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Foreword

The authors are to be congratulated for their new book Targeted Learning in Data
Science. The book is a welcome addition to the literature, merging two exciting
fields. It is a sequel text that builds on their earlier highly successful general treat-
ment of machine learning and causal inference in Targeted Learning (van der Laan
and Rose 2011). Given that both targeted learning and data science are rapidly evolv-
ing fields with fuzzy boundaries, to narrow the scope, we write from the perspective
of data scientists in the biomedical sciences and the manner in which targeted learn-
ing can help unify the foundations in this area, particularly, how targeted learning
addresses a key divide in causal foundations by connecting mechanistic modeling
and randomization-based inference.

To elaborate, in mechanistic modeling, practitioners seek to build an accurate
model of the underlying data-generating process. In other words, the entire distribu-
tion of the observed data unit or perhaps only relevant portions of this distribution
are modeled. For example, the conditional distribution of an outcome given treat-
ment type and baseline covariates may be explicitly modeled. This is at the heart
of traditional likelihood-based modeling, including common Bayesian approaches.
In mechanistic modeling, causality is often thought of informally, if at all, with a
primary focus instead on modeling or prediction. Historically, parsimony guides
the analysis, often via linearity assumptions on conditional mean models. More re-
cently, machine learning approaches have allowed the creation of more accurate
but computationally elaborate models. This has motivated some to characterize ap-
proaches to mechanistic modeling as being either model-based or algorithmic—see,
for example, Breiman et al. (2001). Model-based mechanistic modeling consists of
describing the data-generating process using relatively few parameters. Even despite
its inherent risk of model misspecification, this approach may be appealing since
in several cases, parsimonious models, even if wrong, provide useful descriptions
of key features of the data-generating process. Model-based approaches can suffer
when subject-level inference is of interest, since the simplifications made for the
sake of parsimony are generally incompatible with rich data-generating processes
and may not accurately capture population heterogeneity. In contrast, complex
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prediction algorithms often do facilitate accurate subject-level inference for use in
individual decision-making. However, they generally cannot be described parsimo-
niously and do not readily allow for inference on useful population summaries. Nev-
ertheless, irrespective of whether algorithmic prediction or parsimonious statistical
models are used, a model is built for the data-generating mechanism.

In contrast, many statistical approaches to causal inference focus on ancillary
randomization, or ideas based on ancillary randomization, to estimate marginal ef-
fects. The average treatment effect (ATE) is often the target of interest. The ATE is
a desirable estimand, as it summarizes the causal impact of a policy, such as what
the average benefit of treating patients with a particular drug would be. Research
in causal inference has focused on reducing the assumptions that more mechanistic,
model-based approaches would require to estimate the ATE or related causal esti-
mands. In such approaches, formally incorporating the randomization scheme, or
models of treatment assignment, is the price required to avoid the onerous modeling
assumptions to obtain causal estimates out of traditional methods.

It is fair to say that both algorithmic and machine learning approaches to
mechanistic models and robust causal marginal estimates have been revolutions in
statistics, dominating much of the zeitgeist of late. These two approaches both have
desirable aspects, yet little in common. A core appeal of targeted learning is the
formal unification of these approaches. Targeted learning of an ATE requires es-
timation of both the conditional mean outcome (i.e., outcome regression) and the
treatment assignment distribution (i.e., propensity score), but also yields robust es-
timation of marginal causal effects through the use of targeted minimum loss-based
estimation (TMLE). By performing this unification, targeted learning builds up a
theory of causal inference based on underlying mechanistic models (as discussed,
for example, in the foreword to van der Laan and Rose 2011, by Judea Pearl). This
underlying framework will be satisfying to data scientists, who tend to think more
mechanistically than researchers in causal inference, who base their foundations on
notions of experimentation. A key aspect of targeted learning is that while it is based
upon the estimation of underlying mechanistic models, it does not require knowing
or postulating simplistic models or model classes to be effective.

While the framework of targeted learning unifies these two disparate areas, the
specific implementation of the framework recommended in the text offers somewhat
of a free lunch similar to modeling treatment assignment probabilities (propensity
scores). Specifically, the mere act of modeling relationships between a treatment
and covariates is informative. This, of course, applies to targeted learning if the
target requires modeling treatment assignment. Similarly, the exercise of building
up several conditional outcome models in the pursuit of targeted learning will of-
ten be extremely illuminating about the data and setting. In other words, targeted
learning does not eliminate the nontargeted, informal learning that is so valuable in
model-based statistics. The authors explicitly encourage a very broad approach to
the conditional modeling and suggest model stacking/super learning as a method for
blending estimates. This approach, within the context of targeted learning, shatters
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the divide between model-based and algorithmic approaches to mechanistic mod-
eling, rendering the distinction between the two practically moot. It also eliminates
concern over inference after model selection, a key issue in more mechanistic ap-
proaches. All relevant models and algorithms can contribute to the stacked predic-
tion model in an objective, data-driven but a priori specified manner. This fact, in
conjunction with use of the targeting step of the TMLE procedure, essentially elim-
inates concerns over biased error rates due to model selection.

Another benefit is obtained by forcing researchers to actually specify the
marginal estimand of interest (the target). This has the mathematical benefit that
TMLE can improve estimation by modifying the output of the mechanistic model-
ing step to focus on the target of interest. This is in contrast to regular maximum
likelihood, for example, wherein a global, nontargeted assessment of fit is opti-
mized. Targeted learning has the practical benefits of focusing the discussion and
prompting an a priori specification of hypotheses. As a metaphor, in targeted learn-
ing, one cannot shoot an arrow and paint a bullseye around where it lands, since
the target must be pre-specified. It is worth emphasizing that the effect of interest
need not be formally causal, merely any global summary of the data-generating
mechanism. This is important in the context of neuroimaging and neuroscience
(some of our areas of interest), as scientists are often interested in “treatments,”
such as disease status or brain morphometry, that are not conceptually assignable.

Speaking of our areas of interest, the incorporation of the mechanistic and ma-
chine learning aspects of targeted learning is highly appealing in neuroscience
and neuroimaging data science, as mechanistic and model-based causal approaches
dominate. Many of the most popular techniques are model based: dynamic causal
modeling, Granger causality, and structural equation models (Friston et al. 2013;
Zhang et al. 2015; Chén et al. 2017; Friston et al. 2003; Penny et al. 2004). “Gener-
ative modeling” is a phrase that is used frequently in the neuroimaging literature to
(positively) motivate an approach. One could conjecture that the goals of a mecha-
nistic understanding of the brain and its disorders predispose the field toward more
mechanistic approaches to observational modeling.! However, much less attention
has been paid to causal inference and excessive focus is placed on the single-final-
model based statistics that the authors rightly criticize. It is interesting to note that
our mechanistic understanding of the brain has led to artificial neural networks and
modern artificial intelligence through deep learning. These flexible approaches con-
tain large swaths of traditional statistical modeling as special cases and have come
to dominate data science, especially in tech-related industries. One could envision
applications of targeted learning to existing artificial intelligence systems to perform
on-the-fly causal analyses in lieu of formal time-consuming A/B tests.

! Interestingly, the reverse, utilizing ideas from statistics creates hypothetical models of neural
organization, also appears to be true. Recent attempts at characterizing the brain as intrinsically
Bayesian represent exactly such a case (Knill and Pouget 2004).



X Foreword

To summarize, this book will serve as a bridge for existing data scientists wanting
to engage in causal analyses and targeted estimates of marginal effects. It will also
help the causal statistical community understand key issues and applications in data
science.

Baltimore, MD, USA Brian Caffo
Seattle, WA, USA Marco Carone
December 2017



Preface

This book builds on and is a sequel to our book Targeted Learning: Causal Inference
for Observational and Experimental Studies (2011). Since the publication of this
first book on machine learning for causal inference, various important advances
in targeted learning have been made. We decided that it was important to publish a
second book that incorporated these recent developments. Additionally, we properly
position the role of targeted learning methodology within the burgeoning field of
data science.

This textbook for scholars in statistics, data science, and public health deals with
the practical challenges that come with big, complex, and dynamic data. It presents
a scientific roadmap to translate real-world data science applications into formal
statistical estimation problems by using the general template of targeted maximum
likelihood estimators. These targeted machine learning algorithms estimate quan-
tities of interest while still providing valid inference. Targeted learning methods
within data science are a critical component for solving scientific problems in the
modern age. The techniques can answer complex questions, including optimal rules
for assigning treatment based on longitudinal data with time-dependent confound-
ing, as well as other estimands in dependent data structures, such as networks. Tar-
geted Learning in Data Science contains demonstrations with software packages
and real data sets that present a case that targeted learning is crucial for the next
generation of statisticians and data scientists.

xi
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Key features of Targeted Learning in Data Science:

1. Represents essential data analysis tools for answering complex big data
questions based on real world data

2. Machine learning estimators that provide inference with data science

3. Introductory chapters present an accessible explanation of causal infer-
ence and targeted learning for complex longitudinal data

4. Filled with real world applications and demonstrations of (a) the trans-
lation of the real world application into a statistical estimation problem,
and (b) the targeted statistical learning methodology to answer scientific
questions of interest based on real data

5. Demonstrates targeted learning from experiments in which the data on the
different experimental units are dependent, such as those described by a
network

6. Deals with the practical challenges that come with big, complex, and dy-
namic data while maintaining strong theoretical foundation

Outline

Similar to our last book, Targeted Learning in Data Science is special as it contains
contributions from invited authors, yet is not a traditional edited text. As the authors,
we have again spent substantial time reworking each chapter to have consistent no-
tation, style, and a familiar road map. This led to a second cohesive book on targeted
learning that reads as one text.

Part I—Targeted Learning in Data Science: Introduction

In Chap. 1, we provide the motivation for targeted learning and a general overview
of its roadmap involving (1) data as a random variable; (2) a statistical model repre-
senting the true knowledge about the data experiment; (3) translation of the scientific
question into a statistical target parameter and (4) targeted minimum loss-based esti-
mation (TMLE) accompanied with inference. In Chap. 1 we also define our running
longitudinal example inspired by a “when to treat” application in HIV research.

In Chap.2, we review causal models for longitudinal data and their utility in
defining a formal causal quantity/query representing the answer to the scientific
question of interest. We focus on causal quantities defined in terms of counter-
factual means of an outcome under a certain intervention rule. We present the g-
computation estimand that identifies the causal quantity as a function of the data
distribution, under the sequential randomization and positivity assumption. At this
point, we have defined the statistical model and estimand and thereby the statisti-
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cal estimation problem: under the causal model and identifiability assumptions, the
estimand equals the desired causal quantity, but either way it has a valid statistical
interpretation of interest.

The last two chapters in Part I focus explicitly on estimation. Chapter 3 presents
the sequential super learning approach to estimate the prediction of a counterfac-
tual outcome as a function of baseline covariates, an object of independent interest.
Since the expectation of this prediction function equals the (marginal) mean of the
counterfactual outcome, this sequential learning also provides the initial estimator
in the definition of the TMLE presented in Chap. 4. Chapter 4 presents the TMLE
of the counterfactual mean outcome in our running example. It demonstrates the
general roadmap for computing a TMLE in terms of the efficient influence curve, a
local least favorable submodel that uses the initial estimator as an off-set and loss
function whose score spans the efficient influence curve, and an iterative algorithm
iteratively updating the current estimator with the maximum likelihood estimator
of least the favorable submodel that uses as off-set the current estimator. Chapter 4
also demonstrates the general analysis of TMLE and formal inference in terms of
its influence curve.

Part II—Additional Core Topics

Part II concerns theoretical and methodological developments for the general
TMLE. There are many estimation problem for which the TMLE involves itera-
tively updating the initial estimator by iteratively maximizing the log-likelihood (or,
more generally, minimizing an empirical mean of a loss function) along the local
least favorable submodel through the current update. The iterative nature of such
a TMLE can result in unstable finite sample TMLE, especially in the case that the
data provides sparse information for the target parameter. In Chap. 5, we develop a
general one-step TMLE based on a so called universal (canonical) least favorable
submodel that is uniquely characterized by the canonical gradient/efficient influence
curve. We also develop this one-step TMLE for a multivariate target parameter, and
even for an infinite dimensional target parameter. The philosophy of this TMLE
strongly suggest that this one-step TMLE is more robust and stable than an iterative
TMLE. An example in survival analysis is worked out and simulations are used to
demonstrate the theory.

Chapter 6 presents a new general estimator of a parameter defined as the mini-
mizer of an expectation of a loss-function such as a conditional mean or conditional
density. We refer to this estimator as the highly adaptive lasso (HAL) estimator since
it can be implemented by minimizing the empirical risk over very high dimensional
linear combination of indicator basis functions under the constraint that the sum of
the absolute value of the coefficients is bounded by some constant, which itself is se-
lected with cross-validation. We show that this estimator is guaranteed to converge
to its true counterpart at a faster rate than n~'/4 in sample size n, even for complete
nonparametric models and high-dimensional data structures.
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In Chap. 7, we show that a TMLE that uses the HAL estimator as initial estima-
tor, or uses a super learner whose library contains this HAL estimator, is asymptoti-
cally efficient under very weak regularity conditions, as long as the strong positivity
assumption holds. The formulation of a TMLE relies on the computation of the effi-
cient influence curve. There are many estimation problems in which this object only
exists in an implicit form and is extremely hard to compute according to this im-
plicit form. In Chap. 8 we present a machine-learning based estimator of an efficient
influence curve which avoid the need for the analytic computation of the efficient
influence curve, and by using the HAL estimator we are guaranteed to estimate it
accurately. In particular, we show that this allows us to construct TMLE that could
not be formulated previously due to the immense complexity of its efficient influ-
ence curve. This is demonstrated with various censored data examples (e.g., interval
censored data and bivariate right-censored data).

In Chap.9 we present a general class of data-adaptive target parameters, which
allows a statistician to mine the data to determine the target parameter of inter-
est while obtaining valid confidence intervals. Specifically, we present a cross-
validated TMLE (CV-TMLE) of this data-adaptive target parameter, develop the
formal asymptotics theorem, and demonstrate this CV-TMLE in a variable impor-
tance analysis for continuous variables. Following this, in Chap. 10, we propose a
general class of collaborative TMLE (C-TMLE) for targeted selection of the nui-
sance parameter estimator among a continuum of candidate estimators. We show
that it is theoretically superior to a TMLE that estimates the nuisance parameter
with an estimator (e.g., super learner) that is optimized for estimation of the nui-
sance parameter itself. C-TMLEs are of enormous practical importance due to their
ability to protect the TMLE against using fits of the nuisance parameter that are
harmful for the performance of the TMLE (e.g., a fit of a propensity score that in-
cludes instrumental variables unknown to the user).

Part III—Randomized Trials

Part III is concerned with TMLE for randomized controlled trials (RCTs), including
cluster randomized controlled trials (CRTs). Chapter 11 develops a TMLE of the
locus-specific causal effect of vaccination on time to HIV infection due to a virus
that matches or mismatches the vaccination at this locus. Results of such an analysis
allows one to evaluate the effectiveness of the vaccination at various loci and thereby
directs future improvements of the vaccination. The TMLE utilizes baseline covari-
ates and time-dependent covariates to gain efficiency and to allow for informative
censoring. The method is demonstrated on an HIV vaccination RCT.

Chapter 12 considers the TMLE of the sample average treatment effect, which
is defined as the sample average of the individual causal effects over the individ-
uals in the actual sample. Robust statistical inference is studied in detail and the
methods are evaluated with simulations. It is demonstrated theoretically and practi-
cally that the sample average treatment effect can be estimated at greater precision
than the population average treatment effect. It is also argued that the sample aver-
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age treatment effect has the advantage that it does not require viewing the sample
as a random sample from some target population. The importance of the latter is
demonstrated with CRTs involving comparing treated and nontreated communities
that represented a certain geographic region in East Africa that cannot be viewed as
a random sample.

Chapter 13 presents a novel data-adaptive TMLE for a CRTs in the common sit-
uation that the number of communities is small (e.g., 30). Remarkably, this TMLE
still uses super learning to estimate the outcome regression with a library of sim-
ple candidate targeted regressions adjusting for one or two potentially important
covariates. The cross-validation criterion that is used to select the best estimator
among the candidate regression estimators is aimed at minimizing the variance of
the TMLE. The superior practical performance of this data-adaptive TMLE relative
to a simple marginal estimator is demonstrated with a simulation study. This chap-
ter is important in that it demonstrates the key concepts of TMLE also apply to very
small sample sizes.

Part IV—Observational Data

Part IV concerns the analysis of observational studies with TMLE. Chapter 14 de-
velops TMLE of the causal effect of stochastic interventions for a single time-point
data structure (W, A, Y). It focuses on stochastic interventions that depend on the un-
known treatment mechanism. Chapters 15 and 16 represent powerful applications of
the longitudinal TMLE to complex observational longitudinal studies. Chapter 15
evaluates the causal effect of different breast feeding regimens on child development
in the PROBIT study, also dealing with cluster sampling. Chapter 16 evaluates dif-
ferent intensification rules for controlling glucose level on long-term time-to-event
outcomes in diabetes patients, based on a large Kaiser Permanente database. Chap-
ter 17 concerns causal mediation analysis in longitudinal studies. Specifically, it de-
velops a novel TMLE for estimation of the causal natural direct or indirect effect of
a point treatment on a survival outcome controlling for a time-dependent mediator,
while allowing for right-censoring affected by time-dependent covariates.

Part V—Online Learning

Part V concerns the development of scalable online super learning and scalable on-
line TMLE for online time-series dependent data. As a special case, it includes
ii.d. data that is ordered artificially, in which case one can run the online esti-
mators over various orderings of the data set. Chapter 18 presents an online su-
per learner for time-series dependent data and develops its optimality by estab-
lishing an oracle inequality for the online cross-validation selector. The statistical
model assumes Markov dependence and stationarity, but leaves the stationary data-
generating mechanism unspecified. Chapter 19 develops online TMLE for time-
series dependent data of the causal impact of stochastic or deterministic interven-
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tions on certain treatment nodes in the time-series on a future outcome. These online
estimators can be applied to a single time series, in which case the asymptotics are
based on the number of time points. The models and methods developed in this part
will generate much future research due to the importance of online data, scalabil-
ity, and time series dependence. In particular, in the era of precision medicine, the
option to learn from experiments and data collected on a single subject is of great
importance.

Part VI—Networks

Part VI concerns TMLE of the causal effect of stochastic or deterministic interven-
tions on an average outcome for a finite (large) population of interconnected units
in which the network structure is observed over time: i.e., for each unit, we know at
each time point the set of friends it potentially depends upon. Chapter 20 introduces
a causal and statistical model for longitudinal network data and develops a TMLE
of the desired causal effect when one observes on each unit baseline covariates W, a
treatment A, and an outcome Y, at various time points ¢. Chapter 21 focuses on the
special case that one only observes the outcome at one point in time #, presumable
shortly after A. In this special case it is shown that the TMLE exists in closed form
and it is supported by an R package. Many interesting issues are discussed in detail,
and simulations are presented evaluating the practical performance of the TMLE.
Chapter 21 extends much of the causal inference literature for the point treatment
data structure (W, A, Y) for i.i.d. data by allowing that (1) the outcome Y of a unit
is affected by the treatment A and baseline covariates W of its friends, and (2) that
the treatment of the unit is affected by the baseline covariates of its friends. Formal
asymptotic theory establishing the asymptotic normality of the TMLE is reviewed
as well. We note that both Parts V and VI develop TMLE and its theory for sample
size one problems where one only observes a single realization of a complex experi-
ment involving possibly a single unit over many time points or many interdependent
units at a finite set of time points.

Part VII—Optimal Dynamic Rules

The three chapters in Part VII concern estimation of the dynamic treatment alloca-
tion rule that optimizes the mean outcome. The chapter focus on the case that one
observes on each subject baseline covariates W, binary treatment A, and outcome
Y, but generalizations have been worked out in accompanying articles. Chapter 22
develops a super learner of the optimal rule, a TMLE of the counterfactual mean
under the optimal rule, and a TMLE of the data-adaptive target parameter defined as
the counterfactual mean under the estimate of the optimal rule. Chapter 23 extends
this work to the optimal rule under resource constraints.

Chapter 24 proposes a group sequential adaptive randomized design in which the
randomization probabilities for the next group of subjects are based on an estimate
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of the optimal treatment rule based on the data collected on the previously recruited
subjects. In this manner, one simultaneously learns the optimal rule and allocates
treatment according to the best estimate of the optimal rule. In this type of group se-
quential targeted adaptive design, a novel TMLE is developed for the counterfactual
mean under the optimal rule. It is shown that this TMLE is asymptotically consistent
and normally distributed, under the single assumption that one succeeds in learning
the optimal rule. If the latter does not hold, one still obtains valid inference for the
data-adaptive target parameter defined as the counterfactual mean under the estimate
of the optimal rule: that is, just as one always obtains valid inference for the average
treatment effect in an RCT, we preserve this guarantee for the much more complex
causal question: “What is the counterfactual mean outcome under this estimate of
an optimal rule we learned based on the data?” The problem tackled in Chap. 24 is
a low dimensional version of the long standing multiple bandit problem.

Part VIII—Special Topics

Part VIII dives into some important special topics in the field of targeted learning.
Targeted learning has largely focused on pathway differentiable target parameters.
Chapter 25 studies the estimation of a nonpathwise differentiable target parame-
ter such as a density at a point. It approximates the target parameter with a family
of pathwise differentiable parameters indexed by a bandwidth. Subsequently, it de-
velops a CV-TMLE and a selector for the bandwidth. In addition, it demonstrates
that the resulting CV-TMLE is asymptotically normally distributed at an unknown
adaptive rate that depends on the underlying smoothness of the data density. It also
develops asymptotically valid confidence intervals. This chapter opens up a general
approach for targeted learning of nonpathwise differentiable target parameters while
still providing formal statistical inference.

Chapter 26 reviews the theory of higher-order influence functions for higher-
order pathwise differentiable target parameters and demonstrates that the TMLE
framework easily allows the construction of higher-order TMLE. The benefit of
higher-order pathwise differentiability is that it allows one to develop estimators
based on higher-order Taylor expansions so that one only needs to assume that a
higher-order remainder is negligible, instead of having to assume that a second-order
remainder is negligible. However, unfortunately, most target parameters for realistic
models are only first order pathwise differentiable. If the target parameter is only
first-order pathwise differentiable, then we show that a second-order TMLE based
on an approximate and tuned second-order influence function can yield significant
finite sample improvements relative to the regular TMLE that only targets the first
order efficient influence function.

Sensitivity analysis has as its goal to set an upper bound for the difference be-
tween the estimate of the estimand and the causal quantity of interest. It naturally
concerns statistical bias due to using a biased estimator of the estimand and iden-
tifiability bias due to violation of causal assumptions that were needed to identify
the causal quantity from the observe data distribution. Many sensitivity analysis are
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made confusing by using biased estimators (e.g., regression in parametric models).
Therefore, one wants to use estimators such as TMLE based on highly adaptive su-
per learners to provide maximal guarantee for honest statistical inference concerning
the estimand. Given that this is achieved, there is still need for sensitivity analysis
with respect to the nontestable assumptions. Once again, many methods proposed
in the literature utilize parametric sensitivity models so that the interpretation of the
sensitivity parameters (whose bounds are presumably provided by external knowl-
edge) completely depend on the correctness of these models. Therefore, in order to
make sensitivity analysis transparent and helpful it is important to use a well-defined
sensitivity parameter. Chapter 27 presents such a nonparametric sensitivity analysis
approach so that the sensitivity parameter is nonparametrically interpretable. A real
case study is used to demonstrate the power and transparency of this approach.

The nonparametric bootstrap generally fails to consistently estimate the sample
distribution of an estimator when the estimator uses machine learning, such as the
typical TMLE for realistic statistical models. Since the bootstrap picks up second-
order variability of the estimator that is not captured by first order asymptotics, it is
important that the bootstrap is also an option for the TMLE. Chapter 28 proposes
a targeted bootstrap method for estimation of the limit distribution of an asymptot-
ically linear estimator. The targeted bootstrap estimates the sampling distribution
of the estimator by resampling from a TMLE estimator P;, of the data distribution
Py that targets the variance of the influence curve of the estimator. This general ap-
proach is demonstrated for the TMLE of a counterfactual mean for the point treat-
ment data structure (W, A, Y). The failure of the nonparametric bootstrap and the
superior performance of this targeted bootstrap is evaluated in a simulation study.

Chapter 29 considers the fast computation of (inefficient) TMLE by replacing the
TMLE based on all the data by a TMLE based on a controlled random sample of
much smaller size from the database. The sampling probabilities are allowed to be a
function of a measurement that is available for all and easy to compute. It works out
the optimal sampling probabilities that maximize efficiency of the TMLE. One can
now consider group sequential designs where one adjusts the sampling probabilities
based on past data so that the design minimizes the variance of the TMLE. This
general approach can be used to scale TMLE to large data sets.

Finally, Chap. 30 presents a historical philosophical view on the books topics.
In his essay “The Predicament of Truth: On Statistics, Causality, Physics and the
Philosophy of Science” the author discusses some main implications of recent de-
velopments in data science, for statistics and epistemology. He shows that these
developments give rise to a specific, uncomfortable vision on science, which seems
hardly adequate for both statistics and the philosophy of science. He then shows
that, given this antistatistical and antiepistemic stance, improving the relation be-
tween statistics and philosophy of science could be considered a matter of well-
understood self-interest, but it appears that such a liaison is highly problematic. It
would seem that nowadays preoccupations with truth advance along at least two
distinct lines with separate roles for epistemology and research methodology, thus
inducing a rigid and regrettable demarcation, which also applies to other epistemo-
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logical key issues, including causality. The role and significance of targeted learning
in this debate is analyzed in detail and a few initial steps toward a philosophy of data
science are made.

Appendix

Lengthy proofs of fundamental results are deferred to our Appendix. Specifically, in
Sect. A.1 we present the general analysis of the CV-TMLE for data-adaptive target
parameters (Chap. 9). Section A.2 establishes three fundamental results for media-
tion analysis (Chap. 17). In Sect. A.3, we provide the proof of the oracle inequal-
ity of the online super learner for time-series dependent data (Chap. 18). Lastly,
in Sect. A.4, we provide first order Taylor expansions of causal target parameters
based on their canonical gradient for time series data, which provide the basis for
the analysis of the TMLE (Chap. 19).
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Abbreviations and Notation

Frequently used abbreviations and notation are listed here.

A
A-IPCW
A-IPW
C

CRT
ii.d.
IPCW
IPW
LTMLE
MLE

RCT
SCM
SE

SL
TMLE

Y1, Y

Treatment or exposure

Augmented inverse probability of censoring-weighted/weighting
Augmented inverse probability weighted/weighting

Censoring

Community randomized trial

Independent and identically distributed

Inverse probability of censoring-weighted/weighting

Inverse probability of weighted/weighting

Longitudinal targeted maximum likelihood estimation/estimator
Maximum likelihood substitution estimator of the g-formula
Not to be confused with nonsubstitution estimators using maximum
likelihood estimation. MLE is also known as g-computation
Mean squared error

Observed ordered data structure

Possible data-generating distribution

Possible density of data-generating distribution Py

True data-generating distribution; O ~ Py

True density of data-generating distribution Py

Empirical probability distribution; places probability 1/n on each
observed O;,i...,n

Randomized controlled trial

Structural causal model

Standard error

Super learner

Targeted maximum likelihood estimation/estimator

Vector of covariates

Outcome

Counterfactual outcomes with binary A

XXXiX



x1 Abbreviations and Notation

Uppercase letters represent random variables and lowercase letters are a specific
value for that variable. If O is discrete, po(0) = Py(O = o) is the probability that O
equals the value o, and if O is continuous, py(0) denotes the Lebesgue density of Py
at 0. For simplicity and the sake of presentation, we will often treat O as discrete
so that we can refer to Po(O = 0) as a probability. For a simple example, suppose
our data structure is O = (W,A,Y) ~ Py and O is discrete. For each possible value
(w,a,y), po(w,a,y) denotes the probability that (W, A, Y) equals (w, a, y).

M Statistical model; the set of possible probability distributions for Py
Py e M Pyis known to be an element of the statistical model M

In this text we often use the term semiparametric to include both nonparametric
and semiparametric. When semiparametric excludes nonparametric, and we make
additional assumptions, this will be explicit. A statistical model can be augmented
with additional nonstatistical (e.g., causal) assumptions providing enriched inter-
pretation, often represented as {Py : 6 € @} for some parameterization 8 — Py.
We refer to this as a model (e.g., the probability distribution of the observed data
O = (W,A,Y = Y,4) could be represented as a missing data structure on counterfac-
tual outcomes Y, Y| with missingness variable A, so that the probability distribution
of O is indexed by the probability distribution of (W, Yy, Y;) and the conditional dis-
tribution of treatment A, given (W, Yy, Y1)).

X=X;:)) Set of endogenous variables, j=1,...,J
U=U X; " J)  Set of exogenous variables

Pyx Probability distribution for (U, X)

PUx Density for (U, X)

Pa(X;) Parents of X; among X

fx A function of Pa(X;) and an endogenous Uy, for X;

f - (fx, =) Collection of fx; functions that define the SCM

ME Collection of possible Py x as described by the SCM; includes non-
testable assumptions based on real knowledge; M augmented with
additional nonstatistical assumptions known to hold

ME* Model under possible additional causal assumptions required for
identifiability of target parameter

P — Y(P) Target parameter as mapping from a P to its value

Y(Py) True target parameter

¥(P,) Estimator as a mapping from empirical distribution P, to its value

Yo = Y (Poy) True target parameter value

Uy Estimate of v

Consider O = (Ly, Ay, ..., Lk, Ak, Lgs1) ~ Po.

Ly Possibly time-varying covariate at ¢ = k; alternate notation L(k)

A Time-varying intervention node at t = k that can include both treat-
ment and censoring

Pa(Ly) =(Ak-1, Li-1)

Pa(Ay) =(Ax-1, Le)
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Po.r,

Pr,
P}’l,Lk
Po.a,

Py,
Pn,Ak

€
€n
{Pc:efc M
H*

H,

DW)(©0)
Dy(0)

1Cy(0)
1C,(0)

We focus on the general data structure O = (Lg, Ao, . -

True conditional probability distribution of Ly, given Pa(Ly), under
Py

Conditional probability distribution of Ly, given Pa(Ly), under P
Estimate of conditional probability distribution Py, of Ly

True conditional probability distribution of A, given Pa(Ay), un-
der P,

Conditional probability distribution of Ay, given Pa(A;), under P
Conditional probability distribution of A, given Pa(Ay), under es-
timator P,, of Py

Fluctuation parameter

Estimate of €

Submodel through P

Clever covariate

Estimate of H"

Estimating function of the data structure O and parameters; short-
hand D(y)

Efficient influence curve; canonical gradient; alternate notation
D*(P)(0), D*(Py) or D*(0)

Influence curve of an estimator at Py, representing a function of O
Estimate of influence curve

., Lg,Ak, Lg+1) ~ Po in many

chapters, introduced on the previous page. In this setting, the following specific
notation definitions apply:

Lo

Gn,Ak

Baseline covariates

= (Lo, ..., Lg+1)

= (Ao, ..., Axk)

Counterfactual outcome for regime d

Optimal regime depending on P

True conditional probability distribution of L
Possible conditional probability distribution of L
Estimate of Qo ,

= (QLpre--2 OLe)

Example of a loss function where it is a function of O and Q; alter-
nate notation L(Q)(O) or L(Q)

Submodel through Q

Conditional mean of the probability distribution of Ly
True conditional probability distribution of Ay
Possible conditional probability distribution of Ay
Estimate of Gy 4,

Initial estimate of Qg

First updated estimate of Q

kth updated estimate of Qy

Targeted estimate of Qg in TMLE procedure
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¥(Qo)

7(Q,)
Pf

Abbreviations and Notation

Alternate notation for true target parameter when it only depends
on P through Qg

Targeted estimator of parameter
Expectation of f(O) under P, e.g., PoL(Q) = f L(Q)(0)dPy(0)
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Targeted Learning in Data Science:
Introduction



Chapter 1
Research Questions in Data Science

Sherri Rose and Mark J. van der Laan

The types of research questions we face in medicine, technology, and business
continue to increase in their complexity with our growing ability to obtain novel
forms of data. Much of the data in both observational and experimental studies is
gathered over lengthy periods of time with multiple measures collected at intermedi-
ate time points. Some of these data are streaming (such as posts on Twitter), images,
DNA sequences, or electronic health records. Statistical learning methods must be
developed and adapted for these new challenges.

In 2010, Google Flu Trends was touted as an shining example of collective
intelligence. Researchers claimed that their ability to predict flu in over two dozen
countries by using millions of user search terms had an accuracy of 97% and identi-
fied a flu spike 2 weeks earlier than the Centers for Disease Control and Prevention.
However, it was soon discovered that their techniques were frequently overpredict-
ing flu, aggregating across multiple illnesses, and had substantial problems related
to overfitting to the data. The initiative is not currently publicly active.

The $1 million Netflix Prize made a similarly large splash in the media and data
science communities by offering a large cash award to the team that improved their
movie recommendation algorithm. The winning team developed an algorithm that
made the Netflix recommendation system 10% better. However, Netflix never im-
plemented the winning team’s algorithm due to the engineering complexity involved
in deploying it. This Prize continues to be lauded as a prime example of the promise
of big data and collaborative teams in data science despite this failure.
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Data science is moving toward analytic systems that can take large data sets and
estimate quantities of interest both quickly and robustly, incorporating advances
from the fields of statistics, machine learning, and computer science. These two
recent examples demonstrate that underpinning a big data system of this nature
must be a methodological grounding in statistical theory combined with computa-
tional implementation that is fast, flexible, and feasible. This text on targeted learn-
ing is aligned with these goals and describes empirical techniques suitable for big
data to estimate a number of complex parameters while remaining computationally
feasible.

1.1 Learning from (Big) Data

Targeted learning focuses on efficient machine-learning-based substitution estima-
tors of parameters that are defined as features of the probability distribution of the
data, while additionally providing inference via bootstrapping or influence curves.
Targeted learning is a broad framework that includes targeted maximum likelihood
estimators (TMLEs) for effect estimation questions and super learning, an ensem-
bled machine learning technique, for prediction. TMLEs build on the literature in
loss-based estimation for infinite-dimensional parameters in order to target lower-
dimensional parameters, such as effect parameters. These estimators are constructed
such that the remaining bias for the effect target feature is removed. Super learning
is completely integrated into the estimation of the relevant components of the TMLE
algorithm. TMLEs have many desirable statistical properties, including being dou-
ble robust, well-defined substitution estimators. Targeted learning uniquely solves
the enormous challenge of combining data-adaptive estimation with formal statisti-
cal inference.

There has been a concerted effort in the scientific community to address issues
that can impact the soundness of research, including the design of experimen-
tal and nonexperimental studies and the statistical analyses used to evaluate
these studies. Targeted learning contributes critically to this area by focusing
on prespecified analytic plans and algorithms that make realistic assumptions
in more flexible nonparametric or semiparametric statistical models. The goal
is to take our knowledge about the data and underlying data-generating mech-
anism to precisely describe our observational unit and model, while accurately
translating the research question into a statistical estimation problem. Targeted
statistical learning machines then take our data and knowledge as inputs into
the system, while using rigorous a priori specified evaluation benchmarks and
estimators grounded in theory to produce interpretable policy-relevant results.
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This is all computationally efficient and practice focused. The idea being that
we take the theoretically optimal and make sure it translates into a fast and
user-friendly tool.

Over the last decade, targeted learning has been established as a reliable frame-
work for constructing effect estimators and prediction functions. The continued de-
velopment of targeted learning has led to new solutions for existing problems in
many data structures in addition to discoveries in varied applied areas. This has
included work in randomized controlled trials, parameters defined by a marginal
structural model, case-control studies, collaborative TMLE, missing and censored
data, longitudinal data, effect modification, comparative effectiveness research, ag-
ing, cancer, occupational exposures, plan payment risk adjustment, and HIV, as well
as others. In many cases, these studies compared targeted learning techniques to
standard approaches, demonstrating improved performance in simulations and real-
world applications.

1.2 Traditional Approaches to Estimation Fail

While there are many methods available for classic cross-sectional studies, such as
traditional parametric regression and several off-the-shelf statistical machine learn-
ing techniques, there is a dearth of methodology for the complex longitudinal studies
found in data science disciplines. These methods fail and their assumptions break
down in cross-sectional studies, and this is exacerbated when applied to complex
data types, such as those involving time-dependent treatments, networks, or stream-
ing data. This book aims to fill this gap, by presenting targeted learning methods tai-
lored to handle such difficult questions. The first Targeted Learning book addressed
the previously mentioned methods for cross-sectional studies and the first estimators
for TMLE in longitudinal studies, demonstrating the advantages of targeted learn-
ing approaches for many data structures. We present additional novel advances here,
hence the subtitle Causal Inference for Complex Longitudinal Studies.

The general wisdom has also been that statistical inference was not possible in the
context of data-adaptive (i.e., machine-learning-based) estimation in nonparametric
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or semiparametric models. Let’s make this statement more concrete. Suppose we
have computed a machine-learning-based fit of the conditional mean of a clinical
outcome as a function of a treatment and patient characteristics in an observational
study. We can use an ensemble learner for this; one that combines a library of algo-
rithms and relies on cross-validation, such as the super learner. This fit is mapped
into an estimate of the treatment-specific mean by (1) evaluating the predicted out-
come under the specified treatment condition and (2) averaging these predictions
across all n subjects in the sample.

Historically, the default approach has not been to use machine learning; instead
estimating the regression with a maximum likelihood estimator based on a paramet-
ric regression model. Under this setting, the resulting treatment-specific mean is a
simple function of the maximum likelihood estimator of the unknown regression
coefficients. As a consequence, if the regression model is correctly specified, this
maximum likelihood estimator of the treatment-specific mean is asymptotically lin-
ear. (This means that the maximum likelihood estimator minus the true treatment-
specific mean equals an empirical mean of its influence curve up to a negligible
remainder.) As a result, it is approximately normally distributed with mean the true
treatment-specific mean and variance equal to the variance of the influence curve
divided by the sample size. Confidence intervals are constructed analogue to con-
fidence intervals based on sample means. However, in practice, we know that this
parametric model is misspecified, and therefore the maximum likelihood estimator
is normally distributed, but biased, and the 95% ClIs will have asymptotic coverage
equal to zero.

If we use a machine learning algorithm, as initially proposed above, then the
estimator of the treatment-specific mean will generally not be normally distributed
and will have a bias that is larger than 1/ v/n. Because of this, the difference between
the estimator and its true value, standardized by +/n, converges to infinity! Since
the sampling distribution of the estimator is generally not well approximated by a
specified distribution (such as a normal distribution), statistical inference based on
such a limit distribution is not an option.

Remarkably, a minor targeted modification of the machine-learning-based fit
may make the resulting estimator of the treatment-specific mean asymptotically
linear with influence curve equal to the efficient influence curve. Thus, this minor
modification maps an initial estimator (of the data distribution, or its relevant part,
such as the regression function in our example) for which its substitution estimator
of the target parameter is generally overly biased and not normally distributed into
an updated estimator for which the substitution estimator is approximately unbiased
and has a normal limit distribution with minimal variance.

1.3 Targeted Learning in Practice

There are high-profile examples of the benefits of targeted learning in varied real-
world analyses. For example, data scientists at Pandora implemented targeted learn-
ing to discover that streaming music spins increase music sales by 2.3% for new
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Table 1.1 Top five targeted learning effect estimates and estimates from parametric regression

Medical Targeted Parametric
condition learning regression
Multiple sclerosis 67,011 30,715
Congestive heart failure 19,904 4131

Lung, brain, and severe cancers 19,233 24,528
Major depressive and bipolar 15,398 3498
Chronic hepatitis 10,530 5539

music and 2.7% for catalog music. This study was discussed in Billboard Maga-
zine. One particular area where targeted learning has been used with frequency is in
health care. How can targeted learning improve health care? In work published in
Lancet Respiratory Medicine, investigators developed a super learner for intensive
care units to predict mortality with improved performance over severity scores. The
algorithm is available in a user-interface online for implementation by clinicians.
In another study, published in World Psychiatry, a novel function for predicting
PTSD after traumatic events was generated. This algorithm had extraordinary per-
formance, placing 96% of PTSD outcomes in the top 10% of predicted values. In a
recent computational health economics analysis using a large health record claims
database, the impact of individual medical conditions on total health care spending
was examined. Targeted learning estimators for effect estimation ranked the medical
condition categories based on their contributions to total health care spending, con-
trolling for demographic information and other medical conditions. The impact of
medical conditions on health care spending has largely been examined in parametric
regression formulas for plan payment risk adjustment and aggregated means without
confounder adjustment. The results of this study demonstrated that multiple scle-
rosis, congestive heart failure, severe cancers, major depressive and bipolar disor-
ders, and chronic hepatitis are the most costly medical conditions (see Table 1.1). In
contrast, parametric regression formulas for plan payment risk adjustment differed
nontrivially both in the size of effect estimates and relative ranks. If current risk-
adjustment formulas are not accurately capturing the incremental effects of medical
conditions, selection incentives to health insurers may remain. We refer to Sect. 1.6
for additional references to earlier work.

1.4 The Statistical Estimation Problem

We present a simplified in vitro fertilization (IVF) example here to introduce longi-
tudinal statistical estimation problems where we estimate the probability of success
(i.e., live birth resulting from embryo transfer) of a program of at most two IVF cy-
cles, controlling for time-dependent confounders. Infertility is a global public health
issue and various treatments are available. IVF is an increasingly common treatment
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method, but accurately assessing the success of IVF programs has proven challeng-
ing since they consist of multiple cycles.

1.4.1 Data

Consider vectors of covariates L,, for each time 7 (t = 0,...,T + 1). Baseline co-
variates are denoted by Ly. We focus on a specific data structure for our IVF study,
for illustrative purposes, where we have interventions only at two sequential time
points. This data structure is a simple extension from cross-sectional data (the case
with an intervention at a single time point).

For our data structure, covariates at each time point ¢ are L = (Ly,L,, L), and
T = 1. The set of covariates L is also referred to as the set of states in the sequen-
tial decision process literature, although subscript notation, such as L;., is also used
to indicate a specific subset of the covariate set. The covariates at Ly include ma-
ternal age, IVF unit, number of oocytes harvested, number of embryos transferred
or frozen, and indicators of pregnancy. L; and L, encode whether the IVF cycle
was successful or not. The set of interventions (also called “actions”) is denoted
by A = (Ap,A;), where the random variable A, is the intervention at time ¢. In the
IVF study, each A, in A will be binary and indicates whether the IVF cycle was
attempted. By convention, if A, = O then L,,; =0 andif L; = 1 then L, = 1.

One can then represent the data on one randomly sampled subject as a time-
ordered data structure:

O = (Lo, Ao, L1, A1, L),

where it is assumed that L, occurs before A,. We denote the final measurement L, by
Y, which represents the outcome of interest. We consider the case of Y being binary
valued, for simplicity. The sample is comprised of n i.i.d. draws Oy, ..., O, of the
random variable O. Realizations of these random variables are denoted oy, ..., 0,.
The probability distribution of O can be factorized according to the time-ordering
of the data:

p(0) = p(Lo) X p(Ly | Ag, Lo) X p(Y | A1, Ly, Ao, Lo)
X p(Ag | Lo) X p(Ay | Ly, Ao, Lo).

1.4.2 Model and Parameter

We assume a nonparametric statistical model M, which contains the possible set
of probability distributions, for the observed data-generating distribution. The pa-
rameter of interest, the probability of success (i.e., live birth resulting from embryo
transfer) of a program of at most two IVF cycles, can be written as
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Y(Po) = EPO(ZPO(Y =11]Agp1 =1,Lo.y = lo.1)
X P()(L] =1 |A0 = I,Lo = l()))

Under causal identifiability assumptions we discuss in Chap. 2, the causal parameter
can be written
P(Yqy =1,

and is equal to ¥(Py), where Y(; 1 is the counterfactual outcome under the interven-
tion Ag.; = 1.

1.4.3 Targeted Minimum Loss-Based Estimators

A targeted minimum loss-based estimator (TMLE) can be established for this re-
search question to estimate P(Y(;,;y = 1). The TMLE framework is an incredibly
general system defined by a loss function, initial estimator, and least favorable sub-
model through the initial (or current) estimator. Precisely, it requires:

1. A target parameter defined as a mapping from a (typically) infinite dimensional
parameter of the probability distribution of the unit data structure into the param-
eter space,

2. Deriving the efficient influence curve of the pathwise derivative of the target

parameter,

Stipulating a loss function,

4. Specifying a least favorable submodel through an initial (or current) estimator of
the parameter such that the linear span of the loss-based score when the fluctua-
tion is zero includes the efficient influence curve, and

5. An algorithm for the iterative minimization of the loss-specific empirical risk
over the fluctuation parameters of the least favorable parametric submodel and
updating of the initial (or current) estimator.

W

The iterative minimization will be carried out until the maximum likelihood estima-
tors of the fluctuation parameters are close to zero. By the generalized loss-based
score condition on the submodel and loss function, the resulting TMLE of the in-
finite dimensional parameter solves the efficient score equation. This gives us the
basis for the double robustness and asymptotic efficiency of the corresponding sub-
stitution estimator of the target parameter. Targeted maximum likelihood estimators
are one type of TMLE. In Chap. 5, it is shown that one can always select a least
favorable submodel so that a single minimization of the loss-specific empirical risk
suffices to solve the efficient score equation. These special types of local least favor-
able submodels are called universal least favorable submodels.
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1.4.4 Other Common Estimation Problems

Rule-Specific Mean. When studying clinical questions in longitudinal observa-
tional data, it is often of interest to evaluate treatment rules that extend over time,
referred to as dynamic rules (sometimes regimes or regimens). The larger math-
ematical sciences context of dynamic rules falls within sequential decision theory,
where a key component is that the best intervention decision for a specific time point
may differ when one considers an immediate outcome versus a long-term outcome.
This type of decision making is common in statistics, especially for medical and
public health questions, and therefore methods to estimate the optimal dynamic rule
are of considerable importance. The rules considered may also have complex clas-
sifiers. For example, consider the question of when to start antiretroviral treatment
among therapy-naive HIV-infected individuals in the United States. Here, we wish
to consider a set of prespecified thresholds for CD4 count (e.g., 200-500 cells/mm?
in intervals of 50), where falling below the threshold indicates one should start an-
tiretroviral treatment. Each dynamic rule will be indexed by both a CD4 threshold.

Let D = (dy,...,dxk) be the set of dynamic rules we consider. Each dynamic
rule d; encodes a time sequence di, (t = 1,...,T) of rules, where d;, represents the
function mapping a patient’s previously measured covariates L, to the treatment a(?)
that should be followed at time z. We suppress the subscripts on an individual rule d
for notational simplicity when removing it does not cause ambiguity. An individual
is said to be following rule d through time ¢ if the interventions received are the
interventions indicated by rule d. Let Y? be the (counterfactual) value that would
have been observed had the subject been set to follow rule d at all time points. Our
goal is to determine the best dynamic rule d*, i.e., the rule in 9 that maximizes
the expected value of the potential outcome Y. We first consider the problem of
estimating, for each rule d € D, the population mean of Y had everyone followed
rule d, i.e., E(Y?). Since Y is binary in our example data structure, this is equivalent
to the probability that ¥¢ = 1. Under a set of strong identifiability assumptions,
including the assumption of no unmeasured confounders, E(Y?) can be represented
as a function of the observed data-generating distribution P, using the g-computation
formula:

PPy = Y D P(Y =11 A =d(), Ly =, Ag = d(lp))

Iy N
X P(Ly =11 | Ag = d(lp), Lo = lp)P(Lo = lo).

We provided sufficient detail here on the data structure and statistical estimation
problem for dynamic rules as we describe this study as a worked example in several
places in Chaps. 2—4

Community Randomized Trials. In community randomized trials we are inter-
ested in the setting that interventions are assigned to a small number of communities,
with covariate and outcome data collected on a random sample of individuals from
each of the communities. Drawing on our previous work in biased sampling, we can
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identify interesting parameters, such as causal contrasts, in these trials. This data
structure is described in more detail in Chap. 13.

Networks. Network data is increasingly common. Starting with disease transmis-
sion and then email and now exploding with social networks, we regularly observe
populations of causally connected units according to a network. The data structure
is typically longitudinal, with time-dependent exposures and covariates. These data
structures and parameters are described in more detail in Chaps. 20 and 21.

1.5 Roadmap for Targeted Learning

The first four chapters of this book provide critical foundational material on tar-
geted learning for longitudinal data, including the targeted learning road map and
prediction and causal inference estimation problems (Fig. 1.1). These first chapters
are guided introductions to main concepts through the focus on the data structure
O = (Ly,Ap,L1,Ay, Ly) ~ Py, a nonparametric statistical model M, and the causal
parameter ¥¥(P). This initial chapter motivated the need for new methods to han-
dle complex longitudinal data science problems and introduce the data, model, and
target parameter. The road map for targeted learning will be further explained in
Chaps. 2—4.

