covered the problem of inference in the context of machine learning, and
how targeted learning can address these shortcomings, in Sect. 1.2. We provide ad-
ditional background here, specifically regarding how the bootstrap can fail for the
purposes of inference with machine learning. The nonparametric bootstrap estimates
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the sampling distribution of an estimator with the sampling distribution of the esti-
mator when sampling from the empirical distribution. That is, one estimates the data
distribution with the empirical distribution and one hopes that the convergence of the
empirical distribution to the true data distribution translate into convergence of the
sampling distribution of the estimator. It makes sense that this method would work
well if the sampling distribution of the estimator only depends on smooth functions
of the data distribution, but that it can be expected to fail when it depends in an
essential way on the density of the data distribution (which is poorly estimated by a
discrete empirical distribution). Indeed, the nonparametric bootstrap is a valid con-
sistent method for estimating the sampling distribution if the estimator is a nicely
(so called Hadamard or compact) differentiable functional of the empirical proba-
bility distribution (Gill 1989; van der Vaart and Wellner 1996). On the other hand,
estimators that rely on smoothing, model selection, cross-validation or other forms
of machine learning are not Hadamard differentiable functionals of the data at all,
so that the nonparametric bootstrap can be expected to be inconsistent.



Chapter 2
Defining the Model and Parameter

Sherri Rose and Mark J. van der Laan

We are often interested in the estimation of a causal effect in data science, as well as
an assessment of the uncertainty for our estimator. In Chap. 1, we described the road
map we follow to estimate causal effects in complex data types for realistic research
questions. This chapter details the formal definition of the model and target param-
eter, which will vary depending on your research question. However, the concepts
presented here will be carried throughout the book for multiple parameters, and the
template is general.

We encourage readers to familiarize themselves with basic concepts in causal in-
ference prior to reading this chapter, such as Judea Pearl’s text Causality, published
in a second edition (Pearl 2009a). Chapter 2 of the first Targeted Learning book
summarizes key material from Pearl’s book for point treatment data structures for
an average treatment effect parameter and is a shorter piece of background material
compared to Pearl’s book. We do not repeat all of that basic content here, but do
provide the material needed for tackling the complex causal questions we wish to
target. A crucial component for readers to take away from this chapter is that causal
inference requires both a causal model to define the causal effect as a target param-
eter of the distribution of the data and robust semiparametric efficient estimation.
This book focuses almost exclusively on the latter, estimation, while the work of
Pearl the former.
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Key Definitions and Notation:

• Statistical model M is a collection of possible probability distributions P.
• P0 is the true distribution of O.
• Definition of a target parameter requires specification of a mapping Ψ ap-

plied to P0. Ψ maps any P ∈ M into a vector of numbers Ψ (P). We write
the mapping as Ψ : M → R

d for a d-dimensional parameter.
• ψ0 is the evaluation of Ψ (P0), i.e., the true value of our parameter.

The statistical estimation problem is to map the observed data O1, . . . ,On

into an estimator of Ψ (P0) that incorporates the knowledge that P0 ∈ M,
accompanied by an assessment of the uncertainty in the estimator.

(See Chap. 2 of Targeted Learning (2011) for additional background.)

The data O1, . . . ,On consist of n i.i.d. copies of a random variable O with true
probability distribution P0. For our data structures from Chap. 1, such as

O = (L0, A0, L1, A1, L2 = Y),

with vector of covariates L0:1, vector of interventions A0:1, and outcome L2 = Y ,
uppercase letters represent random variables and lowercase letters are a specific
value for that variable. With all discrete variables, P0(L0 = l0, A0 = a0, L1 = l1, A1 =

a1,Y = y) assigns a probability to any possible outcome (l0, a0, l1, a1, y) for O =
(L0, A0, L1, A1,Y).

We will now move forward to define a model that is augmented by nontestable
causal assumptions, building on the underlying minimal assumptions of our statis-
tical model. This allows us to define a parameter of interest that can be interpreted
causally, as well as determine the necessary assumptions for establishing identifia-
bility of the causal parameter from the distribution of the observed data. Lastly, we
commit to a statistical model and target parameter.

2.1 Defining the Structural Causal Model

We describe a set of endogenous variables X = (Xj : j), where these endogenous
variables are those where our structural causal model (SCM) will define them as
a deterministic function of other endogenous variables and exogenous error. The
exogenous variables are given by U = (UXj : j) and are never observed. For each Xj

we specify the parents Pa(Xj) of Xj among the other X variables. The endogenous
variables X often include the observables O, but may also include nonobservables.
We make the assumption that each Xj is a function of Pa(Xj) and an exogenous UXj :

Xj = fX j (Pa(Xj),UXj ), j = 1 . . . , J.
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The functions fX j , together with the joint distribution of U, specify the data-
generating distribution of (U, X) as they describe a deterministic system of struc-
tural equations that deterministically maps a realization of U into a realization of
X. These functions fX j and the joint distribution of U may be unspecified, or we
may have subject-matter knowledge that informs our willingness to specify them in
a more restrictive way. It is unlikely our knowledge will support a fully parametric
SCM.

A SCM Is a Statistical Model for the Random Variable (U, X). The set of
possible data-generating distributions of (U, X) is defined by varying:

1. the collection of functions f = ( fX j : j) over all permitted forms, and
2. the distribution of the errors U over all possible error distributions.

In our IVF study and when to start HIV treatment study discussed in Chap. 1,
we have j = 1, . . . , J, where J = 5 and all variables in X observed. Thus, X =
(X1, X2, X3, X4, X5). We then rewrite X as X = (L0, A0, L1, A1,Y) with X1 = L0,
X2 = A0, X3 = L1, X4 = A1, X5 = Y . The vectors L0 and L1 may contain both
binary and continuous variables, with A0, A1, and Y binary for both examples. It
is important to explicitly remark on the time ordering in the generation of these
variables:

L0 → A0 → L1 → A1 → Y.

Focusing on our IVF study, baseline variables L0 are measured, including mater-
nal age, IVF unit, number of oocytes harvested, number of embryos transferred or
frozen, and indicators of pregnancy. A0 occurs next, sequentially, and establishes
whether an IVF cycle was attempted. L1 then follows, indicating whether the IVF
cycle was successful. A1 occurs after L1, and indicates whether a second IVF cycle
was attempted, followed by Y , whether any IVF cycle attempted at L1 was success-
ful. Recall that, by convention, if At = 0 then Lt+1 = 0 and if L1 = 1 then Y = 1.

Thus, we have the functions f = ( fL0 , fA0 , fL1 , fA1 , fY ) and the exogenous vari-
ables U = (UL0 ,UA0 ,UL1 ,UA1 ,UY ). Our structural equation models are given as

L0 = fL0 (UL0 ),

A0 = fA0 (L0,UA0 ),

L1 = fL1 (L0, A0,UL1 ),

A1 = fA1 (L0, A0, L1,UA0 ),

Y = fY (L0, A0, L1, A1,UY ). (2.1)

We choose not to make restrictive assumptions about the functional form of fL0 , fA0 ,
fL1 , fA1 , and fY ; the functions f are nonparametric. We will additionally assume in
this study that there are no unmeasured confounders. Thus, to be explicit, in (2.1),
we assume that the data were generated by:
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1. Drawing U from probability distribution PU ensuring that UA0:1 is independent
of UY , given L0:1,

2. Generating L0 as a deterministic function of UL0 ,
3. Generating A0 as a deterministic function of L0 and UA0 ,
4. Generating L1 as a deterministic function of L0, A0, and UL1 ,
5. Generating A1 as a deterministic function of L0, A0, L1, and UA1 ,
6. Generating Y as a deterministic function of L0, A0, L1, A1, and UY .

We make the assumption that our observed data structure O = (L0, A0, L1, A1,Y) is a
realization of the endogenous variables (L0, A0, L1, A1,Y) generated by the structural
equations in this system and defines the SCM for O.

Our SCM represents a set of nontestable causal assumptions made regarding our
belief about how the data were generated. As discussed in our earlier treatment of
SCMs for single-time-point interventions in the introductory material for Targeted
Learning (2011), the SCM for O also involves defining the relationship between
the random variable (U, X) and O, such that the SCM for the full data implies a
parameterization of the probability distribution of O in terms of f and PU of U.
Each possible probability distribution PU,X of (U, X) in the SCM for the full data
is indexed by a choice of error distribution PU and a set of deterministic functions
( fX j : j) and implies a probability distribution P(PU,X) of O. Thus, the SCM for
the full data implies a parameterization of the true probability distribution of O in
terms of a true probability distribution of (U, X), so that the statistical model M for
P0 of O can be represented as M = {P(PU,X) : PU,X}, with PU,X varying over all
probability distributions of (U, X) allowed in the SCM. If this M is nonparametric,
none of the causal assumptions encoded by our SCM are testable in the observed
data.

If subjects had instead been randomized to IVF treatment, our structural equation
models might be given as

L0 = fL0 (UL0 ),

A0 = fA0 (UA0 ),

L1 = fL1 (L0, A0,UL1 ),

A1 = fA1 (A0,UA0 ),

Y = fY (L0, A0, L1, A1,UY ). (2.2)

In (2.2), A0 is evaluated only as a deterministic function of UA0 . A1 is a determinis-
tic function of only A0 and UA0 . We hypothesized a randomization design that did
depend on previous treatment, but not other exogenous variables. While this text
largely focuses on observational studies without randomization, the targeted learn-
ing framework is quite general, and we have three chapters on randomized trials in
Part III.
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2.2 Causal Graphs

In the previous section, we described SCMs as a systematic way to assign values
to a set of variables from random input, define required causal assumptions, and
assess the identifiability of the causal target parameter. Causal graphs are another
popular way to represent some of the assumptions encoded in our SCM. All the
causal graphs in this book are directed acyclic graphs, with only one arrow on the
edges that connect the nodes and no closed loops. However, with longitudinal data,
networks, and other complex data structures, this representation can become visu-
ally complicated quickly. The nonparametric structural equations in the previous
section do not have this drawback, and may be preferable in some settings. Ad-
ditionally, causal graphs are not specific for the target parameter of interest, and
therefore identifiability assumptions from the causal graph may be stronger than
necessary.

We start by presenting a possible causal graph for (2.1) in Fig. 2.1, where we
make causal assumptions by defining Pa(Xj) for each Xj and the joint distribution
PU . The relationships given in f guide the connection of all Pa(Xj) to Xj with a

Fig. 2.1 A possible causal graph for (2.1)

Fig. 2.2 A possible causal graph for (2.2)
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directed arrow into Xj and a directed arrow into each Xj from each UXj . These as-
sumptions are ideally made with our subject matter knowledge related to the scien-
tific question of interest. A direct effect, such as that between L0 and L1, is illustrated
by a directed arrow between two nodes. When we are uncertain whether there is a
direct effect between two variables, our default is to include it, as the explicit ab-
sence of the arrow signals that a direct effect is known not to exist. For example,
a possible causal graph for our SCM (2.2) is displayed in Fig. 2.2. Here there is an
explicit absence of a directed arrow between L0 and A0 as well as between L1 and A1

due to our a priori knowledge regarding the randomization represented in the SCM.
Both Figs. 2.1 and 2.2 do not include any arrows between the endogenous errors

U = (UL0 ,UA0 ,UL1 ,UA1 ,UY ). This indicates that a strong assumption about the joint
independence of the endogenous error has been encoded as an assumption in (2.1)
and (2.2). However, it is unlikely that this assumption is one we can make in practice.
When we wish to reflect relationships between the endogenous variables U, they are
represented using dashed double-headed arrows. If we make no assumptions about
the distribution of PU for (2.1), a causal graph would be given as drawn in Fig. 2.3.
This figure has many so-called backdoor paths between our treatment nodes and
the outcome Y . In order to isolate our causal effect of interest, we must block all
unblocked backdoor paths from A0:1 to Y .

Fig. 2.3 A causal graph for (2.1) with no assumptions on the distribution of PU
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2.3 Defining the Causal Target Parameter

With an SCM for our data-generating mechanism, we now move toward defining the
causal targeted parameter. To be very precise, we define this causal target parameter
as a parameter of the distribution of the full-data (U, X) in the SCM. Formally, we
denote the SCM for the full-data (U, X) by MF , a collection of possible PU,X as
described by the SCM. MF , a model for the full data, is a collection of possible
distributions for the underlying data (U, X).ΨF is a mapping applied to a PU,X giving
ΨF(PU,X) as the target parameter of PU,X . This mapping needs to be defined for each
PU,X that is a possible distribution of (U, X), given our assumptions encoded by the
posited SCM. In this way, we state ΨF : MF → R

d, where R
d indicates that our

parameter is a vector of d real numbers. The SCM MF consists of the distributions
indexed by the deterministic function f = ( fX j : j) and distribution PU of U, where
f and this joint distribution PU are identifiable from the distribution of the full-data
(U, X). Thus, the target parameter can also be represented as a function of f and the
joint distribution of U.

For our IVF study with observed data O = (L0, A0, L1, A1,Y) and SCM given
in (2.1) with no assumptions about the distribution PU . We can define Ya0:1 =

fY (L0, a0, L1, a1,UY ) as a random variable corresponding with intervention A0:1 =

a0:1 in the SCM. The marginal probability distribution of Ya0:1 is given by

PU,X(Ya0:1 = y) = PU,X( fY (L0, a0, L1, a1,UY ) = y).

Recall our statistical parameter of interest given in Chap. 1

Ψ (P0) = EP0

(∑
P0(Y = 1 | A0:1 = 1, L0:1 = l0:1)

× P0(L1 = 1 | A0 = 1, L0 = l0)
)
.

As we will discuss later, under a randomization and positivity assumption his sta-
tistical parameter equals the causal target parameter of the distribution of (U, X)
given by

ΨF(PU,X) = PU,X(Y(1,1) = 1).

2.3.1 Interventions

One can intervene upon our system defined by the SCM by setting the intervention
nodes A0:1 equal to some values a0:1 ∈ A, where A is the set of possible values for
our exposure IVF treatment. Intervening allows us to describe the data that would
be generated by the system at the levels of our intervention variables. This is a
critical concept because we define our causal target parameter as a parameter of the
distribution of the data (U, X) under an intervention on the structural equations in f .
The intervention defines a random variable that is a function of (U, X), so that the
target parameter is ΨF(PU,X).



22 S. Rose and M. J. van der Laan

In our IVF study, we can intervene on A0:1 in order to observe what would have
happened under specific exposures to IVF treatment. Notably, intervening on the
SCM, changing the functions fX j for the intervention variables, does not change the
other functions in f . For our SCM in (2.1) we can intervene on fA0 and fA1 and set
both a0 = 1 and a1 = 1:

L0 = fL0 (UL0 ),

A0 = 1,

L1 = fL1 (L0, 1,UL1 ),

A1 = 1,

Y(1,1) = fY (L0, 1, L1, 1,UY ).

The intervention defines a random variable that is a function of (U, X), namely,
Ya0:1 = Ya0:1 (U) for a0 = 1 and a1 = 1. Our target parameter is a parameter of
the postintervention distribution, which is the probability distribution of the (X,U)
under an intervention. Thus, the SCM for the full data allows us to define the ran-
dom variable Ya0:1 = fY (L0, a0, L1, a1,UY ) for each a0:1, where Ya0:1 represents the
outcome that would have been observed under this system for a particular subject
under exposure a0:1.

2.3.2 Counterfactuals

The “ideal experiment” where we observe each subject under all possible trajec-
tories of exposure is not possible. Each subject only contributes one Y , the one
observed under the exposure they experienced. Above, we intervened on A0:1 to set
a0 = 1 and a1 = 1 in order to generate the outcome for each subject under the condi-
tion that they received two rounds of IVF treatment. Recall that Ya0:1 represents the
outcome that would have been observed under this system for a particular subject
under exposure a0:1 and we have (Ya0:1 : a0:1), with a0:1 ∈ A. For each realiza-
tion u in our study, which corresponds with an individual randomly drawn from the
target population, we generate counterfactual outcomes Y(1,1)(u) by intervening on
(2.1). The counterfactual outcomes are implied by our SCM; they are consequences
of it. That is, Y(1,1)(u) = fY (L0, 1, L1, 1, uY ). The random counterfactual Y(1,1)(U) is
random through the probability distribution of U.

2.3.3 Establishing Identifiability

Are the assumptions we have already made enough to express the causal parameter
of interest as a parameter of the probability distribution P0 of the observed data? We
want to be able to write ΨF(PU,X,0) as Ψ (P0) for some parameter mapping Ψ , where
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we remind the reader that the SCM also specifies how the distribution P0 of the
observed data structure O is implied by the true distribution PU,X,0 of (U, X). Since
the true probability distribution of (U, X) can be any element in the SCM MF , and
each such choice PU,X implies a probability distribution P(PU,X) of O, this requires
that we show that ΨF(PU,X) = Ψ (P(PU,X)) for all PU,X ∈ MF .

This step involves establishing possible additional assumptions on the distribu-
tion of U, or sometimes also on the deterministic functions f , so that we can identify
the target parameter from the observed data distribution. Thus, for each probability
distribution of the underlying data (U, X) satisfying the SCM with these possible
additional assumptions on PU , we have ΨF(PU,X) = Ψ (P(PU,X)) for some Ψ . O is
implied by the distribution of (U, X), such as O = X or O ⊂ X, and P = P(PX,U),
where P(PU,X) is a distribution of O implied by PU,X .

Let us denote the resulting full-data SCM by MF∗ ⊂ MF to make clear that
possible additional assumptions were made that were driven purely by the identifia-
bility problem, not necessarily reflecting reality. To be explicit, MF is the full-data
SCM under the assumptions based on real knowledge, and MF∗ is the full-data
SCM under possible additional causal assumptions required for the identifiability of
our target parameter. We now have that for each PU,X ∈ MF∗, ΨF(PU,X) = Ψ (P),
with P = P(PU,X) the distribution of O implied by PU,X (whereas P0 is the true
distribution of O implied by the true distribution PU,X,0).

Theorems exist that are helpful to establish such a desired identifiability result.
For a particular intervention d on the A nodes, and for a given realization u, the
SCM generates deterministically a corresponding value for L1:2. We denote the re-
sulting realization by Ld(u) and note that Ld(u) is implied by f and u. If O = X,
and the distribution of U is such that, at each time point t, At is independent of Ld,
given Pa(At), then the g-formula expresses the distribution of Ld in terms of the
distribution of O:

P(Ld = l) =
T∏

t=1

P(Lt = lt | Pad(Lt)) = Pad(lt)),

where Pad(Lt) are the parents of Lt with the intervention nodes among these parent
nodes deterministically set by intervention d. This so-called sequential randomiza-
tion assumption can be established for a particular independence structure of U by
verifying the backdoor path criterion on the corresponding causal graph implied by
the SCM and this independence structure on U. The backdoor path criterion states
that for each At, each backdoor path from At to an Lt node that is realized after At is
blocked by one of the other Lt nodes.

In this manner, one might be able to generate a number of independence struc-
tures on the distribution of U that provide the desired identifiability result. That is,
the resulting model for U that provides the desired identifiability might be repre-
sented as a union of models for U that assume a specific independence structure.
The sequential randomization assumption is also referred to as the no unmeasured
confounders assumption. We define confounders as those variables in X one must
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observe in O in order to establish the identifiability of the target parameter. We note
that different such subsets of X may provide a desired identifiability result. If we
return to our IVF study example and the structural equation models found in (2.1),
the union of several independence structures allows for the identifiability of our
causal target parameter by meeting the backdoor path criterion. The independence
structure in Fig. 2.3 does not meet the backdoor path criterion.

2.3.4 Commit to a Statistical Model and Target Parameter

The identifiability result provides us with a purely statistical target parameter Ψ (P0)
on the distribution P0 of O. The full-data model MF∗ implies a statistical observed
data model M = {P(PX,U) : PX,U ∈ MF∗} for the distribution P0 = P(PU,X,0) of
O. This now defines a target parameter Ψ : M → R

d. The statistical observed data
model for the distribution of O might be the same for MF and MF∗. If not, then one
might consider extending the Ψ to the larger statistical observed data model implied
by MF , such as possibly a fully nonparametric model allowing for all probability
distributions. In this way, if the more restricted SCM holds, our target parameter
would still estimate the target parameter, but one now also allows the data to con-
tradict the more restricted SCM based on additional doubtful assumptions.

For our IVF study, our corresponding statistical parameter Ψ (P0) is given

ΨF(PU,X,0) = P(Y(1,1) = 1)

= EP0

(∑
P0(Y = 1 | A0:1 = 1, L0:1 = l0:1)

× P0(L1 = 1 | A0 = 1, L0 = l0)
)
≡ Ψ (P0).

This identifiability result for the causal effect as a parameter of the distribution P0

of O required making the sequential randomization assumption. This assumption
might have been included in the original SCM MF , but, if one knows there are un-
measured confounders, then the model MF∗ would be more restrictive by enforcing
a randomization assumption that we believe to be incorrect.

Another required assumption is that of sequential positivity. In our IVF study,
this means that the probability of IVF treatment at each of our two time points is
nonzero, given covariate history. Without this assumption, the probabilities of L1:2

in Ψ (P0) are not well defined. However, the positivity assumption is a more general
name for the condition that is necessary for the target parameter Ψ (P0) to be well
defined, and it often requires the censoring or treatment mechanism to have certain
support.



2 Defining the Model and Parameter 25

2.3.5 Interpretation of Target Parameter

We may not have knowledge that supports the causal assumptions in the SCM, and
be unwilling to rely on these additional assumptions. By assuming that the time
ordering of observed variables L0:1, A0:1, and Y is correct:

L0 → A0 → L1 → A1 → Y,

our target parameters still represent an interesting and well-defined effect and can
be interpreted as a variable importance measure

The observed data parameter Ψ (P0) can be interpreted in two possibly distinct
ways:

1. Ψ (P0) with P0 ∈ M augmented with the truly reliable additional non-
statistical assumptions that are known to hold (e.g., MF). This may in-
volve bounding the deviation of Ψ (P0) from the desired target causal ef-
fect ΨF(PU,X,0) under a realistic causal model MF that is not sufficient for
the identifiability of this causal effect.

2. The truly causal parameter ΨF(PU,X) = Ψ (P0) under the more restricted
SCM MF∗, thereby now including all causal assumptions that are needed
to make the desired causal effect identifiable from the probability distri-
bution P0 of O.

2.4 Notes and Further Reading

We refer readers to the in-depth presentation of SCMs found in Pearl (2009a). This
chapter builds and relies on Chaps. 2 and 24 of Targeted Learning (2011). Some
content reappears from Chap. 2, with permission. The g-formula for identifying the
distribution of counterfactuals from the observed data distribution, under the se-
quential randomization assumption, was originally published in Robins (1986).



Chapter 3
Sequential Super Learning

Sherri Rose and Mark J. van der Laan

Suppose a doctor is interested in predicting the individual outcomes for a group of
patients under two particular drug regimens at two time points in the future. She
is therefore asking, what would happen to each of these patient’s future outcomes
at these time points if I were to enforce drug regimen 1 or drug regimen 2? Which
treatment will be better for the patients’ efficacy outcomes? Which treatment will be
better for the patients’ safety outcomes? Prediction problems can be longitudinal in
nature, generally, and we frequently wish to understand what the mean outcome of
patients with certain characteristics would be months or years in the future. Often,
this is under the setting where we would hypothetically assign a particular treatment
“rule” to the patients.

This chapter discusses sequential super learning for longitudinal data problems,
and provides us with a framework for prediction at any time point. In Chap. 3 of
Targeted Learning (2011), we introduced super learning for prediction in a simple
data structure O = (W, A,Y) ∼ P0 and estimated the conditional mean E[Y | A,W].
Now, we are examining longitudinal data structures and more complex prediction
questions. These types of questions in longitudinal data have a natural analog to
our E[Y | A,W] prediction question: E(Yd | W) = E(Y |A = d(W),W). With
O = (W, A,Y), there was only one observed outcome after baseline and one inter-
vention node, making the prediction problem very simple: a single regression (esti-
mated with super learning). We introduce the concept of sequential prediction and
generalize the concepts and methodology presented in Chap. 3 of Targeted Learning
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(2011) for counterfactual estimation of conditional means under Yd, given baseline
covariates, with multiple time point dynamic interventions d.

For these multiple time point interventions, E(Yd | L0) can be estimated with
sequential regressions, and these sequential regressions will also be critical compo-
nents for the estimation of E(Yd) (and other parameters) with LTMLE. We could
simply average over our estimator of E(Yd | L0) to estimate E(Yd). However, in
the next chapter we will discuss augmenting the sequential regression estimator of
E(Yd) using targeted at each step in the LTMLE.

Therefore, we keep in mind that prediction questions are frequently the scien-
tific goal, and sequential super learning is the appropriate stand-alone tool for these
problems. However, we highlight that we are also interested in estimating a target
parameter of the probability distribution of the data, and this will often be a target
parameter that can be interpreted as a causal effect. In these settings we will imple-
ment an LTMLE. An integral component of this estimation procedure in research
questions involving longitudinal data are sequential regression estimates of the rel-
evant parts Q of P0 that are needed to evaluate the target parameter. This step is
presented in Chap. 3, with sequential super learning, and LTMLE will be presented
in Chap. 4. Thus, this chapter focuses on the estimation of conditional means within
the road map for targeted learning that are useful for both prediction and causal
effect questions.

Effect Estimation vs. Prediction in Longitudinal Data

Both causal effect and prediction research questions in longitudinal data are
inherently estimation questions. In the first, we are interested in estimating the
causal effect of an intervention or dynamic process or other longitudinal effect
question. For prediction, we are interested in generating a function to input
the variables (A0:t, L0:t) and predict a value for the outcome, possibly under a
dynamic process. These are clearly distinct research questions despite being
frequently conflated. LTMLE involves prediction steps within the procedure,
thus understanding the sequential super learner for prediction in longitudinal
data is a core concept for both research questions.

3.1 Background: Ensemble Learning

As introduced in Chap. 1, ensemble learning has been developed for various data
types and research questions, as well as applied in many substantive areas. The core
prediction framework is an “ensembling” super (machine) learning approach that
leverages cross-validation to produce an optimal weighted average of multiple algo-
rithms. This solution solves the critical challenge for prediction: many algorithms
are available, from decision trees to penalized regressions to neural networks, and
any individual algorithm may have disparate performance in a given data set.
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The historical issue has been: How do we know beforehand which algorithm
will perform the best in our data? Even in similar data types, we may find that a
logistic regression in a misspecified parametric model outperforms a decision tree
in one study, but the decision tree outperforms the logistic regression in another
study. There are many such examples in the data science literature.

Given our nonparametric statistical model, we may initially be drawn to non-
parametric methods that smooth over the data without overfitting. However, a sim-
ple nonparametric estimator, such as local averaging, still requires partitioning the
covariate space to define the smoothness of this regression estimator. Even with
optimally selected partitions, a logistic regression in a misspecified parametric sta-
tistical model may outperform this nonparametric estimator if the true underlying
data-generating distribution is very smooth.

These considerations led to substantial statistical work in ensembling, and ul-
timately the super learner. Super learning protects against a selecting a poorly
performing single algorithm a priori. Instead, we consider many algorithms, and
need not worry that our local averaging will be outperformed by a logistic regres-
sion as we include both, and many others. This is due to the fact that super learning
constructs a prediction function that is the optimal weighted average of all consid-
ered algorithms, based on an a priori specified loss function.

Notable Applications

• Publicly Available Data in R: In 13 publicly available data sets from R, all with
small sample sizes (ranging from 200 to 654) and a small number of covariates
(ranging from 3 to 18), super learner outperformed each single algorithm stud-
ied. This study was notable for demonstrating in real data that the benefits of
super learning do not require large samples and many covariates. Parametric lin-
ear regression was only the 8th best algorithm overall, of the single algorithms
considered, out of 20 (Polley and van der Laan 2010; Polley et al. 2011).

• Mortality Risk Scores: This study generated an improved function for predicting
mortality in an elderly population with super learning. The work was also notable
for demonstrating that a small carefully collected cohort study one-tenth the size
of a large health database (both in terms of subjects and number of covariates)
generated a more accurate prediction function. Thus, the manuscript was an early
contribution to the literature revealing the limitations of large electronic health
databases to answer targeted scientific research questions (Rose 2013).

• Mortality Risk Scores in ICUs: Developing risk scores for mortality in intensive
care units is a difficult problem, and previous scoring systems did not perform
well in validation studies. A super learner developed for this problem had ex-
traordinary performance, with area under the receiver operating characteristic
curve of 94% (Pirracchio et al. 2015).

• HIV RNA Monitoring: This study demonstrated that implementing super learning
with electronic health record data on medication adherence may be useful for
identifying patients at a high risk of virologic failure (Petersen et al. 2015).

• Plan Payment Risk Adjustment: Current methods for establishing payment to
health plans are fully parametric. The results of recent super learning work for
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this problem indicate that a simplified risk adjustment formula selected via this
nonparametric framework maintains much of the efficiency of a traditional larger
formula. This could impact health insurers’ ability to manipulate the system
through aggressive diagnostic upcoding or fraud (Rose 2016).

The super learner has established, desirable statistical properties, discussed
in detail in Chap. 3 of Targeted Learning (2011). Briefly, in realistic scenarios
where none of the candidate algorithms in the super learner achieves the rate of
convergence of an a priori correctly specified parametric statistical model, the su-
per learner performs asymptotically as well (not only in rate, but also up to the
constant) as the best choice among the possible weighted combinations. We restate
this formally with the finite sample oracle inequality from van der Laan and Dudoit
(2003):

Finite Sample Oracle Inequality. Given a collection of estimators (i.e.,
algorithms) Pn → Q̂k(Pn), the loss-function-based cross-validation selec-
tor is

kn = K̂(Pn) = arg min
k

EBn P1
n,Bn

L(Q̂k(P0
n,Bn

)),

where Bn ∈ {0, 1}n is a random variable that splits the data into a training
set {i : Bn(i) = 0} and validation set {i : Bn(i) = 1}, P0

n,Bn
is the empirical

distribution of the training set, P1
n,Bn

is the empirical distribution of
the validation set, and L(·) our dissimilarity measure: a loss function.
The estimator that results is referred to as the discrete super learner:
Q̂(Pn) = Q̂K̂(Pn)(Pn).

We consider a loss function that satisfies

sup
Q

varP0 {L(Q) − L(Q0)}
P0{L(Q) − L(Q0)} ≤ M2

and is uniformly bounded:

sup
O,Q

| L(Q) − L(Q0) | (O) < M1 < ∞,

where the supremum is over the support of P0 and over the possible
estimators of Q0 that will be considered.

Under the assumption that our loss function L is uniformly bounded over
the support of P0, the remainder between the dissimilarity of the cross-
validation selector and the dissimilarity of the oracle selector at fixed n
hold uniformly in all data-generating distributions. This demonstrates that
the cross-validation selector approximates the performance of the oracle
selector by distance log(K(n))/n. Precisely, for quadratic loss functions,
the cross-validation selector satisfies the following oracle inequality:

(continued)
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EBn {P0L(Q̂kn (P0
n,Bn

) − L(Q0)} ≤ (1 + 2δ)EBn min
k

P0{L(Q̂k(P0
n,Bn

)) − L(Q0)}

+2C(M1, M2, δ)
1 + log K(n)

np
,

for δ > 0, where the constant C(M1, M2, δ) = 2(1 + δ)2(M1/3 + M2/3),
p is the proportion of subjects in the validation set, and K(n) the number
of algorithms in the collection. These results generalize for estimated loss
functions Ln(Q) that approximate a fixed loss function L(Q).

3.2 Defining the Estimation Problem

Recall that we have vectors of covariates Lt, for each time t (t = 0, . . . ,T + 1). For
our data structures in the IVF and HIV studies, covariates at each time point t are
L̄ = (L0, L1, L2), and T = 1. The set of interventions is given by Ā = (A0, A1), and
we can represent the data on one randomly sampled subject as a time-ordered data
structure:

O = (L0, A0, L1, A1, L2 = Y),

where we assume Lt occurs before At. We denote the binary final measurement L2

by Y , which represents the outcome of interest. The sample is composed of n i.i.d.
draws O1, . . . ,On of the random variable O. Realizations of these random variables
are denoted o1, . . . , on. The probability distribution of O can be factorized according
to the time-ordering of the data:

p(O) = p(L0) × p(L1 | A0, L0) × p(Y | A1, L1, A0, L0)

× p(A0 | L0) × p(A1 | L1, A0, L0).

Recall that D = (d1, . . . , dK) is a set of dynamic rules and each dk encodes a
time sequence dk,t (t = 1, . . . ,T ) of rules. Additionally, Yd is the (counterfactual)
value that would have been observed had the subject been set to follow rule d at all
time points. In Chap. 1, we discussed the goal of estimating, for each rule d ∈ D, the
population mean of Y had everyone followed rule d, i.e., E(Yd). (With a binary Y , as
we have here, this is equivalent to the probability that Yd = 1.) This parameter can
be represented as a function of the observed data-generating distribution P, using
the g-computation formula, under a set of strong identifiability assumptions:

Ψd(P) =
∑

l0

∑

l1

P(Y = 1 | A1 = d(l̄1), L̄1 = l̄1, A0 = d(l0))

× P(L1 = l1 | A0 = d(l0), L0 = l0)P(L0 = l0).

For an estimator of Ψd(P) to be consistent, one historically needed to correctly
specify all of the conditional density factors in the density representation of p.
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Estimation of such a conditional density can be difficult when L1 is a vector with
more than a few continuous variables. The sequential regression approach of Robins
(2000) avoids estimation of conditional densities, but instead only requires estima-
tion of conditional means (as described in, e.g., Robins and Ritov 1997). It is based
on the following iterative sequence of conditional means Qd = (Qd

2,Q
d
1,Q

d
0), where

we define, with generality to nonbinary Y , as

Qd
2(L1, L0) = E(Y | A1 = d(L1, L0), L1, A0 = d(L0), L0),

Qd
1(L0) = E(Qd

2(L1, L0) | A0 = d(L0), L0),

Qd
0 = E(Qd

1(L0)).

It follows from the above representation of Ψd(P) that Qd
0 is an equivalent represen-

tation of Ψd(P).
In this chapter, we are interested in prediction. The estimation of conditional

means is a component of the estimation of Ψd(P), but also an interesting parameter
separately. Thus, suppose that we are interested in estimating a conditional mean.
This becomes what we refer to as a counterfactual prediction problem.

Q̄Yd = Qd
1(L0) = E(Qd

2(L1, L0) | A0 = d(L0), L0) = E(Yd | L0).

The first regression Qd
2 = E(Y | A1 = d(L1, L0), L1, A0 = d(L0), L0) can be de-

fined as the minimizer of the expected loss. Since Y{0, 1} or Y ∈ (0, 1) the log-
likelihood loss is a reasonable choice. The loss function for the next regression
Qd

1 = E(Qd
2(L1, L0) | A0 = d(L0), L0) can be the same log-likelihood loss but with

Y replaced by the previous Q̄d
2. Thus, this is now a loss function that is indexed by

an unknown nuisance parameter Qd
2. Nonetheless, at each step we can the use super

learner with this loss function, treating the loss function as known by plugging in the
super learner fit obtained at the previous step. We describe this sequential estimation
procedure in the next section.

3.3 Sequential Super (Machine) Learning

We can estimate the parameter Q̄Yd by nesting a series of regressions, starting at the
last time point and moving backwards in time toward L0, inspired by the sequential
regression approach described on the previous page. We call this sequential super
learning since we use super learning at each step, treating previous super learner fit
as an outcome for the next regression. We will use the notation Lt:0 = (L( j) : j =
t, . . . , 0).
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Algorithm. Super Learning for Sequential Prediction in Longitudinal Data

For each rule d:
	 Obtain an estimator Qd

T+1,n of Qd
T+1(L0:T ) with super learning.

For t = T + 1 to t = 1
	 Define Qd

t,n(L0:t−1) as the outcome in next regression and use super
learning to estimate E(Qd

t (L0:t−1) | At−2:0 = d(Lt−2:0), Lt−2:0).
Save the final estimator Qd

t=1,n(L0) as estimator of Q̄Yd = E(Yd | L0).

Specifically, the sequential super learner for Q̄Yd is constructed as follows:

1. Let Qd
T+2,n = Y .

2. Set t = T + 1.
3. For time point t, create a data set of n observations where each observation has

an outcome Qd
t+1,n(Lt+1:0), and covariates A0:t, L0:t. Fit the K candidate regression

algorithms within V-fold cross-validation. Recall that Bn ∈ {0, 1}n is a random
variable that splits the data into a training set {i : Bn(i) = 0} and validation set
{i : Bn(i) = 1}. The data set is divided into a training set containing V−1

V
ths

of

the data and a validation set containing the remaining 1
V

th
of the data in each of

V folds. For each v = 1, . . . ,V , for each k = 1, . . . ,K, train the k-th algorithm
on the training set T (v), while the V(v) validation set is run through the fitted
algorithm to obtain cross-validated predicted values. This results in a predicted
value Zd

k,t,i for each algorithm k and subject i, i = 1, . . . , n.

4. Posit a family of weighted combinations of the K algorithms that is a convex
combination indexed by α, and select the αn that minimizes the cross-validated
empirical mean of the loss function.
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5. Run all K algorithms on the full data set and combine the candidate fits with the
αn vector to build the super learner function and obtain predicted values under
the setting that each individual followed rule d. These predicted values represent
Qd

t,n(L0:t,i), i = 1, . . . , n.

6. Set t → t − 1 and repeat the above steps 3, 4 and 5.

7. Continue to iterate the sequential prediction algorithm until t = 1 and save
the resulting object Qd

t=1,n, which represents the desired estimator of Q̄Yd =

E(Yd | L0).

3.4 Computation

With newer advances in parallelization and cloud computing, computational chal-
lenges are rapidly being addressed. Software is currently available in R, H20, and
SAS: berkeleybiostats.github.io, including SAS macros and links to R
packages on CRAN. The implementation of a sequential super learner can be com-
putational intensive in the context of big data. Thoughtful consideration should be
given to programming language, number of algorithms, and number of time points
included to maintain applied relevance while remaining computationally feasible.

3.5 Notes and Further Reading

Further details of the asymptotic and finite sample properties of super learning
are discussed in key papers (van der Laan and Dudoit 2003; van der Laan et al.
2007). See also van der Laan et al. (2006), van der Vaart et al. (2006), van der
Laan et al. (2004), Dudoit and van der Laan (2005), and Keleş et al. (2002). The
sequential super learner has been described for a conditional intensity of a count-
ing process in atrial fibrilation (Brooks 2012). This super learner involves defin-
ing an overall loss function L(O, Q̄Lt ) as the sum over all t-specific loss functions
L(O, Q̄Lt ) =

∑
t L(Ot, Q̄Lt ). Super learning in longitudinal data with missingness was

also described in Díaz et al. (2015). Extensive references on machine learning and
ensemble methods can be found in Chap. 3 of Targeted Learning (2011).



Chapter 4
LTMLE

Sherri Rose and Mark J. van der Laan

Sequential decision making is a natural part of existence.
Humans make a myriad of decisions each day, and many
decisions are typically involved when considering a single
particular goal amidst an unpredictable and uncertain envi-
ronment. Any action could impact future states and, impor-
tantly, the options available later. What if we had an auto-
mated way to understand the impact of decisions? And a
means of evaluating differing decision sequences?

As discussed in the three previous chapters, we are of-
ten interested in evaluating treatment rules that extend over
time, i.e., dynamic rules, and these rules can have complex
classifiers. This is common in clinical and public health re-
search, and, in statistics, this work relies on sequential deci-
sion theory. There are a number of other important types of
problems in longitudinal and complex data structures, enumerated throughout this
book, and some also introduced in Chap. 1. In this chapter, we focus on describing
the LTMLE in the context of dynamic rules, although the approach is general, as
demonstrated in later chapters.
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This is the second chapter focusing on estimation, and now we turn to questions
of effect. We started with carefully defining the research question, including the data,
model, and target parameter of the probability distribution of the data. Then, in the
previous chapter, we presented estimation of sequential prediction functions with
super learning. We discussed that for multiple time point interventions, we could
simply average over our estimator of E(Yd | L0) to estimate E(Yd). This, however,
will not lead to an optimal estimator, and we now describe employing targeting at
each step to get an improved estimator for E(Yd). Thus, we are now ready for the es-
timation of causal effects using LTMLE. Note that we use the abbreviation LTMLE
for longitudinal targeted maximum likelihood estimator as well as longitudinal tar-
geted minimum loss-based estimation.

4.1 LTMLE in Action: When to Start HIV Treatment

Recall from Chap. 1, our discussion of the rule-specific mean for the question of
when to start antiretroviral treatment among therapy-naive HIV-infected individuals.
For many years, this was an open question, although there is now generally consen-
sus regarding the benefits of early initiation. Randomized and observational studies
considered various thresholds for CD4 count, such as 200–500 cells/mm3 in inter-
vals of 50, where falling below the threshold indicates one should start antiretroviral
treatment. (The gap between the first observed CD4 count below the threshold and
treatment initiation has also been debated, and commonly used windows include 3
months and 6 months.) Here, suppose we consider only two thresholds: 350 and
500, and an initiation window of 6 months. In the United States, guidelines set by
the Department of Health and Human Services for treatment of asymptomatic in-
dividuals fluctuated between a cutoff of 500 and one of 350 from 1998 to 2011,
before it was changed to “all” in 2012. We carry this example through the chapter
as a demonstrative example.

4.2 Defining the Estimation Problem

Recall that we write the data structure on one randomly sampled subject as:

O = (L0, A0, L1, A1, L2 = Y),

with covariates L̄ = (L0, L1, L2), and T = 1 and a vector of covariates Lt, for each
time t (t = 0, . . . ,T + 1), as well as the set of interventions Ā = (A0, A1). For L0, the
vector contains CD4, viral load, age, sex, intravenous drug use status, and chronic
hepatitis C status. At L1, the vector contains only CD4 count and whether the sub-
ject died. The binary final measurement L2 = Y , which represents our outcome of
interest, death. If a subject dies by L1, they are also recorded as having died by L2.
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Our intervention nodes Ā = (A0, A1) are defined based on whether treatment had
been initiated at or by that time point. Our sample contains n i.i.d. draws O1, . . . ,On

of the random variable O, and realizations of these random variables are given as
o1, . . . , on. Recall also that the probability distribution of O can be factorized ac-
cording to the time-ordering of the data:

p(O) = p(L0) × p(L1 | A0, L0) × p(Y | A1, L1, A0, L0)

× p(A0 | L0) × p(A1 | L1, A0, L0).

In general, we have a set of rules D = {d1, . . . , dK}, where each dk encodes a
time sequence dk,t (t = 1, . . . ,T ) of rules, and Yd is the counterfactual outcome
that would have been observed had the subject been set to follow rule d at all time
points. In our simplified example, we consider only the classifier CD4 count, and
two levels from the previous guidelines on when to start treatment: 350 and 500
cells/mm3. Thus, at each intervention node:

dk,t(CD4t) =

{
1 if CD4t < θk

0 otherwise,

where θ = (500, 350), 1 indicates that treatment has been initiated, and we have that
D = {d1, d2}. We wish to estimate, for each of our two rules d ∈ D, the population
mean of Y had everyone followed rule d, i.e., E(Yd). As introduced in Chap. 1, E(Yd)
can be represented as a function of the observed data-generating distribution P with
the g-computation formula:

Ψd(P) =
∑

l0

∑

l1

P(Y = 1 | A1 = d(l̄1), L̄1 = l̄1, A0 = d(l0))

× P(L1 = l1 | A0 = d(l0), L0 = l0)P(L0 = l0).

We also know that Qd
0 is an equivalent representation of Ψd(P), where Qd

0 is given
in the following iterative sequence of conditional means Qd = (Qd

2,Q
d
1,Q

d
0):

Qd
2(L1, L0) = E(Y | A1 = d(L1, L0), L1, A0 = d(L0), L0),

Qd
1(L0) = E(Qd

2(L1, L0) | A0 = d(L0), L0),

Qd
0 = E(Qd

1(L0)).

4.3 What Does It Mean to Follow a Rule?

Before describing the LTMLE algorithm to estimate Ψd(P) = E(Yd), it is essential
to be explicit about what it means to “follow a rule.” The key to designing our
study, data structure, analysis, and appropriately interpreting our estimate, is the
experiment we wish we could have conducted, but could not.
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• What is the population mean outcome had all subjects followed the treatment
rule to initiate antiretroviral therapy within 6 months of dropping below a CD4
count of 350 cells/mm3?

• What is the population mean outcome had all subjects followed the treatment
rule to initiate antiretroviral therapy within 6 months of dropping below a CD4
count of 500 cells/mm3?

However, given that we have observational data with time-dependent confounding,
we did not in fact force patients to follow either of these rules. Thus, the next step is
to be precise about how we encode whether a subject in our hypothetical observa-
tional study is following one of our two rules.

Suppose we have a hypothetical study where we follow all therapy-naive HIV-
infected individuals for 6 years. (For the moment, additional time points will be
useful in this expository subsection material.) The three panels in Fig. 4.1 represent
three hypothetical individuals in the study. In the first panel, “Patient 1” drops below
500 cells/mm3 for the first time in month 6, drops below 350 cells/mm3 for the first
time in month 30, and initiates treatment in month 66. They follow regime d1, where
θ = 500, up to month 12, where we see that they have not initiated treatment within 6
months of first dropping below 500 cells/mm3. Patient 1 follows d2, where θ = 350,
up to month 36, where, they have not initiated treatment within 6 months of first
dropping below 350 cells/mm3. At month 36 and later, Patient 1 is following neither
d1 or d2.

Hypothetical Patient 2 appears in the second panel of Fig. 4.1. This patient drops
below 500 cells/mm3 for the first time in month 12, drops below 350 cells/mm3 for
the first time in month 36, and initiates treatment in month 16. Therefore, Patient 2
follows d1 for the entirety of the study length, all 72 months, because they initiated
treatment within 6 months of dropping below 500 cells/mm3. It does not matter
what occurs after this initiation given the manner in which we have defined our
rules; the subject is following d1. Patient 2 is following d2 up to month 16, when
they initiate treatment. Because d2 is defined by only initiating treatment once the
subject falls below 350 cells/mm3, they are no longer following this rule when they
start treatment before ever dropping below 350 cells/mm3.

Patient 3 is following both d1 and d2 for the entire study period of 72 months.
They never drop below 500 or 350 cells/mm3 and they never start treatment. Since
the rules are only not being followed when treatment is either (a) not initiated after
dropping below the specified θ or (b) initiated before or too far after dropping below
the specified θ, Patient 3 is always following both rules.
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Fig. 4.1 Illustrations of CD4 count trajectory for three hypothetical individuals as well as when
they started treatment. (Values and data points do not reflect any real patient data.)



40 S. Rose and M. J. van der Laan

4.4 LTMLE for When to Start Treatment

We have now defined our target parameter as a mapping from an infinite di-
mensional parameter of the probability distribution of the unit data structure
into the parameter space, which included carefully translating our scientific
research question into a statistical estimation problem. Our LTMLE requires
deriving the efficient influence curve of the pathwise derivative of the target
parameter, specifying a loss function, positing a fluctuation working submodel
through the initial (or current) estimator so the linear span of the score when
the fluctuation is zero includes the efficient influence curve, and an iterative
maximization algorithm. This iterative maximization continues until the max-
imum likelihood estimators of the fluctuation parameters are near zero. The
LTMLE will solve the efficient score equation and thereby inherit the dou-
ble robustness and asymptotic efficiency for the substitution estimator of our
target parameter.

4.4.1 Determining the Efficient Influence Curve

Let P ∈ M be given. Suppose that we know the treatment mechanism g = g(P).
In that case our statistical model is given by the smaller model M(g) = {P1 ∈ M :
g(P1) = g} defined by all possible densities of O in which the factors of the treatment
mechanism are defined by g. In such a model we could estimate ψd with an inverse
probability of treatment weighted estimator ψd

n,IPTW using the known g:

ψd
n,IPTW =

1
n

n∑

i=1

I(Āi(T ) = d̄T (L̄i(T )))

g0:T (Āi(T ), L̄i(T ))
Yi.

Since ψd
n,IPTW is a sample mean, it follows that it is an (asymptotically) linear esti-

mator at any P ∈ M(g) with influence curve

Dd(P)(O) =
I(Ā(T ) = d̄T (L̄(T )))

g0:T (Ā(T ), L̄(T ))
Y − Ψd(P).

An important result from efficiency theory is that the influence curve at P of a
regular asymptotically linear estimator of a target parameter is a gradient at P of
the pathwise derivative of the target parameter. Therefore, we know that Dd(P) is a
gradient at P in the model M(g). The canonical gradient of Ψd : M(g) → IR at P is
defined by its projection on the tangent space Tg(P) of M(g):

Dd∗(P) = Π(Dd(P) | Tg(P)).

Because the tangent space of g in model M is orthogonal to the tangent space of
M(g) it follows that Dd∗(P) is also the canonical gradient of Ψd : M → IR for
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our actual model M. So we can conclude that the task of finding the canonical
gradient/efficient influence curve at P of our target parameter Ψd : M → IR is
reduced to computing the projection of the initial gradient Dd(P) onto the tangent
space at P for the model M(g). The tangent space Tg(P) equals the orthogonal sum
of the tangent spaces Tg,t(P) of the conditional density of L(t) given L̄(t−1), Ā(t−1),
t = 0, . . . ,T + 1. This tangent space Tg,t(P) is given by all functions in L2

0(P) of
(Ā(t−1), L̄(t)) with conditional mean zero, given L̄(t−1), Ā(t−1). From this we learn
that the projection Dd∗(P) of Dd(P) onto Tg(P) equals the sum of the projections of
Dd(P) onto Tg,t(P), and the latter projection is given by

Dd∗
t (P) ≡ Π(Dd(P) | Tg,t(P)) = E(Dd(P)(O) | L̄(t), Ā(t − 1))

− E(Dd(P)(O) | L̄(t − 1), Ā(t − 1)).

The latter projection can be rewritten by integrating out A(t : T ), which establishes
the following formula:

Dd∗
t (P) =

I(Ā(t − 1) = d̄t−1)

gt−1(Ā(t − 1), L̄(t − 1))

{
Q̄d

t+1(L̄(t)) − Q̄d
t (L̄(t − 1))

}
.

So we can conclude that the efficient influence curve of Ψd : M → IR is given by

Dd∗(P)(O) =
T+1∑

t=0

Dd∗
t (P)

= Q̄d
1(L(0)) − Ψd(P)

+

T+1∑

t=1

I(Ā(t − 1) = d̄t−1)

gt−1(Ā(t − 1), L̄(t − 1))

{
Q̄d

t+1(L̄(t)) − Q̄d
t (L̄(t − 1))

}
.

The first term Dd,∗
0 (P) represents the score component for the distribution of L(0),

while the terms in the sum over t represent the score components for the distribution
of L(t), given L̄(t − 1), Ā(t − 1)).

4.4.2 Determining the Loss Function and Fluctuation Submodel

We need to determine a loss function for Q̄d
t and submodel {Q̄d

t (εt, g) : ε} through
Q̄d

t at ε = 0 with score Dd∗
t (P), t = T + 1, . . . , 0. Because the parameters Q̄d

t are iter-
atively defined, we will also define this combination of loss function and submodel
in an iterative manner, starting at t = T + 1 and ending up at t = 0. A valid loss
function for Q̄d

T+1 is given by the Bernoulli log-likelihood loss function

L(Q̄d
T+1)(O) = −

{
Y log Q̄d

T+1(L̄(T )) + (1 − Y) log{1 − Q̄d
T+1(L̄(T ))

}
.
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Consider the following submodel {Q̄d
T+1(εT+1, g):εT+1} through Q̄d

T+1 at εT+1=0:

logit Qd
T+1(εT+1, g) = logit Qd

T+1 + εT+1
I(ĀT = d̄T )

g0:T
,

where I(Āt−1 = d̄t−1) denotes the indicator that rule d was followed from t = 0 to
t − 1 and g0:t−1 = g0 × · · · × gt−1 = P(A0 | L0) · · · P(At−1 | L̄t−1, Āt−1). Notice that
indeed the score at ε = 0 equals Dd∗

T+1(P):

d
dε

L(Q̄d
T+1(ε, g))

∣∣∣∣∣
ε=0
= Dd∗

T+1(P).

Let t = T . We now want to determine a loss function and submodel for Q̄d
t , where

we can treat Q̄d
t+1 as a given outcome. Treating Q̄d

t+1 as a given outcome, a valid loss
function for Q̄d

t is again given by the log-likelihood loss function:

LQ̄d
t+1

(Q̄d
t )(O) = −{Q̄d

t+1(L̄(t)) log Q̄d
t (L̄(t − 1)) + (1 − Q̄d

t+1) log{1 − Q̄d
t (L̄(t − 1))}.

Consider the following submodel {Q̄d
t (εt, g) : ε} through Q̄d

t at εt = 0:

logit Qd
t (εt, g) = logit Qd

t + εt
I(Āt−1 = d̄t−1)

g0:t−1
.

Indeed, the score d
dεt

LQ̄d
t+1

(Q̄d
t (εt, g)) at εt = 0 equals Dd,∗

t (P). In this way, we have

defined sequentially a loss function LQ̄d
t+1

(Q̄d
t ) and submodel {Q̄d

t (εt, g) : εt} through

Q̄d
t at εt = 0 with score Dd∗

t (P), t = T + 1, . . . , 1.
Finally, given Q̄d

1(L(0)), we define the marginal (Bernoulli) log-likelihood loss
function:

LQ̄d
1
(Q̄d

0) = −{Q̄d
1(L(0)) log Q̄d

0 + (1 − Q̄d
1(L(0))) log{1 − Q̄d

0)}.

As submodel through Q̄d
0 we select

logit Qd
0(ε0) = logit Qd

0 + ε0.

Again, the score d
dε0

LQ̄d
1
(Q̄d

0(ε0)) at ε0 = 0 equals the desired component Dd∗
0 (P).

4.4.3 LTMLE Algorithm

Sequentially, updating the initial estimator Q̄d
t,n of Q̄d

t with an MLE of Q̄d
t (εt,n, gn),

starting at t = T + 1 until t = 0 defines the following TMLE algorithm.
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Algorithm. LTMLE for the Rule-Specific Mean

For each rule d:
	 Obtain estimators Qd

T+1,n and gT,n with super learning.
For t = T + 1 to t = 1
	 Hold Qd

t,n fixed and compute maximum likelihood estimate
εt,n = arg minε PnLQ̄d

t+1
(Q̄d

t (ε, g)) of εt in submodel:

logit Qd
t (εt, g) = logit Qd

t,n + εt(I(Āt−1 = d̄t−1)/g0:t−1).
	 Set the updated estimator Qd∗

t,n = Qd
t,n(εt,n, gn).

	 Define Qd∗
t,n as the outcome in next regression and use super

learning to estimate E(Qd
t (L0:t−1) | At−2:0 = d(Lt−2:0), Lt−2:0).

Save the final estimator Qd∗
0,n = 1/n

∑n
i=1 Qd∗

t=1,n(L0,i) of Ψd(P).

Specifically, the LTMLE for E(Yd) in our HIV treatment example with two inter-
vention time points Ā = (A0, A1) and T = 1 is constructed as described below. Also,
recall from Sect. 4.3 the definition for ‘following’ the two rules D = {d1, d2}.
1. Let Qd

3,n = Y and set t = T + 1 = 2.
2. Consider the original data set S n of n observations. Create counterfactual ‘rule-

specific’ versions of the data S n for each of our two rules D = {d1, d2}. In these
counterfactual data sets S d1 and S d2 , the values of Ā = (A0, A1) are set for each
observation based on what they would be under rules d1 and d2.

3. Obtain estimators Qd
2,n, g1,n, and g0,n with super learning using S n.

4. Estimate predicted outcomes under the observed values for Ā, as well as coun-
terfactual predicted outcomes Qd1

2,n and Qd2
2,n for each rule using S d1 , S d2 , and the

super-learning-based fit for Qd
2,n from the previous step.

5. For each rule dk: Hold Qd
2,n fixed and compute the maximum likelihood estimate

ε2,n = arg minε PnLQ̄d
3
(Q̄d

2(ε, g)) of ε2 in the submodel:

logit Qd
2(ε2, g) = logit Qd

2,n + ε2(I(Āt=1 = d̄t=1)/g0:1),

where g0:1 = g0 × g1 and I(Āt=1 = d̄t=1) for an individual is an indicator that
observation is following rule dk through t − 1 = 1. Set the updated estimator
Qd∗

2,n = Qd
2,n(ε2,n, gn).

6. Define Qd∗
2,n as the outcome in the next super-learning-based regression Qd

1,n,
setting t = 1.

7. Repeat steps 4 and 5 for t=1. Then, set t = 0.
8. Save the final estimators

Qd1∗
0,n = 1/n

n∑

i=1

Qd1∗
t=1,n(L0,i) and

Qd2∗
0,n = 1/n

n∑

i=1

Qd2∗
t=1,n(L0,i).



44 S. Rose and M. J. van der Laan

We ignored issues such as patient drop-out in this example for didactic pur-
poses, and refer readers to Chap. 15 for an example of LTMLE with an explicit
censoring mechanism. This demonstrative LTMLE also estimated separate sub-
models for each dk and t. Other choices in implementation are possible, includ-
ing the use of joint submodels. Software is currently available in R and SAS:
berkeleybiostats.github.io, including the R package ltmle on CRAN
(Lendle et al. 2017).

4.5 Analysis of TMLE and Inference

This section contains technical details on the analysis of TMLE and inference. Some
readers may wish to skip this material. Let Q̄d = (Q̄d

t : t = T + 1, . . . , 0) denote this
sequentially defined parameter. Notice that the efficient influence curve at P only
depends on P though Q̄d = Q̄d(P) and g = g(P). For notational convenience, we
will denote Dd∗(P) with Dd∗(Q̄d, g) as well. Let Q̄d

n and gn be the initial estimators
of Q̄d(P0) and g0 = g(P0), respectively. The above TMLE algorithm defines the
TMLE Q̄d∗

n .

4.5.1 TMLE Solves Efficient Influence Curve Equation

The TMLE solves the efficient influence curve equation:

PnDd∗(Qd∗
n , gn) = 0.

4.5.2 Second-Order Remainder for TMLE

For any pathwise differentiable target parameter Ψ : M → IR with canonical gradi-
ent D∗(P) at P one can define a second-order remainder:

R2(P, P0) ≡ Ψ (P) − Ψ (P0) − (P − P0)D∗(P),

where one can use that PD∗(P) = 0. This results in the second-order Taylor expan-
sion of P → Ψ (P) at P0:

Ψ (P) − Ψ (P0) = −P0D∗(P) + R2(P, P0).

Applying this general approach to our problem, we define the second-order remain-
der:

Rd
2(P, P0) = Ψd(P) − Ψd(P0) + P0Dd∗(P).
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One can obtain an explicit expression for this second-order remainder. In order
to emphasize its dependence on Q̄d and g we will also denote this remainder with
Rd

20(Q̄d, g, Q̄d
0, g0). Inspection of the closed form expression of Rd

2(P, P0) (not shown
here) shows that it consists of a sum of integrals that integrate a product of a differ-
ence of parameter of g with its true value (e.g., (g0:t − g0,0:t)) with a difference of
parameter of Q̄d with its true value (e.g., Q̄d

t − Q̄d
0,t). As a result, the second-order

remainder has a so-called double robust structure in the sense that

Rd
2(Q̄d, g, Q̄d

0, g0) = 0 if Q̄d = Q̄d
0 or g = g0.

More importantly, by using the Cauchy-Schwarz inequality

(
∫

f gdP0)2 ≤
∫

f 2dP0

∫
g2dP0,

this product structure of R20() allows one to bound Rd
2(P, P0) in terms of products of

an L2(P0)-norm of a difference of parameter of g(d(L̄(T )), L̄(T )) with its true value
and a difference of a parameter of Q̄d with its true value. Specifically, we can bound
Rd

2(P, P0) with a sum of terms of the type ‖ Q̄d
t+1 − Q̄d

t+1(P0) ‖P0‖ g0:t −g0,0:t ‖P0 . This
bounding relies on the positivity assumption that g0,0:T (d(L̄(T )), L̄(T )) > δ > 0 for
some δ > 0. We can apply this second-order expansion at the TMLE (Q̄d∗

n , gn). This
results in the following identity:

Ψd(Q̄d∗
n ) − Ψd(Q̄d

0) = −P0Dd∗(Q̄d∗
n , gn) + R20(Q̄d∗

n , gn, Q̄
d
0, g0).

Combined with PnDd∗(Qd∗
n , gn) = 0, this results in

Ψd(Q̄d∗
n ) − Ψd(Q̄d

0) = (Pn − P0)Dd∗(Q̄d∗
n , gn) + R20(Q̄d∗

n , gn, Q̄
d
0, g0). (4.1)

4.5.3 Asymptotic Efficiency

This provides a perfect basis for establishing asymptotic efficiency of the TMLE
Ψd(Q̄d∗

n ) of Ψd(Q̄d
0). Firstly, assume that

R20(Q̄d∗
n , gn, Q̄

d
0, g0) = oP(n−1/2). (4.2)

By the above mentioned Cauchy-Schwarz bound (4.2) holds if ‖ gn,0:t − g0,0:t ‖P0‖
Q̄d∗

t+1,n − Q̄d∗
0,t+1 ‖P0= oP(n−1/2) for all t = 1, . . . ,T . For example, the latter will hold if

we estimate each of the nuisance parameters at a rate faster than n−1/4 with respect
to ‖ · ‖P0 -norm. On the other hand, knowledge about g0 may allow one to estimates
g0 at a significantly faster rate than n−1/4, in which case one can estimate Q̄d

0 at a
significantly slower rate than n−1/4, as long as the product of the rates is of smaller
order than n−1/2. In observational studies in which little is known about g0, in order
to satisfy this assumption (4.2) we will need to use highly adaptive estimators such
as a super learner in which the library includes the highly adaptive lasso estimator
(see Chap. 6).
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Combining (4.2) with (4.1) results in the following equation:

Ψd(Q̄d∗
n ) − Ψd(Q̄d

0) = (Pn − P0)Dd∗(Q̄d∗
n , gn) + oP(n−1/2).

In addition, we will assume

Dd∗(Q̄d∗
n , gn) falls in a P0-Donsker class with probability tending to 1. (4.3)

For example, if O is a J-dimensional vector, we could define the Donsker class as all
real-valued multivariate cadlag functions on a multivariate cube

∏J
j=1[0, τ j] ⊂ IRJ

≥0
with sectional variation norm smaller than a given constant M < ∞ (see Chap. 6).
In practice, this corresponds with avoiding estimators that overfit the data. This
Donsker class assumption can be avoided by using cross-validated TMLE (see
Chap. 7). Given assumption (4.2) one certainly expects that the following consis-
tency assumption holds:

P0{Dd∗(Q̄d∗
n , gn) − Dd∗(Q̄d

0, g0)}2 → 0 in probability, as n → ∞. (4.4)

Empirical process theory teaches us that if fn is a random function of O that falls
in a P0-Donsker class with probability tending to 1 and P0 f 2

n → 0 in probability as
n → ∞, then (Pn − P0) fn = oP(n−1/2). Application of this fundamental empirical
process result shows that

(Pn − P0)Dd∗(Q̄d∗
n , gn) = (Pn − P0)Dd∗(Q̄d

0, g0) + oP(n−1/2).

We have now shown the desired asymptotic efficiency of the TMLE:

Ψd(Q̄d∗
n ) − Ψd(Q̄d

0) = (Pn − P0)Dd∗(Q̄d
0, g0) + oP(n−1/2). (4.5)

We can formulate this as a formal theorem.

Theorem 4.1. Assume (4.2), (4.3) and (4.4). Then, Ψd(Q̄d∗
n ) is an asymptotically

efficient estimator of Ψd(Q̄d
0). In particular,

√
n(ψd∗

n − ψd
0) ⇒d N(0, σd2

0 ),

where σd2
0 = P0{Dd∗(P0)}2 is the variance of the efficient influence curve.

4.5.4 Inference

An immediate consequence of the above established asymptotic linearity and ef-
ficiency is that Ψd(Q̄d∗

n ) ± 1.96σn/n1/2 is an asymptotic 0.95-confidence inter-
val, where σd2

n is a consistent estimator of the variance σd2
0 of the efficient in-

fluence curve. We can estimate σd2
0 naturally with the empirical sample variance

Pn{D∗d(Q̄d∗
n , gn)}2 of the estimated efficient influence curve D∗d(Q̄d∗

n , gn).
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Suppose now that one is concerned with estimating E(Yd) for a collection of rules
d varying over a set D. One could now define the vector valued target parameter as
ΨD(P) = (Ψd(P) : d ∈ D). Let Q̄D = (Q̄d : d ∈ D). In that case, the above analysis
shows that, if we assume the above assumptions (4.2), (4.3), and (4.4) for all d ∈ D,
then the TMLE ψD∗

n = ΨD(Q̄D∗
n ) of ψD

0 = ΨD(Q̄D
0 ) is asymptotically linear with

vector-valued influence curve DD∗(P0) = (Dd∗(P0) : d ∈ D). In this case, we have
that

√
n(ψD∗

n −ψD
0 ) ⇒d N(0, Σ0) as n → ∞, where the asymptotic covariance matrix

Σ0 of the normal limit distribution is given by the covariance matrix of the vector
influence curve

Σ0 = P0{DD∗(P0)}{DD∗(P0)}�.

We can estimate this covariance matrix consistently with the empirical covariance
matrix

Σn = Pn{DD∗
n }{DD∗

n }�,

where DD∗
n is the plug-in estimator of DD∗(P0), as above described for the single

valued parameter ψd
0. This result allows one to carry out simultaneous inference for

(EYd : d ∈ D). For example,

ψd∗
n ± q0.95,nσ

d
n/n

1/2

is an asymptotic 0.95-simultaneous confidence interval for ψd
0, where q0.95,n is the

0.95-quantile of max j | Z( j) |, Z ∼ N(0, ρn), and ρn is the correlation matrix of Σn.
By the delta method, the asymptotic linearity of the TMLE of ΨD(P0) also implies
the influence curve (and thus inference) of a plug-in TMLE of any differentiable
function of (EYd : d ∈ D). One class of examples of such a differentiable summary
measure of (EYd : d ∈ D) is a projection of this dose-response curve (EYd : d ∈ D)
onto a working marginal structural model (mβ(d) : d ∈ D) (Petersen et al. 2014).

4.6 Notes and Further Reading

Many estimation techniques have been developed for dynamic interventions (Mur-
phy 2003; Robins 2004; Moodie et al. 2007; van der Laan 2006a; van der Laan and
Petersen 2007; Robins et al. 2008b; Bembom and van der Laan 2008; Orellana et al.
2010). Notably, Robins (2000) and Bang and Robins (2005) present a sequential
regression estimator for the mean outcome under a static rule. Previous work devel-
oping LTMLE includes van der Laan and Gruber (2012) and Petersen et al. (2014).
This chapter also benefited from conversations and prior collaborations with Susan
Gruber, Maya Petersen, Michael Rosenblum, Sharon-Lise Normand, and Mireille
Schnitzer.
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Chapter 5
One-Step TMLE

Mark J. van der Laan, Wilson Cai, and Susan Gruber

In this chapter, we will present one-dimensional universal least favorable paramet-
ric submodels for the TMLE of univariate and multivariate target parameters. They
guarantee that a single TMLE-update of the initial estimator already solves the
efficient influence curve equation. We explain why this type of one-step TMLE
is more stable than an iterative TMLE. By the fact that the one-step TMLE for
high-dimensional or even infinite-dimensional target parameters is a substitution
estimator, it follows that it completely respects the structure of the infinite dimen-
sional parameter. The content of this chapter partly relies on van der Laan and Gru-
ber (2016). As an example, we present a one-step TMLE of a complete treatment-
specific survival function.

5.1 Local and Universal Least Favorable Submodels

Let’s first consider one-dimensional target parameters. A least favorable model at
P is a model S∗ = {Pε,h∗ : ε}, dominated by P, for which Pε=0,h∗ = P, and that
maximizes the submodel specific Cramer-Rao lower bound for the asymptotic vari-
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ance of a regular asymptotically linear estimator of Ψ (Pε=0) for submodel {Pε,h : ε}
defined by

CR(h | P) ≡

(
d
dε Ψ (Pε,h)

∣∣∣
ε=0

)2

−P d2

dε2 log dPε,h

dP

∣∣∣∣
ε=0

.

It maximizes CR(h | P) over all such parametric submodels {Pε,h : ε} with h varying
over some index set whose closure of the linear span generates the full tangent space
T (P) ⊂ L2

0(P) of the model at P. Given the pathwise differentiability with canonical
gradient D∗(P), denoting the score of {Pε,h : ε} at ε = 0 with S h, it follows that this
criterion for a submodel can be represented as follows:

CR(h | P) =
(PD∗(P)S h)2

PS 2
h

,

By the Cauchy-Schwarz inequality, it follows that this is maximized over all scores
in the tangent space T (P) by S = D∗(P). Thus, a least favorable model can also be
defined as any parametric model through P that has a score at P equal to D∗(P).

By using a second-order Taylor expansion of ε → P log dPε,h/dP at ε = 0 and
that this equals the information PS 2

h, it follows that, under some smoothness as-
sumptions on the submodels, the criterion can also be represented as

CR(h | P) = lim
ε→0

(Ψ (Pε,h) − Ψ (P))2

−2P log dPε,h/dP
.

This shows that CR(h | P) equals the square change in the target parameter divided
by the change in log-likelihood at P at an infinitesimal ε. Therefore, we will say that
the path {Pε,h∗ : ε} that maximizes CR(h | P) follows at ε = 0 (i.e., locally) a path of
maximal change in target parameter per unit of information.

To stress that the desired optimality property only applies locally, we will refer
to such a submodel as a locally (i.e., at ε = 0) least favorable submodel.

This latter representation of the criterion is intuitively appealing. A sensible goal
of a submodel {Pε : ε} through P is that a small fluctuation of P yields a maximal
change in target parameter, making the MLE εn = arg maxε Pn log dPε/dP (as used
in TMLE) for this parametric model locally all about fitting the target parameter,
not wasting data for anything else.

The intuition of TMLE has always been to minimally increase the empirical
fit of the initial estimator while achieving the desired bias reduction for the target
parameter, measured by solving PnD∗(P∗

n) with a good estimator P∗
n of P0 (so not

worse than P0
n). However, if P0

n is far away from P0, the MLE ε0
n will be far from

local. Even though it moves in the right direction at ε ≈ 0, there is no guarantee that
it follows a path of maximal change in target parameter per change in distribution
once ε moves farther away from zero. In the end, that means that the TMLE might
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not have followed such a targeted path after all, and it might have taken various
iterations to finally end up with a local εK

n ≈ 0 at which point the algorithm stops.
The distribution P0

n might have changed much more than needed to obtain the bias
reduction in the target parameter. That is, the desired bias reduction came at an
unnecessary cost of data fitting so that Ψ (P∗

n) will have larger finite sample variance
than needed. Based on this insight, we would like to construct a TMLE that is based
on a path that at each ε (not just at ε = 0) follows a path of maximal change in target
parameter per unit of information. We will refer to such a path as a universal least
favorable submodel.

Definition 5.1. Suppose that, given a P ∈ M, Ulfm(P) = {Pε : ε ∈ (−a, a)} ⊂ M
is a parametric submodel dominated by P, such that Pε=0 = P and for each ε ∈
(−a, a) ⊂ IR, we have

d
dε

log
dPε

dP
= D∗(Pε). (5.1)

Then, we say that Ulfm(P) is a universal least favorable submodel through P.

That is, this least favorable model is not only least favorable at ε = 0, it is a least
favorable model at each Pε ∈ Ulfm(P). This chapter proposes such universal least
favorable submodels and corresponding targeted maximum likelihood and targeted
minimum loss-based estimators.

A very nice by-product of these universal least favorable submodels is that
the TMLE always “converges” in one step, as shown in next subsection. This
reflects the above intuition of a universal least favorable submodel as a short-
est path submodel in the sense that it achieves the desired bias reduction at
minimal increase in empirical log-likelihood.

5.2 A Universal Least Favorable Submodel for Targeted
Maximum Likelihood Estimation

Let P0
n be an initial estimator of P0. Suppose that, given a P ∈ M, we can construct

a universal least favorable parametric model Ulfm(P) = {Pε : ε ∈ (−a, a)} ⊂ M. If
we use this as parametric submodel in the TMLE, then the TMLE converges in one
step. That is, let

ε0
n = arg max

ε
Pn log

dP0
n,ε

dP0
n
.

One can replace the maximum ε0
n by the local maximum closest to ε = 0, which is

what we recommend in case the selected universal least favorable submodel allows
for multiple local maxima. Let P1

n = P0
n,ε0

n
. Since ε0

n is a local maximum it solves its

score equation, given by PnD∗(P1
n) = 0. That is, it achieves the goal of solving the

desired efficient influence curve equation in one step. Further iteration will not yield
further updates: the next MLE
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ε1
n = arg max

ε
Pn log

dP1
n,ε

dP1
n
= 0.

Therefore, the TMLE of ψ0 = Ψ (P0) is given by the one-step TMLE ψ∗
n = Ψ (P1

n).
In addition, we strongly suspect that a TMLE using such a universal least favor-

able model will often perform better in finite samples than an iterative TMLE using
a local (nonuniversal) least favorable submodel. In addition, it is philosophically su-
perior by always following a path along ε in which the rate of square change in the
parameter by unit of information is maximized at each ε-value.

5.2.1 Analytic Formula

This motivates us to consider if such a universal least favorable model exists and
can be constructed. The answer is, yes, as our constructions below demonstrate. In
the following we use pε for the density of Pε with respect to P, so that p = 1, but
we will still use p (in case one wants to use the formulas for densities with respect
to another dominating measure). For ε ≥ 0, we recursively define

pε = p exp

(∫ ε

0
D∗(Px)dx

)
, (5.2)

and, for ε < 0, we recursively define

pε = p exp

(
−

∫ 0

ε

D∗(Px)dx

)
.

Theorem 5.1. Consider the definition of {Pε : ε ∈ (−a, a)} above. We have that
{Pε : ε ∈ (−a, a)} is a set of probability distributions dominated by P, Pε=0 = P,
and, for each ε ∈ (−a, a), we have

d
dε

log
dPε

dP
= D∗(Pε).

Proof. It follows trivially that for each ε, d
dε log pε = D∗(Pε). It remains to verify

that pε satisfies
∫

pε(o)dP(o) = 1 (obviously, pε ≥ 0). Define C(ε, P) ≡
∫

pεdP.
Consider the probability density pε,1 = C(ε, P)−1 pε . We have that its score at ε is
given by:

S (ε, P) =
1

C(ε, P)
d
dε

C(ε, P) + D∗(Pε).

We know that PεS (ε, P) = 0. Since PεD∗(Pε) = 0, this implies that d
dεC(ε, P) = 0.

Thus, C(ε, P) = C(0, P) = 1. This completes the proof. �

Note that this recursive relation (5.2) allows one to recursively solve for pε+dε ,
given {px : x ∈ [0, ε]}, in the sense that (e.g.) for ε > 0,
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pε+dε

pε
= exp(D∗(Pε)dε) = (1 + dεD∗(Pε)).

This differential equation is equivalent to stating that d
dε log pε = D∗(Pε). This im-

plies a practical construction that starts with px0=0 = p and recursively solves for

pxj = pxj−1 (1 + (x j − x j−1)D∗(Pxj−1 )), j = 1, . . . ,N,

for an arbitrary fine grid 0 = x0 < x1 < . . . < xN = a. Similarly, one determines
recursively

p−x j = p−x j−1 (1 − (x j − x j−1)D∗(P−x j−1 )), j = 1, . . . ,N.

If the model M is nonparametric, then this practical construction is a submodel
of M. But if the model is restricted, the practical construction above might select
probability distributions Pxj that are not an element of M, even though it has score
at x j equal to D∗(Pxj ) in the tangent space at Pxj of the model M. Nonetheless, this
practical construction of this least favorable model can be used for any model M, as
long as one can extend the target parameter Ψ to be well defined on the probability
distributions in this discrete approximation of the theoretical least favorable model.
The TMLE will still only require one step and be asymptotically efficient for the ac-
tual model M under regularity conditions. In addition, in the next subsection, Theo-
rem 5.2 proves that under mild regularity conditions, quite surprisingly, the theoret-
ical formula (5.2) for this universal least favorable model, defined as a limit of the
above practical construction when the partitioning gets finer and finer, is an actual
submodel of M. Another way of viewing this result is that by selecting the partition-
ing finely enough in the above practical construction {pxj , p−x j : j = 0, . . . ,N}, we
obtain a sequence of densities that are arbitrarily close to the model M. Below we
will also provide an alternative to the above practical construction that does preserve
the submodel property while it still approximates the theoretical formula (5.2).

5.2.2 Universal Least Favorable Submodel in Terms of a Local
Least Favorable Submodel

An alternative representation of the above analytic formula (5.2) is given by a prod-
uct integral representation. Let dε > 0. For ε ≥ 0, we define

pε+dε = p
∏

x∈(0,ε]

(1 + D∗(Px)dx),

and for ε < 0, we define

pε−dε = p
∏

x∈[ε,0)

(1 − D∗(Px)dx).
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In other words, px+dx = px(1 + D∗(Px)dx), or, another way of thinking about this, is
that px+dx is obtained by constructing a least favorable model through Px with score
D∗(Px) at Px, and evaluate it at parameter value dx, slightly away from zero. This
suggests the following generalization of the universal least favorable model whose
practical analogue will now still be an actual submodel of M.

Let 0 = x0 < x1 < . . . ≤ xN = a be an equally spaced fine grid for the interval
[0, a]. Let h = x j − x j−1 be the width of the partition elements. We will provide
a construction for Pxj , j = 0, . . . ,N. This construction is expressed in terms of a
mapping P → {Plfm

δ : δ ∈ (−a, a)} ⊂ M that maps any P ∈ M into a local least
favorable submodel of M through P at δ = 0 and with score D∗(P) at δ = 0, where
a is some positive number. For any estimation problem defined by M and Ψ one
is typically able to construct such a local least favorable submodel, so that this is
hardly an assumption. Let Px=0 = P. Let px1 = plfm

x0,h
, and, in general, let pxj+1 = plfm

x j,h
,

j = 1, 2, . . . ,N − 1. Similarly, let −a = −xN < −xN−1 < . . . < −x1 < x0 = 0 be
the corresponding grid for [−a, 0], and we define p−x j+1 = plfm

−x j,−h, j = 1, . . . ,N − 1.
In this manner, we have defined Pxj , P−x j , j = 0, . . . ,N, and, by construction, each
of these are probability distributions in the model M. The choice N defines an end
value a, but one does not need to a priori select N. One only needs to select a small
dx = x j − x j−1, and continue until the first local MLE is reached. This construction
is all we need when using the universal least favorable submodel in practice, such
as in the TMLE.

This practical construction implies a theoretical formulation by letting N con-
verge to infinity (i.e., let the width of the partitioning converge to zero). That is, an
analytic way of representing this universal least favorable submodel, given the local
least favorable model parameterization (ε, P) → plfm

ε , is given by: for ε > 0 and
dε > 0, we have

pε+dε = plfm
ε,dε .

This allows for the recursive solving for pε starting at pε=0 = p, and since plfm
ε,h ∈ M,

its practical approximation will never leave the model M.
Utilizing that the least favorable model h → plfm

ε,h is continuously twice differen-
tiable with a score D∗(Pε) at h = 0, we obtain a second-order Taylor expansion

plfm
ε,dε = pε +

d
dh

plfm
ε,h

∣∣∣∣∣
h=0

dε + O((dε)2) = pε(1 + dεD∗(Pε)) + O((dε)2),

so that we obtain

pε+dε = pε(1 + dεD∗(Pε)) + O((dε)2).

This implies:

pε = p exp

(∫ ε

0
D∗(Px)dx

)
.

Thus, we obtained the exact same representation (5.2) as above. This proves that,
under mild regularity conditions, this analytic representation (5.2) is a submodel of
M after all. But, when using its practical implementation and approximation, one
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should use an actual local least favorable submodel in order to guarantee that one
stays in the model. We formalize this result in the following theorem.

Theorem 5.2. Let O be a maximal support so that the support of a P ∈ M is a
subset of O. Suppose there exists a mapping P → {Plfm

δ : δ ∈ (−a, a)} ⊂ M that
maps any P ∈ M into a local least favorable submodel of M through P at δ = 0
and with score D∗(P) at δ = 0, where a is some positive number independent of P.
In addition, assume the following type of second-order Taylor expansion:

plfm
ε,dε = pε +

d
dh

plfm
ε,h

∣∣∣∣∣
h=0

dε + R2(pε , dε),

where

sup
ε

sup
o∈O

| R2(pε , dε)(o) |= O((dε)2).

We also assume that supε supo∈O | D∗(Pε)pε | (o) < ∞. Then, the universal least
favorable {pε : ε} defined by (5.2) is an actual submodel of M. Its definition corre-
sponds with pε+dε = plfm

ε,dε whose corresponding practical approximation will still be
a submodel.

5.3 Example: One-Step TMLE for the ATT

The iterative TMLE for estimating the average treatment effect among the treated
(ATT) parameter returns to the data several times to make a sequence of local moves
that updates the estimate of Q̄n(A,W) and ḡn(A,W) at each iteration. In contrast,
the one-step TMLE using the universal least favorable submodel fits the data once,
where the MLE step requires a series of micro updates within a much smaller local
neighborhood defined by a tuning parameter step size, dε. When there is sufficient
information in the data for estimating the target parameter these two approaches can
be expected to have comparable performance. When there is sparsity in the data
theory suggests the one-step TMLE will be more stable, having lower variance than
the iterative TMLE.

Let O = (W, A,Y) ∼ P0 and let M be a nonparametric statistical model. Let Ψ :
M → IR be defined by Ψ (P) = EP(EP(Y | A = 1,W) − EP(Y | A = 0,W) | A = 1).
The efficient influence curve of Ψ at P is given by van der Laan et al. (2013b):

D∗(P)(O) = H1(g, q)(A,W)(Y − Q̄(A,W)) +
A
q
{Q̄(1,W) − Q̄(0,W) − Ψ (P)},

where g(a | W) = P(A = a | W), Q̄(a,W) = EP(Y | A = a,W), q = P(A = 1), and

H1(g, q)(A,W) =
A
q
− (1 − A)g(1 | W)

qg(0 | W)
.
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We note that

Ψ (P) = Ψ1(QW , Q̄, g, q) =
∫

{Q̄(1,w) − Q̄(0,w)}g(1 | w)
q

dQW (w),

where QW is the probability distribution of W under P. So, if we define Q =

(QW , Q̄, g, q), then Ψ (P) = Ψ1(Q). For notational convenience, we will use Ψ (P)
and Ψ (Q) interchangeably. Since we can estimate QW and q with their empirical
probability distributions, we are only interested in a universal least favorable sub-
model for (Q̄, g). We can orthogonally decompose D∗(P) = D∗

1(P) + D∗
2(P) + D∗

3(P)
in L2

0(P) into scores of Q̄, g, and QW , respectively, where

D∗
1(P) = H1(g, q)(A,W)(Y − Q̄(A,W))

D∗
2(P) = H2(Q)(W)(A − g(1 | W))

D∗
3(P) =

g(1 | W)
q

{Q̄(1,W) − Q̄(0,W) − Ψ (Q)},

and

H2(Q)(W) =
Q̄(1,W) − Q̄(0,W) − Ψ (Q)

q
.

Thus the component of the efficient influence curve corresponding with (Q̄, g) is
given by D∗

1(Q) + D∗
2(Q).

We consider the following loss-functions and local least favorable submodels for
Q̄ and g (van der Laan et al. 2013b):

L1(Q̄)(O) = −{Y log Q̄(A,W) + (1 − Y) log(1 − Q̄(A,W))}
LogitQ̄lfm

ε = LogitQ̄ − εH1(g, q)

L2(g)(O) = −{A log g(1 | W) + (1 − A) log g(0 | W)}
Logitḡlfm

ε = Logitḡ − εH2(Q).

We now define the sum loss function L(Q̄, g) = L1(Q̄) + L2(g) and local least favor-
able submodel {Qlfm

ε , glfm
ε : ε} through (Q̄, g) at ε = 0 satisfying

d
dε

L(Q̄lfm
ε , glfm

ε )
∣∣∣∣∣
ε=0
= D∗

1(Q) + D∗
2(Q).

Thus, we can conclude that this defines indeed a local least favorable submodel
for (Q̄, g).

In our previous work on the TMLE for the ATT, we implemented the TMLE
based on the local least favorable submodel {Q̄lfm

ε1
, ḡlfm

ε2
: ε1, ε2}, using a separate

ε1 and ε2 for Q̄ and ḡ. This TMLE can also be implemented using a single ε by
regressing a dependent variable vector (Y, A) on a stacked design matrix consisting
of an offset and covariate H, the vector (H1(g, q)(A,W),H2(Q)(W). This TMLE
require several iterations until convergence, whether it is implemented using a single
ε or separate (ε1, ε2).
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The universal least favorable submodel (5.3) is now defined by the following
recursive definition: for ε ≥ 0 and dε > 0,

LogitQ̄ε+dε = LogitQ̄lfm
ε,dε

= LogitQ̄ε − dεH1(gε , q)

Logitḡε+dε = Logitḡlfm
ε,dε

= Logitḡε − dεH2(QW , Q̄ε , q).

Similarly, we have a recursive relation for ε < 0, but since all these formulas are
just symmetric versions of the ε > 0 case, we will focus on ε > 0. This expresses
the next (Qε+dε , gε+dε) in terms of previously calculated (Qx, gx : x ≤ ε), thereby
fully defining this universal least favorable submodel. This recursive definition cor-
responds with the following integral representation of this universal least favorable
submodel:

LogitQ̄ε = LogitQ̄ −
∫ ε

0
H1(gx, q)dx

Logitḡε = Logitḡ −
∫ ε

0
H2(QW , Q̄x, q)dx.

Let’s now explicitly verify that this indeed satisfies the key property of a universal
least favorable submodel. Clearly, it is a submodel and it contains (Q, g) at ε = 0.
The score of Q̄ε at ε is given by H1(gε , q)(Y − Q̄ε) and the score of gε at ε is given
by H2(QW , Q̄ε , q)(A − ḡε(W)), so that

d
dε

L(Q̄ε , gε) = H1(gε , q)(Y − Q̄ε) + H2(QW , Q̄ε , q)(A − ḡε(W))

= D∗
1(QW , Q̄ε , gε , q) + D∗

2(QW , Q̄ε , gε , q),

explicitly proving that indeed this is a universal least favorable model for (Q̄, g).
The TMLE based on the universal least favorable submodel above is imple-

mented as follows, given an initial estimator (Q̄, g). One first determines the sign
of the derivative at h = 0 of PnL(Q̄h, gh). Suppose that the derivative is negative
so that it decreases for h > 0. Then, one keeps iteratively calculating (Q̄ε+dε , gε+dε)
for small dε > 0, given (Q̄x, gx : x ≤ ε), until PnL(Q̄ε+dε , gε+dε) ≥ PnL(Q̄ε , gε),
at which point the desired local maximum likelihood εn is attained. The TMLE of
(Q̄0, g0) is now given by Q̄εn , gεn , which solves Pn{D∗

1(Qεn ) + D∗
2(Qεn )} = 0, where

Qεn = (QW,n, Q̄εn , gεn , qn), and QW,n, qn are the empirical counterparts of QW,0, q0.
Since, we also have PnD∗

3(Qεn ) = 0, it follows that PnD∗(Qεn ) = 0. The (one-step)
TMLE of Ψ (Q0) is given by the corresponding plug-in estimator Ψ (Qεn ).

Simulation. In van der Laan and Gruber (2016), we present two simulation studies
demonstrating these properties. Here we report on the first simulation. The itera-
tive TMLE was implemented using a single ε, the closest analog to the one-step
TMLE. For details, including source code, we refer to van der Laan and Gruber
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(2016). For this study, 1000 datasets were generated at two sample sizes, n = 100
and n = 1000. Two normally distributed covariates and one binary covariate were
generated as W1 ∼ N(0, 1), W2 ∼ N(0, 1), W3 ∼ Bern(0.5). All covariates are
independent. Treatment assignment probabilities are given by P(A = 1 | W) =
expit(−0.4 − 0.2W1 − 0.4W2 + 0.3W3). A binary outcome, Y was generated by set-
ting P(Y = 1 | A,W) = expit(−1.2− 1.2A− 0.1W1 − 0.2W2 − 0.1W3). The true value
of the ATT parameter is ψ0 = −0.1490. There are no theoretical positivity violations
(treatment assignment probabilities were typically between 0.07 and 0.87), but at
the smaller sample size there is less information in the data for estimating g0 within
some strata of W. This suggests that some of the generated data sets will prove more
challenging to the iterative TMLE than to the one-step TMLE. Estimates were ob-
tained using correct and misspecified logistic regressions for the initial estimates of
Q0 and g0. Qcor was estimated using a logistic regression of Y on A,W1,W2,W3.
Qmis was estimated using a logistic regression of Y on A,W1. We estimated gcor us-
ing a logistic regression of A on W1,W2,W3, and gmis was estimated using a logistic
regression of A on W1. Bias, variance, mean squared error (MSE), and relative effi-
ciency (RE = MSEone-step / MSEiter) are shown in Table 5.1. RE < 1 indicates the
one-step TMLE has better finite sample efficiency than the iterative TMLE.

The one-step and iterative TMLEs exhibit similar performance when n = 1000,
with RE = 1. When n = 100, the iterative TMLE failed to converge for 24 of the
1000 datasets. The performance of the two TMLEs on the remaining 976 datasets
was quite similar. However, the fact that the bias, variance, and MSE of the one-step
TMLE are larger when evaluated over all 1000 datasets tells us that the 24 omitted
datasets where the iterative TMLE failed were among the most challenging. One
way to repair the performance of the iterative TMLE is to bound predicted outcome
probabilities away from 0 and 1. We re-analyzed the same 1000 datasets enforcing
bounds on Q̄n of (10−9, 1–10−9) for both estimators. This minimal bounding pre-
vents the iterative TMLE from failing, and should not introduce truncation bias.
Bounding Q̄n allowed the iterative TMLE to produce a result for all analyses. En-
forcing bounds had no effect on estimates produced by the one-step TMLE. This
confirms that the strategy of taking many small steps within a local neighborhood
whose boundaries shift minutely with each iteration helps avoid extremes. Although
the iterative TMLE no longer failed when Q̄n was bounded, it had higher variance
and MSE than the one-step TMLE. Efficiency gains of the one-step TMLE were
between 7 and 28%. See Table 5.1.

5.4 Universal Least Favorable Model for Targeted Minimum
Loss-Based Estimation

Let’s now generalize this construction of a universal least favorable with respect
to log-likelihood loss to general loss functions so that the resulting universal least
favorable submodels can be used in the more general targeted minimum loss-based
estimation methodology. We now assume that Ψ (P) = Ψ1(Q(P)) for some parameter
Q : M → Q(M) defined on the model and real valued function Ψ1. Here Q(M) =
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Table 5.1 Simulation study

Bias Variance MSE
One-step Iterative One-step Iterative One-step Iterative RE

n = 1000
Q correct
gcor −0.00042 −0.00042 0.00059 0.00059 0.00059 0.00059 1.00
gmis −0.00050 −0.00050 0.00057 0.00057 0.00057 0.00057 1.00

Q misspecified
gcor −0.00035 −0.00035 0.00059 0.00059 0.00059 0.00059 1.00
gmis 0.01210 0.01210 0.00049 0.00048 0.00063 0.00063 1.00

n = 100, all runs
Q correct
gcor 0.00049 0.00694 0.00693
gmis −0.00215 0.00635 0.00635

Q misspecified
gcor 0.00113 0.00685 0.00684
gmis 0.01226 0.00528 0.00543

n = 100, (24 runs omitted)
Q correct
gcor 0.00296 0.00295 0.00679 0.00678 0.00679 0.00679 1.00
gmis 0.00023 0.00023 0.00621 0.00621 0.00621 0.00620 1.00

Q misspecified
gcor 0.00357 0.00363 0.00671 0.00669 0.00671 0.00670 1.00
gmis 0.01474 0.01473 0.00509 0.00509 0.00530 0.00530 1.00

n = 100,Q boundeda

Q correct
gcor 0.00049 −0.00182 0.00694 0.00781 0.00693 0.00781 0.89
gmis −0.00215 −0.00168 0.00635 0.01033 0.00635 0.01033 0.62

Q misspecified
gcor 0.00113 −0.00052 0.00685 0.00738 0.00684 0.00738 0.93
gmis 0.01226 0.01031 0.00528 0.00592 0.00543 0.00602 0.90

aBounding Q̄n had no effect on estimates produced when n = 1000
Bias, variance, MSE and RE of the one-step TMLE and iterative TMLE over 1000 Monte Carlo
simulations (n = 1000 and n = 100)

{Q(P) : P ∈ M} denotes the parameter space of this parameter Q. Let L(Q)(O) be
a loss-function for Q(P) in the sense that Q(P) = arg minQ∈Q(M) PL(Q). With slight
abuse of notation, let D∗(P) = D∗(Q(P),G(P)) be the canonical gradient of Ψ at
P, where G : M → G(M) is some nuisance parameter. We consider the case that
the efficient influence curve is in the tangent space of Q, so that a least favorable
submodel does not need to fluctuate G: otherwise, just include G in the definition of
Q. Given, (Q,G), let {Qlfm

ε : ε ∈ (−a, a)} ⊂ Q(M) be a local least favorable model
w.r.t. loss function L(Q) at ε = 0 so that

d
dε

L(Qlfm
ε )

∣∣∣∣∣
ε=0
= D∗(Q,G).

The dependence of this submodel on G is suppressed in this notation.
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Let 0 = x0 < x1 < . . . < xN = a be an equally spaced fine grid for the interval
[0, a]. Let h = x j−x j−1 be the width of the partition elements. We present a construc-
tion for Qxj , j = 0, . . . ,N. Let Qx=0 = Q. Let Qx1 = Qlfm

x0,h
, and, in general, let Qxj+1 =

Qlfm
x j,h

, j = 1, 2, . . . ,N − 1. Similarly, let −a = −xN < −xN−1 < . . . < −x1 < x0 = 0 be

the corresponding grid for [−a, 0], and we define Q−x j+1 = Qlfm
−x j,−h, j = 1, . . . ,N − 1.

In this manner, we have defined Qxj ,Q−x j , j = 0, . . . ,N, and, by construction, each
of these are an element of the parameter space Q(M). This construction is all we
need when using this submodel in practice, such as in the TMLE.

An analytic way of representing this loss-function specific universal least favor-
able submodel for ε ≥ 0 (and similarly for ε < 0) is given by: for ε > 0, dε > 0,

Qε+dε = Qlfm
ε,dε , (5.3)

allowing for the recursive solving for Qε starting at Qε=0 = Q, and since Qlfm
ε,h ∈

Q(M), its practical approximation never leaves the parameter space Q(M) for Q.
Let’s now derive a corresponding integral equation. Assume that for some

L̇(Q)(O), we have
d

dh
L(Qlfm

ε,h )
∣∣∣∣∣
h=0
= L̇(Qε)

d
dh

Qlfm
ε,h

∣∣∣∣∣
h=0

.

Then, by the local property of a least favorable submodel,

d
dh

Qlfm
ε,h

∣∣∣∣∣
h=0
=

D∗(Qε ,G)

L̇(Qε)
.

Utilizing that the local least favorable model h → Qlfm
ε,h is twice continuously differ-

entiable with derivative D∗(Qε ,G)/L̇(Qε) at h = 0, we obtain the following second-
order Taylor expansion:

Qlfm
ε,dε = Qε +

d
dh

Qlfm
ε,h

∣∣∣∣∣
h=0

dε + O((dε)2)

= Qε +
D∗(Qε ,G)

L̇(Qε)
dε + O((dε)2).

Note that Qε can also be represented as Qlfm
ε,0 . This implies the following recursive

analytic definition of the universal least favorable model through Q:

Qε = Q +
∫ ε

0

D∗(Qx,G)

L̇(Qx)
dx. (5.4)

Similarly, for ε < 0, we obtain

Qε = Q −
∫ 0

ε

D∗(Qx,G)

L̇(Qx)
dx.

As with the log-likelihood loss (and thus Q(P) = P), this shows that, under
regularity conditions, this analytic representation for Qε is an element in Q(M),
although using it in a practical construction (in which integrals are replaced by sums)
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might easily leave the model space Q(M). On the other hand, our above practical
construction in terms of the local least favorable model and discrete grid represents
the desired practical implementation of this universal least favorable submodel. The
following theorem formalizes this result stating that the analytic formulation (5.4)
is indeed a universal least favorable submodel.

Theorem 5.3. Given, any (Q,G) compatible with model M, let {Qlfm
δ : δ ∈

(−a, a)} ⊂ Q(M) be a local least favorable model w.r.t. loss function L(Q) at
δ = 0 so that

d
dδ

L(Qlfm
δ )

∣∣∣∣∣
δ=0
= D∗(Q,G).

Assume that for some L̇(Q)(O), we have

d
dε

L(Qlfm
ε )

∣∣∣∣∣
ε=0
= L̇(Q)

d
dε

Qlfm
ε

∣∣∣∣∣
ε=0

.

Consider the corresponding model {Qε : ε} defined by (5.4). It goes through Q at
ε = 0, and, it satisfies that for all ε

d
dε

L(Qε) = D∗(Qε ,G). (5.5)

In addition, suppose that the a > 0 in the local least favorable submodel above
can be chosen to be independent of the choice (Q,G) ∈ {Qε ,Gε : ε}, and assume the
following second-order Taylor expansion:

Qlfm
ε,dε = Qε +

d
dh

Qlfm
ε,h

∣∣∣∣∣
h=0

dε + R2(Qε ,G, dε)

= Qε +
D∗(Qε ,G)

L̇(Qε)
dε + R2(Qε ,G, dε),

where
sup
ε

sup
o∈O

| R2(Qε ,G, dε)(o) |= O((dε)2).

We also assume that supε supo∈O | D∗(Qε ,G)
L̇(Qε )

(o) |< ∞.
Then, we also have {Qε : ε} ⊂ Q(M).

Proof. Let ε > 0. We have

d
dε

L

(
Q +

∫ ε

0

D∗(Qx,G)

L̇(Qx)
dx

)
= L̇(Qε)

d
dε

Qε

= L̇(Qε)
D∗(Qε ,G)

L̇(Qε)
= D∗(Qε ,G).

This completes the proof of (5.5). The submodel statement was already shown
above, but we now provided formal sufficient conditions. �
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5.5 Universal Canonical One-dimensional Submodel
for a Multidimensional Target Parameter

Let Ψ : M → H be a Hilbert-space valued pathwise differentiable target param-
eter. Typically, we simply have H = IRd endowed with the standard inner product
〈x, y〉 = ∑d

j=1 x jy j. However, we also allow that Ψ (P) is a function t → Ψ (P)(t)
from τ ⊂ IR to IR in a Hilbert space L2(Λ) endowed with inner product 〈h1, h2〉 =∫

h1(t)h2(t)dΛ(t), where Λ is a user supplied positive measure with
∫

dΛ(t) < ∞. For
notational convenience, we will often denote the inner product 〈h1, h2〉 with h�1 h2,
analogue to the typical notation for the inner product in IRd. Let ‖ h ‖=

√
〈h, h〉

be the Hilbert space norm, which would be the standard Euclidean norm in the
case that H = IRd. Let D∗(P) be the canonical gradient. If H = IRd, then this is
a d-dimensional canonical gradient D∗(P) = (D∗

j(P) : j = 1, . . . , d), but in gen-
eral D∗(P) = (D∗

t (P) : t ∈ τ). Let L(p) = − log p, where p = dP/dμ is a density
of P � μ w.r.t. some dominating measure μ. In this section we will construct a
one-dimensional submodel {Pε : ε ≥ 0} through P at ε = 0 so that, for any ε ≥ 0,

d
dε

PnL(pε) =‖ PnD∗(Pε) ‖ . (5.6)

The one-step TMLE Pεn with εn = arg minε PnL(Pε), or εn chosen large enough
so that the derivative is smaller than (e.g.) 1/n, now solves d

dε PnL(Pε)
∣∣∣
ε=0
= 0 (or

< 1/n), and thus ‖ PnD∗(Pεn ) ‖= 0 (or < 1/n). Note that ‖ PnD∗(Pεn ) ‖= 0 implies
that PnD∗

t (Pεn ) = 0 for all t ∈ τ so that the one-step TMLE solves all desired
estimating equations.

Consider the following submodel: for ε ≥ 0, we define

pε = pΠ[0,ε]

(
1 +

{PnD∗(Px)}�D∗(Px)
‖ D∗(Px) ‖ dx

)

= p exp

(∫ ε

0

{PnD∗(Px)}�D∗(Px)
‖ D∗(Px) ‖ dx

)
. (5.7)

Theorem 5.4. We have {pε : ε ≥ 0} is a family of probability densities, its score at
ε is a linear combination of D∗

t (Pε) for t ∈ τ, and is thus in the tangent space at
T (Pε), and

d
dε

PnL(Pε) =‖ PnD∗(Pε) ‖ .

As a consequence, we have d
dε PnL(Pε) = 0 implies ‖ PnD∗(Pε) ‖= 0.

As before, our practical construction below demonstrates that, under regularity con-
ditions, we actually have that {pε : ε} ⊂ M is also a submodel.

The normalization by ‖ D∗(Px) ‖ is motivated by a practical analogue construc-
tion below and provides an important intuition behind this analytic construction.
However, we can replace this by any other normalization for which the derivative
of the log-likelihood at ε equals a norm of PnD∗(Pε). To illustrate this let’s consider
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the case that H = IRd. For example, we could consider the following submodel. Let
Σn(Px) = Pn{D∗(Px)D∗(Px)�} be the empirical covariance matrix of D∗(Px), and let
Σ−1

n (Px) be its inverse. We could then define for ε > 0,

pε = p exp

(∫ ε

0
{PnD∗(Px)}�Σ−1

n D∗(Px)dx

)
.

In this case, we have

d
dε

PnL(Pε) = PnD∗(Pε)
�Σn(Pε)

−1PnD∗(Pε).

This seems to be an appropriately normalized norm, equal to the Euclidean norm of
the orthonormalized version of the original D∗(Pε), so that the one-step TMLE will
still satisfy that ‖ PnD∗(Pεn ) ‖= 0.

It is not clear to us if these choices have a finite sample implication for the re-
sulting one-step TMLE (asymptotics is the same), and if one choice would be better
than another. Either way, the resulting one-step TMLE ends up with a Pεn satisfying
PnD∗(Pεn ) = 0 (or oP(1/

√
n)), which is the only key ingredient in the proof of the

asymptotic efficiency of the TMLE.

5.5.1 Practical Construction

Let’s define a local least favorable submodel {plfm
δ : δ} ⊂ M by the following local

property: for all δ
d
dδ

log plfm
δ

∣∣∣∣∣
�

δ=0
δ = D∗(P)�δ.

For the case that H = IRd, this corresponds with assuming that the score of the
submodel at δ = 0 equals the canonical gradient D∗(P), while, for a general Hilbert
space, it states that the derivative of log pε in the direction δ (a function in H) equals
〈D∗(P), δ〉 =

∫
D∗

t (P)δ(t)dΛ(t).
Consider the log-likelihood criterion PnL(Plfm

δ ), and note that its derivative at
δ = 0 in the direction δ equals 〈PnD∗(P), δ〉 = {PnD∗(P)}�δ. For a small number dx,
we want to maximize the log-likelihood over all δ with ‖ δ ‖≤ dx, and locally, this
corresponds with maximizing its linear gradient approximation:

δ → {PnD∗(P)}�δ.

By the Cauchy-Schwarz inequality, it follows that this is maximized over δ with
‖ δ ‖≤ dx by

δ∗n(P, dx) =
PnD∗(P)

‖ PnD∗(P) ‖dx ≡ δ∗n(P)dx,

where we defined δ∗n(P) = PnD∗(P)/ ‖ PnD∗(P) ‖. We can now define our update
Pdx = Plfm

δ∗n(P,dx). This process can now be iterated by applying the above with P
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replaced by Pdx, resulting in an update P2dx, and in general PKdx. So this updating
process is defined by the differential equation:

Px+dx = Plfm
x,δ∗n(Px)dx,

where Plfm
x,δ is the local least favorable multidimensional submodel above but now

through Px instead of P.
Assuming that the local least favorable model h → plfm

x,h is continuously twice
differentiable with a score D∗(Px) at h = 0, we obtain a second-order Taylor expan-
sion

plfm
x,δ∗n(Px)dx = px +

{
d

dh
plfm

x,h

∣∣∣∣∣
h=0

}�
δ∗n(Px)dx + O((dx)2)

= px(1 + {δ∗n(Px)}�D∗(Px)dx) + O((dx)2),

so that, under mild regularity conditions, we obtain

px+dx = px(1 + {δ∗n(Px)}�D∗(Px)dx) + O((dx)2).

This implies:

px = p exp

(∫ ε

0

{PnD∗(Px)}�
‖ PnD∗(Px) ‖D∗(Px)dx

)
.

So we obtained the exact same analytical representation (5.7) as above. Since the
above practical construction starts out with P ∈ M and never leaves the model
M, this proves that, under mild regularity conditions, this analytic representation
(5.7) is actually a submodel of M after all. However, for the purpose of keeping
practical implementation and approximation in the model M, one should use the
practical construction above based on an actual local least favorable submodel. We
can formalize this in a theorem analogue to Theorem 5.2, but instead such a theorem
will be presented in Sect. 5.7 for the more general targeted minimum loss-based
estimation methodology.

The above practical construction provides us with an intuition for the normaliza-
tion by ‖ PnD∗(Px) ‖.

5.5.2 Existence of MLE or Approximate MLE εn

Since

Pn log pε =
∫ ε

0
‖ PnD∗(Px) ‖ dx,

and its derivative thus equals ‖ PnD∗(Pε) ‖, we have that the log-likelihood is non-
decreasing in ε.
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If the local least favorable submodel in the practical construction of the one-
dimensional universal canonical submodel {pε : ε ≥ 0} (5.7) only contains densities
with supremum norm smaller than some M < ∞ (e.g., this is assumed by the model
M), then we will have that supε≥0 supo∈O pε(o) < M < ∞. This implies that Pn log pε
is bounded from above by log M. Let’s first assume that limε→∞ Pn log pε < ∞.
Thus, the log-likelihood is a strictly increasing function until it becomes flat, if
ever. Suppose that lim supx→∞ ‖ PnD∗(Px) ‖> δ > 0 for some δ > 0. Then it
follows that the log-likelihood converges to infinity when x converges to infinity,
which contradicts the assumption that the log-likelihood is bounded from above by
log M < ∞. Thus, we know that lim supx→∞ ‖ PnD∗(Px) ‖= 0 so that we can find an
εn so that for ε > εn ‖ PnD∗(Pε) ‖< 1/n, as desired.

Suppose now that we are in a case in which the log-likelihood converges to in-
finity when ε → ∞, so that our bounded log likelihood assumption is violated. This
might correspond with a case in which each pε is a continuous density, but pε starts
approximating an empirical distribution when ε → ∞. Even in such a case, one
would expect that we will have that ‖ PnD∗(Pε) ‖→ 0, just like an NPMLE of a
continuous density of a survival time solves the efficient influence curve equation
for its survival function.

The above practical construction of the submodel, as an iterative local maximiza-
tion of the log-likelihood along its gradient, strongly suggests that even without the
above boundedness assumption the derivative ‖ PnD∗(Pε) ‖ will converge to zero as
ε → ∞ so that the desired MLE or approximate MLE exists. Our initial practical im-
plementations of this one-step TMLE of a multivariate target parameter demonstrate
that it works well and that finding the desired maximum or approximate maximum
is not an issue. We will demonstrate the implementation and practical demonstration
of such a one-step TMLE in the next section.

5.5.3 Universal Score-Specific One-Dimensional Submodel

In the above two subsections we could simply replace D∗(P) by a user supplied
D(P), giving us a theoretical one-dimensional parametric model {Pε : ε} so that
the derivative d

dε PnL(Pε) at ε equals ‖ PnD(Pε) ‖, so that a corresponding one-step
TMLE will solve PnD(Pεn ) = 0. Similarly, given a local parametric model whose
score at ε = 0 equals D(P) will yield a corresponding practical construction of this
universal submodel. One can also use such a universal score-specific submodel to
construct one-step TMLE of a one-dimensional target parameter with extra proper-
ties by making it solve not only the efficient influence curve equation but also other
equations of interest (such as the PnD∗

1(Q∗
n) = PnD∗

2(Q∗
n) = 0 in Sect. 8.4). In the

current literature, solving multiple score equations typically required an iterative
TMLE based on a local score-specific submodel, so that these estimation problems
can be revisited with this new one-step TMLE (see our supplementary material).
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5.6 Example: One-Step TMLE, Based on Universal Canonical
One-Dimensional Submodel, of an Infinite-Dimensional
Target Parameter

An open problem has been the construction of an efficient substitution estimator
Ψ (P∗

n) of a pathwise differentiable infinite dimensional target parameter Ψ (P0) such
as a survival function. Current approaches would correspond with incompatible es-
timators such as using a TMLE for each Ψ (P0)(t) separately, resulting in a non-
substitution estimator such as a nonmonotone estimator of a survival function. In
this section we demonstrate, through a causal inference example, that our univer-
sal canonical submodel allows us to solve this problem with the one-step TMLE
defined in the previous section.

Let O = (W, A,T ) ∼ P0, where W are baseline covariates, A ∈ {0, 1} is a point-
treatment, and T is a survival time. Consider a statistical model M that only makes
assumptions about the conditional distribution g0(a | W) = P0(A = a | W) of A,
given W. Let W → d(W) ∈ {0, 1} be a given dynamic treatment satisfying g0(d(W) |
W) > 0 a.e. Let Ψ : M → H be defined by:

Ψ (P)(t) = EPP(T > t | A = d(W),W), t ≥ 0.

Under a causal model and the randomization assumption this equals the counter-
factual survival function P(Td > t) of the counterfactual survival time Td under
intervention d.

Let H be the Hilbert space of real valued functions on IR≥0 endowed with in-
ner product h�1 h2 = 〈h1, h2〉 =

∫
h1(t)h2(t)dΛ(t) for some user-supplied positive

and finite measure Λ. The norm on this Hilbert space is thus given by ‖ h ‖=
√

hh� =
√∫

h(t)2dΛ(t). Let Q̄t(A,W) = P(T > t | A,W), Y(t) = I(T > t), QW

the marginal probability distribution of W, and Q = (Q̄,QW ). The efficient influence
curve D∗(P) = (D∗

t (P) : t ≥ 0) is defined by:

D∗
t (P)(O) =

I(A = d(W))
g(A | W)

(Y(t) − Q̄t(A,W)) + {Q̄t(d(W),W) − Ψ (P)(t)}

≡ D∗
1,t(g, Q̄) + D∗

2,t(P),

where D∗
1,t(g, Q̄) is the first component of the efficient influence curve that is a score

of the conditional distribution of T , given A,W. Notice that Ψ (P) = Ψ1(QW , Q̄) =
(QW Q̄t : t ≥ 0). We will estimate QW,0 with the empirical distribution of W1, . . . ,Wn,
so that a TMLE will only need to target the estimator of the conditional survival
function Q̄0 of T , given A,W. Let q(t | A,W) be the density of T , given A,W and
let qn be an initial estimator of this conditional density. For example, one might use
machine learning to estimate the conditional hazard q0/Q̄0, which then implies a
corresponding density estimator qn. We are also given an estimator gn of g0.
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The universal canonical one-dimensional submodel (5.7) applied to p = qn is
defined by the following recursive relation: for ε > 0,

qn,ε = qn exp

(∫ ε

0

{PnD∗
1(gn, Q̄n,x)}�D∗

1(gn, Q̄n,x)

‖ D∗
1(gn, Q̄n,x) ‖

dx

)
.

To obtain some more insight in this expression, we note, for example, that the inner
product is given by:

{PnD∗
1(gn, Q̄n,x)}�D∗

1(gn, Q̄n,x)(o) =
∫

t
PnD∗

1,t(gn, Q̄n,x)D∗
1,t(gn, Q̄n,x)(o)dΛ(t), (5.8)

and similarly we have such an integral representation of the norm in the denomi-
nator. Our Theorem 5.4, or explicit verification, shows that for all ε ≥ 0, qn,ε is a
conditional density of T , given A,W, and

d
dε

Pn log qn,ε =‖ PnD∗
1(gn, Q̄n,ε) ‖ .

Thus, if we move ε away from zero, the log-likelihood increases, and, one searches
for the first εn so that this derivative is smaller than (e.g.) 1/n. Let q∗n = qn,εn , and let
Q̄∗

n,t(A,W) =
∫ ∞

t
q∗n(s | A,W)ds be its corresponding conditional survival function,

t ≥ 0. Then our one-step TMLE of the d-specific survival function Ψ (P0) is given
by ψ∗

n = Ψ (QW,n, Q̄∗
n) = QW,nQ̄∗

n:

ψ∗
n(t) =

1
n

n∑

i=1

Q̄∗
n,t(d(Wi),Wi).

Since q∗n is an actual conditional density, it follows that ψ∗
n is a survival function.

Suppose that the derivative of the log-likelihood at εn equals zero exactly (instead of
being smaller than 1/n). Then, we have ‖ PnD∗(gn,QW,n, Q̄∗

n) ‖= 0, so that for each
t ≥ 0, PnD∗

t (gn,QW,n, Q̄∗
n) = 0, making ψ∗

n(t) a standard TMLE of ψ0(t), so that its
asymptotic linearity for a fixed t can be established accordingly. Let’s now consider
a proof of weak convergence of

√
n(ψ∗

n − ψ0) as a random function. Firstly, for
simplicity, let’s assume that an exact MLE is obtained so that PnD∗(gn,QW,n, Q̄∗

n) =
0. Combined with Ψ (Q∗

n) − Ψ (Q0) = −P0D∗(gn,Q∗
n) + R2((Q∗

n, gn), (Q0, g0)), where
R2() = (R2t() : t ∈ τ) for an explicitly defined R2t(P, P0), we then obtain

ψ∗
n − ψ0 = (Pn − P0)D∗(gn,Q

∗
n) + R2((Q∗

n, gn), (Q0, g0)).

We now assume that {D∗
t (P) : P ∈ Mt ∈ τ} is a P0-Donsker class, supt∈τ P0{D∗

t (gn,
Q∗

n) − D∗
t (g0,Q0)}2 → 0 in probability, and supt |R2t((Q∗

n, gn), (Q0, g0))| = oP(n−1/2).
Then, it follows that

√
n(ψ∗

n − ψ0) =
√

n(Pn − P0)D∗(P0) + oP(n−1/2) ⇒d G0.
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That is,
√

n(ψ∗
n − ψ0) converges weakly as a random element of the cadlag function

space endowed with the supremum norm to a Gaussian process G0 with covariance
structure implied by the covariance function ρ(s, t) = P0D∗

s(P0)D∗
t (P0). In partic-

ular, if g0 is known, then R2t((Q∗
n, g0), (Q0, g0)) = 0, so that the second-order term

condition supt | R2t((Q∗
n, gn), (Q0, g0)) |= oP(n−1/2) is automatically satisfied with

oP(n−1/2) replaced by 0. This also allows the construction of a simultaneous con-
fidence band for ψ0. Due to the double robustness of the efficient influence curve,
under appropriate conditions, one can also obtain asymptotic linearity and weak
convergence with an inefficient influence curve under misspecification of either gn

or Q̄n.
If we only have ‖ PnD∗(P∗

n) ‖= oP(n−1/2) (instead of 0), then the above proof still
applies so that we now obtain:

√
n(ψ∗

n − ψ0) = (Pn − P0)D∗(P0) + rn,

but where now ‖ rn ‖= oP(1/
√

n). In this case we obtain asymptotic efficiency
and weak convergence in the Hilbert space L2(Λ), beyond the point-wise effi-
ciency of ψ∗

n(t). However, in practice, one can actually track the supremum norm
‖ PnD∗(Pεn ) ‖∞= supt | PnD∗

t (Pεn ) |, and if one observes that for the selected εn this
supremum norm is smaller than 1/n, then, we still obtain the asymptotic efficiency
in supremum norm above.

Regarding the practical construction of qn,ε , we could use the following infinite
dimensional local least favorable submodel through a conditional density q given by

qlfm
δ = q(1 + δ�D∗

1(g, Q̄)),

and follow the practical construction described in the previous section for general lo-
cal least favorable submodels. Notice that here δ�D∗

1(g, Q̄) =
∫
δ(t)D∗

1,t(g, Q̄)dΛ(t).
In order to guarantee that the supremum norm of the density qlfm

δ for local δ with
‖ δ ‖< dx remains below a universal constant M < ∞, one could present such
models in the conditional hazard on a logistic scale that bounds the hazard between
[0, M]. However, we suspect that this will not be an issue in practice, and since it
may be necessary for the continuous density qn,ε to approximate an empirical distri-
bution in some sense in order to solve ‖ PnD∗(Pε) ‖= 0, we do not want to prevent
this from happening.

Moore and van der Laan (2009a,b,c) proposed an iterative TMLE of S d(t0) for
a given t0, which is defined as follows. Let qn (t|A,W) and gn(A | W) be initial
estimators of q0(t | A,W) and g0(A | W) . Let

L(q)(O) = −
∑

t≤T

{
I(T = t) log q(t | A,W) + (1 − I(T = t)) log(1 − q(t | A,W))

}

be the log-likelihood loss function for q(t | A,W). We define the local least favorable
submodel through qn as follows:

logitqn (ε) (t|A,W) = logitq0
n (t|A,W) + εH∗

a,n (t, A,W) ,
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where the estimated time-dependent clever covariate is given by

H∗
a,n (t, A,W) =

(
I (A = a)
gn (a|W)

) (
Q̄n (t0|A,W)

Q̄n (t|A,W)

)
I (t � t0) .

We have d
dε L(qn,ε) at ε = 0 equals D∗

1,t(Q̄, g). Let QW,n be the empirical probability
distribution of W. The first-step TMLE update is defined by εn = arg minε PnL(qn,ε)
and q1

n = qn,εn . This updating process is iterated until εn ≈ 0. The final update is
denoted with q∗n(t | A,W). Let Q̄∗

n(t | A,W) be the corresponding survival curve. The
iterative TMLE of ψ0(t0) = S d,0(t0) is given by

ψ∗
n(t0) =

1
n

n∑

i=1

Q̄∗
n(t0 | A = 1,Wi).

Simulation. Firstly, we have

W1 ∼ Bern(0.5); W2 ∼ Bern(0.5); A ∼ Bern (0.15 + 0.5W1) ;

T ∼ exp

(
1 + 0.5W1 − 0.5A

100

)
.

In this case

S d(t) = 1 − Φ(5 × 10−3t) +Φ(10−2t)
2

, t � 0,

where Φ is the cumulative distribution function for exponential distribution with
rate equal to 1. The second simulation is identical to the first, except that now A ∼
Bern (0.05 + 0.5W). The goal of these two simulations is to compare the one-step
TMLE with the iterative TMLE that separately estimates S d(t) at each point t.

Figure 5.1a provides the iterative TMLE and one-step TMLE for a single data
set with n = 100 observations from the two data generating distributions. Clearly, it
follows that the iterative TMLE is not monotone, while the one-step TMLE is an ac-
tual survival curve. The iterative TMLE is particularly erratic for the data set from
the second data generating distribution. Figure 5.1b provides the relative efficien-
cies at each time point from 0 to 400. In order to demonstrate the confounding, we
also present the Kaplan-Meier estimator among the observations with Ai = 1, i =
1, . . . , n. We also show the estimate of the treatment-specific survival curve based
on the initial estimator. These results show that the iterative and one-step TMLE are
both unbiased, but that the iterative TMLE is twice as efficient for n = 100. Finally,
Fig. 5.1c presents the estimators for n = 1000, demonstrating that both the one-step
TMLE and the iterative TMLE are asymptotically efficient, and that the above gain
in efficiency represents a finite sample gain that disappears asymptotically.
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Fig. 5.1 Single data set for the two simulation settings (a). Monte Carlo approximation of relative
efficiency against iterative TMLE, as a function of t, for sample size 100 (b) and 1000 (c)
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5.7 Universal Canonical One-Dimensional Submodel
for Targeted Minimum Loss-Based Estimation
of a Multidimensional Target Parameter

For the sake of presentation we will focus on the case that the target parameter is Eu-
clidean valued, i.e. H = IRd, but the presentation immediately generalizes to infinite
dimensional target parameters, as in the previous section. Let’s now generalize the
construction of a universal canonical submodel to the more general targeted mini-
mum loss based estimation methodology. We now assume that Ψ (P) = Ψ1(Q(P)) ∈
IRd for some target parameter Q : M → Q(M) defined on the model and real valued
function Ψ1 : Q(M) → IRd. Let L(Q)(O) be a loss-function for Q(P) in the sense
that Q(P) = arg minQ∈Q(M) PL(Q). Let D∗(P) = D∗(Q(P),G(P)) be the canonical
gradient of Ψ at P, where G : M → G(M) is some nuisance parameter. We con-
sider the case that the linear span of the components of the efficient influence curve
D∗(P) is in the tangent space of Q, so that a least favorable submodel does not need
to fluctuate G: otherwise, one just includes G in the definition of Q. Given, (Q,G),
let {Qlfm

δ : δ} ⊂ Q(M) be a local d-dimensional least favorable model w.r.t. loss
function L(Q) at δ = 0 so that

d
dδ

L(Qlfm
δ )

∣∣∣∣∣
δ=0
= D∗(Q,G).

The dependence of this submodel on G is suppressed in this notation.
Consider the empirical risk PnL(Qlfm

δ ), and note that its gradient at δ = 0 equals
PnD∗(Q,G). For a small number dx, we want to minimize the empirical risk over all
δ with ‖ δ ‖≤ dx, and locally, this corresponds with maximizing its linear gradient
approximation:

δ → {PnD∗(Q,G)}�δ.

By the Cauchy-Schwarz inequality, it follows that this is maximized over δ with
‖ δ ‖≤ dx by

δ∗n(Q, dx) =
PnD∗(Q,G)

‖ PnD∗(Q,G) ‖dx ≡ δ∗n(Q)dx,

where we defined δ∗n(Q) = PnD∗(Q,G)/ ‖ PnD∗(Q,G) ‖. We can now define our
update Qdx = Qlfm

δ∗n(Q,dx). This process can now be iterated by applying the above
with Q replaced by Qdx, resulting in an update Q2dx, and in general QKdx. So this
updating process is defined by the differential equation:

Qx+dx = Qlfm
x,δ∗n(Qx)dx),

where Qlfm
x,δ is the local least favorable multidimensional submodel above but now

through Qx instead of Q.
Assume that for some L̇(Q)(O), we have

d
dh

L(Qlfm
x,h )

∣∣∣∣∣
h=0
= L̇(Qx)

d
dh

Qlfm
x,h

∣∣∣∣∣
h=0

. (5.9)
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Then,
d

dh
Qlfm

x,h

∣∣∣∣∣
h=0
=

D∗(Qx,G)

L̇(Qx)
.

Utilizing that the local least favorable model h → Qlfm
x,h is continuously twice

differentiable with a score D∗(Qx,G) at h = 0, we obtain a second-order Taylor
expansion

Qlfm
x,δ∗n(Qx)dx = Qx +

d
dh

Qlfm
x,h

∣∣∣∣∣
h=0

δ∗n(Qx)dx + O((dx)2)

= Qx +
D∗(Qx,G)�

L̇(Qx)
δ∗n(Qx)dx + O((dx)2).

This implies the following recursive analytic definition of the universal canonical
submodel through Q:

Qε = Q +
∫ ε

0

D∗(Qx,G)�

L̇(Qx)
δ∗n(Qx)dx. (5.10)

Let’s now explicitly verify that this indeed satisfies the desired condition so that
the one-step TMLE solves PnD∗(Qεn ,G) = 0. Only assuming (5.9) it follows that

d
dε

PnL(Qε) = Pn
d
dε

L(Qε)

= PnL̇(Qε)
d
dε

Qε

= PnL̇(Qε)
D∗(Qε ,G)�

L̇(Qε)
δ∗n(Qε)

= PnD∗(Qε ,G)�δ∗n(Qε)

= {PnD∗(Qε ,G)}� PnD∗(Qε ,G)
‖ PnD∗(Qε ,G) ‖

=

∑d
j=1{PnD∗

j(Qε ,G)}2

‖ PnD∗(Qε ,G) ‖
= ‖ PnD∗(Qε ,G) ‖ .

In addition, under some regularity conditions, so that the following derivation in
terms of the local least favorable submodel applies, it also follows that Qε ∈ Q(M).
This proves the following theorem.

Theorem 5.5. Given any (Q,G) compatible with model M, let {Qlfm
δ : δ ∈ Ba(0)} ⊂

Q(M) be a local least favorable model w.r.t. loss function L(Q) at δ = 0 so that

d
dδ

L(Qlfm
δ )

∣∣∣∣∣
δ=0
= D∗(Q,G).
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Here Ba(0) = {x :‖ x ‖< a} for some positive number a. Assume that for some
L̇(Q)(O), we have

d
dε

L(Qlfm
ε )

∣∣∣∣∣
ε=0
= L̇(Q)

d
dε

Qlfm
ε

∣∣∣∣∣
ε=0

.

Consider the corresponding univariate model {Qε : ε} defined by (5.10). It goes
through Q at ε = 0, and, it satisfies that for all ε

Pn
d
dε

L(Qε) =‖ PnD∗(Qε ,G) ‖, (5.11)

where ‖ x ‖=
√∑d

j=1 x2
j is the Euclidean norm.

In addition, assume that a in Ba(0) can be chosen to be independent of the choice
(Q,G) in {(Qε ,G) : ε > 0}, and assume the following second-order Taylor expan-
sion: for h = (h1, . . . , hd),

Qlfm
ε,h = Qε +

d
dh

Qlfm
ε,h

∣∣∣∣∣
h=0

h + R2(Qε ,G, ‖ h ‖)

= Qε +
D∗(Qε ,G)

L̇(Qε)
h + R2(Qε ,G, ‖ h ‖),

where

sup
ε

sup
o∈O

| R2(Qε ,G, ‖ h ‖)(o) |= O((‖ h ‖2).

We also assume that supε supo∈O
|D∗(Qε ,G)

L̇(Qε )
(o) |< ∞. Then, we also have {Qε : ε ≥

0} ⊂ M.



Chapter 6
Highly Adaptive Lasso (HAL)

Mark J. van der Laan and David Benkeser

In this chapter, we define a general nonparametric estimator of a d-variate function
valued parameter ψ0. This parameter is defined as a minimizer of an expectation of
a loss function L(ψ)(O) that is guaranteed to converge to the true ψ0 at a rate faster
than n−1/4, for all dimensions d:

√
d0(ψn, ψ0) = OP(n−1/4−α(d)/8), where d0(ψ, ψ0) =

P0L(ψ)−P0L(ψ0) is the loss-based dissimilarity. This is a remarkable result because
this rate does not depend on the underlying smoothness of ψ0. For example, ψ0 can
be a function that is discontinuous at many points or nondifferentiable. The only
assumption we need to assume is that ψ0 is right-continuous with left-hand limits,
and has a finite variation norm, so that ψ0 generates a measure (just as a cumulative
distribution function generates a measure on the Euclidean space).
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We refer to our general estimator as the highly adaptive lasso (HAL) estima-
tor. This name stems from the fact that it can be represented as a minimizer of
the empirical risk of the loss over linear combinations of indicator basis func-
tions under the constraint that the sum of the absolute value of the coefficients
is bounded by a data adaptively determined constant. For example, our result
proves that our highly data-adaptive lasso estimator (using the squared error
loss) of a regression function E0(Y | W), based on observing n i.i.d. observa-
tions Oi = (Wi,Yi), i = 1, . . . , n, converges to the truth at a rate faster than

n−1/4, for every dimension d of W:
√∫

(ψn(w) − ψ0)2(w)dP0(w) = oP(n−1/4).
This rate seems to contradict the well known minimax rates of convergence
from the nonparametric density and regression estimation literature. However,
these minimax rates are developed for estimation of these true functions at a
single point, while our result is in terms of a loss-based dissimilarity, which
often corresponds with a square of an L2-norm.

The HAL estimator appears to be much ‘smarter’ than local smoothers, even
though these local smoothers achieve the minimax rates. For example, consider his-
togram regression estimator using a partitioning of the covariate space for which
each element of the partitioning has a diameter O(h). The bias of such a his-
togram regression estimator will then be O(h) at any point w, while the variance
is O(1/(nhd)). Thus, the optimal rate for h minimizing MSE (i.e., setting that vari-
ance equal to the square of the bias) is given by h = O(n−1/(d+2)), giving an MSE
that is also O(n−1/(d+2)). For d = 1 this rate is slightly better than the rate of HAL-
estimator, but for d ≥ 2, the rate of this histogram regression estimator is worse than
our rate, and will get worse and worse as dimension grows. This phenomena is often
referred to as the curse of dimensionality.

For a kernel regression estimator using kernels that are orthogonal to polynomials
in W of a certain degree k and bandwidth h, assuming that ψ0 is k-times continu-
ously differentiable, the bias is O(hk), the variance is O(1/(nhd)). In this case, the
optimal rate for the bandwidth is h = O(n−1/(2k+d)), resulting in a rate of conver-
gence O(n−k/(2k+d)). Contrary to the HAL estimator, this kernel regression estimator
assumes smoothness of ψ0, but even when the degree k of assumed smoothness is
large, for large dimensions d, this rate will typically be much worse than n−1/4. This
demonstrates that the HAL estimator is asymptotically superior to local smoothers
w.r.t. its capability to approximate a true function ψ0.

A fortunate fact is that the critical rate for estimators of the nuisance parameters
in a TMLE is n−1/4, so that a TMLE, using super learners for the relevant nuisance
parameters that include the HAL estimator in its library, is guaranteed to be asymp-
totically efficient under essentially no conditions. Before the introduction of this
HAL estimator, there was no estimator that was guaranteed to be asymptotically ef-
ficient without strong smoothness conditions, and the general wisdom was that such
an estimator would simply not exist.
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6.1 Statistical Formulation of the Estimation Problem

Suppose that we observe n independent and identically distributed copies O1, . . . ,On

of a multidimensional random variable O with probability distribution P0. Let M be
the statistical model for P0, and suppose that the target parameter Ψ : M → Ψ =
Ψ (M) is a function valued parameter: that is,Ψ (P0) is a function from a subset IRd to
the real line. For example, Ψ (P0) could be a regression function w → E0(Y | W = w)
or a conditional density function (w, y) → pY,0(y | w). We will consider the case
that the parameter space Ψ (M) consists of all multivariate real valued functions
f : [0, τ] ⊂ IRd → IR, up to possibly some smoothness conditions.

Specifically, we will only assume that ψ0 is right-continuous with left-hand limits
(i.e., cadlag), and that its variation norm is finite. These are the assumptions one
needs on a function f so that it generates a measure so that an integral

∫
h(x)d f (x) is

well defined. Indeed, this will allow us to represent a function f as a sum of integrals
of indicator functions with respect to d f , providing the basis for our estimation
procedure. In addition, we assume that we have a loss function (O, ψ) → L(ψ)(O)
for ψ0 so that P0L(ψ0) = minψ∈Ψ P0L(ψ). We will assume that the loss function is
uniformly bounded in the sense that supψ∈Ψ,o | L(ψ)(o) |< ∞, where the supremum
over o is over a support of P0. We will also assume that the loss function yields a
quadratic dissimilarity d0(ψ, ψ0) = P0{L(ψ) − L(ψ0)}, which formally corresponds
with the following assumption:

sup
ψ∈Ψ

‖ L(ψ) − L(ψ0) ‖2
P0

d0(ψ, ψ0)
< ∞.

The latter is a standard property that has been established for standard loss functions
such as the log-likelihood loss and squared error loss, as long as the loss-function is
uniformly bounded. These two assumptions are the only properties of the loss func-
tion needed for establishing a finite sample oracle inequality for the cross-validation
selector.

Suppose we estimate ψ0 with a discrete super learner defined by set of can-
didate estimators based on V-fold cross-validation. By the oracle inequality
for cross-validation, the super learner will perform asymptotically as well as
the oracle selector that selects the best estimator among the set of candidate
estimators. This itself does not provide any guarantee that the super learner is
consistent or converges to the truth ψ0 at a rate in sample size faster than a cer-
tain specified minimal rate. In this chapter we will present an estimator whose
rate of convergence is guaranteed to be faster than n−1/4, for any dimension d.
By including this estimator in the library of the super learner, the (discrete or
continuous) super learner is also guaranteed to converge at a rate faster than
n−1/4. In the next chapter, we will study this estimator in detail in the context
of estimating a regression function, and demonstrate its implementation and
remarkable practical performance with simulations.
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6.2 Representation of a Cadlag Function as a Linear
Combination of Basis Functions

For a given vector x ∈ IRd and subset S ⊂ {1, . . . , d} of indices, we define x(S) =
(x j : j ∈ S) and x(Sc) = (x j : j ∈ Sc), where Sc = { j : j � S} ⊂ {1, . . . , d} is the
complementary set of indices of S. For a given cadlag function ψ : [0, τ] → IR and
a given subset S, we can define the function x → ψ(x(S), 0(Sc)), which is called
the S-specific section ψS of ψ. Since ψS is cadlag and has finite variation norm, ψS
generates a finite measure on [0(S), τ(S)]. In other words, ψS can be viewed as the
analogue of a multivariate cumulative distribution function, without the requirement
that it only assigns positive mass. We will also refer to ψS as a measure, meaning
the measure ψS generates. In fact, ψS equals a difference of two monotone functions
(i.e., cumulative distribution functions without enforcing that they start at 0 and end
at 1). In the same way as a cumulative distribution function assigns a measure to a
rectangle (a, b] and any measurable set, ψS assigns a measure to a such a set. For
example, for a univariate function ψ, we have ψ((a, b]) = ψ(b) − ψ(a), and for a
bivariate function ψ, we have ψ((a, b]) = ψ(b1, b2)−ψ(a1, b2)−ψ(a2, b1)+ψ(a1, a2).
As a result, an integral

∫
(a,b]

ψ(dx) is well defined, and represents the measure ψ

assigns to the cube (a, b].
A typical definition of the variation norm of ψ is given by

∫
[0,τ]

| ψ(dx) |. In this
chapter, we will define the variation norm of ψ as the sum of the variation norms of
all its sections ψS

‖ ψ ‖v= ψ(0) +
∑

S⊂{1,...,d}

∫

(0(S),τ(S)]
| ψS(dx) | .

In words, the variation norm of a d-variate real valued cadlag function is defined as
the sum over all subsets of {1, . . . , d} of the absolute value integral with respect to ψ
over the variables in that subset, while setting the remaining variables equal to zero.

For example, the variation norm of a bivariate real valued function

‖ ψ ‖v= ψ(0, 0) +
∫ τ1

0
| ψ(dx1, 0) | +

∫ τ2

0
| ψ(0, dx2) | +

∫ τ1

0

∫ τ2

0
| ψ(dx1, dx2) | .

For trivariate real valued functions, we have an integral for each subset of {1, 2, 3}
over the corresponding variables in that subset, setting the remaining variables equal
to zero.

For any d-variate cadlag function ψ with ‖ ψ ‖v< ∞, we have the following
representation of ψ:

ψ(x) = ψ(0) +
∑

S⊂{1,...,d}

∫

(0(S),x(S)]
ψS(dx′).
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For example, for a bivariate real valued function ψ we have

ψ(x1, x2) = ψ(0, 0) +
∫ x1

0
ψ(dx′1, 0) +

∫ x2

0
ψ(0, dx′2) +

∫ x1

0

∫ x2

0
ψ(dx1, dx2).

Note that we can also write this as follows:

ψ(x) = ψ(0) +
∑

S⊂{1,...,d}

∫

(0(S),τ(S)]
I(x′ ≤ x(S))ψS(dx′).

Suppose we approximate the measure ψ by a discrete measure ψm with m support
points, or equivalently, we approximate the two cumulative distribution functions
ψ1, ψ2 in the representation ψ = ψ1 − ψ2 by two discrete cumulative functions
ψ1m, ψ2m: ψm = ψ1m − ψ2m. We make sure that ψm,S is a discrete approximation
of ψS for each subset S ⊂ {1, . . . , d}: that is, ψm puts mass on the d-dimensional
cube (0, τ] but also on all the lower dimensional edges (0(S), τ(S)] of [0, τ]. For
each given subset S, let {s j(S) : j} be the support points of ψm,S, and let dψm,S, j
denote the pointmass that ψm,S assigns to this point.

For such a discrete approximation ψm, we have

ψm(x) = ψ(0) +
∑

S⊂{1,...,d}

∑

j

I(s j(S) ≤ x(S))dψm,S, j.

That is, ψm(·) is a linear combination of basis functions x → φ j,S(x) = I(x(S) ≥
s j(S)) with corresponding coefficients dψm,S, j across S ⊂ {1, . . . , d} and support
points s j indexed by j. In addition, note that the variation norm of ψm is the sum of
the absolute values of its coefficients:

‖ ψm ‖v= ψ(0) +
∑

S⊂{1,...,d}

∑

j

| dψm,S, j | .

Below we define an estimator ψn,λ of ψ0 that minimizes the empirical risk
ψ → PnL(ψ) over all such linear combinations of these indicator basis functions
for a specified set support points (i.e., basis functions), and under the constraint that
the sum of the absolute value of the coefficients is smaller or equal than λ. Our pro-
posed HAL estimator is then defined by ψn = ψn,λn , where λn is the cross-validation
selector. This estimator ψn,λ is equivalent with minimizing the empirical risk over
all discrete measures ψm with variation norm smaller or equal than λ. In order to
understand how to select the support points, we want to show that the minimizer
of the empirical risk over all measures (continuous and discrete) is equivalent with
minimizing the empirical risk over all discrete measures with a particular support
defined by the actual n observations O1, . . . ,On. As a result, by defining the support
points accordingly, this MLE ψn,λ actually equals the minimizer of the empirical
risk over all functions with variation norm smaller than λ. The latter estimator is
theoretically analyzed below and shown to converge to its true counterpart ψ0 at a
faster rate than n−1/4.
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6.3 A Minimum Loss-Based Estimator (MLE) Minimizing over
all Functions with Variation Norm Smaller than λ

Consider the estimator ψn,λ = arg minψ,‖ψ‖v≤λ PnL(ψ) defined as the minimizer of the
empirical risk over all functions ψ in the parameter spaceΨ that have variation norm
smaller than λ. Let ψ0,λ = arg minψ,‖ψ‖v≤λ P0L(ψ) the minimizer of the true risk. If
λ >‖ ψ0 ‖v, then we have ψ0,λ = ψ0.

Let d0(ψ, ψ0) = P0L(ψ) − P0L(ψ0) be the loss-based dissimilarity. We can prove
that d0(ψn,λ, ψ0,λ) = OP(n−(0.5+α(d)/4)) where α(d) = 1/(d + 1).

Theorem 6.1. Let Ψλ = {ψ ∈ Ψ :‖ ψ ‖v≤ λ}. We assume

sup
ψ∈Ψλ

‖ L(ψ) ‖v

‖ ψ ‖v
< ∞

sup
ψ∈Ψλ

‖ L(ψ) − L(ψ0,λ) ‖2
P0

d0(ψ, ψ0,λ)
< ∞

Then, d0(ψn,λ, ψ0,λ) = OP(n−(0.5+α(d)/4)) where α(d) = 1/(d + 1).
Specifically, if λ > λ0 ≡‖ ψ0 ‖v, then d0(ψn,λ, ψ0) = OP(n−(0.5+α(d)/4)).

Proof. We have

0 ≤ d0(ψn,λ, ψ0,λ) = P0{L(ψn,λ) − L(ψ0,λ)}
= −(Pn − P0){L(ψn,λ) − L(ψ0,λ)} + Pn{L(ψn,λ) − L(ψ0,λ)}
≤ −(Pn − P0){L(ψn,λ) − L(ψ0,λ)}.

We assumed that supψ∈Ψ
‖L(ψ)‖v

‖ψ‖v
< ∞. Since L(ψn,λ) − L(ψ0,λ) falls in a P0-Donsker

class of all cadlag functions with variation norm smaller than a constant, it fol-
lows that the right-hand side is OP(1/

√
n), and thus d0(ψn,λ, ψ0,λ) = OP(n−1/2).

We also assumed that there exists an M2 < ∞ so that P0{L(ψ) − L(ψ0,λ)}2 ≤
M2P0{L(ψ) − L(ψ0,λ)} for all ψ ∈ Ψ with ‖ ψ ‖v< λ. As a consequence, we have
‖ L(ψn,λ) − L(ψ0,λ) ‖2

P0
= OP(1/

√
n). By empirical process theory we have that√

n(Pn − P0) fn →p 0 if fn falls in a P0-Donsker class with probability tending to
1, and P0 f 2

n →p 0 as n → ∞. Applying this to fn = L(ψn,λ) − L(ψ0,λ) shows that
(Pn − P0)(L(ψn,λ) − L(ψ0,λ)) = oP(1/

√
n), which proves d0(ψn,λ, ψ0,λ) = oP(1/

√
n).

We now apply Lemma 6.1 below with Fn = {L(ψ)−L(ψ0,λ) :‖ ψ ‖v≤ λ}, envelope
bound Mn = λ, α = α(d) (see van der Vaart and Wellner 1996), and r0(n) = n−1/4,
which proves that

|
√

n(Pn − P0) fn |= OP(n−α(d)/4).

Here we rely on the result in van der Vaart and Wellner (1996) that proves that
the class of d-variate cadlag functions with variation norm smaller than a universal
constant is a Donsker class with an entropy bounded as in Lemma 6.1 with α = α(d).
This proves d0(ψn,λ, ψ0,λ) = OP(n−(0.5+α(d)/4)). �
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A theorem in van der Vaart and Wellner (2011) establishes the following result for
a Donsker class Fn with envelope Fn: If P f 2 ≤ δ2PF2

n , then

E ‖ Gn ‖Fn≤ J(δ,Fn, L
2)

(
1 +

J(δ,Fn, L2)

δ2
√

n ‖ Fn ‖P0

)
‖ Fn ‖P0 ,

where

J(δ,Fn, L
2) = sup

Λ

∫ δ

0

(
log(1 + N(ε ‖ Fn ‖P0 ,Fn, L

2(Λ))
)0.5

dε

is the entropy integral from 0 to δ. Here ‖ Gn ‖Fn= sup f∈Fn
Gn( f ) and Gn( f ) =√

n(Pn − P0) f . A simple corollary of this theorem is the following lemma.

Lemma 6.1. Consider Fn with ‖ Fn ‖P0< Mn and
supΛ

√
log(1 + N(ε ‖ Fn ‖P0 ,Fn, L2(Λ))) < 1/ε1−α. Then,

E sup
f∈Fn,‖ f ‖P0<r0(n)

| Gn( f ) |≤ {r0(n)/Mn}αMn + {r0(n)/Mn}2α−2n−0.5.

If r0(n) < n−1/4, one should select r0(n) = n−1/4 in the above right hand side, giving
the bound:

E sup
f∈Fn,‖ f ‖P0<r0(n)

| Gn( f ) |≤ {n−0.25/Mn}αMn + {Mn}2−2αn−α/2.

6.4 The HAL Estimator

Above, we defined candidate estimators ψn,λ = Ψ̂λ(Pn). Let λ vary over a set of Kn

values for which the largest value is larger than ‖ ψ0 ‖v. Here we select Kn so that
Kn < np for some finite p. Consider a V-fold cross-validation scheme, and let P0

n,v,
P1

n,v be the training sample and validation sample corresponding with sample split
v, v = 1, . . . ,V . The cross-validation selector of λ is then defined as follows:

λn = arg min
λ

1
V

V∑

v=1

P1
n,vL(Ψ̂λ(P0

n,v)).

Our proposed estimator of ψ0 is given by ψn = ψn,λn = Ψ̂λn (Pn). By the finite sample
oracle inequality for the cross-validation selector we have:

d0(ψn, ψ0) = OP(n−(0.5+α(d)/4)) + OP(log Kn/n) = OP(n−(0.5+α(d)/4)).

One can include this estimator ψn in the library of a super learner that includes many
other algorithms, thereby guaranteeing that the super learner is not only asymptot-
ically equivalent with the oracle selected estimator, but also has a minimal perfor-
mance d0(ψn, ψ0) = OP(n−(0.5+α(d)/4)).
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Let’s now discuss the implementation of this HAL estimator. Suppose that
L(ψ)(O) depends on ψ through ψ(W) where W = f (O) ∈ IRd for some specified
function f : for example, O = (Y,W) and L(ψ)(O) = (Y − ψ(W))2. We note that
PnL(ψ) only depends on ψ through (ψ(Wi) : i = 1, . . . , n), suggesting that we should
be able to replace the minimization over Ψλ by a finite dimensional minimization
problem.

For each set S ⊂ {1, . . . , d}, let Wi(S) be the subvector (Wi j : j ∈ S), i = 1, . . . , n.
Recall the representation ψm of the discrete approximation of ψ, where now the
support points of ψS are given by {Wi(S) : i = 1, . . . , n}:

ψm(w) = ψm(0) +
∑

S⊂{1,...,d}

n∑

j=1

I(Wj(S) ≤ w(S))dψm,S, j.

That is, ψm(·) is a linear combination of basis functions x → φ j,S(w) = I(w(S) ≥
Wj(S)) with corresponding coefficients dψm,S, j across S ⊂ {1, . . . , d} and j =
1, . . . , n. We claim that the minimizer ψn,λ is attained by such a discrete measure
ψm.

Let’s define

ψβ = β(0) +
∑

S⊂{1,...,d}

n∑

j=1

β j(S)φ j,S,

and a corresponding subspace

Ψn,λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψβ : β, β(0) +

∑

S⊂{1,...,d}

n∑

j=1

| β j |< λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

That is, we claim that ψn,λ = ψβn , where

βn = arg min
β,
∑

S⊂{1,...,d}
∑n

j=1 |β j(S)|≤λ
PnL

(
ψβ

)
.

Notice that the number of basis functions is given by m = (2d−1)n, so that computa-
tion of ψn,λ requires minimizing over m-dimensional vectors β under the constraint
that its L1-norm is bounded by λ.

6.5 Further Dimension Reduction Considerations

For d reasonable large, the number of basis functions m = (2d − 1)n cannot be
stored in memory, making the computation of the MLE ψn,λ non feasible. Since the
empirical risk PnL(ψ) only depends on ψ through n values {ψ(Wi) : i = 1, . . . , n}, one
might be able to further reduce the number of basis functions while still attaining
the minimum of the empirical risk. Our theorem proves that any ψn,λ attaining the
minimum will converge to ψ0,λ at the desired rate. In fact, it suffices to achieve the
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minimum up to an approximation error that is smaller than this rate. This suggest
that for finite samples it might suffice to work with a much smaller subset of these
basis functions even though all of these types of basis functions will be included
as sample size increases so that any function can be arbitrarily well approximated.
Developing computationally feasible algorithms that approximate the desired ψn,λ

will be an important area of future research.
We propose the following strategy for defining a super learner incorporating the

HAL estimator. The key step is to construct a sequence of nested candidate esti-
mators for which the last estimator in this sequence is the full HAL estimator. For
example, the first estimator might be the lasso estimator only including the one-
way indicator functions in the HAL-representation, while the k-th estimator would
incorporate all multiway indicator functions up to the k-th order, k = 1, . . . , d. How-
ever, it makes sense to use a much finer sequence of candidate estimators so that
the memory storage and computer speed increases gradually along this sequence.
For example, one might propose a possibly data-adaptive ordering of all the multi-
way indicator basis functions, starting out with one-way, then to two-way, etc. This
would require ordering the one-way indicator basis functions, and the two-way indi-
cator basis functions, etc. One might now define a sequence of candidate estimators
by defining them as the lasso including the first Kj basis functions in this sequence,
K1 < K2 < . . . < KM , j = 1, . . . , M, where KM is the total number of basis functions
in the HAL estimator. Each of these candidate estimators are now included in the
library of the super learner. By the oracle inequality, this super learner is at least as
good as the full HAL estimator that includes all KM basis functions. Instead of truly
computing the super learner, we would compute the candidate estimators along this
sequence, each time tracking the cross-validated risk and once the cross-validated
risk appears to flatten out or even deteriorates, we define the last estimator as our
final estimator. The validity of this proposal relies on the assumption that the more
aggressive estimators in the remaining sequence will not achieve a better perfor-
mance than the selected one. In this manner, for a given sample size n, one expects
that the number of selected basis functions will be bounded by O(n), thereby making
the estimator computable.

6.6 Applications

We introduced the HAL as a general nonparametric estimator of a d-variate function
valued parameter defined as a minimizer of an expectation of a loss function. In this
section, we consider applying HAL to the problem of estimating the conditional
mean of a real-valued outcome. Specifically, we discuss the case that the observed
data consist of n i.i.d. copies of the random variable O = (W,Y) ∼ P0 ∈ M, where
M is the nonparametric statistical model. The only constraint we will place on this
model is that for every P ∈ M, the conditional mean of Y given W implied by P,
say Q̄P, has a finite variation norm. We consider using the highly adaptive lasso to
estimate Q̄0 = arg minQ̄P0L(Q̄), where L(Q̄)(o) = {y − Q̄(w)}2 is squared error loss.
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6.6.1 Constructing the Highly Adaptive Lasso

Recall that HAL can be viewed as the minimizer of the empirical risk over a special
linear combinations of indicator basis functions under the constraint that the sum of
the absolute value of the coefficients is less than or equal to a data adaptively chosen
constant. In this section, we illustrate how these basis functions and the estimator
are constructed in simple univariate and bivariate settings.

Consider that the observed data consist of n = 500 independent copies of
W ∼ Uniform(−4, 4) and Y = 2sin(π/2|W |) + ε, where ε is drawn independently
of W a Normal(0,1) distribution. The basis functionsused by HAL consist of n in-

−4 −2 0 2 4

−4
−2

0
2

4

W

Y

||Q0||v = 16.0

λn= 13.4
λ = 4.8
λ = 35.2

Fig. 6.1 The highly adaptive lasso in the univariate setting

dicators of the observed data values: φ j(w) = I(w ≥ wj) for j = 1, . . . , n. To select
the bound on the variation norm, we used ten-fold cross validation to select from
100 possible bounds ranging from 0 to about 350. We illustrate the fit from three of
these choices in Fig. 6.1. The solid line is the HAL estimator, which uses the cross-
validation-selected value λn = 13.9. The dashed and dotted lines represent choices
that are smaller and larger respectively than the true variation norm ||Q̄0||v = 16.
The ticks at the bottom of the figure are placed at the 46 support points of Q̄n with
a nonzero coefficient. The choice of 4.8 as bound on the variation norm (dashed
line) visibly over-smooths the data, while the bound of 35.2 appears to provide a
reasonable approximation and is similar with the prediction from the HAL estima-
tor. However, the larger bound does appear to produce more noise near the edges
of the support. Theory dictates that any choice of bound larger than the true norm
will yield an estimator with the properties established in the previous chapter. Nev-
ertheless, the HAL estimator will exhibit superior performance in finite samples by
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allowing for selection of a bound smaller than the true norm. The oracle inequality
guarantees that so long as at least one bound larger than the true norm is considered
as a candidate bound, then we will eventually select a bound that is larger than the
true variation norm.

We now illustrate the estimator in the bivariate setting and where W has a discrete
component. We drew W1 from a Uniform(−4,4) distribution and also drew W2 in-
dependently from a Bernoulli(0.5) distribution. We let Y = −0.5W1 +W2W2

1/2.75+
W2 + ε where ε was drawn from a Normal(0,1) distribution. Notice that this data
generatingdistribution implies an interaction between W1 and W2 in Q̄0, with a lin-

−4 −2 0 2 4
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Y

w2=0
w2=1
Qn(w1, 0)
Qn(w1, 1)

Fig. 6.2 The highly adaptive lasso in the bivariate setting

ear relationship between W1 and the mean of Y whenever W2 = 0 and a quadratic
relationship otherwise. To construct the HAL estimator in this setting, we first cre-
ated n basis functions corresponding with indicators at the observed values of W1:
φ1, j(w) = I(w1 ≥ w1, j) for j = 1, . . . , n. Next, we added basis functions for the
subset consisting only of W2: φ2, j(w) = I(w2 ≥ w2, j) for j = 1, . . . , n. Note
that because W2 is binary, there was only be a single unique basis function to be
added, φ2(w) = I(w2 ≥ 1). Finally, we created bivariate basis functions of the form
φ12,i(w) = I(w1 ≥ w1, j,w2 ≥ w2, j) for j = 1, . . . , n. These basis functions number
fewer than n due to binary W2. It was unnecessary to add basis functions φ12, j(w) for
any j for which w2, j = 0 due to the fact that for any such j we had already placed
support on this zero-edge by including φ̄1, j. This illustrates that the number of basis
functions in a given sample will be at most n(2d − 1), while in practice the number
may be far fewer depending on the particular data set.

Figure 6.2 illustrates a random draw of size n = 500 from this data generating
mechanism. Two lines are shown corresponding with the estimate of Q̄0 when W2 =

1 (upper dashed line) and when W2 = 0 (lower solid line). The solid tick marks
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across the bottom of the figure indicate the univariate basis functions with a non-
zero coefficient in Q̄n. Accordingly, these marks corresponding with jumps in both
Q̄n(·, 0) and Q̄n(·, 1). The dashed tick marks indicate the bivariate basis functions
with nonzero coefficients and thus correspond with values of a jump in Q̄n(·, 1),
but not Q̄n(·, 0). Notice that, as expected these ticks occur most frequently when
W1 > 2, corresponding with the values for which Q̄0(w1, 0) is decreasing in w1,
while Q̄1(w1, 1) is increasing. This example illustrates how the higher-order basis
functions used by the HAL estimator act similarly to cross-product interaction terms
in standard regression approaches.

6.6.2 Prediction Simulation

We evaluated the finite-sample performance of the HAL estimator relative to other
nonparametric algorithms: regression trees (Breiman et al. 1984), random forests
(Breiman 2001), gradient boosted machines (GBM) (Friedman 2001), kernel re-
gression (Nadaraya 1964; Watson 1964), support vector machines (SVM) (Hearst
et al. 1998), and polynomial multivariate adaptive regressions splines (Polynomial
MARS) (Friedman 1991). We considered three types of data generating mecha-
nisms, which we call smooth, jumps, and sinusoidal. For each type of data gener-
ating mechanism, we varied the dimension of W and considered d ∈ {1, 3, 5} and
sample sizes n ∈ {500, 1000, 2000}. Performance was judged based on R2, which
was calculated on an independent test set of size N = 1e4, where for a given esti-
mator Q̄n, we define

R2 = 1 −
∑N

i=1{Yi − Q̄n(Wi)}2
∑N

i=1{Yi − ȲN}2
.

Each setting was designed so that the optimal R2 value was R2
opt = 0.80, where

R2
opt = 1 −

EP0 {Y − Q̄0(W)}2

Var0(Y)

is the value of R2 obtained when using the true regression function Q̄0. This value
can be viewed as an upper bound on the performance of any estimator.

The distribution of W was as follows: W1 ∼ Uniform(−4, 4),W2 ∼ Uniform
(−4,4), W3 ∼ Bernoulli(0.5),W4 ∼ Normal(0, 1), W5 ∼ Gamma(2, 1). For dimen-
sion d, call the target parameter Q̄d

0(W) and let W = (Wj : j = 1, . . . , d}). We define
Y = Q̄d

0(W) + ε where ε ∼ Normal(0, 1).
The “smooth” regression functions for d = 1, 3, 5 respectively were defined as

Q̄1
0(w) = 0.05w1 + 0.42w2

1 ;

Q̄3
0(w) = 0.07w1 − 0.28w2

1 + 0.5w2 + 0.25w2w3 ;

Q̄5
0(w) = 0.1w1 − 0.3w2

1 + 0.25w2 + 0.5w3w2 − 0.5w4 + 0.04w2
5 − 0.1w5 .
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The “jump” regression functions were defined as

Q̄1
0(w) = −2.7I(w1 < −3) + 2.5I(w1 > −2) − 2I(w1 > 0) + 4I(w1 > 2) − 3I(w1 > 3) ;

Q̄3
0(w) = −2I(w1 < −3)w3 + 2.5I(w1 > −2) − 2I(w1 > 0) + 2.5I(w1 > 2)w3

− 2.5I(w1 > 3) + I(w2 > −1) − 4I(w2 > 1)w3 + 2I(w2 > 3) ;

Q̄5
0(w) = −I(w1 < −3)w3 + 0.5I(w1 > −2) − I(w1 > 0) + 2I(w1 > 2)w3 − 3I(w1 > 3)

+ 1.5I(w2 > −1) − 5I(w2 > 1)w3 + 2I(w2 > 3) + 2I(w4 < 0)

− I(w5 > 5) − I(w4 < 0)I(w1 < 0) + 2w3.

The “sinusoidal” regression functions were defined as

Q̄1
0(w) = 2sin(0.5π|w1|) + 2cos(0.5π|w1|) ;

Q̄3
0(w) = 4w3I(w2 < 0)sin(0.5π|w1|) + 4.1I(w2 ≥ 0)cos(0.5π|w1|) ;

Q̄5
0(w) = 3.8w3I(w2 < 0)sin(0.5π|w1|) + 4I(w2 > 0)cos(π|w1|/2) + 0.1w5sin(πw4)

+ w3cos(|w4 − w5|).

Figure 6.3 displays the results of the simulation study with rows representing
the different data generating mechanisms and columns representing the different di-
mensions of W. The margins of the figure show the results aggregated across data
generating mechanisms of a particular dimension (bottom margin) and aggregated
across different dimensions of a particular data generating mechanism (right mar-
gin). In each plot, the algorithms have been sorted by their average R2 value across
the three sample sizes with the highest R2 at the top of the figure and the lowest R2

at the bottom.
Beginning with the top row corresponding to the “smooth” data generating mech-

anisms, we find that all algorithms other than random forests perform well when
d = 1, with kernel regression performing the best in this case. However, as the di-
mension increases, the relative performance of kernel regression decreases, while
the relative performance of HAL increases. Across all dimensions the SVM had
the best overall performance; however, the performance of the GBM and HAL were
comparable. In the second row corresponding with the “jumps” scenario, we see that
the HAL performs extremely well, nearly achieving the optimal R2 when n = 2000
for all dimensions. In the third row corresponding with the “sinusoidal” scenario,
we find that somewhat surprisingly the kernel regression performs the best across
all dimensions. This appears to be due in part to superior performance relative to
other estimators when n = 500. For the larger sample sizes, the R2 achieved by
kernel regression, random forests, and HAL are similarly high. The far bottom right
plot shows the results over all simulations with algorithms sorted by average R2 and
we see that HAL had the highest average R2 followed by kernel regression and ran-
dom forests. Overall, HAL performed well relative to competitors in all scenarios
and particularly well in the jump setting, where local smoothness assumptions fail.
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Though the estimator was not ranked highest for the smooth and sinusoidal data
generating mechanisms, its performance was comparable to the best-performing
machine learning algorithms, which are generally considered to be state-of-the-art.

6.6.3 Prediction Data Analysis

We separately analyzed five publicly available data sets listed with citation in
Table 6.1. Sample sizes for the data sets ranged from 201 to 654 and d ranged from
four to eleven. Inaddition to the nonparametric methods evaluated in simulations,

Table 6.1 Data sets analysed using the HAL estimator and competitors

Name n d
cpu (Kibler et al. 1989) 209 6
laheart (Afifi and Azen 1979) 201 11
oecdpanel (Liu and Stengos 1999) 616 6
pima (Smith et al. 1988) 392 7
fev (Rosner 1999) 654 4

we considered estimation of Q̄0 with several parametric methods as well. These in-
cluded a main terms generalized linear model (GLM), a stepwise GLM based on
AIC including two-way interactions, and a generalized additive model (GAM) with
the degree of splines determined via ten-fold cross-validation. We also included the
super learner and discrete super learner using each of these nine algorithms as can-
didates.

In order to compare the performance of the various methods across different data
sets with different outcomes, we studied the ten-fold cross-validated mean squared-
error of each method relative to that of the main terms GLM. Values greater than
one correspond to better performance of the GLM. The results of each of the data
analyses are shown in Fig. 6.4. The gray dots corresponds to the relative MSE in a
particular data set, while the black cross corresponds to the geometric mean across
all five studies. The super learner and discrete super learner perform best, followed
by the HAL estimator. The HAL estimator performed particularly well on the cpu
dataset, where its cross-validated MSE was nearly half that of the main terms GLM.

6.6.4 Simulation for Missing Data

Recall that a remarkable feature of HAL is its guaranteed convergence rate of faster
than n−1/4 regardless of the dimension d. This rate is exactly the critical rate needed
for initial estimates of nuisance parameters that guarantees efficiency of the re-
sulting TMLE. Therefore, it is of great interest to determine the extent to which
this remarkable asymptotic result yields well-behaved TMLE estimators in finite
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Fig. 6.4 Relative cross-validated mean squared error of methods in five real data sets. Circle =
result on a single data set, cross = geometric mean over five data sets

samples. To study this question, we considered the same nine data generating dis-
tributions used in the prediction simulation. However, we additionally introduced
missingness to this data structure and let A = 1 denote that the outcome Y was ob-
served. We simulated missingness using in the smooth scenario as follows: letting
g0(w) = P(A = 1|W = w), for the “smooth” setting,

g1
0(W) = expit{(w1 + 4)1/2 − w1/2} ,

g3
0(W) = expit{1 + (w1 + 4)1/2 − w1/2 + w2w1/5 − w2

2/10} , and

g5
0(w) = expit{(1 + (w1 + 4)1/2 − w1/2 + w2w1/5 − w2

2/10 + w4 + w5/5

− w4w3w1/5)) ;

for the “jump” setting,

g1
0(W) = expit{−3 + 2I(w1 < −3) − 1.5I(w1 ≥ −3,w1 < −1.5)

+ 0.5I(w1 ≥ −1.5,w1 < 0.5) − 2I(w1 ≥ 0.5,w1 < 2) + 2.4I(w1 ≥ 2)) ,

g3
0(w) = expit{0.1I(w1 < −3)w3 + I(w2 < 0)2.5 + 1.5I(w1 ≥ −3,w1 < −1.5)

+ 2I(w1 ≥ −1.5,w1 < 0.5) − 0.8I(w1 ≥ 0.5,w1 < 2)

+ 0.75I(w1 ≥ 2)w3 + w3 − 2I(w1 < 0,w2 > 0)} , and

g5
0(w) = expit{1 + 0.1I(w1 < −3)w3 + I(w2 < 0)2.5 + 1.5I(w1 ≥ −3,w1 < −1.5)

+ 2I(w1 ≥ −1.5,w1 < 0.5) − 0.8I(w1 ≥ 0.5,w1 < 2) + 0.75I(w1 ≥ 2)w3

+ w3 − 2I(w1 < 0,w2 > 0) + I(w4 < −1) + 2I(w4 < −2) − 3I(w4 > 0)

+ 2I(w5 < 3) − 1.7I(w4 < 0)w3} ;
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and for the “sinusoidal” setting,

g1
0(W) = expit{2 + sin(w1)} ,

g3
0(w) = expit{(2 + sin(w1w3) + cos(w2w3) + sin(w1w2)} , and

g5
0(w) = expit{(1.5+sin(w1w3)+cos(w2w3)+sin(w1w2)+sin(|w4|)−w3cos(w1/2

5 )} .

We generated 500 replications of each of the nine data generating distributions
at sample sizes of 500, 2000, and 5000 and estimated ψ0 = E0{E0(Y | A = 1,W)}
using TMLEs based on different nuisance parameter estimators. In particular, we
considered estimating Q̄0 and g0 using the same nonparametric estimators that were
used in the predictionsimulation, as well as using a super learner and discrete super

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Nominal 95% Coverage of TMLE

Radial SVM

Kernel Regression

Regression Tree

GBM

Discrete Super Learner

Random Forest

Super Learner

HAL

Fig. 6.5 Coverage of Wald style confidence intervals about TMLE estimators based on different
nuisance parameter estimators. The results are ordered by the average absolute distance from 95%
coverage

learner with those estimators as candidates. We were interested in assessing the
extent to which the various TMLEs achieved an approximately normal sampling
distribution in finite samples, which we assessed by computing the coverage of 95%
Wald-style confidence intervals based on the true asymptotic variance of the TMLE
and by visually examining histograms of the sampling distributions.

The coverage of the Wald style confidence intervals across the 27 different sim-
ulation settings are illustrated in Fig. 6.5. TMLE estimators using HAL to estimate
nuisance parameters performed remarkably well; their coverage was estimated to
be only approximately 1.1% off of the nominal 95% coverage on average and was
no lower than 90% in any simulation. The TMLE estimators based on super learner
also yielded confidence intervals that had remarkably good coverage; however, the
performance of HAL-based TMLEs was notably better in the smaller sample sizes
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for the univariate “jump” setting. The same is true of GBM-based TMLEs, which
has excellent coverage in all but two of the “jump” settings, where the coverage was
found to be quite poor hurting these estimators’ overall performance.

The benefit of the fast convergence rate of HAL is apparent in the histograms
shown in Fig. 6.6, which illustrate the sampling distribution of the TMLE in the 5-
variate “jump” scenario at sample sizes 500 and 5000. The top row shows that the
HAL-based TMLE achieves approximate normality and is minimally biased, even
in small samples. In the larger sample, the HAL-based TMLE has little bias and the
sampling distribution is well-approximated by the Normal distribution shown. In
contrast, the kernel regression-based TMLE exhibits serious bias in small samples
and we clearly see that its bias is not converging to zero faster than n−1/2.

Fig. 6.6 Sampling distribution of standardized TMLE estimators based on HAL and based on
kernel regression. The asymptotic distribution of an efficient estimator is shown in the solid line.
The means of the estimators are indicated on each horizontal axis

6.6.5 Conclusion

In this section we examined the practical construction and performance of the HAL
estimator. We found that the estimator performs remarkably well for the purpose
of prediction, as well as for estimating relevant intermediate nuisance parameters
for a TMLE. These results indicate that the HAL makes a valuable contribution
towards building a robust super learner library and there are likely to be real benefits
to its incorporation in practice. Earlier results on the HAL were presented in the
conference paper Benkeser and van der Laan (2016).



Chapter 7
A Generally Efficient HAL-TMLE

Mark J. van der Laan

We will present a TMLE of ψ0 that is asymptotically efficient at any P ∈ M. This is
a remarkable statement since we only assume strong positivity, some global bounds,
and a finite variation norm of Q̄0, Ḡ0. This estimation problem for the treatment spe-
cific mean will be our key example to demonstrate a general one-step TMLE that is
guaranteed to be asymptotically efficient for any model and pathwise differentiable
target parameter, essentially only assuming a positivity assumption, also guarantee-
ing strong identifiability of the target parameter.

The key of our one-step TMLE is that it uses a super learner as initial estimator
that includes the highly adaptive lasso estimator as a candidate estimator in the
library. Therefore we will refer to such a TMLE with highly adaptive lasso
TMLE (HAL-TMLE). By our formal results for the HAL estimator, we know
that the super learner will converge at a rate faster than n−1/4 with respect to
the loss-based dissimilarity, and that is typically sufficient for establishing that
the second-order remainder in a TMLE analysis is oP(n−1/2). The latter is the
key condition in the efficiency proof for a TMLE.

In this chapter, we focus on demonstrating this general HAL-TMLE for the treat-
ment specific mean, and subsequently demonstrate how our proof is easily general-
ized to general bounded models and target parameters. We refer to our paper van der
Laan (2017) for a presentation of a completely general HAL-TMLE and HAL-CV-
TMLE with a general efficiency theorem, even allowing for unbounded models.
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7.1 Treatment Specific Mean

Suppose we observe n i.i.d. observations (Wi, Ai,Yi), i = 1, . . . , n, of a random vari-
able (W, A,Y) with probability distribution P0, where W is a d-dimensional covariate
vector, A is a binary treatment, and Y is a binary outcome. Let’s consider an obser-
vational study and assume that it is known that A is independent of W, given a
d1-dimensional covariate subvector W1 of W. Let Ḡ(W) = P(A = 1 | W) = P(A =
1 | W1) and Q̄(W) = E(Y | A = 1,W). In addition, suppose that we know that
Ḡ0(W) > δ > 0 for some δ > 0, and that the functions Q̄0, Ḡ0 are cadlag and have
finite variation norm smaller than some universal constant C. We also assume that
δ1 < Q̄0(W) < 1 − δ1 for some δ1 > 0. This δ1 constraint is not very essential since
it can be removed if we replace the log-likelihood loss by the squared error loss
function for Q̄0 in our definition of the HAL estimator and the TMLE. Suppose that
we have no other knowledge about P0. This defines a highly nonparametric model
M for P0, involving known overall bounds C, δ, δ1 and Ḡ(W) = Ḡ(W1). Our target
parameter mapping Ψ : M → IR is defined by Ψ (P) = EPEP(Y | A = 1,W). This
target parameter is pathwise differentiable at any P ∈ M with canonical gradient
D∗(P)(O) = A/Ḡ(W)(Y − Q̄(W)) + Q̄(W) −Ψ (P). Since Ψ (P) = QW Q̄, we will also
denote the target parameter with Ψ (Q), where Q = (QW , Q̄).

7.1.1 HAL-TMLE

Let L1(Q̄)(O) = −A{Y log Q̄(W)+(1−Y) log(1−Q̄(W))} and L2(Ḡ) = −{A log Ḡ(W)+
(1 − A) log(1 − Ḡ(W))} be the log-likelihood loss functions for Q̄0 and Ḡ0, respec-
tively. Let Q̄n and Ḡn be loss-based super learners of Q̄0 and Ḡ0 that include the
logistic HAL estimator as a candidate in its library, using an upper bound for λ
equal to C. Note that Ḡ0 only depends on W though W1 so that Ḡn will only con-
cern fitting logistic lasso regressions linear in the indicator basis functions of W1. In
this logistic lasso estimator the linear combination of the indicator basis functions
is used to approximate log Q̄0/(1 − Q̄0) and log Ḡ0/(1 − Ḡ0). The bound λ for the
L1-norm of the coefficient vector of the linear combination of basis functions for the
logit of Q̄n implies that Q̄n is uniformly bounded away from 0 and 1, and similarly,
the bound λ for the L1-norm of the coefficient vector of the linear combination of
the basis functions for the login of Ḡn implies that Ḡn is uniformly bounded away
from 0 and 1.

By our result for the HAL estimator, we have

d01(Q̄n, Q̄0) = OP(n−(0.5+α(d)/4))

d02(Ḡn, Ḡ0) = OP(n−(0.5+α(d1)/4)).

We will truncate Ḡn from below by δ to guarantee that it is uniformly bounded away
from zero with probability 1. Since Ḡ0 > δ > 0, this will not affect its rate of conver-
gence. For notational convenience, we still denote this estimator with Ḡn. Similarly,
we will truncate Q̄n from above and below by δ1, so that δ1 < Q̄n < 1 − δ1. Again,
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by the fact that δ1 < Q̄0 < 1− δ1, it follows that this truncation of Q̄n will not affects
its rate of convergence to Q̄0. We know that the Kullback-Leibler dissimilarity is
equivalent with the L2(P0)-norm if the densities are uniformly bounded away from
zero. Therefore, under our bounds δ1, δ for Q̄0 and Ḡ0, it follows that we also have

‖ Q̄n − Q̄0 ‖2
P0
= OP(n−(0.5+α(d)/4))

‖ Ḡn − Ḡ0 ‖2
P0
= OP(n−(0.5+α(d1)/4)),

where ‖ f ‖P0=
√

P0 f 2 is the L2(P0)-norm.
Consider the submodel {Q̄n,ε : ε} defined by

LogitQ̄n,ε = LogitQ̄n + εH(Ḡn),

where H(Ḡn) = 1/Ḡn(W). This submodel combined with the loss function L1(Q̄)
generates the desired component of the efficient influence curve D∗(Q,G):

d
dε

L1(Q̄n,ε)
∣∣∣∣∣
ε=0
= DY (Q̄n, Ḡn),

where DY (Q̄, Ḡ)(O) = A
Ḡ(W) (Y − Q̄(W)). We estimate the probability distribution

QW,0 of W with the empirical probability distribution QW,n of W1, . . . ,Wn. Let εn =

arg minε PnL(Q̄n,ε). The TMLE of Q̄0 is given by Q̄∗
n = Q̄n,εn , and let Q∗

n = (Q̄∗
n,QW,n)

be the TMLE of (Q̄0,QW,0). The TMLE of ψ0 is given by the substitution estimator
Ψ (Q∗

n) = QW,nQ̄∗
n.

7.1.2 Asymptotic Efficiency

We have PnD∗(Q∗
n, Ḡn) = 0, and we also have the identity Ψ (Q∗

n) − Ψ (Q0) =
−P0D∗(Q∗

n,Gn) + R20(P∗
n, P0), where

R20(P∗
n, P0) = P0

Ḡn − Ḡ0

Ḡn
(Q̄∗

n − Q̄0).

This yields the starting point:

Ψ (Q∗
n) − Ψ (Q0) = (Pn − P0)D∗(Q∗

n,Gn) + R20(P∗
n, P0).

Since the variation norm of Q∗
n and Gn is bounded by C, and Ḡ0 > δ > 0, it follows

that the variation norm of D∗(Q∗
n,Gn) is bounded by C/δ up to a small factor. This

shows that D∗(Q∗
n,Gn) falls in a P0-Donsker class with probability 1. It also follows

from our consistency of Q̄n and Ḡn that P0{D∗(Q∗
n,Gn)−D∗(Q0,G0)}2 → 0 in prob-

ability. This proves that (Pn − P0)D∗(Q∗
n,Gn) = (Pn − P0)D∗(Q0,G0) + oP(n−1/2).

Now, we note that by Ḡn > δ, and the Cauchy-Schwarz inequality:

R20(P∗
n, P0) ≤ 1

δ
‖ Ḡn − Ḡ0 ‖P0‖ Q̄n − Q̄0 ‖P0 ,
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where ‖ f ‖2
P0
= P0 f 2 is the L2(P0)-norm. By our convergence results in the L2(P0)-

norm it follows that

R20(P∗
n, P0) = OP(n−(0.5+α(d)/8+α(d1)/8)) = oP(n−1/2).

This proves that

Ψ (Q∗
n) − Ψ (Q0) = (Pn − P0)D∗(Q0,G0) + oP(n−1/2),

and thereby that Ψ (Q∗
n) is an asymptotically efficient estimator of ψ0. This proves

the following theorem.

Theorem 7.1. Consider the statistical model M on P0 that assumes Ḡ0(W) > δ > 0
for some δ > 0; Q̄0, Ḡ0 are cadlag and have finite variation norm smaller than some
universal constant C; δ1 < Q̄0(W) < 1 − δ1 for some δ1 > 0. Let Ψ : M → IR be
defined by Ψ (Q0) = QW,0Q̄0. Consider the TMLE Ψ (Q∗

n) = QW,nQ̄∗
n defined above.

We have that Ψ (Q∗
n) is an asymptotically efficient estimator of ψ0.

An asymptotic 0.95-confidence interval for ψ0 is given by:

ψn ± 1.96σn/
√

n,

where

σ2
n = Pn{D∗(Q∗

n,Gn)}2.

The consistency of Q∗
n,Gn in L2(P0)-norm, Gn > δ > 0, and that the variation norm

of D∗(Q∗
n,G

∗
n) is bounded by the variation norm of Q∗

n,Gn, implies that

σ2
n →p σ

2
0 = P0{D∗(Q0,G0)}2 as n → ∞.

This proves that this 0.95-confidence interval has indeed asymptotic coverage equal
0.95.

7.2 General HAL-TMLE and Asymptotic Efficiency

Let’s now generalize our analysis above to the analysis of a general TMLE for any
statistical model and target parameter. Let O1, . . . ,On be n i.i.d. observations on
a random variable O with probability distribution P0 known to be an element of
the statistical model M. Let Ψ : M → IR be a pathwise differentiable target pa-
rameter with canonical gradient D∗(P). Suppose that Ψ (P) = Ψ1(Q(P)) for some
parameter Q : M → Q(M), and suppose that D∗(P) = D∗

1(Q(P),G(P)) for some
nuisance parameter G : M → G(M). Let L1(Q) and L2(G) be loss functions for
Q and G, respectively. For example, Q might consist of various variation indepen-
dent components, each having its own loss function, and L1(Q) would be defined as
the sum-loss function. Similarly, one might use a sum-loss function for a multiple
component parameter G. We define the loss-based dissimilarities as d01(Q,Q0) =
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P0L1(Q) − P0L1(Q0) and d02(G,G0) = P0L2(G) − P0L2(G0). We assume that Q(P)
and G(P) are d1 and d2-dimensional cadlag functions for all P ∈ M. If Q has multi-
ple variation independent components, each having its own loss-function, then this
corresponds with assuming that each component is a d1-variate real valued cadlag
function. We also assume that supP∈M ‖ Q(P) ‖v< ∞ and supP∈M ‖ G(P) ‖v< ∞.
Let d = max(d1, d2). We also assume that supP∈M ‖ D∗(Q(P),G(P)) ‖v< ∞, but
the latter will typically be implied by assuming that the variation norm of Q(P) and
G(P) are uniformly bounded, uniformly in P ∈ M.