Defining the Model and Target Parameter. A structural causal model (SCM) is
a model for underlying counterfactual outcome data, representing the data one
would generate in an ideal experiment. This translates knowledge about the data-
generating process into causal assumptions. The SCM also generates the ob-
served data O and allows us to determine what additional assumptions are needed
in order to obtain identifiability of the causal effect from the observed data.

Super Learning for Prediction. We need flexible estimators able to learn from
complex data, and we introduce ensemble super learning for longitudinal struc-
tures. Super learning can be integrated within effect estimation or used as a
standalone tool for prediction problems. Some previous knowledge of cross-
validation and machine learning will be beneficial, such as Chap. 3 from the first
Targeted Learning book.

TMLE. With TMLE we are able to target (causal) effect parameters by making
an optimal bias—variance tradeoff for the parameter of interest, instead of the
overall probability distribution Py. These estimators have many desirable statis-
tical properties, and in some cases, are the only available estimators for certain
complex parameters.

This brief teaser is provided as a guidepost to the upcoming chapters so readers can
anticipate where we are headed, how the roadmap fits together, and why the material
is presented in this chronology.
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1.6 Notes and Further Reading

We motivated this first chapter by presenting the challenges of real-world data sci-
ence in Google Flu Trends and the Netflix Prize. More information about the history
of Google Flu Trends can be found in Wired magazine (Lazer and Kennedy 2015)
and the Netflix Prize background is described in Forbes (Holiday 2012). Crucial
foundational material on targeted learning can be found in the first Targeted Learn-
ing book published seven years ago (van der Laan and Rose 2011).

In Sect. 1.1 we discuss the many areas where targeted learning methods have led
to new solutions for existing problems. Explicit citations for these areas follow: ran-
domized controlled trials (Rubin and van der Laan 2008; Moore and van der Laan
2009a,b,c; Rosenblum and van der Laan 2009), parameters defined by a marginal
structural model (Rosenblum and van der Laan 2010a), case-control studies (van der
Laan 2008a; Rose and van der Laan 2008, 2009, 2014a,b), collaborative TMLE
(van der Laan and Gruber 2010; Gruber and van der Laan 2010a; Stitelman and
van der Laan 2010), missing and censored data (Stitelman and van der Laan 2010;
Rose and van der Laan 2011), effect modification (Polley and van der Laan 2009;
Stitelman and van der Laan 2011), longitudinal data (van der Laan 2010a; van der
Laan and Gruber 2012), networks (van der Laan 2014a), community-based interven-
tions (van der Laan 2010c), comparative effectiveness research (Neugebauer et al.
2014a; Kunz et al. 2017), variable importance for biomarkers and genomics (Bem-
bom et al. 2009; Wang et al. 2011a,b, 2014; Tuglus and van der Laan 2011; Wang
and van der Laan 2011), aging (Bembom and van der Laan 2007; Rose 2013), can-
cer (Polley and van der Laan 2009), occupational exposures (Chambaz et al. 2014),
health economics (Rose 2016; Rose et al. 2017; Shrestha et al. 2018), and HIV
(Rosenblum et al. 2009). The paper by Rose et al. (2017) is also an example of
the targeted learning framework in algorithmic fairness, accountability, and trans-
parency. They demonstrated how insurers could use drug claims with ensemble ma-
chine learning to identify ‘unprofitable’ enrollees, despite protections for preexisting
conditions, and then target them for disenrollment. The increasingly pervasive use
of algorithms in society has broad risks, for example, because there are typically bi-
ases imbedded within the data. For a short introduction to algorithmic fairness with
respect to criminal justice reform we refer readers to Lum (2017).

The computational health economics project summarized in Sect. 1.3 is discussed
in detail elsewhere (Rose 2018). The papers described in Sect. 1.3 are Peoples
(2014); Pirracchio et al. (2015); Kessler et al. (2014). A tutorial on TMLE in a point
treatment setting with continuous outcome, geared toward an applied public health
audience, has also been published (Schuler and Rose 2017). For a binary outcome,
see Chap. 4 of Targeted Learning (2011).

We covered the problem of inference in the context of machine learning, and
how targeted learning can address these shortcomings, in Sect. 1.2. We provide ad-
ditional background here, specifically regarding how the bootstrap can fail for the
purposes of inference with machine learning. The nonparametric bootstrap estimates
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the sampling distribution of an estimator with the sampling distribution of the esti-
mator when sampling from the empirical distribution. That is, one estimates the data
distribution with the empirical distribution and one hopes that the convergence of the
empirical distribution to the true data distribution translate into convergence of the
sampling distribution of the estimator. It makes sense that this method would work
well if the sampling distribution of the estimator only depends on smooth functions
of the data distribution, but that it can be expected to fail when it depends in an
essential way on the density of the data distribution (which is poorly estimated by a
discrete empirical distribution). Indeed, the nonparametric bootstrap is a valid con-
sistent method for estimating the sampling distribution if the estimator is a nicely
(so called Hadamard or compact) differentiable functional of the empirical proba-
bility distribution (Gill 1989; van der Vaart and Wellner 1996). On the other hand,
estimators that rely on smoothing, model selection, cross-validation or other forms
of machine learning are not Hadamard differentiable functionals of the data at all,
so that the nonparametric bootstrap can be expected to be inconsistent.



Chapter 2
Defining the Model and Parameter

Sherri Rose and Mark J. van der Laan

We are often interested in the estimation of a causal effect in data science, as well as
an assessment of the uncertainty for our estimator. In Chap. 1, we described the road
map we follow to estimate causal effects in complex data types for realistic research
questions. This chapter details the formal definition of the model and target param-
eter, which will vary depending on your research question. However, the concepts
presented here will be carried throughout the book for multiple parameters, and the
template is general.

We encourage readers to familiarize themselves with basic concepts in causal in-
ference prior to reading this chapter, such as Judea Pearl’s text Causality, published
in a second edition (Pearl 2009a). Chapter 2 of the first Targeted Learning book
summarizes key material from Pearl’s book for point treatment data structures for
an average treatment effect parameter and is a shorter piece of background material
compared to Pearl’s book. We do not repeat all of that basic content here, but do
provide the material needed for tackling the complex causal questions we wish to
target. A crucial component for readers to take away from this chapter is that causal
inference requires both a causal model to define the causal effect as a target param-
eter of the distribution of the data and robust semiparametric efficient estimation.
This book focuses almost exclusively on the latter, estimation, while the work of
Pearl the former.
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Key Definitions and Notation:

o Statistical model M is a collection of possible probability distributions P.

e Py is the true distribution of O.

o Definition of a target parameter requires specification of a mapping ¥ ap-
plied to Py. ¥ maps any P € M into a vector of numbers ¥(P). We write
the mapping as ¥ : M — R? for a d-dimensional parameter.

e Y is the evaluation of ¥(Py), i.e., the true value of our parameter.

The statistical estimation problem is to map the observed data O, ..., 0,
into an estimator of ¥(Py) that incorporates the knowledge that Py € M,
accompanied by an assessment of the uncertainty in the estimator.

(See Chap. 2 of Targeted Learning (2011) for additional background.)

The data Oy,..., O, consist of n i.i.d. copies of a random variable O with true
probability distribution Py. For our data structures from Chap. 1, such as

O = (Ly,Ag,L1,A1, L, = Y),

with vector of covariates Lg.|, vector of interventions Ag.;, and outcome L, = Y,
uppercase letters represent random variables and lowercase letters are a specific
value for that variable. With all discrete variables, Po(Ly = Iy, Ag = ag, L1 = 11,A; =
ai, Y = y) assigns a probability to any possible outcome (ly, ag,l,a;,y) for O =
(Lo, Ao, L1, A1, Y).

We will now move forward to define a model that is augmented by nontestable
causal assumptions, building on the underlying minimal assumptions of our statis-
tical model. This allows us to define a parameter of interest that can be interpreted
causally, as well as determine the necessary assumptions for establishing identifia-
bility of the causal parameter from the distribution of the observed data. Lastly, we
commit to a statistical model and target parameter.

2.1 Defining the Structural Causal Model

We describe a set of endogenous variables X = (X; : j), where these endogenous
variables are those where our structural causal model (SCM) will define them as
a deterministic function of other endogenous variables and exogenous error. The
exogenous variables are given by U = (Uy; : j) and are never observed. For each X;
we specify the parents Pa(X;) of X; among the other X variables. The endogenous
variables X often include the observables O, but may also include nonobservables.
We make the assumption that each X; is a function of Pa(X;) and an exogenous Uy;:

X; = fx,(Pa(X;),Ux)), j=1...,J.
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The functions fy,, together with the joint distribution of U, specify the data-
generating distribution of (U, X) as they describe a deterministic system of struc-
tural equations that deterministically maps a realization of U into a realization of
X. These functions fy, and the joint distribution of U may be unspecified, or we
may have subject-matter knowledge that informs our willingness to specify them in
a more restrictive way. It is unlikely our knowledge will support a fully parametric
SCM.

A SCM Is a Statistical Model for the Random Variable (U, X). The set of
possible data-generating distributions of (U, X) is defined by varying:

1. the collection of functions f = (fx; : j) over all permitted forms, and
2. the distribution of the errors U over all possible error distributions.

In our IVF study and when to start HIV treatment study discussed in Chap. 1,
we have j = 1,...,J, where J = 5 and all variables in X observed. Thus, X =
(X1,X5, X3, X4, X5). We then rewrite X as X = (Lg, Ao, L1,A1,Y) with X; = Ly,
X, = Ap, X3 = L, X4 = A, X5 = Y. The vectors Ly and L; may contain both
binary and continuous variables, with Ay, A, and Y binary for both examples. It
is important to explicitly remark on the time ordering in the generation of these
variables:

Ly—>Ay—> L - A >V

Focusing on our IVF study, baseline variables Ly are measured, including mater-
nal age, IVF unit, number of oocytes harvested, number of embryos transferred or
frozen, and indicators of pregnancy. Ay occurs next, sequentially, and establishes
whether an IVF cycle was attempted. L; then follows, indicating whether the IVF
cycle was successful. A occurs after L;, and indicates whether a second IVF cycle
was attempted, followed by Y, whether any IVF cycle attempted at L; was success-
ful. Recall that, by convention, if A; = O then L,,; =0 andif L; = 1 then Y = 1.
Thus, we have the functions f = (f,, fa,> f,» fa,. fr) and the exogenous vari-
ables U = (Uy,, Ua,, Ur,, Ua,, Uy). Our structural equation models are given as

Lo = f1,(UL,),
Ao = fa,(Lo, Ua,),
Ly = f1,(Lo, Ao, UL,),
Ay = fa,(Lo, Ao, L1, Uy,),
Y = fy(Lo, Ao, L1, Ay, Uy). .1

We choose not to make restrictive assumptions about the functional form of fi,, f4,,
SLi» fa,» and fy; the functions f are nonparametric. We will additionally assume in
this study that there are no unmeasured confounders. Thus, to be explicit, in (2.1),
we assume that the data were generated by:
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1. Drawing U from probability distribution Py ensuring that Uy, is independent
of Uy, given Ly,

. Generating Ly as a deterministic function of Uy,

. Generating Ay as a deterministic function of Ly and Uy,,

. Generating L; as a deterministic function of Ly, Ay, and Uy,

. Generating A; as a deterministic function of Ly, Ao, L;, and Uy, ,

. Generating Y as a deterministic function of Ly, Ag, L, A, and Uy.

AN N BN

We make the assumption that our observed data structure O = (Lg, Ao, L1, A1, Y)isa
realization of the endogenous variables (Lg, Ag, L1, A1, ¥) generated by the structural
equations in this system and defines the SCM for O.

Our SCM represents a set of nontestable causal assumptions made regarding our
belief about how the data were generated. As discussed in our earlier treatment of
SCMs for single-time-point interventions in the introductory material for Targeted
Learning (2011), the SCM for O also involves defining the relationship between
the random variable (U, X) and O, such that the SCM for the full data implies a
parameterization of the probability distribution of O in terms of f and Py of U.
Each possible probability distribution Py x of (U, X) in the SCM for the full data
is indexed by a choice of error distribution Py and a set of deterministic functions
(fx;  Jj) and implies a probability distribution P(Pyy) of O. Thus, the SCM for
the full data implies a parameterization of the true probability distribution of O in
terms of a true probability distribution of (U, X), so that the statistical model M for
Py of O can be represented as M = {P(Pyyx) : Pyx}, with Pyx varying over all
probability distributions of (U, X) allowed in the SCM. If this M is nonparametric,
none of the causal assumptions encoded by our SCM are testable in the observed
data.

If subjects had instead been randomized to IVF treatment, our structural equation
models might be given as

Lo = f1,(Ut,),
Ao = fa,(Uay),
Ly = f1,(Lo, Ao, UL,),
Ay = fa,(Ag, Ugay),
Y = fy(Lo, Ao, L1, Ay, Uy). (2.2)

In (2.2), Ay is evaluated only as a deterministic function of Uy,. A, is a determinis-
tic function of only Ay and Uy,. We hypothesized a randomization design that did
depend on previous treatment, but not other exogenous variables. While this text
largely focuses on observational studies without randomization, the targeted learn-
ing framework is quite general, and we have three chapters on randomized trials in
Part I11.
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2.2 Causal Graphs

In the previous section, we described SCMs as a systematic way to assign values
to a set of variables from random input, define required causal assumptions, and
assess the identifiability of the causal target parameter. Causal graphs are another
popular way to represent some of the assumptions encoded in our SCM. All the
causal graphs in this book are directed acyclic graphs, with only one arrow on the
edges that connect the nodes and no closed loops. However, with longitudinal data,
networks, and other complex data structures, this representation can become visu-
ally complicated quickly. The nonparametric structural equations in the previous
section do not have this drawback, and may be preferable in some settings. Ad-
ditionally, causal graphs are not specific for the target parameter of interest, and
therefore identifiability assumptions from the causal graph may be stronger than
necessary.

We start by presenting a possible causal graph for (2.1) in Fig. 2.1, where we
make causal assumptions by defining Pa(X;) for each X; and the joint distribution
Py. The relationships given in f guide the connection of all Pa(X;) to X; with a

Lo Ly Y
UL, UL, Uy

Fig. 2.1 A possible causal graph for (2.1)

Lo L Y
U, UL, Uy

Fig. 2.2 A possible causal graph for (2.2)
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directed arrow into X; and a directed arrow into each X; from each U X;- These as-
sumptions are ideally made with our subject matter knowledge related to the scien-
tific question of interest. A direct effect, such as that between Ly and Ly, is illustrated
by a directed arrow between two nodes. When we are uncertain whether there is a
direct effect between two variables, our default is to include it, as the explicit ab-
sence of the arrow signals that a direct effect is known not to exist. For example,
a possible causal graph for our SCM (2.2) is displayed in Fig. 2.2. Here there is an
explicit absence of a directed arrow between Ly and A as well as between L; and A;
due to our a priori knowledge regarding the randomization represented in the SCM.

Both Figs. 2.1 and 2.2 do not include any arrows between the endogenous errors
U = (UL, Ua,» UL, Uga,, Uy). This indicates that a strong assumption about the joint
independence of the endogenous error has been encoded as an assumption in (2.1)
and (2.2). However, it is unlikely that this assumption is one we can make in practice.
When we wish to reflect relationships between the endogenous variables U, they are
represented using dashed double-headed arrows. If we make no assumptions about
the distribution of Py for (2.1), a causal graph would be given as drawn in Fig. 2.3.
This figure has many so-called backdoor paths between our treatment nodes and
the outcome Y. In order to isolate our causal effect of interest, we must block all
unblocked backdoor paths from Ag.; to Y.
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Fig. 2.3 A causal graph for (2.1) with no assumptions on the distribution of Py
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2.3 Defining the Causal Target Parameter

With an SCM for our data-generating mechanism, we now move toward defining the
causal targeted parameter. To be very precise, we define this causal target parameter
as a parameter of the distribution of the full-data (U, X) in the SCM. Formally, we
denote the SCM for the full-data (U, X) by MF | a collection of possible Py x as
described by the SCM. MF a model for the full data, is a collection of possible
distributions for the underlying data (U, X). ¥¥ is a mapping applied to a Py x giving
¥ (Pyx) as the target parameter of Py x. This mapping needs to be defined for each
Py x that is a possible distribution of (U, X), given our assumptions encoded by the
posited SCM. In this way, we state 7F o MF - RY, where R indicates that our
parameter is a vector of d real numbers. The SCM M consists of the distributions
indexed by the deterministic function f* = (fx, : j) and distribution Py of U, where
f and this joint distribution Py are identifiable from the distribution of the full-data
(U, X). Thus, the target parameter can also be represented as a function of f and the
joint distribution of U.

For our IVF study with observed data O = (Ly,Ao,Li,A;,Y) and SCM given
in (2.1) with no assumptions about the distribution Py. We can define Y,, =
fr(Lo,ao, L1,a;,Uy) as a random variable corresponding with intervention Ag.; =
ap.1 in the SCM. The marginal probability distribution of Y, is given by

Pyx(Ya,, =) = Pux(fy(Lo,ao,L1,a1,Uy) = y).

Recall our statistical parameter of interest given in Chap. 1
P(Po) = En,( 3, PolY = 11 Aot = 1, Loa = o)
X PolL =11 Ao = 1,Lo = ).

As we will discuss later, under a randomization and positivity assumption his sta-
tistical parameter equals the causal target parameter of the distribution of (U, X)
given by

vF(Pyx) = Pux(Yap) = D.

2.3.1 Interventions

One can intervene upon our system defined by the SCM by setting the intervention
nodes Ag.; equal to some values ag.; € A, where A is the set of possible values for
our exposure IVF treatment. Intervening allows us to describe the data that would
be generated by the system at the levels of our intervention variables. This is a
critical concept because we define our causal target parameter as a parameter of the
distribution of the data (U, X) under an intervention on the structural equations in f.
The intervention defines a random variable that is a function of (U, X), so that the
target parameter is Y7 (Pux)-
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In our IVF study, we can intervene on Ay, in order to observe what would have
happened under specific exposures to IVF treatment. Notably, intervening on the
SCM, changing the functions f; for the intervention variables, does not change the
other functions in f. For our SCM in (2.1) we can intervene on f, and f4, and set
bothay =1and a; = 1:

LO = fLo(ULo)s

Ay =1,

Ly = f1,(Lo,1,Uy,),
A =1,

Yan = fr(Lo,1,Ly, 1, Uy).

The intervention defines a random variable that is a function of (U, X), namely,
Yio = Y4, (U) for ap = 1 and a; = 1. Our target parameter is a parameter of
the postintervention distribution, which is the probability distribution of the (X, U)
under an intervention. Thus, the SCM for the full data allows us to define the ran-
dom variable Y,,, = fy(Lo,ao,L:,a;, Uy) for each ao.;, where Y, , represents the
outcome that would have been observed under this system for a particular subject
under exposure dy;; .

2.3.2 Counterfactuals

The “ideal experiment” where we observe each subject under all possible trajec-
tories of exposure is not possible. Each subject only contributes one Y, the one
observed under the exposure they experienced. Above, we intervened on Ag.; to set
ap = 1 and a; = 1 in order to generate the outcome for each subject under the condi-
tion that they received two rounds of IVF treatment. Recall that Y, represents the
outcome that would have been observed under this system for a particular subject
under exposure ag.; and we have (Y, : do.1), with ap;; € A. For each realiza-
tion u in our study, which corresponds with an individual randomly drawn from the
target population, we generate counterfactual outcomes Y1 1)(«) by intervening on
(2.1). The counterfactual outcomes are implied by our SCM; they are consequences
of it. That is, ¥(11y(w) = fy(Lo, 1, L1, 1, uy). The random counterfactual Y(; 1,(U) is
random through the probability distribution of U.

2.3.3 Establishing Identifiability

Are the assumptions we have already made enough to express the causal parameter
of interest as a parameter of the probability distribution P of the observed data? We
want to be able to write ¥* (Puxo) as Y (Py) for some parameter mapping ¥, where
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we remind the reader that the SCM also specifies how the distribution Py of the
observed data structure O is implied by the true distribution Py xo of (U, X). Since
the true probability distribution of (U, X) can be any element in the SCM M, and
each such choice Py x implies a probability distribution P(Py x) of O, this requires
that we show that ¥¥(Pyx) = ¥(P(Pyy)) for all Pyx € MF.

This step involves establishing possible additional assumptions on the distribu-
tion of U, or sometimes also on the deterministic functions f, so that we can identify
the target parameter from the observed data distribution. Thus, for each probability
distribution of the underlying data (U, X) satisfying the SCM with these possible
additional assumptions on Py, we have ¥F (Pyx) = Y(P(Pyyx)) for some ¥. O is
implied by the distribution of (U, X), such as O = X or O C X, and P = P(Pxy),
where P(Py x) is a distribution of O implied by Py x.

Let us denote the resulting full-data SCM by M c MF to make clear that
possible additional assumptions were made that were driven purely by the identifia-
bility problem, not necessarily reflecting reality. To be explicit, M’ is the full-data
SCM under the assumptions based on real knowledge, and M™™ is the full-data
SCM under possible additional causal assumptions required for the identifiability of
our target parameter. We now have that for each Pyx € M, P (Pyy) = P(P),
with P = P(Pyx) the distribution of O implied by Py x (whereas Py is the true
distribution of O implied by the true distribution Py x).

Theorems exist that are helpful to establish such a desired identifiability result.
For a particular intervention d on the A nodes, and for a given realization u, the
SCM generates deterministically a corresponding value for L;.,. We denote the re-
sulting realization by L,(«) and note that L;(u) is implied by f and u. If O = X,
and the distribution of U is such that, at each time point #, A, is independent of L,
given Pa(A;), then the g-formula expresses the distribution of L; in terms of the
distribution of O:

T
P(Ly = 1) = [ [ P(Li = I | Pag(L)) = Pag(l,),

t=1

where Pay(L,) are the parents of L, with the intervention nodes among these parent
nodes deterministically set by intervention d. This so-called sequential randomiza-
tion assumption can be established for a particular independence structure of U by
verifying the backdoor path criterion on the corresponding causal graph implied by
the SCM and this independence structure on U. The backdoor path criterion states
that for each A,, each backdoor path from A, to an L, node that is realized after A; is
blocked by one of the other L, nodes.

In this manner, one might be able to generate a number of independence struc-
tures on the distribution of U that provide the desired identifiability result. That is,
the resulting model for U that provides the desired identifiability might be repre-
sented as a union of models for U that assume a specific independence structure.
The sequential randomization assumption is also referred to as the no unmeasured
confounders assumption. We define confounders as those variables in X one must
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observe in O in order to establish the identifiability of the target parameter. We note
that different such subsets of X may provide a desired identifiability result. If we
return to our IVF study example and the structural equation models found in (2.1),
the union of several independence structures allows for the identifiability of our
causal target parameter by meeting the backdoor path criterion. The independence
structure in Fig. 2.3 does not meet the backdoor path criterion.

2.3.4 Commit to a Statistical Model and Target Parameter

The identifiability result provides us with a purely statistical target parameter ¥ (Py)
on the distribution Py of O. The full-data model M** implies a statistical observed
data model M = {P(Pxy) : Pxy € M} for the distribution Py = P(Pyxo) of
O. This now defines a target parameter ¥ : M — RY. The statistical observed data
model for the distribution of O might be the same for M" and M”*. If not, then one
might consider extending the ¥ to the larger statistical observed data model implied
by MF, such as possibly a fully nonparametric model allowing for all probability
distributions. In this way, if the more restricted SCM holds, our target parameter
would still estimate the target parameter, but one now also allows the data to con-
tradict the more restricted SCM based on additional doubtful assumptions.
For our IVF study, our corresponding statistical parameter ¥'(Py) is given

PF(Pyxo) = PYayy = 1)
= EPO(ZPO(Y =1 |AO;I = 1,LO:I = lO:l)

X PO(LI =1 |A0 = I,LO = l())) = T(P())

This identifiability result for the causal effect as a parameter of the distribution P,
of O required making the sequential randomization assumption. This assumption
might have been included in the original SCM MY, but, if one knows there are un-
measured confounders, then the model M™* would be more restrictive by enforcing
a randomization assumption that we believe to be incorrect.

Another required assumption is that of sequential positivity. In our IVF study,
this means that the probability of IVF treatment at each of our two time points is
nonzero, given covariate history. Without this assumption, the probabilities of L.
in ¥(Py) are not well defined. However, the positivity assumption is a more general
name for the condition that is necessary for the target parameter ¥(Py) to be well
defined, and it often requires the censoring or treatment mechanism to have certain
support.
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2.3.5 Interpretation of Target Parameter

We may not have knowledge that supports the causal assumptions in the SCM, and
be unwilling to rely on these additional assumptions. By assuming that the time
ordering of observed variables L., Ag.1, and Y is correct:

Ly—>Ay—> L - A =Y,

our target parameters still represent an interesting and well-defined effect and can
be interpreted as a variable importance measure

The observed data parameter ¥'(Py) can be interpreted in two possibly distinct
ways:

1. Y(Py) with Py € M augmented with the truly reliable additional non-
statistical assumptions that are known to hold (e.g., M"). This may in-
volve bounding the deviation of ¥(Py) from the desired target causal ef-
fect ¥¥ (Py.x,) under a realistic causal model M that is not sufficient for
the identifiability of this causal effect.

2. The truly causal parameter pr (Pux) = ¥(Po) under the more restricted
SCM M, thereby now including all causal assumptions that are needed
to make the desired causal effect identifiable from the probability distri-
bution Py of O.

2.4 Notes and Further Reading

We refer readers to the in-depth presentation of SCMs found in Pearl (2009a). This
chapter builds and relies on Chaps.2 and 24 of Targeted Learning (2011). Some
content reappears from Chap. 2, with permission. The g-formula for identifying the
distribution of counterfactuals from the observed data distribution, under the se-
quential randomization assumption, was originally published in Robins (1986).



Chapter 3
Sequential Super Learning

Sherri Rose and Mark J. van der Laan

Suppose a doctor is interested in predicting the individual outcomes for a group of
patients under two particular drug regimens at two time points in the future. She
is therefore asking, what would happen to each of these patient’s future outcomes
at these time points if I were to enforce drug regimen 1 or drug regimen 2? Which
treatment will be better for the patients’ efficacy outcomes? Which treatment will be
better for the patients’ safety outcomes? Prediction problems can be longitudinal in
nature, generally, and we frequently wish to understand what the mean outcome of
patients with certain characteristics would be months or years in the future. Often,
this is under the setting where we would hypothetically assign a particular treatment
“rule” to the patients.

This chapter discusses sequential super learning for longitudinal data problems,
and provides us with a framework for prediction at any time point. In Chap.3 of
Targeted Learning (2011), we introduced super learning for prediction in a simple
data structure O = (W, A,Y) ~ Py and estimated the conditional mean E[Y | A, W].
Now, we are examining longitudinal data structures and more complex prediction
questions. These types of questions in longitudinal data have a natural analog to
our E[Y | A, W] prediction question: EY? | W) = E(YIA = d(W), W). With
0 = (W,A,Y), there was only one observed outcome after baseline and one inter-
vention node, making the prediction problem very simple: a single regression (esti-
mated with super learning). We introduce the concept of sequential prediction and
generalize the concepts and methodology presented in Chap. 3 of Targeted Learning
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(2011) for counterfactual estimation of conditional means under Y¢, given baseline
covariates, with multiple time point dynamic interventions d.

For these multiple time point interventions, E(Y? | Ly) can be estimated with
sequential regressions, and these sequential regressions will also be critical compo-
nents for the estimation of E(Y?) (and other parameters) with LTMLE. We could
simply average over our estimator of E(Y 4] Ly) to estimate E(Y?). However, in
the next chapter we will discuss augmenting the sequential regression estimator of
E(Y“) using targeted at each step in the LTMLE.

Therefore, we keep in mind that prediction questions are frequently the scien-
tific goal, and sequential super learning is the appropriate stand-alone tool for these
problems. However, we highlight that we are also interested in estimating a target
parameter of the probability distribution of the data, and this will often be a target
parameter that can be interpreted as a causal effect. In these settings we will imple-
ment an LTMLE. An integral component of this estimation procedure in research
questions involving longitudinal data are sequential regression estimates of the rel-
evant parts Q of Py that are needed to evaluate the target parameter. This step is
presented in Chap. 3, with sequential super learning, and LTMLE will be presented
in Chap. 4. Thus, this chapter focuses on the estimation of conditional means within
the road map for targeted learning that are useful for both prediction and causal
effect questions.

Effect Estimation vs. Prediction in Longitudinal Data

Both causal effect and prediction research questions in longitudinal data are
inherently estimation questions. In the first, we are interested in estimating the
causal effect of an intervention or dynamic process or other longitudinal effect
question. For prediction, we are interested in generating a function to input
the variables (Ao., Lo,/) and predict a value for the outcome, possibly under a
dynamic process. These are clearly distinct research questions despite being
frequently conflated. LTMLE involves prediction steps within the procedure,
thus understanding the sequential super learner for prediction in longitudinal
data is a core concept for both research questions.

3.1 Background: Ensemble Learning

As introduced in Chap. 1, ensemble learning has been developed for various data
types and research questions, as well as applied in many substantive areas. The core
prediction framework is an “ensembling” super (machine) learning approach that
leverages cross-validation to produce an optimal weighted average of multiple algo-
rithms. This solution solves the critical challenge for prediction: many algorithms
are available, from decision trees to penalized regressions to neural networks, and
any individual algorithm may have disparate performance in a given data set.
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The historical issue has been: How do we know beforehand which algorithm
will perform the best in our data? Even in similar data types, we may find that a
logistic regression in a misspecified parametric model outperforms a decision tree
in one study, but the decision tree outperforms the logistic regression in another
study. There are many such examples in the data science literature.

Given our nonparametric statistical model, we may initially be drawn to non-
parametric methods that smooth over the data without overfitting. However, a sim-
ple nonparametric estimator, such as local averaging, still requires partitioning the
covariate space to define the smoothness of this regression estimator. Even with
optimally selected partitions, a logistic regression in a misspecified parametric sta-
tistical model may outperform this nonparametric estimator if the true underlying
data-generating distribution is very smooth.

These considerations led to substantial statistical work in ensembling, and ul-
timately the super learner. Super learning protects against a selecting a poorly
performing single algorithm a priori. Instead, we consider many algorithms, and
need not worry that our local averaging will be outperformed by a logistic regres-
sion as we include both, and many others. This is due to the fact that super learning
constructs a prediction function that is the optimal weighted average of all consid-
ered algorithms, based on an a priori specified loss function.

Notable Applications

e Publicly Available Data in R: In 13 publicly available data sets from R, all with
small sample sizes (ranging from 200 to 654) and a small number of covariates
(ranging from 3 to 18), super learner outperformed each single algorithm stud-
ied. This study was notable for demonstrating in real data that the benefits of
super learning do not require large samples and many covariates. Parametric lin-
ear regression was only the 8th best algorithm overall, of the single algorithms
considered, out of 20 (Polley and van der Laan 2010; Polley et al. 2011).

e Mortality Risk Scores: This study generated an improved function for predicting
mortality in an elderly population with super learning. The work was also notable
for demonstrating that a small carefully collected cohort study one-tenth the size
of a large health database (both in terms of subjects and number of covariates)
generated a more accurate prediction function. Thus, the manuscript was an early
contribution to the literature revealing the limitations of large electronic health
databases to answer targeted scientific research questions (Rose 2013).

e Mortality Risk Scores in ICUs: Developing risk scores for mortality in intensive
care units is a difficult problem, and previous scoring systems did not perform
well in validation studies. A super learner developed for this problem had ex-
traordinary performance, with area under the receiver operating characteristic
curve of 94% (Pirracchio et al. 2015).

e HIV RNA Monitoring: This study demonstrated that implementing super learning
with electronic health record data on medication adherence may be useful for
identifying patients at a high risk of virologic failure (Petersen et al. 2015).

o Plan Payment Risk Adjustment: Current methods for establishing payment to
health plans are fully parametric. The results of recent super learning work for
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this problem indicate that a simplified risk adjustment formula selected via this
nonparametric framework maintains much of the efficiency of a traditional larger
formula. This could impact health insurers’ ability to manipulate the system
through aggressive diagnostic upcoding or fraud (Rose 2016).

The super learner has established, desirable statistical properties, discussed
in detail in Chap.3 of Targeted Learning (2011). Briefly, in realistic scenarios
where none of the candidate algorithms in the super learner achieves the rate of
convergence of an a priori correctly specified parametric statistical model, the su-
per learner performs asymptotically as well (not only in rate, but also up to the
constant) as the best choice among the possible weighted combinations. We restate
this formally with the finite sample oracle inequality from van der Laan and Dudoit
(2003):

Finite Sample Oracle Inequality. Given a collection of estimators (i.e.,
algorithms) P, — Qk(Pn), the loss-function-based cross-validation selec-
tor is

kn = K(Py) = argmin Ep, P,  L(Qi(P, 5,)),

where B, € {0, 1}" is a random variable that splits the data into a training
set {i : B,(i) = 0} and validation set {i : B,(i) = 1}, PS‘BH is the empirical
distribution of the training set, P}L p, is the empirical distribution of
the validation set, and L(-) our dissimilarity measure: a loss function.
The estimator that results is referred to as the discrete super learner:

QA(Pn) = Qk(Pn)(Pn)-
We consider a loss function that satisfies

varp, {L(Q) — L(Qo)}
sup <
o PolL(Q) - L(Qo)}

and is uniformly bounded:

Soug | L(Q) — L(Qo) | (0) < M < oo,

where the supremum is over the support of Py and over the possible
estimators of Qg that will be considered.

Under the assumption that our loss function L is uniformly bounded over
the support of Py, the remainder between the dissimilarity of the cross-
validation selector and the dissimilarity of the oracle selector at fixed n
hold uniformly in all data-generating distributions. This demonstrates that
the cross-validation selector approximates the performance of the oracle
selector by distance log(K(n))/n. Precisely, for quadratic loss functions,
the cross-validation selector satisfies the following oracle inequality:

(continued)
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Ep {PoL(Q, (P, 5,) = L(Q0)} < (1 +28)E, min Po{L(QK(P, ) = L(Qo)}
1 +log K(n)
np ’

+2C(My, M3, 9)

for ¢ > 0, where the constant C(M,, M>,8) = 2(1 + 6)*>(M1/3 + M»/3),
p is the proportion of subjects in the validation set, and K(r) the number
of algorithms in the collection. These results generalize for estimated loss
functions L, (Q) that approximate a fixed loss function L(Q).

3.2 Defining the Estimation Problem

Recall that we have vectors of covariates L,, for each time 7 (t = 0,...,T + 1). For
our data structures in the IVF and HIV studies, covariates at each time point ¢ are
L = (Ly,Ly,Ly), and T = 1. The set of interventions is given by A = (A4y,A;), and
we can represent the data on one randomly sampled subject as a time-ordered data
structure:

O = (Lo, Ao, L1,A1, L, = Y),

where we assume L; occurs before A,. We denote the binary final measurement L,
by Y, which represents the outcome of interest. The sample is composed of # i.i.d.
draws Oy, ..., O, of the random variable O. Realizations of these random variables
are denoted oy, . . ., 0,. The probability distribution of O can be factorized according
to the time-ordering of the data:

p(O) = p(Lo) X p(Ly | Ao, Lo) X p(Y | Ay, Ly, Ao, Lo)
X p(Ag | Lo) X p(Ay | Ly, Ao, Lo).

Recall that D = (dy,...,dk) is a set of dynamic rules and each d; encodes a
time sequence di, (t = 1,...,T) of rules. Additionally, Y? is the (counterfactual)
value that would have been observed had the subject been set to follow rule d at all
time points. In Chap. 1, we discussed the goal of estimating, for each rule d € D, the
population mean of Y had everyone followed rule d, i.e., E(Y). (With a binary Y, as
we have here, this is equivalent to the probability that Y¢ = 1.) This parameter can
be represented as a function of the observed data-generating distribution P, using
the g-computation formula, under a set of strong identifiability assumptions:

PiPy= > D PO = 1] A = d(@), Ly = I, Ag = d(lp))

o
X P(Ly = Iy | Ag = d(lp), Lo = lp)P(Lo = o).

For an estimator of ¥¥(P) to be consistent, one historically needed to correctly
specify all of the conditional density factors in the density representation of p.



32 S. Rose and M. J. van der Laan

Estimation of such a conditional density can be difficult when L; is a vector with
more than a few continuous variables. The sequential regression approach of Robins
(2000) avoids estimation of conditional densities, but instead only requires estima-
tion of conditional means (as described in, e.g., Robins and Ritov 1997). It is based
on the following iterative sequence of conditional means O = (Q4, 09, O¢), where
we define, with generality to nonbinary Y, as

QZI(Ll,Lo) =E(Y | A =d(Ly, Ly), L1, Ao = d(Ly), L),
Q4(Ly) = E(Q4(Ly, Ly) | Ap = d(Ly), Lo),
0% = E(Q4(Ly)).

It follows from the above representation of ¥¢(P) that Q‘O’ is an equivalent represen-
tation of ¥4(P).

In this chapter, we are interested in prediction. The estimation of conditional
means is a component of the estimation of ¥¢(P), but also an interesting parameter
separately. Thus, suppose that we are interested in estimating a conditional mean.
This becomes what we refer to as a counterfactual prediction problem.

Oyi = QY(Lo) = E(Q4(L1, Lo) | Ao = d(Lo), Lo) = E(Y? | Ly).

The first regression Qg = EY | Ay = d(Ly,Ly),Li,Ay = d(Ly), Ly) can be de-
fined as the minimizer of the expected loss. Since Y{0,1} or ¥ € (0, 1) the log-
likelihood loss is a reasonable choice. The loss function for the next regression
0¢ = E(Q4(Ly, L) | Ay = d(Lo), Lo) can be the same log-likelihood loss but with
Y replaced by the previous Q‘; Thus, this is now a loss function that is indexed by
an unknown nuisance parameter Qg. Nonetheless, at each step we can the use super
learner with this loss function, treating the loss function as known by plugging in the
super learner fit obtained at the previous step. We describe this sequential estimation
procedure in the next section.

3.3 Sequential Super (Machine) Learning

We can estimate the parameter Qy« by nesting a series of regressions, starting at the
last time point and moving backwards in time toward Ly, inspired by the sequential
regression approach described on the previous page. We call this sequential super
learning since we use super learning at each step, treating previous super learner fit
as an outcome for the next regression. We will use the notation Lo = (L(j) : j =
t,...,0).
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Algorithm. Super Learning for Sequential Prediction in Longitudinal Data

For each rule d:
* Obtain an estimator Q4. of Q4| (Lo.r) with super learning.
Fort=T+1tot=1
* Define Q;{n(Lg;,_l) as the outcome in next regression and use super
learning to estimate E(Q%(Lo.-1) | Ai—2:0 = d(Li-20), Li-2.0)-
Save the final estimator Q;il,n(LO) as estimator of Qys = E(Y¢ | Ly).

Specifically, the sequential super learner for Qy« is constructed as follows:

1. Let Q‘;+z,n =Y.

2. Settr=T+1.

3. For time point ¢, create a data set of n observations where each observation has
an outcome Q;ﬂrl’n(Lpr 1.0), and covariates Ag.;, Lo.;. Fit the K candidate regression
algorithms within V-fold cross-validation. Recall that B, € {0, 1}" is a random

variable that splits the data into a training set {i : B,(i) = 0} and validation set
V_\;l ths of
the data and a validation set containing the remaining %thof the data in each of
V folds. For eachv = 1,...,V, foreach k = 1,..., K, train the k-th algorithm
on the training set 7'(v), while the V(v) validation set is run through the fitted
algorithm to obtain cross-validated predicted values. This results in a predicted
value Z,‘f’[’i for each algorithm k and subjecti, i = 1,...,n.

{i : B,(i) = 1}. The data set is divided into a training set containing

1 1 1 1 1
lglm ¢ Training
glmne ) Set
nnet
Algorithms v Validation v v % %
Y Set
Fold 1 Fold1 Fold2 Fold3 .. FoldV

4. Posit a family of weighted combinations of the K algorithms that is a convex
combination indexed by a, and select the «,, that minimizes the cross-validated
empirical mean of the loss function.
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5. Run all K algorithms on the full data set and combine the candidate fits with the
a, vector to build the super learner function and obtain predicted values under
the setting that each individual followed rule d. These predicted values represent
04 (Low),i=1,....n.

D ¥ o
1 0.54 0.42

n | o009 | .. | o1

6. Setr — ¢ — 1 and repeat the above steps 3, 4 and 5.

7. Continue to iterate the sequential prediction algorithm until # = 1 and save
the resulting object Q¢ which represents the desired estimator of Qys =

=1,n°
E(Y!| Lo).

3.4 Computation

With newer advances in parallelization and cloud computing, computational chal-
lenges are rapidly being addressed. Software is currently available in R, H20, and
SAS: berkeleybiostats.github. io, including SAS macros and links to R
packages on CRAN. The implementation of a sequential super learner can be com-
putational intensive in the context of big data. Thoughtful consideration should be
given to programming language, number of algorithms, and number of time points
included to maintain applied relevance while remaining computationally feasible.

3.5 Notes and Further Reading

Further details of the asymptotic and finite sample properties of super learning
are discussed in key papers (van der Laan and Dudoit 2003; van der Laan et al.
2007). See also van der Laan et al. (2006), van der Vaart et al. (2006), van der
Laan et al. (2004), Dudoit and van der Laan (2005), and Keles et al. (2002). The
sequential super learner has been described for a conditional intensity of a count-
ing process in atrial fibrilation (Brooks 2012). This super learner involves defin-
ing an overall loss function L(O, QL,) as the sum over all #-specific loss functions
L(0, Q1) = 3, L(O,, O1,). Super learning in longitudinal data with missingness was
also described in Diaz et al. (2015). Extensive references on machine learning and
ensemble methods can be found in Chap. 3 of Targeted Learning (2011).



Chapter 4
LTMLE

Sherri Rose and Mark J. van der Laan

Sequential decision making is a natural part of existence.
Humans make a myriad of decisions each day, and many
decisions are typically involved when considering a single
particular goal amidst an unpredictable and uncertain envi-
ronment. Any action could impact future states and, impor-
tantly, the options available later. What if we had an auto-
mated way to understand the impact of decisions? And a
means of evaluating differing decision sequences?

As discussed in the three previous chapters, we are of-
ten interested in evaluating treatment rules that extend over
time, i.e., dynamic rules, and these rules can have complex
classifiers. This is common in clinical and public health re-
search, and, in statistics, this work relies on sequential deci-
sion theory. There are a number of other important types of
problems in longitudinal and complex data structures, enumerated throughout this
book, and some also introduced in Chap. 1. In this chapter, we focus on describing
the LTMLE in the context of dynamic rules, although the approach is general, as
demonstrated in later chapters.
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This is the second chapter focusing on estimation, and now we turn to questions
of effect. We started with carefully defining the research question, including the data,
model, and target parameter of the probability distribution of the data. Then, in the
previous chapter, we presented estimation of sequential prediction functions with
super learning. We discussed that for multiple time point interventions, we could
simply average over our estimator of E(Y 4| Ly) to estimate E(Y). This, however,
will not lead to an optimal estimator, and we now describe employing targeting at
each step to get an improved estimator for E(Y¢). Thus, we are now ready for the es-
timation of causal effects using LTMLE. Note that we use the abbreviation LTMLE
for longitudinal targeted maximum likelihood estimator as well as longitudinal tar-
geted minimum loss-based estimation.

4.1 LTMLE in Action: When to Start HIV Treatment

Recall from Chap. 1, our discussion of the rule-specific mean for the question of
when to start antiretroviral treatment among therapy-naive HIV-infected individuals.
For many years, this was an open question, although there is now generally consen-
sus regarding the benefits of early initiation. Randomized and observational studies
considered various thresholds for CD4 count, such as 200-500 cells/mm? in inter-
vals of 50, where falling below the threshold indicates one should start antiretroviral
treatment. (The gap between the first observed CD4 count below the threshold and
treatment initiation has also been debated, and commonly used windows include 3
months and 6 months.) Here, suppose we consider only two thresholds: 350 and
500, and an initiation window of 6 months. In the United States, guidelines set by
the Department of Health and Human Services for treatment of asymptomatic in-
dividuals fluctuated between a cutoff of 500 and one of 350 from 1998 to 2011,
before it was changed to “all” in 2012. We carry this example through the chapter
as a demonstrative example.

4.2 Defining the Estimation Problem

Recall that we write the data structure on one randomly sampled subject as:
O = (Lo, Ao, L1,A1, L = Y),

with covariates L = (Lo, L;, L), and T = 1 and a vector of covariates L,, for each
time s (t=0,...,T + 1), as well as the set of interventions A = (A, A,). For Ly, the
vector contains CD4, viral load, age, sex, intravenous drug use status, and chronic
hepatitis C status. At L;, the vector contains only CD4 count and whether the sub-
ject died. The binary final measurement L, = Y, which represents our outcome of
interest, death. If a subject dies by L, they are also recorded as having died by L,.
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Our intervention nodes A = (A, A,) are defined based on whether treatment had
been initiated at or by that time point. Our sample contains 7 i.i.d. draws Oy, ..., O,
of the random variable O, and realizations of these random variables are given as
01,...,0,. Recall also that the probability distribution of O can be factorized ac-
cording to the time-ordering of the data:

p(0) = p(Lo) X p(Ly | Ag, Lo) X p(Y | A1, L1, Ao, Lo)
X p(Ag | Lo) X p(Ay | Ly, Ao, Lo).

In general, we have a set of rules D = {dy,...,dg}, where each d; encodes a
time sequence dy, (t = 1,...,7T) of rules, and Y4 is the counterfactual outcome
that would have been observed had the subject been set to follow rule d at all time
points. In our simplified example, we consider only the classifier CD4 count, and
two levels from the previous guidelines on when to start treatment: 350 and 500
cells/mm?. Thus, at each intervention node:

_ 1 if CD4z < gk
dk,t(CD4f) - {() otherwise,

where 6 = (500, 350), 1 indicates that treatment has been initiated, and we have that
D = {d,,d»}. We wish to estimate, for each of our two rules d € D, the population
mean of ¥ had everyone followed rule 4, i.e., E(Y?). As introduced in Chap. 1, E(Y¢)
can be represented as a function of the observed data-generating distribution P with
the g-computation formula:

PiPy= > N PO = 1] A = d(@), Ly = 1, Ag = d(lp))

P
X P(Ly =11 | Ag = d(lp), Lo = lp)P(Lo = lp).

We also know that Q‘é is an equivalent representation of ¥¢(P), where ng is given
in the following iterative sequence of conditional means Q = (Q¢, 0%, Q%)

Q4Ly,Ly) = E(Y | Ay = d(Ly, Ly), L1, Ag = d(Lo), Lo),

Q4(Ly) = E(Q4(Ly, Ly) | A = d(Ly), Lo),
0% = E(Q4(Lo)).

4.3 What Does It Mean to Follow a Rule?

Before describing the LTMLE algorithm to estimate ¥%(P) = E(Y9), it is essential
to be explicit about what it means to “follow a rule.” The key to designing our
study, data structure, analysis, and appropriately interpreting our estimate, is the
experiment we wish we could have conducted, but could not.
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e What is the population mean outcome had all subjects followed the treatment
rule to initiate antiretroviral therapy within 6 months of dropping below a CD4
count of 350 cellsjmm??

e What is the population mean outcome had all subjects followed the treatment
rule to initiate antiretroviral therapy within 6 months of dropping below a CD4
count of 500 cells/mm??

However, given that we have observational data with time-dependent confounding,
we did not in fact force patients to follow either of these rules. Thus, the next step is
to be precise about how we encode whether a subject in our hypothetical observa-
tional study is following one of our two rules.

Suppose we have a hypothetical study where we follow all therapy-naive HIV-
infected individuals for 6 years. (For the moment, additional time points will be
useful in this expository subsection material.) The three panels in Fig. 4.1 represent
three hypothetical individuals in the study. In the first panel, “Patient 1~ drops below
500 cells/mm? for the first time in month 6, drops below 350 cells/mm? for the first
time in month 30, and initiates treatment in month 66. They follow regime d;, where
6 = 500, up to month 12, where we see that they have not initiated treatment within 6
months of first dropping below 500 cells/mm?. Patient 1 follows d,, where 6 = 350,
up to month 36, where, they have not initiated treatment within 6 months of first
dropping below 350 cells/mm?. At month 36 and later, Patient 1 is following neither
d 1 Or dz.

Hypothetical Patient 2 appears in the second panel of Fig. 4.1. This patient drops
below 500 cells/mm? for the first time in month 12, drops below 350 cells/mm? for
the first time in month 36, and initiates treatment in month 16. Therefore, Patient 2
follows d; for the entirety of the study length, all 72 months, because they initiated
treatment within 6 months of dropping below 500 cells/mm?. It does not matter
what occurs after this initiation given the manner in which we have defined our
rules; the subject is following d,. Patient 2 is following d, up to month 16, when
they initiate treatment. Because d, is defined by only initiating treatment once the
subject falls below 350 cells/mm?, they are no longer following this rule when they
start treatment before ever dropping below 350 cells/mm?.

Patient 3 is following both d; and d, for the entire study period of 72 months.
They never drop below 500 or 350 cells/mm? and they never start treatment. Since
the rules are only not being followed when treatment is either (a) not initiated after
dropping below the specified 8 or (b) initiated before or too far after dropping below
the specified 0, Patient 3 is always following both rules.
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Fig. 4.1 Illustrations of CD4 count trajectory for three hypothetical individuals as well as when
they started treatment. (Values and data points do not reflect any real patient data.)
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4.4 LTMLE for When to Start Treatment

We have now defined our target parameter as a mapping from an infinite di-
mensional parameter of the probability distribution of the unit data structure
into the parameter space, which included carefully translating our scientific
research question into a statistical estimation problem. Our LTMLE requires
deriving the efficient influence curve of the pathwise derivative of the target
parameter, specifying a loss function, positing a fluctuation working submodel
through the initial (or current) estimator so the linear span of the score when
the fluctuation is zero includes the efficient influence curve, and an iterative
maximization algorithm. This iterative maximization continues until the max-
imum likelihood estimators of the fluctuation parameters are near zero. The
LTMLE will solve the efficient score equation and thereby inherit the dou-
ble robustness and asymptotic efficiency for the substitution estimator of our
target parameter.

4.4.1 Determining the Efficient Influence Curve

Let P € M be given. Suppose that we know the treatment mechanism g = g(P).
In that case our statistical model is given by the smaller model M(g) = {P; € M :
g(Py) = g} defined by all possible densities of O in which the factors of the treatment
mechanism are defined by g. In such a model we could estimate ¢/ with an inverse

probability of treatment weighted estimator zﬁi prw using the known g:

1 <~ I(A(T) = dr(L(T)))

d

Yirrw = n Z 1 7 Yi.
i=1 gOIT( i(T)’ LZ(T))

Since 'I’Z, prw 1S @ sample mean, it follows that it is an (asymptotically) linear esti-

mator at any P € M(g) with influence curve

I(A(T) = dr(I(T))) Y - wi(p)
go-r(A(T), L(T)) '

An important result from efficiency theory is that the influence curve at P of a
regular asymptotically linear estimator of a target parameter is a gradient at P of
the pathwise derivative of the target parameter. Therefore, we know that D(P) is a
gradient at P in the model M(g). The canonical gradient of ¥¢ : M(g) — R at P is
defined by its projection on the tangent space T,(P) of M(g):

D (P)(0) =

D™(P) = I(D(P) | T(P)).

Because the tangent space of g in model M is orthogonal to the tangent space of
M(g) it follows that D% (P) is also the canonical gradient of ¥ : M — R for
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our actual model M. So we can conclude that the task of finding the canonical
gradient/efficient influence curve at P of our target parameter ¥¢ : M — R is
reduced to computing the projection of the initial gradient D?(P) onto the tangent
space at P for the model M(g). The tangent space T, (P) equals the orthogonal sum
of the tangent spaces T, ,(P) of the conditional density of L(7) given L(t—1),A(t-1),
t =0,...,T + 1. This tangent space T,,(P) is given by all functions in Lé(P) of
(A(t—1), L(¢)) with conditional mean zero, given L(t—1), A(t—1). From this we learn
that the projection D% (P) of DY(P) onto T4(P) equals the sum of the projections of
D?(P) onto T, (P), and the latter projection is given by

D¥(P) = II(D*(P) | T,(P)) = E(D“(P)(O) | L(t), A(t - 1))
— E(Dd(P)(O) | L(t - 1),A(z -1)).

The latter projection can be rewritten by integrating out A(z : T), which establishes
the following formula:

I(A(t = 1) = dy-1)
g-1(At = 1), L@t = 1))

D (P) = {04 Ly - O - )}

So we can conclude that the efficient influence curve of ¥¢ : M — R is given by

T+1

D*(P)(0) = ) D¥(P)
t=0

= Q4(L(0)) - PI(P)

T+1

1A= 1) =d.)
+Z g1 (A — 1), L1 - 1)

{04 (L) - &L -1}

The first term Dg’*(P) represents the score component for the distribution of L(0),
while the terms in the sum over ¢ represent the score components for the distribution
of L(¢), given L(t — 1), A(t — 1)).

4.4.2 Determining the Loss Function and Fluctuation Submodel

We need to determine a loss function for Qf and submodel {Q_f(et, g) : €} through
Q% at € = 0 with score D¥*(P),t =T +1,...,0. Because the parameters Q¢ are iter-
atively defined, we will also define this combination of loss function and submodel
in an iterative manner, starting at t = 7 + 1 and ending up at r = 0. A valid loss
function for Q_‘; 1 1s given by the Bernoulli log-likelihood loss function

L(0§,,)(0) = —{¥log 0F.,,(L(T)) + (1 - V) log{1 - Of,,(L(T))}.
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Consider the following submodel {Q%., (€71, 8):€r41} through Q4 | at e7,1=0:

. . I(Ar = dr)
logit Q¢ (er+1,8) = logit Q% | + ey ———=,
8o.r
where I(A,_; = d,_;) denotes the indicator that rule d was followed from ¢ = 0 to

t—1and gos-1 = g0 X -+ X g-1 = P(Ag | Lo)--- P(Ai1 | Li—1,A,_1). Notice that
indeed the score at € = 0 equals D"Tl’;l(P):

d  _ \
EL(Q‘%H(e, 2) . D} (P).

Let r = T. We now want to determine a loss function and submodel for Q_jl, where
we can treat Qflu as a given outcome. Treating QfH as a given outcome, a valid loss
function for Q¢ is again given by the log-likelihood loss function:

Lge (O)(0) = —{0f, (L) log Of (L(t = 1)) + (1 = Of, ) log{1 = Qf(L(1 - 1))}.
Consider the following submodel {Q%(e;, g) : €} through 04 at ¢ = 0:

1A =d,._
logit 0%(e,, g) = logit Q% + E,M.
80:1-1

Indeed, the score die,LQ;[,, ] (Qf’(et, g)) at ¢ = 0 equals Df‘*(P). In this way, we have
defined sequentially a loss function LQ;I I(Q_f) and submodel {Q;’ (&,8) : &} through
Q¢ at ¢ = 0 with score D*(P),t=T +1,...,1.

Finally, given Q_‘li(L(O)), we define the marginal (Bernoulli) log-likelihood loss
function:

Lgi(0f) = {0 (L) log OF + (1 = O{(L(0)) log(1 — Of)}.
As submodel through Qg we select

logit Qg(eo) = logit Qg + €.

Again, the score d%LQ‘,’(Q_g (€0)) at g = 0 equals the desired component Dg*(P).

4.4.3 LTMLE Algorithm

Sequentially, updating the initial estimator Q¢, of Q¢ with an MLE of Q0%(e; ,, g).

t,n

starting at # = T + 1 until # = 0 defines the following TMLE algorithm.
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Algorithm. LTMLE for the Rule-Specific Mean

For each rule d:
* Obtain estimators Q”Tl +1,, and g7, with super learning.
Fort=T+1tot=1
* Hold Q,d,n fixed and compute maximum likelihood estimate
€., = arg min, PnLQ-;z+1 (Q4(e, 8)) of & in submodel:
logit Q;i(fta g) = logit Q;in +&U(A-1 = di-1)/80:1-1)-
* Set the updated estimator QZ; = Q;{n(et,n, gn)-
* Define Q;f;; as the outcome in next regression and use super
learning to estimate E(Q%(Lo.-1) | Ar-2:0 = d(Li-2.0), Li-2:0).
Save the final estimator 03" = 1/n Y1, Q% (Lo,;) of ¥*(P).

Specifically, the LTMLE for E(Y?) in our HIV treatment example with two inter-
vention time points A = (Ag, A1) and T = 1 is constructed as described below. Also,
recall from Sect. 4.3 the definition for ‘following’ the two rules D = {d;, d,}.

. LetQf, =Yandsetr=T+1=2.

2. Consider the original data set S,, of n observations. Create counterfactual ‘rule-
specific’ versions of the data S, for each of our two rules D = {d;, d»}. In these
counterfactual data sets S 4, and S,, the values of A = (Ao, A)) are set for each
observation based on what they would be under rules d; and d,.

3. Obtain estimators Qg’n, g1, and go, with super learning using S ,,.

4. Estimate predicted outcomes under the observed values for A, as well as coun-
terfactual predicted outcomes Qg‘n and ngn for each rule using S 4,, S 4,, and the
super-learning-based fit for Qg,n from the previous step.

5. For each rule d;: Hold ann fixed and compute the maximum likelihood estimate
€., = arg min, PnLQ-gz(Q‘é’(e, 2)) of & in the submodel:

logit Q%(e2, g) = logit 03, + &(I(A—y = di=1)/g0:1):

where go.1 = go X g1 and I(A; = d,=;) for an individual is an indicator that

observation is following rule d; through r — 1 = 1. Set the updated estimator

g,*n = g,n(€2’”’ gn)

6. Define Qg; as the outcome in the next super-learning-based regression Q‘f’n,
setting t = 1.

7. Repeat steps 4 and 5 for t=1. Then, set t = 0.

8. Save the final estimators

o =1/ ”Z Q! (Lo,) and
i=1

O =1/n ) 0% (Lo
i=1
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We ignored issues such as patient drop-out in this example for didactic pur-
poses, and refer readers to Chap. 15 for an example of LTMLE with an explicit
censoring mechanism. This demonstrative LTMLE also estimated separate sub-
models for each d; and 7. Other choices in implementation are possible, includ-
ing the use of joint submodels. Software is currently available in R and SAS:
berkeleybiostats.github. io, including the R package 1tmle on CRAN
(Lendle et al. 2017).

4.5 Analysis of TMLE and Inference

This section contains technical details on the analysis of TMLE and inference. Some
readers may wish to skip this material. Let ¢ = (0% : t = T + 1,...,0) denote this
sequentially defined parameter. Notice that the efficient influence curve at P only
depends on P though Q¢ = Q%(P) and g = g(P). For notational convenience, we
will denote D% (P) with D*(Q“, g) as well. Let Q¢ and g, be the initial estimators
of 04(Py) and gy = g(Py), respectively. The above TMLE algorithm defines the
TMLE Q%.

4.5.1 TMLE Solves Efficient Influence Curve Equation

The TMLE solves the efficient influence curve equation:
P.D™(Qy",8n) = 0.

n >

4.5.2 Second-Order Remainder for TMLE

For any pathwise differentiable target parameter ¥ : M — R with canonical gradi-
ent D*(P) at P one can define a second-order remainder:

Ro(P, Po) = ¥ (P) = ¥(Po) — (P = Po)D"(P),

where one can use that PD*(P) = 0. This results in the second-order Taylor expan-
sion of P — ¥(P) at Py:

Y(P) — Y(Py) = —PoD*(P) + Ry(P, Py).

Applying this general approach to our problem, we define the second-order remain-
der:
R4(P, Py) = P4 (P) — PU(Py) + PyD™(P).
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One can obtain an explicit expression for this second-order remainder. In order
to emphasize its dependence on Q¢ and g we will also denote this remainder with
R4,(0“, g, 04, go). Inspection of the closed form expression of R§(P, Py) (not shown
here) shows that it consists of a sum of integrals that integrate a product of a differ-
ence of parameter of g with its true value (e.g., (g0 — 8o,0+)) With a difference of
parameter of Q¢ with its true value (e.g., ¢ — Q% ). As a result, the second-order

0.t
remainder has a so-called double robust structure in the sense that

R0, 8. 0%, 80) = 0if 0 = 04 or g = go.

More importantly, by using the Cauchy-Schwarz inequality

( f FedPy) < f FdPy f £dP,

this product structure of Ry(() allows one to bound R‘ZI(P, Py) in terms of products of
an L*(Py)-norm of a difference of parameter of g(d(L(T)), L(T)) with its true value
and a difference of a parameter of O with its true value. Specifically, we can bound
RY(P, Py) with a sum of terms of the type || 0 | — Q;l+1(Po)_||p0|| 80:1 = 80,0 llp,- This
bounding relies on the positivity assumption that go o.7(d(L(T)), L(T)) > ¢ > 0O for
some & > 0. We can apply this second-order expansion at the TMLE (Q%, g,,). This

results in the following identity:
P05 = PO = —PoD™ (05", gn) + Roo(QY) 8» O £0)-
Combined with P, D% (Q4*, g,) = 0, this results in

QM) — P8 = (P — Po)D™ (O, 84) + Rao(02", 80, 04, 80)- (4.1)

4.5.3 Asymptotic Efficiency

This provides a perfect basis for establishing asymptotic efficiency of the TMLE
P4(Qd") of YI(Q2). Firstly, assume that

Rao(0%*, gy, 04, 80) = op(n™"/%). (4.2)

By the above mentioned Cauchy-Schwarz bound (4.2) holds if || g,0: — 0.0 llp,ll
o =08\ llpy=op(n™"/*) forallt = 1,..., T. For example, the latter will hold if
we estimate each of the nuisance parameters at a rate faster than n~'/* with respect
to || - |lp,-norm. On the other hand, knowledge about gy may allow one to estimates
go at a significantly faster rate than n~'/4, in which case one can estimate Qg ata
significantly slower rate than n~'/4, as long as the product of the rates is of smaller
order than n~'/2, In observational studies in which little is known about 8o, in order
to satisfy this assumption (4.2) we will need to use highly adaptive estimators such
as a super learner in which the library includes the highly adaptive lasso estimator
(see Chap. 6).
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Combining (4.2) with (4.1) results in the following equation:
PO = PUQY) = (Pu— Po)D™ (0", ) + 0p(n™ ).
In addition, we will assume

DY (0%, g,) falls in a Py-Donsker class with probability tending to 1. 4.3)

n

For example, if O is a J-dimensional vector, we could define the Donsker class as all
real-valued multivariate cadlag functions on a multivariate cube ]—[;:1 [0,7] C ]RiO
with sectional variation norm smaller than a given constant M < oo (see Chap. 6).
In practice, this corresponds with avoiding estimators that overfit the data. This
Donsker class assumption can be avoided by using cross-validated TMLE (see
Chap. 7). Given assumption (4.2) one certainly expects that the following consis-
tency assumption holds:

Po{D™ (0%, g,) — D™(QY, go)}* — 0 in probability, as n — co. (4.4)

Empirical process theory teaches us that if f, is a random function of O that falls
in a Py-Donsker class with probability tending to 1 and Pof? — 0 in probability as
n — oo, then (P, — Py)f, = op(n~'/?). Application of this fundamental empirical
process result shows that

(Pu = P))D™ (0}, ) = (Pn = PO)D™ (05, g0) + op(n™"").
We have now shown the desired asymptotic efficiency of the TMLE:
PO = PUQY) = (Pu— Po)D™ (0, 80) + op(n™'1?). 4.5)
We can formulate this as a formal theorem.

Theorem 4.1. Assume (4.2), (4.3) and (4.4). Then, &Vd(Qz*) is an asymptotically
efficient estimator of Y’d(Qg). In particular,

Vi — y8) =4 N, 0%,

where 0‘6’2 = Po{D¥(Py))? is the variance of the efficient influence curve.

4.5.4 Inference

An immediate consequence of the above established asymptotic linearity and ef-
ficiency is that ¥9(Q%) + 1.960,/n'/? is an asymptotic 0.95-confidence inter-
val, where o is a consistent estimator of the variance 0"52 of the efficient in-
fluence curve. We can estimate 0"52 naturally with the empirical sample variance
P.{D* (0%, g,)}* of the estimated efficient influence curve D*¥(Q%, g,).

n n
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Suppose now that one is concerned with estimating E(Y¢) for a collection of rules
d varying over a set 9. One could now define the vector valued target parameter as
PP(P) = (PUP) : d € D). Let 0P = (Q? : d € D). In that case, the above analysis
shows that, if we assume the above assumptions (4.2), (4.3), and (4.4) for all d € D,
then the TMLE y2* = ¥P2(0%%) of y = ¥P(QP) is asymptotically linear with
vector-valued influence curve DP*(Py) = (D%*(Py) : d € D). In this case, we have
that Vn(y?* — l//OD ) =4 N(0,2)) as n — co, where the asymptotic covariance matrix
2 of the normal limit distribution is given by the covariance matrix of the vector
influence curve

2 = Po{DP* (P){{D™" (Py)}.

We can estimate this covariance matrix consistently with the empirical covariance
matrix
Dy (D
Z‘n = Pn{Dn *}{D” *}T»

where Dﬁ)* is the plug-in estimator of D?*(Py), as above described for the single
valued parameter wg . This result allows one to carry out simultaneous inference for
(EY? : d € D). For example,

dx* 2
Y = qoos o n'!

is an asymptotic 0.95-simultaneous confidence interval for 1//6’, where g5, is the
0.95-quantile of max; | Z(j) |, Z ~ N(0, p,), and p, is the correlation matrix of 2),.
By the delta method, the asymptotic linearity of the TMLE of ¥ (Py) also implies
the influence curve (and thus inference) of a plug-in TMLE of any differentiable
function of (EY? : d € D). One class of examples of such a differentiable summary
measure of (EY? : d € D) is a projection of this dose-response curve (EY? : d € D)
onto a working marginal structural model (mg(d) : d € D) (Petersen et al. 2014).

4.6 Notes and Further Reading

Many estimation techniques have been developed for dynamic interventions (Mur-
phy 2003; Robins 2004; Moodie et al. 2007; van der Laan 2006a; van der Laan and
Petersen 2007; Robins et al. 2008b; Bembom and van der Laan 2008; Orellana et al.
2010). Notably, Robins (2000) and Bang and Robins (2005) present a sequential
regression estimator for the mean outcome under a static rule. Previous work devel-
oping LTMLE includes van der Laan and Gruber (2012) and Petersen et al. (2014).
This chapter also benefited from conversations and prior collaborations with Susan
Gruber, Maya Petersen, Michael Rosenblum, Sharon-Lise Normand, and Mireille
Schnitzer.
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Chapter 5
One-Step TMLE

Mark J. van der Laan, Wilson Cai, and Susan Gruber

In this chapter, we will present one-dimensional universal least favorable paramet-
ric submodels for the TMLE of univariate and multivariate target parameters. They
guarantee that a single TMLE-update of the initial estimator already solves the
efficient influence curve equation. We explain why this type of one-step TMLE
is more stable than an iterative TMLE. By the fact that the one-step TMLE for
high-dimensional or even infinite-dimensional target parameters is a substitution
estimator, it follows that it completely respects the structure of the infinite dimen-
sional parameter. The content of this chapter partly relies on van der Laan and Gru-
ber (2016). As an example, we present a one-step TMLE of a complete treatment-
specific survival function.

5.1 Local and Universal Least Favorable Submodels

Let’s first consider one-dimensional target parameters. A least favorable model at
P is a model 8* = {P;+ : €}, dominated by P, for which P.o;- = P, and that
maximizes the submodel specific Cramer-Rao lower bound for the asymptotic vari-
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ance of a regular asymptotically linear estimator of ¥(P.) for submodel {P, : €}
defined by

( % T(Pf»h)|e=0)2

dPe
dpP

e=0

It maximizes CR(h | P) over all such parametric submodels {P., : €} with k varying
over some index set whose closure of the linear span generates the full tangent space
T(P)C L%(P) of the model at P. Given the pathwise differentiability with canonical
gradient D*(P), denoting the score of {P.;, : €} at € = 0 with S, it follows that this
criterion for a submodel can be represented as follows:

(PD*(P)S )’

CR(h| P) = P52

[l

By the Cauchy-Schwarz inequality, it follows that this is maximized over all scores
in the tangent space T(P) by S = D*(P). Thus, a least favorable model can also be
defined as any parametric model through P that has a score at P equal to D*(P).

By using a second-order Taylor expansion of € — PlogdP.;/dP at e = 0 and
that this equals the information PS2, it follows that, under some smoothness as-
sumptions on the submodels, the criterion can also be represented as

. (P(Pep) — P(P))?
R(h| P) =1 ' .
CROIP) = I P logdP_yjdP

This shows that CR(h | P) equals the square change in the target parameter divided
by the change in log-likelihood at P at an infinitesimal €. Therefore, we will say that
the path {P, - : €} that maximizes CR(% | P) follows at € = 0 (i.e., locally) a path of
maximal change in target parameter per unit of information.

To stress that the desired optimality property only applies locally, we will refer
to such a submodel as a locally (i.e., at € = 0) least favorable submodel.

This latter representation of the criterion is intuitively appealing. A sensible goal
of a submodel {P, : €} through P is that a small fluctuation of P yields a maximal
change in target parameter, making the MLE ¢, = arg max, P, log dP./dP (as used
in TMLE) for this parametric model locally all about fitting the target parameter,
not wasting data for anything else.

The intuition of TMLE has always been to minimally increase the empirical
fit of the initial estimator while achieving the desired bias reduction for the target
parameter, measured by solving P,D*(P;) with a good estimator P} of Py (so not
worse than P°). However, if P is far away from Py, the MLE €” will be far from
local. Even though it moves in the right direction at € ~ 0, there is no guarantee that
it follows a path of maximal change in target parameter per change in distribution
once € moves farther away from zero. In the end, that means that the TMLE might
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not have followed such a targeted path after all, and it might have taken various
iterations to finally end up with a local € ~ 0 at which point the algorithm stops.
The distribution PY might have changed much more than needed to obtain the bias
reduction in the target parameter. That is, the desired bias reduction came at an
unnecessary cost of data fitting so that ¥(P}) will have larger finite sample variance
than needed. Based on this insight, we would like to construct a TMLE that is based
on a path that at each € (not just at € = 0) follows a path of maximal change in target
parameter per unit of information. We will refer to such a path as a universal least
favorable submodel.
Definition 5.1. Suppose that, given a P € M, Ulfm(P) = {P. : € € (-a,a)} c M
is a parametric submodel dominated by P, such that P..o = P and for each € €
(—a,a) Cc R, we have

d 1 dP.

de % dp

Then, we say that Ulfm(P) is a universal least favorable submodel through P.

= D*(P,). 5.1)

That is, this least favorable model is not only least favorable at € = 0, it is a least
favorable model at each P, € Ulfm(P). This chapter proposes such universal least
favorable submodels and corresponding targeted maximum likelihood and targeted
minimum loss-based estimators.

A very nice by-product of these universal least favorable submodels is that
the TMLE always “converges” in one step, as shown in next subsection. This
reflects the above intuition of a universal least favorable submodel as a short-
est path submodel in the sense that it achieves the desired bias reduction at
minimal increase in empirical log-likelihood.

5.2 A Universal Least Favorable Submodel for Targeted
Maximum Likelihood Estimation

Let P? be an initial estimator of Py. Suppose that, given a P € M, we can construct
a universal least favorable parametric model Ulfm(P) = {P, : € € (—a,a)} c M. If
we use this as parametric submodel in the TMLE, then the TMLE converges in one

step. That is, let
0
n,e
PO

e = arg max P, log
€

n =

One can replace the maximum € by the local maximum closest to € = 0, which is
what we recommend in case the selected universal least favorable submodel allows
for multiple local maxima. Let Py, = P° ,. Since ¢, is a local maximum it solves its

score equation, given by P,D*(P.) = 0. That is, it achieves the goal of solving the
desired efficient influence curve equation in one step. Further iteration will not yield
further updates: the next MLE
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1
e,% = arg max P, log dTn}: =0.

Therefore, the TMLE of yo = ¥(Py) is given by the one-step TMLE ¢ = ¥(P)).
In addition, we strongly suspect that a TMLE using such a universal least favor-

able model will often perform better in finite samples than an iterative TMLE using

a local (nonuniversal) least favorable submodel. In addition, it is philosophically su-

perior by always following a path along € in which the rate of square change in the

parameter by unit of information is maximized at each e-value.

5.2.1 Analytic Formula

This motivates us to consider if such a universal least favorable model exists and
can be constructed. The answer is, yes, as our constructions below demonstrate. In
the following we use p. for the density of P, with respect to P, so that p = 1, but
we will still use p (in case one wants to use the formulas for densities with respect
to another dominating measure). For € > 0, we recursively define

Pe = PEXp ( f ‘ D*(Px)dx), (5.2)
0

and, for € < 0, we recursively define

0
Pe = pexp (— f D*(Px)dx).

Theorem 5.1. Consider the definition of {P. : € € (—a,a)} above. We have that
{P. : € € (—a,a)} is a set of probability distributions dominated by P, Py = P,
and, for each € € (—a, a), we have

d dP,

4,
de 24P

= D*(Pe).
Proof. Tt follows trivially that for each e, i log pe = D*(Pe). It remains to verify
that p. satisfies f pe(0)dP(0) = 1 (obviously, p. > 0). Define C(e, P) = f pedP.
Consider the probability density p.; = C(e, P)~! p.. We have that its score at € is
given by:

S (e, P) = ! dC( P) + D*(P,)

“ = Clepyde © <

We know that P.S (e, P) = 0. Since P.D*(P,) = 0, this implies that diEC(e, P)=0.
Thus, C(e, P) = C(0, P) = 1. This completes the proof. O

Note that this recursive relation (5.2) allows one to recursively solve for peige,
given {p, : x € [0, €]}, in the sense that (e.g.) for € > 0,
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Pe+de

= exp(D*(P.)de) = (1 + deD*(P.)).

€

This differential equation is equivalent to stating that d% log pe = D*(P,). This im-
plies a practical construction that starts with p, -0 = p and recursively solves for

Py, = a1+ (6 = xj2DD*(Py, ), = 1,0, N,

for an arbitrary fine grid 0 = xp < x; < ... < xy = a. Similarly, one determines
recursively

P-x; = P (1= (xj = x;-)D*(P_, ), j=1,...,N.

If the model M is nonparametric, then this practical construction is a submodel
of M. But if the model is restricted, the practical construction above might select
probability distributions P,; that are not an element of M, even though it has score
at x; equal to D*(P,;) in the tangent space at Py, of the model M. Nonetheless, this
practical construction of this least favorable model can be used for any model M, as
long as one can extend the target parameter ¥ to be well defined on the probability
distributions in this discrete approximation of the theoretical least favorable model.
The TMLE will still only require one step and be asymptotically efficient for the ac-
tual model M under regularity conditions. In addition, in the next subsection, Theo-
rem 5.2 proves that under mild regularity conditions, quite surprisingly, the theoret-
ical formula (5.2) for this universal least favorable model, defined as a limit of the
above practical construction when the partitioning gets finer and finer, is an actual
submodel of M. Another way of viewing this result is that by selecting the partition-
ing finely enough in the above practical construction {py;, p—y; : j = 0,..., N}, we
obtain a sequence of densities that are arbitrarily close to the model M. Below we
will also provide an alternative to the above practical construction that does preserve
the submodel property while it still approximates the theoretical formula (5.2).

5.2.2 Universal Least Favorable Submodel in Terms of a Local
Least Favorable Submodel

An alternative representation of the above analytic formula (5.2) is given by a prod-
uct integral representation. Let de > 0. For € > 0, we define

Pesae =p | | 1+ D*(Pydx),

x€(0,€]

and for € < 0, we define

Peae=p | | (1= D*(Pyd).
x€[€,0)
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In other words, p,.4x = px(1 + D*(P,)dx), or, another way of thinking about this, is
that p,. 4, is obtained by constructing a least favorable model through P, with score
D*(P,) at P,, and evaluate it at parameter value dx, slightly away from zero. This
suggests the following generalization of the universal least favorable model whose
practical analogue will now still be an actual submodel of M.

Let 0 = xp < x; < ... < xy = a be an equally spaced fine grid for the interval
[0,a]. Let h = x; — x;-; be the width of the partition elements. We will provide
a construction for Py, j=0,...,N. This construction is expressed in terms of a
mapping P — {P:sfm : 6 € (—a,a)} € M that maps any P € M into a local least
favorable submodel of M through P at § = 0 and with score D*(P) at § = 0, where
a is some positive number. For any estimation problem defined by M and ¥ one
is typically able to construct such a local least favorable submodel, so that this is
hardly an assumption. Let P,—o = P. Let p,, = picf()‘f‘h, and, in general, let Pxjpy = pf;f}l,
j=12,...,N — 1. Similarly, let —a = —xy < —xy-1 < ... < —x1 < x9 = 0 be
the corresponding grid for [~a, 0], and we define p_,,, = PIET pi=1L...,N-1
In this manner, we have defined Py, Py, j= 0,...,N, and, by construction, each
of these are probability distributions in the model M. The choice N defines an end
value a, but one does not need to a priori select N. One only needs to select a small
dx = xj — x;_1, and continue until the first local MLE is reached. This construction
is all we need when using the universal least favorable submodel in practice, such
as in the TMLE.

This practical construction implies a theoretical formulation by letting N con-
verge to infinity (i.e., let the width of the partitioning converge to zero). That is, an
analytic way of representing this universal least favorable submodel, given the local
least favorable model parameterization (¢, P) — p'™, is given by: for € > 0 and
de > 0, we have

_ _Ifm
p€+d6 - pg,dg'

This allows for the recursive solving for p. starting at p.-o = p, and since plsf’; eM,
its practical approximation will never leave the model M.

Utilizing that the least favorable model & — plfm is continuously twice differen-
tiable with a score D*(P,) at h = 0, we obtain a second-order Taylor expansion

1fm d 1fm

Pede = Pe+ 7pPei| dﬁﬂmﬁﬂ:m0+ﬁﬁwm+mw¥%

so that we obtain
Derde = pe(1 + deD*(P)) + O((de)).

Pe = PEXp ( f D*(Px)dx).
0

Thus, we obtained the exact same representation (5.2) as above. This proves that,
under mild regularity conditions, this analytic representation (5.2) is a submodel of
M after all. But, when using its practical implementation and approximation, one

This implies:
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should use an actual local least favorable submodel in order to guarantee that one
stays in the model. We formalize this result in the following theorem.

Theorem 5.2. Let O be a maximal support so that the support of a P € M s a
subset of O. Suppose there exists a mapping P — {P}Sfm 10 € (—a,a)} ¢ M that
maps any P € M into a local least favorable submodel of M through P at § = 0
and with score D*(P) at 6 = 0, where a is some positive number independent of P.
In addition, assume the following type of second-order Taylor expansion:

m d m
plefde = pE dhplgth dE + RZ(PE, dE),

where

sup sup | Ry(pe. de)(0) |= O((de)?).
€ 0€0
We also assume that sup,sup,.o | D*(Pe)pe | (0) < oo. Then, the universal least
favorable {p. : €} defined by (5.2) is an actual submodel of M. Its definition corre-
sponds With peyge = plef’rﬂ‘;g whose corresponding practical approximation will still be
a submodel.

5.3 Example: One-Step TMLE for the ATT

The iterative TMLE for estimating the average treatment effect among the treated
(ATT) parameter returns to the data several times to make a sequence of local moves
that updates the estimate of 9,(A, W) and 2,(A, W) at each iteration. In contrast,
the one-step TMLE using the universal least favorable submodel fits the data once,
where the MLE step requires a series of micro updates within a much smaller local
neighborhood defined by a tuning parameter step size, de. When there is sufficient
information in the data for estimating the target parameter these two approaches can
be expected to have comparable performance. When there is sparsity in the data
theory suggests the one-step TMLE will be more stable, having lower variance than
the iterative TMLE.

Let O = (W,A,Y) ~ Py and let M be a nonparametric statistical model. Let ¥ :
M — R be defined by ¥(P) = Ep(Ep(Y |A=1,W)—-Ep(Y |A=0,W)| A =1).
The efficient influence curve of ¥ at P is given by van der Laan et al. (2013b):

D*(P)(0) = Hi(g, 9)(A, W)(Y — Q(A,W)) + {Q(l W) — 00, W) — P(P)},
where g(a | W) = P(A=a| W), O(a,W) = Ex(Y | A = a, W), g = P(A = 1), and

A (1-Agl|W)
H(g, A W) == - — ">~
1(g, 9)( ) p 2201 W)
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We note that

gl |w)

7(P) =¥ (0w, 0,89 = f{Q(l,W) - 00, w)} dQw(w),

where Qw is the probability distribution of W under P. So, if we define O =
(Ow, 0, g, q), then ¥(P) = ¥,(Q). For notational convenience, we will use ¥(P)
and Y(Q) interchangeably. Since we can estimate Qw and ¢ with their empirical
probability distributions, we are only interested in a universal least favorable sub-
model for (0, g). We can orthogonally decompose D*(P) = Di(P) + D5(P) + D5(P)
in Lg(P) into scores of 0, g, and Qy, respectively, where

Di(P) = Hi(g, q)(A, W)Y — Q(A, W))
D3(P) = Hy(Q)(W)(A — g(1 | W)

1|W) - _
pypy = & q' (0L W) - 00, W) - #(Q)),

and
O(1,W) - 00, W) — Y’(Q)'
q

Thus the component of the efficient influence curve corresponding with (0, g) is

given by D}(Q) + D3(Q).
‘We consider the following loss-functions and local least favorable submodels for
0 and g (van der Laan et al. 2013b):

Hy(Q)(W) =

Li(0)(0) = —{Ylog O(A, W) + (1 = Y) log(1 — Q(A, W))}
LogitQ'™ = LogitQ — eH,(g, q)

Ly(8)(0) = —{Alog g(1 | W) + (1 — A)log g(0 | W)}
Logitg™ = Logitg — eH»(Q).

€

We now define the sum loss function L(Q, g) = L1(Q) + L,(g) and local least favor-
able submodel {Q!™, gI™ : ¢} through (0, g) at € = 0 satisfying

d _
d—L(Q‘:m, g™ = Di(Q) + D5(Q).
€ e=0

Thus, we can conclude that this defines indeed a local least favorable submodel

for (0, ¢)-

In our previous work on the TMLE for the ATT, we implemented the TMLE
based on the local least favorable submodel {Qleflm, glefzm . €], 6}, using a separate
€ and & for Q and g. This TMLE can also be implemented using a single € by
regressing a dependent variable vector (Y, A) on a stacked design matrix consisting
of an offset and covariate H, the vector (H(g, q)(A, W), H,(Q)(W). This TMLE
require several iterations until convergence, whether it is implemented using a single

€ or separate (€r, €).
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The universal least favorable submodel (5.3) is now defined by the following
recursive definition: for € > 0 and de > 0,

LogitQ_e+d6 = LOgthIEf,idne
= LogitQ, — deH;(ge, q)
Logitge+d6 = Logltglef,rt?e

= LOgitge - dEH2(QW7 Q_e’ q)

Similarly, we have a recursive relation for € < 0, but since all these formulas are
just symmetric versions of the € > 0 case, we will focus on € > 0. This expresses
the next (Qeide, erde) 1n terms of previously calculated (Q,, g, : x < €), thereby
fully defining this universal least favorable submodel. This recursive definition cor-
responds with the following integral representation of this universal least favorable
submodel:

€
LogitQ. = Logit0 - f Hi (g )dx
0
Logitg, = Logitg — f H>(Qw, O, q)dx.
0

Let’s now explicitly verify that this indeed satisfies the key property of a universal
least favorable submodel. Clearly, it is a submodel and it contains (Q, g) at € = 0.
The score of O, at € is given by Hi(ge, ¢)(Y — Q) and the score of g, at € is given
by Hy(Qw, Qc, @)(A — 8(W)), so that

d - _ _
%L(Qe’ 8e) = Hi(ge, (Y — Qc) + Ha(Qw, Oc, O)(A — (W)
= DT(QWa QE7 8e> Q) + DZ(QW» QE7 8es 4),

explicitly proving that indeed this is a universal least favorable model for (0, g).

The TMLE based on the universal least favorable submodel above is imple-
mented as follows, given an initial estimator (Q, g). One first determines the sign
of the derivative at 1 = 0 of P,L(Qs, gx). Suppose that the derivative is negative
so that it decreases for 2 > 0. Then, one keeps iteratively calculating (Qc.ge, 8esde)
for small de > 0, given (Qy, g : x < €), until P,L(Qcide, erde) = Pul(Qe, go),
at which point the desired local maximum likelihood ¢, is attained. The TMLE of
(Do, go) is now given by QE”, 8e,» Which solves P,{D}(Qc,) + D3(Q¢,)} = 0, where
Qc, = (Qwn, Oe,» 8c,»qn), and Qw,, g, are the empirical counterparts of Qwy, go.
Since, we also have P,D3(Q,) = 0, it follows that P,D*(Q,,) = 0. The (one-step)
TMLE of ¥ (Qyp) is given by the corresponding plug-in estimator ¥(Q,, ).

Simulation. In van der Laan and Gruber (2016), we present two simulation studies
demonstrating these properties. Here we report on the first simulation. The itera-
tive TMLE was implemented using a single €, the closest analog to the one-step
TMLE. For details, including source code, we refer to van der Laan and Gruber
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(2016). For this study, 1000 datasets were generated at two sample sizes, n = 100
and n = 1000. Two normally distributed covariates and one binary covariate were
generated as W, ~ N(0,1), W, ~ N(0,1), W3 ~ Bern(0.5). All covariates are
independent. Treatment assignment probabilities are given by P(A = 1 | W) =
expit(-0.4 — 0.2W; — 0.4W, + 0.3W3). A binary outcome, Y was generated by set-
ting P(Y = 1| A, W) = expit(—1.2-1.2A - 0.1W; — 0.2W;, — 0.1W3). The true value
of the ATT parameter is ¢y = —0.1490. There are no theoretical positivity violations
(treatment assignment probabilities were typically between 0.07 and 0.87), but at
the smaller sample size there is less information in the data for estimating go within
some strata of W. This suggests that some of the generated data sets will prove more
challenging to the iterative TMLE than to the one-step TMLE. Estimates were ob-
tained using correct and misspecified logistic regressions for the initial estimates of
Qo and go. Q.. Was estimated using a logistic regression of ¥ on A, Wi, W,, Ws.
Onmis Was estimated using a logistic regression of ¥ on A, W;. We estimated g.,, us-
ing a logistic regression of A on Wy, W,, W3, and g,,,;; was estimated using a logistic
regression of A on W;. Bias, variance, mean squared error (MSE), and relative effi-
ciency (RE = MSE,c-spp / MSE;,) are shown in Table 5.1. RE < 1 indicates the
one-step TMLE has better finite sample efficiency than the iterative TMLE.

The one-step and iterative TMLEs exhibit similar performance when n = 1000,
with RE = 1. When n = 100, the iterative TMLE failed to converge for 24 of the
1000 datasets. The performance of the two TMLEs on the remaining 976 datasets
was quite similar. However, the fact that the bias, variance, and MSE of the one-step
TMLE are larger when evaluated over all 1000 datasets tells us that the 24 omitted
datasets where the iterative TMLE failed were among the most challenging. One
way to repair the performance of the iterative TMLE is to bound predicted outcome
probabilities away from 0 and 1. We re-analyzed the same 1000 datasets enforcing
bounds on Q, of (107, 1-107°) for both estimators. This minimal bounding pre-
vents the iterative TMLE from failing, and should not introduce truncation bias.
Bounding 0, allowed the iterative TMLE to produce a result for all analyses. En-
forcing bounds had no effect on estimates produced by the one-step TMLE. This
confirms that the strategy of taking many small steps within a local neighborhood
whose boundaries shift minutely with each iteration helps avoid extremes. Although
the iterative TMLE no longer failed when O, was bounded, it had higher variance
and MSE than the one-step TMLE. Efficiency gains of the one-step TMLE were
between 7 and 28%. See Table 5.1.

5.4 Universal Least Favorable Model for Targeted Minimum
Loss-Based Estimation

Let’s now generalize this construction of a universal least favorable with respect
to log-likelihood loss to general loss functions so that the resulting universal least
favorable submodels can be used in the more general targeted minimum loss-based
estimation methodology. We now assume that ¥(P) = ¥;(Q(P)) for some parameter
0 : M — Q(M) defined on the model and real valued function ¥;. Here Q(M) =
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Table 5.1 Simulation study

61

Bias Variance MSE
One-step  Iterative One-step Iterative One-step Iterative RE
n = 1000
Q correct
8ecor  —0.00042  —0.00042 0.00059  0.00059 0.00059  0.00059 1.00
gmis  —0.00050 —0.00050 0.00057  0.00057 0.00057  0.00057 1.00
Q misspecified
8ecor  —0.00035 —0.00035 0.00059  0.00059 0.00059  0.00059 1.00
8mis 0.01210  0.01210 0.00049  0.00048 0.00063  0.00063 1.00
n = 100, all runs
Q correct
8cor 0.00049 0.00694 0.00693
8mis  —0.00215 0.00635 0.00635
Q misspecified
8cor 0.00113 0.00685 0.00684
Emis 0.01226 0.00528 0.00543
n = 100, (24 runs omitted)
Q correct
8cor 0.00296  0.00295 0.00679  0.00678 0.00679  0.00679 1.00
8mis 0.00023 0.00023 0.00621  0.00621 0.00621  0.00620 1.00
Q misspecified
8cor 0.00357 0.00363 0.00671  0.00669 0.00671  0.00670 1.00
8mis 0.01474  0.01473 0.00509  0.00509 0.00530  0.00530 1.00
n = 100, Q bounded?®
Q correct
8cor 0.00049 -0.00182 0.00694  0.00781 0.00693  0.00781 0.89
gmis —0.00215 —-0.00168 0.00635  0.01033 0.00635  0.01033 0.62
Q misspecified
8cor 0.00113  —0.00052 0.00685  0.00738 0.00684  0.00738 0.93
&mis 0.01226  0.01031 0.00528  0.00592 0.00543  0.00602 0.90

2Bounding Q, had no effect on estimates produced when n = 1000
Bias, variance, MSE and RE of the one-step TMLE and iterative TMLE over 1000 Monte Carlo

simulations (n = 1000 and n = 100)

{O(P) : P € Mj denotes the parameter space of this parameter Q. Let L(Q)(O) be
a loss-function for Q(P) in the sense that Q(P) = arg mingegmy PL(Q). With slight

abuse of notation, let D*(P) = D*(Q(P), G(P)) be the canonical gradient of ¥ at
P, where G : M — G(M) is some nuisance parameter. We consider the case that

the efficient influence curve is in the tangent space of Q, so that a least favorable

submodel does not need to fluctuate G: otherwise, just include G in the definition of

0. Given, (Q, G), let {QLfm : € € (—a,a)} € Q(M) be a local least favorable model
w.r.t. loss function L(Q) at € = 0 so that

d
- L™ = D"Q,0).
€ e=0

The dependence of this submodel on G is suppressed in this notation.
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Let 0 = xp < x; < ... < xy = a be an equally spaced fine grid for the interval
[0,a]. Let h = x;—x;_; be the width of the partition elements. We present a construc-
tionfor Q,,, j=0,...,N.Let Q.- = Q. Let O\, = 0'™  and, in general, let Q. ,, =

X(),I’l’
g:}l,] =12,...,N—-1. Similarly, let—a=—xy < —xy_1 <...<—x1 <xp=0be
the corresponding grid for [—a, 0], and we define Qv = Ql_ﬁ;‘ pd=1...,N-1
i
In this manner, we have defined Qs> O—sjp J = 0,...,N, and, by construction, each

of these are an element of the parameter space Q(M). This construction is all we
need when using this submodel in practice, such as in the TMLE.

An analytic way of representing this loss-function specific universal least favor-
able submodel for € > 0 (and similarly for € < 0) is given by: for € > 0, de > 0,

Qerae = O, (5.3)

allowing for the recursive solving for Q. starting at Q.-9 = @, and since Qlﬁ“
Q(M), its practical approximation never leaves the parameter space Q(M) for Q

Let’s now derive a corresponding integral equation. Assume that for some
L(0)(0), we have

7 d 1fm
o = L(Qe) the,h

Then, by the local property of a least favorable submodel,

_ D@6

Ifm
Q h=0 L(Qe)

Utilizing that the local least favorable model & — Qlff‘,f’ is twice continuously differ-

entiable with derivative D*(Q., G)/L(Q.) at h = 0, we obtain the following second-
order Taylor expansion:

oM = 0+ —Qlfm
_ D*(Q.,G) 2
= Q.+ —L(Q ) de + O((de)?).

€

de + O((de)?)
h=0

Note that Q. can also be represented as Q“ This implies the following recursive
analytic definition of the universal least favorable model through Q:

D*(Q:.G) G)
x. 5.4
0+ f N (5.4)
Similarly, for € < 0, we obtain
D*(QX,G)
=e- f L(Qy)

As with the log-likelihood loss (and thus Q(P) = P), this shows that, under
regularity conditions, this analytic representation for Q. is an element in Q(M),
although using it in a practical construction (in which integrals are replaced by sums)
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might easily leave the model space Q(M). On the other hand, our above practical
construction in terms of the local least favorable model and discrete grid represents
the desired practical implementation of this universal least favorable submodel. The
following theorem formalizes this result stating that the analytic formulation (5.4)
is indeed a universal least favorable submodel.

Theorem 5.3. Given, any (Q,G) compatible with model M, let {Qfsfm 0 €
(—a,a)} € QM) be a local least favorable model w.r.t. loss function L(Q) at
0 = 0 so that

d 1
— ™| =b* .
7 (Qs )6:0 (0,6)
Assume that for some L(Q)(O), we have
d . d
Lo =Lo) oo
€ =0 de e=0

Consider the corresponding model {Q. : €} defined by (5.4). It goes through Q at
€ =0, and, it satisfies that for all €

d *
d—L(Qe) = D*(Q, G). (5.5)
€
In addition, suppose that the a > 0 in the local least favorable submodel above

can be chosen to be independent of the choice (Q,G) € {Q, G, : €}, and assume the
following second-order Taylor expansion:

d
QE‘JS =0+ %Qlj’; . de + Ry(Q, G, de)

D*(Q., G
= 00+ Z9D e s Ry(0..G.de)
L(Qe)
where
sup sup | R2(Qe, G, de)(0) |= O((de)*).
€ o€
We also assume that sup, sup . | DZ(QQ“)G )(0) |< oo.

Then, we also have {Q. : €} C Q(M).
Proof. Let € > 0. We have

d < D*(0,,G . d
—L(Q+ f @ )dx) = L(Q) -0
0 €

de L(Qy)
i D' (0, G)
= L(Q:)—
(Co L(Qe)

= D"(Q., G).

This completes the proof of (5.5). The submodel statement was already shown
above, but we now provided formal sufficient conditions. O
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5.5 Universal Canonical One-dimensional Submodel
for a Multidimensional Target Parameter

Let ¥ : M — H be a Hilbert-space valued pathwise differentiable target param-
eter. Typically, we simply have H = R? endowed with the standard inner product
(x,y) = 27:1 x;y;. However, we also allow that ¥(P) is a function t — ¥(P)(?)
from 7 € R to R in a Hilbert space L*(A) endowed with inner product (hy, hy) =
f hi(H)hy(t)dA(t), where A is a user supplied positive measure with f dA(t) < oo. For
notational convenience, we will often denote the inner product {h;, hy) with thhz,
analogue to the typical notation for the inner product in R Let || h ||I= VR, R
be the Hilbert space norm, which would be the standard Euclidean norm in the
case that H = R?. Let D*(P) be the canonical gradient. If H = RY, then this is
a d-dimensional canonical gradient D*(P) = (D;(P) :j=1,...,d), but in gen-
eral D*(P) = (D;(P) : t € 7). Let L(p) = —log p, where p = dP/du is a density
of P <« u w.r.t. some dominating measure u. In this section we will construct a
one-dimensional submodel {P, : € > 0} through P at € = 0 so that, for any € > 0,

P =l D (PO (56)
€

The one-step TMLE P, with €, = argmin, P,L(P,), or €, chosen large enough
so that the derivative is smaller than (e.g.) 1/n, now solves %P,,L(PS)LZO = 0 (or
< 1/m), and thus | P,D*(P,,) |lI= O (or < 1/n). Note that || P,D*(P,) ||= 0 implies
that P,D;(P.) = 0 for all ¢+ € 7 so that the one-step TMLE solves all desired
estimating equations.

Consider the following submodel: for € > 0, we define

{P,D*(Py)}TD"(Py) )
| D*(Po) |l

<P (P D (Py)
= dx]). 7
pexp (fo D' Py x) o7

Pe = plljo ¢ (1 +

Theorem 5.4. We have {p. : € > 0} is a family of probability densities, its score at
€ is a linear combination of D;(P.) for t € 7, and is thus in the tangent space at
T(P.), and

d "
d—PnL(Pf) =|| P,D*(Pe) || .
€

As a consequence, we have ‘%PHL(PG) = 0 implies || P,D*(P¢) ||= 0.

As before, our practical construction below demonstrates that, under regularity con-
ditions, we actually have that {p, : €} C M is also a submodel.