Let Gn,Qn be HAL estimators of G0,Q0. That is, one defines

Qn,λ = arg min
Q∈Q(M),‖Q‖v≤λ

PnL1(Q),

λn as the cross-validation selector, and one sets Qn = Qn,λn . Similarly, one defines

Gn,λ = arg min
G∈G(M),‖G‖v≤λ

PnL2(G),

λn as the cross-validation selector, and one sets Gn = Gn,λn . By our general result
for the HAL estimator, we have

d01(Qn,Q0) = OP(n−(0.5+α(d1)/4))

d02(Gn,G0) = OP(n−(0.5+α(d2)/4)),

where these are the worst-case rates corresponding with models for which the pa-
rameter spaces for Q and G contain all cadlag functions with a variation norm
smaller than some constant. If the parameter spaces are actual subspaces of this non-
parametric parameter space, then the rate will be better, as shown in van der Laan
(2017). We can replace Gn,Qn also be a super learner where these HAL estimators
are included in its library.

Let {Qn,ε : ε} be a parametric submodel through Qn at ε = 0 so that the linear
span of

d
dε

L1(Qn,ε)
∣∣∣∣∣
ε=0

includes D∗(Qn,Gn). Let εn be so that d01(Qn,εn ,Q0) = OP(n−(0.5+α(d)/4)), and

PnD∗(Qn,εn ,Gn) = oP(n−1/2).

Let Q∗
n = Qn,εn .

A natural candidate for εn is defined as the MLE εn = arg minε PnL1(Qn,ε). For
example, if {Qn,ε : ε} is a universal least favorable submodel, so that d

dε L1(Qn,ε) =
D∗(Qn,ε ,Gn) for all ε, then PnD∗(Qn,εn ,Gn) = 0. Under appropriate regularity
conditions, even without enforcing the universal least favorable submodel prop-
erty, one can show that the faster than n−1/4-consistency of Qn,Gn implies that
PnD∗(Qn,εn ,Gn) = oP(n−1/2). One could also define εn as the solution of 0 =
PnD∗(Qn,εn ,Gn) = 0.
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Let R20((Q,G), (Q0,G0)) ≡ Ψ (Q) − Ψ (Q0) + P0D∗(Q,G). Then, it follows that

Ψ (Q∗
n) − Ψ (Q0) = (Pn − P0)D∗(Q∗

n,Gn) + R20((Q∗
n,Gn), (Q0,G0)) + oP(n−1/2).

Since R20() is a second-order remainder, it involves integrals over products of a
difference between Q∗

n and Q0 and a difference between Gn and G0. Since the model
M avoids singularities by having a uniformly bounded efficient influence function,
using Cauchy-Schwarz inequality, one should be able to bound R20((Q,G), (Q0,G0))
by O(max(d01(Q,Q0), d02(G,G0))). As a consequence,

R20((Q∗
n,Gn), (Q0,G0)) = OP(n−0.5+α(d)/4) = oP(n−1/2).

Suppose that (Q,G) → D∗(Q,G) is continuous at P0 in the sense that if
d01(Qn,Q0) and d02(Gn,G0) converge to zero as n → ∞, then P0{D∗(Qn,Gn) −
D∗(Q0,G0)}2 → 0 as n → ∞. Under this continuity condition, we have
P0{D∗(Q∗

n,Gn) − D∗(Q0,G0)}2 →p 0 as n → ∞. Since D∗(Q∗
n,Gn) falls with

probability 1 in the Donsker class of multivariate real valued cadlag func-
tions with a variation norm bounded by universal constant, it follows that
(Pn − P0)D∗(Q∗

n,Gn) = (Pn − P0)D∗(Q0,G0) + oP(n−1/2). This proves

Ψ (Q∗
n) − ψ0 = (Pn − P0)D∗(Q0,G0) + oP(n−1/2),

and thus asymptotic efficiency of Ψ (Q∗
n). This proves the following theorem.

Theorem 7.2. Let O1, . . . ,On be n i.i.d. observations on a random variable O with
probability distribution P0 known to be an element of the statistical model M. Let
Ψ : M → IR be a pathwise differentiable target parameter with canonical gradi-
ent D∗(P). Suppose that Ψ (P) = Ψ1(Q(P)) for some parameter Q : M → Q(M),
and suppose that D∗(P) = D∗

1(Q(P),G(P)) for some nuisance parameter G : M →
G(M). Let L1(Q) and L2(G) be loss functions for Q and G, respectively. We assume
that Q(P) and G(P) are d1 and d2-dimensional cadlag functions for all P ∈ M,
supP∈M ‖ Q(P) ‖v< ∞ and supP∈M ‖ G(P) ‖v< ∞. Let d = max(d1, d2). We
also assume that supP∈M ‖ D∗(Q(P),G(P)) ‖v< ∞. Assume R20((Q,G), (Q0,G0)) =
O(max(d01(Q,Q0), d02(G,G0))), and that (Q,G) → D∗(Q,G) is continuous at P0

in the sense that if d01(Qn,Q0) and d02(Gn,G0) converge to zero as n → ∞, then
P0{D∗(Qn,Gn) − D∗(Q0,G0)}2 → 0 as n → ∞.

Let Qn,Gn be HAL estimators. We have

d01(Qn,Q0) = OP(n−(0.5+α(d1)/4))

d02(Gn,G0) = OP(n−(0.5+α(d2)/4)),

Let {Qn,ε : ε} be a parametric submodel through Qn at ε = 0 so that the linear span
of

d
dε

L1(Qn,ε)
∣∣∣∣∣
ε=0
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includes D∗(Qn,Gn). Let εn be so that d01(Qn,εn ,Q0) = OP(n−(0.5+α(d)/4))), and

PnD∗(Qn,εn ,Gn) = oP(n−1/2).

Let Q∗
n = Qn,εn . The TMLE Ψ (Q∗

n) is asymptotically efficient.

7.3 Discussion

In this chapter, we established asymptotic efficiency of the one-step TMLE of the
treatment specific mean (and thus for the average treatment effect) if one uses a
super learner as an initial estimator that includes the HAL estimator in its library.

The key is that these HAL estimators of the nuisance parameters converge to
their truth counterparts at a faster rate than the critical rate n−1/4. We were
able to prove this only assuming strong positivity, uniformly bounded loss
functions, and by assuming that the nuisance parameters have a variation norm
bounded by a universal constant.

It is also possible to establish asymptotic efficiency of a TMLE when only assum-
ing that the true nuisance parameters have a finite variation norm, thereby allowing
for models that are unbounded with respect to variation norm, still assuming a uni-
form model bound with respect to supremum norm (so that the loss functions and
efficient influence curve are uniformly bounded). In this case, one uses a sieve of
bounded models Mn, allowing the universal bounds for Mn to increase or decrease
with n so that for n large enough the true nuisance parameters are captured by the
n-specific model Mn: i.e. P0 ∈ Mn for n > N0 = N(P0). By using CV-TMLE,
one does not even need a sieve for controlling the variation norm bounds. For both
the TMLE and CV-TMLE, we can even allow that the supremum norm bounds of
a sieve Mn converge to infinity, as long as it converges slowly enough so that the
second-order term in the oracle inequality for the super learner still converges to
zero at a faster rate than n−1/2. We also demonstrated that these results immediately
generalize to general models and target parameters. We refer to van der Laan (2017)
for the precise theorems showcasing these general results for general models as well
as for the treatment specific mean example.

Due to using the HAL estimators for the nuisance parameters Q and G, there
is no need to rely on double robustness of the efficient influence curve defined by
R20((Q,G), (Q0,G0)) = 0 if either Q = Q0 or G = G0. In van der Laan (2014b) we
demonstrate that for such double robust estimation problems it is possible to con-
struct TMLE that remain asymptotically linear even when one of the two nuisance
parameter estimators is inconsistent. If, for example, Qn converges to a misspec-
ified Q, then the remainder R20((Qn,Gn), (Q0,G0)) is not second order anymore,
but, instead, behaves as R20((Q,Gn), (Q0,G0)) . The latter can be written as a func-
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tion of Gn minus that same function applied to G0. Therefore, in order to make
R20((Q,Gn), (Q0,G0)) asymptotically linear, Gn will have to be a TMLE targeting
the required functional of G → R20((Q,G), (Q0,G0)). Indeed, the proposed TMLEs
in van der Laan (2014b) involve fluctuation models for both Q and G so that the re-
sulting TMLE (Q∗

n,G
∗
n) of (Q0,G0) targets not only the target parameter ψ0 but also

these extra nuisance parameters. Even though these complications will not enhance
the asymptotic behavior of the HAL-TMLE, it might still enhance the finite sample
behavior of the HAL-TMLE.



Chapter 8
HAL Estimator of the Efficient Influence Curve

Mark J. van der Laan

The construction of an efficient estimator of a pathwise differentiable target
parameter Ψ : M → IR relies on the ability to evaluate its canonical gradient
D∗(P) at an initial estimator P of P0 based on an original i.i.d. sample from
P0. The efficient influence curve D∗(P) is defined as the canonical gradient
of the pathwise derivative of the target parameter along parametric submodels
through P. It is always possible to represent the pathwise derivative of the
target parameter along a parametric submodel as a covariance of a gradient
D(P) ∈ L2

0(P) with the score of the submodel. The canonical gradient is now
defined as the projection of this gradient on the tangent space at P, where the
tangent space is defined as the closure of the linear span of all scores one can
generate with a parametric submodel through P.

Characterizing the tangent space is not a hard problem, and is often represented as
the range of a linear score operator that maps underlying paths into the score for the
resulting submodel through P. However, carrying out this projection of D(P) onto
the tangent space can be a difficult optimization problem and does not necessarily
allow for a closed form solution. General formulas for the efficient influence curve
are given by the Hilbert space analogues of the least squares regression formula,
X(X′X)−1X′Y , involving the inverse of the so called information operator defined by
the composition of the score operator and its adjoint. For many problems, the inverse
of this infinite dimensional information operator does not exist in closed form and
can be very hard to implement algorithmically.

However, the projection formulation of the canonical gradient shows that the
canonical gradient is the least squares regression of the gradient on a large regres-
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sion model represented by the tangent space, under an infinite sample of P. In other
words, each score in the tangent space represents a candidate regression curve (as
a function of O). The true regression curve, i.e., the regression curve in this model
minimizing the distance to the gradient, equals the efficient influence curve. If the
tangent space is a range of a linear score operator, each regression curve is identified
by an underlying function, which can be viewed as the unknown parameter in this
regression model. Moreover, due to the linearity of the score operator, the regres-
sion model is linear in this parameter/function. As a result, the efficient influence
curve can be formulated as a linear least squares regression problem for an infinite
dimensional linear model. In this chapter we present a machine learning method
that involves taking a sample from P, and fitting a highly adaptive lasso (HAL)
least squares linear regression estimator of the efficient influence curve. The HAL
estimator can be replaced by other machine learning algorithms, but our theoretical
results for the HAL estimator make the HAL estimator a particularly good choice.
This approach avoids having to solve the mathematical optimization problem, but
instead we let the machine learning algorithm estimate the regression surface D∗(P).

8.1 Formulation of HAL Least Squares Linear Regression
Estimator of the Efficient Influence Curve

Let Ψ : M → IR be a statistical target parameter that is pathwise differentiable at a
probability distribution P in the statistical model M with canonical gradient D∗(P).
Let O ∼ P be a multidimensional random variable in IRd. Given P, our goal is to
evaluate the efficient influence curve O → D∗(P)(O) as a function of O.

One common approach for determining the efficient influence curve is to first find
an initial gradient D(P) of the pathwise derivative and then project it on the tangent
space T (P) at P. Finding an initial gradient can be achieved by determining an initial
estimator of Ψ (P) under sampling n i.i.d. observations from P, and determining the
influence curve of this estimator. This influence curve is then the initial gradient
D(P). The initial estimator can be selected as simply as possible (there is no reason
to prefer one gradient above the other, since all project into the canonical gradient).

One approach for finding an initial gradient is to first extent the parameter Ψ :
M → IR to a nonparametric model Ψ e : Mnp → IR so that Ψ e(P) = Ψ (P) for
P ∈ M. Subsequently, one then finds the gradient of this pathwise derivative of this
nonparametric extension Ψ e. The latter can be computed as the influence curve of
any regular asymptotically linear estimator in this nonparametric model, or it can
be calculated through the functional delta method as the influence curve of Ψ e(Pn)
where Pn is the empirical probability distribution of O1, . . . ,On: here one might
first approximate O by a discrete approximation Om so that Ψ e(Pn) will indeed be
asymptotically linear, and then determine the limit of the resulting influence curve
as the approximation error converges to zero (i.e., m → ∞). Different nonparametric
extensions will result in different influence curves/gradients, and one might want to
select an extension for which this calculation of the influence curve of Ψ e(Pn) is
easy.
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Another important observation for determining an initial gradient is the follow-
ing. One can focus on finding an initial gradient in a submodel ofM defined by treat-
ing an orthogonal nuisance parameter as known. That is, suppose Ψ (P) = Ψ1(Q(P))
for some parameter Q. Then, an orthogonal nuisance parameter is a parameter for
which the scores of parametric submodels only fluctuating the nuisance parameter
are orthogonal to scores of parametric submodels only fluctuating Q. For example,
suppose that the density p(O) = q(O)g(O) factorizes in two variation independent
factors q and g and that Ψ (P) only depends on P through the factor q. In addition,
let the model in terms of densities be of the form M = {p = qg : q ∈ Q, g ∈ G}
for parameter spaces Q and G for these two factors q and g, respectively. In that
case, one can define the submodel M(g) = {p = qg : q ∈ Q} ⊂ M by making g
known. The efficient influence function of Ψ at P in the submodel M(g) in which
g is known is identical to the efficient influence function in the actual model M.
Finding a gradient in the model M(g) is often very straightforward: in general, the
smaller the model, the easier it is to find a gradient. For example, in censored data
models one can define the gradient as the influence curve of an inverse probability
of censoring weighed estimator in the model in which the censoring mechanism is
known. This is what we will do in each of our examples in this chapter.

The tangent space is often defined as the closure of the range of a linear score
operator AP : (H, 〈·, ·〉H) → L2

0(P), where (H, 〈·, ·〉H) is an underlying Hilbert space
H with inner product 〈h1, h2〉H for any pair h1, h2 ∈ H. For example, consider a
model {Pθ : θ ∈ Θ}. A parametric submodel through Pθ is now of the form {Pθε,h : ε}
where h denotes a direction varying over some setH andH is embedded in a Hilbert
space. Let H be the closure of the linear span of H within this Hilbert space. The
score of this submodel could be represented as a mapping AP(h) = d

dε log pθε,h
∣∣∣
ε=0

,
and, using a natural parametrization θε,h, AP will be a linear operator. The tangent
space is now given by the closure of the range of AP : (H, 〈·, ·〉H) → L2

0(P).
The efficient influence curve can then be defined as D∗(P) = AP(h∗), where

h∗ = arg min
h∈H

P{D(P) − AP(h)}2.

We treat P as known in D(P) as well as in AP(h), so that AP(h∗(P)) represents
the least squares regression of a known outcome D(P)(O) on the regression model
{AP(h) : h} with unknown parameter h, while h∗(P) is the true parameter value.
Subsequently, we take a sample O1, . . . ,On ∼ P, and estimate h∗(P) with a ma-
chine learning algorithm based on this data set. Let Pn be the empirical probability
distribution.

Suppose that H is a Hilbert space of d-variate real valued functions. Let HM ⊂ H
be the subset of cadlag functions with variation norm smaller than M, where the
variation norm of a function h is defined as ‖ h ‖v=

∑
S⊂{1,...,d}

∫
| dhS(uS) |. Here

uS → hS(uS) = h(uS, 0Sc ) is the section of h that sets the components not in S
equal to zero, and the sum is over all subsets of {1, . . . , d}. In addition, suppose that
‖ h∗ ‖v< M for some M. We can estimate h∗ with the finite sample estimator:

hn,M = arg min
h∈HM

Pn{D(P) − AP(h)}2.
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Let ĥM denote the estimator so that hn,M = ĥM(Pn). Since we do not know how to
select M large enough, we select M = Mn with the cross-validation selector:

Mn = arg min
M

EBn P1
n,Bn

{
D(P) − AP(ĥM(P0

n,Bn
))
}2
.

Our estimator of h∗ is given by

hn ≡ hn,Mn = ĥMn (Pn),

resulting in the estimator AP(hn) of D∗(P).
We will now show how we determine hn,M through fitting a high dimensional

linear regression model with the lasso algorithm. We can represent any cadlag
function h with finite variation norm as h(x) =

∑
S⊂{1,...,d}

∫
φxS(uS)dhS(uS), where

uS → hS(uS) = h(uS, 0Sc ) is the section of h that sets the components not in S equal
to zero, and φxS(uS) =

∏
j∈S I(x j ≥ u j) is the product of indicator basis functions.

Since AP is a linear operator we have:

AP(h)(O) = AP

⎛
⎜⎜⎜⎜⎜⎜⎝x →

∑

S⊂{1,...,d}

∫
φxS (uS)dhS(uS

⎞
⎟⎟⎟⎟⎟⎟⎠ (O)

=
∑

S⊂{1,...,d}

∫
AP

(
x → φxS(uS)

)
(O)dhS(uS),

Thus,

hn,M = arg min
h∈HM

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(P)(Oi) −
∑

S⊂{1,...,d}

∫
AP

(
x → φxS(uS)

)
(Oi)dhS(uS)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

Note that this is an infinite dimensional minimum least squares linear regression
estimator, where the outcome Yi = D(P)(Oi), the main terms are (AP(φ·S(uS))(Oi) :
uS,S) with corresponding coefficients (dhS(uS) : uS,S), where the sum of the ab-
solute values of these coefficients is enforced to be smaller than M. A study of this
problem will typically show that this minimum is attained by h for which dhS only
puts positive mass on at most n values uS, j, j = 1, . . . , n, for each S ⊂ {1, . . . , d}. In
that case, this infinite dimensional minimum least squared linear regression problem
becomes a finite dimensional linear regression Yi =

∑
S⊂{1,...,d}

∑n
j=1 φS, j(Oi)βS, j + ei,

where
∑

S
∑n

j=1 | βS, j |≤ M and φS, j(Oi) = AP

(
φ·S(uS, j)

)
.

Thus we can now define the standard lasso linear regression estimator:

βn,M = arg min
β,‖β‖1≤M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(P)(Oi) −
∑

S⊂{1,...,d}

n∑

j=1

φS, j(Oi)βS, j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

This defines

D∗
n,M(P)(O) =

∑

S⊂{1,...,d}

n∑

j=1

φS, j(O)βn,M,S, j.
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Let Mn be the cross-validation selector, and βn = βn,Mn . Then, our approximation of
the efficient influence curve D∗(P) is given by:

D∗
n(P)(O) = D∗

n,Mn
(P)(O) =

∑

S⊂{1,...,d}

n∑

j=1

φS, j(O)βn,S, j.

8.2 Rate of Convergence of the HAL Estimator of the Efficient
Influence Curve

We have the following theorem establishing that this estimator D∗
n(P) converges in

L2(P)-norm to D∗(P) at a rate faster than n−1/4.

Theorem 8.1. Let Ψ : M → IR be pathwise differentiable at P with canonical
gradient D∗(P). Let D(P) be a gradient at P which is a uniformly bounded function.
Let AP : (H, 〈·, ·〉H) → L2

0(P) be a linear score operator from an underlying Hilbert
space to L2

0(P), so that the tangent space T (P) = R(AP) at P is given by the closure
of the range of AP. Suppose that D∗(P) = AP(h∗) for some h∗ = h∗(P) ∈ H. Suppose
that H consists of d-variate real valued functions, and that there exists a version
of h∗(P) that is cadlag and has a finite variation norm. Let HM ⊂ H be the subset
of cadlag functions with variation norm smaller than M: we have h∗(P) ∈ HM for
M >‖ h∗ ‖v. Assume that AP(HM) is a P-Donsker class: we note that, if the class
of functions {AP

(
x → φxS(uS)

)
: uS,S} is a P-Donsker class, then AP(HM) is a

P-Donsker class.
Let O1, . . . ,On be a sample of n i.i.d. copies of O ∼ P. Define the subspace

ΨM = AP(HM) = {AP(h) : h ∈ HM}, and define

ψn,M = arg min
ψ∈ΨM

Pn(D(P) − ψ)2.

Above we showed that this estimator can be defined as a lasso least squares linear
regression estimator under the constraint that the sum of the absolute values of the
coefficients is bounded by M, where the outcome is D(P)(Oi) and the main terms
are a finite subset of AP

(
x → φxS(uS)

)
(Oi) : uS,S} defined by restricting uS to a

finite set of O(n)-values, for each S ⊂ {1, . . . , d}.
Let Mn be the cross-validation selector over a uniformly bounded set:

Mn = arg min
M

EBn P1
n,Bn

(D(P) − Ψ̂M(P0
n,Bn

))2.

Let ψn = ψn,Mn be our estimator D∗
n(P) of D∗(P).

Then, ∫
{D∗

n(P) − D∗(P)}2(o)dP(o) = oP(n−1/2).

With a little more work, as in van der Laan (2017), utilizing finite sample em-
pirical process results in van der Vaart and Wellner (2011), assuming that the
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entropy of AP(HM) is of same order as entropy of HM , we can obtain an actual rate
oP(n−(1/2+α(d)/4), where α(d) = 1/(d + 1).

Proof. The Donsker class statement is a consequence of the fact that a convex Hull
of a Donsker class is also a Donsker class. This also implies that

{
{D(P) − AP(h)}2 : h ∈ HM

}

is a P-Donsker class. It remains to prove the oP(n−1/2)-consistency result. Let L(ψ) =
(D(P) − ψ)2 be the squared error loss. Note that

ψM = ΨM(P) = arg min
ψ∈ΨM

PL(ψ),

and
ψn,M = arg min

ψ∈ΨM

PnL(ψ).

We want to prove that
∫

(ψn,M − ΨM(P))2dP = oP(n−1/2). Our desired result for the
estimator ψn = ψn,Mn now follows from the finite sample oracle inequality for the
cross-validation selector.

We have

0 ≤ dP(ψn,M , ψM) ≡ PL(ψn,M) − PL(ψM)

= (P − Pn){L(ψn,M) − L(ψM)} + Pn{L(ψn,M) − L(ψM)}
≤ −(Pn − P){L(ψn,M) − L(ψM)}.

By assumption, {L(ψ)−L(ψM) : ψ ∈ ΨM} is a P-Donsker class, so that, by empirical
process theory, the right-hand side is OP(n−1/2), and thus dP(ψn,M , ψM) = OP(n−1/2).
Since L(ψ) is the squared error loss, we can bound P{L(ψn,M) − L(ψM)}2 by a uni-
versal constant times P{L(ψn,M)− L(ψM)} (see e.g., van der Laan and Dudoit 2003).
Thus, this proves that P{L(ψn,M) − L(ψM)}2 →p 0 as n → ∞. By empirical process
theory, this proves that (Pn −P){L(ψn,M)−L(ψM)} = oP(n−1/2). Thus we have shown
dP(ψn,M , ψM) = oP(n−1/2). �

8.2.1 Application to Estimate Projection of Initial Gradient
onto Subtangent Spaces

One does not need to apply the HAL estimator to estimate the projection of the ini-
tial gradient on the full tangent space. For example, suppose that the tangent space
T (P) allows for an orthogonal decomposition

∑K
j=1 T j(P), where T j(P) is the tangent

space of one of the K nuisance parameters, such as factors that make up the density
p. In this common scenario, we have Π(D(P) | T (P)) =

∑K
j=1 Π(D(P) | T j(P)),

so that it suffices to compute the projection of D(P) onto T j(P), for each j sepa-
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rately. For some of the tangent spaces, the projection might be easily analytically
determined. For the remaining tangent spaces, we can then apply the above HAL
estimator to each j-specific projection separately, where now T j(P) is the closure
of the range of a score operator Aj : (Hj, 〈·, ·〉Hj ) → L2

0(P). This approach will be
applied to some of our examples.

8.2.2 Using the Actual Data Set from the True Data Distribution

If P represents a consistent estimator P̂n of P0 in the sense that D∗(P̂n) converges to
D∗(P0), then we conjecture that it is fine to use the actual observations O1, . . . ,On

from P0 in the formulation of our estimator, instead of a new sample from P̂n. In
this case, we view the HAL estimator D∗

n(P̂n) as an estimator of D∗(P0). Of course,
in this case the validity of our estimator of D∗(P0) now depends on P̂n approxi-
mating P0 as n converges to infinity. The advantage of this approach for estimation
of D∗(P0) is that it does not require resampling from a data distribution P. For ex-
ample, in many problems the efficient influence curve D∗(P) only depends on P
through some parameters (Q,G) say. These parameters might not identify an actual
data distribution. An estimator (Qn,Gn) of (Q0,G0) does now not imply a data dis-
tribution P̂n that we can resample from. So we would then have to determine a P̂n

that is compatible with our estimates (Qn,Gn). This might be easy, but could also be
cumbersome in some problems.

The rational for the HAL estimator of D∗(P0) using the actual i.i.d. sample
from P0 is as follows. Firstly, we can apply our theorem at P = P0, which
shows that our lasso estimator converges to D∗(P0) in L2(P0) at a rate faster
than n−1/4. However, this lasso estimator uses as outcome the unknown D(P0)
and also uses main terms AP0 (x → φx,S(uS, j)) in the linear regression model
that depend on P0. If D(P0) is replaced by a consistent D(P̂n), then it will
be straightforward to show that the lasso estimator is still consistent, and the
rate would still be faster than n−1/4 if D(P̂n) converges to D(P0) at the same
or faster rate. Finally, one wants to show that replacing the unknown main
terms in the linear regression model by the estimated versions using P̂n still
preserves the consistency. We believe that the latter is not hard to show under
a reasonably weak condition. In the remaining sections we consider various
examples.

8.3 Truncated Mean Based on Current Status Data

Let O = (C, Δ = I(T ≤ C)), where T and C are independent. Let F(t) = P(T ≤ t)
and G(t) = P(C ≤ t) be the two cumulative distribution functions of T and C,
respectively. Let g be the Lebesgue density of G, and let F̄ = 1 − F. Let P = PF,G
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be the true probability distribution of O. Let F be unspecified, while G might be
restricted to a set G, so that M = {PF,G : F,G ∈ G} is the statistical model. Let
Ψ : M → IR be defined by Ψ (P) =

∫
(1 − F)(t)r(t)dt, where r is a given function.

By selecting r(t) = t, Ψ (P) equals the mean of T , and by selecting r equal to a
truncated version of the identity function, it yields a truncated mean. Many other
functionals can be generated by selecting an appropriate r. Note that the density
p(c, δ) = F(c)δ(1 − F(c))1−δg(c) of P factorizes in a factors only depending on F
and g, while Ψ (P) = Ψ (F) only depends on F. Therefore, it suffices to determine
the efficient influence curve in the model M(G) in which G is known. In this model
M(G), we can use the following gradient:

D(F,G) =
r(C)
g(C)

(1 − Δ) − Ψ (F).

Note that indeed, ψn =
1
n

∑n
i=1

r(Ci)
g(Ci)

(1 − Δi) is an unbiased estimator of Ψ (F) with
influence curve D(F,G), so that indeed D(F,G) is a gradient in the model M(G).
Let dFε,h = (1+ εh)dF be a submodel through F at ε = 0 with score h ∈ L2

0(F). The
score of {PFε,h,G : ε} is given by

AF(h)(O) = EF(h(T ) | O) =

∫ C

0
h(t)dF(t)

F(C)
Δ +

∫ ∞
C

h(t)dF(t)

1 − F(C)
(1 − Δ).

Thus, the score operator is given by this linear operator AF : L2
0(F) → L2

0(PF,G).
The efficient influence curve is defined as D∗(F,G) = AF(h∗ − Fh∗), where

h∗ = arg min
h∈L2(F)

P{D(F,G) − AF(h − Fh)}2.

We can represent h(t) = h(0) +
∫

I(t ≥ x)dh(x) = h(0) +
∫
φx(t)dh(x), where

φx(t) = I(t ≥ x). Using this representation it follows that Fh = h(0) +
∫

F̄(x)dh(x).
Substitution of this representation for h into the above expression yields:

h∗ = arg min
h

P

{
D(F,G) −

∫
AF(φx)dh(x) +

∫
F̄(x)dh(x)

}2

= arg min
h

P

{
D(F,G) −

∫
{F̄(x | ·) − F̄(x)}dh(x)

}2

,

where F̄(x | C, Δ) = P(T > x | C, Δ). Let O1, . . . ,On ∼iid PF,G be a sample from
PF,G. Let M be an upper bound for the variation norm of h∗. Then, we can estimate
h∗ with

h∗n,M = arg min
h,‖h‖v<M

1
n

n∑

i=1

{
D(F,G)(Ci, Δi) −

∫
{F̄(x | Ci, Δi) − F̄(x)}dh(x)

}2

.

This minimum is attained at a discrete measure dh which only puts mass on
{C1, . . . ,Cn}:
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h∗n,M = arg min
h,‖h‖v<M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(F,G)(Ci, Δi) −
n∑

j=1

{F̄(C j | Ci, Δi) − F̄(x)}dh(C j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

Let β j = dh(C j), ‖ β ‖1=
∑n

j=1 | β j |, and define

βn,M = arg min
β,‖β‖1<M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(F,G)(Ci, Δi) −
n∑

j=1

β j{F̄(C j | Ci, Δi) − F̄(x)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

This is a standard lasso least squares regression estimator with L1-constraint set
at M. Let Mn be the cross-validation selector, and define βn = βn,Mn . Then, our
estimator of the efficient influence curve D∗(P) is given by:

D∗
n(P)(C, Δ) =

n∑

j=1

βn, j{F̄(C j | C, Δ) − F̄(x)}.

By Theorem 8.1, this estimator converges to D∗(P) in L2(P)-norm at a rate faster
than n−1/4.

8.4 Truncated Mean Based on Interval Censored Data

Let O = (Cm, Δm = I(T ≤ Cm) : m = 1, . . . M) be a general interval censored
data structure, where T is a time to event, and C = (C1, . . . ,CM) is a vector of
continuous valued monitoring times. Suppose that the monitoring times and T are
all larger than 0. For simplicity, we consider the case that the number of monitoring
time M is fixed, but we suggest that our results below are generalizable to the case
that M is random. We assume that T and C are independent. Let F(t) = P(T ≤ t)
be the cumulative distribution function of T , and let G and g denote the probability
distribution and density of C. Note that the probability distribution P = PF,G of O is
indexed by the true distributions F and G of T and C, respectively. Let M = {PF,G :
F,G ∈ G} be the statistical model for P defined by leaving F unspecified, while
we might have restrictions/knowledge on the distribution of C defined by the set G.
Let Ψ f (F) =

∫
r(t)F̄(t)dt be the full data parameter of interest, where F̄ = 1 − F.

Under some support conditions on g, this parameter is identifiable from P, so that
Ψ : M → IR satisfies Ψ (PF,G) = Ψ f (F). Let D∗(F,G) be the canonical gradient of
Ψ at PF,G.

Note that the density of PF,G is given by pF,G(o) = g(c1, . . . , cM)F(C(o)), where
C(o) is the coarsening for T implied by O = o, and for a set A, F(A) = P(T ∈ A).
Thus C(o) = (L(o),R(o)] is an interval, where L(O) is the largest monitoring time C j

for which Δ j = 0, while R(O) is the smallest monitoring time C j for which Δ j = 1. If
Δ1 = 1, then we define L(O) = 0, and if ΔM = 0, then R(O) = ∞. Thus, the density
of O factorizes in a F and G factor so that the efficient influence curve in our model
M is the same as in the model M(G) = {PF,G : F} ⊂ M in which G is known.
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Our first task is to determine an initial gradient D(F,G) in the model M(G). For
that purpose, let’s define the random variable C̄ as the outcome of the following
experiment: generate C and then randomly draw one of the M monitoring times,
each one receiving probability 1/M. Let Δ̄ = I(T ≤ C̄). Let ḡ = 1

M

∑M
m=1 gm be the

univariate density of C̄, where gm is the marginal density of Cm. An initial estimator
of Ψ f (F) is given by the IPCW estimator 1

n

∑n
i=1(1 − Δ̄i)r(C̄i)/ḡ(C̄i) based on the

reduced current status data structure (C̄, Δ̄ = I(T ≤ C̄). The influence curve of
this estimator is given by (1 − Δ̄)r(C̄)/ḡ(C̄) − Ψ (F). Strictly speaking this is not
an influence curve since it is not only a function of O, but is also random through
the random pick involved in selecting C̄. So let’s take the conditional expectation
of this influence curve, given O. This yields 1

M

∑M
m=1(1 − Δm)r(Cm)/ḡ(Cm) − Ψ (F).

Let’s verify if indeed the expectation of this equals zero, which then shows that this
is the influence curve of a linear unbiased estimator in model M(G). We have:

EPF,G

1
M

M∑

m=1

(1 − Δm)r(Cm)/ḡ(Cm) =
1
M

M∑

m=1

EGF̄(Cm)r(Cm)/ḡ(Cm)

=
1
M

M∑

m=1

∫

c
F̄(c)r(c)

gm(c)
ḡ(c)

dc

=

∫
r(c)F̄(c)dc = Ψ (F).

This proves that indeed we can select the initial gradient:

D(F,G)(O) =
1
M

M∑

m=1

(1 − Δm)r(Cm)/ḡ(Cm) − Ψ (F).

Let AF : L2
0(F) → L2

0(PF,G) be the score operator that maps the score h ∈ L2
0(F)

of the submodel {dFε,h = (1+ εh)dF : ε} at ε = 0 into the score AF(h) of {PFε,h,G : ε}
at ε = 0. We have

AF(h)(O) = EF(h(T ) | O) = EF(h(T ) | T ∈ (L(O),R(O)]) =

∫ R(O)

L(O)
h(t)dF(t)

F(R(O)) − F(L(O))
.

The efficient influence curve D∗(F,G) can thus be defined as AF(h∗ − Fh∗), where

h∗ = h∗(F,G) = arg min
h∈L2(F)

PF,G{D(F,G) − AF(h − Fh)}2.

We can represent h(t) = h(0) +
∫

I(t ≥ x)dh(x) = h(0) +
∫
φx(t)dh(x), where

φx(t) = I(t ≥ x). Using this representation it follows that Fh = h(0) +
∫

F̄(x)dh(x).
Substitution of this representation for h into the above definition of h∗ yields:

h∗ = arg min
h

P

{
D(F,G) −

∫
AF(φx)dh(x) +

∫
F̄(x)dh(x)

}2
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= arg min
h

P

{
D(F,G) −

∫
{F̄(x | ·) − F̄(x)}dh(x)

}2

,

where F̄(x | O) = P(T > x | T ∈ (L(O),R(O)]).
Let O1, . . . ,On ∼iid PF,G be a sample from PF,G. Then, we can estimate h∗ with

h∗n,M = arg min
h,‖h‖v<M

1
n

n∑

i=1

{
D(F,G)(Oi) −

∫
{F̄(x | Oi) − F̄(x)}dh(x)

}2

.

Let {x1, . . . , xJ} be the set of monitoring times that appear as L(Oi) or R(Oi) across
the n coarsenings (L(Oi),R(Oi)], i = 1, . . . , n. Notice that J = J(n) is at most 2n,
and will be a little smaller than 2n if there are coarsenings that have as left point 0
or as right point ∞. We suggest that for each M, the minimum h∗n,M is attained at a
discrete measure dh which only puts mass on {x1, . . . , xJ}:

h∗n,M = arg min
h,‖h‖v<M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(F,G)(Oi) −
J∑

j=1

{F̄(x j | Oi) − F̄(x j)}dh(x j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

Let β j = dh(x j), ‖ β ‖1=
∑n

j=1 | β j |, and define

βn,M = arg min
β,‖β‖1<M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D(F,G)(Oi) −
J∑

j=1

β j{F̄(x j | Oi) − F̄(x j)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

This is a standard lasso least squares linear regression estimator with L1-constraint
set at M, outcome D(F,G)(Oi) and J main terms F̄(x j | Oi) − F̄(x j), j = 1, . . . , J.
Let Mn be the cross-validation selector, and define βn = βn,Mn . Then, our estimator
of the efficient influence curve D∗(F,G) is given by:

D∗
n(F,G)(O) =

J∑

j=1

βn, j{F̄(x j | O) − F̄(x j)}.

By Theorem 8.1, this estimator converges to D∗(F,G) in L2(PF,G)-norm at a rate
faster than n−1/4.

8.5 Causal Effect of Binary Treatment on Interval Censored
Time to Event

Let O = (W, A,Cm, Δm = I(T ≤ Cm) : m = 1, . . . M) be a general interval censored
data structure, where T is a time to event, and C = (C1, . . . ,CM) is a vector of con-
tinuous valued monitoring times, W are baseline covariates, and A is a binary treat-
ment. Let Δ = (Δ1, . . . , ΔM). Suppose that the monitoring times and T are all larger
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than 0. We assume that T and C are independent, given A,W. Let F(t | A,W) =
P(T ≤ t | A,W) be the cumulative distribution function of T , given A,W, and let
Gc(· | A,W) and gc(· | A,W) denote the conditional probability distribution and den-
sity of C, given A,W. Let g(a | W) = P(A = a | W) be the conditional probability
of A = a, given W. Let QW be the probability distribution of W. Let Q = (QW , F)
and G = (Gc, g). Note that the probability distribution P = PQ,G of O is indexed by
Q and G, respectively. Let M = {PQ,G : Q,G ∈ G} be the statistical model for P
defined by leaving Q unspecified, while we might have restrictions/knowledge on
the conditional distribution of C, given A,W, and A, given W, defined by the set
G. Let Ψ f

a (Q) =
∫

r(t)F̄a(t)dt, where F̄a(t) = EPP(T > t | A = a,W), be the full
data parameter of interest. Under some support conditions on gc, g, this parameter is
identifiable from P, so that Ψ : M → IR satisfies Ψ (PQ,G) = Ψ f (Q). Let D∗(Q,G)
be the canonical gradient of Ψ at PQ,G.

The density pQ,G of PQ,G is given by

pQ,G(o) = qW (w)g(a | w)gc(c | A,W)F(C(o) | a,w),

where C(o) is the coarsening for T implied by O = o, and F(C(o) | a,w) = P(T ∈
C(o) | A = a,W = w). Thus C(o) = (L(o),R(o)] is an interval, where L(O) is the
largest monitoring time C j for which Δ j = 0, while R(O) is the smallest monitoring
time C j for which Δ j = 1. If Δ1 = 1, then we define L(O) = 0, and if ΔM = 0, then
R(O) = ∞. Thus, the density of O factorizes in a Q and G factor so that the efficient
influence curve in our model M is the same as in the model M(G) = {PQ,G : Q} ⊂
M in which G = (Gc, g) is known.

Our first task is to determine an initial gradient D(Q,G) in the model M(G). For
that purpose, let’s define the random variable C̄ as the outcome of the following ex-
periment: generate C and then randomly draw one of the M monitoring times, each
one receiving probability 1/M. Let Δ̄ = I(T ≤ C̄). Let ḡc(c̄ | a,w) = 1

M

∑M
m=1 gc,m(c̄ |

a,w) be the univariate density of C̄, given A = a,W = w, where gc,m(· | A,W) is the
conditional density of Cm, given A,W. An initial estimator of Ψ f

a (Q) is given by the
IPCW estimator

1
n

n∑

i=1

(1 − Δ̄i)r(C̄i)
I(Ai = a)

ḡc(C̄i | Ai,Wi)g(Ai | Wi)
,

based on the reduced current status data structure (W, A, C̄, Δ̄ = I(T ≤ C̄). The
influence curve of this estimator is given by (1 − Δ̄)r(C̄)I(A = a)/{ḡc(C̄ | A,W)g(A |
W)} − Ψa(Q). Strictly speaking this is not an influence curve since it is not only a
function of O, but is also random through the random pick involved in selecting C̄.
So let’s take the conditional expectation of this influence curve, given O. This yields
the following initial gradient:

D(Q,G)(O) =
1
M

M∑

m=1

(1 − Δm)r(Cm)
I(A = a)

ḡc(Cm | A,W)g(A | W)
− Ψa(Q).



8 HAL Estimator of the Efficient Influence Curve 115

The tangent space of QW is given by TQW (P) = L2
0(QW ), and

Π(D(Q,G) | TQW (P)) =
∫

r(t)(F̄(t | a,W) − F̄a(t))dt ≡ D∗
W (Q).

Thus, it remains to project D(Q,G) on the tangent space generated by the pa-
rameter F(· | A,W). Let L2

0(F) denote the Hilbert space of functions of (W, A,T )
with conditional mean zero, given W, A. In the model M(G) the score operator
AF : L2

0(F) → L2
0(PQ,G) that maps the score h ∈ L2

0(F) of dFε,h(t | A,W) = (1+εh(t |
A,W))dF(t | A,W) into the score of {PQW ,Fε,h,G : ε} is given by:

AF(h)(O) = EF(h(T | A,W) | A,W,T ∈ (L(O),R(O)])

=

∫ R(O)

L(O)
h(t | A,W)dF(t | A,W)

F(R(O) | A,W) − F(L(O) | A,W)
.

Thus the tangent space TF(P) generated by F is given by R(AF), the closure of the
range of this score operator AF : L2

0(F) → L2
0(PQ,G). Let Fh = E(h | A,W) =

∫
h(t |

A,W)dF(t | A,W) and represent an h ∈ L2
0(F) with h − Fh for an h ∈ L2(F).

The efficient influence curve D∗(P) = D∗(Q,G) is the projection D∗
W (P) of

D(Q,G) onto TQW (P) plus the projection D∗
T (P) of D(P) onto R(AF). Thus, the effi-

cient influence curve is the orthogonal sum D∗(Q,G) = D∗
W (Q) + D∗

T (Q,G). Since
R(AF) is embedded in the space of functions of O with conditional mean zero, given
A,W, we have that D∗

T (P) is also the projection of D1(P) ≡ D(P) − E(D(P) | A,W)
onto R(AF). We will also denote D1(P) with D1(Q,G). We have D∗

T (Q,G) = AF(h∗),
where

h∗(P) = arg min
h∈L2(F)

P {D1(Q,G) − AF(h) + Fh}2 ,

where we recall that for a function h(O), Fh = E(h | A,W) depends on A,W. We
can obtain this minimum by minimizing the conditional expectation of the squared
error loss, given (A,W), over all functions of T , which then defines an optimal T →
h∗(T | A,W), and by doing this for all possible values of (A,W), it yields the full
solution (T, A,W) → h∗(P)(T | A,W). Let’s denote this optimal T → h(T ), for
this (A,W)-specific minimization problem, with h∗(P | A,W), and note h∗(P)(T |
A,W) = h∗(P | A,W):

h∗(P | A,W) = arg min
h∈L2(FT )

EP

(
{D1(Q,G) − AF(h) + Fh}2 | A,W

)
,

where we define L2(FT ) as the space of functions T → h(T ) of T = (T1,T2) only.
Notice that for a given A,W, we now view AF : L2(FT ) → L2(PQ,G|A,W ) as a linear
operator from L2(FT ) (functions of T ) into the space of functions of (T̃ , Δ).

We can represent h(t) = h(0) +
∫

I(t ≥ x)dh(x) = h(0) +
∫
φx(t)dh(x), where

φx(t) = I(t ≥ x). Using this representation it follows that Fh = h(0) +
∫

F̄(x |
A,W)dh(x). Substitution of this representation for h ∈ L2(FT ) into the above defini-
tion of h∗ yields:
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h∗ = arg min
h

EP

⎛
⎜⎜⎜⎜⎜⎝

{
D1(Q,G) −

∫
AF(φx)dh(x) +

∫
F̄(x | A,W)dh(x)

}2

| A,W

⎞
⎟⎟⎟⎟⎟⎠

= arg min
h

EP

⎛
⎜⎜⎜⎜⎜⎝

{
D1(Q,G) −

∫
{F̄(x | ·) − F̄(x | A,W)}dh(x)

}2

| A,W

⎞
⎟⎟⎟⎟⎟⎠ ,

where F̄(x | O) = P(T > x | T ∈ (L(O),R(O)], A,W).
Let (C1, Δ1), . . . , (Cn, Δn) ∼iid PQ,G|A,W be a sample from the conditional distri-

bution PQ,G|A,W of O, given A,W. Let Oi = (Ci, Δi, A,W), i = 1, . . . , n, denote the
resulting n observations. Then, we can estimate h∗(P | A,W) with

h∗n,M = arg min
h,‖h‖v<M

1
n

n∑

i=1

{
D1(Q,G)(Oi) −

∫
{F̄(x | Oi) − F̄(x | Ai,Wi)}dh(x)

}2

.

Let {x1, . . . , xJ} be the set of monitoring times that appear as L(Oi) or R(Oi) across
the n coarsenings (L(Oi),R(Oi)], i = 1, . . . , n. Notice that J = J(n) is at most 2n, and
will be a little smaller than 2n if there are coarsenings that have as left point 0 or as
right point ∞. We suggest that for all M the minimum h∗n,M ∈ L2(FT ) is attained at a
discrete measure dh which only puts mass on {x1, . . . , xJ}:

h∗n,M = arg min
h,‖h‖v<M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1(Q,G)(Oi) −
J∑

j=1

{F̄(x j | Oi) − F̄(x j | A,W)}dh(x j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

Let β j = dh(x j), ‖ β ‖1=
∑n

j=1 | β j |, and define

βn,M(A,W) = arg min
β,‖β‖1<M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1(Q,G)(Oi) −
J∑

j=1

β j{F̄(x j | Oi) − F̄(x j | A,W)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

.

This is a standard lasso least squares linear regression estimator with L1-constraint
set at M, outcome D1(Q,G)(Oi) and J main terms F̄(x j | Oi) − F̄(x j), j = 1, . . . , J.
Let Mn be the cross-validation selector, and define βn(A,W) = βn,Mn (A,W). Then,
our estimator of the efficient influence curve (C, Δ) → D∗

T (Q,G)(C, Δ, A,W) is
given by:

D∗
T,n(Q,G)(C, Δ, A,W) =

J∑

j=1

βn, j(A,W){F̄(x j | C, Δ, A,W) − F̄(x j | A,W)}.

By Theorem 8.1, for each A,W, this estimator converges to

(C, Δ) → D∗
T (Q,G)(C, Δ, A,W)

in L2(PQ,G|A,W )-norm at a rate faster than n−1/4.
To summarize, for a given A,W, the above method allows one to estimate the

function (C, Δ) → D∗(P)(C, Δ, A,W) by fitting a lasso linear least squares regression
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in approximately n covariates. For the computation of the one-step estimator, the
TMLE, or for the influence curve based variance estimator of such an efficient
estimator, one typically just needs to know the efficient influence curve at the actual
observations Oi ∼ P0. Therefore, for each observation i, one will have to run the
above procedure to estimate the efficient influence curve D∗(P) at this Oi. For many
TMLE one will need to evaluate the whole score (C, Δ) → D∗

T (P)(C, Δ, A,W) as a
function. Fortunately, the above procedure gives this for free without extra work.

Nonconditional Maximization Approach. From above we have D∗
T (Q,G) =

AF(h∗), where

h∗(P) = arg min
h∈L2(F)

P {D1(Q,G) − AF(h) + Fh}2 .

Above we used the approach to minimize the conditional expectation, given
A,W, for each A,W separately. Instead, here we go for direct minimiza-
tion. Let d be the dimension of (W, A,T ). Consider the representation h(x) =∑

S⊂{1,...,d}
∫
φxS(uS)dhS(uS). Let H(uS, A,W) = E(φ(W,A,T )S (uS) | W, A) be the con-

ditional probability that (W, A,T )S > uS, given W, A. Using this representation it
follows that Fh = h(0)+

∑
S
∫

H(uS, A,W)dh(u). Substitution of this representation
for h ∈ L2(F) into the above definition of h∗ yields:

h∗ = arg min
h

P

⎧⎪⎪⎨
⎪⎪⎩D1(Q,G) −

∑

S

∫
{E(φ(T,A,W)S(uS) | O) − H(uS, A,W)}dhS(uS)

⎫⎪⎪⎬
⎪⎪⎭

2

.

Let Oi = (Ci, Δi, A,W), i = 1, . . . , n, be an i.i.d. sample from PQ,G. Then, we can
estimate h∗(P | A,W) with h∗n,M defined as the minimizer over h with ‖ h ‖v< M of

1
n

∑n
i=1

{
D1(Q,G)(Oi) −

∑
S
∫
{E(φ(Ti,Ai,Wi)S (uS) | Oi) − H(uS, Ai,Wi)}dhS(uS)

}2
.

Suppose that h∗n,M is a discrete measure so that dh∗n,M,S only puts positive mass on
uS, j, j = 1, . . . , JS, for each S ⊂ {1, . . . , d} (e.g., the analogue of the 2n support
points in the previous section). Let

X(S, j)(Oi) ≡ E(φ(Ti,Ai,Wi)S (uS, j) | Oi) − H(uS, j, Ai,Wi),

and βS, j = dhS(uS, j). As in our general presentation, we then obtain AF(hn,Mn ) =∑
S
∑

j β
∗
n,S, jX(S, j)(O), where βn = βn,Mn ,

βn,M = arg min
β,‖β‖1<M

1
n

n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1(Q,G)(Oi) −
∑

S

∑

j=1

X(S, j)(Oi)βS, j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

,

and Mn is the cross-validation selector.
The above approach becomes computationally intractable when the dimension

of W gets large. As shown in van der Laan et al. (2015), one can often define a
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dimension reduction of O and corresponding model and target parameter so that the
efficient influence curve at P is still the same as it was for the original formulation.
In this case the above method is still tractable.

8.6 Bivariate Survival Function Based on Bivariate
Right-Censored Data

In this section we demonstrate the HAL estimator of the efficient influence curve of
the bivariate survival function based on bivariate right-censored data. This is easily
extended to the HAL estimator of the efficient influence curve of the d-variate sur-
vival function for d-variate right-censored data, for general dimension d ≥ 2. Let
O = (T̃1 = min(T1,C1), Δ1 = I(T1 ≤ C1), T̃2 = min(T2,C2), Δ2 = I(T2 ≤ C2)),
where T = (T1,T2) and C = (C1,C2) are independent with cumulative distribution
functions F and G, respectively. Let PF,G be the probability distribution of O. Let
Δ = (Δ1, Δ2) and T̃ = (T̃1, T̃2), so that we can denote O = (T̃ , Δ). Consider the statis-
tical model M in which F and G are unspecified. Let Ψ : M → IR be the bivariate
survival probability F̄(t10, t20) =

∫
((t10,t20),∞)

dF(x1, x2). We will also use the notation
t0 = (t10, t20). We will denote Ψ (PF,G) also with Ψ (F). The density of O factorizes
in a F and G factor. As a consequence, the efficient influence curve of Ψ at PF,G

in the model M is the same as the efficient influence curve at PF,G in the model
M(G) = {PF,G : F} in which G is known. A gradient of Ψ in the model M(G) is
given by

D(F,G)(O) = κt0 (O)
I(Δ = (1, 1))

Ḡ(T̃ )
− Ψ (F),

where κt(O) = I(T̃ > t0). This is the influence curve of the simple IPCW estimator
defined as 1

n

∑n
i=1 κt0 (Oi)I(Δi = (1, 1))/Ḡ(T̃i) and is thus indeed a gradient. In the

model M(G) the score operator AF : L2
0(F) → L2

0(PF,G) that maps the score h ∈
L2

0(F) of dFε,h(t) = (1 + εh(t))dF(t) into the score of {PFε,h,G : ε} is given by:

AF(h)(O) = EF(h(T ) | T̃ , Δ)

= h(T )I(Δ = (1, 1)) +

∫ ∞
T̃1

h(t1, T̃2)F01(dt1, T̃2)

F̄01(T̃1, T̃2)
I(Δ = (0, 1))

+

∫ ∞
T̃2

h(T̃1, t2)F10(T̃1, dt2)

F̄10(T̃1, T̃2)
I(Δ = (0, 1))

+

∫ ∞
T̃1

∫ ∞
T̃2

h(t1, t2)dF(t1, t2)

F̄(T̃1, T̃2)
I(Δ = (0, 0)),

where F01(t1, t2) = d
dt2

F(t1, t2), F̄01(t1, t2) =
∫ ∞

t1
F01(ds1, t2), F10(t1, t2) = d

dt1
F(t1, t2)

and F̄10(t1, t2) =
∫ ∞

t2
F10(t1, ds2). Let Fh =

∫
hdF and represent an h ∈ L2

0(F) with

h − Fh for an h ∈ L2(F). The efficient influence curve is given by AF(h∗), where

h∗(P) = arg min
h∈L2(F)

P {D(F,G) − AF(h) + Fh}2 .
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We can represent a bivariate cadlag function h ∈ L2(F) with finite variation norm as
follows:

h(t1, t2) = h(0, 0) +
∫ t1

0
h(dx1, 0) +

∫ t2

0
h(0, dx2) +

∫ t1

0

∫ t2

0
h(dx1, dx2)

= h(0, 0) +
∫

φ1,x1 (t1)h(dx1, 0) +
∫

φ2,x2 (t2)h(0, dx2)

+

∫
φx1,x2 (t1, t2)h(dx1, dx2),

where φ1,x1 (t) = I(t1 ≥ x1), φ2,x2 (t) = I(t2 ≥ x2), and φx1,x2 (t) = I(t1 ≥ x1, t2 ≥ x2).
Thus, in this way we have written the function h as a linear infinite combination of
indicator functions φ1,x1 , φ2,x2 , φx across all x-values. Since AF is a linear operator,
this yields the following representation of AF(h):

AF(h) = h(0, 0) +
∫

AF(φ1,x1 )h(dx1, 0) +
∫

AF(φ2,x2 )h(0, dx2)

+

∫
AF(φx1,x2 )h(dx1, dx2)

≡ h(0, 0) +
∫

F̄1(x1 | O)h(dx1, 0) +
∫

F̄2(x2 | O)h(0, dx2)

+

∫
F̄(x1, x2 | O)h(dx1, dx2),

where we denoted the conditional probabilities T1 > x1, given O, T2 > x2, given O,
and T > (x1, x2), given O, with F̄1(x1 | O), F̄2(x2 | O) and F̄(x | O), respectively.
Note also that

Fh = h(0, 0) +
∫

F̄1(x1)h(dx1, 0) +
∫

F̄2(x2)h(0, dx2) +
∫

F̄(x1, x2)h(dx1, dx2),

where F̄1(x1) = PF(T1 > x1), F̄2(x2) = PF(T2 > x2) and F̄(x1, x2) = PF(T1 >
x1,T2 > x2). Thus, we have proven the following representation of AF(h − Fh) for
any cadlag function h with finite variation norm:

AF(h − Fh) =
∫

(F̄1(x1 | O) − F̄1(x1))h(dx1, 0) +
∫

(F̄2(x2 | O) − F̄2(x2))h(0, dx2)

+

∫
(F̄(x | O) − F̄(x))h(dx)

Let O1, . . . ,On be an i.i.d. sample from PF,G. Then we can approximate h∗ with

h∗n,M = arg min
h,‖h‖v<M

1
n

n∑

i=1

{D(F,G)(Oi) − AF(h − Fh)(Oi)}2 .

We claim that this minimum is attained by a discrete measure h for which h(dx1, 0)
only puts mass on {T̃1i : i}, h(0, dx2) only puts mass on {T̃2i : i}, and h(dx1, dx2)
only puts mass on {(T̃i : i}. Let’s denote these three set of support points with {m1 j :
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j = 1, . . . , n}, {m2 j : j = 1, . . . , n} and {mj : j = 1, . . . , n}, respectively. For such a
step-function h we have:

AF(h − Fh)(Oi) =
∑

j

(F̄1(m1 j | Oi) − F̄1(m1 j))h(dmj1, 0)

+
∑

j

(F̄2(m2 j | Oi) − F̄2(m2 j))h(0, dm2 j) +
∑

j

(F̄(mj | Oi) − F̄(mj))h(dmj).

This yields a representation of h∗n,M as a finite dimensional linear regression least
squares estimator. Let β1 j = h(dm1 j, 0), β2 j = h(0, dm2 j), β j = h(dmj), and let
β = (β1 j, β2 j, β j : j = 1, . . . , n) be the vector with all these components. In addition,
let Xi = (X1i( j), X2i( j), Xi( j) : j = 1, . . . , n), where

X1i( j) = F̄1(m1 j | Oi) − F̄1(m1 j)

X2i( j) = F̄2(m2 j | Oi) − F̄2(m2 j)

Xi( j) = F̄(mj | Oi) − F̄(mj).

In addition, let ‖ β ‖1=
∑n

j=1 | β1 j | + | β2 j | + | β j | be the L1-norm of this vector β
of coefficients. We can now represent AF(h − Fh) as a linear regression model:

AF(h − Fh)(Oi) =
∑

j

β1 j(F̄1(m1 j | Oi) − F̄1(m1 j)) +
∑

j

β2 j(F̄2(m2 j | Oi) − F̄2(m2 j))

+
∑

j

β j(F̄(mj | Oi) − F̄(mj))

≡ β�Xi,

while the variation norm of h is defined by ‖ β ‖1.
For a given M, let’s define constrained least squares regression estimator:

βn,M = arg min
β,‖β‖1<M

1
n

n∑

i=1

{
D(F,G)(Oi) − β�Xi

}2
.

This is a standard lasso least squares regression estimator with L1-constraint set at
M. Let Mn be the cross-validation selector of M, and define βn = βn,Mn . Then, our
estimator of the efficient influence curve D∗(P) is given by:

D∗
n(P)(O) = β�n Xi

=

n∑

j=1

β1n jF̄1(m1 j | Oi) − F̄1(m1 j)) +
∑

j

β2n j(F̄2(m2 j | Oi) − F̄2(m2 j))

+
∑

j

βn j(F̄(mj | Oi) − F̄(mj)).

By our theoretical result, this estimator D∗
n(P) converges to D∗(P) in L2(P)-norm at

a rate faster than n−1/4.
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8.7 Causal Effect of Binary Treatment on Bivariate Survival
Probability Based on Bivariate Right-Censored Data

Consider the extended right-censored data structure for bivariate survival data:

O = (W, A, T̃1 = min(T1,C1), Δ1 = I(T1 ≤ C1), T̃2 = min(T2,C2), Δ2 = I(T2 ≤ C2)),

where W are baseline covariates, A ∈ {0, 1} is a binary treatment. We use the notation
of the previous subsection, such as T = (T1,T2), C = (C1,C2) , Δ = (Δ1, Δ2) and
T̃ = (T̃1, T̃2). Thus, we can denote this observed data structure with O = (W, A, T̃ , Δ).
Let QW be the marginal probability distribution of W, g(a | W) = P(A = a|W) be the
treatment mechanism, and let F(· | A,W) and Gc(· | A,W) denote the conditional
cumulative distribution functions of T and C, given A,W, respectively. Let G =
(g,Gc) and Q = (QW , F). Note that the probability distribution PQ,G = PQW ,F,g,Gc of
O is indexed by these four parameters. Consider the statistical model M = {PQ,G :
Q,G ∈ G} in which QW and F(· | A,W) are unspecified, while we might have some
knowledge on the treatment and censoring mechanism so that G = (g,Gc) might be
restricted to a certain set G.

Let Ψ : M → IR be the treatment specific bivariate survival probability at t0 =
(t10, t20)

Ψ (P) = F̄a(t0) =
∫

P(T > t0 | A = a,W = w)QW (dw)

=

∫
F̄(t0 | A = a,W = w)QW (dw).

Since Ψ (P) only depends on P through Q = (QW , F), we also use the notation Ψ (Q).
The density of O factorizes in a Q and G = (g,Gc) factor. As a consequence, the
efficient influence curve of Ψ at PQ,G in the model M is the same as the efficient
influence curve at PQ,G in the model M(G) = {PQ,G : Q} in which G is known.

A gradient of Ψ in the model M(G) is given by

D(Q,G)(O) = κt0 (O)
I(Δ = (1, 1), A = a)

g(A | W)Ḡc(T̃ | A,W)
− Ψ (Q),

where κt(O) = I(T̃ > t0). This is the influence curve of the simple IPCW estimator
defined as 1

n

∑n
i=1 κt0 (Oi)I(Δi = (1, 1), Ai = a)/{g(Ai | Wi)Ḡ(T̃i | Ai,Wi)} and is

thus indeed a gradient. The tangent space TQW (P) generated by fluctuations dQW =

(1 + εS W (W))dQW with S W ∈ L2
0(QW ) is L2

0(QW ) itself. Let

D∗
W (Q,G) = EP(D(Q,G)(O) | W) = F̄(t0 | A = a,W) − F̄a(t0).

Note that this represents the projection of D(Q,G) onto the tangent space TQW (P),
and thus represents a component of the efficient influence curve D∗(P).

Let L2
0(F) denote the Hilbert space of functions of (W, A,T ) with conditional

mean zero, given W, A. In the model M(G) the score operator AF : L2
0(F) →
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L2
0(PQ,G) that maps the score h ∈ L2

0(F) of dFε,h(t | A,W) = (1 + εh(t | A,W))dF(t |
A,W) into the score of {PQW ,Fε,h,G : ε} is given by:

AF(h)(O) = EF(h(T | A,W) | W, A, T̃ , Δ)

= h(T | A,W)I(Δ = (1, 1))

+

∫ ∞
T̃1

h(t1, T̃2 | A,W)F01(dt1, T̃2 | A,W)

F̄01(T̃1, T̃2 | A,W)
I(Δ = (0, 1))

+

∫ ∞
T̃2

h(T̃1, t2 | A,W)F10(T̃1, dt2 | A,W)

F̄10(T̃1, T̃2 | A,W)
I(Δ = (0, 1))

+

∫ ∞
T̃1

∫ ∞
T̃2

h(t1, t2 | A,W)dF(t1, t2 | A,W)

F̄(T̃1, T̃2 | A,W)
I(Δ = (0, 0)),

where F01(t1, t2 | A,W) = d
dt2

F(t1, t2 | A,W), F̄01(t1, t2 | A,W) =
∫ ∞

t1
F01(ds1, t2 |

A,W), F10(t1, t2 | A,W) = d
dt1

F(t1, t2 | A,W) and F̄10(t1, t2 | A,W) =
∫ ∞

t2
F10(t1, ds2 |

A,W). Thus the tangent space TF(P) generated by F is given by R(AF), the closure
of the range of this score operator AF : L2

0(F) → L2
0(PQ,G). Let Fh = E(h | A,W) =∫

h(t | A,W)dF(t | A,W) and represent an h ∈ L2
0(F) with h − Fh for an h ∈ L2(F).

The efficient influence curve D∗(P) = D∗(Q,G) is the projection D∗
W (P) of

D(Q,G) onto TQW (P) plus the projection D∗
T (P) of D(P) onto R(AF). Thus, the effi-

cient influence curve is the orthogonal sum D∗(Q,G) = D∗
W (Q,G)+D∗

T (Q,G). Since
R(AF) is embedded in the space of functions of O with conditional mean zero, given
A,W, we have that D∗

T (P) is also the projection of D1(P) ≡ D(P) − E(D(P) | A,W).
We have D∗

T (Q,G) = AF(h∗), where

h∗(P) = arg min
h∈L2(F)

P {D1(Q,G) − AF(h) + Fh}2 ,

where we recall that for a function h(O), Fh = E(h | A,W) depends on A,W. We
can obtain this minimum by minimizing the conditional expectation of the squared
error loss, given (A,W), over all functions of T , which then defines an optimal T →
h∗(T, A,W), and by doing this for all possible values of (A,W), it yields the full
solution (T, A,W) → h∗(P)(T, A,W). Let’s denote this optimal T → h(T ), for this
(A,W)-specific minimization problem, with h∗(P | A,W), and note h∗(P)(T, A,W) =
h∗(P | A,W):

h∗(P | A,W) = arg min
h∈L2(FT )

EP

(
{D1(Q,G) − AF(h) + Fh}2 | A,W

)
,

where we define L2(FT ) as the space of functions T → h(T ) of T = (T1,T2) only.
Notice that for a given A,W, we now view AF : L2(FT ) → L2(P|A,W ) as a linear
operator from L2(FT ) (functions of T ) into the space of functions of (T̃ , Δ).

For a given A,W, we now proceed in the same way as in the previous section,
analogue to the example “Causal effect of binary treatment on interval censored time
to event”. We will not repeat these calculations here.
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8.8 Discussion

Our interval censored data and bivariate right-censored data examples rep-
resent problems where the efficient influence curve does not exist in closed
form, and the construction of efficient estimators has been extremely chal-
lenging, accordingly. These examples demonstrate that we can estimate these
complex efficient influence curves with HAL least squares linear regression,
thereby making the construction of a one-step estimator or TMLE relatively
straightforward. This is quite a remarkable result!

In our bivariate survival function example with covariates, we demonstrated that
we can even estimate the efficient influence curve of the causal effect of a binary
treatment A on a bivariate survival function controlling for a large dimensional co-
variate vector W, by using such lasso regression estimators for a given (A,W). This
makes it now possible to develop a TMLE of this causal effect on a bivariate sur-
vival function with bivariate right-censored data. We also demonstrated this same
approach for the efficient influence curve of the causal effect of a binary treatment
on a truncated mean of the survival time based on an extended interval censored data
structure O = (W, A, Δ1,C1, . . . , ΔM ,CM). This allows us estimate a causal effect of
treatment on a time to event that is subject to interval censoring. Again, the latter
represents another very interesting estimation problem with important practical ap-
plications which will need to be pursued in the future. Our HAL estimator of D∗(P)
relies on an i.i.d. sample from P. However, we also show (without formal proof) that
if the goal is to estimate D∗(P0) and P represents a consistent estimator of P0, then
we could simply apply the HAL estimator to the original sample from P0 instead.
This makes our proposed HAL estimator particularly convenient.

The approach for estimation of the efficient influence curve presented in this
chapter provides an alternative to the methods proposed in Frangakis et al. (2015);
Luedtke et al. (2015a); van der Laan et al. (2015). The latter type of research, which
started with the inspiring article Frangakis et al. (2015), concerns computerizing the
estimation of the efficient influence curve (and thereby efficient estimation) without
the need for being trained in efficiency theory. Clearly, the approach presented in
this chapter still requires the user to formulate an initial gradient, the score operator
and the corresponding regression problem. Nonetheless, importantly, it avoids the
need for closed form representations of the canonical gradient and mathematical
and numerical computation of the projection of an initial gradient on the tangent
space, but instead utilizes the state of the art in machine learning for prediction to
approximate this latter projection.



Chapter 9
Data-Adaptive Target Parameters

Alan E. Hubbard, Chris J. Kennedy, and Mark J. van der Laan

What factors are most important in predicting coronary heart disease? Heart disease
is the leading cause of death and serious injury in the United States. To address this
question we turn to the Framingham Heart Study, which was designed to investi-
gate the health factors associated with coronary heart disease (CHD) at a time when
cardiovascular disease was becoming increasingly prevalent. Starting in 1948, the
prospective cohort study began monitoring a population of 5209 men and women,
ages 30–62, in Framingham, Massachusetts. Those subjects received extensive med-
ical examinations and lifestyle interviews every 2 years that provide longitudinal
measurements that can be compared to outcome status. The data has been analyzed
in countless observational studies and resulted in risk score equations used widely
to assess risk of coronary heart disease. In our case, we conduct a comparison anal-
ysis to Wilson et al. (1998) using the data-adaptive variable importance approach
described in this chapter.
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This chapter describes using the data to both define and estimate a target
parameter, drawing inferences about this parameter.

Consider predictors R (blood pressure, total cholesterol, smoking status, diabetes
status, age, and others) and an outcome, where Y = 1 for CHD diagnosis and Y = 0
for no CHD diagnosis. We want to know which of these variables is “most impor-
tant” for explaining (predicting) Y , so this is a variable importance measure (VIM)
estimation problem. We propose a procedure that targets the VIM, one variable
at a time, as opposed to deriving variable importance measures as a byproduct of
some parametric model or machine learning procedure (Grömping 2009; Auret and
Aldrich 2011). In this way, we can optimize performance of the VIM estimators as
well as derive robust inference even when deriving such measures data adaptively.
We do so by a combination of using a data-adaptive parameter approach (Hubbard
and van der Laan 2016; Hubbard et al. 2016) and cross-validated targeted maximum
likelihood estimation (CV-TMLE).

Others (van der Laan 2006b) have advocated for estimation of variable impor-
tance measures via parameters motivated by causal inference, and we have applied
such techniques to rank variables by importance for acute trauma patient outcomes
(Hubbard et al. 2013), quantitative trait loci (Wang et al. 2011a,b, 2014), biomarker
discovery (Bembom et al. 2009), and health care spending (Rose 2018). We loop
through each variable of A ∈ R, defining W as everything else: W = R \ A. For one
loop, define the data, for a particular variable of interest, as O = (W, Δ, Δ ∗ (A,Y)),
where Δ is missingness indicator for either A or Y (=1 if both not missing, 0 other-
wise). Assume for now that A is discrete and there is a known “highest risk” level
(aH) and a lowest risk level (aL). Then, a candidate parameter for variable impor-
tance that would allow comparisons across different candidate predictors (each with
their own (aL, aH)):

EW {E(Y | A = aH ,W) − E(Y | A = aL,W)}, (9.1)

or a weighted average of the stratified mean differences comparing, within strata W,
subjects with aH versus those with aL. Though we do not emphasize causal inter-
pretations in this chapter, under standard identification assumptions, (9.1) identifies
E{Y(aH) − Y(aL)}, where Y(a) is the counterfactual outcome for patient if, possi-
bly contrary to fact, A was set to a. More generally, (9.1) is a VIM, which can
be compared (and ranked in importance) across the different covariates in R, and
it is also a pathwise-differentiable parameter with the possibility of deriving semi-
parametrically efficient, asymptotically normally distributed estimators. However,
the story becomes more complex if aH and aL are not a priori known, but must be
“discovered” data adaptively.
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9.1 Example: Defining Treatment or Exposure Levels

Candidates for A are not always discrete and even when they are, there are often
no objectively defined high- and low-risk levels for predictors. Thus, consider the
situation where one uses the data to define the low-risk level aL and the high-risk
level aH . Let Pn define the empirical distribution. An algorithm applied to Pn could
be used to define these low- and high-risk levels in A, or (aL(Pn), aH(Pn)). Let Q̂ :
MNP → Q = {Q(P) : P ∈ M} be an estimator of the true regression Q0(A,W) =
EP0 (Y | A,W), and Qn = Q̂(Pn) is its realization when applied to the data. If A were
discrete with arbitrary levels A = (a1, a2, . . . , ai, . . . , aK), we could define aL(Pn)
and aH(Pn) as

aL(Pn) = arg mina∈A
1
n

n∑

i=1

Qn(a,Wi), (9.2)

aH(Pn) = arg maxa∈A
1
n

n∑

i=1

Qn(a,Wi). (9.3)

That is, one “discovers” levels (aL(Pn), aH(Pn)) that maximize the substitution esti-
mate of (9.1) according to some regression estimate Qn(A,W). This can be used to
define a data-adaptive target parameter:

ΨaL(Pn),aH (Pn)(P) = EP{EP(Y | A = aH(Pn),W) − EP(Y | A = aL(Pn),W)} (9.4)

for which the substitution estimator is

1
n

∑

i=1

{Qn(aH(Pn),Wi) − Qn(aL(Pn),Wi)}. (9.5)

Because of the dual use of this data, this substitution estimator (9.5) will suffer from
overfitting bias. To illustrate this, consider a data-generating distribution where

EW {E(Y | A = aH(Pn),W) − E(Y | A = aL(Pn),W)} = 0,

the estimate (9.5) will always be positively biased (it is always ≥ 0). A common
concern is that exploratory exercises like this will suffer from erroneous findings
(Ioannidis 2008; Broadhurst and Kell 2006). On the other hand, if sample splitting
is done such that (1) a training sample was used to define (aL(Pn,tr), aH(Pn,tr)), and
(2) a separate estimation sample was used to estimate EW {E(Y | A = aH(Pn,tr),W)−
E(Y | A = aL(Pn,tr),W)}, then valid statistical inference is possible. Of course, with
such a sample splitting method the power is heavily reduced due to the reduction in
estimation sample size.
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This chapter presents a data-adaptive procedure that uses the data to define
the target parameter, estimate it consistently and efficiently, and derive ro-
bust measures of uncertainty and confidence intervals. As in Hubbard et al.
(2016), we discuss methods that use sample splitting to avoid bias from over-
fitting, but still use the entire data set to estimate a data-adaptive parameter.
These methods apply in circumstances where there is little constraint on how
the data is explored to generate potential parameters of interest. Such methods
can capitalize on the very large sample sizes and/or very high dimension as-
sociated with “Big Data”. We first describe the data-adaptive target parameter
approach (Hubbard and van der Laan 2016; Hubbard et al. 2016) that uses
repeated sample splitting, and subsequently we enhance this approach with
CV-TMLE (Chap. 27 in van der Laan and Rose 2011). We will demonstrate
the technique to the Framingham Heart Study.

9.2 Methodology for Data-Adaptive Parameters

Let O1, . . . ,On be i.i.d. with probability distribution P0, and assume that it is known
that P0 is an element of a specified statistical model M. We let Pn represent the
empirical distribution of this random sample of n draws from P0. Cross-validation
is a key ingredient of our proposed method. To simplify the presentation, we present
the relevant procedures in the context of V-fold cross-validation.

V-fold cross-validation involves the following steps: (1) {1, . . . , n} is divided into
V equal size subgroups, (2) for each v, an estimation-sample is defined by the v-th
subgroup of size n/V , while the parameter-generating sample is its complement. For
split v, let Pn,vc be the empirical distribution of the parameter-generating sample, and
Pn,v is the empirical distribution of its compliment, which we call the estimation-
sample. For an observation Oi, let Zi ∈ {1, . . . ,V} denote the label of the subgroup
that contains Oi. For split v, the parameter-generating sample Pn,vc is used to gener-
ate a target parameter mapping ΨPn,vc : M → R, and let Ψ̂Pn,vc : MNP → R be the
estimator mapping of this target parameter.

For the sake of statistical inference, the choice of target parameter mapping and
corresponding estimator mapping can be informed by Pn,vc , but not by Pn,v. We
define the sample-split data-adaptive statistical target parameter as Ψn : M → R
with

Ψn(P) = Ave{ΨPn,vc (P)} ≡ 1
V

V∑

v=1

ΨPn,vc (P).

The statistical estimand of interest is thus

ψn,0 = Ψn(P0) = Ave{ΨPn,vc (P0)} = 1
V

V∑

v=1

ΨPn,vc (P0). (9.6)
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This target parameter mapping depends on the data, which is the reason for calling
it a data-adaptive target parameter. Given an estimator on each estimation sample,
Ψ̂Pn,vc (Pn,v), the corresponding estimator of the data-adaptive estimand ψn,0 is given
by:

ψn = Ψ̂ (Pn) = Ave{Ψ̂Pn,vc (Pn,v)} = 1
V

V∑

v=1

ΨPn,vc (Pn,v). (9.7)

In Hubbard et al. (2016) and Hubbard and van der Laan (2016) we showed that√
n(ψn − ψn,0) converges in distribution to mean zero normal distribution with vari-

ance σ2 under weak regularity conditions, whose variance σ2 can be consistently
estimated, allowing the construction of confidence intervals and hypothesis tests.
Note that in this methodology the estimator of ΨPn,vc (P0) is only based on Pn,v. In
a later section, we present a CV-TMLE approach that estimates ΨPn,vc (P0) with a
TMLE based on Pn,v, but where the initial estimators of the nuisance parameters in
the TMLE can be based on Pn,vc . Thus, in this CV-TMLE approach only the target-
ing step in the TMLE (which only involves fitting a low dimensional coefficient ε)
is based on the separate sample Pn,v.

9.3 TMLE of v-Specific Data-Adaptive Parameter

Consider the data-adaptive parameter (9.4), where we have data adaptively deter-
mined the aL and aH on a single “training” sample, Pn,vc , so the parameter of interest
is

ΨPn,vc (P0) = EW,0{E0(Y | A = aH(Pn,vc ),W) − E0(Y | A = aL(Pn,vc ),W)} (9.8)

Like above, define Q(A,W) ≡ EP(Y | A,W), with Q0(A,W) = E0(Y | A,W) being
the true regression function. Treating the (aL(Pn,vc ), aH(Pn,vc )) as fixed after being
determined (by some algorithm) in the training/parameter generating sample, then
the estimator of (9.8) can be just the difference of estimators of two “adjusted”
means, a problem well known in causal inference literature (e.g., see Chap. 4 in
Targeted Learning, van der Laan and Rose 2011). Let Qn,v = Q̂(Pn,v) be an esti-
mate of Q0 based on the estimation sample Pn,v, v = 1, . . . ,V , where Q̂ denotes a
particular estimator. Consider the substitution estimator equivalent to (9.5),

Ψ̂Pn,vc (Pn,v) =
1

nV

∑

i:Zi=v

{Qn,v(aH(Pn,vc ),Wi) − Qn,v(aL(Pn,vc ),Wi)}, (9.9)

where Qn,v = Q̂(Pn,v).
In words, this is the difference of averages of the predicted values (based on a

fit of Q on the estimation sample, or Qn,v) across the observations on the estimation
at the observed covariates, Wi, and the variable of interest, A, set at two values
determined on the training sample, aH(Pn,vc ) versus aL(Pn,vc ). If Q is estimated in a
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very large (semiparametric model) by using, for instance, machine learning methods
(such as the super learner; van der Laan et al. 2007), then the bias would be reduced
relative to estimation according to a misspecified parametric model. However, such
a substitution estimator is overly biased and not asymptotically linear, so that robust
statistical inference based on this estimator is highly problematic. However, as is the
subject of this book, a targeted maximum likelihood estimator based on this initial
estimator reduces bias and under weak assumptions, has an asymptotically normal
sampling distribution. Let’s define such a TMLE.

The efficient influence curve of ΨaL(Pn,vc ),aH (Pn,vc )(P0) = EP0 {Q0(aH(Pn,vc ),W) −
Q0(aL(Pn,vc ),W)} is given by

D∗
Pn,vc (O) =

{
I(A = aH(Pn,vc ))
g0(aH(Pn,vc ) | W)

−
I(A = aL(Pn,vc ))
g0(aL(Pn,vc ) | W)

}
(Y − Q0(A,W))

+Q0(aH(Pn,vc ),W) − Q0(aL(Pn,vc ),W) − ΨaL(Pn,vc ),aH (Pn,vc )(P0).

This suggests the following least favorable submodel {Qn,v,ε : ε} through Qn,v at
ε = 0:

LogitQn,v,ε(A,W) = LogitQn,v(A,W) + εHPn,vc (A,W; g), (9.10)

where

HPn,vc (A,W; g) =
I(A = aH(Pn,vc ))
g(aH(Pn,vc ) | W)

−
I(A = aL(Pn,vc ))
g(aL(Pn,vc ) | W)

, (9.11)

and g(a | W) ≡ P(A = a | W). By estimating g on the estimation sample we obtain
the so-called clever covariate, HPn,vc (A,W; gn,v), providing the resulting TMLE of
ΨPn,vc (P0):

Ψ̂T MLE
Pn,vc (Pn,v) =

1
nV

∑

i:Zi=v

{Qn,v,ε(n,v) (aH(Pn,vc ),Wi) − Qn,v,ε(n,v) (aL(Pn,vc ),Wi)}, (9.12)

where ε(n,v) is the maximum likelihood estimate of the coefficient ε in front of
HPn,vc (·; gn,v) based on Pn,v.

Let’s now discuss estimation of g0. Although A can have many levels, we only
need to predict A = a for two values, A = aL(Pn,vc ) and A = aH(Pn,vc ). On the es-
timation sample Pn,v, g0 could be estimated with a multinomial outcome machine
learning algorithm. Alternatively, one can use more commonly implemented ma-
chine learning algorithms for binary outcomes by running separate logistic regres-
sions for fitting g0(a | W) for each a separately, and normalizing the estimates so that
the resulting estimate of g0 is a proper conditional probability distribution. Since we
only need to know the distribution g0 at two values, one could use the latter approach
to fit a conditional distribution of A∗ | W, where A∗ = A if A ∈ {aL(Pn,vc ), aH(Pn,vc )}
and it equals a third value otherwise. This will be the approach used below in our
data analysis.

Along with the TMLE, comes the estimated influence curve at each observation
Oi in the estimation sample Pn,v, which is given by
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D∗
n,v,Pn,vc (O) =

[
I(A = aH(Pn,vc ))
gn,v(aH(Pn,vc )|W)

−
I(A = aL(Pn,vc ))
gn,v(aL(Pn,vc )|W)

]
{Y − Qn,v,ε(n,v) (A,W)}

+
[
Qn,v,ε(n,v) (aH(Pn,vc ),W) − Qn,v,ε(n,v) (aL(Pn,vc ),W)

]
− Ψ̂T MLE

Pn,vc (Pn,v).

(9.13)

These estimated influence curve values (9.13) provide us with an estimate of the
standard error of the TMLE Ψ̂T MLE

Pn,vc
(Pn,v) of ΨPn,vc (P0):

se(Ψ̂T MLE
Pn,vc ) =

√
v̂ar(D∗

n,v,Pn,vc
(O))

n/V

where v̂ar(D(O)) is the sample variance of D(O) w.r.t. estimation sample Pn,v.

9.4 Combining v-Specific TMLEs Across Estimation Samples

We can define an average split-specific data-adaptive parameter as in (9.6) above:

Ψn(P0) =
1
V

V∑

v=1

ΨPn,vc (P0).

One can estimate this as an average of the split-specific TMLE estimates, just as in
(9.7):

Ψ̂ (Pn) =
1
V

V∑

v=1

Ψ̂T MLE
Pn,vc (Pn,v). (9.14)

The asymptotic variance of this estimator can be estimated as

σ2
n =

1
V

V∑

v=1

Pn,v(D∗
n,v,Pn,vc )2, (9.15)

where (9.15) is the average of the V sample-specific estimates of the variance of
the v-specific influence curves. The standard error of the estimator Ψ̂ (Pn) can be
estimated as

se(Ψ̂ (Pn)) = σn/
√

n.

As shown in Hubbard et al. (2016) and Hubbard and van der Laan (2016), under
weak conditions, Ψ̂ (Pn) is a consistent and asymptotically linear estimator of (9.6)
and the above standard error provides valid asymptotic 0.95-confidence intervals
ψn ± 1.96σn/

√
n for Ψn(P0).



132 A. E. Hubbard et al.

9.5 CV-TMLE

The v-specific TMLE of ΨPn,vc (P0) is only based on the sample Pn,v of size n/V .
Fortunately, there is a modification of the procedure presented in the previous sec-
tion that accomplishes (the apparently) conflicting goals for the same statistical as-
sumptions presented in theorem 1 in Hubbard et al. (2016), that is (1) using more
of the data for estimating the data-generating distributions used in the estimator of
the data-adaptive parameter, and (2) not increasing bias via over-fitting: CV-TMLE
(Chap. 27 in van der Laan and Rose 2011) provide the theory and general frame-
work showing, for instance, that CV-TMLE is more robust than standard TMLE (it
can guarantee asymptotic sampling distribution results in an even bigger statistical
model). In addition, CV-TMLE can also be used for estimating the type of data-
adaptive parameters highlighted in this chapter. For instance, it is particularly useful
for both using the data to estimate an optimal treatment rule (Luedtke and van der
Laan 2016b), as well as to estimate the impact of using such a rule on the mean out-
come (van der Laan and Luedtke 2014; Luedtke and van der Laan 2016a). Before
discussing the estimation of our particular data-adaptive parameter in our variable
importance application, we first provide a general description of CV-TMLE for gen-
eral data-adaptive parameters as presented in van der Laan and Luedtke (2014).

9.6 CV-TMLE for Data-Adaptive Parameters

Let D be an index set for a collection of possible definitions of a parameter. For
example in our case, this would be the set of all values of (aL, aH). In addition,
assume that, for each d ∈ D, we have a statistical target parameter Ψd : M → IR.
For example, if d represents a certain treatment rule, then we might define Ψd(P) =
EPYd. Let d̂ : MNP → D be an algorithm that maps an empirical distribution into
an estimate of a desired index d0. In our example, d̂(Pn) = (aL(Pn), aH(Pn)) and the
corresponding target parameter (9.8) learned on Pn,vc would be written as:

Ψd̂(Pn,vc )(P) = EP{EP(Y | A = aH(Pn,vc ),W) − EP(Y | A = aL(Pn,vc ),W)}.

In this chapter we are concerned with presenting a method that provides an esti-
mator and statistical inference for the following data-adaptive target parameter (as
in 9.6) indexed by d̂:

ψ0,n = Ave{Ψd̂(Pn,vc )(P0)} = 1
V

V∑

v=1

Ψd̂(Pn,vc )(P0).

Below we present a modification of the average of TMLE estimators presented
above, which is called the CV-TMLE. This CV-TMLE will be denoted with ψ∗

n.
Previous results (van der Laan and Luedtke 2014) have shown that this CV-TMLE
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ψ∗
n provides robust statistical inference, without relying on the empirical process

condition (i.e., Donsker class condition) that restricts the adaptivity of d̂(Pn) and the
corresponding estimators of Ψd̂(Pn,vc )(P0).

For each target parameter Ψd, let D∗
d(P0) be its efficient influence curve at P0.

Assume that Ψd(P0) = Ψd(Qd
0) only depends on P0 through a parameter Qd

0, and
assume that D∗

d(P0) = D∗
d(Qd

0, g
d
0) depends on P0 through Qd

0 and a nuisance param-
eter gd

0; these nuisance parameters are indexed by d because the choice d of target
parameter can affect the definition of these parameters.

The canonical gradient D∗
d(P) of the pathwise derivative of Ψd : M → IR implies

a second-order Taylor expansion with second-order term Rd(Qd,Qd
0, g

d, gd
0):

Ψd(Qd) − Ψd(Qd
0) = (P − P0)D∗

d(Qd, gd) + Rd(Qd,Qd
0, g

d, gd
0).

Let Q̂d : MNP → Qd and ĝd : MNP → Gd be initial estimators of Qd
0 and gd

0, respec-
tively; Ld(Qd) is a valid loss function for Qd

0 such that Qd
0 = arg minQd P0Ld(Qd);

{Qd(ε) : ε} is a submodel through Qd at ε = 0 with a univariate or multivariate
parameter ε so that the linear span of the generalized score includes the efficient
influence curve at (Qd, gd):

D∗
d(Qd, gd) ∈ 〈 d

dε
Ld(Qd

ε )
∣∣∣∣∣
ε=0

〉,

where 〈 f 〉 = {∑ j β j f j : β} denotes the linear space spanned by the components of
f . For a sample with empirical distribution Pn, let {Q̂d

ε (Pn) : ε} be this submodel
through the estimator Q̂d(Pn) at ε = 0, using ĝd(Pn). Let’s consider the case that the
TMLE only requires one-step, which can be formally arranged by using a universal
least favorable submodel {Q̂d

ε : ε}. We define

εn,v = arg min
ε

Pn,vLd(Qd
n,vc,ε),

where the submodel {Qd
n,vc,ε : ε} through Qd

n,vc = Q̂d(Pn,vc ) at ε = 0 uses gd
n,vc =

ĝd(Pn,vc ) as estimator of gd
0. This defines a first step TMLE update of Qd

n,vc based on
Pn,v. If we consider the case that the TMLE converges in one-step, as can always be
arranged by using a universal least favorable submodel, and is the case in our exam-
ple, then this implies that this first step TMLE already solves its efficient influence
curve score equation

Pn,vD∗
d(Qd

n,vc,εn,v
, gd

n,vc ) = 0.

Since this holds for each v, we then also have

1
V

V∑

v=1

Pn,vD∗
d(Qd

n,vc,εn,v
, gd

n,vc ) = 0. (9.16)

This key equation (9.16) represents the desired efficient score equation for our target
parameter. In this case that the TMLE only takes one step, this key score equation
can also be established with a single MLE (common in v):
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εn = arg min
ε

1
V

V∑

v=1

Pn,vLd(Qd
n,vc,ε).

In general, if the TMLE is defined by a multiple step TMLE algorithm, then one uses
this multiple step TMLE algorithm applied to Pn,v to determine the TMLE update
Qd∗

n,vc of Qd
n,vc for each v separately, and, again, one could pool across v at each step

of such an multiple step TMLE algorithm. One can view the TMLE-update Qd∗
n,vc as

a TMLE update based on Pn,v in which the initial estimator Qd
n,vc was based on an

external sample Pn,vc .
For notational convenience, we use the notation Qn,vc = Q̂d̂(Pn,vc )(Pn,vc ), and simi-

larly, we define gn,vc = ĝd̂(Pn,vc )(Pn,vc ). In the following we assume a one-step TMLE,
but the generalization to iterative TMLE is immediate.

The key assumption about εn and a corresponding update Qn,vc,εn is that it solves
the cross-validated empirical mean of the efficient influence curve:

1
V

V∑

v=1

Pn,vD∗
d̂(Pn,vc )

(Qn,vc,εn , gn,vc ) = oP(1/
√

n). (9.17)

If one uses a full TMLE update, then, as we showed above, this equation holds with
oP(1/

√
n) replaced by 0, and, if one uses initial estimators of Qd

0, g
d
0 that converge

at a rate faster than n−1/4, then it is possible to show that in great generality the first
step TMLE will still satisfy (9.17).

The proposed estimator of ψ0,n is given by

ψ∗
n ≡

1
V

V∑

v=1

Ψd̂(Pn,vc )(Qn,vc,εn ).

In the current literature we have referred to this estimator as the CV-TMLE. The only
twist relative to the original CV-TMLE is that we change our target on each training
sample into the training sample specific target parameter implied by d̂(Pn,vc ) on the
training sample, while in the original CV-TMLE formulation, the target would still
be Ψd(P0). With this minor twist, the (same) CV-TMLE is now used to target the
average of training sample specific target parameters averaged across the V training
samples. General asymptotic theorems for this CV-TMLE are presented in Sect. A.1.

Suppose gd
0 is known and that we use its known value so that ĝd(Pn) = gd

0. Con-
sider the estimator

σ2
n = Ave

v

[
Pn,v

{
D∗

d̂(Pn,vc )
(Qn,vc,εn , gn,vc )

}2
]

(9.18)

of the asymptotic variance σ2
0 = P0{D∗

d0
(Q, g0)}2 of the CV-TMLE ψ∗

n. In words,
it is the average across v of the v-specific sample variance of the influence curve
of the v-specific CV-TMLE Ψd̂(Pn,vc )(Qn,vc,εn ) as estimator of Ψd̂(Pn,vc )(P0) based on
estimation sample Pn,v. Since the estimates (Qn,vc,εn , gn,vc ) needed for calculating the
plug-in estimate of the v-specific efficient influence curve are already needed for the
estimator ψ∗

n, this estimate of the variance of D∗
d0

is computationally free. Finally,
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given the results in Sect. A.1, an asymptotic 0.95-confidence interval for ψ0,n is given
by ψ∗

n ± 1.96σn/
√

n. This confidence interval is also asymptotically valid if gd
0 is

unknown and both Q̂d and ĝd are consistent estimators of Qd
0 and gd

0. This same
variance estimator and confidence interval can also be used for the case that g0 is
not known and ĝ(Pn) is an MLE of g0 according to some correctly specified model.
In that case, the theorem tells us that it is an asymptotically conservative confidence
interval if Q̂d is inconsistent. Either way, we recommend this confidence interval in
general as long as one can rely on ĝd being a consistent estimator.

9.7 CV-TMLE for Variable Importance Measure

The modification to the algorithm discussed above (9.3) involves two small changes:
Q0 and g0 are estimated on the training sample (the same sample as is used above
to determine the aL, aH), and estimating the coefficient, ε, in front of the clever
covariate, is not just done on the corresponding estimation sample, but on the entire
sample. Thus, (9.12) is modified to the following:

ψCV−T MLE
n,v =

1
nV

∑

i:Zi=v

{Qn,vc,εn (aH(Pn,vc ),Wi) − Qn,vc,εn (aL(Pn,vc ),Wi)}. (9.19)

Here, the differences between (9.12) and (9.19) are that (1) Qn,v = Q̂(Pn,v) and
gn,v = ĝ(Pn,v) changes to Q̂(Pn,vc ) and ĝ(Pn,vc ), respectively, and (2) epsilon changes
from εn,v (estimated only on the estimation sample Pn,v) to εn (estimated on entire
sample). This also requires changing the definition of the clever covariate (9.11) to:

HPn,vc (A,W; gn,vc ) =
I(A = aH(Pn,vc ))

gn,vc (aH(Pn,vc )|W)
−

I(A = aL(Pn,vc ))
gn,vc (aL(Pn,vc )|W)

. (9.20)

Thus, εn is the result of a logistic regression as in (9.10) on Yi on the covariate
HPn,vc (Ai,Wi; gn,vc ) using as offset LogitQn,vc (Ai,Wi), i = 1, . . . , n. This εn provides
the updated Qn,vc,εn for each v = 1, . . . ,V . Finally, the estimator of the target data-
adaptive variable importance measures, ψ0,n is given by

Ψ̂ (Pn) =
1
V

V∑

v=1

ψCV−T MLE
n,v . (9.21)

In addition, for each v = 1, . . . ,V , one estimates the influence curve as:

D∗
Pn,vc (O) =

[
I(A = aH,n,vc )

gn,vc (aH,n,vc |W)
−

I(A = aL,n,vc )
gn,vc (aL,n,vc |W)

]
{Y − Qn,vc,εn (A,W)}

+
[
Qn,vc,εn (aH,n,vc ,W) − Qn,vc,εn (aL,n,vc ,W)

] − ψCV−T MLE
n,v .

Finally, once these modifications are made, we can derive inference equivalently as
done in (9.15).
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This provides an alternative estimator for the same original average data-adaptive
parameter, but convenient asymptotics are available in a bigger model, as shown
by our theorem in Sect. A.1. Heuristically, one should expect much more robust
estimation as the constituent parameters necessary for estimation (Q0, g0, ε) are now
estimated on a larger proportion of the data than the original algorithm described in
Sect. 9.3. This CV-TMLE represents a complex algorithm, but fortunately for this
application, there is an R package available, described in more detail below.

9.8 Software for Data-Adaptive VIMs: varImpact

We provide a software package named varImpact, implemented in the R program-
ming language (R Development Core Team 2016). varImpact is available on the
Comprehensive R Archive Network (CRAN) and Github.1 varImpact implements
the variable importance algorithm described in this chapter, along with additional
data cleaning, reporting, and related features that facilitate variable importance anal-
ysis in real-world datasets. We describe each step of the varImpact algorithm below
as well as the parallelization approach.

1. Preprocessing. varImpact begins by preprocessing the datasets, handling fac-
tor and numeric variables separately. Variables are removed from the analysis if they
exceed a missingness threshold (default of 50%) or have insufficient variation. This
serves to protect against overfitting and focus the analysis on variables with reason-
able measurement rates. The variation step analyzes the density of each variable and
removes those where the 10th and 90th percentiles are equal. When serving as the
variable of interest (but not as an adjustment variable) numeric variables are dis-
cretized into ten quantiles, provided that they include more than ten distinct values.
Missingness indicators are generated for the remaining adjustment variables, for in-
corporation into the adjustment set, and missing values are imputed by k-nearest
neighbors; median and zero-replacement imputation are also supported. The dataset
is partitioned into the V folds for CV-TMLE, with V = 10 recommended in order
to fully utilize the power of CV-TMLE. In the case of a binary outcome variable
this splitting is stratified on the outcome in order to maximize power. The same
partitioning is used for each variable that is analyzed.

2. Observational Study Per Variable. Now we can construct a data-adaptive
observational study of each variable to estimate how the most impactful change in
that variable influences the outcome, controlling for all other adjustment variables
(covariates and missingness indicators). Each variable in turn is considered to be a
multivalued treatment or intervention. We first estimate the mean potential outcome
at each level of the treatment using the training data. We then use the held-out test
data to estimate our variable importance measure as the mean difference between
the level with the highest estimated mean outcome and the level with the lowest.
This is the estimated average treatment effect when the current variable is set at its

1 http://github.com/ck37/varImpact/.

http://github.com/ck37/varImpact/
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“best” level compared to its “worst.” varImpact loops over the CV-TMLE folds as
it analyzes each variable, treating each fold as the test set and the complementary
folds as the training set.

3. Per-fold Analysis. At each fold iteration (minimum 2 CV-TMLE folds) there
are several steps in the analysis. The bins of discretized numeric variables are fur-
ther aggregated by penalized histogram density estimation (Rozenholc et al. 2010;
Mildenberger et al. 2009) to avoid small cell sizes. There is the option to hierarchi-
cally cluster the adjustment variables and then select the top ten most representative
variables (medoids), where we use HOPACH (van der Laan and Pollard 2003) as
clustering algorithm. This dimensionality reduction can drastically speed up com-
putation but can easily result in bias or loss in power. For factor variables we also
check for the minimum number of observations in each cell when the factor levels
are cross-tabulated against a binary outcome variable. Covariates with small cell
sizes can be skipped to save computation time and mitigate overfitting.

We then estimate the adjusted mean outcome at each level or bin a ∈ A for the
training set using TMLE.2 The a-specific adjusted mean outcome is denoted with
θ0(a) ≡ E0,W {Q0(a,W)} and we denote the estimates for a specific training sample vc

with θ̂Pn,vc (a). We identify the bin/level associated with the highest and lowest mean
outcomes:

aL(Pn,vc ) = arg mina∈Aθ̂Pn,vc (a)

aH(Pn,vc ) = arg maxa∈Aθ̂Pn,vc (a).

Observations with the variable’s value in the “high” bin (aH) are effectively the
treatment group, and observations in the “low” bin (aL) are the control group. The
associated SuperLearner model fits for the outcome regression (Q) and propensity
score (g) on the training set are saved. Then on the corresponding test set we apply
the saved Q and g model fits to make the required predictions on the estimation
sample.

4. Pooling of Per-fold Results. Once all the nuisance parameters and aL, aH have
been estimated for each of the V training samples, we can carry out the estimation
of ε based on the complete data set (i.e., union of V test samples). We actually
construct a separate clever covariate for each of the two levels aL, aH (Eq. (9.20))
and estimate the bivariate fluctuation coefficient εn with logistic regression. We then
fluctuate the predicted outcomes to target our mean outcome under the two levels,
and separately for each test set we calculate the split-specific targeted mean outcome
and associated influence curve values. Within each fold the difference of the targeted
mean under the high level (aH) and the targeted mean under the low level (aL) is
our fold-specific ATE (Eq. (9.19)). Similarly, within each fold the difference of the
influence curve for aH and the influence curve for aL yields the influence curve for
the ATE. The estimated sample variance σ2

n,v of the fold-specific ATE is the fold-
specific estimated sample variance σ2

n,v of the influence curve (Eq. (9.18)).

2 The estimated g is truncated to bounds of [0.025, 0.975] as in the TMLE R-package (Gruber
and van der Laan 2012a). As in the TMLE R-package, we use nonnegative least squares as the
meta-learner for both Q and g.
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5. Point Estimation and Inference. To generate the final results we combine the
per-fold parameter estimates. We take the mean of the per-fold ATEs as our point es-
timate of the ATE (Eq. (9.21)): ψn = Ave {ψ̂Pn,vc (Pn,v)}, and the mean of the per-fold
sample variances as the estimated sample variance: σ2

n = Ave {σ2
n,v}. The estimated

standard error is
√
σ2

n/n. We report a normal-based confidence interval and a one-
sided p-value based on the null hypothesis: H0 : ψn,0 ≤ 0. A two-sided test would
not be appropriate because the treatment levels aH and aL were selected to yield a
positive treatment effect. Any negative treatment effect estimate is an indication that
the procedure did not find a treatment effect for that particular variable using the
identified levels.

6. Reporting. In the final reporting stage we adjust for multiple comparisons, de-
termine final statistical significance, and flag any variables with inconsistent results
across the V folds. Our multiple comparison adjustment controls the false discovery
rate through the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995).
We declare the variables with FDR-adjusted p-value smaller than 0.05 as statisti-
cally significant. We state that the results for a particular categorical variable are
consistent if one selects the same aL and aH levels across the V folds. This criterion
could be made more flexible by the analyst, such as requiring only a certain mini-
mum percentage of folds selecting the same aL and aH levels. For numeric variables
we define consistency as all V folds showing the same directionality for the low
and high quantiles. In other words, a consistent result is that for every CV-TMLE
fold aL is a lower quantile than aH , or alternatively for every CV-TMLE fold the
aL is a higher quantile than aH . Variables are sorted by ascending p-value and their
rank, parameter estimate, naive p-value, FDR-adjusted p-value, and 95% confidence
interval are listed.

7. Parallelization. Executing a semiparametric observational study on each vari-
able in a dataset is computationally demanding. This is doubly true for complex
SuperLearner libraries that are necessary for accurate outcome and propensity score
estimation. CV-TMLE compounds the requisite computation, as it essentially con-
ducts the observational study multiple times per variable. To address this varImpact
supports parallelization using the future package, and can seamlessly use multiple
cores on a machine or multiple machines in a cluster. This can yield drastic im-
provements in the total elapsed, or “wall-clock”, time for an analysis.

9.9 Data Analysis: Framingham Heart Study

We apply our variable importance estimation method to the Framingham Coronary
Heart Disease cohort. Wilson et al. (1998) developed sex-specific risk prediction al-
gorithms for coronary heart disease using discretized blood pressure and cholesterol
measurements combined with a few additional variables. The risk equations were
developed from multivariate regression stratified by sex to estimate the association
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of blood pressure,3 cholesterol, age, smoking, and diabetes with future coronary
heart disease (CHD). Cholesterol and blood pressure were binned into categories,
allowing nonmonotonic relationships to be modeled within a linear framework. The
regression modeling was intentionally simple so that concise risk scoring rules could
be implemented by practitioners. The results remain widely used by clinicians for
assessing patient risk of coronary heart disease.

We analyze similar data using the same variables and categorical discretization
but with the varImpact software implementing the CV-TMLE methodology for data-
adaptive target parameters. In particular, we provide comparison analyses for table
5 from the original paper. As in the paper all analyses are stratified by gender. (The
analyzed data is 57% women and 43% men.) We analyze the publicly available
Framingham Longitudinal Data dataset as provided by the Biologic Specimen and
Data Repository Information Coordinating Center at the National Heart, Lung, and
Blood Institute. We restrict our analysis to period 3, when LDL and HDL cholesterol
measurements were collected, and remove subjects who had experienced CHD in
periods 1 or 2. We only evaluate the impact of covariates used in the original paper.

Before we begin we note a few differences in our data as compared with the
original study. (1) Wilson et al. use confidential data from the Framingham origi-
nal cohort and offspring cohort. Their data were collected between 1971 and 1974
whereas ours were collected primarily in 1968. (2) The paper’s dataset includes off-
spring of the original cohort, whereas ours does not. This could feasibly change
the data generating processes. (3) The 1998 paper does not specify how missing
data was handled. We presume that records with missing data were dropped on a
per-table basis. (4) The Framingham Longitudinal Data dataset was anonymized
to protect patient confidentiality, which likely has some influence on our resulting
analysis. Therefore we recommend viewing these results as suggestive rather than
conclusive.

9.9.1 Super Learner Library

We use the following super learner library using the SuperLearner package (Polley
and van der Laan 2013; Polley et al. 2017) library for Q and g estimation (with in-
spiration from the thorough library in Pirracchio et al. 2014), using R version 3.3.2.
The library was developed by optimizing the predictive accuracy of the outcome
regression, which we recommend as a helpful exercise prior to estimating variable
importance.

3 Blood pressure levels are defined by JNC-V (Joint National Committee 1993): optimal (systolic
≤ 120 mm Hg and diastolic ≤ 80 mm Hg), normal blood pressure (systolic 120–129 mm Hg or
diastolic 80–84 mm Hg), high normal blood pressure (systolic 130–139 mm Hg or diastolic 85–89
mm Hg), hypertension stage I (systolic 140–159 mm Hg or diastolic 90–99 mm Hg), and hyperten-
sion stage II–IV (systolic ≥ 160 or diastolic ≥ 100 mm Hg). “When systolic and diastolic pressures
fell into different categories, the higher category was selected for the purposes of classification.”
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• Logistic regression
• Elastic net (1) with only main terms, and (2) with main terms and two-way inter-

actions; each with six configurations using the glmnet package (Friedman et al.
2010, version 2.0-5), (α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0})

• Bayesian linear regression using the arm package (Gelman et al. 2010, version
1.9-3)

• Multivariate adaptive regression splines with three configurations (degree ∈
{1, 2, 3}) using the earth package (Milborrow et al. 2014, version 4.4.7)

• Bagging using the ipred package (Peters and Hothorn 2009, version 0.9-5)
• Random Forest with four configurations (mtry ∈ {1, 2, 4, 7}) using the random-

Forest package (Liaw and Wiener 2002, version 4.6-12)
• Extreme gradient boosting (Chen and Guestrin 2016) with 12 hyperparam-

eter configurations (trees ∈ {100, 1000} × depth ∈ {1, 2, 3} × learning rate
∈ {0.1, 0.001}) using the xgboost package (version 0.6-4)

• Outcome mean, included for performance benchmarking and as a check against
overfitting

We used the default hyperparameters provided by the SuperLearner package unless
otherwise specified. We refrained from any dimensionality reduction of the adjust-
ment variables in order to maximize (1) statistical power, (2) plausibility of the
randomization assumption, and (3) comparability with the original study.

9.9.2 Results

We present the variable importance results stratified by gender below. The initial
table reports aggregated results for all variables; a reference line is added at FDR
p-value = 0.05. The second table lists the constituent parameter estimates and iden-
tified levels (aL, aH) for each CV-TMLE fold. We applied the CV-TMLE for V = 2.

Female. We see in Table 9.1 that HDL and diabetes are estimated to have sig-
nificant and consistent impacts on coronary heart disease. The implication is that
among women in this dataset, risk for coronary heart disease could be reduced by
raising HDL levels to 60+ mg/DL and preventing the occurrence of diabetes. Both
results agree with the findings from the original study. Blood pressure is the highest
ranked variable, but its high and low levels are inconsistently identified providing a
harder to interpret definition of its variable importance. Smoking status shows a low,
nonsignificant impact on CHD, distinctly contrary to the high and significant effect
estimated in the original study. Table 9.2 shows that the inconsistency of blood pres-
sure is due to aL being identified as the “high” level of BP in one CV-TMLE fold but
as the “normal-optimal” level in the other fold. We also see that the HDL levels are
as expected: high HDL is estimated to have the lowest rate of CHD, and low HDL
to have the highest rate of CHD. LDL by contrast does show consistently identified
aL and aH levels across CV-TMLE folds.
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Male. In the male results (Table 9.3) we again see diabetes and HDL ranked
highly and with comparable point estimates. This time age and LDL show consis-
tent, large, and statistically significant effects. Smoking status once again shows a
small effect, although this time it is marginally statistically significant. We do not
find a consistent set of high and low levels for blood pressure. The fold-specific re-
sults in Table 9.4 show that the same aL and aH for HDL were selected in males
as in females. The LDL levels are as expected, with low LDL estimated to have a
lower expected CHD risk compared to high levels. Similarly, the aL for age is the
lowest age bin as expected.

Table 9.1 Female variable importance results for combined estimates

Rank Variable Type Estimate CI 95 p-value Adj. p-value Consistent
1 BP Factor 0.1119 (0.0388–0.185) 0.0014 0.0081 No
2 HDL Factor 0.1102 (0.0257–0.195) 0.0053 0.0125 Yes
3 Diabetes Ordered 0.1373 (0.0296–0.245) 0.0062 0.0125 Yes
4 Age Ordered 0.0449 (−0.00552–0.0954) 0.0405 0.0607 Yes
5 Smoking Ordered 0.0122 (−0.0362–0.0605) 0.3108 0.3730 Yes
6 LDL Factor −0.0193 (−0.0771–0.0385) 0.7433 0.7433 No

Table 9.2 Female variable importance results by estimation sample

Variable Est_v1 Est_v2 Low_v1 High_v1 Low_v2 High_v2 Consistent
BP 0.1780 0.0458 High Stage2_4 Normal-optimal Stage2_4 No
HDL 0.1534 0.0670 [60,999) [0,35) [60,999) [0,35) Yes
Diabetes 0.0910 0.1836 (0.9999999,1] (1,2] (0.9999999,1] (1,2] Yes
Age 0.0029 0.0870 (0.999999,1] (1,10] (1,5] (5,10] Yes
Smoking 0.0126 0.0117 (0.9999999,1] (1,2] (0.9999999,1] (1,2] Yes
LDL −0.0452 0.0067 [130,160) [0,130) [0,130) [160,999) No

Table 9.3 Male variable importance results for combined estimates

Rank Variable Type Estimate CI 95 p-value Adj. p-value Consistent
1 Age Ordered 0.1609 (0.102–0.219) 0.0000 0.0000 Yes
2 LDL Factor 0.1693 (0.106–0.232) 0.0000 0.0000 Yes
3 HDL Factor 0.1623 (0.09–0.235) 0.0000 0.0000 Yes
4 Diabetes Ordered 0.1552 (0.0739–0.236) 0.0001 0.0001 Yes
5 BP Factor 0.0982 (0.0384–0.158) 0.0006 0.0008 No
6 Smoking Ordered 0.0356 (−0.0159–0.0871) 0.0879 0.0879 Yes
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Table 9.4 Male variable importance results by estimation sample

Variable Est_v1 Est_v2 Low_v1 High_v1 Low_v2 High_v2 Consistent
Age 0.1339 0.1878 (0.999999,1] (1,10] (0.999999,1] (1,10] Yes
LDL 0.1139 0.2246 [0,130) [160,999) [0,130) [160,999) Yes
HDL 0.1542 0.1705 [60,999) [0,35) [60,999) [0,35) Yes
Diabetes 0.1897 0.1207 (0.9999999,1] (1,2] (0.9999999,1] (1,2] Yes
BP 0.1295 0.0670 Normal-optimal Stage1 Normal-optimal Stage2_4 No
Smoking 0.0333 0.0378 (0.9999999,1] (1,2] (0.9999999,1] (1,2] Yes

9.10 Discussion

Data-adaptive parameters as a general concept opens up enormous opportunities
for estimating relevant scientific parameters when the experiment and current hy-
potheses do not sufficiently constrain the parameter of interest to apply the more
conventional approach based upon prespecified parameters. Given that one will lose
power by not prespecifying the parameter of interest, care must be given to fully
utilize the amount of information contained in the data to estimate the adaptively-
defined parameter, and to develop valid confidence intervals. CV-TMLE achieves
these two goals. In addition, the algorithm can be relatively trivially parallelized and
the influence-curve based inference avoids time-consuming bootstrap procedures.
Thus, the approach can be adapted to exploratory data analysis in high dimensional,
big data contexts. Finally, when parameters are pre-specified, CV-TMLE brings the
estimator closer to complete automation, as now even issues of adaptivity of ma-
chine learning algorithms used in estimation of the data-generating distribution do
not affect the asymptotics, so one can derive trustworthy inference with minimal
assumptions.

Thus, this is one step closer to statistical algorithms that will require minimal
input from users and yield relatively efficient results in very big statistical models.
When one adds the data-adaptive component of parameter definition, the potential
for automation becomes even greater, as even the parameter of interest no longer
needs (precise) pre-specification. As a consequence, this CV-TMLE approach for
data-adaptive target parameters represents an important step on the way to bringing
relatively unsophisticated users the promise of high-performance exploratory statis-
tical algorithms. In this manner we are moving towards a situation that is analogue
to one in which someone with little knowledge of the mechanics of a motor vehicle
can still be a safe and effective user of the machinery.
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Outcomes Research Institute (PCORI) Pilot Project Program Award (ME-1306-
02735). Disclaimer: All statements in this chapter, including its findings and conclu-
sions, are solely those of the authors and do not necessarily represent the views of
the Patient Centered Outcomes Research Institute (PCORI), its Board of Governors
or Methodology Committee.



Chapter 10
C-TMLE for Continuous Tuning

Mark J. van der Laan, Antoine Chambaz, and Cheng Ju

A TMLE of a causal quantity of interest first constructs an initial estimator of the
relevant part of the likelihood of the data and then updates this initial estimator
along a least favorable parametric model that uses the initial estimator as an off-set.
The least favorable parametric model typically depends on an orthogonal nuisance
parameter such as the treatment and censoring mechanism. This nuisance parameter
is not needed to evaluate the target parameter, and, in fact, is orthogonal to the
target parameter in the sense that a maximum likelihood estimator would completely
ignore this nuisance parameter, or, at least, its scores are orthogonal to the scores of
the relevant part of the likelihood.

However, the orthogonal nuisance parameter plays a crucial role in determining
the best way to update the initial estimator, as directed by the canonical gradient
(i.e., efficient influence curve) of the pathwise derivative. In a standard TMLE, one
would estimate this nuisance parameter with an estimator that aims for an optimal
performance for the nuisance parameter itself. For example, one might estimate
it with a super learner based on the log-likelihood loss-function of the nuisance
parameter.
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Even though the TMLE is asymptotically efficient, if the initial estimator and
the nuisance parameter estimator are well behaved, one might wonder if it
would not make more sense to evaluate the fit of the nuisance parameter with
respect to how well the resulting TMLE succeeds in reducing the MSE with
respect to the target parameter during the targeting step of the TMLE algo-
rithm.

This issue is of enormous practical importance in causal inference in the case
that the target parameter is weakly supported by the data (i.e., lack of positivity).
In this case the efficient influence curve can take on very large values so that the
maximum likelihood estimator along the least favorable submodel (whose score
spans the efficient influence curve) can be ill behaved and thereby hurt the initial
estimator with respect to the target parameter. For example, if a particular potential
confounder that affects treatment decisions happens to be an instrumental variable
that has no effect on the outcome, then including it in the fit of the treatment mech-
anism only harms the TMLE in finite samples. This insight has resulted in a variety
of proposals in the literature that prescreens covariates based on their potential ef-
fect on the outcome, removes the ones that have weak effects, and then runs one of
the available estimators.

However, before we jump into this, we should be aware of the enormous dangers
that come with such an approach (an approach that clearly ignores the likelihood
principle). Consider a covariate that has an effect on the outcome of interest that is
of the order n−1/2. Such covariates would correspond with t-statistics (evaluating the
effect of the covariate on the outcome) that are of the order 1. That is, their signal
is real but are within the noise level so that a prescreening method would easily
remove this covariate. However, not including this covariate in the TMLE (or any
other estimator) would result in an estimator that has bias of the order n−1/2. As a
consequence, such a TMLE would not even be asymptotically linear, even in the
case that the variance of the efficient influence curve is perfectly well behaved. One
might counter this argument by stating that one should simply make these prescreen-
ing methods more conservative as sample size increases. However, these screening
methods are based on marginal regressions, easily misjudging their effect in the
presence of other confounders.

Therefore, the basic message is that an effort to improve an estimator in
the context of sparsity (measured by the variance of the efficient influence
curve), one can easily destroy the good asymptotic properties of the estimator.
Collaborative TMLE (C-TMLE) takes on this enormous challenge by being
grounded in theory.

The C-TMLE is tailored such that it does not affect the asymptotic behavior of the
TMLE by pushing the selected estimator for the orthogonal nuisance parameter to-
wards the most nonparametric estimator as sample size increases. Simultaneously,
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it provides potentially dramatic gains in practical performance with the stepwise
building of the estimator (from parametric to nonparametric), each time choosing
the move for which the maximum likelihood estimator for the corresponding least-
favorable submodel results in maximal improvement of the fit of the corresponding
TMLE relative to the off-set. Moreover, the latter approach is completely supported
by the collaborative double robustness of the efficient influence curve, which shows
that the orthogonal nuisance parameter only has to adjust for covariates that are
needed to fit the residual bias of the initial estimator with respect to its true counter-
part. In this manner, the C-TMLE makes sure that instrumental variables will only
be included in the fit of the treatment mechanism at large enough sample sizes for
which the parametric maximum likelihood estimator extension in the update step
using this covariate results in a statistically significant gain in fit. Indeed, simula-
tions have shown that such C-TMLEs are rarely worse than the standard TMLE,
and can be much better when the data are sparse.

The previous literature on C-TMLE (e.g. van der Laan and Gruber 2010; Gruber
and van der Laan 2010b; Wang et al. 2011a; Schnitzer et al. 2016; van der Laan
and Rose 2011), focused on tuning discrete steps, such as evaluating the addition
of a covariate to the treatment mechanism. In this chapter, we focus on C-TMLEs
that tune a continuous valued tuning parameter of the fit of the orthogonal nuisance
parameter, such as selecting the L1-penalty in a lasso regression of the treatment
mechanism (or a bandwidth of a kernel regression smoother). As we show, this
dramatically changes the story when comparing C-TMLE with TMLE. Instead of
C-TMLE not affecting the asymptotic linearity of the TMLE, we demonstrate that
the C-TMLE can reduce the second-order remainder of the TMLE in its Taylor
expansion to the point that the C-TMLE is asymptotically linear while the TMLE
is not (e.g., in the case that a strong positivity assumption holds, but the nuisance
parameters converge to their true counterparts at rates that are too slow). In addition,
in practice we observe dramatic gains of our C-TMLE in nonsparse settings.

10.1 Formal Motivation for Targeted Tuning of Nuisance
Parameter Estimator in TMLE

Defining the Estimation Problem. Suppose we observe n i.i.d. copies of a random
variable O with probability distribution P0 known to be an element of a statistical
model M: i.e., P0 ∈ M. Let Ψ : M → IRd be a target parameter of interest that is
pathwise differentiable at any P ∈ M with efficient influence curve D∗(P). Suppose
that Ψ (P) only depends on P through a parameter Q = Q(P), and, for notational
convenience, we will also use the notation Ψ (Q(P)) for Ψ (P). The efficient influ-
ence curve D∗(P) depends on P through Q(P) and an additional nuisance parameter
we will denote with G(P). We will also denote D∗(P) with D∗(Q(P),G(P)). Let
R20(P, P0) be defined by the second-order remainder in a first order Taylor expan-
sion of the target parameter as follows:

Ψ (P) − Ψ (P0) = −P0D∗(P) + R2(P, P0).
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We will also denote R2(P, P0) with R20(Q,G,Q0,G0) in order to emphasize that it
involves second-order differences between (Q,G) and (Q0,G0). Thus, we can write

Ψ (Q) − Ψ (Q0) = −P0D∗(Q,G) + R20(Q,G,Q0,G0).

The estimation problem defined by the statistical model M and its target parameter
Ψ : M → IRd has the so called double robust structure if R20(Q,G0,Q0,G0) = 0
for all Q, and R20(Q0,G,Q0,G0) for all G. In essence, this states that the second-
order remainder involves a sum of integrals over an integrand that can be represented
as a product of a difference of a parameter of Q with its true value and a parameter of
G with its true value. For example, R20(Q,G,Q0,G0) =

∫
(H1(G)−H1(G0))(H2(Q)−

H2(Q0)) f (Q,G,Q0,G0)dP0 for some functionals H1,H2 and f .

Example 10.1. Let’s consider an example to illustrate these quantities. Let O =

(W, A,Y), where W is a vector of baseline covariates, A is a binary treatment and
Y a binary outcome. Consider the statistical model that leaves the distribution QW,0

of W, and the conditional distribution of Y , given A,W, unspecified, while we might
know that the conditional distribution G0 of A, given W, falls in a set G. Let’s denote
this statistical model with M so that we know that P0 ∈ M. Let Q̄0(W) = E0(Y |
A = 1,W), Ḡ0(W) = E0(A|W), and Ψ (P) = EPEP(Y | A = 1,W) = QW,0Q̄0 is the
target parameter of interest. Let Q = (QW , Q̄) so that we can also denote Ψ (P0) with
Ψ (Q0). In this example the efficient influence curve D∗(P) of Ψ : M → IR at any
P ∈ M is given by

D∗(P) =
A

Ḡ(W)
(Y − Q̄(W)) + Q̄(W) − Ψ (P),

and

Ψ (P) − Ψ (P0) = −P0D∗(P) + R20(P, P0),

where

R20(P, P0) = P0
Ḡ − Ḡ0

Ḡ
(Q̄ − Q̄0).

We will also denote this remainder with R20(Q,G,Q0,G0).

Family of Candidate Nuisance Parameter Estimators Indexed by Continuous
Tuning Parameter h. Let L1(G) be a loss-function for G0 so that P0L1(G0) =
minG∈G(M) P0L1(G). Let {Ĝh : h ∈ [0, 1]} be a family of candidate estimators
Ĝh : MNP → G of G0 indexed by a continuous valued index h ∈ [0, 1], where
the estimates {Gn,h = Ĝh(Pn) : h} are ordered from most nonparametric at h = 0
to most parametric at h = 1. For the easiest interpretation of our formal results, we
suggest to think of the index parameter h so that h ≈ bn(h) for a bias bn(h) of Gn,h

such as defined by the loss-based dissimilarity bn(h)2 = P0L1(Gn,h) − P0L1(G0).
Such an indexing exists and can be constructed in terms of the bias function bn(h)
as long as it is monotone increasing in h: define Ĝ1,b = Ĝb−1

n (b) and index the family
of candidate estimators by b as {Ĝ1,b : b} = {Ĝh : h}. Specifically, we assume that
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the empirical risk h → PnL(Gn,h) is increasing in h. For example, for some large
M < ∞, one might define an h-specific MLE

Gn,h = arg min
G∈G,‖G‖v≤(1−h)M

PnL1(G), (10.1)

where ‖ G ‖v is the variation norm defined in Chap. 6 on the highly adaptive lasso.
In Chap. 6 we showed that by representing G with a linear combination of indicator
basis functions, Gn,h can be implemented as a lasso estimator defined as an MLE
over all linear combinations under the constraint that the sum of the absolute value
of the coefficients is restricted to be smaller than (1 − h)M.

TMLE Depending on Choice of Nuisance Parameter Estimator. Let L(Q) be a
loss-function for Q0 so that P0L(Q0) = minQ∈Q(M) P0L(Q). Consider a least favor-
able submodel {Qε : ε} ⊂ Q(M) through Q at ε = 0 so that the linear span of the
components of the generalized score d

dε L(Qε)
∣∣∣
ε=0

includes D∗(Q,G). Note that this
submodel also depends on G so that we will also use the notation Qε,G in order to
emphasize this dependence. Let Q̂ : MNP → Q(M) be an initial estimator of Q0.
Given this submodel and initial estimator (Qn = Q̂(Pn),Gn,h) of (Q0,G0), one can
construct a one-step or iterative TMLE Q∗

n,h. For example, if one uses a universal
least favorable submodel, one can use the one-step TMLE Q∗

n,h = Qn,εn,Gn,h , where
εn = arg minε PnL(Qn,ε,Gn,h ). Given the sequence {Gn,h : h} of candidate estimators
for G0, this defines now a sequence of candidate TMLEs {Q∗

n,h : h} of Q0, all solving
the efficient influence curve equation 0 = PnD∗(Q∗

n,h,Gn,h) = 0.

TMLE Using Cross-Validation Selector for h. A natural approach for selecting the
index h is to use L1-loss based cross-validation. In that case, one defines a random
split Bn ∈ {0, 1}n in a training sample {i : Bn(i) = 0} and validation sample {i :
Bn(i) = 1}, with respective empirical probability distributions P0

n,Bn
, P1

n,Bn
, and one

selects h with the cross-validation selector

hn,CV = arg min
h

EBn P1
n,Bn

L1(Ĝh(P0
n,Bn

)).

In our example (10.1) Gn,hn,CV is the highly adaptive lasso estimator (HAL) proposed
in Chap. 6, and we have shown that for each fixed h the loss-based dissimilarity
d01(Gn,h,G0,h) = P0L1(Gn,h) − P0L1(G0,h) converges at a rate at least as fast as
n−(0.5+α(d)/4), where α(d) = 1/(d + 1) and G0,h = arg minG∈G,‖G‖v<hM P0L1(G). In
addition, in that case we know that Gn = Gn,hn,CV converges at least as fast as this
rate.

Example 10.2. In our example we select L1(G)(O) = −{A log Ḡ(W)+ (1−A) log(1−
Ḡ(W))} as the log-likelihood loss function. Gn,h could be defined as a lasso logistic
linear regression with L1-constraint (1 − h)M as in (10.1), and Gn,hn,CV would be the
lasso estimator that uses internal cross-validation to select the constraint.

In a regular TMLE framework we would select h with hn,CV and use the TMLE
Q∗

n = Q∗
n,hn,CV

resulting in the TMLE Ψ (Q∗
n) of Ψ (Q0). If Qn is consistent at a

particular rate, then a TMLE Ψ (Q∗
n,hn,CV

) using a best estimator Gn,hn,CV of G0 might
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already be asymptotically efficient in which case such a choice hn,CV is appropriate
asymptotically. For example, our proposed HAL-TMLE in Chap. 7 relies on an
HAL-estimator Qn that converges to Q0 at a faster rate than n−1/4 so that a TMLE
based on an HAL-estimator Gn,hn,CV of G0 is asymptotically efficient under very
weak regularity conditions.

Potential Improvement of TMLE with C-TMLE. Nonetheless, the second-order
remainder for the HAL-TMLE might be substantial in finite samples (recall that
for large dimensional O the second-order remainder multiplied by n1/2 converges
to zero at a very slow rate) so that the C-TMLE discussed in this chapter is still
very relevant for finite sample improvement. In van der Laan (2014b) we proposed
a TMLE that maps an initial estimator (Qn,Gn,h) into a jointly targeted estimator
(Q∗

n,h,G
∗
n,h) in such a way that the asymptotic linearity of the TMLE Ψ (Q∗

n,h) is pre-
served under misspecification of either Qn or Gn (but not both), as long as both
estimators converge at a rate faster than n−1/4 to their (possibly misspecified) limits.
This type of TMLE is generally recommended to protect its asymptotic linearity
against misspecification of one of the estimators. In that case, an under-smoothed
choice hn is not needed from an asymptotic perspective, but hn,CV could be used.
However, as we also suggested above for the HAL-TMLE, we suggest that the C-
TMLE algorithm might yield improved finite sample performance (especially when
the data is sparse for the parameter of interest). Overall, even when the C-TMLE is
not needed for improving asymptotic performance, it will still represent an impor-
tant practical finite sample advance.

The cross-validation selector hn,CV optimizes the selection of h w.r.t. estimation
of G0, while the real goal should be to minimize the MSE of h → Ψ (Q∗

n,h) w.r.t. ψ0.
One should realize that, due to the fact that Ψ (P0) is a smooth (pathwise differen-
tiable) functional of P0, typically the variance of a Ψ (Q∗

n,h) behaves asymptotically
as 1/n across all h values. Thus, for large sample size n the square bias of Ψ (Q∗

n,h)
will dominate the variance of Ψ (Q∗

n,h) so that h will have to be selected to minimize
the bias of Ψ (Q∗

n,h) over h. Collaborative targeted maximum likelihood (minimum
loss) estimation (C-TMLE) aims to achieve this indirectly by (1) building a se-
quence of TMLEs (Q∗

n,h,Gn,h) whose empirical fits are increasing as h approximates
0 (in the C-TMLE algorithm Q∗

n,h uses one of previous Qn,h′ for h′ > h as initial
estimator so that all these fits are nested) and (2) evaluating the choice of h w.r.t.
the L-fit of Q∗

n,h w.r.t. Q0. Since Ψ (Q∗
n,h) is a targeted estimator of ψ0 for each h, and

these h-specific TMLEs Q∗
n,h only differ in the depth h of the C-TMLE -targeting

step applied to the same initial estimator Qn, the L-fit of Q∗
n,h is a sensible criterion

selecting the maximal amount of targeting (i.e., minimal h) that still represents a
statistical significant signal.

Example 10.3. Let Q̄n be an initial estimator of Q̄0. Consider the least favorable
submodel LogitQ̄n,ε,Gn,h = LogitQ̄n + εC(Ḡn,h) through Q̄n with one-dimensional
fluctuation parameter ε, where C(Ḡ)(A,W) = A/Ḡ(W) is often referred to as the
clever covariate. Let εn,h = arg minε PnL(Q̄n,ε,Gn,h ) be the MLE, where L(Q̄) =
−{Y log Q̄(A,W) + (1 − Y) log(1 − Q̄(A,W))} is the log-likelihood loss for Q̄0. Let
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LogitQ̄∗
n,h = LogitQ̄n + εn,hC(Ḡn,h), so that Q̄∗

n,h is the TMLE using Q̄n as initial
estimator and Ḡn,h in the targeting step.

These TMLEs Q∗
n,h = (QW,n, Q̄∗

n,h) of Q0 solve

PnD∗(Q∗
n,h,Gn,h) = 0,

and specifically
PnD∗

1(Q̄∗
n,h,Gn,h) = 0,

where D∗
1(Q̄, Ḡ) = A/Ḡ(Y − Q̄(W)) is the component of the efficient influence

curve that is in the tangent space of the conditional distribution of Y , given A,W.
The TMLE Ψ (Q∗

n,h) of Ψ (Q0) satisfies:

Ψ (Q∗
n,h) − Ψ (Q0) = (Pn − P0)D∗(Q∗

n,h, Ḡn,h) + R20((Q∗
n,h,Gn,h,Q0,G0).

Suppose that the initial estimator Q̄n → Q̄ � Q̄0 is inconsistent. Then, the asymp-
totic linearity of Ψ (Qn,h) relies upon the second-order remainder term

P0(Ḡn,h − Ḡ0)/Ḡn,h(Q̄ − Q̄0) (10.2)

to be asymptotically linear. Consider the likelihood based cross-validation selector
hn,CV = arg minh EBn P1

n,Bn
L1( ˆ̄Gh(P0

n,Bn
)).Then this term (10.2) will not be asymp-

totically linear due to Ḡn,hn,CV having a bias larger than 1/
√

n. That is, hn,CV will
trade off the bias and variance of the actual estimator Ḡn,h as an estimator of G0,
while one should want to trade off this bias with the variance of Ψ (Q∗

n,h). Clearly,
the variance of a real valued smooth functional Ψ (Q∗

n,h) (which behaves as 1/n) is
significantly smaller than the variance of the infinite dimensional object Gn,h

Nonetheless, it might be that there exist a rate hn that undersmooths Gn,h enough
so that this smooth function (10.2) of Gn,h is asymptotically linear. We wonder if
in that case, an C-TMLE selector hn will undersmooth appropriately so that (10.2)
is asymptotically linear. In general, we wonder if the rate at which the bias of the
C-TMLE Ψ (Q∗

n,hn
) converges to zero is significantly faster than the rate at which the

bias of the TMLE Ψ (Qn,hn,CV ) converges to zero. In other words, does the C-TMLE
choice hn appropriately minimize MSE for the actual target parameter ψ0?

10.1.1 Contrasting Discrete and Continuous Tuning Parameters

C-TMLE has been studied for discrete sequences {Gn,k : k} of candidate estimators
(van der Laan and Gruber 2010; Gruber and van der Laan 2010b; Wang et al. 2011a;
Schnitzer et al. 2016; van der Laan and Rose 2011), in which case any reasonable
selector will asymptotically end up selecting the most nonparametric estimator (i.e.,
asymptotically best) of G0. As a result, the asymptotic performance of a C-TMLE is
equivalent with the TMLE selecting the most nonparametric estimator of G0 and the
TMLE that selects this estimator of G0 with L1-based cross-validation. In this dis-
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crete scenario, as shown in a variety of articles, the C-TMLE represents a potentially
highly significant finite sample improvement that does not affect the asymptotic per-
formance of a standard TMLE.

However, when the tuning parameter is continuous, different data-adaptive selec-
tors of h correspond with different rates at which the bias bn(h) of the TMLEΨ (Q∗

n,h)
converges to zero, which then will affect the rate at which these TMLEs converge
to ψ0. Thus, the study of C-TMLE for continuous tuning parameters h creates an op-
portunity to potentially develop some asymptotic theory for C-TMLE demonstrating
asymptotic superiority of the C-TMLE relative to a TMLE using the L1-loss based
cross-validation selector for h. If Qn is consistent at a particular rate, then a TMLE
Ψ (Q∗

n,hn,CV
) using a best estimator Gn,hn,CV of G0 might already be asymptotically ef-

ficient in which case C-TMLE cannot provide an asymptotic improvement relative
to the standard TMLE. On the other hand, if Qn is consistent at a low rate or possi-
bly even inconsistent, then Gn,hn,CV might be overly biased so that Ψ (Q∗

n,hn,CV
) might

not even be root-n consistent. In the latter case, the key question is if the C-TMLE
is able to select an undersmoothed choice hn so that the bias of the C-TMLE is of
smaller order and hopefully, if possible, it would select a choice hn so that the bias
bn(hn) = o(n−1/2).

Let’s aim to understand this better. Consider the case that the second-order re-
mainder has a double robust structure. Suppose that Qn happens to be an inconsistent
estimator of Q0. Due to the double robustness structure of the second-order remain-
der, R20(Q,G0,Q0,G0) = 0 for all Q so that a TMLE Q∗

n,G0
using the true G0 in the

targeting step would still result in a consistent and asymptotically linear estimator
of ψ0 under weak conditions. However, if one uses an estimator Gn,hn,CV whose bias
w.r.t. G0 converges to zero at a slower rate than n−1/2, then the TMLE Ψ (Q∗

n,hn,CV
)

will also have a similar order bias so that this TMLE will not even be root-n consis-
tent, and thus also not be asymptotically linear. On the other hand, a data-adaptive
selector hn that aims to minimize MSE of h → Ψ (Q∗

n,h) w.r.t. ψ0 would try to se-
lect an estimator Gn,h that has small bias. So in this scenario, assuming the family
{Gn,h : h} of candidate estimators includes such relatively unbiased estimators, a
good selector hn might still result in an asymptotically linear estimator Ψ (Q∗

n,hn
). In

our lasso example we would expect that the cross-validation selector hn,CV would
result in a lasso fit that includes fewer basis functions than the fit implied by a C-
TMLE selector hn. In this paper we present such C-TMLE type selectors that are
theoretically superior to the cross-validation selector hn,CV .

10.1.2 Key Theoretical Property and Rational for Proposed
C-TMLE That Drives Its Asymptotic Superiority Relative
to Standard TMLE

Recall that a TMLE solves PnD∗(Q∗
n,h,Gn,h) = 0, which is the basis for its asymp-

totic efficiency when both Qn,h and Gn,h converge tot their true counterparts at a fast
enough rate. Additional theoretical properties for a TMLE are obtained by making
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it solve additional key estimating equations that drive certain theoretical properties.
The key additional equation solved by our proposed C-TMLE Q∗

n,hn
is given by

0 = Pn
d

dh
D∗(Q∗

n,hn
,Gn,h)

∣∣∣∣∣
h=hn

, (10.3)

where we really only need that

hnPn
d

dh
D∗(Q∗

n,hn
,Gn,h)

∣∣∣∣∣
h=hn

= oP(n−1/2). (10.4)

Note that the derivative is only w.r.t. h in Gn,h, not w.r.t. h in Qn,h. Let

D+(Q,Gn,h) =
d

dh
D∗(Q,Gn,h).

Thus, hn is chosen so that

PnD+(Q∗
n,hn

,Gn,hn ) = 0 or hnPnD+(Q∗
n,hn

,Gn,hn ) = oP(n−1/2). (10.5)

Let’s now try to understand the rational of solving this equation. Note that

P0D∗(Q,Gh+δ) = Ψ (Q0) − Ψ (Q) + R20(Q,Gh+δ,Q0,G0)

P0D∗(Q,Gh) = Ψ (Q0) − Ψ (Q) + R20(Q,Gh,Q0,G0)

P0D∗(Q,Gh+δ) − P0D∗(Q,Gh) = R20(Q,Gh+δ,Q0,G0) − R20(Q,Gh,Q0,G0).

Let h0,n be a solution of P0D+(Q∗
n,h,Gn,h) = 0. Then, it follows that this oracle choice

h0n solves

lim
δ→0

R20(Q∗
n,Gn,h+δ,Q0,G0) − R20(Q∗

n,Gn,h,Q0,G0)
δ

= 0

at the TMLE Q∗
n = Q∗

n,hn
itself. Thus, this oracle choice h0n corresponds with locally

minimizing
h → R20(Q∗

n,Gn,h,Q0,G0).

Now note that hn is the empirical analogue of the oracle choice h0n by sim-
ply replacing P0D+(Q∗

n,h,Gn,h) by its empirical counterpart PnD+(Q∗
n,h,Gn,h). This

demonstrates that our C-TMLE choice hn is indeed highly targeted by aiming to
reduce the second-order remainder of the resulting TMLE of ψ0. Our formal Theo-
rem 10.1 below actually proves that indeed hn succeeds in achieving this goal rela-
tive to hn,CV .

Example 10.4. In our running example Eq. (10.3) reduces to hn solving

0 =
1
n

n∑

i=1

Ai
d

dhn
Ḡn,hn

Ḡ2
n,hn

(Wi)
(Yi − Q̄∗

n,hn
(Wi)). (10.6)
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10.1.3 Implicitly Defined Tuning Parameter

Suppose that we are given a discrete collection of candidate estimators Ĝλ, possibly
indexed by a multivariate tuning parameter λ ∈ S. How could we apply the C-TMLE
approach? We could order these candidate estimators by the value of PnL1(Ĝλ),
which creates an ordered sequence of estimators. Let H = {PnL1(Ĝλ) : λ ∈ S}
be the set of empirical risk values. Assume that the set of candidate estimators
densely spans an interval of empirical risk values, so that for all practical purposes
we can treat H as an interval on the real line. For any given λ ∈ S, we define
h(λ) = PnL1(Ĝλ), which defines a 1-1 function h : S → H . For any value of
h ∈ H , we can define λ(h) as the inverse of λ → h(λ): i.e., for a given h, we select
the λ so that PnL1(Ĝλ) = h. This now defines a collection of candidate estimators
{Ĝ1h = Ĝλ(h) : h ∈ H} ordered by its value PnL1(Ĝ1h). Finally, we can scale h
to be in an interval [0, 1]. We could now apply our proposed methodology to this
sequence of candidate estimators, resulting in a selector hn of h, and thereby a se-
lector λn = λ(hn). The analytic derivative w.r.t. h in D+(Q,Gh) can be approximated
with a numerical derivative, so that there is no need to have an analytic expression
for h → Gn,h.

10.2 A General C-TMLE Algorithm

The goal of an C-TMLE algorithm is to construct an ordered sequence of TMLEs
(Gn,h,Q∗

n,h) so that both PnL1(Gn,h) and PnL(Q∗
n,h) are increasing in h: i.e., we want

the empirical fits of both estimators to be increasing as h approximates zero. One
then uses L(Q)-cross-validation to select h. Given an initial estimator Qn, the or-
dered sequence {Gn,h : h} for which PnL1(Gn,h is decreasing as h → 0, just defining
Q∗

n,h as the TMLE using Qn as initial estimator and Gn,h in its targeting step does
not guarantee that PnL(Q∗

n,h) is decreasing in h as h → 0. Therefore, a C-TMLE
algorithm also has to build a corresponding sequence of initial estimators Qn,h used
by the TMLE Q∗

n,h so that the desired increase in empirical fit holds. We refer to
van der Laan and Gruber (2010) for a general C-TMLE template that provides a
recipe for constructing C-TMLE algorithms. Their general template also includes
simultaneously building the sequence of estimators Gn,h. In our setting this sequence
is already given, making our setting a special case of the general template in van der
Laan and Gruber (2010). Our algorithm below involves a minor modification by
replacing the cross-validation selector h̄n of h by a choice h̃h̄n

(Pn) in its neighbor-
hood that corresponds with an locally optimal choice, thereby guaranteeing that
our C-TMLE solves a desired score equation (10.8) that provides the basis for its
asymptotics.

General Algorithm. Select h1
n = arg minh PnL(Q∗

n,h). For any h > h1
n, we define

Qn,h = Qn and Q∗
n,h as the TMLE using Qn as initial estimator and Gn,h in its tar-

geting step. Notice that we expect that PnL(Q∗
n,h) is indeed decreasing from h = 1
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to h = h1
n. For any h ∈ [h1

n, 1], we also define h̃h(Pn) = h1
n. We now update the

initial estimator to Q1
n = Q∗

n,h1
n
, and define, for any h < h1

n, Q∗
n,h as the TMLE

that uses Q1
n as initial estimator and Gn,h in its targeting step. We then define h2

n =

arg minh<h1
n

PnL(Q∗
n,h). For any h ∈ (h2

n, h
1
n), we define Qn,h = Q1

n, Q∗
n,h as this TMLE

that uses Q1
n as initial estimator and Gn,h in its targeting step, and h̃h(Pn) = h2

n. We
have now defined an ordered sequence of estimators (Gn,h,Qn,h,Q∗

n,h) for h ∈ [h2
n, 1]

for which PnL(Q∗
n,h) is mostly increasing as h decreases in value, and we have a cor-

responding h̃h(Pn) that maps any h ∈ [h2
n, 1] into the next smaller h that corresponds

with a minimizer of the risk of Q∗
n,h. This process is iterated untill we end up at the

last value h = 0. This results in a complete sequence (Gn,h,Qn,h,Q∗
n,h) and corre-

sponding h̃h(Pn), h ∈ [0, 1], for which both PnL1(Gn,h) and PnL(Q∗
n,h) are decreasing

as h approximates zero.
We now note that this description of the algorithm defines for each h ∈ [0, 1] a

mapping (h̃h, Ĝh, Q̂h, Q̂∗
h) from data Pn into a tuning parameter h̃h(Pn), an estimate

Gn,h of the nuisance parameter G0, initial estimate Qn,h of Q0, and a TMLE Q∗
n,h

defined by (Qn,h,Gn,h). In particular, it defines a collection of candidate estimator
Q̂h indexed by h. We select h with the cross-validation selector h̄n:

h̄n = arg min
h

EBn PnL(Q̂∗
h(P0

n,Bn
)). (10.7)

In the typical C-TMLE algorithm we would select (Gn,h̄n
,Qn,h̄n

,Q∗
n,h̄n

) and thus
use Ψ (Q∗

n,h̄n
) as our TMLE. However, we want to guarantee that our selector of h

solves the following critical score equation

d
dh

PnL(Q∗
n,Gn,h

) = 0, (10.8)

where the initial Q = Qn,h is not viewed as a function of h in the derivative. For
example, if we use a one-step TMLE, then this writes as

d
dh

PnL(Qn,εn(h),Gn,h ) = 0.

Note that this evaluates the change in empirical risk of the TMLE at a fixed initial
estimator due to a change in Gn,h in the targeting step. In order to solve (10.8) we
replace h̄n by the actual minimizer hn < h̄n in the C-TMLE algorithm that comes
right before h̄n:

hn ≡ h̃h̄n
(Pn). (10.9)

Since hn minimizes h → PnL(Q∗
n,Gn,h

) over an interval of h-values, assuming an
interior minimum, this choice hn indeed solves (10.8). Our proposed C-TMLE is
now defined by (hn,Gn = Gn,hn ,Qn = Qn,hn ,Q

∗
n = Q∗

n,hn
) resulting in the C-TMLE

Ψ (Q∗
n) of ψ0.
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10.3 Verifying That C-TMLE Solves Critical Equation (10.4)

In the next subsection we show that the score equation solved by C-TMLE implies
the desired critical equation (10.4) if εn(hn)hn = oP(n−1/2), where we consider the
case that the TMLE is a one-step TMLE. Since the size εn(h) behaves as the rate of
convergence of the initial estimator Qn,h (and thus of the original initial estimator
Qn in the C-TMLE algorithm), and hn converges to zero at the same rate as the bias
of Gn,hn , this condition corresponds with assuming that the product of the rates of
convergence of Q∗

n,hn
and the bias of Gn,hn is smaller than n−1/2. Note that we expect

hn to undersmooth and thus be of smaller order than hn,CV . Suppose that the product
of the rates of convergence of Gn,hn,CV and Qn is not smaller than n−1/2 so that the
second-order remainder R20(Q∗

n,Gn,hn,CV ,Q0,G0) for the standard TMLE based on
(Qn,Gn,hn,CV ) is not asymptotically linear. This implies that the TMLE using Gn,hn,CV

is not asymptotically linear either. Nonetheless, since hn is smaller than hn,CV we
can still have that εn(hn)hn = oP(n−1/2). In fact, consider the extreme case that Qn is
inconsistent. In that case, one needs hn = o(n−1/2) in order to guarantee asymptotic
linearity of the TMLE based on Qn and Gn,hn . By our Theorem 10.1, hn = o(n−1/2) if
there exists a rate hn,1 that undersmooths enough so that the bias of Gn,hn,1 is o(n−1/2).
In that case, εn(hn)hn = oP(n−1/2), even though εn(hn) does not even converge to zero.
In the second subsection we show that by modifying the least favorable submodel
in the definition of the TMLE, we can arrange that our C-TMLE solves (10.3) ex-
actly. In fact, in our second subsection we also show that the corresponding standard
TMLE will also solve (10.3) exactly.

10.3.1 Condition for C-TMLE Solving Critical Equation (10.4)

Consider the case that the TMLE Q∗
n,h using Qn = Qn,h as initial estimator and

Gn,h in its targeting step is given by the first-step TMLE Qn,εn(h),Gn,h . For notational
convenience, in this subsection we denote the initial estimator with Qn, suppressing
its dependence on h, since in the following derivatives w.r.t. h treat Qn,h as fixed. Let
hn be the solution of the Eq. (10.8) solved by our C-TMLE selector. Note that

d
dh

PnL(Qn,εn(h),Gn,h ) =
d

dh
PnL(Qn,εn(h),G)

∣∣∣∣∣
G=Gn,h

+
d

dh
PnL(Qn,ε,Gn,h )

∣∣∣∣∣
ε=εn(h)

,

where the initial estimator is considered fixed in h. Now notice that the first term on
the right-hand side equals

d
dεn(h)

PnL(Qn,εn(h),G)
∣∣∣∣∣
G=Gn,h

up to a scalar d
dh εn(h). But the latter equation is the score equation for the MLE εn(h)

and thus equals zero. Thus, we can conclude that hn also solves
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0 =
d

dhn
PnL(Qn,ε,Gn,hn

)
∣∣∣∣∣
ε=εn(hn)

. (10.10)

We will now show that (10.10) implies that Pn
d

dhn
D∗(Qn,Gn,hn ) = O(εn(hn)), which

would establish (10.4) if εn(hn)hn = oP(n−1/2) (e.g., if the initial estimator Qn and
Gn,hn converge to Q0 and G0, respectively, at a rate faster than n−1/4).

Example 10.5. In our example, we have that (10.10) reduces to

0 = εn(hn)
1
n

n∑

i=1

d
dh

C(Ḡn,h)
∣∣∣∣∣
h=hn

(Yi − Q̄n,εn(hn),Gn,hn
).

Thus, this implies that

0 =
1
n

n∑

i=1

d
dh

C(Ḡn,hn )
∣∣∣∣∣
h=hn

(Yi − Q̄n,εn(hn),Gn,hn
),

which equals (10.6). So we conclude that in our running example the score equation
(10.8) solved by the C-TMLE selector hn corresponds exactly with solving (10.3).
We suggest that this exact equivalence between (10.8) and (10.3) holds more gen-
erally for universal least favorable submodels. As we will see below, in general, in
our proof below we only obtain that (10.8) implies (10.3) up to an error O(εn(h)),
which provides a basis for (10.4).

Suppose that L(Qn,ε,Gn,h ) = f (Qn, εC(Gn,h,Qn)) for some functional (Q,H) →
f (Q,H). In other words, assume that the fluctuation Qn,ε,Gn,h of Qn involves aug-
menting the off-set Qn with an ε-extension εC(Gn,h,Qn), thereby linking ε and Gn,h

into one term. Let d2 f (Q,H)(r) = d
dδ f (Q,H + δr)

∣∣∣
δ=0

be the directional derivative
of H → f (Q,H) at (Q,H) in the direction r. Then,

d
dε

L(Qn,ε,Gn,h )
∣∣∣∣∣
ε=0
= d2 f (Qn, εC(Gn,h,Qn))

∣∣∣
ε=0

(C(Gn,h,Qn))

d
dh

L(Qn,ε,Gn,h ) = d2 f (Qn, εC(Gn,h,Qn))

(
ε

d
dh

C(Gn,h,Qn)

)
.

The first equation shows that we can represent D∗(Q,Gn,h) = d
dε L(Qn,ε,Gn,h )

∣∣∣
ε=0

as
follows:

D∗(Qn,Gn,h) = d2 f (Qn, εC(Gn,h,Qn))
∣∣∣
ε=0

(C(Gn,h,Qn)).

This representation shows

d
dh

D∗(Qn,Gn,h) = d2 f (Qn, εC(Gn,h,Qn))
∣∣∣
ε=0

(
d
dh

C(Gn,h,Qn)

)
.
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The second equation shows that

d
dh L(Qn,ε,Gn,h )

ε
= d2 f (Qn, εC(Gn,h,Qn))

(
d

dh
C(Gn,h,Qn)

)

= d2 f (Qn, εC(Gn,h,Qn))
∣∣∣
ε=0

(
d

dh
C(Gn,h,Qn)

)
+ O(ε)

=
d

dh
D∗(Qn,Gn,h) + O(ε).

Thus, this shows that

d
dh

L(Qn,ε,Gn,h ) = ε
d
dh

D∗(Qn,Gn,h) + O(ε2).

This proves that if Pn
d

dhn
L(Qn,ε,Gn,h )

∣∣∣∣
ε=εn(h)

= 0 (i.e., Eq. (10.10) is solved), then

0 = εn(h)Pn
d

dhn
D∗(Qn,Gn,hn ) + O(εn(h)2),

which implies

Pn
d

dhn
D∗(Qn,Gn,hn ) = O(εn(h)).

We state this result as a formal lemma.

Lemma 10.1. Let hn be the solution of the Eq. (10.8) solved by our C-TMLE selec-
tor. Then, hn solves

0 =
d

dhn
PnL(Qn,ε,Gn,hn

)
∣∣∣∣∣
ε=εn(hn)

.

Suppose that L(Qn,ε,Gn,h ) = f (Qn, εC(Gn,h,Qn)) for some functional (Q,H) →
f (Q,H). Assume that H → f (Q,H) is differentiable at H = εC(Gn,h,Qn)
with derivative d2 f (Qn,H) and that this derivative is continuous at direction
d

dhC(Gn,h,Qn) in the following sense:

d2 f (Qn, εC(Gn,h,Qn))

(
d
dh

C(Gn,h,Qn)

)
= d2 f (Qn, εC(Gn,h,Qn))

∣∣∣
ε=0

(
d
dh

C(Gn,h,Qn)

)

+O(ε).

Then,

Pn
d

dhn
D∗(Qn,Gn,hn ) = O(εn(h)).
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10.3.2 A TMLE and C-TMLE that Solve Equation (10.3) Exactly

In our typical applications we have that even at a G1 different from G = G(P)
D∗(Q,G1) is an element of the tangent space TQ(P) of Q at P. In other words,
D∗(Q,G1) represents a score at δ = 0 of a fluctuation model {Qδ : δ} ⊂ M through
Q at δ = 0. In that case, D∗(Q,Gh+δ)−D∗(Q,Gh) is in the tangent space of Q at P, so
that also d

dh D∗(Q,Gh) ∈ TQ(P). Thus, D∗(Q,Gh) and D+(Q,Gh) = d/dhD∗(Q,Gh)
are both scores of Q at P so that there exists a local least favorable submodel Qε,h

whose linear span of d
dε L(Qε,h) at ε = 0 includes both D∗(Q,Gh) and D+(Q,Gh).

Using this local least favorable submodel now defines a TMLE Q∗
n,h that solves both

equations PnD∗(Q∗
h,Gh) = PnD+(Q∗

h,Gh) = 0 for all h. We can now apply our
general C-TMLE algorithm above with this definition of the TMLE Q∗

n,h. In this
case, the C-TMLE selector hn (i.e., (Gn,hn ,Q

∗
n,hn

) will solve equation (10.3) exactly.
In fact, even if do not use the C-TMLE algorithm but just use the standard TMLE
Q∗

n,hn,CV
based on initial estimator (Qn,Gn,hn,CV ) Eq. (10.3) is solved exactly. As a

consequence, our asymptotics theorem below is applicable to both the proposed C-
TMLE as well as to the standard TMLE targeting both equations and using hn,CV .
Nonetheless, we expect that the C-TMLE still has a finite sample advantage.

Example 10.6. Consider the C-TMLE algorithm, but let Q̄∗
n,h be the one-step

TMLE based on (Qn,h,Gn,h) that uses a two dimensional clever covariate
(C(Ḡn,h), d

dhC(Ḡn,h). Let

D+1 (Q,Gn,h) =
d

dh
D∗

1(Q,Gn,h) =
d

dh
C(Gn,h)(A,W)(Y − Q̄(A,W)).

In that case, we have that for each h (Q∗
n,h,Gn,h) solves

PnD∗
1(Q∗

n,h,Gn,h) = 0

PnD+1 (Q∗
n,h,Gn,h) = 0.

It also solves

PnD∗(Q∗
n,h,Gn,h) = 0

PnD+(Q∗
n,h,Gn,h) = 0,

where D+(Q,Gn,h) = d
dh D∗(Q,Gn,h). By using this definition of TMLE in our C-

TMLE algorithm we guarantee that the critical equation PnD+(Q∗
n,h,Gn,h) = 0 for

all h, not only for our C-TMLE selector h = hn defined by the C-TMLE algorithm.
As a result, we could now also replace the selector hn by h = hn,CV in our description
of the C-TMLE algorithm. In fact, we can also simply use the TMLE based on initial
estimator Qn and Gn,hn,CV (but using this two-dimensional least favorable submodel).
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10.4 General Theorem for C-TMLE Asymptotic Linearity

We have the following theorem which proves that if there exists a selector h1n for
which the C-TMLE is asymptotically linear, then our proposed C-TMLE using hn

will be asymptotically linear.

Theorem 10.1. Let Ψ : M → IRd be pathwise differentiable at any P ∈ M with effi-
cient influence curve D∗(P) = D∗(Q(P),G(P)) and Ψ (P) only depends on P through
Q(P): abusing notation, we will also denote Ψ (P) with Ψ (Q). Suppose that

Ψ (Q) − Ψ (Q0) = −P0D∗(Q,G) + R20(Q,G,Q0,G0)

for a remainder R20() that has a DR-structure so that R20(Q,G0,Q0,G0) = 0 for
all Q ∈ Q(M). Let (Gn,h : h) be a family of candidate estimators of G0 indexed
by scalar h, and let (Q∗

n,h : h) be a family of TMLEs using Gn,h in the targeting
step, so that PnD∗(Q∗

n,h,Gn,h) = 0 for all h. Let hn be a given selector, and let
Q∗

n = Q∗
n,hn

be the corresponding TMLE. Let (Q∗,G0) be the limit of (Qn,hn ,Gn,hn ) so
that P0{D∗(Q∗

n,hn
,Gn,hn ) − D∗(Q∗,G0)}2 →p 0 as n → ∞.

We make the following assumptions:

Existence of Desired Selector: We assume that for a fixed Q∗ ∈ {Q(P) : P ∈ M}
there exists a sequence h1n that converges to zero and satisfies

P0D∗(Q∗,Gn,h1n ) − P0D∗(Q∗,G0) = (Pn − P0)D1(P0) + oP(n−1/2). (10.11)

Selector Solves Critical Equation: For such a selector h1n, we have
{

d
dhn

PnD∗(Q∗
n,Gn,hn )

}
∗ (hn − h1n) = oP(n−1/2), where Q∗

n = Q∗
n,hn

. (10.12)

Negligible Second-Order Remainders:

P0D∗(Q∗,Gn,h1n ) − P0D∗(Q∗,Gn,hn ) −
{

d
dhn

P0D∗(Q∗,Gn,hn )

}
∗ (h1n − hn) = oP(n−1/2)

(Pn − P0){D∗(Q∗
n,hn

,Gn,hn ) − D∗(Q∗,G0)} = oP(n−1/2)
{

(Pn − P0)
d

dhn
D∗(Q∗,Gn,hn )

}
∗ (h1n − hn) = oP(n−1/2)

Pn

{
d

dhn
{D∗(Q∗

n,Gn,hn ) − D∗(Q∗,Gn,hn )}
}
∗ (h1n − hn) = oP(n−1/2)

{P0D∗(Q∗
n,Gn,hn ) − P0D∗(Q∗

n,G0)} − {P0D∗(Q∗,Gn,hn ) − P0D∗(Q∗,G0)} = oP(n−1/2)

Then, Ψ (Q∗
n) is an asymptotically linear estimator of Ψ (Q0) at P0 ∈ M with influ-

ence curve D∗(Q,G0) + D1(P0):

Ψ (Q∗
n) − Ψ (Q0) = (Pn − P0){D∗(Q∗,G0) + D1(P0)} + oP(n−1/2).
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Discussion of Assumptions of Theorem 10.1. We make the following remarks re-
garding verification of the assumptions. The first assumption (10.11) assumes that
there exists a sequence h1n which undersmoothes enough so that the smooth func-
tional ΦQ∗(Gn) is an asymptotically linear estimator of ΦQ∗(G0), where ΦQ∗(G) =
P0D∗(Q∗,G). At misspecified Q∗ � Q0, this might not be possible, and it will
be of interest to understand if we can generalize our proof below to show that,
nonetheless, Ψ (Q∗

n) has better second-order term behavior than a standard TMLE
not solving the critical equation (10.12). The second assumption (10.12) holds if
PnD+(Q∗

n,Gn,hn ) = 0, but as discussed we do not need an exact solution. Our claim is
that this assumption comes down to assuming

{
d

dhn
PnD∗(Q∗

n,Gn,hn )
}
∗hn = oP(n−1/2),

since h1n can be chosen as the fastest rate to zero for which we still have asymp-
totic linearity (10.11). The first of the “second-order remainder”-assumption cor-
responds with assuming (h1n − hn)2 = oP(n−1/2) if h → P0D∗(Q∗,Gn,h) is twice
continuously differentiable. This will hold if h2

1n and h2
n are both oP(n−1/2). Thus,

using our bias-interpretation of hn, the bias of Gn,hn has to go to zero at a faster rate
than n−1/4. Suppose that D∗(Q∗

n,Gn,hn ) falls in a P0-Donsker class with probability
tendon to 1; D+(Q∗

n,Gn,hn ) falls in a P0-Donsker class with probability tending to 1;
P0{D∗(Q∗

n,Gn,hn ) − D∗(Q∗,G0)}2 →p 0; P0{D+(Q∗
n,Gn,hn ) − D∗(Q∗,G0)}2 →p 0.

Then, by empirical process theory, and max(h1n, hn) →p 0, it follows that the
second, third and fourth “second-order remainder”-assumption hold. Thus, these
three second-order remainder assumption only rely on the consistency of (Q∗

n,Gn,hn )
w.r.t (Q∗,G0) and a Donker-class condition. Finally, the remainder in the fifth
“second-order remainder” assumption can generally be represented as

∫
(H1(Q∗

n) −
H1(Q∗))(H2(Gn,hn )−H2(G0)) f (Q∗

n,Gn,Q∗,G0)dP0 for certain functionals H1,H2 and
f . In that case, assuming away singularities (i.e., assuming strong positivity), this
assumption would hold if ‖ H1(Q∗

n) − H1(Q∗) ‖P0‖ H2 ‖P0= oP(n−1/2).
Proof of Theorem 10.1. We have

0 = (Pn − P0)D∗(Q∗
n,hn

,Gn,hn ) + P0D∗(Q∗
n,hn

,Gn,hn ).

By our second-order assumption (Pn − P0)D∗(Q∗
n,hn

,Gn,hn ) = (Pn − P0)D∗(Q∗,G0)+
oP(n−1/2). Let Q∗

n = Q∗
n,hn

. Using that

Ψ (Q∗
n) − Ψ (Q0) = −P0D∗(Q∗

n,G0) + R20(Q∗
n,G0,Q0,G0)

and, by assumption, R20(Q∗
n,G0,Q0,G0) = 0, it follows

P0D∗(Q∗
n,Gn,hn ) = P0D∗(Q∗

n,G0) + {P0D∗(Q∗
n,Gn,hn ) − P0D∗(Q∗

n,G0)}
= Ψ (Q0) − Ψ (Q∗

n) + P0D∗(Q∗
n,Gn,hn ) − P0D∗(Q∗

n,G0).

So we have shown

Ψ (Q∗
n)−Ψ (Q0) = (Pn−P0)D∗(Q∗,G0)+P0D∗(Q∗

n,Gn,hn )−P0D∗(Q∗
n,G0)+oP(n−1/2).
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By our second-order assumption, we have

P0D∗(Q∗
n,Gn,hn ) − P0D∗(Q∗

n,G0) = P0D∗(Q∗,Gn,hn ) − P0D∗(Q∗,G0) + oP(n−1/2).

We now write

P0D∗(Q∗,Gn,hn ) − P0D∗(Q∗,G0) = P0D∗(Q∗,Gn,hn ) − P0D∗(Q∗,Gn,h1n )

+P0D∗(Q∗,Gn,h1n ) − P0D∗(Q∗,G0)

By our “existence of desired selector” assumption, the second term equals (Pn −
P0)D1(P0)+oP(n−1/2). By our second-order assumption, we also have the following
Taylor expansion at hn:

P0D∗(Q∗,Gn,hn )−P0D∗(Q∗,Gn,h1n ) = −
{

d
dhn

P0D∗(Q∗,Gn,hn )

}
∗(h1n−hn)+oP(n−1/2).

Now, we write

−
{

d
dhn

P0D∗(Q∗,Gn,hn )

}
∗ (h1n − hn) =

{
d

dhn
(Pn − P0)D∗(Q∗,Gn,hn )

}
∗ (h1n − hn)

−Pn

{
d

dhn
D∗(Q∗,Gn,hn )

}
∗ (h1n − hn).

By our second-order assumption, the first term on the right-hand side is oP(n−1/2).
Regarding the second term, we write:

Pn

{
d

dhn
D∗(Q∗,Gn,hn )

}
∗ (h1n − hn) = Pn

{
d

dhn
D∗(Q∗

n,Gn,hn )
}
∗ (h1n − hn)

+Pn

{
d

dhn
D∗(Q∗,Gn,hn )

}
∗ (h1n − hn) − Pn

{
d

dhn
D∗(Q∗

n,Gn,hn )
}
∗ (h1n − hn).

By our second-order assumption, the second term on the right-hand side is oP(n−1/2).
By the critical equation assumption on the selector hn, we have that the first term on
the right-hand side is oP(n−1/2) as well. Thus, we have shown

Ψ (Q∗
n) − Ψ (Q0) = (Pn − P0){D∗(Q∗,G0) + D1(P0)} + oP(n−1/2),

which completes the proof of the theorem. �

10.5 Discussion

In van der Laan and Gruber (2010) we proposed a general template for constructing
an iterative algorithm that builds an ordered sequence of TMLEs (Q∗

n, j,G
∗
n, j), j =

1, . . . , J, so that the empirical fit of the relevant part Qn, j and the nuisance parameter
Gn, j is increasing in j, and using loss-based cross-validation to select a best estimator
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Q∗
n, jn

of Q0. In this chapter we assume that such an ordered set of estimators of G0 is
already provided, which represents a special case of this general C-TMLE template:
the general template builds a next estimator Gn, j+1 from Gn, j based on evaluating a
set of moves, but in this special case, the next Gn, j+1 is already known (i.e., only one
move).

However, we go beyond this past literature on C-TMLE by studying the case
that the index parameter h is continuous valued. We focused on double robust es-
timation problems defined by the product structure of the second-order remainder
R20(Q,G,Q0,G0), and assume that our family {Gn,h : h} allows for consistent esti-
mation of G0. We described a C-TMLE algorithm following the general C-TMLE
template with a minor modification to guarantee that the selected estimator Gn,hn

solves a score equation for the tuning parameter h. We demonstrates that solv-
ing this score equation implies that the TMLE (Q∗

n,hn
,Gn,hn ) solves a critically im-

portant score equation Pn
d

dhn
D∗(Q∗

n,Gn,hn ) ≈ 0 where this score is defined as the
derivative w.r.t. h of the canonical gradient. We explained why this latter score
equation corresponds with locally minimizing (in h) the second-order remainder
R20(Q∗

n,Gn,h,Q0,G0) of he TMLE Taylor expansion.
Moreover, we proved a formal theorem that shows that solving this critical equa-

tion beyond the usual efficient influence curve equation PnD∗(Q∗
n,Gn,hn ) = 0 guaran-

tees that, if possible, the selector hn undersmooths enough so that asymptotic linear-
ity of the TMLE Ψ (Q∗

n) is preserved at an inconsistent or slowly converging initial
estimator of Q0. On the other hand, a TMLE only solving PnD∗(Q∗

n,Gn,hn,CV ) = 0
using a cross-validation selector hn,CV will generally fail to be asymptotically linear
when Q∗

n is inconsistent or converges at a slow rate. We also show that by using
a least favorable submodel with a two dimensional ε that generates both of these
scores, we obtain a “special” TMLE that solves both score equations so that the
same asymptotics apply to this standard TMLE even when using hn,CV . Nonetheless,
based on the finite sample rational of the C-TMLE, we expect that the C-TMLE will
have a better finite sample performance than this special TMLE. Initial simulations
not shown here demonstrate that the C-TMLE and special TMLE can easily outper-
form the standard TMLE and that the C-TMLE appears to be the best among the
three estimators “standard TMLE”, “special TMLE”, and “C-TMLE”.
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Chapter 11
Targeted Estimation of Cumulative Vaccine
Sieve Effects

David Benkeser, Marco Carone, and Peter Gilbert

Over the last century, effective vaccines have been developed for prevention of
disease caused by many pathogens. However, effective vaccines have not yet been
developed to prevent infection with the human immunodeficiency virus (HIV).
A challenge in developing a vaccine to prevent HIV infection is the substantial het-
erogeneity in the genetic characteristics of the virus. Preventive HIV vaccines are
typically constructed using only several antigens and may protect well against in-
fection caused by virus strains similar to antigens in the vaccine, but fail to protect
against disease caused by antigenically dissimilar strains. Therefore, when evaluat-
ing preventive HIV vaccines, it is important to study whether and how the efficacy
of the vaccine varies with the virus’ characteristics—this field of study is called
sieve analysis (Gilbert et al. 1998, 2001). The vaccine can be thought of as a sieve,
inducing a strain-specific immunity that presents a barrier to infection, while there
also may be “holes in the sieve,” that is, HIV strains that break through the vaccine
barrier.
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A sieve effect at a given genetic locus is defined as the difference in vaccine ef-
ficacy when comparing viruses matched to the vaccine at this locus to viruses
mismatched at this locus. Identification of sieve effects can help guide the
selection of antigens that should be included in future, possibly multivalent,
vaccines. Such multivalent vaccines may have higher overall efficacy by pro-
viding broader protection against genetically diverse viruses.

Statistically, sieve analysis is performed within a competing risks framework.
In a setting with competing risks, study trial participants are at risk of experienc-
ing several competing endpoints. In HIV vaccine trials, the various endpoints are
defined by the genotype of the virus that causes the infection; each genotype repre-
sents a separate type of endpoint. To assess the effect of a treatment on the risk of
an endpoint of a given type in competing risks settings, it is common to use either
instantaneous or cumulative parameters. The choice of parameter depends on the
scientific context (Pintilie 2007) and both have been used to assess vaccine sieve
effects (Gilbert 2000). Instantaneous parameters are usually based on the cause-
specific hazard function (Prentice et al. 1978; Benichou and Gail 1990; Gaynor et al.
1993; Lunn and McNeil 1995), defined as the instantaneous probability of experi-
encing an endpoint of a given type among those who have not yet experienced an
endpoint. The most common cumulative parameter studied is cumulative incidence,
defined as the probability that an event occurs by a given time and is of a particular
type. While both parameters are relevant for assessing vaccine sieve effects, the cu-
mulative parameter may be of greater public health relevance when waning vaccine
effects are present.

The Aalen-Johansen estimator is commonly used to make inference on cumula-
tive incidence in a sieve analysis (Aalen 1978). This estimator requires few assump-
tions to achieve several desirable properties. Provided censoring is uninformative, it
is consistent. Additionally, if there are no measured prognostic covariates, it is also
asymptotically nonparametric efficient. However, informative censoring is a com-
mon concern in any longitudinal study and prognostic covariates such as sexual risk
behaviors are routinely collected in HIV vaccine trials. By utilizing these covari-
ates, it is possible to weaken assumptions on the censoring mechanism and improve
efficiency.

Semiparametric approaches have been devised to incorporate covariates into the
analysis of competing risks data and have been applied in sieve analysis. These
include proportional hazards regression for cause-specific hazards (Prentice et al.
1978; Lunn and McNeil 1995) or subdistribution hazards (Fine and Gray 1999).
These hazard-based approaches can be used to compute estimates of cumulative in-
cidence using known relationships between hazard and incidence, but are more com-
monly used to estimate hazard-based efficacy parameters. A drawback of these
semiparametric approaches, whether for estimating instantaneous or cumulative pa-
rameters, is that they require the correct specification of a finite-dimensional regres-
sion model.
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When this model is incorrect, the target parameter is generally difficult to in-
terpret. For example, the estimand of a misspecified cause-specific Cox model
is known to involve the censoring distribution (Struthers and Kalbfleisch
1986), and this is also true of misspecified subdistribution hazard models
(Grambauer et al. 2010). The fact that the estimand involves the censoring
distribution, typically considered to be a study-specific nuisance rather than a
population characteristic of interest, is an undesirable property for assessing
treatment efficacy (Stitelman and van der Laan 2011).

Targeted estimators of a marginal survival probability when only one type of end-
point is present were presented in Moore and van der Laan (2009a) and van der Laan
and Gruber (2012). These works proposed and evaluated methods for covariate ad-
justment through machine learning-based estimators, such as the super learner. The
estimators were shown to lead to gains in efficiency and robustness to informative
censoring. In this chapter, we show how the TMLE developed in van der Laan and
Gruber (2012) can be adapted to the setting of competing risks and estimation of
cumulative incidence in the context of sieve analysis. We illustrate these methods
using data from a recent Phase II preventive HIV vaccine efficacy trial.

11.1 Observed Data

We consider a preventive HIV vaccine efficacy trial that recruits n individuals and
measures L0, a potentially high-dimensional set of baseline characteristics, on each
individual. Individuals are assigned, possibly based on L0, to receive an active vac-
cine A0 = 1 or control vaccine A0 = 0. Trial participants are asked to attend K + 1
regularly scheduled clinic visits to be tested for HIV infection. We consider the case
where there is a particular genetic locus of interest and for k = 1, . . . ,K + 1, define
Lk = (Lk,1, Lk,2) to be a bivariate indicator of infection, where Lk,1 = 1 if a participant
is infected with a virus matched to the reference virus in the vaccine at the locus of
interest at or before visit k and Lk,1 = 0 otherwise. Similarly, Lk,2 = 1 if a participant
is infected with a virus mismatched to the reference virus in the vaccine at or before
visit k and Lk,2 = 0 otherwise. Over the course of follow-up some participants may
withdraw consent or leave the study for other reasons. For k = 1, . . . ,K, we use Ak

to denote whether a participant attended clinic visit k + 1. If a participant misses a
clinic visit, they are considered to be right censored. Thus, the observed data can be
represented as n independent copies of O = (L0, A0, L1, A1, . . . , AK , LK+1) ∼ P0. We
will make no assumptions about P0, so our statistical model M is nonparametric.

We note that for k = 1, . . . ,K, we could allow Lk to contain time-varying par-
ticipant characteristics; however, such characteristics are not included in our data
analysis. We use L̄k = (L0, . . . , Lk) and Āk = (A0, . . . , Ak) to denote the history of
the time-dependent processes at a given time k. We also use the notation 0̄m and 1̄m

to respectively denote zero and one vectors of length m.
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11.2 Causal Model and Parameters of Interest

We now define our causal parameter of interest using a structural causal model.
We assume that each component of the observed longitudinal data structure is a
function of a set of observed parent variables and an unmeasured exogenous error
term. The observed parents of Lk are assumed to be L̄k−1 and Āk, while the parents
of Ak are assumed to be L̄k and Āk−1. We can define a post-intervention distribu-
tion that represents the distribution the data would have under a specified inter-
vention on A0, . . . , AK that sets these values to a0, . . . , aK , respectively. We denote
the true post-intervention distribution of a static intervention ā with Pā

0 and define
Lā = (Lā

1, . . . , L
ā
K+1) to be a counterfactual random variable with this distribution.

We are interested in evaluating the mean counterfactual outcome EPā
0
(Lā

K+1) under
two interventions: the first assigns A0 = 1 (i.e., active vaccine), the second assigns
A0 = 0 (i.e., control vaccine), and both subsequently assign A1 = · · · = AK = 1
(i.e., individuals remain under observation for the duration of the study). These in-
terventions may be seen as unnecessarily stringent, since whenever an infection
occurs prior to time k, the participant’s infection status at time k is known even if
the individual was later lost to follow-up. The stochastic intervention on Ak that sets
Ak = 0 and does not intervene otherwise may be more appropriate. However, it can
be shown that both interventions lead to the same observed data parameter. The two
static interventions of interest differ only in assignment of A0, so we will use the
shorthand a = 1 to refer to the intervention assigning treatment and no censoring
and a = 0 to refer the intervention assigning control and no censoring.

We are interested in estimating the cumulative incidence of both matched and
mismatched infections in the vaccine and placebo arm, which we define as ψa

0, j =

EPa
0
(La

K+1, j) for j = 1, 2 and a = 0, 1. These quantities can be used to de-
fine a measure of genotype-specific cumulative vaccine efficacy for j = 1, 2 as
VE j = 1 − ψ1

0, j/ψ
0
0, j, interpreted as the multiplicative reduction in cumulative inci-

dence of type j infections caused by the vaccine. Values of vaccine efficacy near one
indicate a highly effective vaccine, small positive values indicate a moderately effec-
tive vaccine, and values less than zero indicate a harmful vaccine. We also define a
vaccine sieve effect as VS E = (ψ0

0,1/ψ
1
0,1)/(ψ0

0,2/ψ
1
0,2), that is, the ratio (matched vs.

mismatched) of the causal cumulative risk ratios (placebo vs. vaccine). Note that the
vaccine sieve effect will be greater than one if the efficacy is higher against matched
infections and less than one if the efficacy is lower.

For simplicity of exposition, we focus on estimation of ψ1
0,1 noting that our label-

ing of types and treatment arms is arbitrary so that the same methods can be used
to estimate each of the four cumulative incidence quantities of interest. These esti-
mates can then be combined to estimate vaccine efficacy and vaccine sieve effects.
Furthermore, we also note that our choice of K is arbitrary so that our methods can
be applied for pointwise estimation of cumulative incidence, vaccine efficacy, and
vaccine sieve effects at any clinic visit.
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11.3 Identification

The distribution of the counterfactual variable La can be identified using the ob-
served data under the assumptions of sequential randomization and positivity. The
identification result we present is based on the general results in Bang and Robins
(2005). Beginning at the final time point K + 1, we define

Q̄0,K+1(�̄K) =
∫

�K+1,1 dQ0,LK+1 (�̄K+1) ,

where Q0,LK+1 denotes the conditional distribution of LK+1 given ĀK = 1̄K+1 and L̄K

implied by P0. Given Q̄0,K+1, we define

Q̄0,K(�̄K−1) =
∫

Q̄0,K+1(�̄K) dQ0,LK (�̄K)

as the mean of Q̄0,K+1 with respect to QLK ,0, the conditional distribution of LK given
ĀK = 1̄K and L̄K−1 implied by P0. We continue this process, where for k = 1, . . . ,
K − 1 we define

Q̄0,k(�̄k−1) =
∫

Q̄0,k+1(�̄k) dQ0,Lk (�̄k) .

Finally, we define

Q̄0,0 =

∫
Q̄0,1(�0) dQ0,L0 (�0) .

We use Q̄ = Q̄(P) = (Q̄k(P) : k) to denote the collection of iterated means and Q =
Q(P) = {Q̄(P),QL0 (P)} to denote the set of iterated means along with the distribution
of baseline covariates implied by P ∈ M. Under the causal assumptions previously
mentioned, we have that Q̄0,0 equals the counterfactual parameter of interest. Thus,
we have established that ψ1

0,1 = Ψ (Q0) under the specified assumptions, where Ψ :
M → (0, 1) is defined by the iterated mean construction above.

11.4 Efficient Influence Function

For k = 1, . . . ,K + 1, we define GAk = GAk (P) = P(Ak = 1 | Āk−1 = 1̄k, L̄k) and

Hk(G)(o) =
I(āk−1 = 1̄k)
∏k−1

m=0 GAm (�̄k)
.
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The efficient influence function of Ψ with respect to our model M at (Q, g) is

D∗(Q,G)(o) =
K+1∑

k=0

D∗
k(Q,G)(o) ,

where

D∗
K+1(Q,G)(o) = HK+1(G)(o) {�K+1,1 − Q̄K+1(�̄K)}
D∗

k(Q,G)(o) = Hk(G)(o) {Q̄k+1(�̄k) − Q̄k(�̄k−1)} for k = 1, . . . ,K, and

D∗
0(Q)(o) = Q̄1(�0) − Ψ (Q̄) .