The normalization by || D*(P,) || is motivated by a practical analogue construc-
tion below and provides an important intuition behind this analytic construction.
However, we can replace this by any other normalization for which the derivative
of the log-likelihood at € equals a norm of P, D*(P,). To illustrate this let’s consider
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the case that H = R?. For example, we could consider the following submodel. Let
2,(P,) = P,{D*(P,)D*(P,)"} be the empirical covariance matrix of D*(P,), and let
271(P,) be its inverse. We could then define for € > 0,

€
De = P eXp (f {PnD*(Px)}TZJ]D*(Px)dX)-
0
In this case, we have

%PnL(PE) = P,D"(Po)" Z,(Po)™' P,D*(Po).

This seems to be an appropriately normalized norm, equal to the Euclidean norm of
the orthonormalized version of the original D*(P,), so that the one-step TMLE will
still satisfy that || P,D*(P,,) ||= 0.

It is not clear to us if these choices have a finite sample implication for the re-
sulting one-step TMLE (asymptotics is the same), and if one choice would be better
than another. Either way, the resulting one-step TMLE ends up with a P, satisfying
P,D*(P.,) = 0 (or op(1/ v/n)), which is the only key ingredient in the proof of the
asymptotic efficiency of the TMLE.

5.5.1 Practical Construction

Let’s define a local least favorable submodel { p};fm : 8} € M by the following local
property: for all &

4 log pim i §=D"(P)"6
46 g Ds 520 = .
For the case that H = R, this corresponds with assuming that the score of the
submodel at 6 = 0 equals the canonical gradient D*(P), while, for a general Hilbert
space, it states that the derivative of log p. in the direction ¢ (a function in H) equals
(D*(P),8) = [ D;(P)S(DdA().

Consider the log-likelihood criterion PnL(Pgm), and note that its derivative at
6 = 0 in the direction 6 equals (P,D*(P), ) = {P,D*(P)}"é. For a small number dx,
we want to maximize the log-likelihood over all ¢ with || ¢ ||< dx, and locally, this
corresponds with maximizing its linear gradient approximation:

6 — {P,D*(P)}"6.

By the Cauchy-Schwarz inequality, it follows that this is maximized over § with
|6 |l< dx by

P,D"(P)
I P,D*(P) |l
where we defined ¢;(P) = P,D*(P)/ || P,D*(P) ||. We can now define our update

Py = Pfsf;'?},, 4o This process can now be iterated by applying the above with P

§3(P,dx) = dx = 5% (P)dx,
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replaced by Py, resulting in an update P,,,, and in general Pk ,. So this updating
process is defined by the differential equation:

_ plfm
Px+dx = Pxﬁf,(P,r)dX’

where Pf‘(‘; is the local least favorable multidimensional submodel above but now
through P, instead of P.

Assuming that the local least favorable model 7 — pf‘,? is continuously twice
differentiable with a score D*(P,) at h = 0, we obtain a second-order Taylor expan-
sion

1fm

d i
plcf,[(%(Px)dx =pxt {%Px,h h—O} 0, (Py)dx + 0((dx))

= pu(1 +{5,(P)} D*(P)dx) + O((dx)),

so that, under mild regularity conditions, we obtain
Pxrdx = Px(1 +{5,(P)} D*(Py)dx) + O(dx)?).

This implies:
< {P.D (P}’
0 ” PnD*(Px) ”

So we obtained the exact same analytical representation (5.7) as above. Since the
above practical construction starts out with P € M and never leaves the model
M, this proves that, under mild regularity conditions, this analytic representation
(5.7) is actually a submodel of M after all. However, for the purpose of keeping
practical implementation and approximation in the model M, one should use the
practical construction above based on an actual local least favorable submodel. We
can formalize this in a theorem analogue to Theorem 5.2, but instead such a theorem
will be presented in Sect.5.7 for the more general targeted minimum loss-based
estimation methodology.

The above practical construction provides us with an intuition for the normaliza-
tion by [| P,D*(P,) |.

Px = pGXP( D*(Px)dX)-

5.5.2 Existence of MLE or Approximate MLE ¢,

Since
P,logp. = f | P,D*(P,) |l dx,
0

and its derivative thus equals || P,D*(P,) ||, we have that the log-likelihood is non-
decreasing in €.
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If the local least favorable submodel in the practical construction of the one-
dimensional universal canonical submodel {p, : € > 0} (5.7) only contains densities
with supremum norm smaller than some M < oo (e.g., this is assumed by the model
M), then we will have that sup,. sup,co pe(0) < M < oo. This implies that P, log p.
is bounded from above by log M. Let’s first assume that lim._ P,log pe < oo.
Thus, the log-likelihood is a strictly increasing function until it becomes flat, if
ever. Suppose that limsup,_,., || P,D*(Py) ||> 6 > O for some ¢ > 0. Then it
follows that the log-likelihood converges to infinity when x converges to infinity,
which contradicts the assumption that the log-likelihood is bounded from above by
log M < oo. Thus, we know that limsup,_, || P,D*(Py) ||= 0 so that we can find an
€, so that for € > ¢, || P,D*(P,) ||< 1/n, as desired.

Suppose now that we are in a case in which the log-likelihood converges to in-
finity when € — oo, so that our bounded log likelihood assumption is violated. This
might correspond with a case in which each p, is a continuous density, but p, starts
approximating an empirical distribution when € — oco. Even in such a case, one
would expect that we will have that || P,D*(P.) ||— 0, just like an NPMLE of a
continuous density of a survival time solves the efficient influence curve equation
for its survival function.

The above practical construction of the submodel, as an iterative local maximiza-
tion of the log-likelihood along its gradient, strongly suggests that even without the
above boundedness assumption the derivative || P,D*(P¢) || will converge to zero as
€ — oo so that the desired MLE or approximate MLE exists. Our initial practical im-
plementations of this one-step TMLE of a multivariate target parameter demonstrate
that it works well and that finding the desired maximum or approximate maximum
is not an issue. We will demonstrate the implementation and practical demonstration
of such a one-step TMLE in the next section.

5.5.3 Universal Score-Specific One-Dimensional Submodel

In the above two subsections we could simply replace D*(P) by a user supplied
D(P), giving us a theoretical one-dimensional parametric model {P. : €} so that
the derivative %PnL(Pe) at € equals || P,D(P¢) ||, so that a corresponding one-step
TMLE will solve P,D(P,) = 0. Similarly, given a local parametric model whose
score at € = 0 equals D(P) will yield a corresponding practical construction of this
universal submodel. One can also use such a universal score-specific submodel to
construct one-step TMLE of a one-dimensional target parameter with extra proper-
ties by making it solve not only the efficient influence curve equation but also other
equations of interest (such as the P,D}(Q;) = P,D3(Q;) = 0 in Sect. 8.4). In the
current literature, solving multiple score equations typically required an iterative
TMLE based on a local score-specific submodel, so that these estimation problems
can be revisited with this new one-step TMLE (see our supplementary material).
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5.6 Example: One-Step TMLE, Based on Universal Canonical
One-Dimensional Submodel, of an Infinite-Dimensional
Target Parameter

An open problem has been the construction of an efficient substitution estimator
¥Y(P;,) of a pathwise differentiable infinite dimensional target parameter ¥ (Py) such
as a survival function. Current approaches would correspond with incompatible es-
timators such as using a TMLE for each ¥(Py)(f) separately, resulting in a non-
substitution estimator such as a nonmonotone estimator of a survival function. In
this section we demonstrate, through a causal inference example, that our univer-
sal canonical submodel allows us to solve this problem with the one-step TMLE
defined in the previous section.

Let O = (W,A,T) ~ Py, where W are baseline covariates, A € {0, 1} is a point-
treatment, and 7 is a survival time. Consider a statistical model M that only makes
assumptions about the conditional distribution go(a | W) = Py(A = a | W) of A,
given W. Let W — d(W) € {0, 1} be a given dynamic treatment satisfying go(d(W) |
W) > 0a.e.Let ¥ : M — H be defined by:

P(P)(1) = EpP(T > t| A = d(W), W), t > 0.

Under a causal model and the randomization assumption this equals the counter-
factual survival function P(T; > 1) of the counterfactual survival time 7, under
intervention d.

Let H be the Hilbert space of real valued functions on Ry endowed with in-
ner product thhz = (hy,hy) = f h1(Hhy(t)dA(t) for some user-supplied positive
and finite measure A. The norm on this Hilbert space is thus given by || & ||=
VhhT = th(t)sz(t). Let 0,(A,W) = P(T >t | A,W), Y(®) = (T > 1), Qw
the marginal probability distribution of W, and Q = (Q, Qw). The efficient influence
curve D*(P) = (D;(P) : t > 0) is defined by:

I(A =d(W)) -~ _
W(Y(I) — O(A, W) +{Q:(d(W), W) — P(P)(1)}

= Dj (s, 0) + D5 (P),

Di(P)(©0) =

where Di,(g.0) is the first component of the efficient influence curve that is a score
of the conditional distribution of T, given A, W. Notice that ¥(P) = ¥1(Qw, Q) =
(QwO; : t > 0). We will estimate Qo with the empirical distribution of Wy, ..., W,,
so that a TMLE will only need to target the estimator of the conditional survival
function Qg of T, given A, W. Let (¢ | A, W) be the density of T, given A, W and
let g,, be an initial estimator of this conditional density. For example, one might use
machine learning to estimate the conditional hazard g,/Qg, which then implies a
corresponding density estimator g,,. We are also given an estimator g, of go.
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The universal canonical one-dimensional submodel (5.7) applied to p = g, is
defined by the following recursive relation: for € > 0,

(fé {PuD’ (81, On)} D} (8ns Onx) )
dn.e = qn €Xp - = dx].
Il D} (gn> On.) Il

To obtain some more insight in this expression, we note, for example, that the inner
product is given by:

{PuD}(8n, On0)} D} (g0, On)(0) = f PuD} (80> On. D} (80> On)(0)AA(D), (5.8)

and similarly we have such an integral representation of the norm in the denomi-
nator. Our Theorem 5.4, or explicit verification, shows that for all € > 0, g, is a
conditional density of T, given A, W, and

diPn 10g6]n,e =|| PnDT(gn, Qn,e) ” .

€

Thus, if we move € away from zero, the log-likelihood increases, and, one searches
for the first €, so that this derivative is smaller than (e.g.) 1/n. Let g, = g,.,, and let
QZ’,(A, W) = fl * q,(s | A, W)ds be its corresponding conditional survival function,
t > 0. Then our one-step TMLE of the d-specific survival function ¥ (Py) is given

by 'r//; = Yj(QW,n: QZ) = QWJ,QZI
‘() = & Z" 5 W), W,
¥, (1) = rpA 0, (d(W)), Wy).

Since ¢, is an actual conditional density, it follows that ¢ is a survival function.
Suppose that the derivative of the log-likelihood at €, equals zero exactly (instead of
being smaller than 1/n). Then, we have || P,D*(g,, Owa, Q_j;) ||= 0, so that for each
t >0, P,D; (g, Qwn, Q) = 0, making () a standard TMLE of ¥(?), so that its
asymptotic linearity for a fixed ¢ can be established accordingly. Let’s now consider
a proof of weak convergence of vn(y! — o) as a random function. Firstly, for
simplicity, let’s assume that an exact MLE is obtained so that P,D*(g,, Owa, Q_*n) =

0. Combined with ¥(Q;) — ¥(Qo) = —PoD*(gn, O;,) + R2((Q,, &), (Qos 80)), where
R>() = (Ry() : t € 7) for an explicitly defined Ry (P, Py), we then obtain

¥, = Yo = (Py = Po)D"(8n, Q) + R2((Q,, 81): (Qo, 80))-

We now assume that {D;(P) : P € Mt € t}is a Py-Donsker class, sup,., Po{D;(gn,

0;) — D; (g0, Qo)}* — 0 in probability, and sup, |[R2:((Q;, gx). (Qo, 80))| = op(n~"12).
Then, it follows that

Vi@ — o) = Vn(P, — Po)D*(Po) + op(n”™''?) =, Go.
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That is, vn(y* — o) converges weakly as a random element of the cadlag function
space endowed with the supremum norm to a Gaussian process G with covariance
structure implied by the covariance function p(s,t) = PoD;(Po)D;(Py). In partic-
ular, if g is known, then R»((Q;, g0), (Qo, 80)) = 0, so that the second-order term
condition sup, | Ry ((Q%, g), (Qo,80)) |= op(n~'/?) is automatically satisfied with
op(n~'/?) replaced by 0. This also allows the construction of a simultaneous con-
fidence band for . Due to the double robustness of the efficient influence curve,
under appropriate conditions, one can also obtain asymptotic linearity and weak
convergence with an inefficient influence curve under misspecification of either g,
or O,.

If we only have || P,D*(P%) ||l= op(n~'/?) (instead of 0), then the above proof still
applies so that we now obtain:

V() — o) = (P, — Po)D*(Po) + 1y,

but where now || 7, ||= op(1/+/n). In this case we obtain asymptotic efficiency
and weak convergence in the Hilbert space L?(A), beyond the point-wise effi-
ciency of ¢ (¢). However, in practice, one can actually track the supremum norm
|| PnD*(Pe,) llo= sup, | P,D;(Pe,) |, and if one observes that for the selected ¢, this
supremum norm is smaller than 1/n, then, we still obtain the asymptotic efficiency
in supremum norm above.

Regarding the practical construction of g, , we could use the following infinite
dimensional local least favorable submodel through a conditional density g given by

gi™ = q(1 + 6" D;(g, Q).

and follow the practical construction described in the previous section for general lo-
cal least favorable submodels. Notice that here 5TD’]‘(g, 0) = f 6(t)D’1‘J(g, 0)dA(?).
In order to guarantee that the supremum norm of the density qg‘“ for local § with
|| & |l< dx remains below a universal constant M < oo, one could present such
models in the conditional hazard on a logistic scale that bounds the hazard between
[0, M]. However, we suspect that this will not be an issue in practice, and since it
may be necessary for the continuous density g, to approximate an empirical distri-
bution in some sense in order to solve || P,D*(P) ||= 0, we do not want to prevent
this from happening.

Moore and van der Laan (2009a,b,c) proposed an iterative TMLE of S 4(#y) for
a given ty, which is defined as follows. Let g, (f|{A, W) and g,(A | W) be initial
estimators of go(f | A, W) and go(A | W) . Let

L(g)(0) = - Z {I(T =nlogqt | A, W)+ (1 - KT = n)log(l - g(t| A, W))}

t<T

be the log-likelihood loss function for (¢ | A, W). We define the local least favorable
submodel through g, as follows:

logitg,, (£) (1A, W) = logitg, (1A, W) + eH,, , (1, A, W),
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where the estimated time-dependent clever covariate is given by

H.,(t,A W)= (I(A = “))(Qn (tolA, W)

o @ )\ 0y (1A, W) )”t S

We have iL(qM) at € = 0 equals DTJ(Q, g). Let Qw;, be the empirical probability
distribution of W. The first-step TMLE update is defined by €, = arg min, P,L(q,.¢)
and g} = gy, This updating process is iterated until €, ~ 0. The final update is
denoted with ¢’ (t | A, W). Let Q’(t | A, W) be the corresponding survival curve. The
iterative TMLE of (%) = S 40(to) is given by

* 1 - %3
Ualto) = ~ 21 Oito | A =1, W)).

Simulation. Firstly, we have
Wi ~ Bern(0.5); W, ~ Bern(0.5); A ~ Bern(0.15 + 0.5W;);

1+0.5W; -0.54

T ~exp 100

In this case

(5 x 107°1) + B(107°1)
120,
2
where @ is the cumulative distribution function for exponential distribution with
rate equal to 1. The second simulation is identical to the first, except that now A ~
Bern (0.05 + 0.5W). The goal of these two simulations is to compare the one-step
TMLE with the iterative TMLE that separately estimates S 4(¢) at each point ¢.
Figure 5.1a provides the iterative TMLE and one-step TMLE for a single data
set with n = 100 observations from the two data generating distributions. Clearly, it
follows that the iterative TMLE is not monotone, while the one-step TMLE is an ac-
tual survival curve. The iterative TMLE is particularly erratic for the data set from
the second data generating distribution. Figure 5.1b provides the relative efficien-
cies at each time point from 0 to 400. In order to demonstrate the confounding, we
also present the Kaplan-Meier estimator among the observations with A; = 1,1 =
1,...,n. We also show the estimate of the treatment-specific survival curve based
on the initial estimator. These results show that the iterative and one-step TMLE are
both unbiased, but that the iterative TMLE is twice as efficient for n = 100. Finally,
Fig. 5.1c presents the estimators for n = 1000, demonstrating that both the one-step
TMLE and the iterative TMLE are asymptotically efficient, and that the above gain
in efficiency represents a finite sample gain that disappears asymptotically.

Sat)=1-
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Fig. 5.1 Single data set for the two simulation settings (a). Monte Carlo approximation of relative
efficiency against iterative TMLE, as a function of t, for sample size 100 (b) and 1000 (c)



5 One-Step TMLE 73

5.7 Universal Canonical One-Dimensional Submodel
for Targeted Minimum Loss-Based Estimation
of a Multidimensional Target Parameter

For the sake of presentation we will focus on the case that the target parameter is Eu-
clidean valued, i.e. H = RY, but the presentation immediately generalizes to infinite
dimensional target parameters, as in the previous section. Let’s now generalize the
construction of a universal canonical submodel to the more general targeted mini-
mum loss based estimation methodology. We now assume that ¥(P) = ¥(Q(P)) €
R for some target parameter Q : M — Q(M) defined on the model and real valued
function ¥; : QM) — R?. Let L(Q)(O) be a loss-function for Q(P) in the sense
that Q(P) = argmingegmy PL(Q). Let D*(P) = D*(Q(P), G(P)) be the canonical
gradient of ¥ at P, where G : M — G(M) is some nuisance parameter. We con-
sider the case that the linear span of the components of the efficient influence curve
D*(P) is in the tangent space of Q, so that a least favorable submodel does not need
to fluctuate G: otherwise, one just includes G in the definition of Q. Given, (Q, G),
let { gm : 6} € Q(M) be a local d-dimensional least favorable model w.r.t. loss
function L(Q) at 6 = 0 so that

d 1fm _ %
%L(Q(s )6=0 =D(Q,06).

The dependence of this submodel on G is suppressed in this notation.

Consider the empirical risk PnL(ng), and note that its gradient at 6 = 0 equals
P,D*(Q, G). For a small number dx, we want to minimize the empirical risk over all
o with || 8 ||< dx, and locally, this corresponds with maximizing its linear gradient
approximation:

§ = {P,D*(Q,G)}76.

By the Cauchy-Schwarz inequality, it follows that this is maximized over ¢ with
I < dx by

P,D*(Q,G)
| P,D*(Q,G)

where we defined 0,(Q) = P,D*(Q,G)/ || P,D*(Q,G) |l. We can now define our
update Qg = Q}Sf“(‘Q 4o This process can now be iterated by applying the above
with Q replaced by Qg,, resulting in an update Q,,,, and in general Qg .. So this
updating process is defined by the differential equation:

6,(0,dx) = dx = 6,(Q)dx,

_ lfm
Oxdx = Qx,&Z (Qx)dx)?

where le“(’; is the local least favorable multidimensional submodel above but now
through Q, instead of Q.
Assume that for some L(Q)(0), we have

d Ifm 7 i 1fm
U] =Leo o (5.9)
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Then,
_ D'(0,,G)

=0 L(QY)

Utilizing that the local least favorable model 7 — QE‘; is continuously twice
differentiable with a score D*(Q,,G) at h = 0, we obtain a second-order Taylor
expansion

el Qltm

6:(0)dx + O((dx)*)

) d
If If
Oifioonx = O+ 50|
D*(Q,,G)"

— * 2
=0+ o) 6,(Qx)dx + O((dx)").

This implies the following recursive analytic definition of the universal canonical
submodel through Q:

D'(Q..G)" ,
=0+ f 70D —————55(Qydx. (5.10)

Let’s now explicitly verify that this indeed satisfies the desired condition so that
the one-step TMLE solves P,D*(Q,, G) = 0. Only assuming (5.9) it follows that

d d
d_PnL(QE) = Pn_L(QE)
€

=P L(Qe) Qe

. %&ﬁf*
= P,L(Q. .—5,, €
QI gy Q9
= PnD*(QE,G)T(SZ(QE)
* . P.D*(0..G)
={P,D e, —
(D (Ce- OV 15 D000
¢ (P,D}(0nG)P
[ PD (0u0) |
I P.D (.G |l

In addition, under some regularity conditions, so that the following derivation in
terms of the local least favorable submodel applies, it also follows that Q. € Q(M).
This proves the following theorem.

Theorem 5.5. Given any (Q, G) compatible with model M, let {Q}sfm 16 € B,(0)} C
O(M) be a local least favorable model w.r.t. loss function L(Q) at 6 = 0 so that

(@Wm=ﬁ@ﬁ)



5 One-Step TMLE 75

Here B,(0) = {x :|| x ||< a} for some positive number a. Assume that for some
L(0)(0), we have
d : , d
_L Ifm — L _ Ifm
hem| =uo ol
Consider the corresponding univariate model {Q. : €} defined by (5.10). It goes
through Q at € = 0, and, it satisfies that for all €

d
Py L(Qe) =l P,D*(Qe. G) I, (.11
€

where || x ||= /Z;?:l x? is the Euclidean norm.

In addition, assume that a in B,(0) can be chosen to be independent of the choice
(0,G) in {(Qe,G) : € > 0}, and assume the following second-order Taylor expan-
sion: for h = (hy, ..., hy),

d
Q% = Qe+ 7, 0| h+RA(Qe Gl

D*(Q.,G
0.+ 229 po.Gn,

L(Qo)
where

supsup | Rx(Qe, G, | 2 (o) I= O((l A |I%).

€ 0e0

D" (Qc.G)
(00

We also assume that sup_sup,.o

0}c M.

(0) |< oo. Then, we also have {Q. : € >



Chapter 6
Highly Adaptive Lasso (HAL)

Mark J. van der Laan and David Benkeser

In this chapter, we define a general nonparametric estimator of a d-variate function
valued parameter . This parameter is defined as a minimizer of an expectation of
a loss function L(i)(O) that is guaranteed to converge to the true i at a rate faster
than n~ /4, for all dimensions d: +/do(¥n, ¥o) = Op(n~ 42 D/®) where do(yr, Yo) =
PoL(y) — PoL(y) is the loss-based dissimilarity. This is a remarkable result because
this rate does not depend on the underlying smoothness of ¢. For example, ¢ can
be a function that is discontinuous at many points or nondifferentiable. The only
assumption we need to assume is that ¥ is right-continuous with left-hand limits,
and has a finite variation norm, so that i, generates a measure (just as a cumulative
distribution function generates a measure on the Euclidean space).
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We refer to our general estimator as the highly adaptive lasso (HAL) estima-
tor. This name stems from the fact that it can be represented as a minimizer of
the empirical risk of the loss over linear combinations of indicator basis func-
tions under the constraint that the sum of the absolute value of the coefficients
is bounded by a data adaptively determined constant. For example, our result
proves that our highly data-adaptive lasso estimator (using the squared error
loss) of a regression function Ey(Y | W), based on observing n i.i.d. observa-
tions O; = (W;,Y;), i = 1,...,n, converges to the truth at a rate faster than

n~'/4, for every dimension d of W: \/ f W (W) — Wo)2(W)dPo(w) = op(n~'/*).
This rate seems to contradict the well known minimax rates of convergence
from the nonparametric density and regression estimation literature. However,
these minimax rates are developed for estimation of these true functions at a
single point, while our result is in terms of a loss-based dissimilarity, which
often corresponds with a square of an L?>-norm.

The HAL estimator appears to be much ‘smarter’ than local smoothers, even
though these local smoothers achieve the minimax rates. For example, consider his-
togram regression estimator using a partitioning of the covariate space for which
each element of the partitioning has a diameter O(h). The bias of such a his-
togram regression estimator will then be O(h) at any point w, while the variance
is O(1/(nh%)). Thus, the optimal rate for 2 minimizing MSE (i.e., setting that vari-
ance equal to the square of the bias) is given by & = O(n~"/¥*?), giving an MSE
that is also O(n~'/4*2), For d = 1 this rate is slightly better than the rate of HAL-
estimator, but for d > 2, the rate of this histogram regression estimator is worse than
our rate, and will get worse and worse as dimension grows. This phenomena is often
referred to as the curse of dimensionality.

For a kernel regression estimator using kernels that are orthogonal to polynomials
in W of a certain degree k and bandwidth h, assuming that i is k-times continu-
ously differentiable, the bias is O(h*), the variance is O(1/(nh?)). In this case, the
optimal rate for the bandwidth is & = O(n~"/®**®)_ resulting in a rate of conver-
gence O(n*/*+d) Contrary to the HAL estimator, this kernel regression estimator
assumes smoothness of i, but even when the degree k of assumed smoothness is
large, for large dimensions d, this rate will typically be much worse than n~'/4, This
demonstrates that the HAL estimator is asymptotically superior to local smoothers
w.r.t. its capability to approximate a true function .

A fortunate fact is that the critical rate for estimators of the nuisance parameters
in a TMLE is n~'/4, so that a TMLE, using super learners for the relevant nuisance
parameters that include the HAL estimator in its library, is guaranteed to be asymp-
totically efficient under essentially no conditions. Before the introduction of this
HAL estimator, there was no estimator that was guaranteed to be asymptotically ef-
ficient without strong smoothness conditions, and the general wisdom was that such
an estimator would simply not exist.
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6.1 Statistical Formulation of the Estimation Problem

Suppose that we observe n independent and identically distributed copies Oy, ..., O,
of a multidimensional random variable O with probability distribution Py. Let M be
the statistical model for Py, and suppose that the target parameter ¥ : M — ¥ =
¥ (M) is a function valued parameter: that is, ¥(Py) is a function from a subset R%to
the real line. For example, ¥ (Py) could be a regression functionw — Eo(Y | W = w)
or a conditional density function (w,y) — pyo(y | w). We will consider the case
that the parameter space ¥ (M) consists of all multivariate real valued functions
f:10,7] € RY - R, up to possibly some smoothness conditions.

Specifically, we will only assume that i is right-continuous with left-hand limits
(i.e., cadlag), and that its variation norm is finite. These are the assumptions one
needs on a function f so that it generates a measure so that an integral f h(x)df(x)is
well defined. Indeed, this will allow us to represent a function f as a sum of integrals
of indicator functions with respect to df, providing the basis for our estimation
procedure. In addition, we assume that we have a loss function (O, ) — L()(O)
for ¥y so that PoL(yo) = mingey PoL(y). We will assume that the loss function is
uniformly bounded in the sense that SUPyey | L(¥)(0) |< oo, where the supremum
over o is over a support of Py. We will also assume that the loss function yields a
quadratic dissimilarity do(y, ¥o) = Po{L(¥) — L()}, which formally corresponds
with the following assumption:

. Il L) = Lo I3, .
u o0
n//e‘IlJ‘ do(¥r, ¥0)

The latter is a standard property that has been established for standard loss functions
such as the log-likelihood loss and squared error loss, as long as the loss-function is
uniformly bounded. These two assumptions are the only properties of the loss func-
tion needed for establishing a finite sample oracle inequality for the cross-validation
selector.

Suppose we estimate ¢ with a discrete super learner defined by set of can-
didate estimators based on V-fold cross-validation. By the oracle inequality
for cross-validation, the super learner will perform asymptotically as well as
the oracle selector that selects the best estimator among the set of candidate
estimators. This itself does not provide any guarantee that the super learner is
consistent or converges to the truth ¢ at a rate in sample size faster than a cer-
tain specified minimal rate. In this chapter we will present an estimator whose
rate of convergence is guaranteed to be faster than n~'/#, for any dimension d.
By including this estimator in the library of the super learner, the (discrete or
continuous) super learner is also guaranteed to converge at a rate faster than
n~'/#_In the next chapter, we will study this estimator in detail in the context
of estimating a regression function, and demonstrate its implementation and
remarkable practical performance with simulations.
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6.2 Representation of a Cadlag Function as a Linear
Combination of Basis Functions

For a given vector x € R? and subset S c {1,...,d} of indices, we define x(S) =
(xj:j€8)and x(S°) = (x;: j€S), where S ={j:j¢ S} c{l,...,d}is the
complementary set of indices of S. For a given cadlag function ¢ : [0,7] — R and
a given subset S, we can define the function x — Y(x(S), 0(S°)), which is called
the S-specific section s of . Since s is cadlag and has finite variation norm, ¥s
generates a finite measure on [0(S), 7(S)]. In other words, s can be viewed as the
analogue of a multivariate cumulative distribution function, without the requirement
that it only assigns positive mass. We will also refer to ¥ s as a measure, meaning
the measure /s generates. In fact, s equals a difference of two monotone functions
(i.e., cumulative distribution functions without enforcing that they start at O and end
at 1). In the same way as a cumulative distribution function assigns a measure to a
rectangle (a, b] and any measurable set, s assigns a measure to a such a set. For
example, for a univariate function i, we have ¥((a,b]) = Y(b) — ¥(a), and for a
bivariate function ¥, we have ¥((a, b]) = Y(by, by) —¥(ay, by) —¥(az, by) +¥(ay, az).
As a result, an integral f(a!b] (dx) is well defined, and represents the measure
assigns to the cube (a, b].

A typical definition of the variation norm of i is given by f[o,r] | ¥(dx) |. In this
chapter, we will define the variation norm of ¢ as the sum of the variation norms of
all its sections ¢ s

ol 3 [ el

Scil,...d}

In words, the variation norm of a d-variate real valued cadlag function is defined as

the sum over all subsets of {1, ..., d} of the absolute value integral with respect to

over the variables in that subset, while setting the remaining variables equal to zero.
For example, the variation norm of a bivariate real valued function

1y lh= w<o,0>+f) |w(dx1,0>|+f0'|w<0,dxz>|+fo fo | w(dx1,dxs) |
(

For trivariate real valued functions, we have an integral for each subset of {1, 2, 3}
over the corresponding variables in that subset, setting the remaining variables equal
to zero.

For any d-variate cadlag function ¢ with || ¥ ||,< oo, we have the following
representation of i

v =)+ L gy )

Scil,...d}
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For example, for a bivariate real valued function ¢ we have

W(x1, x2) = Y(0,0) + f W(dx;,0) + f (0, dx)) + f f y(dxi, dxy).
0 0 0 0

Note that we can also write this as follows:

Suppose we approximate the measure i by a discrete measure i, with m support
points, or equivalently, we approximate the two cumulative distribution functions
U1,Y, in the representation ¢y = i — ¢, by two discrete cumulative functions
Yims Wom: Ym = Yim — Y2m. We make sure that i, s is a discrete approximation
of Y5 for each subset S C {1,...,d}: that is, ¥,, puts mass on the d-dimensional
cube (0, 7] but also on all the lower dimensional edges (0(S), 7(S)] of [0, 7]. For
each given subset S, let {5;(S) : j} be the support points of ¥, s, and let dif,, s ;
denote the pointmass that i, s assigns to this point.
For such a discrete approximation ,,,, we have

Yn) = 9O+ > > I(s(S) < X(S)dins .

Scil,.dy Jj

That is, 1,,(-) is a linear combination of basis functions x — ¢;s(x) = I(x(S) >
5;(8)) with corresponding coefficients di, s ; across S c {1,...,d} and support
points s; indexed by j. In addition, note that the variation norm of i, is the sum of
the absolute values of its coeflicients:

i =@+ 7 D s

Scil,...d} j

Below we define an estimator ¥, , of Y that minimizes the empirical risk
¥ — P,L(y) over all such linear combinations of these indicator basis functions
for a specified set support points (i.e., basis functions), and under the constraint that
the sum of the absolute value of the coeflicients is smaller or equal than A. Our pro-
posed HAL estimator is then defined by i, = ¢, ,,, Where 4, is the cross-validation
selector. This estimator i, , is equivalent with minimizing the empirical risk over
all discrete measures ¥, with variation norm smaller or equal than A. In order to
understand how to select the support points, we want to show that the minimizer
of the empirical risk over all measures (continuous and discrete) is equivalent with
minimizing the empirical risk over all discrete measures with a particular support
defined by the actual n observations Oy, ..., O,. As aresult, by defining the support
points accordingly, this MLE i, ; actually equals the minimizer of the empirical
risk over all functions with variation norm smaller than A. The latter estimator is
theoretically analyzed below and shown to converge to its true counterpart ¢ at a
faster rate than n=!/4,
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6.3 A Minimum Loss-Based Estimator (MLE) Minimizing over
all Functions with Variation Norm Smaller than A

Consider the estimator ¢, ; = arg miny, <1 P, L(¢) defined as the minimizer of the
empirical risk over all functions ¢ in the parameter space ¥ that have variation norm
smaller than A. Let o, = arg miny ), <a PoL(1) the minimizer of the true risk. If
A > Yo |ly, then we have Y4 = Y.

Let do(¥, o) = PoL(y) — PoL(¢) be the loss-based dissimilarity. We can prove
that do(W0, ¥o.1) = Op(n~ O3+ @D/9) where a(d) = 1/(d + 1).

Theorem 6.1. Let ¥, = {y € ¥ :|| ¢ ||, < A}. We assume

Il L) [l
per, ¥

I L) — Lo I,
su
et dol o)

Then, do(Yr,.1,W0.2) = Op(n~ O3+ @Dy ywhere a(d) = 1/(d + 1).
Specifically, if A > Ao =|| Yo Il then do(Wn 1, o) = Op(n~O5+@/),

Proof. We have

0 < do(Wna, ¥0,0) = PolL(Wn.2) — Lo )}
= —(P, — Po{L(Wn,2) — Lo )} + Pu{L(n0) — Lo, 1)}
< =(Pp = PO{L(n,2) — LYo.2)}

We assumed that sup,,cy ”ﬁ%ﬁ”" < o0. Since L(Y, 1) — L(Yo ) falls in a Pp-Donsker
class of all cadlag functions with variation norm smaller than a constant, it fol-
lows that the right-hand side is Op(1/+/n), and thus do(¥,.0,%0.2) = Op(n1/?).
We also assumed that there exists an M, < oo so that Po{L(¥) — L(fo)}> <
My Po{L(¥) — L(o.2)} for all y € ¥ with || ¢ |[,< A. As a consequence, we have
| L(Yna) — L(Po.0) ||12[,0= Op(1/ +/n). By empirical process theory we have that
(P, — Py)f, —p 0if f, falls in a Py-Donsker class with probability tending to
1, and Pofn2 —, 0 as n — oo. Applying this to f, = L(},,2) — L(o,) shows that
(P — Po)(L(Wn,0) — LWo,0)) = op(1/ v/n), which proves do(Wn,a, Yo,2) = op(1/ vn).

We now apply Lemma 6.1 below with 7, = {L(¥) — L(0.2) :|| ¢ ||,< A}, envelope
bound M, = A, @ = a(d) (see van der Vaart and Wellner 1996), and ry(n) = n~'/4,
which proves that

| Va(Py = Po)fy 1= Op(n™ ™).

Here we rely on the result in van der Vaart and Wellner (1996) that proves that
the class of d-variate cadlag functions with variation norm smaller than a universal
constant is a Donsker class with an entropy bounded as in Lemma 6.1 with @ = a(d).
This proves do(¥,1, Yo.1) = Op(n~ O3+ O
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A theorem in van der Vaart and Wellner (2011) establishes the following result for
a Donsker class 7, with envelope F: If P 2 < 6*PF ,2,, then

J(6, Fn, Lo)

El Gy llr,< J(é’ﬂvL2)(1 o
52 \/ﬁ ” Fn ”Po

)II Fy llpys

where

2 ? 2 0.5
J@,Fo 17 = sup | (log(1 + N(e Il Fy llpy, T, LX(A)))  de
A 0

is the entropy integral from O to 6. Here || G, |lf,= SUpP ey, G,(f) and G,(f) =
Vn(P, — Py)f. A simple corollary of this theorem is the following lemma.

Lemma 6.1. Consider F, with || F,, |lp,< M,, and
sup, \/log(l + N(e || Fy llpy» Fu» L2(A))) < 1/€'77. Then,

E  sup | Gu(f)I< (ro(n)/ M} My, + {ro(n) /M, *n ™03,
feFullfllpy<ro(n)

If ro(n) < n~Y4 one should select ro(n) = n='* in the above right hand side, giving
the bound:

E  sup | Gu(f) IS {0 OF MY M, + (M, Y202,
FeFullfllpy<ro(n)

6.4 The HAL Estimator

Above, we defined candidate estimators i, ; = %(P,,). Let A vary over a set of K,
values for which the largest value is larger than || ¢ ||,. Here we select K,, so that
K, < n? for some finite p. Consider a V-fold cross-validation scheme, and let ngv,

P,lw be the training sample and validation sample corresponding with sample split
v,v=1,...,V. The cross-validation selector of A is then defined as follows:

v
1 N
= in— Y PLL(P(PY,)).
A, = arg min - Zl W LPA(P,),)
Our proposed estimator of i is given by ¢, = ¥, 4, = Si’/l,,(Pn). By the finite sample
oracle inequality for the cross-validation selector we have:

do(n. o) = Op(n™ O3 O) 1+ Op(log K, /n) = Op(n™ *TOI),

One can include this estimator i, in the library of a super learner that includes many
other algorithms, thereby guaranteeing that the super learner is not only asymptot-
ically equivalent with the oracle selected estimator, but also has a minimal perfor-
mance do(,, o) = Op(n~ O3+ D/D),
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Let’s now discuss the implementation of this HAL estimator. Suppose that
L()(O) depends on ¢ through (W) where W = f(O) € RY for some specified
function f: for example, O = (Y, W) and L(¥)(O) = (Y — ¢(W))?. We note that
P, L(¥) only depends on ¢ through (W(W;) : i = 1,...,n), suggesting that we should
be able to replace the minimization over ¥, by a finite dimensional minimization
problem.

For eachset S C {1,...,d}, let W;(S) be the subvector (W;;: j€S),i=1,...,n.
Recall the representation y,, of the discrete approximation of ¢, where now the
support points of s are given by {(W;(S) :i=1,...,n}:

Un) = YO+ D0 ST HWHS) < W(S)diims, .

Scil,...d} j=1

That is, ,,(-) is a linear combination of basis functions x — ¢;s(w) = I(W(S)
W;(S)) with corresponding coefficients d,, s ; across S C {1,...,d} and j
I,...,n. We claim that the minimizer ¢, , is attained by such a discrete measure

Um-
Let’s define

v

Yp=BO)+ > iﬁj(sw,-,&

Scil,...d} j=1

and a corresponding subspace

Woa= s BAO DL D IBI< A

That is, we claim that ¥, ; = yg,, where

B, = ar; min P,L(yg).
! gﬁ@sm 4 21 1Bi(S)<A " (ﬁ)

Notice that the number of basis functions is given by m = (29— 1)n, so that computa-
tion of i, ) requires minimizing over m-dimensional vectors 5 under the constraint
that its L;-norm is bounded by A.

6.5 Further Dimension Reduction Considerations

For d reasonable large, the number of basis functions m = (2¢ — Dn cannot be
stored in memory, making the computation of the MLE y, , non feasible. Since the
empirical risk P, L(¢) only depends on i through n values {y/(W;) : i = 1,...,n}, one
might be able to further reduce the number of basis functions while still attaining
the minimum of the empirical risk. Our theorem proves that any y, , attaining the
minimum will converge to ¢, at the desired rate. In fact, it suffices to achieve the



6 Highly Adaptive Lasso (HAL) 85

minimum up to an approximation error that is smaller than this rate. This suggest
that for finite samples it might suffice to work with a much smaller subset of these
basis functions even though all of these types of basis functions will be included
as sample size increases so that any function can be arbitrarily well approximated.
Developing computationally feasible algorithms that approximate the desired ¥,
will be an important area of future research.

We propose the following strategy for defining a super learner incorporating the
HAL estimator. The key step is to construct a sequence of nested candidate esti-
mators for which the last estimator in this sequence is the full HAL estimator. For
example, the first estimator might be the lasso estimator only including the one-
way indicator functions in the HAL-representation, while the k-th estimator would
incorporate all multiway indicator functions up to the k-th order, k = 1, ...,d. How-
ever, it makes sense to use a much finer sequence of candidate estimators so that
the memory storage and computer speed increases gradually along this sequence.
For example, one might propose a possibly data-adaptive ordering of all the multi-
way indicator basis functions, starting out with one-way, then to two-way, etc. This
would require ordering the one-way indicator basis functions, and the two-way indi-
cator basis functions, etc. One might now define a sequence of candidate estimators
by defining them as the lasso including the first K; basis functions in this sequence,
Ki <K, <...<Ky, j=1,...,M, where Kj, is the total number of basis functions
in the HAL estimator. Each of these candidate estimators are now included in the
library of the super learner. By the oracle inequality, this super learner is at least as
good as the full HAL estimator that includes all KM basis functions. Instead of truly
computing the super learner, we would compute the candidate estimators along this
sequence, each time tracking the cross-validated risk and once the cross-validated
risk appears to flatten out or even deteriorates, we define the last estimator as our
final estimator. The validity of this proposal relies on the assumption that the more
aggressive estimators in the remaining sequence will not achieve a better perfor-
mance than the selected one. In this manner, for a given sample size n, one expects
that the number of selected basis functions will be bounded by O(n), thereby making
the estimator computable.

6.6 Applications

We introduced the HAL as a general nonparametric estimator of a d-variate function
valued parameter defined as a minimizer of an expectation of a loss function. In this
section, we consider applying HAL to the problem of estimating the conditional
mean of a real-valued outcome. Specifically, we discuss the case that the observed
data consist of n i.i.d. copies of the random variable O = (W,Y) ~ Py € M, where
M is the nonparametric statistical model. The only constraint we will place on this
model is that for every P € M, the conditional mean of Y given W implied by P,
say Op, has a finite variation norm. We consider using the highly adaptive lasso to
estimate Qg = arg manPoL(Q) where L(Q)(0) = {y — Q(w)}? is squared error loss.
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6.6.1 Constructing the Highly Adaptive Lasso

Recall that HAL can be viewed as the minimizer of the empirical risk over a special
linear combinations of indicator basis functions under the constraint that the sum of
the absolute value of the coefficients is less than or equal to a data adaptively chosen
constant. In this section, we illustrate how these basis functions and the estimator
are constructed in simple univariate and bivariate settings.

Consider that the observed data consist of » = 500 independent copies of
W ~ Uniform(—4,4) and Y = 2sin(7/2|W|) + €, where € is drawn independently
of W a Normal(0,1) distribution. The basis functionsused by HAL consist of » in-
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Fig. 6.1 The highly adaptive lasso in the univariate setting

dicators of the observed data values: ¢;(w) = I(w > w;) for j = 1,...,n. To select
the bound on the variation norm, we used ten-fold cross validation to select from
100 possible bounds ranging from 0 to about 350. We illustrate the fit from three of
these choices in Fig. 6.1. The solid line is the HAL estimator, which uses the cross-
validation-selected value 4, = 13.9. The dashed and dotted lines represent choices
that are smaller and larger respectively than the true variation norm ||Qq||, = 16.
The ticks at the bottom of the figure are placed at the 46 support points of O, with
a nonzero coefficient. The choice of 4.8 as bound on the variation norm (dashed
line) visibly over-smooths the data, while the bound of 35.2 appears to provide a
reasonable approximation and is similar with the prediction from the HAL estima-
tor. However, the larger bound does appear to produce more noise near the edges
of the support. Theory dictates that any choice of bound larger than the true norm
will yield an estimator with the properties established in the previous chapter. Nev-
ertheless, the HAL estimator will exhibit superior performance in finite samples by
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allowing for selection of a bound smaller than the true norm. The oracle inequality
guarantees that so long as at least one bound larger than the true norm is considered
as a candidate bound, then we will eventually select a bound that is larger than the
true variation norm.

We now illustrate the estimator in the bivariate setting and where W has a discrete
component. We drew W; from a Uniform(—4,4) distribution and also drew W, in-
dependently from a Bernoulli(0.5) distribution. We let ¥ = —0.5W; + W, le/ 2.75 +
W, + € where € was drawn from a Normal(0,1) distribution. Notice that this data
generatingdistribution implies an interaction between W and W, in Qy, with a lin-

- W2=0

o .'_ ﬂ2=1
© R — Qy(w+,0)
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Fig. 6.2 The highly adaptive lasso in the bivariate setting

ear relationship between W, and the mean of ¥ whenever W, = 0 and a quadratic
relationship otherwise. To construct the HAL estimator in this setting, we first cre-
ated n basis functions corresponding with indicators at the observed values of W:
o1 ;(w) = I(w; = wy ;) for j = 1,...,n. Next, we added basis functions for the
subset consisting only of Ws: ¢, j(w) = I(wy > wy;) for j = 1,...,n. Note
that because W, is binary, there was only be a single unique basis function to be
added, ¢>(w) = I(w, > 1). Finally, we created bivariate basis functions of the form
d12i(w) = I(wy = wyj,ws = wy ;) for j = 1,...,n. These basis functions number
fewer than n due to binary W,. It was unnecessary to add basis functions ¢, j(w) for
any j for which w; ; = 0 due to the fact that for any such j we had already placed
support on this zero-edge by including ¢ ;. This illustrates that the number of basis
functions in a given sample will be at most n(2¢ — 1), while in practice the number
may be far fewer depending on the particular data set.

Figure 6.2 illustrates a random draw of size n = 500 from this data generating
mechanism. Two lines are shown corresponding with the estimate of Qg when W, =
1 (upper dashed line) and when W, = 0 (lower solid line). The solid tick marks
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across the bottom of the figure indicate the univariate basis functions with a non-
zero coefficient in Q,. Accordingly, these marks corresponding with jumps in both
0,(-,0) and Q,(-,1). The dashed tick marks indicate the bivariate basis functions
with nonzero coefficients and thus correspond with values of a jump in Q,(:, 1),
but not O,(-,0). Notice that, as expected these ticks occur most frequently when
Wi > 2, corresponding with the values for which Qg(wy,0) is decreasing in wy,
while Q) (w1, 1) is increasing. This example illustrates how the higher-order basis
functions used by the HAL estimator act similarly to cross-product interaction terms
in standard regression approaches.

6.6.2 Prediction Simulation

We evaluated the finite-sample performance of the HAL estimator relative to other
nonparametric algorithms: regression trees (Breiman et al. 1984), random forests
(Breiman 2001), gradient boosted machines (GBM) (Friedman 2001), kernel re-
gression (Nadaraya 1964; Watson 1964), support vector machines (SVM) (Hearst
et al. 1998), and polynomial multivariate adaptive regressions splines (Polynomial
MARS) (Friedman 1991). We considered three types of data generating mecha-
nisms, which we call smooth, jumps, and sinusoidal. For each type of data gener-
ating mechanism, we varied the dimension of W and considered d € {1, 3,5} and
sample sizes n € {500, 1000,2000}. Performance was judged based on R?, which
was calculated on an independent test set of size N = le4, where for a given esti-
mator Q,,, we define

g2 ZimilYi— Ou(Wo)?
ZZ]{Yi - YyP?

Each setting was designed so that the optimal R? value was R(Z,p,

= (.80, where

ey Enly = 0P
o Vary(Y)

is the value of R? obtained when using the true regression function Qp. This value
can be viewed as an upper bound on the performance of any estimator.

The distribution of W was as follows: W; ~ Uniform(—4,4), W, ~ Uniform
(-4,4), W53 ~ Bernoulli(0.5), W4 ~ Normal(0, 1), W5 ~ Gamma(2, 1). For dimen-
sion d, call the target parameter QB’(W) andlet W = (W, : j=1,...,d}). We define
Y = Q4(W) + € where € ~ Normal(0, 1).

The “smooth” regression functions for d = 1, 3, 5 respectively were defined as

Qp(w) = 0.05w; + 0.42w7 ;
O3(w) = 0.07w; — 0.28w] + 0.5w5 + 0.25waw;3 ;
O5(w) = 0.1w; — 0.3w? + 025wy + 0.5w3wy — 0.5wy + 0.04w? — 0.1ws .
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The “jump” regression functions were defined as

Qow) = =2.71(wy < =3) + 2.5I(w; > =2) = 2I(w; > 0) + 4I(w; > 2) = 31(w; > 3);

Q_a(w) = =2I(wy < =3)wz +2.5I(wy > =2) — 2I(wy > 0) + 2.51(w; > 2)w;
=25I(wy > 3)+ I(wy > =1) = 4I(wy > Dwz + 2I(wp > 3) ;

Qg(w) =—I(w; < =3)ws; + 0.5I(w; > =2) = I(w; > 0) + 2I(w; > 2)wz — 3I(wy > 3)
+ 1.5I(wy > =1) = 5I(wy > Dwz + 2I(wy > 3) + 2I(w4 < 0)
—I(ws >5) = I(wg < 0)I(w; <0)+2ws.