11.5 Initial Estimates

We use the empirical distribution Qn,L0 as initial estimator of the distribution of
baseline covariates. To construct initial estimates of Q̄0, we begin at K + 1, where
the initial estimator of Q̄0,K+1 should assign the value one to individuals with LK,1 =

1 and zero to individuals with LK,2 = 1. For the remaining individuals, we must
estimate the conditional mean of LK+1,1 given L0. In the simplest case, this could
be achieved via parametric regression of the outcome LK+1,1 on functions of L0 in
the subset of data with ĀK = 1̄K+1 and LK = (0, 0). However, more ideally this
estimate would be based on a more flexible technique, such as the super learner
including nonparametric tools. Moving to time point K, the estimate of Q̄0,K should
assign the value one to individuals with LK−1,1 = 1 and zero to individuals with
LK−1,2 = 1. For the remaining individuals, Q̄0,K can be estimated using a regression
of an estimate of Q̄0,K+1 on functions of L0 in the subset of data with ĀK−1 = 1̄K

and LK−1 = (0, 0). This process continues for each of the remaining time points:
previously failed individuals are assigned one or zero depending on the type of
failure, while the predicted value from the previous regression serves as the outcome
in the next regression in the remaining individuals.

11.6 Submodels and Loss Functions

Given estimators Qn and Gn, we now define appropriate parametric fluctuation sub-
models and loss functions to update Qn. For the distribution of baseline covariates,
we use the negative log-likelihood loss, L(o,QL0 ) = −log{dQL0 (�0)}, and submodel
{(1 + εD∗

0(Q̄))dQL0 : ε}. For the fluctuation of the estimate of Q̄0,K+1, we use the
negative log-likelihood loss function

L(o, Q̄K+1) = −I(āK = 1̄K+1)
[
�K+1,1log{Q̄K+1(�̄K)} + (1 − �K+1,1)log{1 − Q̄K+1(�̄K)}] ,
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whose true risk is indeed minimized by Q̄0,K+1. An appropriate submodel for Q̄n,K+1

given some G is, with a slight abuse of notation, {Q̄ε,K+1 : ε} where Q̄ε,K+1 =

expit
{
logit(Q̄n,K+1) + εHK+1(G)

}
. One easily checks that

d
dε

L(o, Q̄ε,K+1)
∣∣∣∣∣
ε=0
= D∗

K+1(Q,G)(o) .

For k = 1, . . . ,K we define a negative log-likelihood loss function for Q̄0,k that is
indexed by a given Q̄k+1,

LQ̄k+1
(o, Q̄k) = −I(āk−1 = 1̄k)

[
Q̄k+1(�̄k)log{Q̄k(�̄k−1)}

+ {1 − Q̄k+1(�̄k)}log{1 − Q̄k(�̄k−1)}] .

One can confirm that the true risk of this loss function is minimized by Q̄0,k when-
ever the index parameter is equal to its true value Q̄0,k+1. We again use a logistic
submodel for a given G denoted, again with a slight abuse of notation, as {Q̄ε,k : ε},
where Q̄ε,k = expit{logit(Q̄n,k) + εHk(G)}. We can show that

d
dε

LQ̄k+1
(o, Q̄ε,k)

∣∣∣∣∣
ε=0
= D∗

k(Q,G)(o) .

11.7 TMLE Algorithm

The TMLE algorithm follows the initial estimation procedure outlined above, but
adds in a fluctuation step at each time point:

1. Generate initial estimates, Gn, of the conditional treatment and censoring mech-
anisms. These may be obtained through standard methods (e.g., logistic regres-
sion for the treatment and Kaplan-Meier for the censoring mechanism), or more
ideally using a collection of classical tools along with machine learning tech-
niques combined via the super learner. Use these estimates to compute Hk(Gn)
for k = 1, . . . ,K + 1.

2. Generate an initial estimate Q̄n,K+1 of the first iterated conditional mean as out-
lined above.

3. Obtain εn as the coefficient of a logistic regression with Lk,1 as outcome, the
offset logit{Q̄n,K+1(L̄K)}, and HK+1(Gn)(O) as covariate in the subset of data with
ĀK = 1̄K+1. Set Q̄∗

n,K+1 = Q̄εn,K+1. Let k = K.
4. Generate an initial estimate Q̄n,k of Q̄0,k as outlined above by first assigning

known values when Lk−1 � (0, 0) and then estimating unknown values using
an appropriate form of regression with Q̄∗

n,k+1 as the outcome and functions of L0

as predictors in the subset of data with Āk−1 = 1̄k and Lk−1 = (0, 0).
5. Obtain the next value for εn by fitting a logistic regression with Q̄∗

n,k+1(L̄k) as
outcome, logit{Q̄n,k(L̄k)} as offset, and Hk(Gn)(O) as covariate in the subset of
data with Āk = 1̄k+1. Set Q̄∗

n,k = Q̄εn,k. Set k = k − 1.
6. Iterate steps 4–5 until k = 0.
7. Obtain estimate ψ∗

n =
1
n

∑n
i=1 Q̄∗

n,1(Oi).
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11.8 Statistical Properties of TMLE

The TMLE estimator of cumulative incidence is doubly-robust, in that the estimator
is consistent if either Qn consistently estimates Q0 or Gn consistently estimates G0.
The TMLE estimator will be asymptotically linear under the usual empirical pro-
cess and rate conditions for TMLE-based estimators. If the treatment and censoring
mechanisms are known exactly, the influence function of ψ∗

n is given by D∗(Q∗,G0),
where Q∗ is the (possibly misspecified) limit of Q∗

n. In this case, the asymptotic vari-
ance of n1/2(ψ∗

n − ψ0) can be consistently estimated by σ2
n =

∑n
i=1 D∗(Q∗

n,G0)(Oi)2.
However, if the treatment and censoring mechanisms are unknown, as is typical in
practice, and Q∗

n is not consistent for Q0, the asymptotic variance is more compli-
cated. Nevertheless, in such situations, if Gn is an asymptotically efficient estimator
within a parametric model G, then we may use σ2

n as a conservative estimate of the
asymptotic variance.

Confidence intervals for ψ∗
n may be constructed using

(
ψ∗

n − z1−α/2σnn−1/2, ψ∗
n + z1−α/2σnn−1/2

)
,

where zβ is the β-quantile of the standard normal distribution. Similarly, given a
fixed ψ◦ ∈ (0, 1), a two-sided test of the null hypothesis ψ0 = ψ◦ of asymptotic
size no larger than α can be constructed by rejecting the null hypothesis whenever
|n1/2(ψ∗

n − ψ◦)/σn| > z1−α/2. An appealing facet of the influence function-based
variance estimation is that the form of the asymptotic variance of a function of
multiple estimators is readily available. In sieve analysis, this is quite useful as it
allows for the simple construction of confidence intervals and hypothesis tests about
genotype-specific vaccine efficacy and vaccine sieve effects.

11.9 HVTN 505 HIV Vaccine Sieve Analysis

We analyzed data from the HVTN 505 study, a recent Phase II preventive HIV
vaccine efficacy trial where participants were randomized 1:1 to receive either the
candidate vaccine or a placebo (Hammer et al. 2013). Additional information on
participants’ risk behaviors was collected at recruitment including gender (male,
female, transgender male, transgender female), race (white, black, other), BMI, drug
use (marijuana, cocaine, poppers, speed, MDMA, other recreational drugs), alcohol
use (never, less than once per week, 1–2 days per week, 3–6 days per week, daily),
STD status (syphilis, herpes, genital sores, gonorrhea), and sexual risk behaviors
(reported number of sexual partners, reported unprotected insertive anal sex with
men, reported unprotected recipient sex with men, previously derived behavioral
risk score). After receipt of the final dose of vaccine, participants attended visits
every 3 months to be tested for HIV. We focus our analysis on the modified intent-
to-treat cohort, which included 2504 participants. We refer interested readers to the
original publication for more information on the trial’s design.
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We studied whether the vaccine exhibited sieve effects at amino acid site 169 on
the V2 loop of the HIV envelope protein. This locus was chosen because a vaccine
with a similar design to the HVTN 505 vaccine exhibited sieve effects at this locus
(Rolland et al. 2012). In HVTN 505 there were a total of 17 169-matched and 30
169-mismatched infections. We used TMLE to estimate the cumulative incidence
of 169-matched and mismatched infections in the vaccine and placebo arm in each
scheduled visit window. These measures were used to estimate the vaccine efficacy
against each type of infection, in addition to the vaccine sieve effect at this locus.

We used the super learner to estimate both the iterated conditional means and the
conditional censoring distribution. The same library was used for both and consisted
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Fig. 11.1 Results from the TMLE analysis of HVTN-505

of 13 algorithms: an unadjusted mean, three main terms-only generalized linear
models (using only behavioral risk score, only sexual risk behaviors, and only the
five variables most highly correlated with outcome), three main terms-only stepwise
regressions based on AIC (using all variables, only sexual risk behaviors, and only
the five most highly correlated variables), three random forests (using all variables,
only drug/alcohol use, and only sexual risk behaviors), and three gradient boosted
machines (using all variables, only drug/alcohol use, and only all sexual risk behav-
iors).

The results of our analysis are shown in Fig. 11.1. The top row shows the
treatment-specific cumulative incidence of HIV infections that were matched (left)
or mismatched (right) to the strains in the vaccine insert at the amino acid site of
interest. Overall the incidence of mismatched infections was slightly higher than
matched infections and in neither case do we see a clear separation between the
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curves for the two treatment groups. This is reflected in the vaccine efficacy mea-
sure shown in the bottom left plot. The vaccine does not appear to confer efficacy
against either type of infection. The estimated sieve effect is shown in the bottom
right panel, where we see confirmation that there is no evidence of differential vac-
cine efficacy comparing matched to mismatched infections.

We also performed the analysis using the Aalen-Johansen estimator to examine
whether adjusting for covariates had an effect on the results. At 18 months after
receipt of the final vaccination the TMLE-estimated sieve effect was 0.83 (95% CI:
0.31–2.23) and the Aalen-Johansen estimated sieve effect was 0.82 (95% CI: 0.23–
2.91). Covariate adjustment did not affect the point estimate for the sieve effect,
but had a substantial effect on the estimated uncertainty associated with the point
estimate. The estimated variance of the TMLE-estimated sieve effect was 60% that
of the Aalen-Johansen-estimated sieve effect, which led to a substantially narrower
confidence interval about the TMLE estimate.

11.10 Discussion

In this chapter, we illustrated how cumulative incidence, genotype-specific vaccine
efficacy, and vaccine sieve effects can be estimated using TMLE.

There are several benefits to this targeted approach to sieve analysis. Covariate
adjustment allows for departures from the assumption of independent censor-
ing by allowing for censoring to depend on baseline covariates. Furthermore,
covariate adjustment can lead to gains in efficiency. We can thus obtain es-
timators of vaccine efficacy and sieve effects that have lower bias and lower
variance than the standard, unadjusted approach to sieve analysis.

Our analysis of the HVTN 505 data illustrates that these potential benefits can in-
deed be realized in real data applications. Adjusting for the large set of risk be-
haviors collected in the HVTN 505 trial led to a substantially narrower confidence
interval about the estimated sieve effect. Targeted learning of vaccine sieve effects
appears to be a promising direction for the field.



Chapter 12
The Sample Average Treatment Effect

Laura B. Balzer, Maya L. Petersen, and Mark J. van der Laan

In cluster randomized trials (CRTs), the study units usually are not a simple random
sample from some clearly defined target population. Instead, the target population
tends to be hypothetical or ill-defined, and the selection of study units tends to be
systematic, driven by logistical and practical considerations. As a result, the pop-
ulation average treatment effect (PATE) may be neither well defined nor easily in-
terpretable. In contrast, the sample average treatment effect (SATE) is the mean
difference in the counterfactual outcomes for the study units. The sample parame-
ter is easily interpretable and arguably the most relevant when the study units are
not sampled from some specific super-population of interest. Furthermore, in most
settings the sample parameter will be estimated more efficiently than the population
parameter.
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In this chapter, we demonstrate the use of TMLE for estimation and inference
of the sample effect in trials with and without pair-matching. We study the
asymptotic and finite sample properties of the TMLE for the sample effect and
provide a conservative variance estimator. Finite sample simulations illustrate
the potential gains in precision and power from selecting the sample effect as
the target of inference. This chapter is adapted from Balzer et al. (2016c).

In many studies, the goal is to estimate the impact of an exposure on the out-
come of interest. Often the target causal parameter is the PATE: the expected dif-
ference in the counterfactual outcomes if all members of some population were
exposed and if all members of that population were unexposed. If there are no un-
measured confounders and there is sufficient variability in the exposure assignment
(i.e. if the randomization and positivity assumptions hold), then we can identify the
PATE as a function of the observed data distribution (Rosenbaum and Rubin 1983b;
Robins 1986). The resulting statistical parameter can be estimated with a variety
of algorithms, including matching and inverse weighting estimators (e.g., Horvitz
and Thompson 1952; Rosenbaum and Rubin 1983b; Shen et al. 2014), simple sub-
stitution estimators (e.g., Robins 1986; Snowden et al. 2011), and double robust
algorithms (e.g., Robins et al. 1994; van der Laan and Robins 2003; van der Laan
and Rubin 2006; van der Laan and Rose 2011).

An alternative causal parameter is the SATE (Neyman 1923; Rubin 1990; Imbens
2004; Imai 2008; Schochet 2013; Imbens and Rubin 2015). The sample effect is the
average difference in the counterfactual outcomes for the actual study units. There
are several potential advantages to selecting the SATE as the parameter of interest.
First, the SATE is readily interpretable as the intervention effect for the sample at
hand. Second, the SATE avoids assumptions about randomly sampling from and
generalizing to some “vaguely defined super-population of study units” (Schochet
2013). In other words, the sample parameter remains relevant and interpretable if
the units were systematically selected for inclusion in the study, as is likely to be
common in CRTs. Extensions of the study results to a broader or a different popula-
tion can be addressed as a distinct research problem, approached with formal tools
(e.g., Cole and Stuart 2010; Stuart et al. 2011; Bareinboim and Pearl 2013; Hartman
et al. 2015), and do not have to be assumed in the parameter specification. Finally,
an estimator of the sample effect is often more precise than the same estimator of
the population effect (Neyman 1923; Rubin 1990; Imbens 2004; Imai 2008).

For a randomized trial, Neyman (1923) first proposed estimating the SATE with
the unadjusted estimator, which is the difference in the average outcomes among
the treated units and the average outcomes among the control units. In this setting,
the difference-in-means estimator will be unbiased for the SATE, conditional on the
set of counterfactual outcomes for the study units. However, its variance remains
unidentifiable as it relies on the correlation of the counterfactual outcomes (Ney-
man 1923; Rubin 1990; Imbens 2004; Imai 2008). Imbens (2004) later generalized
this work for an efficient estimator (i.e. a regular, asymptotically linear estimator,
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whose influence curve equals the efficient influence curve) in an observational set-
ting. In particular, he showed that an efficient estimator for the population effect
was unbiased for the sample effect, conditional on the baseline covariates and the
counterfactual outcomes of the study units. He further expressed the variance of an
efficient estimator of the SATE in terms of the variance of the same estimator of the
PATE minus the variance of the unit-specific treatment effects across the population.
This suggested that the standard variance estimator would be biased upwards unless
there is no variability in the treatment effect.

In this chapter, we introduce a TMLE for estimation and inference of the
sample effect in trials with and without pair-matching. Our results general-
ize the variance derivations of Imbens (2004) to allow for misspecification of
the outcome regression (i.e., the conditional mean outcome, given the expo-
sure and covariates), estimation of the propensity score (i.e. the conditional
probability of the receiving the exposure, given the covariates), and adaptive
pair-matching (Balzer et al. 2015). Pair-matching is a popular design strategy
in CRTs to protect study credibility and to increase power (Klar and Donner
1997; Greevy et al. 2004; Imai et al. 2009; Hayes and Moulton 2009; van der
Laan et al. 2013a; Balzer et al. 2015). To the best of our knowledge, TMLE
is the first efficient estimator proposed for the sample effect in a pair-matched
trial.

As a motivating example, we consider a hypothetical CRT for HIV prevention
and treatment. Suppose there are n = 30 communities in the trial. In intervention
communities, HIV testing is regularly offered and all individuals testing HIV+ are
immediately eligible for antiretroviral therapy (ART) with enhanced services for
initiation, adherence and retention in care. In control communities, all individuals
testing HIV+ are offered ART according to the current standard of care. The primary
hypothesis is that the universal “test-and-treat” strategy will reduce the cumulative
incidence of HIV over the trial duration. For the purposes of discussion, we focus on
the community-level data. Thereby, our results are equally applicable to clustered
and nonclustered data structures.

12.1 The Causal Model and Causal Parameters

Consider the following data generating process for a randomized trial with two arms.
First, the study units are selected. While some trials obtain a simple random sam-
ple from a well-defined target population, in other studies there may not be a clear
target population from which units were sampled and about which we wish to make
inferences. In the SEARCH trial, for example, 32 communities were selected from
Western Uganda (Mbarara region), Eastern Uganda (Tororo region) and the South-
ern Nyanza Province in Kenya by first performing ethnographic mapping on 54
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candidate communities meeting the inclusion criteria (e.g. community size, health
care infrastructure and accessibility by a maintained transportation route), and then
selecting the 16 pairs best matched on a range of characteristics (e.g. region, occu-
pational mix and migration index) (Balzer et al. 2015). After selection of the study
units, additional covariates are often measured. In our running example, additional
covariates collected could include male circumcision coverage, measures of HIV
prevalence and measures of community-level HIV RNA viral load. Throughout the
baseline covariates are denoted W.

Next, the intervention is randomized to the study units. Equal allocation of the
intervention can be guaranteed by randomly assigning the intervention to n/2 units
and the control to remaining units or by randomizing within matched pairs. For
ease of exposition, we present the causal model for the simple scenario, where the
intervention is completely randomized, but our results are general. (Extensions to
pair-matched trials are given in Sect. 12.4.) Let A be a binary variable, reflecting
the assigned level of the intervention. For our hypothetical CRT, A equals one if
the community was assigned to the treatment (universal test-and-treat) and equals
zero if the community was assigned to the control (standard of care). At the end of
follow-up, the outcome Y is measured. For our trial, Y is the cumulative incidence
of HIV over the relevant time period. The observed data for a given study unit are
then

O = (W, A,Y).

Suppose we observe n i.i.d. copies of O with some distribution P0. Recall the sub-
script 0 denotes the true distribution of the observed data. We note that for estima-
tion and inference of the sample and conditional average treatment effects, we can
weaken the i.i.d. assumption by conditioning on the vector of baseline covariates
(W1,W2, . . . ,Wn) (Balzer et al. 2015).

The following structural causal model describes this data generating process
(Pearl 1995, 2009a). Each component of the observed data is assumed to be a de-
terministic function of its parents (variables that may influence its value) and unob-
servable background factors:

W = fW (UW) (12.1)

A = I(UA < 0.5)

Y = fY (W, A,UY )

where the set of background factors U = (UW ,UA,UY ) have some joint distribution
PU . By design, the random error determining the intervention assignment UA is
independent from the unmeasured factors contributing the baseline covariates UW

and the outcome UY :

UA ⊥⊥ (UW ,UY ).

Specifically, UA is independently drawn from a Uniform(0,1). This causal model
MF implies the statistical model for the set of possible distributions of the observed
data O. In a randomized trial, the statistical model M is semiparametric.
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Through interventions on the structural causal model, we can generate the coun-
terfactual outcome Ya, which is the outcome if possibly contrary-to-fact the unit was
assigned A = a:

W = fW (UW )

A = a

Ya = fY (W, a,UY ).

In this framework, the counterfactual outcomes Ya are random variables. For our
running example, Ya is the counterfactual cumulative incidence of HIV if possibly
contrary-to-fact the community had been assigned treatment level A = a.

The distribution of the counterfactuals can then be used to define the causal pa-
rameter of interest. Often, the target of inference is the population average treatment
effect:

PAT E = E
[
Y1 − Y0

]
.

This is the expected difference in the counterfactual outcomes for underlying target
population from which the units were sampled. From the structural causal model, we
see that the expectation is over the measured factors W and unmeasured factors UY ,
which determine the counterfactual outcomes for the population. In other words, the
true value of the PATE does not depend on the sampled values of W or UY . For our
hypothetical trial, the PATE would be the difference in the expected counterfactual
cumulative incidence of HIV if possibly contrary-to-fact all communities in some
hypothetical target population implemented the test-and-treat strategy, and expected
counterfactual cumulative incidence of HIV if possibly contrary-to-fact all commu-
nities in that hypothetical target population continued with the standard of care.

An alternative causal parameter is the sample average treatment effect, which
was first proposed in Neyman (1923):

S AT E =
1
n

n∑

i=1

[
Y1,i − Y0,i

]
.

This is simply the intervention effect for the n study units. The SATE is a data-
adaptive parameter; its value depends on the units included in the study. For re-
cent work on estimation and inference of other data-adaptive parameters, we refer
the reader to Chap. 9. The SATE remains interpretable if there is no clear super-
population from which the study units were selected. In our running example, the
SATE is the average difference in the counterfactual cumulative incidence of HIV
under the test-and-treat strategy and under the standard of care for the n study com-
munities.

In a CRT, targeting the sample effect may have several advantages over targeting
the population effect. First, there may not be a single real world (as opposed to hypo-
thetical) target population from which the study units were sampled or about which
we wish to make inferences. While appropriate analytic approaches can reduce
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concerns over systematic sampling, the interpretation and policy relevance of the
resulting PATE estimate would be unclear. In contrast, targeting the SATE allows us
to rigorously estimate the intervention effect in a clearly defined, real world popu-
lation consisting of all the residents of the study communities. The resulting SATE
estimate does not rely on any assumptions about the sampling mechanism, has a
clear interpretation, and is generally more precise than an estimate of the PATE. As
discussed below, estimators of the sample effect are at least as powerful as those of
the population effect and expected to be more powerful when there is effect modifi-
cation (Rubin 1990; Imbens 2004; Imai 2008).

Clearly, however, it remains of significant policy interest to transport any effect
found in a CRT to new populations and settings. However, alternative real world tar-
get populations are likely to differ from the current setting in a number of ways that
will likely impact the magnitude of the effect. As a result, neither the SATE nor the
PATE will apply directly to these new settings. Thus, a desire for generalizability
does not constitute an argument for favoring the population parameter over the sam-
ple parameter. Instead, the generalization (or transport) of the intervention effect to
settings beyond the current sample is best addressed as a distinct research question,
making full use of the modern toolbox available (e.g. Cole and Stuart 2010; Stuart
et al. 2011; Bareinboim and Pearl 2013; Hartman et al. 2015).

12.2 Identifiability

To identify the above causal effects, we must write them as some function of the ob-
served data distribution P0 (Imbens 2004; van der Laan and Rose 2011). Under the
randomization and positivity assumptions, we can identify the mean counterfactual
outcome within strata of covariates (Rosenbaum and Rubin 1983b; Robins 1986):

E
[
Ya|W

]
= E

[
Ya|A = a,W

]
= E0

[
Y |A = a,W

]

where the right-most expression is now in terms of the observed data distribution P0.
Briefly, the first equality holds under the randomization assumption, which states
that the counterfactual outcome is independent of the exposure, given the measured
covariates: A ⊥⊥ Ya|W. This is equivalent to the no unmeasured confounders as-
sumption (Rosenbaum and Rubin 1983b). The positivity assumption states that the
exposure level a occurs with a positive probability within all possible strata of co-
variates. Both assumptions hold by design in a randomized trial. As a well known
result, the PATE is identified as

ΨP(P0) = E0

[
E0(Y |A = 1,W) − E0(Y |A = 0,W)

]

= E0
[
Q̄0(1,W) − Q̄0(0,W)

]
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where Q̄0(Y |A,W) ≡ E0(Y |A,W) denotes the conditional mean outcome, given the
exposure and covariates. This statistical estimand is also called the g-computation
identifiability result (Robins 1986). For our running example, ΨP(P0) is the dif-
ference in expected cumulative HIV incidence, given the treatment and measured
covariates, and the expected cumulative HIV incidence, given the control and mea-
sured covariates, averaged (standardized) with respect to the covariate distribution
in the hypothetical target population. As with the causal parameter, there is one true
value ΨP(P0) for the population. In a randomized trial, conditioning on the covari-
ates W is not needed for identifiability, but will often provide efficiency gains during
estimation (e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982; Tsiatis et al.
2008; Moore and van der Laan 2009b; Rosenblum and van der Laan 2010b; Euro-
pean Medicines Agency 2015).

In contrast, the SATE is not identifiable—in finite samples, we cannot strictly
write the causal parameter as a function of the observed data distribution P0.
(Asymptotically, the SATE is identifiable, because the empirical mean converges
to the expectation and thereby the sample effect converges to the population effect.)
To elaborate, we can use the structural causal model (Eq. (12.1)) to rewrite the sam-
ple effect as

S AT E =
1
n

n∑

i=1

[
Y1,i − Y0,i

]

=
1
n

n∑

i=1

fY (Wi, 1,UYi ) − fY (Wi, 0,UYi )

=
1
n

n∑

i=1

E
[
Y1,i − Y0,i

∣∣∣Wi,UYi

]
.

The second equality is from the definition of counterfactuals as interventions on the
causal model. The final equality is the conditional average treatment effect (CATE),
given the measured baseline covariates as well as the unmeasured factors. The con-
ditional effect was first proposed in Abadie and Imbens (2002) and is the average
difference in the expected counterfactual outcomes, treating the measured covariates
of the study units as fixed: CATE= 1

n

∑n
i=1 E

[
Y1,i − Y0,i

∣∣∣Wi
]
. This representation of

the SATE suggests that if we had access to all pre-intervention covariates impacting
the outcome (i.e. {W,UY }), then we could apply the results for estimation and infer-
ence for the conditional parameter, as detailed in Balzer et al. (2015). In reality, we
only measure a subset of these covariates (i.e., W) and only this subset is available
for estimation and inference. Therefore, the SATE is not formally identifiable in fi-
nite samples. Nonetheless, as detailed below, a TMLE for the population effect will
be consistent and asymptotically linear for the sample effect, and the corresponding
variance estimator will be asymptotically conservative.



182 L. B. Balzer et al.

12.3 Estimation and Inference

There are many well-established algorithms for estimation of the population pa-
rameter ΨP(P0). Examples include IPW, simple substitution estimators, A-IPW and
TMLE (e.g., Horvitz and Thompson 1952; Rosenbaum and Rubin 1983b; Shen et al.
2014; Robins 1986; Snowden et al. 2011; Robins et al. 1994; van der Laan and
Robins 2003; van der Laan and Rubin 2006; van der Laan and Rose 2011). In a ran-
domized trial, the unadjusted difference in the average outcomes among the treated
units and the average outcome among the control units provides a simple and unbi-
ased estimate of the PATE. Adjusting for measured covariates, however, will gener-
ally increase efficiency and study power (e.g., Fisher 1932; Cochran 1957; Cox and
McCullagh 1982; Tsiatis et al. 2008; Moore and van der Laan 2009b; Rosenblum
and van der Laan 2010b; Shen et al. 2014; European Medicines Agency 2015).

For example, we can obtain a more precise estimator of the PATE by (1) regress-
ing the outcome Y on the exposure A and covariates W, (2) using the estimated
coefficients to obtain the predicted outcomes for all units under the exposure and
control, and (3) then taking the average difference in the predicted outcomes. For a
large class of general linear models, there is no risk of bias if the “working” model
for the outcome regression is misspecified (Rosenblum and van der Laan 2010b).
This algorithm is called parametric g-computation (Robins 1986) in observational
studies and also called analysis of covariance (ANCOVA) (Cochran 1957) in the
special case of a continuous outcome and a linear model without interactions. Alter-
natively, we can obtain a more precise estimator of ΨP(P0) by estimating the known
exposure mechanism to capture chance imbalances in the covariate distribution be-
tween treatment groups (e.g., van der Laan and Robins 2003; Moore and van der
Laan 2009b; Shen et al. 2014). In our running example, the true conditional prob-
ability of being assigned to the test-and-treat intervention is P0(A = 1|W) = 0.5.
However, with limited numbers of clusters, there is likely to be variation in the
baseline covariates across the treatment arms.

We focus our discussion on TMLE, which incorporates estimation of both the
outcome regression (the conditional mean outcome given the exposure and covari-
ates) and the propensity score (the conditional probability of receiving the exposure
given the covariates, Rosenbaum and Rubin 1983b). In general, TMLE is a double
robust estimator; it will be consistent if either outcome regression or the propensity
score is consistently estimated. If both functions are consistently estimated at a fast
enough rate and there is sufficient variability in the propensity score, the estimator
is also asymptotically efficient in that it attains the lowest possible variance among a
large class of regular, asymptotically linear estimators. TMLE is also a substitution
(plug-in) estimator, which provides stability in the context of sparsity (Gruber and
van der Laan 2010b; Balzer et al. 2016a). Finally, TMLE makes use of state-of-the-
art machine learning and therefore avoids the parametric assumptions commonly
made in other algorithms. In other words, TMLE does not place any unwarranted
assumptions on the structure of the data and respects the semiparametric statistical
model.
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12.3.1 TMLE for the Population Effect

For the population parameter ΨP(P0), a TMLE can be implemented as follows.

• Step 1. Initial Estimation: First, we obtain an initial estimator of the outcome re-
gression Q̄0(A,W). For example, the outcome Y can be regressed on the exposure
A and covariates W according to a parametric “working” model (Rosenblum
and van der Laan 2010b). Alternatively, we could use an a priori specified
data-adaptive procedure, such as super learner. The initial estimator is denoted
Q̄n(A,W).

• Step 2. Targeting: Second, we update the initial estimator of the outcome regres-
sion Q̄n(A,W) by incorporating information in the propensity score g0(A|W) ≡
P0(A|W). Informally, this “targeting” step helps to remove some of the residual
imbalance in the baseline covariate distributions across treatment groups. More
formally, this targeting step serves to obtain the optimal bias-variance tradeoff
for ΨP(P0) and to solve the efficient score equation (Hahn 1998). Briefly, this
targeting step is implemented as follows.

– We calculate the clever covariate based on the known or estimated exposure
mechanism gn(A|W) ≡ Pn(A|W):

Hn(A,W) =

(
I(A = 1)
gn(1|W)

− I(A = 0)
gn(0|W)

)
.

To estimate the propensity score, we could run logistic regression of the ex-
posure A on the covariates W or use more data-adaptive methods.

– For a continuous and unbounded outcome, we run linear regression of the
outcome Y on the covariate Hn(A,W) with the initial estimator as offset (i.e.
we suppress the intercept and set the coefficient on the initial estimator equal
to 1). We plug in the estimated coefficient εn to yield the targeted update:
Q̄∗

n(A,W) = Q̄n(Y |A,W) + εnHn(A,W).
– For a binary or a bounded continuous outcome (e.g. a proportion),1 we run

logistic regression of the outcome Y on the covariate Hn(A,W) with the
logit(·) = log[·/(1 − ·)] of the initial estimator as offset. We plug in the es-
timated coefficient εn to yield the targeted update:

Q̄∗
n(A,W) = logit−1{logit[Q̄n(A,W)] + εnHn(A,W)

}
.

1 Logistic fluctuation can also be used for a continuous outcome that is bounded in [a, b] by first
applying the following transformation to the outcome: Y∗ = (Y − a)/(b − a). Use of logistic re-
gression over linear regression can provide stability under data sparsity and/or with rare outcomes
(e.g., Gruber and van der Laan 2010b).
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• Step 3. Parameter Estimation: Finally, we obtain a point estimate by substituting
the targeted estimates into the parameter mapping:

Ψn(Pn) =
1
n

n∑

i=1

[
Q̄∗

n(1,Wi) − Q̄∗
n(0,Wi)

]

where Pn denotes the empirical distribution, placing mass 1/n on each obser-
vation Oi and Q̄∗

n(Ai,Wi) denotes the targeted estimator of the conditional mean
outcome. The sample mean is the nonparametric maximum likelihood estimator
of the marginal distribution of the baseline covariates P0(W).

If the initial estimator for Q̄0(A,W) is based on a working parametric regression
with an intercept and a main term for the exposure and if the exposure mechanism is
treated as known (i.e., not estimated), then the updating step can be skipped (Moore
and van der Laan 2009b; Rosenblum and van der Laan 2010b). Further precision,
however, can be attained by using a data-adaptive algorithm for initial estimation
of the outcome regression Q̄0(A,W) and/or by estimating the exposure mechanism
g0(A|W) (van der Laan and Robins 2003). See Chap. 13 for further details on data-
adaptive estimation in CRTs.

Under standard regularity conditions, this TMLE is a consistent and asymptoti-
cally linear estimator of the population parameter (van der Laan and Rubin 2006;
van der Laan and Rose 2011):

Ψn(Pn) − ΨP(P0) =
1
n

n∑

i=1

DP(Oi) + oP(1/
√

n).

In words, the estimator minus the truth can be written as an empirical mean of
an influence curve DP(O) and a second-order term going to 0 in probability. The
influence curve is given by

DP(O) = DY (O) + DW (O)

DY (O) =

(
I(A = 1)
g0(1|W)

− I(A = 0)
g0(0|W)

)
(
Y − Q̄∞(A,W)

)

DW (O) = Q̄∞(1,W) − Q̄∞(0,W) − ΨP(P0)

where Q̄∞(A,W) denotes the limit of the TMLE Q̄∗
n(A,W) and we are assuming the

propensity score is known or consistently estimated, as will always be true when the
treatment A is randomized. The first term of the influence curve DY is the weighted
residuals (i.e., the weighted deviations between the observed outcome and the limit
of the predicted outcome). The second term DW is deviation between the limit of
the estimated strata-specific association and the marginal association.

The standardized estimator is asymptotically normal with variance given by the
variance of its influence curve DP(O), divided by sample size n (van der Laan and
Rubin 2006; van der Laan and Rose 2011). Under consistent estimation of the out-
come regression (i.e., when Q̄∞(A,W) = Q̄0(A,W)), the TMLE will be asymp-



12 The Sample Average Treatment Effect 185

totically efficient and achieve the lowest possible variance among a large class of
estimators of the population effect. In other words, its influence curve will equal the
efficient influence curve, and the TMLE will achieve the efficiency bound of Hahn
(1998). Thereby, improved estimation of the outcome regression leads to more pre-
cise estimators of the population effect. In finite samples, the variance of the TMLE
is well-approximated by the sample variance of the estimated influence curve scaled
by sample size:

σ2,P
n =

1
n

∑n
i=1

[
DP

n (Oi)
]2

n

where

DP
n (O) =

(
I(A=1)
gn(1|W) −

I(A=0)
gn(0|W)

) (
Y − Q̄∗

n(A,W)
)
+ Q̄∗

n(1,W) − Q̄∗
n(0,W) − Ψn(Pn).

12.3.2 TMLE for the Sample Effect

For a randomized trial, Neyman (1923) proposed estimating the SATE with the un-
adjusted estimator:

Ψn,unad j(Pn) =

∑n
i=1 I(Ai = 1)Yi∑n

i=1 I(Ai = 1)
−

∑n
i=1 I(Ai = 0)Yi∑n

i=1 I(Ai = 0)
.

Conditional on the vector of counterfactual outcomes Ya = {Ya,i : i = 1, . . . , n, a =
0, 1}, the difference-in-means estimator is unbiased but inefficient. To the best of
our knowledge, Imbens (2004) was the first to discuss an efficient estimator (i.e.
a regular, asymptotically linear estimator, whose influence curve equals the effi-
cient influence curve) of the sample effect. He proved that an efficient estimator
for the PATE was unbiased for the SATE, given the vector of baseline covariates
W = (W1, . . . ,Wn) and the set of counterfactual outcomes Ya. We now extend
these results to TMLE. Specifically, we allow the estimator of outcome regression
Q̄0(A,W) to converge to a possibly misspecified limit, incorporate estimation of the
known propensity score, and suggest an alternate method for variance estimation.
In Sect. 12.4, we further extend these results to a pair-matched trial.

The TMLE for the population parameter ΨP(P0), presented in Sect. 12.3.1, also
serves as an estimator of the SATE. The implementation is identical. Under typical
regularity conditions, the TMLE minus the sample effect behaves as an empirical
mean of an influence curve depending on nonidentifiable quantities, and a second-
order term going to zero in probability:

Ψn(Pn) − S AT E =
1
n

n∑

i=1

DS(Ui,Oi) + oP(1/
√

n)
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where

DS(Ui,Oi) = DC(Oi) − DF (Ui,Oi)

DC(Oi) = DY (Oi) − E0
[
DY (Oi)

∣∣∣W
]

(12.2)

DF (Ui,Oi) = Y1,i − Y0,i −
[
Q̄0(1,Wi) − Q̄0(0,Wi)

]
(12.3)

(see Theorem 1 of Balzer et al. 2016c). The first component DC is the influence
curve for the TMLE of the conditional parameter ΨC(P0) = 1/n

∑n
i=1[Q̄0(1,Wi) −

Q̄0(0,Wi)], which corresponds to the conditional average treatment effect (CATE)
under the necessary identifiability assumptions (Balzer et al. 2015). This term de-
pends on the true outcome regression Q̄0(A,W). Specifically, the conditional expec-
tation of the DY component, given the baseline covariates, equals the deviation be-
tween the true conditional means and the limits of the estimated conditional means:

E0
[
DY (O)

∣∣∣W
]
=

[
Q̄0(1,W) − Q̄0(0,W)

] − [
Q̄∞(1,W) − Q̄∞(0,W)

]
.

Under consistent estimation of the outcome regression (i.e. when Q̄∞(A,W) =
Q̄0(A,W)), this term is zero. The second component DF is a function of the un-
observed factors U = (UW ,UA,UY ) and the observed data O = (W, A,Y). This non-
identifiable term captures the deviations between the unit-specific treatment effect
and expected effect within covariate strata:

DF (Ui,Oi) = Y1,i − Y0,i −
[
Q̄0(1,Wi) − Q̄0(0,Wi)

]

= Y1,i − Y0,i −
[
E(Y1,i|Wi) − E(Y0,i|Wi)

]

= Y1,i − Y0,i − E
[
Y1,i − Y0,i

∣∣∣Wi
]
.

In the last line, the expectation is over the unmeasured factors UY that determine the
counterfactual outcomes. This term will be zero if there is no variability in the treat-
ment effect across units with the same values of the measured covariates. We also
note that there is no contribution to the influence curve DS from estimation of the
covariate distribution, which is considered fixed. In other words, there is no DW

component to the influence curve.
As a result, the standardized estimator of the SATE is consistent and asymptoti-

cally normal with mean zero and variance given by the limit of

Var[DS(U,O)] = Var
[
DC(O)

]
+ Var

[
DF (U,O)

] − 2Cov
[
DC(O),DF (U,O)

]

= Var
[
DC(O)

] − Var
[
DF (U,O)

]

(see Theorem 2 of Balzer et al. 2016c). Since the variance of the nonidentifiable
DF component must be greater than or equal to zero, the asymptotic variance of
the TMLE as an estimator of the sample effect will always be less than or equal to
the asymptotic variance of the same estimator of the conditional effect. They will
only have the same precision when there is no variability in the unit-level treatment
effect within strata of measured covariates (i.e. when Var[DF (U,O)] = 0). In many
settings, however, there will be heterogeneity in the effect, and the TMLE for the
SATE will be more precise. Even if the treatment effect is constant within covariate
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strata, the TMLE for the sample effect (or the conditional effect) will always be at
least as precise as the same TMLE for the population effect. They will only have the
same efficiency bound when (1) the outcome regression is consistently estimated,
(2) there is no variability in the treatment effect across strata of measured covariates
(i.e. when Var[DW (O)] = 0), and (3) there is no variability in the treatment effect
within strata of measured covariates. In many settings, there will be effect modifi-
cation, and focusing on estimation of the SATE will yield the most precision and
power.

We can conservatively approximate the influence curve for the TMLE of the
sample effect as

DS
n (Oi) = DY,n(Oi) =

(
I(Ai = 1)
gn(1|Wi)

− I(Ai = 0)
gn(= 0|Wi)

)
(
Yi − Q̄∗

n(Ai,Wi)
)
. (12.4)

Thereby, we obtain an asymptotically conservative variance estimator with the sam-
ple variance of the weighted residuals scaled by sample size n:

σ2,S
n =

1
n

∑n
i=1

[
DS

n (Oi)
]2

n .

As for the PATE, adjusting for predictive baseline covariates can substantially im-
prove power for the SATE by reducing variability in the estimator. Unlike the
PATE, however, adjusting for predictive baseline covariates can provide an addi-
tional power gain for the SATE by resulting in a less conservative variance estima-
tor. Furthermore, this variance estimator is easy to implement as the relevant pieces
are known or already estimated. As a result, this may provide an attractive alter-
native to the matching estimator of the variance, proposed by Abadie and Imbens
(2002) and discussed in Imbens (2004). We note that the bootstrap is inappropriate
as the SATE changes with each sample. Fisher’s permutation distribution is also not
appropriate, because it is testing the strong null hypothesis of no treatment effect
(Y1,i = Y0,i, ∀i) (Fisher 1935), whereas our interest is in the weak null hypothesis of
no average treatment effect.

12.4 Extensions to Pair-Matched Trials

Now consider a pair-matched CRT. In our running example, suppose N candidate
communities satisfying the study’s inclusion criteria were identified. Of these, the
best n/2 matched pairs were chosen according to similarity on the baseline co-
variates of the candidate units. This “adaptive pair-matching” scheme is detailed
in Balzer et al. (2015) and also called “nonbipartite matching” and “optimal mul-
tivariate matching” in other contexts (Greevy et al. 2004; Zhang and Small 2009;
Lu et al. 2011). To the best of our understanding, this pair-matching scheme was
been implemented in several CRTS, including the Mwanza trial for HIV prevention
(Grosskurth et al. 1995), the PRISM trial for postpartum depression prevention
(Watson et al. 2004), the SPACE study for physical activity promotion (Toftager
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et al. 2011) and the SEARCH trial for HIV prevention and treatment (Balzer et al.
2015). This study design creates a dependence in the data. Specifically, the con-
struction of the matched pairs is a function of the covariates of all candidate sites.
As a result, the observed data cannot be treated as n i.i.d. observations nor as n/2
i.i.d. paired observations, as current practice sometimes assumes (e.g., Hayes and
Moulton 2009; Klar and Donner 1997; Freedman et al. 1997; Campbell et al. 2007).
However, once the baseline covariates of the study units are considered to be fixed,
we recover n/2 conditionally independent units:

Ō j =
(
Oj1,Oj2

)
=

(
(Wj1, Aj1,Yj1), (Wj2, Aj2,Yj2)

)

where the index j = 1, . . . , n/2 denotes the partitioning of the candidate study
communities {1, . . . ,N} into matched pairs according to their baseline covariates
(W1, . . . ,WN).

Previously, Imai (2008) generalized Neyman’s analysis of the unadjusted esti-
mator for the sample effect in a pair-matched trial. The unadjusted estimator, as the
average of the pairwise differences in outcomes, is unbiased but inefficient. For an
adaptive pair-matched trial, van der Laan et al. (2013a) detailed the use TMLE for
the population effect, and Balzer et al. (2015) for the conditional effect. To the best
of our knowledge, Balzer et al. (2016c) were the first to consider using a locally
efficient estimator for the sample effect in a pair-matched trial.

The TMLE for the population effect, presented in Sect. 12.3.1, also estimates the
sample effect in a pair-matched trial. As before, the TMLE minus the SATE can
be written as an empirical mean of a paired influence curve depending on noniden-
tifiable quantities, and a second-order term going to zero in probability:

Ψn(Pn) − S AT E =
1

n/2

n/2∑

j=1

D̄S(Ū j, Ō j) + oP(1/
√

n/2)

where

D̄S(Ū j, Ō j) = D̄C(Ō j) − D̄F (Ū j, Ō j)

D̄C(Ō j) =
1
2

[
DC(Oj1) + DC(Oj2)

]

D̄F (Ū j, Ō j) =
1
2

[
DF (U j1,Oj1) + DF (U j2,Oj2)

]

(Theorem 3 in Balzer et al. 2016c). The first component D̄C(Ō) is the influence
curve for the TMLE of the conditional parameter ΨC(P0) = 1/n

∑n
i=1 Q̄0(1,Wi) −

Q̄0(0,Wi) in a trial with pair-matching (Balzer et al. 2015). In words, D̄C(Ō j) is the
average of the pairwise DC(Oi) components, as defined in Eq. (12.2). The second
component D̄F (Ū, Ō) is a nonidentifiable function of the pair’s unobserved factors
Ū = (U j1,U j2) and observed factors Ō j = (Oj1,Oj2). Specifically, D̄F (Ū j, Ō j) is the
average of the pairwise DF (Ui,Oi) components, as defined in Eq. (12.3). As before,
there is no contribution from estimation of the covariate distribution P0(W), which
is considered fixed.
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As a consequence, the standardized estimator of the SATE in a pair-matched trial
is consistent and asymptotically normal with mean zero and variance given by the
limit of

Var[D̄S(Ū j, Ō j)] = Var
[
D̄C(Ō j)

] − Var
[
D̄F (Ū j, Ō j)

]

(Theorem 4 in Balzer et al. 2016c). As before, the variance of the nonidentifiable
D̄F component must be greater than or equal to zero. Therefore, in a pair-matched
trial the asymptotic variance of the TMLE as an estimator of the sample effect will
always be less than or equal to the asymptotic variance of the same estimator of
the conditional effect. Furthermore, by treating the covariate distribution as fixed,
the TMLE for the sample (or conditional) effect will always be as or more precise
than the TMLE of the population effect in a pair-matched trial. We also briefly note
that there is often an additional efficiency gain due to pair-matching. The SATE
will be estimated with more precision in a pair-matched trial when the deviations
between the true and estimated outcome regressions are positively correlated within
matched pairs and/or when the deviations between the treatment effect for a unit and
the treatment effect within covariate strata are positively correlated within matched
pairs.

We can conservatively approximate the influence curve for the TMLE of the
SATE in a pair-matched trial as

D̄S
n (Ō j) = 1

2

[
DS

n (Oj1) + DS
n (Oj2)

]

where DS
n (Oi) is defined in Eq. (12.4). Thereby, we obtain an asymptotically conser-

vative variance estimator with the sample variance of the estimated paired influence
curve, divided by sample size n/2:

σ̄2,S
n =

1
n/2

∑n/2
j=1

[
D̄S

n (Ō j)
]2

n/2

If we order the observations within matched pairs, such that the first corresponds
to the unit randomized to the intervention (Aj1 = 1) and the second to the control
(Aj2 = 0) and do not estimate the propensity score P0(A) = 0.5, it follows that

D̄S
n (Ō j) =

(
Yj1 − Q̄∗

n(1,Wj1)
) − (

Yj2 − Q̄∗
n(0,Wj2)

)
.

In this case, we can represent the variance estimator as the sample variance of the
difference in residuals within matched pairs, divided by n/2. This variance estimator
will be consistent if there is no heterogeneity in the treatment effect within strata of
measured covariates (i.e. if the variance of the D̄F component is zero) and if the
outcome regression Q̄0(A,W) is consistently estimated. Under the same conditions,
the TMLE will be efficient (i.e. achieve the lowest possible variance among a large
class of regular, asymptotically linear estimators). Otherwise, the TMLE will not
be efficient and the variance estimator will be conservative (biased upwards). As
before, adjusting for predictive baseline covariates can substantially improve power
in two ways: (1) by reducing variability in the estimator, and (2) by resulting in a
less conservative variance estimator.
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12.5 Simulation

We present the following simulation study to (1) further illustrate the differences
between the causal parameters, (2) demonstrate implementation of the TMLE, and
(3) understand the impact of the parameter specification on the estimator’s precision
and attained power. We focus on a randomized trial to illustrate the potential gains in
efficiency with pair-matching during the design and adjustment during the analysis.
All simulations were carried out in R (R Development Core Team 2016). Full R
code is available in Balzer et al. (2016c).

Consider the following data generating process for unit i = {1, . . . , n}. First, we
generated the background error UY,i by drawing from a standard normal distribu-
tion. Then we generated five baseline covariates from a multivariate normal with
means 0 and standard deviation 1. The correlation between the first two covariates
(W1i,W2i) was 0, and the correlation between the last three (W3i,W4i,W5i) was
0.65. The exposure Ai was randomized such that there were equal numbers of in-
tervention and control units. Recall Ai is a binary indicator, equaling 1 if the unit is
randomized to the intervention and 0 if the unit is randomized to the control. For a
trial without matching, the intervention was randomly assigned to n/2 units and the
control to the remaining units. For a trial with matching, we applied the nonbipartite
matching algorithm nbpMatch (Beck et al. 2016) to pair units on {W1,W4,W5}.
The outcome Yi was generated as Yi = logit−1[Ai + 0.75W1i + 0.75W2i + 1.25W3i +

UY,i + 0.75AiW1i − 0.5AiW2i − AiUY,i
]
/5. We also generated the counterfactual out-

comes Ya,i by intervening to set Ai = a. For sample sizes of n = {30, 50}, this data
generating process was repeated 5000 times. The true value of the SATE was cal-
culated as the average difference in the counterfactual outcomes for each sample,
and the true value of the PATE was calculated by averaging the difference in the
counterfactual outcomes over a population of 500,000 units. In this population, the
correlations between the observed outcome Y and the baseline covariates were weak
to moderate: 0.5 for W1, 0.2 for W2, 0.6 for W3, 0.4 for W4 and 0.4 for W5.

We compared the performance of the unadjusted estimator to the TMLE with
two methods for initial estimation of the outcome regression. Specifically, we esti-
mated Q̄0(A,W) with logistic regression, including as main terms the exposure A,
the covariate W1 and an interaction A∗W1. We also estimated Q̄0(A,W) using super
learner with a library that consisted of all possible logistic regressions with terms
for the exposure A, a single covariate and their interaction. The unadjusted estimator
can be considered as a special case of the TMLE, where Q̄n(A,W) = En(Y |A). In-
ference was based on the estimated influence curve and the Student’s t-distribution.
We constructed Wald-type 95% confidence intervals and tested the null hypothesis
of no average effect.

Results. Table 12.1 gives a summary of the parameter values across the 5000 simu-
lated trials. Recall the true value of the SATE depends on the units included in the
study, whereas there is one true value of the PATE for the population. The sample
effect ranged from 0.17% to 5.94% with a mean of 2.97%. The population effect
was constant at 2.98%. As expected, the variability in the SATE decreased with
increasing sample size.
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Table 12.2 illustrates the performance of the estimators. Specifically, we give the
bias as the average deviation between the point estimate and (sample-specific) true
value, the standard deviation as the square root of the variance of an estimator for
its target, and the MSE. We also show the relative MSE (rMSE) as the MSE of a
given estimator divided by the MSE of the unadjusted estimator of the population
effect in trial without matching. The attained power, which is the proportion of times
the false null hypothesis was rejected, and the 95% confidence interval coverage are
also included.

As expected, all estimators were unbiased. In randomized trials, there is no risk of
bias due to misspecification of the regression model for Q̄0(A,W) (e.g., Tsiatis et al.
2008; Moore and van der Laan 2009b; Rosenblum and van der Laan 2010b). Also
asexpected, the precision of the estimators improved with increasing sample size and

Table 12.1 Summary of the causal parameters (in %) over 5000 simulations of size n = {30, 50}

SATE PATE
min ave max var min ave max var

n = 30 0.17 2.97 5.94 6.5E−3 2.98 2.98 2.98 0
n = 50 0.18 2.96 5.14 4.2E−3 2.98 2.98 2.98 0

Table 12.2 Summary of estimator performance over 5000 simulations

Target and design Estimator Bias Std. Dev. MSE rMSE Power Coverage

Sample size n = 30
PATE and not matched Unadj 2.3E−4 2.2E−2 4.8E−4 1.00 0.27 0.95

TMLE 6.8E−4 1.9E−2 3.6E−4 0.75 0.36 0.94
TMLE+SL 2.9E−4 1.6E−2 2.6E−4 0.55 0.48 0.93

SATE and not matched Unadj 3.1E−4 2.0E−2 4.2E−4 0.88 0.27 0.96
TMLE 7.5E−4 1.7E−2 3.0E−4 0.63 0.39 0.95
TMLE+SL 3.7E−4 1.4E−2 2.0E−4 0.42 0.52 0.95

SATE and matched Unadj 5.4E−5 1.5E−2 2.2E−4 0.46 0.37 0.98
TMLE 3.7E−4 1.4E−2 2.1E−4 0.43 0.44 0.97
TMLE+SL 1.3E−4 1.1E−2 1.3E−4 0.27 0.58 0.97

Sample size n = 50
PATE and not matched Unadj −1.3E−4 1.7E−2 3.0E−4 1.00 0.41 0.94

TMLE 1.1E−4 1.5E−2 2.2E−4 0.75 0.53 0.94
TMLE+SL −3.1E−6 1.2E−2 1.6E−4 0.53 0.68 0.94

SATE and not matched Unadj 4.8E−5 1.6E−2 2.5E−4 0.86 0.41 0.96
TMLE 2.9E−4 1.3E−2 1.8E−4 0.60 0.55 0.96
TMLE+SL 1.8E−4 1.1E−2 1.1E−4 0.38 0.70 0.97

SATE and matched Unadj −1.8E−4 1.1E−2 1.1E−4 0.38 0.59 0.98
TMLE −1.6E−4 1.0E−2 1.1E−4 0.36 0.66 0.97
TMLE+SL −5.7E−5 8.2E−3 6.7E−5 0.23 0.81 0.98

The rows denote target parameter, the study design, and the estimator: unadjusted, TMLE with
logistic regression, and TMLE with super learner (“TMLE+SL”)
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with adjustment (e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982; Tsiatis
et al. 2008; Moore and van der Laan 2009b; Rosenblum and van der Laan 2010b).
Consider, for example, estimation of the population effect in a trial with n = 30
units and without matching. The standard error was 2.2∗10−2 for the unadjusted
estimator and 1.9∗10−2 after adjusting for a single covariate. Incorporating data-
adaptive estimation of the conditional mean Q̄0(A,W) through super learner further
reduced the standard error to 1.6∗10−2. Also as expected, precision increased with
pair-matching (Imai et al. 2009; van der Laan et al. 2013a; Balzer et al. 2015).
For the SATE, the standard error of the unadjusted estimator in the trial without
matching was 1.38 times higher with n = 30 units and 1.49 times higher with n = 50
units than its pair-matched counterpart.

For all estimation algorithms and sample sizes, the impact of the target parame-
ter specification on precision and power was substantial. As predicted by theory, the
highest variance was seen with the unadjusted estimator of the PATE. With n = 50
units, the MSE of this estimator for the PATE was 2.62 times that of the TMLE with
super learner for the SATE in a trial without matching and 4.42 times that of the
TMLE with super learner for the SATE in a trial with matching. In the finite sample
simulations, the impact of having an asymptotically conservative variance estimator
on inference for sample effect was notable. In most settings, the standard deviation
of an estimator of the SATE was over-estimated, and the confidence interval cover-
age was greater than or equal to the nominal rate of 95%. Despite the conservative
variance estimator, the TMLE for the sample effect achieved higher power than
the same TMLE for the population effect. With n = 30 units, the attained power
for the TMLE with super learner was 48% for the population effect, 52% for the
sample effect without matching and 58% for the sample effect after pair-matching.
With n = 50 units, the attained power for the TMLE with super learner was 68%
for the population effect, 70% for the sample effect without matching and 81% for
the sample effect after pair-matching Notably, the power was the same for the unad-
justed estimator of the two parameters in the trials without matching. The power of
the unadjusted estimator did not vary, because the estimated DW (O) component of
influence curve and thereby its variance were zero:

En(Y |A = 1) − En(Y |A = 0) − Ψn,unad j(Pn) = 0

where En(Y |A) denotes the treatment-specific mean. Thus, using the unadjusted es-
timator sacrificed any potential gains in power by specifying the SATE as the target
of inference. In contrast, the TMLE using super learner was able to obtain a better fit
of the outcome regression Q̄0(A,W) and a less conservative variance estimator. As
a result, this TMLE was able to achieve the most power. We note that in small trials
(e.g. n ≤ 30) such as early phase clinical trials or cluster randomized trials, obtaining
a precise estimate of Q̄0(A,W) is likely to be challenging. In practice, many base-
line covariates are predictive of the outcome, but adjusting for too many covariates
can result in over-fitting. Chapter 13 discusses a procedure using cross-validation to
data adaptively select from a pre-specified library the optimal adjustment set.
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12.6 Discussion

The SATE is an interesting and possibly under-utilized causal parameter. In CRTs,
the candidate units are often systematically selected to satisfy the study’s inclusion
criteria. Often, a matching algorithm is applied to select the best n/2 matched pairs
(Balzer et al. 2015). As a result, the observed data often do not arise from taking
a simple random sample from some hypothetical target population of clusters or
matched pairs of clusters. In this setting, the SATE, in contrast to the PATE, remains
a readily interpretable quantity that can be rigorously estimated without further as-
sumptions on the sampling mechanism. While generalizability of the study findings
and their transport to new settings remains of substantial policy interest, neither the
SATE nor the PATE directly addresses this goal; these new settings are likely to
differ in important ways from both the current sample and any hypothetical target
population from which it was drawn. Instead, generalizability and transportability
can be approached as distinct research questions, requiring their own identification
results and corresponding optimal estimators (Cole and Stuart 2010; Stuart et al.
2011; Bareinboim and Pearl 2013; Schochet 2013; Hartman et al. 2015). Finally,
the sample effect will be estimated with at least as much precision and power as the
conditional or population effects.
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views of the NIH.



Chapter 13
Data-Adaptive Estimation in Cluster
Randomized Trials
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In randomized trials, adjustment for measured covariates during the analysis can re-
duce variance and increase power. To avoid misleading inference, the analysis plan
must be pre-specified. However, it is often unclear a priori which baseline covariates
(if any) should be included in the analysis. This results in an important challenge:
the need to learn from the data to realize precision gains, but to do so in pre-specified
and rigorous way to maintain valid statistical inference. This challenge is especially
prominent in cluster randomized trials (CRTs), which often have limited numbers
of independent units (e.g., communities, clinics or schools) and many potential ad-
justment variables.
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In this chapter, we discuss a rigorous procedure to data adaptively select the
adjustment set, which maximizes the efficiency of the analysis. Specifically,
we use cross-validation to select from a pre-specified library the candidate
TMLE that minimizes the estimated variance. For further gains in precision,
we also propose a collaborative procedure for estimating the known expo-
sure mechanism. Our small sample simulations demonstrate the promise of
the methodology to maximize study power, while maintaining nominal con-
fidence interval coverage. We show how our procedure can be tailored to the
scientific question (intervention effect for the study sample vs. for the target
population) and study design (pair-matched or not). This chapter is adapted
from Balzer et al. (2016b).

The objective of a randomized trial is to evaluate the effect of an intervention on
the outcome of interest. In this setting, the difference in the average outcomes among
the treated units and the average outcomes among the control units provides a simple
and unbiased estimator of the intervention effect. Adjusting for measured covariates
during the analysis can substantially reduce the estimator’s variance and thereby in-
crease study power (e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982;
Tsiatis et al. 2008; Moore and van der Laan 2009b). Nonetheless, recommendations
on how and when to adjust in randomized trials have been conflicting (ICH Har-
monised Tripartite Guideline 1998; Pocock et al. 2002; Hayes and Moulton 2009;
Austin et al. 2010; Kahn et al. 2014; Campbell 2014; European Medicines Agency
2015). The advice seems to depend on the study design, the unit of randomization,
the application and the sample size. As a result, many researchers are left wondering
how to adjust for baseline covariates, if at all.

Let n be the number of study units (e.g., communities or schools). Consider a
trial where the treatment is randomly allocated to n/2 units and the remaining units
are assigned to the control. There is a rich literature on locally efficient estimation
in this setting (e.g., Tsiatis et al. 2008; Zhang et al. 2008; Rubin and van der Laan
2008; Moore and van der Laan 2009b; Shen et al. 2014). For example, parametric
regression can be used to obtain an unbiased and more precise estimate of the in-
tervention effect. Briefly, the outcome is regressed on the exposure and covariates
according to a working model. Following Rosenblum and van der Laan (2010b), we
use “working” to emphasize that the regression function need not be and often is
not correctly specified. This working model can include interaction terms and can
be linear or nonlinear. The estimated coefficients are then used to obtain the pre-
dicted outcomes for all units under the treatment and the control. The difference or
ratio of the average of the predicted outcomes provides an estimate of the interven-
tion effect. For observational studies, this algorithm is sometimes referred to as the
parametric g-computation (Robins 1986).

For continuous outcomes and linear working models without interaction terms,
this procedure is known as analysis of covariance (ANCOVA) (Cochran 1957), and
the coefficient for the exposure is equal to the estimate of the intervention effect.
For binary outcomes, Moore and van der Laan (2009b) detailed the potential gains
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in precision from adjustment via logistic regression for estimating the treatment ef-
fect on the absolute or relative scale (i.e., risk difference, risk ratio or odds ratio).
Furthermore, the authors showed that parametric maximum likelihood estimation
was equivalent to TMLE in this setting. As a result, the asymptotic properties of
the TMLE, including double robustness and asymptotic linearity, hold even if the
working model for outcome regression is misspecified. Furthermore, this approach
is locally efficient in that the TMLE will achieve the lowest possible variance among
a large class of estimators if the working model is correctly specified. Rosenblum
and van der Laan (2010b) expanded these results for a large class of general linear
models. Indeed, the parametric MLE and TMLE can be considered special cases
of the double robust estimators of Scharfstein et al. (1999) and semiparametric ap-
proaches of Tsiatis et al. (2008) and Zhang et al. (2008). For a recent and detailed
review of these estimation approaches, we refer the reader to Colantuoni and Rosen-
blum (2015).

Now consider a pair-matched trial, where the intervention is randomly allocated
within the n/2 matched pairs. The proposed estimation strategies have been more
limited in this setting. Indeed, the perceived “analytical limitation” of pair-matched
trials have led some researchers to shy away from this design (Klar and Donner
1997; Imbens 2011; Campbell 2014). As with a completely randomized trial, the
unadjusted difference in treatment-specific means provides an unbiased but ineffi-
cient estimate of the intervention effect. To include covariates in the analysis and to
potentially increase power, Hayes and Moulton (2009) suggested regressing the out-
come on the covariates (but not on the exposure) and then contrasting the observed
versus predicted outcomes within matched pairs. Alternatively, TMLE can provide
an unbiased and locally efficient approach in pair-matched trials (van der Laan et al.
2013a; Balzer et al. 2015, 2016c). Specifically, the algorithm can be implemented
as if the trial were completely randomized: (1) fit a working model for the mean
outcome, given the exposure and covariates, (2) obtain predicted outcomes for all
units under the treatment and control, and (3) contrast the average of the predicted
outcomes on the relevant scale. Inference, however, must respect the pair-matching
scheme.

A common challenge to both designs is the selection of covariates for inclusion
in the analysis. Many variables are measured prior to implementation of the inter-
vention, and it is difficult to a priori specify an appropriate working model. For a
completely randomized trial, covariate adjustment will lead to gains in precision if
(a) the covariates are predictive of the outcome and (b) the covariates are imbalanced
between treatment groups (e.g., Moore et al. 2011). Balance is guaranteed as sample
size goes to infinity, but rarely seen in practice. Analogously in a pair-matched trial,
covariate adjustment will improve precision if there is an imbalance on predictive
covariates after matching.

Limited sample sizes pose an additional challenge to covariate selection. A re-
cent review of randomized clinical trials reported that the median number of par-
ticipants was 58 with an interquartile range of 27–161 (Califf et al. 2012). Like-
wise, a recent review of CRTs reported that the median number of clusters was 31
with an interquartile range of 13–60 (Selvaraj and Prasad 2013). In small trials,
adjusting for too many covariates can lead to overfitting and inflated Type I error
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rates (e.g., Moore et al. 2011; Shen et al. 2014; Balzer et al. 2015). Finally, ad hoc
selection of the adjustment set leads to concerns that researchers will go on a “fish-
ing expedition” to find the covariates resulting in the most power and again risking
inflation of Type I error rates (e.g., Pocock et al. 2002; Tsiatis et al. 2008; Olken
2015; Rose 2015).

In summary, covariate adjustment in randomized trials can provide meaning-
ful improvements in precision and thereby statistical power. To avoid misleading
statistical inference, the working model, including the adjustment variables, must
be specified a priori. In practice, sample size often limits the size of the adjustment
set, and best set is unclear before the trial’s conclusion. In this chapter, we apply
the principle of empirical efficiency maximization to data adaptively select from a
pre-specified library the candidate TMLE, which minimizes variance and thereby
maximizes the precision of the analysis (Rubin and van der Laan 2008). We mod-
ify this strategy for pair-matched trials. We collaboratively estimate the exposure
mechanism for additional gains in precision (van der Laan and Gruber 2010). We
also generalize the results for estimation and inference to both the population and
sample average treatment effects (Neyman 1923; Balzer et al. 2016c). Finite sample
simulations demonstrate the practical performance with limited numbers of inde-
pendent units, as is common in early phase clinical trials and in CRTs.

13.1 Motivating Example and Causal Parameters

As a motivating example, we consider a community randomized trial to estimate the
effect of immediate ART on HIV incidence. Suppose trial is being conducted in 30
communities and extensive covariates were measured at baseline. Further suppose,
a subset of these characteristics was used to create the 15 best matched pairs of com-
munities (Balzer et al. 2015). The primary outcome is the cumulative incidence of
HIV over the relevant time period. The observed data for a given study community
can be denoted O = (W, A,Y) where W represents the vector of baseline covariates,
A represents the intervention assignment, and Y denotes the outcome. Specifically,
W includes region, HIV prevalence, male circumcision coverage and community-
level HIV RNA viral load; A is a binary indicator equalling one if the community
was randomized to the treatment and zero if the community was randomized to the
control; and Y is the estimated cumulative HIV incidence. We focus on estimation
and inference for the population average treatment effect

PAT E = E
[
Y1 − Y0

]
(13.1)

and the sample average treatment effect (SATE):

S AT E =
1
n

n∑

i=1

[
Y1,i − Y0,i

]
(13.2)

We refer the reader to Chap. 12 for a detailed discussion of these causal parameters.
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13.2 Targeted Estimation in a Randomized Trial
Without Matching

In this section, we consider a randomized trial without pair-matching. We assume
the observed data consist of n independent, identically distributed (i.i.d.) copies of
O = (W, A,Y) with some true, but unknown distribution P0, which factorizes as

p0(o) = p0(w)p0(a|w)p0(y|a,w).

We do not make any assumptions about the common covariate distribution P0(W)
or about the common conditional distribution of the outcome, given the intervention
and covariates P0(Y |A,W). By design, the intervention A is randomized with proba-
bility 0.5. Therefore, the exposure mechanism is known: P0(A = 1|W) ≡ g0(1|W) =
0.5. The statistical model M, describing the set of possible observed data distribu-
tions, is semiparametric.

As discussed in the introduction, there are many algorithms available for unbi-
ased and locally efficient estimation of the population effect in a randomized trial
(e.g., Tsiatis et al. 2008; Zhang et al. 2008; Rubin and van der Laan 2008; Moore and
van der Laan 2009b; Shen et al. 2014). Throughout, our focus is on TMLE. A TMLE
for the population effect (Eq. (13.1)) also serves as a consistent and asymptotically
linear estimator of the sample effect (Eq. (13.2)). We refer the reader to Chap. 12 for
the detailed algorithm. Briefly, the algorithm is implemented as follows.

• Step 1: Initial estimation of the conditional mean outcome, given the exposure
and covariates Q̄0(A,W).

• Step 2: Targeting the initial estimator Q̄n(A,W) with information in the known
or estimated exposure mechanism gn(A|W) ≡ Pn(A|W). Let Q̄∗

n(A,W) denote the
targeted estimator of Q̄0(A,W).

• Step 3: Parameter estimation by taking the average difference in targeted esti-
mates under intervention and control: Ψn(Pn) = 1/n

∑n
i=1 Q̄∗

n(1,Wi) − Q̄∗
n(0,Wi).

Under standard regularity conditions, the TMLE is an asymptotically linear estima-
tor of both the population and sample effects (Balzer et al. 2016c). The estimator
minus the true effect can be written as an empirical mean of an influence curve and
a second-order term going to 0 in probability. As a result, the standardized estima-
tor is asymptotically normal with variance well-approximated by the variance of its
influence curve, divided by sample size n.

The influence curve for the TMLE of the population effect (PATE) is given by

DP(g0, Q̄
∗
n,lim)(O) =

(
I(A=1)
g0(1|W) −

I(A=0)
g0(0|W)

) (
Y − Q̄∗

n,lim(A,W)
)

+ Q̄∗
n,lim(1,W) − Q̄∗

n,lim(0,W) − Ψ (Pn)

where Q̄∗
n,lim(A,W) denotes the limit of the targeted estimator of the conditional

mean function Q̄0(A,W) and where we are assuming the exposure mechanism
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g0(A|W) is known or consistently estimated, as will always be true in a random-
ized trial (van der Laan and Rose 2011). A plug-in estimator of this influence curve
is given by

DP
n (gn, Q̄

∗
n)(O) =

(
I(A=1)
gn(1|W) −

I(A=0)
gn(0|W)

) (
Y − Q̄∗

n(A,W)
)

+ Q̄∗
n(1,W) − Q̄∗

n(0,W) − ψ∗
n (13.3)

where ψ∗
n denotes the point estimate. In finite samples, the variance of the TMLE for

the PATE is well-approximated by the sample variance of this estimated influence
curve, scaled by sample size:

σ2,P
n =

1
n

∑n
i=1

[
DP

n (gn, Q̄∗
n)(Oi)

]2

n
.

The influence curve for the TMLE of the sample effect (SATE) relies on non-
identifiable quantities, specifically the counterfactual outcomes Y1,i and Y0,i (Balzer
et al. 2016c). Nonetheless, a conservative plug-in estimator of its influence curve is
obtained by ignoring these nonidentifiable quantities:

DS
n (gn, Q̄

∗
n)(O) =

(
I(A=1)
gn(1|W) −

I(A=0)
gn(0|W)

) (
Y − Q̄∗

n(A,W)
)
. (13.4)

In finite samples, the variance of the TMLE for the SATE is conservatively approx-
imated by the sample variance of this estimated influence curve, scaled by sample
size:

σ2,S
n =

1
n

∑n
i=1

[
DS

n (gn, Q̄∗
n)(Oi)

]2

n
.

Comparing Eqs. (13.3) and (13.4), we see that for the SATE there is no variance
contribution from the covariate distribution, which is considered fixed. As a result,
the sample effect will often be estimated with more precision than the population
effect (Neyman 1923; Rubin 1990; Imbens 2004). Indeed, the TMLE for the PATE
and the TMLE for the SATE will only have the same efficiency bound if the condi-
tional mean Q̄0(A,W) is consistently estimated and if there is no variability in the
intervention effect across units (Balzer et al. 2016c). In many settings, there will be
effect heterogeneity, and specifying the SATE as the target of inference can yield
more power, especially in large trials. In small trials, however, the gains in precision
from targeting the SATE can be attenuated, because this influence curve-based
variance estimator is conservative (biased upwards).

Adaptive Pre-specified Approach for Step 1: Initial Estimation. Consider again
our hypothetical trial for HIV prevention and treatment. Recall that the outcome
Y is cumulative incidence of HIV and bounded between 0 and 1. The first step
of the TMLE algorithm is to obtain an initial estimator of the expected outcome,
given the exposure and measured covariates Q̄0(A,W). Suppose that as a working
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model, we consider running logistic regression1 of the outcome Y on the treatment
A and covariates W. It is unclear a priori which covariates should be included in the
working model and in what form. For example, baseline HIV prevalence is a known
predictor of the outcome and may be imbalanced between the treatment and control
groups. Therefore, as initial estimator of Q̄0(A,W), we could consider a logistic
regression working model with an intercept and main terms for the treatment and
HIV prevalence. Likewise, there might be substantial heterogeneity in the treatment
effect by region and allowing for an interaction between region and the intervention
may reduce the variance of the TMLE. Including all the covariates and the relevant
interactions in the working model is likely to result in overfitting and misleading
inference. To facilitate selection between candidate initial estimators and thereby
candidate TMLEs, we propose the following cross-validation selector.

First, we propose a library of candidate working models for initial estimation
of the conditional mean outcome Q̄0(A,W). This library should be pre-specified in
the protocol or the analysis plan. A possible library could consist of the following
logistic regression working models:

logit[Q̄(a)(A,W)] = β0 + β1A

logit[Q̄(b)(A,W)] = β0 + β1A + β2W1

logit[Q̄(c)(A,W)] = β0 + β1A + β2W2 + β3A × W2

where, for example, W1 denotes baseline prevalence and W2 denotes region. Of
course, there are many more candidate algorithms, and we are considering this sim-
ple set for pedagogic purposes. We also note that the first working model corre-
sponds to the unadjusted estimator.

Second, we need to pre-specify a loss function to measure the performance of the
candidate estimators. Following the principle of empirical efficiency maximization
(Rubin and van der Laan 2008), we propose using the squared influence curve of the
TMLE for the parameter of interest. The expectation of this loss function, called the
“risk", is then the asymptotic variance of the TMLE. Thereby, our goal is to select
the candidate estimator that maximizes precision. If the target of inference is the
population effect, our loss function is

LP(g0, Q̄)(O) =
{
DP(g0, Q̄)(O)

}2 (13.5)

where we are not estimating the known exposure mechanism g0(A|W) = 0.5. Since
the true influence curve of the TMLE for the sample effect relies on nonidentifiable
quantities, our loss function for the SATE is the estimated influence curve-squared:

LS(g0, Q̄)(O) =
{
DS

n (g0, Q̄)(O)
}2 (13.6)

1 Logistic regression naturally respects the bounds on this continuous outcome. Prior work has
suggested that use of the logistic regression over linear regression can provide stability when there
are positivity violations or the outcome is rare (Gruber and van der Laan 2010b).
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where again we are not estimating the known exposure mechanism g0(A|W) = 0.5.
In this case, the loss function for the SATE corresponds to the L2 squared error loss
function: LS(g0, Q̄) =

(
Y − Q̄(A,W)

)2.
Next, we need to pre-specify our cross-validation scheme, used to generate an

estimate of the risk for each of the candidate estimators. For generality, we present
V-fold cross-validation, where the data are randomly split into V partitions, called
“folds”, of size ≈ n/V . To respect the limited sample sizes common in early
phase clinical trials and in CRTs, leave-one-out cross-validation is often appropri-
ate. Leave-one-out cross-validation corresponds with V = n-fold cross-validation,
where each fold corresponds to one observation. The cross-validation procedure for
initial estimation of the conditional mean Q̄0(A,W) can be implemented as follows.

(A) For each fold v = {1, . . . ,V} in turn,

(a) Set the observation(s) in fold v to be the validation set and the remaining
observations to be the training set.

(b) Fit each algorithm for estimating Q̄0(A,W) using only data in the training
set. For the above library, we would run logistic regression of the outcome
Y on the exposure A and covariates W, according to the working model.
Denote the initial regression fits as Q̄(a)

n (A,W), Q̄(b)
n (A,W) and Q̄(c)

n (A,W),
respectively.

(c) For each algorithm, use the estimated fit to predict the outcome(s) for the
observation(s) in the validation set under the treatment and the control. For
the first algorithm, for example, we would have Q̄(a)

n (1,Wk) and Q̄(a)
n (0,Wk)

for observation Ok in the validation set.
(d) For each algorithm, evaluate the loss function for the observation(s) in the

validation set by plugging in the algorithm-specific predictions. For exam-
ple, if our target of inference were the SATE, we would have for the first
algorithm

LS(g0, Q̄
(a)
n )(Ok) =

[(
I(Ak = 1)
g0(1|Wk)

− I(Ak = 0)
g0(0|Wk)

)
(
Yk − Q̄(a)

n (Ak,Wk)
)
]2

for observation Ok in the validation set. The exposure mechanism is known:
g0(1|W) = 0.5.

(e) For each algorithm, obtain an estimate of the risk by averaging the esti-
mated losses across the observations in validation set v. If our target of
inference were the SATE, we would have for the first algorithm

Risk(a)
v =

1
nv

∑

k∈v

LS(g0, Q̄
(a)
n )(Ok)

where nv denotes the number of observations in validation set v.

(B) For each algorithm, average the estimated risks across the V folds.
(C) Select the algorithm with the smallest cross-validated risk. This is the algorithm

yielding the smallest cross-validated variance estimate.
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The selected working model is then used for initial estimation of the condi-
tional mean outcome Q̄0(A,W) in Step 1 of the TMLE algorithm, described above
(Sect. 13.2). Specifically, we would re-fit the selected algorithm using all the data
Q̄n(A,W). Since the exposure mechanism was treated as known and our library was
limited to simple parametric working models with a main term for the exposure and
an intercept, the updating step (Step 2) can be skipped. In other words, the cho-
sen estimator is already targeted Q̄n(A,W) = Q̄∗

n(A,W) and can be used for Step 3
parameter estimation.

13.3 Targeted Estimation in a Randomized Trial with Matching

Recall the pair-matching scheme for our hypothetical community randomized trial.
First, the potential study units were selected. Then a matching algorithm was applied
to the baseline covariates of candidate units to create the best 15 matched pairs. The
intervention was randomized within the resulting pairs, and the outcome measured
with longitudinal follow-up. This pair-matching scheme is considered to be adap-
tive, because the resulting matched pairs are a function of the baseline covariates
of all the candidate units (van der Laan et al. 2013a; Balzer et al. 2015, 2016c).
This design has also been called “nonbipartite matching” and “optimal multivariate
matching” (Greevy et al. 2004; Zhang and Small 2009; Lu et al. 2011).

The adaptive design creates a dependence in the data. Since the construction of
the matched pairs is a function of the baseline covariates of all n study units, the
observed data do not consist of n/2 i.i.d. paired observations, as current practice
sometimes assumes (e.g., Klar and Donner 1997; Freedman et al. 1997; Campbell
et al. 2007; Hayes and Moulton 2009). Instead, we have n dependent copies of
O = (W, A,Y). Nonetheless, there remains substantial conditional independence in
the data. Mainly, once we consider the baseline covariates of the study units as fixed,
we recover n/2 conditionally independent units:

Ō j =
(
Oj1,Oj2

)
=

(
(Wj1, Aj1,Yj1), (Wj2, Aj2,Yj2)

)

where the index j = 1, . . . , n/2 denotes the partitioning of the candidate units
{1, . . . n} into matched pairs according to similarity in their baseline covariates
(W1, . . . ,Wn). Throughout subscripts j1 and j2 index the observations within
matched pair j. The conditional distribution of the observed data, given the baseline
covariates of the study units, factorizes as

P0(O1, . . . ,On

∣∣∣W1, . . .Wn) =
n/2∏

j=1

P0(Aj1, Aj2|W1, . . . ,Wn) × P0(Yj1|Aj1,Wj1)

×P0(Yj2|Aj2,Wj2)

=

n/2∏

j=1

0.5 × P0(Yj1|Aj1,Wj1) × P0(Yj2|Aj2,Wj2),
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where the second line follows from randomization of the intervention within
matched pairs. For estimation and inference of the population effect (PATE), we
need to assume that each community’s baseline covariates Wi are independently
drawn from some common distribution P0(W). For estimation and inference of
the sample effect (SATE), this assumption on the covariate distribution can be
weakened (Balzer et al. 2016c).

Despite the dependence in the data, a TMLE for the population or sample effect
can be implemented by ignoring the pair-matched design (van der Laan et al. 2013a;
Balzer et al. 2016c). In other words, a point estimate is obtained by following the
procedure outlined in Sect. 13.2. In Step 1, we obtain an initial estimator of the
conditional mean outcome with an a priori-specified parametric working model or
with a more data-adaptive method (as detailed below). In Step 2, we target the initial
estimator by using information in the known or estimated exposure mechanism.
Finally in Step 3, we obtain the predicted outcomes for all observations under the
treatment and the control, and then take the sample average of the difference in these
targeted predictions.

In a trial with adaptive pair-matching, the TMLE is an asymptotically normal es-
timator of both the population and sample effects (van der Laan et al. 2013a; Balzer
et al. 2016c). For the PATE, we could estimate its variance with the sample variance
of the estimated influence curve in the nonmatched trial 1

n

∑n
i=1[DP

n (gn, Q̄∗
n)(Oi)]2

divided by n. This variance estimator, however, ignores any gains in precision from
pair-matching and will be conservative under reasonable assumptions. A less con-
servative variance estimator is obtained by accounting for the potential correlations
of the residuals within matched pairs:

ρn(Q̄∗
n)(Ō j) = 1

n/2

∑n/2
j=1

(
Yj1 − Q̄∗

n(Aj1,Wj1)
)(

Yj2 − Q̄∗
n(Aj2,Wj2)

)
(13.7)

(van der Laan et al. 2013a). In finite samples, we recommend estimating of the
variance of the TMLE for the population effect under pair-matching with

σ̄2,P
n =

1
n

∑n
i=1

[
DP

n (gn, Q̄∗
n)(Oi)

]2 − 2ρn(Q̄∗
n)(Ō j)

n
.

In a pair-matched trial, the TMLE minus the sample effect (SATE) behaves as
an empirical mean of an influence curve, depending on nonidentifiable quantities
(Balzer et al. 2016c). Nonetheless, a conservative plug-in estimator of its influence
curve is given by

D̄S
n (gn, Q̄

∗
n)(Ō j) = 1

2

[
DS

n (gn, Q̄∗
n)(Oj1) + DS

n (gn, Q̄∗
n)(Oj2)

]

where DS
n (gn, Q̄∗

n)(O) is the estimated influence curve for observation O in the non-
matched trial (Eq. (13.4)). In finite samples, we conservatively estimate the variance
of the TMLE for the sample effect with the sample variance of the estimated (paired)
influence curve divided by n/2:

σ̄2,S
n =

1
n/2

∑n/2
j=1

[
D̄S

n (gn, Q̄∗
n)(Ō j)

]2

n/2
.
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Adaptive Pre-specified Approach for Step 1: Initial Estimation. By balancing
intervention groups with respect to baseline determinants of the outcome, pair-
matching increases the efficiency of the study (e.g., Imai et al. 2009; van der Laan
et al. 2013a; Balzer et al. 2015, 2016c). Nonetheless, residual imbalance on the base-
line predictors often remains, and adjusting for these covariates during the analysis
can further increase efficiency. In our running example, suppose the matched pairs
were created before baseline HIV prevalence was measured. As a result, there is
likely to be variation across the pairs in baseline prevalence, a known driver of HIV
incidence. Adjusting for baseline prevalence during the analysis is likely to increase
power via two mechanisms: (1) reducing the variance of the TMLE for the point
estimate, and (2) resulting in a less conservative variance estimator. Unfortunately,
it is unclear a priori whether adjusting for prevalence will yield more power than
adjusting for other covariates, such as male circumcision coverage or measures of
community-level HIV RNA viral load. With only n/2 = 15 (conditionally) indepen-
dent units, we are limited as to the size of the adjustment set. Adjusting for too many
covariates can result in over-fitting. As before, we want to data adaptively select the
candidate TMLE (i.e. working regression model), which maximizes the empirical
efficiency.

The data-adaptive procedure for initial estimation of the conditional mean out-
come Q̄0(A,W) for a nonmatched trial can be modified for a pair-matched trial.
As before, we need to pre-specify our library of candidate estimators, our measure
of performance, and the cross-validation scheme. We can use the same library of
candidate working models for initial estimation of the conditional mean outcome
Q̄0(A,W). To measure performance, however, we want to use as risk the estimated
variance of the TMLE under pair-matching. To elaborate, consider the loss function
for the sample effect in a nonmatched trial. Minimizing the sum of squared residuals
(Eq. (13.6)) targets the conditional mean outcome Q̄0(A,W). As a result, the algo-
rithm could select a working model adjusting for a covariate that is highly predictive
of the outcome but on which we matched perfectly. In our running example, sup-
pose communities were paired within region, because HIV incidence is expected to
be highly heterogeneous across regions. Therefore, minimizing the empirical vari-
ance of DS

n (g0, Q̄) might lead to selection of the candidate TMLE with main terms
for the intervention and region. This selection would not improve the precision of
the analysis over the unadjusted algorithm. (We already “controlled” for region in
the design.) Instead, we want to select the candidate TMLE maximizing precision
for the parameter of interest in a pair-matched trial. Thereby, our loss function for
the PATE is

L̄P(g0, Q̄)(Ō j) = 1
2

{
DP

n (g0, Q̄)(Oj1)
}2
+ 1

2

{
DP

n (g0, Q̄)(Oj2)
}2

−2
(
Yj1 − Q̄(Aj1,Wj1)

)(
Yj2 − Q̄(Aj2,Wj2)

)
, (13.8)

and our loss function for the SATE is

L̄S(g0, Q̄)(Ō j) =
{
D̄S

n (g0, Q̄∗
n)(Ō j)

}2
. (13.9)

Again, we are treating the exposure mechanism as known: g0(A|W) = 0.5.



206 L. B. Balzer et al.

Finally, in the cross-validation scheme, the pair should be treated as the unit of
(conditional) independence. In other words, when the data are split into V-folds,
the pairing should be preserved. In small trials, leave-one-pair-out cross-validation
will often be appropriate. With these modifications, we can implement the cross-
validation scheme, outlined in Sect. 13.2, to data adaptively select the candidate
working model, which minimizes the estimated variance of the TMLE in a pair-
matched trial. As before, the selected working model would then be refit using all
the data and used to estimate outcomes for all observations under the treatment and
control. The average difference in the predicted outcomes would provide an estimate
of the intervention effect.

13.4 Collaborative Estimation of the Exposure Mechanism

Even though the intervention A is randomized with balanced allocation, estimating
the known exposure mechanism g0(A|W) = 0.5 can increase the precision of the
analysis (van der Laan and Robins 2003). As before, we want to respect the study
design (i.e., pair-matched or not) as well as adjust for a covariate only if its inclusion
improves the empirical efficiency. For example, we will generally not want to adjust
for a covariate that is imbalanced between the intervention groups (i.e., predictive
of A) but not predictive of the outcome. Likewise, if a given covariate (e.g. W1)
was included in the working model for conditional mean outcome Q̄0(A,W), further
adjusting for this covariate when estimating the exposure mechanism may not in-
crease precision. To this end, we incorporate C-TMLE approach into our algorithm
(see Chap. 10).

Adaptive Pre-specified Approach for Step 2: Targeting. First, we propose a li-
brary of candidate estimators of the exposure mechanism g0(A|W). As before, this
library should be pre-specified in the protocol or analysis plan. A possible library
could consist of the following logistic regression working models:

logit[g(a)(W)] = β0

logit[g(b)(W)] = β0 + β1W1

logit[g(c)(W)] = β0 + β1W2

where, for example, W1 is baseline prevalence and W2 is male circumcision cover-
age. Each algorithm would yield a different update to a given initial estimator of the
conditional mean outcome Q̄n(A,W), selected by the data-adaptive procedure for
Step 1 for trials without matching and for trials with matching. In other words, each
candidate estimator of g0(A|W) results in a different targeted estimator Q̄∗

n(A,W).
We also note that the first working model corresponds to the unadjusted estimator.

To choose between candidate algorithms, we need to pre-specify a measure of
performance. As before, we propose using as risk the estimated asymptotic variance
of the TMLE, appropriate for the study design (i.e. pair-matched or not) and the
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scientific question (i.e. population or sample effect). Therefore, our loss functions
are

• Without matching and for the PATE: LP(g, Q̄n) as in (13.5)
• Without matching and for the SATE: LS(g, Q̄n) as in (13.6)
• With matching and for the PATE: L̄P(g, Q̄n) as in (13.8)
• With matching and for the SATE: L̄S(g, Q̄n) as in (13.9)

where g denotes a candidate estimator of the exposure mechanism and Q̄n denotes
our selected initial estimator of the outcome regression.

Finally, we need to pre-specify our cross-validation scheme, used to obtain an
honest measure of risk and to reduce the potential for over-fitting. As before, we
present V-fold cross-validation, where the data are partitioned into V folds of size
≈ n/V . If matching was used, the partitioning should preserve the pairs. The cross-
validation selector for collaborative estimation of the exposure mechanism can be
implemented as follows.

(A) For each fold v = {1, . . . ,V} in turn,

(a) Set the observation(s) in fold v to be the validation set and the remaining
observations to be the training set.

(b) Fit the initial estimator of the outcome regression Q̄n(A,W) using only data
in the training set.

(c) Fit each algorithm for estimating the exposure mechanism using only data
in the training set. For the above library, we would run logistic regression
of the exposure A on the covariates W, according to the working model.
Denote the estimated exposure mechanisms as g(a)

n (A|W), g(b)
n (A|W) and

g(c)
n (A|W), respectively.

(d) For each algorithm, use the estimated fit of the exposure mechanism to
target the initial estimator Q̄n(A,W). Denote the targeted regression fits
as Q̄(a),∗

n (A,W), Q̄(b),∗
n (A,W) and Q̄(c),∗

n (A,W), where the superscript corre-
sponds to the algorithm used to estimate the exposure mechanism.

(e) For each algorithm, obtain targeted predictions of the outcome(s) for the
observation(s) in the validation set under the treatment and the control.
With the first algorithm for fitting the exposure mechanism, for example,
we would have Q̄(a),∗

n (1,Wk) and Q̄(a),∗
n (0,Wk) for observation Ok in the val-

idation set.
(f) For each algorithm, evaluate the loss function for the observation(s) in the

validation set by plugging in the algorithm-specific predictions. For exam-
ple, if our target of inference were the SATE in a nonmatched trial, we
would have for the first algorithm

LS(g(a)
n , Q̄(a),∗

n )(Ok) =

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
I(Ak = 1)

g(a)
n (1|Wk)

− I(Ak = 0)

g(a)
n (0|Wk)

⎞
⎟⎟⎟⎟⎠
(
Yk − Q̄(a),∗

n (Ak,Wk)
)
⎤
⎥⎥⎥⎥⎦

2

for observation Ok in the validation set.



208 L. B. Balzer et al.

(g) For each algorithm, obtain an estimate of the risk by averaging the esti-
mated losses across the observations in validation set v. If our target of
inference were the SATE in a nonmatched trial, we would have for the first
algorithm for estimating the exposure mechanism

Risk(a)
v =

1
nv

∑

k∈v

LS(g(a)
n , Q̄(a),∗

n )(Ok)

where nv denotes the number of observations in validation set v.

(B) For each algorithm, average the estimated risks across the V folds.
(C) Select the algorithm with the smallest cross-validated risk. This is the algorithm

yielding the smallest cross-validated variance estimate.

The chosen estimator is then used for targeting in Step 2 of the TMLE algorithm.
In this scheme, we are treating the initial estimator of the outcome regression

Q̄n(A,W) as fixed and proposing a second round of cross-validation to select the fit
of the exposure mechanism. An alternative would be to build a library of candidate
TMLEs indexed by choice of initial estimator of outcome regression and estimator
of exposure mechanism, and select among this library using the cross-validated vari-
ance of the influence curve as the measure of performance. In cluster randomized
trials, we recommend the double cross-validation approach to embrace the collabo-
rative principle for estimating the exposure mechanism and to avoid over-fitting.
We only want estimate g0(A|W) if it further improves efficiency beyond adjust-
ment when estimating Q̄0(A,W). The double cross-validation approach estimates
the exposure mechanism g0(A|W) in response to the fit of the outcome regression
Q̄0(A,W). For example, we could restrict the library for g0(A|W) in response to
the selection for Q̄0(A,W): if a given covariate was selected for estimation of the
outcome regression, then remove the corresponding algorithm from the library for
the exposure mechanism. Finally, the double cross-validation approach allows us to
consider a large set of possible candidate TMLEs: all possible combinations of esti-
mators for Q̄0(A,W) and estimators for g0(A|W). In trials with many (conditionally)
independent units, we could consider the single cross-validation approach, which
corresponds to the discrete super learner, or a full super learner approach with loss
function as the squared influence curve.

13.5 Obtaining Inference

In summary, we have proposed the following data-adaptive C-TMLE to maximize
the precision and power of a randomized trial.

• Step 1. Initial estimation of the conditional mean outcome with the working
model Q̄n(A,W), which was data adaptively selected to maximize the empirical
efficiency of the analysis for a nonmatched trial and for a matched trial.
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• Step 2. Targeting the initial estimator Q̄n(A,W) using the estimated exposure
mechanism gn(A|W), which was data adaptively selected to further maximize the
empirical efficiency of the analysis.

• Step 3. Obtaining a point estimate by averaging the difference in the targeted
predictions:

Ψn(Q̄∗
n) =

1
n

n∑

i=1

[
Q̄∗

n(1,Wi) − Q̄∗
n(0,Wi)

]
.

We now need a variance estimator that accounts for the selection process. For
this, we propose using a cross-validated variance estimator. As before, the data are
split into validation and training sets, respecting the unit of (conditional) indepen-
dence. The selected TMLE is fit using the data in the training set and used to estimate
the influence curve2 for the observation(s) in the validation set. The sample variance
of the cross-validated estimate of the influence curve can then be used for hypoth-
esis testing and the construction of Wald-type confidence intervals. We note that a
cross-validated estimate of the influence curve was already calculated to evaluate the
performance of the candidate estimators. Therefore, this step does not require any
extra calculations; we already have an estimate of the cross-validated variance from
our selection procedure. We also note that for small libraries (e.g., two candidate
TMLEs), simulations support the use of the standard, as opposed to cross-validated,
variance estimator for inference (Balzer et al. 2016b).

13.6 Small Sample Simulations

We present the following simulation studies to demonstrate (1) implementation of
the proposed methodology, (2) the potential gains in precision and power from data-
adaptive estimation of the conditional mean outcome, (3) the additional gains in
precision and power from collaborative estimation of the exposure mechanism, and
(4) maintenance of nominal confidence interval coverage. All simulations were con-
ducted in R (R Development Core Team 2016). Full R code is provided in Balzer
et al. (2016b).

13.6.1 Study 1

For each unit i = {1, . . . , n}, we generated the nine baseline covariates by drawing
from a multivariate normal with mean 0 and variance 1. The correlation between
the first three covariates {W1,W2,W3} and between the second three covariates

2 For the TMLE of the population effect in a pair-matched trial, we also need a cross-validated
estimate of the correction term ρn (Eq. (13.7)). This term is a function of the residuals, which can
be estimated for each pair in the validation set based on targeted estimator Q̄∗

n(A,W), fit with the
training set.



210 L. B. Balzer et al.

{W4,W5,W6} was 0.5, while the correlation between the remaining covariates
{W7,W8,W9} was 0. The exposure A was randomized such that the treatment al-
location was balanced overall. For the nonmatched trial, we randomly assigned the
intervention to n/2 units and the control to the remaining n/2 units. For the pair-
matched trial, we used the nonbipartite matching algorithm nbpMatch to pair units
on covariates {W1, . . . ,W6} (Beck et al. 2016), and the exposure A was randomized
within the resulting matched pairs. Recall A is a binary indicator, equalling 1 if the
unit was assigned the treatment and 0 if the unit was assigned the control. For each
unit, the outcome Y was then generated as Y = 0.4A+ 0.25(W1+W2+W4+W5+
UY )+ 0.25A(W1+UY ), where UY was drawn from a standard normal. We also gen-
erated the counterfactual outcomes Y1 and Y0 by intervening to set A = a. To reflect
the limited sample sizes common in early phase clinical trials and in CRTs, we se-
lected a sample size of n = 40. This resulted in n/2 = 20 conditionally independent
units in the pair-matched trial.

For each study design (nonmatched or matched), this data generating process was
repeated 2500 times. Recall that the sample effect (Eq. (13.2)) is a data-adaptive
parameter; its value changes with each new selection of units. Thereby, for each
repetition, the SATE was calculated as the sample average of the difference in the
counterfactual outcomes. The SATE ranged from 0.22 to 0.59 with a mean of 0.40.
In contrast, the population effect (Eq. (13.1)) is constant and was calculated by av-
eraging the difference in the counterfactual outcomes over a population of 900,000
units. The true value of the PATE was 0.40.

We compared the performance of the unadjusted estimator to TMLE with var-
ious approaches to covariate adjustment. Specifically, we implemented the TMLE
algorithm, where the initial estimation of the conditional mean outcome Q̄0(A,W)
was based on a linear working model with main terms for the intervention A and the
irrelevant covariate W9 and where the exposure mechanism was treated as known:
g0(A|W) = 0.5. This approach was equivalent to standard MLE and represented the
unfortunate scenario where the researcher pre-specified adjustment for a covariate
that was not predictive of the outcome.

We also implemented a TMLE with the data-adaptive approach for Step 1 initial
estimation of the conditional mean outcome. Our library consisted of ten working
linear regression models, each with an intercept, a main term for the exposure A
and a main term for one baseline covariate: {∅,W1, . . . ,W9}, where ∅ corresponds
to the unadjusted estimator. Our measure of performance (i.e. our risk function) was
the estimated asymptotic variance of the TMLE, appropriate for the target parame-
ter and study design. We chose the candidate working model based on leave-one-out
cross-validation for the nonmatched trial and leave-one-pair-out cross-validation for
the matched trial. We also implemented C-TMLE which couples the data-adaptive
approach for Step 1 initial estimation of the conditional mean outcome with the data-
adaptive approach for Step 2 targeting. For the latter, our library of candidates to es-
timate the exposure mechanism consisted of ten working logistic regression models,
each with an intercept and a main term for one baseline covariate: {∅,W1, . . . ,W9}.
The same loss function and cross-validation scheme were used for C-TMLE.
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For the unadjusted estimator and the MLE, inference was based on the estimated
influence curve. For the data-adaptive TMLEs, inference was based on the cross-
validated estimate of the influence curve (Sect. 13.5). We assumed the standardized
estimator followed the Student’s t-distribution with n − 2 = 38 degrees of freedom
for the nonmatched trial and with n/2 − 1 = 19 degrees of freedom for the matched
trial.

Results. Table 13.1 illustrates the performance of the estimators over the 2500 sim-
ulated data sets. Specifically, we show the MSE, the relative MSE (rMSE), the av-
erage standard error estimate σ̂, the attained power and the 95% confidence interval
coverage. As expected, matching improved efficiency. The MSE of the unadjusted
estimator, for example, was over two times larger in the nonmatched trial than in
the pair-matched trial. Furthermore, for the pair-matched trial, targeting the sample
effect, as opposed to the population effect, resulted in substantial gains in attained
power: 36% with the unadjusted estimator for the PATE and 53% with the same
estimator for the SATE. For the trial without matching, targeting the sample param-
eter increased efficiency (smaller MSE), but did not directly translate into increased
power due to the conservative variance estimator for the SATE.

Table 13.1 Summary of estimator performance for Simulation 1

PATE SATE
MSE rMSE σ̂ Power Cover. MSE rMSE σ̂ Power Cover.

Non-matched
Unadj 6.8E−2 1.00 0.25 0.34 0.94 6.4E−2 1.06 0.25 0.34 0.94
MLE 6.9E−2 0.98 0.25 0.35 0.94 6.5E−2 1.04 0.25 0.35 0.94
TMLE 4.5E−2 1.49 0.20 0.48 0.94 4.2E−2 1.62 0.20 0.48 0.95
C-TMLE 4.3E−2 1.57 0.20 0.48 0.95 4.0E−2 1.70 0.20 0.48 0.96
Matched
Unadj 3.2E−2 2.10 0.22 0.36 0.99 2.9E−2 2.31 0.18 0.53 0.97
MLE 3.4E−2 2.01 0.22 0.37 0.98 3.1E−2 2.19 0.18 0.53 0.96
TMLE 2.6E−2 2.64 0.19 0.51 0.98 2.3E−2 2.93 0.16 0.65 0.96
C-TMLE 2.5E−2 2.71 0.18 0.53 0.98 2.2E−2 3.03 0.15 0.67 0.96

The rows denote the study design and the estimator: unadjusted, MLE adjusting for W9, TMLE
with data-adaptive selection of the initial estimator, and C-TMLE with data-adaptive selection.
Columns denote estimator performance: MSE as the bias2 plus the variance; rMSE as the MSE
of the unadjusted estimator for the PATE in a nonmatched trial divided by the MSE of another
estimator; σ̂ as the average standard error estimate; power; and coverage

In all scenarios, the MSE of the MLE, adjusting for the irrelevant covariate W9,
was worse than the other estimators. This demonstrates the potential peril of rely-
ing on one pre-specified adjustment variable. Indeed, the TMLE with data-adaptive
selection of the initial estimator of Q̄0(A,W) improved precision over the unad-
justed estimator and the MLE. Collaborative estimation of the exposure mechanism
g0(A|W) led to further gains in precision. Consider, for example, estimation of the
PATE in a trial without matching. The MSE of the unadjusted estimator was 1.49
times larger than the TMLE and 1.57 times larger than the C-TMLE. The attained
power was 34%, 48% and 48%, respectively. As a second example, consider the
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attained power to detect that the SATE was different from zero in the pair-matched
trial. We would have 53% power with the unadjusted estimator and with the MLE,
adjusting for the irrelevant covariate W9. By incorporating the cross-validation se-
lector for initial estimation of Q̄0(A,W), the TMLE achieved 65% power. By further
incorporating collaborative estimation of the exposure mechanism g0(A|W), the C-
TMLE achieved 67% power.

Overall, the greatest efficiency was achieved with C-TMLE for the SATE in the
pair-matched trial. Indeed, the MSE of the unadjusted estimator for the population
parameter in the trial without matching was three times larger than the MSE of the
C-TMLE for the sample effect in the pair-matched trial. Throughout, the confidence
interval coverage was maintained near or above the nominal rate of 95%.

13.6.2 Study 2

For the second simulation study, we increased the complexity of the data-generating
process and reduced the sample size to n = 30. As before, we generated nine
baseline covariates from a multivariate normal with mean 0, variance 1 and the
same correlation structure. We also generated a binary variable R, equalling 1
with probability 0.5 and equalling −1 with probability 0.5. The final covariate Z
was generated as a function of these baseline covariates and random noise UZ :
Z = R× logit−1(W1+W4+W7+ 0.5UZ), where UZ was drawn independently from
a standard normal. As before, the intervention A was randomized with balanced al-
location. For the pair-matched trial, we used the nonbipartite matching algorithm
nbpMatch to explore two matching sets (Beck et al. 2016). In the first, units were
matched on R, a baseline covariate strongly impacting Z. In the second, units were
matched on {R,W2,W5,W8}. For each unit, the outcome Y was then generated as

Table 13.2 Simulation 2: covariate/outcome relationships; adaptive pair-matching schemes

Correlation 0.5 Correlation 0.5 Correlation 0
︷��������������︸︸��������������︷ ︷��������������︸︸��������������︷ ︷��������������︸︸��������������︷

R W1 W2 W3 W4 W5 W6 W7 W8 W9 Z

Parents of covariate Z � � � �
Parents of the outcome Y � � � �
Matching set 1 �
Matching set 2 � � � �

Y = logit−1[0.75A + 0.5(W2 + W5 + W8) + 1.5Z + 0.25UY + 0.75A(W2 − W5) +
0.5AZ]/7.5, where UY was drawn from a standard normal. Thereby, the outcome
was a continuous variable bounded in [0, 1] (e.g. a proportion). We also generated
the counterfactual outcomes Y1 and Y0 by intervening to set A = a. For each study
design, this data generating process was repeated 2500 times. The SATE and PATE
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were calculated as before. The SATE ranged from 0.2% to 3.3% with a mean of
1.6%. The true value of the PATE was 1.6%. Table 13.2 depicts the relationship be-
tween the baseline covariates and the outcome as well as the adaptive pair-matching
schemes.

We compared the same algorithms: the unadjusted estimator, the MLE adjusting
for the irrelevant covariate W9, the TMLE with data-adaptive estimation of the
conditional mean outcome, and the C-TMLE pairing data-adaptive estimation of
the conditional mean outcome with data-adaptive targeting. Our library for initial
estimation of the conditional mean outcome Q̄0(A,W) consisted of 12 working
logistic regression models, each with an intercept and a main term for the exposure
A and a main term for one candidate adjustment variable {∅,R,W1, . . . ,W9,Z}. Our
library for collaborative estimation of the exposure mechanism g0(A|W) included
12 working logistic regression models, each with an intercept and a main term for
one candidate adjustment variable: {∅,R,W1, . . . ,W9,Z}. We used the same mea-
sure of performance and cross-validation scheme. As before, inference was based
on the estimated influence curve for the unadjusted estimator and the MLE and
on the cross-validated estimate of the influence curve for the TMLEs (Sect. 13.5).
We assumed the standardized estimator followed the Student’s t-distribution with
n − 2 = 28 degrees of freedom for the nonmatched trial and with n/2 − 1 = 14
degrees of freedom for the matched trial.

Results. The results for the second simulation study are given in Table 13.3 and
largely echoed the above findings. Pair-matching, even on a single covariate (i.e.,
match set 1), improved the precision of the analysis. Targeting the sample effect
instead of the population effect further improved efficiency. Incorporating data-
adaptive selection of the working model for initial estimation of Q̄0(A,W) yielded
even greater precision, and the most efficient analysis was with C-TMLE. Indeed,
the MSE of the unadjusted estimator for the PATE in the nonmatched trial was
nearly 4.5 times higher than the MSE of the C-TMLE for the SATE when match-
ing on predictive covariates (i.e., match set 2). This resulted in 29% more power to
detect the intervention effect.

For these simulations, there was a notable impact of parameter specification on
estimator performance. We first focus on the estimation of the PATE and then on
estimation of the SATE. When the population effect was the target of inference,
the gains in attained power from pair-matching were attenuated despite the gains in
MSE. This was likely due to the slight underestimation of the standard error in the
nonmatched trial and overestimation in the pair-matched trial. Indeed, the 95% con-
fidence interval coverage in the nonmatched trial was slightly less than nominal (93–
94%), while the coverage when matching well (i.e., match set 2) approached 100%.
For this set of simulations, the correction factor ρn (Eq. (13.7)) used in variance es-
timation for the pair-matched design was approximately 0. As a result, the variance
estimator in the pair-matched trial was quite conservative, and the cross-validation
selection scheme was more optimized for the nonmatched trial. The logistic regres-
sion model adjusting for R was selected for initial estimation of Q̄0(A,W) in 10%
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Table 13.3 Summary of estimator performance for Simulation 2

PATE SATE
MSE rMSE σ̂ Power Cover. MSE rMSE σ̂ Power Cover.

Non-matched
Unadj 1.8E−4 1.00 0.013 0.24 0.94 1.6E−4 1.12 0.013 0.24 0.95
MLE 1.8E−4 0.95 0.012 0.25 0.93 1.7E−4 1.06 0.012 0.25 0.94
TMLE 1.2E−4 1.50 0.010 0.33 0.94 9.8E−5 1.79 0.010 0.33 0.96
C-TMLE 1.1E−4 1.54 0.010 0.34 0.93 9.5E−5 1.85 0.010 0.34 0.96
Match set 1
Unadj 1.1E−4 1.54 0.012 0.21 0.98 9.2E−5 1.90 0.011 0.28 0.97
MLE 1.2E−4 1.48 0.012 0.23 0.97 9.7E−5 1.81 0.011 0.29 0.97
TMLE 9.2E−5 1.91 0.010 0.31 0.97 6.9E−5 2.52 0.009 0.40 0.96
C-TMLE 9.0E−5 1.95 0.010 0.33 0.96 6.9E−5 2.53 0.008 0.44 0.95
Match set 2
Unadj 6.5E−5 2.70 0.011 0.17 0.99 4.6E−5 3.79 0.009 0.37 0.98
MLE 7.3E−5 2.41 0.011 0.20 0.99 5.4E−5 3.27 0.009 0.37 0.98
TMLE 5.3E−5 3.30 0.009 0.28 0.99 3.8E−5 4.66 0.008 0.47 0.98
C-TMLE 5.3E−5 3.28 0.009 0.32 0.99 3.9E−5 4.44 0.007 0.53 0.97

The rows denote the study design and the estimator: unadjusted, MLE adjusting for W9, TMLE
with data-adaptive selection of the initial estimator, and C-TMLE with data-adaptive selection.
Columns denote estimator performance: MSE as the bias2 plus the variance; rMSE as the MSE
of the unadjusted estimator for the PATE in a nonmatched trial divided by the MSE of another
estimator; σ̂ as the average standard error estimate; power; and coverage

of the studies without matching and in 7% of the studies when matching well on
R (i.e., match set 1). Furthermore, when matching on several covariates (i.e., match
set 2), the selection of working models for Q̄0(A,W) was very similar to the selec-
tion in the nonmatched trial.

In contrast, when estimating the SATE, smaller MSE translated to greater at-
tained power, while maintaining nominal, if not conservative, confidence interval
coverage. For example, the attained power of the TMLE was 33% in the non-
matched trial, 40% when matching on a single covariate and 47% when matching
on several covariates. Likewise, the attained power of the C-TMLE was 34% in the
nonmatched trial, 44% in the trial pair-matching on a single covariate and 53% in
trial matching on several covariates. The working model adjusting for R was se-
lected for initial estimation of Q̄0(A,W) in 10% of the studies without matching and
only in 2% of the studies when matching well on R (i.e., match set 1). In the latter,
more weight was given to other predictive baseline covariates, such as W2 and Z.

13.7 Discussion

This chapter builds on the rich history of covariate adjustment in randomized trials
(e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982; Tsiatis et al. 2008;
Zhang et al. 2008; Moore et al. 2011; Yuan et al. 2012; Shen et al. 2014; Colantuoni
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and Rosenblum 2015). In particular, Rubin and van der Laan (2008) proposed the
principle of empirical efficiency maximization as a strategy to select the estimator of
conditional mean outcome Q̄0(A,W) that minimized the empirical variance of the
estimated efficient influence curve. Their procedure, however, relied on solving a
weighted nonlinear least squares problem. Our approach only requires researchers
to take the sample variance.

Recent developments in C-TMLE proposed collaborative estimation of the ex-
posure mechanism to achieve the greatest bias reduction in the targeting step of
TMLE in a observational study. In randomized trials, there is no risk of bias from
regression model misspecification (Rosenblum and van der Laan 2010b). Thereby,
the collaborative approach, implemented here, serves only to increase precision by
estimating the known exposure mechanism. This chapter generalizes this scheme
for estimation and inference of both the population and sample average treatment
effects in randomized trials with and without pair-matching. Therefore, our proce-
dure dispels the common concern of “analytical limitation” to pair-matched trials
(e.g., Klar and Donner 1997; Imbens 2011; Campbell 2014). Since the step-by-step
algorithm (including the library definition) is pre-specified, there is no risk of bias
or misleading inference from ad hoc analytic decisions. Furthermore, including the
unadjusted estimator as a candidate obviates the need for guidelines on whether or
not to adjust (e.g., Moore et al. 2011; Colantuoni and Rosenblum 2015). Finally,
our procedure is tailored to the scientific question (population vs. sample effect) and
study design (with or without pair-matching). Decisions about whether to adjust and
how to adjust are made with a rigorous and principled approach, removing some of
the “human art” from statistics.
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R01-AI074345, R37-AI051164, UM1AI069502 and U01AI099959. The content is
solely the responsibility of the authors and does not necessarily represent the official
views of the NIH.
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Chapter 14
Stochastic Treatment Regimes

Iván Díaz and Mark J. van der Laan

Standard statistical methods to study causality define a set of treatment-specific
counterfactual outcomes as the outcomes observed in a hypothetical world in which
a given treatment strategy is applied to all individuals. For example, if treatment has
two possible values, one may define the causal effect as a comparison between the
expectation of the counterfactual outcomes under regimes that assign each treatment
level with probability one. Regimes of this type are often referred to as static. An-
other interesting type of regimes assign an individual’s treatment level as a function
of the individual’s measured history. Regimes like this have been called dynamic,
since they can vary according to observed pre-treatment characteristics of the indi-
vidual. Static and dynamic regimes have often been called deterministic, because
they are completely determined by variables measured before treatment.

Though they are ubiquitous in applied research, deterministic regimes do not pro-
vide an appropriate framework to tackle causality questions concerning phenomena
that are not subject to direct intervention. For example, in public health research, re-
alistic regimes often fail to put the treatment variable into a deterministic state (e.g.,
it is unrealistic to set an individuals exercise regime according to a deterministic
function), or are the result of implementing policies that target stochastic changes
in the behavior of a population (e.g., the use of mass media messages advertising
condom use is deterministic at the community level but stochastic at the individ-
ual level, because each individual will decide to adopt or not treatment depending
upon exogenous factors). In addition, causal effects for deterministic regimes may
be unidentifiable because the regime of interest is not supported in the observed
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data (e.g., health problems are expected to prevent certain portions of the popula-
tion from higher levels of physical activity). This poses a problem for interpretation
of the causal effects based on deterministic regimes, because the estimated effects
correspond to regimes that cannot be implemented in practice.

In this chapter, we consider a generalization of dynamic regimes in which the
assigned treatment is also allowed to depend on the natural value of treat-
ment (i.e., the treatment value observed under no intervention). Because the
treatment level assigned under this regime cannot be determined until the nat-
ural value of treatment is observed, we have called these regimes stochastic.
Other names found in the literature include stochastic policies, random in-
terventions, randomized dynamic strategies, modified treatment policies, etc.
Stochastic regimes are allowed to depend on the natural value of treatment,
and can therefore always be defined to be relevant and realistic.

To illustrate this, consider the following two examples:

Example 14.1. Tager et al. (1998) carried out a study with the main goal of assess-
ing the effect of leisure-time physical activity (LTPA) on mortality in the elderly. In
principle, one could consider a set of hypothetical worlds corresponding to deter-
ministic regimes on LTPA, for example setting the LTPA level deterministically to
each of it possible values. Though conceivable in principle, counterfactual outcomes
defined in this way are unsatisfactory because one could not possibly implement a
regime that sets an individual’s physical activity level deterministically. As a so-
lution, consider a regime that assigns treatment as a function of the natural value
of treatment. For example, an individual whose current physical activity level is a
may be assigned a + δ under the regime. More realistically, this regime may be
assigned only to individuals for whom it is feasible, where feasibility may be deter-
mined according to other covariates, such as health status and the current physical
activity level. A regime of this type is more realistic than any deterministic regime
and, arguably, may be implemented in the real world. The definition, identification,
and estimation of a causal effect defined in this way was first developed by Díaz and
van der Laan (2012) and further considered by Haneuse and Rotnitzky (2013).

Example 14.2. Mann et al. (2010) carried out a study analyzing the causal effect of
air pollution levels on respiratory symptoms in children with asthma (Fresno Asth-
matic Children’s Environment Study, FACES). A central aim of the study is to in-
vestigate the effect of NO2 air concentrations on wheezing in asthmatic children. In
particular, it may be of interest to assess the effect of a regime that reduces NO2 air
concentrations in the right tail of the NO2 distribution. An example of such a regime
would be to enforce NO2 levels below a certain threshold. Under this regime, com-
pliant units, those below the selected threshold, may have no incentive to reduce
their pollution levels and thus may remain unchanged under the regime. Units above
the threshold are likely to reduce their pollution levels only to achieve the threshold
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and be in compliance with the policy, but may not have any incentive to carry out
additional reductions. Causal inference methods to assess the effect of this type of
regime were developed by Díaz and van der Laan (2013a).

In addition to aiding in defining more meaningful target causal parameters,
stochastic treatment regimes provide a more tractable estimation framework for
continuous exposures. Parameters such as causal dose-response curves are hard to
estimate in the nonparametric model because they are not pathwise differentiable
(e.g., they have an infinite efficiency bound). Other methods, such as those based
in categorization of the continuous treatment, fail to use the continuous nature of
the treatment and thus are not adequate to answer questions regarding interventions.
Stochastic treatment regimes can also be used to tackle common problems, such as
identification and estimation of the natural direct effect (NDE), community inter-
ventions, individualized treatment regimes, and intention to treat rules.

14.1 Data, Notation, and Parameter of Interest

Let A denote a treatment variable, let Y denote a continuous or binary outcome,
and let W denote a vector of observed pre-treatment covariates. Let O = (W, A,Y)
represent a random variable with distribution P0, and let O1, . . . ,On denote a sample
of n i.i.d. observations of O. We assume P0 ∈ M, where M is the nonparametric
model defined as all continuous densities on O with respect to a dominating measure
ν. Let p0 denote the corresponding probability density function. Then,

p0(o) = p0(y | a,w)p0(a | w)p0(w).

We denote g0(a | w) = p0(a | w), Q̄0(a,w) = E0(Y | A = a,W = w), and
qW,0(w) = p0(w), as well as P f =

∫
f (o)dP(o) for a given function f (o) and a

general distribution function P ∈ M. We use Pn to denote the empirical distribution
of O1, . . . ,On.

We assume the following nonparametric structural equation model (NPSEM):

W = fW (UW ); A = fA(W,UA); Y = fY (A,W,UY ). (14.1)

This set of equations represents a mechanistic model that is assumed to generate
the observed data O, and it encodes several assumptions. First, there is an implicit
temporal ordering: Y is assumed to occur after A and W, and A is assumed to occur
after W. Second, each variable is assumed to be generated as deterministic function
of the observed variables that precede it, plus an exogenous variable, denoted by U.
Each exogenous variable is assumed to contain all unobserved causes of the corre-
sponding observed variable. We assume the following independence condition on
the exogenous variables:

UA ⊥⊥ UY . (14.2)
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This assumption plays a crucial role to achieve the identification result of the causal
effect of A on Y from the observed data distribution, described in Sect. 14.1.1. The
set of allowed directed acyclic graphs (DAG) implied by this assumption is given
in Fig. 14.1.

The causal effect of A on Y is defined as follows. Consider a hypothetical mod-
ification to NPSEM (14.1) in which the equation corresponding to A is removed,
and A is set equal to a hypothetical regime d(A,W). Regime d depends on the treat-

UA

A Y

UY

W

UW

UA

A Y

UY

W

UW

Fig. 14.1 Set of allowed directed acyclic graphs. Dashed lines represents correlations, solid arrows
represent causal relations

ment level that would be assigned in the absence of the regime, A, as well as the
covariates W. In our illustrative examples, these regimes may be defined as follows.

Example 14.1 (Continued). Let the distribution of A conditional on W = w be sup-
ported in the interval (l(w), u(w)). That is, the maximum possible amount of physical
activity for an individual with covariates W = w is u(w). Then one could define

d(a,w) =

⎧⎪⎪⎨
⎪⎪⎩

a + δ if a < u(w) − δ

a if a ≥ u(w) − δ,
(14.3)

where δ some pre-specified amount of physical activity, for example 2 h per week.
Under this regime, individuals for whom it is feasible are required to perform δ more
units of physical activity. Interesting modifications to this regime may be obtained
by allowing δ to be a function of w, therefore allowing the researcher to specify
a different increase in physical activity as a function of covariates such as health
status, age, etc.

Díaz and van der Laan (2012) interpret this stochastic treatment regimes in terms
of a change in the probabilistic mechanism used to assign exposure level. Haneuse
and Rotnitzky (2013) point out that such interpretation may be undesirable, arguing
as follows. Consider a new distribution for physical activity in which treatment is
assigned according to a location-shifted version of the pre-intervention distribution.
If stochastic regimes are interpreted as changing the treatment assignment mecha-
nism for a location-shifted distribution, an individual with a physical activity level
of 30 min may receive a treatment level of 10 min under the new regime. This may
be problematic as such intervention could reduce the physical activity level at the
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individual level. We note, however, that the population distribution of the exposure
is the same under both interventions, and thus they lead to exactly the same coun-
terfactual distributions. As a result, the interpretation adopted is inconsequential for
the definition, identification, and estimation of the causal effect.

Example 14.2 (Continued). An interesting regime may be given by d(a,w) = aI(a ≤
δ) + δI(a > δ), where I(x) is the indicator function that equals one if x is true and
zero otherwise. Under this regime, all localities are required to have a pollution level
of at most δ.

We define casual quantities in terms of the distribution of the outcome variables
in a hypothetical world in which the stochastic regime is assigned instead of the
natural value of treatment. In NPSEM (14.1), this counterfactual outcome is defined
as Yd(A,W) = fY (d(A,W),W,UY ).

14.1.1 Identification

The next step in the causal inference road map is identification of the causal pa-
rameter. Identification is necessary because the counterfactual variable Yd(A,W) is
generally not observed. Thus, estimation of the expectation E(Yd(A,W)) is possible
only if it can be expressed as a function of the distribution P0 of the observed data.
This is achieved as follows. Using the law of iterated expectations, we can write

E(Yd(A,W)) =
∫

a∈A

∫

w∈W
E(Yd(a,w) | A = a,W = w)g0(a | w)qW,0(w)dν(a,w),

where A and W are the support of the distributions of A and W, respectively.
NPSEM (14.1) and assumption (14.2) imply

1. Yd(a,w) ⊥⊥ A | W, and
2. Yd(a,w) = Y in the event A = d(a,w).

Thus, the expectation E(Yd(A,W)) is identified by

E(Yd(A,W)) =
∫

a∈A

∫

w∈W
E(Yd(a,w) | A = d(a,w),W = w)g0(a | w)qW,0(w)dν(a,w)

=

∫

a∈A

∫

w∈W
E(Y | A = d(a,w),W = w)g0(a | w)qW,0(w)dν(a,w)

= EP0 {Q̄(d(A,W),W)}. (14.4)

We define the parameter of interest as a mapping Ψ : M → R that takes an element
P in a statistical model M and maps it to a real number Ψ (P). The true value of the
parameter is given by the mapping evaluated at the true distribution P0 ∈ M, and is
denoted by ψ0 = Ψ (P0). The statistical parameter of interest is then given by

Ψ (P) = EP{Q̄(d(A,W),W)}, (14.5)
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where Q̄ denotes the conditional expectation of Y corresponding to the distribu-
tion P. Note that this parameter depends only on Q = (Q̄, g, qW ). Therefore, in an
abuse of notation, we will use the expressions Ψ (Q) and Ψ (P) interchangeably.

14.1.2 Positivity Assumption

In the identification result derived above, we implicitly assumed that a ∈ A(w)
implies d(a,w) ∈ A(w), for all w in W, where A(w) denotes the support of A con-
ditional on W = w. This assumption is often referred to as the positivity assumption,
and it ensures that the regime under consideration is supported in the observed data.
Without this assumption, the integrals in Eq. (14.4) could be not well defined, since
the conditioning set in E(Yd(a,w) | A = d(a,w),W = w) may be empty. Arguably,
this assumption is much more easy to attain than the assumption required for static
regimes, which states that all treatment levels considered by the regime have a posi-
tive probability in the support of W. In particular, a stochastic regime can always be
defined such that positivity holds, which is precisely what we have done in (14.3).

A regime that does not satisfy positivity also poses a problem for interpretability
of the resulting causal effect, since it does not occur naturally in the population.
For illustration, consider Example 27.1. Assume w represents the covariate profile
of individuals with coronary heart disease (CHD), and that some individuals with
CHD have a natural value of treatment equal to the maximum physical activity level
a recommended for their condition. Assume also that all other individuals diagnosed
with CHD have LTPA values below the maximum recommended. In this case, the
regime d(a,w) = a + 2 does not satisfy positivity, and therefore its effect cannot be
estimated. This regime would also be of little interest since it would be unrealistic
to enforce it on individuals with CHD.

14.2 Optimality Theory for Stochastic Regimes

In the remainder of this chapter we pursue the development of locally efficient,√
n-consistent estimators for Ψ (P), focusing on Example 14.1. It is not possible to

construct
√

n-consistent estimators of Ψ (P) in Example 14.2 if d(a,w) = aI(a ≤
δ) + δI(a > δ). This is because the parameter is not pathwise differentiable, and
therefore it is not possible to construct a

√
n-consistent estimator. The reason for

this can be explained intuitively by looking at the parameter definition

Ψ (P) = E{Q̄(d(A,W),W)}
= E{Q̄(AI(A ≤ δ) + δI(A > δ),W)}
= E{Q̄(A,W)I(A ≤ δ)} + E{Q̄(δ,W)I(A > δ)}.
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The term E{Q̄(δ,W)I(A > δ)} in this expression involves estimation of the causal
effect of a static intervention setting the continuous exposure to A = δ. Efficient
estimation theory is not available for estimation of such parameters in the non-
parametric model (Bickel et al. 1997b), since all possible gradients of the pathwise
derivative would necessarily need to include a Dirac delta function at δ. An alter-
native approach to overcome this issue is to redefine the regime d(a,w) so that the
parameter becomes pathwise differentiable. Such approach is taken by Díaz and
van der Laan (2013a); the interested reader is encouraged to consult the original
research article.

In the remainder of this chapter we will assume piecewise smooth invertibility of
d(a,w). That is, for each w ∈ W, we assume that the interval I(w) = (l(w, ), u(w))
may be partitioned into subintervals I j(w) : j = 1, . . . , J(w) such that d(a,w) is
equal to some dj(a,w) in I j(w) and d j(·,w) has inverse function h(·,w) with deriva-
tive h′(·,w). This assumption was first introduced by Haneuse and Rotnitzky (2013),
and is necessary to establish the efficient influence function (EIF) given below in
Lemma 14.1.

The EIF is a key element in semiparametric efficient estimation, since it defines
the linear approximation of any efficient and regular asymptotically linear estimator.
As a result, its variance is the asymptotic efficiency bound for all regular asymptot-
ically linear estimators (Bickel et al. 1997b).

Lemma 14.1 (Efficient Influence Function). The EIF of (14.5) is given by

D(P)(o) = H(a,w){y − Q̄(a,w)} + Q̄(d(a,w),w) − Ψ (P), (14.6)

where

H(a,w) =
J(w)∑

j=1

I{h j(a,w) ∈ I j(w)}
g(hj(a,w) | w)

g(a | w)
h′j(a,w).

Lemma 14.1 is a generalization of a result proved by Díaz and van der Laan (2012).
We also use the alternative notation H(g)(a,w) to stress the dependence of H on g.

Example 14.1 (Continued). Using the piecewise smooth invertibility of d(a,w) de-
fined in (14.3), the covariate H is found to be equal to

H(a,w) = I(a < u(w))
g0(a − δ | w)

g0(a | w)
+ I(a ≥ u(w) − δ).

Note that, for an individual i such that Ai ∈ [u(Wi) − δ, u(Wi)), H is equal to

H(Ai,Wi) =
g0(Ai − δ | Wi)

g0(Ai | Wi)
+ 1.

The presence of two terms in this covariate indicates that such observation repre-
sents two different types of observations under the stochastic regime. The first term
appears because the outcome Yi represents the outcome under the stochastic regime
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for all observations j such that Wj = Wi and Aj = Ai − δ. The second term appears
because the outcome for observation Ai is its own outcome under the stochastic
regime.

The following lemma provides a result establishing the double robustness of es-
timators that solve the EIF estimating equation.

Lemma 14.2 (Unbiased Estimating Equation and Double Robustness). Let
D(O | Q̄, g, ψ0) be the estimating function implied by the EIF D(P)(O):

D(O | Q̄, g, ψ0) = H(g)(A,W){Y − Q̄(A,W)} + Q̄(d(A,W),W) − ψ0,

We have that EP0 D(O | Q̄, g, ψ0) = 0 if either g is such that H(g) = H(g0), or
Q̄ = Q̄0.

The previous lemma provides some intuition into the double robustness of estima-
tors based on the EIF. If either g0 or Q̄0 are known, it is possible to construct an unbi-
ased estimating equation. Then, under the conditions outlined in Chap. 5 of van der
Vaart (1998), the estimator can be shown to be consistent and asymptotically nor-
mal. Because Q̄0 and g0 are generally unknown, it is not possible to plug in their
values in D to obtain an unbiased estimating equation. Instead, estimator of these
quantities must be used. This poses additional challenges in the construction of an
estimator for ψ0, in particular regarding its asymptotic distribution. In the following
section we develop the theory required to obtain a doubly robust, locally efficient
estimator of ψ0, focusing on a targeted minimum loss based estimators (TMLE).
TML estimators, as we will see, can be shown to be doubly robust in the sense that
they are consistent if either g0 or Q̄0 can be estimated consistently. In addition, they
are efficient and asymptotically normal if both of these parameters are consistently
estimated with certain convergence rates.

14.3 Targeted Minimum Loss-Based Estimation

The EIF D given above plays a central role in the definition of the TMLE. We start
by considering its decomposition as D = DY + DA,W , where

DY (Q̄, g)(O) = H(g)(A,W)(Y − Q̄(A,W))

denotes the projection of the EIF D on the tangent space of the model M corre-
sponding to p0(y | a,w). Here, DA,W denotes the remainder term, which could be
further decomposed into terms DA and DW , corresponding to the projections on the
tangent spaces of g0(a | w) and qW,0(w), respectively.

A standard TMLE, as originally defined for pathwise differentiable parameters
by van der Laan and Rubin (2006), would proceed by computing initial estimators
of Q̄0, g0, and qW,0. These estimators would then be updated using DY , DA, and
DW , respectively, in a way such that the EIF estimating function is zero when com-
puted at the updated estimates. Achieving a solution of the EIF estimating equation
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guarantees, under regularity assumptions, that the estimator enjoys optimality prop-
erties such as double robustness and local efficiency. TML estimators defined in this
way generally require iteratively optimizing a loss function for the likelihood of the
observed data, which may increase programming efforts and require more compu-
tational time and power. The reader interested in the construction of standard TML
estimators for Example 14.1 is encouraged to consult Díaz and van der Laan (2012).

In this chapter we take a different approach to define a TMLE of the target param-
eter ψ0, where we focus exclusively on solving the component of the EIF estimating
equation corresponding to DY . We will see that this leads to an estimator that does
not require iteration, and yet leads to the same asymptotic optimality properties
of the standard TMLE of Díaz and van der Laan (2012). Haneuse and Rotnitzky
(2013) constructed a similar estimator focusing on parametric models for Q̄0 and
g0. Because parametric models are often misspecified, these estimators are gener-
ally inconsistent and can jeopardize the validity of conclusions extracted from an
otherwise carefully well planned and executed study.

Assume without loss of generality that Y is supported in {0, 1} or (0, 1). TMLE
of ψ0 is performed in the following steps:

1. Initial estimators. Obtain initial estimators gn and Q̄n of g0 and Q̄0. In general,
the functional form of g0 and Q̄0 will be unknown to the researcher. Since con-
sistent estimation of these quantities is key to achieve asymptotic efficiency of
ψn, we advocate for the use of data-adaptive predictive methods that allow flexi-
bility in the specification of these functional forms. We discuss this issue further
in Sect. 14.4 below.

2. Compute auxiliary covariate. For each subject i, compute the auxiliary covariate

Hn(Ai,Wi) =
J(Wi)∑

j=1

I{Ai ∈ I j(Wi)}
gn(h j(Ai,Wi) | Wi)

gn(Ai | Wi)
h′j(Ai,Wi).

3. Solve estimating equations. Estimate the parameter ε in the logistic regression
model

logitQ̄ε,n(a,w) = logitQ̄n(a,w) + εHn(a,w), (14.7)

by fitting a standard logistic regression model of Yi on Hn(Ai,Wi), with no inter-
cept and with offset logitQ̄n(Ai,Wi). Alternatively, fit the model

logitQ̄ε,n(a,w) = logitQ̄n(a,w) + ε

with weights Hn(Ai,Wi). In either case, denote the estimate of ε by εn.
4. Update initial estimator and compute 1-TMLE. Update the initial estimator as

Q̄	
n (a,w) = Q̄n,εn (a,w), and define the 1-TMLE as

ψn =
1
n

n∑

i=1

Q̄	
n (d(Ai,Wi),Wi).
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14.3.1 Asymptotic Distribution of TMLE

A key property of the TML estimator defined above is that, by virtue of the logistic
regression model (14.7), the TMLE satisfies PnDY (Q̄	

n , gn) = 0. To simplify the
notation, let us denote Q̄d(a,w) = Q̄(d(a,w),w). Straightforward algebra shows
that, for any Q̄d,

P0Q̄d − ψ0 = −P0DY (Q̄, g) + R(P, P0),

where

R(P, P0) = −
∫

{H(g) − H(g0)}{Q̄ − Q̄0}dP0. (14.8)

Applying this to Q̄	
n , and adding and subtracting ψn, we obtain

ψn − ψ0 = (Pn − P0)DY (Q̄	
n , gn) − (Pn − P0)Q̄	

n,d + R(P̂	, P0),

where R(P̂	, P0) denotes (14.8) with Q̄ replaced by Q̄	
n and g replaced by gn. This

now gives

ψn − ψ0 = (Pn − P0)D(Q̄	
n , gn) + R(P̂	, P0).

Provided that

1. D(Q̄	
n , gn) converges to D(P0) in L2(P0) norm, and

2. the size of the class of functions considered for estimation of Q̄	
n , and gn is

bounded (technically, there exists a Donsker class F of functions of o so that
D(Q̄	

n , gn) ∈ F with probability tending to one),

results from empirical process theory (e.g., theorem 19.24 of van der Vaart 1998)
allow us to conclude that

ψn − ψ0 = (Pn − P0)D(P0) + R(P̂	, P0).

In addition, if

R(P̂	, P0) = oP(1/
√

n), (14.9)

we obtain that ψn−ψ0 = (Pn−P0)D(P0)+oP(1/
√

n). Thus, the central limit theorem
can be used to establish

√
n(ψn − ψ) → N(0,V(D(P0))).

This implies, in particular, that ψn is a
√

n-consistent estimator of ψ0, it is asymptot-
ically normal, and it is locally efficient. Wald-type confidence intervals may be now
obtained as ψn ± zασn/

√
n, where

σ2
n =

1
n

n∑

i=1

D2(Q̄	
n , gn)(Oi)

is an estimator of V(D(P0)). Alternatively, the bootstrap may be used to obtain an
estimator σ2

n.
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14.4 Initial Estimators

The condition that R(P̂, P0) converges to zero in the sense of (14.9) is necessary to
obtain the consistency, asymptotic normality, and local efficiency of the TMLE ψ̂.
Condition (14.9) would be trivially satisfied if g0 and Q̄0 where known to belong
to a parametric family of functions, and were estimated using maximum likelihood
or some other type of M-estimator. When working with high-dimensional obser-
vational data, it has been long recognized that parametric models can seldom be
correctly specified, except in rare and often trivial cases. Model misspecification
would then lead to a violation of condition (14.9), which, from the arguments of the
previous section, would result in inconsistent estimators of ψ0. Because they would
invalidate the result of a well designed and executed study, we discourage the use of
estimators based on parametric models, except in cases in which their correctness
can be established from subject-matter scientific knowledge.

As an alternative, methods developed in the field of statistical learning can be
used to estimate Q̄0 and g0. Because statistical learning methods are concerned with
finding estimates that resemble the true data generating functions as closely as pos-
sible, they are more likely to yield consistent estimators, in contrast to parametric
models. We encourage the use of ensemble learners, which are capable of exploit-
ing the advantages of a library of candidate estimation algorithms simultaneously.
In particular, super learning, discussed in Chap. 3, is a technique whose optimal
properties have been demonstrated theoretically and empirically. Super learning of
a conditional expectation such as Q̄0 has been extensively discussed, for example, in
the references included in Chap. 3 of this book as well as Chap. 3 of Targeted Learn-
ing (2011). In the remainder of this section we discuss the problem of estimating
the conditional probability density function g0(a | w) for a continuous variable A.
This problem has received considerably less attention from the statistical learning
research community.

14.4.1 Super Learning for a Conditional Density

If A is continuous, the conditional density g0 may be defined as the minimizer of
the negative log-likelihood loss function. That is g0 = arg min f∈F R( f , p0), where F
is the space of all nonnegative functions of (a,w) satisfying

∫
f (a,w)da = 1, and

R( f ) = −
∫

log f (a,w)dP0(o). An estimator ĝ is seen here as an algorithm that takes
a training sample T ⊆ {Oi : i = 1, . . . , n} as an input, and outputs an estimated
function gn(a,w).

We use cross-validation to construct an estimate Rn(gn,k) of the risk R(gn,k) as
follows. Let V1, . . . ,VJ denote a random partition of the index set {1, . . . , n} into J
validation sets of approximately the same size. That is, V j ⊂ {1, . . . , n}; ⋃J

j=1 V j =

{1, . . . , n}; and V j∩V j′ = ∅. In addition, for each j, the associated training sample is
given by T j = {1, . . . , n}\V j. Denote by ĝT j the estimated density function obtained
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by training the algorithm using only data in the sample T j. The cross-validated risk
of an estimated density gn is defined as

Rn(gn) = −1
J

J∑

j=1

1
|V j|

∑

i∈V j

log gn,T j (Ai,Wi). (14.10)

Consider now a finite collection L = {gn,k : k = 1, . . . ,Kn} of candidate estimators
for g0. We call this collection a library. We define the stacked predictor as a convex
combination of the predictors in the library:

gn,α(a | w) =
Kn∑

k=1

αkgn,k(a | w),

and estimate the weights α as the minimizer of the cross-validated risk α̂ =
arg min Rn(gn,α), subject to

∑Kn

k=1 αk = 1. The final estimator is then defined as gn,α̂.

14.4.2 Construction of the Library

Consider a partition of the range of A into k bins defined by a sequence of values
β0 < · · · < βk. Consider a candidate for estimation of g0(a | w) given by

gn,β(a | w) =
P̂r(A ∈ [βt−1, βt) | W = w)

βt − βt−1
, for βt−1 ≤ a < βt. (14.11)

Here P̂r denotes an estimator of the true probability Pr0(A ∈ [βt−1, βt) | W = w)
obtained through a hazard specification and the use of an estimator for the expec-
tation of a binary variable in a repeated measures dataset as follows. Consider the
following factorization

Pr(A ∈ [βt−1, βt)|W = w) = Pr(A ∈ [βt−1, βt)|A ≥ βt−1,W = w)×
t−1∏

j=1

{1 − Pr(A ∈ [β j−1, β j)|A ≥ β j−1,W = w)}.

The likelihood for model (14.11) is proportional to

n∏

i=1

Pr(Ai ∈ [βt−1, βt)|W) =
n∏

i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

t−1∏

j=1

{
1 − Pr(Ai ∈ [β j−1, β j)|Ai ≥ β j−1,Wi)

}
⎤
⎥⎥⎥⎥⎥⎥⎦×

Pr(Ai ∈ [βt−1, βt)|Ai ≥ βt−1,Wi),
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which corresponds to the likelihood for the expectation of the binary variable I(Ai ∈
[β j−1, β j)) in a repeated measures data set in which the observation of subject i is
repeated k times, conditional on the event Ai ≥ β j−1.

Thus, each candidate estimator for g0 is indexed by two choices: the sequence
of values β0 < · · · < βk, and the algorithm for estimating the probabilities Pr0(Ai ∈
[βt−1, βt)|Ai ≥ βt−1,Wi). The latter is simply a conditional probability, and therefore
any standard prediction algorithm may be used as a candidate. In the remainder of
this section we focus on the selection of the location and number of bins, implied
by the choice of β j values.

Denby and Mallows (2009) describe the histogram as a graphical descriptive tool
in which the location of the bins can be characterized by considering a set of parallel
lines cutting the graph of the empirical cumulative distribution function (ECDF).
Specifically, given a number of bins k, the equal-area histogram can be regarded
as a tool in which the ECDF graph is cut by k + 1 equally spaced lines parallel to
the x axis. The usual equal-bin-width histogram corresponds to drawing the same
lines parallel to the y axis. In both cases, the location of the cutoff points for the
bins is defined by the x values of the points in which the lines cut the ECDF. As
pointed out by the authors, the equal-area histogram is able to discover spikes in the
density, but it oversmooths in the tails and is not able to show individual outliers.
On the other hand, the equal-bin-width histogram oversmooths in regions of high
density and does not respond well to spikes in the data, but is a very useful tool for
identifying outliers and describing the tails of the density.

As an alternative to find a compromise between these two approaches, the authors
propose a new histogram in which the ECDF is cut by lines x + cy = bh, b =
1, . . . , k+1; where c and h are parameters defining the slope and the distance between
lines, respectively. The parameter h identifies the number of bins k. The authors note
that c = 0 gives the usual histogram, whereas c → ∞ corresponds to the equal-area
histogram.

Thus, we can define a library of candidate estimators for the conditional density
in terms of (14.11) by defining values of the vector β through different choices
of c and k, and considering a library for estimation of conditional probabilities.
Specifically, the library is given by the Cartesian product

L = {c1, . . . , cmc } × {k1, . . . , kmk } × {P̂r1, . . . , P̂rmP },

where the first is a set of mc candidate values for c, the second is a set of mk candi-
date values for k, and the third is a set of mP candidates for the probability estimation
algorithm. The use of this approach will result in estimators that are able to identify
regions of high density as well as provide a good description of the tails and outliers
of the density. The inclusion of various probability estimators allows the algorithm
to find possible nonlinearities and higher-order interactions in the data. This pro-
posed library may be augmented by considering any other estimator. For example,
there may be expert knowledge leading to believe that a normal distribution (or any
other distribution) with linear conditional expectation could fit the data. A candidate
algorithm that estimates such a density using maximum likelihood may be added to
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the library. This algorithm was first proposed by Díaz and van der Laan (2011),
the reader interested in more details and applications is encouraged to consult the
original research article.

14.5 Notes and Further Reading

The contents of this chapter are based on previous work by Díaz and van der Laan
(2011, 2012); Díaz and van der Laan (2013a). We have also included here some
improvements proposed by Haneuse and Rotnitzky (2013). The reader interested in
applications to real data and further discussion is encouraged to consult the original
research articles. The reader interested in further discussion of the general theory of
stochastic interventions is referred to Robins et al. (2004); Korb et al. (2004); Eber-
hardt and Scheines (2006); Pearl (2009b) and Dawid and Didelez (2010), among
others.

As we briefly mentioned in the introduction of this chapter, stochastic regimes
may also be used to tackle standard causal inference problems. For example, van der
Laan (2014a) discusses the use of stochastic regimes to define and estimate causal
effects in causal networks. Sapp et al. (2014) present an application of stochastic
regimes to estimation of variable importance measures with interval-censored out-
comes. Applications of stochastic interventions to causal inference under mediation
may be found in Naimi et al. (2014) and Zheng and van der Laan (2012a). The
latter authors present an important result showing that, in the case of the natural
direct effect (NDE), using a stochastic intervention approach may result in weaker
identifiability conditions. Therefore, adopting a stochastic regime interpretation of
the NDE may be desirable as the estimated parameter represents a causal effect
in a larger causal model, in comparison with the standard approach (van der Laan
et al. 2014). Further discussions and other applications may be found in Young et al.
(2014) and van der Laan et al. (2014).



Chapter 15
LTMLE with Clustering

Mireille E. Schnitzer, Mark J. van der Laan, Erica E. M. Moodie,
and Robert W. Platt

Breastfeeding is considered best practice in early infant feeding, and is recom-
mended by most major health organizations. However, due to the impossibility of
directly allocating breastfeeding as a randomized intervention, no direct experimen-
tal evidence is available. The PROmotion of Breastfeeding Intervention Trial (PRO-
BIT) was a cluster-randomized trial that sought to evaluate the effect of a hospital
program that encouraged and supported breastfeeding, thereby producing indirect
evidence of its protective effect on infant infections and hospitalizations.

In this chapter, we use causal inference techniques to estimate the effect of dif-
ferent durations of breastfeeding (a longitudinal exposure) on the number of
periods of hospitalization throughout the first year after birth. Because hospi-
talizations may also affect the continuation of breastfeeding, we consider them
a time-varying confounder. We demonstrate two g-computation approaches
and an implementation of LTMLE that take into account an outcome that
is partially determined by time-varying confounders and the clustering that
arises from the nature of the study design.
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15.1 The PROBIT Study

The PROBIT study was held in the country of Belarus from June 1996 to December
1997 (Kramer et al. 2001, 2002). In this study, maternal hospitals and their cor-
responding polyclinics were randomized to receive lactation management training,
which emphasizes ways to encourage longer durations of exclusive breastfeeding. In
order to optimize efficiency, the randomization occurred between 17 pairs of hospi-
tals matched on region, rural versus urban status, number of deliveries per year, and
breastfeeding initiation rates upon discharge. However, due to two hospital with-
drawals and one case of record falsification, only 31 clusters completed the study
and the complete paired structure was lost. Within the hospital clusters, recruitment
was limited to pregnant women who intended to breastfeed their child. In particular,
the study enrolled healthy, full-term, singleton breastfed infants weighing ≥2500 g.
Baseline data included maternal demographic, educational, and smoking informa-
tion, details about previous pregnancies, and infant information (sex, birth weight,
gestational age, and Apgar score; Finster and Wood 2005). Follow-up visits oc-
curred throughout the year post-birth at 1, 2, 3, 6, 9, and 12 months. At these visits,
extensive information on infant feeding, growth, illnesses, and hospitalizations was
collected. Within the 31 clusters, a total of 17,044 mother-infant pairs participated in
the study and had recorded data. Necessary baseline data was missing for eight sub-
jects, bringing the sample size to 17,036 mother-infant pairs. Table 15.1 describes
the baseline characteristics adjusted for in the analysis.

The initial analyses (Kramer et al. 2001) found a significant effect of the en-
couragement trial on gastrointestinal infections, the primary outcome. In subsequent
work, we carried out a causal analysis of the effect of breastfeeding duration on the
number of gastrointestinal infections throughout the year (Schnitzer et al. 2014). In
this chapter, we investigate the effect of breastfeeding duration on infant hospital-
izations. In particular, we are interested in knowing whether the number of hospital-
izations would decrease with longer durations of breastfeeding. Because the survey
only collected information on whether an infant was hospitalized between visits, the
outcome of interest at 12 months is the number of intervals recording a hospitaliza-
tion.

15.1.1 Observed Data

Corresponding with the PROBIT, we consider longitudinal data, taken from each
mother-infant pair (defined as the subject), of the form

O = (L0,C1, L1, A1,C2, L2, . . . , LK−1, AK−1,CK ,Y),

where subscripts indicate at which time point the measurement was taken. L0 rep-
resents all measured baseline covariates including hospital center, Ct represents
whether a visit did not occur, Lt represents time varying covariates, At is an indicator
for the exposure level (taking value 1 if the infant is breastfed throughout the tth in-
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Table 15.1 Characteristics at baseline of the 17,044 mother-infant pairs in the PROBIT dataset

Characteristic Summary N. missing
Numeric variables Median IQRa

Age of mother (years) 23 (21,27)
N. previous children 0 (0,1)
Gestational age (months) 40 (39,40)
Infant weight (kg) 3.4 (3.2,3.7)
Infant height (cm) 52 (50,53)
Apgar scoreb 9 (8,9) 5
Head circumference (cm) 35 (34,36) 3

Binary variables N. %
Smoked during pregnancy 389 2.28
History of allergy 750 4.40
Male child 8827 52
Cesarean 1974 12
Mother’s Education 2

Some high school 663 4
High school 5497 32
Some university 8568 50
University 2316 14

Geographic region
East Belarus, urban 5615 33
East Belarus, rural 2706 16
West Belarus, urban 4380 26
West Belarus, rural 4343 25

aIQR: inter-quartile range
bThe Apgar score is an assessment of newborn health (range 1–10) where 8+ is vigorous, 5–7 is
mildly depressed and 4− is severely depressed (Finster and Wood 2005). A range of 5–10 was
observed in PROBIT due to entry restrictions on weight and health at baseline. Table and caption
reproduced from Schnitzer et al. (2014)

terval), and Y is the outcome of interest measured at the Kth time point. Figure 15.1
represents the order of the measurements collected at time t. We will use X̄t to denote
the history of X up to and including Xt for any time dependent variable.

In the PROBIT, there were K = 6 follow-up visits. Y is defined as the number
of time periods over the first year in which the child had at least one hospitalization
and therefore takes integer values between zero and six. The scientific question of
interest involves the effect of breastfeeding measured over time {At; 1 ≤ t ≤ 5} on Y .
Lt is whether or not an infant was hospitalized in the time period (t−1, t). Therefore,
if we take L6 to be an indicator for at least one hospitalization between times five and
six, Y =

∑6
t=1 Lt. At the beginning of the study, all mothers attempted breastfeeding

so that we could define A0 = 1 for all subjects. In addition, since we only retained
the subset with complete baseline data, we can define C0 = 0 (denoting uncensored
at baseline) for all subjects.

Once a subject missed a visit (or the needed information was not collected at a
visit), we artificially censored them for all future visits. This did not greatly reduce
the available data as item missingness was uncommon. Table 15.2 gives the number
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t−1 t

Hospitalization during 
interval between visits: 

Lt

Ongoing
breastfeeding at

time t (binary): At

Censoring at time t: Ct.
Missed visit at time t

means that Lt and At are
unmeasured.

for t=1,2,3,4,5

Fig. 15.1 Time ordering of the variables in the PROBIT study. At each follow-up time point,
breastfeeding status (At) and hospitalization over the past interval (Lt) were noted. Censoring oc-
curring at time t (Ct = 1) indicates that later breastfeeding and infection status were not observed

Table 15.2 Censoring, number of hospitalizations and mothers still breastfeeding by time point

Time point 1 2 3 4 5 6
Month 1 2 3 6 9 12

N. censored 156 81 73 148 139 797
Cumulative N. 156 237 310 458 597 1394
Cumulative % 0.9 1.4 1.8 2.7 3.5 8.2

N. hospitalized 626 640 646 1265 1163 887
N. breastfeeding 15,392 13,128 10,765 6893 4717 –

of censored, hospitalized, and breastfeeding subjects at each time point. Note that
we did not report the number breastfeeding at time point 6 (month 12) because we
do not incorporate this information in the analysis. The total number of intervals
with hospitalizations observed for never-censored patients was 4785.

15.1.2 Causal Assumptions

In order to proceed in defining counterfactuals, we require the assumptions of no
interference and sequential positivity.

• No interference: The potential outcomes of one subject are not dependent on
the exposures of others. In our context, this corresponds with the assumption
that one infant’s breastfeeding does not impact another infant’s probability of
hospitalization given the second infant’s breastfeeding status.
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• Sequential positivity: For every possible history L̄t−1 with At−1 = 1, the probabil-
ity of either continuing or stopping breastfeeding at time t must be greater than
zero for all subjects. Because we do not consider regimes where breastfeeding is
stopped and restarted, we do not require positivity for At when At−1 = 0. We also
must have that for every possible history Āt−1, L̄t−1 the probability of censoring
at time t is less than one.

For the PROBIT, the assumption of no interference requires that the breastfeeding
status of one mother does not influence the outcome of another’s child. We believe
this to be very plausible because mothers spent short periods of time in the hos-
pital which limited their interaction. Regarding positivity, in our estimation of the
probabilities of continuing or ceasing breastfeeding conditional on previous con-
tinued breastfeeding (see Sect. 15.3.1), we did not observe any values approaching
zero. In addition, the probabilities of censoring were quite low for all values of the
coefficients, suggesting that positivity is not a concern here.

Let ā = (a1, a2, . . . , aK−1) denote a fixed breastfeeding regimen. For in-
stance, breastfeeding past the first time period, then stopping before the sec-
ond would be written as (1, 0, 0, . . . , 0). Because breastfeeding is approximately
monotone, we will only consider monotone longitudinal exposures; that is, we
compare the relative effects of different stopping times of breastfeeding. Also let
āt = (a1, . . . , at) be the component of the fixed regimen up until time point t.

In order to define the causal parameter of interest, we consider a hospital level
intervention that imposes a specific duration of breastfeeding on each subject. We
can then define the counterfactual variable Lā

t ; t > 0 as the observation Lt that an
individual would have had if they had followed the assigned breastfeeding reg-
imen āt−1 and remained uncensored. Similarly, Yā is the counterfactual number
of hospitalizations that would have been observed under breastfeeding regimen
ā = ā5. The individual counterfactual data corresponding to this intervention is
Oa = (L0, Lā

1, L
ā
2, . . . , L

ā
K−1,Y

ā). The target of inference is the marginal mean coun-
terfactual outcome, denoted ψā

0 = E(Yā). Equivalently, we estimate the mean num-
ber of periods hospitalized had all infants been exposed to various breastfeeding
stopping times.

In order for this causal parameter to be estimable, we also require sequential
consistency and sequential exchangeability (Robins 2000).

• Sequential Consistency: The consistency assumption in the longitudinal set-
ting is that L̄ā

t = L̄t when Āt−1 = āt−1. Equivalently, we observe the se-
quence of counterfactual variables defined under the treatment regimen actually
observed.

• Sequential Exchangeability: This assumption is the independence of the counter-
factual intermediate variables and the most recent intervention nodes (exposure
and censoring) conditional on the past, Lā

t ⊥At−1,Ct | L̄t−1, Āt−2,Ct−1 = 0 for
t = 1, . . . ,K + 1 (where Ā−1 is taken to be a null variable and removed).

Sequential consistency assumes that we observe the potential outcome that would
have been observed under the intervention of assigning a duration of breastfeed-
ing. This assumes that the specific time within the interval that breastfeeding is
ceased does not impact the counterfactual. One might alternatively assume that the



238 M. E. Schnitzer et al.

assignment leaves the exact stopping time within the interval up to the subject, but
this perspective requires additional exchangeability requirements (VanderWeele and
Hernán 2013).

For the assumption of sequential exchangeability described above, we must as-
sume that all baseline and time dependent confounders of both breastfeeding and
censoring have been adjusted for in L̄t. Specifically, we assume that L̄t is sufficient
to control for confounding of breastfeeding At and that censoring Ct is ignorable
given L̄t−1. In Fig. 15.1 we see that censoring at a visit is not allowed to depend
on recent hospitalizations. While this is unrealistic, the low percentage of censor-
ing suggests that the violation may not greatly impact the analysis. Overall, while
the exchangeability assumption is not verifiable and generally difficult to fully be-
lieve, we argue in Schnitzer et al. (2014) that this assumption is strengthened by
controlling for an indicator of cluster.

15.1.3 Model and Parameter

In order to define the model for the observed and counterfactual data, we assume
that in a population where patients are clustered into hospital centers, we observe
randomly drawn hospitals from some large population. Let Omi denote the observa-
tion vector for patient i in hospital cluster m. We define the mth hospital’s observed
data as Oc

m = (Omi; i ∈ Zm) where Zm represents the set of subjects belonging to
hospital m. We suppose that the cluster observations Oc

m are identically and inde-
pendently drawn with probability distribution Pc

0. Let Oc ∼ Pc
0 denote this random

variable. The probability distribution Pc
0 of Oc is a member of some model space

Mc. The marginal probability distribution P0 of a randomly selected patient in a
randomly selected hospital cluster corresponds to a mixture probability distribution.
This marginal distribution P0 can be written as a function of the cluster distribu-
tion such that P0 = P0(Pc

0). We place all model restrictions directly on the marginal
model space M, of which the true P0 is a member. We then restrict the model space
for the cluster-specific probability distributions Mc = {Pc

0 : P0 ∈ M} to satisfy the
constraints placed on the marginal model space M.

At the marginal level, we assume that the true distribution function of O can be
factorized according to the time ordering for an individual as

P0 =

K∏

t=1

Q0,Lt (Lt | C̄t, Āt−1, L̄t−1)Q0,L0 (L0)

︸������������������������������������������︷︷������������������������������������������︸
Q0

×

K−1∏

t=1

G0,At (At | L̄t, C̄t, Āt−1)
K∏

t=1

G0,Ct (Ct | Āt−1, L̄t−1, C̄t−1)

︸��������������������������������������������������������������������︷︷��������������������������������������������������������������������︸
G0
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where Q0 is the joint conditional distribution of the Lt variables. Q0,Lt , t = 1, . . . ,K
are the distributions of each Lt, conditional on the information prior to Lt, and Q0,L0

is the distribution of the baseline covariates. Similarly, G0 is the conditional distri-
bution of the exposure and censoring variables that can be decomposed into the dis-
tributions at each time point, denoted G0,At , t = 1, . . . ,K − 1 and G0,Ct , t = 1, . . . ,K.
The model M is nonparametric up to restrictions on the treat and censoring distri-
bution G0.

Under the causal assumptions described above, the parameter of interest ψā
0 can

be identified with the usual g-formula applied to the distribution P0. Suppose we
fix the assigned exposure regimen to ā for all subjects (so that the At are no longer
random) and fix that all subjects are fully observed (so that Ct = 0 for t = 1, . . . ,K).
We then define the marginal counterfactual distribution function Qā

0 corresponding
to this static intervention ā. The g-formula for this counterfactual distribution is
given by

Qā
0(L̄ā

K) =
K∏

t=1

Q0,Lt (Lt | C̄t = 0, Āt−1 = āt−1, L̄t−1)Q0,L0 (L0). (15.1)

The target parameter of interest, specifically the marginal mean under a fixed breast-
feeding regimen ā, can then be described as

ψā
0 = Ψ (P0(Pc

0)) = Ψ (P0) = Ψ (Qā
0) = EQā

0
(Yā),

where the expectation is taken under the true counterfactual data generating func-
tion Qā

0.
In Sects. 15.2 and 15.3 we proceed with estimation of the target parameter as

though the subject level data across hospitals are all independent and identically
distributed with probability distribution P0 in model M and treating the target pa-
rameter as a function of P0. We then establish in Sect. 15.4 the asymptotic linearity
of this i.i.d. LTMLE respecting that only the clusters are i.i.d., and provide formal
inference. We conjecture that this i.i.d. type LTMLE is in fact asymptotically effi-
cient for our model Mc, assuming consistent estimation of the nuisance parameters,
but this is not formally established in this chapter.

15.2 Two Parametrizations of the g-Formula

The above g-formula (15.1) can be directly used to estimate ψā
0 if we treat all sub-

jects as identically and independently distributed. This is done by using the subject
level data to estimate each of the quantities in the formula, producing predictions
of the potential outcome for each subject, and averaging over all subjects to esti-
mate the expectation. This is called the g-computation approach (Robins 1986). In
settings where the time dependent variables are binary, the g-formula can be simpli-
fied to



240 M. E. Schnitzer et al.

ψā
0 =

∫

L0

∑

l1={0,1}
· · ·

∑

lK−1={0,1}
E(Y | CK = 0, ĀK−1 = ā, L̄K−1 = l̄K−1) × (15.2)

Pr(LK−1 = lK−1 | C̄K−1 = 0, ĀK−2 = āK−2, L̄K−2 = l̄K−2) ×
· · · Pr(L1 = l1 | C1 = 0)Q0,L0 (L0)dL0.

For estimation using g-computation, we must estimate the conditional mean of Y
and the conditional probabilities for Lt = 1, l = 1, . . . ,K, although no estimation
method is prespecified for any of these quantities. We then calculate a prediction of
each conditional expectation and probability in Eq. (15.2) for each subject, i. The
Q0,L0 can be estimated using the empirical density so that Qn,L0 (L0i) = 1/n for each
subject (with baseline variables L0i). Then, the predicted values for the conditional
expectation and probabilities are combined according to Eq. (15.2), where the inte-
gral is replaced by summation over all subjects, i.

15.2.1 g-Computation for the PROBIT

The g-computation algorithm must be slightly modified when the outcome of inter-
est is a longitudinal count outcome. This is because a component of the outcome
is deterministic (not random) when conditioning on the information available from
prior time points. Specifically, since Y = L6 +

∑5
t=1 Lt, if we condition on L̄5 only

L6 is random. Hence, we note that E(Y | C̄6 = 0, Ā5 = ā5, L̄5) = E(L6 | C̄6 =

0, Ā5 = ā5, L̄5) +
∑5

t=1 Lt. Therefore we must only model L6 to obtain predictions of
the conditional expectation of the outcome used in the g-computation algorithm.

Notably, when the dimension of Lt increases or when Lt contains noncategorical
variables, the decomposition of the g-formula (15.1) is increasingly complicated.
Sampling methods may be required for estimation and the computational burden
will increase exponentially in the number of time points. The following section de-
scribes an alternative factorization that allows for computational time that is linear
in the number of time points and can handle higher dimensional Lt without added
complications.

15.2.2 Sequential g-Computation

An alternative decomposition of the counterfactual data distribution, leading to a
different g-formula was introduced by Bang and Robins (2005), as also discussed in
Chap. 3 and 4 of this book. To understand this decomposition, first note that under
the Law of Iterated Expectations, we have that E(Yā) = E(E(Yā | L̄ā

K−1)). If we
repeatedly apply this principle, we have that

E(Yā) = E(E(. . . E(E(Yā | L̄ā
K−1) | L̄ā

K−2) | . . . | L0)).



15 LTMLE with Clustering 241

Now, due to the sequential exchangeability of AK and CK , we can also write E(Yā) =
E{E(Yā | CK = 0, ĀK−1 = āK−1, L̄ā

K−1)}. By consistency (we observe Y = Yā when
CK = 0 and ĀK−1 = āK−1 and that Lt = Lā

t when Āt−1 = āt−1), E(Yā) = E{E(Y |
CK = 0, ĀK−1 = āK−1, L̄K−1)}, which is estimable from the data. If we similarly
apply the sequential exchangeability and consistency at all time points in the nested
expectations, we observe that the target parameter can be expressed as a sequence
of estimable expectations given by van der Laan and Gruber (2012)

Q̄t(L̄t−1) = E(Y | Ct = 0, Āt−1 = āt−1, L̄t−1), t = K, . . . , 2 (15.3)

and Q̄1(L0) = E(Q̄2 | L0). The overbar in Q̄t(L̄t−1) denotes a mean. Note that we
will generally write Q̄t = Q̄t(L̄t−1) as shorthand throughout the document. The key
observation (and an essential exercise for all interested readers) is that Q̄t = E(Q̄t+1 |
Ct = 0, Āt−1 = āt−1, L̄t−1) which applies to all t = 1, . . . ,K if we define Q̄K = Y and
Ā0 = ā0 = 1 always.

g-Computation can be applied to this g-formula as well. The algorithm is then as
follows:
For t = K, . . . , 1,

1. Fit a model for Q̄t = E(Q̄t+1 | Ct = 0, Āt−1 = āt−1, L̄t−1) by taking the previously
estimated Q̄n,t+1 as an outcome in a regression. This model may be fit taking
all uncensored subjects (Ct = 0) who were treated according to the regimen of
interest up to time t − 1 (Āt−1 = āt−1).

2. Use the above model fit to estimate Q̄n,t for all subjects with Ct−1 = 0.

Take the empirical mean of Q̄n,1 over all subjects. This is the sequential g-
computation estimate for E(Yā).

15.2.3 Sequential g-Computation for the PROBIT

The sequential g-computation estimator can also be modified to take into account
the longitudinal count outcome of interest, although it is less straight-forward.

• In the first step (t = 6), we estimate

Q̄6 = E(Y | C6 = 0, Ā5 = ā5, L̄5) = E(L6 | C6 = 0, Ā5 = ā5, L̄5) +
5∑

t=1

Lt.

Therefore, it is only necessary to fit a model for the random component, defined
as Q̄L61 = E(L6 | CK = 0, Ā5 = ā5, L̄5). We obtain predictions of Q̄L61 for every
subject with C5 = 0.

• In the next step (t = 5), using the predictions of Q̄0,L61 from the previous step, we
estimate

Q̄5 = E(Q̄6 | C5 = 0, Ā4 = ā4, L̄4) =

E(Q̄L61 | C5 = 0, Ā4 = ā4, L̄4) + E(L5 | C5 = 0, Ā4 = ā4, L̄4) +
4∑

t=1

Lt.
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Table 15.3 Decomposition of Q̄t for the g-computation of the PROBIT longitudinal count outcome

Nested Decomposition (extraction of deterministic Condition
expectation counts and separated modeling)

of Y

Q̄6 = Q̄L61 + L5 + L4 + L3 + L2 + L1 Pa(Y)
Q̄5 = Q̄L62 + Q̄L51 + L4 + L3 + L2 + L1 Pa(L5)
Q̄4 = Q̄L63 + Q̄L52 + Q̄L41 + L3 + L2 + L1 Pa(L4)
Q̄3 = Q̄L64 + Q̄L53 + Q̄L42 + Q̄L31 + L2 + L1 Pa(L3)
Q̄2 = Q̄L65 + Q̄L54 + Q̄L43 + Q̄L32 + Q̄L21 + L1 Pa(L2)
Q̄1 = Q̄L66 + Q̄L55 + Q̄L44 + Q̄L33 + Q̄L22 + Q̄L11 Pa(L1)

We denote Q̄L62 = E(Q̄L61 | C5 = 0, Ā4 = ā4, L̄4) and Q̄L51 = E(L5 | C5 = 0, Ā4 =

ā4, L̄4). We obtain predictions of Q̄L62 and Q̄L51 for every subject with C4 = 0.

This process is repeated for t = 4, 3, 2, 1 with 7 − t models to be fit at each step.
In general, defining Q̄Lt0 = Lt, we estimate Q̄Ltk = E(Q̄Ltk−1 | Ct−k+1 = 0, Āt−k =

āt−k, L̄t−k) for all t = 6, . . . , 1 and k = 1, . . . , t. This can be proved for any number of
time points by induction. At the final step, we calculate Q̄n,1 =

∑6
t=1 Q̄n,Ltt for every

subject, and take the empirical mean of this quantity over all subjects to obtain the
sequential g-computation estimate of E(Yā). This decomposition is summarized in
Table 15.3.

15.2.4 g-Computation Assumptions

In addition to the causal assumptions, all versions of g-computation require consis-
tent estimation of the relevant components of Q0 conditional on a set of covariates
satisfying sequential exchangeability. Inconsistent estimation of these components
may produce finite and asymptotic bias in the estimation of E(Yā). Models for the
estimation of Q0 components are not prespecified in these algorithms and are in-
evitably left up to the discretion of the user.

In the case of a longitudinal count outcome, decomposing the random and de-
terministic components of the Q0 functions can improve estimation. However, this
will also increase computational complexity (fitting K×(K+1)/2 versus K models).
When compared through the simulation study presented in Schnitzer et al. (2014),
the standard sequential g-computation estimator produced 12% estimation bias and
95% confidence intervals with 43% coverage when all confounders were included
in the models. The improved sequential g-computation presented in Sect. 15.2.3,
produced 0% estimation bias and 93% coverage for the same simulated datasets.
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15.3 LTMLE for a Saturated Marginal Structural Model

Although sequential g-computation is computationally efficient and feasible for
large numbers of time points and time dependent confounders, it relies on correct
parametric specification of a large number of models. The extension to LTMLE
allows for semiparametric efficient estimation, good performance using nonpara-
metric methods for the estimation of the necessary model components (Porter et al.
2011), and double robustness. In the longitudinal setting, double robustness implies
consistency when either the Q̄t; t = K, . . . , 1 models are correctly specified or when
the models for treatment (see Sect. 15.3.1) are correctly specified.

15.3.1 Construction of Weights

Let ḡt(L̄t−1), t = 2, . . . ,K be the probability associated with obtaining a given his-
tory of breastfeeding ā up until time t − 1, and no censoring up until time point t,
conditional on the observed history L̄t−1. Specifically, let

ḡt(L̄t−1) = Pr(C1 = 0 | L0) ×∏t
k=2{Pr(Ck = 0 | Āk−1 = āk−1,Ck−1 = 0, L̄k−1) ×

Pr(Ak−1 = ak−1 | Āk−2 = āk−2,Ck−1 = 0, L̄k−1)}

for t = 2, . . . ,K. Further, let ḡ1(L0) = Pr(C1 = 0 | L0) be the probability of being
uncensored at the first time point, conditional on baseline covariates, L0.

One can directly use these exposure and censoring probabilities as weights in or-
der to estimate E(Yā) using inverse probability weighting (IPW). Letting ḡn,K(L̄K−1)
denote the estimated values of ḡK(L̄K−1) for each individual and I(·) be an indicator
function for a logical statement, the IPW estimator can be defined as the empirical
solution for ψā

n,IPW of the estimating equation PnDIPW = 0 where

DIPW (O) = (Y − ψā
n,IPW ) I(ĀK−1=ā,CK=0)

ḡn,K (L̄K−1) .

15.3.2 Efficient Influence Function

van der Laan and Gruber (2012) demonstrated how the IPW influence function can
be projected onto the nonparametric tangent space in order to obtain the efficient
influence function (EIF), D∗(O), used in LTMLE. The EIF can be written as the
sum of the components

D∗
t (O) = I(Āt−1=āt−1,Ct=0)

ḡt(L̄t−1) (Q̄t+1(L̄t) − Q̄t(L̄t−1)) for t = K, . . . , 2,

D∗
1(O) = I(C1=0)

ḡ1(L0) (Q̄2(L̄1) − Q̄1(L0)), and

D∗
0(O) = (Q̄1(L0) − ψā

0).
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Following an LTMLE procedure that ignores the clustered nature of the data
will produce estimates that solve the efficient estimating equation PnD∗

n = 0. In
Sect. 15.4 we revisit the EIF and show how clustering alters variance estimation.

15.3.3 LTMLE

In order to produce a LTMLE that has D∗(O) as its influence function, each Q̄n,t; t =
K, . . . , 2 used in the sequential g-computation is sequentially updated. Chapter 4
and van der Laan and Gruber (2012) give more insight into how these updates are
derived. As described in Schnitzer et al. (2014), given a fixed regimen ā, the general
procedure is as follows.

• Using models for censoring and exposure, calculate the probabilities of following
the regimen ḡn,t(L̄t−1) for each subject, as described in Sect. 15.3.1.

• Set Q̄n,7 = Y . (If Y is not binary, it should be rescaled to [0,1] using the true
bounds; Gruber and van der Laan 2010b.)
Then, for t = 6, . . . , 1,

– Fit a model for E(Q̄n,t+1 | Ct = 0, Āt−1 = āt−1, L̄t−1). Using this model, predict
the conditional outcome for all subjects with Ct−1 = 0 and let this vector be
denoted Q̄n,t.

– Construct the covariate Ht(Ct, Āt−1, L̄t−1) = I(Ct = 0, Āt−1 = āt−1)/ḡn,t(L̄t−1).
– Update the expectation by running a no-intercept logistic regression with out-

come Q̄n,t+1, the fit logit(Q̄n,t) as an offset, and the covariate Ht as the unique
covariate. Let ε̂t be the estimated coefficient of Ht.

– Update the fit of Q̄t by setting

Q̄1
n,t(O) = expit

{
logit(Q̄n,t) +

ε̂t

ḡn,t(L̄t−1)

}

to obtain a predicted value of Q̄1
n,t for all subjects with Ct−1 = 0.

As a result of the update using the logistic regression on outcome Q̄1
n,t+1 with

the covariate Ht, this step sets PnD∗
n,t = 0 where

D∗
n,t(O) =

I(Āt−1 = āt−1,Ct = 0)

ḡn,t(L̄t−1)
(Q̄1

n,t+1(O) − Q̄1
n,t(O)),

corresponding with the component D∗
t (O) of the EIF.

At the final step, note that the model for Q̄1 is fit using only subjects with
C1 = 0. The resulting fit Q̄n,1 is only conditional on L0 and is estimated for all
subjects.

• We take the mean of Q̄1
n,1 over all subjects. (If necessary, transform the mean

back to the original scale.) This is the LTMLE for the estimation of ψā
0.
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Overall, this algorithm effectively solves the estimating equation PnD∗
n = 0 where

D∗
n(O) is the EIF with the estimated treatment probabilities ḡn,t(L̄t−1) and updated

outcome expectations Q̄1
n,t(O).

15.3.4 LTMLE for the PROBIT

The particularities of a longitudinal count outcome can be integrated into the
LTMLE procedure as well using a reparametrization of the sequential g-formula.
In the first step (t = 6) for the estimation of Q̄6, we note that

Y − Q̄6 = (Y −
∑

r≤6

Lr) − E(Y −
∑

r≤6

Lr | C6 = 0, Ā5 = ā5, L̄5)

= L6 − E(L6 | C6 = 0, Ā5 = ā5, L̄5).

Given an initial fit of E(L6 | C6 = 0, Ā5 = ā5, L̄5), we update this fit using the
covariate H6 with respect to the outcome L6. As in the previous algorithm, this
successfully sets PnD∗

n,6 = 0 where

D∗
n,6(O) =

I(Ā5 = ā5,C6 = 0)

ḡn,6(L̄5)
(Y − Q̄1

n,6(O)).

For t = 5, . . . , 2, define Q̃t = E(Y − ∑
r≤t−1 Lr | Ct−1 = 0, Āt−2 = āt−2, L̄t−2).

For t = 1, define Q̃1 = Q̄1 = E(Y | L0). If we take Q̃6 = Y − L6, note that
Q̄t+1 − Q̄t = Q̃t+1 − Q̃t for all t = 6, . . . , 1. Therefore, if we have an initial fit for Q̃t,
we can update it using the covariate Ht with respect to the outcome which is a fit of
Q̃t+1 obtained through a previous iteration of the LTMLE algorithm. This procedure
will solve the empirical EIF equation, PnD∗

n,t = 0.
The full algorithm is as follows.

• For t = 6, fit a model for Q̃6 = E(L6 | C6 = 0, Ā5 = ā5, L̄5). Produce a prediction
for all subjects with C5 = 0 and denote these fits as Q̃n,6.

• Update Q̃n,6 using a logistic regression with covariate H6 against outcome L6.
Denote the updated fit Q̃1

n,6.
For t = 5, . . . , 1:

– Fit a model for E(Q̃t+1 | Ct = 0, Āt−1 = āt−1, L̄t−1) using Q̃1
n,t+1 from the

previous step as an outcome. Obtain a prediction for all subjects with Ct−1 = 0.
Fit a second model for E(Lt | Ct = 0, Āt−1 = āt−1, L̄t−1). Obtain a prediction for
all subjects with Ct−1 = 0. The sum of these two predictions is denoted Q̃n,t.

– Scale Q̃n,t to (0,1) by dividing by 7 − t, the maximum possible value. Update
Q̃n,t using a logistic regression with covariate Ht. Produce a prediction of the
updated fit for all subjects with Ct−1 = 0, multiply by 7 − t to rescale, and
denote this as Q̃1

n,t.
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• The last step produces an estimate of Q̃1
n,1 for all subjects. The mean of Q̃1

n,1 is
the LTMLE estimate for ψā

0 using the modified sequential decomposition.

15.4 Variance Estimation and Clustering

We did not assume that the individuals are statistically independent but instead we
only assumed that the clusters are independent and identically distributed. Therefore
the unit is the hospital so that the variance estimator of the TMLE presented above
needs to take into account the statistical dependence of individuals within a clus-
ter. If clustering is ignored, true variability will be underestimated as the clustered
individuals will be falsely considered independently distributed.

15.4.1 Distinction Between Clustering and Interference

The concept of clustering might be confused with interference, which is often as-
sumed not to exist in causal analysis (Rubin 1980; Hudgens and Halloran 2008).
Interference means that the potential outcomes of one subject are not dependent on
the exposures of others. In our context, this corresponds with the assumption that
one infant’s breastfeeding does not impact another infant’s probability of hospital-
ization given the second infant’s breastfeeding status.

In contrast, clustering is a violation of the assumption that the individual level
data (Omi : m, i) are independently and identically sampled. Within clusters, the
observed data (including exposures and outcomes) may be correlated. However, in
the absence of interference, this is assumed to arise due to population similarities
within clusters that contrast the differences between clusters. In some settings (such
as when the outcome is an infectious disease), interference within clusters (such as
hospital centers or communities) may be plausible. However, we do not believe it to
be so in the PROBIT example.

15.4.2 Estimation with the EIF

With sufficient clusters, we can reasonably use the (efficient) influence function for
variance estimation while accounting for a finite set of known clusters. Let D∗(Oi)
represent the value of the EIF for subject i. Let the M clusters be described as
Zm,m = 1, . . . , M where Zm represents the set of subjects belonging to cluster m. Let
the LTML-estimator for parameter ψā

0 be denoted ψā
n. Even though there is depen-

dence, our i.i.d. LTMLE described above should still behave as an asymptotically
linear estimator with influence curve D∗(O) as sample size increases. Therefore, we
will still have
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ψā
n − ψā

0 ≈
1
n

n∑

i=1

D∗(Oi)

=
1
n

M∑

m=1

∑

i∈Zm

D∗(Oi),

where we reindexed the units according to cluster membership. Then by multiplying
and dividing by M we have

ψā
n − ψā

0 =
1
M

M∑

m=1

∑

i∈Zm

D∗(Oi)
M
n
.

Due to the independence between clusters, we can consider cluster to be the ex-
perimental unit with EIF equal to

∑
i∈Zm

D∗(Oi) M
n . Therefore, the variance of the

estimator can be approximated by the variance of the cluster-specific EIF when M
is sufficiently large.

To estimate the variance, we have

Var(ψā
n) ≈ Var(

1
n

n∑

i=1

D∗(Oi))

=
1
n2

Var

⎛
⎜⎜⎜⎜⎜⎜⎝

M∑

m=1

∑

i∈Zm

D∗(Oi)

⎞
⎟⎟⎟⎟⎟⎟⎠ .

We note that E(D∗(Oi)) = 0 by the definition of influence function, so that
Var(D∗(Oi)) = E(D∗(Oi)2). In addition, Var(D∗(Oi)×D∗(Oj)) = E(D∗(Oi)×D∗(Oj))
for two same-cluster units i and j. Therefore, the above equals

1
n2

M∑

m=1

∑

i, j∈Zm

E(D∗(Oi) × D∗(Oj))I(i � j) + E(D(O∗
i )2)I(i = j)

where I(·) is an indicator for the logical statement argument. If we assume that the
influence function covariance between subjects within the same cluster is a cluster-
specific constant ρm = E(D∗(Oi) × D∗(Oj)), i � j, i and j ∈ Zm, and that the within-
cluster variance for each subject σ2

m = E(D∗(Oi)2), i ∈ Zm is also constant within
clusters, the above simplifies to

1
n2

M∑

m=1

nm(nm − 1)ρm + nmσ
2
m

where nm is the number of subjects within cluster m. The values of ρm and σ2
m can

be estimated empirically as the covariances and variances of the EIF within each
cluster, respectively.
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15.4.3 Simulation Study

In order to observe the importance of accounting for clustering, a simulation study
was performed. Data were generated as a simplified version of the PROBIT dataset,
similar to the simulation study performed in Schnitzer et al. (2014). Five hundred
subjects were generated in each of 31 clusters, resulting in n = 15,500. The base-
line covariates L0 = {W,U} were generated as independent Gaussian variables with
cluster-specific means drawn from separate Gaussian distributions. The time depen-
dent variables (C1, L1, A1,C2, L2, A2,C3, L3) were generated independently for each
subject conditional on the subject’s recent history and baseline variables. Binary
variables At, t = 1, 2 indicate continued breastfeeding, Ct, t = 1, 2, 3 are censoring
indicators, and Lt, t = 1, 2, 3 indicate a hospitalization during the preceding time
interval. The outcome Y =

∑3
t=1 Lt is a count variable. The baseline variable U is

a pure risk factor of hospitalization and did not otherwise affect censoring or expo-
sure.

To correspond with the associations observed in the real PROBIT data, breast-
feeding was specifically made to be less likely to continue when hospitalization
was indicated at the current time point. Censoring was less likely if breastfeeding
continued at the previous time point and more likely if a hospitalization occurred
at the previous time point. Hospitalizations were generated conditional on baseline
variables and breastfeeding for the past two visits, so that longer duration of breast-
feeding decreased the probability of hospitalization.

The parameter ψā = E(Yā) was estimated for ā = (0, 0) and ā = (1, 1). The pa-
rameter of interest, corresponding with the first parameter of interest in the PROBIT
study, was δ = ψ(1,1)

0 −ψ(0,0)
0 . We generated 1000 datasets and estimated the parameter

of interest using the modified sequential LTMLE with logistic regression models for
the probabilities of censoring, exposure and hospitalization. U was considered to be
unmeasured in the analysis. Table 15.4 compares the estimation of standard errors
using (1) the EIF variance estimator without taking clustering into account, (2) the
EIF variance estimation with clustering and (3) the “pairs” clustered nonparamet-
ric bootstrap (Cameron et al. 2008) which resamples clusters rather than subjects.

Table 15.4 Simulation study: comparison of LTMLE variance estimation incorporating versus
ignoring clustering

Method Est S.E. 95% C.I. coverage

EIF no clustering 0.007 85
EIF clustering 0.009 92
bootstrap clustering 0.009 98

True effect = −0.030, mean bias=0%

For standard error estimation, we resampled the 31 clusters with replacement, cal-
culated the estimates from the resampled data, repeated 200 times, and took the
standard error of the 200 estimates. Confidence intervals were calculated by tak-
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ing the 2.5th and 97.5th quantiles of the resampled estimates. From Table 15.4, we
see that variance estimation without considering clustering will underestimate stan-
dard errors, leading to suboptimal coverage. Both the clustered EIF approach and
the clustered bootstrap approach led to near-optimal coverage with the bootstrap
producing slight overcoverage and the EIF slightly undercovering. All simulations
and modeling were carried out using R (R Development Core Team 2016). Exten-
sive simulations studies were carried out in Schnitzer et al. (2014) to compare the
performance of different estimators (LTMLE with parametric models, LTMLE with
super learner, IPW, g-computation and sequential g-computation) in this clustered
setting.

15.5 PROBIT Results

The PROBIT data were analyzed using the four methods described above: stan-
dard (likelihood) and sequential g-computation, IPW, and LTMLE. Both of the
g-computation algorithms and the LTMLE algorithm took into account the longi-
tudinal count outcome. The LTMLE algorithm was implemented in two different
ways: once using logistic regressions to estimate all of the outcome model compo-
nents and the probabilities of treatment and censoring; a second time using super
learner (Polley et al. 2011; van der Laan et al. 2007) for these same components. To
this end, we used the R library SuperLearner (Polley and van der Laan 2013).
The library we chose used main terms logistic regression, generalized additive mod-
eling (Hastie 2011), the mean estimate, a nearest neighbour algorithm (Peters and
Hothorn 2009) (only when modeling a binary outcome), multivariate adaptive re-
gression spline models (Milborrow et al. 2014), and a stepwise AIC procedure
(stepAIC from Venables and Ripley 2002). The standard errors for all methods ex-
cept g-computation were calculated using the variance of the EIF taking clustering
into account as described in Sect. 15.4.2. The standard errors for the g-computation
methods were estimated using pairs cluster bootstrap (Cameron et al. 2008).

We first investigated the difference in the expected number of intervals involving
hospitalizations (in the first year of life) when comparing breastfeeding durations
of 3–6 months versus 1–2 months, over 9 months versus 3–6 months, and over
9 months versus 1–2 months. The estimates, standard errors and 95% confidence
intervals are given in Table 15.5. For the first comparison, the point estimates for all
methods suggested a decrease in the expected number of hospitalized intervals by 12
months, although likelihood g-computation and IPW produced confidence intervals
that cross zero. g-Computation appeared sensitive to different parametrizations, as
the two versions produced very different point estimates (−0.03 and −0.12).

For the second comparison, all estimators except for IPW produced null point es-
timates, suggesting that no benefit in terms of hospitalizations is obtained by length-
ening breastfeeding past 3–6 months. IPW estimated an increase in hospitalizations
for increasing breastfeeding durations from 3–6 months to over 9 months. We be-
lieve this conclusion to be implausible. For the third contrast, all methods except for
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Table 15.5 Marginal expected number of hospitalizations under different breastfeeding durations

Method Estimate S.E. 95% C.I.

3–6 months vs 1–2 months
g-Comp (likelihood) −0.03 0.02 (−0.06,0.00)
g-Comp (sequential) −0.12 0.03 (−0.17,−0.06)
IPW −0.05 0.03 (−0.10,0.01)
Parametric LTMLE −0.06 0.01 (−0.08,−0.04)
LTMLE with SL −0.06 0.01 (−0.08,−0.04)

9+ months vs 3–6 months
g-Comp (likelihood) −0.00 0.01 (−0.01,0.01)
g-Comp (sequential) −0.00 0.01 (−0.03,0.02)
IPW 0.05 0.02 (0.01,0.08)
Parametric LTMLE −0.00 0.01 (−0.02,0.02)
LTMLE with SL −0.00 0.01 (−0.02,0.02)

9+ months vs 1–2 months
g-Comp (likelihood) −0.03 0.02 (−0.07,0.01)
g-Comp (sequential) −0.12 0.03 (−0.17,−0.07)
IPW 0.00 0.03 (−0.05,0.06)
Parametric LTMLE -0.06 0.01 (−0.08,−0.04)
LTMLE with SL −0.06 0.01 (−0.08,−0.04)

IPW produced essentially the same reduction in hospitalizations as in the first con-
trast, corresponding in no improvement past 3–6 months breastfeeding duration. For
all three contrasts, both of the LTMLE implementations gave identical estimates and
confidence intervals, suggesting that super learner did not improve estimation in this
application. Note, however, that this was not the case when modeling the number of
infections (Schnitzer et al. 2014). One can graphically observe the changes in the
estimated expected number of hospitalized intervals as the fixed regimen of breast-
feeding increases. Figure 15.2 plots the marginal mean estimates and pointwise con-
fidence intervals obtained with LTMLE using super learner for each breastfeeding
duration.

15.6 Discussion

In this chapter, we demonstrated how the LTMLE algorithm can be adapted to a real
application. In particular, we showed how LTMLE can be modified to better incor-
porate a longitudinal count structure and how the variance estimation with the EIF
can be modified to adapt to clustering in a multicenter study. The LTMLE analysis
of the PROBIT data revealed that there is likely an effect of breastfeeding on hospi-
talizations over the first 12 months of an infant’s life. However, we estimated that no
additional benefits are obtained by extending breastfeeding past 6 months. In con-
trast, our previous work suggested that the marginal expected number of gastroin-
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Fig. 15.2 Expected number of periods with hospitalizations including 95% confidence region as
estimated by LTMLE and super learning

testinal infections at 12 months continues to decrease as breastfeeding is extended
past 9 months (Schnitzer et al. 2014). In terms of the reliability of the statistical esti-
mators, we found that g-computation was sensitive to the choice of parametrization.
The IPW estimator concluded that extending breastfeeding past 6 months increases
the expected number of periods with hospitalizations. This conclusion lacks scien-
tific plausibility and contradicts the results of the other estimators. Given that the
maximum value of the unstabilized weights was 225 (with 15,642 uncensored sub-
jects at time six), we expect the anomalous IPW result to be due to treatment model
misspecification resulting in bias rather than instability. LTMLE was therefore able
to correct this estimate using outcome model components, demonstrating the benefit
of using the more sophisticated approach.



Chapter 16
Comparative Effectiveness of Adaptive
Treatment Strategies

Romain S. Neugebauer, Julie A. Schmittdiel, Patrick J. O’Connor,
and Mark J. van der Laan

In this chapter, we describe secondary analyses of electronic health record
(EHR) data from a type 2 diabetes mellitus (T2DM) study of the effect of four
adaptive treatment strategies on a time-to-event outcome. More specifically,
we describe a TMLE and compare its practical performance to that of three
IPW estimators of the same causal estimands defined based on the same non-
parametric dynamic marginal structural model. In addition, we evaluate the
practical impact of parametric versus data-adaptive estimation of the nuisance
parameters on causal inferences from the four estimators considered. Note that
the work presented here is a summary of prior results described across several
published articles (Neugebauer et al. 2012, 2013, 2014a,b, 2016).

A major goal of clinical care of T2DM is minimization of microvascular and macro-
vascular complications. Microvascular complications include retinopathy, neuropa-
thy, and nephropathy and can lead to blindness, amputation, severe pain, and kidney
failure (requiring dialysis or kidney transplant). Macrovascular complications in-
clude heart attack and stroke and can lead to congestive heart failure, brain dam-
age, and death. It has long been hypothesized that aggressive glycemic control
through a variety of pharmacological treatments is an effective strategy to reduce

R. S. Neugebauer (�) · J. A. Schmittdiel
Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
e-mail: romain.s.neugebauer@kp.org;julie.a.schmittdiel@kp.org

P. J. O’Connor
HealthPartners Institute, Bloomington, MN 55425, USA
e-mail: Patrick.J.OConnor@HealthPartners.com

M. J. van der Laan
Division of Biostatistics and Department of Statistics, University of California, Berkeley,
101 Haviland Hall, #7358, Berkeley, CA 94720, USA
e-mail: laan@berkeley.edu

© Springer International Publishing AG 2018
M.J. van der Laan, S. Rose, Targeted Learning in Data Science,
Springer Series in Statistics, https://doi.org/10.1007/978-3-319-65304-4_16

253

mailto:romain.s.neugebauer@kp.org; julie.a.schmittdiel@kp.org
mailto:Patrick.J.OConnor@HealthPartners.com
mailto:laan@berkeley.edu
https://doi.org/10.1007/978-3-319-65304-4_16


254 R. S. Neugebauer et al.

the occurrence of these devastating complications. Consequently, the management
of T2DM involves frequent testing of patients’ blood glucose levels, and periodic
testing of glycated hemoglobin (A1c) which provides a measure of average glucose
levels over a period of about 90 days (10–12 weeks). It is common for T2DM pa-
tients to be on multiple glucose-lowering medications due to the progressive nature
of this disease. Indeed, glycemic control tends to deteriorate over time, prompting
repeated treatment intensification decisions with various glucose-lowering drugs in
an on-going effort to achieve recommended levels of glycemic control. Widely ac-
cepted guidelines recommend initial treatment of T2DM with metformin, followed
by additional medications if glycemic control is not achieved or deteriorates. Ad-
dition of insulin is generally considered if adequate glycemic control has not been
achieved with two or three noninsulin glucose-lowering medications.

Current T2DM guidelines specify target hemoglobin A1c of <7% for many pa-
tients, but also indicate that the benefits and risks of aggressive glucose control
vary across patients (Nathan et al. 2006; Skyler et al. 2009; The Diabetes Control
and Complications Trial Research Group 1993; Nathan et al. 2005; UK Prospective
Diabetes Study (UKPDS) Group 1998; Holman et al. 2008; Action to Control Car-
diovascular Risk in Diabetes Study Group 2008; ADVANCE Collaborative Group
2008; Duckworth et al. 2009a; Ray et al. 2009). For this reason, the optimal target
levels of A1c for balancing benefits and risks of therapy are not clearly defined.
To address this knowledge gap, we aimed to evaluate the impact of progressively
less aggressive glucose-lowering strategies on the development or progression of
albuminuria, an important biomarker of chronic kidney disease.

Results from the analyses presented in this chapter can be contrasted with re-
sults from two randomized experiments. In the ACCORD and ADVANCE clinical
trials published from 2008 to 2010 (Gerstein et al. 2008; Patel et al. 2008; Duck-
worth et al. 2009b), intensive glucose-lowering strategies using multiple classes of
glucose-lowering agents succeeded in reducing A1c levels substantially. In the AD-
VANCE trial, the more intensive therapy arm aimed to reach an A1c level <6.5%
and achieved a mean A1c level of 6.5%, compared to a mean level of 7.3% in the
control arm. In the ACCORD trial, the more intensive arm aimed for an A1c of
<6%, and achieved a mean A1c of 6.4% (vs. 7.5% in controls). There is substantial
data from both trials (Ismail-Beigi et al. 2010; O’Connor and Ismail-Beigi 2011)
to support the hypothesis (NCEP 2002; Nathan et al. 2009) that, in general, those
with T2DM who are treated to lower A1c levels may have lower rates of onset and
progression of albuminuria (e.g., HR: 0.79, 0.66–0.93 in ADVANCE).

16.1 The Treatment Intensification Study

Using data from the electronic health records of patients from seven sites of the
HMO Research Network (Vogt et al. 2004), a large retrospective cohort study of
US adults with T2DM was conducted to inform the following pragmatic clinical
question: Should a T2DM adult currently treated with two or more oral agents or
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basal insulin intensify treatment the first time an A1c test indicates that the patient’s
A1c drifts above the recommended level of 7% or should this patient delay TI until
a test indicates that the higher A1c thresholds of 7.5%, 8%, or 8.5% are reached?
Below, we briefly summarize the main aspects of the study design, available data,
initial analytic approach, and findings from the original analyses.

Enrollment Criteria. As done in clinical trials, inclusion and exclusion criteria
were selected to restrict the study cohort to patients for whom the comparative ef-
fectiveness research question just described was relevant. Specifically, we searched
the entire adult membership of the participating health plans between January 1st

2001 and June 30th 2009 for enrollees who were “failing” current therapy with two
or more oral agents or basal insulin. Failing was defined as having an A1c reach or
rise above 7% for the first time after being below 7% on the current pharmacother-
apy. Cohort entry occurred on the date of this first elevated A1c. Patients whose
first elevated A1c was greater than 8.5% were excluded because there is little ques-
tion that intensifying glucose-lowering therapy is indicated. Patients with limited
life expectancy due to certain co-morbid conditions were also excluded from the
cohort. These criteria identified 58,671 patients. All patients of this cohort were
followed-up from study entry (index date) until the earliest of December 31st 2009
(administrative end of study), plan disenrollment, or death. The median follow-up
time for this cohort was about 2.5 years.

EHR Data. To facilitate research, the seven HMORN sites participating in this study
developed a standard set of variables in a virtual data warehouse (VDW) based on
the various healthcare databases that are maintained by each health plan for opera-
tional purposes. These variables capture for each patient: demographic information,
all types of clinical encounters with the health plan (ambulatory, emergency de-
partment, email, telephone, acute inpatient hospital stay, nonacute institutional stay,
laboratory only, radiology only, or other), all diagnoses and procedures from inpa-
tient outpatient and emergency department visits, types of laboratory visits with test
results, vital signs, and all prescribed and dispensed medications. These VDW data
were assembled on all patients of the study cohort from their index date to their end
of follow-up. Subsequently, these data were coarsened into an analytic dataset using
a standard format detailed in the next section such that each variable of the dataset
could change at most every 90 days only. This choice of analytic unit of time was
motivated by the expectation that patients’ glycemic control would typically not be
monitored with an A1c test more than once every 90 days. We revisit the principle
used for coarsening VDW data into an analytic dataset in the next section.

Original Analyses. Ideally, the evaluation of the effect of progressively less ag-
gressive treatment intensification strategies would be conducted with a randomized
experiment. For example, the cohort of patients enrolled in this study could have
been randomized to several treatment arms—each characterized by a delayed initia-
tion of an intensified treatment (e.g., TI initiation at the index date, at 3 months after
the index date, etc.). Contrasts of cumulative risks between any two arms of such
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a trial would provide a measure of the effect of progressively delayed TI initiation.
While such an approach would provide some evidence to address the knowledge
gap that motivated this study, inferences from such a trial could not be used directly
to inform care because the interventions in this trial are static, i.e., determined at
randomization only and thus do not reflect how treatment decisions are made in
practice. In clinical settings, treatment decisions are personalized over time based on
the patient’s evolving glycemic control, symptoms and other general considerations
of patients’ preferences, concurrent conditions, adherence to previously prescribed
treatments, and overall health. It is thus more clinically relevant to contrast dynamic
interventions (a.k.a., adaptive treatment strategies or individualized treatment rules)
to inform care than to contrast static interventions.

Following this rationale, the original analyses of the data from this study aimed
to evaluate the effect of four progressively less aggressive adaptive TI initiation
strategies. Each strategy is indexed by an A1c threshold θ =7, 7.5, 8, or 8.5 and
requires that a patient initiates TI as soon as (no grace periods allowed) her A1c test
reaches or drifts above θ% and that she remains on the intensified therapy thereafter.
To properly account for time-dependent confounding and informative selection bias,
a parametric dynamic marginal structural model (Robins 1998; Murphy et al. 2001;
van der Laan and Petersen 2007; Hernan et al. 2006; Robins et al. 2008b; Cain et al.
2010) for counterfactual hazards was fitted using IPW estimation (Robins 1998;
Robins et al. 2000; Hernan et al. 2002) for the purpose of contrasting cumulative
risks under the four TI strategies just described.

Inferences from these analyses were consistent with those of the ACCORD and
ADVANCE randomized experiments and imply that the pattern of results in these
trials are applicable to a large population of adults with T2DM treated in routine
clinical settings in the US. In particular, findings from this observational study con-
firmed the benefit of tight glycemic control with respect to the development or pro-
gression of albuminuria.

16.2 Data

The observed data on each patient in the cohort consist of measurements on ex-
posure, outcome, and confounding variables updated every 90 days between study
entry and end of follow-up. The time (expressed in units of 90 days) when the pa-
tient’s follow-up ends is denoted by T̃ and is defined as the earliest of the time to
failure, i.e., albuminuria development or progression, denoted by T or the time to a
right-censoring event denoted by C. When a patient is right-censored, i.e., T̃ = C,
the type of right-censoring event experienced by the patient is recorded and de-
noted by Γ with possible values 1, 2, or 3 to represent end of follow-up by ad-
ministrative end of study, disenrollment from the health plan, or death respectively.
For patients with normoalbuminuria at study entry, i.e., microalbumin-to-creatinine
ratio (ACR) <30, we defined failure as an ACR measurement indicating either
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microalbuminuria (ACR 30–300) or macroalbuminuria (ACR>300). For patients
with microalbuminuria at study entry, we defined failure as an ACR measurement
indicating macroalbuminuria. We thus excluded patients with a baseline ACR mea-
surement missing (5884) or indicating macroalbuminuria (1608), which yielded the
sample size n = 51, 179.

The indicator that the end of follow-up is due to the occurrence of a failure event
is denoted by Δ, i.e., Δ = 1 implies that T̃ = T and Δ = 0 implies that T̃ = C. Expo-
sure to an intensified treatment was defined as exposure to a glucose-lowering medi-
cation that was not used by the patient at study entry. At each time point t = 0, . . . , T̃ ,
the patient’s exposure to an intensified treatment is represented by the binary vari-
able A1(t), and the indicator of the patient’s right-censored status at time t is denoted
by A2(t). We thus have A2(t) = 0 for t = 0, . . . , T̃ −1 when T̃ ≥ 1 and A2(T̃ ) = 1−Δ.
The combination A(t) = (A1(t), A2(t)) is referred to as the action at time t. At each
time point t = 0, . . . , T̃ , covariate measurements (e.g., A1c or a particular diagnosis)
are denoted by the multidimensional variable L(t).

Table I in Neugebauer et al. (2014b) describes the 48 expert-selected patient
attributes represented by these covariates (23 and 10 of which are time-varying and
continuous variables, respectively). Each variable of the vector L(t) was constructed
such that it can be assumed to occur before the action at time t, A(t), or otherwise
assumed not to be affected by the actions at time t and thereafter, (A(t), A(t+1), . . .).
In addition, the covariates at time t include an outcome measurement denoted by
Y(t), i.e., Y(t) ∈ L(t) for t = 0, . . . , T̃ . For each time point t = 0, . . . , T̃ + 1, the
outcome is the indicator of past failure, i.e., Y(t) = I(T ≤ t − 1). By definition, the
outcome is thus 0 for t = 0, . . . , T̃ , missing at t = T̃ + 1 if Δ = 0 and, 1 at t = T̃ + 1
if Δ = 1. Indeed, when Δ = 0, the patient’s end of follow-up is due to occurrence
of a right-censoring event during the last follow-up interval T̃ and as a result it
is not known to the analyst whether the patient would have experienced failure at
that time, i.e., I(T = T̃ ) and thus Y(T̃ + 1) = I(T ≤ T̃ ) are missing. To simplify
notation, we use overbars to denote covariate and exposure histories, e.g., a patient’s
exposure history through time t is denoted by Ā(t) = (A(0), . . . , A(t)). Following the
analytic framework introduced in Robins (1998), we approach the observed data in
this study as realizations of n independent and identically distributed copies of O =
(T̃ , Δ, (1 − Δ)Γ, L̄(T̃ ), Ā(T̃ ), ΔY(T̃ + 1)) denoted by Oi for i = 1, . . . , n. The longest
observed follow-up time is denoted by K ≡ maxi=1,...,n T̃i and we have K = 36 (9
years) in the treatment intensification study.

More details about the algorithm used for mapping EHR data collected in contin-
uous time into the coarsened exposure, covariate and outcome variables above were
described elsewhere (Neugebauer et al. 2012, Appendix E). In short, the guiding
principle that informed the construction of the analytic data set was to ensure that
all measurements represented by the covariates at time t could not be affected by the
exposure at time t and thereafter. The exposure at each time t was defined as 0 (i.e.,
unexposed to an intensified treatment) for all 90-day intervals t except for the fol-
lowing intervals: (a) the first interval (if any) when a glucose-lowering medication
that was not used by the patient at study entry was initiated (i.e., used for at least
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1 day of the interval), and (b) all subsequent intervals during which one or more
glucose-lowering medication not used by the patient at study entry was used for at
least 50% of the days of that interval. Daily use of glucose-lowering drugs were as-
cribed based on prescription fill dates and drug quantities dispensed extracted from
VDW pharmacy data.

For a patient who experiences failure strictly before time interval K (i.e., when
Δ = 1 and T̃ < K), we extend the definition of her observed data O through K + 1
by including the outcome variables Y(t + 1) = I(T ≤ t − 1) = 1 for T̃ < t ≤ K. With
this extension, the observed data structure becomes:

O = (T̃ , Δ, (1 − Δ)Γ, L̄(T̃ ), Ā(T̃ ), ΔȲ(T̃ + 1,K + 1)), (16.1)

where ΔȲ(t, t
′
) = (ΔY(t), . . . , ΔY(t

′
)) with t ≤ t

′
. To simplify expressions below, the

outcome Y(t + 1) for T̃ ≤ t ≤ K when Δ = 1 is also denoted with L(t + 1) and the
observed data can thus be expressed as

O = (T̃ , Δ, (1 − Δ)Γ, L̄(T̃ ), Ā(T̃ ), ΔL̄(T̃ + 1,K + 1)).

Finally, we define Ť (t) = min(T̃ , t) for t = 0, . . . ,K.

16.3 Causal Model and Statistical Estimands

We assume the existence of counterfactual covariates whether they are defined from
a (nonparametric) structural equation model (Fig. 16.1) that is also assumed to have
generated the observed data O (structural modeling framework, Pearl 1995, 2009a)
or taken as primitives (Pearl 2010) that are then also linked to the observed data
through an identifiability assumption known as the consistency assumption (missing
data framework, Neyman 1923; Rubin 1974; Robins 1998).

L(t − j) . . . L(t) L(t + 1)

A(t − j) . . . A(t − 1) A(t)

Fig. 16.1 Template of the directed acyclic graph that encodes the time ordering of all variables of
the observed data process O. The complete graph can be derived by sequentially drawing the nodes
and arcs implied by this template for t = 0, . . . , T̃ and 1 ≤ j ≤ t
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In particular, for a given time interval of interest t0 ≤ K, we assume the ex-
istence of counterfactual outcomes defined by the following individualized action
rules (Murphy et al. 2001) dθ = (dθ(0), . . . , dθ(t0)) where each function, dθ(t) for
t = 0, . . . , t0, is a decision rule for determining the action regimen (i.e., a treat-
ment and right-censoring intervention) to be experienced by a patient at time t.
More specifically, a decision rule dθ(t) maps the action and covariate history mea-
sured up to a given time t to an action regimen at time t: dθ(t) : (L̄(t), Ā(t − 1)) �→
dθ(t)(a1(t), a2(t)). In this diabetes study, the four decision rules of interest are defined
by θ = 7, 7.5, 8, 8.5 such that dθ(t)((L̄(t), Ā(t − 1)) is equal to:

• (a1(t), a2(t)) = (0, 0) (i.e., no use of an intensified treatment and no right-
censoring) if and only if the patient was not previously treated with an intensified
therapy (i.e., Ā(t − 1) = 0) and the A1c level at time t (an element of L(t)) was
lower than or equal to the threshold θ%.

• (a1(t), a2(t)) = (1, 0) (i.e., use of an intensified treatment and no right-censoring)
otherwise.

To simplify notation, for any given observed covariate history through time t de-
noted by L̄(t), the action regimen (a(0) = dθ(0)(L(0)), a(1) = dθ(1)(L̄(1), a(0)), . . . ,
a(t) = dθ(t)(L̄(t), ā(t − 1))) through time t is denoted by dθ(L̄(t)).

The causal estimands of interest denoted by ψθ1,θ2 are defined as the differences
between cumulative risks at a given time t0 associated with any two distinct dynamic
treatment strategies dθ1 and dθ2 :

ψθ1,θ2 = P(Ydθ1
(t0 + 1) = 1) − P(Ydθ2

(t0 + 1) = 1),

where Ydθ j
(t0+1) denotes a patient’s potential outcome at time t0+1 if, possibly con-

trary to fact, the patient experienced the dynamic intervention dθ j with θ j = 7, 7.5, 8,
or 8.5. Note that unlike the approach taken in the original analyses of the data from
this study, we no longer assume a parametric dynamic marginal structural model
(MSM) for the counterfactual cumulative risks that define the causal estimands ψθ1,θ2

nor do we adopt a working MSM (Neugebauer and van der Laan 2007) to approx-
imate the causal estimands ψθ1,θ2 . Motivations for such a nonparametric MSM ap-
proach in this study are twofold. First, the large sample size in this study alleviates
concerns over the curse of dimensionality which would make the application of such
an approach futile otherwise. The curse of dimensionality refers here to the inabil-
ity to estimate the causal estimands precisely without lowering the dimensionality
of the causal estimands of interest through modeling assumptions or the use of a
working model. Second, the absence of knowledge about the true functional forms
of the four counterfactual survival curves that define the parameter ψθ1,θ2 means that
the specification of a parametric dynamic MSM becomes essentially an arbitrary
choice and should thus be expected to lead to biased estimation in practice.
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For identifiability of the causal estimands ψθ1,θ2 , we make two additional assump-
tions (Robins 1999) referred to as the sequential randomization assumption (SRA):

A( j) ⊥ Ydθ (t0 + 1) | L̄( j), Ā( j − 1) for j = 0, . . . , Ť (t0)

and the positivity assumption:

g0

(
A( j) = dθ( j)

(
L̄( j), Ā( j − 1)

) ∣∣∣∣ Ȳ( j) = 0, L̄( j), Ā( j − 1) = dθ
(
L̄( j − 1)

))
> 0

for j = 0, . . . , t0,
(16.2)

where g0 is defined by the observed data distribution P0 and denotes, for each j, the
conditional probability of the action at time j given past covariates and actions. The
SRA (a.k.a., the assumption of no unmeasured confounders and sources of selection
bias) is not testable. In this study, its upholding is motivated by the detailed infor-
mation available in patient’s EHR regarding risk factors for the outcome and the
determinants of treatment decisions and rests on the expert-selection of the covari-
ates included in the analytic dataset. Practical violation of the positivity assumption
was evaluated by examining the distribution of the estimated probabilities (16.2).
Concerns over practical violation of this assumption had also motivated the evalu-
ation of dynamic TI regimens in this study (as opposed to static regimens that may
require the absence of exposure to an intensified treatment for a fixed duration) be-
cause most T2DM patients in clinical settings with very high A1c tests would be
expected to intensify glucose-lowering therapy (i.e., very few such patients would
remain on their baseline therapy).

The identifiability assumptions above imply (Bang and Robins 2005) that the
cumulative counterfactual risk P(Ydθ (t0 + 1) = 1) and thus the causal estimands
ψθ1,θ2 can be expressed as a statistical parameter, i.e., a parameter of the observed
data distribution (as opposed to the counterfactual data distribution denoted by P
below):

P(Ydθ (t0 + 1) = 1) =

EP0

(
EP0

[
. . . EP0

(
EP0

[
EP0

(
Y(t0 + 1) | F (t0)

)
| F (t0 − 1)

]
| F (t0 − 2)

)
. . . | F (0)

])

(16.3)

with F (t) =
(
Ā(Ť (t)) = dθ(L̄(Ť (t))), L̄(t)

)
, and where EP0 denotes the expectation

under the distribution P0 of the observed data O. The statistical estimand on the
right-hand side of the previous equality is denoted by γθ.

16.4 Estimation

Any estimator of the target parameter γθ relies on a choice of estimator of the nui-
sance parameters (action mechanism and the outcome regressions). Therefore, in
this section, we detail both a TMLE of the target parameter and different methods
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for estimation of the nuisance parameters. In Neugebauer et al. (2016), we also de-
scribed three common alternatives to the TMLE estimator of the target parameter
presented here: a standard unbounded IPW estimator (Horvitz-Thompson estima-
tor), the corresponding bounded IPW estimator that guarantees that estimates of
the counterfactual survival probabilities are bounded between (0,1), and a hazard-
based bounded IPW estimator. Descriptions are not repeated in this section, but the
data analyses reported in this chapter include results from these IPW estimators us-
ing different estimators of the action mechanism ranging from more parametric to
highly nonparametric. We will use the notation I(·) for the indicator that a given
event · has occurred.

16.4.1 TMLE

Early evaluation (Neugebauer et al. 2011) of TMLE for CER with longitudinal data
from large healthcare databases revealed the practical complexity of the algorithm
initially proposed for implementation of targeted learning with time-varying inter-
ventions. Subsequently, an alternate algorithm was developed which greatly sim-
plified applications of TMLE in problems with time-varying interventions and a
limited number of time-varying covariates (Stitelman et al. 2012). Applications of
this alternate algorithm to EHR-based CER studies is however expected to be lim-
ited by the fact that these studies such as the one in this chapter often require to
control for medium to high-dimensional time-varying covariates. More recently,
van der Laan and Gruber (2012) derived an alternate TMLE algorithm for eval-
uating the effect of time-varying interventions using the general targeted learning
estimation road map applied with the key identifiability result (16.3) introduced
in Bang and Robins (2005). Compared to previously proposed TMLE algorithms,
the new TMLE algorithm further simplifies implementation of targeted learning in
CER studies with time-varying interventions and in particular if control for medium
to high-dimensional time-varying covariates is needed. The following TMLE al-
gorithm was adapted from the new methodology introduced in van der Laan and
Gruber (2012) for application in the treatment intensification study. Each step be-
low is implemented sequentially for a given θ to derive a TMLE of the cumulative
risk γθ:

1. Estimate the nuisance parameter gθ0. The estimator of the probability g0
(
A(t) =

dθ(t)(L̄(t), Ā(t−1)) | L̄(t), Ȳ(t) = 0, Ā(t−1) = dθ(L̄(t−1))
)

for a given t = 0, . . . , t0
is denoted by gθA(t),n below.

2. Derive an initial estimator of the nuisance parameter EP0

(
Y(t0 + 1) | Ā(Ť (t0)) =

dθ(L̄(Ť (t0))), L̄(t0)
)

denoted by Qθ
L(t0+1)(L̄(t0)). Note that L̄(t0 + 1) is always

defined in the extended observed data structure (16.1) when Ā(Ť (t0)) =
dθ(L̄(Ť (t0))) because Ā(Ť (t0)) = dθ(L̄(Ť (t0))) implies either (i) Ť (t0) = t0
and Ť (t0) < T̃ or (ii) Ť (t0) = T̃ = T and Ť (t0) ≤ t0 (since Ť (t0) = T̃ = C
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is not possible when Ā(Ť (t0)) = dθ(L̄(Ť (t0)))). The conditional expectation
Qθ

L(t0+1)(L̄(t0)) is thus well defined and we have:

Qθ
L(t0+1)(L̄(t0)) =

1 + I(Ȳ(t0) = 0)
(
EP0

(
Y(t0 + 1) | Ā(t0) = dθ(L̄(t0)), L̄(t0), Ȳ(t0) = 0

) − 1
)
.

(16.4)

This step thus reduces to the estimation of

EP0 (Y(t0 + 1) | Ā(t0) = dθ(L̄(t0)), L̄(t0), Ȳ(t0) = 0),

i.e., the conditional probability that a patient experiences the failure event at time
t0 given (i) that she experienced no such event previously and no censoring event
before and at t0, (ii) that she were continuously treated according to strategy dθ
through t0, and (iii) her covariates through t0, L̄(t0). The initial estimator of the
nuisance parameter Qθ

L(t0+1)(L̄(t0)) is denoted by Qθ
L(t0+1),n(L̄(t0)) and is defined

as follows: (i) For a patient who did not experience failure before t0 and who
followed rule dθ through t0, Qθ

L(t0+1),n(L̄(t0)) is an estimator of the conditional
probability just described with possible values restricted to the [0, 1] interval,
(ii) For a patient who did experience failure before t0 and who followed rule dθ
until failure, Qθ

L(t0+1),n(L̄(t0)) is set to 1 in accordance with equality (16.4).
3. Update the initial estimator of Qθ

L(t0+1)(L̄(t0)). This update is implemented by
logistic regression for predicting Y(t0 + 1) based on an intercept model with an
offset variable fitted with weights, and using only data from patients who did not
fail before t0 (i.e., Ȳ(t0) = 0) and who followed rule dθ through t0 (i.e., Ā(t0) =
dθ(L̄(t0))). The weight and offset associated with the outcome Y(t0 + 1) from any
patient whose data contribute to this logistic regression are defined as 1∏t0

t=0 gθA(t),n

and logit
(
Qθ

L(t0+1),n(L̄(t0))
)
, respectively. The estimator of the intercept resulting

from this weighted logistic regression is denoted by εn. The updated estimator of
Qθ

L(t0+1)(L̄(t0)) is denoted by Qθ,∗
L(t0+1),n(L̄(t0)) and is defined as follows: (i) For a

patient who did not experience failure before t0 and who followed rule dθ through
t0, Qθ,∗

L(t0+1),n(L̄(t0)) is expit[logit
(
Qθ

L(t0+1),n(L̄(t0))
)
+ εn] where expit(t) = 1

1+exp (−t) .
(ii) For a patient who did experience failure before t0 and who followed rule dθ
until failure, Qθ,∗

L(t0+1),n(L̄(t0)) is set to 1 in accordance with equality (16.4).
4. Repeat the following two steps for k = t0 − 1, . . . , 0:

(a) Derive an initial estimator of EP0 (Qθ
L(k+2)(L̄(k + 1)) | Ā(Ť (k)) =

dθ(L̄(Ť (k))), L̄(k)) denoted by Qθ
L(k+1)(L̄(k)). Note again that L̄(k + 1) is

always defined in the extended observed data structure when Ā(Ť (k)) =
dθ(L̄(Ť (k))) because Ā(Ť (k)) = dθ(L̄(Ť (k))) implies either (i) Ť (k) = k and
Ť (k) < T̃ or (ii) Ť (k) = T̃ = T and Ť ≤ k. The conditional expectation
Qθ

L(k+1)(L̄(k)) is thus well defined and we have:
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Qθ
L(k+1)(L̄(k)) =

1+I(Ȳ(k)=0)
(
EP0

(
Qθ

L(k+2)(L̄(k+1)) | Ā(k)=dθ(L̄(k)), L̄(k), Ȳ(k)=0
) − 1

)
.

(16.5)

This step thus reduces to the estimation of

EP0

(
Qθ

L(k+2)(L̄(k + 1)) | Ā(k) = dθ(L̄(k)), L̄(k), Ȳ(k) = 0
)
, (16.6)

i.e., the conditional expectation of the continuous measure Qθ
L(k+2)(L̄(k+1))

(itself a conditional expectation between 0 and 1) characterizing a patient at
time k+1 given (i) that she did not experience failure before k and no censor-
ing event before and at k, (ii) that she were continuously treated according
to strategy dθ through k, and (iii) her baseline and past time-varying covari-
ates through k, L̄(k). Derivation of an estimator for this conditional expecta-
tion requires that an estimator Qθ,∗

L(k+2),n(L̄(k+1)) be defined for each patient
who did not fail before k and who followed rule dθ through k (i.e., Ȳ(k) = 0
and Ā(k) = dθ(L̄(k))). Among such patients, some may have followed rule
dθ through k + 1 and others may only have followed rule dθ through k. For
the first group of patients, we already defined an estimator Qθ,∗

L(k+2),n(L̄(k+1))
in the latest “update step”. For the second group of patients, the estimator is
defined here by extrapolation, i.e., using the same estimator defined in the
latest “update step” as if these patients also followed rule dθ at time k + 1.
The initial estimator of the nuisance parameter Qθ

L(k+1)(L̄(k)) is denoted by
Qθ

L(k+1),n(L̄(k)) and is defined as follows: (i) For a patient who did not expe-
rience failure before k and who followed rule dθ through k, Qθ

L(k+1),n(L̄(k))
is an estimator of conditional expectation (16.6) above with possible values
restricted to the [0, 1] interval. (ii) For a patient who did experience failure
before k and who followed rule dθ until failure, Qθ

L(k+1),n(L̄(k)) is set to 1 in
accordance with equality (16.5).

(b) Update the initial estimator of Qθ
L(k+1)(L̄(k)). This update is implemented

by logistic regression for predicting Qθ
L(k+2)(L̄(k + 1)) based on an inter-

cept model with an offset variable fitted with weights, and using only data
from patients who did not fail before k (i.e., Ȳ(k) = 0) and who followed
rule dθ through k (i.e., Ā(k) = dθ(L̄(k))). The weight and offset associated
with the outcome Qθ,∗

L(k+2),n(L̄(k+1)) from any patient whose data contribute

to this logistic regression are defined as 1∏k
t=0 gθA(t),n

and logit(Qθ
L(k+1),n(L̄(k))),

respectively. The estimator of the intercept resulting from this weighted lo-
gistic regression is denoted by εn. The updated estimator of Qθ

L(k+1)(L̄(k)) is

denoted by Qθ,∗
L(k+1),n(L̄(k)) and is defined as follows: (i) For a patient who

did not experience failure before k and who followed rule dθ through k,
Qθ,∗

L(k+1),n(L̄(k)) is expit[logit(Qθ
L(k+1),n(L̄(k))) + εn]. (ii) For a patient who

did experience failure before k and who followed rule dθ until failure,
Qθ,∗

L(k+1),n(L̄(k)) is set to 1 in accordance with equality (16.5).
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5. Derive the estimator of EP0

(
Qθ

L(1)(L(0))
)

denoted by Qθ
L(0). For patients who fol-

lowed rule dθ at time 0, we already computed an estimator Qθ,∗
L(1),n(L(0)) in the lat-

est “update step”. For all other patients, an estimator Qθ,∗
L(1),n(L(0)) is defined here

by extrapolation, i.e., using the same estimator from the latest “update step” as
if these patients also followed rule dθ at time 0. Thus, an estimator Qθ,∗

L(1),n(L(0))
is now available for all n patients in the cohort. The average of these estimators
is an estimator of Qθ

L(0) denoted by Qθ,∗
L(0),n:

Qθ,∗
L(0),n =

1
n

n∑

i=1

Qθ,∗
L(1),n(Li(0)).

This estimator Qθ,∗
L(0),n is a TMLE of the counterfactual cumulative risk of interest

γθ and we also denote it by γθ,∗n .

The vector of nuisance parameters Qθ
L(t+1)(L̄(t)) for t = 0, . . . , t0 introduced above is

denoted by Qθ
0 and the asymptotic limit of its initial estimator is denoted by Qθ,∞

0 =
(
Qθ,∞

L(t+1)(L̄(t))
)
t=0,...,t0

. Thus, if the nuisance parameter Qθ
0 is estimated consistently

(e.g., by maximum likelihood using a correctly specified parametric model) then we
have Qθ,∞

0 = Qθ
0.

Under regularity conditions, the TMLE estimator γθ,∗n is asymptotically linear
with the following influence curve when the nuisance parameter gθ0 is not estimated
(i.e., when step 1 above is skipped and all estimates gθA(t),n referenced in all subse-
quent steps are replaced with their known values):

IC∗
θ(O | gθ0,Q

θ,∞
0 ) =

t0+1∑

t=0

D∗
θ,t(O | gθ0,Q

θ,∞
0 ) with

D∗
θ,t(O | gθ0,Q

θ,∞
0 ) =

I
(
Ā(Ť (t − 1)) = dθ(L̄(Ť (t − 1)))

)

∏Ť (t−1)
j=0 g0(A(t) | L̄(t), Ā(t − 1))

(
Qθ,∞

L(t+1)(L̄(t))−Qθ,∞
L(t)(L̄(t−1))

)
,

(16.7)

where Qθ,∞
L(t0+2)(L̄(t0 + 1)) ≡ Y(t0 + 1) and

I
(

Ā(Ť (t−1))=dθ(L̄(Ť (t−1)))
)

∏Ť (t−1)
j=0 g0(A(t)|L̄(t),Ā(t−1))

is nil at t = 0.

Note that D∗
θ,t(O | gθ0,Q

θ
0) = 0 for all t such that either (i) T̃ = C and C + 1 ≤ t ≤

t0 + 1 (because we then have I
(
Ā(Ť (t− 1)) = dθ(L̄(Ť (t− 1)))

)
= 0), or (ii) T̃ = T and

T + 1 < t ≤ t0 + 1 (because we then have Qθ
L(t+1)(L̄(t)) − Qθ

L(t)(L̄(t − 1)) = 0).

The TMLE estimator γθ,∗n,h is doubly robust in the sense that it is a consistent
estimator of γθ if either the estimator of the nuisance parameter gθ0 is consistent
or if the initial estimator of the nuisance parameter Qθ

0 is consistent. In addition, if
both estimators of the nuisance parameters are consistent, γθ,∗n is then asymptotically
linear and efficient in the sense that it attains the semiparametric efficiency bound in
the statistical model that may only include constraints on gθ0, i.e., the variance of any
regular asymptotically linear estimator of γθ in such a model (e.g., any of the three
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IPW estimators γθn,HT , γθn,bd, or γθn,h) is greater than or equal to the variance of the

TMLE γθ,∗n . The IC-based estimator of the variance of γθ,∗n is conservative only when
the vector of probabilities gθ0 are estimated consistently (and asymptotic linearity is
preserved). Note that the IC-based estimator of the variance of γθ,∗n may not be a
consistent estimator of the TMLE variance if the estimator of gθ0 is not consistent
even when the initial estimator of the nuisance parameter Qθ

0 is consistent.

16.4.2 Action Mechanism, gθ
0

In observational studies, the conditional probabilities gθ0 required to implement the
TMLE and IPW estimators above are unknown and thus need to be estimated first.
Below, we start by describing the decomposition of these nuisance parameters based
on five classes of propensity scores (PS). Next, we describe the four approaches
considered here for estimating these various PS: two model-based and two data-
adaptive approaches.

Decomposition of the Action Mechanism. The conditional probability g0
(
A(t) |

L̄(t), Ȳ(t) = 0, Ā1(t − 1), Ā2(t − 1) = 0
)

for t = 0 . . . , t0 is referred to as the action
mechanism at time t and can be factorized based on the following five PS:

• PS for TI initiation denoted by μ1(t)

g0
(
A1(t) = 1 | L̄(t), Ȳ(t) = 0, Ā1(t − 1) = 0, Ā2(t) = 0

)

• PS for TI continuation denoted by μ2(t)

g0
(
A1(t) = 1 | L̄(t), Ȳ(t) = 0, Ā1(t − 2), A1(t − 1) = 1, Ā2(t) = 0

)

• PS for right-censoring by administrative end of study denoted by μ3(t)

g0

(
I
(
A2(t) = 1, Γ = 1

)
= 1

∣∣∣∣ L̄(t), Ȳ(t) = 0, Ā1(t − 1), Ā2(t − 1) = 0
)

• PS for right-censoring by disenrollment from the health plan denoted by μ4(t)

g0

(
I
(
A2(t) = 1, Γ = 2

)
= 1

∣∣∣∣ L̄(t), Ȳ(t) = 0,

Ā1(t − 1), Ā2(t − 1) = 0, I
(
A2(t) = 1, Γ = 1

)
= 0

)

• PS for right-censoring by death denoted by μ5(t)

g0

(
I
(
A2(t) = 1, Γ = 3

)
= 1

∣∣∣∣ L̄(t), Ȳ(t) = 0, Ā1(t − 1), Ā2(t − 1) = 0,

I
(
A2(t) = 1, Γ = 1

)
= 0, I

(
A2(t) = 1, Γ = 2

)
= 0

)
.
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Thus, for patients who did not fail before time t and who followed the decision rule
dθ through time t, an estimate of the nuisance parameter g0

(
A(t) = dθ(t)(L̄(t)Ā(t −

1)) | L̄(t), Ȳ(t) = 0, Ā(t − 1) = dθ(L̄(t − 1))
)

can be derived from estimates of the
five PS above based on the following expression implied by the factorization of the
action mechanism at time t using the product rule:

(
I
(
Ā1(t − 1) = 0

)
μ1(t)A1(t)(1 − μ1(t)

)1−A1(t)
+ I

(
A1(t − 1) = 1

)
μ2(t)

)

(
1 − μ3(t)

)(
1 − μ4(t)

)(
1 − μ5(t)

)
.

Logistic Models with Pooled Data Over Time. A common approach used in prac-
tice by analysts (Hernan et al. 2000; Cole et al. 2003) to estimate each of the five
PS above for all time intervals t simultaneously consists in fitting a single model,
referred to as a ‘pooled model’, using data pooled over time t. More specifically
here, data were pooled over all follow-up times t to fit a separate main-term logistic
model for estimating each of the three PS for right-censoring (μ3(t), μ4(t), μ5(t))
and the PS for TI continuation (μ2(t)). Data were also pooled for all time points
t > 0 to fit a single main-term logistic model for estimating the PS for TI initiation
after t = 0 (i.e., μ1(t) for t > 0). A separate main-term logistic model was fitted
for estimating the PS for TI initiation at t = 0 (i.e., μ1(0)). By ‘main-term logis-
tic model’, we mean a logistic model with only main terms for each explanatory
variable considered (i.e., no interaction terms between explanatory variables). The
explanatory variables considered were all time-independent covariates and the last
measurement of time-varying covariates (Markov assumption). In addition, expo-
sure to TI in the last period was included as an explanatory variable for the three
PS for right-censoring and the latest change in A1c was included as an explanatory
variable for estimating all PS. All pooled logistic models also included the variable
indexing the 90-day follow-up intervals (i.e., t) as an explanatory variable. The
resulting estimator of the nuisance parameter gθ0 is denoted by gθn.

Logistic Models with Data Stratified by Time. In the previous approach, each
pooled logistic model encodes the assumption that the associations between the
explanatory variables and the PS outcome variable (e.g. death occurrence for PS
μ5(t)) do not change over time. Concern over this assumption (Platt et al. 2009)
motivates instead the use of a different logistic model (referred to as a ‘stratified
model’) to estimate each PS at each time point t separately or, at least, the inclusion
of interaction terms between the explanatory variables and functions of t in the
pooled models. We note that it is such a concern over time-modified confounding
that motivated, in the previous section, the specification of two separate models to
estimate the PS for TI initiation: one stratified logistic model to estimate μ1(0) and
one separate pooled logistic model to estimate all μ1(t) for t > 0 simultaneously.
To fully address concerns over time-modified confounding, we also considered
a second PS estimation approach in which, for each time point t separately, five
main-term logistic models were fitted to estimate each of the five PS. The parame-
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terization of these stratified models are the same as that described in the previous
approach with the difference that the time variable t was omitted from all logistic
models. The resulting estimator of the nuisance parameter gθ0 is denoted by gθn,t.

Logistic Models with Data-Adaptive Selection of Interaction Terms. To lessen
the constraints imposed by main-term logistic models, we considered a third PS es-
timation approach that is based on extending the previous stratified logistic models
by data adaptively including two-way interaction terms between explanatory vari-
ables. Due to the large number of explanatory variables in this study and overfitting
concerns, we separately implemented the following ad hoc data-adaptive algorithm
for selecting the subset of all possible interaction terms to include in each stratified
model. For each of the five PS and each time t, we first computed 105 two-way
interaction terms based on the 15 explanatory variables that were most significantly
associated (smallest p-value) with the PS outcome variable in a univariate logistic
regression. Second, for each of these 105 terms, we implemented a logistic regres-
sion of the PS outcome variable on the interaction term and the two main terms that
define the interaction term. Third, we identified the interaction terms with a p-value
lower than 0.05. Finally, if more than 50 interaction terms met this criterion, we
selected only the 50 terms with the smallest p-value and added them to the stratified
logistic model for the PS. The resulting estimator of the nuisance parameter gθ0 is
denoted by gθn,t,×.

Super Learning. The two model-based estimators gθn and gθn,t described earlier do
not reflect real subject-matter knowledge about the adequacy of the expit function
chosen to properly represent the true values of the five PS over time. Indeed in prac-
tice, PS model specification such as choosing a logistic model is typically rooted in
tradition, preference, or convenience. To avoid erroneous inference due to such ar-
bitrary model specifications, data-adaptive estimation of the nuisance parameter gθ0
has been proposed in practice but consistent estimation then relies on judicious se-
lection of a machine learning algorithm also known as ‘learner’. We considered such
a learner gθn,t,× in the previous section but many other learners have been proposed
and can be used as potential candidates for estimating the five PS.

Akin to the selection of a parametric model, the selection of a learner does not
typically reflect real subject-matter knowledge about the relative suitability of the
different learners available, since “in practice it is generally impossible to know a
priori which learner will perform best for a given prediction problem and data set”
(van der Laan et al. 2007). To address this concern, data-adaptive estimation using
ensemble learning methods can be used to hedge against erroneous inference due to
arbitrary selection of a learner. Super learning (SL) is one such approach, discussed
in detail in Chap. 3, with known theoretical properties that support its application in
practice: A super learner performs asymptotically as well (in terms of mean error)
or better than any of the candidate learners considered. If the super learner considers
a candidate learner defined by a parametric model and if this model happens to be
correctly specified then using SL instead of maximum likelihood estimation with
correctly specified model only comes at a price of limited increase in prediction
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variability. Alternate ensemble learning methodology could be substituted for SL
but, to our knowledge, the application of any such alternatives could not be theo-
retically validated by formal finite sample and asymptotic results such that the ones
established for the super learning methodology.

In these secondary analyses and for each time point t separately, five super learn-
ers were implemented to estimate each of the five PS based on the following ten can-
didate learners: (a) five learners1 defined by logistic models with only main terms for
the most predictive explanatory variables identified by a significant p-value in uni-
variate regressions with five significance levels (α= 1e−30, 1e−10, 1e−5, 0.1, and
1), and (b) five polychotomous regression learners based on the most predictive ex-
planatory variables identified by a significant p-value in univariate regressions with
the same five significance levels. The resulting estimator of the nuisance parameter
gθ0 is denoted by gθn,t,S L.

16.4.3 Outcome Regressions, Qθ
0

The conditional expectations Qθ
0 required to implement the TMLE are unknown

and thus need to be estimated first. Below, we describe the two data-adaptive
estimators that were considered as initial estimators of the nuisance parameters
EP0

(
Qθ

L(k+2)(L̄(k + 1)) | Ā(k) = dθ(L̄(k)), L̄(k), Ȳ(k) = 0
)
. For a given k = t0, . . . , 0,

these estimators are derived using only data from patients who did not fail before
time k and who followed rule dθ through k (i.e., Ȳ(k) = 0 and Ā(k) = dθ(L̄(k))). The
resulting TMLE are referred to as stratified TMLE by opposition to pooled TMLE in
which the initial estimators of Qθ

0 are derived by pooling data from all patients who
did not fail before time k (whether or not they followed the dynamic intervention
previously) before evaluating these initial estimators at Ā(k) = dθ(L̄(k)). Note that
in studies with small sample sizes. a stratified approach will often not be practical
for proper initial estimation of the nuisance parameters Qθ

0 and extrapolation using
data from patients who did not experience the relevant treatment history can then
improve TMLE performance.

DSA. The Deletion/Substitution/Addition (DSA) algorithm (Sinisi and van der
Laan 2004; Neugebauer and Bullard 2010) implements a data-adaptive estimator
selection procedure based on cross-validation. It can be used as a machine learn-
ing approach for estimating conditional expectations. Here, the DSA was used as
an initial estimator of Qθ

0 based on candidate estimators that were restricted to
main-term logistic models with the following candidate explanatory variables: all
time-independent covariates, the last measurement of time-varying covariates, and
the latest change in A1c. To decrease computing time, the DSA was implemented
with a single 5-fold cross-validation split, without deletion and substitution moves,

1 Implemented by the SL.glm routine available in the SuperLearner R package (Polley and
van der Laan 2013).
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and with a maximum model size (i.e., number of main terms in the logistic models)
equal to 10. The resulting estimator of Qθ

0 is denoted by Qθ
n,DS A.

Super Learner. Based on the same rationale that motivated the use of SL to estimate
the action mechanism, SL was also considered here to define the initial estimator of
the nuisance parameter Qθ

0. The details of the SL approach that was implemented
are described in Neugebauer et al. (2014a). In short, for each time point k a sepa-
rate super learner was constructed based on the following eight classes of candidate
learners (each learner used a different subset of explanatory variables): (a) seven
learners defined by main-term logistic models; (b) five learners defined by a step-
wise model selection using AIC; (c) five learners defined by neural networks; (d) five
learners defined by Bayes regressions; (e) five learners defined by polychotomous
regressions; (f) five learners defined by Random Forests; (g) five learners defined by
bagging for classification trees; (h) 20 learners defined by generalized additive mod-
els with smoothing splines. The set of explanatory variables considered included the
variables used in the DSA approach but was also expanded to include two-way in-
teraction terms between these variables and additional summary measures of past
covariates (e.g., the average of all past A1c measurement or the number of past A1c
measurements above 8%). The addition of summary measures of past covariates
was motivated by the fact that the nuisance parameter Qθ

L(k+1)(L̄(k)) is by definition
a function of the covariate history L̄(k) in the same way that each PS is potentially
a function of past observed covariates. However, while a Markov assumption can
often be argued in practice to justify PS estimation using the last treatment and co-
variate measurements only, it is not clear why a similar approach is reasonable for
estimating the nuisance parameters Qθ

L(k+1)(L̄(k)). The resulting estimator of Qθ
0 is

denoted by Qθ
n,S L.

16.5 Practical Performance

Results from the TMLE and three IPW estimators are compared to the results from
a crude analysis that aims to contrast the survival curves associated with the four
treatment intensification strategies of interest dθ without any adjustment for con-
founding and selection bias. Such an analysis can be implemented by applying the
hazard-based IPW estimator with its stabilized weights set to 1. Table 16.1 pro-
vides inferences for the comparison of the four survival curves at 3 years using the
crude analysis approach. Inferences in that table can be contrasted to those based
on the three IPW estimators implemented with the four PS estimation approaches in
Table 16.2 and those based on targeted learning (i.e., TMLE implemented with SL
for estimating both nuisance parameters) in Table 16.1. Examination of the results
from the crude estimator in Table 16.1 provide some evidence, albeit weak, that is
consistent with results from the ACCORD and ADVANCE randomized trials which
suggested a beneficial effect of more aggressive therapy initiation rules.
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Table 16.1 Comparison of inferences from the crude estimator and untruncated TMLE for the six
cumulative RDs ψθ1 ,θ2 at 12 quarters (t0 = 11)

Crude TMLE
θ1 θ2 ψθ1 ,θ2

n Γθ1 ,θ2
n ψθ1 ,θ2 ,−

n ψθ1 ,θ2 ,+
n p ψθ1 ,θ2 ,∗

n Γθ1 ,θ2 ,∗
n ψθ1 ,θ2 ,∗,−

n ψθ1 ,θ2 ,∗,+
n p∗ RE

8.5 8.0 0.0013 0.0015 −0.0016 0.0042 0.386 0.0070 0.0038 −0.0004 0.0143 0.064 1.07
8.5 7.5 0.0028 0.0030 −0.0032 0.0088 0.357 0.0221 0.0065 0.0093 0.0349 0.001 1.09
8.5 7.0 0.0335 0.0111 0.0116 0.0553 0.003 0.0386 0.0112 0.0166 0.0606 0.001 1.11
8.0 7.5 0.0015 0.0027 −0.0037 0.0068 0.574 0.0151 0.0059 0.0035 0.0267 0.011 1.09
8.0 7.0 0.0322 0.0111 0.0105 0.0538 0.004 0.0316 0.0112 0.0097 0.0535 0.005 1.11
7.5 7.0 0.0307 0.0108 0.0096 0.0518 0.004 0.0165 0.0103 −0.0038 0.0368 0.110 1.11

The TMLE is derived based on the SL estimators for the nuisance parameters (i.e., gθn,t,S L and
Qθ

n,S L) and is differentiated from the crude estimator by the superscript ∗ notation. The ratio of the
standard error of the hazard-based IPW (see Table 16.2) based on gn,t,S L to that of the TMLE is
denoted by RE

TMLE inferences in Fig. 16.2 and Tables 16.2 and 16.1 reveal much stronger
evidence of a beneficial effect of more aggressive TI strategies and illustrate the
estimator’s practical performance in adjusting for time-dependent confounding and
selection bias. Indeed, whichever the approach adopted for estimating the nuisance
parameters, the TMLE estimator indicates an early separation and consistent order-
ing of the four survival curves suggesting an increasing beneficial effect of more
aggressive therapy initiation rules (i.e., of rules indexed by decreasing A1c thresh-
olds). Four to five of the six cumulative risk differences at 3 years are now statis-
tically significant depending on the estimation approach adopted for the nuisance
parameter Qθ

0.
Successful performance in bias adjustment with the hazard-based IPW estima-

tor is illustrated in Table 16.2 and reveals similar evidence of a beneficial effect
of more aggressive TI strategies. Whichever the approach adopted for estimating
the action mechanism, the hazard-based IPW estimator indicates a separation of the
four survival curves (results in Neugebauer et al. 2016) that is visually almost iden-
tical to that obtained with the TMLE estimator in Fig. 16.2. Three to four of the
six cumulative risk differences at 3 years are statistically significant depending on
the estimation approach adopted for the action mechanism gθ0. The performance in
bias adjustment with the unbounded IPW estimator largely depends on the approach
used to estimate the action mechanism (results in Neugebauer et al. 2016). This IPW
estimator reveals the strongest evidence of a beneficial effect of more aggressive TI
strategies when it is combined with SL estimation of the action mechanism. The
performance in bias adjustment with the bounded IPW estimator follows an inter-
mediate pattern (results in Neugebauer et al. 2016) between that of the unbounded
and hazard-based IPW estimators in the sense that while the curves become increas-
ingly and more consistently separated in the expected directions as the PS estimation
becomes more nonparametric (similar to results in the unbounded IPW estimator),
the distinctions between results from the four PS estimation approaches are less
obvious (similar to results in the hazard-based IPW estimator).
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We conjecture that the gradual change in the patterns of results across PS estima-
tion approaches as we go from the unbounded, bounded and hazard-based IPW es-
timators relates to the differences in boundedness and efficiency properties between
the three estimators. More specifically, we conjecture that the successive decrease
in the three estimators’ sensitivity to bias from errors in PS estimation is a conse-
quence of, first, the boundedness property of both the bounded and hazard-based
IPW estimators and, second, the improved efficiency of the hazard-based estimator
relative to the bounded IPW estimator. This conjecture is further supported by the
TMLE results which also show that the estimator is not sensitive to the PS estima-
tion approach adopted (Fig. 16.2). Because the TMLE is a substitution estimator,
it also benefits from the boundedness property similar to both the bounded and
hazard-based IPW estimators. In the same way that the improved theoretical effi-
ciency properties of the hazard-based IPW estimator compared to the bounded IPW
estimator leads to a further decrease in sensitivity to errors in the PS estimates, the
improved efficiency property of the TMLE compared to the bounded IPW estimator
can explain why the TMLE share its lack of sensitivity to errors in the PS estimates
with the hazard-based estimator.

In Table 16.2, we compare the inferences we would derive in practice from vari-
ous estimation choices that led to results consistent with that of previous randomized
experiments. It illustrates the expected theoretical efficiency gains from the hazard-
based IPW estimator compared to the bounded and unbounded IPW estimators. It
also indicates that the estimated standard error of the hazard-based IPW estimator
generally decreases as the PS estimation approach becomes more nonparametric.
This apparent gain in estimation efficiency is explained by the concentration of the
IPW weights and the decrease in the proportion of large weights from progressively
more flexible PS estimation approaches (results in Neugebauer et al. 2016). In fact,
is quite remarkable that none of the stabilized IP weights derived from SL are greater
than 30. These results thus contradict the common position that model-based PS es-
timation is preferable in practice because data-adaptive PS estimation leads to larger
weights and thus an increase in IPW estimation variability by revealing practical
violations of the positivity assumption. Estimation of the IP weights based on arbi-
trarily specified parametric models can then be viewed as an implicit weight trun-
cation scheme that restricts the proportion of large weights through smoothing with
a misspecified model. On the contrary, the results in this study suggest that model-
based estimation of the weights can instead lead to artificial practical violation of
the positivity assumption (i.e., large weights due to model misspecification) when
the positivity assumption is in truth not violated. The practical consequence of such
model-based estimation is not only biased inference but also increased uncertainty
that both could be avoided with data-adaptive PS estimation.

One motivation for the application of TMLE over (bounded, unbounded, or
hazard-based) IPW estimation in practice is the potential for gain in estimation pre-
cision that may arise from the efficiency property of TMLE. Table 16.2 illustrates
such efficiency gains in this study but indicates however little increase in precision
with TMLE compared to the hazard-based IPW estimator: the ratios of the esti-
mated hazard-based IPW standard errors for the six cumulative risk differences at
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Table 16.2 Comparison of inferences from six IPW estimators and the DSA-based TMLE of six
risk differences (RD) at 3 years (12 quarters, i.e. t0 = 11)

RD estimator θ1 θ2 gθn ψθ1 ,θ2
n Γθ1 ,θ2

n ψθ1 ,θ2 ,−
n ψθ1 ,θ2 ,+

n p RE

8.5 8 gθn,t,S L 7.3e−03 4.3e−03 −1.1e−03 0.0156 0.089 1.085
8.5 7.5 gθn,t,S L 0.0231 7.5e−03 8.4e−03 0.0378 2e−03 1.078

Horvitz-Thompson 8.5 7 gθn,t,S L 0.0506 0.0129 0.0254 0.0758 0 1.082
ψθ1 ,θ2

n,HT 8 7.5 gθn,t,S L 0.0158 6.8e−03 2.5e−03 0.0292 2e−02 1.078
8 7 gθn,t,S L 0.0433 0.0128 0.0182 0.0685 1e−03 1.083
7.5 7 gθn,t,S L 0.0275 0.0118 4.4e−03 0.0506 0.019 1.079

8.5 8 gθn,t,S L 9.8e−03 4.6e−03 8e−04 0.0188 0.032 1.165
8.5 7.5 gθn,t,S L 0.0255 7.9e−03 1e−02 0.041 1e−03 1.138

Bounded IPW 8.5 7 gθn,t,S L 0.0572 0.0127 0.0322 0.0822 0 1.072
ψθ1 ,θ2

n,bd 8 7.5 gθn,t,S L 0.0157 7.2e−03 1.5e−03 0.0298 3e−02 1.144
8 7 gθn,t,S L 0.0474 0.0127 0.0224 0.0723 0 1.072
7.5 7 gθn,t,S L 0.0317 0.0117 8.7e−03 0.0547 7e−03 1.075

8.5 8 gθn 0.0109 5.7e−03 −3e−04 0.022 0.056
8.5 7.5 gθn 0.0212 8.7e−03 4.1e−03 0.0382 0.015
8.5 7 gθn 0.0387 0.0135 0.0122 0.0652 4e−03

Hazard-based IPW 8 7.5 gθn 0.0103 7.8e−03 −5e−03 0.0256 0.187
ψθ1 ,θ2

n,h 8 7 gθn 0.0278 0.0138 8e−04 0.0549 0.044
7.5 7 gθn 0.0175 0.0133 −8.5e−03 0.0435 0.187

8.5 8 gθn,t 9.9e−03 5.5e−03 −9e−04 0.0207 0.071
8.5 7.5 gθn,t 0.025 7.8e−03 9.6e−03 0.0404 1e−03
8.5 7 gθn,t 0.0418 0.0126 0.0172 0.0664 1e−03

Hazard-based IPW 8 7.5 gθn,t 0.0151 7.1e−03 1.2e−03 0.029 0.033
ψθ1 ,θ2

n,h 8 7 gθn,t 0.0319 0.0129 6.7e−03 0.0571 0.013
7.5 7 gθn,t 0.0168 0.012 −6.7e−03 0.0403 0.162

8.5 8 gθn,t,× 0.0129 5.5e−03 2.1e−03 0.0237 2e−02
8.5 7.5 gθn,t,× 0.0337 7.9e−03 0.0183 0.0491 0
8.5 7 gθn,t,× 0.0483 0.0129 0.0229 0.0737 0

Hazard-based IPW 8 7.5 gθn,t,× 0.0209 6.9e−03 7.3e−03 0.0345 3e−03
ψθ1 ,θ2

n,h 8 7 gθn,t,× 0.0354 0.0129 1e−02 0.0608 6e−03
7.5 7 gθn,t,× 0.0146 0.0121 −9.2e−03 0.0383 0.23

8.5 8 gθn,t,S L 8e−03 4e−03 1e−04 0.0159 0.046 1.025
8.5 7.5 gθn,t,S L 0.0216 7.1e−03 7.7e−03 0.0356 2e−03 1.024
8.5 7 gθn,t,S L 0.041 0.0125 0.0166 0.0655 1e−03 1.049

Hazard-based IPW 8 7.5 gθn,t,S L 0.0136 6.5e−03 1e−03 0.0263 0.035 1.022
ψθ1 ,θ2

n,h 8 7 gθn,t,S L 0.033 0.0124 8.6e−03 0.0574 8e−03 1.048
7.5 7 gθn,t,S L 0.0194 0.0114 −3e−03 0.0418 9e−02 1.048

8.5 8 gθn,t,S L 9.1e−03 3.9e−03 1.4e−03 0.0168 0.021 1
8.5 7.5 gθn,t,S L 0.0238 6.9e−03 0.0102 0.0374 1e−03 1

DSA-based TMLE 8.5 7 gθn,t,S L 0.0427 0.0119 0.0194 0.0661 0 1
ψθ1 ,θ2,∗

n 8 7.5 gθn,t,S L 0.0147 6.3e−03 2.3e−03 0.0271 2e−02 1
8 7 gθn,t,S L 0.0336 0.0119 0.0104 0.0569 5e−03 1
7.5 7 gθn,t,S L 0.0189 0.0109 −2.5e−03 0.0403 0.083 1

For each RD, the estimator for gθ0, the point estimate, the estimate of the standard error, its ratio to
that of the DSA-based TMLE, the estimate of the lower and upper bound of the 95% confidence
interval, and the associated p-value are denoted by gθn, ψθ1 ,θ2

n , Γθ1 ,θ2
n , RE, ψθ1 ,θ2 ,−

n , ψθ1 ,θ2 ,+
n , and p,

respectively
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Fig. 16.2 Each plot represents TMLE estimates over 16 quarters of the four counterfactual survival
curves corresponding with the four TI initiation strategies dθ with θ = 7, 7.5, 8, 8.5. The plots
located at the top left, top right, bottom left, and bottom right are obtained based on the estimates
gθn, gθn,t, gθn,t,×, and gθn,t,S L of the nuisance parameter gθ, respectively

3 years to the estimated TMLE standard errors range from 2 to 5% only when the
action mechanism is estimated with SL. As shown by equality (16.7) defining the
influence curve of the TMLE estimator, gain in precision arises from minimization
of the prediction errors from the estimate of the nuisance parameter Qθ

0. Gains in
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precision are thus expected to be greatest with TMLE in problems where covariates
can predict the outcome well. The small efficiency gains from the TMLE reported
in Table 16.2 could thus be the result of either the absence of good predictors of out-
comes among the measured covariates or inadequate use of the measured covariates
for estimating Qθ

0 (e.g., due to model misspecification such as assuming the Markov
assumption). It is this second explanation for poor efficiency gains that motivated
the application of SL for flexible estimation of Qθ

0 without relying on the Markov
assumption and arbitrary learner choices (such as the main-term logistic models
considered by the DSA algorithm). Table 16.1 illustrates the improved efficiency
gains that resulted from more nonparametric estimation of the nuisance parameter
Qθ

0 with SL: the ratios of the estimated hazard-based IPW standard errors for the six
cumulative risk differences at 3 years to the estimated TMLE standard errors range
from 7 to 11% when the action mechanism is estimated with SL.

Note again that the validity of TMLE inferences based on the estimator’s in-
fluence curve defined by (16.7) is only guaranteed when the action mechanism is
estimated consistently. To assess the performance of IC-based TMLE inferences,
we evaluated the variability of each DSA-based TMLE in Fig. 16.2 based on 10,000
bootstrap samples. For a fair comparison between IC-based and bootstrap-based es-
timates of TMLE variability, the TMLE point estimates were derived on each boot-
strap sample using the same estimated nuisance parameters (i.e., the PS estimator
were not reevaluated on each bootstrap sample) because the IC-based TMLE esti-
mator is only consistent for estimating the TMLE standard error when the nuisance
parameter gθ0 is known and it is conservative if the action mechanism is estimated
consistently. When the TMLE was based on the estimators gθn, gθn,t, or gθn,t,×, the ratios
of the IC-based estimates of the TMLE standard errors for the six cumulative risk
differences at 3 years to the estimates derived from the bootstrap indicated impor-
tant over-estimation (by up to 61%) of the IC-based estimator of the TMLE standard
error (results in Neugebauer et al. 2014a). These ratios clearly converged towards
the desired value of 1 as the approach used to estimate the action mechanism be-
came more nonparametric and all ratios became essentially 1 with SL estimation of
the action mechanism. Similarly, results indicated that the bootstrap-based estimates
of the variance of the bounded IPW estimators based on the more parametric type
estimator gθn did not match the IC-based variance estimates when the normalizing
constant was ignored from the IC formula (matching estimates were obtained when
using the normalizing constant to compute the IC-based estimates). These observa-
tions provide further evidence to support the argument that model-based estimation
of the action mechanism in this study resulted in biased PS estimates and that SL
can be used to hedge against such parametric model misspecification. These results
also indicate that unlike what we noted earlier about the TMLE estimator itself, the
IC-based estimator of its variance is highly sensitivity to errors in PS estimates. This
sensitivity was however not observed for the IC-based estimator of the variance of
the hazard-based IPW estimator (results in Neugebauer et al. 2014a).
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16.6 Discussion

We demonstrated the feasibility of targeted learning in real-world CER with time-
varying exposures based on large EHR databases. We illustrated how this approach
can successfully adjust for time-dependent confounding and selection bias and pro-
vide gains in efficiency compared to IPW estimation. With both the TMLE and
IPW estimators, we demonstrated that SL estimation of the nuisance parameters
can result in substantial bias reduction and efficiency gains compared to model-
based estimation and that such improved estimation performances come at the cost
of increased computing times. In particular, results here contradict the position that
SL estimation may not be desirable in practice for fear to reveal violations of the
positivity assumption and suggest instead that the estimation approaches for the ac-
tion mechanism that are commonly used in practice based on arbitrary parametric
models can actually lead to artificial violation of the positivity assumption (extreme
IP weights) when this assumption is in truth not violated.

These results also suggest that estimation of the nuisance parameter Qθ
0 should

generally rely on a richer set of both treatment and covariate histories to realize
more substantial efficiency gains with TMLE because simplifying assumptions (e.g.,
Markov assumption) that may apply to components of the action mechanism are not
expected to extend to the nuisance parameter Qθ

0 in general. If these simplifying
assumptions are nevertheless made, suboptimal efficiency gains can be expected
with TMLE due to inconsistent estimation of Qθ

0.
In addition, this work points to the importance of the boundedness property in

reducing the sensitivity of the TMLE estimator to minor bias in estimation of the ac-
tion mechanism but also suggests that data-adaptive estimation of the action mecha-
nism is critical for proper IC-based TMLE inference because of the high sensitivity
of the IC-based estimator of the TMLE standard error to minor bias in estimation of
the action mechanism. This last observation also suggests the use of bootstrapping
to evaluate the bias of estimators of the action mechanism and guide the selection
of the PS estimator based on which TMLE inference should be derived in practice,
e.g., the data-adaptiveness of the estimation approach for gθ0 may be sequentially
increased until there is a match between the IC-based and bootstrap-based estimates
of TMLE variance. This PS estimator selection criterion is an alternative to a less
targeted approach that consists in increasing the level of data-adaptiveness of the SL
estimation approach for the action mechanism until the cross-validated likelihood is
stable.

Finally, when using data-adaptive estimation of the nuisance parameters, the IPW
and TMLE estimators may no longer be asymptotically linear with the influence
curves used to derive the conservative variance estimators presented in this chapter.
The application of these variance estimators in practice may thus not be justified
theoretically when the nuisance parameters are estimated with SL instead of model-
based estimation by maximum likelihood. Recent research (van der Laan 2014b)
to derive valid inference when nuisance parameters are estimated with SL led to
the development of new IPW and TMLE estimators (Benkeser et al. 2017a) that
are asymptotically linear with known influence curves. This approach is currently
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applicable in point treatment studies only. Additional research is needed to gener-
alize these IPW and TMLE approaches to studies with time-varying exposures and
covariates such as the treatment intensification study in this chapter. Until this gen-
eralization is available, one may argue that TMLE or IPW estimation in real-world
CER with time-varying interventions should rely on model-based nuisance parame-
ter estimation because theoretically valid inferences can then be derived in practice
using the conservative variance estimators presented in this chapter. We counter-
argue that these variance estimators are then only valid when the action mechanism
is estimated based on correct models and that the asymptotic coverage of the result-
ing confidence intervals is 0 if these models are incorrect.
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Chapter 17
Mediation Analysis with Time-Varying
Mediators and Exposures

Wenjing Zheng and Mark J. van der Laan

An exposure often acts on an outcome of interest directly, or indirectly through
the mediation of some intermediate variables. Identifying and quantifying these
two types of effects contribute to further understanding of the underlying causal
mechanism. Modern developments in formal nonparametric causal inference have
produced many advances in causal mediation analysis in nonlongitudinal settings.
(e.g., Robins and Greenland 1992; Pearl 2001; van der Laan and Petersen 2008; Van-
derWeele 2009; Hafeman and VanderWeele 2010; Imai et al. 2010b,a; Pearl 2011;
Tchetgen Tchetgen and Shpitser 2011a,b; Zheng and van der Laan 2012b; Lendle
and van der Laan 2011).

Causal mediation in a longitudinal setting, by contrast, has received relatively
little attention. One option is the controlled direct effect (e.g., Pearl 2001), which
compares the outcomes under different exposure regimens while the mediators are
fixed to some common pre-specified values. The analysis is very similar to that of
a time-varying exposure in a nonmediation setting; we refer the reader to existing
literature on this topic (e.g., Robins and Ritov 1997; Hernan et al. 2000; Stitelman
et al. 2011; Petersen et al. 2014). Controlled direct effects are of interest if the expo-
sure effect at a particular mediator value constitutes a meaningful scientific question.

If that is not the case, one may ask a different direct effect question: what would
be the effect of exposure on the outcome if the mediator takes its value as if ex-
posure were absent? This question is formalized using the so-called natural direct

W. Zheng
Netflix, 100 Winchester Circle, Los Gastos, CA 95032, USA
e-mail: wzheng@netflix.com

M. J. van der Laan (�)
Division of Biostatistics and Department of Statistics, University of California, Berkeley,
101 Haviland Hall, #7358, Berkeley, CA 94720, USA
e-mail: laan@berkeley.edu

© Springer International Publishing AG 2018
M.J. van der Laan, S. Rose, Targeted Learning in Data Science,
Springer Series in Statistics, https://doi.org/10.1007/978-3-319-65304-4_17

277

mailto:wzheng@netflix.com
mailto:laan@berkeley.edu
https://doi.org/10.1007/978-3-319-65304-4_17


278 W. Zheng and M. J. van der Laan

effect parameter by Robins and Greenland (1992) and Pearl (2001) in a nonlongitu-
dinal setting. The natural direct effect has a complementary natural indirect effect;
together they provide a decomposition of the overall effect of the exposure on the
outcome. The challenges in extending the above mediation formulation to the lon-
gitudinal setting have been studied in Avin et al. (2005), which established that the
corresponding natural direct effect and indirect effect parameters would not be iden-
tifiable in the presence of confounders of the mediator-outcome relationship that are
affected by the exposure. Such confounders, however, are ubiquitous in longitudinal
applications.

An alternative, random (stochastic) interventions (RI) based formulation to
causal mediation was proposed in Didelez et al. (2006). Under this formulation, a
mediator is regarded as an intervention variable, as opposed to a counterfactual vari-
able, onto which a given distribution is enforced. The corresponding natural direct
effect and indirect effect parameters have different interpretation than those under
the formulations in Robins and Greenland (1992) and Pearl (2001), but their iden-
tifiability is at hand even in the presence of exposure-induced mediator-outcome
confounder (e.g., VanderWeele et al. 2014a). Zheng and van der Laan (2012a)
proposed an RI formulation to causal mediation, through conditional mediator
distributions, in a survival setting with point exposure and time-varying mediators
and confounders. VanderWeele and Tchetgen Tchetgen (2017) proposed an RI
formulation, through marginal mediator distributions, in a time-varying exposure
and mediator setting. In this paper, we extend the work in Zheng and van der Laan
(2012a) to formulate causal mediation through conditional mediator distributions in
general time-varying exposure and mediator settings with survival or nonsurvival
outcomes. The challenges in longitudinal mediation analysis are exemplified in the
different effects captured (and corresponding identifiability conditions) under the
marginal distribution intervention in VanderWeele and Tchetgen Tchetgen (2017)
and the conditional distribution intervention proposed here. We will illustrate these
differences with examples and further discussions. This chapter includes content,
with permission, from Zheng and van der Laan (2017).

The natural direct and indirect effects proposed here can all be defined in
terms of the corresponding version of the mediation functional. We develop
a general semiparametric inference framework for this conditional mediation
functional. More specifically, we derive the efficient influence curves under a
locally saturated semiparametric model, establish their robustness properties,
present three estimators for the conditional mediation functional, and study
the empirical performance of these estimators in a simulation study. The three
estimators include: a nested nontargeted substitution estimator, which uses a
regression-based representation of the identifying expression, an IPW estima-
tor, and an efficient and multiply robust TMLE.
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17.1 The Mediation Formula, Natural Direct, and Natural
Indirect Effects

Consider the data structure

O = (L0, A1,R1,Z1, L1, . . . , At,Rt,Zt, Lt, . . . , Aτ,Rτ,Zτ, Lτ ⊃ Yτ) ∼ P0,

where L0 encodes baseline covariates, and for t ≥ 1, At encodes the time-varying
exposure (and in addition may also include a censoring indicator), Zt denotes the
time-varying mediators. Rt and Lt denote the time-varying covariates. At each time
t, Rt encode covariates that are affected by At and may in turn affect Zt and Lt; Lt

are covariates that are affected by At,Rt,Zt. Lt may include the outcome process
Yt ⊂ Lt, in particular, Lτ will include the final outcome of interest Yτ. This data
structure allows for confounders of the exposure-outcome relation and exposure-
induced confounders of the mediator-outcome relation, both within time and across
time. In a survival setting with right censoring, the outcome indicator Yt indicates
whether one has died by time t, i.e. Yt = I(T̃ <= t,T ≤ C) with survival time T ,
censoring time C and T̃ = min(T,C). We would encode the intervention variables
as At = (AC

t , A
E
t ), AC

t is the indicator of remaining uncensored by time t and AE
t is

the exposure of interest at time t. In the case of a survival outcome or if censoring
exists, Zt,Rt, Lt are encoded with a default value after censoring or death. After a
linear transformation, one may assume that Yt is bounded between 0 and 1. The data
consists of n i.i.d. copies of O.

We consider an example from diabetic care. Suppose within a large primary
healthcare network, all diabetic patients are to receive ongoing education sessions,
regular nutrition counseling (meetings with counselor), in addition to their routine
care with their family physician. Complications are referred to higher level spe-
cialists. Consider a pilot program that integrates simplified referral procedures, en-
hanced curriculum for education sessions and a more streamlined operations for nu-
trition counseling (e.g., less wait time, easier scheduling). Each year, patients may
opt in and out of this program. Suppose we wish to evaluate how much the effect of
the program on long-term control of type 2 diabetes is mediated by changes in at-
tendance of the nutrition counseling meetings. The final outcome of interest is blood
glucose levels at 5 years after diagnosis (Yτ). Observations are taken annually. The
exposure of interest At is whether patient is in the program at year t; the mediator of
interests Zt is whether the patient has utilized his/her minimum nutrition counseling
meetings this year. The time-varying covariates Rt denotes attendance in education
sessions and patient knowledge around disease and self-care (as assessed by survey).
The time-varying covariates Lt denote health-related covariates such as nutritional
status, disease progression, comorbidities, glucose tests results, etc. The covariates
Rt are affected by program participation, and may affect utilization of nutrition coun-
seling (better educated patients may have higher utilization of nutrition counseling)
as well as subsequent disease progression and nutritional status. The covariates Lt
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are affected by current and previous program participation and patient engagement
(some captured in Rt and Zt), and will affect subsequent program participation and
patient engagement. Therefore, there are time-varying confounders of the exposure-
outcome relationship, as well as time-varying exposure-induced confounders of the
mediator-outcome relationship.

From here on, for any 1 ≤ t ≤ τ and a time-dependent variable V , we will
use the boldface Vt to denote the vector (V1, . . . ,Vt), use Vs,t to denote the vec-
tor (Vs, . . . ,Vt). When referring to the entire vector Vτ, we will also use the short-
hand V. Degenerate indices such as V−1 signify the empty set. We encode the time-
ordering of the variables using the following SCM (Pearl 2009a):

L0 = f (UL0 ),

At = fAt (At−1,Rt−1,Zt−1,Lt−1,UAt ),

Rt = fRt (At,Rt−1,Zt−1,Lt−1,URt ),

Zt = fZt (At,Rt,Zt−1,Lt−1,UZt ),

Lt = fLt (At,Rt,Zt,Lt−1,ULt ).

In words, within each time point, we assume the temporal relation between the mea-
sured variables are exposure, then covariates Rt, then mediator, then covariates Lt,
then outcome. For each variable V , the model posits that V is an unknown determin-
istic function of all variables preceding it, and some unmeasured exogenous factors.
It is important to note that our formulation, identifying expression, and proposed
estimators can be adapted to other choices of temporal ordering.

The observed data structure is generated from the above structural equations
model without any intervention, and the likelihood of O ∼ P0 can be factored into
the following conditional probabilities according to that time-ordering:

p0(O) = p0,L0 (L0)

×
τ∏

t=1

(
p0,A(At | At−1,Rt−1,Zt−1,Lt−1)p0,R(Rt | At,Rt−1,Zt−1,Lt−1)

× p0,Z(Zt | At,Rt,Zt−1,Lt−1)p0,L(Lt | At,Rt,Zt,Lt−1

)
. (17.1)

The conditional densities of At, Rt, Zt and Lt can depend on t, although we sup-
pressed it in the above notation. In the case of a survival outcome or if censoring
exists, subsequent At,Zt,Rt, Lt are assigned a default value with probability 1 after
censoring or death, and therefore do not contribute to the likelihood.

17.1.1 Counterfactual Outcome Under Conditional Mediator
Distribution

Let a and a′ be two possible exposure regimens. Let

Γa′
t (zt | rt, zt−1, lt−1) ≡ p

(
Zt(a′) = zt | Rt(a′) = rt,Zt−1(a′) = zt−1,Lt−1(a′) = lt−1

)
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denote the conditional probabilities of the mediators at t ≥ 1, if the exposure
had been set to A = a′ in the population. At each time t, within each stratum
(rt, zt−1, lt−1), this provides a random draw of Zt ∼ Γa′

t . For convenience, we will
denote Γ̄a′ =

(
Γa′

1 , . . . , Γ
a′
τ

)
.

Consider an intervention on the structural equations model to statically set
At = at and randomly draw Zt ∼ Γa′

t . For Xt ∈ {Rt, Lt}, t ≥ 1, we will write Xt(a, Γ̄a′ )
to denote the corresponding covariates resulting from this intervention. In terms of
an ideal experiment, the data would be generated as follows. At baseline, we mea-
sure the covariates L0 (say L0 = l0). At t = 1, intervene to set A1 = a1, and measure
the resulting covariates R1(a, Γ̄a′ ) (say it’s measured to be r1). Then, intervene to
draw Z1 according Γa′

1 (· | l0, r1). Suppose we have drawn value z1, then we measure
the resulting covariates L1(a, Γ̄a′ ) (say it’s measured to be l1). At time t = 2, inter-
vene to set A2 = a2; measure the resulting covariates R2(a, Γ̄a′ ) (say it’s measured to
be r2); intervene to draw Z2 according to Γa′

2 (· | l0, r1, z1, l1, r2); measure the result-
ing covariates L2(a, Γ̄a′ ). So on. At the end of the experiment, we denote the final
outcome as Yτ(a, Γ̄a′ )—this is the outcome if exposures were set to fixed values a
and the mediators were set to have conditional distribution Γa′

t . In contrast to the
traditional nonrandom intervention formulation, Γa′

t is not the would-be mediator
on the same person had she been under a different exposure, but simply a random
variable whose distribution is specified by a given conditional probability function
Γa′

t and the person’s accruing history.
Let’s illustrate this ideal experiment with the motivating example. Suppose a =

1 denotes program participation throughout the study, and a′ = 0 denotes non-
participation. Under the intervention described in the above experiment, at time t =
1, a person L0 = l0 is assigned to the program at year 1 A1 = 1, his education
session attendance and knowledge attainment R1(a, Γ̄a′ ) is a consequence of this
participation (say R1 is likely to be high attendance and high attainment as a result of
program). His nutrition counseling utilization Z1 ∼ Γ0

1 will be that of a person with
his same baseline characteristics l0 and his high diabetes education, but who did not
participate in the program. His disease progress, nutritional status and comorbidities
L1(a, Γ̄a′ ) would be a consequence of his baseline l0, his program participation A1 =

1, his high diabetic education, and of this counseling utilization pattern (Γ0
1). Hence,

the final counterfactual Yτ(1, Γ̄0) is the outcome of a person participating in the
program, but has the nutrition counseling utilization pattern of an individual sharing
his baseline characteristics, disease progression and comorbidities development, and
diabetic education, but who otherwise did not participate in the program.

17.1.2 Causal Parameters and Identifiability

From the above formulation, we define as the conditional mediation formula:

E
[
Yτ(a, Γ̄a′ )

]
. (17.2)
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To contrast the effects of two exposure regimens on an outcome at time τ, the cor-
responding natural indirect effect is defined as

E
[
Yτ(1, Γ̄

1)
]
− E

[
Yτ(1, Γ̄

0)
]
, (17.3)

and the natural direct effect is

E
[
Yτ(1, Γ̄

0)
]
− E

[
Yτ(0, Γ̄

0)
]
. (17.4)

These two effects provide a decomposition of the total effect

E
[
Yτ(1, Γ̄

1)
]
− E

[
Yτ(0, Γ̄

0)
]
.

As we will see in the next section, this total effect is the same mathematical quantity
as the traditional total effect measure E [Yτ(1)]−E [Yτ(0)], where Yτ(a) is the would-
be outcome under exposure A = a and no intervention on Z.

In our illustrative example, the pilot program can impact disease progression as a
result of increased diabetic education among patients, increased utilization of nutri-
tion counseling, either due to more streamlined operations or due to better educated
patients. Suppose compared to other factors, program participation has large impact
on increased R1 (better diabetic-educated patients). Then the variable R1(1, Γ̄0) = r1

would be relatively high, and Z2 ∼ Γ0
2(l0, r1) would be the nutrition counseling uti-

lization of an individual who did not participate in the program, but shares same
baseline characteristics L0 = l0 and has the same high diabetes education. Suppose
the program’s more streamlined nutrition counseling operations has large impact
on increased utilization of this service, then Γ0

2(l0, r1) would be heavily distributed
around lower utilization and Γ1

2(l0, r1) would be distributed around higher utiliza-
tion for the same individual characterized by (l0, r1). Subsequently, L1(1, Γ̄0) vs
L1(1, Γ̄1) would be the nutritional status and disease progression of individuals with
the same baseline l0, diabetes education level r1, but with lower vs higher nutrition
counseling utilization patterns as a result of programmatic improvements. Then, the
indirect effect E

[
Yτ(1, Γ̄0)

]
− E

[
Yτ(1, Γ̄1)

]
would capture the indirect effect (on dis-

ease progression) of differential nutrition counseling utilization due to program’s
streamlined operation of this service, but not due to program’s effect on differential
demand for nutrition counseling as a result of better diabetes-educated patients. So
this indirect effect compares only the paths from exposures (program) into media-
tors (nutrition counseling utilization), but not from exposures into covariates (patient
education) into mediators. Dual to this, the direct effect E

[
Yτ(1, Γ̄0)

]
−E

[
Yτ(0, Γ̄0)

]

capture the paths from exposure into final outcome (diabetes control), from exposure
into covariates into final outcome, as well as the paths from exposure into covariates
into mediator into final outcome. In our example, this last set of paths would be
the differential effect on diabetes progression due to increased demand for nutrition
counseling as a result of better educated patients.

To proceed with the identifiability result, let us denote Lt(a, z) the counterfactual
covariate at time t under an intervention to set A = a and Z = z. The identifiability
of the corresponding causal parameters only rely on the Sequential Randomization
Assumptions of Robins (1986) and positivity assumptions.
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Lemma 17.1. Suppose the following assumptions hold

A1. (Rs≥t(a′),Zs≥t(a′),Ls≥t(a′)) ⊥ At | At−1,Rt−1,Zt−1,Lt−1.
A2. (Rs≥t(a, z),Ls≥t(a, z)) ⊥ At | At−1,Rt−1,Zt−1,Lt−1.

In words, A1 and A2 require that conditional on observed history, there are no
unmeasured confounders of the relationship between each exposure At and all
its subsequent covariates and mediators, i.e. At is randomized conditional on
observed history.

A3. (Rs>t(a, z),Ls≥t(a, z)) ⊥ Zt | At,Rt,Zt−1,Lt−1. Conditional on observed history,
there are no unmeasured confounders of the relationship between each medi-
ator Zt and all its subsequent covariates, i.e. Zt is randomized conditional on
observed past.

A4. Positivity: for all t ≥ 1 and all r, l, z, (i) if p0(a′t−1, rt−1, zt−1, lt−1) > 0,
then p0(a′t | a′t−1, rt−1, zt−1, lt−1) > 0; (ii) if p0(at−1, rt−1, zt−1, lt−1) > 0, then
p0(at | at−1, rt−1, zt−1, lt−1) > 0; (iii) If p0(rt | at, rt−1, zt−1, lt−1) > 0, then
p0(rt | a′t , rt−1, zt−1, lt−1) > 0; (iv) If p0(lt | at, rt, zt, lt−1) > 0, then p0(lt |
a′t , rt, zt, lt−1) > 0; (v) if p0(at, rt, zt−1, lt−1) > 0 and p0(zt | a′t , rt, zt−1, lt−1) > 0,
then p0(zt | at, rt, zt−1, lt−1) > 0.
Conditions (i) and (ii) require that the exposures of interest are observed within
each supported covariate and mediator stratum; (iii) and (iv) require that co-
variate values supported under A = a are also supported under A = a′, and (v)
requires that the mediator values supported under A = a′ are also supported
under A = a.

Then the conditional mediation formula in (17.2) identifies to

E
[
Yτ(a, Γ̄a′ )

]
= Ψa,a′ (P0)

≡
∑

r,l,z

yτ p0,L0 (l0)

×
τ∏

t=1

p0,R(rt | at, rt−1, zt−1, lt−1)p0,Z(zt | a′t , rt, zt−1, lt−1)p0,L(lt | at, rt, zt, lt−1).

Consequently, the natural indirect and direct effects are respectively identified to

E
[
Yτ(1, Γ̄

1)
]
− E

[
Yτ(1, Γ̄

0)
]
= Ψ1,1(P0) − Ψ1,0(P0) (17.5)

E
[
Yτ(1, Γ̄

0)
]
− E

[
Yτ(0, Γ̄

0)
]
= Ψ1,0(P0) − Ψ0,0(P0). (17.6)

Proof. In Sect. A.2.

As we alluded to in our earlier discussion, when a = a′, E
[
Yτ(a, Γ̄a)

]
= Ψa,a(P0) =

E [Yτ(a)]. Therefore, the proposed natural direct and indirect effects provide a de-
composition of the total effect

E [Yτ(1)] − E [Yτ(0)]

=
(
E

[
Yτ(1, Γ̄

1)
]
− E

[
Yτ(1, Γ̄

0)
])
+

(
E

[
Yτ(1, Γ̄

0)
]
− E

[
Yτ(0, Γ̄

0)
])
.
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The consistency assumption is typical of causal inference under a counterfactual
framework. The positivity assumptions (i) and (ii) are typical in the study of total
exposure effects, whereas (iii)–(v) are unique to the proposed conditional random
intervention. Assumptions A1–A3 are the so-called strong sequential randomization
assumptions.

In our illustrative example, at a period t, assumptions A1 and A2 requires that
the history of program participation, nutrition counseling and covariates (diabetes
education, disease progression, comorbidities, nutritional status, lifestyle factors,
etc.) account for all the confounders of the relationship between current program
participation and current and future covariates and nutrition counseling utilization.
Assumption A3 requires that current program participation, and previous history of
program participation, nutritional service utilization and other covariates, account
for all the confounders of the relationship between current nutrition counseling uti-
lization and current and future covariates. These assumptions would be violated if,
for example, there was an unrecorded event that would affect one’s current program
participation as well as current and future nutrition counseling utilization and co-
variates.

17.1.3 Longitudinal Mediation Analysis with Marginal vs
Conditional Random Interventions

An alternative formulation of longitudinal mediation analysis has been proposed
in VanderWeele and Tchetgen Tchetgen (2017) using random interventions with
marginal mediator distributions (conditioning only on baseline covariates). Specif-
ically, let Ga′

t be the marginal distribution of Zt (conditioning on baseline L0) un-
der an ideal experiment setting A = a′, i.e. Ga′

t (zt | L0) = pZ(a′)(zt | L0). Let
Ga′ ≡ (Ga′

1 , . . . ,G
a′
τ ). In our illustrative example, to generate Yτ(1,G0), at time t = 1,

a person with baseline characteristic L0 = l0 is set to participate in the program, and
his diabetes education level is high as a result. But his nutritional service utiliza-
tion Z1 ∼ G0

1 will be that of a person with same the baseline L0 = l0 but who does
not participate in the program and has a resulting low diabetes education level. His
disease progression L1(1,G0) = l1 would be a consequence of his L0, his program
participation, his resulting high diabetes education level, and his counseling service
utilization pattern G0

1. So on. The difference in the formulation of Yτ(a,Ga′ ) and
the proposed Yτ(a, Γ̄a′ ) lies in that at each time t, Ga′

t is drawn as that of a random
person with A = a′ and sharing the same baseline (i.e., marginalizing over all time-
varying covariate histories under the influence of A = a′), whereas Γa′

t is drawn as
that of a random person with A = a′, and sharing the same baseline and same time-
varying covariate history (which are under the influence of A = a). This difference
in formulation has implications for applicability, interpretation and identifiability.
We discuss each in turn.

In a survival setting, the marginal-intervention counterfactual Yτ(a,Ga′ ) is not
well defined since a person who is still alive under A = a would be allowed to draw
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the mediator value of someone under A = a′ that has died. On the other hand, by
conditioning on the person’s own time-varying history, the conditional-intervention
counterfactual Yτ(a, Γ̄a′ ) circumvents this problem and thus is well defined in the
survival setting. Beyond formal definition, such time-varying covariate histories still
need to be well-supported under both exposure regimens, as is apparent in the iden-
tifiability conditions for Yτ(a, Γ̄a′ ).

Consider now a nonsurvival setting. In our illustrative example, suppose program
participation increases patients’ diabetic education through its enhanced curriculum,
and increases use of nutrition counseling utilization through better patient education
and more streamlined counseling services, and both education and nutrition counsel-
ing have equal contribution to changing disease progression. Then, at time t = 1, un-
der both interventions, the patient education R1(1, Γ̄0) and R1(1,G0) would be high
due to program participation A1 = 1. But the nutritional service utilization G0

1 would
be that of a nonparticipant who has a low diabetic education due to his nonparticipa-
tion in the program (e.g., less demand for nutrition counseling due to limited patient
knowledge), whereas the nutritional service utilization Γ0

1 would be that of a non-
participant who has a high diabetic education but who otherwise did not participate
in the program. Therefore, the indirect effect E

[
Yτ(1,G0)

]
− E

[
Yτ(1,G1)

]
would

capture the effect due to differential nutritional service utilization as a result of both
the program’s streamlined nutrition counseling services and the increased demand
for these services due to program’s impact in increasing patient knowledge. It would
capture effect due to the paths from program into nutrition service utilization as well
as the paths from program into patient education into nutritional service utilization.
Contrast this with the indirect effect E

[
Yτ(1, Γ̄0)

]
−E

[
Yτ(1, Γ̄1)

]
, which captures the

effect due to differential nutritional service utilization as a result of the program’s
streamlined nutrition counseling services (but not of increased demand due to better
education). Dual to the indirect effect, the direct effect E

[
Yτ(1,G0)

]
− E

[
Yτ(0,G0)

]

capture the effects due to direct paths from program into disease progression and the
paths from program into patient education into disease. Contrasting these with the
definitions and motivating example in Sect. 17.1.2, we see that the different media-
tion formulations in this longitudinal setting allows one to ask different mediation
questions, as the increased complexity of the data structure also offers more options
for potential questions of interest.

We saw in (17.5) that E
(
Yτ(a, Γ̄a)

)
= E (Yτ(a)) as mathematical quantities,

though under different ideal experiment formulation. On the other hand, as can de-
rived from VanderWeele and Tchetgen Tchetgen (2017),

E
(
Yτ(a,Ga′ )

)
=

∑

r,l,z

{
yτp0,L0 (l0)

τ∏

t=1

p0,R(rt | at, rt−1, zt−1, lt−1)p0,L(lt | at, rt, zt, lt−1)

×
[ ∑

r′ ,l′
τ−1

τ∏

t=1

p0,R(r′t | a′t , r
′
t−1, zt−1, l′t−1)p0,Z(zt | a′t , r

′
t , zt−1, l′t−1)

τ−1∏

t=1

p0,L(l′t | a′t , r
′
t , zt, l′t−1)

]}
.
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Therefore, E (Yτ(a,Ga)) does not equal E (Yτ(a)), in the presence of time-varying
confounding. Hence, the total effect measure E

(
Yτ(1,G1)

)
− E

(
Yτ(0,G0)

)
is an

alternative quantification of the total effect than the traditional E (Yτ(1))−E (Yτ(0)).
Hence, the choice of formulation also depends on which total effect decomposition
one wishes to study.

While the proposed conditional distribution intervention provides more flexibil-
ity by allowing application in survival setting and decomposition of the standard
total effect, this, however, comes at the expense of stronger identifiability condi-
tions. To identify the marginal intervention parameter E

(
Yτ(a,Ga′ )

)
, one can use

the weaker versions of assumptions A2–A3 which only require no unmeasured
confounding with respect to the final outcome of interest (as opposed to all sub-
sequent covariates). For instance, in our example, if there was an unrecorded short-
term event (e.g., short-term unemployment) that would affect one’s current program
participation as well as current disease status, lifestyle, nutritional service utiliza-
tion, but not the final outcome, then E

(
Yτ(a,Ga′ )

)
would still be identified, whereas

E
(
Yτ(a, Γ̄a′ )

)
would not. Similarly, if there is unmeasured confounder of program

participation (or nutritional counseling utilization) and patient diabetic education Rt,
but not of the final outcome, then E

(
Yτ(a,Ga′ )

)
would still be identified, whereas

E
(
Yτ(a, Γ̄a′ )

)
would not. Therefore, in nonsurvival settings, the tradeoff between

identifiability and effect interpretation and total effect decomposition would need to
be carefully weighted. The rest of this chapter is devoted to the statistical inference
of Ψa,a′ (P0).

17.2 Efficient Influence Curve

In this section, we establish a general semiparametric inference framework for these
parameters. In particular, we derive the Efficient Influence Curves (EIC) of (17.5),
(17.6) and (17.5) under a (locally saturated) semiparametric model, and establish
their robustness properties. For a given pathwise-differentiable parameter Ψ , under
certain regularity conditions, the variance of the EIC of Ψ is a generalized Cramer-
Rao lower bound for the variances of the influence curves of asymptotically linear
estimators of Ψ . Therefore, the variance of the EIC provides an efficiency bound
for the regular and asymptotically linear (RAL) estimators of Ψ . Moreover, under
a locally saturated model, the influence curve of any RAL estimator is in fact the
EIC. We refer the reader to Bickel et al. (1997b) for general theory of efficient
semiparametric inference.

Nested Expectation Representation of the Conditional Mediation Formula. Let
M denote a locally saturated semiparametric model containing the true data gen-
erating distribution P0. Following an important observation by Bang and Robins
(2005), we define recursively the following functionals for t = τ, . . . , 1, at P ∈ M.
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Q̄a,a′

Rτ+1
≡ Yτ. Then, for each t = τ, . . . , 1:

Q̄a,a′

Lt
(Rt,Zt,Lt−1) ≡

∑

lt

Q̄a,a′

Rt+1
(Rt,Zt,Lt−1, lt) p (lt | At = at,Rt,Zt,Lt−1)

Q̄a,a′

Zt
(Rt,Zt−1,Lt−1) ≡

∑

zt

Q̄a,a′

Lt
(Rt,Zt−1, zt,Lt−1) p

(
zt | At = a′t ,Rt,Zt−1,Lt−1

)

Q̄a,a′

Rt
(Rt−1,Zt−1,Lt−1) ≡

∑

rt

Q̄a,a′

Zt
(Rt−1, rt,Zt−1,Lt−1)

× p (rt | At−1 = at−1,Rt−1,Zt−1,Lt−1) . (17.7)

Evaluating these functionals at the data generating P0, we obtain an nested
expectation-based representation of the identifying expression (17.5):

Ψa,a′ (P0) = EP0

[
Q̄a,a′

R1
(P0) (L0)

]
. (17.8)

We will use Q̄a,a′ to denote the nested expectations
(
Q̄a,a′

Lt
, Q̄a,a′

Zt
, Q̄a,a′

Rt
: t ≥ 1

)
. We

use Pn to denote the empirical distribution of n i.i.d. copies of O ∼ P0. Given a
function O �→ f (O), Pn f denotes the empirical mean Pn f ≡ 1

n

∑n
i=1 f (Oi).

Efficient Influence Curves for The Mediation Formula and Direct and Indirect
Effects. The mediation formula in (17.5) can be considered as the value at P0 of
the map P �→ Ψa,a′ (P) ≡ EP

[
Q̄a,a′

R1
(P) (L0)

]
on M. In particular, this map depends

on P through Q̄a,a′ , i.e. Ψa,a′ (P) = Ψa,a′ (Q̄a,a′ ). Similarly, the natural direct effect in
(17.6) and the natural indirect effect in (17.5) are, respectively, the values at P0 of
the maps P �→ ΨNDE(P) = Ψ1,0(P)−Ψ0,0(P) and P �→ ΨNIE(P) = Ψ1,1(P)−Ψ1,0(P).

Theorem 17.1 (Efficient Influence Curve). Let Ψa,a′ : M → R be defined as
above. Suppose at P ∈ M the conditional probabilities of At, Rt, Zt, Lt, under the
likelihood decomposition (17.1), are all bounded away from 0 and 1. The Efficient
influence curve of Ψa,a′ at P is given by D∗,a,a′ (P) ≡ D∗,a,a′ (P, Ψa,a′ (Q̄a,a′ )), with

D∗,a,a′ (P, ψ) ≡
τ∑

t≡1

(
Da,a′

Lt
(P) + Da,a′

Zt
(P) + Da,a′

Rt
(P)

)
+ Da,a′

L0
(P, ψ), (17.9)

where

Da,a′

Lt
(P) ≡ Ha,a′

Lt

{
Q̄a,a′

Rt+1
(Rt,Zt,Lt) − Q̄a,a′

Lt
(Rt,Zt,Lt−1)

}

Da,a′

Zt
(P) ≡ Ha,a′

Zt

{
Q̄a,a′

Lt
(Rt,Zt,Lt−1) − Q̄a,a′

Zt
(Rt,Zt−1,Lt−1)

}

Da,a′

Rt
(P) ≡ Ha,a′

Rt

{
Q̄a,a′

Zt
(Rt,Zt−1,Lt−1) − Q̄a,a′

Rt
(Rt−1,Zt−1,Lt−1)

}

Da,a′

L0
(P, ψ) ≡ Q̄R,a,a′

t=1 (L0) − ψ,
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with

Ha,a′

Lt
≡ I(At ≡ at)

∏t
j≡1 pA

(
a j | a j−1,R j−1,Z j−1,L j−1

)
t∏

j≡1

pZ(Zj | a′j,R j,Z j−1,L j−1)

pZ(Zj | a j,R j,Z j−1,L j−1)
,

(17.10)

Ha,a′

Zt
≡

I(At ≡ a′t)∏t
j≡1 pA(a′j | a′j−1,R j−1,Z j−1,L j−1)

×
t−1∏

j≡1

pL(Lj | a j,R j,Z j,L j−1)

pL(Lj | a′j,R j,Z j,L j−1)

t∏

j≡1

pR(Rj | a j,R j−1,Z j−1,L j−1)

pR(Rj | a′j,R j−1,Z j−1,L j−1)
(17.11)

Ha,a′

Rt
≡ I(At ≡ at)

∏t
j≡1 pA

(
a j | a j−1,R j−1,Z j−1,L j−1

)
t−1∏

j≡1

pZ(Zj | a′j,R j,Z j−1,L j−1)

pZ(Zj | a j,R j,Z j−1,L j−1)
,

(17.12)

Moreover, D∗,a,a′ (P) is a multiply robust estimating function of Ψa,a′ (P) in the
sense that if one of the following holds:

R1. The conditional probabilities pR, pL and pZ correctly specified;
R2. The conditional probabilities pA , pR and pL are correctly specified.
R3. The conditional probabilities pA and pZ are correctly specified.

then EP0 D∗,a,a′ (P) = 0 implies Ψa,a′ (P) = Ψa,a′ (P0).

Proof. See Sect. A.2.

It is easy to note that if a = a′, then (17.9) equals the efficient influence curve for
the overall treatment effect of a time varying exposure (see e.g., van der Laan and
Gruber 2012). The EICs of both the NDE and NIE can be derived from (17.9) by a
simple application of the delta method. We state them in a corollary without proof.

Corollary 1 Suppose the conditions in Theorem 17.1 hold for a, a′ ∈ {0, 1}. The
efficient influence curve of the natural direct effect is given by

D∗,NDE(P)(O) = D∗,1,0(P) − D∗,0,0(P),

and the efficient influence curve of the natural indirect effect is given by

D∗,NIE(P)(O) = D∗,1,1(P) − D∗,1,0(P).

Moreover, D∗,NDE and D∗NIE satisfy the same robustness condition in Theo-
rem 17.1 for a = 0, 1 and a′ = 0, 1.

The variances VarP0 (D∗,a,a′ (P0)), VarP0 (D∗,NDE(P0)), and VarP0 (D∗,NIE(P0)) are
generalized Cramer-Rao lower bounds for the asymptotic variances of the RAL
estimators of Ψa,a′ (P0), ΨNDE(P0), and ΨNIE(P0), respectively. Estimators which
satisfy the EIC equations will also inherit their robustness properties. We will
present four estimators in the next section, two of which are robust and locally
efficient.
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Notes on Estimating Components of the Efficient Influence Curve. The param-
eter of interest (17.5) and the corresponding EIC (17.9) are represented in terms
of conditional probabilities pR, pL, pZ , pA. In applications where the covariates or
the mediator may be high-dimensional, estimating these conditional densities may
be difficult. To proceed with the estimation in these situations, firstly we note that
due to the law of iterated expectations

Q̄a,a′

Lt
(Rt,Zt,Lt−1) = EP

[
Q̄a,a′

Rt+1
(Rt,Zt,Lt) | Rt,Zt,Lt−1

]

Q̄a,a′

Zt
(Rt,Zt−1,Lt−1) = EP

[
Q̄a,a′

Lt
(Rt,Zt,Lt−1) | Rt,Zt−1,Lt−1

]

Q̄a,a′

Rt
(Rt−1,Zt−1,Lt−1) = EP

[
Q̄a,a′

Zt
(Rt,Zt−1,Lt−1) | Rt−1,Zt−1.Lt−1

]
(17.13)

Therefore, one may directly estimate the expectation Q̄a,a′

Lt
(Rt,Zt,Lt−1) by regress-

ing Q̄a,a′

Rt+1
(Rt,Zt,Lt) on the covariates (Rt,Zt,Lt−1) using a parametric or data-

adaptive algorithm, without estimating the conditional probabilities of Lt. Similarly
for the expectations corresponding to Zt and Rt. Secondly, we define

γ1,s, j(As | As−1,R j,Z j,L j−1) ≡ p(As | As−1,R jZ j,L j−1)

and
γ2,s, j(As | As−1,R j,Z j−1,L j−1) ≡ p(As | As−1,R j,Z j−1,L j−1).

Then, we can rewrite the expressions in the EIC as

Ha,a′

Lt
=

I(At ≡ at)
∏t

j≡1 pA

(
a j | a j−1,R j−1,Z j−1,L j−1

)

×
t∏

j≡1

j∏

s=1

γ1,s, j(a′s | a′s−1,R jZ j,L j−1)

γ1,s, j(as | as−1,R jZ j,L j−1)

γ2,s, j(as | as−1,R j,Z j−1,L j−1

γ2,s, j(a′s | a′s−1,R j,Z j−1,L j−1)

Ha,a′

Rt
=

I(At ≡ at)
∏t

j≡1 pA

(
a j | a j−1,R j−1,Z j−1,L j−1

)

×
t−1∏

j≡1

j∏

s=1

γ1,s, j(a′s | a′s−1,R jZ j,L j−1)

γ1,s, j(as | as−1,R jZ j,L j−1)

γ2,s, j(as | as−1,R j,Z j−1,L j−1

γ2,s, j(a′s | a′s−1,R j,Z j−1,L j−1)

and

Ha,a′

Zt
=

I(At ≡ a′t)∏t
j≡1 pA(a′j | a′j−1,R j−1,Z j−1,L j−1)

×
t−1∏

j≡1

j∏

s=1

γ1,s, j(a′s | a′s−1,R jZ j,L j−1)

γ1,s, j(as | as−1,R jZ j,L j−1)

×
t∏

j≡1

pA(a′j | a′j−1,R j−1,Z j−1,L j−1)

pA(a j | a j−1,R j−1,Z j−1,L j−1)

j∏

s=1

γ2,s, j(as | as−1,R j,Z j−1,L j−1

γ2,s, j(a′s | a′s−1,R j,Z j−1,L j−1)
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Note that these conditional probabilities of As differ from the conditional (and pos-
sibly censoring) probabilities encoded by pA in that the γs are not conditioning on
parents of As. However, as we shall see in the following lemma, they offer an alter-
native to obtain robust estimators that are more suitable to real life settings where
Lt and/or Zt may be high dimensional. We write γ =

(
γ1,s,t, γ2,s,t : 1 ≤ t ≤ τ, s ≤ t

)
.

Based on this representation, the robustness conditions in Theorem 17.1 can be gen-
eralized.

Corollary 2 Let γ be defined as above. If one of the following holds,

R1. The nested regressions Q̄a,a′ , as represented in (17.13), are correctly specified;
R2. pA, Q̄a,a′

Rt
, Q̄a,a′

Lt
, and either (pL, pR) or γ are correctly specified;

R3. pA, Q̄a,a′

Zt
, and either pZ or γ are correctly specified,

then EP0 D∗,a,a′ (P) = 0 implies Ψa,a′ (P) = Ψa,a′ (P0).

17.3 Estimators

In this section, we develop an nested nontargeted substitution estimator, an IPW
estimator and a TMLE for the mediation functional (17.5); the estimators for the
natural direct and indirect effects can be obtained by taking the corresponding dif-
ferences. The first two estimators are consistent if the estimates of all the rele-
vant components of P0 are consistent. On the other hand, the TMLE satisfies the
efficient influence curve equation, and hence remains unbiased under the model
mis-specifications described in Theorem 17.1. Under appropriate regularity con-
ditions, if all the nuisance parameters are consistently estimated, then TMLE will
be asymptotically efficient (e.g., Bickel et al. 1997b; van der Laan and Robins 2003;
van der Laan and Rose 2011). Let pn,A, pn,L, pn,R and pn,Z denote the estimators of
the conditional probabilities. We will use shorthand p̄n to denote these estimators.
Let Q̄a,a′

n ≡
(
Q̄a,a′

n,Lt
, Q̄a,a′

n,Zt
, Q̄a,a′

n,Rt
: t

)
denote the estimators of the nested expectations.

These may be density-based estimators that are obtained by plugging in the density
estimates pn,L, pn,R and pn,Z into the definition of the expectations in (17.7), or they
may be regression-based estimators that are obtained using the relations in (17.13).

17.3.1 Nontargeted Substitution Estimator

The identification formula in (17.5) which defines that statistical estimand is gen-
erally known as the g-computation formula (Robins 1986). Readily, it delivers a
nontargeted substitution estimator, which is generally known as the g-computation
estimator. To avoid estimation of densities, one can recast it in terms of Q̄a,a′ , as they
are represented (17.8) and (17.13), and obtain a nontargeted substitution estimator
Ψa,a′ (Q̄a,a′

n ) of Ψa,a′ (P0), through nontargeted estimates of the regressions Q̄a,a′
n .
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To estimate the series of nested conditional expectations Q̄a,a′ (P0), we can use the
following algorithm, which exploits the relations in (17.13) to make use of available
regression techniques in the literature.

1. Initiate Q̄Rτ+1 a, a′ ≡ Yτ. In our example this is the final glucose level, one may
have dummy values for those that were lost to follow up.

2. At each t = τ, . . . 1, in decreasing order, we would have obtained estimators
Q̄a,a′

n,Rt+1
from the previous step. We now obtain Q̄a,a′

n,Lt
, Q̄a,a′

n,Zt
, and Q̄a,a′

n,Rt
, in that order,

as follows:

(a) Regress Q̄a,a′

n,Rt+1
(Rt,Zt,Lt) on observed values (At,Rt,Zt,Lt−1) among ob-

servations that remained uncensored at time t. In our example, the inde-
pendent variables in this regression would be histories of program partici-
pation, diabetic education, and nutrition counseling attendance up to time
t and disease progression and other health-related variables up to t − 1.
We then evaluate the fitted function at the observed mediator and covari-
ates histories Rt,Zt,Lt−1 and the intervened exposure At = at for these un-
censored observations. This can be accomplished by creating a new dataset
for these uncensored units with the observed covariates and mediators,
but with At set to at. This results in the estimates Q̄a,a′

n,Lt
(Rt,Zt,Lt−1) =

E
[
Q̄a,a′

n,Rt+1
(Rt,Zt,Lt) | At = at,Rt,Zt,Lt−1

]
for those uncensored individuals.

(b) Regress the newly minted Q̄a,a′

n,Lt
(Rt,Zt,Lt−1) on At,Rt,Zt−1,Lt−1 among ob-

servations that remained uncensored at time t. In our example, the indepen-
dent variables in this regression would be histories of program participa-
tion and diabetic education up to time t, and nutrition counseling attendance
disease progression and other health-related variables up to t − 1. We then
evaluate the fitted function at the observed mediator and covariate histories
Rt,Zt−1,Lt−1 and the intervened income levels At = a′t for these uncensored
observations. This results in the estimates Q̄a,a′

n,Zt
(Rt,Lt−1,Zt−1).

(c) Regress the newly obtained Q̄a,a′

n,Zt
(Rt,Lt−1,Zt−1) on At,Rt−1,Zt−1,Lt−1

among observations that remained uncensored at time t. In our example,
the independent variables in this regression would be histories of program
participation up to time t, and diabetic education, nutrition counseling at-
tendance disease progression and other health-related variables up to t − 1.
We then evaluate the fitted function at the observed mediator and covariate
histories Rt−1,Zt−1,Lt−1 and the intervened income levels At = a′t for these
uncensored observations. This results in the estimates Q̄a,a′

n,Rt
(Rt−1,Lt−1,Zt−1).

3. After running the algorithm in step (2) sequentially from t = τ down to t = 1,
we now have Q̄a,a′

n,R1
(L0) for each of the n observations.

The nontargeted substitution estimator is given by

ψNT sub
n ≡ Ψa,a′ (Q̄a,a′

n ) =
1
n

n∑

i=1

Q̄a,a′

n,R1
(L0,i) (17.14)
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Consistency of ψa,a′

n,NT sub relies on consistency of Q̄a,a′
n . Correct specification of

Q̄a,a′ (P0) under a finite dimensional parametric model is possible only in limited
applications. Alternatively, we may use machine learning algorithms, such as super
learner. This option is more enticing, especially when used with the regression-
based approach, since there are more data-adaptive techniques available to estimate
the conditional mean of a binary variable via regression. Variance estimates of the
estimator based on a nonparametric bootstrap are not supported by theory and can
be expected to be inconsistent. Theoretical results on the asymptotic behavior, such
as a central limit theorem, of the resulting estimator Ψa,a′ (Q̄a,a′

n ) are not available,
and, there is no reason to expect that such a data-adaptive g-computation estima-
tor has a limit distribution. Moreover, a nontargeted estimator Q̄a,a′

n of Q̄a,a′ (P0) is
obtained by minimizing a global loss function for Q̄a,a′ (P0), not for Ψa,a′ (P0). This
means, in particular, that the bias-variance tradeoff in Q̄a,a′

n is optimized for the high-
dimensional nuisance parameter Q̄a,a′ (P0), instead of a much lower-dimensional pa-
rameter of interest Ψa,a′ (P0). As a consequence, the mean squared error of the non-
targeted substitution estimator is too high: e.g., such a data-adaptive g-computation
estimator does converge at a lower rate than n−1/2 under the same conditions under
which the proposed targeted estimator will be asymptotically linear and efficient
(and thus converge at the parametric rate n−1/2). The proposed targeted estimator in
Sect. 17.3.3 aims to address these two issues by providing a substitution estimator
that is asymptotically linear (under appropriate regularity conditions), and optimizes
the bias-variance tradeoff of Q̄a,a′

n towards Ψa,a′ (P0) via an updating step.

17.3.2 IPW Estimator

Instead of estimating the conditional expectations Q̄a,a′ (P0), one may wish to em-
ploy the researcher’s knowledge about the treatment assignment and mediator den-
sities. To this end, consider the following function:

DIPW,a,a′ (pA, pZ)(O)

≡ Yτ
I(Aτ = aτ)∏τ

j=1 pA(a j | a j−1,R j−1,Z j−1,L j−1)

τ∏

j=1

pZ(Zj | a′j,R j,Z j−1,L j−1)

pZ(Zj | a j,R j,Z j−1,L j−1)
. (17.15)

Note that

EP0 DIPW,a,a′ (P0)

=
∑

r,z,l

{
yτ

1
∏τ

j=1 p0,A(a j | a j−1, r j−1, z j−1, l j−1)

τ∏

j=1

p0,Z(z j | a′j, r j, z j−1, l j−1)

p0,Z(z j | a j, r j, z j−1, l j−1)

× p0,L0 (l0)
τ∏

t=1

[
p0,A(at | at−1, rt−1, zt−1, lt−1)p0,R(rt | at, rt−1, zt−1, lt−1)
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× p0,Z(zt | at, rt, zt−1, lt−1)p0,L(lt | at, rt, zt, lt−1)
]}

= Ψa,a′ (P0) = 0.

Therefore, given estimators pn,A and pn,Z , the IPW estimator of Ψa,a′ (P0) is
given by

ψIPW
n ≡ 1

n

n∑

i=1

DIPW,a,a′ (pn,A, pn,Z)(Oi). (17.16)

In our example, this estimate can be obtained by taking the weighted average of
the final outcome of all those with observed exposure level Aτ = aτ, using weights

1∏τ
j=1 pA(a j |a j−1,R j−1,Z j−1,L j−1)

∏τ
j=1

pZ (Z j |a′j,R j,Z j−1,L j−1)

pZ (Z j |a j,R j,Z j−1,L j−1) . The factors pA would be the proba-

bilities of having program participation Aj = a j at each time, under the individual’s
covariate (diabetes education and health status) and mediator history, and the fac-
tors pZ are the conditional probabilities of nutritional service utilization at each time,
given the individual’s observed covariates and utilization history, and under the two
program exposures considered.

Consistency of ψIPW
n relies on consistency of pA and pZ . As noted in Sect. 17.2,

if Z is high dimensional, we may replace estimation of the densities pZ with estima-
tion of the conditional probabilities γ·,s,t. These can be estimated by regressing As

onto the corresponding independent variables, for every pair (s, t). This way, using
(17.10), we can rewrite

DIPW,a,a′ (pA, pZ) = DIPW,a,a′ (pA, γ)

= Yτ
I(Aτ ≡ aτ)

∏τ
j≡1 pA

(
a j | a j−1,R j−1,Z j−1,L j−1

)

×
τ∏

j≡1

j∏

s=1

γ1,s, j(a′s | a′s−1,R jZ j,L j−1)

γ1,s, j(as | as−1,R jZ j,L j−1)

γ2,s, j(as | as−1,R j,Z j−1,L j−1

γ2,s, j(a′s | a′s−1,R j,Z j−1,L j−1)
. (17.17)

If a correct parametric model is specified for pA and pZ , then the IPW estimator
is an asymptotically linear estimator; its influence curve involves DIPW,a.a′ plus a
first-order residue due to estimation of pA and pZ , which is part of the parameter
definition. In this case, the influence curve for this residual term can be derived us-
ing the Delta method. In the more reasonable setting that one uses a data-adaptive
estimator of pA and pZ , the IPW-estimator is not expected to be asymptotically
linear. As shown in van der Laan (2014b), it would be necessary to target the es-
timators of pA and pZ (as in TMLE), while important, this is beyond the scope of
this chapter. We will approximate

√
n
(
ψIPW

n − Ψa,a′ (P0)
)

by the sample variance

V̂ar DIPW,a.a′ (pn,A, pn,Z).
Due to its inverse weighting by treatment and censoring probabilities, this estima-

tor is particularly sensitive to near positivity violations. In particular, if the outcome
of interest has a bounded range, the IPW estimator is not guaranteed to stay within
this range when the inverse weights become large. Substitution estimators like the
nontargeted estimator in (17.14) and the next estimator, TMLE, can mitigate this
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problem partly by incorporating global information in the parameter map, however,
but the effect of near positivity violations still takes form of poor smoothing in these
estimators.

17.3.3 TMLE

To maximize finite sample gain and provide more stable estimates in the presence of
near positivity violations, one can make use of the substitution principle. TMLE pro-
vides a substitution-based estimator which also satisfies the EIC equation, thereby
remaining unbiased under model mis-specifications. In a glimpse, our strategy con-
sists of targeted update the initial estimators Q̄a,a′

n of Q̄a,a′ (P0) by minimizing a pre-
specified loss along a least favorable (with respect to Ψa,a′ (P0)) submodel through
Q̄a,a′

n , then we obtain a substitution estimator of the parameter by evaluating Ψa,a′ at
the updated estimator Q̄∗,a,a′

n . A byproduct of this updating procedure is that the p̄n

and Q̄∗,a,a′
n satisfy PnD∗,a,a′

(
Q̄∗,a,a′

n , p̄n

)
= 0, and hence the estimator Ψa,a′ (Q̄∗,a,a′

n ) is
multiply robust, as specified in Theorem 17.1 and Corollary 17.2.

From the nested relationships noted (17.13), to update estimators of Q̄a,a′

Lt
, Q̄a,a′

Zt

and Q̄a,a′

Rt
, we will use for the loss functions

L(Q̄a,a′

Lt
) ≡ −

{
Q̄a,a′

Rt+1
log

(
Q̄a,a′

Lt

)
+ (1 − Q̄a,a′

Rt+1
) log

(
1 − Q̄a,a′

Lt

)}
,

L(Q̄a,a′

Zt
) ≡ −

{
Q̄a,a′

Lt
log

(
Q̄a,a′

Zt

)
+ (1 − Q̄a,a′

Lt
) log

(
1 − Q̄a,a′

Zt

)}
,

L(Q̄a,a′

Rt
) ≡ −

{
Q̄a,a′

Zt
log

(
Q̄a,a′

Rt

)
+ (1 − Q̄a,a′

Zt
) log

(
1 − Q̄a,a′

Rt

)}
. (17.18)

Recall that upon linear transformation, our outcome is bounded between 0 and 1,
and hence these loss functions are well defined. We define the corresponding least
favorable submodels through Q̄a,a′

Lt
, Q̄a,a′

Zt
and Q̄a,a′

Rt
, respectively, to be

Q̄a,a′

Lt
(ε) = expit

(
logitQ̄a,a′

Lt
+ ε

)
,

Q̄a,a′

Zt
(ε) = expit

(
logitQ̄a,a′

Zt
+ ε

)
,

Q̄a,a′

Rt
(ε) = expit

(
logitQ̄a,a′

Rt
+ ε

)
, (17.19)

and note that

∂

∂ε
Ha,a′

Lt
(pA, pZ)L

(
Q̄a,a′

Lt
(ε)

)∣∣∣∣∣
ε=0
= Da,a′

Lt
(Q̄a,a′ , pA, pZ),

∂

∂ε
Ha,a′

Zt
(pA, pL, pR)L

(
Q̄a,a′

Zt
(ε)

)∣∣∣∣∣
ε=0
= Da,a′

Zt
(Q̄a,a′ , pA, pL, pR),

∂

∂ε
Ha,a′

Rt
(pA, pZ)L

(
Q̄a,a′

Rt
(ε)

)∣∣∣∣∣
ε=0
= Da,a′

Rt
(Q̄a,a′ , pA, pZ).
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We are now ready to describe the TMLE algorithm, which will targets the esti-
mation of Q̄a,a′

Lt
, Q̄a,a′

Zt
and Q̄a,a′

Rt
sequentially in order of decreasing t.

1. Obtain estimators pn,A, pn,Z , pn,L, pn,R (if high dimensional settings, estimation of
pn,Z , pn,L, pn,R can be replaced with the estimators γn for γ defined in Sect. 17.2).
These estimators will be used to obtain estimates Ha,a′

n,Lt
, Ha,a′

n,Zt
and Ha,a′

n,Rt
, see

(17.10), (17.11) and (17.12).
2. Initiate Q̄Rτ+1 a, a′ ≡ Yτ.
3. At each t = τ, . . . 1, in decreasing order, we have obtained targeted estimator

Q̄∗,a,a′
n,Rt+1

from a previous step. We now obtain targeted estimator Q̄∗,a,a′
n,Lt

, Q̄∗,a,a′
n,Zt

,

and Q̄∗,a,a′
n,Rt

, in that order, as follows:

(a) Regress Q̄∗,a,a′
n,Rt+1

(Rt,Zt,Lt) on observed values (At,Rt,Zt,Lt−1) among ob-
servations that remained uncensored at time t. We then evaluate the fitted
function at the observed mediator and covariates histories Rt,Zt,Lt−1 and
the intervened exposure At = at for these uncensored observations. This
results in the estimates Q̄a,a′

n,Lt
(Rt,Zt,Lt−1) for those uncensored individuals.

Update this estimate using Q̄∗,a,a′
n,Lt

≡ Q̄a,a′

n,Lt
(εn,Lt ), where

εn,Lt ≡ arg min
ε

PnHa,a′

Lt
( p̄n)L

(
Q̄a,a′

n,Lt
(ε)

)
.

This εn,Lt is the coefficient of a weighted logistic regression of the expectant
Q̄∗,a,a′

n,Rt+1
(Rt,Zt,Lt) on the intercept model with an offset logit

(
Q̄a,a′

n,Lt
(Rt,Zt,

Lt−1)), and weights Ha,a′

Lt
( p̄n) (At,Rt,Zt,Lt−1).

(b) Next, to obtain an initial estimator Q̄a,a′

n,Zt
, we regress the targeted estimate

Q̄∗,a,a′
n,Lt

(Rt,Zt,Lt−1) constructed above on At,Rt,Zt−1,Lt−1 among observa-
tions that remained uncensored at time t. We then evaluate the fitted func-
tion at the observed mediator and covariate histories Rt,Zt−1,Lt−1 and the
intervened income levels At = a′t for these uncensored observations. This re-
sults in the initial estimates Q̄a,a′

n,Zt
(Rt,Lt−1,Zt−1). Update this estimate using

Q̄∗,a,a′
n,Zt

≡ Q̄a,a′

n,Zt
(εn,Zt ), where

εn,Zt ≡ arg min
ε

PnHa,a′

Zt
( p̄n)L

(
Q̄a,a′

n,Zt
(ε)

)
.

(c) Finally, to obtain an initial estimator Q̄a,a′

n,Rt
, we regress the targeted estimate

Q̄∗,a,a′
n,Zt

(Rt,Zt−1,Lt−1) constructed above on At,Rt−1,Zt−1,Lt−1 among obser-
vations that remained uncensored at time t. We then evaluate the fitted func-
tion at the observed mediator and covariate histories Rt−1,Zt−1,Lt−1 and the
intervened income levels At = at for these uncensored observations. This
results in the initial estimates Q̄a,a′

n,Rt
(Rt−1,Lt−1,Zt−1). Update this estimate

using Q̄∗,a,a′
n,Rt

≡ Q̄a,a′

n,Rt
(εn,Rt ), where

εn,Rt ≡ arg min
ε

PnHa,a′

Rt
( p̄n)L

(
Q̄a,a′

n,Rt
(ε)

)
.
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4. After running the algorithm in step (3) sequentially from t = τ down to t = 1,
we have targeted estimates Q̄∗,a,a′

n,R1
(L0) for each of the n observations.

The TMLE for Ψa,a′ is given by

ψT MLE
n ≡ Ψa,a′ (Q̄∗,a,a′

n ) =
1
n

n∑

i=1

Q̄∗,a,a′
n,R1

(L0,i) (17.20)

By construction, this estimator satisfies PnD∗,a,a′ (Q̄∗,a,a′
n , p̄n) = 0. Consequently, it

inherits robustness of EIC described in Sect. 17.2. Under the usual empirical pro-
cess condition on the estimated efficient influence curve and that the second-order
remainder is oP(n−1/2) (i.e., all nuisance parameters are consistently estimated), it
is asymptotically linear and efficient at the data-generating P0, with influence curve
D∗,a,a′ (P0). We could estimate the asymptotic variance of

√
n
(
ψT MLE

n − Ψa,a′ (P0)
)

with the sample variance V̂arD∗,a,a′
(
Q̄∗,a,a′

n , p̄n

)
. It is double robust w.r.t. estimation,

but its asymptotic linearity (as with the IPW estimator) will be affected by inconsis-
tency of one of the estimators (van der Laan 2014b).

17.4 Simulation

We conduct a simulation to evaluate the comparative performance of these three
estimators in estimating the mediation formula (17.5) for survival outcome Yτ. Con-
sider the data structure O = (L0, A1,R1,Z1, L1, . . . , Aτ,Rτ,Zτ, Lτ), with τ = 2. L0

encodes two baseline covariates L01 and L02, At encodes a censoring indicator AC
t

of whether patient remained in the study by time t and a binary exposure AE
t , Rt

encodes covariates at time t that are directly affected by At and may influence Zt

and Lt, Zt is a binary mediator of interest, Lt includes a time varying covariate L1
t

and a death indicator Yt of whether patient had died by time t. These variables are
distributed according to the following data generating distribution

L01 ∼ Bern(0.4); L02 ∼ Bern(0.6);

AC
t ∼ Bern

(
expit

(
1.5 − 0.8L02 − 0.4

(
I(t > 1) × L1

t−1 + I(t = 1)L01

)

+ 0.5I(t > 1)AE
t−1

))

AE
t ∼ Bern

(
expit

(−0.1 + 1.2L02 + 0.7
(
I(t > 1) × L1

t−1 + I(t = 1)L01

)

− 0.1I(t > 1)AE
t−1

))

Rt ∼ Bern
(
expit

(−0.8 + AE
t + 0.1

(
I(t > 1) × L1

t−1 + I(t = 1)L01

)

+ 0.3 (I(t > 1) × Rt−1 + I(t = 1)L02)
))

Zt ∼ Bern
(
expit

(−0.5 + 0.8L02 + 0.8AE
t + Rt

))
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L1
t ∼ Bern

(
expit

(−1 + 0.3L02 + AE
t + 0.7Zt − 0.2I(t > 1)L1

t−1
))

Yt ∼ Bern
(
expit

(
0.2 + 1.5L02 + Rt + 0.2L1

t − 0.3AE
t − 0.3Zt − 0.2AE

t × Zt

− 0.1I(t > 1)Rt−1
))
.

Table 17.1 Bias, variance and MSE over 1000 simulations

Bias Var
n 500 5000 500 5000

All correct TMLE 6.57e−04 1.87e−05 1.32e−03 1.01e−04
IPW 1.12e−03 4.63e−05 1.24e−03 1.05e−04

NTsub 8.42e−04 7.53e−04 9.81e−04 7.93e−05

Q̄a,a′ correct
TMLE 1.02e−03 2.61e−04 1.35e−03 1.15e−04
IPW 4.20e−03 6.33e−03 1.86e−03 1.78e−04

L misspec.
TMLE 4.63e−04 3.11e−05 1.22e−03 1.02e−04
IPW 1.12e−03 4.63e−05 1.24e−03 1.05e−04

NTsub 5.28e−03 5.85e−03 6.64e−04 6.30e−05

Z misspec.
TMLE 1.41e−02 5.61e−03 3.02e−03 2.51e−04
IPW 1.22e−02 1.46e−02 2.37e−03 2.12e−04

NTsub 7.66e−02 7.73e−02 3.53e−03 2.93e−04

Q̄a,a′ misspec.
TMLE 1.90e−04 7.73e−05 1.25e−03 1.02e−04
NTsub 6.86e−03 6.95e−03 7.33e−04 7.05e−05

After either censoring or death, all subsequent variables take a default value. The
target parameter of interest is Ψ1,0(P0) ≈ 0.912. To obtain this approximate, we first
generated a large sample (1,000,000 observations) using the above distributions by
setting AE

t = 0 in the equation for Zt and AE
t = 1 elsewhere, as well as assigning the

indicator AC
t = 1 (i.e. all remain in study), and then take the sample mean outcome

Yτ in this large sample.
Correctly specified conditional probabilities p̄ = (pA, pZ , pR, pL) are obtained

using logistic regressions as specified in the data-generating distributions. We esti-
mate Q̄a,a′

Lt
, Q̄a,a′

Zt
and Q̄a,a′

Rt
using the regression-based approach: the so-called cor-

rectly specified estimators are obtained using super learner to regress the expectant
on all the parent exposure, mediator and covariate history up to point t, described in
steps in Sects. 17.3.1 and 17.3.3. The misspecified counterparts of p̄ and Q̄a,a′ only
regress on At, in the case of nuisance parameters related to Zt and Rt, or only regress
on At and Zt, in the case of nuisance parameters related to Lt, or uses in marginal
distribution, in the case of pA. We note here that due to the nature of nested re-
gressions, the so-called ‘correct’ Q̄a,a′ do not actually specify the functional form
of these expectations, they only adjust for all the relevant terms; this abuse of ter-
minology is meant to contrast with the estimators which omit important covariates.
The super learner was implemented using a very limited default library of candi-
date algorithms, which include glm,stepAIC, bayesglm, each coupled with a
correlation-based variable screening method, as well as a no variable screening ver-
sion. These algorithms rely heavily on main term functional forms and are thus not
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flexible enough to do a good job in estimation the true functional forms We im-
plement the nontargeted substitution estimator (NTsub), IPW estimator, and TMLE
using these nuisance parameter specifications. We considered sample sizes n = 400
and n = 4000. Bias, variance and mean squared error (MSE) for each sample size
were estimated over the 1000 datasets and presented in Table 17.1.

As predicted by general robustness conditions in Corollary 17.2, when the
nested regressions Q̄a,a′ are correct and the conditional probabilities are misspeci-
fied (“Q̄a,a′ correct”), TMLE provides bias reduction over a misspecified IPW. Sim-
ilarly, when only the covariate-related nuisance parameters (pR, pL and Q̄a,a′

Rt
, Q̄a,a′

Lt
)

are misspecified (“L misspec.”), TMLE also provides substantial bias reduction over
the misspecified IPW or NTsub Estimators. When only the Zt-related nuisance pa-
rameters (pZ and Q̄a,a′

Zt
) (“Z misspec.”), TMLE provides bias reduction over the mis-

specified NTsub estimator across sample sizes, but its bias reduction over IPW is
only apparent after large sample sizes. When Q̄a,a′ are all misspecified, but correct
conditional probabilities pA, pZ , pL, pR are used in the weights Ha,a′

· of the TMLE
updating step, we still observe bias reduction of TMLE over NTsub in this example.

We recall that the correctly specified Q̄a,a′ in this implementation are only correct
up to specification of key main terms, but not functional form, as that is difficult
to implement with the sequential regression approach (we could implement it by
estimating the actual conditional densities in the likelihood) or would require a much
more computer intensive super learner relying on highly data-adaptive estimators
(something that one should do for a single data analysis). This probably resulted
in certain loss of finite sample gain for TMLE under ‘all correct’ specifications,
as it was expected to be more efficient than the IPW, and this efficiency gain was
not apparent until larger sample sizes. By the same argument, this may also have
contributed to speed of convergence of the corresponding NTsub estimator.

17.5 Discussion

In this chapter, we proposed a random interventions approach to formulate param-
eters of interest in longitudinal mediation analysis with time varying mediator and
exposures. Specifically, we defined the random interventions based on conditional
distributions for the mediator. In comparison to an alternative random interventions
formulation based on marginal distributions of the mediator (VanderWeele and Tch-
etgen Tchetgen 2017), the proposed formulation capture different pathways of me-
diated effect and allows for application in survival settings, but it also trades-off
stronger sequential randomization assumptions.

Under the RI formulation, the treatment of interest as well as the mediator vari-
ables are regarded as intervention variables. Under the proposed formulation, one
can obtain a total effect decomposition and the subsequent definition of natural di-
rect and indirect effects that are analogous to those in Pearl (2001). The natural direct
effect under this formulation has an intrinsic interpretation as a weighted average of
controlled direct effects, because controlled direct effects can be considered as a
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deterministic intervention on the treatment and mediator variables. By regarding the
mediator variables as intervention variables, the RI formulation requires external
specification of a counterfactual mediator distribution. It is important to note that
causal mediation, under either RI or non-RI approaches, presupposes that the me-
diator of interest is amenable to external manipulation. In applications where such
manipulations are not conceivable, we should be cautious that causal mediation can
only offer answers to purely mechanistic questions defined under hypothetical ex-
periments.

The second contribution of this paper is a general semiparametric inference
framework for the resulting effect parameters. More specifically, efficient influence
curves under a locally saturated semiparametric model are derived, and their robust-
ness properties are established. In many applications where the mediator densities
are difficult to estimate, regression-based estimators of these iterated expectations
are viable alternatives to substitution-based estimators that rely on consistent esti-
mation of the mediator densities. We also developed the nontargeted substitution
estimator, IPW estimator and TMLE for the mediational functional.
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Chapter 18
Online Super Learning

Mark J. van der Laan and David Benkeser

We consider the case that the data On = (O(1), . . . ,O(n)) ∼ Pn
0 is generated

sequentially by a conditional probability distribution Pθ,t of O(t), given certain sum-
mary measures of the past Ō(t − 1) = (O(1), . . . ,O(t − 1)), and where this t-specific
conditional probability distribution Pθ,t is identified by a common parameter θ ∈ Θ.
For example, the experiment at time t generates a new observation O(t) from a prob-
ability distribution P̄0(· | z) determined by a fixed dimensional summary measure
Z of the past O(1), . . . ,O(t − 1), and one would assume that this conditional dis-
tribution P̄0 is an element of some semiparametric model. An important special
case is that the sample can be viewed as independent and identically distributed
observations from a fixed data generating distribution that is known to belong to
some semiparametric statistical model, such as the nonparametric model: in this
case P̄0(· | z) = P̄0(·) does not depend on the past. Another important case is that
the data is generated by a group sequential adaptive design in which the randomiza-
tion and or censoring mechanism is a function of summary measures of the observed
data on previously sampled groups (van der Laan 2008b; Chambaz and van der Laan
2011a,b,c). More generally, this covers a whole range of time series models.
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The goal is to develop an online estimator of a particular infinite dimensional
target parameter of this common mechanism θ, such as a conditional density
or regression function. An online estimator is an estimator that updates a cur-
rent estimator with a new incoming batch of data without having to revisit the
past data. Such estimators are scalable to big data and can provide fast updates
over time.

The current literature provides such online estimators for parametric models and
independent and identically distributed observations, where the online estimators
are based on variations of the stochastic gradient descent algorithm (e.g., Bottou
2012, and see Appendix A.3 for a succinct review of these methods). However, we
wish to allow for large infinite dimensional models for P̄0 so that we need to develop
a highly data-adaptive online estimator. For i.i.d. data the literature provides a super-
learner based on cross-validation. Due to the oracle inequality, it follows that such
an estimator is asymptotically at least as good as the best estimator in the library
of candidate estimators (van der Laan and Dudoit 2003; van der Vaart et al. 2006;
van der Laan et al. 2006, 2007; Polley et al. 2011). Due to this oracle property
of this ensemble learner we referred to such an estimator as a super learner. In
this article we extend this standard cross-validation approach to an online cross-
validation selector for dependent time series data as described above.

In this chapter we will propose a class of online cross-validation selectors
that select among a library of candidate online estimators such as parametric
online estimators indexed by different parametric models. We establish an
oracle inequality for the resulting cross-validation selector and show that it
proves that the cross-validation selector is asymptotically optimal by being
asymptotically equivalent with the oracle selector, under specified conditions.
We also extend this cross-validation selector to an infinite family of candidate
estimators such as all convex combinations of a set of candidate estimators.
We refer to the resulting online estimator as the online super learner since it is
guaranteed to do asymptotically as well or better as the best among the class
of candidate online estimators and is itself an online estimator.

These online estimators and online super learner can also be applied to a large
i.i.d. data set by partitioning the data set in many small subsets and enforcing an
ordering of these subsets. However, for i.i.d. the choice of ordering is random.
Therefore, for i.i.d. data we extend the online cross-validation selector and its or-
acle inequality to an average across different orderings of the data set, and propose
V specific orderings to make it comparable in performance with a classical V-fold
cross-validation selector.
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18.1 Statistical Formulation of Estimation Problem

In this section we first formulate the statistical model for the time-series data, and
the target parameter of interest for which we wish to develop an online super learner.
We also present an example.

18.1.1 Statistical Model

Suppose we observe at each t, a random variable O(t), t = 1, . . . , n. For example,
O(t) = (W(t),Y(t)) where W(t) is vector of baseline covariates and Y(t) is an out-
come measured on a unit. We do not assume that the random variables O(t) are
independent across t. Let Pn

0 be the true probability distribution of O(1), . . . ,O(n),
and let pn

0 be its density w.r.t. a dominating measure μn. We factorize the density of
O(1), . . . ,O(n) according to the ordering, so that O(t) is drawn from a conditional
distribution of O(t), given O(1), . . . ,O(t−1), t = 1, . . . , n, and we make the following
conditional independence assumption on these conditional distributions:

O(t) is independent of Ō(t − 1), given Z(t), (18.1)

where Z(t) = ft(Ō(t − 1)) ∈ IRd is a specified d-dimensional extraction from
O(1), . . . ,O(t − 1) and d is common to all t, t = 1, . . . , n. Let Z and O be sets
so that Pn

0(O(t) ∈ O,Z(t) ∈ Z) = 1 for all t.
Let (t, θ, z) → Pθ,t(· | z) be a specified parameterization that maps a (t, θ, z) into a

conditional probability distribution on O. We assume that for each t = 1, . . . , n, we
have

Pn
0(O(t) ∈ S | Z(t) = z) = Pθ0,t(S | z) for a θ0 ∈ Θ. (18.2)

Let pθ,t(· | z) denote the conditional density of Pθ,t(· | z) w.r.t. some dominating
measure μ. For notational convenience, we will also use the notation Pθ,t,z for the
probability distribution Pθ,t(· | z) at a particular z ∈ Z. Let Pn

θ be the probability
distribution of On implied by θ ∈ Θ. This defines now our statistical model for the
probability distribution Pn

0 of On:

Mn = {Pn
θ : θ ∈ Θ}.

18.1.2 Statistical Target Parameter and Loss Function

Our statistical target parameter Ψn : Mn → Ψ is defined by Ψn(Pn
θ) = Ψ (θ) for a

Ψ : Θ → Ψ for some parameter space Ψ.
Let (Z,O, ψ) → L(ψ)(Z,O) be a loss function for ψ0 so that for all z ∈ Z and t,

Pθ0,t,zL(ψ0) = arg min
ψ∈Ψ

Pθ0,t,zL(ψ),

where we used the notation Pθ0,t,zL(ψ) =
∫

L(ψ)(z, o)dPθ0,t,z(o).
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18.1.3 Regression Example

For the purpose of this chapter, let’s have in mind the following example. Suppose
that O(t) = (W(t),Y(t)). Let’s assume that for each t, Po(t)(· | Ō(t − 1)) = P̄(· | Z(t))
for some common conditional probability distribution P̄ ∈ M and summary measure
Z(t). Let M be a nonparametric model. This model implies E0(Y(t) | W(t), Ō(t −
1)) = E0(Y(t) | W(t),Z(t)) and that E0(Y(t) | W(t) = w,Z(t) = z) = ψ0(w, z) for
some common function ψ0. Let P̄0,y|w,z be the conditional distribution of Y , given
W = w,Z = z under P̄0, and let P̄0,z(·) = P̄0(· | z) be the conditional probability
distribution of (W,Y), given Z = z. Suppose that our target parameter is given by ψ0.
A possible loss function is the squared error loss:

L(ψ)(Z,W,Y) = (Y − ψ(Z,W))2.

For a given w, z,

E0((Y(t) − ψ(Z(t),W(t)))2 | W(t) = w,Z(t) = z) = P̄0,y|w,zL(ψ)

is minimized by ψ0(z,w). In particular, this implies that for all z ∈ Z, P̄0,zL(ψ)
is minimized by ψ0. Alternatively, if Y is binary, we could have selected the log-
likelihood loss:

L(ψ)(Z,W,Y) = − {
Y logψ(Z,W) + (1 − Y) log(1 − ψ(Z,W))

}
.

18.2 Cross-Validation for Ordered Sequence of Dependent
Experiments

In this section we define an online cross-validation selector for a discrete set of
candidate estimators, analogue to a typical cross-validation method used for time-
series data. We also define the corresponding oracle selector. Finally, we define an
online cross-validation selector for a continuous family of candidate estimators.

18.2.1 Online Cross-Validation Selector

Let Ψ̂k be candidate estimators that can be applied to data sets (Z(i),O(i)) for i =
1, . . . ,m for m ≤ n, k = 1, . . . ,K. For a given point t0 ∈ {nl + 1, . . . , n}, we define
T (t0) = {i : i < t0} as the training sample, and the singleton O(t0) as the validation
sample. Note that the t0-specific training sample is defined as the past before time
t0, and the t0-specific validation sample is defined as the next observation. Here nl

is a minimal sample size one requires for the training sample. We consider such a
split for each time point t0 that is larger than some minimal required training sample
size nl: the total number of splits is given by n− nl + 1. The cross-validation scheme
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measures how well an algorithm trained on the past is able to predict an outcome at
the next time point. For each t0, let Pt0−1 be the empirical distribution of the training
sample {(Z(i),O(i)) : i = 1, . . . , t0 − 1}.

Given a candidate estimator Ψ̂k we define its online cross-validated risk as fol-
lows:

RCV,n(Ψ̂k) ≡ 1
n − nl + 1

n∑

t0=nl+1

L(Ψ̂k(Pt0−1))(Z(t0),O(t0)).

Notice that if Ψ̂k is an online estimator, then the online cross-validated risk is
itself an online estimator. That is, when a new observation O(n + 1) comes in, we
create the new observation (Z(n + 1),O(n + 1)), update the online estimator Ψ̂k(Pn)
into Ψ̂k(Pn+1), evaluate its loss L(Ψ̂k(Pn+1)(Z(n + 1),O(n + 1)), and add it to the
current online cross-validated risk RCV,n(Ψ̂k) to obtain the RCV,n+1(Ψ̂k).

The corresponding online cross-validation selector is defined as

kn = arg min
k

RCV,n(Ψ̂k)

= arg min
k

1
n − nl + 1

n∑

t0=nl+1

L(Ψ̂k(Pt0−1))(Z(t0),O(t0)).

In our regression example, if we use the squared error loss, then we have

kn = arg min
k

1
n − nl + 1

n∑

t0=nl+1

(Yt0 − Ψ̂k(Pt0−1)(Z(t0),Wt0 ))2,

and similarly we can define the cross-validation selector for the log-likelihood loss.
The online super learner is defined as follows:

Ψ̂ (Pt) = Ψ̂kt (Pt), t = 1, . . . ,.

Thus, at t observations, it uses the estimator Ψ̂k with index k = kt. Such an online
super learner could switch from one estimator to another estimator over time. If
all the candidate estimators are online estimators, then also the selector kt is an
online selector, and as a consequence, this super learner is as scalable as any of the
candidate estimators. Of course, a super learner is trivially parallelized, by running
each online learner on its own computer/core.

18.2.2 Online Oracle Selector

Note that the online cross-validated risk estimates the following online cross-
validated true risk:

R̃CV,n(Ψ̂k) =
1

n − nl + 1

n∑

t0=nl+1

Pθ0,t0,Z(t0)L(Ψ̂k(Pt0−1)),
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which is minimized by ψ0. The difference between R̃CV,n(Ψ̂k) and R̃CV,n(ψ0) defines
a loss-based dissimilarity between a candidate estimator Ψ̂k and the true target ψ0:

d0n(Ψ̂k, ψ0) =
1

n − nl + 1

n∑

t0=nl+1

Pθ0,t0,Z(t0){L(Ψ̂k(Pt0−1)) − L(ψ0)}.

The online oracle selector is defined as the minimizer of this loss-based
dissimilarity:

k̃n = arg min
k

1
n − nl + 1

n∑

t0=nl+1

Pθ0,t0,Z(t0){L(Ψ̂k(Pt0−1)) − L(ψ0)}.

In our regression example, when using the squared error loss, this loss-based
dissimilarity d0n(Ψ̂k, ψ0) equals

d0n(Ψ̂k, ψ0) =
1

n − nl + 1

n∑

t0=nl+1

∫

w
(Ψ̂k(Pt0−1) − ψ0)2(w,Z(t0))dP̄0,Z(t0)(w | Z(t0)).

Consider the loss-based dissimilarity for the squared error loss under sampling from
the conditional probability distribution P̄0,z of (W(t0),Y(t0)), given Z(t0) = z:

dL2,z(ψ, ψ0) =
∫

{(y − ψ(w, z))2 − (y − ψ0(w, z))2}dP̄0,z(w, y).

Then, we can represent the above loss-based dissimilarity as

d0n(Ψ̂k, ψ0) =
1

n − nl + 1

n∑

t0=nl+1

dL2,Z(t0)(Ψ̂k(Pt0−1), ψ0).

Similarly, for binary Y and the log-likelihood loss, we have

d0n(Ψ̂k, ψ0) =
1

n − nl + 1

n∑

t0=nl+1

dKL,Z(t0)(Ψ̂k(Pt0−1), ψ0),

where

dKL,z(ψ, ψ0) = P̄0,z log fψ0,z/ fψ,z,

and

fψ,z(y | w) = ψ(w, z)y(1 − ψ(w, z))1−y

is the conditional probability distribution of Y , given W,Z = z, implied by ψ. In
other words, dKL,z(ψ, ψ0) is the Kullback-Leibler divergence of Ψ̂k(·, z) and ψ0(·, z)
under the z-specific experiment with probability distribution P̄0,z, and d0n(Ψ̂k, ψ0) is
an average of dKL,z(Ψ̂k, ψ0) across a set of z-values {Z(t0) : t0 = nl + 1, . . . , n}.
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18.2.3 The Online Super Learner for a Continuous Finite
Dimensional Family of Candidate Estimators

Consider a given set of K candidate estimators Ψ̂k, k = 1, . . . ,K. Let Ψ̂α be a combi-
nation of these K estimators indexed by a finite dimensional vector of coefficients α.
For example, if the parameter space is convex, one could define convex linear com-
binations Ψ̂α =

∑K
k=1 α(k)Ψ̂k, where α ∈ {x ∈ IRK : x(k) ≥ 0,

∑
k x(k) = 1}. Let

RCV,n(Ψ̂α) be the online cross-validated risk defined above:

RCV,n(Ψ̂α) ≡ 1
n − nl + 1

n∑

t0=nl+1

L(Ψ̂α(Pt0−1))(Z(t0),O(t0)).

Let αn be the cross-validation selector:

αn = arg min
α

RCV,n(Ψ̂α).

Tracking each online estimator Ψ̂α for all α only involves tracking the K online
estimators Ψ̂k, but αn is itself not an online estimator since it involves recomputing
the minimum for each n. Therefore, we propose to approximate the minimum αn

with a (e.g.,) second-order stochastic gradient descent algorithm, just like we can
approximate the MLE with the online stochastic gradient descent algorithm (SGD).
For that purpose, let’s assume that L(Ψ̂α) is twice differentiable. Let

S n,α =
d

dα
L(Ψ̂α(Pn−1))

be the vector score, and let S 1
n,α =

d
dαS n,α the matrix of second derivatives. Given an

online estimator αt, t = nl + 1, . . ., let

cn = −
1

n − nl + 1

n∑

t0=nl+1

S 1
n,αt0−1

(Z(t0),O(t0)).

Let S ∗
n,α = c−1

n S n,α. The second-order SGD online estimator approximating αn is
defined by:

α∗n+1 = α
∗
n +

1
n + 1

S ∗
n,α∗n

(Z(n + 1),O(n + 1)).

One could refine this step by checking if RCV,n+1(α∗n+1) ≥ RCV,n+1(α∗n), and if not, re-
placing α∗n+1 by a convex linear combination of α∗n and this candidate α∗n+1 for which
there is an actual reduction in the online cross-validated risk. By the theoretical re-
sults in the above referenced literature on second-order SGD, this online estimator
α∗n can be expected to approximate αn up to a term oP(n−1/2). Of course, if α is high
dimensional, one might want to replace the second-order SGD by a first order SGD.
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18.3 An Oracle Inequality for Online Cross-Validation Selector

In this section we present the oracle inequality for two types of loss functions,
namely so called quadratic loss-functions for which the loss-based dissimilarity be-
haves as a square difference between the candidate and true parameter, and other
loss functions. Most loss functions are quadratic. One expects such quadratic be-
havior since the loss-based dissimilarity at a ψ close to ψ0 corresponds with a local
increase at the minimum value ψ0 at which the first derivative should be zero. For
quadratic loss functions we need a remainder that approximately behaves as 1/n,
while for nonquadratic loss functions a remainder that behaves as 1/

√
n suffices.

Therefore, just as for the i.i.d. case, we need a separate more involved proof for
quadratic loss functions than needed for nonquadratic loss functions (van der Laan
and Dudoit 2003; van der Vaart et al. 2006; van der Laan et al. 2006).

18.3.1 Quadratic Loss Functions

We have the following formal theorem comparing the online cross-validation selec-
tor with the corresponding oracle selector.

Theorem 18.1. Consider the above model Mn for the distribution Pn
0 of On =

(O(1), . . . ,O(n)), the definition of the target parameter Ψn : Mn → Ψ defined by
Ψn(Pn

θ) = Ψ (θ) where Ψ : Θ → Ψ, the loss function L(ψ)(Z,O) for ψ0 = Ψ (θ0),
and the loss-based dissimilarity d0n(Ψ̂k, ψ0). Consider also the above defined online
cross-validation selector kn and online oracle selector k̃n.

Assumptions.

A1. There exist an M1 < ∞ so that

sup
ψ∈Ψ

sup
i,O(i),Z(i)

| L(ψ)(Z(i),O(i)) − L(ψ0)(Z(i),O(i)) |≤ M1,

where the supremum over Z(i),O(i) is taken over a support of the distribution
Z(i),O(i).
A2. There exist an M2 < ∞ so that with probability 1

sup
ψ∈Ψ

Pθ0,i,Z(i){L(ψ) − L(ψ0)}2

Pθ0,i,Z(i){L(ψ) − L(ψ0)} ≤ M2 < ∞. (18.3)

A3. Assume that there exists a slowly increasing sequence M3n < ∞ (e.g., M3n =

log n) so that with probability tending to 1, for both k̄n = kn and k̄n = k̃n, we have

1
M3n

<
d0n(Ψ̂k̄n

, ψ0)

E0d0n(Ψ̂k̄n
, ψ0)

< M3n.
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A4.
nM−3

3n min
k

E0d0n(Ψ̂k, ψ0) → ∞ as n → ∞.

Finite Sample Result. For any δ > 0, there exists a universal C(δ, M1, M2) < ∞
(i.e., universal in n and choice of candidate estimators) so that

d0n(Ψ̂kn , ψ0) ≤ (1 + 2δ)d0n(Ψ̂k̃n
, ψ0) + Zn,

where Zn = Zn1 + Zn2, Pn
0(Zn2 = 0) → 1 as n → ∞, and for n > n1 for some n1 < ∞,

E0Zn1 ≤ C(δ, M1, M2)
M2

3n(1 + log(K(n)))

n
.

If Assumption A4 does not hold, then we have

d0n(Ψ̂kn , ψ0) = oP(n−1M3
3n) + oP(n−1M2

3n(1 + log K(n))).

Discussion of Assumptions. Assumption A1 states that the loss function has to
be uniformly bounded by some constant M1, uniformly in all possible realizations
of (O(t),Z(t)) and the candidate estimators of ψ0. Assumption A2 is precisely the
assumption one expects to hold for quadratic uniformly bounded loss functions,
as shown in van der Laan and Dudoit (2003) and related articles. Assumption A3
states that the mean 1 centered random variable d0n(Ψ̂kn , ψ0)/E0d0n(Ψ̂kn , ψ0) (and
similarly for k̃n) falls with probability tending to 1 in an interval slowly growing
towards its full support (0,∞). We anticipate that this assumption will hold for any
sequence M3n that converges to infinity such as M3n = log n. Assumption A3 is
essentially equivalent with assuming that the mean zero centered log d0n(Ψ̂kn , ψ0) −
E0 log d0n(Ψ̂kn , ψ0) falls with probability tending to 1 in an interval [− log n, log n].
Assumption A4 is not a real assumption since it only affects the precise statement
of the result. Given that M3n is a sequence that grows arbitrarily slow to infinity,
assumption A4 states that the oracle selected estimator converges to ψ0 at a rate
slower than the rate 1/n of an MLE for a correctly specified parametric model.
Therefore assumption A4 will typically hold, but either way if somehow one of the
candidate estimators converges to the truth at the parametric rate 1/n, then the online
super learner converges at an almost equally fast rate M3

3n/n.

18.3.2 Nonquadratic Loss Functions

For nonquadratic loss functions, the following straightforward theorem can be ap-
plied.

Theorem 18.2. Consider the above model Mn for the distribution Pn
0 of On =

(O(1), . . . ,O(n)), the definition of the target parameter Ψn : Mn → Ψ defined by
Ψn(Pn

θ) = Ψ (θ) where Ψ : Θ → Ψ, the loss function L(ψ)(Z,O) for ψ0 = Ψ (θ0), and
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loss-based dissimilarity d0n(Ψ̂k, ψ0). Consider also the above defined online cross-
validation selector kn and online oracle selector k̃n.

Assumption.

A1. There exist an M1 < ∞ so that

sup
ψ∈Ψ

sup
i,O(i),Z(i)

| L(ψ)(Z(i),O(i)) − L(ψ0)(Z(i),O(i)) |≤ M1,

where the supremum over Z(i),O(i) is taken over a support of the distribution
Z(i),O(i).

Finite Sample Result. There exists a universal C(M1) < ∞ (i.e., universal in n and
choice of candidate estimators) so that

E0d0n(Ψ̂kn , ψ0) ≤ E0d0n(Ψ̂k̃n
, ψ0) +C(M1)

log0.5(1 + K(n))
n0.5

.

18.4 Special Online-Cross-Validation Selector for Independent
Identically Distributed Observations

In this section we consider the case that the observations O(1), . . . ,O(n) are i.i.d. so
that Pθ0,t,z = P̄0 is a common probability distribution in time t that does not depend
on summary measures of an observed past, and is an element of some model M.
In this case, we could define a cross-validated risk that averages across different
orderings, thereby enhancing the precision of the corresponding cross-validation
selector. This minor extension and the corresponding oracle inequality is presented
in this section.

18.4.1 Online Cross-Validation Selector

Consider an initial ordering O(1), . . . ,O(n). A new ordering O(π(1)), . . . ,O(π(n)) is
defined by a permutation π : {1, . . . , n} → {1, . . . , n} that is 1-1 and onto. Consider
V such permutations π1, . . . , πV . Let Ψ̂k be candidate estimators that can be applied
to data sets O(i) for i ranging over a subset of {1, . . . , n}, k = 1, . . . ,K(n). Let Pv,t0
be the empirical distribution based on O(πv(1)), . . . ,O(πv(t0)). Given a candidate
estimator Ψ̂k we define its online cross-validated risk as follows:

RCV,n(Ψ̂k) ≡ 1
V

V∑

v=1

1
n − nl + 1

n∑

t0=nl+1

L(Ψ̂k(Pv,t0−1))(O(πv(t0))).
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The corresponding online cross-validation selector is defined as

kn = arg min
k

RCV,n(Ψ̂k).

The online super learner is defined as follows:

Ψ̂ (Pt) = Ψ̂kt (Pt), t = nl, . . . ,.

Thus, at t observations, it uses the estimator Ψ̂k with index k = kt.

18.4.2 Imitating V-Fold Cross-Validation

Suppose that we partition the n observations in V subgroups of observations and let
the permutation πv be defined by an ordering of the n observations for which the
last n/V observations belong to the v-th subgroup, v = 1, . . . ,V . In addition, we
could define nl = n(1 − p) for p = 1/V . In this case, the online cross-validated risk
corresponds with evaluating the performance of candidate estimators trained on v-
specific training samples of size at least n(1− p) when applied to each observation in
the corresponding v-specific validation sample across each of the V orderings. Thus,
in this case the online cross-validated risk is very similar to the cross-validated risk
for V-fold cross-validation.

18.4.3 Online Oracle Selector

Note that the online cross-validated risk estimates the following online cross-
validated true risk:

R̃CV,n(Ψ̂k) =
1
V

V∑

v=1

1
n − nl + 1

n∑

t0=nl+1

P̄0L(Ψ̂k(Pv,t0−1)),

which is minimized by ψ0. The difference between R̃CV,n(Ψ̂k) and R̃CV,n(ψ0) defines
a loss-based dissimilarity between a candidate estimator Ψ̂k and the true target ψ0:

d0n(Ψ̂k, ψ0) =
1
V

V∑

v=1

1
n − nl + 1

n∑

t0=nl+1

P̄0{L(Ψ̂k(Pv,t0−1)) − L(ψ0)}.

The online oracle selector is defined as the minimizer of this loss-based
dissimilarity:

k̃n = arg min
k

d0n(Ψ̂k, ψ0).
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We can literally copy the above two theorems 18.1 and 18.2 by using the above
definition of d0n(Ψ̂k, ψ0) and noting that Z(i) is now empty. Just for completeness
we state here the analogue of Theorem 18.1.

Theorem 18.3. Consider the above model Mn for the distribution Pn
0 of On =

(O(1), . . . ,O(n)) in which O(i) ∼iid P̄0, the definition of the target parameter
Ψn : Mn → Ψ defined by Ψn(Pn) = Ψ (P̄) where Ψ : M → Ψ, and the loss function
L(ψ)(O) for ψ0 = Ψ (P̄0). Consider also the above defined online cross-validation
selector kn, online oracle selector k̃n, and d0n(Ψ̂k, ψ0) for i.i.d. data defined in terms
of an average over V permutations of On.

Assumptions.

A1. There exist an M1 < ∞ so that

sup
ψ∈Ψ

sup
i,O(i)

| L(ψ)(O(i)) − L(ψ0)(O(i)) |≤ M1,

where the supremum over O(i) is taken over a support of the distribution P̄0.
A2. There exist an M2 < ∞ so that with probability 1

sup
ψ∈Ψ

P̄0{L(ψ) − L(ψ0)}2

P̄0{L(ψ) − L(ψ0)
≤ M2 < ∞.

A3. Assume that there exists a possibly increasing sequence M3n < ∞ (e.g., M3n =

log n) so that with probability tending to 1,

1
M3n

<
d0n(Ψ̂k, ψ0)

E0d0n(Ψ̂k, ψ0)
< M3n for all k = 1, . . . ,K(n).

A4.
nM−3

3n min
k

E0d0n(Ψ̂k, ψ0) → ∞ as n → ∞.

Finite Sample Result. For any δ > 0, there exists a universal C(δ, M1, M2) < ∞
(i.e., universal in n and choice of candidate estimators) so that

d0n(Ψ̂kn , ψ0) ≤ (1 + 2δ)d0n(Ψ̂k̃n
, ψ0) + Zn,

where Zn = Zn1 + Zn2 with Pn
0(Zn2 = 0) → 1 as n → ∞, and for n > n1 for some

n1 < ∞, we have

E0Zn1 ≤ C(δ, M1, M2)
M2

3n(1 + log(K(n)))

n
.
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If Assumption A4 does not hold, then we have

d0n(Ψ̂kn , ψ0) = oP(n−1M3
3n) + oP(n−1M2

3n(1 + log K(n))).

Proof. The proof of this theorem is completely analogue to the proof of
Theorem 18.1 and is therefore omitted. The only new observation is that the
terms Rn,k,Tn,k in this proof involve now an average over V terms Rn,k,v,Tn,k,v,
v = 1, . . . ,V , where we can apply the same proof to Rn,k,v for each v. �

18.5 Discussion

Our oracle inequality demonstrates that we can apply loss-based cross-validation
based ensemble learning for time-series data (O(t) : t = 1, . . .), and a general class
of time series models, where O(t) can be a high dimensional data structure, and O(t)
only depends on the past through a fixed dimensional summary measure Z(t). The
online super learner can be used for estimation of any common parameter of the
conditional probability distribution of O(t), given Ō(t − 1) which is minimizes by a
conditional expectation of a loss function. The oracle inequality demonstrates that
under weak assumptions, this super learner will be asymptotically equivalent with
the oracle selected estimator.

Another important feature of this online super learner is that it is an online esti-
mator and therefore scalable to large data sets. We have demonstrated its application
to i.i.d. data to obtain a scalable super learner for i.i.d. data which will be computa-
tionally much more tractable than the regular super learner and by averaging across
orderings of the data the cross-validation scheme imitates V-fold cross-validation.
We refer to Benkeser et al. (2017b) for a data analysis and simulation implementing
and practically evaluating this online super learner. When the target parameter is a
pathwise differentiable (typically, low dimensional) parameter of Pn

0, then we could
develop an online TMLE that is asymptotically normally distributed and efficient
(van der Laan and Rubin 2006; van der Laan 2008b; van der Laan and Rose 2011).
Such a TMLE, relies on a good initial estimator. By using the online super learner as
initial estimator, we obtain a powerful online TMLE. This opens up the construction
of online TMLE for pathwise differentiable parameters of flexible/nonparametric
time series models of the type defined in this chapter. This is addressed in the next
chapter.



Chapter 19
Online Targeted Learning for Time Series

Mark J. van der Laan, Antoine Chambaz, and Sam Lendle

We consider the case that we observe a time series where at each time we observe in
chronological order a covariate vector, a treatment, and an outcome. We assume that
the conditional probability distribution of this time specific data structure, given the
past, depends on the past through a fixed (in time) dimensional summary measure,
and that this conditional distribution is described by a fixed (in time) mechanism
that is known to be an element of some model space (e.g., unspecified). We propose
a causal model that is compatible with this statistical model and define a family of
causal effects in terms of stochastic interventions on a subset of the treatment nodes
on a future outcome, and establish identifiability of these causal effects from the
observed data distribution.

This general formulation of the statistical estimation problem includes many
important estimation problems. For example, by selecting empty summary mea-
sures of the past, it includes targeted estimation of causal effects based on inde-
pendent and identically distributed data (Bickel et al. 1997b; Robins and Rotnitzky
1992; van der Laan and Rubin 2006; van der Laan 2008a; van der Laan and Rose
2011). By selecting parametric models for the conditional density it includes classi-
cal time series models. It also includes group sequential adaptive designs in which
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the treatment allocation for the next subject is based on what has been observed on
the previously recruited subjects (van der Laan 2008a; Chambaz and van der Laan
2011a,b). In the latter case, t indexes the t-th subject that enrolls in the trial. It also
includes completely new problems not addressed in the literature, such as the esti-
mation of causal effects based on observing a single time series on a single unit or
on a specified group of units, under stationarity and Markov type assumptions, but
leaving functional forms unspecified.

A key feature of the estimation problem addressed in this article is that the data
is ordered and that statistical inference is based on asymptotics in time. Thus,
a main feature of our proposed estimators is that they are online estimators in
the sense that they can be updated continuously in time and still be computa-
tionally feasible, analogue to stochastic gradient descent algorithms for fitting
parametric models in the computer science literature (e.g., Bottou 2012). This
chapter is a generalization and augmentation of our earlier technical report
on online targeted learning for independent and identically distributed data
(van der Laan and Lendle 2014).

19.1 Statistical Formulation of the Estimation Problem

Suppose that we observe a time-ordered data structure ON = (W(t), A(t),Y(t) : t =
1, . . . ,N), where W(t) occurs before A(t) and A(t) occurs before Y(t). Let A(t) de-
note an exposure or treatment, while Y(t) denotes an outcome of interest at time t.
Denote the true probability distribution of ON with PN

0 . Let O(t) = (W(t), A(t),Y(t))
be the t-specific longitudinal data structure so that ON = (O(t) : t = 1, . . . ,N). We
can factorize the probability density of the data ON w.r.t. an appropriate dominating
measure according to the time ordering as follows:

pN
0 (o) =

N∏

t=1

qw(t)(w(t) | ō(t − 1))
N∏

t=1

ga(t)(a(t) | ō(t − 1),w(t))

N∏

t=1

qy(t)(y(t) | ō(t − 1),w(t), a(t))

=

N∏

t=1

qw(t)(w(t) | w−(t))
N∏

t=1

ga(t)(a(t) | a−(t))
N∏

t=1

qy(t)(y(t) | y−(t)),

where we define W−(t) = Ō(t − 1), A−(t) = (Ō(t − 1),W(t)) and Y−(t) =
(Ō(t − 1),W(t), A(t)) as the histories for W(t), A(t), and Y(t), respectively. Here
qw(t), ga(t), qy(t) denote the conditional probability densities of W(t), given W−(t),
A(t), given A−(t), and Y(t), given Y−(t), respectively. Let μw, μa and μy be the
corresponding dominating measures.



19 Online Targeted Learning for Time Series 319

19.1.1 Statistical Model: Stationarity and Markov Assumptions

Stationarity Assumption. We assume that each of the conditional densities qw(t),
qy(t), ga(t) depends on the past through a fixed dimensional summary measure and
are identified by a common (in time t) parameter q̄w, q̄y, ḡ, respectively:

qw(t)(w(t) | w−(t)) = qt,q̄w (w(t) | cw,t(w
−(t))),

ga(t)(a(t) | a−(t)) = gt,ḡ(a(t) | ca,t(a
−(t))),

qy(t)(y(t) | y−(t)) = qt,q̄y (y(t) | cy,t(y
−(t))),

for functions (w, c) → q̄w(w, c) with (w, c) ∈ IRk1 , (a, c) → ḡ(a | c) with (a, c) ∈ IRk2 ,
and (y, c) → q̄y(y | c) with (y, c) ∈ IRk2 . Here cw,t(), ca,t() and cy,t() are functions
from the histories w−(t), a−(t) and y−(t) into a vector of fixed (not depending on t)
dimensions k1, k2 and k3, respectively.

Markov-Type Assumption. A particular type of example of summary measures are
extractions of a recent history of fixed dimension from the complete history:

cw,t(w
−(t)) = (o(t − lw : t − 1)),

ca,t(a
−(t)) = (o(t − la : t − 1),w(t)),

cy,t(y
−(t)) = (o(t − ly : t − 1),w(t), a(t)),

where we used the notation O(s : t) = (O(s), . . . ,O(t)). As we will see later, for
the purpose of establishing asymptotics for our estimators, it will be important that
our summary measures only cover a finite history, so that our time series has a
universally (in time) finite memory.

These model assumptions allow us to deal with the curse of dimensionality and
the fact that we only observe a single time series. We will also use the notation
Cw(t) = cw,t(W−(t)), Ca(t) = ca,t(A−(t)) and Cy(t) = cy,t(Y−(t)) for the random
variables implied by these summary measures of the history for W(t), A(t) and Y(t),
respectively.

Nesting Assumption on Summary Measures. Suppose that cw(t) is a function of
cy(t − 1) and y(t − 1); ca(t) is a function of cw(t) and w(t) and cy(t) is a function
of ca(t) and a(t), across all t. That is, for any variable, its parents are a function of
the parents of the previous variable in the ordered sequence of variables and the
previous variable itself. This assumption dramatically simplifies the computation of
our estimator as will be explained later, but is not essential for the presentation of
the estimator and for establishing its asymptotics. This assumption assumes that the
summary measures at time t contain all the relevant information from the past for
the future of the time series after time t.

Starting Values of Time-Series. We assume that W−(0), A−(0) and Y−(0) are given
and are already of dimension k1, k2 and k3, so that the first conditional distribu-
tions are already conditioning on enough history to be defined by the common
mechanisms q̄w, ḡ and q̄y.
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Statistical Model. Even though the conditional densities qw(t), qy(t) and ga(t) are de-
termined by q̄w, q̄y and ḡ, for the sake of notational convenience, we will often sup-
press this dependence in the notation. The statistical model for the true probability
density pN

0 of ON is defined as follows:

MN =

⎧⎪⎪⎨
⎪⎪⎩pN =

∏

t

qw(t)ga(t)qy(t) : q̄w ∈ Qw, q̄y ∈ Qy, ḡ ∈ G
⎫⎪⎪⎬
⎪⎪⎭ ,

where Qw,Qy,G are parameter spaces for q̄w, q̄y, ḡ, respectively. We will consider
the case that Qw and Qy are nonparametric, but the parameter space G for ḡa might
be restricted. In order to provide concrete results for the definition of the efficient
influence curve and the proposed online estimators, we will consider the case that
qw(t) = q̄w, qy(t) = q̄y and ga(t) = ḡ and that all parameter spaces are nonparametric.
We remark that much of the work is easily generalized to other parameterizations
of the time-specific mechanisms qw(t), qy(t) and ga(t) in terms of q̄w, q̄y and ḡ, respec-
tively. The statistical model M depends on the starting values W−(0), A−(0),Y−(0)
for the time series since the first conditional densities at t = 1 depend on these
values, but this dependence is suppressed in our notation.