The “sinusoidal” regression functions were defined as

Q(l)(w) = 2sin(0.57(wy|) + 2cos(0.57|w]) ;
Qg(w) = 4wsI(wy < 0)sin(0.57|w1|) + 4.11(wp > 0)cos(0.5x|wq|) ;
Q_(S)(w) = 3.8ws3l(wy < 0)sin(0.57|w]) + 4I(w, > 0)cos(|wi|/2) + 0.1wssin(mrwy)

+ wscos(lwg — ws)).

Figure 6.3 displays the results of the simulation study with rows representing
the different data generating mechanisms and columns representing the different di-
mensions of W. The margins of the figure show the results aggregated across data
generating mechanisms of a particular dimension (bottom margin) and aggregated
across different dimensions of a particular data generating mechanism (right mar-
gin). In each plot, the algorithms have been sorted by their average R? value across
the three sample sizes with the highest R? at the top of the figure and the lowest R?
at the bottom.

Beginning with the top row corresponding to the “smooth” data generating mech-
anisms, we find that all algorithms other than random forests perform well when
d = 1, with kernel regression performing the best in this case. However, as the di-
mension increases, the relative performance of kernel regression decreases, while
the relative performance of HAL increases. Across all dimensions the SVM had
the best overall performance; however, the performance of the GBM and HAL were
comparable. In the second row corresponding with the “jumps” scenario, we see that
the HAL performs extremely well, nearly achieving the optimal R*> when n = 2000
for all dimensions. In the third row corresponding with the “sinusoidal” scenario,
we find that somewhat surprisingly the kernel regression performs the best across
all dimensions. This appears to be due in part to superior performance relative to
other estimators when n = 500. For the larger sample sizes, the R> achieved by
kernel regression, random forests, and HAL are similarly high. The far bottom right
plot shows the results over all simulations with algorithms sorted by average R? and
we see that HAL had the highest average R* followed by kernel regression and ran-
dom forests. Overall, HAL performed well relative to competitors in all scenarios
and particularly well in the jump setting, where local smoothness assumptions fail.
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Though the estimator was not ranked highest for the smooth and sinusoidal data
generating mechanisms, its performance was comparable to the best-performing
machine learning algorithms, which are generally considered to be state-of-the-art.

6.6.3 Prediction Data Analysis

We separately analyzed five publicly available data sets listed with citation in
Table 6.1. Sample sizes for the data sets ranged from 201 to 654 and d ranged from
four to eleven. Inaddition to the nonparametric methods evaluated in simulations,

Table 6.1 Data sets analysed using the HAL estimator and competitors

Name n d
cpu (Kibler et al. 1989) 209 6
laheart (Afifi and Azen 1979) 201 11
oecdpanel (Liu and Stengos 1999) 616 6
pima (Smith et al. 1988) 392 7
fev (Rosner 1999) 654 4

we considered estimation of Qg with several parametric methods as well. These in-
cluded a main terms generalized linear model (GLM), a stepwise GLM based on
AIC including two-way interactions, and a generalized additive model (GAM) with
the degree of splines determined via ten-fold cross-validation. We also included the
super learner and discrete super learner using each of these nine algorithms as can-
didates.

In order to compare the performance of the various methods across different data
sets with different outcomes, we studied the ten-fold cross-validated mean squared-
error of each method relative to that of the main terms GLM. Values greater than
one correspond to better performance of the GLM. The results of each of the data
analyses are shown in Fig. 6.4. The gray dots corresponds to the relative MSE in a
particular data set, while the black cross corresponds to the geometric mean across
all five studies. The super learner and discrete super learner perform best, followed
by the HAL estimator. The HAL estimator performed particularly well on the cpu
dataset, where its cross-validated MSE was nearly half that of the main terms GLM.

6.6.4 Simulation for Missing Data

Recall that a remarkable feature of HAL is its guaranteed convergence rate of faster
than n~!'/# regardless of the dimension d. This rate is exactly the critical rate needed
for initial estimates of nuisance parameters that guarantees efficiency of the re-
sulting TMLE. Therefore, it is of great interest to determine the extent to which
this remarkable asymptotic result yields well-behaved TMLE estimators in finite
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Super Learner — o + oco:o;
Discrete Super Learner 4 o + oo@
HAL - © + @b
GAM -|  © +odb
Random Forest — o $006
Kernel Regression — oot0o
GBM — a o
Stepwise GLM —| OOQ) o
Polynomial MARS — o 00 4o o
Regression Tree — o o $ o
Radial SVM — o+ o
0!5 1.0 1!5 2!0 2!5
Relative MSE

Fig. 6.4 Relative cross-validated mean squared error of methods in five real data sets. Circle =
result on a single data set, cross = geometric mean over five data sets

samples. To study this question, we considered the same nine data generating dis-
tributions used in the prediction simulation. However, we additionally introduced
missingness to this data structure and let A = 1 denote that the outcome Y was ob-
served. We simulated missingness using in the smooth scenario as follows: letting
go(w) = P(A = 1|W = w), for the “smooth” setting,

go(W) = expit{(wy +4)"* —w/2},
go(W) = expit{l + (w; +4)'* —w /2 + waw; /5 — w3/10} , and
gg(w) = expit{(1 + (w; + 4)'/2 —wi/2+wow /5 — w%/lO + wy + ws/5

= waw3w1/5)) ;
for the “jump” setting,

gb(W) = expit{—3 + 2I(w; < =3) — 1.51(w; > =3, w; < —1.5)
+0.5I(w; = —1.5,w; <0.5) = 2I(wy = 0.5,w; <2)+2.4I(w; = 2)),
gg(w) = expit{0.17(w; < =3)ws + I(wy < 0)2.5 + 1.5I(w; > =3, w; < —1.5)
+2I(w; = —-1.5,w; <0.5) - 0.8I(w; >0.5,w; <2)
+0.751(wy = 2)ws + wy = 2I(w; < 0,w, > 0)}, and
gg(w) =expit{l + 0.1I(w; < =3)ws + I(wy < 0)2.5+ 1.5I(w; > -3,w; < —1.5)
+2I(w; > -1.5,w; <0.5) - 0.8I(w; >0.5,w; <2)+0.751(w; > 2)ws

+ w3 — 21(W1 <0,wp > 0) +I(wy < -1)+ 2I(W4 <-=2)- 31(W4 > O)
+2I(ws < 3) — 1.71(wg < O)ws} ;
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and for the “sinusoidal” setting,

g6(W) = expit{2 + sin(w)} ,
go(w) = expit{(2 + sin(wyws) + cos(waw3) + sin(wywy)}, and

go(w) = expit{(1.5+sin(w;ws)+cos(waws)+sin(wyws)+sin(jws))-wscos(wi/*)} .

We generated 500 replications of each of the nine data generating distributions
at sample sizes of 500, 2000, and 5000 and estimated ¥y = Eo{Eo(Y | A = 1, W)}
using TMLEs based on different nuisance parameter estimators. In particular, we
considered estimating Qp and g, using the same nonparametric estimators that were
used in the predictionsimulation, as well as using a super learner and discrete super

HAL — o COmimD
Super Learner — o o ommm
Random Forest — o o om-:mo
Discrete Super Learner — o o GDMIUD
GBM | o o o o
Regression Tree — o o oocmm;m
Kernel Regression — o o 00 o@mo
- oo ® o O@m@@o

Radial SVM

I I I I I 1
070 075 080 085 090 095 1.00

Nominal 95% Coverage of TMLE

Fig. 6.5 Coverage of Wald style confidence intervals about TMLE estimators based on different
nuisance parameter estimators. The results are ordered by the average absolute distance from 95%
coverage

learner with those estimators as candidates. We were interested in assessing the
extent to which the various TMLEs achieved an approximately normal sampling
distribution in finite samples, which we assessed by computing the coverage of 95%
Wald-style confidence intervals based on the true asymptotic variance of the TMLE
and by visually examining histograms of the sampling distributions.

The coverage of the Wald style confidence intervals across the 27 different sim-
ulation settings are illustrated in Fig. 6.5. TMLE estimators using HAL to estimate
nuisance parameters performed remarkably well; their coverage was estimated to
be only approximately 1.1% off of the nominal 95% coverage on average and was
no lower than 90% in any simulation. The TMLE estimators based on super learner
also yielded confidence intervals that had remarkably good coverage; however, the
performance of HAL-based TMLEs was notably better in the smaller sample sizes
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for the univariate “jump” setting. The same is true of GBM-based TMLEs, which
has excellent coverage in all but two of the “jump” settings, where the coverage was
found to be quite poor hurting these estimators’ overall performance.

The benefit of the fast convergence rate of HAL is apparent in the histograms
shown in Fig. 6.6, which illustrate the sampling distribution of the TMLE in the 5-
variate “jump” scenario at sample sizes 500 and 5000. The top row shows that the
HAL-based TMLE achieves approximate normality and is minimally biased, even
in small samples. In the larger sample, the HAL-based TMLE has little bias and the
sampling distribution is well-approximated by the Normal distribution shown. In
contrast, the kernel regression-based TMLE exhibits serious bias in small samples
and we clearly see that its bias is not converging to zero faster than n~/2,

o n=500 o n=5000
o o
o o
< e 2
I o =]
f=] (=]
S S —— —
= T T T = T T ]
-10 -5 4] 5 10 -10 -5 4] 5 10
A (Y0 - o) (- 1po)
c o n=500 o n=5000
o o o
‘B O S
w
o
o o =)
o = -
: o (=]
2
58 A B a®
X o 7 T T T = T T T ]
-10 -5 0 5 10 =10 -5 0 5 10
AN = 1po) (s =p0)

Fig. 6.6 Sampling distribution of standardized TMLE estimators based on HAL and based on
kernel regression. The asymptotic distribution of an efficient estimator is shown in the solid line.
The means of the estimators are indicated on each horizontal axis

6.6.5 Conclusion

In this section we examined the practical construction and performance of the HAL
estimator. We found that the estimator performs remarkably well for the purpose
of prediction, as well as for estimating relevant intermediate nuisance parameters
for a TMLE. These results indicate that the HAL makes a valuable contribution
towards building a robust super learner library and there are likely to be real benefits
to its incorporation in practice. Earlier results on the HAL were presented in the
conference paper Benkeser and van der Laan (2016).



Chapter 7
A Generally Efficient HAL-TMLE

Mark J. van der Laan

We will present a TMLE of ¢ that is asymptotically efficient at any P € M. This is
aremarkable statement since we only assume strong positivity, some global bounds,
and a finite variation norm of Qy, Go. This estimation problem for the treatment spe-
cific mean will be our key example to demonstrate a general one-step TMLE that is
guaranteed to be asymptotically efficient for any model and pathwise differentiable
target parameter, essentially only assuming a positivity assumption, also guarantee-
ing strong identifiability of the target parameter.

The key of our one-step TMLE is that it uses a super learner as initial estimator
that includes the highly adaptive lasso estimator as a candidate estimator in the
library. Therefore we will refer to such a TMLE with highly adaptive lasso
TMLE (HAL-TMLE). By our formal results for the HAL estimator, we know
that the super learner will converge at a rate faster than n~'/4 with respect to
the loss-based dissimilarity, and that is typically sufficient for establishing that
the second-order remainder in a TMLE analysis is op(n~'/?). The latter is the
key condition in the efficiency proof for a TMLE.

In this chapter, we focus on demonstrating this general HAL-TMLE for the treat-
ment specific mean, and subsequently demonstrate how our proof is easily general-
ized to general bounded models and target parameters. We refer to our paper van der
Laan (2017) for a presentation of a completely general HAL-TMLE and HAL-CV-
TMLE with a general efficiency theorem, even allowing for unbounded models.
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7.1 Treatment Specific Mean

Suppose we observe n i.i.d. observations (W;,A;, Y;), i = 1,...,n, of arandom vari-
able (W, A, Y) with probability distribution Py, where W is a d-dimensional covariate
vector, A is a binary treatment, and Y is a binary outcome. Let’s consider an obser-
vational study and assume that it is known that A is independent of W, given a
d,-dimensional covariate subvector W, of W. Let G(W) = P(A =1 | W) = P(A =
1| W) and Q(W) = E(Y | A = 1,W). In addition, suppose that we know that
Go(W) > 6 > 0 for some 6 > 0, and that the functions Qp, Gy are cadlag and have
finite variation norm smaller than some universal constant C. We also assume that
81 < Qp(W) < 1 — 6, for some §; > 0. This §; constraint is not very essential since
it can be removed if we replace the log-likelihood loss by the squared error loss
function for Qg in our definition of the HAL estimator and the TMLE. Suppose that
we have no other knowledge about Py. This defines a highly nonparametric model
M for Py, involving known overall bounds C, 6,8, and G(W) = G(W)). Our target
parameter mapping ¥ : M — R is defined by P (P) = EpEp(Y | A = 1, W). This
target parameter is pathwise differentiable at any P € M with canonical gradient
D*(P)(0) = A/G(W)(Y — Q(W)) + O(W) — P(P). Since ¥(P) = Ow 0, we will also
denote the target parameter with ¥(Q), where Q = (Qw, 0).

7.1.1 HAL-TMLE

Let L1 (Q)(0) = —A{Y log O(W)+(1-Y) log(1-Q(W))} and L,(G) = —{Alog G(W)+
(1 — A)log(1 — G(W))} be the log-likelihood loss functions for Qy and Gy, respec-
tively. Let O, and G,, be loss-based super learners of Qg and Gy that include the
logistic HAL estimator as a candidate in its library, using an upper bound for A4
equal to C. Note that G only depends on W though W, so that G,, will only con-
cern fitting logistic lasso regressions linear in the indicator basis functions of W;. In
this logistic lasso estimator the linear combination of the indicator basis functions
is used to approximate log Qy/(1 — Q) and log Go/(1 — Gy). The bound A for the
L;-norm of the coeflicient vector of the linear combination of basis functions for the
logit of O, implies that O, is uniformly bounded away from 0 and 1, and similarly,
the bound A for the L;-norm of the coefficient vector of the linear combination of
the basis functions for the login of G, implies that G, is uniformly bounded away
from 0 and 1.
By our result for the HAL estimator, we have

do1(On, Qo) = Op(n~O5+a@/4)
doa(G, Go) = Op(n~O5+atdn/4)y

We will truncate G, from below by & to guarantee that it is uniformly bounded away
from zero with probability 1. Since Gy > & > 0, this will not affect its rate of conver-
gence. For notational convenience, we still denote this estimator with G,,. Similarly,
we will truncate O, from above and below by 61, so that §; < O, < 1 — §;. Again,
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by the fact that 6; < Oy < 1-6,, it follows that this truncation of Q,, will not affects
its rate of convergence to Q. We know that the Kullback-Leibler dissimilarity is
equivalent with the L?>(Pg)-norm if the densities are uniformly bounded away from
zero. Therefore, under our bounds 61, 6 for Oy and Gy, it follows that we also have

I Qn _ QO ”12% — OP(n—(0.5+a(d)/4))
I Gn _ G_O ”%U — OP(n*(0.5+a(d|)/4))’

where || f |lp,= \/Pof? is the L*(Py)-norm.
Consider the submodel {Q, . : €} defined by

LogitQ, . = LogitQ, + eH(G,),

where H(G,) = 1/G,(W). This submodel combined with the loss function L;(Q)
generates the desired component of the efficient influence curve D*(Q, G):

d _ o
d Ll(Qn,e) = DY(Qns Gn),
€ e=0

where Dy(Q,G)(0) = GLW)(Y — Q(W)). We estimate the probability distribution
Ow, of W with the empirical probability distribution Qy,, of Wy,..., W,. Lete, =
arg min, P,L(Q,.). The TMLE of Qy is given by O} = O, , and let Q% = (Q%, Ow,)
be the TMLE of (Qg, Qwo). The TMLE of i is given by the substitution estimator
Y(0,) = Own Q-

7.1.2 Asymptotic Efficiency

We have P,D*(Q*,G,) = 0, and we also have the identity Y(Q;) — Y(Qo) =

n’

—PoD*(Q;,, Gn) + Rao(P,,, Po), where

) G,-G
Rao(P;, Po) = Po="~ 0

(05, = Qo).

n

This yields the starting point:
7(Q,) — ¥(Qo) = (Py — Po)D"(Q),, Gn) + Rao(P,, Py).

Since the variation norm of Q;, and G, is bounded by C, and Go > ¢ > 0, it follows
that the variation norm of D*(Q;, G,) is bounded by C/d up to a small factor. This
shows that D*(Q;, G,) falls in a Pp-Donsker class with probability 1. It also follows
from our consistency of Q,, and G, that Po{D*(Q?, G,)) — D*(Qo, Go)}* — 0 in prob-
ability. This proves that (P, — Po)D*(Q%,G,) = (P, — Po)D*(Qo, Go) + op(n~'/?).
Now, we note that by G,, > 6, and the Cauchy-Schwarz inequality:

R T
Roo(Py Po) < = 1 G = Go | @ = Qo I,
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where || f ||%0= Pof2 is the L*(Py)-norm. By our convergence results in the L*(Py)-
norm it follows that

Roo(P%, Py) = Op(n~ O3+ a@8+ald)/®)y — (=172
n» .
This proves that

¥(Q;) - ¥(Qo) = (P, — Po)D"(Qo, Go) + op(n”'7?),

and thereby that ¥(Q},) is an asymptotically efficient estimator of . This proves
the following theorem.

Theorem 7.1. Consider the statistical model M on Py that assumes Go(W) > 6 > 0
for some 6 > 0; Qy, Gy are cadlag and have finite variation norm smaller than some
universal constant C; 61 < Qo(W) < 1 — 61 for some 51 > 0. Let ¥ : M — R be
defined by ¥ (Qy) = QWOQ_O. Consider the TMLE V(Q;) = anQZ defined above.
We have that ¥ (Q;) is an asymptotically efficient estimator of .

An asymptotic 0.95-confidence interval for ¢ is given by:

Y £ 1.960,/ Vn,

where
oy = P{D"(Q}, Gy}

The consistency of O;,, G, in L*(Py)-norm, G, > 6§ > 0, and that the variation norm
of D*(Q;,, G}) is bounded by the variation norm of O, G,, implies that

02—, 05 = PolD*(Qo, Go)* as n — co.

This proves that this 0.95-confidence interval has indeed asymptotic coverage equal
0.95.

7.2 General HAL-TMLE and Asymptotic Efficiency

Let’s now generalize our analysis above to the analysis of a general TMLE for any
statistical model and target parameter. Let Oy,..., O, be n i.i.d. observations on
a random variable O with probability distribution Py known to be an element of
the statistical model M. Let ¥ : M — R be a pathwise differentiable target pa-
rameter with canonical gradient D*(P). Suppose that ¥(P) = ¥1(Q(P)) for some
parameter Q : M — Q(M), and suppose that D*(P) = D}(Q(P), G(P)) for some
nuisance parameter G : M — G(M). Let L;(Q) and L,(G) be loss functions for
0 and G, respectively. For example, Q might consist of various variation indepen-
dent components, each having its own loss function, and L;(Q) would be defined as
the sum-loss function. Similarly, one might use a sum-loss function for a multiple
component parameter G. We define the loss-based dissimilarities as do;(Q, Qo) =
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PoLi(Q) — PyLi1(Qop) and dyy (G, Gg) = Pola(G) — PyLy(Gy). We assume that Q(P)
and G(P) are d; and d,-dimensional cadlag functions for all P € M. If Q has multi-
ple variation independent components, each having its own loss-function, then this
corresponds with assuming that each component is a d;-variate real valued cadlag
function. We also assume that suppcy || Q(P) |ly< oo and suppep || G(P) ||,< oo.
Let d = max(d;,d,). We also assume that suppc || D*(Q(P), G(P)) |l,< oo, but
the latter will typically be implied by assuming that the variation norm of Q(P) and
G(P) are uniformly bounded, uniformly in P € M.
Let G,, Q, be HAL estimators of Gy, Qp. That is, one defines

0,1 =ar min P,Li(0Q),
nd = A oMot !

Ay as the cross-validation selector, and one sets O, = Oy, ,,. Similarly, one defines

G, = arg P,L(G),

min
GeG(M),|IGIl, <
Ay as the cross-validation selector, and one sets G, = G, ,,. By our general result
for the HAL estimator, we have

do1(Qn, Qo) = 0p(n’(0~5+(’(dl)/4))
dOZ(Gn,Go) = Op(n_(0‘5+(l(d2)/4))’

where these are the worst-case rates corresponding with models for which the pa-
rameter spaces for O and G contain all cadlag functions with a variation norm
smaller than some constant. If the parameter spaces are actual subspaces of this non-
parametric parameter space, then the rate will be better, as shown in van der Laan
(2017). We can replace G,, O, also be a super learner where these HAL estimators
are included in its library.

Let {Q, : €} be a parametric submodel through Q, at € = 0 so that the linear
span of

d
—L n,e
T 1(On, )e:O
includes D*(Q,, G,)). Let €, be so that dy; (Qy..c,, Qo) = Op(n~ O3+ D/4)) and
P,D*(Que,» Gn) = 0p(n™'1?).

Let 0 = O,

A natural candidate for ¢, is defined as the MLE ¢, = arg mine P,L;(Q,.¢). For
example, if {Q, ¢ : €} is a universal least favorable submodel, so that %Ll(Qn,E) =
D*(Qne,Gy) for all €, then P,D*(Qy,¢,.G,) = 0. Under appropriate regularity
conditions, even without enforcing the universal least favorable submodel prop-
erty, one can show that the faster than n~'/-consistency of Q,,G, implies that
P,D*(Qnc,,G,) = op(n~'/?). One could also define ¢, as the solution of 0 =
PnD*(Qn,en,Gn) =0.
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Let Ry ((Q, G), (Qo, Gy)) = Y(Q) — Y(Qy) + PyD*(Q, G). Then, it follows that
P(Q;) — Y(Qo) = (P, — Po)D*(Q},, Gy) + Rao((05, G), (Qo, Go)) + 0p(n™'12).

Since Ryo() is a second-order remainder, it involves integrals over products of a
difference between Q) and Qy and a difference between G, and Gy. Since the model
M avoids singularities by having a uniformly bounded efficient influence function,
using Cauchy-Schwarz inequality, one should be able to bound Ry, ((Q, G), (Qo, Go))
by O(max(dy;(Q, Qo). dp2(G, Gy))). As a consequence,

Ra0((Q}, Gn), (Qo, Go)) = Op(n™ 34Dy = op(n~112),

Suppose that (Q,G) — D*(Q,G) is continuous at Py in the sense that if
do1(Qn, Qo) and dw (G, Gy) converge to zero as n — oo, then Py{D*(Q,,G,) —
D*(Qy,Gp)}> — 0 as n — oco. Under this continuity condition, we have
Po{D*(Q:,G,) — D*(Qy, Go)}* —p, 0asn — oo. Since D*(Q;,G,) falls with
probability 1 in the Donsker class of multivariate real valued cadlag func-
tions with a variation norm bounded by universal constant, it follows that
(Py = Po)D*(Q;, Gy) = (P, — Po)D*(Qo, Go) + op(n~"/?). This proves
¥(Q;) — o = (Pn = Po)D*(Qo, Go) + 0p(n”'"?),
and thus asymptotic efficiency of ¥(Q;). This proves the following theorem.

Theorem 7.2. Let O, ..., O, be n i.i.d. observations on a random variable O with
probability distribution Py known to be an element of the statistical model M. Let
¥ : M — R be a pathwise differentiable target parameter with canonical gradi-
ent D*(P). Suppose that ¥ (P) = ¥,(Q(P)) for some parameter Q : M — Q(M),
and suppose that D*(P) = D{(Q(P), G(P)) for some nuisance parameter G : M —
G(M). Let L1(Q) and Ly(G) be loss functions for Q and G, respectively. We assume
that Q(P) and G(P) are dy and d,-dimensional cadlag functions for all P € M,
Suppepq Il OP) |lv< o0 and suppepq || G(P) |l,< oo. Let d = max(dy,d;). We
also assume that suppepq || D*(Q(P), G(P)) |l,< oo. Assume Ry((Q, G), (Qo, Go)) =
O(max(dy;(Q, Qo), dp2(G, Gy))), and that (Q,G) — D*(Q,G) is continuous at P
in the sense that if do1(Q,, Qo) and dp(G,, Go) converge to zero as n — oo, then
Po{D*(Qn, Gy) — D*(Q0, Go)}* = 0 as n — .
Let Q,,, G, be HAL estimators. We have

dOl(an Q()) = Op(n_(o'5+"(dl)/4))
doa(Gy, Go) = Op(n~O3+a(@)/4)y

Let {Q,, ¢ : €} be a parametric submodel through Q, at € = 0 so that the linear span
of

d

—L n,e

T 1(On, )e:O
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includes D*(Q,,G,). Let €, be so that dy1(Qp.e,, Qo) = Op(n~ O3+ /DY) apd
* _ -1/2
PnD (Qn,e,,aGn) = OP(n )

Let Q) = Q,,- The TMLE V(Q;) is asymptotically efficient.

7.3 Discussion

In this chapter, we established asymptotic efficiency of the one-step TMLE of the
treatment specific mean (and thus for the average treatment effect) if one uses a
super learner as an initial estimator that includes the HAL estimator in its library.

The key is that these HAL estimators of the nuisance parameters converge to
their truth counterparts at a faster rate than the critical rate n~'/4. We were
able to prove this only assuming strong positivity, uniformly bounded loss
functions, and by assuming that the nuisance parameters have a variation norm
bounded by a universal constant.

It is also possible to establish asymptotic efficiency of a TMLE when only assum-
ing that the true nuisance parameters have a finite variation norm, thereby allowing
for models that are unbounded with respect to variation norm, still assuming a uni-
form model bound with respect to supremum norm (so that the loss functions and
efficient influence curve are uniformly bounded). In this case, one uses a sieve of
bounded models M,, allowing the universal bounds for M, to increase or decrease
with n so that for n large enough the true nuisance parameters are captured by the
n-specific model M,,: i.e. Py € M, forn > Ny = N(Pp). By using CV-TMLE,
one does not even need a sieve for controlling the variation norm bounds. For both
the TMLE and CV-TMLE, we can even allow that the supremum norm bounds of
a sieve M,, converge to infinity, as long as it converges slowly enough so that the
second-order term in the oracle inequality for the super learner still converges to
zero at a faster rate than n~'/2. We also demonstrated that these results immediately
generalize to general models and target parameters. We refer to van der Laan (2017)
for the precise theorems showcasing these general results for general models as well
as for the treatment specific mean example.

Due to using the HAL estimators for the nuisance parameters Q and G, there
is no need to rely on double robustness of the efficient influence curve defined by
R ((Q,G), (Qp,Gp)) = 0 if either Q = Qp or G = Gy. In van der Laan (2014b) we
demonstrate that for such double robust estimation problems it is possible to con-
struct TMLE that remain asymptotically linear even when one of the two nuisance
parameter estimators is inconsistent. If, for example, Q, converges to a misspec-
ified Q, then the remainder Ryy((Q,,Gy), (Qo,Go)) is not second order anymore,
but, instead, behaves as Ry, ((Q, G,), (Qo, Gop)) . The latter can be written as a func-
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tion of G, minus that same function applied to Gy. Therefore, in order to make
Rx((Q,Gp), (Qo, Gp)) asymptotically linear, G, will have to be a TMLE targeting
the required functional of G — Ry ((Q, G), (Qo, Gy)). Indeed, the proposed TMLEs
in van der Laan (2014b) involve fluctuation models for both Q and G so that the re-
sulting TMLE (Q;,, G;,) of (Qo, Go) targets not only the target parameter i but also
these extra nuisance parameters. Even though these complications will not enhance
the asymptotic behavior of the HAL-TMLE, it might still enhance the finite sample
behavior of the HAL-TMLE.



Chapter 8
HAL Estimator of the Efficient Influence Curve

Mark J. van der Laan

The construction of an efficient estimator of a pathwise differentiable target
parameter ¥ : M — R relies on the ability to evaluate its canonical gradient
D*(P) at an initial estimator P of P, based on an original i.i.d. sample from
Py. The efficient influence curve D*(P) is defined as the canonical gradient
of the pathwise derivative of the target parameter along parametric submodels
through P. It is always possible to represent the pathwise derivative of the
target parameter along a parametric submodel as a covariance of a gradient
D(P) € L(2)(P) with the score of the submodel. The canonical gradient is now
defined as the projection of this gradient on the tangent space at P, where the
tangent space is defined as the closure of the linear span of all scores one can
generate with a parametric submodel through P.

Characterizing the tangent space is not a hard problem, and is often represented as
the range of a linear score operator that maps underlying paths into the score for the
resulting submodel through P. However, carrying out this projection of D(P) onto
the tangent space can be a difficult optimization problem and does not necessarily
allow for a closed form solution. General formulas for the efficient influence curve
are given by the Hilbert space analogues of the least squares regression formula,
X(X’X)~'X’Y, involving the inverse of the so called information operator defined by
the composition of the score operator and its adjoint. For many problems, the inverse
of this infinite dimensional information operator does not exist in closed form and
can be very hard to implement algorithmically.

However, the projection formulation of the canonical gradient shows that the
canonical gradient is the least squares regression of the gradient on a large regres-
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sion model represented by the tangent space, under an infinite sample of P. In other
words, each score in the tangent space represents a candidate regression curve (as
a function of O). The true regression curve, i.e., the regression curve in this model
minimizing the distance to the gradient, equals the efficient influence curve. If the
tangent space is a range of a linear score operator, each regression curve is identified
by an underlying function, which can be viewed as the unknown parameter in this
regression model. Moreover, due to the linearity of the score operator, the regres-
sion model is linear in this parameter/function. As a result, the efficient influence
curve can be formulated as a linear least squares regression problem for an infinite
dimensional linear model. In this chapter we present a machine learning method
that involves taking a sample from P, and fitting a highly adaptive lasso (HAL)
least squares linear regression estimator of the efficient influence curve. The HAL
estimator can be replaced by other machine learning algorithms, but our theoretical
results for the HAL estimator make the HAL estimator a particularly good choice.
This approach avoids having to solve the mathematical optimization problem, but
instead we let the machine learning algorithm estimate the regression surface D*(P).

8.1 Formulation of HAL Least Squares Linear Regression
Estimator of the Efficient Influence Curve

Let ¥ : M — R be a statistical target parameter that is pathwise differentiable at a
probability distribution P in the statistical model M with canonical gradient D*(P).
Let O ~ P be a multidimensional random variable in R?. Given P, our goal is to
evaluate the efficient influence curve O — D*(P)(0) as a function of O.

One common approach for determining the efficient influence curve is to first find
an initial gradient D(P) of the pathwise derivative and then project it on the tangent
space T'(P) at P. Finding an initial gradient can be achieved by determining an initial
estimator of ¥(P) under sampling 7 i.i.d. observations from P, and determining the
influence curve of this estimator. This influence curve is then the initial gradient
D(P). The initial estimator can be selected as simply as possible (there is no reason
to prefer one gradient above the other, since all project into the canonical gradient).

One approach for finding an initial gradient is to first extent the parameter ¥ :
M — R to a nonparametric model ¥¢ : M,, — R so that ¥¢(P) = ¥(P) for
P € M. Subsequently, one then finds the gradient of this pathwise derivative of this
nonparametric extension ¥°. The latter can be computed as the influence curve of
any regular asymptotically linear estimator in this nonparametric model, or it can
be calculated through the functional delta method as the influence curve of ¥¢(P,)
where P, is the empirical probability distribution of O, ..., O,: here one might
first approximate O by a discrete approximation O,, so that ¥¢(P,) will indeed be
asymptotically linear, and then determine the limit of the resulting influence curve
as the approximation error converges to zero (i.e., m — co). Different nonparametric
extensions will result in different influence curves/gradients, and one might want to
select an extension for which this calculation of the influence curve of ¥¢(P,) is
easy.
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Another important observation for determining an initial gradient is the follow-
ing. One can focus on finding an initial gradient in a submodel of M defined by treat-
ing an orthogonal nuisance parameter as known. That is, suppose ¥ (P) = ¥ (Q(P))
for some parameter Q. Then, an orthogonal nuisance parameter is a parameter for
which the scores of parametric submodels only fluctuating the nuisance parameter
are orthogonal to scores of parametric submodels only fluctuating Q. For example,
suppose that the density p(O) = ¢(0)g(O) factorizes in two variation independent
factors ¢ and g and that ¥ (P) only depends on P through the factor ¢. In addition,
let the model in terms of densities be of the form M = {p = gg : g € Q,g € G}
for parameter spaces Q and G for these two factors g and g, respectively. In that
case, one can define the submodel M(g) = {p = gqg : ¢ € Q} € M by making g
known. The efficient influence function of ¥ at P in the submodel M(g) in which
g is known is identical to the efficient influence function in the actual model M.
Finding a gradient in the model M(g) is often very straightforward: in general, the
smaller the model, the easier it is to find a gradient. For example, in censored data
models one can define the gradient as the influence curve of an inverse probability
of censoring weighed estimator in the model in which the censoring mechanism is
known. This is what we will do in each of our examples in this chapter.

The tangent space is often defined as the closure of the range of a linear score
operator Ap : (H,{-, )y) — L(Z)(P), where (H, (-, -)i) is an underlying Hilbert space
H with inner product (A, hy)y for any pair h;,h, € H. For example, consider a
model {Py : 8 € O}. A parametric submodel through Py is now of the form {Py,, : €}
where h denotes a direction varying over some set H and H is embedded in a Hilbert
space. Let H be the closure of the linear span of # within this Hilbert space. The
score of this submodel could be represented as a mapping Ap(h) = i log po, |,
and, using a natural parametrization 6, ;, Ap will be a linear operator. The tangent
space is now given by the closure of the range of Ap : (H, (-, )y) — L%(P).

The efficient influence curve can then be defined as D*(P) = Ap(h*), where

h* = arg min P{D(P) — Ap(h)}>.
heH

We treat P as known in D(P) as well as in Ap(h), so that Ap(h*(P)) represents
the least squares regression of a known outcome D(P)(O) on the regression model
{Ap(h) : h} with unknown parameter /, while h*(P) is the true parameter value.
Subsequently, we take a sample Oy,...,0, ~ P, and estimate #*(P) with a ma-
chine learning algorithm based on this data set. Let P, be the empirical probability
distribution.

Suppose that H is a Hilbert space of d-variate real valued functions. Let Hy, ¢ H
be the subset of cadlag functions with variation norm smaller than M, where the
us — hs(us) = h(us,0sc) is the section of & that sets the components not in S
equal to zero, and the sum is over all subsets of {1,...,d}. In addition, suppose that
|| #* |l,< M for some M. We can estimate 4* with the finite sample estimator:

ym = arg min P, {D(P) - Ap(h)Y.
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Let sz denote the estimator so that h, 5y = h u(P,). Since we do not know how to
select M large enough, we select M = M,, with the cross-validation selector:

M, = argmin Eg, P, 5 {D(P) ~ Ap(hu (P, p, ))}
Our estimator of 4" is given by
hn = hn,Mn = ilM”(Pn)’

resulting in the estimator Ap(h,) of D*(P).

We will now show how we determine £, through fitting a high dimensional
linear regression model with the lasso algorithm. We can represent any cadlag
function & with finite variation norm as A(x) = X.sc(1._a) f ¢rs(us)dhs(us), where
us — hs(us) = h(us, Osc) is the section of 4 that sets the components not in S equal
to zero, and ¢, (us) = [] jes I(xj = uy) is the product of indicator basis functions.
Since Ap is a linear operator we have:

Ap(h)(0) = Ap [x - f ¢xs(us)dhs(us] (0)

Scil,....d}

Z f Ap(x > $u(u)) (Odhs(us),

.....

Thus,

n

2
1
hay = arg }gln 5 Z {D(P)(Oi) - Z fAP (x = ¢rs(us)) (Oi)dhs(us)} .
MR

Note that this is an infinite dimensional minimum least squares linear regression
estimator, where the outcome Y; = D(P)(0O;), the main terms are (Ap(¢.;(us))(O;) :
us, S) with corresponding coefficients (dhs(us) : us, S), where the sum of the ab-
solute values of these coefficients is enforced to be smaller than M. A study of this
problem will typically show that this minimum is attained by & for which dhgs only
puts positive mass on at most n values us j, j = 1,...,n,foreach S c {1,...,d}. In
that case, this infinite dimensional minimum least squared linear regression problem
becomes a finite dimensional linear regression Y; = Y sc(1.. 4 Z;le 0s,j(0)Ps,j + e,
where Y5 3, | Bs,; IS M and s j(0;) = Ap (¢.5(us. ).
Thus we can now define the standard lasso linear regression estimator:

Buy = argﬁlrvgﬁl - Z D(P)(O;) - Sc;.,d] /Z—: #s,;(0)Bs.j

This defines
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Let M, be the cross-validation selector, and 5, = 8, m,. Then, our approximation of
the efficient influence curve D*(P) is given by:

Dy(P)O) = Dy, (PNO) = >° " 65 (O

Sci{l,...d} j=1

8.2 Rate of Convergence of the HAL Estimator of the Efficient
Influence Curve

We have the following theorem establishing that this estimator Dj(P) converges in
L*(P)-norm to D*(P) at a rate faster than n='/*.

Theorem 8.1. Let ¥ : M — R be pathwise differentiable at P with canonical
gradient D*(P). Let D(P) be a gradient at P which is a uniformly bounded function.
Let Ap : (H,{-,)g) — L(z)(P) be a linear score operator from an underlying Hilbert
space to L(z)(P), so that the tangent space T(P) = E(Ap) at P is given by the closure
of the range of Ap. Suppose that D*(P) = Ap(h*) for some h* = h*(P) € H. Suppose
that H consists of d-variate real valued functions, and that there exists a version
of h*(P) that is cadlag and has a finite variation norm. Let Hyy C H be the subset
of cadlag functions with variation norm smaller than M: we have h*(P) € Hy for
M >|| h* ||,. Assume that Ap(Hy) is a P-Donsker class: we note that, if the class
of functions {Ap (x = ¢y (us)) : us,S} is a P-Donsker class, then Ap(Hy) is a
P-Donsker class.

Let Oy,...,0, be a sample of n i.i.d. copies of O ~ P. Define the subspace
Wy = Ap(Hy) = {Ap(h) : h € Hy}, and define

Ynm = arg min P,(D(P) — ).
ve¥y

Above we showed that this estimator can be defined as a lasso least squares linear
regression estimator under the constraint that the sum of the absolute values of the
coefficients is bounded by M, where the outcome is D(P)(O;) and the main terms
are a finite subset of Ap (x — ¢,,(us)) (0;) : us, S} defined by restricting us to a
finite set of O(n)-values, for each S C {1,...,d}.

Let M,, be the cross-validation selector over a uniformly bounded set:

M, = argmin Ep,P) 5 (D(P) — Pu (P 5 ).

Let ,, = Y, be our estimator D;,(P) of D*(P).

Then,

f{D:;(P) - D*(P)}Z(O)dP(O) — Op(l’l_]/z),

With a little more work, as in van der Laan (2017), utilizing finite sample em-
pirical process results in van der Vaart and Wellner (2011), assuming that the
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entropy of Ap(H}y) is of same order as entropy of H),, we can obtain an actual rate
op(n~ 112+ @D/ where a(d) = 1/(d + 1).

Proof. The Donsker class statement is a consequence of the fact that a convex Hull
of a Donsker class is also a Donsker class. This also implies that

{{D(P) ~ Ap(h))’ < h € Hy|

is a P-Donsker class. It remains to prove the op(n~'/?)-consistency result. Let L(i/) =
(D(P) — )? be the squared error loss. Note that

Wi = Pu(P) = arg min PLW).

and
l//n,M = arg 1;161‘%};‘14 PnL(l//)

We want to prove that f Wt — Pu(P))*dP = op(n~'/?). Our desired result for the
estimator ¥, = ¥, », now follows from the finite sample oracle inequality for the
cross-validation selector.

We have

0 < dp(Ynm>¥m) = PLnm) — PL(Y M)
= (P - Pn){L(lybnM) - L(wM)} + Pn{L(wn,M) - L(wM)}
< =(Py = PY{LWYnm) = LGP M)}

By assumption, {L(y) — L(¥ ) : ¥ € Wy} is a P-Donsker class, so that, by empirical
process theory, the right-hand side is Op(n~'/?), and thus dp(W,u, Yy) = Op(n~/?).
Since L(y) is the squared error loss, we can bound P{L({,, ) — L(¥31)}* by a uni-
versal constant times P{L(y,, ;1) — L(¥ )} (see e.g., van der Laan and Dudoit 2003).
Thus, this proves that P{L(y, 1) — L(sz)}2 —, 0 as n — co. By empirical process
theory, this proves that (P, — PY{L(¥, ) — LY m)} = op(n~"?). Thus we have shown
dP(Wn,M: ‘r//M) = OP(n_1/2)~ ]

8.2.1 Application to Estimate Projection of Initial Gradient
onto Subtangent Spaces

One does not need to apply the HAL estimator to estimate the projection of the ini-
tial gradient on the full tangent space. For example, suppose that the tangent space
T (P) allows for an orthogonal decomposition Zf: 1 T;(P), where T;(P) is the tangent
space of one of the K nuisance parameters, such as factors that make up the density
p. In this common scenario, we have IT1(D(P) | T(P)) = 1].;17 (D(P) | T;j(P)),
so that it suffices to compute the projection of D(P) onto T;(P), for each j sepa-
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rately. For some of the tangent spaces, the projection might be easily analytically
determined. For the remaining tangent spaces, we can then apply the above HAL
estimator to each j-specific projection separately, where now T;(P) is the closure
of the range of a score operator A; : (Hj, (-, )y;,) — L(z)(P). This approach will be
applied to some of our examples.

8.2.2 Using the Actual Data Set from the True Data Distribution

If P represents a consistent estimator 13,1 of Py in the sense that D* (13,,) converges to
D*(Py), then we conjecture that it is fine to use the actual observations Oy, ..., O,
from Py in the formulation of our estimator, instead of a new sample from P,. In
this case, we view the HAL estimator D’;,(Pn) as an estimator of D*(Py). Of course,
in this case the validity of our estimator of D*(Py) now depends on P, approxi-
mating Py as n converges to infinity. The advantage of this approach for estimation
of D*(Py) is that it does not require resampling from a data distribution P. For ex-
ample, in many problems the efficient influence curve D*(P) only depends on P
through some parameters (Q, G) say. These parameters might not identify an actual
data distribution. An estimator (Q,, G,) of (Qp, Go) does now not imply a data dis-
tribution Pn that we can resample from. So we would then have to determine a 13,,
that is compatible with our estimates (Q,, G,,). This might be easy, but could also be
cumbersome in some problems.

The rational for the HAL estimator of D*(Py) using the actual i.i.d. sample
from Py is as follows. Firstly, we can apply our theorem at P = Py, which
shows that our lasso estimator converges to D*(Py) in L*(Py) at a rate faster
than n~'/*. However, this lasso estimator uses as outcome the unknown D(Py)
and also uses main terms Ap,(x — ¢xs(us,;)) in the linear regression model
that depend on Py. If D(Py) is replaced by a consistent D(fDn), then it will
be straightforward to show that the lasso estimator is still consistent, and the
rate would still be faster than n~"/* if D(P,) converges to D(Py) at the same
or faster rate. Finally, one wants to show that replacing the unknown main
terms in the linear regression model by the estimated versions using P, still
preserves the consistency. We believe that the latter is not hard to show under
a reasonably weak condition. In the remaining sections we consider various
examples.

8.3 Truncated Mean Based on Current Status Data

Let O = (C,4 = I(T < C)), where T and C are independent. Let F(¢) = P(T < t)
and G(t) = P(C < t) be the two cumulative distribution functions of 7 and C,
respectively. Let g be the Lebesgue density of G, and let F = 1 — F. Let P = Prg



110 M. J. van der Laan

be the true probability distribution of O. Let F' be unspecified, while G might be
restricted to a set G, so that M = {Ppc : F,G € G} is the statistical model. Let
¥ : M — R be defined by ?7(P) = f (1 = F)(»)r(r)dt, where r is a given function.
By selecting r(1) = ¢, ¥(P) equals the mean of T, and by selecting r equal to a
truncated version of the identity function, it yields a truncated mean. Many other
functionals can be generated by selecting an appropriate r. Note that the density
p(c,8) = F(c)’(1 — F(c))'g(c) of P factorizes in a factors only depending on F
and g, while ¥(P) = Y(F) only depends on F. Therefore, it suffices to determine
the efficient influence curve in the model M(G) in which G is known. In this model
M(G), we can use the following gradient:

r(€)

D(F.G) = m(l —4) = Y (F).

Note that indeed, ¥, = 1 Z, ! ’EC)(I A4;) is an unbiased estimator of ¥(F) with
influence curve D(F,G), so that indeed D(F,G) is a gradient in the model M(G).
LetdFc;, = (1 + eh)dF be a submodel through F at € = 0 with score & € L2(F ). The
score of {Pr_, ¢ : €} is given by

IN MOdF®) I hodF ()

Ap((O0) = Ep(W(T)| 0) = B—pr—d + S s

Thus, the score operator is given by this linear operator Ap : L(Z)(F ) — L(Z)(PF,G).
The efficient influence curve is defined as D*(F,G) = Ap(h* — Fh*), where

h* = arg min P{D(F,G) - Ap(h — Fh)}%.
hel(F)

We can represent h(f) = h(0) + [I(t > x)dh(x) = h(0) + [ ¢.(H)dh(x), where
¢, (t) = I(t > x). Using this representation it follows that Fh = h(0) + f F(x)dh(x).
Substitution of this representation for /4 into the above expression yields:

2
h = argmhinP{D(F, G) - f Ar(p)dh(x) + f F(x)dh(x)}

2
= arg mhinP{D(F, G) - f{F(x | ) — F(x)}dh(x)} ,

where F(x | C,4) = P(T > x | C,4). Let Oy,...,0, ~is Prc be a sample from
Prc. Let M be an upper bound for the variation norm of 4*. Then, we can estimate
h* with

2
Iy = arg min ! {D(F G)(Ci, 4y) - f {F(xlC,-,A,»)—F(x)}dh(x)} .
=1

hlkll<M 1

This minimum is attained at a discrete measure dh which only puts mass on
{C],...,Cn}I
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2
. 1 n _
i = arg, min 2 {D(F, G)(Ci, 4;) - ;{F(Cj | Ci, ;) - F(x)}dh(Cj)} .

Let8; = dh(C)), || B Ili= Z’}:l | B; |, and define

2
RN S _
Buw =arg min - Z {D(F, GX(C.4) - ;ﬁj{F(C,- | Cindt) - F(x)}} :

This is a standard lasso least squares regression estimator with L;-constraint set
at M. Let M, be the cross-validation selector, and define 8, = (B, u,. Then, our
estimator of the efficient influence curve D*(P) is given by:

D (P)(C,4) = Zﬁn,j{F(Cj | C,4) = F(x).

=1

By Theorem 8.1, this estimator converges to D*(P) in L*(P)-norm at a rate faster
than n1/4,

8.4 Truncated Mean Based on Interval Censored Data

Let O = (Cpy4,, = I(T < Cyp) : m = 1,...M) be a general interval censored
data structure, where T is a time to event, and C = (Cy,...,Cy) is a vector of
continuous valued monitoring times. Suppose that the monitoring times and 7 are
all larger than 0. For simplicity, we consider the case that the number of monitoring
time M is fixed, but we suggest that our results below are generalizable to the case
that M is random. We assume that 7" and C are independent. Let F(f) = P(T < ¢)
be the cumulative distribution function of 7', and let G and g denote the probability
distribution and density of C. Note that the probability distribution P = Pp¢ of O is
indexed by the true distributions F' and G of T and C, respectively. Let M = {Pr :
F,G € G} be the statistical model for P defined by leaving F unspecified, while
we might have restrictions/knowledge on the distribution of C defined by the set G.
Let ¥/ (F) = f r(£)F(t)dt be the full data parameter of interest, where F = 1 — F.
Under some support conditions on g, this parameter is identifiable from P, so that
¥ : M — R satisfies Y(Prg) = P/ (F). Let D*(F, G) be the canonical gradient of
¥ at Prg.

Note that the density of Pr¢ is given by prg(o) = g(ci,...,cu)F(C(0)), where
C(0) is the coarsening for T implied by O = o, and for a set A, F(A) = P(T € A).
Thus C(0) = (L(0), R(0)] is an interval, where L(O) is the largest monitoring time C;
for which 4; = 0, while R(O) is the smallest monitoring time C; for which 4; = 1. If
41 = 1, then we define L(O) = 0, and if 4y, = 0, then R(O) = oo. Thus, the density
of O factorizes in a F and G factor so that the efficient influence curve in our model
M is the same as in the model M(G) = {Pr¢ : F} € M in which G is known.
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Our first task is to determine an initial gradient D(F, G) in the model M(G). For
that purpose, let’s define the random variable C as the outcome of the following
experiment: generate C and then randomly draw one of the M monitoring times,
each one receiving probability 1/M. Let A = I(T < C). Let g = % Z,,Ale gm be the
univariate density of C, where g,, is the marginal density of C,,. An initial estimator
of W/(F) is given by the IPCW estimator %Z?:l(l — 4))r(C)/5(C;) based on the
reduced current status data structure (C,4 = I(T < C). The influence curve of
this estimator is given by (1 — A)r(C)/g(C) — ¥(F). Strictly speaking this is not
an influence curve since it is not only a function of O, but is also random through
the random pick involved in selecting C. So let’s take the conditional expectation
of this influence curve, given O. This yields % Zf,‘:’:l(l - A,)r(C)/8(Cy) — P(F).
Let’s verify if indeed the expectation of this equals zero, which then shows that this
is the influence curve of a linear unbiased estimator in model M(G). We have:

1 < 1Y
Eppom D (1= ANC)[&(Co) = 22 > EGFC)r(C)/Z(Cr)
m=1 m=1

1 };[ F gm(C)d
Wl [ oot

fr(c)F(c)dc = Y(F).