19.1.2 Underlying Causal Model and Target Quantity

Suppose we assume a structural causal model

W(t) = fw(t)(W
−(t),Uw(t)),

A(t) = fa(t)(A
−(t),Ua(t)),

Y(t) = fy(t)(Y
−(t),Uy(t)),

t = 1, . . . ,N,

for certain deterministic functions ( fw(t), fa(t), fy(t) : t = 1, . . . ,N) and random exoge-
nous errors U = (Uw(t),Ua(t),Uy(t) : t = 1, . . . ,N) with some probability distribution
Pu,0. Let I ⊂ {1, . . . ,N} be a finite set of K time points, and let (A(t) : t ∈ I) be the
corresponding vector of intervention nodes. Let g∗ = (g∗t : t ∈ I) denote a collection
of conditional distributions for A(i), given A−(i) across these intervention nodes. Let
τg∗ ≥ max{i : i ∈ I} be a time point that is larger than or equal to the time point
of the last intervention node. We will refer to g∗ as our stochastic intervention of
interest, and we are concerned with estimation of a causal effect of such a stochastic
intervention on the outcome Y(τg∗).

For that purpose we define a counterfactual random variable ON
g∗ defined by the

modified system of equations in which the A(t)-equations with t ∈ I are replaced
by the desired stochastic intervention g∗:

Wg∗ (t) = fw(t)(W
−
g∗ (t),Uw(t)),

Ag∗ (t) = fa(t)(A
−
g∗(t),Ua(t)), t � I,
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Ag∗ (t) ∼ g∗t (· | A−
g∗ (t)), t ∈ I,

Yg∗ (t) = fy(t)(Y
−
g∗ (t),Uy(t)),

t = 1, . . . ,N,

where W−
g∗ (t) and Y−

g∗ (t) are the same functions of the past as W−(t) and Y−(t),
but now applied to the new random variable ON

g∗ = (Wg∗(t), Ag∗(t),Yg∗ (t) : t =
1, . . . ,N). The probability distribution PN

g∗ of the counterfactual ON
g∗ is called the

post-intervention probability distribution we would have observed if in fact (A(t) :
t ∈ I) would have been assigned according to our stochastic intervention g∗ instead
of the actual distribution ga(t) of the observed data.

19.1.3 g-Computation Formula for Post-intervention Distribution

Under the sequential randomization assumption that for all t ∈ Ig∗ , A(t) is inde-
pendent of Yg∗ (τg∗), conditional on A−(t), and the positivity assumption (simply
defined by the requirement that the conditional probability distributions in the G-
computation formula below are well defined) this probability distribution of ON

g∗

equals the probability distribution PN
g∗ whose density is given by

pN
g∗ (o) =

N∏

t=1

qw(t)(w(t) | w−(t))
∏

t�I
ga(t)(a(t) | a−(t))

∏

t∈I
g∗t (a(t) | a−(t − 1))

×
N∏

t=1

qy(t)(y(t) | y−(t)).

The latter density is called the g-computation formula in causal inference (Robins
1986), and we note that pN

g∗ is identified by the probability distribution PN of the
data ON .

19.1.4 Statistical Estimand: Intervention-Specific
Counterfactual Mean

The statistical target parameter identifying the counterfactual mean EYg∗ (τg∗) is de-
fined as the expectation of Yg∗ (τg∗) under this latter distribution PN

g∗ . Formally, we

define it by the mapping ΨN
g∗ : MN → IRd

ΨN
g∗ (P

N) = EPg∗ Yg∗ (τg∗ ).

Note that we allow that Y(t) is a d-dimensional vector. We can represent this statis-
tical target parameter as follows:
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ΨN
g∗ (P

N) =
∫

o(1),...,o(τ)
y(τ)dPN

g∗ (o(1), . . . , o(τ)) ≡ Ψg∗ (q̄w, q̄y, ḡ),

where the latter notation emphasizes that ΨN
g∗ , by our model assumptions, only de-

pends on PN through (q̄w, q̄y, ḡ).

19.1.5 Sequential Regression Representation of Counterfactual
Mean

Let Qy(t) f =
∫

y(t)
f (y(t), yc(t))dQy(t)(y(t) | cy(t)) denote the conditional expectation

of f (ON) over Y(t) w.r.t. conditional density qy(t) of Y(t), given Cy(t), where all
other variables yc(t) f depends upon are kept fixed. Similarly, we define Ga(t) f =∫

a(t)
f (a(t), ac(t))dGa(t)(a(t) | ca(t)), and Qw(t) f =

∫
w(t)

f (w(t),wc(t))dQw(t)(w(t) |
cw(t)) as conditional expectations of f (ON) with respect to conditional densities
ga(t) and qw(t), respectively. Moreover, we define this for our stochastic intervention
g∗: G∗

a(t) f =
∫

a(t)
f (a(t), ac(t))dG∗

a(t)(a(t) | C∗
a(t)). We view Y(τg∗ ) = Y(τg∗ )(ON) as a

function that maps ON into Y(τg∗ ). We note that

ΨN
g∗ (q̄w, q̄y, ḡ) =

⎛
⎜⎜⎜⎜⎜⎝

τ∏

t=1

Qw(t)G
∗I(t∈I)
a(t) GI(t�I)

a(t) Qy(t)

⎞
⎟⎟⎟⎟⎟⎠ Y(τg∗ ).

That is, EPN
g∗

Yg∗ (τ) can be represented as a sequential regression, starting with tak-
ing the conditional expectation over Y(τ), given Cy(τ) (i.e., given the observed past),
taking a conditional expectation over A∗(τ) or A(τ) depending on if τ is an interven-
tion node, given the observed past, taking a conditional expectation over W(τ), given
Cw(τ), and going backwards in time t from τ to time t = 1, when we end up with a
conditional expectation, given W(1), and finally we take the expectation over W(1).
In the last conditional expectation at time t = 1, we condition on the starting values
W−(0), A−(0),Y−(0). Since each conditional expectation over Y(t), W(t) and A(t) is
w.r.t. a distribution identified by a common q̄y, q̄w and ḡ, this sequential regression
formula indeed only depends on these common parameters (q̄y, q̄w, ḡ).

19.1.6 General Class of Target Parameters

For notational convenience, in the sequel, we will often suppress the dependence on
N of quantities such as PN and PN

g∗ , Ψ
N
g∗ . Before we move on to the estimation prob-

lem, let’s further generalize this class of target parameters. Let (I1, τ1), . . . , (IJ , τJ)
be a collection of J intervention node sets with corresponding outcome time points.
Let g∗j be a stochastic intervention on (A(t) : t ∈ I j), j = 1, . . . , J. We could now
define a more general class of parameters as follows:
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ΨJ(P) =
1
J

J∑

j=1

EPN
g∗j

Y(τ j) =
1
J

J∑

j=1

Ψg∗j
(P).

For example, we could have that I j = { j} and τ j = j, so that this parameter equals
an average of J counterfactual means of the counterfactual outcome Yg∗j

( j) at time
j under a single time point intervention g∗j on the previous treatment node A( j),
j = 1, . . . , J. It is possible to set J = J(N) = N, so that the target parameter averages
over such single time point interventions over all treatment nodes, ending with the
counterfactual mean outcome of Y(N) under an intervention on A(N). Similarly, we
could have that I j = { j, j+ 1} and τ j = j+ 1, so that this parameter ΨJ(P) equals an
average of J counterfactual means of the counterfactual outcome Yg∗j

( j + 1) under a
two time point intervention g∗j on the previous two treatment nodes A( j), A( j + 1),
j = 1, . . . , J. The above sequential regression representation of Ψg∗j

(P) shows that
ΨJ(P) is an average over j of j-specific sequential regression representations, j =
1, . . . , J.

One is often interested in contrasts that represent a causal effect relative to a
baseline treatment regimen. For that purpose, we could define

Ψ c
J (P) =

1
J

J∑

j=1

(Ψg∗j
− Ψg∗0 j

)(P),

where g∗0 j is a baseline treatment regimen on the intervention nodes (A(t) : t ∈ I j).
We will focus on the target parameter ΨJ : MN → IR, since the contrast parameters
are defined as a difference of two of such target parameters. Our results for Ψg∗ for
a single g∗ will naturally imply corresponding results for ΨJ .

19.1.7 Statistical Estimation Problem

Our goal is to construct an estimator q̄∗N = (q̄∗w,N , q̄
∗
y,N) of q̄0 = (q̄w,0, q̄y,0) and ḡ∗N

of ḡ0 so that ΨJ(q̄∗N , ḡ
∗
N) is consistent and satisfies

√
N(ΨJ(q̄∗N , ḡ

∗
N) −ΨJ(q̄0, ḡ0)) ⇒d

N(0, Σ0), as N → ∞. We want this normal limit distribution to correspond with the
normal limit distribution of a maximum likelihood estimator in the special case that
all data is discrete, thereby guaranteeing that the proposed estimator of ΨJ(q̄0, ḡ0) is
asymptotically efficient. The normal limit distribution also provides us with statisti-
cal inference in terms of confidence intervals and p-values for testing null hypothe-
ses. In particular, for the sake of scalability, we want these estimators q̄∗N , ḡ

∗
N to be

online-estimators.
To characterize the efficient normal limit distribution, we need to compute

the canonical gradient/efficient influence curve of the target parameter mapping
Ψ J : MN → IRd. In order to obtain a concrete efficient influence curve and TMLE,
we consider the important case that qw(t) = q̄w, qy(t) = q̄y and ga(t) = ḡ, and that
these functions are completely unspecified. For any specific parameterizations of
qw(t), qy(t) and ga(t) in terms of q̄w, q̄y and ḡ, and model spaces Qw,Qy,G, the next
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sections can also be viewed a roadmap for computing the efficient influence curve
and defining the corresponding one-step and targeted maximum likelihood estima-
tors in terms of the efficient influence curve.

19.2 Efficient Influence Curve of the Target Parameter

The efficient influence curve depends on a series of conditional expectations and
ratios of densities. Our first job is to determine the efficient influence curve of this
target parameter ΨJ . One method for deriving the efficient influence curve is to
determine the influence curve of the MLE when all random variables are discrete.
This yields the efficient influence curve for the case that the data is discrete and its
natural counterpart for continuous data is then the conjectured efficient influence
curve. The conjecture can then be verified by checking that (1) it is a gradient of
the pathwise derivative of the target parameter mapping and (2) an element of the
tangent space.

Consider the case that all random variables are discrete. In that case the MLE
is well defined for large enough N, and the MLE of q̄w, q̄y, ḡ equals the empirical
counterparts q̄e

W,N , q̄
e
Y,N , ḡ

e
N based on the N relevant observations (Cw(t),W(t)), t =

1, . . . ,N, (Cy(t),Y(t)), t = 1, . . . ,N and (Ca(t), A(t)), t = 1, . . . ,N, respectively,
treating them as i.i.d. That is, these MLEs are defined as follows:

q̄e
Y,N(y(t) | cy(t)) =

∑N
i=1 I(Y(i) = y(t),Cy(i) = cy(t))

∑N
i=1 I(Cy(i) = cy(t))

,

q̄e
W,N(w(t) | cw(t)) =

∑N
i=1 I(W(i) = w(t),Cw(i) = cw(t))

∑N
i=1 I(Cw(i) = cw(t))

,

ḡe
N(a(t) | ca(t)) =

∑N
i=1 I(A(i) = a(t),Ca(i) = ca(t))

∑N
i=1 I(Ca(i) = ca(t))

.

Linearizing yields

ΨJ(q̄e
Y,N , q̄

e
W,N , ḡ

e
N) − ΨJ(q̄Y,0, q̄W,0, ḡ0) ≈ 1

N

N∑

i=1

D̄(q̄0, ḡ0)(Ō(i)),

from which we deduce the following efficient influence curve.

Theorem 19.1. The canonical gradient of ΨJ : MN → IRd at PN ∈ MN is given by:

DN(q̄, ḡ)(ON) =
1
N

N∑

i=1

D̄(q̄, ḡ)(Ō(i))

≡ 1
N

N∑

i=1

N∑

s=1

D̄s(q̄, ḡ)(Ō(i))



19 Online Targeted Learning for Time Series 325

≡ 1
N

N∑

i=1

N∑

s=1

{D̄qy(s) (Y(i),Cy(i)) + D̄qw(s) (W(i),Cw(i))}

+
1
N

N∑

i=1

N∑

s=1

D̄gs (A(i),Ca(i)),

where

D̄qy(s) (Y(i),Cy(i)) = 1
J

∑J
j=1 I(s ≤ τ j)

h∗cy (s), j(Cy(i))

h̄cy (Cy(i))

{E(Yg∗j
(τ j) | Y(s) = Y(i),Cy(s) = Cy(i)) − E(Yg∗j

(τ j) | Cy(s) = Cy(i))},
D̄qw(s) (W(i),Cw(i)) = 1

J

∑J
j=1 I(s ≤ τ j)

h∗cw (s), j(Cw(i))

h̄cw (Cw(i))

{E(Yg∗j
(τ j) | W(s) = W(i),Cw(s) = Cw(i)) − E(Yg∗j

(τ j) | Cw(s) = cw(i))},
D̄ḡs (A(i),Ca(i)) = 1

J

∑J
j=1 I(s ≤ τ j, s � I j)

h∗ca (s), j(Ca(i))

h̄ca (Ca(i))

{E(Yg∗j
(τ j) | A(s) = A(i),Ca(s) = Ca(i)) − E(Yg∗j

(τ j) | Ca(s) = ca(i))},

and

hcy(i)(cy) ≡ pcy(i)(cy),

h̄cy (cy) ≡ 1
N

N∑

i=1

hcy(i)(cy),

h∗cy(s), j(cy) ≡ pg∗j ,cy(s)(cy),

hcw(i)(cw) ≡ pcw(i)(cw),

h̄cw (cw) ≡ 1
N

N∑

i=1

hcw(i)(cw),

h∗cw(s), j(cw) ≡ p∗g∗j ,cw(s)(cw),

hca(i)(ca) ≡ pca(i)(ca),

h̄ca (ca) ≡ 1
N

N∑

i=1

hca(i)(ca),

h∗ca(s), j(ca) ≡ p∗g∗j ,ca(s)(ca).

Here pcy(i) denotes the marginal density of CY (i) under PN, and pcw(i), pca(i) are
defined in the same manner. In addition, pg∗,cy(s) denotes the marginal density of
CY (s) under PN

g∗ , and pg∗,cw(s), pg∗,ca(s) are defined in the same manner.

Efficient Score Components of q̄w, q̄y, ḡ. This efficient influence curve is an or-
thogonal sum of the three efficient score components generated by q̄y, q̄w and ḡ,
respectively:

DN(ON) = DN
q̄y

(ON) + DN
q̄w

(ON) + DN
ḡ (ON),

DN
q̄y

(ON) =
1
N

N∑

i=1

D̄q̄y (Y(i),Cy(i)),
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D̄q̄y (Y(i),Cy(i)) =
N∑

s=1

D̄qy(s) (Y(i),Cy(i)),

DN
q̄w

(ON) =
1
N

N∑

i=1

D̄q̄w (W(i),Cw(i)),

D̄q̄w (W(i),Cw(i)) =
N∑

s=1

D̄qw(s) (W(i),Cw(i)),

DN
ḡ (ON) =

1
N

N∑

i=1

D̄ḡ(A(i),Ca(i)),

D̄ḡ(A(i),Ca(i)) =
N∑

s=1

D̄gs (A(i),Ca(i)).

Since each D̄qy(s) (Y(i),Cy(i)) has conditional mean zero w.r.t. the distribution of Y(i),
given Cy(i), it follows that DN

q̄y
(ON) is of the form 1

N

∑
i h(Y(i),Cy(i)) for a common

(in i) function h satisfying
∫

h(y, c)q̄y(y | c)dμy(y | c) = 0. This proves that DN
q̄y

(ON)

is an element of the tangent space of q̄y. Similarly, it follows that DN
q̄w

(ON), DN
ḡ (ON)

are in the tangent space at PN of the model MN .

19.2.1 Monte-Carlo Approximation of the Efficient Influence
Curve using the Nesting Assumption

The main ingredient of the TMLE and the other estimators will be the evaluation
of the efficient influence curve at ON , under an initial estimator (q̄N , ḡN). In this
subsection, we discuss a Monte-Carlo method for approximating this evaluation
DN(q̄N , ḡN)(ON). We will use the following lemma regarding the conditional expec-
tations in the definition of the efficient influence curve.

Lemma 19.1. Under the nesting assumption, the conditional distribution of Yg∗ (τ),
given Y(s),Cy(s), is the same as the conditional distribution of Yg∗ (τ), given O(1),
. . . ,O(s); the conditional distribution of Yg∗ (τ), given W(s),Cw(s), is the same as
the conditional distribution of Yg∗ (τ), given Ō(s − 1),W(s),Cw(s); the conditional
distribution of Yg∗ (τ), given A(s),Ca(s), is the same as the conditional distribution
of Yg∗ (τ), given Ō(s − 1),W(s), A(s),Ca(s).

Evaluation of the Conditional Expectations in the Efficient Influence Curve. For
the sake of presentation, let j be fixed and denote g∗j with g∗. The nesting assumption
implies that we can evaluate the conditional mean E(Yg∗ (τ) | Y(s) = y(s),Cy(s) =
cy(s)) = E(Yg∗ (τ) | Ō(s)) with a straightforward Monte-Carlo simulation approxi-
mation based on sequentially drawing from the factors in the intervention specific
density pg∗ , starting with the node after O(s). Recall the ordered sequence of nodes
in ON . We start with drawing the next node W(s + 1) from qw(s+1)(· | cw(s + 1)),
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where by this nesting assumption cw(s + 1) is a function of (y(s), cy(s)), and is thus
available. Subsequently, we draw A(s+ 1) from either ga(s+1) (if s + 1 � Ig∗) or g∗s+1
(otherwise), where, by the nesting assumption, the parents of A(s + 1) are known
as a function of (cy(s), y(s),w(s + 1)). Then, we draw Y(s + 1) from qy(s+1). In this
manner we draw the whole future sequence of nodes making up ON under pg∗ until
we draw Yg∗ (τ), where, again, by the nesting assumption, for each node we need to
draw we can calculate the required parent nodes from the previous realizations. We
can repeat this procedure many times, resulting in a large sample of realizations of
Yg∗ (τ) from this conditional probability distribution of Yg∗ (τ), given Y(s),Cy(s). By
averaging these realizations of Yg∗ (τ) we obtain the Monte-Carlo approximation of
E(Yg∗ (τ) | Y(s) = y(s),Cy(s) = cy(s)). Similarly, we can draw Yg∗ (τ) from a condi-
tional probability distribution of Yg∗ (τ), given Cy(s) = cy(s), by first drawing Y(s)
and subsequently the remaining future sequence as above.

Similarly, we obtain Monte-Carlo approximations of the other conditional ex-
pectations E(Yg∗ (τ) | W(s),Cw(s)) and E(Yg∗ (τ) | A(s),Ca(s)) for given values
(w(s), cw(s)) and (a(s), ca(s)), respectively. In this manner, the nesting assumption
allows us to compute the conditional expectations in the efficient influence curve
DN(q̄, ḡ) at a given (q̄, ḡ) in a computationally reasonable fast manner.

Machine Learning Approximation of the h-Density Ratios. Let’s now discuss
the computation or approximation of the density ratio h∗cy(s), j/h̄cy in the efficient
influence curve, which implies the same method for approximation of the ratios
h∗cw(s), j/h̄cw and h∗ca(s), j/h̄ca . For the sake of presentation, let j be fixed and denote
g∗j with g∗. We are given P = Pq̄,ḡ and P∗ = Pq̄,g∗ and our goal is to approximate
this ratio h∗cy(s)/h̄cy of densities under these two distributions. We sample B observa-

tions ON
b ∼ Pq̄,ḡ and we sample B observations ON∗

b ∼ Pq̄,g∗ , b = 1, . . . , B, resulting
in 2B observations. For each given s, this yields B observations C∗

y,b(s) from P∗,

b = 1, . . . , B. For each of the draws ON
b , we randomly sample an ib ∈ {1, . . . ,N}

(i.e. uniform distribution with probability 1/N), and map this ON
b into Cy,b(ib). This

results in B observations Cy,b(ib) from P. We represent this data set of 2B obser-
vations {C∗

y,b(s),Cy,b(ib) : b = 1, . . . , B} as (C j, Δ j), j = 1, . . . , 2B, where Δ j = 1
indicates that it is one of the B observations Cy,b(ib) from P, while Δ j = 0 indicates
that it is one of the B observations C∗

y,b(s) from P∗. We view these 2B observations
as an i.i.d. sample on a random variable (C, Δ), where P(Δ = 1) = 0.5, while the
conditional density p(c | Δ = 1) of C, given Δ = 1, at c equals the density h̄cy (c), and
the conditional density p(c | Δ = 0) of C, given Δ = 0, at c, equals h∗cy(s)(c). We have

h∗cy(s)(c)

h̄cy (c)
=

p(c | Δ = 1)
p(c | Δ = 0)

=
P(Δ = 1 | C = c)

1 − P(Δ = 1 | C = c)
.

As a consequence, we can approximate the ratio-function h∗cy(s)/h̄cy with the logit
of a fit of a logistic regression of P(Δ = 1 | C) based on this sample of 2B ob-
servations (C j, Δ j) using a flexible machine learning algorithm. If C is discrete, we
simply use the nonparametric empirical distribution. In this manner, we can use
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Monte-Carlo simulation combined with a flexible machine learning algorithm for
logistic regression to approximate these ratios h∗cy(s)/h̄cy . By making B large enough
and using a flexible machine learning algorithm, we can control the approxima-
tion error. The above can be refined by using each ON

b to map into N observations
Cy,b(1), . . . ,Cy,b(N), and drawing NB observations from P∗ while only B from P.
The resulting data set of 2NB observations can now be represented as (C j, Δ j),
j = 1, . . . , 2NB on (C, Δ) with P(Δ = 1) = 0.5 and P(c | Δ = 1) = h̄cy (c) and
P(c | Δ = 0) = hy,s(c), as before.

19.2.2 A Special Representation of the Efficient Influence Curve
for Binary Variables

Here we provide alternative representations of the components of the efficient influ-
ence curve for the nodes that are binary, which immediately imply logistic regres-
sion fluctuation models for the TMLE that will be presented later. If Y(s) ∈ {0, 1} is
binary, then we have

E(Yg∗j
(τ j) | Y(s),Cy(s)) − E(Yg∗j

(τ j) | Cy(s)) = Hy(s), j(Cy(s))(Y(s) − q̄Y (1 | Cy(s))),

where

Hy(s), j(Cy(s)) ≡ E(Yg∗j
(τ j) | Y(s) = 1,Cy(s)) − E(Yg∗j

(τ j) | Y(s) = 0,Cy(s)).

Let

Hy(s)(Cy(s)) =
1
J

J∑

j=1

I(s ≤ τ j)Hy(s), j(Cy(s))
h∗cy(s), j(Cy(s))

h̄cy (Cy(s))
,

so that

D̄qy(s) (q̄, ḡ)(y(s), cy(s)) = Hy(s)(cy(s))(y(s) − Q̄y(1 | cy(s)).

Finally, we define

Hy(c) ≡
N∑

s=1

Hy(s)(c), (19.1)

so that the efficient influence curve component generated by q̄y is given by:

DN
q̄y

(ON) =
1
N

N∑

i=1

D̄q̄y (Y(i),Cy(i)) =
1
N

N∑

i=1

Hy(Cy(i))(Y(i) − Q̄y(1 | Cy(i))).

Similarly, if A(s) ∈ {0, 1} is binary, then

E(Yg∗j
(τ j) | A(s),Ca(s)) − E(Yg∗j

(τ j) | Ca(s)) = Ha(s), j(Ca(s))(A(s) − ḡ(1 | Cy(s))),
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where

Ha(s), j(Ca(s)) = E(Yg∗j
(τ j) | A(s) = 1,Ca(s)) − E(Yg∗ j (τ j) | A(s) = 0,Ca(s)).

Let

Ha(s)(Ca(s)) =
1
J

J∑

j=1

I(s ≤ τ j, s � I j)Ha(s), j(Ca(s))
h∗ca(s), j(Ca(s))

h̄ca (Ca(s))
,

so that

D̄ḡs (q̄, ḡ)(a(s), ca(s)) = Ha(s)(ca(s))(a(s) − ḡ(1 | ca(s)).

Finally, we define

Ha(c) ≡
N∑

s=1

Ha(s)(c), (19.2)

so that the efficient influence curve component generated by ḡ is given by:

DN
ḡ (ON) =

1
N

N∑

i=1

D̄ḡ(A(i),Ca(i)) =
1
N

N∑

i=1

Ha(Ca(i))(A(i) − ḡ(1 | Ca(i))).

Suppose W(s) = (Wk(s) : k = 1, . . . ,K) is a vector of binary variables Wk(s) ∈
{0, 1}, and let q̄w,k be the conditional density of Wk(s), given W1:k−1(s),CW (s)), im-
plied by q̄w. Let Cwk (s) = (Cw(s),W1:k−1(s)) be the parent set for Wk(s), so that we
can write q̄w,k(· | Cwk (s)). We have

E(Yg∗j
(τ j) | W(s),Cw(s)) − E(Yg∗j

(τ j) | Cw(s))

=
∑Ks

k=1{E(Yg∗j
(τ j) | Wk(s),Cwk (s)) − E(Yg∗j

(τ j) | Cwk (s))}
=

∑Ks

k=1 Hwk(s), j(Cwk (s))(Wk(s) − q̄wk (1 | Cwk (s))),

where

Hw(k),s, j(Cwk (s)) ≡ E(Yg∗ j (τ j) | Wk(s) = 1,Cwk (s)) − E(Yg∗j
(τ j) | Wk(s) = 0,Cwk (s)).

Let

Hwk(s)(Cwk (s)) =
1
J

J∑

j=1

I(s ≤ τ j)Hwk(s), j(Cwk (s))
h∗wk ,s, j

(Cwk (s))

h̄wk (Cwk (s))
,

so that

D̄q̄wk (s) (q̄, ḡ)(wk(s), cwk (s)) = Hwk(s)(cwk (s))(wk(s) − q̄wk (1 | cwk (s)).

Finally, we define

Hwk (c) ≡
N∑

s=1

Hwk(s)(c), (19.3)
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so that the efficient influence curve component generated by q̄wk is given by:

DN
q̄wk

(ON) =
1
N

N∑

i=1

D̄q̄wk
(Wk(i),Cwk (i)) =

1
N

N∑

i=1

Hwk (Cwk (i))(Wk(i) − q̄wk (1 | Wk(i)).

Of course, all these component-specific representations provide a corresponding
representation of the efficient influence curve by using that DN(ON) = DN

q̄y
(ON) +

DN
ḡ (ON) +

∑K
k=1 DN

q̄wk
.

19.3 First Order Expansions for the Target Parameter in Terms
of Efficient Influence Curve

The analysis of any of the estimators relies on a first order Taylor expansion of the
target parameter at the plugged-in estimator θN = (q̄N , ḡN) of θ0 = (q̄0, ḡ0). In this
section we present two of such expansions, one for a standard TMLE (that might use
an online super learner as initial estimator, but whose targeting step is not online)
and one for the fully online one-step estimator and online TMLE. The two theorems
in this section are proved in Sect. A.4.

19.3.1 Expansion for Standard TMLE

Let θ = (q̄, ḡ). The next Theorem 19.2 presents a first order expansion of the type

ΨJ(PN∗) − ΨJ(PN
0 ) = − 1

N

N∑

i=1

P0,o(i)D̄(PN∗) + R2,N(θ∗N , θ0),

where P0,o(i) denotes the conditional expectation w.r.t. O(i), given Ō(i − 1), and
R2,N(θ, θ0) is a second-order remainder. In order to demonstrate the relevance of this
identity for the analysis of the TMLE, we note the following. This identity com-
bined with the TMLE PN∗ solving 1

N

∑N
i=1 D̄(PN∗)(Ō(i)) = oP(N−1/2) results in the

first order expansion:

ΨJ(PN∗)−ΨJ(PN
0 ) =

1
N

N∑

i=1

{D̄(PN∗)(Ō(i))−P0,o(i)D̄(PN∗)}+R2,N(θ∗N , θ0)+oP(N−1/2).

The leading term on the right hand side is a martingale process, allowing us to
establish that

√
N(ΨJ(PN∗)−ΨJ(PN

0 )) converges to a normal limit distribution under
the condition that R2,N(θ∗N , θ0) = oP(N−1/2).

Theorem 19.2. Let Φx(s)(x, cx) = E(Yg∗ (τ) | X(s) = x,Cx(s) = cx), x ∈ {w, a, y}. Re-
call the representation DN

g∗ (θ) = 1
N

∑N
i=1 D̄g∗ (θ)(Ō(i)) of the efficient influence curve

for Ψg∗ : MN → IR. We have
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− 1
N

N∑

i=1

P0,o(i)D̄g∗ (θ) = Ψg∗ (θ) − Ψg∗ (θ0) + R2,g∗,N(θ, θ0),

where R2,g∗,N(θ, θ0) = R21,g∗ (θ, θ0) + R22,g∗,N(θ, θ0), R21,g∗ (θ, θ0) is defined in
Theorem A.3 (A.12), and

R22,g∗,N(θ, θ0) ≡ 1
N

N∑

i=1

(P0,o(i) − PN
0 )

(
D̄g∗ (θ) − D̄g∗ (θ0)

)
.

Recall ΨJ(P) = 1
J

∑J
j=1 Ψg∗j

(P) and its canonical gradient DN(P) = 1
J

∑J
j=1 DN

g∗j
(P),

where DN(P) = 1
N

∑N
i=1 D̄(P)(Ō(i)). Therefore, it follows that

− 1
N

N∑

i=1

P0,o(i)D̄(θ) = ΨJ(θ) − ΨJ(θ0) + R2N(θ, θ0),

where R2N(θ, θ0) = R21(θ, θ0) + R22,N(θ, θ0), R21(θ, θ0) = 1
J

∑J
j=1 R21,g∗j (θ, θ0) and

R22,N(θ, θ0) = 1
J

∑J
j=1 R22,g∗j ,N(θ, θ0).

Finite Memory Requirement for Control of Second-Order Remainder. The re-
mainder R21,g∗ (θ, θ0) is a clear second-order term in differences between θ and θ0.
We note that R22,g∗,N(θ, θ0) is an empirical mean of zero mean random variables,
where each random variable converges to zero as θ approximates θ0. Specifically,
we have

R22,g∗,N(θ, θ0) =
∑

x∈{y,a,w}

τ∑

s=1

R22,x(s),g∗,N(θ, θ0) with

R22,x(s),g∗,N(θ, θ0) =
1
N

N∑

i=1

(P0,o(i) − PN
0 )(D̄g∗,x(s)(θ) − D̄g∗,x(s)(θ0))

=
1
N

N∑

i=1

f 0
x(s),g∗ (θ, θ0)(Cx(i)) where

f 0
x(s),g∗ (θ, θ0)(Cx(i)) = { fx(s),g∗(θ, θ0)(Cx(i)) − PN

0 fx(s),g∗ (θ, θ0)},

fx(s),g∗ (θ, θ0)(Cx(i)) ≡
h∗cx(s)(Cx(i))

h̄cx (Cx(i))

∫

x
Φx(s)(x,Cx(i))d(P∗

x(s) − P∗
0,x(s))(x | Cx(i)).

Thus, R22,x(s),g∗,N(θ, θ0) is an average XN =
1
N

∑N
i=1 fi of N mean zero random vari-

ables fi = f 0
x(s),g∗ (θ, θ0)(Cx(i)) that are functions of Cx(i), where each random vari-

able fi goes to zero as θ approximates θ0. From this representation, it follows that
the remainder R22,g∗,N(θ, θ0) can only be a second-order term if the memory of the
time series is bounded or fast waning. This is discussed in detail in Sect. A.4.
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19.3.2 Expansion for Online One-Step Estimator and Online
TMLE

The following second-order expansion of the target parameter is needed for the on-
line one-step estimator and online TMLE.

Theorem 19.3. Let (θn : n = 1, . . . ,N) be a sequence of estimators of θ0 = (q̄0, ḡ0).
We have

− 1
N

N∑

i=1

P0,o(i)D̄g∗ (θi−1) =
1
N

N∑

i=1

Ψg∗ (θi−1) − Ψg∗ (θ0) + R̄2,g∗,N ,

where R̄2,g∗,N = R̄21,g∗,N + R̄22,g∗,N, R̄21,g∗,N is defined in Theorem A.5 (A.14), and

R̄22,g∗,N ≡ 1
N

N∑

i=1

(P0,o(i) − PN
0 )

(
D̄g∗(θi−1) − D̄g∗(θ0)

)
.

As in the previous theorem, this also implies a corresponding second-order expan-
sion for ΨJ(P).

In Sect. A.4 we discuss this remainder R̄21,g∗,N and suggest that its form is not as
nice as that of R21,g∗ and that controlling this remainder might require an additional
stronger stationarity assumption.

19.4 TMLE

In this section we define a TMLE based on a least favorable fluctuation model
{pN

q̄ε ,ḡε
: ε} through the whole density pN

q̄,ḡ at ε = 0 that satisfies

d
dε

log pN
q̄ε ,ḡε

∣∣∣∣∣
ε=0

(ON) = DN(q̄, ḡ)(ON). (19.4)

19.4.1 Local Least Favorable Fluctuation Model

Firstly, consider the case that A(t),Y(t) are binary and W(t) = (Wk(t) : k = 1, . . . ,K)
is a vector of K binaries, so that we can use the binary representation of the effi-
cient influence curve in terms of sums of residuals multiplied by “clever” covariates
Hy (19.1), Ha (19.2), Hwk (19.3), k = 1, . . . ,K, as defined above. This suggest the
following logistic regression fluctuation model through (q̄, ḡ):
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Logitq̄y,ε(1 | cy) = Logitq̄y(1 | cy) + εHy(cy),

Logitq̄wk ,ε(1 | cwk ) = Logitq̄wk (1 | cwk ) + εHwk (cwk ), k = 1, . . . ,K,

Logitḡa,ε(1 | ca) = Logitḡ(1 | ca) + εHa(ca).

This defines now a one-dimensional fluctuation model {pq̄ε ,ḡε : ε} though the whole
density pq̄,ḡ at ε = 0, and it satisfies

d
dε

log pq̄ε ,ḡε

∣∣∣∣∣
ε=0

(ON) = DN(q̄, ḡ)(ON). (19.5)

We could also use a different ε1, ε2, ε3 for the fluctuations of q̄y, q̄w, ḡ, respectively,
resulting in a 3 dimensional least favorable submodel.

In general, we can use any parametric model {pq̄ε ,ḡε : ε} with a score at ε = 0 that
spans DN(q̄, ḡ). For example, for a local neighborhood for ε around zero, one could
use

q̄y,ε(y | cy) = {1 + εD̄q̄y (q̄, ḡ)(y | cy)}q̄y(y | cy),

q̄w,ε(w | cw) = {1 + εD̄q̄w (q̄, ḡ)(w | cw)}q̄w(w | cw),

ḡε(a | ca) = {1 + εD̄ḡ(q̄, ḡ)(a | ca)}ḡ(a | ca).

To avoid careful bounds on ε, one could use the usual exponential fluctuation
c(ε) exp(εD)p as a model through p at ε = 0 with score D, using a normalizing
constant c(ε).

19.4.2 One-Step TMLE

Let (q̄0
N , ḡ

0
N) be an initial estimator of (q̄0, ḡ0), and let {pq̄0

N,ε ,ḡ
0
N,ε

: ε} be the above
defined local least favorable parametric submodel through pq̄0

N ,ḡ
0
N

at ε = 0. Define εN

as a solution of

DN(q̄N,ε , ḡN,ε)(O
N) =

1
N

N∑

i=1

D̄(q̄N,ε , ḡN,ε)(Ō(i)) = oP(N−1.2).

One could use the first step of the Newton-Raphson algorithm for solving this equa-
tion using an initial estimator ε0:

εN = ε
0 +

1
N

N∑

i=1

γ−1
N D̄(q̄N,ε0 , ḡN,ε0 )(Ō(N)),

where

γN = −
d

dε0

1
N

N∑

i=1

D̄(q̄N,ε0 , ḡN,ε0 ).
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Then, one only has to evaluate the D̄ at a single fit (q̄, ḡ), which is important given
the fact that the evaluation of D̄(q̄, ḡ) can be quite computer intensive.

19.4.3 Iterative TMLE

Let k = 0, and define the MLE

εk
N = arg max

ε
log pq̄k

N,ε ,ḡ
k
N,ε

(ON).

This defines now the first step TMLE q̄k+1
N = q̄k

N,εk
N

and ḡk+1
n = ḡk

N,εk
N

. Setting k = k+1

and iterating this updating process defines a k-th step TMLE (q̄k
N , ḡ

k
n) for k = 1, 2, . . ..

The corresponding k-th step TMLE of the target parameter Ψ (q̄0, ḡ0) is now given
by the plug-in estimator Ψ (q̄k

N , ḡ
k
N), k = 1, . . .. If one iterates this updating process

until a step K at which εK
N ≈ 0, then it follows by (19.5) that

DN(q̄∗N , ḡ
∗
N)(ON) =

1
N

N∑

i=1

D̄(q̄∗N , ḡ
∗
N)(O(i)) ≈ 0,

where q̄∗N = q̄K
N and ḡ∗N = ḡK

N .

One-Step TMLE. If (q̄1
N , ḡ

1
N) converge in N at a fast enough rate (e.g., faster

than N−1/4) to (q̄0, ḡ0), then one can show that the first step TMLE already solves
this efficient influence curve equation up to an asymptotically negligible error:

DN(q̄1
N , ḡ

1
N)(ON) = oP(N−1/2).

This one-step TMLE is computationally and practically feasible, while a
HAL super learner estimator will indeed converge at a rate faster than N−1/4

(Chap. 15).
In general, statistically, we recommend to iterate the TMLE update algorithm

until the efficient influence curve is significantly smaller than σN (e.g. σN/10 or
σN/

√
N), where σN is an estimate of the standard error of DN presented below. In

this manner it is guaranteed that a remaining bias due to not precisely solving the
efficient influence curve equation is not affecting coverage of the confidence interval
for ψ0.

19.4.4 Analysis of the TMLE

An analysis of this TMLE relies on MN(θ) = 1√
N

∑N
i=1{D̄g∗ (θ)(Ō(i)) − P0,o(i)D̄g∗ (θ)}

be a martingale process in θ. Under entropy conditions on the parameter space Θ
for θ, we can establish asymptotic equicontinuity of this martingale process, so that
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MN(θ∗N)−MN(θ0) = oP(1) if θ∗N is a consistent estimator of θ0, and thereby carry out a
standard TMLE analysis. This will be presented formally in future work. Our online
estimators in the next sections will not rely on such entropy conditions, making their
analysis more straightforward.

19.5 Online One-Step Estimator

Consider an online estimator (θi : i) of θ0 = (q̄0, ḡ0). Recall (Theorem 19.3)

− 1
N

N∑

i=1

P0,o(i)D̄g∗ (θi−1) =
1
N

N∑

i=1

Ψg∗ (θi−1) − Ψg∗ (θ0) + R̄2,g∗,N .

Define the following online one-step estimator:

ψg∗,N =
1
N

N∑

i=1

Ψg∗ (θi−1) +
1
N

N∑

i=1

D̄g∗ (θi−1)(Ō(i)).

We have

ψg∗,N − ψg∗ (θ0) =
1
N

N∑

i=1

Ψg∗ (θi−1) − Ψg∗ (θ0) +
1
N

N∑

i=1

D̄g∗(θi−1)(Ō(i))

=
1
N

N∑

i=1

{D̄g∗ (θi−1) − P0,o(i)D̄g∗(θi−1)} − R̄2,g∗,N

≡ MN√
N
− R̄2,g∗,N ,

The martingale central limit theorem now proves the following theorem.

Theorem 19.4. Assume R̄2,g∗,N = oP(N−1/2); maxi | D̄g∗,i(θi−1) |< M with probabil-
ity 1 for some M < ∞;

1
N

N∑

i=1

(PN
0 − P0,o(i))D̄g∗,i(θi−1)D̄g∗,i(θi−1)� → 0,

as N → ∞. Let Σ(N) = 1
N

∑N
i=1 PN

0 D̄g∗,i(θi−1)D̄g∗,i(θi−1)�. Then,

√
N(ψg∗,N − ψg∗ (θ0)) = MN + oP(1),

Σ(N)−1/2MN ⇒d N(0, I),
√

NΣ(N)−1/2(ψg∗,N − ψg∗ (θ0)) ⇒d N(0, I), as N → ∞. If
Σ(N) → Σ0 for a fixed Σ0, then we have

√
N(ψN − ψ0) ⇒d N(0, Σ0).



336 M. J. van der Laan et al.

Similarly, we can define the online one-step estimator of ΨJ(P0) and present the
complete analogue theorem for the online one-step estimator of ΨJ(P0).

Second-Order Remainder of Online One-Step Estimator Relative to Regular
One-Step Estimator. We have R̄2,g∗,N =

1
N

∑N
i=1 R2,g∗,i(θi−1, θ0) for i-specific second-

order terms R2,g∗,i(θi−1, θ0). Suppose R2,g∗,i(θi−1, θ0) = O(i−δ) for some 0 < δ < 1. In
that case, R̄2,g∗,N =

1
N

∑N
i=1 R2,g∗,i(θi−1, θ0) = O(N−δ). In other words, the rate of con-

vergence to zero for the second-order remainder R̄2,g∗,N is the same as the remainder
R2,g∗,N(θN , θ0) for a regular one-step estimator. However, note that one expects that
R̄2,g∗,N is larger than R2,g∗,N(θN , θ0) by a constant 1/(−δ + 1). In the special case that
R2,g∗,i(θi−1, θ0) = O(i−1) (i.e., the rate of an MLE for a correctly specified parametric
model), then we have R̄2,g∗,N = O(log N/N), so that R̄2,g∗,N is a log N factor larger
than R2,g∗,N(θN , θ0).

19.6 Online TMLE

Even though (θi : i) might be an online estimator, the actual TMLE θN,εN of θ0

presented in the previous section is not an online estimator since εN is not an on-
line estimator. In this section we develop an online one-step estimator ε∗N for which
Ψg∗ (θN,ε∗N

) is still an asymptotically efficient estimator of Ψg∗ (θ0). We refer to this
estimator as the online TMLE. The online one-step estimator (ε∗N : N) takes as in-
put the online estimators (θN : N) of θ0 and an initial online estimator (ε0

N : N).
As with the regular TMLE, {θN,ε : ε} is the least favorable submodel through θN at

ε = 0 so that the linear span of its score d
dε log pN

θN,ε
(ON)

∣∣∣∣
ε=0

contains DN(θN)(ON).

In addition, we assume that ε has the same dimension as ψg∗,0.
Let ε0

N be an initial estimator of ε0N , where ε0N = f −1
N (ψg∗,0) is defined as the

solution of

fN(ε0N) ≡ Ψg∗ (θN,ε0N ) = Ψg∗ (θ0).

If θN is a consistent estimator of θ0, a requirement for our efficiency theorem, then
we could set ε0

N = 0. We use this initial estimator ε0
N of ε0N to construct a first order

Taylor expansion f̃N of ε → fN(ε) in a neighborhood of ε0N :

f̃N(ε) = fN(ε0
N) +

d

dε0
N

fN(ε0
N)(ε − ε0

N).

Let f −1
N be the inverse function of fN , and similarly let f̃ −1

N be the inverse function
of f̃N :

f̃ −1
N (ψ) = ε0

N + c−1
N (ψ − fN(ε0

N)),
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where we used the short-hand notation

cN ≡ d

dε0
N

fN(ε0
N).

We have the following lemma showing that the first order Taylor expansion f̃ −1
N (ψ0)

approximates ε0N = f −1
N (ψ0) up to a negligible oP(N−1/2) remainder term. In the

following lemma, ψ0 represents ψg∗,0.

Lemma 19.2. Suppose that for some M < ∞, for k ∈ {1, 2}, ‖
(

d
dε0

N

)k
fN(ε0

N) ‖< M

with probability tending to 1; ‖ c−1
N ‖< M with probability tending to 1; ‖ ε0N −

ε0
N ‖2= oP(N−1/2).

Then,

R0N(ε0
N , ε0N) ≡ f̃ −1

N (ψ0) − f −1
N (ψ0) = oP(N−1/2). (19.6)

Proof. If fN is twice differentiable with bounded continuous second derivative, we
have

fN(ε) = f̃N(ε) + OP(‖ ε − ε0
N ‖2).

We have

f̃ −1
N (ψ0) − f −1

N (ψ0) = −
{
f̃ −1
N f̃N f −1

N (ψ0) − f̃ −1
N fN f −1

N (ψ0)
}

= −
{
ε0

N + c−1
N { f̃N(ε0N) − fN(ε0

N)} − ε0
N − c−1

N {ψ0 − fN(ε0
N)}

}

= −c−1
N

{
f̃N(ε0N) − fN(ε0N)

}

= −c−1
N OP(‖ ε0N − ε0

N ‖2)

= OP(‖ ε0N − ε0
N ‖2),

where we use that c−1
N has a uniformly in N bounded norm. By assumption, ‖ ε0N −

ε0
N ‖2= oP(N−1/2). �

The assumption ‖ ε0N − ε0
N ‖2= oP(N−1/2) typically corresponds with assuming

that θN converges to θ0 at a rate faster than N−1/4 with respect to a loss-based dissim-
ilarity. The condition (19.6) is the crucial condition our proposed online estimator
ε∗N below relies upon, which, by this lemma, holds under weak additional regular-
ity conditions. We now define the following online one-step estimator ε∗N of ε0N in
terms of f̃N :

ε∗N =
1
N

N∑

i=1

c−1
N Ψg∗ (θi−1) +

1
N

N∑

i=1

f̃ −1
N D̄g∗ (θi−1)(Ō(i)).

If we select ε0
N = 0, then this reduces to

ε∗N =
1
N

N∑

i=1

c−1
N D̄g∗ (θi−1)(Ō(i)).
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This defines our online TMLE ψ∗
N = Ψg∗ (θN,ε∗N

) of ψg∗,0. In order to analyze this
online TMLE, we first present the following theorem for this online one-step esti-
mator ε∗N :

Theorem 19.5. Let MN =
1√
N

∑N
i=1{D̄g∗ (θi−1)(Ō(i)) − P0,o(i)D̄g∗,i} and the second-

order remainder

R̄(N) = − 1
N

N∑

i=1

P0,o(i)D̄g∗ (θi−1) −
⎧⎪⎪⎨
⎪⎪⎩

1
N

N∑

i=1

Ψg∗ (θi−1) − Ψg∗ (θ0)

⎫⎪⎪⎬
⎪⎪⎭ ,

explicitly defined in Theorem 19.3. Recall the above definitions of fN, f̃N , cN,
R0N(ε0

N , ε0N) ≡ f̃ −1
N (ψg∗,0) − f −1

N (ψg∗,0) and ε0N defined by Ψg∗ (θN,ε) = ψg∗,0. Let
c0N ≡ d

dε0N
Ψg∗ (θN,ε0N ). We have the following expansion:

ε∗N − ε0N = c−1
N MN/

√
N + c−1

N R̄(N) + R0N(ε0
N , ε0N). (19.7)

Assumptions. Assume R̄(N) = oP(1/
√

N), and the martingale consistency con-
ditions on θN so that MN converges in distribution to Z ∼ N(0, Σ0). In addition,
assume ε0

N , ε0N converge to zero in probability and ‖ ε0
N − ε0N ‖2= oP(N−1/2); the

first and second derivative of fN(ε) at 0 are continuous and bounded uniformly in
N with probability tending to 1; the inverse of the first derivative cN(ε) = d

dε fN(ε) is
continuous in ε at ε = 0;

Conclusion. Then,

ε∗N − ε0N = c−1
0N

MN√
N
+ oP(1/

√
N),

and
√

N(ε∗N − ε0N) − c−1
0NZ → 0 in probability.

Using a simple δ-method argument provided in the proof of Theorem 19.6 below,
Theorem 19.5 establishes the asymptotic efficiency of the online TMLE Ψg∗ (θN,ε∗N

)
of ψg∗,0.

Theorem 19.6. Under the same conditions as in Theorem 19.5, we have

Ψg∗ (θN,ε∗N
) − Ψg∗ (θ0) =

MN√
N
+ oP(1/

√
N),

and thereby
√

N(Ψg∗ (θN(ε∗N)) − Ψg∗ (θ0)) ⇒d Z, where Z ∼ N(0, Σ0). Thus
Ψg∗ (θN(ε∗N)) is an asymptotically efficient estimator of ψg∗,0.

Proof of Theorem 19.6

In this proof and the proof of Theorem 19.5, we will suppress the dependence of
the quantities on g∗ in our notation. Consider the online TMLE ψ∗

N = Ψ (θN,ε∗N
) as
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estimator of ψ0, and the conclusion of Theorem 19.5 stating ε∗N−ε0N = c−1
0N MN/

√
N+

oP(N−1/2). We have for a ε̃0N between ε∗N and ε0N

Ψ (θN,ε∗N
) − Ψ (θ0) = Ψ (θN,ε∗N

) − Ψ (θN,ε0N )

=
d

dε̃0N
Ψ (θN,ε̃0N )(ε∗N − ε0N))

=
d

dε̃0N
Ψ (θN,ε̃0N )c−1

0N
MN√

N
+ oP(1/

√
N)

=
MN√

N
+ oP(1/

√
N),

where we use that ε̃0N − ε0N converges to zero as N → ∞, so that, by assumption

d
dε̃0N

Ψ (θN,ε̃0N )c−1
0N → 1 in probability as N → ∞.

Proof of Theorem 19.5

We first prove (19.7). We have

ε∗N =
1
N

∑N
i=1 c−1

N Ψ (θi−1)
+ 1

N

∑N
i=1

{
f̃ −1
N D̄g∗ (θi−1)(Ō(i)) − f̃ −1

N P0,o(i)D̄g∗ (θi−1)
}

+ 1
N

∑N
i=1 f̃ −1

N P0,o(i)D̄g∗ (θi−1).

By the identity

−P0,o(i)D̄g∗(θi−1) = Ψ (θi−1) − Ψ (θ0) + R2,i(θi−1, θ0),

the last term equals

1
N

∑N
i=1 f̃ −1

N {Ψ (θ0) − Ψ (θi−1) + R2,i(θi−1, θ0)}
= 1

N

∑N
i=1 f̃ −1

N {Ψ (θ0) − Ψ (θi−1) + 1
N

∑N
i=1 R2,i(θi−1, θ0).

Regarding the second term, recall f̃ −1
N (ψ) = ε0

N − c−1
N Ψ (θN(ε0

N)) + c−1
N ψ equals a

constants plus a linear transformation c−1
N . Thus, f̃ −1

N a − f̃ −1
N b = c−1

N (a − b) for any
two numbers a, b. Thus, we have

1
N

∑N
i=1

{
f̃ −1
N D̄g∗(θi−1)(Ō(i)) − f̃ −1

N P0,o(i)D̄g∗(θi−1)
}

= 1
N

∑N
i=1 c−1

N

{
D̄g∗,i(θi−1)(Ō(i)) − P0,o(i)D̄g∗(θi−1)

}
.

So we conclude that

ε∗N =
1
N

∑N
i=1 c−1

N Ψ (θi−1) + c−1
N

MN√
N

+ 1
N

∑N
i=1 f̃ −1

N {Ψ (θ0) − Ψ (θi−1)} + c−1
N R̄2,N ,
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where

R̄2,N =
1
N

N∑

i=1

R2,i(θi−1, θ0),

and

MN =
1
√

N

N∑

i=1

{
D̄g∗ (θi−1)(Ō(i)) − P0,o(i)D̄g∗(θi−1)

}
.

Let’s now focus on the last term 1
N

∑N
i=1 f̃ −1

N {Ψ (θ0) − Ψ (θi−1)}, which equals

1
N

∑N
i=1

{
ε0

N − c−1
N fN(ε0

N) + c−1
N ψ0 − c−1

N Ψ (θi−1)
}

= {ε0
N − c−1

N fN(ε0
N) + c−1

N ψ0} − 1
N

∑N
i=1 c−1

N (Ψ (θi−1)
= f̃ −1

N (ψ0) − 1
N

∑N
i=1 c−1

N Ψ (θi−1).

Plug this expression back into our expression above for ε∗N and notice that

1
N

∑

i

c−1
N Ψ (θi−1)

cancels out. So we obtain:

ε∗N − f̃ −1
N (ψ0) = c−1

N
MN√

N
+ c−1

N R̄2,N .

Finally, we use that f̃ −1
N (ψ0) = f −1

N (ψ0) + R0N(ε0
N , ε0N) and f −1

N (ψ0) = ε0N to obtain:

ε∗N − ε0N = c−1
N

MN√
N
+ c−1

N R̄2,N + R0N(ε0
N , ε0N).

By assumption and Lemma 19.2, we have R0N(εN
0 , ε0N) = oP(N−1/2). We assumed

that R̄2,N = oP(1/
√

N). Under these assumptions, we have

ε∗N − ε0N = c−1
N

MN√
N
+ oP(1/

√
N).

By our continuity and boundedness assumption on the inverse of the first derivative
cN(ε) at ε = 0, by ZN = MN/

√
N converging to Z, we have

(c−1
N − c−1

0N)(ZN) = −
{
c−1

0NcN(c−1
N (ZN)) − c−1

0Nc0N(c−1
N (ZN))

}

= −c−1
0N(cN − c0N)(c−1

N (ZN)

→p 0.

This completes the proof of Theorem 19.5.
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19.7 Online Targeted Learning with Independent Identically
Distributed Data

In the next subsection we define the estimation problem for estimating an average
causal effect based on independent and identically distributed (W(t), A(t),Y(t)), t =
1, . . . ,N, and we define the relevant quantities. In Sect. 19.7.2 we present the online
one-step estimator and a corresponding theorem establishing asymptotic efficiency.
In Sect. 19.7.3 we define the online TMLE.

19.7.1 Online Targeted Learning of the Average Causal Effect

We observe N i.i.d. observations O(t) = (W(t), A(t),Y(t)), t = 1, . . . ,N, and let
P0 be the common probability distribution of O(t). Suppose that Y(t) is binary or
that it is continuous with values in (0, 1). Let q̄w, ḡ, q̄y be the common marginal
density of W(t), the conditional density of A(t), given W(t), and the conditional
density of Y(t), given W(t), A(t), under P, respectively. Let θ(P) = (q̄w, ḡ, q̄y). Let
Q̄w, Q̄y, Ḡ be the corresponding conditional probability distributions. Let M be a
statistical model for P0 that only makes assumptions about ḡ0, and consider the
target parameter Ψ : M → IR defined by Ψ (P) = EPEP(Y | A = 1,W). Let
Q̄(W) = EP(Y | A = 1,W) and note that Ψ (P) = Q̄wQ̄ =

∫
Q̄(w)dQ̄w(w). We will

also use the notation Ψ (Q̄w, Q̄) or Ψ (θ). The efficient influence curve of Ψ : M → IR
is given by

D̄(θ)(O(t)) =
A(t)

ḡ(A(t) | W(t))
(Y(t) − Q̄(W(t))) + Q̄(W(t)) − Ψ (Q̄w, Q̄).

This satisfies the identity:

−P0D̄(θ) = Ψ (θ) − Ψ (θ0) + R20(θ, θ0),

where

R20(θ, θ0) = EP0 (ḡ − ḡ0)/ḡ(1 | W)(Q̄ − Q̄0)(W).

19.7.2 Online One-Step Estimator

Let (Q̄i : i) and (ḡi : i) be online estimators of Q̄0 and ḡ0, respectively. This also
defines an online estimator (ψi : i) of ψ0:

ψi =
1
i

i∑

j=1

Q̄ j−1(Wj).
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Notice that we can write D̄(θ) = D̄1(θ) − Ψ (θ), where D̄1(θ) = A(t)/ḡ(A(t) |
W(t))(Y(t) − Q̄(W(t))) + Q̄(W(t)). The online one-step estimator is now defined as:

ψN =
1
N

N∑

i=1

ψi−1 +
1
N

N∑

i=1

D̄(θi−1, ψi−1)(O(i))

=
1
N

N∑

i=1

D̄1(θi−1)(O(i)).

It follows that

ψN − ψ0 =
1
N

N∑

i=1

{
D̄(θi−1)(O(i)) − P0D̄(θi−1)

}

+
1
N

N∑

i=1

R20(θi−1, θ0). (19.8)

The following theorem is an application of the general Theorem 19.4.

Theorem 19.7. Assume

R̄N =
1
N

N∑

i=1

R20(θi−1, θ0) = oP(N−1/2);

ḡ(1 | W) > δ > 0 a.e. for some δ > 0,

1
N

N∑

i=1

P0{D̄(θi−1) − D̄(θ0)}2 = oP(1);

1
N

∑N
i=1 P0{D̄(θi−1)}2 →p σ

2
0 as N → ∞, where σ2

0 = P0D̄(θ0)2.
Then,

√
N (ψN − Ψ (θ0)) =

1
√

N

N∑

i=1

D̄(θ0)(O(i)) + oP(1),

and the right-hand side converges in distribution to N(0, σ2
0).

19.7.3 Online TMLE

Consider the local least favorable fluctuation model

LogitQ̄N,ε = LogitQ̄N + εH(ḡN),



19 Online Targeted Learning for Time Series 343

where H(ḡ)(W) = 1/ḡ(1 | W). The online estimator (Q̄i : i) and its fluctuation,
implies an ε-specific online estimator (Q̄i,ε : i) for any given ε. We consider the
following two online estimators of its mean with respect to W:

ψ1
N,ε ≡

1
N

N∑

i=1

Q̄i−1,ε(Wi),

ψ2
N,ε ≡

1
N

N∑

i=1

Q̄N,ε(Wi).

In the second estimator, we use the empirical mean of Q̄N,ε with respect to distribu-
tion of W which is not an online type estimator, while in the first estimator we use
a full online estimator to estimate this empirical mean. Let θ = (Q̄, ψ) represent the
outcome regression and corresponding target parameter value also depending on the
distribution of W. Then θ j

N,ε = (Q̄N,ε , ψ
j
N,ε), j = 1, 2, is its ε-specific online estimator.

Below, we will present two online one-step estimators ε∗ j
N , j = 1, 2, which results in

corresponding online TMLE ψ
∗ j
N = ψ

j

N,ε∗ j
N

, j = 1, 2.

Let ε0 j
N be an initial estimator of ε j

0N , where ε j
0N is defined as the solution of

f j
N(ε) ≡ ψ

j
N,ε = Ψ (θ0),

or equivalently,

1
N

N∑

i=1

Q̄i−1,ε1
0N

(Wi) = ψ0,

1
N

N∑

i=1

Q̄N,ε2
0N

(Wi) = ψ0.

If θN is a consistent estimator of θ0, a requirement for our efficiency theorem below,
one can select ε0 j

N = 0.

We use this initial estimator ε0 j
N of ε j

0N to construct a first order Taylor expansion

f̃ j
N(ε) of f j

N(ε) in a neighborhood of ε j
0N :

f̃ j
N(ε) = f j

N(ε0 j
N ) +

d

dε0 j
N

f j
N(ε0 j

N )(ε − ε
0 j
N ).

We will use the short-hand notation c j
N ≡ d

dε0 j
N

f j
N(ε0 j

N ), j = 1, 2. In other words,

1
N

N∑

i=1

Q̄i−1, f̃ 1
N (ε)(W(i)) =

1
N

N∑

i=1

Q̄i−1,ε01
N

(W(i)) +
1
N

N∑

i=1

d

dε01
N

Q̄i−1,ε01
N

(W(i))(ε − ε01
N )
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=
1
N

N∑

i=1

Q̄i−1,ε01
N

(W(i)) + c1
N(ε − ε01

N ),

1
N

N∑

i=1

Q̄N, f̃ 2
N (ε)(W(i)) =

1
N

N∑

i=1

Q̄N,ε02
N

(W(i)) +
1
N

N∑

i=1

d

dε02
N

Q̄N,ε02
N

(W(i))(ε − ε02
N )

=
1
N

N∑

i=1

Q̄N,ε(W(i)) + c2
N(ε − ε02

N ).

Since Q̄i,ε is differentiable in ε with a bounded derivative (since ḡ0(W) > δ > 0 a..e),
we have

f j
N(ε) − f̃ j

N(ε) = OP(‖ ε − ε
0 j
N ‖2).

Let f j,−1
N be the inverse function of f j

N , and similarly let f̃ j,−1
N be the inverse func-

tion of f̃ j
N :

f̃ j,−1
N (ψ) = ε0 j

N + c j,−1
N (ψ − f j

N(ε0 j
N )).

As in our general representation, we have

f̃ j,−1
N (ψ0) − f j,−1

N (ψ0) = −
{
f̃ j,−1
N f̃ j

N f j,−1
N (ψ0) − f̃ j,−1

N f j
N f j,−1

N (ψ0)
}

= −
{
ε

0 j
N + c j,−1

N { f̃ j
N(ε j

0N) − f j
N(ε0 j

N )} − ε
0 j
N − c j,−1

N {ψ0 − f j
N(ε0 j

N )}
}

= −c j,−1
N

{
f̃ j
N(ε j

0N) − f j
N(ε0 j

N )} − ψ0 + f j
N(ε0 j

N )
}

= −c j,−1
N

{
f̃ j
N(ε j

0N) − f j
N(ε j

0N)
}

= −c j,−1
N OP(‖ ε j

0N − ε
0 j
N ‖2)

= OP(‖ ε j
0N − ε

0 j
N ‖2),

where we use that c j,−1
N is bounded. We assume that ‖ ε

j
0N − ε

0 j
N ‖2= oP(N−1/2).

This corresponds with assuming that θ j
N converges at a rate faster than N−1/4 w.r.t.

loss-based dissimilarity. So we can conclude that for both definitions of the online
TMLE we have

R0N(ε0 j
N , ε

j
0N) ≡ f̃ j,−1

N (ψ0) − f j,−1
N (ψ0) = oP(N−1/2).

We now define the following online one-step estimator ε∗ j
N of ε j

0N :

ε
∗ j
N =

1
N

N∑

i=1

c j,−1
N ψi−1 +

1
N

N∑

i=1

f̃ j,−1
N D̄(θi−1)(Ō(i)).

Note we can use here the online definition ψi−1 as in the estimator j = 1 above. This
defines our online TMLE ψ

∗ j
N = ψ

j

N,ε∗ j
N

of ψ0.

We first present the following theorem for this online estimator ε∗ j
N :
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Theorem 19.8. Let MN =
1√
N

∑N
i=1{D̄(θi−1)(O(i))−P0D̄(θi−1)} and the second-order

remainder

R̄(N) =
1
N

N∑

i=1

R20(θi−1, θ0).

Let j ∈ {1, 2} be given. Recall the above definitions of f j
N , f̃ j

N , c j
N, R0N(ε0 j

N , ε
j
0N) ≡

f̃ j,−1
N (ψ0)− f j,−1

N (ψ0) and ε j
0N defined by ψ j

N,ε = ψ0. Let c j
0N ≡ d

dε j
0N

ψN,ε j
0N

. We have the

following expansion:

ε
∗ j
N − ε

j
0N = c j,−1

N MN/
√

N + c j,−1
N R̄(N) + R0N(ε0 j

N , ε
j
0N).

Assumptions. Assume R̄(N) = oP(N−1/2); R0N(ε0 j
N , ε

j
0N) = oP(N−1/2); ḡ0 > δ > 0

a.e. for some δ > 0; 1
N

∑N
i=1 P0D̄(θi−1)2 − P0D̄(θ0)2 → 0 in probability, as N → ∞.

Conclusion. Then, c j
0N

√
N(ε∗ j

N − ε0N) ⇒d Z in probability, where Z ∼ N(0, σ2
0) and

σ2
0 = P0D̄(θ0)2.

Using a simple δ-method argument, Theorem 19.5 establishes the asymptotic effi-
ciency of the online TMLE Ψ (θN,ε∗N

) of ψ0.

Theorem 19.9. Let j ∈ {1, 2} be given. Under the same conditions as in Theo-
rem 19.5, we have

ψ
∗ j
N − Ψ (θ0) =

MN√
N
+ oP(1/

√
N),

and thereby
√

N(ψ j∗
N − Ψ (θ0)) ⇒d Z, where Z ∼ N(0, σ2

0). Thus ψ j∗
N is an asymptot-

ically efficient estimator of ψ0.

Practical Computation of the First Online TMLE. We note that for each ε, ψ1
N+1,ε

is an online estimator that only requires updating the initial estimator Q̄N and ḡN

and subsequently ψ1
N,ε with the (N + 1)-th observation, and thus completely controls

computation speed and memory. This suggest the following approach for highly
scalable computation of the online TMLE ψ1∗

N = ψ
1
N+1,ε∗1

N
. A priori select a fine grid

of ε-values, and for each ε-value in this finite set, track the online estimators ψN+1,ε ,
while also running the online estimator ε∗1

N . In this manner, one has also available
ψN+1,ε∗1

N
at each step and there is no need to recompute Q̄i,ε for i ≤ N for this new

ε-value. In addition, one could decide to also track a number of derivatives dk

dε ψ
1
N,ε

for each of the ε-values in the grid, k = 1, . . . ,K. In this manner, one can use a
K-th order Taylor expansion of ψ1

N,ε to obtain the values at ε that are not in the
grid. This then allows to use a smaller size grid while still preserving the desired
approximation of ψ1

N,ε for all ε that could occur as realization of ε1∗
N .
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19.8 Discussion

We have proposed a general class of statistical models for dependent data that is
ordered in time. We proposed a particular class of causal quantities and developed
online one-step and online TMLEs of their corresponding estimands. We proved
theorems that provide sufficient conditions under which these online estimators are
asymptotically efficient. The stochastic behavior of the initial online estimator is
crucial for the second-order remainder to be negligible, by far the most fundamental
condition for asymptotic efficiency.

Analogue to the HAL estimator for i.i.d. data, we can define an HAL estimator
that converges to the truth at a faster rate than the critical N−1/4, where we now
rely on fundamental exponential tail probabilities for martingale processes: we will
present the formal results on this HAL estimator and its HAL super learner in future
work. This then proves that asymptotic efficient estimation is possible in this highly
nonparametric class of statistical models for time series data.

We also highlighted a fundamental condition that controls the amount of depen-
dence that our results allow. We demonstrated our proposed online estimators for
estimation of the average causal effect based on i.i.d. data. A very important set of
applications is the analysis of a single time series on a single unit, which, in par-
ticular, has applications for precision medicine involving tracking data on patients.
Our results demonstrate that it is possible to assess causal effects for a single pa-
tient based on observing a time series involving experimentation with a particular
treatment or exposure variable. It will be interesting to extend the work on optimal
dynamic treatments for i.i.d. data to learning the optimal treatment rule for a single
time series. In future research, we will implement our proposed estimators, evaluate
them in simulations, obtain more insight into the computational speed of these es-
timators, and their statistical performance. We also aim to apply these estimators in
real data.
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Chapter 20
Causal Inference in Longitudinal
Network-Dependent Data

Oleg Sofrygin and Mark J. van der Laan

Much of the existing causal inference literature focuses on the effect of a single
or multiple time-point intervention on an outcome based on observing longitudinal
data on n independent units that are not causally connected. The causal effect is
then defined as an expectation of the effect of the intervention assigned to the unit
on their outcome, and causal effects of the intervention on other units on the unit’s
outcome are assumed nonexistent. As a consequence, causal models only have to
be concerned with causal relations between the components of the unit-specific data
structure. Statistical inference is based on the assumption that the n data structures
are n independent realizations of a random variable. However, in many CRTs or
observational studies of few communities, the number of independent units is not
large enough to allow statistical inference based on limit distributions.

In an extreme but not uncommon setting, one may observe a single community
of causally connected individuals. Can one still statistically evaluate the causal
effect of an intervention assigned at the community level on a community level
outcome, such as the average of individual outcomes? This is the question
we address in this chapter. Clearly, causal models incorporating all units are
needed in order to define the desired causal quantity, and identifiability of
these causal quantities under (minimal) assumptions should be established
without relying on asymptotics in a number of independent units.
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As previously noted, the frequently made assumption of independence among
units is generally violated when data is collected on a population of connected units,
since the network interactions will often cause the exposure of one unit to have
an effect on the outcomes of other connected units. Consider a setting with single
time point exposure where we collect data on baseline covariates, exposures, and
outcomes on N connected units. We might expect that the interactions between any
two connected units can cause the exposure of one unit to have an effect on the
outcome of the other—an occurrence often referred to as interference or spillover
(Sobel 2006; Hudgens and Halloran 2008).

While many past studies have wrongfully assumed no interference for the sake
of simplicity,1 the past decade has also seen a growing body of literature devoted to
estimation of causal effects in network-dependent data. Many of these studies have
sought to answer questions about the role of social networks on various aspects
of public health. For example, Christakis et al. used observational data on subjects
connected by a social network in a series of studies that estimated the causal effects
of contagion for obesity, smoking, and a variety of other outcomes, finding that
many of these conditions are subject to social contagion (Christakis and Fowler
2007, 2013). In one study, authors found that an individual’s risk of becoming
obese increases with each additional obese friend, even after controlling for all mea-
sured confounding factors (Christakis and Fowler 2007). However, the statistical
methods employed by these studies have come under scrutiny due to possibly anti-
conservative standard error estimates that did not account for network-dependence
among the observed units (Lyons 2010), and possibly biased effect estimates that
could have resulted from: model misspecification (Lyons 2010; VanderWeele and
An 2013), network-induced homophily (Shalizi and Thomas 2011), and unmeasured
confounding by environmental factors (Shalizi and Thomas 2011).

20.1 Modeling Approach

An important ingredient of our modeling approach is the incorporation of network
information that describes for each unit i (in a finite population of N units) a set of
other units Fi ⊂ {1, . . . ,N} from which this unit may receive input. This allows us to
pose a structural equation model for this group of units in which the observed data
node at time t of a unit i is only causally affected by the observed data on the units
in Fi, beyond exogenous errors. The set Fi includes only the immediate friends of
unit i that directly affect unit i’s data at each time t. The structural equation model
could be visualized through a so-called causal graph involving all N units, which
one might call a network.

Our assumptions on the exogenous errors in the structural equation model will
correspond with assuming sequential conditional independence of the unit-specific
data nodes at time t, conditional on the past of all units. That is, conditional on the
most recent past of all units, including the network information, the data on the units

1 See references in Sect. 21.7 for implications of incorrectly ignoring interference.
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at the next time point are independent across units. Smaller sets of friends of i, Fi,
will result in fewer incoming edges for each node in the causal graph, providing
a larger effective sample size for targeting the desired quantity. While these causal
graphs allows the units to depend on each other in complex ways, if the size of Fi is
bounded universally in N, in conjunction with our assumption of the independence
of the exogenous errors, the likelihood of the data on all N units allows statistical
inference driven by the number of units, N, rather than the number of communities
(e.g., 1). Furthermore, our most recent work generalizes these formal asymptotic
results to allow the size of Fi to grow with N (Ogburn et al. 2017).

We will apply the roadmap for targeted learning of a causal effect to define and
solve the estimation problem. We start by defining a structural causal model (Pearl
2009a) that determines how each node is generated as a function of parent data
nodes and exogenous variables. We then define the causal quantity of interest in
terms of stochastic interventions on the unit-specific treatment nodes. The structural
causal model could be visualized as a causal graph describing the causal links be-
tween the N units. In this presentation, we will assume that the network is measured
at baseline, and that it remains static throughout the duration of the follow-up. We
also note that these results generalize naturally to situations where the set of friend
connections over time (i.e., time-varying node Fi(t)) are themselves random (e.g.,
see van der Laan 2014a).

As mentioned above, our structural equation model also makes strong indepen-
dence assumptions on the exogenous errors, which imply that the unit specific data-
nodes at time t are independent across the N units, conditionally on the past of all
N units. We refer to this assumption as a sequential conditional independence as-
sumption. Thus, it is assumed that any dependence of the unit-specific data nodes
at time t can be fully explained by the observed past on all N units. As a next step
in the roadmap, we then establish the identifiability of the causal quantity from
the data distribution under transparent additional (often nontestable) assumptions.
This identifiability result allows us to define and commit to a statistical model that
contains the true probability distribution of the data, and an estimand (i.e., a tar-
get parameter mapping applied to true data distribution) that reduces to this causal
quantity if the required causal assumptions hold. The statistical model must contain
the true data distribution, so that the statistical estimand can be interpreted as a pure
statistical target parameter, while under the stated additional causal conditions that
were needed to identify the causal effect, it can be interpreted as the causal quan-
tity of interest. The statistical model, and the target parameter mapping that maps
data distributions in the statistical model into the parameter values, defines the pure
statistical estimation problem.

Because the statistical model does not assume that the data generating experiment
involves the repetition of independent experiments, the development of targeted es-
timators and inference represents novel statistical challenges. Targeted minimum
loss-based estimation was developed for estimation in semiparametric models for
i.i.d. data (van der Laan and Rubin 2006; van der Laan 2008a; van der Laan and
Rose 2011), and extended to a particular form of dependent treatment/censoring
allocation as present in group sequential adaptive designs (van der Laan 2008a;
Chambaz and van der Laan 2011a,b) and community randomized trials (van der



352 O. Sofrygin and M. J. van der Laan

Laan et al. 2013a). In this chapter, we describe the application of the targeted mini-
mum loss based estimation to new types of complex semiparametric statistical mod-
els that allow for network-based interference between observational units.

20.2 Data Structure

Consider a study in which we observe a sample of N units where any two units
might be connected via a social network. For a unit i, let Oi = (Wi, Ai, Ȳi = (Yi(t) :
t = 1, . . . , τ)) be a time-ordered longitudinal observed data structure, where Wi are
baseline-covariates, Ai denotes an action/treatment/exposure intervention node, Yi(t)
denotes the time-dependent outcome process on unit i, and Yi(τ) denotes the final
outcome on unit i. For example, we may assume that Ai records a particular trait
on subject i, such as ‘high level of physical activity’ and Yi(τ) is the indicator of
subject i being overweight at time τ. Let Fi be a component of Wi and we assume
that Fi denotes the set of friends from which individual i may receive input at any
time during the follow-up. Thus, Fi ⊂ {1, . . . ,N}. We assume that Wi occurs before
Ai, in the sense that Ai is affected by all the past, including Wi.

We define W = (Wi : i = 1, . . . ,N), A = (Ai : i = 1, . . . ,N) and similarly we
define Y(t) = (Yi(t) : i = 1, . . . ,N), for each t = 1, . . . , τ. Lastly, we define the
observed data on N units as O = (O1, . . . ,ON) ∼ PN

0 , and we note that this observed
data can be represented as a single time-ordered data structure:

O = (W,A, Ȳ = (Y(t) : t = 1, . . . , τ)).

The latter ordering is the only causally relevant ordering. The ordering of units
within a time-point is user supplied but inconsequential. We define Pa(A) = W,
Pa(Y(t)) = (W,A, Ȳ(t − 1)), as the parents of A and each Y(t), respectively. The
parents of Ai, denoted with Pa(Ai), are defined to be equal to Pa(A), and, the par-
ents of Yi(t), denoted with Pa(Yi(t)), are also defined to be equal to Pa(Y(t)), for
t = 1, . . . , τ and i = 1, . . . ,N.

20.3 Example

In order to provide the reader with some context for the type of real-world appli-
cations of our modeling approach, we present a few examples. Consider a study in
which we wish to evaluate the effectiveness of pre-exposure prophylaxis (PrEP) on
the rate of new HIV infections in the target population of interest (e.g., among indi-
viduals who are at high risk for HIV). A cohort of individuals is followed for several
years, and for each individual i the researchers collect data on i’s baseline character-
istics Wi, that include the set Fi ⊂ Wi of i’s sexual partners. In addition, researchers
measure i’s treatment status Ai, which is the indicator of receiving PrEP, as assigned
at the beginning of the study. We assume that regular tests for new HIV-infections



20 Causal Inference in Longitudinal Network-Dependent Data 353

are carried out at certain time intervals, where the HIV status for unit i at time t
is indicated by Yi(t). Let t = 1, . . . , τ, where the τ-th point represents the end of
follow-up. Suppose one is interested in the effect of PrEP at baseline, Ai, on the
proportion 1/N

∑
i Yi(τ) of HIV-infections at the last time point τ. In this setting,

it may be of interest to estimate the mean outcome 1/N
∑

i E0Yi,g∗ (τ) under some
stochastic intervention g∗ on A = (A1, . . . , AN), which, for example, might assign
every individual in the study to receive PrEP. This is an example of a deterministic
intervention. Finally, in our model we may assume that the conditional distributions
of Yi(t) and Ai, given the past on all individuals, only depend on the individual pasts
of the sexual partners of subject i, beyond the past of subject i itself. In other words,
we assumed that the risk of HIV-infection at time t for individual i, depends on the
treatment status of his or her sexual partners.

As an example of a stochastic intervention, we may choose to target a random
subset of the total set of intervention nodes, (Ai : i = 1, . . . ,N), by focusing on a
specific subset of individuals. That is, we could define a stochastic intervention that
allows some subjects to have their observed exposures, while setting the exposures
of others to pre-specified intervened values. For example, when limited resources
allow treatment allocation for only a small number of subjects, the researchers may
wish to identify which treatment allocation strategies will maximize the reduction
in infection rates. In addition, researcher might be interested in measuring the effec-
tiveness of an intervention that, as a prophylactic measure, treats a random propor-
tion of high-risk individuals. The latter is an example of a truly stochastic interven-
tion. Similarly, the treatment node could be defined as the indicator of condom use,
so that the counterfactual mean outcomes evaluate the effect of condom use on the
spread of the HIV-epidemic. One could also consider intervening on Fi itself, for
example, by decreasing the number | Fi | of sexual partners.

As another potential application, consider a study where we wish to evaluate
the effect of physical activity at a single time-point on the future risk of being
overweight, where overweight status of individual i is measured at time points
t = 1, . . . , τ and is denoted as Yi(t). In this case, the final Yi(τ) denotes the out-
come of interest for individual i. The encouraging effects of high levels of physical
activity among the friends of individual i may affect the future weight of subject i
(interference). Similarly, the level of physical activity of individual i is affected by
the weight of i’s friends at baseline—a notion known as the adaptive treatment al-
location. This is an application in which both the treatment nodes and the outcome
nodes of an individual are affected by the observed past of i’s friends.

20.4 Estimation Problem

We present our structural causal model that models the data generating process for
a population of interconnected units. As previously mentioned, we assume that the
network is measured at baseline, and that it remains static throughout the duration
of the follow-up. We will present a model for the distribution of (O,U) = (Oi,Ui :
i = 1, . . . ,N), where each Oi denotes the observed data on unit i, and Ui represents
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a vector of exogenous errors for the structural equations for unit i. This structural
causal model allows us to define stochastic interventions denoted with g∗ on the col-
lection of unit-specific treatment nodes (contained in Oi), and corresponding coun-
terfactual outcomes. The causal quantity, denoted with E

(
1/N

∑N
i=1 Yi,g∗ (τ)

)
, is de-

fined in terms of the (possibly conditional) expectation of the intervention specific
counterfactual-outcomes Yi,g∗ (τ), and it represents a parameter of the distribution
of (O,U). Subsequently, we establish identifiability of the causal quantity from the
data distribution P0 of data O = (O1, . . . ,ON) on the N units, commit to a statis-
tical model M for the probability distribution P0 of O, define the statistical target
parameter mapping Ψ : M → IR that defines the estimand Ψ (P0), where the latter
reduces to the causal quantity under the additional assumptions that are needed to
establish the identifiability. The statistical estimation problem is now defined by the
data O ∼ P0 ∈ M, the statistical model M and target parameter Ψ : M → IR.

In order to define causal quantities, we assume that O is generated by a structural
equation model of the following type: first generate a collection of exogenous errors
UN = (Ui : i = 1, . . . ,N) across the N units, where the exogenous errors for unit i
are given by

Ui = (UWi ,UAi ,UYi(1), . . . ,UYi(τ)), i = 1, . . . ,N,

and then generate O deterministically by evaluating functions as follows:

Wi = fWi (UWi ), for i = 1, . . . ,N (20.1)

Ai = fAi (Pa(Ai),UAi ), for i = 1, . . . ,N

Yi(t) = fYi(t)(Pa(Yi(t)),UYi(t)), for i = 1, . . . ,N and t = 1, . . . , τ.

These functions fWi , fAi and ( fYi(t) : t = 1, . . . , τ) are unspecified at this point, but will
be subjected to modeling below. Since Pa(Ai) =W and Pa(Yi(t)) = (W,A, Ȳ(t−1)),
an alternative succinct way to represent the above structural equation model is:

W = fW(UW) (20.2)

A = fA(Pa(A),UA)

Y(t) = fY(t)(Pa(Y(t)),UY(t)), for t = 1, . . . , τ.

Recall that the set of friends, Fi, is a component of Wi and is thus also a random
variable defined by this structural equation model. However, one may also decide
to condition on Fi, as we do for the case of single time-point outcome (i.e., data
structure O = (W,A,Y)), which is presented in next chapter.

20.4.1 Counterfactuals and Stochastic Interventions

This structural equation model for

O = (W,A,Y(1), . . . ,Y(τ)),
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allows us to define counterfactuals Yd(τ) corresponding with an dynamic interven-
tion d on A (Gill and Robins 2001). For example, one could define Ai as a particular
deterministic function di of the parents Pa(Ai) of subject i = 1, . . . ,N. Using our
previously described study of the effects of physical activity on weight, one could
define such an intervention by adding a new physically active friend to all subjects
who weren’t physically active at baseline. Such an intervention corresponds with
replacing the equation for A with the deterministic equation dt(Pa(A). More gen-
erally, we can replace the equation for A that describe a degenerate distribution for
drawing A, given U = u, and Pa(A), by a user-supplied conditional distribution of
a new variable A∗, given Pa(A∗). Such a conditional distribution defines a so-called
stochastic intervention (Didelez et al. 2006).

Let g∗ denote our selection of a stochastic intervention identified by the con-
ditional distribution of A∗, given Pa(A∗(t)). For convenience, we represent the
stochastic intervention with equation A∗ = fA∗ (Pa(A∗),UA∗ ) in terms of random
errors UA∗ . This implies the following modified system of structural equations:

W = fW(UW) (20.3)

A∗ = fA∗(Pa(A∗),UA∗ )

Y∗(t) = fY(t)(Pa(Y∗(t)),UY(t)), for t = 1, . . . , τ,

where Pa(Y∗(t)) is the same set of variables as Pa(Y(t)), but where the variables
(A, Ȳ(t − 1)) are replaced by (A∗, Ȳ∗(t − 1)). Let Yi,g∗ (τ), or short-hand Yi,∗(τ), de-
note the corresponding final counterfactual outcome for unit i. A causal effect at the
unit level could now be defined as a contrast, such as Yi,g∗1 (τ)−Yi,g∗2 (τ), for two inter-
ventions g∗1 and g∗2. For example, g∗1 may correspond with the actual data generating
distribution as defined by the above structural equation model for the observed A,
while g∗2 corresponds with adding one overweight friend to each unit i at baseline.

20.4.2 Post-Intervention Distribution and Sequential
Randomization Assumption

We assume the following sequential randomization assumption on U,

A ⊥ Ȳg∗ , conditional on Pa(A), (20.4)

and UA∗ ⊥ U, where Ȳg∗ = (Yg∗ (1), . . . ,Yg∗ (τ)). Then, the probability distribu-
tion Pg∗ of (W,A∗, Ȳg∗ ) is given by the so-called g-computation formula (Gill and
Robins 2001):

Pg∗ (W,A∗, Ȳ∗) = PW(W)
∏N

i=1 ḡ∗i (Ai,∗(t) | Pa(Ai,∗(t)))
τ∏

t=1

N∏

i=1

PYi(t)(Yi,∗(t) | Pa(Yi,∗(t))),
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where PYi(t) is the conditional distribution of Yi(t), given Pa(Yi(t)), Pa(Yi,∗(t)) =
(W,A∗, Ȳ∗(t − 1), ) and ḡ∗i is the i-specific stochastic intervention on Ai. Note that
ḡ∗i is defined by the i-specific marginal of the joint density g∗ and we are implicitly
assuming that (A1,∗, . . . , AN,∗) are conditionally independent given W. Thus, under
this sequential randomization assumption, the post-intervention distribution Pg∗ is
identified from the observed data distribution of O that was generated from this
structural equation model.

20.4.3 Target Parameter as the Average Causal Effect (ACE)

One can define the average causal effect as the following target parameter of the
distribution of Pg∗ :

EPg∗1

⎧⎪⎪⎨
⎪⎪⎩

1
N

N∑

i=1

Yi,g∗1 (τ)

⎫⎪⎪⎬
⎪⎪⎭ − EPg∗2

⎧⎪⎪⎨
⎪⎪⎩

1
N

N∑

i=1

Yi,g∗2 (τ)

⎫⎪⎪⎬
⎪⎪⎭ .

By setting Ȳg∗ (τ) = 1
N

∑N
i=1 Yi,g∗ (τ) we can also write this causal effect as E(Ȳg∗1 (τ) −

Ȳg∗2 (τ)). Since the distribution Pg∗ is indexed by N, this parameter must also de-
pend on N. In particular, the effect of stochastic intervention on a population of
N interconnected units will naturally depend on the size N of that population, and
the network information F: i.e., adding a unit will change the dynamics. As we
will do in our description of the single time-point outcome case in the following
chapter, one might decide to replace these marginal expectations by conditional ex-
pectations, where one conditions on (Fi : i = 1, . . . ,N), or even conditions on
(Wi : i = 1, . . . ,N). We will now focus on the causal quantity ψF = EPg∗ Ȳg∗ (τ)
under user-supplied stochastic intervention, and our results generalize naturally to
causal quantities defined by some Euclidean-valued function of a collection of such
intervention specific means.

The parameter EȲg∗ (τ) can be evaluated by taking the expectation of Ȳg∗ (τ) with
respect to this post-intervention distribution Pg∗ . In practice, however, this integral
will be often intractable, in which case one can perform Monte-Carlo integration
to obtain a reasonable approximation of EȲg∗ (τ). This process is carried out by se-
quentially sampling N random variables at a time from each factor of Pg∗ , until one
obtains a single realization of Ȳg∗ (τ). That is, we first sample a realization of N val-
ues W = (W1, . . . ,WN) from PW, followed by a realization of A∗ from g∗, sampled
conditionally on W. This is followed by a sample of Yg∗ (1) = (Y1,g∗ (1), . . . ,YN,g∗ ),
conditional on (W,A∗), and so on, until we obtain a sample of N final outcomes
Yg∗ (τ), conditional on (W,A∗,Yg∗ (τ − 1)). One Monte-Carlo estimate of the target
parameter EȲg∗ (τ) is then obtained by taking the empirical mean Ȳg∗ (τ) of Yg∗ (τ).
Finally, by iterating this procedure enough times and averaging over such Monte-
Carlo estimates, we can obtain a good enough approximation of EȲg∗ (τ).



20 Causal Inference in Longitudinal Network-Dependent Data 357

20.4.4 Dimension Reduction and Exchangeability Assumptions

The above stated identifiability of ψF is not of interest, since we cannot estimate the
distribution of O based on a single observation. Therefore, we will need to make
much more stringent assumptions that will allow us to learn the distribution of O
based on a single draw. One could make such assumptions directly on the distribu-
tion of O, but below we present these assumptions in terms of assumptions on the
structural equations and the exogenous errors.

Beyond the assumptions described above, we also assume that for each node
Ai and Yi, we can define known functions, Pa(Ai) → cA,i(Pa(Ai)) and Pa(Yi(t)) →
cY(t),i(Pa(Yi(t))), that map into a Euclidean set with a dimension that does not depend
on N, and corresponding common (in i) functions fA and fY(t), so that

Wi = fWi (UWi ), for i = 1, . . . ,N (20.5)

Ai = fA(cA,i(Pa(Ai)),UAi ), for i = 1, . . . ,N

Yi(t) = fY(t)(cY(t),i(Pa(Yi(t))),UYi(t)), for i = 1, . . . ,N, t = 1, . . . , τ.

(As mentioned above, an interesting variation of this structural causal model treats
W as given and thus removes that data generating equation.) Examples of such
dimension reductions are cY(t),i(Pa(Yi(t))) = ((Ȳi(t − 1), Ai), (Ȳ j(t − 1), Aj : j ∈
Fi)), i.e., the observed past of unit i itself and the observed past of its friends, and,
similarly, we can define cA,i(Pa(Ai)) = (Wi, (Wj : j ∈ Fi)). By augmenting these
reductions to data on maximally K friends, filling up the empty cells for units with
fewer than K friends with a missing value, these dimension reductions have a fixed
dimension, and include the information on the number of friends. This structural
equation model assumes that, across all units i, the data on unit i at the next time
point t is a common function of its own past and past of its friends.

20.4.5 Independence Assumptions on Exogenous Errors

Beyond the sequential randomization assumption (20.4), we make the following
(conditional) independence assumptions on the exogenous errors. First, we assume
that each UWi is independent of all UWj such that Fi ∩ F j = ∅, for i = 1, . . . ,N.
It then follows that each Wi depends on at most K other Wj, for some universal
constant K (weak dependence of W). We also note that this assumption of weak
dependence of W provides us with a statistical model for which we can still prove
the asymptotic normality of our resulting estimator. Hence, we will assume a model
on the distribution of W which at minimal makes this assumption. However, addi-
tional restrictions on W are also possible (e.g., a more restricted statistical model
that assumes independence of W).

In addition, we assume that conditional on W, all (UAi : i = 1, . . . ,N) are inde-
pendent and identically distributed (i.i.d.). Similarly, we assume that for t = 1, . . . , τ,
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conditional on (A, Ȳ(t−1)), all (UYi(t) : i = 1, . . . ,N) are i.i.d. The important impli-
cation of the latter assumptions is that, given the observed past Pa(Y(t)), for any two
units i and j that have the same value for their summaries cY(t),i = cY(t), j as functions
of Pa(Y(t)), we have that Yi(t) and Yj(t) are independent and identically distributed,
and similarly, we have this statement for the treatment nodes. This allows us to fac-
torize the likelihood of the observed data as done below, parameterized by common
conditional distributions q̄0,t and ḡ0 that can actually be learned from a single (but
growing) O when N → ∞.

20.4.6 Identifiability: g-Computation Formula for Stochastic
Intervention

For notational convenience, let CY(t),i = cY(t),i(Pa(Yi(t))), and let C∗
Y(t),i be defined

accordingly by replacing (A, Ȳ) with (A∗, Ȳ∗). Due to the exchangeability and di-
mension reduction assumptions, the probability distribution Pg∗ of Ȳ∗ = (Ȳi,∗ : i =
1, . . . ,N) now simplifies:

pg∗ (W,A∗, Ȳ∗) = qW(W)
N∏

i=1

ḡ∗i (Ai,∗ | Pa(Ai,∗)
τ∏

t=1

N∏

i=1

q̄t(Yi,∗(t) | C∗
Y(t),i)))

≡ pg∗ (W,A∗, Ȳ∗), (20.6)

where qW is the joint marginal probability density of W and q̄t is the common condi-
tional density of Yi(t), given Pa(Yi(t)), where, by our assumptions, these conditional
densities are constant in i = 1, . . . ,N, as functions of CY(t),i, t = 1, . . . , τ. We also
introduce the notation qY(t) for the joint conditional density of Y(t), given Pa(Y(t)),
which is thus parameterized in terms of q̄t. Similarly, we introduce the notation g
to denote the joint conditional density of A, given Pa(A), which is thus parameter-
ized in terms of ḡ. We introduced the notation pg∗ for the right-hand side in (20.6),
which thus represents an expression in terms of the distribution of the data under the
assumption that the conditional densities of Yi(t), given Pa(Yi(t)), are constant in i
as functions of CY(t),i, indexed by the choice of stochastic intervention g∗. We also
note that one needs the causal model and randomization assumption in order to es-
tablish that the right-hand side actually models the counterfactual post-intervention
distribution Pg∗ . This shows that ψF

0 = Ψ (P0), where Ψ is a mapping that takes the
distribution P0 of O and maps it into the real line.

Strictly speaking, the above result does not establish a desired identifiability re-
sult yet, since we cannot learn P0 based on only a single draw O. To start with, we
note that P0, ψF,N

0 , ψN
0 are all indexed by N, and we only observed one draw of N

units from P0. Therefore, we still need to show that we can construct an estimator
based on a single draw O that is consistent for ψN

0 , as N → ∞. For that purpose, we
note that the distribution Pg∗ is identified by the common conditional densities q̄Y(t),
t = 1, . . . , τ, and qW, where W = (Wi : i = 1, . . . ,N). We can construct consistent
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estimators of the common conditional distributions q̄0,t based on MLE that are con-
sistent as N → ∞, which follows from our presentation of estimators and theory.
This demonstrates the identifiability of q̄0,t as N → ∞, t = 1, . . . , τ. In addition,
our target parameter involves an average EW(Q̄g∗ ) with respect to the joint distribu-
tion of W, where Q̄g∗ (W) defines the conditional expectation of the sample-average
counterfactual outcomes, i.e., Q̄g∗ (W) := Eg∗(Ȳg∗ (τ) | W). We note that EW(Q̄g∗ ) can
be consistently estimated by its empirical counterpart under our weak dependence
assumption, as discussed above. This finally demonstrates the desired identifiability
of ψF,N

0 from the observed data as N → ∞.

20.4.7 Likelihood and Statistical Model

By our assumptions, we can factorize the probability density of the data O =

(W,A, Ȳ = (Y(1), . . . ,Y(τ))) as follows:

p(w, a, ȳ) = qW(w)
N∏

i=1

ḡ(ai | cA,i(w))
τ∏

t=1

N∏

i=1

q̄t(yi(t) | cY(t),i(w, a, ȳ(t − 1))). (20.7)

In above, we denoted the factor representing the joint marginal density of W with
qW. We denoted the conditional density of each Yi(t) with q̄t, where these conditional
densities at Yi(t), given Pa(Yi(t)), are constant in i, as functions of Yi(t) and CY(t),i.
Similarly, we modeled the g-factor in terms of common conditional density ḡ. We
also let μW, (μY(t) : t = 1, . . . , τ) and μA denote the corresponding dominating mea-
sures of these densities. Let q̄ := (q̄t : t = 1, . . . , τ) represent the collection of these
conditional densities, so that the distribution of O is parameterized by (qW, q̄, ḡ).
The conditional distributions q̄t(Y(t) | CY(t)) are unspecified functions of Y(t) and
CY(t), beyond that for each value of CY(t), each is a well-defined conditional density,
and qW satisfies our particular independence model, i.e., that W are at least weakly
dependent. Similarly, ḡ is an unspecified conditional density. This defines now a
statistical parameterization of the distribution of O in terms of (qW, q̄, ḡ), resulting
in the following formulation of the statistical model for P0:

M = {PqW,ḡ,q̄ : qW ∈ QW , ḡ ∈ G, q̄ ∈ QȲ }, (20.8)

where QW , G and QȲ denote the parameter spaces for qW, ḡ and q̄ = (q̄t : t =
1, . . . , τ), respectively.

20.4.8 Statistical Target Parameter

Let Yg∗ (τ) denote the final N outcomes sampled under intervention-specific dis-
tribution Pg∗ (20.6). Note that Pg∗ was defined as a function of the data distri-
bution P of O. Namely, Pg∗ was obtained by replacing the g-factor in P with
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the corresponding joint stochastic intervention g∗. We define our statistical target
parameter as 1

N

∑N
i=1 E

[
Yg∗

i (τ)
]
, which is a function of Pg∗ . We also note that this

parameter is equal to the target causal quantity 1
N

∑N
i=1 E

[
Yi,g∗ (τ)

]
, under the above

stated causal assumptions. Thus,

1
N

N∑

i=1

E
[
Yg∗

i (τ)
]
= Ψ (PqW,ḡ,q̄) = Ψ (qW, q̄) (20.9)

depends on the data generating distribution P only through the marginal distribution
of W and the conditional densities q̄ = (q̄t : t = 1, . . . , τ).

In addition, this statistical parameter can be represented as EW(Q̄(W)), where
Q̄(W) defines the expectation of Ȳg∗ conditional on W, i.e., Q̄(W) := Eq̄,g∗(Ȳg∗ (τ) |
W). This suggests that our parameter Ψ (PqW,ḡ,q̄) can be also represented as a map-
pingΨ (qW, Q̄g∗ ). Evaluation of Q̄(W) involves taking an expectation over all vectors
Y(t) and A∗, with respect to the product measure of common conditional densities
q̄t, for t = 1, . . . , τ and g∗i , for i = 1, . . . ,N. In what follows, we focus exclusively
on estimation of our target parameter based on the mapping Ψ (qW, q̄). As described
previously, we can evaluate this statistical target parameter by performing Monte-
Carlo simulations that samples Ȳg∗ from the post-intervention distribution Pg∗ by
going forward in time and sampling N random variables from each successive fac-
tor of pg∗ , starting from qW, and all the way up to q̄τ.

Finally, one can define another statistical parameter by conditioning on all the
observed W, namely a parameter given by Eq̄,g∗ (Ȳg∗ | W). This parameter can be
still effectively evaluated with the same Monte-Carlo sampling procedure, except
that we skip the sampling from the first factor qW and instead use the observed W
values.

20.4.9 Statistical Estimation Problem

We have now defined a statistical model M (20.8) for the distribution (20.7) of O,
and a statistical target parameter mapping Ψ : M → IR (20.9) for which Ψ (PqW,ḡ,q̄)
only depends on (qW,0, q̄), where q̄ = (q̄t : t = 1, . . . , τ). We will also denote this
target parameter with Ψ (qW, q̄), with some abuse of notation by letting Ψ repre-
sent these two mappings. Given a single draw O ∼ PqW,0,ḡ0,q̄0 , we want to estimate
Ψ (qW,0, q̄0). In addition, we want to construct an asymptotically valid confidence
interval. Recall that our notation suppressed the dependence on N and F of the data
distribution PqW,ḡ,q̄, statistical model M, and target parameter Ψ .

20.4.10 Summary

In summary, we defined a structural causal model (20.5), including the stated inde-
pendence (and i.i.d.) assumptions on the exogenous errors, the dimension reduction
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assumptions, and the sequential randomization assumption (20.4). This resulted in
the likelihood (20.7) and corresponding statistical model M (20.8) for the distribu-
tion P0 of O. In addition, these assumptions allowed us to write the causal quantity
ψF

0 as a statistical estimand Ψ (qW, q̄Ȳ ) (20.9): ψF
0 = Ψ (qW, q̄), where the densities

q̄ = (q̄t : t = 1, . . . , τ) can be learned from a single draw O as N → ∞. The pure
statistical estimation problem is now defined: O ∼ P0 ∈ M, and we want to learn
ψ0 = Ψ (P0) where Ψ : M → IR. Under the nontestable causal assumptions, beyond
the statistical assumption for P0 ∈ M, we can interpret ψ0 as ψF

0 . However, even
without these nontestable assumptions, one might interpret ψ0 (and its contrasts) as
a purely statistical parameter for the effect measure of interest controlling for the
observed confounders.

20.5 Efficient Influence Curve

Due to our sequential conditional independence assumption, the log-likelihood of
O, i.e., the log of the data-density (20.7) of O, can be represented as a double sum
over time-points t and units i. For each t, the sum over i consists of independent
random variables, conditional on the past. As a consequence, under appropriate
regularity conditions, one can show that the log-likelihood is asymptotically nor-
mally distributed. Therefore, we conjecture that we can establish the so-called lo-
cal asymptotic normality of our statistical model, which involves establishing the
asymptotic normality of log-likelihood under sampling from fluctuations (submod-
els) Pε=1/

√
N ⊂ M of a fixed data distribution P across all possible fluctuations. As

shown in van der Vaart (1998), for models satisfying the local asymptotic normality
condition, the normal limit distribution of an MLE is an optimal limit distribution
based on the convolution theorem (Bickel et al. 1997b).

While it is well known that a regular estimator based on sample of n i.i.d. obser-
vations is efficient if and only if it is asymptotically linear with influence curve equal
to the efficient influence curve, here we are not interested in asymptotics when we
observe n of our data structures that are indexed by this parameter N, as is the case
when observing an i.i.d. sample O1, . . . ,On, where each Oi describes the data on N
causally connected units. Instead, we are interested in the asymptotics in N based on
a single draw of O. Nonetheless, the asymptotic behavior of the MLE based on such
a single draw ON when N → ∞ was analyzed in Section 5 of van der Laan (2014a),
which showed that the asymptotic variance of such MLE is still characterized by the
efficient influence curve. In more detail, it showed that, under appropriate regular-
ity conditions required for an MLE to be valid (i.e., all observables are discrete, so
that MLE is asymptotically well defined), the asymptotic variance of a standardized
MLE

√
N(ψN−ψ0) of the target parameter equals the limit in N of NP0{D∗(q̄0, ḡ0)}2,

where P0{D∗(q̄0, ḡ0)}2 is the variance of the efficient influence curve D∗(q̄0, ḡ0) (as
defined below). As a consequence, our goal should still be to construct an estimator
that is asymptotically normally distributed with variance equal to the variance of the
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efficient influence curve, appropriately normalized. Our proposed TMLE achieves
this goal by using the least favorable submodels, whose score span the efficient in-
fluence curve.

Theorem 3 of the technical report van der Laan (2012) established a general
representation of the efficient influence curve of EȲg∗ (τ) for the longitudinal data
structure, assuming the baseline covariates (W1, . . . ,WN) are independent. Let

D∗
Wi

(P)(Wi) = E(Ȳg∗ (τ) | Wi) − E(Ȳg∗ (τ))

=
1
N

N∑

j=1

[
E(Yj,g∗ (τ) | Wi) − E(Yj,g∗ (τ))

]
.

Then the EIC is given by

D∗(P) =
N∑

i=1

D∗
Wi

(P)(Wi) +
τ∑

t=1

N∑

i=1

D∗
t (P)(Yi(t),CY(t),i), (20.10)

where we define D∗
t as:

D∗
t (P)(Yi(t),CY(t),i) =

1
N

N∑

m=1

⎡
⎢⎢⎢⎢⎢⎣
h∗t,m
h̄t

(CY(t),i)
1
N

N∑

l=1

Dl,t,m(Yi(t),CY(t),i)

⎤
⎥⎥⎥⎥⎥⎦ .

In above, we also defined h∗t,m(c) = Pq̄0,g∗(CY(t),m = c), ht,m(c) = Pq̄0,ḡ0 (CY(t),m = c),
and h̄t =

1
N

∑
m ht,m, and we define Dl,t,m as:

Dl,t,m(Yi(t),CY(t),i) = E(Yl,g∗ (τ) | Ym(t) = Yi(t),CY(t),m = CY(t),i) − E(Yl,g∗ (τ) | CY(t),m = CY(t),i).

We will also denote a collection of all h̄t as h̄, namely, h̄(q̄, ḡ) := (h̄t(q̄, ḡ) : t =
1, . . . , τ).

Note that if we were to assume a different model for the distribution of the base-
line covariates W, we would only change the first component of this efficient in-
fluence curve, namely, the above defined terms D∗

Wi
. For example, the following

chapter presents the efficient influence curve when assuming a fully nonparametric
model for the distribution of W. We also note that D∗

t (q̄0, ḡ0) has conditional mean
zero, given CY(t),i. In order for D∗

t (q̄0, ḡ0) to have a finite variance, the summation
over l must reduce to a finite sum, since Ym(t) is conditionally independent of Yl(τ),
given CY(t),m, for most m. We now refer to Section 6 of the technical report van der
Laan (2012) for the derivation of the above efficient influence curve and a study of
its robustness.

We now describe an alternative representation of the above EIC for the case when
all (Yi(t), Ai) are binary and Wi are categorical, for all i = 1, . . . ,N and t = 1, . . . , τ.
In particular, for each t = 1, . . . , τ, the corresponding t-specific component of the
above EIC can be also expressed in terms of sums of residuals (Yi(t) − q̄t(1|CY(t),i)),
where each residual is multiplied by the “clever covariate” H̄t(CY(t),i):

N∑

i=1

D∗
t (Yi(t),CY(t),i) =

N∑

i=1

H̄t(CY(t),i)(Yi(t) − q̄t(1 | CY(t),i)), (20.11)
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and the clever covariate is defined as:

H̄t(cy(t)) =
1
N

N∑

m=1

h∗t,m
h̄t

(cy(t))D̄t,m(cy(t)),

where

D̄t,m(cy(t)) =
[
E(Ȳg∗ (τ) | Ym(t) = 1,CY(t),m = cy(t)) − E(Ȳg∗ (τ) | Ym(t) = 0,CY(t),m = cy(t))

]
.

Note that the binary EIC representation in (20.11) will allow us to define the least
favorable submodel of our TMLE, as described in Sect. 20.7.

20.6 Maximum Likelihood Estimation, Cross-Validation, and
Super Learning

We could estimate the distribution of W with the empirical distribution that puts
mass 1 on (Wi : i = 1, . . . ,N). This choice also corresponds with a TMLE of the in-
tervention specific mean outcome E(Ȳg∗ | W) that conditions on W, as we formally
show in our later sections for the single time-point data structure. If it is assumed
that (Wi : i = 1, . . . ,N) are independent, then we estimate the distribution of W
with the NPMLE that maximizes the log-likelihood

∑
i log qWi (Wi) over all possible

distributions of W that the statistical model M allows. In particular, if it is known
that Wi are i.i.d., then we would estimate the common distribution of Wi with the
empirical distribution that puts mass 1/N on Wi, i = 1, . . . ,N.

Regarding estimation of (q̄t,0 : t = 1, . . . , τ), we consider the log-likelihood loss
function for each q̄t:

Lt(q̄t) ≡ −
N∑

i=1

log q̄t(Yi(t) | CY(t),i).

Note that E0Lt(q̄t) is minimized in q̄t by the true q̄t,0, since, conditional on
(W,A, Ȳ(t−1)), the true density of Yi(t) is given by q̄t,0(· | CY(t),i), i = 1, . . . ,N. In ad-
dition, this expectation E0Lt(q̄t) is well approximated by 1

N

∑N
i=1 log q̄t(Yi(t) | CY(t),i),

since, conditional on (W,A, Ȳ(t−1)), this is a sum of independent random variables
Yi(t), i = 1, . . . ,N. The latter allows us to prove the convergence of the empirical
mean process to the true mean process uniformly in large parameter spaces for q̄t,
using similar techniques as we use in the Appendix of van der Laan (2014a), based
on weak convergence theory in van der Vaart and Wellner (1996). As a consequence,
one could pose a parametric model for q̄0,t, say {q̄t,θ : θ}, and use standard maximum
likelihood estimation

θN = arg min
θ

Lt(qt,θ),

as if the observations (Yi(t),CY(t),i), i = 1, . . . ,N, are independent and identically
distributed and we are targeting this common conditional density of Yi(t) given
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CY(t),i. More importantly, we can use loss-based cross-validation and super-learning
to fit this function q̄t,0 of (y(t), cY(t)), thereby allowing for adaptive estimation of q̄t.
Specifically, consider a collection of candidate estimators ˆ̄qt,k that maps a data set
{(Yi(t),CY(t),i) : i} into an estimate for k = 1, . . . ,K. Let Pt

N denote the empirical
distribution that puts mass 1/N onto each (Yi(t),CY(t),i). Given a random split vector
BN ∈ {0, 1}N , define Pt,1

N,BN
and Pt,0

N,BN
as the empirical distributions of the validation

sample {i : Bn(i) = 1} and training sample {i : BN(i) = 0}, respectively. We define
the cross-validation selector kn of k as

kn = arg min
k

EBN Pt,1
N,BN

Lt( ˆ̄qt,k(Pt,0
N,BN

)

= arg min
k

EBN

∑

i:BN (i)=1

log ˆ̄qt,k(Pt,0
N,BN

)(Yi(t) | CY(t),i).

If Yi(t) is continuous, one could encode Yi(t) in terms of binary variables I(Yi(t) =
l) across the different levels l of Yi(t), and model the conditional distribution/hazard
of I(Yi(t) = l), given Yi(t) ≥ l and (W,A, Ȳ(t − 1)), as a function of CY(t),i and l, as
in van der Laan (2010a,b). Candidate estimators of this conditional hazard can be
constructed, possibly smoothing in the level l, by utilizing estimators of predictors
of binary variables in the machine learning literature, including standard logistic
regression software for fitting parametric models. Similarly, this can be extended to
multivariate Yi(t) by first factorizing the conditional distribution of Yi(t) in univariate
conditional distributions. In this manner, candidate estimators of q̄t,0 can be obtained
based on a large variety of algorithms from the literature.

We could fit each q̄t,0 separately for t = 1, . . . , τ, but it is also possible to pool
across t by constructing estimators and using cross-validation based on the sum loss
function

L(q̄) =
∑

t

Lt(q̄t).

Similarly, we can use the log-likelihood loss-function for ḡ:

L(ḡ) = −
N∑

i=1

log ḡ(Ai | CA,i),

and use loss-based cross-validation and super-learning to fit ḡ.
Given the resulting estimators qW,N of qW,0 and q̄N = (q̄t : t = 1, . . . , τ)

of q̄0 = (q̄t,0 : t = 1, . . . , τ), one can evaluate Ψ (qW,N , q̄N) as estimator of
ψ0 = Ψ (qW,0, q̄0), by applying the previously described Monte-Carlo integration
procedure. Since q̄N is optimized with respect to the bias-variance trade-off to fit
q̄0 and not ψ0, even though this data-adaptive plug-in estimator inherits the rate of
convergence at which q̄N converges to q̄0, it is overly biased for Ψ (qW,0, q̄0). That is,
Ψ (qW,N , q̄N) will generally not converge to Ψ (qW,0, q̄0) at rate 1/

√
N. The resulting

smoothed/regularized maximum likelihood substitution estimators Ψ (qW,N , q̄N) are
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not targeted, and are overly biased with respect to the target parameter Ψ (qW,0, q̄0).
As a consequence, estimators of the statistical target parameter will not be asymp-
totically normally distributed . Thus there is a need for targeted learning (targeting
the fit towards ψ0) instead of MLE.

20.7 TMLE

TMLE will involve modifying an initial estimator q̄t,N into a targeted version q̄∗t,N ,
for t = 1, . . . , τ, through utilization of an estimator ḡN of ḡ0, a least favorable sub-
model (with respect to the target parameter ψ0) {q̄k

t,N(ε, ḡN) : ε} through a current fit
q̄k

t,N at ε = 0, fitting ε for each t and each step k with standard MLE εk
t,N , iterative up-

dating q̄k+1
t,N = q̄k

t,N(εk
t,N), t = 1, . . . , τ, until convergence in k = 1, 2, . . .. The resulting

TMLE of ψ0 is defined accordingly as the substitution estimator Ψ (qW,N , q̄∗N). Thus,
this TMLE will also involve estimation of the intervention mechanism ḡ0. To define
such a TMLE we need to use the efficient influence curve of the statistical target pa-
rameter, given by 21.12, which implies these least favorable submodels. This least
favorable fluctuation model solves the efficient influence curve equation 21.12. That
is, we will define a fluctuation model {pq̄ε : ε} through the q̄t factors of the density
p so that it satisfies

d
dε

log pq̄ε

∣∣∣∣∣
ε=0

(O) = D∗(qW, q̄, h̄(q̄, ḡ))(O). (20.12)

20.7.1 Local Least Favorable Fluctuation Model

We now consider the case when all Yi(t) are binary and all Wi are categorical, for
i = 1, . . . ,N and t = 1, . . . , τ. In this case we can use the binary representation
of the EIC in 20.11. In particular, 20.11 shows that each t-specific component of
the EIC can be expressed in terms of sums of residuals (Yi(t) − q̄t(1|CY(t),i)), where
each residual is multiplied by the “clever covariate” H̄t(CY(t),i). As a result, we can
use the following logistic regression fluctuation model through each q̄t, indexed by
parameter εt:

Logitq̄t,εt (1 | cy(t)) = Logitq̄t(1|cy(t)) + εt H̄t(cy(t)),

The above model now defines a τ-dimensional fluctuation submodel {q̄t(εt, ḡ) :
εt, t = 1, . . . , τ} indexed by parameter {εt : t = 1, . . . , τ) through the q̄t compo-
nents of the density p. Note that this choice of the fluctuation submodel clearly
satisfies

d
dε

log pq̄ε

∣∣∣∣∣
ε=0

(O) = D∗(qW, q̄, h̄(q̄, ḡ))(O).
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We define the estimator qW,N of qW,0 as a NPMLE that puts mass one on the
observed W, assuming it is well defined. This implies that qW,N already solves the
efficient score equation defined by the EIC component

∑N
i=1 D∗

Wi
(P)(Wi). Define the

estimator ḡN of ḡ0 and the initial estimators q̄N := (q̄t,N : t = 1, . . . , τ) of q̄0 :=
(q̄t,0 : t = 1, . . . , τ) that were obtained by applying one of the methods outlined in
the previous section, either by separately fitting for each t or by pooling across all t.
Let k = 0, and define the MLE

εk
t,N = arg max

εt

log q̄k
t,N,εt

(O), for t = 1, . . . , τ.

Note that this model can be obtained by running t = 1, . . . , τ separate regres-
sions. That is, for each t one fits a separate logistic regression that pools the ob-
served outcomes (Yi(t) : i = 1, . . . ,N), using as offset the initial super learner fit
q̄t,N(1|CY(t),i), for i = 1, . . . ,N and the plug-in estimate of the “clever covariate”
H̄t(ḡN , g∗, q̄N)(CY(t),i), evaluated at observations CY(t),i, for i = 1, . . . ,N. This now
constitutes the first TMLE step, in which we define q̄k+1

t,N := q̄k
t,N,εk

t,N

, for t = 1, . . . , τ.

Setting k = k + 1 and iterating this updating process defines a k-th step TMLE
qk

t,N , for k = 1, 2, . . .. The corresponding k-th step TMLE of the target parameter
Ψ (qW,0, q̄0) is now given by the plug-in estimator Ψ (qW,N , q̄k

N), for k = 1, 2, . . .. If
one iterates this updating process until a step K at which εK

N,t ≈ 0 for all t, then it
follows by 20.12 that

D∗(qW,N, q̄
∗
N , h̄(q̄∗N , ḡN))(O) ≈ 0,

where q̄∗N = q̄K
N . If the initial estimator of q̄t is close enough to the truth, for example,

if the rate of convergence is faster than n−1/4, then our recent results prove that the
single iteration of the TMLE will be enough, which would significantly simplify the
computational burden of this algorithm (see Chap. 5).

20.7.2 Estimation of the Efficient Influence Curve

The efficient influence curve (EIC) depends on the data generating distribution P
only through (q̄, h̄(q̄, ḡ)). Given estimators of q̄N , ḡN , one obtains a plug-in estimator
h̄(q̄N , gN) of h̄0 = h̄(q̄0, ḡ0). This suggests that the only goal in estimation of ḡ0 is to
construct a good estimator of h̄0. The important advantage of this plug-in estimator
h̄(q̄N , ḡN) of h̄0 is that it fully utilizes the knowledge coded by the statistical model.
Nonetheless, when the computational burden of evaluating the plug-in h̄(q̄N , ḡN) is
too high, it may be of interest to construct a direct estimator of h̄0 separate from an
estimator q̄N of q̄0. For that purpose we note that each h̄t,0 is a density of CY(t), j. We
can estimate h̄t,0 by using a density estimator treating (CY(t), j : j = 1, . . . ,N) as if
these observations are i.i.d. This corresponds with using as loss-function for h̄t,0,

L(h̄t)(O) = −
∑

j

log h̄t(CY(t), j).
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However, the evaluation of the plug-in estimate of the clever covariate
H̄t(h̄N , q̄N , g∗) can become computationally very challenging even when using
this direct approach to estimate h̄t,0. In particular, it is necessary to evaluate

D̄t,m,N(cy(t)) = Eq̄N ,g∗ (Ȳg∗ (τ) | Ym(t) = 1,CY(t),m = cy(t)) − Eq̄N ,g∗ (Ȳg∗ (τ) | Ym(t) = 0,CY(t),m = cy(t)),

and h∗t,m,N(cy(t)) = Pq̄N ,g∗ (CY(t),m = cy(t)), for each m = 1, . . . ,N and t = 1, . . . , τ.
Letting

Q̄g∗
t,m(y(t), cy(t)) = E(Ȳg∗ (τ) | Ym(t) = y(t),CY(t),m = cy(t)),

the above can be written as

D̄t,m(cy(t)) = Q̄g∗
t,m(1, cy(t)) − Q̄g∗

t,m(0, cy(t)).

Note that the following Monte-Carlo simulation approach could be used for evalu-
ating Q̄g∗

t,m,N(y(t), cy(t)), when all CY(t),i are discrete:

1. We start by sampling realizations Og∗,k from the estimate of the post-intervention
distribution Pg∗,N , for k = 1, . . . ,K, where each sample Og∗,k consists of N ob-
servations and K is large.

2. As a next step, we evaluate Ȳk
g∗ (τ) for each sample k. Thus, all N observations in

a single k sample receive the same outcome Ȳk
g∗ (τ).

3. Next, for a fixed m = 1, . . . ,N, we identify all samples among k = 1, . . . ,K
which match the specified values (y(t), cy(t)).

4. By taking the average of the outcomes Ȳk(τ) among these matched samples, we
can obtain an estimate of Q̄g∗

t,m,N(y(t), cy(t)).

Note that the above algorithm can be parallelized in a trivial manner. Moreover, the
approximation of Q̄g∗

t,m,N(y(t), cy(t)) can proceed concurrently as the realizations Og∗,k

are being simulated. This estimate of Q̄g∗

t,m,N(y(t), cy(t)) will continue to improve as
we generate more and more such samples (as K grows). Furthermore, a substitu-
tion estimator for h∗t,m(cy(t)) can also be obtained in a similar manner, based on the
empirical distribution of the same realizations Og∗,k, for k = 1, . . . ,K.

While this approach provides an algorithmically more tractable way to evaluate
D̄t,m, it can be computationally very intensive. Furthermore, it cannot handle the
case of continuous CY(t),i. An alternative approach is to use loss-based estimation
to obtain a good approximation of Q̄g∗

t,m,N , based on the same K realizations Og∗,k

sampled from Pg∗,N . Given that Ȳg∗ is known to be continuous with values in (0, 1),
one could use the following log-likelihood loss function

Lt,m(Q̄g∗
t,m)(Og∗,k : k = 1, . . . ,K) =

−∑K
k=1 log

{
Q̄g∗

t,m(Yk
m(t),Ck

Y(t),m)Ȳk
g∗ (τ)(1 − Q̄g∗

t,m(Yk
m(t),Ck

Y(t),m))1−Ȳk
g∗ (τ)

}
.

We could also consider the following squared error loss function for each Q̄g∗

t,m:

Lt,m(Q̄g∗
t,m)(Og∗,k : k = 1, . . . ,K) ≡ −

K∑

k=1

(Ȳk
g∗ (τ) − Q̄g∗

t,m(Yk
m(t),Ck

Y(t),m))2.
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Furthermore, since we have K independent realizations from Pg∗,N , one could pose
a parametric model for Q̄g∗

t,m, say {Q̄g∗

t,m,θ : θ}, and use standard maximum likelihood
estimation

θK = arg min
θ

Lt,m(Q̄g∗

t,m,θ).

This parametric model may also allow pooling over individual observations m =
1, . . . ,N, and individual time-points t = 1, . . . , τ by assuming that Q̄g∗

t,m can be

parametrized by a common parameter θ(m, t), say {Q̄g∗

θ(t,m) : θ(m, t)}, using the fol-
lowing sum loss function over t and m:

L(Q̄g∗ ) ≡
τ∑

t=1

N∑

m=1

Lt,m

and fitting this common parameter with standard maximum likelihood estimation

θK(m, t) = arg min
θ

L(Q̄g∗

θ(m,t)).

More importantly, we can apply the above approaches to use loss-based cross-
validation and super-learning to fit the above functions Q̄g∗

t,m, either separately or by

pooling across t or m or both, thereby allowing for adaptive estimation of Q̄g∗

t,m. By
pooling our modeling of Q̄∗

t,m over t and m, this becomes a computationally tractable
problem for any number of time-points (τ), since all components of the EIC can be
estimated with a single modeling step, for all t = 1, . . . , τ and m = 1, . . . ,N.

20.8 Summary

In this chapter, we formulated a general causal model for the longitudinal data struc-
ture generated by a finite population of causally connected units. We then defined
counterfactuals indexed by interventions on the treatment nodes of the units, and
corresponding causal contrasts. We established identifiability of the causal quan-
tities from the data observed on the units when observing all units, or a random
sample of the units, under appropriate assumptions. Our causal assumptions im-
plied conditional independence across units at time t, conditional on the past of all
units. This resulted in a factorized likelihood of the observed data even though the
observed data was generated by a single experiment, not by a repetition of indepen-
dent experiments. To deal with the curse of dimensionality we assumed that a unit’s
dependence on the past of other units could be summarized by a finite dimensional
measure, and that this dependence was described by a common function across the
units. We then described the statistical model for the data distribution, the statistical
target parameter, and the resulting statistical estimation problem. We demonstrated
that cross-validation and super-learning can be used to estimate the different factors
of the likelihood. Given the statistical model and statistical target parameter that
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identifies the counterfactual mean under an intervention, we derived the efficient
influence curve of the target parameter. We showed that the EIC characterizes the
normal limit distribution of a maximum likelihood estimator, and thus represents
an optimal asymptotic variance among estimators of the target parameter. However,
due to high dimensionality, maximum likelihood estimators will be ill-defined for
finite samples, and smoothing will be required.

Smoothed/regularized maximum likelihood estimators are not targeted and will
thereby be overly biased with respect to the target parameter. As a consequence,
they generally do not result in asymptotically normally distributed estimators of the
statistical target parameter. Therefore, we formulated targeted maximum likelihood
estimators of this estimand. The bias of the proposed TMLE is a second-order term
involving squared differences h̄N − h̄0 and qN − q0 for two nuisance parameters
h̄0 = h̄(ḡ0, q̄0) and the relevant factor of likelihood q̄0.

Overall, we believe that the statistical study of these causal models for dynamic
networks of units provides a fascinating and important area of future research, rely-
ing on deep advances in empirical process and statistical estimation theory. While
raising new challenges, these advances will be needed to move forward statistical
practice.

20.9 Notes and Further Reading

For literature reviews on causal inference with independent subject-level data we
refer to a number of books on this topic: Rubin (2006), Pearl (2009a), van der Laan
and Robins (2003), Tsiatis (2006), and van der Laan and Rose (2011). We refer to
Halloran and Struchiner (1995); Hudgens and Halloran (2008); VanderWeele et al.
(2012b); Tchetgen Tchetgen and VanderWeele (2012) for defining different types of
causal effects in the presence of causal interference between units. Lacking a gen-
eral methodological framework, many past studies have assumed away interference
for the sake of simplicity. The risk of this assumption is practically demonstrated in
Sobel (2006), who shows that ignoring interference can lead to wrong conclusions
about the effectiveness of the intervention. We also refer to Donner and Klar (2000),
Hayes and Moulton (2009), and Campbell et al. (2007) for reviews on cluster ran-
domized trials and cluster level observational studies.

We refer to the accompanying technical report (van der Laan 2012) for various
additional results such as weakening of the sequential conditional independence
assumption (still heavily restricting the amount of dependence, but allowing that,
even conditional on the observed past, a subject can be dependent on maximally K
other subjects), and only observing a random sample of the complete population of
causally connected units, among others. More general extensions of this framework
will be the target of our future research. Another possible approach to weaken the
independence assumption for the baseline covariates W is to simply define the target
parameter conditional on W. This estimator was analyzed in detail in van der Laan
(2014a).
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Our semiparametric model for possibly network-dependent units generalizes the
models in the causal inference literature for independent units. Even though in this
chapter our causal model pertains to a single group of units, it subsumes settings
in which the units can be partitioned in multiple causally independent subgroups
of units. In addition, our models incorporate group sequential adaptive designs in
which the treatment allocation for one individual is based on what has been ob-
served on previously recruited individuals in the trial (Hu and Rosenberger 2006;
van der Laan 2008a; Chambaz and van der Laan 2011a,b). Our models also permit
the outcome of an individual to be a function of the treatments other individuals
received. The latter is referred to as interference in the causal inference literature.
Thus the causal models proposed in this article do not only generalize the existing
causal models for independent units, but they also generalize causal models that in-
corporate previously studied causal dependencies between units. Finally, we note
that our models and corresponding methodology can be used to establish an ap-
proach for assessing causal effects of interventions on the network on the average
of the unit specific outcomes. For example, one might want to know how the com-
munity level outcome changes if we change the network structure of the commu-
nity through some intervention, such as increasing the connectivity between certain
units in the community. In this case, our treatment nodes must be defined as prop-
erties of the sets Fi, so that a change in treatment corresponds with a change in
the network structure. Finally, one may also be interested in causal effects of inter-
ventions that both change the network, and also assign an exposure to some of the
units.

We refer to Aronow and Samii (2013) for an IPTW approach for estimation of
an average causal effect under general interference, relying on the experimental de-
sign to generate the required generalized propensity scores. Authors additionally
provide finite sample positively biased estimators of the true (nonidentifiable) con-
ditional variance of this IPTW estimator, conditioning on the underlying counterfac-
tuals, relying on knowing the generalized propensity score. Lastly, authors consider
asymptotics when multiple independent samples from subpopulations are observed,
the number of subpopulations converging to infinity, each sample allowing for their
general type of interference. Their innovative approach relies on defining an expo-
sure model that maps the treatment nodes of the N units, and specifying the charac-
teristics of unit i into a generalized exposure of unit i. For example, the user might
define this generalized exposure as the vector of exposures of the friends of unit i,
beyond the exposure of unit i itself. It defines for each unit i the counterfactual out-
come corresponding with the static intervention that sets this generalized exposure
to a certain value, same for each unit i, and then defines the counterfactual mean
outcome as the expectation of the average of these unit-specific counterfactuals. It
weights by the inverse conditional probability of the generalized exposure to ob-
tain an unbiased estimator of the expectation of the average of these counterfactual
outcomes.

Our model includes the case of observing many independent clusters of units
as a special case. However, by assuming more general conditional independence
assumptions we also allow for asymptotic statistical inference when only one
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population of interconnected units is observed. Additionally, we define causal quan-
tities in terms of stochastic interventions on the N unit-specific exposures, we allow
for more general dependencies than interference, and we develop highly efficient
estimators that are very different from the above mentioned IPTW-type estimator,
overall making our approach distinct from Aronow and Samii (2013).
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Chapter 21
Single Time Point Interventions
in Network-Dependent Data

Oleg Sofrygin, Elizabeth L. Ogburn, and Mark J. van der Laan

Consider a study in which we collect data on N units connected by a social network.
For each unit i = 1, . . . ,N, we record baseline covariate (Wi), exposure (Ai), and
outcome of interest (Yi) information. We also observe the set Fi that consists of the
units in {1, . . . ,N}\{i} that are connected to and could influence the unit i. The set Fi

constitutes “i’s friends”. We allow |Fi|, the total number of friends of i, to vary in i.
In addition, we assume that |Fi| goes to zero when scaled by 1/N. For example, Fi

could represent the set of all the friends of i in a social network, or the set of all of
i’s sexual partners in a study of the effects of early HIV treatment initiation.

In this chapter, we allow for the following types of between-unit dependencies:
(a) the exposure of each unit can depend on its own baseline covariates and on those
of other units in Fi, and (b) the outcome of each unit can depend on its own baseline
and exposure covariates of and on those of other units in Fi. An important ingredient
of our modeling approach is to assume that any dependence among units is fully
described by the known network. Specifically, we assume that the dependence of i’s
exposure and outcome on other units is limited to the set of i’s friends.
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In addition, in this chapter we focus on the estimation of the sample-average
treatment effects under a single time point stochastic intervention among
units connected by a social network. We start by proposing a semiparamet-
ric statistical model. Next, we define a general single time-point intervention
of interest, which may include many possible static, dynamic, or stochastic in-
terventions on N exposures. We then describe how the TMLE framework can
be used to estimate the sample-average treatment effects of such interventions.
Lastly, we describe a simulation study that showcases potential real-world ap-
plications of our estimation framework.

21.1 Modeling Network Data

Suppose PN
0 is the true data generating distribution for N observed and connected

units. O = (W,A,Y) ∼ PN
0 denotes the random vector for the N units and Oi =

(Wi, Ai,Yi) for i = 1, . . . ,N. The network profile F = (F1, . . . , FN) is assumed to
have been recorded at baseline (i.e., F ∈ W). We additionally assume that all Yi

are bounded random variables. The potential for dependence among all N units
implies that we generally observe a single draw O from PN

0 . As a result, additional
assumptions are required in order to estimate PN

0 .

21.1.1 Statistical Model

Let M denote a statistical model containing PN
0 . A series of statistical assumptions

are needed in order to learn the true distribution of O based on a single draw. These
assumptions impose restrictions on the set of possible distributions that belong M.
Our statistical quantity of interest (target parameter) can then be defined as a map-
ping Ψ from M into the real line R. In particular, for any PN

0 ∈ M we assume:

A11. Conditional on F, each Wi depends on at most K other observations in
W = (W1, . . . ,WN). Formally, if (Wj : j ∈ Fi) is the set of all observations
dependent with Wi then maxi |Fi| ≤ K and K must not depend on N;

A2. A = (A1, . . . , AN) are independent, conditional on W;
A3. (Y1, . . . ,YN) are independent, conditional on (A,W).
A4. We denote F∗

i = Fi ∪ {i}. For each i = 1, . . . ,N, the conditional distribution
P(Yi | ·) depends on (W,A) only via (Aj,Wj : j ∈ F∗

i ). Similarly, for each
i = 1, . . . ,N, the conditional distribution P(Ai | ·) depends on W only via
(Wj : j ∈ F∗

i ).

1 This assumption will be also referred to as the weak dependence of W.
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To simplify our notation and to allow additional control on the dimensionality of
each P(Yi | ·) and P(Ai | ·), we will also assume the following restrictions:

B1. Each P(Yi | ·) is a function of some known summary measures as
i ((Aj,Wj) : j ∈

F∗
i ) and ws

i (Wj : j ∈ F∗
i ). Each P(Ai | ·) is a function of the summary measure

ws
i (Wj : j ∈ F∗

i ). We assume that ws
i (·) and as

i (·) are some known functions that
map into a Euclidean set of constant (in i) dimension that does not depend on
N, where as

i map into some common space As, and ws
i map into some common

space Ws.

We will use the following shorthand notation for the above summary measures:

W s
i = ws

i (W) = ws
i (Wj : j ∈ F∗

i ) ∈ Ws,

As
i = as

i (A,W) = as
i ((Aj,Wj) : j ∈ F∗

i ) ∈ As, (21.1)

Note that As
i and W s

i are allowed to be arbitrary functions of the units’ friends, as
long as their dimension is fixed, common-in-i, and doesn’t depend on N. We will
provide some examples of such summaries in our discussion of the simulation and
analysis of network data in Sects. 21.5 and 21.4.

The following likelihood is obtained by applying the summary measures to the
observed data O:

pN(O) =

⎡
⎢⎢⎢⎢⎢⎣

N∏

i=1

p(Yi | As
i ,W

s
i )

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

N∏

i=1

p(Ai | W s
i )

⎤
⎥⎥⎥⎥⎥⎦ p(W). (21.2)

We now make a final restriction on M:

C1. We assume that all Yi are sampled from the same distribution QY with density
given by qY (Yi | as,ws), conditional on fixed values of the summaries (As

i ,W
s
i ),

for i = 1, . . . ,N. Similarly, we assume that all Ai are sampled from the same
distribution with density g(Ai |ws), conditional on some fixed value of the sum-
maries W s

i = ws, for i = 1, . . . ,N.

The above assumption implies that, if two units i and j have the same values of
baseline summaries W s

i and W s
j , and the same values of exposure summaries As

i and
As

j, then i and j will be subject to the same conditional distributions for drawing
their exposures and outcomes.

We denote the joint density of conditional network exposures A given W by
g(A | W) =

∏N
i=1 g(Ai | W s

i ). We also denote the joint distribution of W by QW(W),
making no additional assumptions of independence between W = (W1, . . . ,WN),
and we assume qW is a well-defined density for QW with respect to some domi-
nating measure. Finally, we introduce the notation P = PQ,G, for Q ≡ (QW,QY )
and we assume the distributions QW and QY are unspecified beyond the above mod-
eling restrictions. We also note that the observed exposure model for G may be
restricted to incorporate the real-world knowledge about the true conditional treat-
ment assignment, for example when the common-in-i density g(Ai|W s

i ) is known in
a randomized clinical trial.
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The modeling restrictions A1–A4, B1, and C1 thus define our statistical model
M. In particular, the statistical parametrization for the data-generating distribution
of O is now defined in terms of the distributions Q and G, and the corresponding
statistical model is defined as M = {PQ,G : Q ∈ Q,G ∈ G}, where Q and G denote
the parameter spaces for Q and G, respectively. For example, we let Q0 denote Q
evaluated at PN

0 .
Finally, using the newly introduced notation we can rewrite the likelihood in 21.2

as:

pN(O) =

⎡
⎢⎢⎢⎢⎢⎣

N∏

i=1

qY (Yi | As
i ,W

s
i )

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

N∏

i=1

g(Ai | W s
i )

⎤
⎥⎥⎥⎥⎥⎦ qW(W). (21.3)

With the above modeling restrictions in place, we now have a well-defined estima-
tion problem. It is now possible to learn the common-in-i densities qY and g from a
single (but growing) draw O, as N → ∞.

21.1.2 Types of Interventions

The intervention of interest is defined by replacing the conditional distribution G
with a new user-supplied intervention G∗ that has a density g∗, which we assume
is well defined. Namely, G∗ is a multivariate conditional distribution that encodes
how each intervened exposure, denoted as A∗

i , is generated conditional on W. We
note that static or dynamic interventions on A correspond to degenerate choices
of g∗ while a nondegenerate choice of g∗ is often referred to as a stochastic inter-
vention (e.g., Dawid and Didelez 2010). We assume that A and A∗ belong to the
same common space A and we make no further restrictions on G∗. We also define
A∗s

i := as
i (A∗), where A∗s

i denotes the random variable implied by the summary mea-
sure mapping from an intervened exposure vector A∗, for i = 1, . . . ,N. Finally, we
define the post-intervention distribution PQ,G∗ by replacing G in PQ,G with a new
user-supplied distribution G∗. We use O∗ = (Wi, A∗

i ,Y
∗
i )N

i=1 to denote the random
variable generated under PQ,G∗ , with its likelihood given by

pN
Q,G∗ (O∗) =

⎡
⎢⎢⎢⎢⎢⎣

N∏

i=1

qY (Y∗
i | A∗s

i ,W
s
i )

⎤
⎥⎥⎥⎥⎥⎦ g∗(A∗ | W)qW(W). (21.4)

The latter distribution PQ,G∗ is referred to as the g-computation formula for the post-
intervention distribution of O, under the intervention G∗ (Robins 1987).

21.1.3 Target Parameter: Sample-Average of Expected Outcomes

Our target statistical quantity ψ0 is defined as a function of the post-intervention
distribution in 21.4. Specifically, it is given by
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ψ0 = Ψ (PN
0 ) =

1
N

N∑

i=1

Eq0,g∗
[
Y∗

i
]
, (21.5)

the expectation of the sample-average of N outcomes among dependent units
i = 1, . . . ,N, evaluated with respect to the post-intervention distribution PQ,G∗ . We
view Ψ (PN

0 ) as a mapping from the statistical model M into R. ψ0 is defined con-
ditionally on the observed network structure, F, and is also indexed by N. We also
define Q̄(As

i ,W
s
i ) =

∫
y

yqY (y| As
i ,W

s
i )dμ(y) as the conditional mean evaluated under

common-in-i distribution QY , and Q̄0 as Q̄ evaluated at PN
0 . Our dimension reduc-

tion assumptions imply that EPN
0
[Yi |A,W] = Q̄0(As

i ,W
s
i ). Since the target parameter

ψ0 only depends on PN
0 through Q̄0 and QW,0, with a slight abuse of notation we will

interchangeably use Ψ (PN
0 ) and Ψ (Q̄0,QW,0). Thus, the parameter ψ0 is indexed by

N, F and G∗ and can be written as

ψ0 =
1
N

N∑

i=1

∫

a,w
Q̄0(as

i (a,w),ws
i (w))g∗(a | w)qW,0(w)dμ(a,w), (21.6)

with respect to some dominating measure μ(a,w).
To many practitioners it may be of value to define the target quantity as a contrast

of two stochastic interventions. For example, one may define ΨG∗
1 (PN

0 ) and ΨG∗
2 (PN

0 )
as the above target parameter evaluated under stochastic interventions G∗

1 and G∗
2,

respectively. A target contrast could then be defined as ΨG∗
1,G

∗
2 (PN

0 ) = ΨG∗
1 (PN

0 ) −
ΨG∗

2 (PN
0 ). The average treatment effect over N connected units is a special case

of ΨG∗
1,G

∗
2 (PN

0 ) for degenerate choices of G∗
1,G

∗
2 defined by g∗1(1N | w) = 1 and

g∗2(0N | w) = 1, for all w ∈ W. That is, G∗
1 assigns treatment 1 to all subjects and

G∗
2 assigns treatment 0 to all subjects. In what follows, we will only focus on the

estimation of the statistical parameter ψ0 defined for one particular G∗, noting that
all of our results generalize naturally to such contrasts.

Additional causal assumptions beyond A1–A4, B1, and C1 are required in order
for ψ0 to be interpreted as a causal quantity that measures the sample average of
the expected counterfactual outcomes in a network of N units under intervention
G∗ (see van der Laan 2014a). These causal assumptions put no further restrictions
on the probability distribution PN

0 described above, and our statistical model M
remains the same. Since M contains the true data distribution PN

0 , it follows that
ψ0 will always have a pure statistical interpretation as the feature Ψ (PN

0 ) of the data
distribution PN

0 . The causal assumptions play no role in the estimation problem at
hand: even when one does not believe any of the untestable causal assumptions, the
statistical parameter ψ0 still represents an effect measure of interest controlling for
all measured confounders. Finally, the assumption A1 can be avoided entirely by
simply choosing a target parameter ψ0 that is conditional on the observed baseline
covariates W. We refer to van der Laan (2014a) for an in-depth description of the
resulting estimation problem.
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21.1.4 Sample Average Mean Direct Effect Under Interference

We now illustrate how our definition of the target parameter can be easily extended
to define the sample average of expected outcomes indexed by a collection of i-
specific stochastic interventions {g∗F∗

i
: i = 1, . . . ,N}. In this case, each g∗F∗

i
represents

an intervention on i’s exposure (Ai) and on the exposures of i’s friends (Aj : j ∈
Fi).2 For example, consider the problem of estimating the direct effect of a binary
exposure under interference for a network of N connected individuals. In the context
of interference, a direct effect isolates the effect of unit i’s exposure on i’s own
outcome from the effect that the exposures of i’s friends may have on i’s outcome.
In order to capture a direct effect we can define each g∗F∗

i
by setting the unit-specific

exposure, Ai, to zero or one, while assigning all Aj for j ∈ Fi to their observed values
(a j : j ∈ Fi). Alternatively, we could stochastically intervene on the exposures
(Aj : j ∈ Fi) according to their observed conditional distribution G0(Aj|W s

j ).

Each outcome Y
g∗

F∗i
i is generated from its own i-specific post-intervention distri-

bution that replaces the observed treatment allocation for i and j ∈ Fi with g∗F∗
i
. The

sample average of the expected outcomes Y
g∗

F∗i
i is then given by

ψ0 =
1
N

N∑

i=1

Eq0,g∗F∗i

[
Y

g∗
F∗i

i

]
. (21.7)

The parameter ψ0 can be alternatively expressed as:

ψ0 =
1
N

N∑

i=1

∫

a,w
Q̄0(as

i (a,w),ws
i (w))g∗F∗

i
(a|w)qW,0(w)dμ(a,w). (21.8)

The direct effect under interference can be thus represented as the contrast of two
target parameters. The first parameter is indexed by a collection of interventions that
assign each Ai to one, but keeps each set of exposures (Aj : j ∈ Fi) unchanged. The
second parameter is indexed by a collection of interventions that assign each Ai

to zero while also keeping each set (Aj : j ∈ Fi) unchanged. We note that these
parameters can be estimated by adapting the framework presented in the following
sections and we refer to Section 8 of Sofrygin and van der Laan (2017) for additional
details.

21.2 Estimation

In this section we describe estimation of the target parameter using TMLE. We refer
to references in Sect. 21.7 for a general overview of TMLE in i.i.d. data. To enhance
the finite sample performance of TMLE of the target parameter it is generally of

2 Note that we have previously defined F∗
i as Fi ∪ {i}.
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interest to select the smallest possible relevant part of the data generating distri-
bution in the definition of TMLE, which is then estimated and updated by TMLE.
In addition, by focusing on what really needs to be estimated, the resulting TMLE
can be also simpler to implement. Thus, having defined our target parameter as a
mapping Ψ (PN

0 ), our next step is to find the most economical representation for this
mapping, namely, a new mapping that only depends on the minimal summaries of
the joint distribution of N observed units, PN

0 . More precisely, the following lemma
shows that our target parameter Ψ (PN

0 ) can be represented as an equivalent map-
ping Ψ̄ (P̄0), where P̄0 is a mixture of N unit-specific components of the joint data-
generating distribution PN

0 . We also show that this new mapping Ψ̄ depends on P̄0

only through its components Q̄0 and q̄W,0, which are defined below.

Lemma 21.1. Let PN ∈ M and let Ps
i denote the i-specific summary data distri-

bution of Os
i = (W s

i , A
s
i ,Yi), assuming it has a well-defined density ps

i , for each
i = 1, . . . ,N. Note that the likelihood of each Os

i can be factorized as follows:

ps
i (Yi, A

s
i ,W

s
i ) = qY (Yi|As

i ,W
s
i )hi(A

s
i ,W

s
i ) = qY (Yi|As

i ,W
s
i )gs

i (As
i |W

s
i )qW s

i
(W s

i )
(21.9)

We can now define the mixture distribution P̄ as a finite mixture of N unit-specific
summary distributions Ps

i , where each Ps
i receives the same weight 1/N. We assume

that P̄ has a well-defined density p̄, and we let Ōs = (W̄ s, Ās, Ȳ) ∼ P̄ denote one
sample drawn from P̄. Then it follows that the likelihood of Ōs can be written as:

p̄(Ȳ , Ās, W̄ s) = q̄Y (Ȳ |Ās, W̄ s)h̄(Ās, W̄ s) = q̄Y (Ȳ |Ās, W̄ s)ḡ(Ās|W̄ s)q̄W (W̄ s), (21.10)

where q̄Y = qY (qY is the density of QY ∈ M previously defined in Sect. 21.1,
i.e., qY is the common-in-i conditional density of Yi given (As

i ,W
s
i )), h̄(as,ws) :=

1/N
∑N

i=1 hi(as,ws), q̄W (ws) := 1/N
∑N

i=1 qW s
i
(ws) and ḡ(as|ws) = h̄(as,ws)/q̄W (ws).

Note that we can perform an analogous exercise on the post-intervention likelihood
PN

Q,G∗ in 21.4 for O∗, which allows us to write-down the likelihood of the following
post-intervention mixture distribution:

p̄(Ȳ∗, Ā∗,s, W̄ s) = qY (Ȳ∗ | Ā∗,s, W̄ s)ḡ∗(Ā∗,s | W̄ s)q̄W (W̄ s). (21.11)

where q̄W is the factor previously defined for p̄, ḡ∗(as|ws) := h̄∗(as,ws)/q̄W (ws),
h̄∗(as,ws) := 1/N

∑N
i=1 h∗i (as,ws) and h∗i is the density of the joint distribution of

(A∗,s
i ,W s

i ). It now follows that Ψ (PN) ≡ Ψ̄ (P̄), where the new mapping Ψ̄ (P̄) is
given by:

Ψ̄ (Q̄, q̄W ) = EQ̄W

[
Eḡ∗ [Q̄(Ā∗s, W̄ s) | W̄ s]

]

=

∫

ws∈Ws,as∈As
Q̄(as,ws)ḡ∗(as | ws)dQ̄W (ws),

where Q̄(as,ws) is as previously defined. With the slight abuse of notation we will
interchangeably write Ψ̄ (Q̄, q̄W ) and Ψ̄ (P̄), to emphasize the fact that Ψ̄ depends on
P̄ only through (Q̄, q̄W ).
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Thus, the above lemma showed that our parameter of interest, Ψ (PN
0 ), can be

represented as an expectation of Ȳ∗, namely, it is equal to the parameter of the g-
computation formula for the mean outcome EȲḡ∗0

, under stochastic intervention ḡ∗0
(as defined above), where one uses the observed summary data (W̄ s, Ās, Ȳ) ∼ P̄0.
Note that the above lemma implies that the estimation of ψ0 should only be con-
cerned with estimating the relevant components of the mixture P̄0, namely, Q̄0 and
q̄W,0, which can be done by following the standard TMLE template. Finally, express-
ing the dependent-data parameter as some function of the mixture P̄0 also implies
that the estimation of the factors of P̄0 can be carried out by simply treating the ob-
served dependent units as if they are i.i.d., as shown in Lemma 4.1 of Sofrygin and
van der Laan (2017). To summarize, whenever we are concerned with estimating
any parameter of P̄0, such as ψ0 given above, we can ignore the dependence among
units Os

i , i = 1, . . . ,N, leading to an i.i.d.-analogue estimator for ψ0. Of course,
while the estimation can be carried out this way, performing valid inference still
requires accounting for the existing dependence among units.

Before we can proceed with describing TMLE for estimating ψ0, we have to de-
fine the efficient influence curve (EIC) for our parameter. That is, TMLE for a given
parameter is derived from the parameter-specific efficient influence curve (EIC), and
in our case this EIC is given by:

D̄(PN)(O) =
1
N

N∑

i=1

{(
ḡ∗

ḡ
(As

i | W s
i )

(
Yi − Q̄(As

i ,W
s
i )
))
+

(
Eq0 ,g∗

[
Y∗

i | W
] − Eq0 ,g∗

[
Y∗

i

])
}
.

(21.12)

The above EIC will now allow us to define the relevant loss function and the least
favorable submodel for estimation of ψ0. Note that TMLE for ψ0 will be described
in terms of the components of the above EIC, namely, the estimators Q̄N , ḡN , ḡ∗N and
Q̄W,N of Q̄0, ḡ0, ḡ∗0 and Q̄W,0, respectively. This will be followed by creating a tar-
geted estimator Q̄∗

N of Q̄0 by updating the initial estimator Q̄N , defining the TMLE
ψ∗

N as the corresponding plug-in estimator for the mixture mapping Ψ̄ (Q̄∗
N , Q̄W,N).

We define a targeted update Q̄∗
N based on the loss function for Q̄0 and the least

favorable fluctuation submodel through Q̄0 in terms of ḡ0 and ḡ∗0. The model up-
date Q̄∗

N is such that its score represents the efficient influence curve D̄ presented
in 21.12. That is, the targeted estimator Q̄∗

N updates Q̄N by: (1) using the estimated
weights ḡ∗N/ḡN , (2) using a parametric submodel {Q̄N(ε, ḡ∗N/ḡN)} through the ini-
tial estimator Q̄N = Q̄N(0, ḡ∗N/ḡN) at ε = 0, where {Q̄N(ε, ḡ∗N/ḡN)} is referred to
as the least-favorable submodel, (3) fitting ε with the standard parametric MLE,
with εN denoting this fit, and finally, (4) defining the targeted (updated) estimator
as Q̄∗

N := Q̄N(εN , ḡ∗N/ḡN). Finally, since this TMLE ψ∗
N solves the empirical score

equation given by the efficient influence curve D̄ in 21.12, it follows that ψ∗
N also

inherits the double robustness property of this efficient influence curve.
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21.2.1 The Estimator Q̄W,N for Q̄W,0

We define an estimator Q̄W,N of Q̄W,0 by first defining the empirical counterpart QW,N

of QW,0 that puts mass one on the observed W = (W1, . . . ,WN), which then implies
that the empirical distribution QW s

i ,N
of QW s

i ,0 will put mass one on its corresponding
observed W s

i = ws
i (W), for i = 1, . . . ,N. Hence, for each ws ∈ Ws, the empirical

counterpart Q̄W,N(ws) of Q̄W,0(ws) may be defined as follows:

Q̄W,N(ws) :=
1
N

N∑

i=1

I(W s
i = ws).

21.2.2 The Initial (Nontargeted) Estimator Q̄N of Q̄0

We assumed there is a common model Q̄0 across all i, and Yi are conditionally
independent given (As

i ,W
s
i ) for all i. Consequently, the estimation of a common Q̄N

can proceed by using the pooled summary data (W s
i , A

s
i ,Yi), i = 1, . . . ,N, as if the

sample is i.i.d. across i. Additionally, one can rely on the usual parametric maximum
likelihood estimator or loss-based cross-validation for estimating Q̄N . Given that Yi

can be continuous or discrete for some known range Yi ∈ [a, b], for i = 1, . . . ,N, the
estimation of Q̄0 can be based on the following log-likelihood loss,

L(Q̄)(Y | As,W s) = −
N∑

i=1

log
{
Q̄(As

i ,W
s
i )Yi (1 − Q̄(As

i ,W
s
i ))1−Yi

}
,

or the squared error loss

L(Q̄)(Os) = −
N∑

i=1

(
Yi − Q̄(As

i ,W
s
i )
)2
.

Thus, fitting Q̄N for common Q̄0 = E[Yi | As
i ,W

s
i ] amounts to using the summary

data structure (W s
i , A

s
i ,Yi), for i = 1, . . . ,N. In other words, we use the entire sample

of N observations for predicting Yi. For example, for binary Yi, Q̄N can be estimated
by fitting a single logistic regression model to all N observations, with Yi as the
outcome, (W s

i , A
s
i ) as predictors, and possibly adding the number of friends, |Fi|, as

an additional covariate. A vector of unit-specific prediction values is generated by
fitting Q̄N , , (Q̄N(As

i ,W
s
i ))N

i=1. The predicted values are then used to build an updated
version Q̄∗

N of Q̄N .
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21.2.3 Estimating Mixture Densities ḡ∗
0

and ḡ0

We now describe a direct approach to estimation of ḡ0 that relies on Lemma 4.1 from
Sofrygin and van der Laan (2017). This lemma states that a consistent estimator ḡN

of ḡ0 can be obtained by taking a pooled sample (As
i ,W

s
i ), for i = 1, . . . ,N, and

using the usual i.i.d. maximum likelihood-based estimation, as if we were fitting a
common-in-i conditional density for As

i given W s
i and treating (As

i ,W
s
i ) as indepen-

dent observations. For example, if each component of As
i is binary, and |As

i | = k for
all i, the conditional distribution for ḡ0 could be factorized in terms of the product
of k binary conditional distributions. Each of these binary conditional distributions
can be estimated with the usual logistic regression methods. Suppose now that g0 is
known, as will be the case in a randomized clinical trial (RCT). We note that this
aforementioned approach to estimating ḡ0 can be easily adopted to incorporate the
knowledge of true g0. That is, one could proceed by first simulating a very large
number of observations (As

j,W
s
j )

M
j=1 from (g0,QW,N), with QW,N that puts mass one

on the observed W, and then fitting the maximum likelihood-based estimator for
ḡ0, as if we were fitting a common model for As

i given W s
i , based on this very large

sample.
Note that ḡ∗0 := h̄∗(G∗,QW,0)/q̄W (QW,0) will generally be unknown and hence

will also need to be estimated from the data, in particular, since ḡ∗0 depends on the
true distribution of the data via QW,0. Therefore, we propose adopting the above ap-
proach for estimation of ḡ0 towards estimation of ḡ∗0 by simply replacing the known
g0 with known g∗. The resulting model fits ḡ∗N and ḡN are used to obtain N predic-
tions (ḡ∗N(As

i | W
s
i )/ḡN(As

i | W
s
i )), for i = 1, . . . ,N. These predictions will be used as

the unit-level weights for the TMLE update of the estimator Q̄N , as described next.

21.2.4 The TMLE Algorithm

Having defined the estimators Q̄N , ḡN , ḡ∗N and Q̄W,N , the TMLE ψ∗
N is obtained by

first constructing the model update Q̄∗
N for Q̄N , as described in step 1. below, and

then evaluating ψ∗
N as a substitution estimator for the mapping Ψ̄ , as described in

step 2. below.

1. Define the following parametric submodel for Q̄N : LogitQ̄N(ε) = ε + LogitQ̄N

and define the following weighted log-likelihood loss function:

Lw(Q̄N(ε))(Os) = −
N∑

i=1

log
{
Q̄N(ε)(As

i ,W
s
i )Yi (1 − Q̄N(ε)(As

i ,W
s
i ))1−Yi

} ḡ∗N
ḡN

(As
i | W s

i ).

(21.13)

The model update Q̄∗
N is defined as Q̄N(εN) = Expit

(
LogitQ̄N + ε

N
)
, where

εN minimizes the above loss, i.e., εN = arg minε Lw(Q̄N(ε))(Os). That is, one
can fit εN by simply running the intercept-only weighted logistic regression
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using the pooled sample of N observations (W s
i , A

s
i ,Yi), for i = 1, . . . ,N,

with outcome Yi, intercept ε, using offsets LogitQ̄N(As
i ,W

s
i ), predicted weights

ḡ∗N(As
i | W

s
i )/ḡN(As

i | W
s
i ) and no covariates. The fitted intercept is the maximum

likelihood fit εN for ε, yielding the model update Q̄∗
N ,which can be evaluated for

any fixed (as,ws), by first computing the initial model prediction Q̄N(as,ws) and
then evaluating the update Q̄N(εN).

2. The TMLE ψ∗
N = Ψ̄N(Q̄∗

N , Q̄W,N) is defined as the following substitution
estimator:

ψ∗
N =

1
N

N∑

i=1

∫

a
Q̄∗

N(as
i (a,W),ws

i (W))g∗(a | W)dμ(a). (21.14)

For nondegenerate g∗, the latter expression for ψ∗
N can be closely approximated

by sampling from g∗ and performing Monte Carlo integration. That is, we pro-
pose evaluating ψ∗

N by iterating the following procedure over j = 1, . . . , M: (1)
Sample N observations A∗

j = (A∗
j,1, . . . , A

∗
j,N) from g∗(a|W), conditionally on

observed W = (W1, . . . ,WN); (2) Apply the summary measure mappings, con-
structing the following summary dataset (A∗s

j,i,W
s
i ), for i = 1, . . . ,N, where each

A∗s
j,i := as

i (A∗
j ,W); and (3) Evaluate the Monte Carlo approximation to ψ∗

N for
iteration j as:

ψ∗
j,N =

1
N

N∑

i=1

Q̄∗
N(As∗

j,i,W
s
i ). (21.15)

The Monte Carlo estimate ψ̄∗
N of ψ∗

N is then obtained by averaging ψ∗
j,N across j =

1, . . . , M, where M is chosen large enough to guarantee a small approximation
error to ψ∗

N . Finally, we note that one could substantially reduce the computation
time of this algorithm by simply re-using the summary datasets (A∗s

j,i,W
s
i ) that

were already constructed while estimating ḡ∗0 in 21.2.3.

21.3 Inference

We refer to Sofrygin and van der Laan (2017) and van der Laan (2014a) for results
that demonstrate that the above defined TMLE is an asymptotically linear estimator
for our assumed statistical model M from Sect. 21.1. This result relies in part on the
assumption A1 (weak dependence of W). In particular, this assumption states that
each Wi can be dependent on at most K other observations in W = (W1, . . . ,WN),
where K is fixed. Let σ2

0 denote the true asymptotic variance of this TMLE and we
refer to Sofrygin and van der Laan (2017) for the actual expression of σ2

0. Our next
goal is to conduct statistical inference by estimating σ2

0.
We note, however, that while our assumed statistical model M allowed us to

construct a consistent and asymptotically linear TMLE, the same model M will not
allow us to estimate its variance, that is, M results in nonidentifiable σ2

0. To clar-
ify, our model assumed no additional knowledge about the joint distribution of W,
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beyond their weak dependence. However, the weak dependence assumption alone
provides us with no means of obtaining a valid joint likelihood for (W1, . . . ,WN).
Thus, we are unable to perform any type of re-sampling from the joint distribu-
tion of W. As a consequence, valid estimation of σ2

0 will generally require making
additional modeling restrictions for QW, beyond those that were already assumed.

Conversely, when it is possible to assume a more restricted statistical model that
results in a valid likelihood of W and allows us to fit its joint distribution, then we
can also estimate the variance σ2

0. In that case, one could either apply the empirical
analogue estimator of σ2

0 or employ the parametric bootstrap method, and both of
these approaches are described below. Finally, if we are unwilling to make additional
modeling restrictions for QW then only the upper bound estimates of σ2

0 may be
obtained. While we propose a possible ad-hoc upper bound estimate of σ2

0 below,
we leave its theoretical validation and the more detailed analysis of this topic for the
future research.

In what follows, we provide some examples of specific modeling restrictions
on W (e.g., when assuming W are i.i.d.) that allow us to consistently estimate the
variance of the TMLE. We also describe an ad-hoc approach which may provide
an estimate of the upper bound of such variance when not making any additional
modeling restrictions for QW. Finally, we describe the inference for the parameter
that conditions on all observed W and thus doesn’t require making any modeling
assumptions about their joint distribution.

21.3.1 Inference in a Restricted Model for Baseline Covariates

Consider a special case where W are i.i.d. A valid approach to conducting inference
is to use the empirical analogue estimator of σ2

0 based on the plug-in estimates DN,i

of D0,i. Evaluating each E[DN,i(Os
i )DN, j(Os

j)] with respect to its empirical counter-

part then results in the following estimator of σ2
0:

σ2
N =

1
N

∑

i, j

R(i, j)
[
DN,i(O

s
i )DN, j(Ō j)

]
,

where

DN,i(O
s
i ) =Di(Q̄N , ḡN , ḡ

∗
N , ψ

∗
N)(Os

i )

=
ḡ∗N
ḡN

(As
i | W

s
i )

[
Yi − Q̄N(As

i ,W
s
i )
]

+

[∫

a
Q̄∗

N(as
i (a,W),ws

i (W))g∗(a | W) − Ψi(Q̄
∗
N ,QW,N)

]

and

Ψi(Q̄
∗
N ,QW,N) =

∫

w

∫

a
Q̄∗

N(as
i (a,w),ws

i (w))g∗(a | w)dQW,N(w).
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Note that each Ψi(Q̄∗
N ,QW,N), for i = 1, . . . ,N, can be approximated with Monte-

Carlo integration by sampling with replacement from N i.i.d. baseline covariates
and then sampling N exposures according to g∗. We also note that for the case of
i.i.d. baseline covariates one can derive the actual EIC for this specific model, as it
was presented in Section 6.2 of van der Laan (2014a). However, the implementa-
tion of its corresponding plug-in asymptotic variance estimator is computationally
overwhelming and we hence propose using the above estimator σ2

N of σ2
0. One can

then construct a 95% confidence interval (CI) ψ∗
N ±1.96σN/

√
N, which will provide

correct asymptotic coverage.
An alternative approach that avoids assuming i.i.d. W is to assume a statistical

model that specifies a particular ordering of observations i = 1, . . . ,N. This order-
ing, combined with the weak dependence of W, allows us to assume a particular
statistical graph for the dependence among (W1, . . . ,WN), thus defining a unique
factorization of the joint likelihood of W. By putting additional modeling restric-
tion on these individual likelihood factors we can obtain a single fit of the joint
distribution QW. This will in turn allow us to re-sample W. Thus, we would be
able to obtain an estimate of each E[D0,i(Os

i )D0, j(Os
j)] by utilizing the same plug-in

approach as in the above described i.i.d. case.

Parametric Bootstrap. Alternatively, one can employ the parametric bootstrap for
the estimation of σ2

0. Note that this method still requires putting additional restric-
tions on the joint distribution of W (e.g., the i.i.d. assumption). Briefly, the para-
metric bootstrap is based on iterative resampling of N observations at a time from
the existing joint fit of the likelihood of the observed data, which is followed by
re-fitting the univariate least favorable submodel parameter ε and re-evaluating the
resulting TMLE. Iterating this procedure enough times allows us to obtain a consis-
tent estimate of the TMLE variance. In more detail, for each of M bootstrap itera-
tions indexed by b = 1, . . . , M, first N covariates Wb = (Wb

1 , . . . ,W
b
n ) are sampled

with replacement, then the existing model fit ĝ is applied to sampling of N expo-
sures Ab = (Ab

1, . . . , A
b
N), followed by a sample of N outcomes Yb = (Yb

1 , . . . ,Y
b
n )

based on the existing outcome model fit Q̄N . Note that we are also assuming that
the corresponding bootstrapped random summaries (W s,b

i , As,b
i : i = 1, . . . ,N) were

constructed by applying the summary functions ws
i (·) and as

i (·) to Wb and Ab, re-
spectively. This bootstrap sample is then applied to obtain the predicted weights
based on the existing fits ḡ∗N/ḡN , for i = 1, . . . ,N. These bootstrapped predictions
are then used as the unit-level weights for performing the TMLE update resulting
in a bootstrap-based update of the initial estimator Q̄N . Note that the TMLE model
update is the only model fitting step needed at each iteration of the bootstrap, which
significantly lowers the computational burden of this procedure. The variance esti-
mate is then obtained by taking the empirical variance of these bootstrapped TMLE
estimates. Finally, we evaluate the finite sample performance of this approach in a
simulation study in Sect. 21.6, also contrasting it to the performance of the above
described empirical analogue variance estimator σ2

N .
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21.3.2 Ad-Hoc Upper Bound on Variance

An alternative approach that avoids putting additional modeling restriction on the
joint distribution of W is to consider various ad-hoc approaches of obtaining conser-
vative estimates of the variance. As one of the examples, consider a plug-in estimate
for σ2

0 that is based on the following estimate of D0,i:

Dc
N,i(O

s
i ) =

ḡ∗N
ḡN

(As
i | W

s
i )

[
Yi − Q̄N(As

i ,W
s
i )
]

+

[∫

a
Q̄∗

N(as
i (a,W),ws

i (W))g∗(a | W) − Ψ̄ ∗
N

]
,

where

Ψ̄ ∗
N =

1
N

N∑

i=1

Ψi(Q̄
∗
N ,QW,N).

Note that the above i-specific estimates DN,i of D0,i are no longer guaranteed to have

mean zero (i.e., they are not necessary properly centered), resulting in the following
conservative estimate of the variance:

1
N

∑

i, j

R(i, j)
[
Dc

N,i(O
s
i )Dc

N, j(Ō j)
]
.

Our simulations suggest that this estimator can be quite accurate when the num-
ber of friends |Fi| is relatively uniform, for i = 1, . . . ,N, and that it becomes conser-
vative for networks with skewed friend distributions (simulation results not shown).
Finally, for more extreme cases, such as when the number of friends follows a power
law distribution, the above plug-in variance estimator becomes overly conservative
to the point of being noninformative. It is our conjecture that as the variability of in-
dividual Ψi, 0 increases, this estimator should become more and more conservative.
We now leave a more detailed analysis of this estimator as a topic of future research.

21.3.3 Inference for Conditional Target Parameter

Admittedly, the assumption of i.i.d. baseline covariates (W) might be too restric-
tive for many realistic network data generating scenarios. Similarly, the other sug-
gested approaches will also require making specific modeling assumptions that are
not necessarily supported by the data. We now propose an alternative approach for
conducting inference by simply giving up on the marginal parameter of interest and
performing inference conditionally on the observed baseline covariates W. This ap-
proach has been previously described in van der Laan (2014a, Section 8) and it
results in a TMLE which is identical to the one we present in this paper. Moreover,
this TMLE achieves asymptotic normality with an identifiable asymptotic variance.
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The asymptotic variance estimator is given by

σ2
N(W) =

1
N

N∑

i=1

[
D2

N,Yi
(Os

i )
]
,

where

DN,Yi (O
s
i ) =

ḡ∗N
ḡN

(As
i | W

s
i )

(
Yi − Q̄N(As

i ,W
s
i )
)
.

Note that this conditional TMLE doesn’t require modeling the distribution of the
baseline covariates and thus achieves the asymptotic normality under much weaker
set of conditions for W (see van der Laan 2014a, Section 8). Thus, conducting condi-
tional inference in a model with weakly dependent baseline covariates is a powerful
alternative, especially when one is willing to accept the conditional interpretation of
the resulting inference.

21.4 Simulating Network-Dependent Data in R

In this section, we describe a simulation study to evaluate the finite sample and
asymptotic behavior of the above-described TMLE. The network-dependent data
was simulated using the simcausal R package (Sofrygin et al. 2017). This
package facilitates the simulation of complex longitudinal data, including complex
network-dependent data, specifically for the types of data-generating distributions
described in Sect. 21.1 (for more details see the forthcoming simcausal package
vignette on conducting network simulations).

The simulations presented in this chapter were previously described in Ogburn
et al. (2017). Briefly, this simulation study intended to mimic a hypothetical study
designed to increase the level of physical activity in a highly-connected target com-
munity. For each community member indexed by i = 1, . . . , n, the study collected
data on i’s baseline covariates, denoted Wi, which included the indicator of being
physically active, denoted PAi and the network of friends on each subject, Fi. The
exposure or treatment, Ai, was assigned randomly to 25% of the community. Treated
individuals received various economic incentives to attend a local gym.

21.4.1 Defining the Data-Generating Distribution for Observed
Network Data

First, we describe the network of connections between these units (e.g., social or ge-
ographical network) by specifying either a network graph or a probabilistic network
graph model for N nodes. Next, one specifies the distribution of the unit-level co-
variates (node attributes) by parameterizing a structural equation model (SEM) for
connected units (van der Laan 2014a). This SEM allows the covariates of one unit to
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be dependent on the covariates of other connected units via some known functional
form which is considered unspecified.

In this simulation, we assumed that the social network was modeled according
to the preferential attachment model (Barabási and Albert 1999), where the node
degree (number of friends) distribution followed a power law. We start by defining
the distribution of the observed network graph with the sampling function provided
below.

require("igraph")
require("simcausal")
generate.igraph.prefattach <- function(n, power,
zero.appeal, m, ...) {
g <- sample_pa(n, power = power, zero.appeal =
zero.appeal, m = m)

g <- as.directed(as.undirected(g, mode =
"collapse"), mode = "mutual")
sparse_AdjMat <- simcausal::igraph.to.sparse
AdjMat(g)
NetInd_out <-
simcausal::sparseAdjMat.to.NetInd(sparse_AdjMat)

return(NetInd_out$NetInd_k)
}

The above network distribution is then added to a simcausal DAG object, which
will define the observed data-generating distribution, as shown below.

D <- DAG.empty()
Net.prefattach <- network("Net", netfun =
"generate.igraph.prefattach", power = 0.5,
zero.appeal = 5, m = 5)

In the following example, we define the distributions of the baseline covariates.
Note that we define the baseline indicator HUB, which indicates if a person has more
or equal to 25 friends. We also define the baseline covariate PA, which indicates if
a person is physically active at baseline. Lastly, we define the network baseline
summary nF.PA, which calculates for each individual the total number of friends
who are physically active (note that some of the simulated baseline covariates are
not shown).

D <- D + Net.prefattach +
node("HUB", distr = "rconst", const =
ifelse(nF >= 25, 1, 0)) +

node("W1", distr = "rcat.b1",
probs = c(0.0494, 0.1823, 0.2806, 0.2680, 0.1651,

0.0546)) +
node("W2", distr = "rbern", prob = plogis(-0.2)) +
node("PA", distr = "rbern", prob = W2*0.05 +
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(1-W2)*0.15) +
node("nF.PA", distr = "rconst", const =
sum(PA[[1:Kmax]]), replaceNAw0 = TRUE)

As a next step, we randomly assign the binary exposure A, to 25% of the popula-
tion. This exposure corresponds with an informational campaign about the benefits
of physical exercise and is intended to promote and sustain attendance of the local
gym by community members.

D <- D + node("A", distr = "rbern", prob = 0.25)

We then define a network summary measure, sum.netA, which depends on the
exposures of the individuals’ friends, as well as his or her friends’ baseline covariate
values.

D <- D + node("sum.netA", distr = "rconst",
const = (sum(A[[1:Kmax]])*(HUB==0) +
sum((W1[[1:Kmax]] > 4)*A[[1:Kmax]])*(HUB==1)),

replaceNAw0 = TRUE)

The outcome Yi is a binary indicator of maintaining gym membership for a pre-
determined follow-up period, following the exposure A. The outcome is defined
by the variable ‘Y’ below. Note that we assumed that each Y depends on the indi-
vidual exposure and baseline covariates. It also depends on the network summary,
sum.netA, as well as the number of friends who were physically active at baseline,
nF.PA

The probability of success for each Yi is defined a logit-linear function of i’s ex-
posure Ai (indicator of receiving the economic incentive), the baseline covariates Wi

and the three summary measures of i’s friends’ exposures and baseline covariates.
In particular, we also assumed that the probability of maintaining gym membership
increased on a logit-linear scale as a function of the following network summaries:
the total number of i’s friends who were exposed (

∑
j∈Fi

A j), the total number of
i’s friends who were physically active at baseline (

∑
j∈Fi

PAj) and the product of
the two summaries (

∑
j∈Fi

A j ×
∑

j∈Fi
PAj). The economic incentive to attend local

gym had a small direct effect on each individual who was not physically active at
baseline and no direct effect on those who were already physically active. However,
physically active individuals were more likely to maintain gym membership over
the follow-up period if they had at least one physically active friend at baseline.

D <- D +
node("Y", distr = "rbern",
prob = plogis(ifelse(PA == 1,

+5 - 15*(nF.PA < 1),
-8.0 + 0.25*A) +
+0.5*sum.netA + 0.25*nF.PA*sum.netA + 0.5*nF.PA +
+0.5*(W1-1) - 0.58*W2),

replaceNAw0 = TRUE)
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Finally, we define the data-generating distribution based on the preferential at-
tachment network model, as shown below.

D.prefattach <- set.DAG(D, n.test = 200)

We now call the function sim, which simulates a single network of 5000 observa-
tions using the above defined data-generating distribution, as shown below. We plot
the distribution of the number of friends for this network in Fig. 21.1. We also plot
the network graph based on a random sample of 100 units in Fig. 21.2.

datO_5K <- sim(D.prefattach, n = 5000)

21.4.2 Defining Intervention, Simulating Counterfactual Data and
Evaluating the Target Causal Quantity

Next, we define several stochastic and dynamic interventions on the exposure A,
as well as the total number of physically active friends nF.PA. We also calculate
the corresponding causal effects of these interventions, using the preferential attach-
ment network model. Note that one can easily evaluate the true values of the above
causal parameters by simulating intervention-specific counterfactual data and then
evaluating the estimated mean of the counterfactual outcomes, as shown in all of the
following examples.
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Fig. 21.1 Distribution of the number of friends for a preferential attachment network with 5000
observations

The following code shows an example of evaluating the true counterfactual mean
outcome when the exposure is assigned to a random 35% of the population (stochas-
tic intervention):
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D.prefattach <- D.prefattach +
action("gstar", nodes = node("A", distr = "rbern",
prob = aset), aset = 0.35)

datFull <- sim(D.prefattach, actions="gstar",
n = 50000, rndseed = 54321)

print(psi0_a0.4 <- mean(datFull[["gstar"]]$Y))
[1] 0.15186

The following code illustrates the evaluation of the true counterfactual mean out-
come under a dynamic intervention that covers only around 10% of the population
by intervening (stochastically) only on the most connected individuals, i.e., only on
individuals that have more than 15 friends:

D.prefattach <- D.prefattach +
action("gHubs",
nodes = c(node("A", distr = "rbern", prob =
ifelse(nF >= 20, 0.9, ifelse(nF >= 15, 0.40, 0)))))

datFull <- sim(D.prefattach, actions="gHubs",
n = 50000, rndseed = 54321)

print(psi0_g.dynamic <- mean(datFull[["gHubs"]]$Y))
[1] 0.1204
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Fig. 21.2 Example of a preferential attachment network for a sample of 100 observations
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21.5 Causal Effects with Network-Dependent Data in R

Having defined the simulated network data, as well as the true value of the target
causal quantity (the gold standard), we now discuss the estimation of such causal
parameters in R. In particular, we will utilize the tmlenet R package (Sofrygin
and van der Laan 2015) which implements the TMLE for network-dependent data.

Defining Network-Based Summaries. We start by employing the function
def_sW to define some of the baseline network summaries (W s

i ), as shown in
the example below. Note that these summary measures will be automatically evalu-
ated based on the input network data.

require("tmlenet")
sW <- def_sW(W1, W2, WNoise, corrW.F1, corrW.F2,
corrW.F3, corrW.F4, corrW.F5, HUB =
ifelse(nF >= 25, 1, 0))

Similarly, we employ the function def_sA to define some of the “effective ex-
posure” or the exposure network summaries (As

i ), as shown in the example below.

sA <- def_sA(A, nF.PA = sum(PA[[1:Kmax]]),
replaceNAw0 = TRUE) +
def_sA(A.PAeq0 = A * (PA == 0)) +
def_sA(nFPAeq0.PAeq1 = (nF.PA < 1) * (PA == 1)) +
def_sA(sum.netA = (sum(A[[1:Kmax]])*(HUB==0) +

sum((W1[[1:Kmax]] > 4)*A[[1:Kmax]])*(HUB==1)),
sum.netA.sum.netPA = sum.netA*nF.PA,
replaceNAw0 = TRUE)

Regression Models. Next, we specify the regression formulas which will be used to
fit the conditional effective exposure and the conditional outcome models, as shown
below.

hform <- "A + sum.netA ~ HUB + PA + nF.PA +
nFPAeq0.PAeq1"

Qforms <- "Y ~ nF.PA + A.PAeq0 + nFPAeq0.PAeq1 +
sum.netA + sum.netA.sum.netPA + PA +
W1 + W2 + corrW.F1 + corrW.F2 +
corrW.F3 + corrW.F4 + corrW.F5"

Interventions. As a next step, we provide some examples for specifying the in-
tervention of interest using the tmlenet R package syntax. We start with a an
example of a stochastic intervention on each Ai that assigns exposure to a random
35% of the sample.

new.sA1.stoch.2 <- def_new_sA(A =
rbinom(n = length(A), size = 1, prob = 0.35))
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Next, we provide an example of a dynamic intervention on each Ai, conditional
on the number of friends (nF). This intervention assigns exposure to approximately
10% of the most connected individuals in the network.

new.sA1.dyn.4 <- def_new_sA(A = rbinom(n = length(A),
size = 1, prob = ifelse(nF >= 20, 0.9,
ifelse(nF >= 15, 0.40, 0))))

Estimation. The following example demonstrates how to run TMLE to estimate the
sample-average of expected outcomes for the above defined intervention, using the
observed input dataset along with the observed network data.

res <- tmlenet(data = datO, sW = sW, sA = sA,
Ynode = "Y", Kmax = K,
NETIDmat = attributes(datO)$netind_cl$NetInd,
intervene1.sA = new.sA1.stoch.2, Qform = Qform,
hform.g0 = hform, hform.gstar = hform)

21.6 Simulation Results

We based our simulation study on the above described data-generating distribution
and as before, assumed that the outcome Yi was a binary indicator of maintaining
gym membership for a predetermined follow-up period.

We assumed that it was of interest to examine and estimate the average of the
mean counterfactual outcomes E

[
Ȳg∗

]
under various hypothetical interventions g∗

on such a community. First, we considered a stochastic intervention g∗1, which as-
signed each individual to treatment with a constant probability of 0.35; this differs
from the observed allocation of treatment to 25% of the community members. We
also considered a scenario in which the aforementioned economic incentive was re-
source constrained and could only be allocated to up to 10% of community members
and estimated the effects of various targeted approaches to allocating the exposure.
For example, we considered an intervention g∗2 that targeted only the top 10% most
connected members of the community, as such a targeted intervention would be ex-
pected to have a higher impact on the overall average probability of maintaining gym
membership among the community, when compared to purely random assignment
of exposure to 10% of the community. Hypothetical intervention g∗3 assigned an ad-
ditional physically active friend to individuals with fewer than ten friends. Notably,
this intervention aimed at directly intervening on the social network of some mem-
bers of the community. Finally, we estimated the combined effect of simultaneously
implementing both the dynamic intervention g∗2 and the network-based intervention
g∗3 on the same community. We report the expected outcome under each of these
interventions here; causal effects defined as contrasts of such interventions can be
estimated using our methods and these results are available in the supplementary
material.
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The simulations were performed for sample sizes of n = 500, n = 1000
and n = 10,000, where each dataset was sampled according the above described
data-generating distribution. The estimation was repeated by sampling 1000 such
datasets, conditional on the same network (sampled only once for each sample size).
The baseline covariates for each unit i were sampled as i.i.d. We used the TMLE to
estimate the sample-average of expected outcomes for the above described inter-
ventions g∗1 through g∗4 and evaluated the true finite sample bias and variance of the
corresponding estimates. We also used our simulations to compare three different
estimators of the asymptotic variance provided by the tmlenet R package. In par-
ticular, we compared the coverage of the their corresponding asymptotic confidence
intervals (CIs). First, we used the plug-in i.i.d. estimator (“IID Var”) for the vari-
ance of the efficient influence curve which treated observations as if they were i.i.d.
Second, we used the plug-in variance estimator which correctly adjusted for corre-
lated observations (“dependent IC Var”). Finally, we used the previously described
parametric bootstrap variance estimator (“bootstrap Var”). The simulation results in
Fig. 21.3 display the mean length and the coverage of the 95% CIs, stratified by the
intervention type, CI type and the observed sample size.