This proves that indeed we can select the initial gradient:
M
DE.GXO) = — (1 = 4,)HC)[H(Co) = P(F)
s M £ m m m .

Let Ap : L(2)(F ) — L%(PF’G) be the score operator that maps the score & € Lg(F )
of the submodel {dFc;, = (1 +€h)dF : €} at € = O into the score Ar(h) of {Pr,, ¢ : €}
at e = 0. We have

R(0)
L) h(t)dF (1)

F(R(0)) - F(L(0))’

Ar(h)(0) = EF(W(T) | O) = EF(W(T) | T € (I(0),R(0))) =
The efficient influence curve D*(F, G) can thus be defined as Ap(h* — Fh*), where
h* = h*(F,G) = arg hgzi(nm Pr{D(F,G) — Ap(h — Fh))*.
We can represent h(f) = h(0) + [I(t > x)dh(x) = h(0) + [ ¢.(t)dh(x), where

¢, (t) = I(t > x). Using this representation it follows that Fh = h(0) + f F(x)dh(x).
Substitution of this representation for £ into the above definition of #* yields:

2
h* = arg mhinP{D(F, G) - fAF(¢x)dh(x) + fF(x)dh(x)}
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2
= arg mhinP{D(F, G) - f{F(x | ) — F(x)}dh(x)} R

where F(x | O) = P(T > x| T € (L(O), R(O)]).
Let Oy,..., 0, ~iig Prc be a sample from Pr. Then, we can estimate 2" with

n

2
by p = ar ! {D(F, G)(0)) - f{F(x | Oi)—F(x)}dh(X)} :

g min
hllhll <M 1 £

Let {x,...,x,} be the set of monitoring times that appear as L(O;) or R(O;) across
the n coarsenings (L(0;),R(0;)], i = 1,...,n. Notice that J = J(n) is at most 2n,
and will be a little smaller than 2n if there are coarsenings that have as left point 0
or as right point co. We suggest that for each M, the minimum £, ,, is attained at a
discrete measure dh which only puts mass on {xy, ..., x;}:

2
n

J
x 1 _ _
hy = arg h’”rhrﬁiLlM . s D(F,G)(0;) - j:El {F(xj |0y — F(xj)}dh(x;))

Let B = dh(x;), 1| B Ih= X', | B; |, and define

BBl <M -
j=1

2
. 1 n J _ _
Buw =arg min -~ Z«;‘ {D(F, GO = ) BiF(x; 1 0) - F(x,,-»} :

This is a standard lasso least squares linear regression estimator with L;-constraint
set at M, outcome D(F, G)(0;) and J main terms F(x; | O;) — F(x), j = 1,...,J.
Let M, be the cross-validation selector, and define 8, = 8, »,. Then, our estimator
of the efficient influence curve D*(F, G) is given by:

J
D(F,G)(0) = > BufdF(x; 1 0) = F(x)).
j=1

By Theorem 8.1, this estimator converges to D*(F, G) in LZ(PF,G)-norm at a rate
faster than n~1/4.

8.5 Causal Effect of Binary Treatment on Interval Censored
Time to Event

Let O = (W,A,Cy,4,, = I(T < Cy) :m=1,... M) be a general interval censored
data structure, where T is a time to event, and C = (Cy,...,Cy) is a vector of con-
tinuous valued monitoring times, W are baseline covariates, and A is a binary treat-
ment. Let 4 = (4, ...,4y). Suppose that the monitoring times and 7 are all larger
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than 0. We assume that 7 and C are independent, given A, W. Let F(t | A, W) =
P(T <t| A, W) be the cumulative distribution function of 7', given A, W, and let
G.(-|A,W)and g.(- | A, W) denote the conditional probability distribution and den-
sity of C, given A, W. Let g(a | W) = P(A = a | W) be the conditional probability
of A = a, given W. Let Qw be the probability distribution of W. Let Q = (Qw, F)
and G = (G, g). Note that the probability distribution P = Py ¢ of O is indexed by
Q and G, respectively. Let M = {Pp : Q.G € G} be the statistical model for P
defined by leaving Q unspecified, while we might have restrictions/knowledge on
the conditional distribution of C, given A, W, and A, given W, defined by the set
G. Let S”,{(Q) = fr(t)Fa(t)dt, where F,(t) = EpP(T > t | A = a, W), be the full
data parameter of interest. Under some support conditions on g, g, this parameter is
identifiable from P, so that ¥ : M — R satisfies ¥(Ppg) = v/ (Q). Let D*(Q, G)
be the canonical gradient of ¥ at Py .

The density pg g of Py is given by

Po.c(0) = qww)g(a | wigc(c | A, W)F(C(o) | a,w),

where C(0) is the coarsening for T implied by O = o, and F(C(0) | a,w) = P(T €
C) | A =a, W = w). Thus C(o) = (L(0), R(0)] is an interval, where L(O) is the
largest monitoring time C; for which 4; = 0, while R(O) is the smallest monitoring
time C; for which 4; = 1. If 4, = 1, then we define L(O) = 0, and if 43, = 0, then
R(O) = 0. Thus, the density of O factorizes in a Q and G factor so that the efficient
influence curve in our model M is the same as in the model M(G) = {Py¢ : O} C
M in which G = (G, g) is known.

Our first task is to determine an initial gradient D(Q, G) in the model M(G). For
that purpose, let’s define the random variable C as the outcome of the following ex-
periment: generate C and then randomly draw one of the M monitoring times, each
one receiving probability 1/M. Let 4 = I(T < C). Let §.(C | a,w) = &= Y| gem(C |
a,w) be the univariate density of C, given A = a, W = w, where g.,,(- | A, W) is the
conditional density of C,,, given A, W. An initial estimator of ‘P({ (Q) is given by the
I[PCW estimator

L (o e e ek R
n i=1 gC(Ci |Ai7 ‘/Vl)g(Al | ‘/Vl)

based on the reduced current status data structure (W,A,C,4 = I(T < C). The
influence curve of this estimator is given by (1 — A)r(C)I(A = a)/{3.(C | A, W)g(A |
W)} — P,(Q). Strictly speaking this is not an influence curve since it is not only a
function of O, but is also random through the random pick involved in selecting C.
So let’s take the conditional expectation of this influence curve, given O. This yields
the following initial gradient:

1 & I(A =
DQ.GO) = 2D (1 = A )r(C) o D (0
m=1

8(Cn | A, W)(A| W)
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The tangent space of Qyw is given by T, (P) = LS(QW), and

I1(D(Q,G) | Ty, (P)) = fr(t)(F(t | a, W) = Fy(t))dt = Dy, (Q).

Thus, it remains to project D(Q,G) on the tangent space generated by the pa-
rameter F(- | A, W). Let L(2)(F ) denote the Hilbert space of functions of (W, A, T)
with conditional mean zero, given W, A. In the model M(G) the score operator
Ap 1 LY(F) - Li(Pg ) that maps the score h € L§(F) of dFe;(t | A, W) = (1+¢€h(t |
A, W))dF(t| A, W) into the score of {Pg,, r.,c : €} is given by:
Ar(h)(0) = Er(WT | A,W) | A, W, T € (L(O), R(O)])
R(O)
~ L) ht| A, W)dF(t| A, W)
F(R(O) | A,W) = F(L(O) | A, W)’

Thus the tangent space Tr(P) generated by F is given by R(Af), the closure of the
range of this score operator Ay : L(Z)(F) — L(ZJ(PQ,G). Let Fh=EMh|A W)= fh(t |
A, W)dF(t| A, W) and represent an i € L(z)(F) with h — Fh for an h € L*(F).

The efficient influence curve D*(P) = D*(Q,G) is the projection Dj,(P) of
D(Q, G) onto Ty, (P) plus the projection D}.(P) of D(P) onto R(Ar). Thus, the effi-
cient influence curve is the orthogonal sum D*(Q, G) = D}, (Q) + D3.(Q, G). Since
R(Ar) is embedded in the space of functions of O with conditional mean zero, given
A, W, we have that D}.(P) is also the projection of D;(P) = D(P) — E(D(P) | A, W)
onto R(Ar). We will also denote D;(P) with D1(Q, G). We have D;.(Q,G) = Ap(h*),
where

h*(P) = arg min P{D(Q,G)— Ar(h) + Fh)?,
hel2(F)

where we recall that for a function h(O), Fh = E(h | A, W) depends on A, W. We
can obtain this minimum by minimizing the conditional expectation of the squared
error loss, given (A, W), over all functions of T, which then defines an optimal 7 —
h*(T | A, W), and by doing this for all possible values of (A, W), it yields the full
solution (7,A, W) — h*(P)(T | A, W). Let’s denote this optimal T — h(T), for
this (A, W)-specific minimization problem, with #*(P | A, W), and note A*(P)(T |
A, W)=h"(P|A,W):

W'(P|A,W)=arg min Ep({Di(Q.G) - Ap(h) + Fhy* | A, W),
hel*(Fr)

where we define L>(Fy) as the space of functions T — h(T) of T = (T,T>) only.
Notice that for a given A, W, we now view Ay : L*(Fr) — Lz(PQ,G‘A,W) as a linear
operator from L*(F7) (functions of T') into the space of functions of (T, 4).

We can represent h(t) = h(0) + f I(t = x)dh(x) = h(0) + f ¢ ()dh(x), where
¢x(t) = I(t > x). Using this representation it follows that Fh = h(0) + f F(x |
A, W)dh(x). Substitution of this representation for & € L*(F7) into the above defini-
tion of i* yields:
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2
n = argn1hinEp[{D1(Q,G)— f Ar(¢p)dh(x) + f F(xIA,W)dh(x)} | A, W]
2
= argrr;inEP[{Dl(Q,G)—f{F(xl-)—F(xlA, W)}dh(x)} | A, W],

where F(x | O) = P(T > x| T € (L(O),R(0)], A, W).

Let (C1,41),...,(Cn,4,) ~iia Poca,w be a sample from the conditional distri-
bution Py ga,w of O, given A, W. Let O; = (C;,4;,A, W), i = 1,...,n, denote the
resulting n observations. Then, we can estimate 4*(P | A, W) with

n

2
h,y = arg min ! {D1(Q, G)(Oi)_f{F(xl 0) - F(x| A, Wi)}dh(x)} .
1

hilhll<M 1 &

Let {x}, ..., x;} be the set of monitoring times that appear as L(O;) or R(O;) across
the n coarsenings (L(0;), R(0O;)],i = 1,...,n. Notice that J = J(n) is at most 2n, and
will be a little smaller than 2# if there are coarsenings that have as left point 0 or as
right point co. We suggest that for all M the minimum 7%, ,, € L?*(Fr) is attained at a
discrete measure dh which only puts mass on {x, ..., x;}:

2
. R I _
b,y = arg oDin 2 {Dl(Q, G)(0) - JZ;{F(x,- | 0)) - F(x;j | A, W)}dh(xj)} )

Let 8; = dh(x)), || B Ih= X', | B; |, and define
2

1 n J _ _
Bnm(A, W) = arg min — {Dl(Q, G)(0) - Zﬁj{F(xj | 0) — F(x; | A, W)}} .
1

BlBh<M n £ -
= j=1

This is a standard lasso least squares linear regression estimator with L,-constraint
set at M, outcome D;(Q, G)(O;) and J main terms F(x; | 0;) = F(x)), j=1,...,J.
Let M, be the cross-validation selector, and define 5,(A, W) = B, (A, W). Then,
our estimator of the efficient influence curve (C,4) — D7(Q,G)(C,4,A, W) is
given by:

J
D (Q,G)(C,4,A,W) = Z Buj(A, WIF(x; | C,4,A, W) — F(x; | A, W)}.

j=1
By Theorem 8.1, for each A, W, this estimator converges to

(C,4) - D7(Q,G)(C, 4,A, W)

in L*(Pgjaw)-norm at a rate faster than n='/4.
To summarize, for a given A, W, the above method allows one to estimate the

function (C,4) — D*(P)(C,4,A, W) by fitting a lasso linear least squares regression
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in approximately n covariates. For the computation of the one-step estimator, the
TMLE, or for the influence curve based variance estimator of such an efficient
estimator, one typically just needs to know the efficient influence curve at the actual
observations O; ~ Pg. Therefore, for each observation i, one will have to run the
above procedure to estimate the efficient influence curve D*(P) at this O;. For many
TMLE one will need to evaluate the whole score (C,4) — D7.(P)(C,4,A, W) as a
function. Fortunately, the above procedure gives this for free w1thout extra work.

Nonconditional Maximization Approach. From above we have D7.(Q,G) =
Ap(h"), where

h*(P) = arg hggzigp)P{Dl(Q, G) — Ar(h) + Fh)?.

Above we used the approach to minimize the conditional expectation, given
A, W, for each A,W separately. Instead, here we go for direct minimiza-
tion. Let d be the dimension of (W,A,T). Consider the representation h(x) =

28c(ld) f¢xs(u3)dh8(u3)- Let H(us, A, W) = E(¢war)s(us) | W,A) be the con-
ditional probability that (W,A,T)s > us, given W, A. Using this representation it
follows that Fh = h(0) + X5 f H(us, A, W)dh(u). Substitution of this representation
for h € L*(F) into the above definition of 4* yields:

2
h* = arg mhinP{Dl(Q, G) - Z f{E(¢(T,A,W)5(MS) | O) — H(us, A, W)}dhs(us)} .
S

Let O; = (C;,4;,A,W),i = 1,...,n, be an i.i.d. sample from Py . Then, we can
estimate h*(P | A, W) with h; yy defined as the minimizer over & with || £ ||,< M of

L3 DIQ.GYO) — B [IE@ar,amys(us) | 0) — Hlus, A, W)dhs(us)) .

Suppose that h, ,, is a discrete measure so that dh, ,, ¢ only puts positive mass on
usj, j=1,...,Js,foreach S c {1,...,d} (e.g., the analogue of the 2n support
points in the previous section). Let

X(S, N0 = E(pr, a.wys(us,j) | 0) — H(us j, Ai, W),

and Bs; = dhs(us). As in our general presentation, we then obtain Ap(hy, ) =

ZS Zjﬁ:yS,jX(S’ ])(0), where :8n = ﬁn,Mn»

2
Bry =arg min - Z {DI(Q G0N - > XS, j)(o,»)ﬁs,,} :

S =1

and M, is the cross-validation selector.
The above approach becomes computationally intractable when the dimension
of W gets large. As shown in van der Laan et al. (2015), one can often define a
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dimension reduction of O and corresponding model and target parameter so that the
efficient influence curve at P is still the same as it was for the original formulation.
In this case the above method is still tractable.

8.6 Bivariate Survival Function Based on Bivariate
Right-Censored Data

In this section we demonstrate the HAL estimator of the efficient influence curve of
the bivariate survival function based on bivariate right-censored data. This is easily
extended to the HAL estimator of the efficient influence curve of the d-variate sur-
vival function for d-variate right-censored data, for general dimension d > 2. Let
0 = (Ty = min(Ty,Cy),4; = I(Ty < C1),T> = min(T>,C), 4, = I(T> < C2)),
where T = (T, T,) and C = (Cy, C,) are independent with cumulative distribution
functions F and G, respectively. Let Pr be the probability distribution of O. Let
A =,4))and T = (T}, T»), so that we can denote O = (T, A). Consider the statis-
tical model M in which F and G are unspecified. Let ¥ : M — R be the bivariate
survival probability F(tg, t29) = f((tm,tzo),oo) dF(x1, x,). We will also use the notation
to = (t10, 120). We will denote ¥ (Pr) also with Y (F). The density of O factorizes
in a F and G factor. As a consequence, the efficient influence curve of ¥ at Prg
in the model M is the same as the efficient influence curve at Pr¢ in the model
M(G) = {Pp¢ : F} in which G is known. A gradient of ¥ in the model M(G) is
given by

I4=(1,1))
D(F,G)(0) = £,(0) %8 Y(F),
where «,(0) = I(T > t;). This is the influence curve of the simple IPCW estimator
defined as % ke (ODIU; = (1, 1))/G(T;) and is thus indeed a gradient. In the
model M(G) the score operator A : Li(F) — L3(Prg) that maps the score i €
L(z)(F) of dF. () = (1 + €h(t))dF(¢) into the score of {PF_, ¢ : €} is given by:

Ar(h)(0) = Er(T) | T, 4)
fTolo h(ty, T)F' (dn, T5)

=hT)I4=(1,1))+ I(4 =(0,1))

FONT,, Ty)
fT‘” h(T, )F'(T, dn) I = (0.1
+ FIO(T,, T>) “@=0.0
= [ h(ty, t2)dF (11, 1)
+fT, I, P U= 0,00,
F(T,,T>)

where FO'(t1,12) = 4 F(t1, 1), FO'(t1,10) = [ FO(dsi, 1), FY(t1.12) = G F(11,1)

and F'0(t), 1) = ft:O F't,,dsy). Let Fh = fhdF and represent an /1 € L(z)(F) with
h — Fh for an h € L*(F). The efficient influence curve is given by Ar(h*), where

h*(P) = arg min P{D(F,G) - Ap(h) + Fh}*.
hel2(F)
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We can represent a bivariate cadlag function & € L*(F) with finite variation norm as
follows:

1 753 1] )
h(t1, 1) = h(0,0) + f h(dx;,0) + f h(0,dx;) + f f h(dxy,dx>)
0 0 0 0

=100+ [ 61 (0h@x.0)+ [ da. 0. dx)
+ f ¢x1 X2 (tl 5 tz)h(d-xl 5 dxz),
where ¢, (1) = I(t; 2 x1), ¢2,5,(t) = I(t2 2 x2), and @y, , (1) = I(t; = x1,12 = x2).
Thus, in this way we have written the function 4 as a linear infinite combination of

indicator functions ¢y x,, #2 x,, ¢x across all x-values. Since Ar is a linear operator,
this yields the following representation of Ag(h):

Ap(h) = h(0,0) + f Ap($1.x)h(dx1,0) + f Ap($2,4,)h(0, dx;)
+ [ Ars @,
= h(0,0) + fFl(xl | O)h(dx;,0) + sz(xz | O)h(0, dx3)

+ fF(xl,xg | O)h(dxy, dx,),
where we denoted the conditional_probabilitie_s T > x1, giverl 0, T, > x, given O,
and T > (x1, x), given O, with Fi(x; | O), Fa(xy | O) and F(x | O), respectively.
Note also that

Fh = h(0,0) + fFl(xl)h(dxl, 0) + sz(xz)h(O, dxy) + fF(xl, x2)h(dxy, dxy),

where F(x;) = Pp(T) > x1), F2(x3) = Pp(T> > x») and F(x),x3) = Pp(T) >

x1, T > x»). Thus, we have proven the following representation of Ar(h — Fh) for
any cadlag function & with finite variation norm:

Ap(h— Fhy = f (Fy(x1 | 0) - Fy(x1)h(dx1, 0) + f (Fa(s | 0) = Fa(ea)h(0, d)
+ f (F(x | 0) - F()h(dx)

Let Oy,..., 0, be an i.i.d. sample from Pfrg. Then we can approximate 4" with

1
n,, =arg min -
nM hill<M 11

D D(F,G)(0:) = Ap(h = F)(OpP

i=1

We claim that this minimum is attained by a discrete measure 4 for which A(dx;, 0)
only puts mass on {T1; : i}, h(0, dxy) only puts mass on (T : i}, and h(dx;,dx>)
only puts mass on {(7; : i}. Let’s denote these three set of support points with {m;; :
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J=1,...,n},{my;: j=1,...,n}and {m; : j = 1,...,n}, respectively. For such a
step-function s we have:

Ap(h— Fh)(0;) = Z(Fl(mlj | 0;) = Fy(my;))h(dmj;,0)
J

+ Z(FZ(ij | 0;) = Fa(m2j))h(0, dmy;) + Z(F(mj | 0)) — F(m;))h(dmy).
J J

This yields a representation of /, ,, as a finite dimensional linear regression least
squares estimator. Let 5; = h(dmlj, 0), B2j = h(0,dmy;), B; = h(dm;), and let
B =(B1;,B2j,8;: j=1,...,n) be the vector with all these components. In addition,
let X; = (Xli(j)sXZi(j)in(j) 1 Jj=1,...,n), where

X1:(j) = Fi(myj | 0;) = Fi(my)

X0i(j) = Fa(myj | O;) = Fa(my))

Xi(j) = F(m; | 0;) — F(m).
In addition, let || B ||;= Z’}zl [ Bij |+ 12| +|pB;|be the L'-norm of this vector 8
of coefficients. We can now represent Ar(h — Fh) as a linear regression model:

Ap(h = FI)Op) = )" B1j(Fi(mi; | 0) = Fr(mi ) + ) Ba(Falma; | 0) = Fa(ma)
J J
+ 3 Bi(Fm; | 0) = Fmy))
J
= ﬂTXi,

while the variation norm of # is defined by || 8 ||;.
For a given M, let’s define constrained least squares regression estimator:

Bru = arg min —Z D(F.G)0) ~BTX,) .

This is a standard lasso least squares regression estimator with L;-constraint set at
M. Let M, be the cross-validation selector of M, and define 5, = 5, »,. Then, our
estimator of the efficient influence curve D*(P) is given by:

D;(P)O) = B} X;
= Zﬂm]ﬂ(mu | 0) = Fi(m ) + Zﬁzn,(F2<mz, | 0) = Fa(ms))

J=

* Zﬁn,<F(m, | 05) = F(m)).

By our theoretical result, this estimator Dj (P) converges to D*(P) in L*(P)-norm at
a rate faster than n='/4.
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8.7 Causal Effect of Binary Treatment on Bivariate Survival
Probability Based on Bivariate Right-Censored Data

Consider the extended right-censored data structure for bivariate survival data:
0 =(W,A, T =min(Ty,Cy), 4, = I(Ty < C1), T, = min(T, C2), 45 = (T < C)),

where W are baseline covariates, A € {0, 1} is a binary treatment. We use the notation
of the previous subsection, such as T = (T}, T3), C = (C1,C3) , 4 = (4,,4,) and
T = (T}, T»). Thus, we can denote this observed data structure with O = (W, A, T, 4).
Let Qw be the marginal probability distribution of W, g(a | W) = P(A = a|W) be the
treatment mechanism, and let F(- | A, W) and G.(- | A, W) denote the conditional
cumulative distribution functions of 7" and C, given A, W, respectively. Let G =
(8,G.) and Q = (Qw, F). Note that the probability distribution Po = Py, rec, Of
O is indexed by these four parameters. Consider the statistical model M = {Pg :
0,G € G} in which Qw and F(- | A, W) are unspecified, while we might have some
knowledge on the treatment and censoring mechanism so that G = (g, G.) might be
restricted to a certain set G.

Let ¥ : M — R be the treatment specific bivariate survival probability at 7y =

(t10, 120)
Y(P) = F,(t)) = fP(T >t | A=a,W=w)Qw(dw)
= fF(lo |A =a,W=wOw(dw).

Since ¥ (P) only depends on P through Q = (Qw, F), we also use the notation ¥(Q).
The density of O factorizes in a Q and G = (g, G.) factor. As a consequence, the
efficient influence curve of ¥ at Py in the model M is the same as the efficient
influence curve at Py in the model M(G) = {Pg : Q} in which G is known.

A gradient of ¥ in the model M(G) is given by

I4=(.1).A=a)
gA | W)GAT | A, W)

D(Q,G)(0) = «,(0) 7(0),

where k,(0) = I(T > ty). This is the influence curve of the simple IPCW estimator
defined as % " k(0D = (1,1),A; = a)/{gA; | Wo)G(T: | A, Wi)} and is
thus indeed a gradient. The tangent space T, (P) generated by fluctuations dQw =
1+ eSw(W)dQw with Sy € L(z)(QW) is LS(QW) itself. Let

Dy(0,G) = Ep(D(Q,G)(0) | W) = F(to | A = a, W) = Folto).

Note that this represents the projection of D(Q, G) onto the tangent space T, (P),
and thus represents a component of the efficient influence curve D*(P).

Let L(2)(F ) denote the Hilbert space of functions of (W, A, T) with conditional
mean zero, given W,A. In the model M(G) the score operator Ap : L%(F ) —
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Lé(PQ,G) that maps the score h € L(z)(F) of dFep(t | A, W) = (1 +€h(t| A, W))dF(t |
A, W) into the score of {Py, r,,c : €} is given by:
Ar(h)(0) = Er((T | A,W) | W,A, T, 4)
= (T | A, W)I(4 = (1,1))
i n, To | A, WHFONdn, To | A, W)
’ PO, T2 | A W)
o n(@ 6 | A WHF(T ) diy | A, W)
’ FO(T,. T5 | A W)
. [ h(tl,_ r2~| A: W)dF(t1,1, | A, W)
F(T\.T, | A, W)

1(4=(0,1))

1(4=(0,1))

1(4 = (0,0)),

where FO'(t1,1, | A, W) = ZLF(t,1 | A, W), FO' 11,12 | A, W) = fn"" FOUdsy, 1 |
AW, PO, 10 | A W) = GE (0,0 | A, W) and FO(, 1 | A, W) = [ F'0, ds, |
A, W). Thus the tangent space Tr(P) generated by F is given by R(Ar), the closure
of the range of this score operator Af : L(2)(F) — Lg(PQ,G). Let Fh =EMh|A,W) =
[ h(t| A,W)dF(t | A,W) and represent an i € L2(F) with h — Fh for an h € L*(F).

The efficient influence curve D*(P) = D*(Q,G) is the projection Dj,(P) of
D(Q, G) onto Ty, (P) plus the projection D}.(P) of D(P) onto R(Ar). Thus, the effi-
cient influence curve is the orthogonal sum D*(Q, G) = D},(Q, G)+D7.(Q, G). Since
R(Ar) is embedded in the space of functions of O with conditional mean zero, given
A, W, we have that D7.(P) is also the projection of D1(P) = D(P) — E(D(P) | A, W).
We have D7(Q,G) = Ap(h™), where

h*(P) = arg thlzigp) P{D1(Q,G) = Ap(h) + FhY*,

where we recall that for a function h(0), Fh = E(h | A, W) depends on A, W. We
can obtain this minimum by minimizing the conditional expectation of the squared
error loss, given (A, W), over all functions of 7', which then defines an optimal 7 —
h*(T,A, W), and by doing this for all possible values of (A, W), it yields the full
solution (T,A, W) — h*(P)(T,A, W). Let’s denote this optimal " — h(T), for this
(A, W)-specific minimization problem, with 2*(P | A, W), and note h*(P)(T,A, W) =
h*(P|A,W):

W(P|A,W)=arg min Ep({Di(Q,G)— Ap(h) + Fh}* | A, W),
hel2(Fr)

where we define L>(F7) as the space of functions T — A(T) of T = (T}, T) only.
Notice that for a given A, W, we now view A : LX(Fr) — L2(P|A,W) as a linear
operator from L*(F7) (functions of T') into the space of functions of (T, 4).

For a given A, W, we now proceed in the same way as in the previous section,
analogue to the example “Causal effect of binary treatment on interval censored time
to event”. We will not repeat these calculations here.
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8.8 Discussion

Our interval censored data and bivariate right-censored data examples rep-
resent problems where the efficient influence curve does not exist in closed
form, and the construction of efficient estimators has been extremely chal-
lenging, accordingly. These examples demonstrate that we can estimate these
complex efficient influence curves with HAL least squares linear regression,
thereby making the construction of a one-step estimator or TMLE relatively
straightforward. This is quite a remarkable result!

In our bivariate survival function example with covariates, we demonstrated that
we can even estimate the efficient influence curve of the causal effect of a binary
treatment A on a bivariate survival function controlling for a large dimensional co-
variate vector W, by using such lasso regression estimators for a given (A, W). This
makes it now possible to develop a TMLE of this causal effect on a bivariate sur-
vival function with bivariate right-censored data. We also demonstrated this same
approach for the efficient influence curve of the causal effect of a binary treatment
on a truncated mean of the survival time based on an extended interval censored data
structure O = (W,A,4,,Cy,...,4y,Cy). This allows us estimate a causal effect of
treatment on a time to event that is subject to interval censoring. Again, the latter
represents another very interesting estimation problem with important practical ap-
plications which will need to be pursued in the future. Our HAL estimator of D*(P)
relies on an i.i.d. sample from P. However, we also show (without formal proof) that
if the goal is to estimate D*(Py) and P represents a consistent estimator of Py, then
we could simply apply the HAL estimator to the original sample from Py instead.
This makes our proposed HAL estimator particularly convenient.

The approach for estimation of the efficient influence curve presented in this
chapter provides an alternative to the methods proposed in Frangakis et al. (2015);
Luedtke et al. (2015a); van der Laan et al. (2015). The latter type of research, which
started with the inspiring article Frangakis et al. (2015), concerns computerizing the
estimation of the efficient influence curve (and thereby efficient estimation) without
the need for being trained in efficiency theory. Clearly, the approach presented in
this chapter still requires the user to formulate an initial gradient, the score operator
and the corresponding regression problem. Nonetheless, importantly, it avoids the
need for closed form representations of the canonical gradient and mathematical
and numerical computation of the projection of an initial gradient on the tangent
space, but instead utilizes the state of the art in machine learning for prediction to
approximate this latter projection.
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What factors are most important in predicting coronary heart disease? Heart disease
is the leading cause of death and serious injury in the United States. To address this
question we turn to the Framingham Heart Study, which was designed to investi-
gate the health factors associated with coronary heart disease (CHD) at a time when
cardiovascular disease was becoming increasingly prevalent. Starting in 1948, the
prospective cohort study began monitoring a population of 5209 men and women,
ages 30—62, in Framingham, Massachusetts. Those subjects received extensive med-
ical examinations and lifestyle interviews every 2 years that provide longitudinal
measurements that can be compared to outcome status. The data has been analyzed
in countless observational studies and resulted in risk score equations used widely
to assess risk of coronary heart disease. In our case, we conduct a comparison anal-
ysis to Wilson et al. (1998) using the data-adaptive variable importance approach
described in this chapter.
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This chapter describes using the data to both define and estimate a target
parameter, drawing inferences about this parameter.

Consider predictors R (blood pressure, total cholesterol, smoking status, diabetes
status, age, and others) and an outcome, where Y = 1 for CHD diagnosis and ¥ = 0
for no CHD diagnosis. We want to know which of these variables is “most impor-
tant” for explaining (predicting) Y, so this is a variable importance measure (VIM)
estimation problem. We propose a procedure that targets the VIM, one variable
at a time, as opposed to deriving variable importance measures as a byproduct of
some parametric model or machine learning procedure (Gromping 2009; Auret and
Aldrich 2011). In this way, we can optimize performance of the VIM estimators as
well as derive robust inference even when deriving such measures data adaptively.
We do so by a combination of using a data-adaptive parameter approach (Hubbard
and van der Laan 2016; Hubbard et al. 2016) and cross-validated targeted maximum
likelihood estimation (CV-TMLE).

Others (van der Laan 2006b) have advocated for estimation of variable impor-
tance measures via parameters motivated by causal inference, and we have applied
such techniques to rank variables by importance for acute trauma patient outcomes
(Hubbard et al. 2013), quantitative trait loci (Wang et al. 2011a,b, 2014), biomarker
discovery (Bembom et al. 2009), and health care spending (Rose 2018). We loop
through each variable of A € R, defining W as everything else: W = R \ A. For one
loop, define the data, for a particular variable of interest, as O = (W, 4,4 = (A, Y)),
where 4 is missingness indicator for either A or Y (=1 if both not missing, O other-
wise). Assume for now that A is discrete and there is a known “highest risk™ level
(ay) and a lowest risk level (a;). Then, a candidate parameter for variable impor-
tance that would allow comparisons across different candidate predictors (each with
their own (ag, ag)):

EwlEY|A=ayg,W)—EXY |A=ag, W)}, 9.1)

or a weighted average of the stratified mean differences comparing, within strata W,
subjects with ay versus those with a;. Though we do not emphasize causal inter-
pretations in this chapter, under standard identification assumptions, (9.1) identifies
E{Y(ay) — Y(ar)}, where Y(a) is the counterfactual outcome for patient if, possi-
bly contrary to fact, A was set to a. More generally, (9.1) is a VIM, which can
be compared (and ranked in importance) across the different covariates in R, and
it is also a pathwise-differentiable parameter with the possibility of deriving semi-
parametrically efficient, asymptotically normally distributed estimators. However,
the story becomes more complex if ay and a;, are not a priori known, but must be
“discovered” data adaptively.
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9.1 Example: Defining Treatment or Exposure Levels

Candidates for A are not always discrete and even when they are, there are often
no objectively defined high- and low-risk levels for predictors. Thus, consider the
situation where one uses the data to define the low-risk level a; and the high-risk
level ay. Let P, define the empirical distribution. An algorithm applied to P, could
be used to define these low- and high-risk levels in A, or (a.(P,), ag(Py)). Let Q :
Myp = Q = {Q(P) : P € M} be an estimator of the true regression Qy(A, W) =
Ep,(Y|A,W),and Q, = Q(P,1) is its realization when applied to the data. If A were
discrete with arbitrary levels A = (ay,as,...,aq;,...,ak), we could define a,(P,)
and ay(P,) as

N
ay(P,) = arg mingea~ > Oula, W), 9.2)
n i=1
1 n
ay(Py) = arg maxaea— > Onla, Wy). 9.3)
n

i=1

That is, one “discovers” levels (az(P,), ay(P,)) that maximize the substitution esti-
mate of (9.1) according to some regression estimate Q,(A, W). This can be used to
define a data-adaptive target parameter:

Yo panp)(P) = Ep{Ep(Y | A = ap(Py), W) — Ep(Y | A = ar(P,), W)} (9.4)

for which the substitution estimator is
1
= > {Qu(an(Py), Wi) = Ou(ar(Py), W) 9.5)
3

Because of the dual use of this data, this substitution estimator (9.5) will suffer from
overfitting bias. To illustrate this, consider a data-generating distribution where

EW{E(Y | A = au(Py), W) = E(Y | A = ar(P,), W)} = 0,

the estimate (9.5) will always be positively biased (it is always > 0). A common
concern is that exploratory exercises like this will suffer from erroneous findings
(Ioannidis 2008; Broadhurst and Kell 2006). On the other hand, if sample splitting
is done such that (1) a training sample was used to define (ap(P, ), ap(P, ), and
(2) a separate estimation sample was used to estimate Ew{E(Y | A = ag(Pp ), W) —
E(Y | A = ap(Pn.r), W)}, then valid statistical inference is possible. Of course, with
such a sample splitting method the power is heavily reduced due to the reduction in
estimation sample size.



128 A. E. Hubbard et al.

This chapter presents a data-adaptive procedure that uses the data to define
the target parameter, estimate it consistently and efficiently, and derive ro-
bust measures of uncertainty and confidence intervals. As in Hubbard et al.
(2016), we discuss methods that use sample splitting to avoid bias from over-
fitting, but still use the entire data set to estimate a data-adaptive parameter.
These methods apply in circumstances where there is little constraint on how
the data is explored to generate potential parameters of interest. Such methods
can capitalize on the very large sample sizes and/or very high dimension as-
sociated with “Big Data”. We first describe the data-adaptive target parameter
approach (Hubbard and van der Laan 2016; Hubbard et al. 2016) that uses
repeated sample splitting, and subsequently we enhance this approach with
CV-TMLE (Chap. 27 in van der Laan and Rose 2011). We will demonstrate
the technique to the Framingham Heart Study.

9.2 Methodology for Data-Adaptive Parameters

Let Oy,..., O, bei.i.d. with probability distribution Py, and assume that it is known
that Py is an element of a specified statistical model M. We let P, represent the
empirical distribution of this random sample of n draws from P,. Cross-validation
is a key ingredient of our proposed method. To simplify the presentation, we present
the relevant procedures in the context of V-fold cross-validation.

V-fold cross-validation involves the following steps: (1) {1,...,n} is divided into
V equal size subgroups, (2) for each v, an estimation-sample is defined by the v-th
subgroup of size n/V, while the parameter-generating sample is its complement. For
split v, let P, be the empirical distribution of the parameter-generating sample, and
P, is the empirical distribution of its compliment, which we call the estimation-
sample. For an observation O;, let Z; € {1,..., V} denote the label of the subgroup
that contains O;. For split v, the parameter-generating sample P, . is used to gener-
ate a target parameter mapping ¥p, . : M — R, and let %5, . : Myp — R be the
estimator mapping of this target parameter.

For the sake of statistical inference, the choice of target parameter mapping and
corresponding estimator mapping can be informed by P, ., but not by P,,. We
define the sample-split data-adaptive statistical target parameter as ¥, : M — R
with

1 \%4
¥,(P) = Avel ¥, . (P)} = Z ¥y . (P).
v=1

The statistical estimand of interest is thus

1 14
Uno = ¥a(Po) = Avel¥p_ (Po) = Z Yy, . (Py). (9.6)
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This target parameter mapping depends on the data, which is the reason for calling
it a data-adaptive target parameter. Given an estimator on each estimation sample,
¥p, .. (Pn,), the corresponding estimator of the data-adaptive estimand . is given
by:

. . | &
Un = P(Py) = Avel Py, (Pr)} = Zl P (Puy). 9.7)

In Hubbard et al. (2016) and Hubbard and van der Laan (2016) we showed that
VW, — ¥,0) converges in distribution to mean zero normal distribution with vari-
ance o under weak regularity conditions, whose variance o can be consistently
estimated, allowing the construction of confidence intervals and hypothesis tests.
Note that in this methodology the estimator of ¥p, .(Pp) is only based on P, ,. In
a later section, we present a CV-TMLE approach that estimates ¥p,..(Po) with a
TMLE based on P, ,, but where the initial estimators of the nuisance parameters in
the TMLE can be based on P,,.. Thus, in this CV-TMLE approach only the target-
ing step in the TMLE (which only involves fitting a low dimensional coefficient €)

is based on the separate sample P, .

9.3 TMLE of v-Specific Data-Adaptive Parameter

Consider the data-adaptive parameter (9.4), where we have data adaptively deter-
mined the a; and ay on a single “training” sample, P, ., so the parameter of interest
is

Pp,.«(Po) = EwolEo(Y | A = apy(Ppye), W) — Eo(Y | A = ap(Py,), W)} (9.8)

Like above, define Q(A, W) = Ep(Y | A, W), with Qy(A, W) = Eo(Y | A, W) being
the true regression function. Treating the (ap (P, <), ag(P,)) as fixed after being
determined (by some algorithm) in the training/parameter generating sample, then
the estimator of (9.8) can be just the difference of estimators of two “adjusted”
means, a problem well known in causal inference literature (e.g., see Chap. 4 in
Targeted Learning, van der Laan and Rose 2011). Let Q,, = QA(PW) be an esti-
mate of Oy based on the estimation sample P, ,, v = 1,...,V, where Q denotes a
particular estimator. Consider the substitution estimator equivalent to (9.5),

. 1
EUP,,V,.(‘ (Pn,v) = n_ Z {Qn,v(aH(Pn,v”)v Wz) - Qn,v(aL(Pn,vf)’ ‘/Vt)}s (99)

V iZ=v

where Qn,v = Q(Pn,v)~

In words, this is the difference of averages of the predicted values (based on a
fit of O on the estimation sample, or Q,,) across the observations on the estimation
at the observed covariates, W;, and the variable of interest, A, set at two values
determined on the training sample, ag(P, ) versus arp(P,,). If Q is estimated in a
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very large (semiparametric model) by using, for instance, machine learning methods
(such as the super learner; van der Laan et al. 2007), then the bias would be reduced
relative to estimation according to a misspecified parametric model. However, such
a substitution estimator is overly biased and not asymptotically linear, so that robust
statistical inference based on this estimator is highly problematic. However, as is the
subject of this book, a targeted maximum likelihood estimator based on this initial
estimator reduces bias and under weak assumptions, has an asymptotically normal
sampling distribution. Let’s define such a TMLE.

The efficient influence curve of ¥, (p, o).au(?,.c)(Po) = Ep{Qo(an(Ppye), W) —
QO(aL(Pn,v”)a W)} is giVCIl by

I(A = apg(Pyye)) I(A = ap(Pp,<))
D; 0) = - - - Y - AW
P (0) {go(aH(Pn,m W) 20(@(Pr) | W)}( Qo(4, W)
+Q0(ag(Ppye), W) = Qo(ar(Puye), W) = ¥arproranPne) (Po)-

This suggests the following least favorable submodel {Q,,¢ : €} through Q,, at
e=0:
LogitQy (A, W) = LogitQ, ,(A, W) + eHp, . (A, W; g), 9.10)

where
I(A = P, I(A = ar (P,
(A Wsg) = (A =ag(Pny)) I(A=ar(P, ))’
g(aH(Pn,v") | W) g(aL(Pn,v") | W)
and g(a | W) = P(A = a | W). By estimating g on the estimation sample we obtain

the so-called clever covariate, Hp, (A, W; g,,), providing the resulting TMLE of
¥p,.. (Po):

Hp

9.11)

R 1
PR P) = D (Ot @1 (P ). W) = Qi (@L(Prse). W), (9:12)

IX.V[
iZi=v

where €, is the maximum likelihood estimate of the coefficient € in front of
HP,U,c (*; gny) based on P, ,.

Let’s now discuss estimation of gy. Although A can have many levels, we only
need to predict A = a for two values, A = ap(P,,<) and A = ag(Pp,c). On the es-
timation sample P, ,, go could be estimated with a multinomial outcome machine
learning algorithm. Alternatively, one can use more commonly implemented ma-
chine learning algorithms for binary outcomes by running separate logistic regres-
sions for fitting go(a | W) for each a separately, and normalizing the estimates so that
the resulting estimate of g is a proper conditional probability distribution. Since we
only need to know the distribution g at two values, one could use the latter approach
to fit a conditional distribution of A* | W, where A* = A if A € {a;(Py<), ag(Pp <)}
and it equals a third value otherwise. This will be the approach used below in our
data analysis.

Along with the TMLE, comes the estimated influence curve at each observation
O; in the estimation sample P, ,,, which is given by
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I(A = aH(Pn,v")) _ I(A = aL(Pn,v"))
&y (ag(Pny)lW)  guy(ar(Puye)lW)

+ [Qn,v,e(,w)(aH(Pn,vf)’ W) - Qn,v,q”_v) (aL(Pn,vf)’ W)] - @IQKLE(PMV).
(9.13)

DZ,V,P,,YW(O) = [ {Y - Qn,v,e(,,y) (A’ W)}

These estimated influence curve values (9.13) provide us with an estimate of the
standard error of the TMLE ‘1’;" ""’r LE(P,,) of ¥p, . (Po):

WD}, , (0)

se(PpH) = n/v

where var(D(0)) is the sample variance of D(O) w.r.t. estimation sample P,, .

9.4 Combining v-Specific TMLEs Across Estimation Samples

We can define an average split-specific data-adaptive parameter as in (9.6) above:

\4
1
Vo(Po) = 1 D Pr,..(Po).
v=1

One can estimate this as an average of the split-specific TMLE estimates, just as in
9.7):

nv¢

\4

. 1 G,

b= > IMEP, ). (9.14)
v=1

The asymptotic variance of this estimator can be estimated as

\%4
1 .
o2 = v Z Puy(D;,p ) (9.15)
v=1

where (9.15) is the average of the V sample-specific estimates of the variance of
the v-specific influence curves. The standard error of the estimator ¥ (P,) can be
estimated as

se(P(Py) = o/ V.

As shown in Hubbard et al. (2016) and Hubbard and van der Laan (2016), under
weak conditions, ¥(P,) is a consistent and asymptotically linear estimator of (9.6)
and the above standard error provides valid asymptotic 0.95-confidence intervals
W, = 1.960,/ v for ¥, (Py).
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9.5 CV-TMLE

The v-specific TMLE of ¥p, . (Po) is only based on the sample P,, of size n/V.
Fortunately, there is a modification of the procedure presented in the previous sec-
tion that accomplishes (the apparently) conflicting goals for the same statistical as-
sumptions presented in theorem 1 in Hubbard et al. (2016), that is (1) using more
of the data for estimating the data-generating distributions used in the estimator of
the data-adaptive parameter, and (2) not increasing bias via over-fitting: CV-TMLE
(Chap. 27 in van der Laan and Rose 2011) provide the theory and general frame-
work showing, for instance, that CV-TMLE is more robust than standard TMLE (it
can guarantee asymptotic sampling distribution results in an even bigger statistical
model). In addition, CV-TMLE can also be used for estimating the type of data-
adaptive parameters highlighted in this chapter. For instance, it is particularly useful
for both using the data to estimate an optimal treatment rule (Luedtke and van der
Laan 2016b), as well as to estimate the impact of using such a rule on the mean out-
come (van der Laan and Luedtke 2014; Luedtke and van der Laan 2016a). Before
discussing the estimation of our particular data-adaptive parameter in our variable
importance application, we first provide a general description of CV-TMLE for gen-
eral data-adaptive parameters as presented in van der Laan and Luedtke (2014).

9.6 CV-TMLE for Data-Adaptive Parameters

Let D be an index set for a collection of possible definitions of a parameter. For
example in our case, this would be the set of all values of (ar,ay). In addition,
assume that, for each d € D, we have a statistical target parameter ¥; : M — R.
For example, if d represents a certain treatment rule, then we might define ¥,;(P) =
EpYy. Letd : Myp — D be an algorithm that maps an empirical distribution into
an estimate of a desired index dy. In our example, c?(Pn) = (ar(P,),ag(P,)) and the
corresponding target parameter (9.8) learned on P, would be written as:

Wip, (P) = EplEp(Y | A = ag(Puy), W) = Ep(Y | A = ay(Pye), W)).

In this chapter we are concerned with presenting a method that provides an esti-
mator and statistical inference for the following data-adaptive target parameter (as
in 9.6) indexed by d:

|4
1
Yon = Avel¥yp (Po)} = % VZ:; Zip, ) (Po)-

Below we present a modification of the average of TMLE estimators presented
above, which is called the CV-TMLE. This CV-TMLE will be denoted with .
Previous results (van der Laan and Luedtke 2014) have shown that this CV-TMLE
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¥, provides robust statistical inference, without relying on the empirical process
condition (i.e., Donsker class condition) that restricts the adaptivity of d(P,) and the
corresponding estimators of ¥;p .\(Po).

For each target parameter ¥, let D’ (Py) be its efficient influence curve at Py.
Assume that ¥;(Pg) = ll’d(Qg) only depends on P, through a parameter Qg, and
assume that D’ (Py) = ;(Qg, gg) depends on Py through Qg and a nuisance param-
eter go, these nuisance parameters are indexed by d because the choice d of target
parameter can affect the definition of these parameters.

The canonical gradient D (P) of the pathwise derivative of ¥; : M — R implies

a second-order Taylor expansion with second-order term R,(Q?, 04, g%, gd):

P01 — Pu(0d) = (P - Po)D(Q, g + Ra(Q%, 04, g%, 82).

Let 07 : Myp — Q¥ and g : Myp — G be initial estimators of Q4 and g¢, respec-
tively; L(Q?) is a valid loss function for Q4 such that Q4 = argming: PoLY(Q%);
{Q%e) : €} is a submodel through Q7 at € = 0 with a univariate or multivariate
parameter € so that the linear span of the generalized score includes the efficient
influence curve at (Q¢, g9):

Dy(Q", gd>e< L"(Q) "

where (f) = {X;8,f; : B} denotes the linear space spanned by the components of
f. For a sample with empirical distribution P,, let {Qf(Pn) : €} be this submodel
through the estimator Q%(P,) at € = 0, using §4(P,). Let’s consider the case that the
TMLE only requires one-step, which can be formally arranged by using a universal
least favorable submodel {Qi : €}. We define

= argmin P, LA 0),

where the submodel {Qn V( . €} through Qn e = Qd(P,w() at € = 0 uses gz e =
84(P,,,) as estimator of go. This defines a first step TMLE update of fo . based on
P,,. If we consider the case that the TMLE converges in one-step, as can always be
arranged by using a universal least favorable submodel, and is the case in our exam-
ple, then this implies that this first step TMLE already solves its efficient influence
curve score equation

Pn»VDZ(QZ,V",e,,,.,’ gg,v‘) =0.

Since this holds for each v, we then also have

—ZanDd(Qm angha=0. (9.16)

This key equation (9.16) represents the desired efficient score equation for our target
parameter. In this case that the TMLE only takes one step, this key score equation
can also be established with a single MLE (common in v):
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= arg m1n — Z P, de(Qn o)

In general, if the TMLE is defined by a multiple step TMLE algorithm, then one uses
this multiple step TMLE algorithm applied to P,, to determine the TMLE update
Qn "o of Qn , for each v separately, and, again, one could pool across v at each step
of such an multiple step TMLE algorithm. One can view the TMLE-update QZ,*VL. as
a TMLE update based on P, in which the initial estimator inc was based on an
external sample P, ..

For notational convenience, we use the notation Q,, ,c = OdeP w)(P,.), and simi-
larly, we define g, = §9Pw)(P,). In the following we assume a one-step TMLE,
but the generalization to iterative TMLE is immediate.

The key assumption about €, and a corresponding update Q) , is that it solves
the cross-validated empirical mean of the efficient influence curve:

\4

Z Dy (Oneys 8nae) = 0p(1/ ). 9.17)

v=1

If one uses a full TMLE update, then, as we showed above, this equation holds with
op(1/ +/n) replaced by 0, and, if one uses initial estimators of o g‘é that converge
at a rate faster than n~!'/4, then it is possible to show that in great generality the first
step TMLE will still satisfy (9.17).

The proposed estimator of ¥, is given by

<

¥, = Z d(PM)(Qn .6,)-

v=1

In the current literature we have referred to this estimator as the CV-TMLE. The only
twist relative to the original CV-TMLE is that we change our target on each training
sample into the training sample specific target parameter implied by cf(Pn,vr) on the
training sample, while in the original CV-TMLE formulation, the target would still
be ¥;(Py). With this minor twist, the (same) CV-TMLE is now used to target the
average of training sample specific target parameters averaged across the V training
samples. General asymptotic theorems for this CV-TMLE are presented in Sect. A.1.

Suppose g is known and that we use its known value so that §4(P,) = gd. Con-
sider the estimator

2
angvve[p (D3, @ g)}} 9.18)

of the asymptotic variance o7 = Po(D;, (Q, 20)}> of the CV-TMLE . In words,
it is the average across v of the v-specific sample variance of the influence curve
of the v-specific CV-TMLE de(P )(Onyee,) as estimator of ‘Pd(P (Po) based on
estimation sample P, . Since the estimates (O« ¢, , gn.c) Needed for calculating the
plug-in estimate of the v-specific efficient influence curve are already needed for the
estimator v, this estimate of the variance of Dj is computationally free. Finally,
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given the results in Sect. A.1, an asymptotic 0.95-confidence interval for ¢ , is given
by ¥ + 1.960,/ v/n. This confidence interval is also asymptotically valid if gg is
unknown and both Q¢ and g¢ are consistent estimators of Q¢ and g¢. This same
variance estimator and confidence interval can also be used for the case that g is
not known and g(P,) is an MLE of gy according to some correctly specified model.
In that case, the theorem tells us that it is an asymptotically conservative confidence
interval if Q¢ is inconsistent. Either way, we recommend this confidence interval in
general as long as one can rely on g being a consistent estimator.

9.7 CV-TMLE for Variable Importance Measure

The modification to the algorithm discussed above (9.3) involves two small changes:
Qo and gy are estimated on the training sample (the same sample as is used above
to determine the a;,apy), and estimating the coefficient, €, in front of the clever
covariate, is not just done on the corresponding estimation sample, but on the entire
sample. Thus, (9.12) is modified to the following:

1
lpg‘j)/_TMLE = — Z {Qn,vf,e”(aH(Pn,v”)a “/l) - Qn,vf,e,, (aL(Pn,vf)» Wl)} (919)

n
V iZi=v

Here, the differences between (9.12) and (9.19) are that (1) Q,, = QA(P,W) and
&nyv = &(P,) changes to Q(P,,,Vc) and g(P,,-), respectively, and (2) epsilon changes
from ¢,, (estimated only on the estimation sample P, ,) to €, (estimated on entire
sample). This also requires changing the definition of the clever covariate (9.11) to:

I(A = aH(Pn,v“)) I(A = aL(Pn,v‘ ))

H ,“L'(Aa W, n,v") = - .
Fa ) @ (Pry W) g (@ (P W)

(9.20)

Thus, €, is the result of a logistic regression as in (9.10) on Y; on the covariate
Hp, .(A;, Wi; gn,e) using as offset LogitQ, ,«(A;, Wy), i = 1,...,n. This €, provides
the updated Q,, <, for each v = 1,..., V. Finally, the estimator of the target data-
adaptive variable importance measures, ¥ , is given by

v
. 1
(P, = — CV-TMLE 921
(P = 5 2 ©:21)
In addition, for each v = 1,..., V, one estimates the influence curve as:

1A = app,) 1A =apny)
= v _ L2 Y = Qe (A, W)
8n,ve (aH,n.vr W) 8n,ve (aL,n,vC (W)

CV-TMLE
+ [Qn,v”,e,, (aH,n,vfa W) - Qn,vf,en (aL,n,vCa W)] Yy .

D;, .(0)

Finally, once these modifications are made, we can derive inference equivalently as
done in (9.15).
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This provides an alternative estimator for the same original average data-adaptive
parameter, but convenient asymptotics are available in a bigger model, as shown
by our theorem in Sect. A.1. Heuristically, one should expect much more robust
estimation as the constituent parameters necessary for estimation (Qp, go, €) are now
estimated on a larger proportion of the data than the original algorithm described in
Sect.9.3. This CV-TMLE represents a complex algorithm, but fortunately for this
application, there is an R package available, described in more detail below.

9.8 Software for Data-Adaptive VIMs: varImpact

We provide a software package named varlmpact, implemented in the R program-
ming language (R Development Core Team 2016). varImpact is available on the
Comprehensive R Archive Network (CRAN) and Github.! varImpact implements
the variable importance algorithm described in this chapter, along with additional
data cleaning, reporting, and related features that facilitate variable importance anal-
ysis in real-world datasets. We describe each step of the varlmpact algorithm below
as well as the parallelization approach.

1. Preprocessing. varlmpact begins by preprocessing the datasets, handling fac-
tor and numeric variables separately. Variables are removed from the analysis if they
exceed a missingness threshold (default of 50%) or have insufficient variation. This
serves to protect against overfitting and focus the analysis on variables with reason-
able measurement rates. The variation step analyzes the density of each variable and
removes those where the 10th and 90th percentiles are equal. When serving as the
variable of interest (but not as an adjustment variable) numeric variables are dis-
cretized into ten quantiles, provided that they include more than ten distinct values.
Missingness indicators are generated for the remaining adjustment variables, for in-
corporation into the adjustment set, and missing values are imputed by k-nearest
neighbors; median and zero-replacement imputation are also supported. The dataset
is partitioned into the V folds for CV-TMLE, with V = 10 recommended in order
to fully utilize the power of CV-TMLE. In the case of a binary outcome variable
this splitting is stratified on the outcome in order to maximize power. The same
partitioning is used for each variable that is analyzed.

2. Observational Study Per Variable. Now we can construct a data-adaptive
observational study of each variable to estimate how the most impactful change in
that variable influences the outcome, controlling for all other adjustment variables
(covariates and missingness indicators). Each variable in turn is considered to be a
multivalued treatment or intervention. We first estimate the mean potential outcome
at each level of the treatment using the training data. We then use the held-out test
data to estimate our variable importance measure as the mean difference between
the level with the highest estimated mean outcome and the level with the lowest.
This is the estimated average treatment effect when the current variable is set at its

! http://github.com/ck37/varTmpact/.
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“best” level compared to its “worst.” varImpact loops over the CV-TMLE folds as
it analyzes each variable, treating each fold as the test set and the complementary
folds as the training set.

3. Per-fold Analysis. At each fold iteration (minimum 2 CV-TMLE folds) there
are several steps in the analysis. The bins of discretized numeric variables are fur-
ther aggregated by penalized histogram density estimation (Rozenholc et al. 2010;
Mildenberger et al. 2009) to avoid small cell sizes. There is the option to hierarchi-
cally cluster the adjustment variables and then select the top ten most representative
variables (medoids), where we use HOPACH (van der Laan and Pollard 2003) as
clustering algorithm. This dimensionality reduction can drastically speed up com-
putation but can easily result in bias or loss in power. For factor variables we also
check for the minimum number of observations in each cell when the factor levels
are cross-tabulated against a binary outcome variable. Covariates with small cell
sizes can be skipped to save computation time and mitigate overfitting.

We then estimate the adjusted mean outcome at each level or bin a € A for the
training set using TMLE.? The a-specific adjusted mean outcome is denoted with
Bo(a) = Eow{Qo(a, W)} and we denote the estimates for a specific training sample v*
with @pwc (a). We identify the bin/level associated with the highest and lowest mean
outcomes:

ar(Pyye) = arg mingea6p, . (a)

ap(Py,\) = arg maxaeAépr. (a).

Observations with the variable’s value in the “high” bin (ay) are effectively the
treatment group, and observations in the “low” bin (a,) are the control group. The
associated SuperLearner model fits for the outcome regression (Q) and propensity
score (g) on the training set are saved. Then on the corresponding test set we apply
the saved Q and g model fits to make the required predictions on the estimation
sample.

4. Pooling of Per-fold Results. Once all the nuisance parameters and a;, ay have
been estimated for each of the V training samples, we can carry out the estimation
of € based on the complete data set (i.e., union of V test samples). We actually
construct a separate clever covariate for each of the two levels a;,ay (Eq.(9.20))
and estimate the bivariate fluctuation coefficient €, with logistic regression. We then
fluctuate the predicted outcomes to target our mean outcome under the two levels,
and separately for each test set we calculate the split-specific targeted mean outcome
and associated influence curve values. Within each fold the difference of the targeted
mean under the high level (ay) and the targeted mean under the low level (a;) is
our fold-specific ATE (Eq. (9.19)). Similarly, within each fold the difference of the
influence curve for ay and the influence curve for a; yields the influence curve for
the ATE. The estimated sample variance o-iv of the fold-specific ATE is the fold-
specific estimated sample variance o2 , of the influence curve (Eq. (9.18)).

n,y

2 The estimated g is truncated to bounds of [0.025, 0.975] as in the TMLE R-package (Gruber
and van der Laan 2012a). As in the TMLE R-package, we use nonnegative least squares as the
meta-learner for both Q and g.
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5. Point Estimation and Inference. To generate the final results we combine the
per-fold parameter estimates. We take the mean of the per-fold ATEs as our point es-
timate of the ATE (Eq. (9.21)): ¢, = Ave {l:bpm_c (Py.)}, and the mean of the per-fold
sample variances as the estimated sample variance: o2 = Ave {02 }. The estimated

standard error is /o2/n. We report a normal-based confidence interval and a one-
sided p-value based on the null hypothesis: Hy : ¢,0 < 0. A two-sided test would
not be appropriate because the treatment levels ay and a; were selected to yield a
positive treatment effect. Any negative treatment effect estimate is an indication that
the procedure did not find a treatment effect for that particular variable using the
identified levels.

6. Reporting. In the final reporting stage we adjust for multiple comparisons, de-
termine final statistical significance, and flag any variables with inconsistent results
across the V folds. Our multiple comparison adjustment controls the false discovery
rate through the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995).
We declare the variables with FDR-adjusted p-value smaller than 0.05 as statisti-
cally significant. We state that the results for a particular categorical variable are
consistent if one selects the same a;, and ay levels across the V folds. This criterion
could be made more flexible by the analyst, such as requiring only a certain mini-
mum percentage of folds selecting the same a; and ay levels. For numeric variables
we define consistency as all V folds showing the same directionality for the low
and high quantiles. In other words, a consistent result is that for every CV-TMLE
fold a; is a lower quantile than ay, or alternatively for every CV-TMLE fold the
ay, is a higher quantile than ay. Variables are sorted by ascending p-value and their
rank, parameter estimate, naive p-value, FDR-adjusted p-value, and 95% confidence
interval are listed.

7. Parallelization. Executing a semiparametric observational study on each vari-
able in a dataset is computationally demanding. This is doubly true for complex
SuperLearner libraries that are necessary for accurate outcome and propensity score
estimation. CV-TMLE compounds the requisite computation, as it essentially con-
ducts the observational study multiple times per variable. To address this varlmpact
supports parallelization using the future package, and can seamlessly use multiple
cores on a machine or multiple machines in a cluster. This can yield drastic im-
provements in the total elapsed, or “wall-clock™, time for an analysis.

9.9 Data Analysis: Framingham Heart Study

We apply our variable importance estimation method to the Framingham Coronary
Heart Disease cohort. Wilson et al. (1998) developed sex-specific risk prediction al-
gorithms for coronary heart disease using discretized blood pressure and cholesterol
measurements combined with a few additional variables. The risk equations were
developed from multivariate regression stratified by sex to estimate the association
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of blood pressure,® cholesterol, age, smoking, and diabetes with future coronary
heart disease (CHD). Cholesterol and blood pressure were binned into categories,
allowing nonmonotonic relationships to be modeled within a linear framework. The
regression modeling was intentionally simple so that concise risk scoring rules could
be implemented by practitioners. The results remain widely used by clinicians for
assessing patient risk of coronary heart disease.

We analyze similar data using the same variables and categorical discretization
but with the varImpact software implementing the CV-TMLE methodology for data-
adaptive target parameters. In particular, we provide comparison analyses for table
5 from the original paper. As in the paper all analyses are stratified by gender. (The
analyzed data is 57% women and 43% men.) We analyze the publicly available
Framingham Longitudinal Data dataset as provided by the Biologic Specimen and
Data Repository Information Coordinating Center at the National Heart, Lung, and
Blood Institute. We restrict our analysis to period 3, when LDL and HDL cholesterol
measurements were collected, and remove subjects who had experienced CHD in
periods 1 or 2. We only evaluate the impact of covariates used in the original paper.

Before we begin we note a few differences in our data as compared with the
original study. (1) Wilson et al. use confidential data from the Framingham origi-
nal cohort and offspring cohort. Their data were collected between 1971 and 1974
whereas ours were collected primarily in 1968. (2) The paper’s dataset includes off-
spring of the original cohort, whereas ours does not. This could feasibly change
the data generating processes. (3) The 1998 paper does not specify how missing
data was handled. We presume that records with missing data were dropped on a
per-table basis. (4) The Framingham Longitudinal Data dataset was anonymized
to protect patient confidentiality, which likely has some influence on our resulting
analysis. Therefore we recommend viewing these results as suggestive rather than
conclusive.

9.9.1 Super Learner Library

We use the following super learner library using the SuperLearner package (Polley
and van der Laan 2013; Polley et al. 2017) library for Q and g estimation (with in-
spiration from the thorough library in Pirracchio et al. 2014), using R version 3.3.2.
The library was developed by optimizing the predictive accuracy of the outcome
regression, which we recommend as a helpful exercise prior to estimating variable
importance.

3 Blood pressure levels are defined by INC-V (Joint National Committee 1993): optimal (systolic
< 120 mm Hg and diastolic < 80 mm Hg), normal blood pressure (systolic 120-129 mm Hg or
diastolic 80-84 mm Hg), high normal blood pressure (systolic 130-139 mm Hg or diastolic 85-89
mm Hg), hypertension stage I (systolic 140—159 mm Hg or diastolic 90-99 mm Hg), and hyperten-
sion stage II-IV (systolic > 160 or diastolic > 100 mm Hg). “When systolic and diastolic pressures
fell into different categories, the higher category was selected for the purposes of classification.”
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e Logistic regression

e FElastic net (1) with only main terms, and (2) with main terms and two-way inter-
actions; each with six configurations using the glmnet package (Friedman et al.
2010, version 2.0-5), (@ € {0,0.2,0.4,0.6,0.8, 1.0})

e Bayesian linear regression using the arm package (Gelman et al. 2010, version
1.9-3)

e Multivariate adaptive regression splines with three configurations (degree €
{1,2,3}) using the earth package (Milborrow et al. 2014, version 4.4.7)

e Bagging using the ipred package (Peters and Hothorn 2009, version 0.9-5)

e Random Forest with four configurations (mtry € {1, 2, 4, 7}) using the random-
Forest package (Liaw and Wiener 2002, version 4.6-12)

e Extreme gradient boosting (Chen and Guestrin 2016) with 12 hyperparam-
eter configurations (trees € {100, 1000} x depth € {1,2,3} X learning rate
€ {0.1,0.001}) using the xgboost package (version 0.6-4)

e Outcome mean, included for performance benchmarking and as a check against
overfitting

We used the default hyperparameters provided by the SuperLearner package unless
otherwise specified. We refrained from any dimensionality reduction of the adjust-
ment variables in order to maximize (1) statistical power, (2) plausibility of the
randomization assumption, and (3) comparability with the original study.

9.9.2 Results

We present the variable importance results stratified by gender below. The initial
table reports aggregated results for all variables; a reference line is added at FDR
p-value = 0.05. The second table lists the constituent parameter estimates and iden-
tified levels (ar, ay) for each CV-TMLE fold. We applied the CV-TMLE for V = 2.

Female. We see in Table 9.1 that HDL and diabetes are estimated to have sig-
nificant and consistent impacts on coronary heart disease. The implication is that
among women in this dataset, risk for coronary heart disease could be reduced by
raising HDL levels to 60+ mg/DL and preventing the occurrence of diabetes. Both
results agree with the findings from the original study. Blood pressure is the highest
ranked variable, but its high and low levels are inconsistently identified providing a
harder to interpret definition of its variable importance. Smoking status shows a low,
nonsignificant impact on CHD, distinctly contrary to the high and significant effect
estimated in the original study. Table 9.2 shows that the inconsistency of blood pres-
sure is due to a; being identified as the “high” level of BP in one CV-TMLE fold but
as the “normal-optimal” level in the other fold. We also see that the HDL levels are
as expected: high HDL is estimated to have the lowest rate of CHD, and low HDL
to have the highest rate of CHD. LDL by contrast does show consistently identified
a; and ag levels across CV-TMLE folds.
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Male. In the male results (Table 9.3) we again see diabetes and HDL ranked
highly and with comparable point estimates. This time age and LDL show consis-
tent, large, and statistically significant effects. Smoking status once again shows a
small effect, although this time it is marginally statistically significant. We do not
find a consistent set of high and low levels for blood pressure. The fold-specific re-
sults in Table 9.4 show that the same a; and ay for HDL were selected in males
as in females. The LDL levels are as expected, with low LDL estimated to have a
lower expected CHD risk compared to high levels. Similarly, the a; for age is the
lowest age bin as expected.

Table 9.1 Female variable importance results for combined estimates

Rank Variable Type Estimate CI 95 p-value Adj. p-value Consistent
1 BP Factor ~ 0.1119  (0.0388-0.185) 0.0014  0.0081 No
2 HDL Factor ~ 0.1102  (0.0257-0.195) 0.0053 0.0125 Yes
3 Diabetes Ordered 0.1373  (0.0296-0.245) 0.0062 0.0125 Yes
4 Age Ordered 0.0449  (-0.00552-0.0954) 0.0405 0.0607 Yes
5 Smoking Ordered 0.0122  (-0.0362-0.0605) 0.3108 0.3730 Yes
6 LDL Factor  —0.0193 (-0.0771-0.0385) 0.7433 0.7433 No

Table 9.2 Female variable importance results by estimation sample

Variable Est_vl Est_v2 Low_vl High_vl Low_v2 High_v2 Consistent
BP 0.1780 0.0458 High Stage2_4 Normal-optimal Stage2_4 No
HDL 0.1534 0.0670 [60,999) [0,35) [60,999) [0,35) Yes
Diabetes  0.0910 0.1836 (0.9999999,1] (1,2] (0.9999999,11 (1,2] Yes
Age 0.0029 0.0870 (0.999999,11 (1,10] (1,5] (5,10] Yes
Smoking 0.0126 0.0117 (0.9999999,1] (1,2] (0.9999999,11 (1,2] Yes
LDL —-0.0452 0.0067 [130,160) [0,130)  [0,130) [160,999) No

Table 9.3 Male variable importance results for combined estimates

Rank Variable Type Estimate CI 95 p-value Adj. p-value Consistent
1 Age Ordered  0.1609 (0.102-0.219) 0.0000 0.0000 Yes
2 LDL Factor 0.1693 (0.106-0.232) 0.0000 0.0000 Yes
3 HDL Factor 0.1623 (0.09-0.235) 0.0000 0.0000 Yes
4 Diabetes Ordered  0.1552 (0.0739-0.236) 0.0001 0.0001 Yes
5 BP Factor 0.0982 (0.0384-0.158) 0.0006 0.0008 No
6 Smoking Ordered  0.0356 (-0.0159-0.0871) 0.0879 0.0879 Yes
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Table 9.4 Male variable importance results by estimation sample

Variable Est_vl Est_ v2 Low_vl High_vl Low_v2 High_v2 Consistent
Age 0.1339 0.1878 (0.999999,1] (1,10] (0.999999,1] (1,10] Yes
LDL 0.1139 0.2246 [0,130) [160,999) [0,130) [160,999) Yes
HDL 0.1542 0.1705 [60,999) [0,35) [60,999) [0,35) Yes
Diabetes 0.1897 0.1207 (0.9999999,11 (1,2] (0.9999999,11  (1,2] Yes
BP 0.1295 0.0670 Normal-optimal Stagel Normal-optimal Stage2_4 No

Smoking 0.0333 0.0378 (0.9999999,11  (1,2] (0.9999999,11  (1,2] Yes

9.10 Discussion

Data-adaptive parameters as a general concept opens up enormous opportunities
for estimating relevant scientific parameters when the experiment and current hy-
potheses do not sufficiently constrain the parameter of interest to apply the more
conventional approach based upon prespecified parameters. Given that one will lose
power by not prespecifying the parameter of interest, care must be given to fully
utilize the amount of information contained in the data to estimate the adaptively-
defined parameter, and to develop valid confidence intervals. CV-TMLE achieves
these two goals. In addition, the algorithm can be relatively trivially parallelized and
the influence-curve based inference avoids time-consuming bootstrap procedures.
Thus, the approach can be adapted to exploratory data analysis in high dimensional,
big data contexts. Finally, when parameters are pre-specified, CV-TMLE brings the
estimator closer to complete automation, as now even issues of adaptivity of ma-
chine learning algorithms used in estimation of the data-generating distribution do
not affect the asymptotics, so one can derive trustworthy inference with minimal
assumptions.

Thus, this is one step closer to statistical algorithms that will require minimal
input from users and yield relatively efficient results in very big statistical models.
When one adds the data-adaptive component of parameter definition, the potential
for automation becomes even greater, as even the parameter of interest no longer
needs (precise) pre-specification. As a consequence, this CV-TMLE approach for
data-adaptive target parameters represents an important step on the way to bringing
relatively unsophisticated users the promise of high-performance exploratory statis-
tical algorithms. In this manner we are moving towards a situation that is analogue
to one in which someone with little knowledge of the mechanics of a motor vehicle
can still be a safe and effective user of the machinery.
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Chapter 10
C-TMLE for Continuous Tuning

Mark J. van der Laan, Antoine Chambaz, and Cheng Ju

A TMLE of a causal quantity of interest first constructs an initial estimator of the
relevant part of the likelihood of the data and then updates this initial estimator
along a least favorable parametric model that uses the initial estimator as an off-set.
The least favorable parametric model typically depends on an orthogonal nuisance
parameter such as the treatment and censoring mechanism. This nuisance parameter
is not needed to evaluate the target parameter, and, in fact, is orthogonal to the
target parameter in the sense that a maximum likelihood estimator would completely
ignore this nuisance parameter, or, at least, its scores are orthogonal to the scores of
the relevant part of the likelihood.

However, the orthogonal nuisance parameter plays a crucial role in determining
the best way to update the initial estimator, as directed by the canonical gradient
(i.e., efficient influence curve) of the pathwise derivative. In a standard TMLE, one
would estimate this nuisance parameter with an estimator that aims for an optimal
performance for the nuisance parameter itself. For example, one might estimate
it with a super learner based on the log-likelihood loss-function of the nuisance
parameter.
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Even though the TMLE is asymptotically efficient, if the initial estimator and
the nuisance parameter estimator are well behaved, one might wonder if it
would not make more sense to evaluate the fit of the nuisance parameter with
respect to how well the resulting TMLE succeeds in reducing the MSE with
respect to the target parameter during the targeting step of the TMLE algo-
rithm.

This issue is of enormous practical importance in causal inference in the case
that the target parameter is weakly supported by the data (i.e., lack of positivity).
In this case the efficient influence curve can take on very large values so that the
maximum likelihood estimator along the least favorable submodel (whose score
spans the efficient influence curve) can be ill behaved and thereby hurt the initial
estimator with respect to the target parameter. For example, if a particular potential
confounder that affects treatment decisions happens to be an instrumental variable
that has no effect on the outcome, then including it in the fit of the treatment mech-
anism only harms the TMLE in finite samples. This insight has resulted in a variety
of proposals in the literature that prescreens covariates based on their potential ef-
fect on the outcome, removes the ones that have weak effects, and then runs one of
the available estimators.

However, before we jump into this, we should be aware of the enormous dangers
that come with such an approach (an approach that clearly ignores the likelihood
principle). Consider a covariate that has an effect on the outcome of interest that is
of the order n~'/2. Such covariates would correspond with t-statistics (evaluating the
effect of the covariate on the outcome) that are of the order 1. That is, their signal
is real but are within the noise level so that a prescreening method would easily
remove this covariate. However, not including this covariate in the TMLE (or any
other estimator) would result in an estimator that has bias of the order n~!/2. As a
consequence, such a TMLE would not even be asymptotically linear, even in the
case that the variance of the efficient influence curve is perfectly well behaved. One
might counter this argument by stating that one should simply make these prescreen-
ing methods more conservative as sample size increases. However, these screening
methods are based on marginal regressions, easily misjudging their effect in the
presence of other confounders.

Therefore, the basic message is that an effort to improve an estimator in
the context of sparsity (measured by the variance of the efficient influence
curve), one can easily destroy the good asymptotic properties of the estimator.
Collaborative TMLE (C-TMLE) takes on this enormous challenge by being
grounded in theory.

The C-TMLE is tailored such that it does not affect the asymptotic behavior of the
TMLE by pushing the selected estimator for the orthogonal nuisance parameter to-
wards the most nonparametric estimator as sample size increases. Simultaneously,
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it provides potentially dramatic gains in practical performance with the stepwise
building of the estimator (from parametric to nonparametric), each time choosing
the move for which the maximum likelihood estimator for the corresponding least-
favorable submodel results in maximal improvement of the fit of the corresponding
TMLE relative to the off-set. Moreover, the latter approach is completely supported
by the collaborative double robustness of the efficient influence curve, which shows
that the orthogonal nuisance parameter only has to adjust for covariates that are
needed to fit the residual bias of the initial estimator with respect to its true counter-
part. In this manner, the C-TMLE makes sure that instrumental variables will only
be included in the fit of the treatment mechanism at large enough sample sizes for
which the parametric maximum likelihood estimator extension in the update step
using this covariate results in a statistically significant gain in fit. Indeed, simula-
tions have shown that such C-TMLEs are rarely worse than the standard TMLE,
and can be much better when the data are sparse.

The previous literature on C-TMLE (e.g. van der Laan and Gruber 2010; Gruber
and van der Laan 2010b; Wang et al. 2011a; Schnitzer et al. 2016; van der Laan
and Rose 2011), focused on tuning discrete steps, such as evaluating the addition
of a covariate to the treatment mechanism. In this chapter, we focus on C-TMLEs
that tune a continuous valued tuning parameter of the fit of the orthogonal nuisance
parameter, such as selecting the L;-penalty in a lasso regression of the treatment
mechanism (or a bandwidth of a kernel regression smoother). As we show, this
dramatically changes the story when comparing C-TMLE with TMLE. Instead of
C-TMLE not affecting the asymptotic linearity of the TMLE, we demonstrate that
the C-TMLE can reduce the second-order remainder of the TMLE in its Taylor
expansion to the point that the C-TMLE is asymptotically linear while the TMLE
is not (e.g., in the case that a strong positivity assumption holds, but the nuisance
parameters converge to their true counterparts at rates that are too slow). In addition,
in practice we observe dramatic gains of our C-TMLE in nonsparse settings.

10.1 Formal Motivation for Targeted Tuning of Nuisance
Parameter Estimator in TMLE

Defining the Estimation Problem. Suppose we observe n i.i.d. copies of a random
variable O with probability distribution Py known to be an element of a statistical
model M: i.e., Py € M. Let ¥ : M — R be a target parameter of interest that is
pathwise differentiable at any P € M with efficient influence curve D*(P). Suppose
that ¥ (P) only depends on P through a parameter Q = Q(P), and, for notational
convenience, we will also use the notation ¥ (Q(P)) for ¥ (P). The efficient influ-
ence curve D*(P) depends on P through Q(P) and an additional nuisance parameter
we will denote with G(P). We will also denote D*(P) with D*(Q(P), G(P)). Let
Ry(P, Py) be defined by the second-order remainder in a first order Taylor expan-
sion of the target parameter as follows:

Y (P) = ¥(Po) = =PoD"(P) + Ry (P, Po).
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We will also denote R,(P, Py) with Ry (Q, G, Qp, Gp) in order to emphasize that it
involves second-order differences between (Q, G) and (Qy, Gy). Thus, we can write

P(Q) - ¥(Qo) = —PoD(Q,G) + Rx(Q, G, Qo, Go).

The estimation problem defined by the statistical model M and its target parameter
¥ : M — R? has the so called double robust structure if Ryo(Q, Go, Qo, Go) = 0
for all Q, and Ry(Qy, G, Qop, Gp) for all G. In essence, this states that the second-
order remainder involves a sum of integrals over an integrand that can be represented
as a product of a difference of a parameter of Q with its true value and a parameter of
G with its true value. For example, Ry (Q, G, Qo, Go) = f (H1(G)—H(Gy)(H(Q)-
H>(00)f(Q, G, Qo, Go)dPy for some functionals Hy, H, and f.

Example 10.1. Let’s consider an example to illustrate these quantities. Let O =
(W,A,Y), where W is a vector of baseline covariates, A is a binary treatment and
Y a binary outcome. Consider the statistical model that leaves the distribution Qo
of W, and the conditional distribution of Y, given A, W, unspecified, while we might
know that the conditional distribution G of A, given W, falls in a set G. Let’s denote
this statistical model with M so that we know that Py € M. Let Qo(W) = Eo(Y |
A = ],W), Go(W) = E()(A|W), and SU(P) = EPEP(Y | A= l,W) = QWQQ_O is the
target parameter of interest. Let Q = (Qw, Q) so that we can also denote ¥(Py) with
?(Qp)- In this example the efficient influence curve D*(P) of ¥ : M — R at any
P € Mis given by

* _ A _ 2 A _
D*(P) = _G(W)(Y oW)) + QW) — ¥(P),
and
¥ (P) — ¥(Poy) = —PoD*(P) + Ry(P, Py),
where
5-Go =~ =
Ry (P, Py) = Py G (Q - Qo).

We will also denote this remainder with R>o(Q, G, Qo, Gy).

Family of Candidate Nuisance Parameter Estimators Indexed by Continuous
Tuning Parameter /4. Let L;(G) be a loss-function for Gy so that PyL;(Gy) =
mingegmy PoL1(G). Let (G, : h € [0,1]} be a family of candidate estimators
Gy 1 Myp = G of Gy indexed by a continuous valued index # € [0, 1], where
the estimates {G,; = G(P,) : h} are ordered from most nonparametric at 4 = 0
to most parametric at & = 1. For the easiest interpretation of our formal results, we
suggest to think of the index parameter £ so that & =~ b,(h) for a bias b,(h) of G,
such as defined by the loss-based dissimilarity b,(h)* = PoLi(Gup) — PoLi(Gy).
Such an indexing exists and can be constructed in terms of the bias function b,,(h)
as long as it is monotone increasing in h: define G, = Gb,;'(b) and index the family
of candidate estimators by b as {GAl,b - b} = (G, : h. Specifically, we assume that
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the empirical risk & — P,L(G,;) is increasing in A. For example, for some large
M < oo, one might define an h-specific MLE

G = arg Geg,nGrﬁtlgI}l—h)M P,Li(G), (10.1)
where || G ||, is the variation norm defined in Chap. 6 on the highly adaptive lasso.
In Chap. 6 we showed that by representing G with a linear combination of indicator
basis functions, G, can be implemented as a lasso estimator defined as an MLE
over all linear combinations under the constraint that the sum of the absolute value
of the coefficients is restricted to be smaller than (1 — 2)M.

TMLE Depending on Choice of Nuisance Parameter Estimator. Let L(Q) be a
loss-function for Qg so that PyL(Qp) = mingegm)y PoL(Q). Consider a least favor-
able submodel {Q. : €} ¢ Q(M) through Q at € = 0 so that the linear span of the
components of the generalized score %L(QE)L:0 includes D*(Q, G). Note that this
submodel also depends on G so that we will also use the notation Q¢ in order to
emphasize this dependence. Let 0O : Myp — Q(M) be an initial estimator of Q.
Given this submodel and initial estimator (Q, = Q(Pn), Gn.p) of (Qo, Gyp), one can
construct a one-step or iterative TMLE Q] ;. For example, if one uses a universal
least favorable submodel, one can use the one-step TMLE Q) , = Oy, 3,,, Where
€, = argmin. P,L(Q,¢,,)- Given the sequence {G,; : h} of candidate estimators
for Gy, this defines now a sequence of candidate TMLEs {0, h} of Qy, all solving
the efficient influence curve equation 0 = P,,D*(Q,’;’h, G.p) =0.

TMLE Using Cross-Validation Selector for /. A natural approach for selecting the
index 4 is to use L;-loss based cross-validation. In that case, one defines a random
split B, € {0, 1}" in a training sample {i : B,(i) = 0} and validation sample {i :
B, (i) = 1), with respective empirical probability distributions P9 , , P, ; , and one
selects & with the cross-validation selector

ey = argmin Eg, P, 5 L(Gy(P) ).

In our example (10.1) G, 5, is the highly adaptive lasso estimator (HAL) proposed
in Chap. 6, and we have shown that for each fixed & the loss-based dissimilarity
do1(Gup, Gop) = PoLi(Gyp) — PoLi(Goy) converges at a rate at least as fast as
n~O3+aDY where a(d) = 1/(d + 1) and G, = arg mingeg,G,<am PoL1(G). In
addition, in that case we know that G, = G, ., converges at least as fast as this
rate.

n,CV

Example 10.2. In our example we select Li(G)(0) = —{Alog G(W)+ (1 —A)log(1 —
G(W))} as the log-likelihood loss function. G,,, could be defined as a lasso logistic
linear regression with L;-constraint (1 — #)M as in (10.1), and G, ., would be the
lasso estimator that uses internal cross-validation to select the constraint.

In a regular TMLE framework we would select & with A, ¢y and use the TMLE
0, = QZ,hn,Cv resulting in the TMLE ¥(Q;,) of ¥(Qo). If Q, is consistent at a
particular rate, then a TMLE ¥(Q; , ) using a best estimator G, , of Go might

n,CV
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already be asymptotically efficient in which case such a choice £, ¢y is appropriate
asymptotically. For example, our proposed HAL-TMLE in Chap.7 relies on an
HAL-estimator Q, that converges to Qp at a faster rate than n~'/# so that a TMLE
based on an HAL-estimator G, , ., of Gy is asymptotically efficient under very
weak regularity conditions.

n,CV

Potential Improvement of TMLE with C-TMLE. Nonetheless, the second-order
remainder for the HAL-TMLE might be substantial in finite samples (recall that
for large dimensional O the second-order remainder multiplied by n'/? converges
to zero at a very slow rate) so that the C-TMLE discussed in this chapter is still
very relevant for finite sample improvement. In van der Laan (2014b) we proposed
a TMLE that maps an initial estimator (Q,,G,) into a jointly targeted estimator
(@G in such a way that the asymptotic linearity of the TMLE (0, ) is pre-
served under misspecification of either O, or G, (but not both), as long as both
estimators converge at a rate faster than n~'/# to their (possibly misspecified) limits.
This type of TMLE is generally recommended to protect its asymptotic linearity
against misspecification of one of the estimators. In that case, an under-smoothed
choice h, is not needed from an asymptotic perspective, but 4, cy could be used.
However, as we also suggested above for the HAL-TMLE, we suggest that the C-
TMLE algorithm might yield improved finite sample performance (especially when
the data is sparse for the parameter of interest). Overall, even when the C-TMLE is
not needed for improving asymptotic performance, it will still represent an impor-
tant practical finite sample advance.

The cross-validation selector 4, cy optimizes the selection of & w.r.t. estimation
of G, while the real goal should be to minimize the MSE of h — ‘P(Q;’h) W.LL. p.
One should realize that, due to the fact that ¥(Py) is a smooth (pathwise differen-
tiable) functional of Py, typically the variance of a ¥((Q, ,) behaves asymptotically
as 1/n across all i values. Thus, for large sample size n the square bias of ¥(Q; h)
will dominate the variance of ¥(Q;, ) so that h will have to be selected to minimize
the bias of ‘P(Qn ) over h. Collaborative targeted maximum likelihood (minimum
loss) estimation (C-TMLE) aims to achieve this indirectly by (1) building a se-
quence of TMLEs (@, ,, G,.») whose empirical fits are increasing as h approximates
0 (in the C-TMLE algorlthm 0, , uses one of previous @y for KW’ > h as initial
estimator so that all these fits are nested) and (2) evaluating the choice of i w.r.t.
the L-fit of Ql’;’h w.r.t. Q. Since ?’(Qn‘ ) is a targeted estimator of i for each 4, and
these h-specific TMLEs Q) , only differ in the depth / of the C-TMLE -targeting
step applied to the same initial estimator Q,, the L-fit of Q; , is a sensible criterion
selecting the maximal amount of targeting (i.e., minimal %) that still represents a
statistical significant signal.

Example 10.3. Let O, be an initial estimator of Q. Consider the least favorable
submodel LogitQ,c,, = LogitQ, + €C(G,,) through O, with one-dimensional
fluctuation parameter €, where C(G)(A, W) = A/G(W) is often referred to as the
clever covariate. Let €,, = argmin, P,L(Qycg,,) be the MLE, where L(Q) =
—{Y1log O(A, W) + (1 — Y)log(l — O(A, W))} is the log-likelihood loss for Q. Let
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LogitQ?, = LogitQ, + €,4,C(G,;), so that Q¢ , is the TMLE using Q, as initial
estimator and G,,, in the targeting step.

These TMLEs Q; , = (Qw, @, ) of Qo solve

PnD*(QZ,hs Gn,h) =0

and specifically
PnD)lk(Q;h, Gn,h) =0

where D7(Q,G) = A/G(Y — Q(W)) is the component of the efficient influence
curve that is in the tangent space of the conditional distribution of Y, given A, W.
The TMLE ¥(Q7 ) of ¥(Qo) satisfies:

¥(0;,,) = ¥(Qo) = (Py = Po)D™(Q;, 1, Gup) + Rao((Q, 1 Gy Qo, Go).

Suppose that the initial estimator Q,, — O # Qy is inconsistent. Then, the asymp-
totic linearity of ¥(Q, ;) relies upon the second-order remainder term

Po(Grp — G0)/Gri(Q — Qo) (10.2)

to be asymptotically linear Consider the likelihood based cross-validation selector
P B LI(G;,(PO B, )). Then this term (10.2) will not be asymp-
totically linear due to G, ey Naving a bias larger than 1/ vn. That is, h, cy will
trade off the bias and variance of the actual estimator G,,;, as an estimator of Gy,
while one should want to trade off this bias with the variance of ¥(Q; h) Clearly,
the variance of a real valued smooth functional ¥(Q;, h) (which behaves as 1/n) is
significantly smaller than the variance of the infinite dimensional object G, 5,

Nonetheless, it might be that there exist a rate 4, that undersmooths G, enough
so that this smooth function (10.2) of G, is asymptotically linear. We wonder if
in that case, an C-TMLE selector #,, will undersmooth appropriately so that (10.2)
is asymptotically linear. In general, we wonder if the rate at which the bias of the
C-TMLE ¥(@Q;, , ) converges to zero is significantly faster than the rate at which the
bias of the TMLE ¥Y(Qn.n, ) converges to zero. In other words, does the C-TMLE
choice h,, appropriately minimize MSE for the actual target parameter y(?

hycy = argmin, Ep P

10.1.1 Contrasting Discrete and Continuous Tuning Parameters

C-TMLE has been studied for discrete sequences {G, : k} of candidate estimators
(van der Laan and Gruber 2010; Gruber and van der Laan 2010b; Wang et al. 201 1a;
Schnitzer et al. 2016; van der Laan and Rose 2011), in which case any reasonable
selector will asymptotically end up selecting the most nonparametric estimator (i.e.,
asymptotically best) of Gy. As a result, the asymptotic performance of a C-TMLE is
equivalent with the TMLE selecting the most nonparametric estimator of G and the
TMLE that selects this estimator of Gy with L-based cross-validation. In this dis-
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crete scenario, as shown in a variety of articles, the C-TMLE represents a potentially
highly significant finite sample improvement that does not affect the asymptotic per-
formance of a standard TMLE.

However, when the tuning parameter is continuous, different data-adaptive selec-
tors of & correspond with different rates at which the bias b, (k) of the TMLE ¥( Q”;’ )
converges to zero, which then will affect the rate at which these TMLEs converge
to . Thus, the study of C-TMLE for continuous tuning parameters / creates an op-
portunity to potentially develop some asymptotic theory for C-TMLE demonstrating
asymptotic superiority of the C-TMLE relative to a TMLE using the L;-loss based
cross-validation selector for A. If O, is consistent at a particular rate, then a TMLE
(0, h,,,cv) using a best estimator G, ., of Go might already be asymptotically ef-
ficient in which case C-TMLE cannot provide an asymptotic improvement relative
to the standard TMLE. On the other hand, if Q, is consistent at a low rate or possi-
bly even inconsistent, then G, ., might be overly biased so that ¥(Q; , ) might
not even be root-n consistent. In the latter case, the key question is if the C-TMLE
is able to select an undersmoothed choice 4, so that the bias of the C-TMLE is of
smaller order and hopefully, if possible, it would select a choice 4, so that the bias
bu(hy) = o(n™"7?).

Let’s aim to understand this better. Consider the case that the second-order re-
mainder has a double robust structure. Suppose that Q,, happens to be an inconsistent
estimator of Qy. Due to the double robustness structure of the second-order remain-
der, Ry(Q, Gy, Qp, Go) = 0 for all Q so that a TMLE Q:’GO using the true Gy in the
targeting step would still result in a consistent and asymptotically linear estimator
of o under weak conditions. However, if one uses an estimator G, ., whose bias
w.r.t. Gy converges to zero at a slower rate than n~'/2, then the TMLE (0, )
will also have a similar order bias so that this TMLE will not even be root-n consis-
tent, and thus also not be asymptotically linear. On the other hand, a data-adaptive
selector h,, that aims to minimize MSE of 7 — S”(Q:;’h) w.r.t. ¥ would try to se-
lect an estimator G, ;, that has small bias. So in this scenario, assuming the family
{Gn @ h} of candidate estimators includes such relatively unbiased estimators, a
good selector A, might still result in an asymptotically linear estimator ?’(Q:’hn). In
our lasso example we would expect that the cross-validation selector h, cy would
result in a lasso fit that includes fewer basis functions than the fit implied by a C-
TMLE selector h,. In this paper we present such C-TMLE type selectors that are
theoretically superior to the cross-validation selector A, cy.

10.1.2 Key Theoretical Property and Rational for Proposed
C-TMLE That Drives Its Asymptotic Superiority Relative
to Standard TMLE

Recall that a TMLE solves P,D*(Q, ;,Gnp) = 0, which is the basis for its asymp-
totic efficiency when both O, and G,,, converge tot their true counterparts at a fast
enough rate. Additional theoretical properties for a TMLE are obtained by making
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it solve additional key estimating equations that drive certain theoretical properties.
The key additional equation solved by our proposed C-TMLE Q; , is given by

d
0=pP, —D"(Q;, .G, , 10.3
T (s Gnp) - (10.3)
where we really only need that
d
TPy —D"(Qy,, G| = op(n ). (10.4)

=y

Note that the derivative is only w.r.t. & in G, ;,, not w.r.t. hin Q,, ;. Let

D*(Q,Gyp) = %D*(Q, G-
Thus, A, is chosen so that
P,D*(Q; - Gni,) = 001 ByPuD*(Q ), Gu,) = 0p(n™' ). (10.5)
Let’s now try to understand the rational of solving this equation. Note that

PoD*(Q,Gpis) = ¥(Qo) — P(Q) + Ry(Q, Ghss, Qo, Go)
PoD*(Q,Gp) = ¥(Qo) — P(Q) + Rao(Q, G, Q0. Go)
PoD*(Q, Gpis) — PoD*(Q, G1) = Rao(Q, Girs, Qo, Go) — Ra0(Q, G, Qo, Go).

Let kg, be a solution of POD+(Q,’;’ »» Gni) = 0. Then, it follows that this oracle choice
ho, solves

lim Ro0(05, G jits» Qo, Go) — Roo( Dy, Gujis Qo, Go) _
50 0

0

at the TMLE Q;, = O, , -itself. Thus, this oracle choice /o, corresponds with locally
minimizing
h = Ryo(Q,, Gu, Qo, Go).

Now note that &, is the empirical analogue of the oracle choice hy, by sim-
ply replacing PoD*(Q;, . Gyp) by its empirical counterpart P,D*(Q;, ,, Gn)- This
demonstrates that our C-TMLE choice 4, is indeed highly targeted by aiming to
reduce the second-order remainder of the resulting TMLE of . Our formal Theo-
rem 10.1 below actually proves that indeed 4,, succeeds in achieving this goal rela-
tive to A, cy.

Example 10.4. In our running example Eq. (10.3) reduces to &, solving

4~
= Aigi-Gn,

1 , o
0= 2 2 G oy e D OW) (106)
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10.1.3 Implicitly Defined Tuning Parameter

Suppose that we are given a discrete collection of candidate estimators G, possibly
indexed by a multivariate tuning parameter A € S. How could we apply the C-TMLE
approach? We could order these candidate estimators by the value of P,Li(G,),
which creates an ordered sequence of estimators. Let H = {P”L]((A;A) :1e S}
be the set of empirical risk values. Assume that the set of candidate estimators
densely spans an interval of empirical risk values, so that for all practical purposes
we can treat { as an interval on the real line. For any given 4 € S, we define
h() = P”Ll(GA,l), which defines a 1-1 function & : & — H. For any value of
h € H, we can define A(h) as the inverse of 1 — h(A): i.e., for a given h, we select
the A so that PnLl(GAA) = h. This now defines a collection of candidate estimators
(G = CA}M) : h € H} ordered by its value P,Li(G1p). Finally, we can scale h
to be in an interval [0, 1]. We could now apply our proposed methodology to this
sequence of candidate estimators, resulting in a selector 4, of ki, and thereby a se-
lector 4, = A(h,). The analytic derivative w.r.t. & in D*(Q, G;,) can be approximated
with a numerical derivative, so that there is no need to have an analytic expression
forh — G,

10.2 A General C-TMLE Algorithm

The goal of an C-TMLE algorithm is to construct an ordered sequence of TMLEs
Gy O, h) so that both P,L,(G, ) and PnL(Qn ,) are increasing in h: i.e., we want
the emplrlcal fits of both estimators to be increasing as h approximates zero. One
then uses L(Q)-cross-validation to select 4. Given an initial estimator Q,,, the or-
dered sequence {G,,, : h} for which P,L,(G,, is decreasing as i — 0, just defining
Q,, as the TMLE using @, as initial estimator and G, in its targeting step does
not guarantee that P,,L(Q,’;’h) is decreasing in & as h — 0. Therefore, a C-TMLE
algorithm also has to build a corresponding sequence of initial estimators Q,, , used
by the TMLE Q] , so that the desired increase in empirical fit holds. We refer to
van der Laan and Gruber (2010) for a general C-TMLE template that provides a
recipe for constructing C-TMLE algorithms. Their general template also includes
simultaneously building the sequence of estimators G,, ;. In our setting this sequence
is already given, making our setting a special case of the general template in van der
Laan and Gruber (2010). Our algorithm below involves a minor modification by
replacing the cross-validation selector 7, of & by a choice 71,;” (P,) in its neighbor-
hood that corresponds with an locally optimal choice, thereby guaranteeing that
our C-TMLE solves a desired score equation (10.8) that provides the basis for its
asymptotics.