We evaluated the performance of the three approaches to variance estimation de-
scribed above, as measured by the coverage of the 95% CIs. Our results show that
conducting inference while ignoring the nature of the dependence in such datasets
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Fig. 21.3 Mean 95% CI length (left panel) and coverage (right panel) for the preferential attach-
ment network, by sample size, intervention and CI type. Results shown for average expected out-
comes only
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generally results in anti-conservative variance estimates and under-coverage of CIs,
which can be as low as 50% even for very large sample sizes (“IID Var” in the right
panel of Fig. 21.3. The CIs based on the dependent variance estimates (“dependent
IC Var” in the right panel of the same figures) obtain nearly nominal coverage of
95% for large enough sample sizes, but can suffer in smaller sample sizes due to
lack of asymptotic normality and near-positivity violations. Notably, the CIs based
on the parametric bootstrap variance estimates provide the most robust coverage
for smaller sample sizes, while attaining the nominal 95% coverage in large sample
sizes for nearly all of the simulation scenarios (“bootstrap Var” in the right panel
of the same figures). One of the surprising finding of this study was the apparent
robustness of the parametric bootstrap method for inference in small sample sizes.
That is, while it was expected that the highly connected network types used in these
simulations can lead to anti-conservative coverage of the asymptotic CIs derived
from the dependent-data influence curve variance estimates (e.g., due to near posi-
tivity violations and lack of convergence to normality), it was surprising to see that
the analogous CIs based on the parametric bootstrap variance estimates resulted in
nearly nominal 95% coverage for sample sizes as low as 500. Future work will ex-
plore the assumptions under which this parametric bootstrap works and its sensitiv-
ity towards violations of those assumptions. Furthermore, our simulations illustrate
that by targeting the exposure assignment to highly connected and physically ac-
tive individuals, one may leveraging the structure of the network to increases the
mean probability of sustaining gym membership compared to the similar level of
un-targeted coverage of the exposure. We demonstrated the feasibility of estimating
effects of interventions on the observed network structure itself, such as intervention
g∗3, which can be also combined with economic incentives, such as the intervention
g∗2 + g∗3. Such combined interventions may lead to a larger average expected effect
on the community as a whole, especially for resource constrained interventions.

21.7 Notes and Further Reading

The literature on networks and causal inference in network data is rapidly evolving.
However, the existing statistical methods for performing estimation and inference
for causal effects in networks are limited and the literature on this subject has only
recently started to develop (van der Laan 2014a; VanderWeele et al. 2014b; Ogburn
and VanderWeele 2014; VanderWeele and An 2013; Tchetgen Tchetgen and Van-
derWeele 2012). Most of the recently proposed approaches can be categorized as
relying on either the assumption of randomized exposures across units (Rosenbaum
2007; Aronow and Samii 2013; Bowers et al. 2013; Walker and Muchnik 2014; Aral
and Walker 2011, 2014; Toulis and Kao 2013; Liu and Hudgens 2014; Choi 2014;
Basse and Airoldi 2015), or on parametric modeling of the outcome as a particular
function of the unit’s network.

Some of the parametric approaches applied in the network settings include
generalized linear models (GLMs) and generalized estimating equations (GEEs)
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(Christakis and Fowler 2013, 2007), methods which have important limitations
(Lyons 2010; VanderWeele 2011, 2013; VanderWeele et al. 2012c; Ogburn and
VanderWeele 2014). For one, GLMs and similar modeling techniques require mak-
ing strong, simplifying modeling assumptions about the underlying data generating
process. Hence, model misspecification for GEEs and GLMs in the network data
settings is a major cause of concern. Perhaps more importantly, performing valid
statistical inference with GLMs and other similar statistical techniques generally
requires independence of the observational units, an assumption that is unlikely to
hold due to the very nature of the network data. It has also been previously described
that application of such standard statistical procedures to dependent data will result
in invalid and generally anti-conservative statistical inference (Lyons 2010; Ogburn
and VanderWeele 2014).

In addition, a few promising methodological approaches to estimation in network
data have begun to emerge in recent years. For example, Aronow and Samii (2013)
proposed a Horvitz-Thompson estimator in a randomized study settings, defined
the so-called “network exposure model” and derived the finite sample estimator of
the variance. However, such methods are of limited utility in observational settings.
Other proposed approaches for identification and estimation of treatment effects
in networks include stochastic actor-oriented models (Steglich et al. 2010), and a
linear Bayesian modeling approach that can accommodate for network uncertainty
(Toulis and Kao 2013). Another recently proposed approach applied the semipara-
metric framework of targeted maximum likelihood estimation to the observation
network data settings (van der Laan 2014a), yielding valid asymptotic inference,
while allowing for a much larger and realistic class of data-generative models.
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Chapter 22
Optimal Dynamic Treatment Rules

Alexander R. Luedtke and Mark J. van der Laan

Suppose we observe n independent and identically distributed observations of a
time-dependent random variable consisting of baseline covariates, initial treatment
and censoring indicator, intermediate covariates, subsequent treatment and censor-
ing indicator, and a final outcome. For example, this could be data generated by
a sequential RCT in which one follows up a group of subjects, and treatment as-
signment at two time points is sequentially randomized, where the probability of
receiving treatment might be determined by a baseline covariate for the first-line
treatment, and time-dependent intermediate covariate (such as a biomarker of in-
terest) for the second-line treatment. Such trials are often called sequential multiple
assignment randomized trials (SMART). A dynamic treatment rule deterministically
assigns treatment as a function of the available history. If treatment is assigned at
two time points, then this dynamic treatment rule consists of two rules, one for each
time point. The mean outcome under a dynamic treatment is a counterfactual quan-
tity of interest representing what the mean outcome would have been if everybody
would have received treatment according to the dynamic treatment rule. The opti-
mal dynamic treatment rule is defined as the dynamic treatment rule that maximizes
the mean outcome.

Previous approaches, described at the end of this chapter, rely on semiparametric
models that make strong assumptions on the data generating process. We instead de-
fine the statistical model for the data distribution as nonparametric, beyond possible
knowledge about the treatment mechanism (e.g., known in a RCT) and censoring
mechanism. In order to not only consider the most ambitious fully optimal rule, we
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define the V-optimal rules as the optimal rule that only uses a user-supplied subset
V of the available covariates. This allows us to consider suboptimal rules that are
easier to estimate and thereby allow for statistical inference for the counterfactual
mean outcome under the suboptimal rule.

In this chapter, we describe how to obtain semiparametric inference about the
mean outcome under the two time point V-optimal rule. We will show that the
mean outcome under the optimal rule is a pathwise differentiable parameter
of the data distribution, indicating that it is possible to develop asymptotically
linear estimators of this target parameter under conditions. In fact, we obtain
the surprising result that the pathwise derivative of this target parameter equals
the pathwise derivative of the mean counterfactual outcome under a given
dynamic treatment rule set at the optimal rule, treating the latter as known. By
a reference to the earlier for double robust and efficient estimation of the mean
outcome under a given rule (see Chap. 4), we then obtain a CV-TMLE for the
mean outcome under the optimal rule. Subsequently, we prove asymptotic
linearity and efficiency of this CV-TMLE, allowing us to construct confidence
intervals for the mean outcome under the optimal dynamic treatment or its
contrast with respect to a standard treatment.

In a SMART the statistical inference would only rely upon a second-order dif-
ference between the estimator of the optimal dynamic treatment and the optimal
dynamic treatment itself to be asymptotically negligible. This is a reasonable con-
dition if we restrict ourselves to rules only responding to a one-dimensional time-
dependent covariate, or if we are willing to make smoothness assumptions. While
this condition appears to be necessary when estimating the optimal mean outcome,
it is not necessary if the parameter of interest is redefined as the average mean out-
come under our cross-validated estimates of the optimal dynamic treatment. This
parameter relies on the data through our estimates of the optimal dynamic treat-
ment, and we thus refer to it as a data-adaptive parameter.

22.1 Optimal Dynamic Treatment Estimation Problem

For the sake of presentation, we focus on two time point treatments in this chapter.
Suppose we observe n i.i.d. copies O1, . . . ,On ∈ O of

O = (L(0), A(0), L(1), A(1),Y) ∼ P0,

where A( j) = (A1( j), A2( j)), A1( j) is a binary treatment and A2( j) is an indicator
of not being right censored at “time” j, j = 0, 1. That is, A2(0) = 0 implies that
(L(1), A1(1),Y) is not observed, and A2(1) = 0 implies that Y is not observed. Each
time point j has covariates L( j) that precede treatment, j = 0, 1, and the outcome of
interest is given by Y and occurs after time point 1. For a time-dependent process
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X(·), we will use the notation X̄(t) = (X(s) : s ≤ t), where X̄(−1) = ∅. Let M be
a statistical model that makes no assumptions on the marginal distribution Q0,L(0)

of L(0) and the conditional distribution Q0,L(1) of L(1), given A(0), L(0), but might
make assumptions on the conditional distributions g0A( j) of A( j), given Ā( j−1), L̄( j),
j = 0, 1. We will refer to g0 as the intervention mechanism, which can be factorized
in a treatment mechanism g01 and censoring mechanism g02 as follows:

g0(O) =
2∏

j=1

g01(A1( j) | Ā( j − 1), L̄( j))g02(A2( j) | A1( j), Ā( j − 1), L̄( j)).

In particular, the data might have been generated by a SMART, in which case g01 is
known.

Let V(1) be a function of (L(0), A(0), L(1)), and let V(0) be a function of L(0).
Let V = (V(0),V(1)). Consider dynamic treatment rules V(0) → dA(0)(V(0)) ∈
{0, 1}×{1} and (A(0),V(1)) → dA(1)(A(0),V(1)) ∈ {0, 1}×{1} for assigning treatment
A(0) and A(1), respectively, where the rule for A(0) is only a function of V(0), and
the rule for A(1) is only a function of (A(0),V(1)). Note that these rules are restricted
to set the censoring indicators A2( j) = 1, j = 0, 1. Let D be the set of all such rules.
We assume that V(0) is a function of V(1) (i.e., observing V(1) includes observing
V(0)), but in the theorem below we indicate an alternative assumption. For d ∈ D,
we let:

d(a(0), v) ≡ (dA(0)(v(0)), dA(1)(a(0), v(1))).

If we assume a structural equation model (Pearl 2009a) for variables stating that

L(0) = fL(0)(UL(0))

A(0) = fA(0)(L(0),UA(0))

L(1) = fL(1)(L(0), A(0),UL(1))

A(1) = fA(1)(L̄(1), A(0),UA(1))

Y = fY (L̄(1), Ā(1),UY ),

where the collection of functions f = ( fL(0), fA(0), fL(1), fA(1)) are unspecified or
partially specified, we can define counterfactuals Yd defined by the modified sys-
tem in which the equations for A(0), A(1) are replaced by A(0) = dA(0)(V(0)) and
A(1) = dA(1)(A(0),V(1)). Denote the distribution of these counterfactual quantities
as P0,d, where we note that P0,d is implied by the collection of functions f and the
joint distribution of exogenous variables (UL(0),UA(0),UL(1),UA(1),UY ). We can now
define the causally optimal rule under P0,d as d∗0 = arg maxd∈D EP0,d Yd. If we assume
a sequential randomization assumption stating that A(0) is independent of UL(1),UY ,
given L(0), and A(1) is independent of UY , given L̄(1), A(0), then we can identify
P0,d with observed data under the distribution P0 using the g-computation formula:

p0,d(L(0), A(0), L(1), A(1),Y)

≡ I(A = d(A(0),V))q0,L(0)(L(0))q0,L(1)(L(1) | L(0), A(0))q0,Y (Y | L̄(1), Ā(1)),
(22.1)
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where p0,d is the density of P0,d and q0,L(0), q0,L(1), and q0,Y are the densities for
Q0,L(0), Q0,L(1), and Q0,Y , where Q0,Y represents the distribution of Y given L̄(1), Ā(1).
We assume that all densities above are absolutely continuous with respect to some
dominating measure μ. We have a similar identifiability result/g-computation for-
mula under the Neyman-Rubin causal model (Robins 1987). More generally, for a
distribution P ∈ M we can define the g-computation distribution Pd as the distribu-
tion with density

pd(L(0), A(0), L(1), A(1),Y)

≡ I(A = d(A(0),V))qL(0)(L(0))qL(1)(L(1) | L(0), A(0))qY (Y | L̄(1), Ā(1)),

where qL(0), qL(1), and qY are the counterparts to q0,L(0), q0,L(1), and q0,Y under P.
For the remainder of this chapter, if for a static or dynamic intervention d, we

use notation Ld (or Yd, Od) we mean the random variable with the probability dis-
tribution Pd in (22.1) so that of all our quantities are statistical parameters. For
example, the quantity E0(Ya(0)a(1) | Va(0)(1)) defined in the next theorem denotes the
conditional expectation of Ya(0)a(1), given Va(0)(1), under the probability distribution
P0,a(0)a(1) (i.e., g-computation formula presented above for the static intervention
(a(0), a(1))). In addition, if we write down these parameters for some Pd, we will
automatically assume the positivity assumption at P required for the g-computation
formula to be well defined. For that it will suffice to assume the following positivity
assumption at P:

PrP

(
0 < min

a1∈{0,1}
g0A(0)(a1, 1|L(0))

)
= 1

PrP

(
0 < min

a1∈{0,1}
g0A(1)(a1, 1 | L̄(1), A(0))

)
= 1. (22.2)

The strong positivity assumption will be defined as the above assumption, but where
the 0 is replaced by a δ > 0.

We now define a statistical parameter representing the mean outcome Yd under
Pd. For any rule d ∈ D, let

Ψd(P) ≡ EPd Yd.

For a distribution P, define the V-optimal rule as

dP = arg max
d∈D

EPd Yd.

For simplicity, we will write d0 instead of dP0 for the V-optimal rule under P0.
Define the parameter mapping Ψ : M → IR as Ψ (P) = EPdP

YdP . The first part of
this chapter is concerned with inference for the parameter

ψ0 ≡ Ψ (P0) = EP0,d0
Yd0 .
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Under our identifiability assumptions, d0 is equal to the causally optimal rule d∗0.
Even if the sequential randomization assumption does not hold, the statistical pa-
rameter ψ0 represents a statistical parameter of interest in its own right. We will not
concern ourselves with the sequential randomization assumption for the remainder
of this paper.

The next theorem presents an explicit form of the V-optimal individualized treat-
ment rule d0 as a function of P0.

Theorem 22.1. Suppose V(0) is a function of V(1). The V-optimal rule d0 can be
represented as the following explicit parameter of P0:

Q̄b,20(a(0), v(1)) = E0(Ya(0),A(1)=(1,1) | Va(0)(1) = v(1))

−E0(Ya(0),A(1)=(0,1) | Va(0)(1) = v(1)),

d0,A(1)(A(0),V(1)) = (I(Q̄b,20(A(0),V(1)) > 0), 1),

Q̄b,10(v(0)) = E0(Y(1,1),d0,A(1) | V(0)) − E0(Y(0,1),d0,A(1) | V(0)),

d0,A(0)(V(0)) = (I(Q̄b,10(V(0)) > 0), 1),

where a(0) ∈ {0, 1} × {1}. If V(1) does not include V(0), but, for all (a(0), a(1)) ∈
{{0, 1} × {1}}2,

E0(Ya(0),a(1) | V(0),Va(0)(1)) = E0(Ya(0),a(1) | Va(0)(1)), (22.3)

then the above expression for the V-optimal rule d0 is still true.

Following Robins (2004), we refer to Q̄b,10 and Q̄b,20 as the (first and second time
point) blip functions.

22.2 Efficient Influence Curve of the Mean Outcome Under
V-Optimal Rule

In this section, we establish the pathwise differentiability of Ψ and give an explicit
expression for the efficient influence curve. Before presenting this result, we give
the efficient influence curve for the parameter Ψ : M → R where Ψd(P) ≡ EPYd

and the rule d = (dA(0), dA(1)) ∈ D is treated as known. This influence curve was
presented in Chap. 4. The parameter mapping Ψd has efficient influence curve

D∗(d, P) =
2∑

k=0

D∗
k(d, P),

where

D∗
0(d, P) =EP

[
Yd | L(0), A(0) = dA(0)(V(0))

] − EPYd,
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D∗
1(d, P) =

I(A(0) = dA(0)(V(0)))

gA(0)(O)
(EP[Y | Ā(1) = d(A(0),V), L̄(1)]

− EP[Yd | L(0), A(0) = dA(0)(V(0))]),

D∗
2(d, P) =

I(Ā(1) = d(A(0),V))
∏1

j=0 gA( j)(O)

(
Y − EP

[
Y | Ā(1) = d(A(0),V), L̄(1)

])
. (22.4)

Above (gA(0), gA(1)) is the intervention mechanism under the distribution P. We re-
mind the reader that Yd has the g-computation distribution from (22.1) so that:

EP
[
Yd | L(0), A(0) = dA(0)(V(0))

]

= EP

[
EP

[
Y | Ā(1) = d(A(0),V), L̄(1))

]
| L(0), A(0) = dA(0)(V(0))

]

At times it will be convenient to write D∗
k(d,Qd, g) instead of D∗

k(d, P), where Qd

represents both of the conditional expectations in the definitions of D∗
1 and the

marginal distribution of L(0) under P and g represents the intervention mechanism
under P. We will denote these conditional expectations under P0 for a given rule d
by Qd

0. We will similarly at times denote D∗(d, P) by D∗(d,Qd, g).
Whenever D∗(P) does not contain an argument for a rule d, this D∗(P) refers to

the efficient influence curve of the parameter mapping Ψ for which Ψ (P) = EPYdP ,
where the optimal rule dP under P is not treated as known. Not treating dP as known
means that dP depends on the input distribution P in the mapping Ψ (P). The follow-
ing theorem presents the efficient influence curve of Ψ at a distribution P. The main
condition on this distribution P is that it satisfies the nonexceptional law condition
that

max
a0(0)∈{0,1}

PrP

(
Q̄b,2((a0(0), 1),Va(0)=(a0(0),1)) = 0

)
= 0,

PrP

(
Q̄b,1(V(0)) = 0

)
= 0, (22.5)

where Q̄b,2 and Q̄b,1 are defined analogously to Q̄b,20 and Q̄b,10 in Theorem 22.1 with
the expectations under P0 replaced by expectations under P. That is, we assume that
each of the blip functions under P is nowhere zero with probability 1. Distribu-
tions that do not satisfy this assumption have been referred to as “exceptional laws”
(Robins 2004). These laws are indeed exceptional when one expects that treatment
will have a beneficial or harmful effect in all V-strata of individuals. When one only
expects that treatment will have an effect on outcome in some but not all strata of
individuals then this assumption may be violated. We will make this assumption
about P0 for all subsequent asymptotic linearity results about E0Yd0 , and we will
assume a weaker but still not completely trivial assumption about the consistency of
the optimal rule estimate to some fixed limit for the data-adaptive target parameters
in Sect. 22.3.

Theorem 22.2. Suppose P ∈ M is such that PrP(| Y |< M) = 1 for some M < ∞,
P satisfies the positivity assumption (22.2), and P satisfies the nonexceptional law
condition (22.5). Then the parameter Ψ : M → IR is pathwise differentiable at P
with canonical gradient given by
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D∗(P) ≡ D∗(dP, P) =
2∑

k=0

D∗
k(dP, P),

That is, D∗(P) equals the efficient influence curve D∗(dP, P) for the parameter
Ψd(P) ≡ EPYd at the V-optimal rule d = dP, where Ψd treats d as given.

The above theorem is proved as Theorem 8 in van der Laan and Luedtke (2014) so
the proof is omitted here.

We will at times denote D∗(P) by D∗(Q, g), where Q represents QdP , along with
portions of the likelihood that suffice to compute the V-optimal rule dP. We denote
dP by dQ when convenient. We explore which parts of the likelihood suffice to com-
pute the V-optimal rule in our companion paper, though Theorem 22.1 shows that
Q̄b,20 and Q̄b,10 suffice for d0 (and analogous functions suffice for a more general
dP). We have the following property of the efficient influence curve, which will pro-
vide a fundamental ingredient in the analysis of the CV-TMLE presented in the next
section.

Theorem 22.3. Let dQ be the V-optimal rule corresponding with Q. For any Q, g,
we have

P0D∗(Q, g) = Ψ (Q0) − Ψ (Q) + R1dQ (QdQ ,QdQ

0 , g, g0) + R2(Q,Q0)

where, for all d ∈ D,

R1d(Qd,Qd
0, g, g0) ≡ P0D∗(d,Qd, g) − (Ψd(Qd

0) − Ψd(Qd)),

R2(Q,Q0) ≡ ΨdQ (QdQ

0 ) − Ψd0 (Qd0

0 ),

Ψd(P) = EPYd is the statistical target parameter that treats d as known, and
D∗(d,Qd

0, g0) is the efficient influence curve of Ψd at P0 as given in Theorem 22.2.

From the study of the statistical target parameter Ψd in Chap. 4, we know that
P0D∗(d,Qd, g) = Ψd(Qd

0) − Ψd(Qd) + R1d(Qd,Qd
0, g, g0), where R1d is a closed form

second-order term involving integrals of differences Qd−Qd
0 times differences g−g0.

22.3 Statistical Inference for the Average of Sample-Split
Specific Mean Counterfactual Outcomes Under Data
Adaptively Determined Dynamic Treatments

Let d̂ : M → D be an estimator that maps an empirical distribution into an in-
dividualized treatment rule. Let Bn ∈ {0, 1}n denote a random vector for a cross-
validation split, and for a split Bn, let P0

n,Bn
be the empirical distribution of the train-

ing sample {i : Bn(i) = 0} and P1
n,Bn

is the empirical distribution of the validation
sample {i : Bn(i) = 1}. Consider a J-fold cross-validation scheme. In J-fold cross-
validation, the data is split into J mutually exclusive and exhaustive sets of size
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approximately n/J uniformly at random. Each set is then used as the validation set
once, with the union of all other sets serving as the training set. With probability
1/J, Bn has value 1 in all indices in validation set j ∈ {1, . . . , J} and 0 for all indices
not corresponding to training set j.

In this section, we first present a method that provides an estimator and statistical
inference for the data-adaptive target parameter

ψ̃0n = EBnΨd̂(P0
n,Bn

)(P0).

Note that this target parameter is defined as the average of data-adaptive parameters,
where the data-adaptive parameters are learned from the training samples of size
approximately n(J − 1)/J. One applies the estimator d̂ to each of the J training
samples, giving a target parameter value Ψd̂(P0

n,Bn
)(P0), and our target parameter ψ̃0n

is defined as the average across these J target parameters.

22.3.1 General Description of CV-TMLE

Here we give a general overview of the CV-TMLE procedure. In Sect. 22.6 we
present a particular CV-TMLE that satisfies all of the properties described in this
section. Denote the realizations of Bn with j = 1, .., J, and let dn j = d̂(P0

n, j) for some

estimator of the optimal rule d̂. Let

(a(0), l̄(1)) �→ En j[Y |Ā(1) = dn j(a(0), v), L̄(1) = l̄(1)]

represent an initial estimate of E0[Y | Ā(1) = dn j(A(0),V), L̄(1)] based on the train-
ing sample j. Similarly, let l(0) �→ En j[Ydn j |L(0) = l(0)] represent an initial estimate
of E0[Ydn j |L(0)] based on the training sample j. Finally, let QL(0),n j represent the
empirical distribution of L(0) in validation smaple j. We then fluctuate these three
regression functions using the following submodels:

{
E(ε2)

n j [Y |Ā(1) = dn j(a(0), v), L̄(1) = l̄(1)] : ε2 ∈ R

}

{
E(ε1)

n j [Ydn j |L(0) = l(0)] : ε1 ∈ R

}

{
Q(ε0)

L(0),n j : ε0 ∈ R}
}
,

where these submodels rely on an estimate gn j of g0 based on training sample j and
are such that:

E(0)
n j [Y |Ā(1) = dn j(a(0), v), L̄(1)] = En j[Y |Ā(1) = dn j(a(0), v), L̄(1)]

E(0)
n j [Ydn j |L(0)] = En j[Ydn j |L(0)]

Q(0)
L(0),n j = QL(0),n j.
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Let Q
dn j

n j (ε) represent the parameter mapping that gives the three regression func-

tions above fluctuated by ε ≡ (ε0, ε1, ε2). For a fixed ε, Q
dn j

n j (ε) only relies on P1
n j

through the empirical distribution of L(0) in validation sample j. Let φ be a valid
loss function for Qd

0 so that Qd
0 = arg minQd P0φ(Qd), and let φ and the submodels

above satisfy

D∗(d,Qd, g) ∈
〈

d
dε
φ(Qd(ε))

∣∣∣∣∣
ε=0

〉
,

where 〈 f 〉 = {∑ j β j f j : β} denotes the linear space spanned by the components of

f . We choose εn to minimize P1
nφ(Q

dn j

n j (ε)) over ε ∈ R
3. We then define the targeted

estimate Q
dn j∗
n j ≡ Q

dn j

n j (εn) of Q
dn j

0 . We note that Q
dn j∗
n j maintains the rate of conver-

gence of Qn j under mild conditions that are standard to M-estimator analysis. The

key property that we need from the εn and the corresponding update Q
dn j∗
n j is that it

(approximately) solves the cross-validated empirical mean of the efficient influence
curve:

EBn P1
n,Bn

D∗(dn j,Q
dn j∗
n j , gn j) = oP0 (1/

√
n). (22.6)

The CV-TMLE implementation presented in the appendix satisfies this equation
with oP0 (1/

√
n) replaced by 0. The proposed estimator of ψ̃0n is given by

ψ̃∗
n ≡ EBnΨdn j (Q

dn j∗
n j ).

We give a concrete CV-TMLE algorithm for ψ̃∗
n in Sect. 22.6, but note that other

CV-TMLE algorithms can be derived using the approach in this section for different
choices of loss function φ and submodels.

22.3.2 Statistical Inference for the Data-Adaptive Parameter ψ̃0n

We now proceed with the analysis of this CV-TMLE ψ̃∗
n of ψ̃0n. We first give a

representation theorem for the CV-TMLE.

Theorem 22.4. Let gn j and dn j represent estimates of g0 and d0 based on training

sample j. Let Q
dn j∗
n j represent a targeted estimate of Q

dn j

0 as presented in Sect. 22.3.1

so that Q
dn j∗
n j satisfies (22.6). Let R1d be as in Theorem 22.3. Further suppose that

the supremum norm of max j D∗(dn j,Q
dn j∗
n j , gn j) is bounded by some M < ∞ with

probability tending to 1, and that

max
j∈{1,...,J}

P0{D∗(dn j,Q
dn j∗
n j , gn j) − D∗(d1,Q

d1 , g)}2 → 0 in probability
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for some d1 ∈ D and possibly misspecified Qd1 and g. Finally, suppose that

max
j∈{1,...,J}

∣∣∣∣R1dn j (Q
dn j∗
n j ,Q

dn j

0 , gn j, g0)
∣∣∣∣ = oP0 (n−1/2).

Then,

ψ̃∗
n − ψ̃0n =(Pn − P0)D∗(d1,Q

d1 , gd1 ) + oP0 (n−1/2).

Note that d1 in the above theorem need not be the same as the optimal rule d0, though
later we will discuss the desirable special case where d1 = d0. The above theorem
also does not require that g0 is known, or even that the limit of our intervention
mechanisms g is equal to g0.

Note in the above theorem that the condition that, if g0 is known so that all gn j

can be correctly specified, it immediately follows that

max
j∈{1,...,J}

∣∣∣∣R1dn j (Q
dn j∗
n j ,Q

dn j

0 , gn j, g0)
∣∣∣∣ = 0.

In practice we would recommend estimating g0 according to a correctly specified
model even when g0 is known, because this can improve efficiency (see Section
2.3.7 of van der Laan and Robins 2003).

If the conditions of the above theorem hold, the asymptotic linearity result im-
plies that

√
n
[
ψ̃∗

n − ψ̃0n

]
→ Normal(0, σ2

0),

where σ2
0 = P0D∗(d1,Qd1 , gd1 )2. Under mild conditions,

σ2
n =

1
J

J∑

j=1

P1
n, j

{
D∗(dn j,Q

dn j∗
n j , gn j)

}2

consistently estimates σ2
0. Under the consistency of σ2

n and the conditions of Theo-
rem 22.4, an asymptotically valid 95% confidence interval for ψ̃0n is given by

[
ψ̃∗

n ±
σn√

n

]
. (22.7)

22.3.3 Statistical Inference for the True Optimal Rule ψ0

Suppose now that we are interested in estimating the mean outcome under the opti-
mal rule d0 rather than the data-adaptive parameter ψ̃0n. Note that

√
n
(
ψ̃∗

n − ψ0

)
=

√
n
(
ψ̃∗

n − ψ̃0n

)
+
√

n
(
ψ̃0n − ψ0

)

=
√

n
(
ψ̃∗

n − ψ̃0n

)
+

√
n

J

J∑

j=1

[
Ψdn j (P0) − ψ0

]
.
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If J−1 ∑J
j=1

[
Ψdn j (P0) − ψ0

]
, then by Slutsky’s theorem the left-hand side has the

same normal limit as
√

n
(
ψ̃∗

n − ψ̃0n

)
provided the conditions of Theorem 22.4 hold.

Furthermore, as J is fixed as n → ∞, J−1 ∑J
j=1

[
Ψdn j (P0) − ψ0

]
= oP(n−1/2) if

Ψdn j (P0) − ψ0 = oP(n−1/2) for each j. (22.8)

To analyze Ψdn j (P0) − ψ0, we will assume that the user estimates Q̄b,10 and Q̄b,20

using Q̄b,1n j and Q̄b,2n j, and then subsequently uses the plug-in estimators of the
format described in Theorem 22.1. Data-adaptive estimators of Q̄b,10 and Q̄b,20 were
previously described in Luedtke and van der Laan (2016b). While we do not require
that dn j result from a plug-in estimator, this is the estimation scheme we will focus
on analyzing here. Given that the main result needed to show (22.8) for the plug-in
estimator is analytic in nature, we focus on a general Q with corresponding blip
functions Q̄b,1, Q̄b,2 and optimal rule plug-in estimates dQ,A(0), dQ,A(1). One can then
apply this result directly to our fold-specific estimator.

The following result is proved in Sect. 22.5.

Lemma 22.1. Recall the definitions of Q̄b,20 and Q̄b,10 in Theorem 22.1. We can
represent Ψ (P0) = E0Yd0 as follows:

Ψ (P0) = E0Y(0,1),(0,1) + E0

[
d0,A(1)((0, 1),V(0,1)(1))Q̄b,20((0, 1),V(0,1)(1))

]

+ E0d0,A(0)(V(0))Q̄b,10(V(0)).

where V(0,1)(1) is drawn under the g-computation distribution for which treatment
(0, 1) is given at the first time point.

It follows that

R2(Q,Q0) =E0(dQ,A(0) − d0,A(0))(V(0))Q̄b,10(V(0))

+ E0(dQ,A(1) − d0,A(1))((0, 1),V(0,1)(1))Q̄b,20((0, 1),V(0,1)(1))

≡R2,A(0)(Q,Q0) + R2,A(1)(Q,Q0).

We will be able to attain a fast rate on R2(Q,Q0) under margin assumptions. We
start with the assumption that we use to bound R2,A(0)(Q,Q0). Suppose there exist
positive constants C1, β1 such that, for all t > 0,

P0

{
0 <

∣∣∣Q̄b,10(V(0))
∣∣∣ ≤ t

}
≤ C1tβ1 . (MA1)

The above assumption requires that the blip function at the first time point does
not concentrate too much mass near (but not at) the decision boundary (zero). The
assumption is different from the exceptional law condition, since that condition re-
quires that this blip function places no mass exactly at the decision boundary. For
β1 and β2 small, this is a weak assumption, though it may not attain the rates of
convergence needed to satisfy (22.8). These assumptions hold for β1 = 1 if that the
blip functions applied to the data have bounded Lebesgue density in a neighborhood
of zero.
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We make a similar assumption on Q̄b,20. In particular, we assume there exists
some C2, β2 such that, for all t > 0,

P0

{
0 <

∣∣∣Q̄b,20((0, 1),V(0,1)(1))
∣∣∣ ≤ t

}
≤ C2tβ2 . (MA2)

We now show that (MA1) and (MA2) give a β1, β2-specific upper bound of
R2(Q,Q0) by the distance of Q̄b,1 and Q̄b,2 from Q̄b,10 and Q̄b,20.

Theorem 22.5. If (MA1) holds for some C1, β1 > 0, then, for some constant C > 0,

|R2,A(0)(Q,Q0)| ≤ C min
{∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2(1+β1)/(2+β1)

2,P0
,
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥1+β1

∞,P0

}
. (22.9)

If (MA2) holds for some C2, β2 > 0, then, for some constant C > 0,

|R2,A(1)(Q,Q0)| ≤ C min
{∥∥∥Q̄b,2 − Q̄b,20

∥∥∥2(1+β1)/(2+β1)

2,P0,(0,1)
,
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥1+β1

P0,(0,1)

}
, (22.10)

where P0,(0,1) represents the static intervention specific g-computation distribution
where treatment (0, 1) is given at the first time point.

The above analytic result is useful for evaluating the plausibility of (22.8) when dn j

is estimated using a plug-in estimator. In a parametric model, one could typically
estimate Q̄b,10 and Q̄b,20 at n−1/2 rates for both the L2(P0) and the supremum norms
presented above. Hence, if the margin conditions hold with β1 = β2 = 1, the supre-
mum norm result yields n−1 rates on each Ψdn j (P0)−ψ0. In practice we of course do
not expect to be able to correctly specify a parametric model. Rather, we would use
data-adaptive estimators for the blip functions, such as super learning, to make cor-
rect specification of the estimators more likely (Luedtke and van der Laan 2016b).
Under smoothness assumptions on the blip functions, one can ensure nearly para-
metric rates on the L2(P0) norm using smoothing. These rates can, under enough
smoothness, achieve the oP(n−3/8 rate required by the above theorem at β1 = β2 = 1
to show that Ψdn j (P0) − ψ0 = oP(n−1/2). Nonetheless, in general we may not expect
such a fast rate to hold. If this fast rate does not hold, then one can still achieve
inference for the data-adaptive parameter ψ̃0n. If the fast rate does hold, as may be
possible if V is low-dimensional, then the implication is that, under the conditions of
Theorem 22.4 and the consistency of σ2

n, the confidence interval presented in (22.7)
is asymptotically valid for both ψ̃0n and ψ0.

22.4 Discussion

This chapter investigated semiparametric statistical inference for the mean out-
come under the V-optimal rule and statistical inference for the data-adaptive tar-
get parameter defined as the mean outcome under a data adaptively determined
V-optimal rule (treating the latter as given). We proved a surprising and useful result
stating that the mean outcome under the V-optimal rule is represented by a statistical
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parameter whose pathwise derivative is identical to what it would have been if the
unknown rule had been treated as known, under the condition that the data is gen-
erated by a nonexceptional law. As a consequence, the efficient influence curve is
immediately known, and any of the efficient estimators for the mean outcome un-
der a given rule can be applied at the estimated rule. In particular, we demonstrate
a CV-TMLE, and present asymptotic linearity results. However, the dependence of
the statistical target parameter on the unknown rule affects the second-order terms
of the CV-TMLE, and, as a consequence, the asymptotic linearity of the CV-TMLE
requires that a second-order difference between the estimated rule and the V-optimal
rule converges to zero at a rate faster than 1/

√
n. While this can be expected to hold

for rules that are only a function of one continuous score (such as a biomarker), only
strong smoothness assumptions will guarantee this when V is moderate-to-high di-
mensional, so that, even in an RCT, we cannot expect valid statistical inference for
such V-optimal rules.

To account for this challenge, we also described estimation of the average of sam-
ple split specific data-adaptive target parameters, as in general proposed in Hubbard
et al. (2016). Specifically, our data-adaptive target parameter is defined as an average
across J sample splits in training and validation sample of the mean outcome under
the dynamic treatment fitted on the training sample. We presented a CV-TMLE of
this data-adaptive target parameter, and we established an asymptotic linearity theo-
rem that does not require that the estimated rule be consistent for the optimal rule, let
alone at a particular rate. We showed that statistical inference for this data-adaptive
target parameter does not rely on the convergence rate of our estimated rule to the
optimal rule, and in fact only requires that the data adaptively fitted rule converges
to some (possibly suboptimal) fixed rule. As a consequence, in a sequential RCT,
this method provides valid asymptotic statistical inference under very mild condi-
tions, the primary of which is that the estimated rule converges to some (possibly
suboptimal) fixed rule.

Drawing inferences concerning optimal treatment strategies is an important topic
that will hopefully help guide future health policy decisions. We believe that work-
ing with a large semiparametric model is desirable because it helps to ensure that
the projected health benefits from implementing an estimated treatment strategy are
not due to bias from a misspecified model. The CV-TMLEs presented in this chapter
have many desirable statistical properties and allow one to get estimates and make
inference in this large model.

22.5 Proofs

Proof (Theorem 22.1). Let Vd = (V(0),Vd(1)). For a rule in D, we have

EPd Yd = EPd EPd (Yd | Vd)
= EVd

(
E(Ya(0),a(1) | Va(0))I(a(1) = dA(1)(a(0),Va(0)(1)))I(a(0) = dA(0)(V(0))

)
.
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For each value of a(0), Va(0) = (V(0),Va(0)(1)) and dA(0)(V(0)), the inner conditional
expectation is maximized over dA(1)(a(0),Va(0)(1)) by d0,A(1) as presented in the the-
orem, where we used that V(1) includes V(0). This proves that d0,A(1) is indeed the
optimal rule for assignment of A(1). Suppose now that V(1) does not include V(0),
but the stated assumption holds. Then the optimal rule d0,A(1) that is restricted to be
a function of (V(0),V(1), A(0)) is given by I(Q̄b,20(A(0),V(0),V(1)) > 0), where

Q̄b,20(a(0), v(0), v(1)) =
E0(Ya(0),A(1)=(1,1) − Ya(0),A(1)=(0,1) | Va(0)(1) = v(1),V(0) = v(0)).

However, by assumption, the latter function only depends on (a(0), v(0), v(1))
through (a(0), v(1)), and equals Q̄b,20(a(0), v(1)). Thus, we now still have that
d0,A(1)(V) = (I(Q̄b,20(A(0),V(1)) > 0), 1), and, in fact, it is now also an optimal rule
among the larger class of rules that are allowed to use V(0) as well.

Given we found d0,A(1), it remains to determine the rule d0,A(0) that maximizes

EVd

(
EP(Ya(0),d0,A(1) | Va(0))I(a(0) = dA(0)(V(0))

)

= E0E(Ya(0),d0,A(1) | V(0))I(a(0) = dA(0)(V(0)),

where we used the iterative conditional expectation rule, taking the conditional ex-
pectation of Va(0), given V(0). This last expression is maximized over dA(0) by d0,A(0)

as presented in the theorem. This completes the proof.

Proof (Theorem 22.3). By the definition of R1d we have

P0D∗(Q, g) = P0D∗(dQ,Q, g) = ΨdQ (QdQ

0 ) − ΨdQ (QdQ ) + R1dQ (QdQ ,QdQ

0 , g, g0)
= Ψd0 (Qd0

0 ) − ΨdQ (QdQ ) + {ΨdQ (QdQ

0 ) − Ψd0 (Qd0

0 )} + R1dQ (QdQ ,QdQ

0 , g, g0)
= Ψ (Q0) − Ψ (Q) + R2(Q,Q0) + R1dQ (QdQ ,QdQ

0 , g, g0).

Proof (Theorem 22.4). For all j = 1, . . . , J, we have that:

Ψdn j (Q
dn j∗
n j ) − Ψdn j (Q

dn j∗
0 ) = − P0D∗(dn j,Q

dn j∗
n j , gn j)

+ R1dn j (Q
dn j∗
n j ,Q

dn j∗
0 , gn j, g0)

Summing over j and using (22.6) gives:

ψ̃∗
n − ψ̃0n =

1
J

J∑

j=1

(
(P1

n, j − P0)D∗(dn j,Q
dn j∗
n j , gn j) + R1dn j (Q

dn j∗
n j ,Q

dn j∗
0 , gn j, g0)

)
.

We also have that:

1
J

J∑

j=1

(P1
n, j − P0)

(
D∗(dn j,Q

dn j∗
n j , gn j) − D∗(d1,Q

d1 , g)
)
= oP0 (n−1/2).

The above follows from the first by applying the law of total expectation conditional
on the training sample, and then noting that each Q̂∗(P0

n,Bn
, εn) only relies on P0

n,Bn
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through the finite dimensional parameter εn. Because GLM-based parametric classes
easily satisfy an entropy integral condition (van der Vaart and Wellner 1996), the
consistency assumption on D∗(dn j,Q

dn j∗
n j , gn j) shows that the above is second order.

We refer the reader to Zheng and van der Laan (2010) for a detailed proof of the
above result for general cross-validation schemes, including J-fold cross-validation.

It follows that:

ψ̃∗
n − ψ̃0n =(Pn − P0)D∗(d1,Q

d1 , g)

+
1
J

J∑

j=1

R1dn j (Q
dn j∗
n j ,Q

dn j∗
0 , gn j, g0) + oP0 (n−1/2).

Finally, note that 1
J

∑J
j=1 R1dn j (Q

dn j∗
n j ,Q

dn j∗
0 , gn j, g0) is oP(n−1/2) by the last assumption

of the theorem.

Proof (Lemma 22.1). For a point treatment data structure O = (L(0), A(0),Y) and
binary treatment A(0), we have for a rule V → d(V), E0Yd = E0Y0 + E0d(V)Q̄0(V))
with Q̄0(V) = E0[Y1 − Y0 | V]. This identity is applied twice in the following
derivation:

Ψ (P0) =E0Y(0,1),d0,A(1) + E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0E0[Y(0,1),d0,A(1) | V(0,1)(1)] + E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0E0[Y(0,1),(0,1) | V(0,1)(1)] + E0I(Q̄b,20((0, 1),V(0,1)(1)) > 0)Q̄b,20(0,V(0,1)(1))

+ E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0E0[Y(0,1),(0,1) | V(0,1)(1)] + E0d0,A(1)((0, 1),V(0,1)(1))Q̄b,20(0,V(0,1)(1))

+ E0d0,A(0)(V(0))Q̄b,10(V(0))

=E0Y(0,1),(0,1) + E0d0,A(1)((0, 1),V(0,1)(1))Q̄b,20(0,V(0,1)(1))

+ E0d0,A(0)(V(0))Q̄b,10(V(0)).

Proof (Theorem 22.5). In this proof we will omit the dependence of d0,A(0), dQ,A(0),
Q̄b,10, and Q̄b,1 on V(0) in the notation. This part of the proof mimics the proof of
Lemma 5.2 in Audibert and Tsybakov (2007). For any t > 0,

|R2,A(0)(Q,Q0)| =E0[|Q̄b,10|I(d0,A(0) � dQ,A(0))]

=E0[|Q̄b,10|I(d0,A(0) � dQ,A(0))I(0 < |Q̄b,10| ≤ t)]

+ E0[|Q̄b,10|I(d0,A(0) � dQ,A(0))I(|Q̄b,10| > t)]

≤E0[|Q̄b,1 − Q̄b,10|I(0 < |Q̄b,10| ≤ t)]

+ E0[|Q̄b,1 − Q̄b,10|I(|Q̄b,1 − Q̄b,10| > t)]

≤
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥
2,P0

Pr(0 < |Q̄b,10| ≤ t)1/2 +

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2

2,P0

t

≤
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥
2,P0

C1/2
0 tβ1/2 +

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2

2,P0

t
,
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where the first inequality holds because d0,A(0) � dQ,A(0) implies that |Q̄b,1 − Q̄b,10| >
|Q̄b,10|, the second inequality holds by the Cauchy-Schwarz and Markov inequalities,
and the third inequality holds by (MA1). The first result follows by optimizing over

t to find that the upper bound is minimized when t = C′
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥2(1+β1)/(2+β1)

2,P0

for a constant C′ that depends on C0 and β1.
We now establish the supremum-norm result. Note that

|R2,A(0)(Q,Q0)| = E0

∣∣∣I(dQ,A(0) � d0,A(0))Q̄b,10

∣∣∣

≤ E0

[
I(0 < |Q̄b,10| ≤ |Q̄b,1 − Q̄b,10|)|Q̄b,10|

]

≤ E0

[
I
(
0 < |Q̄b,10| ≤

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥∞,P0

)
|Q̄b,10|

]

≤
∥∥∥Q̄b,1 − Q̄b,10

∥∥∥∞,P0
Pr

(
0 < |Q̄b,10| ≤

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥∞,P0

)
.

By (MA1), |ΨdQ,A(0) (P0) − Ψd0,A(0) (P0)| ≤ C1

∥∥∥Q̄b,1 − Q̄b,10

∥∥∥1+β1

∞,P0
. Combining the two

results yields (22.9). The proof of (22.10) is analogous and so is omitted.

22.6 CV-TMLE for the Mean Outcome Under Data-Adaptive
V-Optimal Rule

Let d̂ : M → D be an estimator of the V-optimal rule d0. Firstly, without loss
of generality we can assume that Y ∈ [0, 1]. Denote the realizations of Bn with
j = 1, . . . , J, and let dn j ≡ d̂(P0

n, j) denote the estimated rule on training sample j.
Let

(a(0), l̄(1)) �→ En j[Y |Ā(1) = dn j(a(0), v), L̄(1) = l̄(1)] (22.11)

represent an initial estimate of E0[Y | Ā(1) = dn j(A(0),V), L̄(1)] based on the
training sample j. Similarly, let gn j represent the estimated intervention mechanism
based on this training sample P0

n, j, j = 1, . . . , J. Consider the fluctuation submodel

logit E(ε2)
n j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]
= logit En j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]

+ ε2H2(gn j)(O)

where

H2(gn j)(O) =
I(Ā(1) = dn j(A(0),V(1)))

∏1
l=0 gn j,A(l)(O)

.

Note that the fluctuation ε2 does not rely on j. Let

ε2n = arg min
ε2

1
J

J∑

j=1

P1
n, jφ̃(E(ε2)

n j ),
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where E(ε2)
n j refers to the represents the fluctuated function in (22.11) and

−φ̃( f )(o) = y log f (o) + (1 − y) log (1 − f (o)) . (22.12)

for all f : O → (0, 1). For each i = 1, . . . , n, let j(i) ∈ {1, . . . , J} represent the value
of Bn for which element i is in the validation set. The fluctuation ε2n can be obtained
by fitting a univariate logistic regression of (yi : i = 1, . . . , n) on (H2(gn j(i))(oi) : i =
1, . . . , n) using

(
logit En j(i)

[
Y |Ā(1) = dn j(i)(a(0)i, vi), L̄(1) = l̄(1)i

]
: i = 1, . . . , n

)

as offset. Thus each observation i is paired with nuisance parameters are fit on the
training sample that does not contain observation i. This defines a targeted estimate

E∗
n j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]
≡ E(ε2n)

n j

[
Y |Ā(1) = dn j(A(0),V), L̄(1)

]
(22.13)

of E0[Y | Ā(1) = dn j(A(0),V), L̄(1)]. We note that this targeted estimate only de-
pends on Pn through the training sample P0

n, j and the one-dimensional ε2n.
We now aim to get a targeted estimate of E0[Ydn j |L(0)]. We can obtain an estimate

(a1(0), l(0)) �→ En j

[
En j

[
Y | Ā(1) = dn j(A(0),V), L̄(1)

]∣∣∣∣ A(0) = (a1(0), 1), L(0) = l(0)
]

(22.14)

by regressing En j

[
Y | Ā(1) = dn j(A(0)i,Vi), L̄(1)i

]
against A(0)i, L(0)i for all of the

observations i in training sample j. For an estimate En j[Ydn j |L(0)] of E0[Ydn j |L(0)],
we can use the regression function above but with a(0) fixed to dn j,A(0)(v(0)).

Consider the fluctuation submodel

logit E(ε1)
n j

[
Ydn j | L(0)

]
= logit En j

[
Ydn j | L(0)

]
+ εH1(gn j)(O),

where

H1(gn j)(O) =
I(A(0) = dn j,A(0)(V(0)))

gn j,A(0)(O)
.

Again the fluctuation ε1 does not rely on j. Let

ε1n = arg min
ε1

1
J

J∑

j=1

P1
n, jφ̃(E(ε1)

n j ),

where φ̃ is defined in (22.12). For each i = 1, . . . , n, again let j(i) ∈ {1, . . . , J}
represent the value of Bn for which element i is in the validation set. The fluctuation
ε1n can be obtained by fitting a univariate logistic regression of

(
E∗

n j(i)

[
Y |Ā(1) = dn j(i)(a(0)i, vi), l̄(1)i

]
: i = 1, . . . , n

)
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on (H1(gn j(i))(oi) : i = 1, . . . , n) using

(
logit En j(i)

[
Ydn j(i) |L(0) = l(0)i

]
: i = 1, . . . , n

)

as offset. This defines a targeted estimate

E∗
n j

[
Ydn j |L(0)

]
≡ E(ε1n)

n j

[
Ydn j |L(0)

]
(22.15)

of E0[Ydn j |L(0)]. We note that this targeted estimate only depends on Pn through the
training sample P0

n, j and the one-dimensional ε1n.

Let QL(0),n j be the empirical distribution of L(0)i for the validation sample P1
n, j.

For all j = 1, . . . , J, let Q
dn j∗
n j be the parameter mapping representing the collection

containing QL(0),n j and the targeted regressions in (22.13) and (22.15). This defines
an estimator ψ∗

n j = P1
n, jQ̄

∗
b,1n j of ψdn j0 = Ψdn j (P0) for each j = 1, . . . , J. The cross-

validated TMLE is now defined as ψ∗
n =

1
J

∑J
j=1 ψ

∗
n j. This CV-TMLE solves the

cross-validated efficient influence curve equation:

1
J

J∑

j=1

P1
n, jD

∗(dn j,Q
dn j∗
n j , gn j) = 0.

Further, each Q
dn j∗
n j only relies on P1

n, j through the univariate parameters ε1n and ε2n.
This will allow us to use the entropy integral arguments presented in Zheng and
van der Laan (2010) that show that no restrictive empirical process conditions are
needed on the initial estimates in (22.11) and (22.14).

The only modification relative to the original CV-TMLE presented in Zheng and
van der Laan (2010) is that in the above description we change our target on each
training sample into the training sample specific target parameter implied by the fit
d̂(P0

n,Bn
) on the training sample, while in the original CV-TMLE formulation, the

target would still be Ψd0 (P0). With this minor twist, the (same) CV-TMLE is now
used to target the average of training sample specific target parameters averaged
across the J training samples.

22.7 Notes and Further Reading

Examples of multiple time-point dynamic treatment regimes are given in Lavori and
Dawson (2000, 2008); Murphy (2005); Rosthø j et al. (2006); Thall et al. (2002);
Wagner et al. (2001) ranging from rules that change the dose of a drug, change
or augment the treatment, to making a decision on when to start a new treatment,
in response to the history of the subject. For an excellent overview on dynamic
treatments we refer to Chakraborty and Moodie (2013).
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We define the optimal dynamic multiple time-point treatment regime as the rule
that maximizes the mean outcome under the dynamic treatment, where the candi-
date rules are restricted to only respond to a user-supplied subset of the baseline and
intermediate covariates. The literature on Q-learning shows that we can describe
the optimal dynamic treatment among all dynamic treatments in a sequential man-
ner (Murphy 2003; Robins 2004; Murphy 2005). The optimal rule can be learned
through fitting the likelihood and then calculating the optimal rule under this fit of
the likelihood. This approach can be implemented with maximum likelihood esti-
mation based on parametric models. It has been noted (e.g., Robins 2004) that the
estimator of the parameters of one of the regressions (except the first one) when
using parametric regression models is a nonsmooth function of the estimator of the
parameters of the previous regression, and that this results in nonregularity of the
estimators of the parameter vector. This raises challenges for obtaining statistical
inference, even when assuming that these parametric regression models are cor-
rectly specified. Chakraborty and Moodie (2013) discuss various approaches and
advances that aim to resolve this delicate issue such as inverting hypothesis testing
(Robins 2004), establishing nonnormal limit distributions of the estimators (Laber
et al. 2014a), or using the m out of n bootstrap (Chakraborty et al. 2014). The proof
of the fast rate for the estimate of the optimal rule provided in Theorem 22.5 is sim-
ilar to the proofs of the fast classification rates obtained in Audibert and Tsybakov
(2007). It was presented for single time point optimal treatment rules in van der
Laan and Luedtke (2015).

Murphy (2003) and Robins (2004) develop structural nested mean models tai-
lored to optimal dynamic treatments. These models assume a parametric model for
the “blip function” defined as the additive effect of a blip in current treatment on
a counterfactual outcome, conditional on the observed past, in the counterfactual
world in which future treatment is assigned optimally. Statistical inference for the
parameters of the blip function proceeds accordingly, but Robins (2004) points out
the irregularity of the estimator, resulting in some serious challenges for statisti-
cal inference as referenced above. Structural nested mean models have also been
generalized to blip functions that condition on a (counterfactual) subset of the past,
thereby allowing the learning of optimal rules that are restricted to only using this
subset of the past (Robins 2004 and Section 6.5 in van der Laan and Robins 2003).

Each of the above referenced approaches for learning an optimal dynamic treat-
ment that also aims to provide statistical inference relies on parametric assumptions:
obviously, Q-learning based on parametric models, but also the structural nested
mean model rely on parametric models for the blip function. As a consequence,
even in a SMART, the statistical inference for the optimal dynamic treatment heav-
ily relies on assumptions that are generally believed to be false, and will thus be
expected to be biased. To avoid these biases, in this chapter we defined our model as
nonparametric, beyond possible restrictions on the treatment/censoring mechanism.



Chapter 23
Optimal Individualized Treatments Under
Limited Resources

Alexander R. Luedtke and Mark J. van der Laan

In this chapter, we consider a resource constraint under which there is a max-
imum proportion of the population that can be treated. Given this constraint,
we develop a root-n rate estimator for the optimal resource-constrained (R-C)
value and corresponding confidence intervals. We show that our estimator is
efficient among all regular and asymptotically linear estimators in our non-
parametric model M under conditions. When the baseline covariates are con-
tinuous and the resource constraint is active, i.e., when the optimal R-C value
is less than the optimal unconstrained value, these conditions are more reason-
able than the nonexceptional law assumption needed for regular estimation of
the optimal unconstrained value discussed in Chap. 22.

23.1 Optimal Resource-Constrained Rule and Value

Suppose we observe n i.i.d. draws from a single time point data structure (W, A,Y) ∼
P0, where the vector of covariates W has support W, the treatment A has support
{0, 1}, and the outcome Y has support in the closed unit interval. Little general-
ity is lost with the bound on Y , given that any continuous outcome bounded can
be rescaled to the unit interval via a linear transformation. Our statistical model
is nonparametric, beyond possible knowledge of the treatment mechanism, i.e., the
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probability of treatment given covariates. Suppose that the treatment resource is lim-
ited so that at most a κ ∈ (0, 1) proportion of the population can receive the treatment
A = 1. A deterministic treatment rule d̃ takes as input a covariate vector w ∈ W and
outputs a binary treatment decision d̃(w). The stochastic treatment rules considered
in this chapter are maps from U × W to {0, 1}, where U is the support of some
random variable U ∼ PU . If d is a stochastic rule and u ∈ U is fixed, then d(u, ·)
represents a deterministic treatment rule. Throughout this chapter, we will let U be
drawn independently of all draws from P0. We will be consistent with the use of the
tilde to represent deterministic rules and lack of tilde to represent stochastic rules so
that throughout d̃ : W → R and d : U ×W → R.

For a distribution P, let Q̄P(a,w) � EP[Y |A = a,W = w]. For notational conve-
nience, we let Q̄0 � Q̄P0 . Let d̃ be a deterministic treatment regime. For a distribu-
tion P, let Ψ̃d̃ � EP0 [Q̄P(d̃(V),W)] represent the value of d̃. Under causal assump-
tions, this quantity is equal to the counterfactual mean outcome if, possibly contrary
to fact, the rule d̃ were implemented in the population (Robins 1986). The optimal
R-C deterministic regime at P is defined as the deterministic regime d̃ that solves
the optimization problem

Maximize Ψd̃(P) subject to E0[d̃(W)] ≤ κ. (23.1)

For a stochastic regime d, let Ψd(P) � EPU [Ψ̃d(U,·)(P)] represent the value of d.
Under causal assumptions, this quantity is equal to the counterfactual mean outcome
if, possibly contrary to fact, the stochastic rule d were implemented in the population
(see Díaz and van der Laan 2013b for a similar identification result). The optimal
R-C stochastic regime at P is defined as the stochastic treatment regime d that solves
the optimization problem

Maximize Ψd(P) subject to EPU×P[d(U,W)] ≤ κ. (23.2)

We call the optimal value under a R-C stochastic regime Ψ (P). Because any de-
terministic regime can be written as a stochastic regime that does not rely on the
stochastic mechanism U, we have that Ψ (P) ≥ Ψ̃ (P). Let S P represent the survival
function of the blip function Q̄b,P(·) � Q̄P(1, ·) − Q̄P(0, ·), i.e. τ �→ P(Q̄b,P(W) > τ).
Let

ηP � inf {τ : S P(τ) ≤ κ}
τP � max {ηP, 0} . (23.3)

For notational convenience we let S 0 � S P0 , η0 � ηP0 , and τ0 � τP0 .
Define the deterministic treatment rule d̃P as w �→ I(Q̄b,P(w) > τP), and for

notational convenience let d̃0 � d̃P0 . We have the following result.

Theorem 23.1. If P(Q̄b,P(W) = τP) = 0, then the d̃P is an optimal deterministic
rule satisfying the resource constraint, i.e. Ψd̃P

(P) attains the maximum described
in (23.1).
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One can in fact show that d̃P is the P almost surely unique optimal deterministic
regime under the stated condition. We do not treat the case where P(Q̄b,P(W) =
τP) > 0 for deterministic regimes, since in this case (23.1) is a more challenging
problem: for discrete W with positive treatment effect in all strata, (23.1) is a special
case of the 0–1 knapsack problem, which is NP-hard, though is considered one of
the easier problems in this class (Karp 1972; Korte and Vygen 2012). In the knap-
sack problem, one has a collection of items, each with a value and a weight. Given a
knapsack that can only carry a limited weight, the objective is to choose which items
to bring so as to maximize the value of the items in the knapsack while respecting
the weight restriction. Considering the optimization problem over stochastic rather
than deterministic regimes yields a fractional knapsack problem, which is known to
be solvable in polynomial time (Dantzig 1957; Korte and Vygen 2012). The frac-
tional knapsack problem differs from the 0–1 knapsack problem in that one can pack
partial items, with the value of the partial items proportional to the fraction of the
item packed.

Define the stochastic treatment rule dP by its distribution with respect to a random
variable drawn from PU :

PU (dP(U,w) = 1) =

⎧⎪⎪⎨
⎪⎪⎩

κ−S P(τP)
PrP(Q̄b,P(W)=τP) , if Q̄b,P(w) = τP and τP > 0

I(Q̄b,P(w) > τP), otherwise.

If PrP(Q̄b,P(W) = τP) = 0, then the first case occurs with probability zero, and this
the division by this quantity will not prove problematic. We will let d0 � dP0 . Note
that d̃P(W) and dP(U,W) are PU × P almost surely equal if P(Q̄b,P(W) = τP) = 0 or
if τP ≤ 0, and thus have the same value in these settings. It is easy to show that

EPU×P[dP(U,W)] = κ if τP > 0. (23.4)

The following theorem establishes the optimality of the stochastic rule dP in a
resource-limited setting.

Theorem 23.2. The maximum in (23.2) is attained at d = dP, i.e. dP is an optimal
stochastic rule.

Note that the above theorem does not claim that dP is the unique optimal stochastic
regime. For discrete W, the above theorem is an immediate consequence of the
discussion of the knapsack problem in Dantzig (1957).

In this chapter we focus on the value of the optimal stochastic rule. Nonethe-
less, the techniques that we present in this chapter will only yield valid inference
in the case where the data are generated according to a distribution P0 for which
P0(Q̄b,0(W) = τ0) = 0. This is analogous to assuming a nonexceptional law in
settings where resources are not limited (Robins 2004; Luedtke and van der Laan
2016a), though we note that for continuous covariates W this assumption is much
more likely if τ0 > 0. It seems unlikely that the treatment effect in some positive
probability stratum of covariates will concentrate on some arbitrary (determined by
the constraint κ) value τ0.
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23.2 Estimating the Optimal Resource-Constrained Value

We now present an estimation strategy for the optimal R-C rule. The upcoming
sections justify this strategy and suggest that it will perform well for a wide variety
of data generating distributions. The estimation strategy proceeds as follows:

1. Obtain estimates Q̄0
n, Q̄b,n, and gn of Q̄0, Q̄b,0, and g0 using any desired estimation

strategy that respects the fact that Y is bounded in the unit interval.
2. Estimate the marginal distribution of W with the corresponding empirical

distribution.
3. Estimate S 0 with the plug-in estimator S n given by τ �→ 1

n

∑n
i=1 I

(
Q̄b,n(wi) > τ

)
.

4. Estimate η0 with the plug-in estimator ηn � inf {τ : S n(τ) ≤ κ}.
5. Estimate τ0 with the plug-in estimator given by τn � max{ηn, 0}.
6. Estimate d0 with the plug-in estimator dn with distribution

PU(dn(U,w) = 1) =

⎧⎪⎪⎨
⎪⎪⎩

κ−S n(τn)
PrPn (Q̄b,n(W)=τn) , if Q̄b,n(w) = τn and τn > 0

I(Q̄b,n(w) > τn), otherwise.

7. Run a TMLE for the parameter Ψdn (P0):

(a) For ã ∈ {0, 1}, define H∗
n(a,w) � PU (dn(U,w)=a)

gn(a|w) . Run a univariate logistic
regression using:

Outcome: (yi : i = 1, . . . , n)

Offset:
(
logit Q̄0

n(ai,wi) : i = 1, . . . , n
)

Covariate:
(
H∗

n(ai,wi) : i = 1, . . . , n
)
.

Let εn represent the estimate of the coefficient for the covariate, i.e.

εn � arg max ε ∈ R
1
n

n∑

i=1

[
Q̄ε

n(ai,wi) log yi +
(
1 − Q̄ε

n(ai,wi)
)

log(1 − yi)
]
,

where Q̄ε
n(a,w) � logit−1

(
logit Q̄0

n(a,w) + εH∗
n(a,w)

)
.

(b) Define Q̄∗
n � Q̄εn

n .
(c) Estimate Ψdn (P0) using the plug-in estimator given by

Ψdn (P∗
n) � 1

n

n∑

i=1

1∑

a=0

Q̄∗
n(a,wi)PU(dn(U,wi) = a).

We use Ψdn (P∗
n) as our estimate of Ψ (P0). We will denote this estimator Ψ̂ , where

we have defined Ψ̂ so that Ψ̂ (Pn) = Ψdn (P∗
n). Note that we have used a TMLE for

the data-dependent parameter Ψdn (P0), which represents the value under a stochas-
tic intervention dn. Nonetheless, we assume that P0(Q̄b,0(W) = τ0) = 0 for many of
the results pertaining to our estimator Ψ̂ , i.e., we assume that the optimal R-C rule is
deterministic. We view estimating the value under a stochastic rather than determin-
istic intervention as worthwhile because one can give conditions under which the
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above estimator is (root-n) consistent for Ψ (P0) at all laws P0, even if nonnegligible
bias invalidates standard Wald-type confidence intervals for the parameter of interest
at laws P0 for which P0(Q̄b,0(W) = τ0) > 0.

We will use P∗
n to denote any distribution for which Q̄P∗

n
= Q̄∗

n, gP∗
n
= gn, and P∗

n
has the marginal empirical distribution of W for the marginal distribution of W. We
note that such a distribution P∗

n exists provided that Q̄∗
n and gn fall in the parameter

spaces of P �→ Q̄P(W) and P �→ gP, respectively. In practice we recommend esti-
mating Q̄0 and Q̄b,0 using an ensemble method such as super learning to make an op-
timal bias-variance trade-off (or, more generally, minimize cross-validated risk) be-
tween a mix of parametric models and data-adaptive regression algorithms (van der
Laan et al. 2007; Luedtke and van der Laan 2016b). If the treatment mechanism g0

is unknown then we recommend using similar data-adaptive approaches to obtain
the estimate gn. If g0 is known (as in a randomized controlled trial without miss-
ingness), then one can either take gn = g0 or estimate g0 using a correctly specified
parametric model, which we expect to increase the efficiency of estimators when the
Q̄0 part of the likelihood is misspecified (van der Laan and Robins 2003; van der
Laan and Luedtke 2015).

There is typically little downside to using data-adaptive approaches to estimate
the needed portions of the likelihood, though we do give a formal empirical process
condition in Sect. 23.4 that describes exactly how data adaptive these estimators can
be. If one is concerned about the data adaptivity of the estimators of the needed
portions of the likelihood, then one can consider a cross-validated TMLE approach
such as that presented in van der Laan and Luedtke (2015). This approach makes no
restrictions on the data adaptivity of the estimators of Q̄0, Q̄b,0, or g0.

We now outline the main results of this chapter, which hold under appropriate
consistency and regularity conditions.

• Asymptotic linearity of Ψ̂ :

Ψ̂ (Pn) − Ψ (P0) =
1
n

n∑

i=1

D0(Oi) + oP0 (n−1/2),

with D0 a known function of P0.
• Ψ̂ is an asymptotically efficient estimate of Ψ (P0).
• One can obtain a consistent estimate σ2

n for the variance of D0(O). An asymptot-
ically valid 95% confidence intervals for Ψ (P0) given by Ψ̂ (Pn) ± 1.96σn/

√
n.

The upcoming sections give the consistency and regularity conditions that imply the
above results.

23.3 Canonical Gradient of the Optimal
Resource-Constrained Value

The pathwise derivative of Ψ will provide a key ingredient for analyzing the asymp-
totic properties of our estimator. We refer the reader to Pfanzagl (1990) and Bickel
et al. (1997b) for an overview of the crucial role that the pathwise derivative plays



424 A. R. Luedtke and M. J. van der Laan

in semiparametric efficiency theory. We remind the reader that an estimator Φ̂ is
an asyptotically linear estimator of a parameter Φ(P0) with influence curve ICP0

provided that

Φ̂(Pn) −Φ(P0) =
1
n

n∑

i=1

ICP0 (Oi) + oP0 (n−1/2).

If Φ is pathwise differentiable with canonical gradient ICP0 , then Φ̂ is RAL and
asymptotically efficient (minimum variance) among all such RAL estimators of
Φ(P0) (Pfanzagl 1990; Bickel et al. 1997b).

For o ∈ O, a deterministic rule d̃, and a real number τ, define

D1(d̃, P)(o) � I(a = d̃(w))
gP(a|w)

(
y − Q̄P(a,w)

)

D2(d̃, P)(o) � Q̄P(d̃(w),w) − EPQ̄P(d̃(W),W),

where gP(a|W) � P(A = a|W). We will let g0 � gP0 . We note that D1(d̃, P) +
D2(d̃, P) is the efficient influence curve of the parameter Ψd̃(P).

Let d be some stochastic rule. The canonical gradient of Ψd is given by

ICd(P)(o) � EPU [D1(d(U,w), P)(o) + D2(d(U,w), P)(o)].

Define

D(d, τ, P)(o) � ICd(P)(o) − τ
(
EPU [d(U,w)] − κ

)
.

For ease of reference, let D0 � D(d0, τ0, P0). The upcoming theorem makes use of
the following assumptions.

(C1) g0 satisfies the positivity assumption: P0(0 < g0(1|W) < 1) = 1.
(C2) Q̄b,0(W) has density f0 at η0, and 0 < f0(η0) < ∞.
(C3) S 0 is continuous in a neighborhood of η0.
(C4) P0(Q̄b,0(W) = τ) = 0 for all τ in a neighborhood of τ0.

We now present the canonical gradient of the optimal R-C value.

Theorem 23.3. Suppose 23.3 through 23.3. Then Ψ is pathwise differentiable at P0

with canonical gradient D0.

Note that 23.3 implies that P0(Q̄b,0(W) = τ0) = 0. Thus d0 is (almost surely) deter-
ministic and the expectation over PU in the definition of D0 is superfluous. Nonethe-
less, this representation will prove useful when we seek to show that our estimator
solves the empirical estimating equation defined by an estimate of D(d0, τ0, P0).

When the resource constraint is active, i.e., τ0 > 0, the above theorem shows that
Ψ has an additional component over the optimal value parameter when no resource
constraints are present (van der Laan and Luedtke 2015). The additional component
is τ0 ×

(
EPU [d0(U,w)] − κ

)
, and is the portion of the derivative that relies on the fact
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that d0 is estimated and falls on the edge of the parameter space. We note that it is
possible that the variance of D0(O) is greater than the variance of ICd0 (P0)(O). If
τ0 = 0 then these two variances are the same, so suppose τ0 > 0. Then, provided
that P0(Q̄b,0(W) = τ0) = 0, we have that

VarP0 (D0(O)) − VarP0

(
ICd0 (P0)

)

= τ0κ(1 − κ)
(
τ0 − 2E0

[
Q̄0(1,W)

∣∣∣ d̃0(W) = 1
]
+ 2E0

[
Q̄0(0,W)

∣∣∣ d̃0(W) = 0
])
.

For any κ ∈ (0, 1), it is possible to exhibit a distribution P0 that satisfies the condi-
tions of Theorem 23.3 and for which VarP0 (D0(O)) > VarP0 (ICd0 (P0)(O)). Perhaps
more surprisingly, it is also possible to exhibit a distribution P0 that satisfies the
conditions of Theorem 23.3 and for which VarP0 (D0(O)) < VarP0 (ICd0 (P0)(O)). We
omit further the discussion here because the focus of this chapter is on considering
the estimating the value from the optimization problem (23.2), rather than discussing
how this procedure relates to the estimation of other parameters.

23.4 Inference for Ψ(P0)

We now show that Ψ̂ is an asymptotically linear estimator for Ψ (P0) with influence
curve D0 provided our estimates of the needed parts of P0 satisfy consistency and
regularity conditions. For any distributions P and P0 satisfying positivity, stochastic
intervention d, and real number τ, define the second-order remainder terms:

R10(d, P) � EPU×P0

[(
1 − g0(d|W)

g(d|W)

) (
Q̄P(d,W) − Q̄0(d,W)

)]

R20(d) � EPU×P0

[
(d − d0)(Q̄b,0(W) − τ0)

]
.

Above the reliance of d and d0 on (U,W) is omitted in the notation. Let R0(d, P) �
R10(d, P)+R20(d). The upcoming theorem makes use of the following assumptions.

(C5) g0 satisfies the strong positivity assumption: P0(δ < g0(1|W) < 1− δ) = 1 for
some δ > 0.

(C6) gn satisfies the strong positivity assumption for a fixed δ > 0 with probability
approaching 1: there exists some δ > 0 such that, with probability approach-
ing 1, P0(δ < gn(1|W) < 1 − δ) = 1.

(C7) R0(dn, P∗
n) = oP0 (n−1/2).

(C8) E0

[(
D(dn, τ0, P∗

n)(O) − D0(O)
)2
]
= oP0 (1).

(C9) D(dn, τ0, P∗
n) belongs to a P0-Donsker classDwith probability approaching 1.

(C10) 1
n

∑n
i=1 D(dn, τ0, P∗

n)(Oi) = oP0 (n−1/2).

We note that the τ0 in the final condition above only enters the expression in the sum
as a multiplicative constant in front of −EPU [d(U,wi)] − κ.
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Theorem 23.4 (Ψ̂ Is Asymptotically Linear). Suppose 23.3 through 23.4. Then Ψ̂
is a RAL estimator of Ψ (P0) with influence curve D0, i.e.

Ψ̂ (Pn) − Ψ (P0) =
1
n

n∑

i=1

D0(Oi) + oP0 (n−1/2).

Further, Ψ̂ is efficient among all such RAL estimators of Ψ (P0).

Let σ2
0 � VarP0 (D0). By the central limit theorem,

√
n
(
Ψ̂ (Pn) − Ψ (P0)

)
converges

in distribution to a N(0, σ2
0) distribution. Let σ2

n � 1
n

∑n
i=1 D(dn, τn, P∗

n)(Oi)2 be an
estimate of σ2

0. We now give the following lemma, which gives sufficient conditions
for the consistency of τn for τ0.

Lemma 23.1 (Consistency of τn). Suppose 23.3 and 23.3. Also suppose Q̄b,n is con-
sistent for Q̄b,0 in L1(P0) and that the estimate Q̄b,n belongs to a P0 Glivenko Cantelli
class with probability approaching 1. Then τn → τ0 in probability.

It is easy to verify that conditions similar to those of Theorem 23.4, combined with
the convergence of τn to τ0 as considered in the above lemma, imply that σn →
σ0 in probability. Under these conditions, an asymptotically valid two-sided 1 − α
confidence interval is given by

Ψ̂ (Pn) ± z1−α/2
σn√

n
,

where z1−α/2 denotes the 1 − α/2 quantile of a N(0, 1) random variable.

23.5 Discussion of Theorem 23.4 Conditions

Conditions 23.3 and 23.3. These are standard conditions used when attempting
to estimate the κ-quantile η0, defined in (23.3). Provided good estimation of Q̄b,0,
these conditions ensure that gathering a large amount of data will enable one to get
a good estimate of the κ-quantile of the random variable Q̄b,0. See Lemma 23.1 for
an indication of what is meant by “good estimation” of Q̄b,0. It seems reasonable to
expect that these conditions will hold when W is continuous and η0 � 0, since we
are assuming that Q̄b,0 is not degenerate at the arbitrary (determined by κ) point η0.

Condition 23.3. If τ0 > 0, then 23.3 is implied by 23.3. If τ0 = 0, then 23.3 is
like assuming a nonexceptional law, i.e. that the probability of a there being no
treatment effect in a stratum of W is zero. Because τ0 is not known from the outset,
we require something slightly stronger, namely that the probability of any specific
small treatment effect is zero in a stratum of W is zero. Note that this condition does
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not prohibit the treatment effect from being small, e.g. P0(|Q̄b,0(W)| < τ) > 0 for
all τ > 0, but rather it prohibits there existing a sequence τm ↓ 0 with the property
that P0(Q̄b,0(W) = τm) > 0 infinitely often. Thus this condition does not really seem
any stronger than assuming a nonexceptional law. If one is concerned about such
exceptional laws then we suggest adapting the methods in Luedtke and van der
Laan (2016b) to the R-C setting.

Condition 23.4. This condition assumes that people from each stratum of co-
variates have a reasonable (at least a δ > 0) probability of treatment.

Condition 23.4. This condition requires that our estimates of g0 respect the fact that
each stratum of covariates has a reasonable probability of treatment.

Condition 23.4. This condition is satisfied if R10(dn, P∗
n) = oP0 (n−1/2) and

R20(dn) = oP0 (n−1/2). The term R10(dn, P∗
n) takes the form of a typical double

robust term that is small if either g0 or Q̄0 is estimated well, and is second order,
i.e., one might hope that R10(dn, P∗

n) = oP0 (n−1/2), if both g0 and Q̄0 are estimated
well. One can upper bound this remainder with a product of the L2(P0) rates of
convergence of these two quantities using the Cauchy-Schwarz inequality. If g0 is
known, then one can take gn = g0 and this term is zero.

Ensuring that R20(dn) = oP0 (n−1/2) requires a little more work but will still prove
to be a reasonable condition. We will use the following margin assumption for some
C0, α > 0:

P0

(
0 < |Q̄b,0 − τ0| ≤ t

)
≤ C0tα for all t > 0, (23.5)

This margin assumption is analogous to that used in Audibert and Tsybakov (2007).
The following result relates the rate of convergence of R20(dn) to the rate at which
Q̄b,n − τn converges to Q̄b,0 − τ0.

Theorem 23.5. If (23.5) holds for some C0, α > 0, then, for some constant C > 0,

|R20(dn)| ≤ C min
{∥∥∥(Q̄b,n − τn) − (Q̄b,0 − τ0)

∥∥∥2(1+α)/(2+α)

2,P0
,
∥∥∥(Q̄b,n − τn) − (Q̄b,0 − τ0)

∥∥∥1+α

∞,P0

}
.

The proof of this result is analogous to Theorem 22.5 and is omitted. If S 0 has a
finite derivative at τ0, as is given by (23.3), then one can take α = 1. The above the-
orem then implies that R20(dn) = oP0 (n−1/2) if either

∥∥∥(Q̄b,n − τn) − (Q̄b,0 − τ0)
∥∥∥

2,P0

is oP0 (n−3/8) or
∥∥∥(Q̄b,n − τn) − (Q̄b,0 − τ0)

∥∥∥∞,P0
is oP0 (n−1/4).

Condition 23.4. This is a mild consistency condition that is implied by the L2(P0)
consistency of dn, gn, and Q̄∗

n to d0, g0, and Q̄0. We note that the consistency of
the initial (unfluctuated) estimate Q̄0

n for Q̄0 will imply the consistency of Q̄∗
n to Q̄0

given 23.4, since in this case εn → 0 in probability, and thus
∥∥∥Q̄∗

n − Q̄0
n

∥∥∥
2,P0

→ 0 in
probability.
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Condition 23.4. This condition places restrictions on how data adaptive the esti-
mators of d0, g0, and Q̄0 can be. We refer the reader to Section 2.10 of van der
Vaart and Wellner (1996) for conditions under which the estimates of d0, g0, and Q̄0

belonging to Donsker classes implies that D(dn, τ0, P∗
n) belongs to a Donsker class.

This condition was avoided for estimating the value function using a cross-validated
TMLE in van der Laan and Luedtke (2015), and using this technique will allow one
to avoid the condition here as well.

Condition 23.4. Using the notation P f =
∫

f (o)dP(o) for any distribution P
and function f : O → R, we have that

PnD(dn, τ0, P
∗
n) = PnD1(dn, P

∗
n) + PnD2(dn, P

∗
n)

− τ0

⎛
⎜⎜⎜⎜⎜⎝

1
n

n∑

i=1

EPU [dn(U,wi)] − κ

⎞
⎟⎟⎟⎟⎟⎠ .

The first term is zero by the fluctuation step of the TMLE algorithm and the second
term on the right is zero because P∗

n uses the empirical distribution of W for the
marginal distribution of W. If τ0 = 0 then clearly the third term is zero, so suppose
τ0 > 0. Combining (23.4) and the fact that dn is a substitution estimator shows
that the third term is 0 with probability approaching 1 provided that τn > 0 with
probability approaching 1. This will of course occur if τn → τ0 > 0 in probability,
for which Lemma 23.1 gives sufficient conditions.

23.6 Discussion

We considered the problem of estimating the optimal resource-constrained value.
Under causal assumptions, this parameter can be identified with the maximum at-
tainable population mean outcome under individualized treatment rules that rely on
measured covariates, subject to the constraint that a maximum proportion κ of the
population can be treated. We also provided an explicit expression for an optimal
stochastic rule under the resource constraint.

Additionally, we derived the canonical gradient of the optimal R-C value under
the key assumption that the treatment effect is not exactly equal to τ0 in some stra-
tum of covariates that occurs with positive probability. The canonical gradient plays
a key role in developing asymptotically linear estimators. We found that the canoni-
cal gradient of the optimal R-C value has an additional component when compared
to the canonical gradient of the optimal unconstrained value when the resource con-
straint is active, i.e., when τ0 > 0.
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We presented a TMLE for the optimal R-C value. This estimator was designed
to solve the empirical mean of an estimate of the canonical gradient. This
quickly yielded conditions under which our estimator is RAL, and efficient
among all such RAL estimators. All of these results rely on the condition that
the treatment effect is not exactly equal to τ0 for positive probability stratum
of covariates. This assumption is more plausible than the typical nonexcep-
tional law assumption when the covariates are continuous and the constraint
is active because it may be unlikely that the treatment effect concentrates on an
arbitrary (determined by κ) τ0 > 0. We note that this pseudo-nonexceptional
law assumption has implied that the optimal stochastic rule is almost surely
equal to the optimal deterministic rule.

Some resource constraints encountered in practice may not be of the form
E[d(U,W)] less than or equal to κ. For example, the cost of distributing the treatment
to people may vary based on the values of the covariates. If c : W → [0,∞) is a cost
function, then this constraint may take the form E[c(W)d(U,W)] ≤ κ. The optimal
rule takes the form (u,w) �→ I(Q̄b,0(w) > τc(w)) for w for which Q̄b,0(w) � τ0c(w)
or c(w) = 0, and randomly distributes the remaining resources uniformly among all
remaining w. We leave further consideration of this more general resource constraint
problem to future work.

We have not considered the ethical considerations associated with allocating lim-
iting resources to a population. The debate over the appropriate means to distribute
limited treatment resources to a population is ongoing (see, e.g., Brock and Wik-
ler 2009; Macklin and Cowan 2012; Singh 2013, for examples in the treatment of
HIV/AIDS). Clearly any investigator needs to consider the ethical issues associated
with certain resource allocation schemes. Our method is optimal in a particular util-
itarian sense (maximizing the expected population mean outcome with respect to an
outcome of interest) and yields a treatment strategy that treats individuals who are
expected to benefit most from treatment in terms of our outcome of interest. One
must be careful to ensure that the outcome of interest truly captures the most impor-
tant public health implications. Unlike in unconstrained individualized medicine,
inappropriately prescribing treatment to a stratum will also have implications for
individuals outside of that stratum, namely for the individuals who do not receive
treatment due to its lack of availability. We leave further ethical considerations to
experts on the matter. It will be interesting to see if there are settings in which it
is possible to transform the outcome or add constraints to the optimization prob-
lem so that the statistical problem considered in this chapter adheres to the ethical
guidelines in those settings.

We have looked to generalize previous works in estimating the value of an op-
timal individualized treatment regime to the case where the treatment resource is
a limited resource, i.e., where it is not possible to treat the entire population. The
results in this chapter should allow for the application of optimal personalized treat-
ment strategies to many new problems of interest. This chapter includes content,
with permission, from Luedtke and van der Laan (2016c).
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23.7 Proofs

Proofs for Sect. 23.1. We first state a simple lemma.

Lemma 23.2. For a distribution P and a stochastic rule d, we have the following
representation for Ψd:

Ψd(P) � EPU×P

[
d(U,W)Q̄b,P(W)

]
+ EP[Q̄P(0,W)].

Proof (Lemma 23.2). We have that

Ψd(P) = EPU×P[d(U,W)Q̄P(1,W)] + EPU×P[(1 − d(U,W))Q̄P(0,W)]

= EPU×P[d(U,W)(Q̄P(1,W) − Q̄P(0,W))] + EP[Q̄P(0,W)]

= EPU×P[d(U,W)Q̄b,P(W)] + EP[Q̄P(0,W)].

Proof (Theorem 23.1). This result will be a consequence of Theorem 23.2. If
P(Q̄b,0(W) = τP) = 0, then dP(U,W) is PU × P almost surely equal to d̃P(W), and
thus Ψd̃P

(P) = ΨdP (P). Thus (u,w) �→ d̃P(w) is an optimal stochastic regime. Be-
cause the class of deterministic regimes is a subset of the class of stochastic regimes,
d̃P is an optimal deterministic regime.

Proof (Theorem 23.2). Let d be some stochastic treatment rule that satisfies the re-
source constraint. For (b, c) ∈ {0, 1}2, define Bbc � {(u,w) : dP(u,w) = b, d(u,w) =
c}. Note that

ΨdP (P) − Ψd(P) = EPU×P

[
(dP(U,W) − d(U,W)) Q̄b,0(W)

]

= EPU×P

[
Q̄b,0(W)I((U,W) ∈ B10)

]
− EPU×P

[
Q̄b,0(W)I((U,W) ∈ B01)

]
(23.6)

The Q̄b,0(W) in the first term in (23.6) can be upper bounded by τP, and in the
second term can be lower bounded by τP. Below we use PrPU×P(Event) to denote
the probability distribution of Event under the product distribution PU × P. Thus,

ΨdP (P) − Ψd(P) ≥ τP
[
PrPU×P ((U,W) ∈ B10) − PrPU×P ((U,W) ∈ B01)

]

= τP
[
PrPU×P ((U,W) ∈ B10 ∪ B11) − PrPU×P ((U,W) ∈ B01 ∪ B11)

]

= τP
(
EPU×P [dP(U,W)] − EPU×P [d(U,W)]

)
.

If τP = 0 then the final line is zero. Otherwise, EPU×P[dP(U,W)] = κ by (23.4).
Because d satisfies the resource constraint, EPU×P [d(U,W)] ≤ κ and thus the final
line above is at least zero. Thus ΨdP (P) − Ψd(P) ≥ 0 for all τP. Because d was
arbitrary, dP is an optimal stochastic rule.

Proofs for Sect. 23.3

Proof (Theorem 23.3). The pathwise derivative of Ψ (Q) is defined as d
dε Ψ (Q(ε))

∣∣∣
ε=0

along paths {Pε : ε} ⊂ M. In particular, these paths are chosen so that
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dQW,ε = (1 + εHW (W))dQW ,

where EHW (W) = 0 and CW � sup
w

|HW (w)| < ∞;

dQY,ε(Y | A,W) = (1 + εHY (Y | A,W))dQY (Y | A,W),

where E(HY | A,W) = 0 and sup
w,a,y

|HY (y | a,w)| < ∞.

The parameter Ψ is not sensitive to fluctuations of g0(a|w) = P0(a|w), and thus we
do not need to fluctuate this portion of the likelihood. Let Q̄b,ε � Q̄b,Pε

, Q̄ε � Q̄Pε
,

dε � dPε
, ηε � ηPε

, τε � τPε
, and S ε � S Pε

. First note that

Q̄b,ε(w) = Q̄b,0(w) + εhε(w) (23.7)

for an hε with

sup
|ε|<1

sup
w

|hε(w)| � C1 < ∞. (23.8)

Note that 23.3 implies that d0 is (almost surely) deterministic, i.e. d0(U, ·) is almost
surely a fixed function. Let d̃ represent the deterministic rule w �→ I(Q̄b,0(w) > 0) to
which d(u, ·) is (almost surely) equal for all u. By Lemma 23.2,

Ψ (Pε) − Ψ (P0) =
∫

w

(
EPU [dε(U,W)] − d̃0(W)

)
Q̄b,εdQW,ε

+

∫

w
d̃0(W)

(
Q̄b,εdQW,ε − Q̄b,0dQW,0

)
+ EPε

Q̄ε(0,W)

− E0Q̄0(0,W)

=

∫

w

(
EPU [dε(U,W)] − d̃0(W)

) (
Q̄b,ε − τ0

)
dQW,ε

+ τ0

∫

w

(
EPU [dε(U,W)]dQW,ε − d̃0(W)dQW,0

)

− τ0

∫

w
d̃0(W)

(
dQW,ε − dQW,0

)
+

[
Ψd0 (Pε) − Ψd0 (P0)

]
. (23.9)

Dividing the fourth term by ε and taking the limit as ε → 0 gives the pathwise
derivative of the mean outcome under the rule that treats d0 as known. The third
term can be written as −ετ0

∫
w

d̃0(W)HWdQW,0, and thus the pathwise derivative of

this term is −
∫

w
τ0d̃0(W)HWdQW,0. If τ0 > 0, then EPU×P0 [d̃0(W)] = κ. The pathwise

derivative of this term is zero if τ0 = 0. Thus, for all τ0,

lim
ε→0

−1
ε
τ0

∫

w
d̃0(W)

(
dQW,ε − dQW,0

)
=

∫

w

(
−τ0(d̃0(w) − κ)

)
HW (w)dQW,0(w).

Thus the third term in (23.9) generates the w �→ −τ0(d̃0(w) − κ) portion of the
canonical gradient, or equivalently w �→ −τ0(EPU [d0(U,w)] − κ). The remainder of
this proof is used to show that the first two terms in (23.9) are o(ε).
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Step 1: ηε → η0

We refer the reader to (23.3) for a definition of the quantile P �→ ηP. This is a
consequence of the continuity of S 0 in a neighborhood of η0. For γ > 0,

|ηε − η0| > γ implies that S ε(η0 − γ) ≤ κ or S ε(η0 + γ) > κ. (23.10)

For positive constants C1 and CW ,

S ε(η0 − γ) ≥ (1 − CW |ε|)P0

(
Q̄b,ε > η0 − γ

)
≥ (1 − CW |ε|)S 0(η0 − γ +C1|ε|).

Fix γ > 0 small enough so that S 0 is continuous at η0 − γ. In this case we have that
S 0(η0 − γ + C1|ε|) → S 0(η0 − γ) as ε → 0. By the infimum in the definition of η0,
we know that S 0(η0 − γ) > κ. Thus S ε(η0 − γ) > κ for all |ε| small enough.

Similarly, S ε(η0 + γ) ≤ (1 + CW |ε|)S 0(η0 + γ − C1|ε|). Fix γ > 0 small enough
so that S 0 is continuous at η0 + γ. Then S 0(η0 + γ − C1|ε|) → S 0(η0 + γ) as ε → 0.
Condition 23.3 implies the uniqueness of the κ-quantile of Q̄b,0, and thus that
S 0(η0 + γ) < κ. It follows that S ε(η0 + γ) < κ for all |ε| small enough. Combining
S ε(η0 − γ) > κ and S ε(η0 + γ) < κ for all ε close to zero with (23.10) shows that
ηε → η0 as ε → 0.

Step 2: Second Term of (23.9) Is 0 Eventually
If τ0 = 0 then the result is immediate, so suppose τ0 > 0. By the previous step,
ηε → η0, which implies that τε → τ0 > 0 by the continuity of the max function. It
follows that τε > 0 for ε large enough. By (23.4), PrPU×Pε

(dε(U,W) = 1) = κ for all
sufficiently small |ε| and P0(d̃0(W) = 1) = κ. Thus the second term of (23.9) is 0 for
all |ε| small enough.

Step 3: τε − τ0 = O(ε)
Note that κ < S ε(ηε − |ε|) ≤ (1 + CW |ε|)S 0(ηε − (1 + C1)|ε|). A Taylor expansion of
S 0 about η0 shows that

κ < (1 +CW |ε|) (S 0(η0) + (ηε − η0 − (1 +C1)|ε|)(− f0(η0) + o(1)))

= κ + (ηε − η0 − (1 +C1)|ε|)(− f0(η0) + o(1)) + O(ε)

= κ − (ηε − η0) f0(η0) + o(ηε − η0) + O(ε). (23.11)

The fact that f0(η0) ∈ (0,∞) shows that ηε − η0 is bounded above by some O(ε)
sequence. Similarly, κ ≥ S ε(ηε + |ε|) ≥ (1 − CW |ε|)S 0(ηε + (1 +C1)|ε|). Hence,

κ ≥ (1 − CW |ε|) (S 0(η0) + (ηε − η0 + (1 +C1)|ε|)(− f0(η0) + o(1)))

= κ − (ηε − η0) f0(η0) + o(ηε − η0) + O(ε).

It follows that ηε − η0 is bounded below by some O(ε) sequence. Combining
these two bounds shows that ηε − η0 = O(ε), which immediately implies that
τε − τ0 = max{O(ε), 0} = O(ε).
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Step 4: First Term of (23.9) Is O(ε)
We know that

Q̄b,0(W) − τ0 + O(ε) ≤ Q̄b,ε(W) − τε ≤ Q̄b,0(W) − τ0 + O(ε).

By 23.3, it follows that there exists some δ > 0 such that sup|ε|<δ P0(Q̄b,ε(W) = τε) =
0. By the absolute continuity of QW,ε with respect to QW,0, sup|ε|<δ PrPε

(Q̄b,ε(W) =
τε) = 0. It follows that, for all small enough |ε| and almost all u, dε(u,w) =
I(Q̄b,ε(w) > τε). Hence,

∫

w

(
EPU [dε(U,W)] − d0(W)

) (
Q̄b,ε − τ0

)
dQW,ε

=

∣∣∣∣∣

∫

w

(
I(Q̄b,ε > τε) − I(Q̄b,0 > τ0)

) (
Q̄b,ε − τ0

)
dQW,ε

∣∣∣∣∣

≤
∫

w

∣∣∣I(Q̄b,ε > τε) − I(Q̄b,0 > τ0)
∣∣∣
(∣∣∣Q̄b,0 − τ0

∣∣∣ +C1|ε|
)

dQW,ε

≤
∫

w
I(|Q̄b,0 − τ0| ≤ |Q̄b,0 − τ0 − Q̄b,ε + τε |)

(∣∣∣Q̄b,0 − τ0

∣∣∣ +C1|ε|
)

dQW,ε

=

∫

w
I(0 < |Q̄b,0 − τ0| ≤ |Q̄b,0 − τ0 − Q̄b,ε + τε |)

(∣∣∣Q̄b,0 − τ0

∣∣∣ +C1|ε|
)

dQW,ε

≤ O(ε)
∫

w
I(0 < |Q̄b,0 − τ0| ≤ O(ε))dQW,ε

≤ O(ε)(1 +CW |ε|)P0

(
0 < |Q̄b,0 − τ0| ≤ O(ε)

)
,

where the penultimate inequality holds by Step 3 and (23.7). The last line above is
o(ε) because Pr(0 < X ≤ ε) → 0 as ε → 0 for any random variable X. Thus dividing
the left-hand side above by ε and taking the limit as ε → 0 yields zero.

Proofs for Sect. 23.4. We give the following lemma before proving Theorem 23.4.

Lemma 23.3. Let P0 and P be distributions that satisfy the positivity assumption
and for which Y is bounded in probability. Let d be some stochastic treatment rule
and τ be some real number. We have that Ψd(P) − Ψ (P0) = −E0[D(d, τ0, P)(O)] +
R0(d, P).

Proof (Lemma 23.3). Note that

Ψd(P) − Ψ (P0) + E0[D(d, τ0, P)(O)]

= Ψd(P) − Ψd(P0) +
2∑

j=1

EPU×P0 [Dj(d(U, ·), P)(O)]

+ Ψd(P0) − Ψd0 (P0) − τ0EPU×P0 [d(U,W) − κ].
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Standard calculations show that the first term on the right is equal to R10(d, P)
(van der Laan and Robins 2003). If τ0 > 0, then (23.4) shows that τ0EPU×P0 [d−κ] =
τ0EPU×P0 [d − d0]. If τ0 = 0, then obviously τ0EPU×P0 [d − κ] = τ0EPU×P0 [d − d0].
Lemma 23.2 shows that Ψd(P0) − Ψd0 (P0) = EPU×P0 [(d − d0)Q̄b,0]. Thus the second
line above is equal to R20(d).

Proof (Theorem 23.4). We make use of empirical process theory notation in this
proof so that P f = EP[ f (O)] for a distribution P and function f . We have that

Ψ̂ (Pn) − Ψ (P0)

= −P0D(dn, τ0, P
∗
n) + R0(dn, P

∗
n) (by Lemma 23.3)

= (Pn − P0)D(dn, τ0, P
∗
n) + R0(dn, P

∗
n) + oP0 (n−1/2) (by Condition 23.4)

= (Pn − P0)D0 + (Pn − P0)(D(dn, τ0, P
∗
n) − D0) + R0(dn, P

∗
n).

The middle term on the last line is oP0 (n−1/2) by 23.4, 23.4, 23.4, and 23.4
(van der Vaart and Wellner 1996), and the third term is oP0 (n−1/2) by 23.4. This
yields the asymptotic linearity result. Proposition 1 in Section 3.3 of Bickel et al.
(1997b) yields the claim about regularity and asymptotic efficiency when condi-
tions 23.3, 23.3, 23.3, and 23.4 hold (see Theorem 23.3).

Proof (Lemma 23.1). We will show that ηn → η0 in probability, and then the con-
sistency of τn follows by the continuous mapping theorem. By 23.3, there exists an
open interval N containing η0 on which S 0 is continuous. Fix η ∈ N. Because Q̄b,n

belongs to a Glivenko-Cantelli class with probability approaching 1, we have that

|S n(η) − S 0(η)| =
∣∣∣PnI(Q̄b,n > η) − P0I(Q̄b,0 > η)

∣∣∣

≤
∣∣∣∣P0

(
I(Q̄b,n > η) − I(Q̄b,0 > η)

)∣∣∣∣ +
∣∣∣(Pn − P0)I(Q̄b,n > η)

∣∣∣

≤
∣∣∣∣P0

(
I(Q̄b,n > η) − I(Q̄b,0 > η)

)∣∣∣∣
︸����������������������������������︷︷����������������������������������︸

�Tn(η)

+oP0 (1), (23.12)

where we use the notation P f = EP[ f (O)] for any distribution P and function f . Let

Zn(η)(w) �
(
I(Q̄b,n(w) > η) − I(Q̄b,0(w) > η)

)2
. The following display holds for all

q > 0:

Tn(η) ≤ P0Zn(η)

= P0Zn(η)I(|Q̄b,0 − η| > q) + P0Zn(η)I(|Q̄b,0 − η| ≤ q)

= P0Zn(η)I(|Q̄b,0 − η| > q) + P0Zn(η)I(0 < |Q̄b,0 − η| ≤ q) (23.13)

≤ P0Zn(η)I(|Q̄b,n − Q̄b,0| > q) + P0Zn(η)I(0 < |Q̄b,0 − η| ≤ q) (23.14)

≤ P0

(
|Q̄b,n − Q̄b,0| > q

)
+ P0

(
0 < |Q̄b,0 − η| ≤ q

)

≤
P0|Q̄b,n − Q̄b,0|

q
+ P0

(
0 < |Q̄b,0 − η| ≤ q

)
.
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Above (23.13) holds because 23.3 implies that P0(Q̄b,0 = η) = 0, (23.14) holds
because Zn(η) = 1 implies that |Q̄b,n − Q̄b,0| ≥ |Q̄b,0 − η|, and the final inequality
holds by Markov’s inequality. The lemma assumes that E0|Q̄b,n− Q̄b,0| = oP0 (1), and
thus we can choose a sequence qn ↓ 0 such that

Tn(η) ≤ P0

(
0 < |Q̄b,0 − η| ≤ qn

)
+ oP0 (1).

To see that the first term on the right is o(1), note that P0(Q̄b,0 = η) = 0 combined
with the continuity of S 0 on N yield that, for n large enough,

P0

(
0 < |Q̄b,0 − η| ≤ qn

)
= S 0(−qn + η) − S 0(qn + η).

The right-hand side is o(1), and thus Tn(η) = oP0 (1). Plugging this into (23.12)
shows that S n(η) → S 0(η) in probability. Recall that η ∈ N was arbitrary.

Fix γ > 0. For γ small enough, η0 − γ and η0 + γ are contained in N. Thus
S n(η0 − γ) → S 0(η0 − γ) and S n(η0 + γ) → S 0(η0 + γ) in probability. Further,
S 0(η0 − γ) > κ by the definition of η0 and S 0(η0 + γ) < κ by Condition 23.3. It
follows that, with probability approaching 1, S n(η0 − γ) > κ and S n(η0 + γ) < κ. But
|ηn − η0| > γ implies that S n(η0 − γ) ≤ κ or S n(η0 + γ) > κ, and thus |ηn − η0| ≤ γ
with probability approaching 1. Thus ηn → η0 in probability, and τn → τ0 by the
continuous mapping theorem.



Chapter 24
Targeting a Simple Statistical Bandit Problem

Antoine Chambaz, Wenjing Zheng, and Mark J. van der Laan

Statistical Challenge. An infinite sequence of independent and identically
distributed (i.i.d.) random variables (Wn,Yn(0),Yn(1))n≥1 drawn from a com-
mon law Q0 is to be sequentially and partially disclosed during the course of
a controlled experiment. The first component, Wn, describes the nth context
in which we will have to carry out one action out of two, denoted a = 0 and
a = 1. The second and third components, Yn(0) and Yn(1), are the rewards
that actions a = 0 and a = 1 would grant. The set W of contexts may be
high-dimensional. The rewards take their values in ]0, 1[.

The controlled experiment will unfold as follows. Sequentially, we will be informed
of the new context Wn. We will then carry out a randomized action An ∈ {0, 1} with
probability either gn(1|Wn) or gn(0|Wn) ≡ 1 − gn(1|Wn) to go for either action a = 1
or action a = 0, where gn(·|Wn) will be determined by us based on observations
O1, . . . ,On−1 accrued so far during the course of the experiment. We will then be
granted reward Yn ≡ Yn(An) corresponding to the action undertaken, the alternative
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reward being kept undisclosed, hence the nth observation On ≡ (Wn, An,Yn). This
setting is one of the simplest bandits settings in the machine learning literature,
hence the expression “simple bandit problem” in the title of this chapter.

Our objective justifies why the expression actually reads “simple statistical ban-
dit problem”. Indeed, it consists in inferring the optimal rule

r0(W) ≡ arg max
a=0,1

EQ0 (Y(a)|W)

(by convention, r0(W) = 1 if equality occurs) with rn and the mean reward under r0,

ψ0 ≡ EQ0

(
Y(r0(W))

)
,

trying to get a narrow confidence interval (CI) for ψ0 and a sense of how well we
sequentially determined our actions through the estimation of the following regret:

Rn ≡
1
n

n∑

i=1

Yi(rn(Wi)) − Yi.

Regret is one the most central notion in the bandits literature. Viewed here as a
data-adaptive parameter, Rn compares the actual average of the rewards granted at
step n, n−1 ∑n

i=1 Yi, with the counterfactual average of the rewards we would have
been be granted at step n if we had constantly used rn from the start of the experiment
to decide which action to carry out at the n successive steps, n−1 ∑n

i=1 Yi(rn(Wi)).
We emphasize that the former average is known to us but the latter is not. It may
occur indeed that Ai � rn(Wi) for some 1 ≤ i ≤ n, in which case Yi(rn(Wi)) is the
reward that was kept secret from us at step i. If all actions Ai coincide with rn(Wi)
(1 ≤ i ≤ n), a very unlikely event, then Rn = 0. In general, nRn equals

∑

1 ≤ i ≤ n
Ai � rn(Wi)

Yi(1 − Ai) − Yi(Ai).

This alternative expression shows that nRn is the counterfactual sum of the differ-
ences between the two possible rewards at each step i where the randomized action
Ai differs from the optimal action rn(Wi) according to the estimate of the optimal
rule at step n. Since the optimal action is that which has the larger conditional mean
given the context, as opposed to that action which grants the larger reward, it is not
guaranteed that Rn is nonnegative.

Inference of data-adaptive parameters are at the core of the present chapter. We
will derive CIs for ψ0 and for Rn, the first data-adaptive parameter we introduced,
from a targeted minimum loss estimator (TMLE, which also stands for targeted
minimum loss estimation) of the second data-adaptive parameter

ψrn,0 ≡ EQ0

(
Y(rn(W))

)
,
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the mean reward under rn, thus justifying entirely the title of the chapter. There is
much more to ψrn,0 than being a convenient proxy for the inference of ψ0. In fact, we
may argue that ψrn,0 is more interesting than ψ0 itself because it is the mean reward
under rule rn that we know and can use concretely. The same reasoning motivates
our choice of regret Rn instead of its counterpart with r0 substituted for rn.

Precision Medicine. The general story told so far can be cast in the context of
precision medicine. Precision medicine is the burgeoning field whose general fo-
cus is on identifying which treatments and preventions will be effective for which
patients based on genetic, environmental, and lifestyle factors. To do so, imagine
that each random variable (Wn,Yn(0),Yn(1)) corresponds with a patient: Wn is a
set of baseline covariates measured on her; Yn(0) is the potential outcome of treat-
ment a = 0 and Yn(1) is the potential outcome of treatment a = 1. A rule defines
an individualized treatment strategy in which treatment assignment for a patient is
based on her measured baseline covariates. Only one potential outcome is observed,
Yn, which corresponds with the assigned treatment An. Rule r0 is optimal in the
sense that it maximizes the mean value of the outcome of the assigned treatment.

In this context, the targeted sequential elaboration of the design and the inference
procedure developed on top of it are driven by two goals. The first one is to increase
the robustness and efficiency of statistical inference through the construction of tar-
geted, narrower confidence intervals. This appeals to the investigators of the study.
The second goal is to increase the likelihood that each patient enrolled in the study
be assigned that treatment which is more favorable to her according to data accrued
so far. This appeals to the patients enrolled in it and their doctors. To understand
why, let us contrast a trial based on our design with a traditional RCT. In a RCT,
clinicians must admit to each potential patient that it is not known which of the
treatments would be best for her, thereby potentially eroding their relationship. In
addition, they should believe that the treatments are equivalent with respect to po-
tential patient benefit, a situation many of them find uncomfortable (Stanley 2007).
These two disadvantages would be respectively considerably diminished and irrel-
evant in a trial based on our design, at the cost of a more complex implementation.
Moreover, one may expect a gain in compliance.

Quick Review of Literature. Chakraborty and Moodie (2013) present an excel-
lent unified overview on the estimation of optimal rules. Their focus is on dynamic
rules, which actually prescribe successive actions at successive time points based
on time-dependent contexts. The estimation of the optimal rule from i.i.d. obser-
vations has been studied extensively, with a recent interest in the use of machine
learning algorithms to reach this goal (Qian and Murphy 2011; Zhao et al. 2012,
2015; Zhang et al. 2012a,b; Rubin and van der Laan 2012; Luedtke and van der
Laan 2016b). The estimation of the mean reward under the optimal rule is more
challenging. Zhao et al. (2012, 2015) use their theoretical risk bounds evaluating
the statistical performance of the estimator of the optimal rule as measures of statis-
tical performance of the resulting estimators of the mean reward under the optimal
rule. However, this approach does not yield CIs.
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Constructing CIs for the mean reward under the optimal rule is known to be more
difficult when there exists a stratum of context where no action dominates the other
(if action means treatment, no treatment is neither beneficial nor harmful) (Robins
2004). In this so called “exceptional” case, the definition of the optimal rule has
to be disambiguated. Assuming nonexceptionality, Zhang et al. (2012a) derive CIs
for the mean reward under the (sub)optimal rule defined as the optimal rule over
a parametric class of candidate rules. van der Laan and Luedtke (2015) derive CIs
for the actual mean reward under the optimal rule. In the more general case where
exceptionality can occur, different approaches have been considered (Chakraborty
et al. 2014; Goldberg et al. 2014; Laber et al. 2014b; Luedtke and van der Laan
2016a). Here, we focus on the nonexceptional case under a companion margin
assumption (Mammen and Tsybakov 1999).

We already unveiled that our pivotal TMLE is actually conceived as an esti-
mator of the mean reward under the current estimate of the optimal rule. Worthy
of interest on its own, this data-adaptive statistical parameter (or similar ones) has
also been considered in Chakraborty et al. (2014); Laber et al. (2014a,b); van der
Laan and Luedtke (2015); Luedtke and van der Laan (2016a). Our main result is
a central limit theorem (CLT), which enables the construction of various CIs. The
analysis (for the proofs that we omit here, see the full-blown Chambaz et al. 2016)
builds upon previous studies on the construction and statistical analysis of targeted,
covariate-adjusted, response-adaptive trials also based on TMLE (Chambaz and
van der Laan 2014; Zheng et al. 2015; Chambaz et al. 2015). The asymptotic vari-
ance in the CLT takes the form of the variance of an efficient influence curve at a
limiting distribution. This allows to discuss the efficiency of inference. One of the
cornerstones of the theoretical study is a new maximal inequality for martingales
wrt the uniform entropy integral. Proved by decoupling (de la Peña and Giné 1999),
symmetrization and chaining, it is used to control several empirical processes in-
dexed by random functions.

24.1 Sampling Strategy and TMLE

Let us introduce some notation. We let Q̄0,Y and q̄0,Y respectively denote the true
conditional expectation Q̄0,Y (a,W) ≡ EQ0 (Y(a)|W) (for a = 0, 1) and related “blip
function” q̄0,Y (W) ≡ Q̄0,Y (1,W) − Q̄0,Y (0,W). More generally, every (measurable)
function Q̄Y from {0, 1} × W to ]0, 1[ is associated with its blip function q̄Y (W) ≡
Q̄Y (1,W) − Q̄Y (0,W). Thus,

r0(W) = arg max
a=0,1

Q̄0,Y (a,W) = I{q̄0,Y (W) ≥ 0} ≡ R(Q̄0,Y )(W) (24.1)

(recall that r0(W) = 1 if equality occurs), ψ0 equals EQ0

(
Q̄0,Y (r0(W),W)

)
and ψrn,0

equals EQ0

(
Q̄0,Y (rn(W),W)

)
.
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The adaptive sampling strategy and TMLE rely on a working model Q̄Y and loss
function LY for Q̄0,Y that we determine prior to starting the controlled experiment.
Requirements on the complexity of Q̄Y will be given in Sect. 24.2. They also rely on
a nondecreasing, Lipschitz function G from [−1, 1] to [0, 1] such that G(0) = 1/2
and, for some fixed and small real numbers p, ξ > 0, |x| > ξ implies G(x) = p
if x < 0 and G(x) = (1 − p) if x > 0. Function G is a smooth approximation
to the mapping x �→ I{x ≥ 0} from [−1, 1] to {0, 1}. It will be used to define an
approximation gn+1 to rn, both derived from an estimator q̄n,Y of the blip function
q̄0,Y , see (24.3).

24.1.1 Sampling Strategy

The first n0 randomized actions A1, . . . , An0 are drawn from the Bernoulli distribu-
tion with parameter 1/2. In other words, we set gi = gb for i = 1, . . . , n0 where
gb(1|W) = 1 − gb(0|W) ≡ 1/2, thus giving equiprobable chance to each action to
be carried out as long as deemed necessary to start estimating Q̄0,Y from the ac-
crued observations. Suppose now that O1, . . . ,On−1 have been observed. Explaining
how the next observation is obtained will complete the description of the sampling
strategy.

We estimate Q̄0,Y with

Q̄n,Y ∈ arg min
Q̄Y∈Q̄Y

1
n − 1

n−1∑

i=1

LY (Q̄Y )(Oi)
gb(Ai|Wi)
gi(Ai|Wi)

. (24.2)

The weights gb(Ai|Wi)/gi(Ai|Wi) (i = 1, . . . , n) compensate for the fact that our ob-
servations are not identically distributed. We associate the above estimator with its
blip function q̄n,Y and rule rn ≡ R(Q̄n,Y )(W) ≡ I{q̄n,Y (W) ≥ 0}. They are substitution
estimators of q̄0,Y and r0. We now define

gn+1(1|W) = 1 − gn+1(0|W) ≡ G(q̄n,Y )(W), (24.3)

and thus are in a position to sample On+1: we request the disclosure of Wn+1, draw
An+1 from the Bernoulli distribution with parameter gn+1(1|Wn+1), carry out action
An+1, are granted reward Yn+1 = Yn+1(An+1) and form On+1 ≡ (Wn+1, An+1,Yn+1).

The randomized action An+1 rarely differs from the deterministic action rn(Wn+1)
in the sense that

|gn+1(1|Wn+1) − rn(Wn+1)| I{|q̄n,Y (Wn+1)| > ξ} = p : (24.4)

if |q̄n,Y (Wn+1)| is sufficiently away from 0, meaning that we confidently believe that
one action is superior to the other, then An+1 equals rn(Wn+1) with (large) probability
(1− p). On the contrary, if |q̄n,Y (Wn+1)| is small, meaning that it is unclear whether an
action is superior to the other or not, then the probability that An+1 be equal rn(Wn+1)
lies between (1 − t) and 1/2, and is continuously closer to 1/2 as |q̄n,Y (Wn+1)| gets
closer to 0.
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24.1.2 TMLE

The initial substitution estimator of ψrn,0,

ψ0
n ≡

1
n

n∑

i=1

Q̄n,Y (rn(Wi),Wi),

may fail to be
√

n-consistent and must therefore be enhanced. Fortunately, we can
rely on TMLE. Indeed, just like any mapping Ψρ : PQ,g �→ EQ (Y(ρ(W))) with
a fixed rule ρ from W to {0, 1}, the data-adaptive Ψrn is pathwise differentiable
from the nonparametric set of all possible data-generating distributions PQ,g of O ≡
(W, A,Y) with g bounded away from 0 to [0, 1] (van der Laan and Luedtke 2015;
Luedtke and van der Laan 2016a). Its efficient influence curve at PQ,g is Δrn (Q, g)
where, for every rule ρ : W → {0, 1}, Δρ(Q, g) is characterized by

Δρ(Q, g)(O) = (Y − Q̄Y (ρ(W),W))
I{A = ρ(W)}

g(A|W)
+ Q̄Y (ρ(W),W) −Ψρ(PQ,g). (24.5)

We let � denote the quasi negative-log-likelihood loss function, which is charac-
terized by

−�(Q̄Y )(O) ≡ Y log(Q̄Y (A,W)) + (1 − Y) log(1 − Q̄Y (A,W)),

and introduce the one-dimensional regression model through Q̄n,Y given by

logit
(
Q̄n,Y (ε)(A,W)

)
≡ logit

(
Q̄n,Y (A,W)

)
+ ε

I{A = rn(W)}
gn(A|W)

for all ε ∈ R. It is tailored to the estimation of ψrn,0 = Ψrn (PQ0,gn ) in the sense that
∂
∂ε
�(Q̄n,Y (ε))(O)|ε=0 equals −(Y − Q̄n,Y (A,W))I{A = rn(W)}/gn(A|W). In words, its

generalized score equals the component of Δrn (Qn, gn) which is orthogonal to the
set of PQn,gn -square-integrable and centered functions of W. Here, Qn denotes any
distribution of (W,Y(0),Y(1)) such that EQn (Y(a)|W) = Q̄n,Y (a,W) for each a = 0, 1,
Qn-almost surely.

The optimal fluctuation parameter is

εn ∈ arg min
ε∈R

1
n

n∑

i=1

�(Q̄n,Y (ε))(Oi)
gn(Ai|Wi)
gi(Ai|Wi)

.

Setting Q̄∗
n,Y ≡ Q̄n,Y (εn), the TMLE of ψrn,0 finally writes

ψ∗
n ≡

1
n

n∑

i=1

Q̄∗
n,Y (rn(Wi),Wi).
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24.2 Convergence of Sampling Strategy and Asymptotic
Normality of TMLE

We must choose the working model Q̄Y and loss function LY for Q̄0,Y in such a way
that Q̄Y and the subsequent working models LY (Q̄Y ) ≡ {L(Q̄Y ) : QY ∈ Q̄Y } and
R(Q̄Y ) ≡ {R(Q̄Y ) : QY ∈ Q̄Y } be reasonably large/complex relative to a measure of
complexity central to the theory of empirical processes (van der Vaart and Wellner
1996). Specifically, we must choose them so that Q̄Y , L(Q̄Y ), R(Q̄Y ) be separable
(countable would be sufficient) and that each admit a finite uniform entropy integral
with respect to an envelope function (van der Vaart and Wellner 1996, Sections 2.5.1
and 2.6).

Introduce the norm ‖ · ‖Q0 characterized by ‖ f ‖2
Q0

≡ EPQ0 ,g
b ( f 2(O)). We will as-

sume that Q̄Y satisfies the following assumption:

A1. There exists Q̄1,Y ∈ Q̄Y such that Q̄Y �→ EPQ0 ,g
b (LY (Q̄Y )(O)) from Q̄Y to R is

minimized at Q̄1,Y . Moreover, Q̄1,Y is well-separated in the sense that, for all
δ > 0,

EPQ0 ,g
b

(
LY (Q̄1,Y )(O)

)
< inf

{
EPQ0 ,g

b

(
LY (Q̄Y )(O)

)
: Q̄Y ∈ Q̄Y , ‖Q̄Y − Q̄1,Y‖Q0 ≥ δ

}
.

Finally, q̄1,Y = q̄0,Y .

The most stringent condition is the equality of the blip functions.
Our second assumption concerns the fluctuation/targeting step in the construction

of the TMLE. Let g0 be given by

g0(1|W) = 1 − g0(0|W) ≡ G(q̄0,Y (W)). (24.6)

Just like gn is an approximation to rn, see (24.3), (24.4) and its comment, g0 is an
approximation to the optimal rule r0. We will soon see that g0 is the limit of gn. For
every rule ρ : W → {0, 1}, consider the one-dimensional regression model through
Q̄1,Y characterized by

logit
(
Q̄1,Y,ρ(ε)(A,W)

)
≡ logit

(
Q̄1,Y (A,W) + ε

I{A = ρ(W)}
g0(A|W)

)
(24.7)

for all ε ∈ R. We will assume that:

A2. For every rule ρ : W → {0, 1}, there exists a unique ε0(ρ) ∈ R which mini-
mizes the real-valued mapping ε �→ EPQ0 ,g0

(
�(Q̄1,Y,ρ(ε))(O)

)
over R.

The third and last assumption concerns Q0:

A3. The conditional distributions of Y(0) and Y(1) given W under Q0 is not de-
generated. Moreover, there exist γ1, γ2 > 0 such that, for all t ≥ 0,

PQ0

(
0 ≤ |q̄0,Y (W)| ≤ t

) ≤ γ1tγ2 . (24.8)



444 A. Chambaz et al.

Taking t = 0 in (24.8) yields q̄0,Y (W) = 0 with probability zero under Q0. In words,
the optimal action r0(W) is defined without ambiguity Q0-almost surely. In the ter-
minology of (Robins 2004), Q0 is nonexceptional. More generally, (24.8) for t > 0
is known as a margin assumption. Inspired from the seminal article (Mammen and
Tsybakov 1999), A3 formalizes a tractable concentration of q̄0,Y (W) around 0, where
our inference task is the most challenging.
We may now state our results. According to the first proposition, the sampling strat-
egy nicely converges as n tends to infinity:

Proposition 24.1. Under A1, A2 and A3, it holds that ‖Q̄n,Y − Q̄1,Y‖Q0 , ‖q̄n,Y −
q̄0,Y‖Q0 , ‖rn − r0‖Q0 , ‖gn − g0‖Q0 and the nonnegative data-adaptive parameter
ψ0 − ψrn,0 all converge in probability to zero as n tends to infinity.

The second proposition establishes the asymptotic normality of
√

n(ψ∗
n − ψrn,0).

Let us introduce Q̄∗
1,Y ≡ Q̄1,Y,r0 (ε0(r0)) (see (24.7) and A2), D∗

1 given by

D∗
1(O) ≡ (Y − Q̄∗

1,Y (A,W))
I{A = r0(W)}

g0(A|W)
+ Q̄∗

1,Y (r0(W),W) − ψ0, (24.9)

and σ2
1 ≡ EPQ0 ,g0

(
D∗

1(O)2
)
. Analogously, recalling the definition of Q̄∗

n,Y ≡ Q̄n,Y (εn),
let us define

D∗
ni(Oi) ≡ (Yi − Q̄∗

n,Y (Ai,Wi))
I{Ai = rn(Wi)}

gi(Ai|Wi)
+ Q̄∗

n,Y (rn(Wi),Wi) − ψ∗
n (each 1 ≤ i ≤ n)

then σ2
n ≡ n−1 ∑n

i=1 D∗
ni(Oi)2.

Proposition 24.2. Under A1, A2 and A3, ψ∗
n consistently estimates ψrn,0 hence ψ0 as

well by Proposition 24.1. Moreover, σ2
n consistently estimates σ2

1, which is positive,

and
√

n/σ2
n(ψ∗

n − ψrn,0) converges in law to the standard normal distribution as n
tends to infinity.

Obviously, the larger is γ2 from A3, the less concentrated is q̄0,Y (W) around zero
under Q0, the less difficult is our inference task. If we assume that γ2 ≥ 1 and that
the rate of convergence of q̄n,Y to q̄0,Y is sufficiently fast, then a first corollary to
Proposition 24.2 shows that

√
n(ψ∗

n − ψ0) is also asymptotically normal. Introduce
γ3 ≡ 1

4 +
1

2(1+γ2) .

Corollary 24.1. Under A1, A2 and A3, if γ2 ≥ 1 hence γ3 ∈ ( 1
4 ,

1
2 ] and if nγ3‖q̄n,Y −

q̄0,Y‖Q0 converges in probability to zero as n tends to infinity, then the data-adaptive
parameter

√
n(ψrn,0 − ψ0) converges in probability to zero as n tends to infinity.

Therefore,
√

n/σ2
n(ψ∗

n − ψ0) converges in law to the standard normal distribution as
n tends to infinity.

The proofs of Propositions 24.1, 24.2 and Corollary 24.1 rely on arguments
typical of empirical processes theory and the analysis of TMLEs (Chambaz et al.
2016). The underlying martingale structure of the empirical process proves again a
nice extension to an i.i.d. structure.
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Let Q∗
1 be any distribution of (W,Y(0),Y(1)) such that W has the same distribution

under Q0 and Q∗
1 and EQ∗

1
(Y(a)|W) = Q̄∗

1,Y (a,W) for each a = 0, 1, Q0-almost surely.
The influence function D∗

1 in (24.9) equals Δr0 (Q∗
1, g0), the efficient influence curve

of Ψr0 at PQ∗
1,g0 (24.5). Consequently, σ2

1 = EPQ0 ,g0

(
Δr0 (Q∗

1, g0)(O)2
)
. If Q̄1,Y = Q̄0,Y

(a stronger condition than equality q̄1,Y = q̄0,Y in A1), then Q̄∗
1,Y = Q̄0,Y (because

ε0(r0) from A2 equals zero) hence σ2
1 = EPQ0 ,g0

(
Δr0 (Q0, g0)(O)2

)
: the asymptotic

variance of
√

n(ψ∗
n − ψrn,0) coincides with the generalized Cramér-Rao lower bound

for the asymptotic variance of any regular and asymptotically linear estimator of
Ψr0 (PQ0,g0 ) = ψ0 when sampling independently from PQ0,g0 (Luedtke and van der
Laan 2016a). Otherwise, the discrepancy between σ2

1 and EPQ0 ,g0

(
Δr0 (Q0, g0)(O)2

)

will vary subtly depending on that between Q̄1,Y and Q̄0,Y , hence in particular on our
working model Q̄Y .

24.3 Confidence Intervals

Set a confidence level α ∈]0, 1/2[ and let ξ1−α/2 be the corresponding (1 − α/2)-
quantile of the standard normal distribution. By Proposition 24.2 and Corollary 24.1,
the TMLE can be used to construct CIs for the data-adaptive parameter ψrn,0 or ψ0

itself, as stated in this second corollary to Proposition 24.2:

Corollary 24.2. Under the assumptions of Proposition 24.2,
[
ψ∗

n ± ξ1−α/2
σn√

n

]
(24.10)

contains ψrn,0 with probability tending to (1 − α) as n tends to infinity. Moreover,
under the stronger assumptions of Corollary 24.1, the above CI also contains ψ0

with probability tending to (1 − α) as n tends to infinity.

Deriving a CI for Rn is not as immediate because of its counterfactual nature. We
need to introduce a new assumption:

A4. There exist an infinite sequence (Un)n≥1 of i.i.d. random variables indepen-
dent from (Wn)n≥1 and taking values in U and a deterministic (measur-
able) function Q̄0,Y mapping {0, 1} × U × W to ]0, 1[ such that Yn(a) =
Q̄0,Y (a,Un,Wn) for all n ≥ 1 and both a = 0, 1.

With A4, we frame the present discussion in the context of nonparametric structural
equations models (Pearl 2009a). The notation Q̄0,Y is justified by the equalities

Q̄0,Y (a,Wn) = EQ0 (Yn(a)|Wn) = EQ0 (Q̄0,Y (a,Un,Wn)|Wn)

showing that, for each n ≥ 1 and a = 0, 1, the conditional mean of Yn(a) given Wn

is obtained by averaging out Un from Q̄0,Y (a,Un,Wn) conditionally on Wn.
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Introduce

s2
1 ≡ EPQ0 ,g0

((
D∗

1(O) + ψ0 − Q̄0,Y (r0(W),W)
)2
)
,

s2
n ≡

1
n

n∑

i=1

(
D∗

ni(Oi) + ψ
0
n − Q̄n,Y (rn(Wi),Wi)

)2
.

The latter is an empirical counterpart to and estimator of the former. We may now
state the last result of this chapter, which exhibits a conservative CI for Rn:

Proposition 24.3. Under A1, A2, A3 and A4, s2
n consistently estimates s2

1, which is
positive. Moreover, ⎡

⎢⎢⎢⎢⎢⎣ψ
∗
n −

1
n

n∑

i=1

Yi ± ξ1−α/2
sn√

n

⎤
⎥⎥⎥⎥⎥⎦ (24.11)

contains Rn with probability converging to (1 − α′) ≥ (1 − α) as n tends to infinity.

The proof of Proposition 24.3 unfolds as follows. Pretending, contrary to facts,
that Un is also observed at each step though not used to define the TMLE, which is
thus the same as before, we adapt the proof of Proposition 24.2 to obtain a similar
CLT. The normalization factor involved now depends on U1, . . . ,Un as well. We
straightforwardly derive from it a CI for Rn whose width λn depends on U1, . . . ,Un

too. Fortunately, we can prove that the width of the CI in (24.11) is always larger
than λn. Since it is free of U1, . . . ,Un, this yields the desired result. This clever
scheme of proof draws its inspiration from Balzer et al. (2016c).

24.4 Simulation

Under Q0, the baseline covariate W decomposes as W ≡ (U,V) ∈ [0, 1] × {1, 2, 3},
where U and V are independent random variables respectively drawn from the
uniform distributions on [0, 1] and {1, 2, 3}. Moreover, Y(0) and Y(1) are condi-
tionally drawn given W from Beta distributions with a constant variance set to
0.01 and means Q̄0,Y (0,W) and Q̄0,Y (1,W) satisfying q̄0,Y (W) = Q̄0,Y (1,W) −
Q̄0,Y (0,W) ≡ 9

8

(
U2 − 5

2 U + 2
3

)
+ 3

√
V

4
√

3
I{U ≥ 1

4 �
V+3

3 �} and Q̄0,Y (1,W) + Q̄0,Y (0,W) ≡
4
5 +

1
3
√

V

(
cos

(
π
2

4U
V

)
I{4U ≤ V} + sin

(
π
2

4U−V
4−V

)
I{4U > V} − 1

2

)
.

The conditional means Q̄0,Y (0, ·), Q̄0,Y (1, ·) and associated blip function q̄0,Y

are represented in Fig. 24.2 (left plots). We compute the numerical values of
the following parameters: ψ0 ≈ 0.5570 (mean reward under optimal rule r0);
VarPQ0 ,g

b Δ(Q0, gb)(O) ≈ 0.18122 (variance under PQ0,gb of the efficient influence
curve of Ψ at PQ0,gb , i.e., under Q0 with equiprobability of carrying out action a = 1
or a = 0); VarPQ0 ,g0

Δ(Q0, g0)(O) ≈ 0.15482 (variance under PQ0,g0 of the efficient
influence curve of Ψ at PQ0,g0 , i.e., under Q0 and the approximation g0 to r0); and
VarPQ0 ,r0

Δ(Q0, r0)(O) ≈ 0.15122 (variance under PQ0,r0 of the efficient influence
curve of Ψ at PQ0,r0 , i.e., under Q0 and r0).
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We set p = 10%, ξ = 1% and choose G characterized over [−1, 1] by G(x) ≡
pI{x ≤ −ξ} +

(
− 1/2−p

2ξ3 x3 +
1/2−p
2ξ/3 x + 1

2

)
I{−ξ ≤ x ≤ ξ} + (1 − p)I{x ≥ ξ}. Reducing

p to 5% did not change the results significantly (not shown). Working model Q̄Y

consists of functions Q̄Y,β mapping {0, 1} ×W to [0, 1] such that, for each a = 0, 1
and v ∈ {1, 2, 3}, logit Q̄Y,β(a, (U, v)) is a linear combination of 1,U,U2, . . . ,U5 and
I{ j−1

10 ≤ U < j
10 } (1 ≤ j ≤ 10). The resulting global parameter β belongs to R

96.
Neither Q̄0,Y nor q̄0,Y belongs to Q̄Y or {q̄Y,β : Q̄Y,β ∈ Q̄Y }. However, expit(q̄Y,0) does
belong to the latter working model.

The targeting steps were performed when sample size is a multiple of 25, at least
200 and no more than 1000, when the experiment is stopped. Working model Q̄Y

was fitted with respect to the negative log-likelihood loss function � using penal-
ized regression imposing (data-adaptive) upper bounds on the �1- and �2-norms of
parameter β (via penalization), hence the search for a sparse optimal parameter. We
repeated N = 1000 times, independently, the strategy described in Sect. 24.1. Each
time a targeting step was performed, we constructed the CIs of Corollary 24.2 and
Proposition 24.3, with a nominal coverage set to (1 − α) = 95% for each of them.
The simulation study was conducted in R (R Development Core Team 2016), using
the package tsml.cara.rct (Chambaz 2016).

Results. Figures 24.1 and 24.2 illustrate a typical realization. Figure 24.2 represents
Q̄0,Y , q̄0,Y and their estimators Q̄n,Y , q̄n,Y at final sample size n = 1000. The top plot
of Fig. 24.1 shows the 95%-CI In in (24.10) at every sample size n where a CI is
derived. By Corollary 24.2, the probability of the event “ψrn,0 ∈ In” is more likely
to be close to 95% than the probability of the event “ψ0 ∈ In” in the sense that
the latter property requires that the rate of convergence of q̄n,Y to q̄0,Y be sufficiently
fast. Nevertheless, we observe on this realization that each In contains both its corre-
sponding data-adaptive parameter ψrn,0 (cross) and ψ0 (horizontal black line). More-
over, the difference between the length of In and that of the vertical segment joining
the two curves of the same nuance of darker gray at sample size n gets smaller as
n grows. This indicates that the variance of ψ∗

n gets closer to the optimal variance
VarPQ0 ,r0

Δ(Q0, r0)(O) as n grows. The bottom plot of Fig. 24.1 shows the actual value
of Rn (cross) and 95%-CI in (24.11) at every sample size n where a CI is derived.
We observe on this realization that the regrets are all positive, a fact that was not
granted. Moreover, each CI contains its corresponding data-adaptive parameter Rn.

We can evaluate if our 95%-CIs achieve their nominal 95%-coverage. To do so,
we carry out binomials tests. By construction, the empirical number of CIs which
cover ψrn,0 is a random variable drawn from a Binomial distribution with parameters
(N, π). We choose to test the null “π ≥ 95%” against its one-sided alternative “π <
95%”. A large p-value is interpreted as the absence of empirical evidence supporting
that the CI does not achieve its nominal coverage. We do the same for ψ0 and Rn,
mutatis mutandis.

Instead of reporting 3 × 33 = 99 empirical proportions of coverage and related
p-values, we simply plot the logarithms of the p-values of the tests evaluating the
coverage of ψrn,0 and ψ0, see Fig. 24.3. Overall, the gray curve dominates the black
one, indicating that empirical coverage tends to be higher for ψrn,0 (it ranges between
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Fig. 24.1 Illustrating the data-adaptive inference of the optimal rule, its mean reward and the re-
lated regret (see also Fig. 24.2). Top plot. The black horizontal line represents the value of the mean
reward under the optimal rule, ψ0. The gray curves represent the mapping n �→ ψ0 ± ξ97.5%σk/

√
n

(k = 1, 2), where σ1 ≈ 0.1512 is the square root of VarPQ0 ,r0
Δ(Q0, r0)(O) (darker gray) and

σ2 ≈ 0.1812 is the square root of VarPQ0 ,g
b Δ(Q0, gb)(O) (lighter gray). Thus, at a given sample

size n, the length of the vertical segment joining the two darker gray curves equals the length of a
CI based on a regular, asymptotically efficient estimator of ψ0. The crosses represent the successive
values of the data-adaptive parameters ψrn ,0. The black dots represent the successive values of ψ∗

n,
and the vertical segments centered at them represent the successive 95%-CIs for ψrn ,0 and, under
additional assumptions, for ψ0 as well. Bottom plot. The crosses represent the successive values
of regret Rn. The black dots represent the successive values of ψ∗

n − n−1 ∑n
i=1 Yi, and the vertical

segments represent the successive 95%-CIs for Rn
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Fig. 24.2 Illustrating the data-adaptive inference of the optimal rule, its mean reward and the
related regret through the representation of the conditional mean Q̄0,Y , blip function q̄0,Y and their
estimators (see also Fig. 24.1). Top left plot: The solid curves represent U �→ Q̄0,Y (1, (U, v)) for
v = 1 (in black, lowest value in 1), v = 2 (in dark gray, middle value in 1) and v = 3 (in light gray,
largest value in 1). The dashed curves represent U �→ Q̄0,Y (0, (U, v)) for v = 1 (in black, largest
value in 1), v = 2 (in dark gray, middle value in 1) and v = 3 (in light gray, smallest value in 1).
Bottom left plot: The curves represent U �→ q̄0,Y (U, v) for v = 1 (in black, smallest value in 1),
v = 2 (in dark gray, middle value in 1) and v = 3 (in light gray, largest value in 1). Right plots.
Counterparts to the left plots, where Q̄0,Y and q̄0,Y are replaced with Q̄n,Y and q̄n,Y for n = 1000, the
final sample size
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Fig. 24.3 Empirical evaluation of the coverage of the CIs. The curves represent the logarithms
of p-values of binomial tests of adequate coverage (null) vs. inadequate coverage (alternative). A
large p-value is interpreted as the absence of empirical evidence supporting that the related CI
does not achieve its nominal coverage of 95%. The black curve corresponds with CIs for ψrn ,0,
and the gray with CIs for ψ0. The gray horizontal lines show the threshold of 5% (top) and the
Bonferonni-corrected threshold of 5/33% (bottom)

0.917 and 0.955 with an average of 0.940) than for ψ0 (it ranges between 0.919 and
0.946 with an average of 0.937). This does not come as a surprise, as argued in the
first paragraph of this section. Moreover, a majority of the p-values are larger than
5% (top gray horizontal line), and even more of them are larger than the Bonferroni-
corrected threshold of 5/33%. Furthermore, the smallest p-values correspond to
sample sizes n = 200 and n = 225, where inference is based on little information. As
for the coverage of Rn, it is far above the nominal 95%-coverage, ranging between
0.951 and 0.990 with an average of 0.997. This does not come as a surprise either
since the CIs for Rn are conservative by construction.

24.5 Conclusion (on a Twist)

We acknowledged that assuming the equality q̄1,Y = q̄0,Y in A1 is a stringent condi-
tion. It happens that the equality is mandatory only in the context of Corollary 24.1,
which provides sufficient conditions for the TMLE to estimate ψ0, the mean reward
under r0. Yet we argued that we are more interested in the data-adaptive parameter
ψrn,0, the mean reward under rn, than in ψ0. What can be said then without assuming
q̄1,Y = q̄0,Y?

Let A1* be assumption A1 deprived of its condition q̄1,Y = q̄0,Y . In light of (24.1)
and (24.6), let rule r1 and its approximation g1 be given by r1(W) ≡ I{q̄1,Y (W) ≥ 0}
and g1(1|W) = 1 − g1(0|W) ≡ G(q̄1,Y (W)). Introduce

ψ1 ≡ EQ0 (Y(r1(W))) ,
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the mean reward under rule r1. Now, let A2* be assumption A2 with ε �→
EPQ0 ,g1

(
�(Q̄′

1,Y,ρ(ε))(O)
)

substituted for ε �→ EPQ0 ,g0

(
�(Q̄1,Y,ρ(ε))(O)

)
, where Q̄′

1,Y,ρ(ε)

is defined as in (24.7) using g1 in lieu of g0. Introduce Q̄
′∗
1,Y,r1

≡ Q̄′
1,Y,r1

(ε0(r1)) and,
in light of (24.9), D

′∗
1 given by

D
′∗
1 (O) ≡ (Y − Q̄

′∗
1,Y (A,W))

I{A = r1(W)}
g1(A|W)

+ Q̄
′∗
1,Y (r1(W),W) − ψ1,

then Σ2
1 ≡ EPQ0 ,g1

(D
′∗
1 (O)2). Finally, consider the following counterpart to A3:

A3*. The conditional distributions of Y(0) and Y(1) given W under Q0 is not
degenerated. Moreover, there exist γ1, γ2 > 0 such that, for all t ≥ 0,

PQ0

(
0 ≤ |q̄1,Y (W)| ≤ t

) ≤ γ1tγ2 . (24.12)

In addition, the ratio |q̄0,Y/q̄1,Y | can be defined and its (essential) supremum
is finite.

The margin condition in A3* now concerns the limit blip function q̄1,Y . The true
blip function q̄0,Y needs not take positive values Q0-almost surely anymore. As for
the constraint on the ratio |q̄0,Y/q̄1,Y | (which is obviously met when q̄1,Y = q̄0,Y ),
we could simply enforce it by choosing Q̄Y in such a way that |q̄Y | ≥ δ > 0 for all
Q̄Y ∈ Q̄Y . We may now state the final result of this chapter.

Proposition 24.4. Under A1*, A2* and A3*, it holds that ‖Q̄n,Y − Q̄1,Y‖Q0 , ‖q̄n,Y −
q̄1,Y‖Q0 , ‖rn − r1‖Q0 , ‖gn − g1‖Q0 and the data-adaptive parameter ψ1 − ψrn,0 all
converge in probability to zero as n tends to infinity. Furthermore, ψ∗

n consistently
estimates ψrn,0 hence ψ1 as well. It does so in such a way that

√
n/σ2

n(ψ∗
n − ψrn,0)

converges in law to the standard normal distribution as n tends to infinity, where σ2
n

consistently estimates the positive Σ2
1 .

Therefore, under the assumptions of Proposition 24.4, the CI defined in (24.10) still
contains ψrn,0 with probability tending to (1 − α) as n tends to infinity. The most
important result of the chapter is thus preserved without assuming that the limit blip
function and the true one coincide.
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Chapter 25
CV-TMLE for Nonpathwise Differentiable
Target Parameters

Mark J. van der Laan, Aurélien Bibaut, and Alexander R. Luedtke

TMLE has been developed for the construction of efficient substitution estimators of
pathwise differentiable target parameters. Many parameters are nonpathwise differ-
entiable such as a density or regression curves at a single point in a nonparametric
model. In these cases one often uses a specific estimator under a specific smoothness
assumptions for which it is possible to establish a limit distribution and thereby pro-
vide statistical inference. However, such estimators do not adapt to the true unknown
smoothness of the data density and, as a consequence, can be easily outperformed
by an adaptive estimator that is able to adapt to the underlying true smoothness.

In this chapter, we present a fully adaptive estimator that converges at an adap-
tive optimal rate implied by the underlying unknown smoothness of the true
data density, while still providing formal statistical inference. Our estimator
utilizes CV-TMLE for a data adaptively selected smooth approximation of the
nonpathwise differentiable target parameter, and thereby integrates efficiency
theory and the state-of-art in data-adaptive estimation through super learning.
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25.1 Definition of the Statistical Estimation Problem

Let O1, . . . ,On be n i.i.d. copies of a random variable O with probability distribution
P0 known to be an element of a specified statistical model M. Let Ψ : M → IR be
the target parameter of interest, and consider the case that M is an infinite dimen-
sional model. Suppose that this target parameter is not pathwise differentiable. We
will assume that it can be represented as a point-wise evaluation Ψ (P) = Ψ1(P)(x0)
of a function-valued parameter Ψ1(P) : (a, b) ⊂ IRd → IR for an interval (a, b)
containing x0. For notational convenience, we denote Ψ1(P)(x) with Ψ (P)(x) again.
In this chapter we focus on estimation and inference for such a nonpathwise differ-
entiable target parameter.

Let’s first consider some examples of such target parameters.

Example I: Let O = (W,Y) ∼ P0, and let M be a nonparametric model. Con-
sider the case that W is continuous valued. Let the target parameter be defined
as Ψ (P) = EP(Y | W = w0) for a given w0. Note that indeed Ψ (P) = Ψ1(P)(w0)
for the function valued parameter Ψ1(P)(W) = EP(Y | W). In order to formally
define EP(Y | W = w0) at a given point w0, we assume that for each P ∈ M,
w → EP(Y | W = w) is continuous at w0 and that we select a version of EP(Y | W)
in the equivalence class that is continuous at w0. In the following examples, we
avoid discussing the technical conditions needed to formally define Ψ (P)(x0).

Example II: Let O = (W, A,Y) ∼ P0 and let M be a model which only makes
assumptions on the conditional density of A, given W. Consider the case that
A ∈ [0, 1] is continuous valued, and assume that the conditional density of A,
given W, is positive at a0 for P0-almost all W. The target parameter is defined
as Ψ (P) = EPEP(Y | A = a0,W), where a0 is a given value. We have that
Ψ (P) = Ψ1(P)(a) ≡ EPEP(Y | A = a,W). Note that Ψ (P) represents the estimand
of the counterfactual mean EYa0 if Y = YA and A is independent of (Ya : a),
conditional on W.

Example III: Let O = (L(0), A(0), L(1), A(1),Y) be a longitudinal data structure
with two intervention nodes A(0), A(1). Suppose that both A(0), A(1) are con-
tinuous valued with values in [0, 1]. Consider a statistical model M which only
makes assumptions on the conditional distribution of A( j), given L̄( j), Ā( j − 1),
j = 0, 1, where we use the convention that Ā(−1) is empty. In particular, we as-
sume that the conditional density of A( j), given L̄( j), Ā( j−1), is positive at a0( j),
P0-a.e., j = 0, 1. Let Ψ (P) = Ψ1(P)(a0), where

Ψ1(P)(a) ≡ EPEP(EP(Y | L̄(1), A(0) = a(0), A(1) = a(1)) | L(0), A(0) = a(0)).

Under the Neyman-Rubin causal model, sequential randomization, this repre-
sents the estimand for the counterfactual mean EYa0(0),a0(1).

Example IV: Let O ∼ P0 be a continuous valued random variable and let M be
a nonparametric model. Our target parameter is Ψ (P) = Ψ1(P)(x0) ≡ p(x0) at a
given point x0, where p = dP/dμ is the density of P w.r.t. Lebesgue measure μ.
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Example V: Let O = (W, A, T̃ = min(T,C), Δ = I(T ≤ C)) ∼ P0, where W
is a vector of baseline covariates, A ∈ [0, 1] is a continuous valued treatment,
T is a continuous valued survival time of interest, and C is the time at which
failure time T is right-censored. Let Ac(t) = I(T̃ ≤ t, Δ = 0) be the indica-
tor process that jumps from 0 to 1 when an observed censoring event occurs.
Similarly, let N(t) = I(T̃ ≤ t, Δ = 1). The statistical model M only makes
assumptions about the conditional distribution of treatment A, given W, and
the conditional distribution of Ac(t), given Āc(t−),W, A. Our target parameter is
Ψ (P) = Ψ1(P)(a0) ≡ EPS (t | A = a0,W), where S (t | A,W) = exp(−Λ(t | A,W))
and dΛ(t | A,W) = E(dN(t) | A,W, T̃ ≥ t) is the intensity of the counting
process N w.r.t. history (W, A, N̄(t−), Āc(t−)) and conditional of still being at
risk for a jump. If we assume that C and T are independent given A,W, then
Ψ (P) = EPP(T > t | A = a0,W). In addition, if we also assume a causal model
T = TA, where Ta is a treatment specific counterfactual survival time, and that
A is randomized conditional on W, then the latter represents the counterfactual
treatment specific survival curve P(Ta0 > t) at time t.

Example VI: Let O = (C, Δ = I(T ≤ C)) ∼ P0 be a marginal current status data
structure on a time until onset T , where C is the monitoring time at which the
status I(T ≤ C) is measured. Our target parameter is Ψ (P) = Ψ1(P)(t0) ≡ E(Δ |
C = t0). If we assume that T and C are independent, then Ψ (P) = P(T ≤ t0) is
the cumulative distribution function of T .

Example VII: Let O = (W, A,C, Δ = I(T ≤ C)) ∼ P0, where W are baseline
covariates, A ∈ {0, 1} is a binary treatment, C is a monitoring time and T is a
time until onset of a disease such as cancer or an infection. Thus, this is the cur-
rent status data structure extended to include baseline covariates and a treatment
indicator. Consider a statistical model M that only makes assumptions on the
conditional distribution of (A,C), given W. The target parameter is defined as
Ψa(P) = Ψ1,a(P)(t0) ≡ EPEP(Δ | C = t0, A = a,W) for a ∈ {0, 1}. If we assume
that C is independent of T , given A,W, then Ψa(P) = EPP(T ≤ t0 | A = a,W).
In addition, if we also assume the causal model and the randomization assump-
tion, then the latter equals the counterfactual cumulative distribution function
P(Ta ≤ t0) at time t. Specifically, one might be interested in the causal contrast
P(T1 ≤ t0) − P(T0 ≤ t0) = Ψ1(P) − Ψ0(P).

It is clear that we can construct an endless list of interesting examples of non-
pathwise differentiable target parameters. Essentially, for every data structure and
realistic statistical model there are a variety of nonpathwise differentiable statistical
target parameters that answer questions of interest.

At an intuitive level, a pathwise differentiable target parameter is a parameter
that is a smooth function of the data density p0(o) across o in a set O1 that has pos-
itive P0-probability. One might refer to O1 as the “support” of the target parameter.
Since for such a pathwise differentiable target parameter all observations that fall
in the set O1 provide information about the target parameter, it is typically possi-
ble to construct an estimator ψn of Ψ (P0) that is asymptotically linear, so that it
converges at rate n−1/2, even for nonparametric models M. On the other hand, any
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target parameter on a nonparametric model that is defined by the data density at a
point or the data density over a set O1 with P0-measure zero is only able to utilize
observations close to this support of the target parameter, and each of these obser-
vations will result in a bias of the estimator. The latter amount of bias will depend
on the underlying smoothness of p0. As a result, one is only able to use the obser-
vations in a local neighborhood of its support, and an estimator needs to carefully
select the size of the neighborhood in order to trade-off bias and variance. The opti-
mal trade-off of bias and variance will depend on the underlying smoothness of the
data density at the support set and the choice of estimator. Either way, the optimal
rate of convergence will be slower than n−1/2.

25.2 Approximating Our Target Parameter by a Family
of Pathwise Differentiable Target Parameters

We will approximate Ψ (P) with a kernel smoother of Ψ (P)(x) over x in a neighbor-
hood of x0 with bandwidth h. Specifically, let

Ψh(P) =
∫

Kh,x0 (x)Ψ (P)(x)dx,

where Kh,x0 (x) = h−dK((x − x0)/h), K(x) = K(x1, . . . , xd) is a kernel satisfying∫
K(x)dx = 1. For simplicity, we use the same bandwidth h for all components so

that this family of parameters is indexed by a scalar, and we assume that the kernel
K(x) =

∏d
j=1 K∗(x j) is a product kernel defined by a univariate kernel K∗. We will

refer to a kernel K as a J-orthogonal kernel if
∫

K∗(s)ds = 1 and
∫

K∗(s)s jds = 0,
j = 1, . . . , J. If K is a J-orthogonal kernel, then it is orthogonal to any polynomial
of degree smaller or equal than J:

∫
K(x)

d∏

j=1

x
s j

j dx = 0 if s j ∈ {0, . . . , J}, j = 1, . . . , d.

Sometimes we will denote Ψh(P) with Ψh,J(P) to indicate that it uses a (J − 1)-
orthogonal kernel. Notice that

Ψh(P) =
∫

z
K(z)Ψ (P)(x0 + hz)dz.

At a minimum we assume that x → Ψ (P)(x) is continuous at x0 so that

Ψ (P) = lim
h→0

Ψh(P).

Let M(J) = {P ∈ M : x → Ψ (P)(x) is J-times continuously differentiable at x0}.
The following lemma proves that if P0 ∈ M(J), then Ψh,J(P0) − Ψ (P0) = O(hJ).
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Lemma 25.1. Assume P0 ∈ M(J0) for an integer J0 ≥ 1. Let

Ψh,J(P) =
∫

x
Kh,x0 (x)Ψ (P)(x)dx

be the parameter approximation of Ψ (P) = Ψ (P)(x0) using a J − 1-orthogonal
kernel with bandwidth h centered at x0. Let J∗0 = min(J0, J). Let

B0(J∗0) ≡
∑

{m∈{0,...,J∗0}d :
∑

l ml=J∗0}

ψm
0 (x0)

∫

y
K(y)

∏
l yml

l∏
l ml!

dy.

Then,

h−J∗0 (Ψh,J∗0
(P0) − Ψ (P0)) → B0(J∗0) as h → 0.

Proof. For notational convenience, let J denote J∗0 in this proof. We have

Ψh,J(P0) − Ψ (P0) =
∫

x
Kh,x0 (x){Ψ (P0)(x) − Ψ (P0)(x0)}dx

=

∫

x
h−dK((x − x0)/h){ψ0(x) − ψ0(x0)}dx

=

∫

y
K(y){ψ0(x0 + hy) − ψ0(x0)}dy

=

∫

y
K(y)

J−1∑

j=1

∑

m,
∑

l ml= j

h j ∏
l yml

l∏
l ml!

ψm
0 (x0)dy

+hJ
∫

y
K(y)

∑

m,
∑

l ml=J

∏
l yml

l∏
l ml!

ψm
0 (x0)dy + o(hJ)

= hJ
∫

y
K(y)

∑

m,
∑

l ml=J

∏
l yml

l∏
l ml!

ψm
0 (x0)dy + o(hJ)

≡ hJ B0(J) + o(hJ).

Thus,

h−J(Ψh,J(P0) − Ψ (P0) = B0(J) + o(1).

This completes the proof. �
Efficient Influence Curve. Let D∗

h(P) be the canonical gradient of Ψh at P ∈ M.
It is assumed that

D∗
h(P) = D(Kh,x0 , P), where K → D(K, P) is linear.

In our examples, we have that O = (X,O1) and

D∗
h(P)(O) = Kh,x0 (X)D1(P)(O) +

∫

x
Kh,x0 (x)D2(P)(x,O1)dx
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for some D1(P),D2(P) ∈ L2(P), where
∫

Kh,x0 (x)D2(P)(x,O1)dx =
∫

K(y)D2(P)
(x0 + hy,O1)dy. In addition, it is assumed that

sup
P∈M,o

| D∗
h(P) | (o) < Ch−d (25.1)

for a finite constant C < ∞ and the supremum over o is over a support of P0. One
might refer to the latter assumption as a positivity assumption.

Second-Order Taylor Expansion Ψh(P). Because Ψh is pathwise differentiable,

Ψh(P) − Ψh(P0) = (P − P0)D∗
h(P) + Rh(P, P0),

where Rh(P, P0) is a second-order remainder, and we can use that PD∗
h(P) = 0. We

will assume that this second-order remainder Rh(P, P0) has the following structure:

Rh(P, P0) =
∫

x
Kh,x0 (x)Rx(P, P0)dx (25.2)

for some second-order remainder term Rx(P, P0). This structure is essentially im-
plied by Ψh(P) being a kernel average of Ψ (P)(x) around x0. Indeed this assumption
holds in all our examples.

A typical form of the second-order remainder Rx(P, P0) is given by

Rx(P, P0) =
∫

y
(H1(P) − H1(P0))(x, y)(H2(P) − H2(P0))(x, y)H3(P, P0)(x, y)dμ(y),

where H1(P),H2(P) are statistical parameters that are functions of O through X and
another subvector Y . If H1(P) � H2(P) and these two parameters are variation inde-
pendent, then this represents a so-called double robust structure since Rx(P, P0) = 0
if either H1(P) = H1(P0) or H2(P) = H2(P0). We note that Rx(P, P0) typically in-
volves differences of the P and P0-density or regression at a single point x, while
the other variables (i.e., Y) are integrated out. For pathwise differentiable parame-
ters, one will always have that the second-order remainder involves integrating over
all variables, so that the second-order remainder can be bounded by L2-norms of
H1(P) − H1(P0) and H2(P) − H2(P0). Such bounding is not possible for Rx(P, P0),
but is possible for Rh(P, P0). One could view Rx(P, P0) as a second-order remainder
corresponding with the second-order Taylor expansion of the nonpathwise differen-
tiable parameter Ψ (P)(x).

Even though our general approach does not rely on any specific structure of
Ψh(P) beyond that it approximates Ψ (P) and that it is pathwise differentiable, the
above structure allows us to fully understand the dependence of both the efficient in-
fluence curve and the second-order remainder on the tuning parameter h. This will
allow us to establish asymptotic normality of our proposed estimator of ψ0 under
concrete assumptions.



25 CV-TMLE for Nonpathwise Differentiable Target Parameters 461

25.3 CV-TMLE of h-Specific Target Parameter Approximation

Let {Pε,h : ε} be a local least favorable parametric submodel through P so that the
linear span of its score d

dε log dPε,h/dP
∣∣∣
ε=0

includes D∗
h(P). Let pε,h = dPε,h/dP.

For example, this could be a one-dimensional universal least favorable submodel
pε,h = p exp

(∫ ε

0
D∗

h(Pe)de
)

in which case we even have d
dε log dPε,h/dP = D∗

h(Pε,h)
for all ε. We could also select the one-dimensional universal least favorable sub-
model {Pε,h : ε ≥ 0} for targeting a multivariate target parameter (or more generally,
solving a multivariate vector of desired equations PnD̄h(P) = 0) defined by

dPε,h

dP
= exp

(∫ ε

0

{PnD̄h(Pe,h)}�

‖ PnD̄h(Pe,h) ‖
D̄h(Pe,h)de

)
,

where D̄h(P) should include as one of its components D∗
h(P), and ‖ · ‖ is the standard

Euclidean norm. In this case, we have d
dε Pn log pε,h =‖ PnD̄h(Pε,h) ‖.

25.3.1 CV-TMLE of Ψh(P0)

Let Pn = P̂(Pn) be an initial estimator of P0. Using our notation for cross-validation,
let P1

n,Bn
, P0

n,Bn
be the empirical probability distribution of the validation sample {i :

Bn(i) = 1} and training sample {i : Bn(i) = 0}, respectively, implied by a random
split Bn ∈ {0, 1}n. Let Pn,Bn = P̂(P0

n,Bn
) be the initial estimator of P0 applied to the

training sample. Let {Pn,Bn,ε,h : ε} be our least favorable submodel through Pn,Bn . Let
εn be the MLE:

εn = arg max
ε

EBn P1
n,Bn

log pn,Bn,ε,h.

This defines TMLE updates P∗
n,Bn,h

= Pn,Bn,εn,h for each possible realization of Bn.
The CV-TMLE of Ψh(P0) is defined by

ψ∗
n,h ≡ EBnΨh(P∗

n,Bn,h
).

If we select one of the two universal least favorable submodels defined above, then
we have

EBn P1
n,Bn

D∗
h(P∗

n,Bn,h
) = 0.

For our analysis of the CV-TMLE, we only need that the left-hand side is oP(rn,hn )
for a rate rn,hn that converges to zero at faster rate than the rate of convergence of
ψ∗

n,hn
using our proposed bandwidth hn, so that is represents a second-order term. For

example, if we use a local least favorable submodel and the initial estimator P̂(Pn)
converges fast enough to P0, then this will typically be the case. One could also use
a local least favorable submodel and simply iterate the TMLE-updating step until
rn,h is small enough.
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25.3.2 Asymptotic Normality of CV-TMLE

The following theorem establishes asymptotic normality of the CV-TMLE ψ∗
n,hn
=

EBnΨhn (P∗
n,Bn,hn

) of Ψhn (P0) along a sequence hn → 0 without making smoothness
assumptions on P0.

Theorem 25.1. We make the following assumptions:

• Let r(n) be a rate converging to zero such that for some P1 ∈ Mwith Rh(P1, P0) =
0 for all h > 0

‖ D∗
h(P∗

n,Bn,h
) − D∗

h(P1) ‖P0= OP(h−d/2r(n)). (25.3)

• Let hn →p 0, r(n){1 − log(hd/2
n r(n))} → 0, and

lim
h→0

hdP0{D∗
h(P1)}2 = σ2

0. (25.4)

• There exists a deterministic sequence h̃n so that hn/h̃n →p 1.
• Consider the class of functions Fn = {D(K1,h,x0 , Pn,Bn,ε,h) − D(K1,h,x0 , P1) : h, ε}

and let Fn be its envelope. Assume that

sup
Λ

N(δ | Fn |,Fn, L
2(Λ) = O(δ−p) for some integer p > 0.

• √
nhd

nEBn

∫

y
K(y)Rx0+hny(P∗

n,Bn,hn
, P0)dy = oP(1). (25.5)

Then,
√

nhd
n

(
EBnΨhn (P∗

n,Bn,hn
) − Ψhn (P0)

)
=

√
nhd

n(Pn − P0)D∗
hn

(P1) + oP(1)

+

√
nhd

nEBn

∫

y
K(y)Rx0+hny(P∗

n,Bn,hn
, P0)dy,

and
√

nhd
n

(
EBnΨhn (P∗

n,Bn,hn
) − Ψhn (P0)

)
⇒d N(0, σ2

0)).

Recall D∗
h(P) = D(Kh,x0 , P), where K → D(K, P) is linear in K. For exam-

ple, O = (X,O1) and D∗
h(P) = Kh,x0 D1(P) +

∫
Kh,x0 (X)D2(P)(x,O1)dx, where∫

Kh,x0 (x)D2(P)(x,O1)dx =
∫

K(y)D2(P)(x0 + hy,O1)dy. In this case, the left-hand
side of (25.3) is typically dominated by ‖ Kh,x0 D1(P∗

n,Bn,h
)−Kh,x0 D1(P1) ‖P0 and r(n)

can be chosen so that
(∫

y
K2(y)E0({D1(P∗

n,Bn,hn
) − D1(P1)}2 | X = x0 + hny)p0,X(x0 + hny)dy

)0.5

= OP(r(n)).
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The simplest scenario for R20(P1, P0) = 0 is that P1 = P0. In many problems we
have a double robustness structure so that

Rx(P, P0) =
∫

y
(H1(P) − H1(P0))(x, y)(H2(P) − H2(P0))(x, y)H3(P, P0)(x, y)dμ(y).

In that case, we will have that Rx(P, P1) equals zero if either H1(P1) = H1(P0) or
H2(P1) = H2(P0). For example, consider the scenario that H2(P1) = H2(P0). In that
case, we have the following decomposition:

Rx(Pn, P0) =
∫

y
(H1(Pn) − H1(P1))(H2(Pn) − H2(P0))(x, y)H3(Pn, P0)(x, y)dμ(y)

+

∫

y
(H1(P1) − H1(P0))(H2(Pn) − H2(P0))(x, y)H3(Pn, P0)(x, y)dμ(y).

Thus, the condition (25.9) would be satisfied if these two terms on the right-hand
side are oP((nhd)−0.5). So this would require that H2(Pn) converges to H2(P0) at a
faster rate than (nhd)−0.5.

Proof of Theorem 25.1. We have
√

nhd
n

(
EBnΨhn (P∗

n,Bn,hn
) − Ψhn (P0)

)
=

√
nhdEBn (P1

n,Bn
− P0)D∗

hn
(P∗

n,Bn,hn
)

+

√
nhd

nEBn Rhn (P∗
n,Bn,hn

, P0).

Consider the leading empirical process term. Let fn,Bn ≡ D∗
hn

(P∗
n,Bn,hn

) − D∗
hn

(P1)).
Let K1,h,x0 (x) = K((x− x0)/h) so that Kh,x0 = h−dK1,h,x0 . Notice that fn,Bn = h−d

n gn,Bn ,
where gn,Bn = D(K1,hn,x0 , P

∗
n,Bn,hn

) − D(K1,hn,x0 , P1). Let p =
∑n

i=1 Bn(i)/n. We have

√
nhd

nEBn (P1
n,Bn

− P0)(D∗
hn

(P∗
n,Bn,hn

− D∗
hn

(P1)) =
√

nhd
nEBn (P1

n,Bn
− P0) fn,Bn

=

√
nhd

nh−d
n EBn (P1

n,Bn
− P0)gn,Bn

= p−0.5h−0.5d
n

√
npEBn (P1

n,Bn
− P0)gn,Bn .

For a given Bn, conditional on P0
n,Bn

, we apply Lemma 25.2 below to
√

np(P1
n,Bn

−
P0)gn,Bn , where gn,Bn is only random through θn = (εn, hn). For notational conve-
nience, denote this function gn,Bn with gn,θn . We have that gn,θn ∈ Fn = {gn,θ : θ}
so that indeed Fn is finite dimensional as in Lemma 25.2. In addition, any function
in Fn is bounded by a universal constant C due to our assumption that D∗

hn
(P) is

bounded by Ch−d
n universally in o and P ∈ M. Thus, the envelope Fn of Fn sat-

isfies ‖ Fn ‖P0< C < ∞ for some C < ∞. By assumption, we have ‖ gn,θn ‖P0=

OP(hd/2
n r(n)). Application of Lemma 25.2 proves that

√
np(P1

n,Bn
− P0)gn,θn =

OP(hd/2
n r(n){1 − log(hd/2

n r(n))}). Since Bn has only a finite number of realization,
this proves that

√
npEBn (P1

n,Bn
− P0)gn,Bn = OP(hd/2

n r(n){1 − log(hd/2
n r(n))}). This

shows that
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p−0.5h−0.5d
n

√
npEBn (P1

n,Bn
− P0)gn,Bn = OP(r(n){1 − log(hd/2

n r(n))}).

By assumption, the right-hand side is oP(1). Thus, we have shown that

√
nhd

nEBn (P1
n,Bn

−P0)(D∗
hn

(P∗
n,Bn,hn

)−D∗
hn

(P1)) = oP(r(n){1− log(hd/2
n r(n))}) = oP(1).

This now yields

√
nhd

n

(
EBnΨhn (P∗

n,Bn,hn
) − Ψhn (P0)

)
=

√
nhd

nEBn (P1
n,Bn

− P0)D∗
hn

(P1) + oP(1)

+

√
nhd

nEBn

∫

x
Khn,x0 (x)Rx(P∗

n,Bn,hn
, P0)dx.

By the Lindeberg Theorem for triangular arrays, using assumption (25.4), it follows
that for a deterministic sequence h̃n,

√
nh̃d

nEBn (P1
n,Bn

− P0)D∗
h̃n

(P1) ⇒d N(0, σ2
0).

By assumption, there exists a deterministic sequence h̃n so that hn/h̃n →p 1. We
have

√
nhd

nEBn (P1
n,Bn

− P0)D∗
hn

(P1) −
√

nh̃d
nEBn (P1

n,Bn
− P0)D∗

h̃n
(P1)

= n0.5{
√

hd
n −

√
h̃d

n}EBn (P1
n,Bn

− P0)D∗
h̃n

(P1)

+
√

nhd
nEBn (P1

n,Bn
− P0){D∗

hn
(P1) − D∗

h̃n
(P1)}.

The first term can be written as
√

hd
n/h̃d

n − 1 times (nh̃d
n)0.5EBn (P1

n,Bn
− P0)D∗

h̃n
(P1).

Since the scalar converges to zero and the empirical process term converges to
N(0, σ2

0), it follows that the first term is oP(1). The second term can be analyzed as
the above empirical process term and is thus oP(1). Let’s now consider the second-
order remainder term

√
nhd

nEBn Rhn (P∗
n,Bn,hn

, P0). It equals

√
nhd

nEBn

∫

y
K(y)Rx0+hy(P∗

n,Bn,h
, P0)dy.

By assumption (25.5) the latter is oP(1). This proves the theorem. �
The proof used the following lemma.

Lemma 25.2. Let Gn( f ) =
√

n(Pn − P0) f be a standardized empirical mean of
f (Oi). Let fn,εn ∈ Fn = { fn,ε : ε} where ε varies over a bounded set in IRp and fn,ε is
a nonrandom function (i.e., not based on data O1, . . . ,On). Suppose that ‖ fn,εn ‖P0=

oP(rn) for a rate rn satisfying rn log r−1
n → 0, and rnn0.5 → ∞. Suppose that the

envelope Fn of Fn satisfies ‖ Fn ‖P0≤ Mn. Assume that

sup
Λ

N(δ | Fn |,Fn, L
2(Λ) = O(δ−p) for some integer p > 0.
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Then,

E0 | Gn( fn,εn ) |= O
(
Mnrn(1 + log r−1

n )
)
.

Thus, if rn = o(1) and Mn < M < ∞, then Gn( fn,εn ) = oP(1).

Proof. For notational convenience, let’s denote fn,εn with fn. We apply the Theorem
in van der Vaart and Wellner (2011) providing us with

E0 | Gn( fn) |≤ J(δn,Fn)

(
1 +

J(δn,Fn)
δ2

nn0.5 ‖ Fn ‖P0

)
‖ Fn ‖P0 , (25.6)

where we can select δn = rn. Using the bound ε−p on the uniform covering num-
ber, it follows that J(δn,Fn) = −p0.5

∫ δn

0
(log ε)0.5dε. We can conservatively bound

(log ε)0.5 by log ε, and use that
∫ δn

0
log εdε = δn − δ log δn = δ(1 + log(δ−1

n )). This
shows that J(δ,Fn) ≤ δn(1 + log δ−1

n ). If J(δn,Fn) = O(δ2
nn0.5), then the lead-

ing term in (25.6) is given by J(δn,Fn) ‖ Fn ‖P0 . Using the above bound for
J(δn,Fn), it follows that this holds if δn(1 + log δ−1

n ) = O(δ2
nn0.5), or equivalently,

δn(1+ log δ−1
n ) = O(δnn0.5). By assumption we have δnn0.5 → ∞ and δn log δ−1

n → 0,
so that this always holds. This results in the following bound:

E0 | Gn( fn) |= O(Mnrn(1 + log r−1
n )),

which equals the stated bound. �

25.3.3 Asymptotic Normality of CV-TMLE as an Estimator of ψ0

Let P0 ∈ M(J0). The following theorem is an immediate consequence of
(nhd)0.5(ψ∗

n − ψh0) ⇒d N(0, σ2
0) and h−J0 (ψh0 − ψ0) → B0(J0), which shows

that ψ∗
n − ψ0 ≈ N(hJ0)B0(J0), σ2

0/(nhd)). Balancing the square of the bias and the
variance yields the optimal rate h∗n = n−1/(2J0+d), while slight undersmoothing yields
a mean zero N(0, σ2

0) limit distribution.

Theorem 25.2. Suppose that we use a J-orthogonal kernel K and assume the condi-
tions of Theorem 25.1. Let P0 ∈ M(J0) for an unknown degree of smoothness J0 ≥ 1.
Let J∗0 = min(J0, J). The optimal rate for the bandwidth is given by h∗n = n−1/(2J∗0+d).
If we select this rate, then we obtain

n−J∗0/(2J∗0+d)(ψ∗
n − ψ0) ⇒d N(B0(J∗0), σ2

0).

If we select hn such that hn/n−1/(2J∗0+d) → 0 (i.e., if we undersmooth), then we obtain

√
nhd

n(ψ∗
n − ψ0) ⇒d N(0, σ2

0).
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If we select such an undersmoothed hn, then an asymptotically valid 0.95-confidence
interval for ψ0 is given by

ψ∗
n ± 1.96σn/(nhd

n)0.5,

where σ2
n is a consistent estimator of σ2

0.

If it is known that J0 ≥ J, then the above optimal rate h∗n is known and identified
by J∗0 = J. However, without that knowledge, this optimal rate h∗n is unknown. Even
when J0 ≥ J, regarding finite sample performance, one wants to select ch∗n for a well
chosen c, which would be unknown. Therefore, for either case it is important that
we propose a data-adaptive selector for h. This will be proposed in the next section.

25.4 A Data-Adaptive Selector of the Smoothing Bandwidth

Let hn be a solution of the equation

d
dhn

ψ∗
n,hn
+Cn

d
dhn

{
σn/(nhd

n)0.5
}
= 0 (25.7)

for some finite or slowly converging sequence Cn such as Cn = C log n or −C log n
for some C > 0. The choice of sign of Cn depends on h → ψ∗

n,h being increasing
or decreasing for h close to 0. In the unlikely case that ψn,h (and possibly ψ0,h) is
constant in h for local neighborhood (0, a) of 0, we would select hn = a. In practice,
we expect that (25.7) only has a solution for either a positive or negative Cn so that
this choice will naturally follow. We allow Cn to slowly converge to infinity in order
to guarantee the existence of a solution of (25.7), while the optimal adaptive rate
will only be achieved if Cn = OP(1). Therefore, in practice, we recommend to select
Cn as the smallest Cn with | Cn |≥ 1.96 for which a solution is found.

One interesting choice is Cn = Z1−αn or C = −Z1−αn for some sequence αn, where
Z(1 − α) is the 1 − α-quantile of the standard normal distribution. For example,
αn = 1/n corresponds with Cn behaving as log n, but if possible one should select
α at a fixed level such as 0.05. In this manner, one can view hn as the value that
minimizes the upper bound or maximizes the lower bound of the 1 − αn-confidence
interval for ψ0, which provides the following intuition of this selector hn. Suppose
that an investigation of the behavior of ψn,h as a function of h > 0 at 0 (away
from pure noise) demonstrates an increasing trend as h approximates 0. In that case,
one might be willing to assume that ψ0 > ψ0,h for all h > 0, suggesting that we
want to maximize ψ∗

n,h. However, as h approximates zero, the noise of ψ∗
n,h starts

to dominate the signal ψ0,h. On the other hand, one is (1 − αn)100%-confident that
ψ0,h > ψ∗

n,h − Z1−αnσn/(nhd)0.5, suggesting that we should instead maximize h →
ψ∗

n,h − Z1−αnσn/(nhd)0.5, and thus define

hn = arg max
h

ψ∗
n,h − Z1−αnσn/(nhd)0.5.
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The latter definition of hn solves (25.7). Alternatively, if one determines that ψ0,h is
decreasing as h approximates zero, one wants to minimize the upper bound ψ∗

n,h +

Z1−αnσn/(nhd)0.5:
hn = arg min

h
ψ∗

n,h + Z1−αnσn/(nhd)0.5.

To simplify our analysis of our proposed selector hn for the CV-TMLE, we will
define hn as the solution of (25.7) with ψ∗

n,hn
replaced by a cross-validated one-step

estimator:
ψ1

n,h = EBnΨh(Pn,Bn ) + EBn P1
n,Bn

D∗
h(Pn,Bn ), (25.8)

where the initial estimator Pn,Bn does not depend on h. The fact that D∗
h(Pn,Bn ) only

depends on h through Kh,x0 makes the conditions easier, although we expect the
theorem for hn below also applies to the selector (25.7) using the CV-TMLE itself
(which also depends on h through the targeted estimator P∗

n,Bn
). For many target

parameters we have D∗
h(P) = Dh(P) − Ψh(P), in which case this cross-validated

one-step estimator reduces to

ψ1
n,h = EBn P1

n,Bn
Dh(Pn,Bn ) = EBn P1

n,Bn
D(Kh,x0 ,Pn,Bn ),

while the CV-TMLE allows the same representation but now with Pn,Bn replaced
by P∗

n,Bn
.

Theorem 25.3. Consider the definition (25.7) of hn with ψ∗
n,hn

replaced by the CV-
one-step estimator ψ1

n,hn
(25.8). We define

K1,h,x0 = h
d

dh
Kh,x0

e1,n,Bn ≡ D∗
h(K1,h,x0 ,Pn,Bn ) − D∗

h(K1,h,x0 , P1)

r1(n) = ‖ e1,n,Bn ‖P0

Zn =
√

n(Pn − P0)h−d/2D∗
h(K1,h,x0 , P1)

σ2
10 ≡ lim

h→0
VAR

(
hd/2D∗

h(K1,h,x0 ,P1)
)
,

where P1 is the limit of P∗
n,Bn

, and the right-hand side limit is assumed to exist.

Assumptions. Let P0 ∈ M(J0) for some unknown integer J0 ≥ 1. and let hn →p 0
be a solution of (25.7). Let J∗0 = min(J0, J), where J − 1 is the degree of our kernel
K. Let r(n) be such that for some P1 ∈ M with R20(P1, P0) = 0

‖ D∗
h(K1,hn,x0 ,Pn,Bn ) − D∗

h(K1,hn,x0 , P1) ‖P0= OP(h−d/2
n r(n)).

Let r(n) log(h−d/2
n r(n)) →p 0. Suppose that there exists a deterministic sequence

h̃n so that hn/h̃n →p 1. Consider the class of functions Fn = {D(K1,h,x0 ,Pn,Bn ) −
D(K1,h,x0 , P1) : h, ε} and let Fn be its envelope. Assume that

sup
Λ

N(δ | Fn |,Fn, L
2(Λ) = O(δ−p) for some integer p > 0.



468 M. J. van der Laan et al.

In addition, assume
√

nhd
nEBn

∫

x
K1,x0,hn (x)Rx(Pn,Bn , P0)dx = oP(1). (25.9)

Then,

−h
J∗0
n J0B0(J0) + o(h

J∗0
n ) = (nhd

n)−0.5(Zn + 0.5dCnσn + oP(1)),

where Zn = OP(1). As a consequence, hn behaves as (C2
n/n)−1/(2J∗0+d). Specifically, if

Cn = OP(1), then hn converges to zero at the optimal rate n−1/(2J∗0+d).

In the special case that d
dhψ0,h = 0 for h ∈ (0, a) for some a > 0, we only need that

hn →p a∗ for some a∗ ∈ (0, a]. This scenario corresponds with the case that ψ0 is
actually pathwise differentiable, in which case the CV-TMLE ψ∗

n,hn
converges at rate

n−0.5 and will in fact be asymptotically efficient estimator of ψ0.
The function K1,h,x0 happens to behave in the same way as Kh,x0 as a function

of h. Specifically, EK2
1,h,x0

(X) behaves as EK2
h,x0

(X), and similarly the variance of
D(K1,h,x0 , P) behaves as the variance of D(Kh,x0 , P) as a function of h, and is thus
O(h−d). To understand this, consider d = 2 so that K(x1, x2) = K∗(x1)K∗(x2) is a
bivariate product kernel. We have

K1,h,x0 (X) = −dKh,x0 (X) − h−dK∗′((x1 − x01)/h)(x1 − x01)/hK∗((x2 − x02)/h)

−h−dK∗′((x2 − x02)/h)(x2 − x02)/hK∗((x1 − x01)/h).

The first term is obviously analogue to Kh,x0 (X). The second and third term
combined can be written as h−dK1((x − x0)/h) for a multivariate product kernel
K1(x1, x2) = K∗′(x1)x1K∗(x2) + K∗′(x2)x2K(x1). We have

E(h−dK1((X − x0)/h))2 = h−d
∫

y
K2

1 (y)p0,X(x0 + hy)dy.

This proves that indeed the kernel K1,h,x0 behaves in the same manner as Kh,x0 as a
function of h. As a result we have VarD(K1,h,x0 , P) = O(h−d).

Proof of Theorem 25.3. Rearranging (25.7) shows that

d
dhn

Ψ1
n,hn
= −0.5dCnσnn−1/2h−d/2−1

n . (25.10)

We also have

Ψ1
n,hn

− Ψhn (P0) = EBn (Ψhn (Pn,Bn ) − Ψhn (P0)) + EBn P1
n,Bn

D∗
hn

(Pn,Bn )

= EBn (Ψhn (Pn,Bn ) − Ψhn (P0)) + EBn (P1
n,Bn

− P0)D∗
hn

(Pn,Bn )

+EBn P0D∗
hn

(Pn,Bn )

= EBn (P1
n,Bn

− P0)D∗
hn

(Pn,Bn ) + EBn R20,hn (Pn,Bn , P0).
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We now take the derivative w.r.t. hn on the left-hand and right-hand side, and apply
(25.10). This yields

− d
dhn

Ψhn (P0) = EBn (P1
n,Bn

− P0)D

(
d

dhn
Khn,x0 ,Pn,Bn

)

+EBn

∫

x

d
dhn

Kh,x0 (x)Rx(Pn,Bn , P0)dx + 0.5dCnσnn−1/2h−d/2−1
n .

We now write

d
dhn

Khn,x0 = h−1
n

(
hn

d
dhn

Khn,x0

)
≡ h−1K1,hn,x0 ,

where K1,h,x0 = h d
dh Kh,x0 . Then, we can represent the equation above as follows:

− d
dhn

Ψhn (P0) = h−1
n EBn (P1

n,Bn
− P0)D(K1,hn,x0 ,Pn,Bn )

+h−1
n EBn

∫

x
K1,hn,x0 (x)Rx(Pn,Bn , P0)dx + 0.5dCnσnn−1/2h−d/2−1

n .

As shown above, we have VarD(K1,h,x0 , P) = O(h−d). Thus, we can analyze the
empirical process term in the same manner as we analyzed the empirical process
term EBn (P1

n,Bn
− P0)D∗

hn
(P∗

n,Bn,hn
) in the CV-TMLE (Theorem 25.1). Therefore, by

Lemma 25.2, under the stated conditions,
√

nhd
nEBn (P1

n,Bn
− P0)D∗

hn
(Pn,Bn ) =

√
nhd

n(Pn − P0)h−d/2
n D∗

hn
(K1,hn,x0 ,P1) + oP(1),

and the right-hand side converges in distribution to N(0, σ2
10). In other words,

√
nhd

nEBn (P1
n,Bn

− P0)D∗
hn

(Pn,Bn ) = Zn + oP(1),

where Zn ⇒d N(0, σ2
01).

Combined with assumption (25.9) this latter result yields:

− d
dhn

Ψhn (P0) = h−1
n (nhd

n)−0.5(Zn + oP(1)) + 0.5dCnσnn−1/2h−d/2−1
n .

We now apply Lemma 25.3 below to obtain the expression for d
dhn

Ψhn (P0). This
yields

−h
J∗0−1
n J0B0(J∗0) + o(h

J∗0−1
n ) = h−1

n (nhd
n)−0.5(Zn + oP(1)) + 0.5dCnσnn−1/2h−d/2−1

n .

Thus,

−h
J∗0
n J∗0 B0(J∗0) + o(h

J∗0
n ) = (nhd

n)−0.5(Zn + 0.5dCnσn + oP(1)).

In the special case that Cn = OP(1), this corresponds with h
2J∗0
n = (nhd

n)−1, giving the
optimal rate hn = n−1/(2J∗0+d). This completes the proof. �
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Lemma 25.3. Suppose that P0 ∈ M(J0) and the degree J−1 of the kernel K satisfies
J ≥ J0

Then,

d
dh

Ψh,J0 (P0) = hJ0−1J0B0(J0) + o(hJ0−1).

Proof. We have

d
dh

Ψh(P0) =
d

dh

∫

x
Kh,x0 (x)Ψ (P0)(x)dx

=
d

dh

∫

y
K(y)ψ0(x0 + hy)dy

=
d

dh

∫

y
K(y)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψ0(x0) +

J0−1∑

j=1

∑

m,
∑

l ml= j

h j ∏
l yml

l∏
l ml!

ψm
0 (x0)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
d

dh

∫

y
hJ0 K(y)

∑

m,
∑

l ml=J0

∏
l yml

l∏
l ml!

ψm
0 (x0) + o(hJ0 )

= J0hJ0−1
∫

y
K(y)

∑

m,
∑

l ml=J0

∏
l yml

l∏
l ml!

ψm
0 (x0) + o(hJ0−1)

= J0hJ0−1B0(J0) + o(hJ0−1).�

Remark. If Cn converges to infinity, then our bandwidth hn oversmooths relative to
the optimal rate, and, as a consequence, we will not have that (nhd

n)0.5(ψ∗
h,n − ψ0)

converges to a normal distribution. We would still have (nhd
n)0.5(ψ∗

h,n − ψhn,0) ⇒d

N(0, σ2
0), but the bias is now larger than the standard error. Therefore, in that case,

we want to shrink down this choice hn. Specifically, if we choose h1
n = C

−2/(2J∗0+d)
n hn,

then h1
n would follow the optimal rate. However, this choice of scaling is unknown

due to J0 being unknown.

25.5 Generalization of Result for Data-Adaptive
Bandwidth Selector

Let Ψ : M → IR be our target parameter of interest, which is not pathwise differen-
tiable. Let Ψh : M → IR, h ∈ IR≥0, be a family of pathwise differentiable parameters
approximating Ψ in the sense that {Ψh(P0) ∈ IR : h ∈ IR≥0} represent a family of
pathwise differentiable approximations of Ψ (P0) = limh→0 Ψh(P0). In this chapter,
we assumed that this family was generated by a kernel smoother, but in this section
we allow general definitions of this family of target parameters. Let R20,h(P, P0) be
defined by

Ψh(P) − Ψh(P0) = −P0D∗
h(P) + R20,h(P, P0),
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where D∗
h(P) is the canonical gradient of Ψh : M → IR at P. Suppose that D∗

h(P0) =
h−α0 D̃h(P0) for some D̃h(P0), where EP0 {D̃h(P0)}2 → σ2

0 > 0 for some σ2
0 as h → 0:

i.e., the variance of the canonical gradient behaves as h−2α0 for some α0 > 0. In
addition, regarding the bias of this family, let Ψh(P0) − Ψ (P0) = hJ0 B0(J0) + o(hJ0 )
for some J0 > 0 and term B0(J0). We allow that both α0 and J0 are unknown and
can depend on the true data distribution P0. In the previous sections based on the
kernel-smooth approximations of Ψ based on a d-dimensional kernel, α0 = 2d was
known, while J0 represented the unknown underlying smoothness of Ψ (P0) at x0.
Let σ2

0h ≡ EP0 {D∗
h(P0)}2 be the variance of the canonical gradient. By the above

assumption, we have that σ2
0h ≈ h−2α0σ2

0. Let σ2
nh be a consistent estimator of σ2

0h so
that σ2

nh/σ
2
0h → 1 in probability as n → ∞. Let rh(n) ≡ (n/σ2

hn)0.5 represent the stan-
dardizing rate for the CV-TMLE of Ψh(P0). Note that rh(n) behaves as hα0 n0.5. Let
ψ∗

nh be a CV-TMLE and assume that under appropriate conditions and any sequence
hn → 0

rhn (n)(ψ∗
nhn

− ψ0hn ) ⇒d N(0, 1) as n → ∞.

This can be established in an analogue manner as in our analysis of the CV-TMLE
in the previous section. Thus, ψ∗

nh has a variance that behaves as h−2α0 n−1 and a bias
that behaves as hJ0 so that an optimal rate for h w.r.t. MSE is given by

h∗n = n−1/2(J0+α0).

We now want to propose a data-adaptive selector hn and establish that it behaves as
h∗n, analogue to our proposal and analysis in the previous section. As in the previous
section, we will base the selector hn on a one-step estimator:

ψ1
nh = EBnΨh(Pn,Bn ) + EBn P1

n,Bn
D∗

h(Pn,Bn ),

where Pn,Bn ∈ M is an estimator of P0 based on the training sample {Oi : Bn(i) = 0}.
Let hn be a solution of

d
dhn

ψ1
nhn
+Cn

d
dhn

σnhn n−0.5 = 0 for some user supplied sequence Cn.

We refer to the previous section for a discussion regarding the existence of a solution
and the choice Cn, where Cn is either bounded uniformly in n or converges very
slowly to infinity.

Theorem 25.4. We make the following assumptions:

• d
dh D∗

h(P) = h−1D̃1h(P) for some D̃1h(P), where h2α0 P0{D̃1h(P0)}2 → σ2
10 for some

σ2
10 > 0 as h → 0. In other words, D̃1h(P0) behaves as D∗

h(P0) as a function of h.
• for any sequence h → 0, we have

EBn (P1
n,Bn

−P0)D̃1hn (Pn,Bn ) = Zn/(n
0.5hα0

n )+oP(n−0.5h−α0
n ), where Zn ⇒d N(0, σ2

01).

•
hnEBn

d
dh

R20,hn (Pn,Bn , P0) = oP(n−0.5h−α0
n ).
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•
− d

dh
σnh = h−(α0+1)cnh + oP(h−(α0+1)),

where cnh > 0 is bounded away from zero and infinity uniformly in h ∈ (0, δ) for
some δ > 0.

• for any sequence h → 0, we have

− d
dh

Ψh(P0) ∼ c(J0, h)hJ0−1 + o(hJ0−1),

where c(J0, h) is bounded away from zero and infinity uniformly in h ∈ (0, δ) for
some δ > 0.

Then,

c(J0, hn)hJ0
n + o(hJ0

n ) = n−0.5h−α0
n

{
Zn − cn,hnCn + oP(1)

}
.

This proves that if lim supn Cn < ∞, then hn achieves the optimal rate by balancing
the square bias with the variance, and, in general,

hn ∼ n−1/2(J0+α0)C1/(J0+α0)
n .

Since D∗
h(P0) = h−α0 D̃h(P0) where P0{D̃h(P0)}2 → σ2

0, the third bullet assumption
on d

dhσnh is reasonable. Similarly, since Ψh(P0) − Ψ (P0) = hJ0 B0(J0) + o(hJ0 ), the
fourth bullet assumption is reasonable as well.

Proof. We will analyze this data-adaptive selector hn, analogue to the proof of The-
orem 25.3. We have

ψ1
nhn

− Ψhn (P0) = EBn (P1
n,Bn

− P0)D∗
hn

(Pn,Bn ) + EBn R20,hn (Pn,Bn , P0).

Taking the derivative w.r.t. h at h = hn and using the definition of hn yields

Cn
d

dhn
σnhn/n

0.5 − d
dhn

Ψhn (P0) = EBn (P1
n,Bn

− P0)
d

dhn
D∗

hn
(Pn,Bn )

+EBn

d
dhn

R20,hn (Pn,Bn , P0).

We assumed that d
dh D∗

h(P) = h−1D̃1h(P), where the h2α0 P{D̃1h(P)}2 → σ2
1 as h → 0.

We assume that under regularity conditions (analogue to the conditions needed in
the proof of the asymptotic normality of the one-step estimator ψ1

nh),

EBn (P1
n,Bn

− P0)D̃1hn (Pn,Bn ) = Zn/(n
0.5hα0

n ) + oP(1), where Zn ⇒d N(0, σ2
01).

In addition, we assumed that

hnEBn

d
dhn

R20,hn (Pn,Bn , P0) = oP(n−0.5h−α0
n ).
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This yields

− d
dhn

Ψhn (P0) = h−1
n Znn−0.5h−α0

n + h−1
n oP(n−0.5h−α0

n ) − Cnn−0.5 d
dhn

σnhn .

We also assumed that

− d
dh

σnh = h−(α0+1)cnh,

for a sequence cnh > 0 bounded away from 0 and ∞. This now yields

− d
dhn

Ψhn (P0) = Znn−0.5h−(α0+1)
n + oP(n−0.5h−(α0+1)

n ) − Cnn−0.5cnhn h−(α0+1)
n .

We assumed that

− d
dh

Ψh(P0) ∼ c(J0, h)hJ0−1 + o(hJ0−1),

where c(J0, h) is bounded away from zero and infinity uniformly in h ∈ (0, δ) for
some δ > 0. Imputing this in the last equality yields

c(J0, hn)hJ0
n + o(hJ0

n ) = n−0.5h−α0
n

{
Zn − cn,hnCn + oP(1)

}
.

This proves that if lim supn Cn < ∞, then hn balances the square bias with the vari-
ance, and, in general,

hn ∼ n−1/2(J0+α0)C1/(J0+α0)
n .�

25.5.1 Selecting among Different Classes of Pathwise
Differentiable Approximations of Target Parameter

Let {Ψh, j(P) : h} is a family of target parameters approximating Ψ (P) with tuning
parameter h > 0, indexed by a discrete choice j = 1, . . . , J. For example, Ψh, j(P)
could be our kernel smoothed approximation of Ψ (P) in which the kernel is chosen
to be orthogonal to polynomials up to degree j, as analyzed in the previous sections.
In the previous sections, we a priori selected j large, but in practice the practical
performance could differ substantially for different choices of j. Let ψ∗

h, j,n be a CV-

TMLE of Ψh, j(P0) for any h, j. Let σ2
h, j,n be an estimator of the variance of the

canonical gradient D∗
h, j(P0) of Ψh, j at P0 so that for a sequence hn → 0

(σ−1
hn, j,n

n0.5)(ψhn, j,n − Ψhn, j(P0)) ⇒d N(0, 1).

Let hn( j) be a data-adaptive selector of the type proposed above and suppose that
the regularity conditions hold so that hn( j) optimally trades-off the variance and bias
of ψ∗

h, j,n w.r.t. ψ0, j = 1, . . . , J. Let ψ∗
j,n ≡ ψ∗

hn( j), j,n and σ j,n = σhn( j), j,n. How does
one select among different approximation strategies indexed by j? Since each hn( j)
is chosen so that the square of the bias of ψ∗

j,n is of the same order as the variance
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of ψ∗
j,n, for all these estimators ψ∗

j,n we have that the MSE is of the same order
as σ2

j,n/n. Therefore, a sensible selector jn of j is defined as the minimizer of the
estimated variance of the estimator:

jn ≡ arg min
j
σ2

j,n.

This choice guarantees that we select with probability tending to 1 the family for
which ψ∗

j,n converges at the fastest rate to Ψ (P0). This can be viewed as a generaliza-
tion of the empirical efficiency maximization approach for pathwise differentiable
target parameters (Rubin and van der Laan 2008).

For the sake of statistical inference, we would select a slightly under-smoothed
version of hn( j) for each j, so that asymptotic bias can be ignored (e.g., the constant
Cn in the definition of the data-adaptive selector hn( j) is chosen to converge to infin-
ity at a slow rate such as log n). Let hn( j) denote such a choice. Regarding statistical
inference, just selecting the confidence interval based on an undersmoothed version
of ψ∗

jn,n
as if jn is a priori-specified might result in too optimistic inference due to the

fact that jn is chosen to minimize the width of the confidence interval. We propose
the following adjustment of the confidence interval. We have

Zn( j) ≡ σ−1
j,nn0.5(ψ∗

j,n − Ψhn( j), j(P0)) =
1
√

n

n∑

i=1

σ−1
j,nD∗

hn( j), j(P0) + oP(1), j = 1, . . . , J.

Therefore, under regularity conditions, one has that Zn = (Zn( j) : j) ⇒ N(0, Σ0),
where

Σ0( j1, j2) = lim
n→∞

P0σ
−1
j1,nσ

−1
j2,nD∗

hn( j1), j1 (P0)D∗
hn( j2), j2 (P0)

is the asymptotic correlation of the standardized versions of the estimators ψ∗
j1,n

and

ψ∗
j2,n

. Here σ2
0,h, j ≡ P0

{
D∗

h, j(P0)
}2

denotes the true variance of D∗
h, j(P0), and we im-

plicitly assumed that the covariance limit exists as a limit almost everywhere. Note
that Σ0( j, j) = 1, j = 1, . . . , J. Let q0,95 be the 0.95-quantile of the max of the abso-
lute value of N(0, Σ0). It follows that ψ∗

j,n ± q0.95σ j,n/n0.5, j = 1, . . . , J, is a simulta-

neous asymptotic 0.95-confidence interval for ψ0. Therefore ψ∗
jn,n

± q0.95σ j,n/n0.5 is
an 0.95-confidence interval for ψ0. We can estimate q0.95 consistently by replacing
Σ0 in its definition by a consistent estimator Σn.

25.6 Example: Estimation of a Univariate Density at a Point

Let O ∼ P0, M be nonparametric, and Ψ (P0) = p0(x0) for a given point x0.
We define Ψh(P) =

∫
t
Kh,x0 (t)p(t)dt, where K is a J − 1-orthogonal kernel and

Kh,x0 (t) = h−1K((t − x0)/h). The efficient influence curve of Ψh at P is given by
D∗

h(P) = Kh,x0 (O) − Ψh(P). It satisfies the identity Ψh(P) − Ψh(P0) = −P0D∗
h(P) so

that R20,h(P, P0) = 0. Let pn be an initial estimator of p0. Let Bn ∈ {0, 1}n be a cross-
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validation scheme, and pn,Bn be the initial density estimator applied to the training
sample {Oi : Bn(i) = 0}. Consider the local least favorable submodel through p at
ε = 0 given by

pε,h(o) = (1 + εD∗
h(P)(o))p(o).

One could either use this local least favorable submodel, or the universal least
favorable submodel

pε,h(o) = p(o) exp

(∫ ε

0
D∗

h(pe)(o)de

)
.

Let pn,Bn,ε,h be this least favorable submodel through pn,Bn . Let

εn = arg min
ε

EBn Pn,Bn L(pn,Bn,ε,h),

where L(p)(o) = − log p(o) is the log-likelihood loss. This defines p∗
n,Bn,h

= pn,Bn,εn,h

and thereby the CV-TMLE ψ∗
h,n = EBnΨh(P∗

n,Bn
) of Ψh(P0). Let hn be defined as a

solution of
d

dhn
ψhn,n +Cnσn

d
dhn

(nhn)−0.5 = 0, (25.11)

where we define ψh,n as the CV-one-step estimator:

ψh,n = EBn P1
n,Bn

Kh,x0 = PnKh,x0 =
1

nh

n∑

i=1

K((x0 − Oi)/h).

As in the description of our method, we can set Cn ∈ {−Z1−αn ,Z1−αn } for some
sequence αn. In addition, σ2

n = p̃n(x0)
∫

K(y)2dy is a consistent estimator of
σ2

0 = p0(x0)
∫

K(y)2dy. Here p̃n(x0) can be replaced by any consistent estimator,
such as our CV-TMLE ψ∗

h0
n,n

for a certain bandwidth selector h0
n for which nh0

n → ∞.
Note that, since Kh,x0 does not depend on nuisance parameters estimated on the
training sample, the CV-one-step estimator used in the bandwidth selector hn re-
duces to a standard kernel density estimator at x0. Our proposed CV-TMLE is given
by ψ∗

n = ψ
∗
hn,n

.
Let’s now apply Theorem 25.1. Suppose that p0(x0) > 0 so that it is also bounded

away from zero on a small neighborhood of t0. Let’s first consider condition (25.3).
We have

‖ D∗
h(Pn) − D∗

h(P0) ‖P0 = | Ψh(Pn) − Ψh(P0) |

= |
∫

x
h−1K((x − x0)/h)(pn(x) − p0(x))dx |

= |
∫

K(y)(pn(x0 + hy) − p0(x0 + hy))dy |

= O

(
h−1

∫ x0+h

x0−h
| (pn − p0)(x) | dx

)
.
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For example, if pn − p0 converges uniformly to zero over a small interval around
0 at rate r1(n), then it follows that the right-hand side is OP(r1(n)). We can also
bound it more conservatively with Cauchy-Schwarz inequality: h−1

∫
I(x0−h,x0+h) |

pn− p0 | dx ≤ O
(
h−0.5

(∫
(pn − p0)2dx

)0.5
)
, where the integral is over a fixed interval

containing x0. In that case, it would suffice to have that ‖ pn− p0 ‖t0,P0= OP(r(n)) for
some polynomial rate so that we obtain the bound OP(h−0.5r(n)). Here we defined
‖ p − p0 ‖2

x0,P0
=

∫ x0+a

x0−a
(p − p0)2dP0 for a fixed a > 0. This verifies the first condition

(25.3). Note

hP0D∗
h(p0)2 = hP0

{
Kh,x0 − Ψh(P0)

}2
= hP0K2

h,x0
+O(h) =

∫
K(y)2 p0(x0+hy)dy+O(h)

which converges to σ2
0 = p0(x0)

∫
K(y)2dy. Condition (25.5) automatically holds

since R20,h = 0. Thus, we can now apply Theorem 25.1, which proves that

√
nh(ψ∗

h,n − ψh,0) =
√

nh(Pn − P0)D∗
h(P0) + oP(1) ⇒d N(0, σ2

0).

Assume that p0 is J0-times continuously differentiable at x0 and let J∗0 = min(J0, J).
Then, we have h−J∗0 (ψh0 − ψ0) → B0(J∗0), where

B0(J∗0) ≡ ψ
J∗0
0 (x0)

∫

y
K(y)

yJ∗0

J∗0!
dy. (25.12)

Application of Theorem 25.2 proves that if we select an optimal rate h∗n = n−1/(2J∗0+1),
then

n−J∗0/(2J∗0+1)(ψ∗
hn,n

− ψ0) ⇒d N(B0(J∗0), σ2
0).

Since the conditions of Theorem 25.2 are the same as of Theorem 25.1 with Kh,x0

replaced by K1,h,x0 = h d
dh Kh,x0 (and we showed that the latter is a similarly be-

haved kernel), the verification of the conditions is the same as above. Application of
Theorem 25.3 proves that hn ∼ (C2

n/n)−1/(2J∗0+1), which achieves the optimal rate if
Cn = OP(1).

This proves the following theorem.

Theorem 25.5. Consider the CV-TMLE ψ∗
h,n defined above and the bandwidth se-

lector hn (25.11). Consider also the definition B0(J) (25.12) and σ2
0. We make the

following assumptions:

• p0(x0) > 0.
• p0 is J0-times continuously differentiable at x0 for an unknown J0.
• ‖ pn − p0 ‖x0,P0= OP(r(n)) for some polynomial rate (i.e., n−p for some p > 0),

where ‖ p − p0 ‖2
x0,P0
=

∫ x0+a

x0−a
(p − p0)2dP0 for a fixed a > 0.

Let J∗0 = min(J0, J). We have that hn ∼ (C2
n/n)−1/(2J∗0+1), and, if Cn = OP(1), then

(nhd
n)0.5(ψ∗

hn,n
− ψ0) ⇒d N(B0(J∗0), σ2

0).
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Suppose Cn = OP(1) and let h∗n = hn/ log n be an undersmoothed version of hn.
Let ψ∗

h∗n,n
be the corresponding CV-TMLE. Then,

(nh∗n)−0.5(ψ∗
h∗n,n

− ψ0) ⇒ N(0, σ2
0).

In particular,
ψ∗

h∗n,n
± 1.96σn/(nh∗n)0.5

is an asymptotic 95%-confidence interval for ψ0.

25.7 Example: Causal Dose Response Curve Estimation
at a Point

We refer to Kennedy et al. (2015) for a presentation of an estimator and inference for
the causal dose response curve. The estimator in Kennedy et al. (2015) was based on
an augmented IPCW-estimator instead of a CV-TMLE and used the more general
local polynomial smoothing instead of our kernel smoothing.

Let O = (W, A,Y) ∼ P0, where Y ∈ {0, 1} and A ∈ [0, 1] is continuous valued.
Let M be a statistical model for P0 that only makes assumptions on the conditional
density g0(a | W) of A, given W. Let Q̄0(A,W) = P0(Y = 1 | A,W), and let QW,0

be the probability distribution of W. The target parameter is defined as Ψ (P) =
EPEP(Y | A = a0,W), where a0 is a given value. LetΨ (P)(a) ≡ EPEP(Y | A = a,W).
Let Ψh(P) =

∫
Kh,a0 (a)Ψ (P)(a)da for a bandwidth h and J − 1-orthogonal kernel K.

We can also represent this target parameter as Ψh(QW , Q̄). The efficient influence
curve of Ψh at P is given by

D∗
h(P) =

Kh,a0 (A)

g(A | W)
(Y − Q̄(A,W)) +

∫

a
Kh,a0 (a)Q̄(a,W)da − Ψh(P)

≡ Dh(Q̄, g) − Ψh(P).

We can also represent this efficient influence curve as D∗
h(Q̄, g, ψh). We have

Ψh(QW , Q̄) − Ψh(QW,0, Q̄0) = −P0D∗
h(P) + R20,h(P, P0),

where

R20,h(P, P0) = EP0

∫

a
Kh,a0 (a)(Q̄ − Q̄0)(a,W)

(g − g0)(a | W)
g(a | W)

da.

Given a cross-validation scheme Bn ∈ {0, 1}n, let QW,n,Bn , gn,Bn , Q̄n,Bn be initial esti-
mators applied to the training sample {Oi : Bn(i) = 0}. Let

LogitQ̄n,Bn,ε,h = LogitQ̄n,Bn + εC(h, a0, gn,Bn ),
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where C(h, a0, g)(A,W) = Kh,a0 (A)/g(A | W). Let

εn = arg min
ε

EBn P1
n,Bn

L(Q̄n,Bn,ε,h),

where L(Q̄)(O) = −Y log Q̄(A,W) − (1 − Y) log(1 − Q̄(A,W)) is the log-likelihood
loss for Q̄0. Let Q̄∗

n,Bn,h
= Q̄n,Bn,εn,h.

We could now also target QW,n,Bn with a least favorable submodel with score
D∗

h,W (QW , Q̄) =
∫

a
Kh,a0 (a)Q̄(a,W)da − Ψh(QW , Q̄) so that we have

EBn P1
n,Bn

D∗
h,W (Q∗

W,n,Bn,h
, Q̄∗

n,Bn,h
) = 0.

For example, we could define the universal least favorable model

dQW,n,Bn,ε,h = dQW,n,Bn exp

(∫ ε

0
D∗

h,W (QW,n,Bn,x,h, Q̄
∗
n,Bn,h

)dx

)
,

and εn = arg minε EBn P1
n,Bn

L1(QW,n,Bn,ε,h), where L(QW ) = − log qW is the log-
likelihood loss. The targeted version of QW,n,Bn is then defined as Q∗

W,n,Bn,h
=

QW,n,Bn,εn,h. Indeed, we then have

EBn P1
n,Bn

D∗
h,W (Q∗

W,n,Bn,h
, Q̄∗

n,Bn,h
) = 0.

The CV-TMLE of Ψh(P0) is then defined as EBnΨh(Q∗
n,Bn,h

). where Q∗
n,Bn,h

=

(Q∗
W,n,Bn,h

, Q̄∗
n,Bn,h

). However, note that solving the latter equation implies

EBnΨh(Q∗
W,n,Bn,h

, Q̄∗
n,Bn,h

) = EBn P1
n,Bn

∫

a
Kh,a0 (a)Q̄∗

n,Bn,h
(a, ·)da.

Thus, the targeting of QW,n,Bn ended up redefining the evaluation of the target
parameter. Therefore, the targeting step QW,n,Bn and defining the CV-TMLE as
EBnΨh(Q∗

n,Bn,h
) is equivalent with not targeting QW,n,Bn but just defining the CV-

TMLE as

ψ∗
n,h = EBn P1

n,Bn

∫

a
Kh,a0 (a)Q̄∗

n,Bn,h
(a, ·). (25.13)

Note that D∗
h(Q∗

W,n,Bn,h
, Q̄∗

n,Bn,h
, gn,Bn ) = D∗

h(Q̄∗
n,Bn,h

, gn,Bn , ψ
∗
n,h) so that the CV-TMLE

solves

EBn P1
n,Bn

D∗
h(Q̄∗

n,Bn,h
, gn,Bn , ψ

∗
n,h) = 0.

We define the bandwidth selector hn as the solution of

d
dhn

ψn,hn +Cnσn
d

dhn
(nhn)−0.5 = 0, (25.14)
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where Cn is the smallest negative or positive constant for which a solution exists. For
example, if possible, we select Cn ∈ {−1.96, 1.96}. Here σ2

n is a consistent estimator
of

σ2
0 =

∫
K2(y)dy

∫

w

Q̄0(1 − Q̄0)(a0,w)
g0(a0 | w)

dQW,0(w). (25.15)

Here ψn,h is the CV-one-step estimator (a cross-validated version of the estimator in
Kennedy et al. 2015):

ψn,h = EBn P1
n,Bn

Dh(Q̄∗
n,Bn,h

, gn,Bn ).

The proposed CV-TMLE of ψ0 is now defined as

EBnΨhn (Q∗
n,Bn,hn

) = EBn P1
n,Bn

∫

a
Khn,a0 (a)Q̄∗

n,Bn,hn
(a, ·)da.

We now apply Theorem 25.1. We assume that g0(a0 | W) > δ > 0 a.e. for
some δ > 0. Using Cauchy-Schwarz inequality, we can bound ‖ D∗

h(Q∗
n,Bn,hn

, gn,Bn )−
D∗

h(Q0, g0) ‖P0 by the sum of h−0.5 ‖ Q̄∗
n,Bn,hn

− Q̄0 ‖a0,P0 and h−0.5 ‖ gn,Bn − g0 ‖a0,P0 ,
where

‖ f ‖2
a0,P0
=

∫

w

∫

y
K2(y) f (a0 + h1y,w)2dydP0(w)

for some fixed (arbitrarily small) h1 > 0. We assume that max(‖ gn,Bn − g0 ‖a0,P0 , ‖
Q̄∗

n,Bn,hn
− Q̄0 ‖a0,P0 ) = OP(r(n)) for some polynomial rate r(n). It also follows that

hP0{D∗
h(P0)}2 → σ2

0 as h → 0. It remains to show the second-order term condition:

(nh)0.5EP0

∫

y
K(y)(Q̄∗

n,Bn,hn
− Q̄0)(a0+hnya,W)

(gn,Bn − g0)(a0 + hny | W)

gn,Bn (a0 + hny | W)
dy = oP(1).

By using the Cauchy-Schwarz inequality, it suffices to show

(nhn)0.5 ‖ Q̄∗
n,Bn,hn

− Q̄0 ‖a0,P0‖ gn,Bn − g0 ‖a0,P0= oP(1).

We will assume this to hold. We can now apply Theorem 25.1, which shows that

√
nhn(ψ∗

hn,n
− ψhn,0) =

√
nhn(Pn − P0)D∗

hn
(P0) + oP(1) ⇒d N(0, σ2

0).

Suppose that a → ψ0(a) = EP0 Q̄0(a,W) is J0-times continuously differentiable at
a = a0. Then, we have h−J0 (ψh0 − ψ0) → B0(J0), where

B0(J0) ≡
∫

y
K(y)

yJ0

J0!
dyψJ0

0 (a0). (25.16)

Let J∗0 = min(J0, J). Application of Theorem 25.2 proves that if we select an optimal
rate hn = n−1/(2J∗0+1), then

n−J∗0/(2J∗0+1)(ψ∗
hn,n

− ψ0) ⇒d N(B0(J∗0), σ2
0).
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Since the conditions of Theorem 25.2 are the same as of Theorem 25.1 with Kh,a0

replaced by K1,h,a0 = h d
dh Kh,a0 (and we showed that the latter is a similarly behaved

kernel), the verification of the conditions is the same as above. Application of Theo-
rem 25.3 proves that if Cn = OP(1), then hn ∼ n−1/(2J∗0+1). This proves the following
theorem.

Theorem 25.6. Consider the CV-TMLE ψ∗
h,n (25.13) defined above and the band-

width selector hn (25.14). Consider also the definition B0(J) (25.16), σ2
0 (25.15),

and ‖ f ‖a0,P0=
√∫

w

∫
y

K2(y) f (a0 + h1y,w)dydQW,0(w) for some (arbitrarily small)

h1 > 0. We make the following assumptions:

• g0(a0 | W) > δ > 0 a.e. for some δ > 0.
• a → ψ0(a) = EP0 Q̄0(a,W) is J0-times continuously differentiable at a0 for an

unknown J0.
• max(‖ gn,Bn −g0 ‖a0,P0 , ‖ Q̄∗

n,Bn,hn
− Q̄0 ‖a0,P0 ) = OP(r(n)) for some polynomial rate

r(n).
•

(nh)0.5 ‖ Q̄∗
n,Bn,hn

− Q̄0 ‖a0,P0‖ gn,Bn − g0 ‖a0,P0= oP(1).

• Cn = OP(1).

Let J∗0 = min(J0, J). We have that hn ∼ n−1/(2J∗0+1), and

n−J∗0/(2J∗0+1)(ψ∗
hn,n

− ψ0) ⇒d N(B0(J∗0), σ2
0).

Let h∗n = hn/ log n be an undersmoothed version of hn, and let ψ∗
h∗n,n

be the corre-
sponding CV-TMLE. Then,

(nh∗n)−0.5(ψ∗
h∗n,n

− ψ0) ⇒ N(0, σ2
0).

In particular,

ψ∗
h∗n,n

± 1.96σn/(nh∗n)0.5

is an asymptotic 95%-confidence interval for ψ0.

25.8 Notes and Further Reading

Rosenblatt (1956) introduced kernel density estimation, and Parzen (1962) proved
its asymptotic normality. Nadaraya (1964) and Watson (1964) introduced the kernel
regression estimator. Einmahl and Mason (2000) studied the convergence of ker-
nel estimators when the bandwidth remains random even as the sample size grows.
Einmahl and Mason (2005) derived stronger distributional results than we have pre-
sented in this chapter, namely confidence bands for kernel regression estimators that
allow the bandwidth to remain random. For a further overview of developments in
the study of kernel density estimators, see Wied and Weißbach (2012).
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For our causal example, estimating the mean outcome under a continuous point
treatment was previously studied by Kennedy et al. (2015). Neugebauer and van der
Laan (2007) defines continuous exposure marginal structural working models as
projections of the true dose-response curve onto a finite dimensional space. Unlike
the parameters discussed in this chapter, the parameters indexing the projection are
pathwise differentiable and, under some regularity conditions, can be estimated at a
root-n rate. Rosenblum and van der Laan (2010a) describes a TMLE for the param-
eters indexing these working models.



Chapter 26
Higher-Order Targeted Loss-Based Estimation

Marco Carone, Iván Díaz, and Mark J. van der Laan

The objective of this chapter is to describe how the TMLE framework can be
generalized to explicitly utilize higher-order rather than first-order asymptotic
representations. The practical significance of this is to provide guidelines for
constructing estimators that have sound behavior in finite samples and are
asymptotically efficient under less restrictive conditions.

The construction of TMLEs often depends upon certain first-order asymptotic rep-
resentations. For these representations to be useful, the resulting second-order re-
mainder term must tend to zero in probability faster than n−1/2. This ensures that
the first-order approximation suffices to guide the construction of estimators and to
study their asymptotic limit theory. To satisfy this condition, it must be possible
to construct an estimator of the data-generating distribution, or any relevant por-
tions thereof, that converges sufficiently fast. For example, when the density of the
data-generating distribution is directly involved in the target parameter, a density
estimator converging in a suitable norm at a rate faster than n−1/4 is often required
to guarantee that the second-order remainder term is negligible. In many settings
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however, it is rather implausible for such a condition to hold, particularly when the
data unit vector is high-dimensional. The remainder term will then itself contribute
to the first-order asymptotic behavior of the estimator and derail it from asymptotic
linearity.

It is then natural to consider the construction of estimators based on higher-order
asymptotic expansions, allowing us to account for additional analytic terms and in-
stead require that a higher-order remainder term be asymptotically negligible. Mini-
mal rate conditions would then be significantly relaxed. For example, if an rth order
expansion exists and could be utilized, an estimator of the density function converg-
ing at a rate faster than n−1/[2(r+1)] would suffice for the resulting remainder term
to be negligible. More importantly, even when such higher-order expansions do not
exist, approximate higher-order expansions can generally be constructed, leading
to concrete rate gains. In the latter case however, describing the resulting minimal
rate conditions in generality is more difficult since these can be somewhat context-
dependent.

In this chapter, we propose a novel second-order TMLE of a second-order
pathwise-differentiable target parameter, based on n independent draws from an un-
known element of a given semiparametric model. We will refer to this estimator as a
2-TMLE, with 1-TMLE corresponding to the usual first-order TMLE. Analogously
to the large-sample properties of the usual TMLE requiring the asymptotic negli-
gibility of a second-order remainder term, the asymptotic normality and efficiency
of this 2-TMLE will rely on the asymptotic negligibility of a third-order remain-
der term. As an illustration of its construction, we develop a 2-TMLE of a point
intervention g-computation parameter based on observing n independent and iden-
tically distributed copies of a random vector consisting of baseline covariates, a bi-
nary treatment and a final binary outcome. While for simplicity of presentation and
brevity we exclusively focus on 2-TMLE in this chapter, the techniques are readily
generalized to an arbitrary order. Further details regarding this generalization can be
found in a technical report (Carone et al. 2014).

We provide a general template for constructing a 2-TMLE and for establishing
its asymptotic efficiency. We show that this 2-TMLE can be constructed within the
standard framework of TMLE, notably by augmenting the least favorable paramet-
ric submodel used in the standard TMLE with an additional parameter. We also
demonstrate that the statistical inference of this 2-TMLE can be based on a second-
order Taylor expansion, possibly providing some finite-sample improvements in the
construction of confidence intervals.

In many problems, the target parameter is only first-order pathwise-differentiable
and a second-order gradient does not exist. As a solution, we propose a 2-TMLE
based on an approximate second-order gradient and present a corresponding theory.
This additional approximation yields a supplementary bias term for the resulting
2-TMLE, referred to as the representation error in Robins et al. (2009), and the
asymptotic linearity and efficiency theorem of the 2-TMLE requires this bias term
to be asymptotically negligible as well. Control of this bias term can be carried out
within the standard TMLE framework at no risk of losing the desirable properties
of the first-order TMLE. In our example, we demonstrate that, for an appropriate
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choice of kernel and bandwidth rate, and provided the data-generating distribution
satisfies certain smoothness conditions, the asymptotic efficiency of the 2-TMLE
still only relies on the asymptotic negligibility of a third-order remainder term. We
also propose a data-adaptive bandwidth selector based on the C-TMLE framework,
essentially selecting the bandwidth maximizing bias reduction in the targeting step
of the TMLE. We illustrate the use of 2-TMLE by describing how it can be imple-
mented to infer about a point intervention g-computation parameter and we report
numerical results from its use, all of which are discussed in great detail in Díaz et al.
(2016).

26.1 Overview of Higher-Order TMLE

Suppose that n independent draws O1, . . . ,On are obtained from P0 ∈ M , where
the statistical model M refers to the set of all possible probability distributions for
the prototypical data structure O compatible with the available knowledge about P0.
Let Pn be the empirical distribution of O1, . . . ,On and define O := ∪P∈M supp(P)
with supp(P) denoting the support of P. Let Ψ : M → R be the target param-
eter mapping and suppose we are interested in inferring about the true parameter
value ψ0 := Ψ (P0) from the observed data. For simplicity, we focus on univariate
target parameters in this article but all the developments herein can immediately be
extended to Euclidean-valued target parameters with image in R

d as well.

26.1.1 TMLE

We focus here on cases where the parameter Ψ is sufficiently smooth in P in an
appropriate sense. To be precise, denote by L2

0(P) the Hilbert space of square-
integrable real-valued functions defined on the support of P and with mean zero
under P, endowed with inner product 〈h1, h2〉P :=

∫
h1(o)h2(o)dP(o). Let TM (P) be

the tangent space of M at P ∈ M , defined as the closure of the linear span of all
scores of regular parametric submodels through P—this is a subspace of L2

0(P). If
there exists an element D(1)(P) ∈ L2

0(P) such that for any P1, P2 ∈ M the lineariza-
tion

Ψ (P2) − Ψ (P1) = (P2 − P1)D(1)(P2) + R2(P1, P2)

= −P1D(1)(P2) + R2(P1, P2)

holds with R2(P1, P2)/Δ(P1, P2) → 0 as Δ(P1, P2) → 0 for some distance Δ on
M , then Ψ is said to be strongly differentiable over M and any such element
D(1)(P) is called a first-order gradient of Ψ at P (Pfanzagl 1982). Here, for any
function f and (possibly signed) measure P, we write P f to denote

∫
f (o)dP(o).

From hereon, we will informally refer to R2(P1, P2) as a second-order remainder.
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The unique first-order gradient D(1)∗(P) in TM (P) is referred to as both the canon-
ical first-order gradient and the efficient influence function. The latter terminology
reflects the fact that a regular estimator of ψ0 is asymptotically efficient if and only
if it is asymptotically linear with influence function given by D(1)∗(P0) (Bickel et al.
1997b). Formally, a regular estimator ψn of ψ0 is asymptotically efficient if and
only if

ψn − ψ0 = (Pn − P0)D(1)∗(P0) + oP(n−1/2) .

TMLE provides a general template for constructing asymptotically efficient sub-
stitution estimators ψ∗

n := Ψ (P∗
n) of ψ0, whose asymptotic efficiency is in part a

consequence of the property

PnD(1)∗(P∗
n) =

1
n

n∑

i=1

D(1)∗(P∗
n)(Oi) = 0 , (26.1)

and the first-order expansion

Ψ (P) − Ψ (P0) = (P − P0)D(1)∗(P) + R2(P, P0)

= −P0D(1)∗(P) + R2(P, P0) (26.2)

following from the strong differentiability of Ψ over M . Identity (26.1) can be com-
bined with (26.2) evaluated at P = P∗

n to yield that

Ψ (P∗
n) − Ψ (P0) = (Pn − P0)D(1)∗(P∗

n) + R2(P∗
n, P0) . (26.3)

This forms the basis of any theorem establishing the asymptotic linearity and effi-
ciency of a TMLE. Provided it can be shown that

1. D(1)∗(P∗
n) falls in a P0-Donsker class with probability tending to one,

2. P0

[
D(1)∗(P∗

n) − D(1)∗(P0)
]2

tends to zero in probability, and

3. R2(P∗
n, P0) tends to zero in probability faster than n−1/2,

results from empirical process theory (e.g., van der Vaart and Wellner 1996) imply
the desired asymptotic efficiency, notably that

ψ∗
n − ψ0 = (Pn − P0)D(1)∗(P0) + oP(n−1/2) .

To construct an estimator P∗
n solving (26.1), TMLE relies on an initial estimator Pn,0

of P0, obtained, for example, using super learning (van der Laan and Dudoit 2003;
van der Vaart et al. 2006; van der Laan et al. 2007; Polley et al. 2011) for optimal
performance, and a so-called least favorable parametric submodel {Pn,0(ε) : ε} ⊂ M
such that

1. Pn,0(0) = Pn,0, and
2. D(1)∗(Pn,0) lies in the closure of the linear span of all scores of ε at ε = 0.
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A single update of TMLE is given by Pn,1 := Pn,0(ε0
n ), where

ε0
n := arg maxεPn log pn,0(ε)

is the MLE in the parametric submodel constructed and pn,0(ε) := dPn,0(ε)/dμ is
the Radon-Nikodym derivative of Pn,0 with respect to some dominating measure
μ. Subsequently, the least favorable submodel previously constructed using Pn,0 is
constructed using Pn,1 and the process is repeated to map Pn,1 into a further update
Pn,2. This process is repeated until convergence. The TMLE of P0 is then defined
as the limit of this iterative algorithm, say P∗

n ∈ M , while the TMLE of ψ0 is the
corresponding substitution estimator ψ∗

n := Ψ (P∗
n). At each step j for which ε j

n is an
interior point, the MLE ε

j
n of ε solves the score equation 0 = ∂

∂ε
Pn log pn, j(ε)

∣∣∣
ε=ε

j
n
,

where pn, j(ε) := dPn, j(ε)/dμ is the Radon-Nikodym derivative of Pn, j relative to μ.
Therefore, we obtain that

PnD(1)∗(P∗
n) =

∂

∂ε
Pn log p∗n(ε)

∣∣∣∣∣
ε=0
= 0

since the submodel {P∗
n(ε) : ε} has score D(1)∗(P∗

n) for ε at ε = 0, where p∗n is the
Radon-Nikodym derivative of P∗

n relative to μ.

26.1.2 Extensions of TMLE

The above iterative algorithm relies on the log-likelihood loss, which directly moti-
vates the nomenclature targeted maximum likelihood estimator. However, provided
an appropriate loss function can be identified, the same idea can be applied to
any representation of the target parameter as Ψ (P) = Ψ1(Q) with Q := Q(P),
where Q(P) represents the relevant portion of P for the sake of computing Ψ (P),
provided D(1)∗(P) := D(1)∗(Q, g) can be written in terms of Q and a nuisance param-
eter g := g(P). This generalized algorithm, referred to as targeted minimum loss-
based estimation, requires an initial estimator (Qn,0, gn) of (Q0, g0), a loss function
(o,Q) �→ L(Q)(o) such that Q0 = arg minQ∈Q P0L(Q) with Q := {Q(P) : P ∈ M },
a least favorable submodel {Qn,0(ε) : ε} ⊂ Q which generally depends on gn and is
such that components of the generalized score

∂

∂ε
L(Qn,0(ε))

∣∣∣∣∣
ε=0

span D(1)∗(Qn,0, gn). An updating scheme directly analogous to that described above
is then defined, where minimization of the empirical risk is performed instead of
maximization of the log-likelihood—this yields a targeted estimator Q∗

n and corre-
sponding targeted minimum loss-based estimator Ψ1(Q∗

n) of ψ0 such that

PnD(1)∗(Q∗
n, gn) = 0 ,

an integral requirement for asymptotic linearity and efficiency.
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A simple but key observation is that, for the sake of ascribing additional proper-
ties to the TMLE, a targeted estimate g∗n of g0 can be constructed to solve specified
equations and Q∗

n can easily be tailored to solve additional equations of interest.
This is accomplished notably by incorporating additional parameters in the least fa-
vorable parametric submodel through (Qn,0, gn). This generality of TMLE has been
utilized in several instances before (e.g., van der Laan and Rubin 2006; Rubin and
van der Laan 2011; van der Laan and Rose 2011; Gruber and van der Laan 2012b;
Lendle et al. 2013; van der Laan 2014b) and plays a fundamental role in the con-
struction of a higher-order TMLE, as described in this article.

26.1.3 Second-Order Asymptotic Expansions

The first-order expansion (26.2), which forms the basis of TMLE, is a direct con-
sequence of the first-order strong differentiability of the parameter mapping Ψ over
M . If the asymptotic negligibility of the resulting second-order remainder term
R2(P∗

n, P0) is implausible, it may be sensible to instead utilize a second-order ex-
pansion. The associated remainder term of such an expansion will generally be
asymptotically negligible under weaker conditions.

Denote by L2∗
0 (P2) the Hilbert space of square-integrable real-valued functions

defined on the support of P2, symmetric in its two arguments, and satisfying that
∫

f (o1, o)dP(o1) =
∫

f (o, o2)dP(o2) = 0

for P-almost every o, equipped with the inner product

〈 f1, f2〉P2 := P2( f1 f2) =
∫

f1(o1, o2) f2(o1, o2)dP(o1)dP(o2) .

If for any P1, P2 ∈ M the representation

Ψ (P2) − Ψ (P1) = (P2 − P1)D(1)(P2) +
1
2

(P2 − P1)2D(2)(P2) + R3(P1, P2)

= −P1D(1)(P2) − 1
2

P2
1D(2)(P2) + R2(P1, P2) (26.4)

holds for some element D(2)(P2) ∈ L2∗
0 (P2

2) and a third-order remainder term
R3(P1, P2) such that R3(P1, P2)/Δ2(P1, P2) → 0 as Δ(P1, P2) → 0 for some dis-
tance Δ on M , then Ψ is said to be second-order strongly differentiable over M .
Any such element D(2)(P) is called a second-order gradient of Ψ at P (Pfanzagl
1985).

In order to construct a 2-TMLE, it will be necessary to identify a gradient
D(2)(P) ∈ L2∗

0 (P2) such that either o1 �→ D(2)(P)(o1, o) or o2 �→ D(2)(P)(o, o2) lies
in TM (P) for each o ∈ O. Any such element will be referred to as a second-order
partial canonical gradient. The notion of second-order scores, tangent spaces and
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canonical gradients have been defined and studied before (see, e.g., Pfanzagl 1985;
Robins et al. 2009; van der Vaart 2014). These concepts are useful for the sake of
obtaining a second-order partial canonical gradient since, in particular, any second-
order canonical gradient is also a second-order partial canonical gradient. In Carone
et al. (2014), we provide a self-contained overview of these concepts, including an
account of the link between strong differentiability and pathwise differentiability.
We also provide a constructive approach for obtaining a second-order gradient and
deriving the second-order canonical gradient.

Denoting by f ◦ the symmetrization

(o1, o2) �→ f ◦(o1, o2) :=
f (o1, o2) + f (o2, o1)

2

of a given function (o1, o2) �→ f (o1, o2) ∈ R, we note that P2 f = P2 f ◦ for any mea-
sure P ∈ M . As will become clear below, since in the construction of a 2-TMLE the
second-order partial canonical gradient D(2)(P) appears only via empirical moments
of the form

P2
nD(2)(P)

for P ∈ M , any element D(2)
+ (P) ∈ L2

0(P2) such that P2
nD(2)
+ (P) = P2

nD(2)(P) for
each P ∈ M could be used in practice. In view of this observation and to simplify
our presentation, hereafter we allow abuse of definition and refer as second-order
gradient or canonical gradient any element of L2

0(P2) whose symmetrization is a
second-order partial canonical gradient or canonical gradient of Ψ at P ∈ M .

26.1.4 Construction of a 2-TMLE

One of the main conditions in the proof of asymptotic efficiency for the TMLE is
that the second-order term R2(P∗

n, P0) must be oP(n−1/2). In this article, our goal is
to construct a TMLE in which this second-order remainder condition is replaced
by a third-order remainder condition, requiring instead that R3(P∗

n, P0) is oP(n−1/2).
This will facilitate the construction of estimators known to be asymptotically linear
and efficient under less stringent and therefore more realistic conditions on rates of
convergence of the initial estimators used in TMLE.

To achieve this, it is necessary to include additional targeted fitting in the con-
struction of P∗

n based on a higher-order asymptotic expansion of Ψ around P0. If Ψ
is second-order strongly differentiable at P0 in the sense that (26.4) holds at P1 = P0,
then for any P∗

n ∈ M such that (26.1) holds and any second-order partial canonical
gradient D(2)(P), it is possible to write

Ψ (P∗
n) − Ψ (P0) = (Pn − P0)D(1)∗(P∗

n) − 1
2

P2
0D(2)(P∗

n) + R3(P∗
n, P0) .
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In view of this, we will arrange that the TMLE not only solves PnD(1)∗(P∗
n) = 0 but

also the V-statistic equation

0 = P2
nD(2)(P∗

n) =
1
n2

n∑

i=1

n∑

j=1

D(2)(P∗
n)(Oi,Oj)

by including additional parameters in the least favorable parametric submodel. This
allows us to obtain that

Ψ (P∗
n) − Ψ (P0) = (Pn − P0)D(1)∗(P∗

n) +
1
2

(P2
n − P2

0)D(2)(P∗
n) + R3(P∗

n, P0) .

Lemma 26.1 provides conditions under which (P2
n − P2

0)D(2)(P∗
n) converges in prob-

ability to zero at a rate faster than n−1/2. Asymptotic efficiency is then established
as above but with the condition R2(P∗

n, P0) = oP(n−1/2) replaced by R3(P∗
n, P0) =

oP(n−1/2).
Our proposed 2-TMLE is based on a remarkably simple observation: if we denote

D̄(2)
n (P∗

n)(Oi) :=
1
n

n∑

j=1

D(2)(P∗
n)(Oi,Oj) ,

then D̄(2)
n (P∗

n) can itself be perceived as a score at P∗
n—here, we suppose without loss

of generality that o1 �→ D(2)(P)(o1, o) is in TM (P) for each o ∈ O. Furthermore, we
can write

P2
nD(2)(P∗

n) =
1
n

n∑

i=1

D̄(2)
n (P∗

n)(Oi) = PnD̄(2)
n (P∗

n) .

As a consequence, we may simply augment our least favorable parametric submodel
{P(ε1) : ε1} with score D(1)∗(P) at ε1 = 0 in the 1-TMLE to also include a parameter
ε2 such that the expanded least favorable submodel {P(ε1, ε2) : ε1, ε2} also generates
the score D̄(2)

n (P) at (ε1, ε2) = (0, 0). In this manner, the resulting 2-TMLE P∗
n solves

the collection of equations

0 = PnD(1)∗(P∗
n)

0 = PnD̄(2)(P∗
n) = P2

nD(2)(P∗
n) .

Thus, the proposed 2-TMLE is no more than a usual 1-TMLE with least favorable
submodel extended in a particular manner.

It is important to note that the construction above would not be possible with
just any second-order gradient: for arranging a TMLE construction, it is critical that
one of its coordinate projections uniformly lie in the tangent space TM (P). This
property generally applies to second-order canonical gradients, which can therefore
typically be relied upon for defining a proper 2-TMLE.
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26.1.5 Insufficiently Differentiable Target Parameters

As has been noted in Robins et al. (2009), most statistical parameters of interest are
unfortunately not smooth enough as functions of the data-generating distribution to
allow the required expansion for R2(P∗

n, P0). These second-order remainder terms
often involve squared differences between a density estimator and the true density.
As a consequence, while R2(P∗

n, P0) can often itself be expanded into second-order
differences between P∗

n and P0, these second-order terms cannot be represented as
the expectation under P0 of a second-order gradient D(2)(P∗

n). This is a significant
hurdle for any method aiming to carry out higher-order bias reduction; in particular,
it is a challenge we must face when constructing a higher-order TMLE.

In such cases, we will search for a surrogate D(2)
h , indexed by a smoothing pa-

rameter h, such that

R2(P∗
n, P0) = −1

2
lim
h→0

P2
0D(2)

h (P∗
n) + R3(P∗

n, P0)

for some third-order remainder R3(P∗
n, P0), thus leading to the representation

R2(P∗
n, P0) = −1

2
P2

0D(2)
h (P∗

n) + Bn(h) + R3(P∗
n, P0) .

Here, the representation error Bn(h) := [P2
0D(2)

h (P∗
n) − limh→0 P2

0D(2)
h (P∗

n)]/2 quanti-
fies the bias resulting from this approximation of a second-order gradient. We may
therefore write

Ψ (P∗
n) − Ψ (P0) = (Pn − P0)D(1)∗(P∗

n) − 1
2

P2
0D(2)

h (P∗
n) + Bn(h) + R3(P∗

n, P0) .

In order to preserve the validity of our general proof of asymptotic efficiency of
the 2-TMLE above, we will require that Bn(h) tend to zero faster than n−1/2 for an
appropriately chosen tuning parameter h = hn under appropriate smoothness condi-
tions for P0. When using kernel smoothing to construct approximate second-order
gradients, choosing a bandwidth sequence that tends to zero sufficiently fast and
utilizing higher-order kernels that leverage potential smoothness in the underlying
distribution P0 will often suffice to ensure that Bn(hn) is asymptotically negligible.

Because the least favorable submodel used has scores at ε = 0 that span both
D(1)∗(P) and D̄(2)

hn
(P), the construction of our proposed 2-TMLE guarantees that

PnD(1)∗(P∗
n) = P2

nD(2)
hn

(P∗
n) = 0

for some value hn of the tuning parameter. In practice, selection of the tuning pa-
rameter hn requires great care. On one hand, to ensure that

(P2
n − P2

0)D(2)
hn

(P∗
n)
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converges to zero in probability faster than n−1/2, hn must generally tend to zero
slowly enough. On the other hand, for the representation error to be asymptotically
negligible, it is required that hn tend to zero quickly enough. This constitutes the
primary theoretical challenge this 2-TMLE must contend with as a result of the tar-
get parameter failing to be second-order pathwise differentiable: namely, selection
of hn necessarily involves a careful balance to ensure that

1
2

(P2
n − P2

0)D(2)
hn

(P∗
n) + Bn(hn) = oP(n−1/2) .

This involves a sensible trade-off between control of the V-statistic term and the
representation error.

Of course, this theoretical challenge translates directly into a fundamental practi-
cal challenge. Indeed, one algorithm within a large collection of candidate 2-TMLE
algorithms, each indexed by the corresponding choice of h, must be chosen in prac-
tice. Optimal rates for hn can often be derived in particular applications, but these
are primarily of theoretical interest and generally provide little or no practical guid-
ance regarding the selection of hn. Fortunately, this is precisely the kind of challenge
TMLE can very naturally handle, notably by adjudicating the quality of a particular
tuning value h based on the gain in fit resulting from the ensuing parametric TMLE
updating step. This is accomplished formally within the C-TMLE framework previ-
ously referenced and discussed later.

26.2 Inference Using Higher-Order TMLE

We assume, in this section, that the target parameter is second-order strongly dif-
ferentiable at P0 and that (26.4) holds at P1 = P0 for a given second-order partial
canonical gradient D(2)(P).

26.2.1 Asymptotic Linearity and Efficiency

Under prescribed conditions, a 2-TMLE will be asymptotically linear and efficient
irrespective of the particular second-order partial canonical gradient selected. A pre-
cise enumeration of these conditions are given in the below theorem.

Theorem 26.1. Suppose that the target parameter Ψ admits the second-order ex-
pansion Ψ (P) − Ψ (P0) = −P0D(1)∗(P) − 1

2 P2
0D(2)(P) + R3(P, P0), and that P∗

n ∈ M
satisfies the equations

PnD(1)∗(P∗
n) = 0 and P2

nD(2)(P∗
n) = PnD̄(2)

n (P∗
n) = 0

with D̄(2)
n (P∗

n)(o) := 1
n

∑n
i=1 D(2)(P∗

n)(o,Oi). Then, provided that
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1. there exists a P0-Donsker class F such that D(1)∗(P∗
n) is in F with probability

tending to one, and P0

[
D(1)∗(P∗

n) − D(1)∗(P0)
]2
= oP(1);

2. (P2
n − P2

0)D(2)(P∗
n) = oP(n−1/2);

3. R3(P∗
n, P0) = oP(n−1/2);

ψ∗
n is an asymptotically linear estimator of ψ0 with influence function D(1)∗(P0). It is

thus also asymptotically efficient.

Verification of condition 2 in this theorem may seem particularly daunting. The
following lemma, which relies upon the concept of uniform sectional variation norm
(Gill et al. 1995), provides a set of conditions that suffice to establish condition 2 and
may be easier to verify in practice. For a given function f : Rd → R, the uniform
sectional variation norm ‖ f ‖∗v of f is defined as ‖ f ‖∗v := sups supxs

∫
| f (dxs, x−s)|,

where the supremum is over all possible sections of f and
∫
| f (dxs, x−s)| represents

the variation norm of the section xs �→ f (xs, x−s). Here, the latter section is defined
by a given subset s ⊆ {1, . . . , d}, xs := (x j : j ∈ s) and x−s := (x j : j � s).

Lemma 26.1. Provided it can be established that

1. the mappings o �→
∫

D(2)(P∗
n)(o, o2)dP0(o2) and o �→

∫
D(2)(P∗

n)(o1, o)dP0(o1)
are contained in some fixed P0-Donsker class G with probability tending to one;

2.
∫ [∫

D(2)(P∗
n)(o1, o2)dP0(o1)

]2
dP0(o2) and

∫ [∫
D(2)(P∗

n)(o1, o2)dP0(o2)
]2

dP0(o1) both tend to zero in probability;

3. n−1/2‖D(2)(P∗
n)‖∗v = oP(1),

then condition 2 of Theorem 1 holds.

26.2.2 Constructing Confidence Intervals

The same techniques for constructing confidence intervals based on the usual TMLE
can be utilized in the context of a higher-order TMLE. Since a 2-TMLE ψ∗

n is asymp-
totically linear with influence function D(1)∗(P0), it follows that n1/2(ψ∗

n − ψ0) con-
verges in law to a normal variate with mean zero and variance σ2

0 := P0[D(1)∗(P0)]2.
This suggests that the Wald-type interval

(
ψ∗

n − z1−α/2σnn−1/2, ψ∗
n + z1−α/2σnn−1/2

)
, (26.5)

where σ2
n := Pn[D(1)∗(P∗

n)]2 and zβ is the β-quantile of the standard normal distri-
bution, has asymptotic coverage level (1 − α). TMLE procedures of different order
exhibit identical first-order behavior, although inclusion of higher-order terms will
generally guarantee such behavior holds under a wider range of scenarios. The in-
terval (26.5) can therefore be utilized with any higher-order targeted estimator P∗

n
of P0.
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The above approach provides asymptotically correct inference. However, it does
not explicitly utilize the higher-order expansion upon which a 2-TMLE is con-
structed. It is plausible that confidence intervals with improved finite-sample per-
formance may be obtained by incorporating higher-order terms from this expansion.
For this purpose, a simple bootstrap approach can be devised based on the fact that,
provided a random sample O#

1, . . . ,O
#
n ∼ P◦

n for some consistent estimator P◦
n of P0,

the conditional distribution of the bootstrapped statistic Z#
n , defined as

n−1/2
n∑

i=1

[
D(1)∗(P∗

n)(O#
i ) − PnD(1)∗(P∗

n)
]

+
n−3/2

2

n∑

i=1

n∑

j=1

[
D(2)(P∗

n)(O#
i ,O

#
j ) − P2

nD(2)(P∗
n)
]
,

given Pn and the distribution of n1/2(ψn−ψ0) approximate each other arbitrarily well
for large n and for almost every Pn. Obvious choices for P◦

n include, for example, the
empirical measure Pn and the targeted estimator P∗

n. This suggests the confidence
interval

(
ψ∗

n − q1−α/2,nn−1/2, ψ∗
n − qα/2,nn−1/2

)

with qβ,n the β-quantile of the conditional distribution of Z#
n given Pn. Of course,

these quantiles can be estimated arbitrarily well by simulation. This confidence
interval is easy to implement and takes into account the second-order variability
explained by the V-statistic process implied by the second-order partial canonical
gradient D(2)(P).

26.2.3 Implementing a Higher-Order TMLE

The practical implementation of a higher-order TMLE is no more difficult than a
regular TMLE since the former can indeed be seen as an example of the latter. The
additional effort involved, in reality, lies in the computation of higher-order partial
canonical gradients, or of suitable approximations to such if need be, as discussed in
the next section. Below, we describe the implementation of a second-order targeted
minimum loss-based estimator.

Given independent variates O1,O2, . . . ,On distributed according to P0 ∈ M , we
wish to estimate ψ0 := Ψ (P0) for a given target parameter Ψ : M → R of interest.
Suppose that the parameter P �→ Q(P) satisfies that

1. Ψ = Ψ1 ◦ Q for some mapping Ψ1 : Q(M ) → R, and
2. Q0 = arg minQ∈Q(M ) P0L(Q) for some loss function (o,Q) �→ L(Q)(o).

Here, Q0 represents the true summary Q(P0). With slight abuse of notation, for the
sake of notational convenience, we take Ψ (Q) to mean Ψ1(Q) hereafter. Several
parametrizations may be possible and it will generally be preferable to choose the
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least complex such parametrization for which we can find an appropriate loss func-
tion and parametric fluctuation submodels with scores at Q spanning the appropriate
empirical gradients, as described below.

Let g = g(P) be a nuisance parameter and write g0 := g(P0). Suppose that the
first-order canonical gradient D(1)∗(P) of Ψ can be represented as D(1)∗(Q(P), g(P))
and that D(2)(P) := D(2)(Q(P), g(P)) is any associated second-order partial canonical
gradient of Ψ . Similar abuse of notation is tolerated here as well. Suppose, as before,
that o1 �→ D(2)(P)(o1, o2) lies in TM (P) for each o2. Then, setting

D̄(2)
n (Q, g)(o) :=

1
n

n∑

j=1

D(2)(P)(o,Oj) ,

we have that D̄(2)
n (Q, g) ∈ TM (P) and will play the role of a second-order score at P.

Let Q(Q, g) := {Qg(ε) : ε} ⊂ Q(M ) be a second-order least favorable submodel,
in the sense that Qg(0) = Q and both D(1)∗(Q, g) and D̄(2)

n (Q, g) lie in the closure of
the linear span

{
zT ∂

∂ε
L(Qg(ε))

∣∣∣∣∣
ε=0

: z ∈ R
p

}

of the generalized score vector at ε = 0, where p denotes the dimension of ε.
Suppose that an initial estimator (Qn,0, gn) of (Q0, g0) is at our disposal. As with a

regular TMLE, a 2-TMLE will generally be an iterative procedure, though analytic
convergence after a single step can be demonstrated in important examples. A 2-
TMLE updating step will be identical to that of a regular TMLE, except for the
use of a second-order rather than first-order least favorable submodel. Specifically,
given the current estimate Qn,m of Q0, the updated estimate Qn,m+1 is defined as

Qn,m+1 := arg minQ∈Q(Qn,m,gn)PnL(Q) .

Alternatively, setting εm
n := arg minε PnL(Qn,m(ε)), we can express the updated es-

timate of Q0 as Qn,m+1 := Qn,m,gn (εm
n ). This iterative updating step will generally

be repeated until convergence, adjudicated by εm
n being sufficiently close to zero.

Denoting by Q∗
n the limit of this iterative procedure, the 2-TMLE of ψ0 is given by

ψ∗
n := Ψ (Q∗

n). The desirable asymptotic properties of ψ∗
n are in large part a conse-

quence of the fact that

PnD(1)∗(Q∗
n, gn) = PnD̄(2)

n (Q∗
n, gn) = 0

by construction.

26.3 Inference Using Approximate Second-Order Gradients

The theory of higher-order TMLE outlined above applies to settings wherein the
parameter is higher-order pathwise differentiable. However, as indicated before, in
realistic models, many parameters of interest are not smooth enough as functionals
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of the data-generating distribution to admit even a second-order gradient. Nonethe-
less, a useful higher-order theory can still be developed with the introduction of
approximate higher-order partial canonical gradients.

26.3.1 Asymptotic Linearity and Efficiency

The following theorem, which is a direct generalization of Theorem 26.1 allowing
for the lack of existence of a second-order partial canonical gradient, illustrates this
in the case of the 2-TMLE.

Theorem 26.2. Suppose that for each h the element D(2)
h (P) ∈ L2

0(P2) satisfies that

o1 �→ D(2)
h (P)(o1, o)

lies in TM (P) for each o ∈ O, that the target parameter Ψ admits the second-order
expansion Ψ (P) − Ψ (P0) = −P0D(1)∗(P) − 1

2 limh→0 P2
0D(2)

h (P) + R3(P, P0), and that
P∗

n ∈ M satisfies the equations

PnD(1)∗(P∗
n) = 0 and P2

nD(2)
hn

(P∗
n) = PnD̄(2)

hn,n
(P∗

n) = 0

with D̄(2)
hn,n

(P∗
n)(o) := 1

n

∑n
i=1 D(2)

hn
(P∗

n)(o,Oi). Then, provided that

1. there exists a P0-Donsker class F such that D(1)∗(P∗
n) is in F with probability

tending to one, and P0

[
D(1)∗(P∗

n) − D(1)∗(P0)
]2
= oP(1);

2. (P2
n − P2

0)D(2)
hn

(P∗
n) = oP(n−1/2);

3. Bn(hn) := 1
2

[
P2

0D(2)
hn

(P∗
n) − limh→0 P2

0D(2)
h (P∗

n)
]
= oP(n−1/2);

4. R3(P∗
n, P0) = oP(n−1/2);

ψ∗
n is an asymptotically linear estimator of ψ0 with influence function D(1)∗(P0). It is

thus also asymptotically efficient.

Sufficient conditions for establishing the validity of condition 2 in the above theorem
are identical to those discussed in Lemma 26.1 upon replacing the second-order
partial canonical gradient by its approximation. On one hand, hn must not tend to
zero too quickly to ensure appropriate control of the uniform sectional variation
norm. On the other hand, hn must tend to zero quickly enough for the representation
error to be asymptotically negligible. A careful trade-offmust therefore be achieved.

26.3.2 Implementation and Selection of Tuning Parameter

A 2-TMLE procedure yields an estimate P∗
n ∈ M of P0 such that

PnD(1)∗(P∗
n) = PnD̄(2)

hn,n
(P∗

n) = 0 ,
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where D̄(2)
hn,n

(P∗
n) is defined similarly as D̄(2)

n (P∗
n) but with D(2) replaced by D(2)

hn
. Thus,

a 2-TMLE procedure can be defined in exactly the same way as in Sect. 26.2.3,
where the scores from second-order terms are replaced by their corresponding ap-
proximation. As such, except for the selection of an appropriate tuning parameter
value hn, the algorithm is no more difficult to implement than when second-order
gradients exist. Of course, the key practical challenge lies in determining an appro-
priate value for hn.

The choice of h in this problem determines the least favorable parametric sub-
model used in the TMLE algorithm. Thus, the selection of h can be seen as com-
pletely analogous to the selection of an estimator of the treatment or censoring
mechanism, principal determinants of the first-order least favorable submodel, in the
problem of estimating a g-computation parameter when all potential confounders
have been recorded or when the available data are subject to censoring. C-TMLE,
as described, thoroughly discussed and implemented in van der Laan and Gruber
(2010), Gruber and van der Laan (2010a), Stitelman and van der Laan (2010),
van der Laan and Rose (2011), Wang et al. (2011a), Gruber and van der Laan
(2012b), and Chap. 10 of this book, provides a principled solution to this problem.
This approach can readily be utilized here as well.

C-TMLE consists of a TMLE algorithm that automatically selects among a col-
lection of candidate least favorable parametric submodels in its updating step. For
each candidate submodel, the resulting TMLE algorithm yields a decrease in em-
pirical risk; the magnitude of this change can serve as a criterion for adjudicating
the value of this particular submodel. C-TMLE uses precisely this criterion for data-
adaptively building or selecting a least favorable parametric submodel, and thereby a
corresponding TMLE. Under certain regularity conditions, the resulting estimator is
asymptotically linear and efficient provided at least one of the candidate submodels
allows for complete bias reduction asymptotically.

Specifically, denoting by (Qn,0, gn) an initial estimate of (Q0, g0) and letting h in-
dex a candidate second-order least favorable submodel determined by D(1)∗(Qn,0, gn)
and D(2)

h (Qn,0, gn), a C-TMLE solution would first select the h-value for which the
possible decrease in the empirical risk PnL(Qh,n,0(ε)) along the corresponding h-
specific parametric submodel {Qh,n,0(ε) : ε} through Qn,0 is maximal and perform a
single updating step along this submodel. In other words, h0

n would be selected as
the minimizer of

h �→ PnL(Qh,n,0(ε0
n (h)))

with ε0
n (h) := arg minε PnL(Qh,n,0(ε)) for each h and the first update would then be

Qn,1 := Qh0
n,n,0(ε0

n (h0
n)). The next targeting step would be carried out similarly, with

subsequent choices of h constrained to be no larger than h0
n. Specifically, letting

h1
n denote the minimizer of h �→ PnL(Qh,n,1(ε1

n (h))) over the interval [0, h0
n], where

ε1
n (h) := arg minε PnL(Qh,n,1(ε)) for each h, the updated estimate of Q0 would then

be Qn,2 := Qh1
n,n,1(ε1

n (h1
n)). This iterative process would proceed until the decrease in

empirical risk from an additional step is no longer significant according to some pre-
specified criterion, such as BIC or some cross-validation risk, for example. Denoting
the final estimate of Q0 and the final value of hn at convergence by Q∗

n and h∗n,
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respectively, the TMLE Ψ (Q∗
n) could be directly used, or the 2-TMLE based on the

initial estimate Qn,0 and final tuning parameter choice h = h∗n could be constructed
anew.

In the scheme proposed above, the performance of a particular h-value is adjudi-
cated on the basis of the decrease in empirical risk resulting from a single targeting
step. While this seems sensible in settings where convergence of the TMLE updat-
ing process occurs analytically in a single step, in other settings, it may not be an
optimal way to proceed. As an alternative, it would be possible to carry out a fully
iterated TMLE until convergence for every choice of h, to select the optimal h-value
on this basis, and then, to repeat until overall convergence. Of course, this variant of
the algorithm would be potentially much more computationally intensive.

The approach described above is used to fully automate the selection of the tun-
ing parameter required in the setting of a 2-TMLE based on an approximate second-
order partial canonical gradient. The same principle could be used to construct more
involved collaborative TMLE algorithms that not only select tuning parameters
but also other choices that define the approximate second-order partial canonical
gradient.

26.4 Illustration: Estimation of a g-Computation Parameter

We provide a concrete example of the above algorithm by developing a 2-TMLE
in the context of estimation of ψ0 := Ψ (P0) using n independent copies of
O = (W, A,Y) ∼ P0, where Ψ (P) = EPEP(Y | A = 1,W) is the point interven-
tion g-computation parameter. Under untestable causal assumptions, this parameter
corresponds to the mean of the counterfactual outcome corresponding to the point
intervention A = 1.

Denoting by o := (w, a, y) a possible realization of O, and writing ḡ(w) := P(A =
1 | W = w), Q̄(w) := EP(Y | A = 1,W = w) and QW is the density of the marginal
distribution of W with respect to an appropriate counting measure, the first-order
canonical gradient is known in this case to be

P �→ D(1)∗(P) := D(1)∗
Y (P) + D(1)∗

W (P) ,

where we have defined pointwise

D(1)∗
Y (P)(o) := H(1)(ḡ)(a,w)

[
y − Q̄(w)

]
and D(1)∗

W (P)(o) := Q̄(w) − Ψ (P) ,

with H(1)(ḡ)(a,w) := a/ḡ(w) and ḡ(w) := P(A = 1 | W = w). With this definition,
we find that Ψ (P) − Ψ (P0) = −P0D(1)∗(P) + R2(P, P0) with

R2(P, P0) := P0

[(
ḡ − ḡ0

ḡ

)
(Q̄ − Q̄0)

]
,
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where ḡ0 and Q̄0 denote ḡ and Q̄, respectively, under P0. Our goal is to find a repre-
sentation R2(P, P0) = − 1

2 P2
0D(2)(P) + R3(P, P0). Below, we deal separately with the

cases wherein W has finite versus infinite support.

26.4.1 Case I: Finite Support

Suppose that W has finite support under each considered P. It can be shown that
the second-order canonical gradient at P and at (o1, o2), with o1 := (w1, a1, y1) and
o2 := (w2, a2, y2), is given by the symmetrization of

D(2)(P)(o1, o2) := H(2)(P)(w1, a1,w2, a2)[y1 − Q̄(w1)] , (26.6)

where

H(2)(P)(w1, a1,w2, a2) :=
2a1I(w1 = w2)
ḡ(w1)QW (w1)

[
1 − a2

ḡ(w1)

]
.

It is not difficult to directly verify that indeed

1
2

P2
0D(2)(P) = −P0

[(
ḡ − ḡ0

ḡ

)
(Q̄ − Q̄0)

]
+ R3(P, P0) , (26.7)

where R3(P, P0) is given by

P0

[(
1 −

ḡ0QW,0

ḡQW

) (
ḡ − ḡ0

ḡ

)
(Q̄ − Q̄0)

]
.

Thus, it holds that Ψ (P)−Ψ (P0) = −P0D(1)∗(P)− 1
2 P0D(2)(P)+R3(P, P0) for a third-

order term R3(P, P0), as desired. Since W is finitely supported, the event {W1 = W2}
occurs with positive probability and thus D(2)(P) is not degenerate.

In this case, the target parameter Ψ (P) depends on P via Q(P) = (Q̄(P),QW (P)).
It is straightforward to verify that the loss function L(Q) := L1(Q̄) + L2(QW ), where
we define

L1(Q̄)(o) := −a
[
y log Q̄(w) + (1 − y) log(1 − Q̄(w))

]
and

L2(QW )(o) := − log QW (w)

pointwise for each o = (w, a, y), is such that (Q̄0,QW,0) := (Q̄(P0),QW (P0)) indeed
minimizes the true risk P0L(Q).

Setting g(P) := ḡ, both D(1)∗(P) and D(2)(P) depend on P through (Q(P), g(P)),
and the components of (Q(P), g(P)) are variationally independent of each other since
they involve orthogonal portions of the likelihood. This provides greater flexibility
in constructing appropriate fluctuation submodels. Defining

D̄(2)
n (P)(o) := H̄(2)

n (P)(w, a)
[
y − Q̄(w)

]



500 M. Carone et al.

with H̄(2)
n (P)(w, a) := 1

n

∑n
j=1 H(2)(P)(w, a,Wj, Aj), we note that D̄(2)

n (P) ∈ TM (P)
and in fact is a score of the conditional distribution of Y given A and W. Furthermore,
we observe that

PnD̄(2)
n (P) = P2

nD(2)(P) .

We also note that, at QW = QW,n, the empirical distribution of W,

H̄(2)
n (P)(w, a) =

2a
ḡ(w)

[
1 −

ḡn,NP(w)
ḡ(w)

]
,

where ḡn,NP(w) :=
∑n

i=1 I(Ai = 1,Wi = w)/
∑n

i=1 I(Wi = w) is the nonparametric
maximum likelihood estimator of ḡ0(w).

We can readily verify that PnD(1)∗
W (P) = 0 if QW (P) = QW,n. Thus, if the initial

estimator of QW,0 is taken to be QW,n, to achieve our objective of solving the requisite
first- and second-order estimating equations, it will suffice to produce an estimate
Q̄∗

n of Q̄0 satisfying

PnD(1)∗
Y (Q̄∗

n,QW,n, ḡn) = PnD̄(2)
n (Q̄∗

n,QW,n, ḡn) = 0 (26.8)

with ḡn our initial estimate of ḡ0. Given any particular Q̄, QW and ḡ, the submodel
determined by

Q̄ḡ,QW (ε) := expit
[
logit(Q̄) + ε1H(1)(ḡ) + ε2H̄(2)

n (ḡ,QW )
]

with ε := (ε1, ε2) satisfies that Q̄ḡ,QW (0) = Q̄ as well as

∂

∂ε1
L(Q̄ḡ,QW (ε),QW )(o)

∣∣∣∣∣
ε=0
= H(1)(ḡ)(o)

[
y − Q̄(w)

]
= D(1)∗

Y (P)(o) ,

∂

∂ε2
L(Q̄ḡ,QW (ε),QW )(o)

∣∣∣∣∣
ε=0
= H̄(2)

n (ḡ,QW )(o)
[
y − Q̄(w)

]
= D̄(2)

n (P)(o) .

As such, given an initial estimate (Q̄n,0, ḡn) of (Q̄0, ḡ0), a first updated estimate Q̄n,1

of Q̄0 is obtained by selecting the minimizer of the empirical risk PnL1(Q̄) with Q̄
ranging over the parametric submodel determined by

Q̄n,0(ε) := expit
[
logit(Q̄n,0) + ε1H(1)(ḡn) + ε2H̄(2)

n (ḡn,QW,n)
]

and −∞ < ε1, ε2 < +∞. The optimal values of ε1 and ε2 can be readily obtained
as estimated regression coefficients in the fit of a logistic regression model with
outcome Yi, covariates H(1)(ḡn)(Oi) = Ai/ḡn(Wi) and

H̄(2)
n (ḡn,QW,n)(Oi) =

2Ai

ḡn(Wi)

[
1 −

ḡn,NP(Wi)
ḡn(Wi)

]
,

and offset logit(Q̄n,0(Wi)) restricted to the subset of data points for which Ai = 1. It is
not difficult to see that any further attempt to update Q̄n,1 by considering the second-
order least favorable submodel through it will not produce any change. As such, in
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this case, the algorithm terminates in a single step, so that Q̄∗
n = Q̄n,1 and (26.8)

must then hold. The resulting 2-TMLE of ψ0 is finally given by

Ψ (Q̄∗
n,QW,n) =

1
n

n∑

i=1

Q̄∗
n(Wi) .

This estimator allows concrete theoretical gains relative to the 1-TMLE described
previously and preliminary simulation results suggest these indeed translate well
into practical gains, as reported below.

In the algorithm described above, there was no need to update the estimate of
QW,0 at all. This resulted from the selection of the NPMLE QW,n as initial estimator
and of the log-likelihood loss for QW . Had any of these two choices differed, it would
generally have been necessary to iteratively update the estimate of QW,0 using an
appropriate fluctuation submodel to ensure that the resulting targeted estimate Q∗

W,n
satisfy that

PnD(1)∗
W (Q̄∗

n,Q
∗
W,n) = 0 ,

leading then to the 2-TMLE of ψ0 given by
∑

w Q̄∗
n(w)Q∗

W,n(w).

26.4.2 Case II: Infinite Support

Suppose now that W has infinite support under each considered P. In such case,
the g-computation parameter generally does not admit a second-order gradient
in the nonparametric model we have been considering. An approximate second-
order canonical gradient can nonetheless be considered, leading to a well-defined
2-TMLE, as we now describe.

Suppose that W := (W(1), . . . ,W(d)) and Wj is real-valued. Defining pointwise

D(2)
h (Q̄, ḡ,QW )(o1, o2) := H(2)

h (ḡ,QW )(w1, a1,w2, a2)[y1 − Q̄(w1)] ,

where we have also defined

H(2)
h (ḡ,QW )(w1, a1,w2, a2) :=

1
hd

K
(w1 − w2

h

) 2a1

ḡ(w1)QW (w1)

[
1 − a2

ḡ(w1)

]

with K a compactly-supported multivariate kernel function and h a positive band-
width, D(2)

h is seen to be a kernel approximation of the second-order partial canonical
gradient D(2) defined in the previous subsection. For each w, we henceforth denote
h−dK(h−1w) by Kh(w). Lemma 1 of Díaz et al. (2016) establishes conditions under
which the bias term arising in a TMLE due to the use of this approximate second-
order canonical gradient is asymptotically negligible.

Computation of the g-computation parameter does not in principle require an
estimate of the density function of W — indeed, an estimate of the distribution



502 M. Carone et al.

function of W suffices. Nonetheless, the second-order targeting process explicitly re-
quires this density function, as is apparent from the form of the approximate second-
order canonical gradient. Thus, to construct a 2-TMLE, an estimate of the density
of W must first be obtained. At least two approaches can be considered to tackle this
issue:

1. a fixed smooth estimate Q◦
W,n of QW,0 is used whenever required in the second-

order targeting process to yield a targeted estimate of Q̄∗
n but final computation

of the targeted estimate of ψ0 is based on the empirical measure QW,n;
2. the same smooth estimate Q◦

W,n of QW,0 is used both in the second-order targeting
process and in the computation of the targeted estimate of ψ0.

The second option requires a substantial amount of additional work since in order
for the smooth estimator Q◦

W,n to be appropriate for the sake of constructing the
targeted estimate of ψ0 it must itself be targeted. As such, it will need to be iteratively
updated along with estimates of Q̄0. This issue is circumvented in the first option
since the empirical distribution QW,n is a NPMLE and therefore already solves the
relevant score equation. For this reason, we recommend the first option in practice
and restrict our attention to this option alone.

Consider the 2-TMLE using the empirical distribution QW,n as initial estimator of
QW,0 in the TMLE algorithm but using a fixed smooth estimator Q◦

W,n in the quantity

H(2)
h (ḡn,Q

◦
W,n)

used to construct the logistic regression-based least favorable submodel through a
current estimate Q̄n,m of Q̄0. This is then precisely an example of the 2-TMLE of
Sect. 26.4. The implementation of this algorithm is particularly simple because a
single step of targeting suffices to achieve analytic convergence. To perform this
single updating step, the maximum likelihood estimate εn of ε = (ε1, ε2) in the
logistic regression model

Q̄n,0,h(ε) := expit
[
logit(Q̄n,0) + ε1H(1)(ḡn) + ε2H̄(2)

h,n(ḡn,Q
◦
W,n)

]

is obtained, with H(1)(ḡn)(o) = a/ḡn(w) and

H̄(2)
h,n(ḡn,Q

◦
W,n)(o) =

1
n

n∑

j=1

1
hd

K

(
w − Wj

h

)
2a

ḡn(w)Q◦
W,n(w)

[
1 −

Aj

ḡn(w)

]

=
2a

ḡn(w)Q◦
W,n(w)

⎡
⎢⎢⎢⎢⎢⎢⎣
1
n

∑

j

Kh(w − Wj) −
1
n

∑
j Kh(w − Wj)Aj

ḡn(w)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

If the kernel estimate Q◦
W,n(w) := 1

n

∑n
i=1 Kh(w − Wi) is used, it is easy to verify that

the simplification

H̄(2)
h,n(ḡn,Q

◦
W,n)(o) =

2a
ḡn(w)

[
1 −

ḡn,h(w)
ḡn(w)

]
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ensues, where ḡn,h(w) :=
∑

j Kh(w−Wj)Aj/
∑

j Kh(w−Wj) is the Nadaraya-Watson
estimator of ḡ0(w) indexed by bandwidth h.

Given the targeted estimate Q̄∗
n,hn

:= Q̄n,0,hn (εn) of Q̄0 based on this single-step

procedure, the resulting 2-TMLE of ψ0 is ψ∗
n := Ψ (Q̄∗

n,hn
,QW,n) = 1

n

∑n
i=1 Q̄∗

n,hn
(Wi).

Below, we will make reference to the third-order remainder term R3 defined as

R3(P, P0) := P0

[(
1 −

QW,0ḡ0

QWḡ

) (
ḡ − ḡ0

ḡ

) (
Q̄ − Q̄0

)]
,

as before. The conditions under which ψ∗
n is an asymptotically linear and efficient

estimator of ψ0 are given in Theorem 1 of Díaz et al. (2016). The theorem includes
the conditions that:

1. The kernel function K is 2d-times differentiable and h2d
n n → +∞, and

2. R3(P∗
n, P0) = oP(n−1/2) and ‖Q̄∗

n − Q̄0‖hm0+1
n = oP(n−1/2),

where m0 is such that both ḡ0 and Q̄0 are (m0 + 1)-times continuously differen-
tiable. As is evident from the above conditions, and according to our discussion in
Sect. 26.1.5, the convergence of the bandwidth hn plays a critical role in the asymp-
totic behavior of the 2-TMLE described.

We remark that when K is indeed taken to be a tensor product of uniform kernels
over (−0.5,+0.5), m0 = 1 and condition 2 becomes more restrictive. While for
d ≤ 2, there does indeed exist a rate hn for which both conditions are true, this
is not the case if d > 2. Therefore, even though higher-order kernels increase the
variation norm and thereby lead to more stringent conditions on hn, when the vector
of potential confounders includes more than two components, it is necessary to use
higher-order kernels that fully exploit the underlying smoothness of the distribution
of (A,W) in order to control the representation error.

A 2-TMLE will generally be asymptotically linear and efficient in a larger model
compared to a corresponding 1-TMLE. On one hand, it is generally true that when-
ever a 1-TMLE is efficient, so will be a 2-TMLE. This means that a 2-TMLE op-
erates in a safe haven wherein we expect not to damage an asymptotically efficient
1-TMLE by performing the additional targeting required to construct a 2-TMLE.
On the other hand, 2-TMLE will be efficient in many instances in which 1-TMLE
is not. As an illustration, suppose that W is a univariate random variable with a suf-
ficiently smooth density function. Suppose also that ḡ0 is smooth enough so that a
univariate second-order kernel smoother produces an optimal estimator of ḡ0. In this
case, efficiency of a 1-TMLE requires that Q̄n tends to Q0 at a rate faster than n−1/10.
In contrast, a corresponding 2-TMLE built upon a second-order canonical gradient
approximated using an optimal second-order kernel smoother will be efficient pro-
vided that Q̄n is consistent for Q̄0, irrespective of the actual rate of convergence. This
problem is exacerbated further if W has several components. For example, if W is
five-dimensional, a 1-TMLE requires that Q̄n tend to Q̄0 faster than n−5/18, whereas
the corresponding 2-TMLE based on a third-order kernel-smoothed approximation
of the second-order canonical gradient requires that Q̄n tend to Q̄0 faster than n−1/5.



504 M. Carone et al.

While the latter is achievable using an optimal second-order kernel smoother, the
former is not, and without further smoothness assumptions on Q̄0, a 1-TMLE will
generally not be efficient.

We may hope that systematic dimension reduction may be performed by replac-
ing Kh(w1 −w2) in the definition of D(2)

h by a kernel-based discrepancy based on the
propensity score at w1 and w2, as discussed in Díaz et al. (2016). This can be ac-
complished if ḡ0 is known, in which case Kh(ḡ0(w1) − ḡ0(w2)) can be used to define
a dimension-reduced approximate second-order partial canonical gradient without
sacrificing the order of the remainder in the associated expansion. Replacing ḡ0 by
ḡ in this kernel discrepancy unfortunately introduces a second-order term in the
remainder, thereby invalidating the theoretical justification for using such a second-
order partial canonical gradient. However, this does not preclude the possibility that
finite-sample benefits might be derived from taking this path. Indeed, in the fol-
lowing section we present numerical results from a simulation study illustrating the
gains of this estimator, which we denote 1	-TMLE, for a particular data-generating
mechanism.

26.4.3 Numerical Results

We present a simulation study illustrating the performance of the 1	-TMLE and 2-
TMLE compared to the 1-TMLE, using covariate dimension d = 3 and sample sizes
n ∈ {500, 1000, 2000, 10,000}. This simulation study was originally presented in
Díaz et al. (2016). For each sample size n ∈ {500, 1000, 2000, 10,000}, we simulated
1000 datasets from the joint distribution implied by the conditional distributions

W1 ∼ Beta(2, 2)

W2 | W1 = w1 ∼ Beta(2w1, 2)

W3 | W1 = w1,W2 = w2 ∼ Beta(2w1, 2w2)

A | W = (w1,w2,w3) ∼ Bernoulli(expit(1 + 0.12w1 + 0.1w2 + 0.5w3))

Y | A = 1,W = (w1,w2,w3) ∼ Bernoulli(expit(−4 + 0.2w1 + 0.3w2 + 0.5 exp(w3))) ,

where Bernoulli(π) denotes the Bernoulli distribution with success probability π,
expit represents the function u �→ exp(u)/[1 + exp(u)], and Beta(a, b) denotes the
Beta distribution with parameters a and b.

Estimation of Q̄0 and g0 was carried out as follows. For each dataset, we first
fitted correctly-specified parametric models. Then, for a perturbation parameter p,
we multiplied the linear predictor of Q̄n by a random variable with distribution U(1−
n−p, 1), and subtracted a Gaussian random variable with mean 3 × n−p and standard
deviation n−p. Analogously, for a perturbation parameter q, we multiplied the linear
predictor of gn by a random variable U(1−n−q, 1), and subtracted a Gaussian random
variable with mean 3 × n−q and standard deviation n−q. We varied the values of p
and q each in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.
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The above perturbation of the MLE in a correctly-specified parametric model is
carried out to obtain initial estimators that have varying convergence rates. For ex-
ample, suppose that gn,MLE denotes the MLE of g0 in the correct parametric model,
and let gn,MLE,q denote the perturbed estimator. Let Un and Vn be random variables
distributed according to U(1− n−q, 1) and N(−3n−q, n−2q), respectively. Substituting
gn,MLE,q := Ungn,MLE + Vn into ||ĝMLE

q − g0||2P0
yields

||gn,MLE,q − g0||2P0
≤ ||Un(gn,MLE,q − g0)||2P0

+ ||g0(Un − 1)||2P0
+ ||Vn||2P0

= OP(n−1 + n−2q) .

Consider now different values of q. For example, q = 0.5 yields the parametric
consistency rate ||gn,MLE,q−g0||2P0

= OP(n−1), whereas q = 0 results in inconsistency.
We compute a 1-TMLE, 1	-TMLE and a 2-TMLE for each initial estimator

( ˆ̄Q, ĝ) obtained through this perturbation. We compare the performance of the esti-
mators through their bias inflated by a factor n1/2, relative variance compared to the
nonparametric efficiency bound, and the coverage probability of a 95% confidence
interval based on the true variance. Using the true variance allows us to isolate the
performance of the estimator itself from the estimator of its variance. The true sam-
pling variance, bias and coverage probabilities are approximated through empirical
means across the 1000 simulation runs.

Table 26.1 shows the relative variance (rVar, defined as n times the variance di-
vided by the efficiency bound), the absolute bias inflated by n1/2, and the coverage
probability of a 95% confidence interval using the true variance of the estimators for
selected values of the perturbation parameter (p, q). Figure 26.1 shows the absolute
bias of each estimator multiplied by n1/2, and Fig. 26.2 shows the coverage proba-
bility of a 95% confidence interval for all values of (p, q) used in the simulation.

We notice that for certain slow convergence rates, e.g., (p, q) = (0.01, 0.01) or
(p, q) = (0.1, 0.01), all the estimators have very large bias. In contrast, for some
other slow convergence rates, e.g., (p, q) = (0.01, 0.1), the absolute bias scaled by
n1/2 of the 1-TMLE diverges very fast in comparison to the 2-TMLE and 1	-TMLE.
The improvement in large-sample absolute bias of the proposed estimators comes
at the price of increased variance in certain small sample scenarios, e.g., n ≤ 2000,
when, for example, the outcome model converges at a fast enough rate but the miss-
ingness mechanism does not, e.g., (p, q) = (0.5, 0.1). In this case, the 1-TMLE has
lower variance than its competitors. This advantage of the first-order TMLE disap-
pears asymptotically, as predicted by theory.

In terms of coverage, the improvement obtained with use of the 1	-TMLE and
the 2-TMLE for small values of both p and q is noteworthy. As an example, when
n = 2000 and (p, q) = (0.01, 0.1), the estimated coverage probability is 0, 0.9 and
0.8 for the 1-TMLE, the 1	-TMLE and the 2-TMLE, respectively. This simulation
illustrates the potential for dramatic improvement obtained by use of the 1	-TMLE
and the 2-TMLE, which nevertheless comes at the cost of over-coverage in small
sample sizes when convergence rates are fast enough, e.g., n ≤ 2000 and (p, q) =
(0.5, 0.1).
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Table 26.1 Summary of estimator performance as a function of sample size and convergence rate
of initial estimators of Q̄0 and g0

1-TMLE 1	-TMLE 2-TMLE
n n n

p q 500 1000 2000 10,000 500 1000 2000 10,000 500 1000 2000 10,000
0.01 3.02 4.34 6.14 13.56 1.39 1.97 2.77 5.98 0.47 1.00 2.69 6.40

0.01 0.10 1.93 2.55 3.27 5.65 0.18 0.22 0.32 0.41 1.47 1.95 0.61 0.73
0.50 0.07 0.05 0.04 0.03 0.09 0.09 0.12 0.15 1.71 2.05 0.67 0.63
0.01 1.33 1.77 2.31 4.26 0.63 0.84 1.17 2.22 0.03 0.28 1.08 2.28

n1/2 |Bias| 0.10 0.10 0.87 1.05 1.25 1.70 0.08 0.11 0.14 0.17 0.96 1.02 0.22 0.12
0.50 0.01 0.02 0.01 0.03 0.07 0.05 0.07 0.04 0.87 0.90 0.21 0.23
0.01 0.09 0.08 0.08 0.07 0.00 0.01 0.03 0.03 0.02 0.02 0.04 0.02

0.50 0.10 0.04 0.03 0.03 0.00 0.00 0.07 0.19 0.01 0.02 0.09 0.11 0.03
0.50 0.01 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.15 0.08 0.01 0.03
0.01 1.60 1.59 1.57 1.60 3.22 2.13 2.15 2.11 2.58 2.87 1.89 2.09

0.01 0.10 1.73 1.72 1.56 1.46 1.05 1.09 1.02 0.99 2.14 1.97 1.27 1.17
0.50 1.06 1.08 1.03 1.01 1.10 1.08 0.97 1.07 2.15 2.10 1.31 1.17
0.01 1.10 1.07 1.06 1.04 1.13 1.26 1.14 1.25 1.71 1.58 1.31 1.19

rVar 0.10 0.10 1.21 1.20 1.09 1.04 0.95 0.99 0.99 0.92 1.75 1.78 1.17 1.06
0.50 0.97 0.98 1.02 0.98 1.03 1.01 1.01 1.01 2.17 1.96 1.19 1.04
0.01 1.02 1.04 1.01 1.01 1.04 1.00 1.05 1.03 1.02 1.02 0.99 0.99

0.50 0.10 1.04 0.95 0.97 0.97 1.14 6.10 17.17 1.02 3.58 9.19 16.22 0.84
0.50 0.99 0.98 1.01 0.95 1.10 0.93 1.00 0.93 1.37 1.23 1.10 0.97
0.01 0.01 0.00 0.00 0.00 0.76 0.23 0.03 0.00 0.91 0.78 0.03 0.00

0.01 0.10 0.19 0.03 0.00 0.00 0.93 0.92 0.90 0.86 0.49 0.22 0.80 0.73
0.50 0.94 0.95 0.94 0.94 0.93 0.95 0.95 0.94 0.38 0.22 0.80 0.79
0.01 0.30 0.08 0.01 0.00 0.79 0.69 0.42 0.03 0.95 0.93 0.54 0.02

Cov. P 0.10 0.10 0.66 0.53 0.35 0.10 0.95 0.94 0.94 0.93 0.70 0.67 0.93 0.94
0.50 0.95 0.95 0.95 0.94 0.94 0.95 0.94 0.94 0.79 0.77 0.92 0.93
0.01 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.94 0.96

0.50 0.10 0.94 0.94 0.95 0.95 0.95 0.99 0.98 0.95 0.99 0.98 0.98 0.95
0.50 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.96 0.93 0.95 0.95 0.95

The 2-TMLE has poorer performance in terms of bias than the 1-TMLE and
the 1	-TMLE for small samples whenever one of the models converges at a fast
enough rate, i.e., either p or q equal to 0.5, which translates into lower coverage
probabilities. The problem dissipates somewhat as n increases. While this suggests
that caution may be required when using the 2-TMLE in small samples, we note
that achieving either p or q equal to 0.5 in practice corresponds to using a correctly-
specified parametric model, a nearly impossible feat in most applications.

In Figs. 26.1 and 26.2, we note that there is a region of slow convergence rates
in which the proposed estimators outperform the standard first-order TMLE. In ad-
dition, as seen in Fig. 26.1, we observe a small advantage of the 2-TMLE over the
1	-TMLE in terms of bias. Generally though, we do not see any practical advantage
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Fig. 26.1 Absolute bias scaled by n1/2 as a function of sample size and convergence rate of initial
estimators of Q̄0 and g0

of the 2-TMLE over the 1	-TMLE. In fact, the 1	-TMLE performs better than the
2-TMLE for small samples and outperforms the 1-TMLE in all sample sizes, with
the caveat of increased variance in certain scenarios, as discussed above.

26.5 Concluding Remarks

If the target parameter is higher-order pathwise differentiable, it seems desirable to
implement a higher-order TMLE using appropriate higher-order gradients. Com-
pared to its first-order counterpart, a higher-order TMLE will be an asymptotically
efficient substitution estimator under weaker conditions. This article provides a tem-
plate describing how to construct such a second-order TMLE, and a higher-order
TMLE of arbitrary order can be implemented in similar fashion. Its implementation
is identical to that of a regular TMLE, save for the use of a higher-dimensional least
favorable parametric submodel that generates a set of scores defined by the gradients
of all orders.
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Fig. 26.2 Coverage probability of confidence intervals as a function of sample size and conver-
gence rate of initial estimators of Q̄0 and g0

To tackle target parameters that are not higher-order pathwise differentiable, we
make use of approximate higher-order gradients in this chapter. This approximation
strategy impacts only the higher-order bias reduction performed by the higher-order
gradients. Since such a higher-order TMLE is tailored to eliminate the higher-order
terms in the asymptotic expansions for the TMLE, a meaningful bias reduction rela-
tive to a standard first-order TMLE can be expected in practice if higher-order gradi-
ents are reasonably approximated. Unfortunately, these approximations rely on pos-
sibly high-dimensional smoothing and one may wonder whether we have simply re-
placed a difficult problem by another difficult problem. Fortunately, approximation-
based higher-order TMLEs operate in a safe haven in which the desirable proper-
ties of the first-order TMLE are preserved. Adding extra parameters to the least-
favorable submodel always improve the estimator asymptotically and can be very
reasonably expected not to substantially harm the estimator in finite samples.

In practice, the higher-order TMLE, based on actual or approximate higher-order
partial canonical gradients, should aim to achieve as much bias reduction as possi-
ble with the higher-order least favorable submodel. In this chapter, we provided
theoretically sound and practicable building blocks for achieving this. Since any
higher-order TMLE is a substitution estimator, the finite-sample variability induced
by the need to fit a higher-order least favorable submodel is controlled by global
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bounds on the model and target parameter mapping. This is likely even more cru-
cial in higher-order procedures given the need to correct a greater number of terms.
Even more importantly, the seemingly daunting task of selecting tuning parameters
and other potential inputs of the algorithm can be seamlessly overcome using an
implementation of C-TMLE. The latter provides concrete tools for data adaptively
fine-tuning the selection of a higher-order least favorable submodel with the objec-
tive of maximizing its effectiveness in reducing bias.

As highlighted in this chapter, the second-order TMLE in our illustrative example
provides a concrete demonstration of a gain relative to a first-order TMLE: it is
asymptotically linear and efficient in a significantly larger statistical model than
an analogue first-order TMLE. This is directly parallel to the advances made in
the seminal work of Robins et al. (2009) in the context of the one-step estimators.
Another advantage of including higher-order partial canonical gradients into the
TMLE framework as carried out in this work is that they yield contributions to the
influence function of the higher-order TMLE that can be directly incorporated in
the construction of confidence intervals, thereby possibly leading to finite-sample
performance improvements.

Finally, since the Donsker class conditions imposed in our theorems can be re-
strictive in some settings, it is certainly of interest to develop a higher-order cross-
validated TMLE. The latter would use a cross-validated version of the empirical
risk in the iterative updating procedure and could be shown to lead to an asymp-
totically linear and efficient estimator even when such Donsker class conditions fail
to hold. Such a development would be a direct extension of the work of Zheng and
van der Laan (2010) in the first-order case, particularly since, as we have illustrated,
a higher-order TMLE can be framed as a first-order TMLE with an augmented least-
favorable submodel.

26.6 Notes and Further Reading

The building blocks of this generalization were set several decades ago, notably in
the works of J. Pfanzagl (Pfanzagl 1985), wherein the notion of higher-order gradi-
ents was introduced and higher-order expansions of finite-dimensional parameters
over arbitrary model spaces were formalized. In this work, we seek to utilize higher-
order expansions to enable and guide the construction of regular and asymptotically
linear estimators of statistical parameters in rich infinite-dimensional models. This
is the perspective that motivated the seminal contributions of J. Robins, L. Li, E.
Tchetgen and A. van der Vaart (e.g., Robins et al. 2008a, 2009; Li et al. 2011;
van der Vaart 2014); these authors are the first to have provided a rigorous frame-
work for precisely addressing this problem. The first exposition is that of Robins
et al. (2008a), where the focus resides primarily on the use of higher-order gradi-
ents to derive optimal estimators in settings where regular estimation is not possible.
Subsequent works are concerned with the development of a higher-order analogue
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of the one-step estimator introduced early on in Levit (1975), Ibragimov and Khas-
minskii (1981), Pfanzagl (1982) and Bickel (1982), for example. The general ap-
proach is thus to identify the dominating terms of an asymptotic expansion for a
naive plug-in estimator and to perform, accordingly, an additive correction on this
naive estimator. In Robins et al. (2009), the authors carefully establish the required
foundations of a second-order extension of this approach and illustrate its use in the
context of two problems, namely that of estimating the integral of the square of a
density function and of estimating the mean response in missing data models. In
Li et al. (2011), the authors study in great detail the problem of inferring a treat-
ment effect using this approach and also establish minimax rate results for certain
situations in which regular inference is not possible.

An excellent review of the general higher-order extension of the one-step esti-
mator is provided in van der Vaart (2014). The one-step estimator is simple and
easy to describe. However, in finite samples, it is vulnerable to decreased perfor-
mance since it does not include any safeguard ensuring that the additive correction
performed on the naive plug-in estimator does not drive the estimator near and pos-
sibly beyond the natural bounds of the parameter space. Rather than performing
post-hoc bias correction in the parameter space, as does the one-step procedure, the
TMLE framework, which we focus on in this chapter, provides guidelines for con-
structing an estimator of the underlying data-generating distribution, or whichever
portion of it is needed to compute the parameter of interest, such that the resulting
plug-in estimator enjoys regular and asymptotically linear asymptotic behavior. As
such, the correction step is performed in the model space rather than in the parame-
ter space. The appeal of devising such an approach, even decades before its formal
development, was highlighted in Pfanzagl (1982). Since the resulting estimator au-
tomatically satisfies bounds on the parameter space, it never produces nonsensical
output, such as a probability estimate outside the unit interval, and can outperform in
finite samples asymptotically equivalent estimators that do not have a plug-in form.
This issue arises when comparing first-order TMLE and one-step estimators, but
is likely of even greater importance in higher-order inference due to the increased
complexity of the correction process.

As is highlighted by Robins et al. (2009) and discussed in this chapter, higher-
order gradients do not exist for several statistical parameters of interest. Nonethe-
less, approximate higher-order gradients can be used to produce regular estimators.
In practice, the notion of approximate higher-order gradients necessarily involves
the selection of certain tuning parameters. This requirement is discussed in Robins
et al. (2009) but practical guidelines are neither provided nor appear particularly
easy to develop. An advantage of using TMLE in this context, as we discuss later,
is that the selection of such tuning parameters can be effortlessly embedded in the
framework of collaborative TMLE, hereafter referred to as C-TMLE. Thus, the prac-
tical complications associated with the need for carefully-tuned approximations in
the context of inference based on higher-order expansions can be tackled readily.
Furthermore, as will be discussed, the framework of TMLE also provides useful
tools that aim to guarantee that the resulting higher-order estimator will not behave
worse than the usual first-order TMLE.



Chapter 27
Sensitivity Analysis
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Causal inference problems are often tackled through the study of parameters of the
distribution of a sequence of counterfactual variables, that represent the outcome in
a hypothetical world where an intervention is enforced. The fundamental problem of
causal inference is that, for a given individual, we only observe one such counterfac-
tual outcome: the outcome under the treatment level actually assigned. Therefore,
it is necessary to make certain untestable assumptions to identify the distribution
of the missing counterfactual outcomes from the distribution of the observed data.
One common such assumption is that the treatment mechanism does not depend
on unmeasured factors that are causally related to the outcome. This assumption
is often referred to as nonignorability of treatment assignment (Rubin 1976) or the
(sequential) randomization assumption (van der Laan and Robins 2003).

If the identifiability assumptions are not defensible in light of current scientific
knowledge, the counterfactual distribution cannot be estimated from observed
data. A useful approach in these cases is to use sensitivity analyses, which
may allow investigators to understand how their analysis would change under
varying degrees of violations to the assumptions.
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There is an extensive literature on sensitivity analysis for causal inference. One
of the most common approaches was developed by Rotnitzky et al. (1998); Scharf-
stein et al. (1999); Robins et al. (1999); Robins (1999); Rotnitzky et al. (2001);
Scharfstein and Robins (2002). The approach they proposed assumes that the treat-
ment mechanism distribution, conditional on the counterfactual outcome, follows
a distribution in a parametric model, which is indexed by an unidentifiable param-
eter α. Their sensitivity analysis consists in estimating the treatment effect under
various hypothesized levels of α. Subject-matter scientific knowledge is then used
to judge the plausibility of each α value, and the estimates of the causal parameter
corresponding to plausible values for α are used as the conclusions of the study.

In Díaz and van der Laan (2013b) and Luedtke et al. (2015b), we discuss the
above approach, and highlight some of its limitations. The method of the above para-
graph relies on the capability of the researcher to correctly pose a parametric model
for the relation between the counterfactual outcome and the treatment assignment
mechanism. The use of parametric models in this step poses at least three threats to
the validity of the conclusions. First, parametric models have long been recognized
to be inadequate to describe the complex relations arising in medium to large di-
mensional data (see e.g., Starmans 2011). Second, even if the parametric model is
used only as an approximation, the adequacy of the approximation is unverifiable,
because counterfactual variables are unobserved. A third problem, common to all
parametric models, is that α does not have an intelligible interpretation under model
misspecification. As a result, the pillar of the sensitivity analysis collapses because
the plausibility of certain α values cannot be judged based on auxiliary scientific
knowledge.

In this chapter, we present a sensitivity analysis that overcomes the above
issues. The approach presented here is closely related to the partial identifica-
tion literature, and can be summarized as follows. We decompose the bias in
two main components: identification bias, defined as the difference between
the observed data parameter and the causal parameter; and statistical bias, de-
fined as the difference between the repeated sampling expectation of the esti-
mator and the observed data parameter. We discuss ways of dealing with each
source of bias. For dealing with identification bias, we propose to use non-
parametric bounds on the causal effects, often indexed by some interpretable
Condition δ. For reducing the statistical bias, we propose to use the targeted
learning framework.

27.1 The Problem

Throughout the chapter, we use the following examples to illustrate the relevant
concepts.
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Example 27.1. Díaz and van der Laan (2013b) present a study demonstrating the
effectiveness of a Chagas disease treatment. Causal conclusions were previously
thought impossible for this application due to the inevitable informative dropout re-
sulting from the disease’s long (30 year) incubation period. This long incubation
period also renders randomized studies prohibitively expensive, so that researchers
can only use observational data to evaluate the efficacy of treatment. The origi-
nal analysis for this problem proceeds as follows. A thorough review of the liter-
ature about the Chagas disease yielded 19 studies comprising about 520 patients.
A standard meta analysis of these studies was deemed inappropriate because: (a)
many studies did not have a control group; (b) there is very limited information
about treatment allocation in all the manuscripts; (c) none of the studies reported
baseline/confounder information (e.g., baseline health status, exposure to the vec-
tor, etc.); and (d) many of the studies presented large numbers of lost to follow-
up and drop-outs. In terms of treatment assignment, the previous points imply that
these studies cannot be considered randomized, and that there may be a consider-
able amount of unmeasured confounding (e.g., treatment was allocated according to
unmeasured baseline status of the infection). Additionally, since patients may drop
out of the study as a consequence of the worsening or improving of their health con-
dition, loss to follow-up and drop out were often related to the unobserved outcome.

Example 27.2. Luedtke et al. (2015b) present an analysis of data from the Western
Collaborative Group Study (WCGS) (Rosenman et al. 1964, 1975). The WCGS was
a prospective cohort study designed to learn about the effect of binary personality
type (Type A or B) on coronary heart disease (CHD) within an eight and a half year
period. The data is publicly available through the epitools package in R (Aragon
2012). The authors focus on the effect of smoking status (yes or no) on CHD. This
example is particularly useful for testing a sensitivity analysis method because the
causal link between smoking and CHD is well-established in the literature. A similar
decision was made by Ding and VanderWeele (2015) when evaluating their sensi-
tivity analysis procedure on a historical data set exploring the effect of smoking on
lung cancer. The covariates used as potential confounders of the relation between
smoking status at baseline and CHD are: age, height, weight, and an indicator of
Type A personality. The outcome we consider is the presence of CHD within 8 1/2
years of baseline.

Let us now formally define the inference problem. For simplicity, we focus on
a cross-sectional study with a potentially missing outcome. Let A denote a binary
treatment variable, let Y denote a continuous or binary outcome, observed only when
Δ = 1, and let W denote a vector of observed pre-treatment covariates. Let O =
(W, A, Δ, ΔY) represent a random variable with distribution P0, and let O1, . . . ,On

denote a sample of n i.i.d. observations of O. We assume P0 ∈ M, where M is
the nonparametric model defined as all continuous densities on O with respect to a
dominating measure ν. Examples 27.1 and 27.2 are particular cases of this setup.
In Example 27.1, no covariates W are observed. In Example 27.2, P0(Δ = 1 | A =
a,W = w) = 1 with probability one over draws of (A,W), so that there are no
missing outcomes.
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In Examples 27.1 and 27.2 above, we are interested in estimating causal param-
eters, which are defined in terms of the distribution of the counterfactual outcomes
Ya : a ∈ {0, 1}. These outcomes represent the outcome observed in a hypothetical
world in which P0(A = a, Δ = 1) = 1. Let us now examine the parameters and
identifiability assumptions in our illustrating examples.

Example 27.1 (continued). The causal parameter of interest is the effect of treatment
among the treated, defined as ψcausal = E(Y1 − Y0 | A = 1). Under the assumptions
that

1. Y = Δ(AY1 + (1 − A)Y0) (consistency); and
2. (Y0,Y1) ⊥⊥ (A, Δ) (randomization and missing completely at random);
3. P0(A = a, Δ = 1) > 0 for a ∈ {0, 1} (positivity).

identification of ψcausal may be obtained as

E(Y1 − Y0 | A = 1) = E(Y | Δ = 1, A = 1) − E(Y | Δ = 1, A = 0), (27.1)

where the right-hand side parameter is estimable from the observed data. Random-
ization and missing at random state that the treatment and missingness mechanisms
are independent of the counterfactual outcomes. Since treatment is not randomized
and drop-out is believed to be associated to the severity of the disease, assumption
(2) is likely violated.

Example 27.2 (continued). The causal parameter in this problem is the average treat-
ment effect given by ψcausal = E(Y1−Y0). The assumptions required are the standard
assumptions for making causal inferences from observational data, namely:

1. Y = AY1 + (1 − A)Y0 (consistency);
2. (Y0,Y1) ⊥⊥ A | W (randomization); and
3. P0(A = a | W = w) > 0 for a ∈ {0, 1} with probability one over draws of W

(positivity).

Under these assumptions, we can write E(Ya) = E{E(Y | A = a,W)}, where the
right hand side is a parameter depending only on the distribution of the observed
data O = (W, A,Y).

27.2 Sensitivity Analysis

When the necessary identifiability conditions do not hold, as may be the case in our
illustrating examples, a sensitivity analysis may be used to estimate the causal effect
under various degrees of violation to the identifiability assumptions. We propose a
sensitivity analysis which can be carried out in the following steps.

Step 1: Define a Statistical Parameter of Interest. In contrast to causal param-
eters, whose computation requires the distribution of unobserved counterfactuals
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Ya : a ∈ {0, 1}, statistical parameters are defined as parameters whose true value can
be computed solely based on the distribution P0. We denote our statistical param-
eter of interest with ψ0. Here, ψ0 may be given by the parameter that would have
identified ψcausal had the identifiability assumptions been correct, though this is not
necessary, as we will see in Example 27.1.

Let ψn denote an estimator of ψ0, and denote ψ1 = E(ψn), where the expectation
is taken over draws of O1, . . . ,On. If ψn is used to estimate ψcausal, its bias may be
decomposed in terms of statistical bias and identification bias as follows:

E(ψn) − ψcausal = ψ1 − ψ0︸��︷︷��︸
statistical bias

+ ψ0 − ψcausal︸�������︷︷�������︸
identification bias

.

Statistical bias arises because the statistical parameter, ψ0, is incorrectly estimated.
Identification bias arises because the identifiability assumptions are not met. Un-
like identification bias, statistical bias may be corrected through better estimation
methods or increased the sample sizes. Other names found in the literature for
identification bias include confounding bias and selection bias. We favor the former
term because it encompasses a wider variety of problems.

Step 2: Estimate the Statistical Parameter, Remove Statistical Bias. Due to their
frequent misspecification, parametric working models are generally inadequate for
reducing statistical bias. Instead, we encourage the use of targeted learning. In par-
ticular, TMLE provides estimators with the property that

√
n (ψn − ψ0) =

1
√

n

n∑

i=1

ICΨ̂ (Oi) + oP(1), (27.2)

where ICΨ̂ is a mean zero, finite variance function, known as the influence function.
Result (27.2) is known as asymptotic linearity of ψn. Given an estimate σ̂2 of the
variance of ICΨ̂ (O), an asymptotically valid (1 − α)100% Wald-type confidence
interval for ψ0 is given by

(Ln,Un) ≡ ψn ± zα/2
σ̂
√

n
, (27.3)

where zα is the 1 − α percentile of a standard normal distribution.

Step 3: Find Bounds on the Identification Bias. Suppose that we know that
Lcausal(δ) ≤ ψcausal − ψ0 ≤ Ucausal(δ), where these bounds depend on some Con-
dition δ, and may depend on P0. In addition, δ must be interpretable in the entire
nonparametric model, so that experts’ knowledge and scientific literature can be
used to postulate plausible values. Methods developed in the literature of partial
identification can be of great help in this step. Below we illustrate the construction
of the bounds in Examples 27.1 and 27.2.



516 I. Díaz et al.

Step 4: Compute Uncertainty Interval for the Causal Parameter. Assume that
(Ln,Un) is a valid confidence interval for ψ0. This is achieved if there is no statistical
bias, if (27.2) holds, and if σ̂2 is a consistent estimator of the variance of ICΨ̂ . Given
known bounds (Lcausal(δ),Ucausal(δ)) on the identification bias, we know that

(Ln + Lcausal(δ),Un + Ucausal(δ)) (27.4)

is an asymptotically valid (1 − α)100% uncertainty interval for ψcausal under Con-
dition δ. If Lcausal(δ) or Ucausal(δ) depend on P0, they must be estimated and the
uncertainty interval must be modified accordingly. We develop such a modification
below in Sect. 27.3.

Let us now illustrate these steps in our examples.

Example 27.1 (continued). In this example, we use the statistical parameter

ψ0 = E0(ΔY | A = 1) − E(Y | Δ = 1, A = 0).

Note that this is not equal to (27.1), the parameter that would have identified ψcausal if
the identifiability conditions were met. The reasons to choose this parameter instead
of (27.1) will become apparent momentarily. Consistent and asymptotically linear
estimation of ψ0 is trivially achieved by the nonparametric estimator

ψn =

∑n
i AiΔiYi∑n

i Ai
−

∑n
i (1 − Ai)ΔiYi∑n

i (1 − Ai)Δi
,

which uses empirical means to estimate the expectations involved in the definition
of ψ0. A straightforward application of the delta method yields (27.2) with

ICΨ̂ =
A

E(A)
{ΔY − E(ΔY | A = 1)} − (1 − A)Δ

E{(1 − A)Δ} {Y − E(Y | Δ = 1, A = 0)}.

A Wald-type confidence interval as in (27.3) may be constructed with σ̂2 equal to
the empirical variance of ICΨ̂ ,n(O), where ICΨ̂ ,n(O) is equal to ICΨ̂ (O) with the
unknown expectations replaced by their empirical counterparts. The main goal of
this study is to establish treatment efficacy. Thus, we focus on Lcausal(δ) and find it
as follows. First, note that E(ΔY | A = 1) is a conservative estimate of E(Y1 | A = 1).
That is:

E(ΔY | A = 1) = E(ΔY1 | A = 1) ≤ E(Y1 | A = 1).

It follows that

ψcausal − ψ0 = E(Y1 | A = 1) − E(ΔY | A = 1) + E(Y | Δ = 1, A = 0) − E(Y0 | A = 1)

≥ E(Y | Δ = 1, A = 0) − E(Y0 | A = 1)

Thus, under Condition δ ≤ E(Y0 | A = 1), the lower bound is equal to Lcausal(δ) =
E(Y | Δ = 1, A = 0)−δ. In this example, knowledge about the plausibility of the Con-
dition δ ≤ E(Y0 | A = 1) can be obtained as follows. The parameter E(Y0 | A = 1) is
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the probability of cure for the treated population had they not been treated (i.e., it is
the probability of a “spontaneous” cure). The literature in the Chagas disease pro-
vides auxiliary information that such probability is usually very low. This illustrates
the advantage of defining the Condition δ nonparametrically: parametric definitions
may have led to uninterpretable parameters whose value cannot be learned from
auxiliary knowledge. Note also that the quantity E(Y | Δ = 1, A = 0) in Lcausal(δ) is
unknown. In this example, the effect magnitude ψn = 0.47 is large enough to allow
us to conservatively set E(Y | Δ = 1, A = 0) = 0. In other applications this practice
would likely lead to bounds that are too wide to be informative. With a standard
deviation estimated at σ̂ = 0.02, we obtain a one-sided 95% uncertainty interval for
ψcausal of (0.4384 − δ,∞), assuming δ ≤ E(Y0 | A = 1). Thus, auxiliary knowledge
that the probability of spontaneous cure among the treated E(Y0 | A = 1) is smaller
than 0.4384 would suffice to reject the null hypothesis H0 : ψcausal ≤ 0 (negative or
no treatment effect) in favor of H1 : ψcausal > 0.

Example 27.2 (continued). In contrast to the previous example, here we define the
causal parameter as

ψ0 = E{E(Y | A = 1,W) − E(Y | A = 0,W)},

which is the parameter that identifies ψcausal under conditions (a)–(c). Double robust
estimating equation and targeted minimum loss based estimators for ψ0 have been
presented in van der Laan and Robins (2003) and van der Laan and Rose (2011),
respectively. When both the outcome regression and treatment mechanism are esti-
mated consistently and at a fast enough rate, these estimators have influence curve

ICΨ̂ (O) =
2A − 1

P0(A|W)
{Y − E(Y |A,W)} + E(Y |A,W) − ψ0.

The assumption that both the outcome regression and treatment mechanism are es-
timated well enough can be unfeasible in practice. A recent work presents an es-
timator which is asymptotically linear with valid inference when only one of these
objects is estimated well (van der Laan 2014b). This approach can be integrated into
a sensitivity analysis, but we omit such discussion here.

We now find intervals (Lcausal(δ),Ucausal(δ)) that contain ψcausal under a Condition
δ. Unlike the previous example, the bounds are such that, if the identifiability as-
sumptions are met, Lcausal(δ) = Ucausal(δ) = 0. We start by developing bounds on
E(Y1), and then extend them to ψcausal = E(Y1 − Y0). Note that

E(Y1) = E
{
E(Y1|A = 0,W)P0(A = 0|W) + E(Y |A = 1,W)P0(A = 1|W)

}
. (27.5)

Suppose that, with probability 1 over draws of the covariate W and some δ > 0,

−δE(Y |A = 1,W) ≤ E(Y1|A = 0,W) − E(Y |A = 1,W) ≤ δ {1 − E(Y |A = 1,W)} .

Consider the lower bound. Given that E(Y |A = 1,W) > 0, the above says that
E(Y1 |A=0,W)
E(Y |A=1,W) ≥ 1 − δ for some δ > 0, i.e. that the relative risk of Y1 = 1 among
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untreated versus treated people is at least 1−δ in every strata of covariates. Similarly,

the above says that E(1−Y1 |A=0,W)
E(1−Y |A=1,W) ≥ 1 − δ, which is a similar relative risk bound but

now for the risk of Y1 = 0. At δ = 1 the above condition reproduces the known
bounds on the outcome. For rare (or highly common) outcomes it is worth using a
two-dimensional δ parameter in the above expression, one for the lower bound and
one for the upper, but for simplicity we do not explore this here. Plugging the above
bound into (27.5) yields that

− δE {E(Y |A = 1,W)P0(A = 0|W)} ≤
E(Y1) − E{E(Y | A = 1,W)} ≤

δE {E(1 − Y |A = 1,W)P0(A = 0|W)} . (27.6)

Let us now return to bounds on ψcausal. We use a bivariate sensitivity parame-
ter δ = (δ−, δ+), where δ− and δ+ fall in (0, 1). Condition δ is satisfied when the
following two inequalities hold with probability 1 over draws of the covariate W:

−δ−E(Y |A = 0,W) ≤ E(Y0|A = 1,W) − E(Y |A = 0,W) ≤ δ+E(1 − Y |A = 0,W)

−δ−E(Y |A = 1,W) ≤ E(Y1|A = 0,W) − E(Y |A = 1,W) ≤ δ+E(1 − Y |A = 1,W).

A straightforward extension of (27.6) shows that, under Condition δ,

Lcausal(δ) = − E
{
δ−E(Y |A = 1,W)P0(A = 0|W) + δ+E(1 − Y |A = 0,W)P0(A = 1|W)

}

Ucausal(δ) = E
{
δ+E(1 − Y |A = 1,W)P0(A = 0|W) + δ−E(Y |A = 0,W)P0(A = 1|W)

}
. (27.7)

Below we refer to individuals who smoke in the observed population as “natural
smokers” and people who do not smoke in the observed population as “natural non-
smokers”. We also refer to the risk ratio as the RR. Condition δ implies the following
four inequalities within each stratum of the covariates:

1. E(Y1 |A=0,W)
E(Y |A=1,W) ≥ 1 − δ−: The RR for a natural nonsmoker versus a natural smoker

having a CHD event if, contrary to fact, everyone is intervened upon to be a
smoker is at most 1 − δ−.

2. E(Y0 |A=1,W)
E(Y |A=0,W) ≥ 1 − δ−: The RR for a natural smoker versus a natural nonsmoker

having a CHD event if, contrary to fact, everyone is intervened upon not to smoke
is at most 1 − δ−.

3. E(1−Y1 |A=0,W)
E(1−Y |A=1,W) ≥ 1 − δ+: The RR for a natural nonsmoker versus a natural smoker

not having a CHD event if, contrary to fact, everyone is intervened upon to be a
smoker is at most 1 − δ+.

4. E(1−Y0 |A=1,W)
E(1−Y |A=0,W) ≥ 1 − δ+: The RR for a natural smoker versus a natural nonsmoker

not having a CHD event if, contrary to fact, everyone is intervened upon not to
smoke is at most 1 − δ+.

The validity of the lower bound Lcausal(δ) only relies on 1 and 4. Under 1, natural
nonsmokers are not too protected from CHD events by some unmeasured cause.
Under 4, smokers are not too inclined towards CHD events by some unmeasured
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cause. The prevalence of coronary events is low in our data set (257/3154 ≈ 0.08),
so large values of δ− should be more plausible than large values of δ+. Since the
interval (Lcausal(δ),Ucausal(δ)) depends on P0, it must be estimated, and the uncer-
tainty in its estimation must be incorporated in the interval (27.4). We show such
modification in the following section.

27.3 Bounds on the Causal Bias Are Unknown

Suppose that (Lcausal(δ),Ucausal(δ)) depends on the observed data distribution P0.
This holds in our Example 27.2, see (27.6). Note that Lcausal(δ) and Ucausal(δ) are now
parameters which take as input an observed data distribution and output a number.
Thus, provided Lcausal(δ) is pathwise differentiable, it is reasonable to expect that,
for an influence curve IC�̂, we can develop an asymptotically linear estimators of
Lcausal(δ) with the property that

√
n
(
�n,causal − Lcausal(δ)

)
=

1
√

n

n∑

i=1

IC�̂(Oi) + oP(1)

If Ucausal(δ) is sufficiently smooth, then we would expect to be able to develop an
estimator so that the same expression above holds with �n,causal, Lcausal(δ), and IC�̂ re-
placed by un,causal, Ucausal(δ), and ICû, respectively. Combining the above and (27.2)
yields

√
n
{
ψn + �n,causal − (ψ0 + Lcausal(δ))

}
=

1
√

n

n∑

i=1

{
ICΨ̂ (Oi) + IC�̂(Oi)

}
+ oP(1).

The right hand side converges to a mean zero normal distribution with variance
equal to the variance of the sum of influence curves on the right. An analogous ar-
gument yields that ψ0 + Ucausal(δ) has influence curve ICΨ̂ + ICû. Hence the joint
distribution of these two influence curves applied to O ∼ P0 converges to a mul-
tivariate normal distribution with mean zero and covariance matrix given by that
of the two-dimensional random variable with coordinates ICΨ̂ (O) + IC�̂(O) and
ICΨ̂ (O) + ICû(O). Given a consistent estimate Σn of the covariance matrix, one can
take Monte Carlo draws (Z1

L,Z
1
U), . . . , (Zm

L ,Z
m
U) from the N(0, Σn) distribution. Given

these draws, one can then choose sn to be the 95% quantile of max{Zk
L,−Zk

U} among
the observations k ∈ {1, . . . ,m}. In that case, the uncertainty interval

(
ψn + �n,causal −

sn√
n
, ψn + un,causal +

sn√
n

)
(27.8)

will contain the causal parameter with probability approaching 0.95 under Condition
δ. One could alternatively replace sn in the lower bound with a sn,L and sn in the
upper bound with sn,U and choose an empirically valid uncertainty interval (in the
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Monte Carlo draws) which minimizes sn,U + sn,L. This may be beneficial when, e.g.,
the lower bound is significantly easier to estimate than the upper bound and one
wants to make the interval lower bound tighter to reflect this.

We now illustrate this in Example 27.2.

Example 27.2 (continued). Let us first estimate ψ0 using the TMLE as presented
in Chap. 7 of van der Laan and Rose (2011). We then estimate the interval
(Lcausal(δ),Ucausal(δ)) resulting from (27.7) using a TMLE algorithm described
in Web Appendix A. Given the broader focus of this paper, we omit a theoretical
analysis of the asymptotic properties of this estimator, though refer the reader to
van der Laan and Rose (2011) for a general template for how to analyze such an
estimator. We use 2.5×104 draws from a bivariate normal distribution to implement
the uncertainty bound estimation procedure described in Sect. 27.3.

Code to replicate the analysis is available in the original research article (Luedtke
et al. 2015b). Figure 27.1 shows how the lower bound is impacted by different
choices of δ. Consider δ+ = 0.02, and suppose that the probability of not having
a CHD event is at most 0.3 within all strata of covariates (according to our estimate
of E(1 − Y |A = 0,W), the maximum probability of not having a CHD event is ap-
proximately 0.25). In this case 4 is satisfied provided E(Y0|A = 1,W0 ≤ E(Y |A =
1,W) + 0.015, so that within any stratum of covariates natural smokers could have
an at most a 1.5% higher additive heart attack risk than natural nonsmokers if an
intervention had set everyone to be nonsmokers at baseline. For the lower bound
on the average treatment effect to remain positive, we then need that δ− is no more
than approximately 0.4. Inequality 2 is irrelevant for the lower bound on the average
treatment effect, so we focus on 1. This says that if we intervened in the population
to make everyone a smoker then, within each stratum of covariates, the relative risk
of a heart attack between natural nonsmokers and natural smokers is no less than
60%. Figure 27.2 provides similar insights for the lower bounds, but also allows
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Fig. 27.1 95% uncertainty bounds for the average treatment effect of smoking on CHD events at
several δ values
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Fig. 27.2 Lower 97.5% uncertainty bound for the average treatment effect of smoking on CHD
events at a continuum of δ values

one to visualize the upper bound for the average treatment effect under different
choices of δ. From these choices of sensitivity parameters, it appears unlikely that
the average treatment effect of smoking on CHD events within eight and a half years
will be larger than 0.12 in this population.

27.4 Notes and Further Reading

The contents of this chapter are based on previous work by Díaz and van der Laan
(2013b) and Luedtke et al. (2015b); the reader interested in further discussion and
details is encouraged to consult these sources. We stress that subject matter experts
should be able to judge the plausibility of each value of δ, the sensitivity parameter,
based solely on background scientific knowledge. We also stress the importance of
using statistically valid methods to estimate ψ0. In particular, we encourage the use
of targeted learning. The standard practice of posing unjustified parametric assump-
tions in this stage would in general increase the statistical bias, and would therefore
invalidate the conclusions of the sensitivity analysis.

We now discuss some methods related to the approach discussed in this chapter.
Rosenbaum and Rubin (1983a) consider the estimation of a parametric model for
the average treatment effect if one assumes that adjusting for an unmeasured con-
founder would make the parameter identifiable. VanderWeele and Arah (2011) im-
prove these results by giving general formulas for the bias of the statistical parameter
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for the causal parameter under this same unmeasured confounder assumption. These
approaches yield an interpretable sensitivity parameter under sometimes strong sim-
plifying assumptions, such as that this unmeasured confounder is binary. Obtaining
uncertainty bounds for the causal parameter requires obtaining confidence bounds
for a statistical parameter that adjusts for measured confounders, and thus requires
modern statistical approaches for these confidence bounds to be valid. Similar ap-
proaches were used to get bounds for interaction parameters (VanderWeele et al.
2012a) and for direct effects (VanderWeele 2010). The bounds in Ding and Vander-
Weele (2015) are defined using this approach, but require far fewer parameters than
the earlier methods when the unmeasured confounder is not binary.

These sensitivity analysis procedures are related to the partial identification lit-
erature which develops bounds on the difference between the causal and statistical
parameter that hold under very weak assumptions (if any), such as bounds on the
outcome (Manski 1990, 2003; Horowitz and Manski 2000; MacLehose et al. 2005).
Though the bounds resulting from these analyses are convincing when informative,
in many cases they can be too conservative to be informative about even the sign of
an effect. In the context of our Example 27.2, Manski (2003) considers bounds on
causal parameters which reduce to using the known bounds on the outcome in great
detail. That work also gives bounds under other assumptions, such as monotonicity
assumptions, which may help inspire other choices of Condition δ.

Horowitz and Manski (2000) used an approach similar to that of Sect. 27.3
to get an uncertainty region for the bounds in the partial identifiability context.
Woutersen (2006) considered how to develop such an uncertainty region given
a asymptotically linear estimators of the upper and lower bound in partial iden-
tifiability problems. Both of these works actually consider a refined procedure
which guarantees coverage for the parameter ψcausal, rather than the entire region
(ψ0 + Lcausal(δ), ψ0 +Ucausal(δ)) known to contain ψcausal, with probability approach-
ing 0.95. Such refinements will be analogous for sensitivity analyses, but we do
not explore them here. The uncertainty region we presented in Sect. 27.3 is similar
in spirit to those presented in Vansteelandt et al. (2006), but does not require the
specification of an implausible semiparametric model for the identification bias.



Chapter 28
Targeted Bootstrap

Jeremy Coyle and Mark J. van der Laan

The bootstrap is used to obtain statistical inference (confidence intervals,
hypothesis tests) in a wide variety of settings (Efron and Tibshirani 1993;
Davison and Hinkley 1997). Bootstrap-based confidence intervals have been
shown in some settings to have higher-order accuracy compared to Wald-style
intervals based on the normal approximation (Hall 1988, 1992; DiCiccio and
Romano 1988). For this reason it has been widely adopted as a method for
generating inference in a range of contexts, not all of which have theoretical
support. One setting in which it fails to work in the manner it is typically ap-
plied is in the framework of targeted learning. We describe the reasons for this
failure in detail and present a solution in the form of a targeted bootstrap, de-
signed to be consistent for the first two moments of the sampling distribution.

Suppose we want to estimate a particular pathwise differentiable parameter using a
targeted learning approach. The typical workflow is to obtain initial estimates for
relevant factors of the likelihood using super learner, and then generate a targeted
estimate using TMLE. By using super learner and TMLE, we can generate cor-
rect inference for our parameter of interest without assuming that the likelihood
can be modeled by simple parametric models. Relying on the fact that TMLE is
an asymptotically linear estimator, we can use the normal approximation to gen-
erate Wald-style confidence intervals where the standard error is based on the in-
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fluence curve. These confidence intervals are first-order accurate. It is tempting to
instead obtain higher-order correct confidence intervals by applying the nonpara-
metric bootstrap. However, in the case of TMLE with initial estimates obtained via
the super learner algorithm, naïve application of the nonparametric bootstrap is not
justified and which we will show to have poor performance, because super learner
and therefore TMLE behaves differently on nonparametric bootstrap samples than it
does on samples from the true data generating distribution. It is therefore important
to develop a bootstrap method that works in the context of targeted learning.

We illustrate the reason for this difference in super learner’s behavior, and present
a solution in the form of the targeted bootstrap, a novel model based bootstrap that
samples from a distribution targeted to the parameter of interest and to the asymp-
totic variance of its influence curve. In the process, we outline a TMLE that targets
both a parameter of interest and its asymptotic variance. This TMLE can be used
to generate another Wald-style confidence interval, by directly using the targeted
estimate of the asymptotic variance. Additionally, it can be used to generate a con-
fidence of interval for the asymptotic variance itself. We demonstrate the practical
performance of the targeted bootstrap confidence intervals relative to the Wald-type
confidence intervals as well as confidence intervals generated by other bootstrap
approaches.

28.1 Problem Statement

Suppose that we observe n independent and identically distributed copies of O with
probability distribution P0 known to be an element of the statistical model M. In
addition, assume we are concerned with statistical inference of the target parameter
value ψ0 = Ψ (P0) for a given parameter mapping Ψ : M → IR. Consider a given
estimator Ψ̂ : Mnp → IR that maps an empirical distribution Pn of O1, . . . ,On into
an estimate of ψ0, and assume that this estimator ψn = Ψ̂ (Pn) is asymptotically
linear at P0 with influence curve O → D(P0)(O) at P0, so that we can write:

ψn − ψ0 = (Pn − P0)D(P0) + oP(1/
√

n).

In that case, we have that
√

n(ψn − ψ0) converges in distribution to a normal dis-
tribution N(0, Σ2(P0)), where Σ2 : M → IR is defined by Σ2(P) = PD(P)2 as the
variance of the influence curve D(P) under P.

We wish to estimate a confidence interval for ψn. A one-sided confidence inter-
val is defined by a quantity ψn,[α] such that P0(ψ0 < ψn,[α]) = α. Two sided con-
fidence intervals are typically equal-tailed intervals, having the same error in each
tail: P0(ψ0 < ψn,[α/2]) = P0(ψ0 > ψn,[1−α/2]) = α/2. These can be constructed using
a pair of one-sided intervals. A one-sided Wald confidence interval can be gener-
ated using the asymptotic normality discussed above: defining variance estimator
σ̂2

n = Σ
2(Pn), the endpoint is ψn,[α],Wald = ψn − n−1/2σ̂nφ

−1(1 − α), where φ−1(1 − α)
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is the 1 − αth quantile of the standard normal distribution. Similarly, a two-sided
Wald confidence interval is given by ψn ± φ−1(1−α/2)n−1/2σ̂n. This approach ignores
the remainder term oP(1/

√
n) and is therefore said to be first order correct.

To provide a concrete motivating example, suppose we observe n i.i.d. observa-
tions of O = (W, A,Y) ∼ P0, for baseline covariates W, treatment A ∈ {0, 1}, and
outcome Y ∈ {0, 1}, and suppose that M is the nonparametric model, making no
assumptions about the distribution from which O is sampled. The target parameter
Ψ : M → R, is a treatment-specific mean defined as Ψ (P) = EPEP(Y | A = 1,W).
Let Q̄(P)(W) = EP(Y | A = 1,W) and ḡ(P)(W) = EP(A | W).

28.2 TMLE

As previously discussed elsewhere in this book, TMLE produces asymptotically
linear substitution estimators of target parameters. TMLE fluctuates an initial esti-
mate of the target parameter, resulting in an estimate which makes the correct bias-
variance trade-off. TMLEs are asymptotically linear with a known influence curve,
even when the components of the likelihood are estimated using data-adaptive meth-
ods (like these).

28.2.1 TMLE for Treatment Specific Mean

The efficient influence curve of Ψ at P is given by:

D∗(P)(O) =
A

ḡ(W)
(Y − Q̄(W)) + Q̄(W) − Ψ (P)

(van der Laan and Robins 2003). Note that Ψ (P) only depends on P through Q̄(P)
and the probability distribution QW (P) of W. Let Q(P) = (QW (P), Q̄(P)) and let
Q(M) = {Q(P) : P ∈ M} be its model space. We will also denote the target parame-
ter as Ψ : Q(M) → IR as a mapping that maps a Q in the parameter space Q(M) into
a numeric value, abusing notation by using the same notation Ψ for this mapping.
Similarly, we will also denote D∗(P) with D∗(Q,G). The efficient influence curve
D∗(P) satisfies the expansion Ψ (P) − Ψ (P0) = −P0D∗(P) + Rψ(P, P0), where

Rψ(P, P0) = P0
ḡ − ḡ0

ḡ
(Q̄ − Q̄0).

Let ψ∗
n = Ψ (Q∗

n) be a TMLE of ψ0 so that it is asymptotically linear at P0 with
influence curve D∗(P0). This TMLE can be defined by letting Q̄0

n being an ini-
tial estimator of Q̄0, ḡn an estimator of g0, L(Q̄)(O) = −I(A = 1)(Y log Q̄(W) +
(1 − Y) log(1 − Q̄(W)) being the log-likelihood loss function for Q̄0, the submodel
LogitQ̄0

n(ε)) = LogitQ̄0
n + εH(ḡn) with H(ḡn) = A/ḡn(W), Q̄1

n = Q̄0
n(ε0

n ) with
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ε0
n = arg minε PnL(Q̄0

n(ε)), and ψ∗
n = Ψ (Q1

n), where Q1
n = (Q̄1

n,QW,n) and QW,n is
the empirical distribution of W1, . . . ,Wn. Let P∗

n be a probability distribution com-
patible with Q∗

n.

28.2.2 TMLE of the Variance of the Influence Curve

Let O ∼ P0 ∈ M, and we have two target parametersΨ : M → IR and Σ2 : M → IR.
We are given an estimator ψ∗

n that is asymptotically linear at P0 with influence curve
D(P0). For simplicity, we will consider the case that ψ∗

n = Ψ (P∗
n) is an efficient

targeted maximum likelihood estimator so that D(P) = D∗(P) and D∗(P) is the effi-
cient influence curve of Ψ at P. In this case, Σ2(P) = P{D∗(P)}2. Let D∗

Σ(P) be the
efficient influence curve of Σ2 at P. Suppose that Σ2(P) = Σ2

1 (QΣ(P)) for some pa-
rameter QΣ(P) that can be defined by minimizing the risk of a loss function LΣ(QΣ)
so that QΣ(P) = arg minQΣ

PLΣ(Q). In addition, we assume that D∗
Σ(P) only depends

on P through QΣ(P) and some other parameter gΣ(P). For notational convenience, we
will denote these to alternative representations of the asymptotic variance parameter
and its efficient influence curve with Σ2(QΣ) and D∗

Σ(QΣ(P), gΣ(P)) respectively.
We now develop a TMLE of Σ2(P0) as follows. First, let Q0

Σ,n be an initial es-
timator of QΣ(P0), which could be based on the super learner ensemble algorithm
using the loss function LΣ(). Similarly, let gΣ,n be an estimator of gΣ,0. Set k = 0.
Consider now a submodel {Qk

Σ,n(ε | gΣ,n) : ε} ⊂ QΣ(M) so that the linear span
of the components of the generalized score d

dε LΣ(Qk
Σ,n(ε | gΣ,n)) at ε = 0 spans

D∗
Σ(Qk

Σ,n, gΣ,n). Define εk
n = arg minε PnLΣ(Qk

Σ,n(ε | gΣ,n)) as the MLE and define the
update Qk+1

Σ,n = Qk
Σ,n(εk

n | gΣ,n). We iterate this updating process until convergence at
which step K we have εK

n ≈ 0. We denote this final update with Q∗
Σ,n and we call

that the TMLE of QΣ(P0), while Σ2(Q∗
Σ,n) is the TMLE of the asymptotic variance

Σ2(Q0) of the TMLE ψ∗
n of ψ0. Let P̃∗

n be a probability distribution compatible with
Q∗
Σ,n.

Application to the Treatment Specific Mean. The asymptotic variance of
√

n(ψ∗
n−

ψ0) is given by:

Σ2(P0) = EP0 {D∗(P0)}2

= Q0,W

(
Q̄0(1 − Q̄0)

ḡ0
+ (Q̄0 − Q0,W Q̄0)2

)

The following lemma presents its efficient influence curve D∗
Σ(P).

Lemma 28.1. The efficient influence curve D∗
Σ(P) of Σ2 at P is given by:

D∗
Σ(P)(W, A,Y) = DΣ2,QW

(P)(W) + DΣ2,Q̄(P)(O) + DΣ2,ḡ(P)(O),

where
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DΣ2,QW
(P)(W) =

Q̄(1 − Q̄)
ḡ

(W) − QW
Q̄(1 − Q̄)

ḡ

+(Q̄(W) − Ψ (Q))2 − QW (Q̄ − Ψ (Q))2

DΣ2,Q̄(P)(O) =
I(A = 1)

ḡ(W)

(
1 − 2Q̄(W)

ḡ(W)
+ 2(Q̄(W) − Ψ (Q))

)
(Y − Q̄(W))

DΣ2,ḡ(P)(O) = − Q̄(1 − Q̄)(W)
ḡ2(W)

(A − ḡ(W)).

This allows us to develop a TMLE Σ2(QW,n, Q̄∗
n, ḡ

∗
n) of Σ2(QW,0, Q̄0, ḡ0). Define

the clever covariates:

CY (ḡ,Q)(A,W) ≡ I(A = 1)
ḡ(W)

(
1 − 2Q̄(W)

ḡ(W)
+ 2(Q̄(W) − Ψ (Q))

)

CA(ḡ, Q̄)(W) ≡ Q̄(1 − Q̄)(W)
ḡ2(W)

.

Let Q0
n = (QW,n, Q̄0

n) for an initial estimator Q̄0
n of Q̄0, where QW,n is the empirical

distribution which will not be changed by the TMLE algorithm. Let k = 0. Consider
the submodels

LogitQ̄k
n(ε1) = LogitQ̄k

n + ε1CY (ḡk
n,Q

k
n)

Logitḡk
n(ε2) = Logitḡk

n + ε1CA(ḡk
n, Q̄

k
n).

In addition, consider the log-likelihood loss functions

L1(Q̄) = −I(A = 1)
{
Y log Q̄(W) + (1 − Y) log(1 − Q̄(W))

}

L2(ḡ) = − {
A log ḡ(W) + (1 − A) log(1 − ḡ(W))

}
.

Define the MLEs εk
1n = arg minε PnL1(Q̄k

n(ε)) and εk
2n = arg minε PnL2(ḡk

n(ε)).
This defines the first step update Q̄k+1

n = Q̄k
n(εk

1n) and ḡk+1
n = ḡk

n(εk
2n). Now set

k = k + 1 and iterate this process until convergence defined by (ε∗1n, ε
∗
2n) being close

enough to (0, 0). Let ḡ∗n, Q̄
∗
n denote these limits of this TMLE procedure, and let

Q∗
n = (QW,n, Q̄∗

n). The TMLE of Σ2(P0) is given by Σ2(P̃∗
n) where P̃∗

n is defined by
(QW,n, Q̄∗

n, ḡ
∗
n). We note that at (ε∗1n, ε

∗
2n) = (0, 0), we have

0 = PnDΣ2 (P̃∗
n) = 0,

and if the algorithm stops earlier at step K, and one defines P̃∗
n = PK

n , one just needs
to make sure that

PnDΣ2 (P̃∗
n) = oP(1/

√
n).
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28.2.3 Joint TMLE of Both the Target Parameter
and Its Asymptotic Variance

We could also define a TMLE targeting both parameters Ψ and Σ2. This is de-
fined exactly as above, but now using a submodel {Pk

n(ε) : ε} ⊂ M that has a
score d

dε L(Pk
n(ε)) at ε = 0 whose components span both efficient influence curves

(D∗
ψ(P),D∗

Σ(P)). In this manner, one obtains a TMLE P̃∗
n that solves PnD∗

ψ(P̃∗
n) =

PnD∗
Σ(P̃∗

n) = 0 and, under regularity conditions, yields an asymptotically efficient
estimator of both ψ0 and σ2

0. In this case our TMLE of ψ0 could just be Ψ (P̃∗
n): so

in this special case, we have P∗
n = P̃∗

n. In particular, we could estimate both ψ0 and
σ2

0 with a bivariate TMLE (Ψ (P̃∗
n), Σ2(P̃∗

n)) where P̃∗
n is a TMLE that targets both

ψ0 and σ2
0 = Σ2(P0). In this case, P∗

n = P̃∗
n and thus ψ∗

n = Ψ (P̃∗
n), σ∗

n = Σ2(P̃∗
n).

This TMLE can be defined as the above iterative TMLE of Σ2(P0) but now using
the augmented submodel:

LogitQ̄k
n(ε1) = LogitQ̄k

n + ε0H(ḡk
n) + ε1CY (ḡk

n,Q
k
n),

where H(ḡ)(A,W) = I(A = 1)/ḡ(W). Conditions under which (Ψ (P̃∗
n), Σ2(P̃∗

n)) is
an asymptotically efficient estimator of (Ψ (P0), Σ2(P0)) are essentially the same as
needed for efficiency of Ψ (P0).

28.3 Super Learner

TMLE requires initial estimates of factors of the likelihood. For the treatment-
specific mean example we need estimates of Q̄(A,W) and ḡ(W). In the targeted
learning framework, these factors are typically estimated with super learner, dis-
cussed earlier in Chap. 3 and elsewhere. For the purposes of this chapter, we applied
discrete super learner (also referred to as the cross-validation selector), which se-
lects the risk-minimizing individual algorithm.

Loss based estimation allows us to objectively evaluate the quality of estimates
and select amongst competing estimators based on this evaluation. Super learner is
a particular implementation of this framework, and understanding this framework is
important to understanding the behavior of super learner on nonparametric bootstrap
samples. In the context of super learner, we will refer to estimators of the factors of
the likelihood as “learners”. This exposition will focus on the example of learning an
estimate of Q̄0(P0) = EP0 [Y |A,W], but it applies equally well to other factors of the
likelihood. Here, Q̄(P) indicates an estimate of Q̄ based on P. Consider the problem
of selecting an estimate Q̄ from a class of possible distributions Q̄. In the context
of discrete super learner, this becomes selecting from a set of candidate learners:
Q̄k : k = 1, . . . ,K.
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The key ingredient in this framework is a loss function, L(Q̄,O), that describes
the severity of the difference between a value predicted by a learner and the true
observed value. For example, the squared error loss: L(Q̄,O) = (Q̄− Y)2. This leads
to the risk, which is the expected value of the loss with respect to distribution P:
θ(Q̄, P) = PL(Q̄,O) = EP0 [L(Q̄,O)]. Evaluated at the truth, P0, we get the true
risk θ0(Q̄) = θ(Q̄, P0), which provides a criteria by which to select a learner: Q̄0 =

arg minQ̄∈Q̄ θ0(Q̄) = Q̄(P0), the learner we want is the one that minimizes the true
risk. Crucially, this should be equal to the parameter we’re trying to estimate, here
Q̄0(A,W). The value of this risk at the minimizer is called the optimal risk, or the
irreducible error: θ0(Q̄0) = minQ̄∈Q̄ θ0(Q̄). Then, in the context of discrete super
learner, we can define oracle selector as k̃n = arg mink∈{1,...,Kn} θ0(Q̄k), which selects
the learner that minimizes true risk amongst set of candidates. This is the learner we
would select if we knew P0

The empirical or resubstitution risk estimate, θ̂Pn (Q̄(Pn)) = θ(Q̄(Pn), Pn), es-
timates the risk on the same dataset used to train the learner. This is known to
be optimistic (biased downwards) in most circumstances, with the optimism in-
creasing as a function of model complexity. Therefore, the resubstitution selec-
tor arg mink∈{1,...,Kn} θ̂Pn (Q̄k(Pn)) selects learners which “overfit” the data, selecting
learners which are unnecessarily complex, and therefore have a higher risk than
models which make the correct bias-variance trade-off. Hastie et al. (2001) discusses
this phenomenon in more detail.

Cross-validation allows more accurate risk estimates that are not biased towards
more complex models. Our formulation relies on a split vector Bn ∈ {0, 1}n, which
divides the data into two sets, a training set (Oi : Bn(i) = 0), with the empirical
distribution P0

n,Bn
, and a validation set (Oi : Bn(i) = 1), with the empirical dis-

tribution P1
n,Bn

. Averaging over the distribution of Bn, yields a cross-validated risk

estimate: θ̂CV(Q̄) = EBnθ(Q̄(P0
n,Bn

), P1
n,Bn

). This yields a cross-validated selector

k̂n = arg mink∈{1,...,Kn} θCV(Q̄), which selects the learner that minimizes the cross-
validated risk estimate. Because cross-validation uses separate data for training and
risk estimation for each split vector Bn, it has an important oracle property.

Under appropriate conditions the cross-validation selector will do asymptotically
as well as the oracle selector in terms of a risk difference ratio:

θ0(Qk̂) − θ0(Q̄0)

θ0(Qk̃) − θ0(Q̄0)

P→ 1. (28.1)

That is, the ratio of the risk difference between the cross-validation selector and
the optimal risk and the risk difference between the oracle selector and the optimal
risk approaches 1 in probability. Conditions and proofs for this result are given in
Dudoit and van der Laan (2005); van der Laan and Dudoit (2003); van der Vaart et al.
(2006). It is through this property that discrete super learner does asymptotically as
well as the best of its candidate learners. We will soon describe how this property
fails for nonparametric bootstrap samples.
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28.4 Bootstrap

Before presenting our generalization of the bootstrap, we briefly review the boot-
strap theoretical framework. The key idea of the bootstrap is as follows: we wish
to estimate the sampling distribution G(x) = P(Ψ̂ (Pn) ≤ x) of an estimator
Ψ̂ : MNP → Ψ, where Ψ̂ (Pn) is viewed as a random variable through the random
Pn. If the estimator is asymptotically linear, then this sampling distribution could
be approximated with a normal distribution so that it suffices to estimate its first
and second moment. It is difficult to estimate this distribution directly because we
only observe one sample from P0, and therefore only one realization of ψn. How-
ever, we can draw B repeated samples of size n from some estimate of P0 and apply
our estimator to those samples. Denoting such a sample O#

1, . . . ,O
#
n and the empir-

ical distribution corresponding to that sample P#
n and estimate ψ#

n = Ψ (P#
n), we can

obtain an estimate of the desired sampling distribution:

Ĝ(x) =
1
B

B∑

i=1

I(ψ#
n,i ≤ x)

28.4.1 Nonparametric Bootstrap

The nonparametric bootstrap applies this approach by sampling from the empirical
distribution, Pn. This approach has been demonstrated to be an effective tool for esti-
mating the sampling distribution in a wide range of settings. However, the nonpara-
metric bootstrap is not universally appropriate for sampling distribution estimation.
Because Pn is a discrete distribution, repeated sampling from it will create “copied”
observations—bootstrap samples will have more than one identical observation in
a sample. Bickel et al. (1997a) notes that the bootstrap can fail if the estimator is
sensitive to ties in the dataset. One example of a class of estimators that may be sen-
sitive to ties are those that use cross-validation to make a bias-variance trade-off. If
cross-validation is applied to a nonparametric bootstrap sample, duplicate observa-
tions have the potential to appear in both the training and testing portions of a given
sample split. This creates an issue for estimators that rely on cross-validation. Hall
(1992) specifically notes issue of ties for cross-validation based model selection.

The severity of this problem is determined by how many copied observations
we can expect. For a bootstrap sample of size n, and validation proportion pBn ,
the probability of a validation observation having a copy in the training sample is
given by

p(copy) = 1 −
(
1 − 1

n

)(1−pBn )n

≈ 1 − e−(1−pBn )
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For ten-fold cross-validation pBn = 0.1, so we can expect ≈59% of validation ob-
servations to also be in the training sample. An average of 59% of a cross-validated
risk estimate on a bootstrap sample is therefore something like a resubstitution risk
estimate, thus having suboptimal properties. One ad-hoc solution to the problem
of duplicate observations for cross-validation is to do “clustered” cross-validation
where a cluster is defined as a set of identical bootstrap observations, and then split
the clusters between training and validation. This way, no observation will appear
in both the training and testing sets. Although we lack rigorous justification for this
approach, it was evaluated in the simulation study below. It appears in the results as
“NP Bootstrap + CVID”.

28.4.2 Model-Based Bootstrap

In contrast, the parametric bootstrap draws samples from an estimate of P0 based
on an assumed parametric model: Pn,β. The parametric bootstrap can be generalized
to a “model-based” bootstrap that using semi- or nonparametric estimates of factors
of the likelihood. In the context of our treatment-specific mean example, this means
using estimates of P(Y |A,W) and ḡ. If Y is binary, as is the case in our simulation,
P(Y = 1|A,W) = E(Y |A,W) = Q̄(A,W). Otherwise, we need an estimate of the
conditional distribution of ε(A,W), given A,W, where Y = E(Y |A,W)+ ε(A,W). To
be explicit, observations are drawn from an estimate P̃n = QW,ngnQY,n according to
the algorithm below.

Algorithm. Model-Based Bootstrap

	 Sample W# from the empirical distribution of W: QW,n,
	 Using W#, sample A# from gn(· | W#),
	 Using A# and W#, sample Y# from QY,n(· | (A#,W#)).

The targeted bootstrap, described in the next section, is a particular model-based
bootstrap using estimates of Q̄∗

n ḡ∗n targeted to ensure correct asymptotic perfor-
mance.

28.4.3 Targeted Bootstrap

The idea of targeted bootstrap is to construct a TMLE P̃∗
n so that Σ2(P̃∗

n) is a TMLE
ofσ2

0 = Σ
2(P0). Then we know that under regularity conditions, Σ2(P̃∗

n) is an asymp-
totically linear and efficient estimator of σ2

0 at P0 so that we can construct a con-
fidence interval for σ2

0. In addition, since it is a substitution estimator of σ2
0 it is

often more reliable in finite samples resulting in potential finite sample improve-
ments in coverage of the confidence interval. In addition, we will show that under
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appropriate regularity conditions, due to the consistency of Σ2(P̃∗
n), the bootstrap

distribution of
√

n(Ψ̂ (Pn,#) − Ψ (P̃∗
n)) based on sampling O#

1, . . . ,O
#
n ∼iid P̃∗

n, given
almost every (Pn : n),

√
n(Ψ̂ (Pn) − ψ0) converges to the desired limit distribution

N(0, σ2
0), even when P̃∗

n is misspecified. Thus, we can show that the P̃∗
n-bootstrap is

consistent almost everywhere for the purpose of estimating the limit distribution of√
n(ψn − ψ0), but the bootstrap has the advantage of also obtaining an estimate of

the finite sample sampling distribution of the estimator under this bootstrap distri-
bution. Normally, the consistency of a model based bootstrap that samples from an
estimate P̃∗

n of P0 relies on consistency of the density of P̃∗
n as an estimator of the

density of P0. In this case, however, the consistency of the bootstrap only relies on
the conditions under which the TMLE Σ2(P̃∗

n) is a consistent estimator of Σ2(P0).
This in turn can allow that parts of P0 are inconsistently estimated within P̃∗

n. We
refer to this bootstrap as the targeted bootstrap.

The TMLE of Σ2(P0) is typically represented as Σ2(Q∗
Σ,n) for a smaller parameter

P → QΣ(P) utilizing a possible nuisance parameter estimator g∗Σ,n of a gΣ(P0).
As a consequence, P̃∗

n can be defined as any distribution for which QΣ(P̃∗
n) = Q∗

n,
without affecting the consistency of the targeted bootstrap. This demonstrates that
the targeted bootstrap is robust to certain types of model misspecification. For the
best finite sample performance in estimating the actual sample sampling distribution
of Ψ̂ (Pn), it might still be helpful that also the remaining parts of P0, beyond Q0,
are well approximated; however that contribution will be asymptotically negligible.

28.4.4 Bootstrap Confidence Intervals

Once a bootstrap sampling distribution is obtained, a number of methods have been
proposed to generate confidence interval endpoints from them. Hall (1988) presents
a framework by which to evaluate bootstrap confidence intervals. We follow that
approach here. We are interested in studying the accuracy of various confidence
intervals. For a given confidence interval endpoint, ψn,[α], we say that it’s jth order
accurate if we can write P0(ψ0 < ψn,[α]) = α + O(n− j/2). Coverage probability of
a one-sided interval is closely related to its accuracy. We also discuss the coverage
error of a two-sided confidence interval.

The most general theoretical results for bootstrap confidence interval accuracy
for the nonparametric bootstrap come from the smooth functions setting of Hall
(1988). This setting is for parameters that can be written as f (P0Y) where Y is
a vector generated from a set of transformations of O, (i.e. hj(O)), and where f
is a smooth function. This setting accommodates many common parameters such
as means and other moments but also leaves out other common parameters like
quantiles. Notably, it does not include the treatment-specific mean or other kinds of
targeted learning parameters. Below we present some bootstrap confidence interval
methods and state the relevant theoretical results in this setting.
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Bootstrap Wald Interval. A Wald interval using the bootstrap estimate of variance:

σ̂2
n,boot =

1
B

B∑

i=1

(
Ψ (Pn,#,i) − Ψ̄ (Pn,#,i)

)2

with Ψ̄ (Pn,#,i) = 1
B

∑B
i=1 Ψ (Pn,#,i). As before:

ψn,[α],Wald = ψn − n−1/2σ̂n,bootφ
−1(1 − α)

The Wald interval method is first order accurate in the smooth functions setting
(Hall 1988).

Percentile Interval. Efron’s percentile interval directly using the α quantile of Ĝ(x):

ψn,[α],Percentile = Ĝ−1(α)

The percentile interval is also first order accurate in the smooth functions setting
(Hall 1988).

Bootstrap-t Interval. The bootstrap-t interval can be thought of as an improve-
ment to the Wald-style interval. It relies on the following “studentized” distribution
function.

K(x) = P

(
n1/2(ψ̂n − ψ0)

σ̂n
< x

)

The bootstrap estimate of this distribution is as follows:

K̂(x) =
1
B

B∑

i=1

I

(
n1/2(ψ̂#

n − ψ̂n)
σ̂n

< x

)

Defining ŷα = K̂−1(α) as the estimate of the α quantile of this distribution, we
modify the Wald interval as follows:

ψn,[α],bootstrap-t = ψn + n−1/2σ̂nŷα

A commonly cited drawback of this method is it requires a reliable estimate of
σ (Hall 1988). However, in our setting we have access to estimates of σ both from
influence curves and targeted estimates of variance. In our simulation study (below),
we used the influence curve variance estimate except in the case of the targeted
and joint targeted bootstraps, where we used the targeted estimate. The bootstrap-t
interval is second-order accurate in the smooth functions setting (Hall 1988).
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BCa Interval. The BCa (bias-corrected, accelerated) interval, first presented in
Efron (1987), accounts for bias and skew in a sampling distribution when forming
a confidence interval. Its development was motivated by the practice of employing
monotone transformations to normalize the sampling distribution of an estimator. It
depends on two additional parameters. The bias constant z0 captures the bias in the
sampling distribution, while the acceleration constant a captures the skewness of the
sampling distribution.

Given both of these quantities, the BCa defines a new quantile to look up:

βz0,a,α = Φ

(
z0 +

z0 + zα
1 − a(z0 + zα)

)

ψn,[α],BCa = Ĝ−1(βz0,a,α),

where Φ(x) is the standard normal distribution and zα ≡ Φ−1(α) is its α quantile. To
generate this interval in practice, we require estimates of z0 and a. We estimate z0 as
the normal quantile for the proportion of the bootstrap estimates that fall below the
original sample estimate:

ẑ0 = Φ
−1

[
Ĝ(ψ̂n)

]
.

We use our knowledge of the influence function to estimate the acceleration constant
a from the original sample:

â =

∑n
i=1 D(Oi)3

6
(∑n

i=1 D(Oi)2
)3/2

.

The BCa interval is also second order accurate in the smooth functions setting (Hall
1988).

28.5 Simulation

To evaluate the practical performance of the targeted bootstrap, we simulate data
from the following P0:

W1 ∼ U(−1, 1),

W2 ∼ U(−1, 1),

W∗ = W2 − W1,

A|W ∼ Bernoulli
(
inv.logit(−0.5W∗)

)
,

Y |A,W ∼ Bernoulli
(
inv.logit(A(1 − 0.5W∗ + sin(W∗)))

)
.

Positivity, (ḡ(P0)(W) = P0(A = 1|W) > 0, is met: 0.26 < ḡ(P0)(W) < 0.74. Samples
of size n = 1000 were generated for each of B = 1000 Monte Carlo simulations.
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In our simulation, we estimated Q̄(P0)(W) = E[Y |A = 1,W] using kernel regres-
sion with bandwidth selected by 10-fold cross-validation (i.e., the discrete super
learner). We estimate ḡ(P0)(W) using a correctly specified logistic regression. For
each simulation iteration, we estimated Q, and fit three TMLEs: a TMLE for the
treatment-specific mean, a TMLE for its asymptotic variance, and a joint TMLE for
both the treatment-specific mean and its asymptotic variance. After fitting the TM-
LEs, we generated 1000 repeated bootstrap samples from five different methods:
nonparametric bootstrap, clustered nonparametric bootstrap, model-based bootstrap
based on the initial super learner fit, the targeted bootstrap sampling from the TMLE
distribution targeting the asymptotic variance, and the joint targeted bootstrap sam-
pling from the joint targeted TMLE distribution.

The three TMLEs fit to the simulated dataset generated different confidence
interval estimates: one Wald-style interval based on the influence curve from the
first TMLE, and direct estimates of the variance for the remaining two TMLEs. For
the five bootstrap methods, we estimated intervals for all four methods described
in Sect. 28.4.4. We evaluated coverage and interval lengths for all estimated con-
fidence intervals. We also compared the performance of the super learner on full
samples and samples from all the bootstrap approaches. To evaluate the perfor-
mance of super learner on bootstrap samples, we compared which bandwidths were
selected on the various sample types, as well as the risk difference ratios for those
selections.

Results. As described above, super learner behaves differently on nonparametric
bootstrap samples than on full samples, behaving more like a resubstitution estima-
tor. While on full samples, the super learner (cross-validation) often selects band-
widths close to those selected by the oracle selector (minimizing the true risk), on
nonparametric bootstrap samples, super learner most often selects the lowest avail-
able bandwidth, over-fitting the data. On other kinds of bootstrap samples, including
targeted bootstrap, super learner behaves more like it does on full samples, suggest-
ing that these bootstrap methods don’t have the same problem. This difference in the
selection behavior impacts the performance of the resulting super learner in terms
of the risk difference ratio (Eq. (28.1)). This can be seen in Fig. 28.1. Again, other
bootstrap samples behave more like full samples in terms of the risk difference ratio.

Figures 28.2, 28.3, and 28.4 show how super learner performance impacts confi-
dence interval performance for the resulting TMLE estimate. In general, the over-fit
super learner being used in TMLE on nonparametric bootstrap samples is more vari-
able than the well-fit super learner being used in full samples. Therefore, nonpara-
metric bootstrap confidence intervals are unnecessarily long and over-cover. The
effect of this over-coverage on length is modest at n = 1000, with the Wald intervals
estimated from the nonparametric bootstraps are on average just 4% longer than the
standard influence-curve based confidence intervals. At smaller sample sizes, the ef-
fect is more severe: nonparametric bootstrap intervals are 21% longer than influence
curve intervals at n = 250, and 39% longer at n = 100. This substantial increase in
length will negatively impact the power of nonparametric bootstrap confidence in-
tervals. In our simulation, the set of bandwidths from which super learner could
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Fig. 28.1 Risk difference ratio (defined in Eq. (28.1)) of super learner on different sample types
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Fig. 28.2 Confidence interval coverage and length for n = 1000
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Fig. 28.3 Confidence interval coverage and length for n = 250
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Fig. 28.4 Confidence interval coverage and length for n = 100
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select was fixed with respect to sample size. We expect that, if smaller bandwidths
had been available, super learner on nonparametric bootstrap samples would have
chosen them, increasing the impact of over-fitting on larger sample sizes.

These figures also show the importance of a bootstrap that jointly targets both
the parameter of interest and its asymptotic variance. For interval types other than
Wald, the (variance-only) targeted bootstrap intervals have very poor coverage. This
is because these intervals are not centered on the treatment-specific mean estimate
from the full dataset, and are instead centered on the average estimate from the
bootstrap intervals. In the case of targeted bootstrap samples, these estimates are
biased, because the targeted bootstrap is targeting only the variance, and not the
actual parameter of interest.

Figure 28.4 shows that at small sample sizes, the asymptotic Wald intervals have
lower than nominal coverage, with all methods under-covering by at least 2.5%.
Small sample sizes such as this are where the bootstrap has the most potential to
improve upon asymptotic confidence intervals. At larger sample sizes, the second-
order terms become relatively unimportant. However, even at this small sample size,
asymptotic intervals are only modestly anti-conservative in this simulation. This
may be due to the fact that even at n = 100, our simulated sampling distribution is
already very close to normal.

Focusing only on the joint targeted bootstrap, we can compare the performance
of different bootstrap confidence interval types. Figure 28.5 shows this comparison.
At modest sample sizes, Bootstrap-t intervals over-cover and are longer than other
interval types. The other bootstrap methods generate intervals of similar length. Of
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Fig. 28.5 Joint targeted bootstrap interval performance comparison
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the three, BCa has the closest to nominal coverage over the range of sample sizes
tested. Therefore, it is recommended that this interval type be used with the Joint
targeted bootstrap going forward.

28.6 Conclusion

We have shown the effectiveness of the targeted bootstrap for estimating proper-
ties of the sampling distribution theoretically and through simulation results. Our
simulation illustrates the problems of applying the nonparametric bootstrap to a
TMLE estimate with initial estimates based on super learner. Specifically, ties in
nonparametric bootstrap samples sabotage the sample splitting that occurs in cross-
validation, causing cross-validating risk estimates to behave more like resubstitution
estimates. This leads super learner to select over-fit models on nonparametric boot-
strap samples. By sampling from a continuous distribution estimate, and one that is
targeted to the parameters of interest, targeted bootstrap does not create the ties that
break cross-validation, and therefore generates confidence intervals with acceptable
performance. We have demonstrated the superiority of the targeted bootstrap over
the nonparametric bootstrap in the context of targeted learning.

Additional work is necessary to further explore the issue of bootstrap confidence
intervals for targeted learning. A simulation study with a continuous outcome vari-
able, especially one with a skewed error distribution, would be interesting in several
ways. First, it would validate the targeted bootstrap approach for continuous out-
comes, which theory tells us should be consistent even when the error distribution
is misspecified. Secondly, it would allow us to investigate the magnitude of second-
order terms in a setting with a sampling distribution that might be more skewed
at smaller sample sizes. Another extension would be to investigate additional boot-
strap confidence interval types, especially the tilted and automatic percentile interval
types (DiCiccio and Romano 1990).

We also want to highlight another type of bootstrap that is asymptotically con-
sistent in great generality. In this bootstrap method one estimates the sampling dis-
tribution of the TMLE with the sampling distribution, under sampling from the em-
pirical probability distribution Pn, of the TMLE that fixes the initial estimator and
only recomputes the TMLE update step in the TMLE algorithm. It follows that this
is a consistent bootstrap method as long as the TMLE itself is asymptotically effi-
cient. Of course, this type of bootstrap fails to pick up second-order terms due to the
estimation of the nuisance parameters.



Chapter 29
Targeted Learning Using Adaptive Survey
Sampling

Antoine Chambaz, Emilien Joly, and Xavier Mary

Consider the following situation: we wish to build a confidence interval (CI)
for a real-valued pathwise differentiable parameter Ψ evaluated at a law P0,
ψ0 ≡ Ψ (P0), from a data set O1, . . . ,ON of independent random variables
drawn from P0 but, as is often the case nowadays, N is so large that we will
not be able to use all data. To overcome this computational hurdle, we decide
(a) to select n among N observations randomly with unequal inclusion proba-
bilities and (b) to adapt TMLE from the smaller data set that results from the
selection.

Our analysis is asymptotic: we assume that N goes to infinity and that n goes to
infinity as N does, in such a way that the ratio n/N go to 0. The selection of n among
N observations will be the random outcome of a survey sampling design. From now
on, we assume that each observation Oi is summarized by Vi, a low-dimensional
random variable, and that V1, . . . ,VN are all observed. We will draw advantage from
V1, . . . ,VN to adjust the probability that each Oi be sampled.

First explored in Bertail et al. (2016a), our approach is an alternative to the so
called “online targeted learning” developed by van der Laan and Lendle (2014).
It bears many similarities with inverse probability of censoring (IPCW) TMLE in
two-stage designs (Rose and van der Laan 2011), but extends it in three directions.
First, the random selection process is conditional on (V1, . . . ,VN) and carried out
collectively rather than individually. This induces dependence between the selected
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observations. Second, the inclusion probabilities of O1, . . . ,ON converge to 0 as N
goes to infinity. This is convenient from a computational viewpoint, since sampling
n = o(N) observations out of O1, . . . ,ON would be difficult otherwise. Third, the
approach naturally lends itself to a multiple-stage sampling version, allowing to
optimize the inclusion probabilities in order to meet an objective such as minimizing
the asymptotic variance of the targeted minimum loss estimator (TMLE).

We will develop two examples of survey sampling designs: Sampford’s and
determinantal sampling designs. Also known as rejective sampling design based on
Poisson sampling with unequal inclusion probabilities, Sampford’s sampling design
is a particular case of sampling without replacement (Hanif and Brewer 1980).
It has been thoroughly studied since the publication of the seminal articles (Ha-
jek 1964; Sampford 1967). Recently introduced in sampling theory by Loonis
and Mary (2015), determinantal sampling design benefits from a rich literature
on determinantal point processes (Macchi 1975; Lyons 2003; Hough et al. 2006).
The methodology will be illustrated with an example, that of the inference of a
nonparametric variable importance measure of a continuous exposure (Chambaz
et al. 2012). A simulation study will contribute to assessing the performance of the
procedure in this setting.

29.1 Template for Targeted Inference by Survey Sampling

This section presents a template for carrying out targeted inference from large data
sets by survey sampling. Throughout the chapter, we denote μ f ≡

∫
f dμ and

‖ f ‖2,μ ≡ (μ f 2)1/2 for any measure μ and function f (measurable and integrable
with respect to μ).

29.1.1 Retrieving the Observations by Survey Sampling

As explained in introduction, the first step of the inference procedure is the random
selection without replacement of n among N observations. The survey sample size
n is set beforehand. Down to earth computational considerations typically drive its
choice. We assume that both n and N go to infinity and that n/N go to 0. How n
depends on N may or may not need to be described more precisely. The results
of this chapter could be extended to the case that n is random and satisfies these
two conditions almost surely (with respect to the law of the sampling design; more
details to follow).

The random selection of n among N observations takes the form of a vector
η ≡ (η1, . . . , ηN) of binary random variables where, for each 1 ≤ i ≤ N, Oi is selected
if and only if ηi equals 1. The conditional joint distribution of η given O1, . . . ,ON

is the survey sampling design. By construction, it coincides with the conditional
joint distribution of η given the summary measures V1, . . . ,Vn which, contrary to
O1, . . . ,ON , are all observed at the beginning of the study.
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We denote Ps a generic conditional joint distribution of η given O1, . . . ,On (the
superscript “s” stands for “survey”). The first order inclusion probabilities are the
(conditional marginal) probabilities πi ≡ Ps(ηi = 1) for 1 ≤ i ≤ N. In case they
are equal, the sampling design is said equally weighted. The second-order inclusion
probabilities are the (conditional joint) probabilities πi j ≡ Ps(ηi = 1, η j = 1) =
Ps(ηiη j = 1) for 1 ≤ i � j ≤ N. The Horvitz-Thompson empirical measure

PHT
n ≡ 1

N

N∑

i=1

ηi

πi
Dirac(Oi) (29.1)

takes up the role that the empirical measure PN ≡ N−1 ∑N
i=1 Dirac(Oi) would play

if we had access to it. The former is an unbiased estimator of the latter in the sense
that, for any function f of O drawn from P0,

EPs

[
PHT

n f
]
= PN f .

A CLT may hold for
√

n(PHT
n − PN) f (conditionally on O1, . . . ,ON). Whether it

does or not notably depends on the asymptotic behavior of VarPs

[
PHT

n f
]
. In general,

it holds that

VarPs

[
PHT

n f
]
=

1
N2

N∑

i=1

(
1
πi

− 1

)
f 2(Oi) +

1
N2

∑

1≤i� j≤N

(
πi j

πiπ j
− 1

)
f (Oi) f (Oj).

(29.2)

Sections 29.2 and 29.3 focus on the specific examples of the Sampford and determi-
nantal survey sampling designs. The choice of the sampling design affects the limit
variance of the TMLE. For the time being, we do not characterize further the survey
sampling design.

29.1.2 CLT on the TMLE and Resulting Confidence Intervals

Constructing the TMLE. Let M be a statistical model for P0. Let O denote a set
where O drawn from any P ∈ M takes its values and, for each P ∈ M , let L2

0(P) be
the set of measurable functions f onO satisfying P f = 0 and P f 2 finite. We consider
the case that Ψ , viewed as a functional from M to R, is pathwise differentiable in
the following sense. For a given loss function L : M × O → R there exist, for
each P ∈ M , a subset S(P) of L2

0(P) and an influence function D(P) ∈ L2
0(P)

such that, for all s ∈ S(P), there exists a submodel {Ps,ε : ε ∈ (−c, c)} of M with
generalized score s (i.e., for P-almost all o ∈ O, ε �→ L(Ps,ε , o) is differentiable
at ε = 0 with a derivative equal to s(o)) such that ε �→ Ψ (Ps,ε) is differentiable at
ε = 0 with a derivative equal to PsD(P). For instance, in the example of Sect. 29.4,
M is the nonparametric model of all possible distributions of O which meet some
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positivity constraints; L is the negative log-likelihood function; S(P) is the subset
of all elements of L2

0(P) which are not identically 0 and have finite supremum norm;
for each s ∈ S(P), the submodel can be characterized by defining Ps,ε � P with
dPs,ε/dP ≡ 1−εs (take c ≡ ‖s‖−1

∞ ). In this setting, s is the classical score of submodel
{Ps,ε : ε ∈ (−c, c)} and D(P) is the efficient influence curve of Ψ at P.

Suppose that we have constructed P∗
n ∈ M targeted to ψ0 in the sense that

PHT
n D(P∗

n) = oP(1/
√

n). (29.3)

The TMLE is the substitution estimator ψ∗
n ≡ Ψ (P∗

n).

Central Limit Theorem and CIs. The CLT hinges on three assumptions. Let h be
a real-valued function over O to be determined later. We suppose the existence of a
class F of (measurable) real-valued functions over O such that

A1. The empirical process
√

n(PHT
n − P0) converges in law in �∞(F ) to a zero-

mean Gaussian process with covariance function Σh.
A2. With P0-probability tending to one, D(P∗

n) ∈ F , and there exists f1 ∈ F such
that ‖D(P∗

n) − f1‖2,P0 = oP(1). Moreover, one knows a conservative estimator σ2
n

of σ2
1 ≡ Σh( f1, f1).

Under A1 and A2,

σ̂2
n ≡ PHT

n D(P∗
n)2h−1 (29.4)

consistently estimates σ2
1. In practice, however, the estimation of σ2

1 may be more
difficult. Requesting a conservative estimator is suboptimal, but grants some flexi-
bility. The third assumption guarantees that a second-order term in an expansion of
ψ∗

n = Ψ (P∗
n) around P0 is indeed of second order:

A3. It holds that ψ0 − ψ∗
n − P0D(P∗

n) = oP(1/
√

n).

Assumptions A1, A2 and A3 are slight variations on the assumptions typically
made in the asymptotic analysis of TMLEs. They allow to derive the following
CLT, whose proof is sketched in Sect. 29.6.1. Set α ∈ (0, 1) and denote ξ1−α/2 the
(1 − α/2)-quantile of the standard normal distribution.

Proposition 29.1. Under A1, A2 and A3,
√

n(ψ∗
n −ψ0) converges in law to the cen-

tered Gaussian distribution with variance σ2
1. Consequently,

⎡
⎢⎢⎢⎢⎢⎣ψ

∗
n ± ξ1−α/2

√
σ2

n

n

⎤
⎥⎥⎥⎥⎥⎦ (29.5)

is a confidence interval for ψ0 with asymptotic coverage no less than (1 − α).

Resorting to survey sampling thus makes it possible to construct a CI for ψ0. It
is through σ2

n that the width of CI (29.5) depends on the survey sampling design
and more precisely on the covariance function in A1. In this regard, Sects. 29.2
and 29.3 will show that all survey sampling designs are not equal. In particular,
simple random sampling (selecting n among N observations without replacement
and with equal weights) is suboptimal.
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29.2 Survey Sampling Designs and Assumption A1

This section introduces two examples survey sampling designs and discusses A1 in
their respective contexts.

29.2.1 Sampford’s Survey Sampling Design

Denote V the space where V drawn from P0 takes its values and let h be a (mea-
surable) function mapping V to R+, chosen by us in such a way that h be bounded
away from 0 and P0h = 1. For each 1 ≤ i ≤ N, define

pi ≡
nh(Vi)

N
.

Let PsP be characterized by the fact that, under PsP, η is distributed from the con-
ditional law of (ε1, . . . , εN) given

∑N
i=1 εi = n when ε1, . . . , εN are independently

sampled from Bernoulli laws with parameters p1, . . . , pN , respectively (we recall
that this statement is conditional on O1, . . . ,ON). This survey sampling design is an
instance of Sampford’s survey sampling design. It is also called rejective sampling
design based on Poisson (hence the superscript “P” in PsP) sampling with unequal
inclusion probabilities (unequal as soon as h is not constant).

By Bertail et al. (2016a), Theorem 2 which builds upon Bertail et al. (2017),
assumption A1 is met when using Sampford’s survey sampling design PsP provided
that F , the class introduced in Sect. 29.1.2, is not too complex: this is the message
of Proposition 29.2 below.

Proposition 29.2. Assume that F is separable (for instance, countable), that it ad-
mits an envelope function such that the corresponding uniform entropy integral be
finite (see Condition (2.1.7) in van der Vaart and Wellner 1996), and that P0 f 2h−1 is
finite for all f ∈ F . Then A1 holds when using Sampford’s survey sampling design
PsP with a covariance function ΣP

h given by ΣP
h ( f , g) ≡ P0 f gh−1.

The conclusions of Proposition 29.2 still hold under the same conditions when
substituting

1
N

N∑

i=1

ηi

pi
Dirac(Oi) =

1
n

N∑

i=1

ηi

h(Vi)
Dirac(Oi) (29.6)

for PHT
n . It is thus unnecessary to compute the first order inclusion probabilities

of Sampford’s survey sampling design, which differ from p1, . . . , pN when h is
not constant, and the targeting of P∗

n ∈ M to ψ0 can be achieved by ensuring
n−1 ∑N

i=1 ηiD(P∗
n)(Oi)h−1(Vi) = oP(1/

√
n) instead of (29.3).
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29.2.2 Determinantal Survey Sampling Design

A Minimalist Introduction. Determinantal survey sampling designs are built upon
determinantal point processes. Let K be a N×N Hermitian matrix whose eigenvalues
belong to [0, 1]. It happens that the set of equalities: for all I ⊂ {1, . . . ,N},

∑

I′⊃I

Ps(I′) = det(K|I), (29.7)

uniquely characterizes the determinantal survey sampling design PsK , a probabil-
ity measure on the powerset of {1, . . . ,N}. Here, K|I denotes the Hermitian matrix
derived from K by keeping only its rows and columns indexed by the elements of I.

The first and second-order inclusion probabilities of PsK characterized by (29.7)
are easily derived from the entries of K: for all 1 ≤ i � j ≤ N, if holds that
πi = det(K|{i}) = Kii and πi j = det(K|{i, j}) = Kii × Kj j − |Ki j|2. Furthermore, draws
from PsK are of fixed size if and only if the eigenvalues of K belong to {0, 1}, in
which case K is a projection matrix and the fixed size equals the trace of K. From
now on, we focus on this case.

If the first order inclusion probabilities are all positive then, for any bounded
function f of O drawn from P0, PHT

n f−EPsK

[
PHT

n f
]

satisfies a concentration inequal-
ity (Pemantle and Peres 2014, Theorem 3.1; see also (29.20) in our Sect. 29.6.3).
Moreover, if f meets the so called Soshnikov conditions (29.17), (29.18) and
(29.19), then

√
n(PHT

n − PN) f satisfies a CLT (Soshnikov 2000). These two remark-
able properties are the building blocks of Proposition 29.3 below. Let F ′ be defined
as F deprived of its elements which depend on O through V only.

Proposition 29.3. Assume that F ′ is countable, uniformly bounded, and that its
bracketing entropy with respect to the supremum norm is finite (see the condition
preceding Condition (2.1.7) in van der Vaart and Wellner 1996). Assume moreover
that, for every f ∈ F ′, n VarPsK

[
PHT

n f
]
> 0 converges in P0-probability to a positive

number and f meets the Soshnikov conditions (29.17), (29.18), (29.19) P0-almost
surely. Then A1 holds with F ′ substituted for F when using any fixed-size determi-
nantal survey sampling design PsK, provided that its first order inclusion probabili-
ties are bounded away from 0 uniformly in N. The covariance function is defined as
a limit with no closed-form expression in general.

The message of Proposition 29.3 is the following: if F ′ is not too complex, and if
n/N goes to 0 sufficiently slowly, then A1 is met with F ′ substituted for F when us-
ing most determinantal survey sampling designs PsK . The proof of Proposition 29.3
is sketched in Sect. 29.6.3. The condition on the ratio n/N is included implicitly in
the assumption that the elements of F ′ satisfy the Soshnikov conditions P0-almost
surely. We elaborate further on this issue in Proposition 29.4 below.

We wish to follow the same strategy as in Sect. 29.2.1, i.e., to define possibly
unequal first order inclusion probabilities depending on V1, . . . ,VN . There exists
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an algorithm to both construct and sample from a fixed-size determinantal survey
sampling design with given first order inclusion probabilities (Loonis and Mary
2015). Unfortunately, its computational burden is considerable for both tasks in
general, especially in the context of large data sets (N large). In addition, the sec-
ond set of conditions on F ′ (and not F ) in Proposition 29.3 would typically be
very demanding for the yielded determinantal survey sampling design. Moreover,
computing the limit variance of the TMLE resulting from its use would be difficult,
and its inference would typically be achieved through the use of a very conservative
estimator. These difficulties can be overcome by focusing on V-stratified determi-
nantal survey sampling designs equally weighted on each V-stratum.

V-Stratified Determinantal Sampling Equally Weighted on Each V-Stratum.
We now consider the case that V drawn from P0 takes finitely many different values.
To alleviate notation, we assume without loss of generality that V ≡ {1, . . . , ν} and
that O1, . . . ,ON are ordered by values of V1, . . . ,VN . Let h be a function mapping V
to R

∗
+ such that PNh = N−1 ∑N

i=1 h(Vi) = 1. We will hide and neglect notation-wise
the dependency of h on V1, . . . ,VN due to the normalization PNh = 1. In the limit,
h does not depend on the summary measures anymore: by the strong law of large
numbers, PNh converges P0-almost surely to P0h, revealing that condition PNh = 1
is similar to its counterpart P0h = 1 from Sect. 29.2.1. For each 1 ≤ i ≤ N, define

πi ≡
nh(Vi)

N
.

Similar to the proportions p1, . . . , pN used in Sect. 29.2.1 to characterize a Sampford
survey sampling design, π1, . . . , πN are the exact (as opposed to approximate) first
order inclusion probabilities that we choose for our determinantal survey sampling
design. Its complete characterization now boils down to elaborating a N ×N Hermi-
tian matrix Π with π1, . . . , πN as diagonal elements and eigenvalues in {0, 1}. Since∑N

i=1 πi = n, the resulting determinantal survey sampling design will be of fixed
size n.

For simplicity, we elaborate Π under the form of a block matrix with zero matri-
ces as off-diagonal blocks and make each of the ν diagonal blocks be a projection
matrix featuring the prescribed diagonal elements. This last step is easy provided
that nv ≡ ∑N

i=1 πiI{Vi = v} is an integer dividing Nv ≡ ∑N
i=1 I{Vi = v}. In that case,

the projection matrix can be a block matrix consisting of n2
v square matrices of size

Nv/nv × Nv/nv, with zero off-diagonal blocks and diagonal blocks having all their
entries equal to n−1

v . Otherwise, we may rely on an algorithm to derive the desired
projection matrix.

The determinantal survey sampling design PsΠ encoded by Π (hence the super-
script “Π”) is said V-stratified and equally weighted on each V-stratum. It randomly
selects a deterministic number nv of observations from the stratum where V = v, for
each 1 ≤ v ≤ ν. Sampling from it makes it possible to derive the next result, proven
in Sect. 29.6.2: for any function f of O drawn from P0,
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EP0

[
VarPsΠ

[
PHT

n f
]]
=

1
n

EP0

[
VarP0

[
f (O)|V]

h−1(V)
]
− 1

N
EP0

[
VarP0

[
f (O)|V]]

.

(29.8)

Equality (29.8) is instrumental in deriving the following corollary to Proposi-
tion 29.3, whose proof is sketched in Sect. 29.6.3.

Proposition 29.4. Let us impose that n is chosen in such a way that N/n =
o((N2/n)ε) for all ε > 0. This is the case if n ≡ N/ loga(N) for some a > 0,
for instance. Assume that F is separable (for instance, countable) and that its
bracketing entropy with respect to the supremum norm is finite (see the condi-
tion preceding Condition (2.1.7) in van der Vaart and Wellner 1996). Then A1
holds when using the V-stratified and equally weighted on each V-stratum de-
terminantal survey sampling design PsΠ with a covariance function ΣΠ

h given by

ΣΠ
h ( f , g) = EP0

[
CovP0

[
f (O)g(O)|V]

h−1(V)
]
.

Note that ΣΠ
h ( f , f ) = 0 for every f ∈ F which depends on O through V only. In

fact, for such a function,
√

n(PHT
n − P0) f =

√
n(PN − P0) f = OP(

√
n/N) = oP(1).

Moreover, for every f ∈ F , combining (29.8) and equality EPsΠ

[
PHT

n f
]
= PN f

readily implies

VarP0PsΠ

[√
n(PHT

n − P0) f
]
= ΣΠ

h ( f , f ) +
n
N

(
VarP0

[
f (O)

] − EP0

[
VarP0

[
f (O)|V]] )

.

(29.9)

Proved in Sect. 29.6.2, (29.9) relates the exact variance of
√

n(PHT
n − P0) f with

the limit variance ΣΠ
h ( f , f ), showing that their difference is upper-bounded by a

O(n/N) = o(1)-expression.

It is an open question to determine whether or not the extra condition on how n
depends on N could be relaxed or even given up by proving directly a functional
CLT for

√
n(PHT

n − P0). By “directly”, we mean without building up on functional
CLTs conditional on the observations, and managing to go around the Soshnikov
conditions. This route was followed to prove (Bertail et al. 2016a, Theorem 2).
Sobolev classes are known to have finite bracketing entropy with respect to the
supremum norm (van der Vaart 1998, Example 19.10). The fact that the bracketing
entropy is meant relative to the supremum norm instead of the L2(P0)-norm is a
little frustrating, though. Indeed, a bracketing entropy condition relative to the latter
would have allowed a larger variety of classes. The supremum norm comes from
the concentration inequality (Pemantle and Peres 2014, Theorem 3.1). Perhaps the
aforementioned direct proof might also allow to replace it with the L2(P0)-norm.

The covariance functions ΣP
h and ΣΠ

h in Propositions 29.2 and Proposition 29.4
differ. In particular, for every f ∈ F ,

ΣP
h ( f , f ) = EP0

[
EP0

[
f 2(O)|V

]
h−1(V)

]
≥ EP0

[
VarP0

[
f (O)|V]

h−1(V)
]
= ΣΠ

h ( f , f )
(29.10)

(using the same h on both sides of (29.10) is allowed because, in the limit, condition
PNh = 1 is similar to condition P0h = 1). Consequently, PsΠ is more efficient
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than PsP when V is finite in the sense that whichever function hP is used to define
PsP, it is always possible to choose function hΠ to define PsΠ in such a way that
ΣP

hP ( f , f ) ≥ ΣΠ
hΠ

( f , f ) for every f ∈ F .

29.3 Optimizing the Survey Sampling Designs

This section discusses the optimization of functions hP and hΠ used to define the first
order inclusion probabilities of the survey sampling designs PsP and PsΠ that we
developed in Sects. 29.2.1 and 29.2.2. The optimization is relative to the asymptotic
variance of the TMLE, ΣP

h ( f1, f1) or ΣΠ
h ( f1, f1), respectively. In light of (29.10), let

f P
2 and fΠ2 be the functions from V to R+ given by

f P
2 (V) ≡

√
EP0

[
f 2
1 (O)|V

]
and fΠ2 (V) ≡

√
VarP0

[
f1(O)|V]

. (29.11)

Then (29.10) shows in particular that ΣP
h ( f1, f1) = P0( f P

2 )2h−1 is always larger
than ΣΠ

h ( f1, f1) = P0( fΠ2 )2h−1. Now, with f2 equal to either f P
2 or fΠ2 , the Cauchy-

Schwarz inequality yields that

P0( f2)2h−1 × P0h ≥ (P0 f2)2 ,

where equality holds if and only if h is proportional to f2.
In the case of PsP, h satisfies P0h = 1. Therefore, the optimal h and corresponding

optimal asymptotic variance of the TMLE are

hP ≡ f P
2 /P0 f P

2 and ΣP
hP ( f1, f1) =

(
P0 f P

2

)2
. (29.12)

In the case of PsΠ , h satisfies PNh = 1 and P0h = 1 in the limit. By analogy with
(29.12), the optimal h and corresponding optimal asymptotic variance of the TMLE
are

hΠ ≡ fΠ2 /P0 fΠ2 and ΣΠ
hΠ ( f1, f1) =

(
P0 fΠ2

)2
. (29.13)

29.4 Example: Variable Importance of a Continuous Exposure

We illustrate our template for survey sampling targeted learning with the inference
of a variable importance measure of a continuous exposure. In this example, the ith
observation Oi writes (Wi, Ai,Yi) ∈ O ≡ W × A × [0, 1]. Here, Wi ∈ W is the ith
context, Ai ∈ A is the ith exposure and Yi ∈ [0, 1] is the ith outcome. Exposures
take their values in A  0, a bounded subset of R containing 0, which serves as a
reference level of exposure. Typically, in biostatistics or epidemiology, Wi could be
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the baseline covariate describing the ith subject, Ai could describe her assignment
(e.g., a dose-level) or her level of exposure, and Yi could quantify her biological
response.

29.4.1 Preliminaries

For each probability measure P on O equipped with a Borel σ-field, we let
gP(0|W) ≡ P(A = 0|W) be the conditional probability that the exposure equal
the reference value 0 and QP(A,W) ≡ EP [Y |A,W] be the conditional expecta-
tion of the response given exposure and context. We assume that P0(A � 0|W) is
positive P0,W -almost surely and that there exists a constant c(P0) > 0 such that
P0(A = 0|W) ≥ c(P0) P0,W -almost surely. Introduced in Chambaz et al. (2012) and
Chambaz and Neuvial (2015), the true parameter of interest is

ψc
0 ≡ arg min

β∈R
EP0

[(
Y − EP0 [Y |A = 0,W] − βA

)2
]

= arg min
β∈R

EP0

[(
EP0 [Y |A,W] − EP0 [Y |A = 0,W] − βA

)2
]

(the superscript “c” stands for “continuous”).
In the context of this example, M stands for the nonparametric set of all probabil-

ity measures P on O equipped with a Borel σ-field such that there exists a constant
c(P) > 0 guaranteeing that P(A � 0|W) > 0 and gP(0|W) ≥ c(P) PW -almost surely.
In particular, P0 ∈ M by the above assumption. We view ψc

0 as the value at P0 of
the functional Ψ c characterized over M by

Ψ c(P) ≡ arg min
β∈R

EP

[
(EP [Y |A,W] − EP [Y |A = 0,W] − βA)2

]
.

Set arbitrarily P ∈ M and define μP(W) ≡ EP [A|W] and ζ2(P) ≡ EP

[
A2

]
. By

Chambaz et al. (2012), Proposition 1 it holds that

Ψ c(P) =
EP [A(QP(A,W) − QP(0,W))]

EP
[
A2

] .

Moreover, Ψ c is pathwise differentiable at P with influence curve Dc(P) ≡ Dc
1(P) +

Dc
2(P) ∈ L2

0(P) given by

ζ2(P)Dc
1(P)(O) ≡ A (QP(A,W) − QP(0,W) − AΨ c(P)) ,

ζ2(P)Dc
2(P)(O) ≡ (Y − QP(A,W))

(
A − μP(W)I{A = 0}

gP(0|W)

)
.

Specifically, for all bounded s ∈ L2
0(P) \ {0}, if we define Ps,ε � P by setting

dPs,ε ≡ 1+ εs for all |ε| < c with c ≡ ‖s‖−1
∞ , then {Ps,ε : ε ∈ (−c, c)} is a submodel of



29 Targeted Learning Using Adaptive Survey Sampling 551

M with score s and ε �→ Ψ c(Ps,ε) is differentiable at ε = 0 with derivative PsDc(P).
Because the closure of the linear span of the set of scores is L2

0(P) itself, it happens
that Dc(P) is the efficient influence curve at P. Let now Rc : M 2 → R be given by

Rc(P, P′) ≡ Ψ c(P′) − Ψ c(P) − (P′ − P)Dc(P)

≡ Ψ c(P′) − Ψ c(P) − P′Dc(P).

In light of A3, ψ0−ψ∗
n−P0Dc(P∗

n) = Rc(P∗
n, P0). The last step of the proof of Cham-

baz et al. (2012), Proposition 1 shows that, for every P, P′ ∈ M ,

Rc(P, P′) =

(
1 − ζ2(P′)

ζ2(P)

)
(
Ψ c(P′) − Ψ c(P)

)

+
1

ζ2(P)
P′

(
(QP′ (0, ·) − QP(0, ·))

(
μP′ − μP

gP′ (0|·)
gP(0|·)

))
. (29.14)

We use this equality to derive an easy to interpret sufficient condition for A3 to hold.

29.4.2 Construction of the TMLE

Let Qw, Mw and Gw be three user-supplied classes of functions mapping A×W, W
and W to [0, 1], respectively. First, we estimate QP0 , μP0 and gP0 with Qn, μn and gn

built upon PHT
n , Qw, Mw and Gw. For instance, one can simply minimize (weighted)

empirical risks and define

Qn ≡ arg min
Q∈Qw

PHT
n �(Y,Q(A,W)), μn ≡ arg min

μ∈Mw
PHT

n �(A, μ(W)),

gn ≡ arg min
g∈Gw

PHT
n �(I{A = 0}, g(0|W))

with � the logistic loss function given by

−�(u, v) ≡ u log(v) + (1 − u) log(1 − v)

(all u, v ∈ [0, 1], with convention log(0) ≡ −∞ and 0 log(0) ≡ 0). Alternatively,
one could prefer minimizing cross-validated (weighted) empirical risks. One then
should keep in mind that the observations are dependent, because of the selection
process by survey sampling. Second, we estimate the marginal distribution P0,W of
W under P0 with PHT

n,W/PHT
n I, where PHT

n,W is defined as in (29.1) with Wi substi-
tuted for Oi, and the real-valued parameter ζ2(P0) with ζ2(PHT

n /PHT
n I). Note that

PHT
n,W/PHT

n I and PHT
n /PHT

n I, the empirical measures PHT
n,W and PHT

n renormalized by
PHT

n I = N−1 ∑N
i=1 ηi/πi, are the nonparametric maximum likelihood estimators of

the distributions P0,W and P0. Furthermore, the renormalization factor converges to
1 at

√
n-rate by A1.
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Let P0
n be a measure such that QP0

n
= Qn, μP0

n
= μn, gP0

n
= gn, ζ2(P0

n) =
ζ2(PHT

n /PHT
n I), P0

n,W = PHT
n,W/PHT

n I, and from which we can sample A condition-
ally on W. Picking up such a P0

n is an easy technical task, see (Chambaz et al. 2012,
Lemma 5) for a computationally efficient choice. Then the initial estimator Ψb(P0

n)
of ψb

0 can be computed with high accuracy by Monte-Carlo. It suffices to sample
a large number B (say B = 107) of independent (A(b),W (b)) by (a) sampling W (b)

from P0
n,W = PHT

n,W/PHT
n I then (b) sampling A(b) from the conditional distribution of

A given W = W (b) under P0
n repeatedly for b = 1, . . . , B and to make the approxima-

tion

Ψ c(P0
n) ≈

B−1 ∑B
b=1 A(b)(Qn(A(b),W (b)) − Qn(0,W (b)))

ζ2(P0
n)

.

We now target the inference procedure and bend P0
n into P∗

n satisfying (29.3)
with Dc substituted for D. We proceed iteratively. Suppose that Pk

n has been con-
structed for some k ≥ 0. We fluctuate Pk

n with the one-dimensional parametric model
{Pk

n(ε) : |ε| ≤ c(Pk
n)/2‖Dc(Pk

n)‖∞} characterized by dPk
n(ε)/dPk

n ≡ 1 + εDc(Pk
n).

Lemma 1 in Chambaz et al. (2012) shows how QPk
n(ε), μPk

n(ε), gPk
n(ε), ζ

2(Pk
n(ε)) and

Pk
n,W (ε) depart from their counterparts at ε = 0. The optimal move along the fluctu-

ation is indexed by

εk
n ≡ arg max

ε
PHT

n log
(
1 + εDc(Pk

n)
)
,

i.e., the maximum (weighted) likelihood estimator of ε. Note that the random func-
tion ε �→ PHT

n log(1 + εDc(Pk
n)) is strictly concave. The optimal move results in the

(k + 1)-th update of P0
n, Pk+1

n ≡ Pk
n(εk

n).
There is no guarantee that a Pk+1

n will coincide with its predecessor Pk
n. We as-

sume that the iterative updating procedure converges (in k) in the sense that, for kn

large enough, PHT
n Dc(Pkn

n ) = oP(1/
√

n). We set P∗
n ≡ Pkn

n . It is actually possible to
come up with a one-step updating procedure (i.e., an updating procedure such that
Pk

n = Pk+1
n for all k ≥ 1) by relying on universally least favorable models (van der

Laan and Gruber 2016). We adopt this multistep updating procedure for simplicity.
We can assume without loss of generality that we can sample A conditionally

on W from P∗
n. The final estimator is computed with high accuracy like Ψ c(P0

n)
previously: with Q∗

n ≡ QP∗
n
, we sample B independent (A(b),W (b)) by (a) sampling

W (b) from P∗
n,W then (b) sampling A(b) from the conditional distribution of A given

W = W (b) under P∗
n repeatedly for b = 1, . . . , B and make the approximation

ψ∗
n ≡ Ψ c(P∗

n) ≈
B−1 ∑B

b=1 A(b)(Q∗
n(A(b),W (b)) − Q∗

n(0,W (b)))

ζ2(P∗
n)

.

To conclude this section, we use (29.14) to derive an easy to interpret alternative
condition to A3. If ζ2(P∗

n) = ζ2(P0) + oP(1), then
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P0

(
(QP0 (0, ·) − QP∗

n
(0, ·))

(
μP0 − μP∗

n

gP0 (0|·)
gP∗

n
(0|·)

))
= oP(1/

√
n)

can be substituted for A3. Through the product, we draw advantage of the syn-
ergistic convergences of QP∗

n
(0, ·) to QP0 (0, ·) and (μP∗

n
, gP∗

n
) to (μP0 , gP0 ) (by the

Cauchy-Schwarz inequality for example).

29.5 Simulation

We consider three data-generating distributions P0,1, P0,2 and P0,3 of a data-structure
O = (W, A,Y). The three distributions differ only in terms of the conditional mean
and variance of Y given (A,W). Specifically, O = (W, A,Y) drawn from P0, j ( j =
1, 2, 3) is such that

• W ≡ (V,W1,W2) with P0, j(V = 1) = 1/6, P0, j(V = 2) = 1/3, P0, j(V = 3) = 1/2
and, conditionally on V , (W1,W2) is a Gaussian random vector with mean (0, 0)
and variance

(
1 −0.2

−0.2 1

)
(if V = 1), (1, 1/2) and

(
0.5 0.1
0.1 0.5

)
(if V = 2), (1/2, 1) and(

1 0
0 1

)
(if V = 3);

• conditionally on W, A = 0 with probability 80% if W1 ≥ 1.1 and W2 ≥ 0.8
and 10% otherwise; moreover, conditionally on W and A � 0, 3A − 1 is drawn
from the χ2-distribution with one degree of freedom and noncentrality parameter√

(W1 − 1.1)2 + (W2 − 0.8)2;
• conditionally on (W, A), Y is a Gaussian random variable with mean

– A(W1 +W2)/6 +W1 +W2/4 + exp((W1 +W2)/10) for j = 1, 2,
– A(W1 +W2)/6 +W1 +W2/4 + exp((W1 +W2)/10) + 3AV for j = 3,

and standard deviation

– 2 (if V = 1), 1.5 (if V = 2) and 1 (if V = 3) for j = 1,
– 9 (if V = 1), 4 (if V = 2) and 1 (if V = 3) for j = 2, 3.

The true parameters equal approximately Ψ c(P0,1) = Ψ c(P0,2) = 0.1201 and
Ψ c(P0,3) = 6.9456.

For B = 103 and each j = 1, 2, 3, we repeat independently the following steps:

1. simulate a data set of N = 107 independent observations drawn from P0, j;
2. extract n0 ≡ 103 observations from the data set by simple random sampling (SRS,

which is identical to PsP with h0 ≡ 1), and based on these observations:

(a) apply the procedure described in Sect. 29.4 and retrieve fn0,1 ≡ Dc(P
kn0
n0

);
(b) regress fn0,1(O) and fn0,1(O)2 on V , call f P

n0,2
the square root of the resulting

estimate of f P
2 and fΠn0,2

the square root of the resulting estimate of fΠ2 , see
(29.11);
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(c) estimate the marginal distribution of V , estimate P0 f P
n0,2

with πn0,2 and set
hP

n0
≡ f P

n0,2
/πn0,2, hΠn0

≡ fΠn0,2
/PN fΠn0,2

, see (29.12) and (29.13);

3. for each n in {103, 5×103, 104}, successively, and for each survey sampling design
among SRS, PsP with hP

n0
and PsΠ with PΠ

n0
, extract a subsample of n observations

from the data set (deprived of the observations extracted in step 2) and, based
on these observations, apply the procedure described in Sect. 29.4. We use σ̂2

n
given in (29.4) to estimate σ2

1, although we are not sure in advance that it is a
conservative estimator.

We thus obtain 27 × B estimates and their respective CIs.

To give an idea of what are hP
n0

and hΠn0
in each scenario, we report their averages

across the B simulation studies under P0,1, P0,2 and P0,3:

– under P0,1, we expect similar hP
n0

and hΠn0
, and do get that they are approximately

equal (on average) to (h1(1), h1(2), h1(3)) ≈ (2.10, 0.83, 0.75);
– under P0,2, we also expect similar hP

n0
and hΠn0

, and do get that they are approxi-
mately equal (on average) to (h1(1), h1(2), h1(3)) ≈ (3.39, 0.83, 0.32);

– under P0,3, we do not expect similar hP
n0

and hΠn0
, and get that they are ap-

proximately equal (on average) to (h1(1), h1(2), h1(3)) ≈ (2.93, 0.66, 0.58) and
(h1(1), h1(2), h1(3)) ≈ (2.97, 0.68, 0.56), respectively (although small, the differ-
ences are significant).

Applying the TMLE procedure is straightforward in R package tmle.npvi
(Chambaz and Neuvial 2016, 2015). Note, however, that it is necessary to com-
pute σ̂2

n. Specifically, we fine-tune the TMLE procedure by setting iter (the max-
imum number of iterations of the targeting step) to 7 and stoppingCriteria
to list(mic=0.01, div=0.001, psi=0.05). Moreover, we use the de-
fault flavor called "learning", thus notably rely on parametric linear models
for the estimation of the infinite-dimensional parameters QP0 , μP0 and gP0 and their
fluctuation. We refer the interested reader to the package’s manual and vignette for
details. The Sampford sampling method (Sampford 1967) implements PsP. How-
ever, when the ratio n/N is close to 0 or 1 (here, when n/N differs from 10−3), this
acceptance-rejection algorithm typically takes too much time to succeed. To cir-
cumvent the issue, we approximate PsP with a Pareto sampling (see Algorithm 2 in
Bondesson et al. 2006, Section 5). We implement PsΠ as described in Sect. 29.2.2,
with minor changes to account for the fact that for some 1 ≤ v ≤ 3,

∑N
i=1 KiiI{Vi = v}

may not be an integer or may not divide
∑N

i=1 I{Vi = v}.
The results are summarized in Table 29.1. We focus on the empirical coverage,

empirical variance and mean of the estimated variance of the TMLE. All empiri-
cal coverages are larger than 95% but one (equal to 94%). In each case, the mean
of estimated variances is larger than the corresponding empirical variance, reveal-
ing that we achieve the conservative estimation of σ2

1. Regarding the variances, we
observe that PsP and PsΠ perform similarly and provide slightly better results than
SRS under P0,1. This is in line with what was expected, due to the contrast induced
by the conditional standard deviation of Y given (A,W) under P0,1. Under P0,2, we
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Table 29.1 Summarizing the results of the simulation study

SRS PsP with hP
n0

PsΠ with hΠn0

n n n
103 5 × 103 104 103 5 × 103 104 103 5 × 103 104

P0,1 Empirical coverage 96.2% 98.9% 99.2% 98.1% 98.6% 99.4% 97.8% 99.2% 99.3%
Empirical variance 09 08 07 07 06 06 07 06 06
Estimated variance 13 14 14 11 11 11 11 11 11

P0,2 Empirical coverage 94.0% 98.9% 99.2% 98.9% 99.9% 99.1% 98.4% 99.4% 99.3%
Empirical variance 129 104 102 44 41 44 49 42 42
Estimated variance 171 196 200 85 86 87 86 85 86

P0,3 Empirical coverage 95.6% 98.8% 97.8% 97.8% 97.9% 97.1% 98.5% 98.3% 96.3%
Empirical variance 157 134 168 85 91 116 81 85 104
Estimated variance 216 242 245 130 133 135 124 128 127

The top, middle and bottom groups of rows correspond to simulations under P0,1, P0,2 and P0,3.
Each of them reports the empirical coverage of the CIs (B−1 ∑B

b=1 I{Ψ c(P0, j) ∈ In,b}), n times the
empirical variance of the estimators (n[B−1 ∑B

b=1 ψ
∗2
n,b − (B−1 ∑B

b=1 ψ
∗
n,b)2]) and empirical mean of n

times the estimated variance of the estimators (B−1 ∑B
b=1 σ̂

2
n,b), for every subsample size n and for

each survey sampling design

observe that PsP and PsΠ perform similarly and provide significantly better results
than SRS. This too is in line with what was expected, due to the contrast induced by
the conditional standard deviation of Y given (A,W), which is stronger under P0,2

than under P0,1. Finally, under P0,3, we observe that PsP performs better than SRS
and that PsΠ performs even slightly better than PsP. This again is in line with what
was expected, due to the contrast induced by the conditional standard deviation of Y
given (A,W) (same as under P0,2) and to the different conditional means of Y given
(A,W) under P0,3 and P0,2.

29.6 Elements of Proof

For every f ∈ F , let f̄ , f 2 be given by f̄ (V) ≡ EP0

[
f (O)|V]

, f 2(V) ≡ EP0

[
f 2(O)|V

]
.

Note that f 2(V) − f̄ 2(V) = VarP0

[
f (O)|V]

. For every 1 ≤ v ≤ ν, let �1, . . . , �ν and
I1, . . . , Iν be given by �v(V) ≡ I{V = v} and Iv ≡ {1 ≤ i ≤ N : Vi = v}.

29.6.1 Proof of Proposition 29.1

Combining (29.3) and A3 yields that

√
n(ψ∗

n − ψ0) =
√

n(PHT
n − P0)D(P∗

n) + oP(1)

=
√

n(PHT
n − P0) f1 +

√
n(PHT

n − P0)(D(P∗
n) − f1) + oP(1),
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where f1 ∈ F is introduced in A2. By A1, the first RHS term in the above equation
converges in distribution to the centered Gaussian distribution with variance σ2

1.
Moreover, by a classical argument of empirical processes theory (van der Vaart
1998, Lemma 19.24), A1 and the convergence of D(P∗

n) to f1 in A2 imply that the
second RHS term converges to 0 in probability. This completes the sketch of proof.

29.6.2 Proof of Eqs. (29.8) and (29.9)

By construction of PsΠ , the number of observations sampled from each V-stratum
is deterministic. In other words, it holds for each 1 ≤ v ≤ ν that VarPsΠ

[
PHT

n �v

]
= 0.

In light of (29.2), this is equivalent to

∑

i∈Iv

(
1
Πii

− 1

)
=

∑

i� j∈Iv

|Πi j|2

ΠiiΠ j j
(29.15)

for each 1 ≤ v ≤ ν.
Now, since Vi � Vj implies Πi j = 0 by construction, (29.2) rewrites

N2 VarPsΠ

[
PHT

n f
]
=

N∑

i=1

(
1
Πii

− 1

)
f 2(Oi) −

∑
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f (Oi) f (Oj).

Because O1, . . . ,ON are conditionally independent given (V1, . . . ,VN) and since
each factor |Πi j|2/ΠiiΠ j j is deterministic given i, j ∈ Iv, the previous equality and
(29.15) then imply
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For each 1 ≤ v ≤ ν,
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Therefore, (29.16) yields
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as stated in (29.8). We now turn to (29.9). Since EPsΠ

[
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]
= PN f , it holds that
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where the last equality follows from (29.8). This completes the proof.

29.6.3 Proof of Proposition 29.3

Let us first state the so called Soshnikov conditions (Soshnikov 2000). A function f
of O drawn from P0 meets them if

N2 VarPsK

[
PHT

n f
]

goes to infinity, (29.17)

max
1≤i≤N

K−1
ii f (Oi) = o

(
N2 VarPsK

[
PHT

n f
])ε

for all ε > 0, (29.18)

NEPsK

[
PHT

n | f |
]
= O

(
N2 VarPsK

[
PHT

n f
])δ

for some δ > 0. (29.19)

Conditions (29.17), (29.18) and (29.19) are expressed conditionally on a trajectory
(Oi)i≥1 of mutually independent random variables drawn from P0. We denote Ω( f )
the set of trajectories for which they are met. By assumption, P0(Ω( f )) = 1 for all
f ∈ F ′. It is worth emphasizing that this assumption may implicitly require that
the ratio n/N go to zero sufficiently slowly, as evident in the sketch of proof of
Proposition 29.4. Since F ′ is countable, Ω ≡ ∩ f∈F ′Ω( f ) also satisfies P0(Ω) = 1.

Set f ∈ F ′ and define ZN( f ) ≡ (VarPs

[
PHT

n f
]
)−1/2(PHT

n − P0) f . On Ω, the char-

acteristic function t �→ EPsK

[
eitZN ( f )

]
converges pointwise to t �→ e−t2/2. Therefore,

t �→ EP0

[
EPsK

[
eitZN ( f )

]
I{Ω}

]
also does. Since P0(Ω) = 1, this implies the conver-

gence in distribution of ZN( f ) to the standard normal law hence, by Slutsky’s lemma,
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that of
√

n(PHT
n − P0) f to the centered Gaussian law with a variance equal to the

limit in probability of n VarPsK

[
PHT

n f
]
. The asymptotic tightness of

√
n(PHT

n − P0) f
follows. Finally, applying the Cramér-Wold device yields the convergence to a cen-
tered multivariate Gaussian law of all marginals

√
n(PHT

n − P0)( f1, . . . , fM) with
f1, . . . , fM ∈ F ′.

The second step of the proof hinges on the following concentration inequal-
ity (Pemantle and Peres 2014, Theorem 3.1): if C( f ) ≡ max1≤i≤N |K−1

ii f (Oi)| then,
for all t > 0,

PsK
[
|(PHT

n − P0) f | ≥ t
]
≤ 2 exp

(
−nt2/8C( f )2

)
. (29.20)

This statement is conditional on O1, . . . ,ON . Note that there exists a deterministic
upper-bound to all C( f )s because F ′ is uniformly bounded and because the first
order inclusion probabilities are bounded away from 0 uniformly in N. We go from
the convergence of all marginals to A1 by developing a so called chaining argument
typical of empirical processes theory. The argument builds upon (29.20) and the
assumed finiteness of the bracketing entropy of F ′ with respect to the supremum
norm. This completes the sketch of the proof.

29.6.4 Proof of Proposition 29.4

Consider f ∈ F \ F ′, a function of O drawn from P0 which depends on V only. It
holds that

PHT
n f =

1
n

ν∑

v=1

f (v)h−1(v)nv,

where nv =
∑N

i=1 ηi�v(Vi) = nh(v)Nv/N with Nv ≡ ∑N
i=1 �v(Vi) (each 1 ≤ v ≤ ν).

Therefore, the above display rewrites PHT
n f = PN f , hence VarPsΠ

[
PHT

n f
]
= 0.

Moreover, the CLT for bounded, independent and identically distributed observa-
tions implies

√
n(PHT

n − P0) f =
√

n/N ×
√

N(PN − P0) f = OP(
√

n/N) = oP(1).
Consider now f ∈ F ′. We wish to prove that f meets the Soshnikov conditions

and that n VarPsΠ

[
PHT

n f
]

converges in P0-probability to ΣΠ
h ( f , f ), which is positive

because f ∈ F ′. When relying on PsΠ , the LHS expression in (29.18) rewrites
max1≤i≤N N f (Oi)/nh(Vi) and is clearly upper-bounded by a constant times N/n. As
for the LHS of (29.19), it equals

∑N
i=1 | f (Oi)| and is thus clearly upper-bounded

by a constant times N. Let us now turn to VarPsΠ

[
PHT

n f
]
. By construction of PsΠ ,

the variance decomposes as the sum of the variances over each V-stratum, each
of them being a quadratic form in sub-Gaussian, independent and identically dis-
tributed random variables conditionally on (V1, . . . ,VN). Because quadratic forms
of independent sub-Gaussian random variables are known to concentrate exponen-
tially fast around their expectations (see the Hanson-Wright concentration inequal-
ity in Rudelson and Vershynin 2013), VarPsΠ

[
PHT

n f
]

concentrates around its expec-

tation (29.8). Consequently, N2 VarPsΠ

[
PHT

n f
]

is of order N2/n. It is then clear that
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N/n = o((N2/n)ε) for all ε > 0 ensures that f meets the Soshnikov conditions. This
holds for instance if n ≡ N/ loga(N) for some a > 0. Finally, the concentration of
VarPs

[
PHT

n f
]

around its expectation also yields the convergence of n VarPs

[
PHT

n f
]

to ΣΠ
h ( f , f ) in P0-probability. At this point, we have shown that

√
n(PHT

n −P0) f con-
verges in distribution to the centered Gaussian law with variance ΣΠ

h ( f , f ). The rest
of the proof is similar to the end of the proof of Proposition 29.3. This completes
the sketch of proof.
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Chapter 30
The Predicament of Truth: On Statistics,
Causality, Physics, and the Philosophy of Science

Richard J. C. M. Starmans

30.1 Statistics and the Fragility of Truth

On the one hand, the first part of this essay’s title may seem a little querulous and
ill-omened, a prelude to a litany of complaints or to sorrowful, grief-stricken pon-
dering on the deterioration of the quest for truth. Undeniably, it suggests a further
decline of civilization as we know it, in accordance with Oswald Spengler’s pes-
simistic anticipations on the lifespan of civilizations, published in Der Untergang
des Abendlandes in 1918 at the end of the First World War. The concept of truth has
been essential in the history of ideas and characteristic and distinguishing for the
human condition. Even if one adheres to Protagoras’ homo-mensura-principle, be
it in a mitigated or radical manner, people cannot exist, survive or function without
proclaiming, stipulating, conjecturing, establishing or cherishing a notion of truth,
underlying and motivating their thoughts, words and deeds. As such it has been
ubiquitous in religion, metaphysics, epistemology, science, politics and everyday
life. From a historical-philosophical point of view the concept of truth is pivotal
in epistemology; it precedes, subsumes or—at the least—it is presupposed by con-
cepts like knowledge, rationality, objectivity, causality, justification, inference and
many more. At the same time truth may easily be denied, distorted, declared ob-
solete, or conveniently modified and relativized on behalf of self-interest, religion,
political ideology, freedom, stakeholders interests, public health, national security,
climate, the Will of the People, et cetera. This fragility of truth may be noticeable
in politics, journalism (whether phrased as disinformation, alleged truisms or fake
news), on social media, in historiography or—horribile dictu—even in philosophy
and modern science.
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On the other hand, dyed-in-the-wool statisticians cannot be that astounded or
appalled with the depicted view, as they find themselves standing trial ever since the
dawn of their discipline for having a problematic relation with truth. Mark Twain’s
notorious adagio that “there are lies, damned lies and statistics” or George Box’s
emblematic dictum or maxim that “all models are wrong, but some are useful” have
been quoted frequently for a variety of purposes. Darrell Hoff’s booklet How to Lie
with Statistics (1954) sold more than a million copies worldwide and even gave rise
to a new genre on statistical fallacies, caveats and pitfalls. Renowned textbooks on
the history of statistics like Stigler (1986, 1999, 2016), Porter (1986, 1995), Krüger
et al. (1987), Hacking (1975, 1990), Gigerenzer (1989) and many more, abundantly
show that suspicion and mistrust have been pervasive throughout the development
of statistics: in science, philosophy and popular culture.

For example, in his monograph The Taming of Chance (1990), Ian Hacking de-
picted a resilient backlash against statistics in nineteenth century, amongst diver-
gent leading intellectuals, including Fjodor M. Dostoyevsky, August Comte and
Friedrich Nietzsche, for (alleged) capitalizing on utility, numerical abstractions, av-
erages and mediocracy, rather than pursuing truth, genuine knowledge and under-
standing, focusing on essences and embracing the dignity of individual human be-
ings. Despite blatant progress in the field of statistics ever since and the undisputed
fact that nearly all sciences have taken a probabilistic turn in the last century, skep-
ticism endures in science, politics and popular culture; also today the dialogue be-
tween ethics and statistics often proceeds in a strenuous and cumbersome fashion
(Starmans 2012a,b,c).

Of course these brief citations and references reflect only a few aspects of the
relation between truth and statistics. We will refrain here from the question to what
extent the profession is responsible itself for the depicted view in popular culture.
Rather than this we will make three observations, restraining ourselves to current
research in mathematical statistics.

First, it is clear that from a historical-philosophical point of view, the paradigm of
TMLE, among other things, aims to rethink or rather restore the connection between
truth and models. It re-establishes the concept of a statistical model in a prudent and
parsimonious way, allowing humans to include only their true, realistic knowledge
(e.g., data are randomized, representing independent and identically distributed ob-
servations of a random variable) in the model. Rather than assuming misspecified
parametric or highly restrictive semiparametric statistical models, TMLE defines
the statistical estimation problem in terms of nonparametric or semiparametric sta-
tistical models, that represent realistic knowledge, i.e., knowledge in terms of the
experiment that actually generated the data the hand. The model must contain the
(optimal approximation of the) true probability distribution and the targeted param-
eter of interest is defined as a function of this true distribution. To this aim TMLE
“reassigns to the very concept of estimation, canonical as it has always been in sta-
tistical inference, the leading role in any theory or approach to learning of data”
(Starmans 2011).

Secondly, current practice in statistical data analysis is simultaneously paradox-
ical and problematic. On the one hand, textbooks wrongly suggest a united field
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with clear foundations, well-founded techniques, narrating a traditional whig his-
tory, with emerging, cumulating and justified knowledge. On the other hand, in
reality we observe a plethora of different, sometimes incompatible techniques and
principles, which require a delicate process of eclecticism to employ. These tech-
niques and principles have often been detached from their historical background
and derived from sometimes incompatible or discordant positions, including those
of Karl Pearson, Udny Yule, Ronald Fisher, Jerzy Neyman, Egon Pearson, Jimmy
Savage, Bruno de Finetti and John Tukey (Starmans 2011).

Thirdly, recent developments in data science, with divergent powerful machine
learning techniques, including deep learning, are likely to deteriorate the situation
even more. A reconciliation of statistics and algorithmic data analysis seems manda-
tory and in fact one of the guiding principles of TMLE (van der Laan and Rose
2011; van der Laan and Starmans 2014) is to achieve this (Starmans 2016a). The
third section of this essay will develop the latter issue a little further with respect
to the anti-statistical and anti-epistemic stance, currently gaining popularity in data
science.

30.2 Truth in Epistemology and Methodology

To account for this predicament of truth or rather to understand its current situation
one could consider taking a historical-philosophical stance. Rather than exploring its
many appearances, we confine ourselves to the history of ideas in general and more
particularly to philosophy (especially metaphysics an epistemology) and modern
science. In doing so, we observe throughout the ages the essential tension between
the holy grail of true knowledge, pursued by humble and altruistic “ancillae veri-
tatis” or servants of truth, and those who believe all this to be utopic, due to the
nature of the concept of truth, be it ill-defined or ill-conceived, or simply because
the human condition prevents us from achieving it.

For instance, the proclaimed tension can easily be traced back to the ancient
Greeks, starting with Plato’s notion of episteme or real, certain knowledge as justi-
fied true belief and with Aristotle’s axiomatic-deductive knowledge ideal and syl-
logistic logic based on truth-preserving inferences. Episteme was considered to be
the opposite of doxa, opinion, uncertainty and irregularity. These ideals were chal-
lenged and defied almost instantly by the rhetorical sophist movement, including the
aforementioned Protagoras and by the cynic school of Diogenes, but most notori-
ously and profoundly by the Sceptics. Especially Pyrrho of Elis, whose deliberations
were analyzed and transmitted by Sextus Empiricus in his Principles of Pyrrhonism
in the second or third century, paved the way for criticizing claims regarding truth.
Skepticism, be it in many disguises and forms, would persist as a wave through the
ages, proceeding via Michel de Montaigne’s sixteenth century skeptical humanism,
Rene Descartes’ methodological doubt in the seventeenth century, David Hume in
the eighteenth century up to Karl Popper in the twentieth century and contemporary
philosophy. The expounded tension has lasted to this very day and as such the ideal



564 R. J. C. M. Starmans

has kept its significance, also in the era of big data and data science. However, as phi-
losophy evolved and science progressed through the ages, the preoccupations with
truth continued and advanced along at least two distinct lines, that will be briefly
expounded here: first in epistemology/philosophy of science, secondly in research
methodology.

The philosophy of science has shown many developments that influenced or
shaped the current status of truth and in this short essay we will only highlight a
few significant ones. First, the primordial question whether truth is a property of re-
ality, a state, process, fact, thought or proposition/statement/theory/model has led to
a variety of conceptualizations or definitions of truth, developed and scrutinized in
epistemology. These include “rigid,” mathematical versions like the correspondence
theory of truth and Alfred Tarski’s related semantic theory of truth, “moderate” ver-
sions like the coherence theory of truth, or more or less “relativistic” versions like
the consensus theory, conventionalist or pragmatic approaches.

Indeed, it is often claimed that a genuine mathematically precise concept of truth
is only viable in logic and model theory, not in empirical science. Mathematical
logic is truth-functional; key concepts like entailment, inference and validity are un-
derstood as such and the criteria of soundness and completeness guide and guarantee
the correctness of the inferential process. If a formula can be derived it must be true
(soundness), if it is true it should be derivable (completeness). This strict correspon-
dence theory of syntactic derivability and semantical truth as dual notions found
little resonance in the epistemology of the empirical sciences, although it could be
argued that some renowned applications in methodology can be traced back to it.

For example, in epidemiology sensitivity and specificity, and derived notions in-
cluding likelihood ratios of positive and negative tests define post-test probability in
a similar way. In information retrieval and pattern recognition precision and recall
are defined accordingly. The former expresses the idea that if a document is re-
trieved (derived) it should be relevant (true). Reversely, recall expresses that if a text
is relevant we want it to be retrieved. Obviously, these are all probabilistic concepts,
employed in research methodology, rather than being the backbone of epistemology
itself. Later, this topic will be addressed a little more comprehensively.

Secondly, as of the beginning of the twentieth century in the Anglo-Saxon an-
alytical tradition the concept of truth has been connected to meaning, by logical
positivists (verification-criterium, inductive confirmation) like Moritz Schlick and
Rudolph Carnap and later associated with falsificationalism (predominantly in Pop-
pers critical rationalism). However, all these distinguished scholars focused on the
context of justification rather than on the context of discovery and as such they were
predominantly aimed at a rational reconstruction of the empirical sciences and used
probabilistic notions to achieve this. They didn’t strive for developing a constructive
research methodology. What’s more, truth was actually studied in a wider context
of epistemic issues like objectivity, rationality, the structure of scientific theories,
value-freedom, uniformity of science, etc.

The underlying concepts of truth were often coherence-based or pragmatic. The
latter notion was particularly advocated by philosophers like Charles S. Peirce,
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William James, John Dewey and W.V.O. Quine, all pioneers of pragmatism, up
to now a dominant movement in the philosophy of science, in order to make the
old fashioned notion more suitable and viable for contemporary epistemic issues.
Logical positivistic research on the structure of scientific theories led to both syn-
tactic approaches (Carnap) and semantic approaches, the latter depicting theories
as classes of models (Suppes, Van Fraassen, Stegmüller). This distinction was only
loosely based on the “dual” logical correspondence theory. As a result the semantic
approach can best be affiliated with a coherence conception of truth and it appeared
to be a precursor to current positions like those of George Box and the physicist John
von Neumann, which is actually the problem to be addressed in the next section.

A third development in the philosophy of science that challenged the ideal of
true knowledge was the rise of influential historical and sociological studies, like
those of Thomas Kuhn, Paul Feyerabend and Richard Rorty, marxist studies by the
Frankfurter Schule, externalistic studies published by Robert K. Merton, Bruno La-
tour, the “Strong Program” by David Bloor and Barry Barnes and more recently
social constructivism by Samuel Pickering. For example, Kuhn developed his fa-
mous paradigm theory with discontinuity rather than continuous progress, with
incommensurability of concepts and methods used along the different paradigms,
with theory-laden observations, et cetera in The Structure of Scientific Revolutions
(1962). Paul Feyerabend shocked the research community with his anarchistic ideas
and “anything goes” justification in Against Method (1975). In his book Philosophy
and the Mirror of Nature (1979) Richard Rorty proclaimed the end of representa-
tion, or the idea that scientific theories in one way or the other mimic nature. Bruno
Latour, one of the founding fathers of network-actor theory conducted detailed stud-
ies on how experimental scientist actually are doing science in laboratories, by ex-
perimenting, discussing, negotiating, interacting with stakeholders, funding organi-
zations and dealing with conventions and conflicts. His Science in Action: How to
Follow Scientists and Engineers through Society (1987) is a modern classic in this
field and influenced much research in science and technology studies.

Although all these scholars aimed at the entire scientific enterprise in a broader
sense, including objectivity, rationality, its alleged or disputed value-free status, this
led to diverse sorts of relativism, which also affected the notion of truth. Whether
caused by externalist historical studies, by contemporary skepticism, cultural rel-
ativism or social constructivism, the concept of truth eroded and this typifies the
situation today. Although truth is the key concept in epistemology, it paradoxically
is often used implicitly, tacitly as a primitive or self-evident term and employed if
convenient to the user, whereas the real research focus in epistemology is on less
fundamental notions, as has been mentioned before. As a result the constellation
of issues involving the concept of truth transpire in an indirect fashion and figurate
persistently in present-day topics in the philosophy of science. Not only do they en-
compass or involve traditional themes from normative philosophy (on ethics, values,
integrity, moral responsibility, informed consent, code of conducts, et cetera), but
the concept of truth especially emerges, figurates or is presumed in canonical epis-
temological issues, such as the scientific realism debate, (Bayesian) confirmation
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theory, the structure of scientific theories, and last but not least the triptych “expla-
nations, causality and laws,” which notions are often studied or put into relation to
each other.

The second line along which thinking about truth advanced, concerns develop-
ments in research practice and methodology; put roughly, the concept of truth has
been operationalized, reshaped or rather supplemented by notions like validity, reli-
ability, soundness, correctness or accuracy. For example, in research methodology a
plethora of validity concepts has been deployed, such as internal and external valid-
ity, construct validity, statistical conclusion validity, concurrent validity, a list which
can easily be extended. The same applies to reliability, that has many connotations
which are prerequisites or rudiments to truth, its representation and “measurement.”
In addition many more or less domain-specific measures or standards of quality have
been developed, including the aforementioned concepts like sensitivity, specificity,
recall, precision, and many more. Important as both developments are, they have
not prevented the above mentioned and depicted view and -all too often- misplaced
authoritative appeals on some notion of truth are made, rather exploiting its fragility
than safeguarding it. Ironically, on the one hand, the concept seems obsolete, it has
been circumvented and disregarded, on the other hand it seems that we appeal to it
regularly, require and presuppose it. Here, we will show how this small section gives
rise to some important aspects, that shape or at least illuminate the predicament of
truth.

30.3 Eroded Models, Von Neumann and the End of Theory

The Hungarian physicist John von Neumann was not only a pioneer of computer sci-
ence and founder of game theory, but similar to colleagues like Einstein and Heisen-
berg also actively engaged in the relationship between philosophy and science. A
proof of his epistemological preoccupations can be found in his article “Method in
the Physical Sciences,” which appeared in 1955 and was reprinted in 2000 in The
Neumann Compendium. In an often quoted passage, the physicist leaves little space
for misunderstanding his vision: “The sciences do not try to explain, they hardly
even try to interpret, they mainly make models. By a model is meant a mathemat-
ical construct which, with the addition of certain verbal interpretations, describes
observed phenomena. The justification of such a mathematical construct is solely
and precisely that it is expected to work—that is, correctly to describe phenomena
from a reasonably wide area.”

Amongst some scientists, this short passage may cause little disturbance or con-
fusion (Starmans 2011a). The perceived view seems at the most partly compatible
with experiences from everyday practice. The postulated omnipresence of models
in science will be endorsed by any physicist, biologist, social scientist, economist,
climate scientist or engineer. In addition, models are also manifest out of science,
in professional practice and in daily life. However, from an epistemic point of view,
Von Neumann’s quote is problematic in various respects.
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First of all, he advocates a virtually complete reduction of science to model
formation. Models do not offer an interpretative framework or an additional and
heuristic value in theorizing, but they are the essence of the scientific enterprise.
Both appear more or less equivalent. The extent to which this proposition is con-
sidered problematic depends on the status and scope of the model concept used.
Again, Von Neumann is very explicit. First of all, he considers models in science
primarily as mathematical constructions with a verbal explanation. This comment
seems to be easy to reprove today, as science and technology uses not only sym-
bolic mathematical models, but also plenty of tangible, physical, analog models, or
graphic or digital simulation models. Moreover, Von Neumann indicates the justi-
fication for using models solely in utilitarian terms; declaration of a (underlying)
reality no longer seems to be a goal, neither the search for truth. This embodies
both extreme pragmatism, and a hardly concealed and necessary instrumentalism
and antirealism. It also provides an insight into a conception of science in which ex-
plaining (whether causally or otherwise) is no longer a major research function and
truth has become an isolated and even useless concept, comparable with the view of
the already quoted statistician George Box.

More importantly these deliberations may be seen an prelude or gain—a
fortiori—significance by recent developments within big data and data science,
which have even more far-reaching consequences for science philosophy and
methodology. For example, one can think of a notorious, but frequently quoted
article by science journalist Chris Anderson, who proclaimed the end of scien-
tific methodology and knowledge as in 2008. Its “The End of Theory: The Data
Deluge Makes the Scientific Method Obsolete” (Anderson 2008) is equally impor-
tant for philosophers as for methodologists and statisticians. A small anthology of
Anderson’s sometimes rather unobtrusive comments may suffice.

First of all, the author states that companies like Google are actually sifting
through the most measured era since dawn of civilization, “treating this massive
corpus as a laboratory of the human condition,” establishing a society inhabited by
the “children of the Petabyte Age.” Clearly, the author does not shy away from any
pathos. He is not a futurologist, but unquestionably states that the outlined situation
is more about the status quo than a far prospect. According to Anderson in the era
of data science information processing is no longer a matter of simple low dimen-
sional classifications, natural laws and theories, but of what he calls dimensionally
agnostic statistics. It demands a essentially different methodology, that finally will
do justice to the data as something that can be “visualized in its totality.” To this aim
we have “to view data mathematically first and establish a context for it later.”

The author shows himself to be a genuine apologist of the new doctrine. Ac-
cording to Anderson, Google’s success is based on the conviction that we don’t
understand why this page is better than that one, and that we actually should not
bother: a full reliance on the statistics will do and “no semantic or causal analy-
sis is required.” As far as the author concerns, this includes virtually any aspect or
dimension of human action: “Out with every theory of human behavior, from lin-
guistics to sociology. Forget taxonomy, ontology, and psychology. Who knows why
people do what they do? The point is they do it, and we can track and measure it
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with unprecedented fidelity. With enough data, the numbers speak for themselves.”
Indeed, our entire concept of science as hypothesizing, modeling and testing seems
rapidly becoming obsolete.

Anderson asserts that the field of physics seems to be a good example. First,
Newtonian laws appeared to be rude, useful, but—at the atomic level—wrong ap-
proximations of truth. Then in the beginning of the twentieth century, quantum me-
chanics provided yet another, admittedly improved model, but still flawed no less
than a misrepresentation or distortion of a more complex reality underlying the phe-
nomena. After this, biology finds itself standing trial. Canonical high school ac-
counts of “dominant” and “recessive” genes based on a Mendelian genetics appear
to be an even more rude oversimplification of reality than classical mechanics. In
fact “the discovery of gene-protein interactions and other aspects of epigenetics has
challenged the view of DNA as destiny and even introduced evidence that environ-
ment can influence inheritable traits, something once considered a genetic impos-
sibility.” Even worse, an increase of real knowledge on biological phenomena, will
inevitably decrease the possibility to come up with a model that can explain the phe-
nomena. The children of the Petabyte Age will perceive and understand the world
in an entirely different way. Scientific progress does no longer require any mecha-
nistic explanation, causal models will be overtaken by correlational patterns, grand
unified theories will no longer be needed or strived for.

A year later, Google researchers Alon Havely, Peter Norvig and Fernando Pereira
published “The Unreasonable Effectiveness of Data.” When it comes to people and
not elementary particles, simple mathematical formulas and elegant theories are of
limited use, the authors say. The same applies to parametric statistical models. To
understand and predict people’s behavior, you can rely more on many petabytes
of rough, unlisted, unstructured, if necessary, distorted data. These are first rep-
resented by efficient data structures/architectures and then forged by intelligent
pattern-recognizing algorithms into knowledge. In Starmans (2016b, 2017b) we
have tried to do more justice to the vision of the aforementioned authors, but this
global representation of their ideas suffices to illustrate the situation in which both
statistics and the “scientific method” are, and how the underlying philosophy seems
to come under pressure.

In addition, the views of Anderson and Havely cum suis grossly can be found
almost everywhere in the popular and professional literature on big data and data
science, admittedly sometimes in a slightly more mitigated fashion. Obviously, this
does not imply the absence of opposite and more nuanced positions. This also ap-
plies to Google (Starmans 2015a) and especially to contemporary debates about the
risks of AI and, more generally, about the moral dimension in AI and data science.
For example, the recent success of Weapons of Math Destruction; How Big Data In-
creases Inequality and Threatens Democracy, published in 2016 by mathematician
and converted data science sceptic Cathy O’Neil, is illustrative in this respect. Be
that as it may, the developments we depicted in this section suggest an anti-epistemic
and anti-statistical stance, that seems to offer nothing but leaking prospects for both
statistics and epistemology, which might encourage someone to consider the issue
of joining forces. This, however appears to be far from trivial.
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30.4 Physics, Statistics and the Philosophy of Science

A century ago, the relationship between physics and philosophy was still relatively
harmonious. This in spite of fundamental revolutions like the theory of relativity and
quantum mechanics, which strongly undermined the traditional, comfortable world-
view and made the ancient and familiar philosophical concepts of time, space and
causality problematic. Physicists like Einstein, Heisenberg, Bohr and Schrödinger
were highly philosophically oriented, and many of them showed their interest in
word and writing. Philosophers like Russell, Carnap, Reichenbach and Schlick
closely monitored the physical developments in their era. In those day some even
believed in the necessity or possibility of interaction and cross-fertilisation or, at
least, in a peaceful coexistence. It would appear that now these days are gone.

The physicist and Nobel Prize laureate Richard Feynmann was quoted frequently
for decades ago because of his contention that “Philosophy of science is about as
useful to scientists as ornithology is to birds.” Steven Weinberg, who also won the
Nobel Prize for Physics, wrote in 1993 The Unreasonable Ineffectiveness of Philos-
ophy, unmistakably with a wink to Eugene Wigner admiration for “the unreason-
able effectiveness of mathematics.” In Weinberg (1993) he devoted to the problem
a separate chapter, which was decorated with the prominent title “Against Philoso-
phy.” The astronomer Stephen Hawking once proclaimed the death of philosophy,
and more recently, the famous physicist Laurence Kraus also broke into the debate.
In 2015, Weinberg again invoked uproar with To Explain the World: The Discov-
ery of Modern Science. As a result, he had to face a firm reprimand by historian
Stephen Shapin in his review “Why Scientists Should Not Write History” (2015),
published in The Wall Street Journal. The list can be expanded effortlessly, and an-
notated with numerous historical examples varying from Goethe’s denial and repu-
diation of Newtons Optics to the vicious Einstein-Bergson controversy on the nature
of time in the beginning of the twentieth century. However, also less polemically
oriented physicists usually admit to an eliminative reductionism, which eliminates
many philosophical concepts and “qualia” or gives them a specific abstract or mere
mathematical description. These include a variety of notions such as space, time,
movement, causality, intentionality, teleology, but also meaning, mind, free will,
consciousness, personal identity and usually all metaphysical or religiously related
ideas.

Fortunately, the relationship between statistics and science philosophy is not
characterized by a similar animosity or a time-consuming polemic debate. Nev-
ertheless, the conversation between them has been somewhat difficult for decades.
Although the genealogy of this problem has a number of factors, we restrict our-
selves to one of its crucial aspects: since its origins around 1925, science philosophy
has made a radical distinction between the context of discovery and the context or
justification, that was briefly referred to in Sect. 30.2. In her initial objective, in-
spired by logical positivism, to provide a rational reconstruction of (unity) science
and to formulate corresponding demarcation criteria, philosophy of science focused
on the context of justification rather than the practice of research and a constructive
methodology. Although many science philosophers almost immediately recognized
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the relevance of the probabilistic revolution, paradoxically, a separation emerged
that has continued to exist. As will be outlined in the next section, the “quest for
truth” gained a layered structure, a triptych consisting of (empirical) disciplines,
(research) methodology and epistemology/science philosophy. Many debates from
the history of ideas and contemporary bottlenecks and challenges in the relation-
ship between science and philosophy can be expressed in terms of these “layers”
and their mutual relationships. This also applies to the current relationship between
statistics and philosophy.

All this can be observed in the work of the American Bayesian statistician An-
drew Gelman. In his coauthored article “Philosophy and the Practice of Bayesian
Statistics” (Gelman and Shalizi 2013), they emphasize the eminent importance of
philosophy for both statistical research and statistical practice. The authors argue
that in this regard there is frequent “freewheeling” and dilettantism of certain statis-
ticians, among whom he also generously counts himself. Although in the aforemen-
tioned article they confine themselves to figureheads of the philosophy of science
such as Popper and Kuhn, they encourage their colleagues to seek a connection to
more recent philosophical research.

At the same time they go one step further. Gelman and Shalizi (2013) aims to
develop a new philosophy for Bayesian statistics, which is empirically adequate and
better accounts for existing statistical practice. The authors state that it is custom-
ary in today’s statistics to relate or even to anchor statistical approaches or assump-
tions in philosophical paradigms or positions. They refer in particular to inductivism
and the hypothetical-deductive model (HD model) as conceptions of science. Next,
they epitomize various achievements of “classical” statistics as manifestations of
hypothetical-deductive reasoning; the significance tests of Ronald Fisher, hypothe-
sis testing as developed by Egon Pearson and Jerzy Neyman, and finally the theory
of confidence intervals, of which Neyman was also the founder.

According to Gelman and Shalizi (2013), Bayesian statistics is widely regarded
as an instantiation of inductivism in statistics. Both theories are presented as oppos-
ing, not to say conflicting visions. As an impetus to a new empirically appropriate
philosophy for Bayesian statistics, the authors criticize the previously outlined field
and claim that Bayesian statistics should be regarded as an extremely successful HD
model and not as more (or less) inductive than the above-mentioned manifestations
of “classic” statistics. Additionally they assert that the most successful applications
of Bayesian reasoning exceed the standard view, in which reasoning is perceived as
updating a pre-distribution into a posteriori distribution, using a likelihood function
based on new data, after which the “degree of faith” should be adjusted accordingly.
It is rather a matter of developing various models (model fitting), which are then
evaluated (model checking) and subjected to a series of rigorous tests, after which
the strongest model remains. Because, according to the authors (almost), all models
are still “wrong,” that is, do not contain the probability distribution by which the
available data are generated. Rather, there is a trial and error approach, which his-
torically speaking is associated with Popper, but which finds in the recent literature
its most prominent advocate in Mayo (1996, 2010).
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However, Gelman and Shalizi (2013) does not note that inductivism and the HD
model are not at all “claire et distinct” and can hardly be regarded as opposing
conceptions of science, playing a role within statistics as they suggest (Starmans
2013). The distinction rather reflects the wrestling of thinkers with the reasoning
and “reversals” in their search for knowledge. Induction in particular has taken a
long process of development, has different appearances and aspects that are strongly
linked to the wise positions of the people involved. This applies to Aristotle, Bacon,
Hume, Kant and Mill, but also to Popper and the Bayesians. The concept has under-
gone remarkable shifts. A strict indication, such as naive inductivism as a logic or
discovery, will no longer be advocated by anyone. A moderate and “sophisticated”
version, as underpinned by many confirmation theories, will be experienced prob-
lematic by only a few. The HD model cannot claim a comparable respectable history
and should not be considered a simple and successful repair attempt or alternative
for induction. It’s too general and has in fact always been linked with induction,
even in the naive version of Francis Bacon. As a method, it does not contain signif-
icant new elements or insights, does not solve the problems of induction and faces
various historical and systematic objections, including the famous Quine-Duhem
these, which roughly put claims that it is not possible to develop a “crucial test” for
an separate more or less isolated hypothesis. Indeed, the hypothesis is part of a net-
work of other (auxiliary) hypotheses, initial conditions and ceteris paribus clauses,
so it is not clear what has now been precisely tested or categorized.

In any case, when categorizing a person or idea in either of these “camps,” the
deceitfulness of the fallacy of wrong opposition and the strawmans fallacy looks in-
exorable. Moreover, the time of comprehensive all-encompassing epistemological
theories has long been over and consequently the search for or postulation of a one-
on-one correspondence between a statistical approach and a philosophical paradigm
is less obvious. Despite noted weaknesses, the pursuit of alliances between statisti-
cal methodology and epistemology in Gelman and Shalizi (2013) is highly relevant
and stimulating. What’s more, their efforts to bridge the gap do not remain unno-
ticed, partly because the authors are not just focusing on initiated peers, but try to
reach a wider audience and Gelman is active on many websites through blogs and
comments. Its relevance is substantial, it exceeds the realms of statistics in a strict
sense and by no means statistics is solely to blame for the current situation. Rather
than this, it is to be considered a manifestation of a more general problem, as will
be made apparent in the next section.

30.5 The Triptych of True Knowledge

The search for true or reliable knowledge and the validation of the employed meth-
ods and (tentative or ultimate) findings are closely linked in the history of ideas.
In the many expressions that ultimately form the written results of the above-
mentioned efforts, with any good will, a layered structure can be recognized, which
can be described by means of a simple “architecture.” In Starmans (2017d) it is ar-
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gued that also the quest for truth has a layered structure: of empirical sciences (I),
research methodology (II), and epistemology/philosophy of science (III).

The most concrete and specific layer can be situated within the individual sub-
ject disciplines (I), where for convenience the empirical sciences will function as
a paradigmatic example. The practitioners of a specific field of science possess the
domain knowledge and try to solve knowledge problems in this domain. In strict
terms, they “produce” the knowledge. To that end, the researchers describe and
model aspects of reality and seek explanations, which ideally form part of a uni-
versally possible, ideally unifying theory, which is both declarative and predictive
successful. In view of this, the researchers make observations, collect data, conduct
experiments, investigate causal relationships, try to formulate (nature) laws, build
models and test hypotheses.

Typically, most knowledge problems from a specific knowledge domain, whether
law, medicine, business, natural science or social science are causal. They presup-
pose cause-effect relations in the reality underlying the empirical domain, or at least
establish causal connotations expressed in or underlying the aforementioned theory.
The research problems are causal, the research questions are causal, the argumenta-
tion schemes are causal, in fact the entire natural language in which these knowledge
problems are expressed, whether by layman or experts are causal. Whether we are
dealing with everyday language discourse, a practical or highly theoretical problem,
it is hard to imagine a research problem that is not causal. So causal talk is ubiq-
uitous and immanent. If one seeks to know, to explain, to model or to understand
something, causality emerges and appears to be interwoven with the domain knowl-
edge, the level of practice and existing theories, the nature of the problem and the
aims of the discipline.

At level I, causality is not only obvious and immanent, but in a way context-
sensitive, depending on the habits, peculiarities and idiosyncrasies of the field, be
it medicine, law, natural science, social science of business. In fact, as we will out-
line in the next two sections, this context-sensitivity has also been visible in the
development of the concept in the history of philosophy. Be that as it may, an es-
sential aspect of this above described, more or less problematic “standard image”
of science, of course, concerns the subtle relationships (or suspected allegations and
interactions) between empiric and theory. The observations, the data, the “special”
and the concrete versus the laws, the hypotheses, the “general” and the abstract.

Epistemology largely exists in grace of the postulated or experienced field of ten-
sion between both. Knowledge acquisition in general and the related reasoning or
inferences in particular always require reversal or inverse of patterns of reasoning.
The “direction” alternates from the special to the general and vice versa, from the
concrete to the abstract and vice versa, from the finite to the infinite and vice versa,
from data to hypotheses/theory and vice versa. And above all: from causes to effects
and vice versa. In fact, the Bayesian approach that Gelman and Shalizi (2013) tried
to justify from an epistemic point of view is often credited for modeling this envis-
aged aspect in a convenient and cogent way. Needless to say that these intuitions and
insights on causality are not only manifest in empirical science, but a fortiori rele-
vant in engineering disciplines or design science, where solutions are to be designed
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for action problems rather than for knowledge problems and the scientific process
is guided by a design cycle rather than an empirical cycle (Wieringa 2014).

In performing this research, researchers can fall back on a second layer, the
methodological (II). This is more abstract, less specific and provides the formal
methods and representations, the techniques and tools that help the researcher to
actually conduct the research, including the aforementioned inverses of reasoning
patterns, and validate the results. Reliable and valid conclusions require the bridg-
ing of the suspected gap between empirical and theory. Sometimes, the methods are
generic, such as statistical methods, data-analytical algorithms (machine learning,
data mining) or methods of research design. Sometimes (subject) specific methods
and techniques are required, such as measuring instruments, experimental environ-
ments, simulation models or verification tools.

Regarding the question of causality at this stage we could only say that it is the
methodologists duty to help the researcher answering his research questions, includ-
ing its causal connotations, allusions or talk, and that progress in (natural) science
has depended and still depends on how successful the alliance was/has been in an-
swering the causal questions, rephrasing or formalizing the causal questions or per-
haps avoiding or circumventing them. For example, this is what happens in (exper-
imental) methodology through a range of statistical techniques, including, (canon-
ical) correlation, partial correlation, analysis of contingency tables and association
measures, analysis of variance, logistic and linear regression analysis, path mod-
els and structural comparison models. But also factor analysis, principle component
analysis or discriminant analysis and even time series forecasting and survival anal-
ysis have partly causal connotations or at least allow for causal interpretations. Also
today, these methods dominate experimental and observational studies and form the
basis for causal statements in many empirical disciplines.

In a strictly pragmatic and scientistic sense, the quest for the foundation and jus-
tification of knowledge could be considered as complete. However, the history of
science expounds that usually an appeal is made to a third layer. The architecture
is complemented by epistemology/general philosophy of science (III). In particular,
in disciplines that have just experienced one or more foundational crises and have
come to some degree of maturity this is manifest. Researchers explicitly seek con-
nection to and anchoring in major themes of epistemology, the identified concepts
of science, the cherished or dismantled knowledge ideals. Themes such as valid and
reliable knowledge, knowledge acquisition, truth, reality, statements, causality, ex-
planation and natural laws, the structure of scientific theories, rationality and scien-
tific progress, and unification or the unity of the sciences, enter into the philosophy
of such a discipline.

Now that the time of comprehensive universal theories in the philosophy of sci-
ence is over, in addition to the general philosophy of science, there is more and more
space for a special philosophy of science (focusing on specific problems in e.g.,
mathematics, physics, biology, economics, social sciences, neurosciences or com-
puter science). The obvious intended interaction can be achieved from at least two
core questions. To what extent can we understand developments within a special
science area from generic insights, theories and concepts provided by the general
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philosophy of science? And vice versa: what contribution can a special field of sci-
ence provide for further development of the existing theory formation in general
knowledge and science studies?

In this short essay we have to confine ourselves to the observation that either way,
this simple architecture has at least three relationships: between I and II, between II
and III and between I and III. Many debates in the history of ideas and contemporary
bottlenecks in the relationship between science and philosophy can be derived from
these relationships and many problems can be understood and accounted for from
this perspective (Starmans 2017b,d). For example, this section showed that the rela-
tion between I and III is highly problematic in physics, Gelman and Shalizi (2013)
philosophical turn concerned primarily the relation between II and III, and as we
will see in the next sections current debates on representing causality are related to
the relation between I and II or I and III, respectively. Many aspects should remain
unattended here, but at this point it should be emphasized that the attempt in Gelman
and Shalizi (2013) to relate II–III is appraisable, but here love is a reciprocal notion
and definitely must come from both sides.

One of the big problems of epistemology/general philosophy of science is that
as far as statistics is concerned epistemology sticks to the old distinction between
context of discovery and justification and does not try to capture or address devel-
opments in statistics (with a few exceptions in Bayesian statistics). This appears to
be also immanent in the literature on causality that is immensely and unfortunately
partitioned along the aforementioned lines with hardly any cross-fertilization. A re-
cent study (Phyllis and Russo 2016) shows some interest in research practice and
certainly is an interesting attempt to bridge the gap, but recent developments (on
causality) in both statistical science, including TMLE and algorithmic data analy-
sis are largely ignored. Some aspects of this problem will be sketched in the next
section.

30.6 Some Roots and Aspects of Causality

Although truth is the fundamental notion underlying the entire scientific enterprise,
it has already been stated that the concept does not seem to play a key role in episte-
mology or research methodology anymore. It is often used informally, not even in-
troduced syncategorematically, and mainly emerges or figurates in debates related to
less fundamental issues. As stated before, we will here show how it manifests itself
in the context of an equally persistent topic in the philosophy and science, the com-
plicated concept of causality and intertwined notions like causation, cause-effect
relations, causal inference, reasoning or modeling. Instead of trying to demarcate
these very notions on historical grounds, stipulatively or along methodological lines,
we will use causality as the over-arching term covering the constellation of afore-
mentioned notions. Also concepts like physical necessity, logical necessity, unavoid-
ability, sufficiency, determinism, regularity or their antonyms like chance, probabil-
ity or irregularity constitute the concept of causality, or are historically linked to it.
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Still, unlike truth causality has many applications and shows new lines of re-
search in the philosophy of science, it is dominant in research on methodology and
in a way even “en vogue,” especially in the last two decades due to developments
in computer science and AI. Causality appears to be an ancient and a fundamental
notion, an unavoidable aspect of the “homo mensura.” It seems first and foremost an
intuitive concept, a common sense notion or natural category (in the Aristotelian or
Kantian sense of the word), which we constantly use to be adaptive in the struggle
for life, to explain our experiences and to understand ourselves, our place in cos-
mos and the contingencies of human existence. As such, causality is omnipresent
in everyday language use. Explicitly, it is subsumed in many connectives, and nu-
merous “causal” verbs, including causing, inducing, affecting, triggering, initiating,
leading to, effecting, influencing, producing, resulting in, et cetera. In a sense all
transitive verbs are essentially causal. Some of these express physical necessities or
contingencies, others presuppose a subject or acting agent, which deliberately and
intentionally causes a change in an object. As such causality was already manifest
long before the dawn of philosophy or science.

Ever since the concept shows many faces, connotations and interpretations and
has evolved over the centuries. It has proven to be chameleonic in the sense that
it adapts itself to the philosophical context or theory where it has been utilized or
developed. As we will see it appears to be highly context-sensitive and as such has
been associated with logical necessity, physical necessity, contingence, coincidence,
chance, teleology and determinism and shows different faces in divergent positions
like realism, idealism, empiricism, instrumentalism or rationalism. There is a re-
markable consistency in employing the term causality through the ages, although
conceptual changes went on and on.

More importantly, it invokes confusion and dispute up to this very day in phi-
losophy in science, statistics and data science. First it appears that even the most
elementary and bare expression “X causes Y” opens a Pandora-box of problems
and subtleties. The concept covers quite different ideas and approaches. We observe
deterministic versus probabilistic stances, difference-making approaches, regularity
based methods, counterfactual approaches, interventionist approaches, mechanistic
theories, type or token dilemma, the alleged gap between causes and reasons, ac-
counts at the individual or group level, physical or mentalist interpretations, mono
versus multiple causality, qualitative or quantitative accounts, appearance in dis-
crete and continuous processes, in observational and experimental settings, direct
and indirect causality, et cetera. This list with approaches or interpretations, which
are clearly neither mutually exclusive, nor totally exhaustive can easily be extended
(Tacq 2011; Williamson 2009) Detached from their historical and philosophical
background they provide us with a kaleidoscopic picture, allowing only a pluralist,
disunified account, especially in view of the regrettable triptych we outlined earlier.
A few historical details may elucidate the issue a little.

The British philosopher and mathematician Alfred North Whitehead (1861–
1947) is still celebrated by philosophers today, because of his criticism of mate-
rialism in science, but especially as a protagonist and herald of process philosophy.
In a Western tradition that is heavily influenced by Parmenides work, in which the
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immutability of being as a ontological principle is postulated, by Platonic time and
space less ideas or forms, and by Aristotles substance thinking and essentialism,
Whitehead expressed an different view. He rather acted in the footsteps of the pro-
cess philosopher avant-la-lettre Heraclitus of Ephesus, by developing a “philosophy
of organism,” where reality is understood as a major process of continuous “actual
occasions.” “Material” objects are actual patterns within these current events, which
can be both objective and subjective, take information of and pass on to other events.
In addition, both experience and creativity are leading, constituent principles. In this
way, the events are also causally active, involving the whole world event as a contin-
uous process; variation and change are primary and not derived from or reducible
to static states. Understanding reality means understanding the process, procedure
and mechanism, concepts still recognizable in contemporary thoughts on causality.

Due to this combination of ideas and for no longer treating variation and change
in a pejorative way, Whitehead is related to such diverse thinkers and contempo-
raries as the French Philosopher Henri Bergson, the biologists Wallace and Darwin
and the statisticians Galton and Pearson (Starmans 2011a). The field of logic, on the
other hand, recognizes Whitehead today primarily as the co-author of Bertrand Rus-
sell’s monumental Principia Mathematica, which appeared between 1910 and 1913
and formed the pinnacle of the logical stance in the philosophy of mathematics.

Although Whitehead’s versatility and profoundness is out of order, ironically
his most cited statement is of a completely different order. In Process and Reality
from 1929 he concluded that “The safest general characterization of the European
philosophical tradition is that it consists of a series of footnotes to Plato.” One can
interpret this bold statement polemically and sneeringly, or consider it as a gag em-
phasizing the timeless character of Plato’s philosophy. One can also try to find a
canon of great and still topical themes from Western philosophy and then check
to what extent they are rooted in or inspired by Plato’s work. In conducting such
an exercise, one inevitably strikes the persistent and complex problem of causal-
ity. Although the atomists and the Stoa already explored the concepts of necessity
and determinism, it could be argued that it was indeed Plato, who included the be-
ginning of the theory of causality in his dialogue Phaedo with a number of highly
problematic fragments.

It was, on the other hand, his student Aristotle, who offered a much more system-
atic and influential dissertation in the Analytica Posteriora and the Physics with his
doctrine of four causae (aitiai). To know a thing means to know its aitia. A full ex-
planation and understanding of a particular entity requires answering four questions
regarding the causa materialis (“what is it made of”), causa efficiens (“who made
it or initiated the making”), causa finalis (“what is it made for”) and causa formalis
(“what is it that makes this entity what it is, constitutes its essence and not some-
thing else”). This doctrine was at the heart of his metaphysics and epistemology, led
to many interpretations and modifications in theology, philosophy and science until
the seventeenth century, making Aristotle the founder of the theory of causality.

Since then, issues surrounding causality dominated metaphysics and epistemol-
ogy, until the nineteenth century, among other things in the work of such diverse
thinkers as Aquinas, Bacon, Descartes, Galilei, Spinoza, Hobbes, Newton, Leibniz,
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Hume and Kant, Stuart Mill and C.S. Peirce. The context-sensitive and chameleonic
character of the notion is manifest in the work of all aforementioned thinkers, and
many more; sometimes explicitly in the sense that they theorized about the concept,
sometimes implicitly in the sense that they used it, as a primitive term or otherwise
took it for granted. In fact, causality was reinvented time after time again, influ-
enced by and closely tied to the metaphysical and epistemic views of the relevant
thinker. Since in philosophy theories or views are seldom falsified and replaced,
many conflicting ideas endured, evolving in nowadays pluralistic view on causal-
ity in epistemology. Indeed also today, philosophers scrutinize the ontological and
epistemic aspects of the causal relationship and the question which assumptions
and other conditions are required for meaningful causal statements and reasoning.
As stated before the interactions and interdependence between causality, scientific
statements and laws/laws of nature still constitute an important area or focus in the
general philosophy of science.

Acknowledging the remarkable evolution that led to the concept of causality
in the history of ideas, but without pretending in any way to pursue a detailed
historical-wise overview, we begin the conceptual analysis in one way or another
by dragging the concept into the classical “philosophical triangle” built up by the
concepts of reality, mind/ideas and language, and the subtle interaction between
these concepts. The questions raised here have dominated western metaphysics and
epistemology over the past two thousand years. Is there an objective, independent
world (realism) or is reality built up by the mind (idealism, constructivism). Is that
world knowledgeable and if so how? Can we make true statements about this world
and how can we represent them? And what is truth?

Focusing on the question of causality and cause-effect relationships, these ques-
tions can be specified as follows. Based on reality: does causality exist and if so,
does it exist in a static way (as a state, fact or factual situation) or in a dynamic
way (as a physical process with a production character)? Is it an action initiated by
a causal agent, who intentionally performs the action from a certain point of view?
Should that process be regarded as a sequence of uninterrupted steps, a kind of chain
of causes to the ultimate effect? Is this process necessary, deterministic or stochas-
tic c.q. indefinite? Does it take place continuously or discretely/stepwise? Does that
process also require an action mechanism? Can there be multiple causes and can
they influence (reinforce, subvert or cancel out) each other? Should we check part
of reality or do an intervention to establish causality?

Starting from the mind: is causality a construction of the mind, a projection of
experiences and expectations on reality (Hume), a characteristic of human ability
and a condition for perceiving (Kant) presupposing a dualism of the real noumenal
world and the world of phenomena? Can we perceive it, hypothetize or know it with
our senses and cognition? And starting with the language: can we represent or oper-
ationalize it in natural language, in logical formalism (temporal logic, process logic
action logic, situation calculus), in mathematical language and if so with determinis-
tic functions, systems (linear) equations or probabilities, etcetera? Are probabilities
sufficient or do we need a language such as Pearls do-calculus? Do we need infer-
ential statistics to represent and understand it and if so how should we interpret the
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results? Through possible worlds semantics or via counterfactuals? Should we quan-
tify, measure and then determine mean averages as operationalization of causality
or causal effect (such as potential outcome approaches assume)? Can we indicate it
in terms of necessary and sufficient conditions (as in INUS conditions) and if so, are
those conditions finitely axiomatizable or in a finite list perceptible? In doing so, can
we circumvent the frame-problem, quantification problem or ramification problem
that have been notorious in AI? Is a unifying theory of causality that integrates the
many different aspects and connotations possible? The multiplicity of positions has
several historical roots and seems a disadvantage for the further development of the
concept in research methodology, as will be outlined in the next section.

30.7 Elimination, Dualism, the Probabilistic Revolution, and
Unification

The obvious role of causality in human behavior and philosophy has not prevented
the concept from running into trouble throughout the course of the history of ideas.
In the eighteenth century, David Hume famously challenged the (metaphysical) sta-
tus of causality based on his concept empiricism. According to Hume causality does
not exist in reality, there is only a constant regular sequence of phenomena, in our
thoughts; due to natural habit they are associated with physical necessity in our
minds, and projected on reality, thus explaining our “intuition” of necessity.

In the nineteenth century, the German physicist/philosopher Ernst Mach and the
English philosopher/statistician Karl Pearson manifested themselves as prominent
anti-causalists. The main critic, however, appeared in the twentieth century. It was
the aforementioned Bertrand Russell who published some notes in The Proceedings
of the Aristotelian Society in 1913, entitled “On the Notion of Cause" and said, “The
law of causality, I believe, as much as passes by philosophers, is a Relic of a bygone
age, surviving, like the monarchy, only because it is erroneously supposed to do no
harm.” Now, this attitude to causality is not unique. Over time, many concepts and
concepts and related philosophical themes have been discredited or have at least
given a specific abstract or mathematical term. This applies, inter alia, to notions
such as space, time, movement, intentionality, but also to concepts such as meaning,
sense of mind, mind, free will, consciousness and personal identity (Starmans 2011).

Put roughly this is due to current scientism. According to some scientists and
naturalist philosophers, all philosophical problems will ultimately be unraveled and
unraveled by science. If the problem is well defined then it will be analyzed and
ultimately resolved. If it is not well defined, it is identified as a pseudo-problem or as
meaningless and pushed aside. I will evaporate in the fullness of time. Philosophical
reflection can at most lead to some kind of pre-scientific theories that can have
some explanatory power or practical utility, but eventually they will be replaced
by true scientific knowledge. The concepts and concepts that play a role in that
philosophical reflection will usually also have to vanish.



30 The Predicament of Truth 579

This tendency to purify science and her language from metaphysical concepts,
common sense notions, natural categories and everyday experiences has a notorious
high point in philosopher and neuroscientist Paul Churchland’s views, who wanted
to break radically with a tradition sometimes pejoratively called “folk psychology.”
People try to understand, explain and predict the behavior of oneself and others in
terms of causal relevant factors, such as motives, intentions, beliefs and obligations.
Churchland advocates a radical eliminative materialism about these propositional
attitudes, and argues that “folk psychology” including the notion of consciousness,
the human mind and its internal processes is completely inaccurate (Starmans 2011).
Likewise, he deplores the preoccupations of philosophers with language and its pos-
tulated crucial significance for thinking. According to Churchland, developments in
neurosciences will lead to the elimination of these “maladies,” which he considers
equally relevant to science as the eighteenth century phlogiston theory is relevant
to modern chemistry, or medieval views on witchcraft are relevant to contempo-
rary psychology. The extreme vision of Churchland does not in any way form the
“communis opinion” among philosophers, but is not a new phenomenon either. It
fits into a prolonged and impressive development in Western idea history that began
with the pre-Socratics and reached a peak in today’s naturalistic/physicalist episte-
mology. As a result, the current worldview has lost much of its intuitive appeal. On
the one hand, there is the everyday, familiar life of the phenomena, leading to ex-
periences (perceptions, impressions), representations and ideas and her (postulated)
concrete, material objects. On the other hand, there is the scientific worldview with
its abstract, often mathematical models, representations of the “real” world, that is
supposed to hide behind these experiences and which is supposed to cause them and
to explain them.

This type of dualism is already widely found in the Greek atomism of Demokri-
tos, Leukippos and Epicurus and became manifest in a dominant way in the works
of Descartes and John Locke in the seventeenth century. They distinguished primary
characteristics inherent in matter and form, size, location, movement of indivisible
particles, and secondary characteristics such as colors, scents, sounds that actually
only exist in the human mind. The gap between both is apparently greater than ever
before. Not only are these phenomena as perceived to us not a reliable basis for sci-
entific theories, but the intuitive concepts and natural categories do not seem to be
in accordance with the underlying mechanisms, abstract principles and laws of the
“real” world, as described by the language and the nomenclature of science.

In fact, the entire evolution of the notion of causality must be situated and un-
derstood in view of this tension. First of all, causality also came to the forefront of
attempts for elimination, precisely because of its prominent place in metaphysics.
When a philosophical position was criticized or a speculative theory was disman-
tled, the accompanying notion of causality was also convicted forthwith. A salient
example of this is Aristotle himself, who introduced the causa formalis and mate-
rialis to underpin his hulemorphism, which connects form and matter. In addition,
the causa finalis was crucial to his views on teleology/intentionality in nature and
cosmos.
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Then in thirteenth century scholastics, the concept was reinterpreted and adjusted
predominantly by Aquinos, in order to make it suitable for his famous integration of
Aristotelianism and Christianity. But then the physics and metaphysics of Aristotle
were discredited in the seventeenth century, criticized by Bacon, Descartes, Hobbes
and Huygens. As a result only causa efficiens was deemed to be acceptable. This was
done in such a rigid and overhasty way, that it still effects the problem of causality
today. However, Bacon also made the notion of causality subordinate to his empiri-
cism, and assumed some kind of “causative forms” that could be derived directly
from the observations. Descartes, in turn, embraced a strict mechanistic philosophy,
in which the causal effect of production could only be explained by colliding parti-
cles, direct contact and instantaneous effects, and no “actio in distans” was allowed,
which of course was pivotal in the successful anticartesian physics of Newton. For
Spinoza, causality was, above all, a logical notion. But all these visions on causality
of Bacon, Descartes and Spinoza, which did not allow any mathematical description
of reality, were no longer applicable after the successes of classical mechanics and
the consequent rise of Laplace’s determinism.

After Hume’s skepticism, rather based on his concept-empiricism than on a meta-
physical position, it was in the eighteenth century, predominantly Kant who sought
to restore the notion and strived for a reconciliation between metaphysics and natural
science by considering causality as synthetic a priori knowledge as a basic category.
This constitutes a condition for observations and scientific knowledge. However
with the anti-Kantian philosophy of logical positivists in the twentieth century, this
conception of causality was also argued to be problematic, not the least because of
the successes of quantum mechanics, in which causality was no longer considered
a Kantian building block of reality.

This list can easily be extended. The history cogently shows how time after time
causality ran into trouble due to its metaphysical roots or its intrinsic connections
with specific philosophical positions. As stated before, the concept has been rein-
vented time after time again, but since many positions were not actually falsified and
replaced, the ideas remained evolving in nowadays pluralistic view on causality. So
the preoccupations of contemporary philosophers with the principle of causality and
the attempts to capture the essence of the causal relationship are by no means merely
historical. Aspects of their considerations and interpretations still resemble modern,
sophisticated approaches of causality and even in computational causal modeling
techniques.

The rule of regularity, which reflects Hume’s perception of sequence, proxim-
ity and constant convergence, the counterfactual approach (also Hume), the aspect
of continuity and mechanism of action (Descartes) or the intervention interpreta-
tion (Stuart Mill) are just a few examples. For striving to bridge the gap between
levels II and III especially Stuart Mill should be credited. When philosophers in
the nineteenth century started thinking about experimental research, they needed
a new constructive notion of causality, which could be detached from both the
old metaphysics and the laplacian determinism. Attempts to anchor causality in a
more pragmatic and experimental context can be found in the work of John Stu-
art Mill, who considered causality from the whole of circumstances that had to be
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known, controlled or manipulated to establish causal relationships or a causal ef-
fect. His System of Logic (1843) contains the famous “Five Methods of Mill” and
was actually a methodological handbook avant la lettre, in which the author tried
to bridge the gap between abstract epistemology and actual science practice, espe-
cially on thinking about causality. Illustrious predecessors like Aristotle with his
“Organon,” Bacon with his “Novum Organum,” and Arnauld and Nicole with their
“Logic of Port Royal” were definitely less successful. However, the real improve-
ment would require a probabilistic revolution, incorporating probability theory and
statistics. Nowadays nearly all approaches of causality are probabilistic and without
the probabilistic revolution the concept would never have gained a place in research
methodology.

Thinking about variation and change would be accelerated later in the nineteenth
century, especially due to the evolutionary theory of Darwin and Wallace, which
of course had no mathematical model for evolution and no adequate mechanism of
inheritance at all. It was Francis Galton, who, as an inadmissible advocate for math-
ematization of science, realized that variation indeed allowed for a mathematical
treatment, without pejorative manifestations of abnormalities, error functions, etc.
Galton, who first developed the conception of “regression-to-the-mean” was not so
much concerned with Quetelets averages, but focused on the deviant, the special and
the individual, although he didn’t know exactly how small long-term changes could
suffice to bring about the wealth and variety of phenomena and evolution.

His pupil Pearson, on the other hand, corrected all this by not identifying the
variation in “errors” but in the phenomena themselves (encoded in data), and by dis-
tinguishing different (classes of) distributions. He saw that many phenomena were
not normal, but skewed and could be classified using four parameters (mean, stan-
dard deviation, skewness and curvature). The variability in nature manifested itself
in a point cloud of measurements, and Pearson sought the best fitting model, the
function that best suited the data. This was rather a parsimonious description of the
phenomena, than an indication of a causal underlying mechanism.

In the first place, he gave probabilities a full place in science and saw the world
at a level of abstraction, where data, data variation, data-generating mechanisms
and parameters of the distributions rather code and build reality, rather than repre-
sent or depict an alleged physical world. Probability distributions with associated
parameters are the objects of science. The worldview, though, lost some its direct
comprehensibility, but paradoxically, the Pearsonian reality as statistical distribution
was “observable,” close to the data, and above all notable. It was a description of the
actual data, a large but finite subset of the collection of all possible measurements,
available only in an “ideal” situation (Starmans 2011). With Galtons and Pearson
statistical approach to variation and change and Fisher’s later synthesis of evolution
and mendelian genetics, a major transformation in thinking about uncertainty was
a fact. Here we must confine ourselves to the statement that the dualist position of
Fisher benefited thinking about causality, whereas the monist position of Pearson
made causality obsolete. So far causality has survived Churchlands eliminativism,
Von Neumann’s eroded models and Andersons pondering on the end of theory, para-
doxically despite and due to the fact that it appeared into certain forms of dualism
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which are still courant and needed. In fact causality did even better than that. As
an antipode or perhaps even as an antidote, we must refer to the computational turn
that was made in causality thinking at the end of the twentieth century. As a result,
scientists gained more grip on this former tricky concept.

In 2012, American AI scientist Judea Pearl won the most important scientific
prize in computer science, the Turing Award for his work on probabilistic networks
and causal modeling. Published in 2000 and revised in 2009, Causality: Models,
Reasoning and Inference can be considered as a milestone in modern thinking about
causality (Pearl 2009a). What’s more Pearl considers it a unifying concept in sci-
ence. In fact, in his introduction he considers “causal relationships to be the funda-
mental building blocks both of reality and of human understanding of that reality.”
There can be no such thing as reductionism to probability, statistics or algorithmic.
On the contrary, Pearl knows “no greater impediment to scientific progress than
the prevailing practice of focusing all of our mathematical resources on probabilis-
tic and statistical inferences” precisely because in this tradition, according to Pearl,
causal notions and nomenclatures are banned from the formal scientific language.

He therefore expresses the hope that after the twentieth century of probability, the
twenty-first century will show a new era of causality. Pearl pursues unification and
in these endeavors his framework of structural equation modeling combined with
probabilistic networks plays a crucial role. In fact, his method partly finds its roots
in the works of Sewall Wright, who established almost 100 years ago his approach
with path coefficient, systems of linear equations, modeling the relationships be-
tween the different endogenous and exogenous variables, direct and indirect effects
etcetera. Pearl rejects the “symmetric” mathematical language and introduces his fa-
mous “do-operator” to prevent confounding and related problems such as Simpsons
paradox. It goes without saying that rather anti-statistical position both enriched and
complicated the view on the role of causality and its manifestations in statistics, data
science and research methodology.

30.8 Conclusion

In this essay we have tried to give shape to the suggested predicament of truth, a con-
cept that is part of the homo mensura and pivotal in epistemology in the sense that
it is presupposed by less fundamental notions, including the concept of causality,
which unmistakably is more fashionable. We highlighted several aspects of truth,
among other things its fragile character in the big evil world, its problematic re-
lation with statistics throughout the development of the discipline, varying from
backlash in nineteenth century popular culture to nowadays distrust and skepticism
in a period that nearly all sciences have taken a probabilistic turn. We also depicted
the erosion of the concept of models, nowadays eclecticism in statistical practice,
although textbooks wrongly suggest a united field, and, last but not least, the up-
coming anti-statistical stance, currently gaining popularity in data science.
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It was shown that some aspects of TMLE do address these issues in a system-
atic way. Furthermore, we outlined how this anti-statistical stance may turn into
an anti-epistemic stance, which appeared to be more encompassing than just “the
end of theory.” It appeared that a reconciliation between epistemology and research
methodology is in many ways problematic and also that the solution is unlikely
to be found in the philosophy of science alone. Starting with classical skepticism,
shifting truth-definitions, logical positivistic preoccupation with the distinction be-
tween context of discovery and context of justification, externalist historical studies,
cultural relativism and social constructivism, all positions challenged the rational-
ity and objectivity of science or at the least strengthened the decline of the concept
of truth or proclaiming its redundancy. Unsurprisingly research methodology has
different, mainly pragmatic priorities. Subsequently, we showed how attempts to
counter this development by bridging the gap between statistics and philosophy of
science are so far problematic. We generalized this by outlining a regrettable trip-
tych in the quest for truth with often unnecessary demarcations between levels I,
II and III. Because the constellation of issues involving the concept of truth nowa-
days often transpire in an indirect fashion and figurate persistently in contemporary
topics in the philosophy of science we focused on the concept of causality from
a historical-philosophical perspective. Causal notions and nomenclature continue to
play a crucial role in the language of science. It is dominant at levels I, II and III, but
the burgeoning literature on causality cogently illustrates the unfortunate depicted
compartmentalization. Causality has a long tradition in philosophy, underwent many
conceptual changes, but has always been context-sensitive, closely linked to epis-
temic or meta-physical positions. As such it was reinvented time after time again,
influenced by and closely tied to the metaphysical and epistemic views of the rele-
vant thinker. Since in philosophy theories or views are seldom falsified and replaced,
many conflicting ideas endured, evolving in nowadays pluralistic view on causality,
which does not seem to allow for any sophisticated unification.

This obviously poses challenges for epistemology, many philosophical issues
have not even been listed here, let alone solved. The fact is that many old metaphys-
ical and epistemic connotations still play their part. However, as pointed out in Star-
mans (2016a, 2017a) any attempt to solve the philosophical and practical problems
surrounding causality, should take into account its current state, which is largely de-
termined by some important transformations in the history of ideas. These include,
the probabilistic revolution of Karl Pearson and Ronald Fisher without which the
concept of causality would have no status in research methodology whatsoever, in
addition the Copenhagen interpretation of quantum mechanics of Niels Bohr, that
has decisively influenced the thinking about causality, but also communication the-
ory of Claude Shannon whose ideas and velvet revolution on information as data in
context and flux, surpassed materialism, making information no longer an epiphe-
nomena or derived notion, which appears to be particularly of interest in view of
the themes addressed in this essay. Opposed to strong protagonists like Pearl we ob-
serve a tendency to eliminate the term throughout history, including Pearson, Mach,
Russell, Churchland, Anderson and Havely. Yet, Google has also taken a different
position for example in the project of the “automated statistician,” (Starmans 2015b)
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arguing that precisely with huge complex models analyzing automatic thousands of
variables, people can only hold confidence in the statistical conclusions and in deci-
sions based when understanding the mechanism, the arguments, including a causal
structure and cause-effect relationships. Again, it turns out that the classical themes
explanations, causality and (natural) laws should not be treated separately here. In
addition it must be noticed that in view of the backlash against statistics, its cumber-
some relation with ethics, the appeal to the moral dimension and the homo mensura,
these days also the “dark side” of data science is rapidly gaining attention, for ex-
ample in the before mentioned recent book (O’Neil 2016).

As pointed out by van der Laan and Rose (2011), in TMLE the issue of causality
is treated differently. Causality is subordinate to truth and inference, there is a strict
distinction between a purely statistical target parameter and a causal effect. In order
to assign a causal interpretation to a statistical parameter under the Neyman-Rubin
causal network several assumptions are required, such as positivity (i.e. every entity
should have a nonzero probability of receiving either exposure within the strata), the
assumption of no confounders and the so-called stable unit treatment value assump-
tion (i.e., the exposure status of an entity should not affect the potential outcomes
of the other entities and the exposure level should be the same for all individu-
als exposed at that level). The focus is primarily on causal estimation, on clearly
formulating the causal question of interest and estimating well-defined statistical
parameters, guided by the research question and using flexible algorithms that make
minimal assumptions with respect to functional form, enabling proper adjustment
for confounding.

Many subtle points are only slightly addressed or had to remain untouched here.
For example, acknowledging the social and external aspect of the scientific enter-
prise does not imply slipping into relativism or social constructivism, even in ex-
perimental physics as has been pointed out by the physicist Peter Galison on many
occasions (Galison 1987; Starmans 2017c). The same applies to the problematic re-
lation between philosophy and statistics, the lack of an integrated unified approach
in data-analysis and the necessity to rebut the depicted “new vision” on science. All
in all, it could be contended that the aforementioned issues regarding truth, causal-
ity, data science and the triptych of knowledge and their problematic relations are
not only big challenges for epistemology and statistics, but a first step towards a
genuine philosophy of data science as well.
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Foundations

A.1 Data-Adaptive Target Parameters

We present a proof of asymptotic linearity of the CV-TMLE of a data-adaptive tar-
get parameter. During this proof we encounter various key assumptions that must
be met. After having carried out this proof we collect these assumptions and pro-
vide the formal theorem. Recall the notation of our chapter on data-adaptive target
parameters.

A.1.1 Statistical Inference Based on the CV-TMLE

Let’s now proceed with the analysis of this CV-TMLE ψ∗
n =

1
V

∑V
v=1 Ψd̂(Pn,vc )(Qn,vc (εn))

of ψ0n =
1
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v=1 Ψd̂(Pn,vc )(Q0). The identity Ψd(Q) − Ψd(Q0) = −P0D∗

d(Q,G) +
R0,d(Q,G,Q0,G0) for the target parameter Ψd and its canonical gradient D∗

d(Q,G)
immediately translates into the following key identity for the CV-TMLE:
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Combined with the cross-validated empirical mean of the efficient influence
curve equation 1
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∑
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(Qn,vc (εn), gn,vc ) = 0, this establishes the follow-

ing identity:
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Regarding the empirical process term we have the following lemma.
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Lemma A.1. Assume that the supremum norm of D∗
d̂(Pn,vc )

(Qn,vc (εn), gn,vc )) is

bounded by some M < ∞ with probability tending to 1, and that
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Thus, under this very mild consistency condition, we have
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Suppose now that Qd0 = Qd0
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Then, it follows that
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which completes the proof. In general, we assume g = g0, and

1
V

∑V
v=1 R0,d̂(Pn,vc )(Qn,vc (εn),Q0, gn,vc , g0) − 1

V

∑V
v=1 R0,d̂(Pn,vc )(Q,Q0, gn,vc , g0)

= oP(1/
√

n).

In many applications, due to linearity of (Q − Q0) → R0,d(Q,Q0, g, g0), this differ-
ence is represented by an integral involving the product of a difference Qn,vc (εn)−Q
and a difference ĝ(Pn,vc ) − g0. In that case, this assumption corresponds with a
second-order term being oP(1/

√
n), where the second-order term can typically be

bounded by an L2-norm of a difference between Q∗
n,vc and Q times an L2-norm of a

difference between ĝ(Pn,vc ) and g0. In addition, in this case where we only assume
g = g0, we also need to assume the following asymptotic linearity condition on ĝ:
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Then, we can conclude:
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This proves the following theorem.
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Theorem A.1. Let D be an index set for a collection of target parameters, and
for each d ∈ D, we have a statistical target parameters Ψd : M → IR. Let
d̂ : MNP → D be an estimator that maps an empirical distribution into estimate
of a desired index d0 ∈ D, and thereby a choice of target parameter. Consider a
sample-split random vector V, and for a split V = v, let Pn,vc be the empirical dis-
tribution of parameter-generating sample and Pn,v be the empirical distribution of
the validation/estimating sample. The data-adaptive target parameter is defined as
follows:

ψ0,n =
1
V

V∑

v=1

Ψd̂(Pn,vc )(P0).

For each target parameter Ψd, let D∗
d(P0) be its efficient influence curve at P0. As-

sume that Ψd(P0) = Ψd(Qd
0) only depends on P0 through a parameter Qd

0, and as-
sume that D∗

d(P0) = D∗
d(Qd

0, g
d
0) depends on P0 through Qd

0 and a nuisance parame-
ter gd

0. Define a second-order term R0,d() as follows:

P0D∗
d(Qd, gd) = Ψd(P0) − Ψd(Qd) + R0,d(Qd,Qd

0, g
d, gd

0).

Let (Qd,O) → Ld(Qd)(O) be a valid loss function for Qd
0 so that

Qd
0 = arg min

Qd
P0Ld(Qd),

and let {Qd(ε) : ε} be a submodel through Q at ε = 0 with a univariate or multivari-
ate parameter ε so that the linear span of the generalized score includes the efficient
influence curve:

D∗
d(Qd, gd) ∈ 〈 d

dε
Ld(Qd(ε))

∣∣∣∣∣
ε=0

〉.

Let {Q̂d(ε) : ε} be this submodel through Q̂d, using ĝd. For notational convenience,
we use the notation Q̂(Pn,vc ) = Q̂d̂(Pn,vc )(Pn,vc ), and similarly, we define ĝ(Pn,vc ) =
ĝd̂(Pn,vc )(Pn,vc ). For each split V = v, we define the corresponding updates Q∗

n,vc ≡
Q̂(Pn,vc )(εn). Let εn be computed so that it solves/satisfies the following equation:

1
V

V∑

v=1

Pn,vD∗
d̂(Pn,vc )

(Qn,vc (εn), ĝ(Pn,vc )) = oP(1/
√

n). (A.1)

The proposed estimator of ψ0,n is given by

ψ∗
n ≡

1
V

V∑

v=1

Ψd̂(Pn,vc )(Q
∗
n,vc ).

Assume that the supremum norm of D∗
d̂(Pn,vc )

(Q∗
n,vc , ĝ(Pn,vc )) is bounded by some

M < ∞ with probability tending to 1, and that

P0{D∗
d̂(Pn,vc )

(Q∗
n,vc , ĝ(Pn,vc )) − D∗

d0
(Qd0 , gd0 )}2 → 0 in probability.
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Then,
ψ∗

n − ψ0n = (Pn − P0)D∗
d0

(Qd0 , gd0 ) + oP(1/
√

n)
+ 1

V

∑V
v=1 R0,d̂(Pn,vc )(Q

∗
n,vc ,Q0, ĝ(Pn,vc ), g0).

We assume g = g0;

1
V

∑V
v=1 R0,d̂(Pn,vc )(Q

∗
n,vc ,Q0, ĝ(Pn,vc ), g0) − 1

V

∑V
v=1 R0,d̂(Pn,vc )(Q,Q0, ĝ(Pn,vc ), g0)

= oP(1/
√

n);

and the following asymptotic linearity condition on ĝ:

1
V

V∑

v=1

R0,d̂(Pn,vc )(Q,Q0, ĝ(Pn,vc ), g0) = (Pn − P0)Dg(P0) + oP(1/
√

n).

Then,

ψ∗
n − ψ0,n = (Pn − P0){D∗

d0
(Q, g0) + Dg(P0)} + oP(1/

√
n).

A.2 Mediation Analysis

We establish three fundamental results for Chap. 17. Firstly, we prove the identi-
fication result for the natural direct effect, which is defined as a contrast of two
counterfactual mean outcomes under a static intervention on At and an unknown
stochastic intervention on Zt. This identification result is just a consequence of (1)
the identification of the counterfactual mean outcome under a given intervention
from the g-computation formula and (2) the identification of the conditional dis-
tribution Γ̄a′

1,t of the counterfactual mediator representing the unknown stochastic
intervention (Robins 1986). Secondly, we prove that our claimed efficient influence
curve is indeed the canonical gradient of the pathwise derivative of our statistical
target parameter. We prove this by (1) specifying a rich class of parametric submod-
els through P; (2) defining the tangent space (i.e., the closure of the linear span of
all the scores generated by this class of submodels) as an orthogonal sum of tangent
spaces of the different factors of the likelihood; (3) expressing the pathwise deriva-
tive of the statistical target parameter along a parametric submodel as a covariance
of the claimed efficient influence curve and the score of the submodel; (4) showing
that the claimed efficient influence curve is an element of the tangent space. Our
proof applies to any statistical model for which the conditional distributions of At

are modeled while all other conditional distributions of the nodes that makes up the
longitudinal data structure are kept locally nonparametric. Thirdly, we establish the
claimed double robustness of the efficient influence curve.
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A.2.1 Proof of Lemma 17.1: Identifiability Result

For Xt ∈ (Rt, Lt), we also denote Xt

(
a,

(
Γ̄a′

1,s, zs,t

))
the counterfactual covariate gen-

erated at time t by intervening to set At = at,Z1,s ∼ Γ̄a′
1,s,Zs,t = zs,t.

E(Yτ(a, Γ̄a′ )) =
∑

r,l,z

yτp [L0 = l0]

×
∏

t

{
p
[
Rt(a, Γ̄a′ ) = rt | L0 = l0,Rt−1(a, Γ̄a′ ) = rt−1, Γ̄

a′
t−1 = zt−1,Lt−1(a, Γ̄a′ ) = lt−1

]

×p
[
Γa′

t = zt | L0 = l0,Rt(a, Γ̄a′ ) = rt, Γ̄
a′
t−1 = zt−1,Lt−1(a, Γ̄a′ ) = lt−1

]

×p
[
Lt(a, Γ̄a′ ) = lt | L0 = l0,Rt(a, Γ̄a′ ) = rt, Γ̄t(a′) = zt,Lt−1(a, Γ̄a′ ) = lt−1

]}
.

By definition of Γa′
t , p

[
Γa′

t = zt | Rt(a, Γ̄a′ = rt, Γ̄
a′
t−1 = zt−1,Lt−1(a, Γ̄a′ ) = lt−1

]
≡

p (Zt(a′) = zt | Rt(a′) = rt,Zt−1(a′) = zt−1,Lt−1(a′) = lt−1). This quantity arises in
traditional longitudinal total causal effect problems where one sets A = a′, and mea-
sure Z and L (Robins 1986). Therefore, under A1, it is identifiable as the conditional
probability p0

(
Zt = zt | At = a′t ,Zt−1 = zt−1,Lt−1 = lt−1

)
from the observed data dis-

tribution. To identify the conditional probabilities of Rt(a, Γ̄a′ ) and Lt(a, Γ̄a′ )we
demonstrate the steps for the first two, the results for the subsequent covariates can
be induced thereafter. Firstly

p
[
R1(a, Γ̄a′ ) = r1 | L0 = l0

]
= p [R1(a1) = r1 | L0 = l0]

=p [R1(a1) = l1 | A1 = a1, L0 = l0] = p0 [R1 = r1 | A1 = a1, L0 = l0] .

The first equality is by definition of the counterfactuals R1(a, Γ̄a′ ). The second equal-
ity is due to the assumption A2 that given L0, A1 is independent of R1(a). The last
equality follows from consistency. Next,

p
[
L1(a, Γ̄a′ ) = l1 | L0 = l0,R1(a, Γ̄a′ ) = r1, Γ

a′
1 = z1

]

= p
[
L1(a1, z1) = l1 | L0 = l0,R1(a, Γ̄a′ ) = r1, Γ

a′
1 = z1

]

= p
[
L1(a1, z1) = l1 | L0 = l0,R1(a, Γ̄a′ ) = r1

]

= p [L1(a1, z1) = l1 | L0 = l0,R1(a1) = r1]

= p0 [L1 = l1 | L0 = l0, A1 = a1,R1 = r1,Z1 = z1]

The first equality is by definition of the counterfactuals L1(a, Γ̄a′ ) and L1(a, z). The
second equality is due to the fact that in our ideal experiment conditional on L0 = l0
and R1(a, Γa′ ) = R1(a1) = r1, Z1 is a random draw from the distribution Γa′

1 (· |
l0, r1), and does not affect the covariates L1(a1, z1), whose value only depend on
R1(a1) = r1 and l0. The last equality follows from the usual argument of sequential
randomization under static interventions on (A,Z) by applying assumptions A2, A3.
The positivity assumptions in A4 assure that the conditional probabilities in the
identifying expression (17.5) are well defined.
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A.2.2 Proof of Theorem 17.1

For any P ∈ M, we recall the likelihood decomposition in (17.1):

p(O) = p(L0)

×
τ∏

t=1

(
p(At | At−1,Rt−1,Zt−1,Lt−1)p(Rt | At,Rt−1,Zt−1,Lt−1)

× p(Zt | At,Rt,Zt−1,Lt−1)p(Lt | At,Rt,Zt,Lt−1

)
.

For Oj ∈ {L0, At,Rt,Zt, Lt : t = 1, . . . , τ}, let POj denote the conditional

probability of POj

(
Oj | Pa(Oj)

)
. Let L2(P) denote the Hilbert space of mean zero

functions of O, endowed with the covariance operator. Consider a rich class of
one-dimensional parametric submodels P(ε) that are generated by only fluctuat-
ing POj . Under our model, no restrictions are imposed on the conditional prob-
abilities POj . As a result, given any function S Oj ∈ L2(P) of (Oj, Pa(Oj)) with
finite variance and EP(S Oj (Oj, Pa(Oj)) | Pa(Oj)) = 0, the fluctuation POj (ε) =
(1 + εS Oj (Oj, Pa(Oj)))POj is a valid one-dimensional submodel with score S Oj .
Therefore, the tangent subspaces corresponding to fluctuations of each POj are
given by

T (PL0 ) = {S L0 (L0) : EP(S L0 ) = 0}
T (PAt ) = {S At (At,At−1,Rt−1,Zt−1,Lt−1) : EP(S At | At−1,Rt−1,Zt−1,Lt−1) = 0}
T (PRt ) = {S Rt (Rt,At,Rt−1,Zt−1,Lt−1) : EP(S Rt | At,Rt−1,Zt−1,Lt−1) = 0}
T (PZt ) = {S Zt (Zt,At,Rt,Zt−1,Lt−1) : EP(S Zt | At,Rt,Zt−1,Lt−1) = 0}
T (PLt ) = {S Lt (Lt,At,Rt,Zt,Lt−1) : EP(S Lt | At,Zt,Rt,Lt−1) = 0}.

Due to the factorization in (17.1), T (POi ) is orthogonal to T (POj ) for Oi � Oj. More-
over, the tangent space T (P), corresponding to fluctuations of the entire likelihood,
is given by the orthogonal sum of these tangent subspaces, i.e. T (P) =

⊕
j T (POj ),

and any score S (O) ∈ T (P) can be decomposed as
∑

j S Oj (O).
Under this generous definition of the tangent subspaces, any function S (O) that

has zero mean and finite variance under P is contained in T (P). This implies in
particular that any gradient for the pathwise derivative of Ψa,a′ (·) is contained in
T (P), and is thus in fact the canonical gradient. Therefore, it suffices to show that
D∗,a,a′ (·) in (17.9) is a gradient for the pathwise derivative of Ψa,a′ (·). Indeed, for any
S (O) =

∑
j S Oj (O) ∈ T (P), let PS (ε) denote the fluctuation of P with score S . Under

appropriate regularity conditions, the pathwise derivative at P can be expressed as

d
dε
Ψa,a′ (PS (ε)) |ε=0

=
d
dε

∣∣∣∣∣
ε=0

∑

r,z,l

y

{
[
(1 + εS L0 )pL0

]
(l0)
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×
τ∏

t=1

(
[
(1 + εS Rt )pRt

]
(rt | at, rt−1zt−1, lt−1)

× [
(1 + εS Zt )pZt

] (
zt | a′t , rt, zt−1, lt−1

) [
(1 + εS Lt )pLt

]
(lt | at, rt, zt, lt−1)

)}

=
∑

r,z,l

y

⎛
⎜⎜⎜⎜⎜⎝pL0 (l0)PR(r | a, z, l)PZ(z | a′, r, l)PL(l | a, r, z)

τ∑

t=1

S Lt

⎞
⎟⎟⎟⎟⎟⎠ (A.2)

+
∑

r,z,l

y

⎛
⎜⎜⎜⎜⎜⎝pL0 (l0)PR(r | a, z, l)PZ(z | a′, r, l)PL(l | a, r, z)

τ∑

t=1

S Zt

⎞
⎟⎟⎟⎟⎟⎠ (A.3)

+
∑

r,z,l

y

⎛
⎜⎜⎜⎜⎜⎝pL0 (l0)PR(r | a, z, l)PZ(z | a′, r, l)PL(l | a, r, z)

τ∑

t=1

S Rt

⎞
⎟⎟⎟⎟⎟⎠ (A.4)

+
∑

r,z,l

y
(
pL0 (l0)PR(r | a, z, l)PZ(z | a′, r, l)PL(l | a, r, z)S L0

)
, (A.5)

where PR(r | a, z, l) ≡ ∏τ
t=1 pR(rt | At = at, rt−1, zt−1, lt−1), analogously for PL, and

PZ(z | a, r, l) ≡ ∏τ
t=1 pZ(zt | At = a′t , rt, zt−1, lt−1).

Note firstly that by definition of DL
t and S Lt , for every t = 1, . . . , t0,

EP

(
Da,a′

Lt
(Rt,Zt,Lt)S Lt (At,Rt,Zt,Lt)

)

=
∑

r,z,l

y pL0 (l0)PR(r | a, z, l)PZ(z | a′, r, l)PL(l | a, r, z)S Lt .

Moreover, Da,a′

Lt
(P)(Rt,Zt,Lt) satisfies EP

(
Da,a′

Lt
(P)(Rt,Zt,Lt) | Rt,Zt,Lt−1

)
= 0.

Therefore Da,a′

Lt
(P) ∈ T (PLt |Pa(Lt)) by the definition of these tangent subspaces. It

thus follows from the orthogonal decomposition of T (P) that (P)

EP

{
Da,a′

Lt
(P) × S Lt

}
= EP

⎧⎪⎪⎨
⎪⎪⎩Da,a′

Lt
(P)

⎛
⎜⎜⎜⎜⎜⎝S L0 +

τ∑

t=1

S At + S Zt + S Lt

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ .

By similar arguments, (A.3) can be written as

EP

{
Da,a′

Zt
(P) × S Zt

}
= EP

⎧⎪⎪⎨
⎪⎪⎩Da,a′

Zt
(P)

⎛
⎜⎜⎜⎜⎜⎝S L0 +

τ∑

t=1

S At + S Zt + S Lt

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ ,

(A.4) can be written as

EP

{
Da,a′

Rt
(P) × S Rt

}
= EP

⎧⎪⎪⎨
⎪⎪⎩Da,a′

Rt
(P)

⎛
⎜⎜⎜⎜⎜⎝S L0 +

τ∑

t=1

S At + S Zt + S Lt

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ .
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and (A.5) can be written as

EP

{
Da,a′

L0
(P) × S L0

}
= EP

⎧⎪⎪⎨
⎪⎪⎩Da,a′

L0
(P)

⎛
⎜⎜⎜⎜⎜⎝S L0 +

τ∑

t=1

S At + S Zt + S Lt

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ .

Combining these results, one concludes that

d
dε
Ψa,a′ (PS (ε)) |ε=0=

EP

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝Da,a′

L0
(P) +

τ∑

t=1

Da,a′

Rt
(P) + Da,a′

Zt
(P) + Da,a′

Lt
(P)

⎞
⎟⎟⎟⎟⎟⎠ S

⎫⎪⎪⎬
⎪⎪⎭

Therefore, D∗,a,a′ (P) ≡ Da,a′

L0
(P)+

∑τ
t=1 Da,a′

Rt
(P)+Da,a′

Zt
(P)+Da,a′

Lt
(P) is a gradient for

the pathwise derivative of Ψa,a′ at P. As discussed above, under the nonparametric
model, D∗,a,a′ (P) is in fact the canonical gradient.

Double Robustness of Efficient Influence Curve. The first case of the robustness
condition is trivial. In the second case, correct pL and pR yield that EP0 Da,a′

Rt
(P) = 0

and EP0 Da,a′

Lt
(P) = 0; correct pL, pR and pA produce a telescopic sum over t of Da,a′

Zt
.

Specifically

EP0

∑

t

Da,a′

Zt
(P) =

∑

lτ−1 ,r,z

Q̄Lτ (P0)a,a′ (r, z, lτ−1)p0,L0 (l0)P0,R(r | a, z, lτ−1)P0,Z(z | a′, r, lτ−1)P0,L(lτ−1 | a, r, z)

− EP0 Q̄a,a′

Z1
(R1, L0)

= Ψa,a′ (P0) − EP0 Q̄a,a′

Z1
(R1, L0)

On the other hand, EP0 Da,a′

L0
(P) = EP0

∑
r1

p0,R(r1 | l0, a1)Q̄a,a′

Z1
(r1, L0) − Ψa,a′ (P).

Therefore, EP0 D∗,a,a′ (P) = 0 implies that

0 = EP0 D∗,a,a′ (P) = EP0

∑

t

Da,a′

Zt
(P) + EP0 Da,a′

L0
(P)

= Ψa,a′ (P0) − EP0 Q̄a,a′

Z1
(R1, L0) + EP0

∑

r1

p0,R(r1 | l0, a1)Q̄a,a′

Z1
(r1, L0) − Ψa,a′ (P)

= Ψa,a′ (P0) − Ψa,a′ (P).

Similarly, in the third case, correct pZ yields P0DZt ,a,a′
t (P) = 0; the correct pA

and correct pZ will produce the desired telescopic sums over t of EP0 Da,a′

Lt
(P) +

EP0 Da,a′

Rt
(P), leaving

0 = EP0 D∗,a,a′ (P) =
∑

t

{
EP0 Da,a′

Lt
(P) + EP0 Da,a′

Rt
(P)

}
+ EP0 Da,a′

L0
(P)

= Ψa,a′ (P0) − EP0 Q̄a,a′

R1
(L0) + EP0 EP0 Q̄a,a′

R1
(L0) − Ψa,a′ (P)

= Ψa,a′ (P0) − Ψa,a′ (P).
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A.3 Online Super Learning

In this section, we will start out with showing that the online cross-validated risk
minus its desired target is a discrete martingale, and present a theorem from the
literature that provides an exponential inequality for the tail probability of such dis-
crete martingale. Subsequently, we present the proof of Theorem 18.1. The proof
of Theorem 18.2 is much easier and is therefore omitted. In the final section, we
provide a succinct review of the literature on stochastic gradient descent algorithms
for online estimation.

A.3.1 Online Cross-Validated Risk Minus Online Cross-Validated
True Risk Is a Discrete Martingale

The difference between the online cross-validated risk and the online cross-validated
true risk (minimized by oracle selector) can be written as a martingale as follows:

(n − nl + 1){RCV,n(Ψ̂k) − R̃CV,n(Ψ̂k)} =∑n
t0=nl+1{L(Ψ̂k(Pt0−1))(Z(t0),O(t0)) − L(ψ0)(Z(t0),O(t0))}

−∑n
t0=nl+1 Pθ0,t0,Z(t0){L(Ψ̂k(Pt0−1)) − L(ψ0)}

=
∑n

t0=nl+1{ f (t0, Ō(t0 − 1),O(t0)) − E0( f (t0, Ō(t0 − 1),O(t0)) | Ō(t0 − 1))}
≡ Mn( f ),

where

f (t0, Ō(t0 − 1),O(t0)) = L(Ψ̂k(Pt0−1))(Z(t0),O(t0)) − L(ψ0).

Clearly, for k < n, E0(Mn( f ) | Ō(k)) = Mk( f ), which proves that (Mn( f ) : n =
nl + 1, . . .) is a discrete martingale in n.

A.3.2 Martingale Exponential Inequality for Tail Probability

In order to establish an oracle inequality for the online cross-validation selec-
tor based on data O(1), . . . ,O(n), we need an exponential inequality for tail-
probabilities of Martingale sums Mn( f ). For that purpose, we refer to Theorem
8 (page 40) in Chambaz and van der Laan (2011a) for the following exponential
inequality for Martingales established by van Handel (2009).

Theorem A.2 (Proposition A2 in van Handel 2009). For the sake of this theorem,
let Mn( f ) =

∑n
i=1 f (i,O(i), Ō(i − 1)) − Pθ0,i,Z(i) f , Pθ0,i,Z(i) denoting the conditional

probability distribution of O(i), given Z(i), and let F be a set of such functions f .
Fix K > 0 and define, for all f ∈ F , n ≥ 1,

R̃n,K( f ) =
2K2

n

n∑

i=1

Pθ0,i,Z(i)φ

(
| f |
K

)
,
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where φ(x) ≡ exp(x) − x − 1. There exists a universal constant C > 0 (e.g, C = 100
works) such that, for any n ≥ 1, R > 0,

P

⎛
⎜⎜⎜⎜⎝sup

f∈F
I(R̃n,K( f ) ≤ R)

Mn( f )
n

≥ x

⎞
⎟⎟⎟⎟⎠ ≤ 2 exp

{
− nx2

C2(c1 + 1)R

}

for any x, c0, c1 > 0 satisfying c2
0 ≥ C2(c1 + 1) and

c0√
n

∫ √
R

0

√
H(F , ‖ · ‖∞, ε)dε ≤ x ≤ c1R

K
.

Here H(F , ‖ · ‖∞, ε) = log(1+N(F , ‖ · ‖∞, ε)) is the so called entropy function w.r.t.
supremum norm and N(F , ‖ · ‖∞, ε) is the covering number defined as the number
of balls with radius ε that is needed to cover F .

For specified c0 and c1, satisfying c2
0 ≥ C2(c1 + 1), R, for x larger than

c0E/
√

n and smaller than c1R/K, the above exponential inequality applies, where

E =
∫ √

R

0

√
H(F , ‖ · ‖∞, ε)dε. On this interval of x-values we have x ≤ c1R/K,

which implies c1 ≥ xK/R. Therefore, we can restate the above result as follows: For
a specified R, c0, c1 satisfying c2

0 ≥ C2(c1 + 1), and x ∈ (c0/
√

nE, c1R/K), we have,

P

⎛
⎜⎜⎜⎜⎝sup

f∈F
I(R̃n,K( f ) ≤ R)

Mn( f )
n

≥ x

⎞
⎟⎟⎟⎟⎠ ≤ 2 exp

{
− nx2

C2(Kx + R)

}
.

In words, one can conclude that the above inequality shows that for x of the order
1/

√
n, the tail probability behaves as exp(−nx2), while for large x, it behaves as

exp(−nx).
Specifically, for a single f , we obtain the following corollary.

Corollary A.1. For any c0, c1 ≥ 0 satisfying c2
0 ≥ C2(c1 + 1) and x ∈ (c0/

√
n
√

R,
c1R/K), we have

P

(
I(R̃n,K( f ) ≤ R)

Mn( f )
n

≥ x

)
≤ 2 exp

{
− nx2

C2(Kx + R)

}
. (A.6)

In our proof f plays the role of L(ψ) − L(ψ0). Regarding bounding R̃n,K( f ), note
also that if ‖ f ‖∞< C is uniformly bounded, then R̃n,K( f ) is also bounded by
a constant depending on C. In our proof for quadratic loss functions we need to
bound R̃n,K( f ) in terms of 1

n

∑n
i=1 Pθ0,i,Z(i) f . For that purpose we will use the follow-

ing lemma.

Lemma A.2. Let L0(Ψ̂ )(Ō(i)) = L(Ψ̂ (Pi−1))(Z(i),O(i)) − L(ψ0)(Z(i),O(i)). Suppose
that with probability 1, supψ∈Ψ | L0(ψ)(Z(i),O(i)) |< M1 < ∞, and

sup
ψ∈Ψ

Pθ0,i,Z(i){L0(ψ)}2

Pθ0,i,Z(i)L0(ψ)
≤ M2 < ∞.
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Then,

R̃n,K(L0(Ψ̂ )) =
2K2

n

n∑

i=1

Pθ0,i,Z(i)φ

(
| L0(Ψ̂ (Pi−1)) |

K

)

≤ 2M2(1/2K2 + 1/6M1K exp(M1/K))
1
n

n∑

i=1

Pθ0,i,Z(i)L
0(Ψ̂ (Pi−1)).

Proof. A third order tailor expansion for exp(x) yields φ(x) = x2/2!+exp(ξ(x))x3/3!
for some ξ(x). This can be bounded by x2(1/2 + 1/6 exp(M1/K)M1/K) by using
that | x |< M1/K. As a consequence, we can bound Pθ0,i,Z(i)φ(| L0(ψ) | /K) by
(1/2 + 1/6M1/K exp(M1/K))Pθ0,i,Z(i){L0(ψ)}2, which, by assumption, can thus be
bounded by M2(1/2+1/6M1/K exp(M1/K))Pθ0,i,Z(i)L0(ψ). This proves the lemma.�

A.3.3 Proof of Theorem 18.1

For notational convenience, we let n = (n − nl + 1) and let the sum over t0 run from
1 to n. We have

0 ≤ d0n(Ψ̂kn , ψ0)

=
1
n

∑

t0

Pθ0,t0,Z(t0){L(Ψ̂kn (Pt0−1)) − L(ψ0)}

−(1 + δ)
1
n

∑

t0

{L(Ψ̂kn (Pt0−1)) − L(ψ0)}(O(t0),Z(t0))

+(1 + δ)
1
n

∑

t0

{L(Ψ̂kn (Pt0−1)) − L(ψ0)}(O(t0),Z(t0))

≤ 1
n

∑

t0

Pθ0,t0,Z(t0){L(Ψ̂kn (Pt0−1)) − L(ψ0)}

−(1 + δ)
1
n

∑

t0

{L(Ψ̂kn (Pt0−1)) − L(ψ0)}(O(t0),Z(t0))

+(1 + δ)
1
n

∑

t0

{L(Ψ̂k̃n
(Pt0−1)) − L(ψ0)}(O(t0),Z(t0))

=
1
n

∑

t0

Pθ0,t0,Z(t0){L(Ψ̂kn (Pt0−1)) − L(ψ0)}

−(1 + δ)
1
n

∑

t0

{L(Ψ̂kn (Pt0−1)) − L(ψ0)}

+(1 + δ)
1
n

∑

t0

{L(Ψ̂k̃n
(Pt0−1)) − L(ψ0)}
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−(1 + 2δ)
1
n

∑

t0

Pθ0,t0,Z(t0){L(Ψ̂k̃n
(Pt0−1)) − L(ψ0)}

+(1 + 2δ)
1
n

∑

t0

Pθ0,t0,Z(t0){L(Ψ̂k̃n
(Pt0−1)) − L(ψ0)}.

Denote the sum of the first two terms in the last expression by Rn,kn and the sum of
the third and fourth term by Tn,k̃n

; the last term is the benchmark (1+2δ)d0n(Ψ̂k̃n
, ψ0).

Hence, we have

0 ≤ d0n(Ψ̂kn , ψ0) ≤ (1 + 2δ)d0n(Ψ̂k̃n
, ψ0) + Rn,kn + Tn,k̃n

(A.7)

Rewriting Rn,k (and Tn,k) as a Martingale. For notational convenience, we intro-
duce the following notation for the relevant random variables

H̃k ≡
1
n

∑

t0

Pθ0,t0,Z(t0){L(Ψ̂k(Pt0−1)) − L(ψ0)}

H̄k ≡
1
n

∑

t0

{L(Ψ̂k(Pt0−1)) − L(ψ0)}(O(t0),Z(t0)),

where, by definition of ψ0, H̃k ≥ 0 ∀ k. Rewrite Rn,k and Tn,k as

Rn,k = (1 + δ)
[
H̃k − H̄k

]
− δH̃k

and

Tn,k = (1 + δ)
[
H̄k − H̃k

]
− δH̃k.

Approximating Rn,k (and Tn,k) with a Negatively Deterministically Shifted Mar-
tingale Sum, Up to Negligible Remainder. In order to exploit that a negatively
shifted martingale sum has a nice exponential tail behavior, it is important that the
random shift δH̃k ≥ 0 is replaced by a deterministic shift that is guaranteed larger
than a constant we can control. We will now utilize assumption A3 to succeed in

that. For a K, we define R̃n,k ≡ 2K2

n

∑n
t0=1 Pθ0,t0,Z(t0)φ

(
|L0(Ψ̂k(Pt0−1))|

K

)
, where φ(x) ≡

exp(x)−x−1. By Lemma A.2, we have R̃n,k ≤ M2(1/2K2+1/6M1K exp(M1/K))H̃k.
Let’s denote this constant with C1(M1, M2,K) so that R̃n,k ≤ C1(M1, M2,K)H̃k. De-
fine the event Enk = {M−1

3n < H̃k/E0H̃k < M3n}, and let IEnk denote the indicator of
this event. By assumption A3, we have Pn

0(IEn,kn
= 1) → 1, and Pn

0(IEn,k̃n
= 1) → 1,

as n → ∞. This also implies that Pn
0(R̃n,kn/E0H̃kn < C1M3n) → 1. For notational

convenience, let M3n be redefined by max(C1, 1)M3n. We decompose Rn,k as fol-
lows:

Rn,k = (1 + δ)
[
H̃k − H̄k

]
IEn,k + (1 + δ)

[
H̃k − H̄k

]
IEc

n,k

−δH̃kI(H̃k > M−1
3n E0H̃k) − δH̃kI(H̃k < M−1

3n E0H̃k)

= R∗
n,k + en,k,
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where

R∗
n,k ≡ (1 + δ)

[
H̃k − H̄k

]
IEn,k − δH̃kI(H̃k > M−1

3n E0H̃k)

en,k ≡ (1 + δ)
[
H̃k − H̄k

]
Ic

En,k
− δH̃kI(H̃k < M−1

3n E0H̃k).

Thus, Rn,kn = R∗
n,kn
+ en,kn . By assumption A3 we have Pn

0(| en,kn |= 0) → 1, as
n → ∞. Similarly,

Tn,k = T ∗
n,k + fn,k,

where

T ∗
n,k ≡ (1 + δ)

[
H̄k − H̃k

]
IEn,k − δH̃kI(H̃k > M−1

3n E0H̃k)

fn,k ≡ (1 + δ)
[
H̄k − H̃k

]
IEn,k − δH̃kI(H̃k < M−1

3n E0H̃k).

By the same argument as used for en,kn , we have Pn
0(| fn,k̃n

|= 0) → 1 as n → ∞.
Thus, Tn,k̃n

= T ∗
n,k̃n
+ fn,k̃n

where fn,k̃n
equals zero with probability tending to 1.

What We Have and What We Still Need To Do. Let Zn2 = en,kn + fn,k̃n
and Zn1 =

R∗
n,kn
+ T ∗

n,k̃n
. We have shown that d0n(Ψ̂kn , ψ0) ≤ (1 + 2δ)d0n(Ψ̂k̃n

, ψ0) + Zn1 + Zn2,
where Pn

0(Zn2 = 0) → 1 as n → ∞. In the sequel, we will show that

EZn1 = ER∗
n,kn
+ ET ∗

n,k̃n
≤ C(M1, M2, M3n, δ)(1 + log(K(n)))/n

for some specified C(M1, M2, M3n, δ) < ∞, which then completes the proof.

Bounding the Tail Probability of R∗
n,kn

Step 1: Getting a Deterministic Negative Shift. We also define the event En,k,1 =

{H̃k > M−1
3n E0H̃k}. Let s > 0. We have

Pn
0(R∗

n,kn
> s) = Pn

0

(
IEn,kn

{H̃kn − H̄kn } >
1

1 + δ

{
s + δH̃kn IEn,kn ,1

})

≤ Pn
0

(
IEn,kn

{H̃kn − H̄kn } >
1

1 + δ

{
s + δM−1

3n E0H̃k

∣∣∣
k=kn

IEn,kn ,1

})
,

where we used that event En,kn,1 implies H̃kn ≥ M−1
3n E0H̃k

∣∣∣
k=kn

, allowing us to replace

the random H̃kn by this bound that is only random through kn. Let’s denote the event
in the last displayed probability by An so that the last displayed bound is denoted
with Pn

0(An). We can write

Pn
0(An) = Pn

0(An and IEn,kn ,1
= 1 ) + Pn

0(An and IEn,kn ,1
= 0 ).

Note that if IEn,kn ,1
= 0, then the right-hand side of the equality equals 1

1+δ s >
0, while the left-hand side of inequality in event An equals 0. This shows that
Pn

0(An and IEn,kn ,1
= 0) = 0. This yields the following bound for Pn

0(R∗
n,kn

> s):
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Pn
0(R∗

n,kn
> s)

≤ Pn
0

(
IEn,kn

{H̃kn − H̄kn } > 1
1+δ

{
s + δM−1

3n E0H̃k

∣∣∣
k=kn

}
and En,kn,1 = 1

)

≤ Pn
0

(
IEn,kn

{H̃kn − H̄kn } > 1
1+δ

{
s + δM−1

3n E0H̃k

∣∣∣
k=kn

})

≤ K(n) maxk Pn
0

(
IEn,k {H̃k − H̄k} > 1

1+δ

{
s + δM−1

3n E0H̃k

})
.

In the last inequality we used that for some collection of random variables (X(k) : k)
and constants (c(k) : k) and random index kn, we have

Pn
0(X(kn) < c(kn)) ≤ Pn

0(X(k) < c(k) for at least one k)

≤
K(n)∑

k=1

Pn
0(X(k) < c(k))

≤ K(n) max
k

Pn
0(X(k) < c(k)).

Similarly, for T ∗
n,k̃n

, we obtain

Pn
0(T ∗

n,k̃n
> s)

≤ K(n) max
k

Pn
0

(
IEn,k {H̄k − H̃k} >

1
1 + δ

{
s + δM−1

3n E0H̃k

})
.

Step 2: Applying the Martingale Exponential Tail Probability. We have that H̄k−
H̃k equals a martingale sum 1

n

∑
t0 Zk,t0 − E(Zk,t0 | Ō(t0 − 1)) where

Zk,t0 = {L(Ψ̂k(Pt0−1)) − L(ψ0)}(Ō(t0)).

By assumption A1, the random variables Zk,t0 are bounded: | Zk,t0 |≤ M1 a.s.
We are now ready to apply the Martingale inequality of Theorem A.2, specifically

inequality (A.6), to H̃k − H̄k with R = Rk = M3nE0H̃k, for each k separately. Due
to this choice of R, we obtain a tail probability at s > 0 that behaves for s small
as exp(−cM3nns) instead of the usual exp(−cns2). This on its turn will prove that
the expectation of the remainder terms R∗

n,kn
and T ∗

n,k̃n
converge at a rate log(K(n))/n

instead of the usual log(K(n))/
√

n.
For ease of reference, we state here this martingale exponential inequality at a k

explicitly:

Lemma A.3. Let K be set, and

R̃n,k ≡
2K2

n

n∑

i=1

Pθ0,i,Z(i)φ

(
| L0(Ψ̂k(Pi−1)) |

K

)
,

where φ(x) ≡ exp(x) − x − 1. Let Mn,k =
∑n

i=1{L0(Ψ̂k(Pi−1))(Z(i),O(i)) −
E0(L0(Ψ̂k(Pi−1)) | Z(i))}. For any Rk, c0, c1 ≥ 0 satisfying c2

0 ≥ C2(c1 + 1) and
α ∈ (c0/

√
n
√

Rk, c1Rk/K), we have

P

(
I(R̃n,k ≤ Rk)

Mn,k

n
≥ α

)
≤ 2 exp

{
− nα2

C2(Kα + Rk)

}
.
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In order to apply this inequality to the above tail probability for I(R̃n,k < Rk)(H̄k−
H̃k) with Rk = M3nE0H̃k at a given α(s) = 1

1+δ (s + δM−1
3n E0H̃k), we need to be able

to select c0, c1 with c2
0 ≥ C2(c1 + 1) so that

c0
√

Rk√
n

≤ 1
1 + δ

[
s + δM−1

3n E0H̃k

]
≤ c1

Rk

K
. (A.8)

Note M−1
3n E0H̃k = M−2

3n Rk, so that we need to apply the inequality at

α(s) = 1/(1 + δ)(s + δM−2
3n Rk).

So we now need to select c0, c1 so that this α(s) ∈ (c0R0.5
k /n0.5, c1Rk/K). We se-

lect c2
0 = c2

0(c1) = C2(c1 + 1). Since the martingale process H̄k − H̃k is bounded
by 2M1, the upper bound is nonexistent if c1Rk/K > 2M1. This implies the choice
c1 = c1(M1) = 2M1K/Rk, thereby guaranteeing that there is no upper bound on
α(s) for all s. Let c0(M1) = c0(c1(M1)) be the corresponding choice for c0. Thus,
for any α ∈ (c0(M1)R0.5

k n−0.5,∞), we have Pn
0(I(R̃nk < Rk)(H̄k − H̃k) > α) ≤

2 exp(−nα2/{C2(Kα + Rk)}).
The left-inequality α(s) > c0(M1)R0.5

k n−0.5 is equivalent with

s > −δM−2
3n Rk +C2(c1(M1) + 1)n−0.5R0.5

k (1 + δ). (A.9)

The first term on the right-hand side is negative and converges to zero at rate M−2
3n Rk,

while the second term is positive and converges to zero at rate R0.5
k n−0.5. By assump-

tion A4, we have

max
k

R0.5
k n−0.5

M−2
3n Rk

→ 0.

This implies that for n large enough, we have that the right-hand side of (A.9) is
negative, proving that the inequality α(s) > c0(M1)R0.5

k n−0.5 holds for all s > 0.
Thus, there exists an n1 so that for all n > n1, we have for all s > 0,

Pn
0(I(R̃nk < Rk)(H̄k − H̃k) > α(s)) ≤ 2 exp(−nα(s)2/{C2(Kα(s) + Rk)})

= 2 exp
(
−C−2 n

(1+δ)2
(s+δM−2

3n Rk)2

Rk+
K

(1+δ) (s+δM−2
3n Rk)

)
.

Step 3: Understanding the Asymptotic Behavior of Tail Probability. We now
note that

(
s + δM−2

3n Rk

)2

Rk +
K

(1+δ) (s + δM−2
3n Rk)

=

(
s + δM−2

3n Rk

)

Rk

s+δM−2
3n Rk
+ K

(1+δ)

≥

(
s + δM−2

3n Rk

)

M2
3n

δ
+ K

≥ s
M2

3n

δ
+ K
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= M−2
3n

s

δ−1 + M−2
3n K

≥ M−2
3n

s
δ−1 + K

where we use that M3n > 1 for all n so that KM−2
3n ≤ K. This shows that, for s > 0,

Pn
0(R∗

n,kn
> s) ≤ 2K(n) exp

⎛
⎜⎜⎜⎜⎝−

nM−2
3n

c(M1, M2, δ)
s

⎞
⎟⎟⎟⎟⎠ ,

where c(M1, M2, δ) = 2C2(1 + δ)2
(
K + δ−1

)
.

Bounding the Expectation of R∗
n,kn

Based on Our Tail Probability Bounds. Since

ER∗
n,kn

≤
∫ ∞

0
Pn

0(R∗
n,kn

> s)ds, for each u > 0, we have

ER∗
n,kn

≤ u +
∫ ∞

u
2K(n) exp

⎛
⎜⎜⎜⎜⎝−

M−2
3n n

c(M1, M2, δ)
s

⎞
⎟⎟⎟⎟⎠ ds.

The minimum is attained at un = c(M1, M2, δ) log(2K(n))/(nM−2
3n ) and is given by

c(M1, M2, δ)(log(2K(n)) + 1)/(nM−2
3n ). Thus,

ER∗
n,kn

≤ c(M1, M2, δ)
1 + log(2K(n))

nM−2
3n

.

Similarly, we obtain his bound for ETn,k̃n
. This proves the theorem under assump-

tion A4.

What Happens If Assumption A4 Does Not Hold. Let’s now consider the case that
assumption A4 fails to hold. Then we have that the leading term E0d0n(Ψ̂k̃n

, ψ0) =
O(n−1M3

3n). Firstly, consider the case that the right-hand side of (A.9) is negative.
In that case, we have our desired inequality for Pn

0(R∗
n,k > s) for all s > 0 provided

above. Consider now the case that the right-hand side of (A.9) is positive. Then, we
know that

R0.5
k < (1 + δ)δ−1C2(c1(M1) + 1)M2

3nn−0.5,

which implies that the right-hand side of (A.9) is bounded by

cM2
3nn−1 ≡ (1 + δ)δ−1C4(c1(M1) + 1)2M2

3nn−1.

Thus, in this case, we have the desired exponential bound for Pn
0(I(R̃nk < Rk)(H̄k −

H̃k) > α(s)) for any s > cM2
3nn−1 for this specified constant c > 0.
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We now proceed as follows: for any u > cM2
3nn−1, we have

E0R∗
n,kn
=

∫ u

0
Pn

0(R∗
n,kn

> s)ds +
∫ ∞

u
Pn

0(R∗
n,kn

> s)ds

≤ u + K(n) max
k

∫ ∞

u
Pn

0(R∗
n,k > s)ds

≤ u + 2K(n)
∫ ∞

u
exp

⎛
⎜⎜⎜⎜⎝−

nM−2
3n

c(M1, M2, δ)
s

⎞
⎟⎟⎟⎟⎠ ds

= u + 2K(n)
c(M1, M2, δ)

nM−2
3n

exp

⎛
⎜⎜⎜⎜⎝−

nM−2
3n

c(M1, M2, δ)
u

⎞
⎟⎟⎟⎟⎠ .

The optimal u is given by

u∗ = max(cM2
3nn−1, c(M1, M2, δ)M2

3nn−1 log(2K(n))).

Suppose that c > c(M1, M2, δ){log 2 + log K(n)}, so that u∗ = cM2
3nn−1. Note also

that this implies that K(n) < exp(cc(M1, M2, δ)−1). Plugging this u∗ in the final
expression yields a first term equal to u∗ plus a term

2K(n)c(M1, M2, δ)−1n−1M2
3n exp(−c/c(M1, M2, δ)).

Using the bound on K(n) shows that the final expression is O(M2
3nn−1). Suppose

now that c < c(M1, M2, δ){log 2+log K(n)}, so that u∗ = c(M1, M2, δ)M2
3nn−1(log 2+

log K(n)). Plugging this u∗ in the final expression now shows that the final expres-
sion is O(M2

3nn−1(1 + log K(n)). Thus, we have shown that in either case, we have
that E0R∗

n,kn
< C1M2

3nn−1(1+ log K(n)) for some universal C1 = C1(M1, M2, δ) < ∞.
The same bounding applies to E0T ∗

n,k̃n
. Thus we have shown that if assumption A4

does not hold, then we have

d0n(Ψ̂kn , ψ0) = oP(n−1M3
3n) + oP(n−1M2

3n(1 + log K(n))).

This completes the proof of Theorem 18.1.

A.3.4 Brief Review of Literature on Online Estimation

Consider a parametric model and an i.i.d. regression setting, where we assume that
the conditional mean of Y , given W is described by a linear model ψβ(W) = β′W.
This setting has been studied extensively in the online literature: Zinkevich (2003);
Crammer et al. (2006); Bottou (2010); Shalev-Shwartz (2011). Let ψ0(W) = E0(Y |
W) = β�0 W be the parameter of interest. Let L(ψβ)(Y,W) be the squared error loss
function, and let β̂n be the least squares estimator defined by the minimizer of the
empirical mean of the loss function:
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β̂n = arg minβ
1
n

n∑

i=1

L(ψβ)(O(i)) .

More generally, we can have that {pβ : β} is a parametric model, L(ψβ) = − log pβ is
the log-likelihood loss and β̂n is the maximum likelihood estimator of β0.

Stochastic gradient descent is an online algorithm aiming to approximate the
MLE β̂n. Consider the updating step

βt+1 = βt − γtΓt
d

dβt
L(ψβ,t)(O(t)) (A.10)

where γt is a scalar step size or learning rate, Γt is a d × d matrix, and O(t) is the
observation used at the t-th step (Bottou 2010). This defines an approximation β̃n

of β̂n. In first-order SGD Γt is some constant times the identity matrix, while other
variants replace Γt with an appropriate diagonal matrix (e.g., diagonal elements of
the estimated inverse Hessian) (Duchi et al. 2011; Zeiler 2012). Second-order SGD
accounts for the curvature of the loss function by using a Γt that approximates the
inverse Hessian (Murata 1998). However, computing and storing an estimate of this
matrix is often computationally expensive for high-dimensional d and, though it is
optimal, second-order SGD is rarely used in practice. There are many other methods
for online optimization that have been used in a variety of contexts (Polyak and
Juditsky 1992; Xu 2011), including settings with regularized loss functions, such as
the lasso regression and support vector machines (Fu 1998; Langford et al. 2009;
Kivinen et al. 2004; Balakrishnan and Madigan 2008; Shalev-Shwartz et al. 2011).

We have

d0n(ψβ̃n
, ψ0) = d0n(ψβ,0, ψ0) + d0n(ψβ̂,n, ψβ,0) + d0n(ψβ̃n

, ψβ̂n
) ,

where the first two terms are the approximation and estimation error, while the third
term is the optimization error incurred by using β̃n rather than the true minimizer β̂n.
Existing results in the online learning literature suggest that in big data settings, the
estimation and optimization error will be small (Shalev-Shwartz 2011). Thus, the
performance of an online estimator will be determined largely by the approximation
error. To minimize the approximation error, we utilize the online-super learning
framework.

A.4 Online Targeted Learning

In this section, we will derive a first order expansion of the type

ΨJ(PN∗) − ΨJ(PN
0 ) = − 1

N

N∑

i=1

P0,o(i)D̄(PN∗) + R2,N(θ∗N , θ0), (A.11)
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where P0,o(i) denotes the conditional expectation w.r.t. O(i), given Ō(i − 1), and
R2,N(θ∗N , θ0) is a second-order remainder. This result is presented in Theorem A.4.
In order to establish this first order expansion, we first establish the identity

ΨJ(PN∗) − ΨJ(PN
0 ) = − 1

N

N∑

i=1

PN
0 D̄(PN∗) + R21(θ∗N , θ0),

for an explicitly defined second-order remainder R21(θ∗N , θ0). This is presented in
Theorem A.3. Note that this involves an marginal expectation of the efficient influ-
ence curve, instead of the desired conditional expectation. Subsequently, in the sec-
ond subsection we study the additional remainder R22,N(θ∗N , θ0) = 1

N

∑N
i=1(P0,o(i) −

PN
0 ){D̄(θ∗N)− D̄(θ0)}: R2,N() = R21()+R22,N(). Subsequently, we show that under con-

ditions on the dependence structure of the time series this term R22,N also represents
a second-order remainder.

The identity (A.11) provides the basis for the analysis of the TMLE. Specifically,
this identity (A.11) combined with the TMLE θ∗N solving 0 = 1

N

∑N
i=1 D̄(θ∗N) = 0

results in the first order expansion:

ΨJ(PN∗) − ΨJ(PN
0 ) =

1
N

N∑

i=1

{D̄(PN∗) − P0,o(i)D̄(PN∗)} + R2,N(θ∗N , θ0).

The leading term on the right hand side is a martingale process in θ∗N , allowing to
establish that it converges to a normal limit distribution under weak conditions.

Subsequently, we establish an analogue first order expansion for online estima-
tion of the type:

− 1
N

N∑

i=1

P0,o(i)D̄g∗ (θi−1) =
1
N

N∑

i=1

Ψg∗ (θi−1) − Ψg∗ (θ0) + R̄21,g∗,N + R̄22,g∗,N .

Again, we derive this result in a two stage fashion, first establishing one in terms of
the marginal expectation PN

0 D̄g∗ (θi−1) only involving the remainder R̄21,g∗,N . Subse-
quently, we study the remainder R̄22,g∗,N and note that controlling it will require an
additional stationarity assumption.

A.4.1 First Order Expansion of Target Parameter Based on
Marginal Expectation of Efficient Influence Curve

Note that

Pg∗,o(t) f = Pw(t)Pg∗,a(t)Py(t) f .

For notational convenience, we will also denote Pg∗ with P∗. We have

Ψg∗ (P) =

⎛
⎜⎜⎜⎜⎜⎝

τ∏

t=1

Pg∗,o(t)

⎞
⎟⎟⎟⎟⎟⎠ Y(τ).
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Theorem A.3. Let

Δw(P∗
o(s), P

∗
0,o(s)) = (Pw(s) − P0,w(s))P

∗
0,a(s)P0,y(s),

Δa(P∗
o(s), P

∗
0,o(s)) = Pw(s)(P

∗
a(s) − P∗

0,a(s))P0,y(s),

Δy(P∗
o(s), P

∗
0,o(s)) = Pw(s)Pa(s)(Py(s) − P0,y(s)),

Φx(s)(x, cx) = E(Yg∗ (τ) | X(s) = x,Cx(s) = cx).

We have

−PN
0 DN

g∗ (P) = Ψg∗ (P) − Ψg∗ (P0) + R21,g∗ (P, P0),

where R21,g∗ (P, P0) = R21a,g∗ (P, P0) + R21b,g∗ (P, P0), and

R21a,g∗ (θ, θ0) =
∑

x∈{w,a,y}

τ∑

s=1

⎧⎪⎪⎨
⎪⎪⎩

s−1∏

t=1

P∗
o(t)

⎫⎪⎪⎬
⎪⎪⎭Δx(P

∗
o(s), P

∗
0,o(s)) × (A.12)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ∑

j=s+1

j−1∏

l=s+1

P∗
o(l)(P

∗
o( j) − P∗

0,o( j))
τ∏

l= j+1

P∗
0,o(l)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Y(τ),

R21b,g∗ (P, P0) =
∑

x∈{w,a,y}

τ∑

s=1

R21b,x(s),g∗ (P, P0),

R21b,x(s),g∗ (P, P0) =
∫

c

∫

x

(
h̄cx ,0

h̄cx

(c) − 1

)
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c).

As a consequence, recalling that ΨJ(P) = 1
J

∑J
j=1 Ψg∗j

(P) and DN(P) = 1
J

∑J
j=1 DN

g∗j
(P), we have

−PN
0 DN(P) = ΨJ(P) − ΨJ(P0) + R21(θ, θ0),

where R21(θ, θ0) = 1
J

∑J
j=1 R21,g∗j (θ, θ0).

Proof. Define

Ψg∗,P,P0,w(s)(P
∗
1,w(s)) ≡

⎧⎪⎪⎨
⎪⎪⎩

s−1∏

t=1

P∗
o(t)

⎫⎪⎪⎬
⎪⎪⎭ P1,w(s)P

∗
0,a(s)P0,y(s)

⎧⎪⎪⎨
⎪⎪⎩

τ∏

t=s+1

P∗
0,o(t)

⎫⎪⎪⎬
⎪⎪⎭ Y(τ),

Ψg∗,P,P0,a(s)(P
∗
1,a(s)) ≡

⎧⎪⎪⎨
⎪⎪⎩

s−1∏

t=1

P∗
o(t)

⎫⎪⎪⎬
⎪⎪⎭ Pw(s)P

∗
1,a(s)P0,y(s)

⎧⎪⎪⎨
⎪⎪⎩

τ∏

t=s+1

P∗
0,o(t)

⎫⎪⎪⎬
⎪⎪⎭ Y(τ),

Ψg∗,P,P0,y(s)(P
∗
1,y(s)) ≡

⎧⎪⎪⎨
⎪⎪⎩

s−1∏

t=1

P∗
o(t)

⎫⎪⎪⎬
⎪⎪⎭ Pw(s)P

∗
a(s)P1,y(s)

⎧⎪⎪⎨
⎪⎪⎩

τ∏

t=s+1

P∗
0,o(t)

⎫⎪⎪⎬
⎪⎪⎭ Y(τ).
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Note that

Ψg∗ (P) − Ψg∗ (P0) =
∑

x∈{w,a,y}

τ∑

s=1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩

s−1∏

t=1

P∗
o(t)

⎫⎪⎪⎬
⎪⎪⎭Δx(P∗

o(s), P
∗
0,o(s))

⎧⎪⎪⎨
⎪⎪⎩

τ∏

t=s+1

P∗
0,o(t)

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎠ Y(τ)

=
∑

x∈{w,a,y}

τ∑

s=1

{
Ψg∗,P,P0,x(s)(P

∗
x(s)) − Ψg∗,P,P0,x(s)(P

∗
0,x(s))

}
.

Define Ψg∗,P,x(s) = Ψg∗,P,P,x(s) and also define the second-order term

−R21a,g∗ (θ, θ0) =
∑

x∈{w,a,y}
∑τ

s=1

({∏s−1
t=1 P∗

o(t)

}
Δx(P∗

o(s), P
∗
0,o(s))

{∏τ
t=s+1 P∗

0,o(t)

})
Y(τ)

−∑
x∈{w,a,y}

∑τ
s=1

({∏s−1
t=1 P∗

o(t)

}
Δx(P∗

o(s), P
∗
0,o(s))

{∏τ
t=s+1 P∗

o(t)

})
Y(τ)

= −∑
x∈{w,a,y}

∑τ
s=1

{∏s−1
t=1 P∗

o(t)

}
Δx(P∗

o(s), P
∗
0,o(s))×{∑τ

j=s+1
∏ j−1

l=s+1 P∗
o(l)(P

∗
o( j) − P∗

0,o( j))
∏τ

l= j+1 P∗
0,o(l)

}
Y(τ).

We have

Ψg∗ (P) − Ψg∗ (P0) =
∑

x∈{w,a,y}

τ∑

s=1

(
Ψg∗,P,x(s)(P

∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s))

)
+ R21a,g∗ (θ, θ0).

We have

DN
g∗(P)(ON) =

∑

x∈{y,a,w}

τ∑

s=1

1
N

N∑

i=1

D̄x(s)(P)(X(i),Cx(i)),

where D̄x(s) is the component of the efficient influence curve that is a score of the
conditional distribution X(s), given Cx(s). Let DN

x(s)(P) = 1
N

∑N
i=1 D̄x(s)(P)(X(i),Cx(i)).

We will show that

− PN
0 DN

x(s)(P) = Ψg∗,P,x(s)(P
∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s)) + R21b,x(s),g∗ (P, P0). (A.13)

This yields the following derivation:

−PN
0 DN

g∗ (P) =
∑

x∈{y,a,w}

τ∑

s=1

−PN
0 DN

x(s)(P)

=
∑

x∈{y,a,w}

τ∑

s=1

{
Ψg∗,P,x(s)(P

∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s)) + R21b,x(s),g∗ (P, P0)

}

=
∑

x∈{y,a,w}

τ∑

s=1

{
Ψg∗,P,x(s)(P

∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s))

}

+
∑

x∈{y,a,w}

τ∑

s=1

R21b,x(s),g∗ (P, P0)
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= Ψg∗ (P) − Ψg∗ (P0) − R21a,g∗ (θ, θ0) +
∑

x∈{y,a,w}

τ∑

s=1

R21b,x(s),g∗ (P, P0)

≡ Ψg∗ (P) − Ψg∗ (P0) − R21a,g∗ (θ, θ0) + R21b,g∗ (P, P0),

which proves the theorem. Thus, it remains to establish (A.13).
We have

−PN
0 DN

x(s)(P) = −PN
0

1
N

∑N
i=1

h∗cx (s)(Cx(i))

h̄cx (Cx(i))
×

{E(Yg∗ (τ) | X(s) = X(i),Cx(s) = Cx(i)) − E(Yg∗ (τ) | CX(s) = Cx(i))}
= PN

0
1
N

∑N
i=1

h∗cx (s)(Cx(i))

h̄cx (Cx(i))

∫
x
Φx(s)(x,Cx(i))d(P∗

x(s) − P∗
0,x(s))(x | Cx(i))

= 1
N

∑N
i=1

∫
c

h∗cx (s)(c)

h̄cx (c)

∫
x
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)hcx(i),0(c)dμ(c)

=
∫

c

∫
x

h̄cx ,0(c)
h̄cx (c)

Φx(s)(x, c)d(P∗
x(s) − P∗

0,x(s))(x | c)h∗cx(s)(c)dμ(c)

=
∫

c

∫
x

(
h̄cx ,0

h̄cx
(c) − 1

)
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c)

+
∫

x,c
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c)

≡ R21b,x(s),g∗ (P, P0) + Ψg∗,P,x(s)(P∗
x(s)) − Ψg∗,P,x(s)(P∗

0,x(s)).

This completes the proof. �

A.4.2 First Order Expansion of Target Parameter Based on
Conditional Expectations of Efficient Influence Curve
Components

We have DN
g∗ (P)(ON) = 1

N

∑N
i=1 D̄g∗ (P)(Ō(i)). The identity above combined with the

TMLE solving the efficient influence curve equation DN
g∗(P

∗
N)(ON) = 0 shows that

Ψg∗ (P
∗
N) − Ψg∗ (P0) =

1
N

N∑

i=1

{D̄g∗ (P
∗
N)(Ō(i)) − PN

0 D̄g∗ )} + R21,g∗ (P
∗
N , P0).

Using martingale theory, we will be able to show that 1√
N

∑N
i=1{D̄g∗(P∗

N)(Ō(i)) −
P0,o(i)D̄g∗(P∗

N)} converges to a normal limit distribution under reasonable assump-
tions. Therefore, we are left with a remainder

R22,g∗,N(P∗
N , P0) =

1
N

N∑

i=1

(P0,o(i) − PN
0 )D̄g∗(P

∗
N),

which we want to show represents a second-order remainder that can be reasonably
assumed to be oP(N−1/2). We have

D̄g∗ (P) =
∑

x∈{y,a,w}

τ∑

s=1

D̄g∗,x(s)(P),
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where D̄g∗,x(s) is the component of the efficient influence curve that is a score of the
conditional distribution X(s), given Cx(s).

Thus, we have

R22,g∗,N(P∗
N , P0) =

∑

x∈{y,a,w}

τ∑

s=1

R22,x(s),g∗,N(P∗
N , P0),

where

R22,x(s),g∗,N(θ, θ0) =
1
N

N∑

i=1

(P0,o(i) − PN
0 )D̄g∗,x(s)(P).

Therefore, it suffices to study this latter x(s)-specific term. Define

fx(s),g∗(θ, θ0)(Cx(i)) ≡
h∗cx(s)(Cx(i))

h̄cx (Cx(i))

∫

x
Φx(s)(x,Cx(i))d(P∗

x(s) − P∗
0,x(s))(x | Cx(i)),

and note that this is a first order difference between P and P0. We note that

EP0 fx(s),g∗ (θ, θ0)(Cx(i)) =
∫

x

∫

c

h̄cx,0(c)

h̄cx (c)
Φx(s)(x, c)d(P∗

x(s)−P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c).

We have

R22,x(s),g∗,N(θ, θ0) =
1
N

N∑

i=1

{
fx(s),g∗(θ, θ0)(Cx(i)) − E0 fx(s),g∗ (θ, θ0)(Cx(i))

}
.

Thus, R22,x(s),g∗,N(θ, θ0) is an average of N mean zero random variables, where each
random variable goes to zero as P → P0. So this is a second-order remainder since
it involves a double difference. In combination of the previous Theorem A.5, this
results in the following theorem.

Theorem A.4. Let Φx(s)(x, cx) = E(Yg∗ (τ) | X(s) = x,Cx(s) = cx). Recall the repre-
sentation DN

g∗ (P) = 1
N

∑N
i=1 D̄g∗ (P)(Ō(i)) of the efficient influence curve.

We have

− 1
N

N∑

i=1

P0,o(i)D̄g∗ (P) = Ψg∗ (P) − Ψg∗ (P0) + R21,g∗ (θ, θ0) + R22,g∗,N(θ, θ0),

where R21,g∗ (θ, θ0) is defined in Theorem A.5, and

R22,g∗,N(θ, θ0) =
∑

x∈{y,a,w}

τ∑

s=1

R22,x(s),g∗,N(θ, θ0),

R22,x(s),g∗,N(θ, θ0) =
1
N

N∑

i=1

(P0,o(i) − PN
0 )D̄g∗,x(s)(P)
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=
1
N

N∑

i=1

f 0
x(s),g∗ (θ, θ0)(Cx(i)),

f 0
x(s),g∗ (θ, θ0)(Cx(i)) = { fx(s),g∗(θ, θ0)(Cx(i)) − PN

0 fx(s),g∗ (θ, θ0)},

fx(s),g∗ (θ, θ0)(Cx(i)) ≡
h∗cx(s)(Cx(i))

h̄cx (Cx(i))

∫

x
Φx(s)(x,Cx(i))d(P∗

x(s) − P∗
0,x(s))(x | Cx(i)).

Thus, R22,x(s),g∗,N(θ, θ0) is an average XN =
1
N

∑N
i=1 fi of N mean zero random vari-

ables fi = f 0
x(s),g∗ (θ, θ0)(Cx(i)) that are functions of Cx(i), where each random vari-

able goes to zero as P → P0.
Finally, recalling that ΨJ(P) = 1

J

∑J
j=1 Ψg∗j

(P) and DN(P) = 1
J

∑J
j=1 DN

g∗j
(P), we

have

− 1
N

N∑

i=1

P0,o(i)D̄(P) = ΨJ(P) − ΨJ(P0) + R21(θ, θ0) + R22,N(θ, θ0),

where R21(θ, θ0) = 1
J

∑J
j=1 R21,g∗j (θ, θ0) and R22,N(θ, θ0) = 1

J

∑J
j=1 R22,g∗j ,N(θ, θ0).

A.4.3 Discussion of R22,g∗,N Remainder: Finite Memory
Assumption

The variance of R22,x(s),g∗,N(θ, θ0) is given by

σ2(N) =
2

N2

∑

i≤ j

EPN
0

{
f 0
x(s),g∗ (θ, θ0)(Cx(i)) f 0

x(s),g∗(θ, θ0)(Cx( j))
}
.

Suppose that at a fixed (nonrandom) sequence P = PN converging to P0 we have
PN

0 f 2
i ≤ r(N)2. Then the variance of XN (i.e., R22,x(s),g∗,N(PN , P0)) can be bounded by

σ2(N) ≤ r2(N)
2

N2

∑

i≤ j

ρN( fi, f j),

where ρN( fi, f j) is the correlation of fi and f j under PN
0 . Thus, to make XN =

oP(N−1/2) we need
2

N2

∑

i≤ j

ρN( fi, f j) = o

(
1

Nr2(N)

)
.

The latter is therefore a necessary assumption in order to have that R21,x(s),g∗,N(P∗
N ,

P0) = oP(N−1/2) at an estimator P∗
N for which PN

0 fx(s),g∗ (P∗
N , P0)2 = OP(r(N)2).

If ρN( fN,i, fN, j) = 0 if | j − i |> K(N) for some universal (in i, j) K(N), then we
obtain
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σ2(N) ∼ ρr2(N)
2

N2

∑

i≤ j, j−i<K(N)

∼ r2(N)
K(N)

N
.

So in this case, XN( fN) = OP(r(N)
√

K(N)/N). This allows any sequence K(N) con-
verging to infinity slowly enough so that K(N)/N = o(N−0.5), i.e., K(N) grows to
infinity at a rate slower than N0.5.

Instead of correlations between fN,i and fN, j being equal to zero for large enough
| j − i |, suppose now that ρN( fi, f j) = O(| j − i |−δ) for some δ > 0. Then we obtain

σ2(N) ∼ r2(N)
2

N2

∑

i≤ j

| j − i |−δ∼ r2(N)N−δ.

Thus, in this case, we have that XN( f ) = OP(r(N)N−δ/2). One would thus want that
δ > 0.5 so that r(N) = o(N−1/4) will suffice.

Let’s now consider a situation in which Cx(i) is a summary measure of Ō(i −
1) that converges to a constant as i → ∞. That would correspond with fN(Cx(i))
converging to a constant 0 (recall it has mean zero) as i → ∞, even when we fix N.
Specifically, let’s assume that PN

0 f 2
i,N = O(r2(N)r2

1(i)) for some rate r1(i) = i−δ for
some δ > 0. Then,

σ2(N) ∼ 2
N2

∑
i≤ j

√
PN

0 f 2
i,N PN

0 f 2
j,N ∼ 1

N2

∑
i≤ j r(N)2r1(i)r1( j)

= O(r2(N)N−2δ).

Thus, we now have that XN( fN) = OP(r(N)N−δ) so that one wants δ > 0.25. If Cx(i)
is some (e.g., maximum likelihood based) estimator of a parameter of the distribu-
tion of Ō(i), one might expect a rate of convergence i−0.5, so that this assumption
would be easily met.

Let’s now consider an example for which the dependence of the time series is too
strong for the condition to hold. For the sake of concreteness, let’s assume Cx(i) =
O(i−1) so that PN

0 fN,i fN, j concerns the correlation between fN(Oi−1) and fN(Oj−1). In
addition, assume that fN(O(i)) =

∑i
l=1 Z(l), where Z(l), l = 1, . . . ,N, are independent

mean zero random variables with variance σ2(l). That is, we assume that the time
series develops by adding independent increments to the previous value. Now, we
have for i < j,

ρ( fN,i, fN, j) =

√√∑i
l=1 σ

2(l)
∑ j

l=1 σ
2(l)

.

Let’s for concreteness, assume that the variance of Z(l) does not shrink to zero as
l → ∞, so that we can bound this correlation with ρ( fN,i, fN, j) = O(

√
i/ j). In that

case, we have

σ2
f (N) ∼ 2

N2

N∑

i≤ j

√
i/ jr2(N) ∼ r2(N)

2
N2

N∑

j=1

j = O(r2(N)).
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So this type of correlation structure is not weak enough to make the variance con-
verge to zero at a faster rate than 1/N. In this example, each observation in the
past contributes proportionally to the realization of O(i), and that is not the kind of
long dependence that is allowed. We believe that the above discussion clarifies that
R22,g∗,N(P∗

N , P0) = oP(N−1/2) does go beyond requiring that P∗
N converges at a fast

enough rate to P0, but it also enforces an intrinsic assumption on the dependence
structure in the time series.

A.4.4 First Order Expansion for Online Estimation Based on
Marginal Expectation of Efficient Influence Curve

We now establish the analogue expansion for online estimation.

Theorem A.5. Recall DN
g∗ (P) = 1

N

∑N
i=1 D̄g∗,i(P), where

D̄g∗,i(P)(ON) =
∑

x∈{y,a,w}

τ∑

s=1

D̄x(s)(P)(X(i),Cx(i)),

D̄x(s) is the component of the efficient influence curve that is a score of the condi-
tional distribution X(s), given Cx(s).

We have

−PN
0 D̄g∗,i(P) = Ψg∗ (P) − Ψg∗ (P0) + R21,g∗,i(P, P0),

where R21,g∗,i(P, P0) = R21a,g∗ (θ, θ0) + R21b,g∗,i(P, P0), and

R21a,g∗ (θ, θ0) =
∑

x∈{w,a,y}

τ∑

s=1

⎧⎪⎪⎨
⎪⎪⎩

s−1∏

t=1

P∗
o(t)

⎫⎪⎪⎬
⎪⎪⎭Δx(P

∗
o(s), P

∗
0,o(s)) ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ∑

j=s+1

j−1∏

l=s+1

P∗
o(l)(P

∗
o( j) − P∗

0,o( j))
τ∏

l= j+1

P∗
0,o(l)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Y(τ),

R21b,g∗ ,i(P, P0) =
∑

x∈{w,a,y}

τ∑

s=1

R21b,x(s),g∗ ,i(P, P0),

R21b,x(s),g∗ ,i(P, P0) =
∫

c

∫

x

(
hcx(i),0

h̄cx

(c) − 1

)
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c).

Specifically, this shows the following identity:

− 1
N

N∑

i=1

PN
0 D̄g∗,i(θi−1) =

1
N

N∑

i=1

Ψg∗ (θi−1) − Ψg∗ (θ0) + R̄21,g∗,N ,

where

R̄21,g∗,N ≡ R̄21a,g∗,N + R̄21b,g∗,N , (A.14)
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and

R̄21a,g∗,N ≡ 1
N

N∑

i=1

R21a,g∗ (θi−1, θ0),

R̄21b,g∗,N ≡ 1
N

N∑

i=1

R21b,g∗,i(θi−1, θ0).

Proof. In the proof of Theorem A.3 we showed:

Ψg∗ (θ) − Ψg∗ (θ0) =
∑

x∈{w,a,y}

τ∑

s=1

(
Ψg∗,P,x(s)(P

∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s))

)
+ R21a,g∗ (θ, θ0).

We will show that

− PN
0 D̄x(s),i(P) = Ψg∗,P,x(s)(P

∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s)) + R21b,x(s),g∗,i(P, P0). (A.15)

This yields the following derivation:

−PN
0 D̄g∗,i(P) =

∑

x∈{y,a,w}

τ∑

s=1

−PN
0 D̄x(s),i(P)

=
∑

x∈{y,a,w}

τ∑

s=1

{
Ψg∗,P,x(s)(P

∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s)) + R21b,x(s),g∗,i(P, P0)

}

=
∑

x∈{y,a,w}

τ∑

s=1

{
Ψg∗,P,x(s)(P

∗
x(s)) − Ψg∗,P,x(s)(P

∗
0,x(s))

}

+
∑

x∈{y,a,w}

τ∑

s=1

R21b,x(s),g∗,i(P, P0)

= Ψg∗ (P) − Ψg∗ (P0) − R21a,g∗ (θ, θ0) +
∑

x∈{y,a,w}

τ∑

s=1

R21b,x(s),g∗,i(P, P0)

≡ Ψg∗ (P) − Ψg∗ (P0) − R21a,g∗ (θ, θ0) + R21b,g∗,i(P, P0),

which proves the theorem. Thus, it remains to establish (A.15).
We have

−PN
0 D̄x(s),i(P) = −PN

0

h∗cx (s)(Cx(i))

h̄cx (Cx(i))
×

{E(Yg∗ (τ) | X(s) = X(i),Cx(s) = Cx(i)) − E(Yg∗ (τ) | Cx(s) = Cx(i))}
= PN

0

h∗cx (s)(Cx(i))

h̄cx (Cx(i))

∫
x
Φx(s)(x,Cx(i))d(P∗

x(s) − P∗
0,x(s))(x | Cx(i))

=
∫

c

h∗cx (s)(c)

h̄cx (c)

∫
x
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)hcx(i),0(c)dμ(c)

=
∫

c

∫
x

hcx (i),0(c)

h̄cx (c)
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c)

=
∫

c

∫
x

(
hcx (i),0

h̄cx
(c) − 1

)
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c)

+
∫

x,c
Φx(s)(x, c)d(P∗

x(s) − P∗
0,x(s))(x | c)h∗cx(s)(c)dμ(c)

≡ R21b,x(s),g∗ ,i(P, P0) + Ψg∗ ,P,x(s)(P∗
x(s)) − Ψg∗ ,P,x(s)(P∗

0,x(s)).

This completes the proof. �
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Discussion of Remainder R̄21b,g∗,N: Another Stationarity Assumption. Despite
their resemblance, the remainder terms R̄21b,g∗,N (arising from the analysis of the on-
line one-step estimator and online TMLE estimators) and R21b,g∗ (coming from the
analysis of the regular TMLE and one-step estimators) are quite different. A closer
look at them reveals that R̄21b,g∗,N essentially writes as an average across 1 ≤ i ≤ N
of i-specific products of the form (1−hi(θ0)/N−1 ∑N

j=1 h j(θi))×( f (θi)− f (θ0)) whereas

R21b,g∗ averages over i (1 − N−1 ∑N
j=1 h j(θ0)/N−1 ∑N

j=1 h j(θN)) × ( f (θN) − f (θ0)). In
this coarse but enlightening description, f and hi map continuous θ to functions, and
θN converges to θ0. It appears that R̄21b,g∗,N only benefits from the convergence to
zero of ( f (θN) − f (θ0)) whereas R21b,g∗ benefits, through a product, from the con-
vergence to zero of both ( f (θN)− f (θ0)) and (1− N−1 ∑N

j=1 h j(θ0)/N−1 ∑N
j=1 h j(θN)).

This suggests that the behavior of R̄21b,g∗,N might be significantly worse than that
of R21b,g∗ .

A more in depth study of R̄21b,g∗,N will be necessary. Here we observe that, under
a strong form of stationarity of the time-series, we can replace the i-specific term in
the expression of R̄21b,g∗,N by (1−N−1 ∑N

j=1 h j(θ0)/N−1 ∑N
j=1 h j(θi))× ( f (θi)− f (θ0)),

showing that R̄21b,g∗,N now can also benefit from the convergence to zero of both
factors as i and N go to infinity. Concretely, our assumption that the mechanism for
generating O(t), given Ō(t − 1), is constant in time t may be insufficient, but can
be complemented by the additional assumption that the marginal density of Cx(i) is
constant in i for x = w, a, y.

A.4.5 First Order Expansion for Online Estimation Based on
Conditional Expectation of Efficient Influence Curve

The following theorem is an easy consequence of Theorem A.5.

Theorem A.6. We have

− 1
N

N∑

i=1

P0,o(i)D̄g∗ (θi−1) =
1
N

N∑

i=1

Ψg∗ (θi−1) − Ψg∗ (θ0) + R̄21,g∗,N + R̄22,g∗,N ,

where R̄21,g∗,N is defined in (A.14), and

R̄22,g∗,N ≡ 1
N

N∑

i=1

(P0,o(i) − PN
0 )

{
D̄g∗(θi−1) − D̄g∗(θ0)

}
.
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