General Algorithm. Select 4, = argmin, P,L(Q; ). For any h > h), we define
Oun = Oy and leyh as the TMLE using O, as initial estimator and G, in its tar-
geting step. Notice that we expect that P,L(Q, ) is indeed decreasing from h = 1
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to h = h1 For any h € [h 1], we also define izh(P,l) = h,ll. We now update the
initial estimator to Q1 =0 e and define, for any 7 < h,ll szh as the TMLE
that uses Q! as initial estimator and Gn h in its targeting step. We then define h2 =
arg miny, 1 P L(th) Forany h € (h2, b)), we define Oun = n, Q:,h as this TMLE
that uses Q,ll as initial estimator and G, , in its targeting step, and Eh(P,l) = hﬁ We

have now defined an ordered sequence of estimators (G, Q. O, ,) for b € [h,%, 1]
for which P,L(Q; ,) is mostly increasing as / decreases in value, and we have a cor-

n’>''n

responding /;,(P,) that maps any /4 € [h2, 1] into the next smaller / that corresponds
with a minimizer of the risk of Q) ;. This process is iterated untill we end up at the
last value & = 0. This results in a complete sequence (G4, Qn.i» Q;’h) and corre-
sponding hn(P,), h € [0, 1], for which both P,Li(G,;) and P,IL(Q:’h) are decreasing
as h approximates zero.
We now note that this description of the algorithm defines for each i € [0, 1] a
mapping (R, G, On, Q;) from data P, into a tuning parameter /;,(P,), an estimate
G, of the nuisance parameter Gy, initial estimate O, of Qp, and a TMLE Qn A
defined by (O, G,)- In particular, it defines a collection of candidate estimator
Qh indexed by h. We select h with the cross-validation selector ,,:

h, = arg mhin Ep, P,,L(Qh(POB )). (10.7)

In the typical C-TMLE algorithm we would select (G, Q,j,. @, ; ) and thus
use ‘P(Q ) as our TMLE. However, we want to guarantee that our selector of h
solves the followmg critical score equation

d

o —P,L(Q, ;

n/,) 0, (10.8)
where the initial Q = Q, is not viewed as a function of /4 in the derivative. For
example, if we use a one-step TMLE, then this writes as

d

_PnL n,€ =
T (One,(m.G,) =0

Note that this evaluates the change in empirical risk of the TMLE at a fixed initial
estimator due to a change in G,, in the targeting step. In order to solve (10.8) we
replace &, by the actual minimizer 4, < h, in the C-TMLE algorithm that comes
right before £,:

hy = hy, (Py). (10.9)

Since h, minimizes h — P, L(Qn G ) over an interval of A-values, assuming an
interior minimum, this choice 4, indeed solves (10.8). Our proposed C-TMLE is
now defined by (h,,G, = Gup,. On = Oni,» O = QZ,hn) resulting in the C-TMLE
#(Q,) of Y.
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10.3 Verifying That C-TMLE Solves Critical Equation (10.4)

In the next subsection we show that the score equation solved by C-TMLE implies
the desired critical equation (10.4) if €,(h,)h, = op(n~"?), where we consider the
case that the TMLE is a one-step TMLE. Since the size €,(h) behaves as the rate of
convergence of the initial estimator O, (and thus of the original initial estimator
0, in the C-TMLE algorithm), and h,, converges to zero at the same rate as the bias
of G,,, this condition corresponds with assuming that the product of the rates of
convergence of Q7 ~and the bias of G, is smaller than n~!/2. Note that we expect
h, to undersmooth and thus be of smaller order than #, cy. Suppose that the product
of the rates of convergence of Gy, and Q, is not smaller than n~'/? so that the
second-order remainder Ryo(Q;,, Gy, cy» Qo, Go) for the standard TMLE based on
(On> G, ey) is not asymptotically linear. This implies that the TMLE using G, -,
is not asymptotically linear either. Nonetheless, since A, is smaller than 4, cy we
can still have that €,(h,)h, = op(n~'/?). In fact, consider the extreme case that Q,, is
inconsistent. In that case, one needs 4, = o(n~'/?) in order to guarantee asymptotic
linearity of the TMLE based on Q, and G, . By our Theorem 10.1, &, = o(n~'/?) if
there exists a rate h,,; that undersmooths enough so that the bias of G,,,, is o(n™'/?).
In that case, €,(h,)h, = op(n~'/?), even though €,(h,) does not even converge to zero.
In the second subsection we show that by modifying the least favorable submodel
in the definition of the TMLE, we can arrange that our C-TMLE solves (10.3) ex-
actly. In fact, in our second subsection we also show that the corresponding standard
TMLE will also solve (10.3) exactly.

10.3.1 Condition for C-TMLE Solving Critical Equation (10.4)

Consider the case that the TMLE Qz’h using O, = Q,; as initial estimator and
G, , in its targeting step is given by the first-step TMLE Q, . .G, For notational
convenience, in this subsection we denote the initial estimator with Q,,, suppressing
its dependence on £, since in the following derivatives w.r.t. & treat O, as fixed. Let
h,, be the solution of the Eq. (10.8) solved by our C-TMLE selector. Note that

d
+ —P,L(Onec,,) ,
G=G,  dh T ey

d d
—P,L(Qyc = —P,L(Onen
T (On.enGi) T (On.e,m.G)

where the initial estimator is considered fixed in 4. Now notice that the first term on
the right-hand side equals

d
——F—P,L
dG,l(/’l) n (Qn,en(h),G)

G=Gpp

up to a scalar %en(h). But the latter equation is the score equation for the MLE ¢,(h)
and thus equals zero. Thus, we can conclude that A, also solves
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d
0= —P,L(Qy, . 10.10
Pl @uean)| (10.10)

We will now show that (10.10) implies that PnﬁD*(Qn, Gup,) = O(€,(hy,)), which
would establish (10.4) if €,(h,)h, = op(n~'/?) (e.g., if the initial estimator Q, and
G, converge to Qp and G, respectively, at a rate faster than n~4.

Example 10.5. In our example, we have that (10.10) reduces to

| L
0= nhn_ e n
e )n;dhC(G’h)

Y — Qn,fn(hn)’cn,hn )-
h=h,

Thus, this implies that

1< d -
0=~ § ~cG,
n 2 gy € Cnin)

i=1

(Yt - Qn,e,,(h,,),G“,h,,)’
h=h,

which equals (10.6). So we conclude that in our running example the score equation
(10.8) solved by the C-TMLE selector A, corresponds exactly with solving (10.3).
We suggest that this exact equivalence between (10.8) and (10.3) holds more gen-
erally for universal least favorable submodels. As we will see below, in general, in
our proof below we only obtain that (10.8) implies (10.3) up to an error O(e,(h)),
which provides a basis for (10.4).

Suppose that L(Q,.c6,,) = f(On, €C(Gyp, On)) for some functional (Q, H) —
f(Q, H). In other words, assume that the fluctuation Q,¢,, of O, involves aug-
menting the off-set O, with an e-extension eC(G,,;, Q,), thereby linking € and G,
into one term. Let d» f(Q, H)(r) = % f(Q,H + 6r)| 520 be the directional derivative
of H— f(Q, H) at (Q, H) in the direction r. Then,

d
&L(Qn,e,G,,,/,) - = de(Qn’ fc(Gn,h, Q"))ie:O (C(Gn,hv Qn))

d d
%L(Qn,e,Gn,;,) = de(Qn’ 6-C((;n,ha Qn)) (G%C(Gn,ha Qn)) .

The first equation shows that we can represent D*(Q, G, ;) = %L(Qmean.h)L:o as
follows:

D*(Qu.Gup) = d2f(Q. €CGppo )|y (C(Grr Q).

This representation shows

d . d
%D (Qns Gn,h) = de(Qm EC(Gn,hs Qn))|6=0 (d_hC(Gn,hs Qn)) .
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The second equation shows that

4Ly, d
@ = de(Qn, 6C((;n,h’ Qn)) (%C(Gn,h, Qn))

d
= drf(Qn. €C(Gi O _, (EC(GM, Q,,)) + O(e)

d
= d_hD*(an Gn,h) + 0(6)

Thus, this shows that
d d .,
—710neG,) = €5-D"(0n, Gup) + O(€).

This proves that if Py+-L(Q.e,,) . 0 (i.e., Eq. (10.10) is solved), then

d
D*(Qy, Gup,) + O(€()?),

0=e,(h)P,
€(h) dh,

which implies
d

P,
dh,

D*(Qna Gn,h,,) = 0(611(]1))

We state this result as a formal lemma.

Lemma 10.1. Let h,, be the solution of the Eq. (10.8) solved by our C-TMLE selec-
tor. Then, h,, solves

d
0= —PnL(Qn,e,Gn.zzn)

dhy, e=€,(hy) .

Suppose that L(Onec,,) = f(Qn, €C(Gnp, Qn)) for some functional (Q,H) —
f(Q,H). Assume that H — f(Q,H) is differentiable at H = €C(Gnp, On)
with derivative drf(Q,,H) and that this derivative is continuous at direction
%C (Gups Op) in the following sense:

d
de(an EC(Gn,hs Qn)) (d_hC(Gn,hs Qn)) = de(Qns 5C(Gn,hy Qn))
+0(e).

d
0 (d_hC(Gn,hv Qn))

Then,
d

Py
dh,

D*(Qns Gn,hn) = O(En(h))
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10.3.2 A TMLE and C-TMLE that Solve Equation (10.3) Exactly

In our typical applications we have that even at a G; different from G = G(P)
D*(Q,Gy) is an element of the tangent space To(P) of Q at P. In other words,
D*(Q, G)) represents a score at 6 = 0 of a fluctuation model {Qs : 6} € M through
Q at ¢ = 0. In that case, D*(Q, Gj+s) —D*(Q, Gp,) is in the tangent space of Q at P, so
that also dihD*(Q, Gy) € To(P). Thus, D*(Q,Gy) and D*(Q, Gy) = d/dhD*(Q, Gy,)
are both scores of Q at P so that there exists a local least favorable submodel Q.
whose linear span of 4 2 L(Qc) at € = 0 includes both D*(Q, G,) and D*(Q,Gp).
Using this local least favorable submodel now defines a TMLE @ ; that solves both
equations P,D*(Q;,G,) = P,D™(Q;,Gy) = 0 for all h. We can now apply our
general C-TMLE algorithm above with this definition of the TMLE Q] ,. In this
case, the C-TMLE selector h, (i.e., (G, Qn n ) will solve equation (10. 3) exactly.
In fact, even if do not use the C-TMLE algonthm but just use the standard TMLE
Z,hn,cv based on initial estimator (Q,,Gp,.,) Eq.(10.3) is solved exactly. As a
consequence, our asymptotics theorem below is applicable to both the proposed C-
TMLE as well as to the standard TMLE targeting both equations and using %, cy.
Nonetheless, we expect that the C-TMLE still has a finite sample advantage.

Example 10.6. Consider the C-TMLE algorithm, but let Q be the one-step
TMLE based on (Qnn, Gup) that uses a two dlmensmnal clever covariate

(C(Gn h), an C(Gn h) Let

d d
DY (Q,Gup) = D 1(Q.Gup) = C(Gn (A, W)Y — O(A, W)).
In that case, we have that for each h (N T solves

PnDT(Q:,ha Gn,h) =0
PnD;r(QZ,h’ Gn,h) =0

It also solves

P,D(Q;,;,Gn) =0
PnDJr(Q:;,h, Gn,h) =0

where D*(Q,G,p) = 4 i D*(Q, Gy ). By using this definition of TMLE in our C-
TMLE algorithm we guarantee that the critical equation P,1D+(Qn i Gni) = 0 for
all A, not only for our C-TMLE selector & = h,, defined by the C-TMLE algorithm.
As aresult, we could now also replace the selector 4, by & = h, ¢y in our description
of the C-TMLE algorithm. In fact, we can also simply use the TMLE based on initial

estimator Q,, and G, ., (but using this two-dimensional least favorable submodel).
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10.4 General Theorem for C-TMLE Asymptotic Linearity

We have the following theorem which proves that if there exists a selector A, for
which the C-TMLE is asymptotically linear, then our proposed C-TMLE using 4,
will be asymptotically linear.

Theorem 10.1. Let ¥ : M — R be pathwise differentiable at any P € Mwith effi-
cient influence curve D*(P) = D*(Q(P), G(P)) and Y (P) only depends on P through
Q(P): abusing notation, we will also denote ¥ (P) with ¥ (Q). Suppose that

P(Q) - ¥(Qo) = —PoD(Q,G) + Rx(Q, G, Qo, Go)

for a remainder Ry() that has a DR-structure so that Ryy(Q, Go, Qo, Go) = 0 for
all Q € QM). Let (G, = h) be a family of candidate estimators of Gy indexed
by scalar h, and let (Q:’h : h) be a family of TMLEs using G, in the targeting
step, so that PnD*(QZ‘h,G,Lh) = 0 for all h. Let h, be a given selector, and let
= :h be the corresponding TMLE. Let (Q*, Go) be the limit of (QOn.p,> Gn.p,) SO

that PO{D*(Q;;,”, G,1,) — D*(Q*,Go)P? —p0asn — oo

We make the following assumptions:

Existence of Desired Selector:  We assume that for a fixed Q* € {Q(P) : P € M}
there exists a sequence hy, that converges to zero and satisfies

PoD*(Q",Gpp,,) — PoD*(Q", Go) = (P, — Po)D1(Po) + op(n™"/?).  (10.11)

Selector Solves Critical Equation:  For such a selector hy,, we have

d
{dTPnD*(QZ,Gn,hn)}*(hn—hm)=0P(n_”2), where Q) = 0, (10.12)

Negligible Second-Order Remainders:

dh,
(Py = POD™(Q; ), - Gun,) = D*(Q", Go)} = op(n™"1?)

* * ol % d ol 3k -
PoD(Q". Gupy,) — PoD™(Q", G, - {—PoD (Q ,Gn,h,,)} # (hiy = hy) = op(n™'7?)

d
{(Pn ~ Po) - D'(Q", Gn,h”)} # (hiy = hy) = op(n™'1?)

d
P, {E{D*(Q:an,h,,) - D*(Q*’Gn,h,,)}} « (hyy — hy) = op(n™"/?)

{PoD*(Q;, Gup,) — PoD* (0}, Go)t — {PoD*(Q", Gyp,) — PoD*(Q", Go)} = op(n™"/?)

Then, ¥Y(Q;) is an asymptotically linear estimator of ¥(Qy) at Py € M with influ-
ence curve D*(Q, Gg) + D1(Py):

P(Q;) — P(Qo) = (P, — POID™(Q", Go) + D1(Po)} + op(n”'?).
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Discussion of Assumptions of Theorem 10.1. We make the following remarks re-
garding verification of the assumptions. The first assumption (10.11) assumes that
there exists a sequence /, which undersmoothes enough so that the smooth func-
tional @¢y-(G,) is an asymptotically linear estimator of @¢:(Gy), where @y (G) =
PoD*(Q*,G). At misspecified Q* # Qy, this might not be possible, and it will
be of interest to understand if we can generalize our proof below to show that,
nonetheless, ¥(Q;,) has better second-order term behavior than a standard TMLE
not solving the critical equation (10.12). The second assumption (10.12) holds if
P,D*(Q;,G,y,) = 0, but as discussed we do not need an exact solution. Our claim is
that this assumption comes down to assuming {%ﬂPnD*(Q;j, Gn,hn)} xh, = op(n~1/?),
since hj, can be chosen as the fastest rate to zero for which we still have asymp-
totic linearity (10.11). The first of the “second-order remainder”’-assumption cor-
responds with assuming (hy, — h,)> = op(n~'?) if h — PoD*(Q*,G,,) is twice
continuously differentiable. This will hold if h? and hZ are both op(n~'/?). Thus,
using our bias-interpretation of #,, the bias of G, 5, has to go to zero at a faster rate
than n~'/4. Suppose that D*(Q%, G,;,) falls in a Py-Donsker class with probability
tendon to 1; D*(Q;;, G, ;,) falls in a Pyp-Donsker class with probability tending to 1;
Po{D*(Q; Gup,) — D*(Q",Go)? =, 05 PotD*(Q.Gos,) — D*(Q*.Go)P> —, 0.
Then, by empirical process theory, and max(hy,,h,) —, 0, it follows that the
second, third and fourth “second-order remainder”-assumption hold. Thus, these
three second-order remainder assumption only rely on the consistency of (Q;, G.4,)
w.r.t (Q*,Go) and a Donker-class condition. Finally, the remainder in the fifth
“second-order remainder” assumption can generally be represented as f (H\(Q;) -
Hi(O))(H2Gpp,)—H2(Go) f(O;, Gy, OF, Go)d Py for certain functionals H;, H, and
f. In that case, assuming away singularities (i.e., assuming strong positivity), this
assumption would hold if || H(Q%) — H(Q") llp,|| Ha |lp,= op(n~1/?).

Proof of Theorem 10.1. We have

0= (P, = POD*(Q,y, ,Gui) + PoD (D5 s G-

By our second-order assumption (P, — PO)D*(Q;,h ,Gnn,) = (P, — Po)D*(Q",Gop) +
op(n~1?). Let Q = Q; ,, . Using that

Y(Q;) — Y(Qo) = —PyD*(Q;,, Go) + Ry0(Q;,, Go, Qo, Go)
and, by assumption, Ryy(Q;,, Go, Qo, Go) = 0, it follows

PoD*(Q,,, Gup,) = PoD™(Q,, Go) + {PoD*(Q),, Gup,) — PoD"(Q,, Go)}
= ¥(Qo) - ¥(Q,) + PoD"(Q,, Gup,) — PoD™(Q,, Go).

So we have shown

P(Q;)— P(Qo) = (Po—Po)D*(Q*, Go)+PoD*(Q;,, Gup,) — PoD*(Q}, Go) +op(n™'1?).
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By our second-order assumption, we have

PoD*(Q;,, Gun,) = PoD* (0. Go) = PoD(Q", Gyp,) = PoD'(Q", Go) + op(n™'1?).
We now write

PyD*(Q", Gyp,) — PoD*(Q", Go) = PoD™(Q", Gy ,) — PoD*(Q, Gup,,)
+PyD*(Q", Gy p,,) — PoD*(Q", Go)

By our “existence of desired selector” assumption, the second term equals (P, —
Po)D1(Py) +o0p(n~'/?). By our second-order assumption, we also have the following
Taylor expansion at &,,:

s« * * % d
P()D (Q ’Gn,h,,)_POD (Q ,Gn,hl,,) = _{

- POD*(Q*,Gn,h,,)}*(hm—hn>+op<n‘”2>.

Now, we write

d d
- {dhn POD*(Q*9 Gn,h”)} * (hln - hn) = {d_hn(Pn - PO)D*(Q*a Gn,hn)} * (hln - hn)

d
_Pn {d]’ln D*(Q*, Gn,h,,)} * (hln - hn)

By our second-order assumption, the first term on the right-hand side is op(n~'/?).
Regarding the second term, we write:
Py {SED"(Q", Gup)| # (hin = ) = Po{ =D (@, G, )} % (i = ha)
+Pu{ZED*(Q", G} * (hin = 1) = Pu {2 D*(Q, Gun, )} # (i = B
By our second-order assumption, the second term on the right-hand side is op(n~/?).

By the critical equation assumption on the selector %, we have that the first term on
the right-hand side is op(n~'/?) as well. Thus, we have shown

P(Q;) — P(Qo) = (P, — POID*(Q", Go) + Di(Py)} + op(n™"'?),

which completes the proof of the theorem. O

10.5 Discussion

In van der Laan and Gruber (2010) we proposed a general template for constructing
an iterative algorithm that builds an ordered sequence of TMLEs (QZ,j’ G, j), Jj=
1,...,J, so that the empirical fit of the relevant part Q,, ; and the nuisance parameter
G, ;is increasing in j, and using loss-based cross-validation to select a best estimator
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Q:‘l,jn of Qp. In this chapter we assume that such an ordered set of estimators of G is
already provided, which represents a special case of this general C-TMLE template:
the general template builds a next estimator G, j,; from G, ; based on evaluating a
set of moves, but in this special case, the next G, j; is already known (i.e., only one
move).

However, we go beyond this past literature on C-TMLE by studying the case
that the index parameter £ is continuous valued. We focused on double robust es-
timation problems defined by the product structure of the second-order remainder
R2(0, G, Qo, Gp), and assume that our family {G, : h} allows for consistent esti-
mation of Gy. We described a C-TMLE algorithm following the general C-TMLE
template with a minor modification to guarantee that the selected estimator G,
solves a score equation for the tuning parameter . We demonstrates that solv-

ing this score equation implies that the TMLE (Q;, , ,Gy,) solves a critically im-

portant score equation PnﬁD*(Q;‘,, Gn,) = 0 where this score is defined as the

derivative w.r.t. & of the canonical gradient. We explained why this latter score
equation corresponds with locally minimizing (in /) the second-order remainder
Ry0(Q;, Gy Qo, Go) of he TMLE Taylor expansion.

Moreover, we proved a formal theorem that shows that solving this critical equa-
tion beyond the usual efficient influence curve equation P,D*(Q;,, G, 5,) = 0 guaran-
tees that, if possible, the selector /,, undersmooths enough so that asymptotic linear-
ity of the TMLE Y((Q;,) is preserved at an inconsistent or slowly converging initial
estimator of Qp. On the other hand, a TMLE only solving P,D*(Q;,,Gup,c,) = 0
using a cross-validation selector £, cy will generally fail to be asymptotically linear
when Q) is inconsistent or converges at a slow rate. We also show that by using
a least favorable submodel with a two dimensional € that generates both of these
scores, we obtain a “special” TMLE that solves both score equations so that the
same asymptotics apply to this standard TMLE even when using £, cy. Nonetheless,
based on the finite sample rational of the C-TMLE, we expect that the C-TMLE will
have a better finite sample performance than this special TMLE. Initial simulations
not shown here demonstrate that the C-TMLE and special TMLE can easily outper-
form the standard TMLE and that the C-TMLE appears to be the best among the
three estimators “standard TMLE”, “special TMLE”, and “C-TMLE”.
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Chapter 11

Targeted Estimation of Cumulative Vaccine
Sieve Effects

David Benkeser, Marco Carone, and Peter Gilbert

Over the last century, effective vaccines have been developed for prevention of
disease caused by many pathogens. However, effective vaccines have not yet been
developed to prevent infection with the human immunodeficiency virus (HIV).
A challenge in developing a vaccine to prevent HIV infection is the substantial het-
erogeneity in the genetic characteristics of the virus. Preventive HIV vaccines are
typically constructed using only several antigens and may protect well against in-
fection caused by virus strains similar to antigens in the vaccine, but fail to protect
against disease caused by antigenically dissimilar strains. Therefore, when evaluat-
ing preventive HIV vaccines, it is important to study whether and how the efficacy
of the vaccine varies with the virus’ characteristics—this field of study is called
sieve analysis (Gilbert et al. 1998, 2001). The vaccine can be thought of as a sieve,
inducing a strain-specific immunity that presents a barrier to infection, while there
also may be “holes in the sieve,” that is, HIV strains that break through the vaccine
barrier.
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A sieve effect at a given genetic locus is defined as the difference in vaccine ef-
ficacy when comparing viruses matched to the vaccine at this locus to viruses
mismatched at this locus. Identification of sieve effects can help guide the
selection of antigens that should be included in future, possibly multivalent,
vaccines. Such multivalent vaccines may have higher overall efficacy by pro-
viding broader protection against genetically diverse viruses.

Statistically, sieve analysis is performed within a competing risks framework.
In a setting with competing risks, study trial participants are at risk of experienc-
ing several competing endpoints. In HIV vaccine trials, the various endpoints are
defined by the genotype of the virus that causes the infection; each genotype repre-
sents a separate type of endpoint. To assess the effect of a treatment on the risk of
an endpoint of a given type in competing risks settings, it is common to use either
instantaneous or cumulative parameters. The choice of parameter depends on the
scientific context (Pintilie 2007) and both have been used to assess vaccine sieve
effects (Gilbert 2000). Instantaneous parameters are usually based on the cause-
specific hazard function (Prentice et al. 1978; Benichou and Gail 1990; Gaynor et al.
1993; Lunn and McNeil 1995), defined as the instantaneous probability of experi-
encing an endpoint of a given type among those who have not yet experienced an
endpoint. The most common cumulative parameter studied is cumulative incidence,
defined as the probability that an event occurs by a given time and is of a particular
type. While both parameters are relevant for assessing vaccine sieve effects, the cu-
mulative parameter may be of greater public health relevance when waning vaccine
effects are present.

The Aalen-Johansen estimator is commonly used to make inference on cumula-
tive incidence in a sieve analysis (Aalen 1978). This estimator requires few assump-
tions to achieve several desirable properties. Provided censoring is uninformative, it
is consistent. Additionally, if there are no measured prognostic covariates, it is also
asymptotically nonparametric efficient. However, informative censoring is a com-
mon concern in any longitudinal study and prognostic covariates such as sexual risk
behaviors are routinely collected in HIV vaccine trials. By utilizing these covari-
ates, it is possible to weaken assumptions on the censoring mechanism and improve
efficiency.

Semiparametric approaches have been devised to incorporate covariates into the
analysis of competing risks data and have been applied in sieve analysis. These
include proportional hazards regression for cause-specific hazards (Prentice et al.
1978; Lunn and McNeil 1995) or subdistribution hazards (Fine and Gray 1999).
These hazard-based approaches can be used to compute estimates of cumulative in-
cidence using known relationships between hazard and incidence, but are more com-
monly used to estimate hazard-based efficacy parameters. A drawback of these
semiparametric approaches, whether for estimating instantaneous or cumulative pa-
rameters, is that they require the correct specification of a finite-dimensional regres-
sion model.
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When this model is incorrect, the target parameter is generally difficult to in-
terpret. For example, the estimand of a misspecified cause-specific Cox model
is known to involve the censoring distribution (Struthers and Kalbfleisch
1986), and this is also true of misspecified subdistribution hazard models
(Grambauer et al. 2010). The fact that the estimand involves the censoring
distribution, typically considered to be a study-specific nuisance rather than a
population characteristic of interest, is an undesirable property for assessing
treatment efficacy (Stitelman and van der Laan 2011).

Targeted estimators of a marginal survival probability when only one type of end-
point is present were presented in Moore and van der Laan (2009a) and van der Laan
and Gruber (2012). These works proposed and evaluated methods for covariate ad-
justment through machine learning-based estimators, such as the super learner. The
estimators were shown to lead to gains in efficiency and robustness to informative
censoring. In this chapter, we show how the TMLE developed in van der Laan and
Gruber (2012) can be adapted to the setting of competing risks and estimation of
cumulative incidence in the context of sieve analysis. We illustrate these methods
using data from a recent Phase II preventive HIV vaccine efficacy trial.

11.1 Observed Data

We consider a preventive HIV vaccine efficacy trial that recruits » individuals and
measures Ly, a potentially high-dimensional set of baseline characteristics, on each
individual. Individuals are assigned, possibly based on Ly, to receive an active vac-
cine Ap = 1 or control vaccine Ay = 0. Trial participants are asked to attend K + 1
regularly scheduled clinic visits to be tested for HIV infection. We consider the case
where there is a particular genetic locus of interest and for k = 1,..., K + 1, define
Ly = (Ly,1, Ly 2) to be a bivariate indicator of infection, where L ; = 1 if a participant
is infected with a virus matched to the reference virus in the vaccine at the locus of
interest at or before visit k and L;; = O otherwise. Similarly, L;, = 1 if a participant
is infected with a virus mismatched to the reference virus in the vaccine at or before
visit k and L, = 0 otherwise. Over the course of follow-up some participants may
withdraw consent or leave the study for other reasons. For k = 1,..., K, we use A
to denote whether a participant attended clinic visit k + 1. If a participant misses a
clinic visit, they are considered to be right censored. Thus, the observed data can be
represented as n independent copies of O = (Ly,Ag, L1, Ay, ...,Ax, Lk+1) ~ Po. We
will make no assumptions about Py, so our statistical model M is nonparametric.

We note that for k = 1,..., K, we could allow L; to contain time-varying par-
ticipant characteristics; however, such characteristics are not included in our data
analysis. We use L; = (Lo, ...,L;) and A; = (Ao,...,A) to denote the history of
the time-dependent processes at a given time k. We also use the notation 0, and 1,,
to respectively denote zero and one vectors of length m.
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11.2 Causal Model and Parameters of Interest

We now define our causal parameter of interest using a structural causal model.
We assume that each component of the observed longitudinal data structure is a
function of a set of observed parent variables and an unmeasured exogenous error
term. The observed parents of L are assumed to be L;_; and Ay, while the parents
of Ay are assumed to be L; and A;_;. We can define a post-intervention distribu-
tion that represents the distribution the data would have under a specified inter-
vention on Ay, ..., Ak that sets these values to ay, ..., ag, respectively. We denote
the true post-intervention distribution of a static intervention a with Pg and define
LY = (Lf,...,Ly, ) to be a counterfactual random variable with this distribution.
We are interested in evaluating the mean counterfactual outcome Epi(L%, ) under
two interventions: the first assigns Ag = 1 (i.e., active vaccine), the second assigns
Ao = 0 (i.e., control vaccine), and both subsequently assign A} = --- = Ax =1
(i.e., individuals remain under observation for the duration of the study). These in-
terventions may be seen as unnecessarily stringent, since whenever an infection
occurs prior to time k, the participant’s infection status at time k is known even if
the individual was later lost to follow-up. The stochastic intervention on Ay that sets
A; = 0 and does not intervene otherwise may be more appropriate. However, it can
be shown that both interventions lead to the same observed data parameter. The two
static interventions of interest differ only in assignment of Ay, so we will use the
shorthand a = 1 to refer to the intervention assigning treatment and no censoring
and a = 0 to refer the intervention assigning control and no censoring.

We are interested in estimating the cumulative incidence of both matched and
mismatched infections in the vaccine and placebo arm, which we define as ng’j =
Ept(; (L?Gl,j) for j = 1,2 and a = 0,1. These quantities can be used to de-
fine a measure of genotype-specific cumulative vaccine efficacy for j = 1,2 as
VE; =1~ '70(]), i / z,bgvj, interpreted as the multiplicative reduction in cumulative inci-
dence of type j infections caused by the vaccine. Values of vaccine efficacy near one
indicate a highly effective vaccine, small positive values indicate a moderately effec-
tive vaccine, and values less than zero indicate a harmful vaccine. We also define a
vaccine sieve effect as VSE = ((//8’1 /z,//(l)’l )/ (1//8’2 / 1,0(1)32), that is, the ratio (matched vs.
mismatched) of the causal cumulative risk ratios (placebo vs. vaccine). Note that the
vaccine sieve effect will be greater than one if the efficacy is higher against matched
infections and less than one if the efficacy is lower.

For simplicity of exposition, we focus on estimation of lﬁ(l)’l noting that our label-
ing of types and treatment arms is arbitrary so that the same methods can be used
to estimate each of the four cumulative incidence quantities of interest. These esti-
mates can then be combined to estimate vaccine efficacy and vaccine sieve effects.
Furthermore, we also note that our choice of K is arbitrary so that our methods can
be applied for pointwise estimation of cumulative incidence, vaccine efficacy, and
vaccine sieve effects at any clinic visit.
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11.3 Identification

The distribution of the counterfactual variable L* can be identified using the ob-
served data under the assumptions of sequential randomization and positivity. The
identification result we present is based on the general results in Bang and Robins
(2005). Beginning at the final time point K + 1, we define

Qo.x+1(lx) = ffml,l dQor.,(Cxs1)

where Qo ,,, denotes the conditional distribution of L, given Ax = 1g,; and Lg
implied by Pg. Given Qg 1, we define

Qox(lk-1) = fQ_(),KH(EK) dQo.r,(tx)

as the mean of Qo, k+1 with respect to Qy,, o, the conditional distribution of Lg given
Ay = 1g and Lg_, implied by Py. We continue this process, where for k = 1,.. .,
K — 1 we define

Oox(li-1) = fQO,kH(zk) dQor, () .

Finally, we define
Qoo = fQo,l(fo) dQo1,(6o) .

We use O = O(P) = (Ox(P) : k) to denote the collection of iterated means and Q =
o(P) = {O(P), Qr,(P)} to denote the set of iterated means along with the distribution
of baseline covariates implied by P € M. Under the causal assumptions previously
mentioned, we have that Q_(),o equals the counterfactual parameter of interest. Thus,
we have established that 1,0(1)’] = ¥(Qp) under the specified assumptions, where ¥ :
M — (0, 1) is defined by the iterated mean construction above.

11.4 Efficient Influence Function

Fork=1,...,K + 1, we define G4, = G4 (P) = P(Ax = 1 | Ax_y = 1y, L) and

(@ = 1y)

H G = .
K& 154 Ga, (G
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The efficient influence function of ¥ with respect to our model M at (Q, g) is

K+1

D'(Q,G)0) = )" Dy(Q,G)(0),
k=0

where

D*K+1(Q’ G)(O) = HK+I(G)(0) {€K+l,] — QK-H(ZK)}
D(Q,G)(0) = H(G)(0) {Q1 () — Ox(by—1)} fork = 1,..., K, and
D(Q)(0) = 01(ty) — Y (0) .

11.5 Initial Estimates

We use the empirical distribution Q, , as initial estimator of the distribution of
baseline covariates. To construct initial estimates of Qy, we begin at K + 1, where
the initial estimator of Qg k| should assign the value one to individuals with Ly =
1 and zero to individuals with Lg, = 1. For the remaining individuals, we must
estimate the conditional mean of Lk, given L. In the simplest case, this could
be achieved via parametric regression of the outcome L., on functions of Ly in
the subset of data with Ay = 1g,; and Lg = (0,0). However, more ideally this
estimate would be based on a more flexible technique, such as the super learner
including nonparametric tools. Moving to time point K, the estimate of Qg g should
assign the value one to individuals with Lg_;; = 1 and zero to individuals with
Lk_1, = 1. For the remaining individuals, Qo,K can be estimated using a regression
of an estimate of Qg x4 on functions of Ly in the subset of data with Ag_; = g
and Lg_; = (0,0). This process continues for each of the remaining time points:
previously failed individuals are assigned one or zero depending on the type of
failure, while the predicted value from the previous regression serves as the outcome
in the next regression in the remaining individuals.

11.6 Submodels and Loss Functions

Given estimators O, and G,, we now define appropriate parametric fluctuation sub-
models and loss functions to update Q,. For the distribution of baseline covariates,
we use the negative log-likelihood loss, L(o, Qy,) = —log{dQy,({v)}, and submodel
{(1 + €D;(0))dQy, : €}. For the fluctuation of the estimate of Qg k.1, we use the
negative log-likelihood loss function

L(0, Qk+1) = —I(@g = 1g+1)[€x+1,1108{Ok1(Lx)} + (1 = Lxrr Dlog{l — Ok1(Lx)}] s
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whose true risk is indeed minimized by Q_O, k+1- An appropriate submodel for Q,, K+1
given some G is, with a slight abuse of notation, {Qcx+1 : €} where Q. k41 =
expit{logit(Q, k+1) + €Hg41(G)}. One easily checks that

d 2 *

d_L(o’ QE,K+1) = DKJr](Q» G)(O) .
€ e=0

For k = 1,...,K we define a negative log-likelihood loss function for Qo,k that is

indexed by a given Oy, 1,

Lg,., (0, 00) = =@ = 1)[ Qrr1 (E)log{ Ox (£x-1)}
+ {1 = Qre1(L)Mlog{l — Ou(Gr-1)}] -

One can confirm that the true risk of this loss function is minimized by Q(),k when-
ever the index parameter is equal to its true value Qg 1. We again use a logistic
submodel for a given G denoted, again with a slight abuse of notation, as {Qy : €},
where Q. = expit{logit(Q, ) + €eHy(G)}. We can show that

d = *
aLQkH(O’ QE,k) 0 = Dk(Q’ G)(O) :

11.7 TMLE Algorithm

The TMLE algorithm follows the initial estimation procedure outlined above, but
adds in a fluctuation step at each time point:

1. Generate initial estimates, G, of the conditional treatment and censoring mech-
anisms. These may be obtained through standard methods (e.g., logistic regres-
sion for the treatment and Kaplan-Meier for the censoring mechanism), or more
ideally using a collection of classical tools along with machine learning tech-
niques combined via the super learner. Use these estimates to compute Hy(G,)
fork=1,...,K+1.

2. Generate an initial estimate Q,L k+1 of the first iterated conditional mean as out-
lined above.

3. Obtain ¢, as the coefficient of a logistic regression with L;; as outcome, the
offset logit{Q, x+1(Lx)}, and Hg,{(G,)(O) as covariate in the subset of data with
Ag = lg4q. Set QZ,KH = Q¢ K+1- Letk =K.

4. Generate an initial estimate Q,; of Qo as outlined above by first assigning
known values when L;_; # (0,0) and then estimating unknown values using
an appropriate form of regression with sz +1 as the outcome and functions of Ly
as predictors in the subset of data with A;_; = 1 and L;_; = (0, 0).

5. Obtain the next value for ¢, by fitting a logistic regression with Q_Zk +1(I_‘k) as
outcome, logit{Q, x(Ly)} as offset, and Hy(G,)(O) as covariate in the subset of
data with Ak = Tk+1~ Set Q;;,k = Qfmk. Setk=k—-1.

6. Iterate steps 4-5 until k = 0.

7. Obtain estimate ¢/, = 1 ¥ 0; (0)).

n
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11.8 Statistical Properties of TMLE

The TMLE estimator of cumulative incidence is doubly-robust, in that the estimator
is consistent if either O, consistently estimates Qg or G, consistently estimates G.
The TMLE estimator will be asymptotically linear under the usual empirical pro-
cess and rate conditions for TMLE-based estimators. If the treatment and censoring
mechanisms are known exactly, the influence function of ¥}, is given by D*(Q*, Gy),
where Q" is the (possibly misspecified) limit of Q. In this case, the asymptotic vari-
ance of nl/z(w,ﬁ — Jp) can be consistently estimated by a'fl =L, D0, Go)0;)>.
However, if the treatment and censoring mechanisms are unknown, as is typical in
practice, and Q; is not consistent for Oy, the asymptotic variance is more compli-
cated. Nevertheless, in such situations, if G, is an asymptotically efficient estimator
within a parametric model G, then we may use 0'3 as a conservative estimate of the
asymptotic variance.
Confidence intervals for ¢, may be constructed using

-1/2 -1/2
(!//;: — Zl-a/20nN / "//: + Zl-a/20 N / ),

where z3 is the S-quantile of the standard normal distribution. Similarly, given a
fixed y° € (0,1), a two-sided test of the null hypothesis ¢y = ¥° of asymptotic
size no larger than @ can be constructed by rejecting the null hypothesis whenever
|n!/ 2(1,//;‘, —y¥°)/ou|l > Zi—as2- An appealing facet of the influence function-based
variance estimation is that the form of the asymptotic variance of a function of
multiple estimators is readily available. In sieve analysis, this is quite useful as it
allows for the simple construction of confidence intervals and hypothesis tests about
genotype-specific vaccine efficacy and vaccine sieve effects.

11.9 HVTN 505 HIV Vaccine Sieve Analysis

We analyzed data from the HVTN 505 study, a recent Phase II preventive HIV
vaccine efficacy trial where participants were randomized 1:1 to receive either the
candidate vaccine or a placebo (Hammer et al. 2013). Additional information on
participants’ risk behaviors was collected at recruitment including gender (male,
female, transgender male, transgender female), race (white, black, other), BMI, drug
use (marijuana, cocaine, poppers, speed, MDMA, other recreational drugs), alcohol
use (never, less than once per week, 1-2 days per week, 3—6 days per week, daily),
STD status (syphilis, herpes, genital sores, gonorrhea), and sexual risk behaviors
(reported number of sexual partners, reported unprotected insertive anal sex with
men, reported unprotected recipient sex with men, previously derived behavioral
risk score). After receipt of the final dose of vaccine, participants attended visits
every 3 months to be tested for HIV. We focus our analysis on the modified intent-
to-treat cohort, which included 2504 participants. We refer interested readers to the
original publication for more information on the trial’s design.
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We studied whether the vaccine exhibited sieve effects at amino acid site 169 on
the V2 loop of the HIV envelope protein. This locus was chosen because a vaccine
with a similar design to the HVTN 505 vaccine exhibited sieve effects at this locus
(Rolland et al. 2012). In HVTN 505 there were a total of 17 169-matched and 30
169-mismatched infections. We used TMLE to estimate the cumulative incidence
of 169-matched and mismatched infections in the vaccine and placebo arm in each
scheduled visit window. These measures were used to estimate the vaccine efficacy
against each type of infection, in addition to the vaccine sieve effect at this locus.

We used the super learner to estimate both the iterated conditional means and the
conditional censoring distribution. The same library was used for both and consisted

AA site 169 matched AA site 169 mismatched
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Fig. 11.1 Results from the TMLE analysis of HVTN-505

of 13 algorithms: an unadjusted mean, three main terms-only generalized linear
models (using only behavioral risk score, only sexual risk behaviors, and only the
five variables most highly correlated with outcome), three main terms-only stepwise
regressions based on AIC (using all variables, only sexual risk behaviors, and only
the five most highly correlated variables), three random forests (using all variables,
only drug/alcohol use, and only sexual risk behaviors), and three gradient boosted
machines (using all variables, only drug/alcohol use, and only all sexual risk behav-
iors).

The results of our analysis are shown in Fig.11.1. The top row shows the
treatment-specific cumulative incidence of HIV infections that were matched (left)
or mismatched (right) to the strains in the vaccine insert at the amino acid site of
interest. Overall the incidence of mismatched infections was slightly higher than
matched infections and in neither case do we see a clear separation between the
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curves for the two treatment groups. This is reflected in the vaccine efficacy mea-
sure shown in the bottom left plot. The vaccine does not appear to confer efficacy
against either type of infection. The estimated sieve effect is shown in the bottom
right panel, where we see confirmation that there is no evidence of differential vac-
cine efficacy comparing matched to mismatched infections.

We also performed the analysis using the Aalen-Johansen estimator to examine
whether adjusting for covariates had an effect on the results. At 18 months after
receipt of the final vaccination the TMLE-estimated sieve effect was 0.83 (95% CI:
0.31-2.23) and the Aalen-Johansen estimated sieve effect was 0.82 (95% CI: 0.23—
2.91). Covariate adjustment did not affect the point estimate for the sieve effect,
but had a substantial effect on the estimated uncertainty associated with the point
estimate. The estimated variance of the TMLE-estimated sieve effect was 60% that
of the Aalen-Johansen-estimated sieve effect, which led to a substantially narrower
confidence interval about the TMLE estimate.

11.10 Discussion

In this chapter, we illustrated how cumulative incidence, genotype-specific vaccine
efficacy, and vaccine sieve effects can be estimated using TMLE.

There are several benefits to this targeted approach to sieve analysis. Covariate
adjustment allows for departures from the assumption of independent censor-
ing by allowing for censoring to depend on baseline covariates. Furthermore,
covariate adjustment can lead to gains in efficiency. We can thus obtain es-
timators of vaccine efficacy and sieve effects that have lower bias and lower
variance than the standard, unadjusted approach to sieve analysis.

Our analysis of the HVTN 505 data illustrates that these potential benefits can in-
deed be realized in real data applications. Adjusting for the large set of risk be-
haviors collected in the HVTN 505 trial led to a substantially narrower confidence
interval about the estimated sieve effect. Targeted learning of vaccine sieve effects
appears to be a promising direction for the field.



Chapter 12
The Sample Average Treatment Effect
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In cluster randomized trials (CRTS), the study units usually are not a simple random
sample from some clearly defined target population. Instead, the target population
tends to be hypothetical or ill-defined, and the selection of study units tends to be
systematic, driven by logistical and practical considerations. As a result, the pop-
ulation average treatment effect (PATE) may be neither well defined nor easily in-
terpretable. In contrast, the sample average treatment effect (SATE) is the mean
difference in the counterfactual outcomes for the study units. The sample parame-
ter is easily interpretable and arguably the most relevant when the study units are
not sampled from some specific super-population of interest. Furthermore, in most
settings the sample parameter will be estimated more efficiently than the population
parameter.

L. B. Balzer (X))

Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences,
University of Massachusetts - Amherst, 416 Arnold House, 715 North Pleasant St, Amherst,

MA 01003, USA

e-mail: Ibalzer @umass.edu

M. L. Petersen

Division of Epidemiology and Division of Biostatistics, University of California, Berkeley,
101 Haviland Hall, #7358, Berkeley, CA 94720, USA

e-mail: mayaliv@berkeley.edu

M. J. van der Laan

Division of Biostatistics and Department of Statistics, University of California, Berkeley,
101 Haviland Hall, #7358, Berkeley, CA 94720, USA

e-mail: laan @berkeley.edu

© Springer International Publishing AG 2018 175
M.J. van der Laan, S. Rose, Targeted Learning in Data Science,
Springer Series in Statistics, https://doi.org/10.1007/978-3-319-65304-4_12


mailto:lbalzer@umass.edu
mailto:mayaliv@berkeley.edu
mailto:laan@berkeley.edu
https://doi.org/10.1007/978-3-319-65304-4_12

176 L. B. Balzer et al.

In this chapter, we demonstrate the use of TMLE for estimation and inference
of the sample effect in trials with and without pair-matching. We study the
asymptotic and finite sample properties of the TMLE for the sample effect and
provide a conservative variance estimator. Finite sample simulations illustrate
the potential gains in precision and power from selecting the sample effect as
the target of inference. This chapter is adapted from Balzer et al. (2016c).

In many studies, the goal is to estimate the impact of an exposure on the out-
come of interest. Often the target causal parameter is the PATE: the expected dif-
ference in the counterfactual outcomes if all members of some population were
exposed and if all members of that population were unexposed. If there are no un-
measured confounders and there is sufficient variability in the exposure assignment
(i.e. if the randomization and positivity assumptions hold), then we can identify the
PATE as a function of the observed data distribution (Rosenbaum and Rubin 1983b;
Robins 1986). The resulting statistical parameter can be estimated with a variety
of algorithms, including matching and inverse weighting estimators (e.g., Horvitz
and Thompson 1952; Rosenbaum and Rubin 1983b; Shen et al. 2014), simple sub-
stitution estimators (e.g., Robins 1986; Snowden et al. 2011), and double robust
algorithms (e.g., Robins et al. 1994; van der Laan and Robins 2003; van der Laan
and Rubin 2006; van der Laan and Rose 2011).

An alternative causal parameter is the SATE (Neyman 1923; Rubin 1990; Imbens
2004; Imai 2008; Schochet 2013; Imbens and Rubin 2015). The sample effect is the
average difference in the counterfactual outcomes for the actual study units. There
are several potential advantages to selecting the SATE as the parameter of interest.
First, the SATE is readily interpretable as the intervention effect for the sample at
hand. Second, the SATE avoids assumptions about randomly sampling from and
generalizing to some “vaguely defined super-population of study units” (Schochet
2013). In other words, the sample parameter remains relevant and interpretable if
the units were systematically selected for inclusion in the study, as is likely to be
common in CRTs. Extensions of the study results to a broader or a different popula-
tion can be addressed as a distinct research problem, approached with formal tools
(e.g., Cole and Stuart 2010; Stuart et al. 2011; Bareinboim and Pearl 2013; Hartman
et al. 2015), and do not have to be assumed in the parameter specification. Finally,
an estimator of the sample effect is often more precise than the same estimator of
the population effect (Neyman 1923; Rubin 1990; Imbens 2004; Imai 2008).

For a randomized trial, Neyman (1923) first proposed estimating the SATE with
the unadjusted estimator, which is the difference in the average outcomes among
the treated units and the average outcomes among the control units. In this setting,
the difference-in-means estimator will be unbiased for the SATE, conditional on the
set of counterfactual outcomes for the study units. However, its variance remains
unidentifiable as it relies on the correlation of the counterfactual outcomes (Ney-
man 1923; Rubin 1990; Imbens 2004; Imai 2008). Imbens (2004) later generalized
this work for an efficient estimator (i.e. a regular, asymptotically linear estimator,
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whose influence curve equals the efficient influence curve) in an observational set-
ting. In particular, he showed that an efficient estimator for the population effect
was unbiased for the sample effect, conditional on the baseline covariates and the
counterfactual outcomes of the study units. He further expressed the variance of an
efficient estimator of the SATE in terms of the variance of the same estimator of the
PATE minus the variance of the unit-specific treatment effects across the population.
This suggested that the standard variance estimator would be biased upwards unless
there is no variability in the treatment effect.

In this chapter, we introduce a TMLE for estimation and inference of the
sample effect in trials with and without pair-matching. Our results general-
ize the variance derivations of Imbens (2004) to allow for misspecification of
the outcome regression (i.e., the conditional mean outcome, given the expo-
sure and covariates), estimation of the propensity score (i.e. the conditional
probability of the receiving the exposure, given the covariates), and adaptive
pair-matching (Balzer et al. 2015). Pair-matching is a popular design strategy
in CRTs to protect study credibility and to increase power (Klar and Donner
1997; Greevy et al. 2004; Imai et al. 2009; Hayes and Moulton 2009; van der
Laan et al. 2013a; Balzer et al. 2015). To the best of our knowledge, TMLE
is the first efficient estimator proposed for the sample effect in a pair-matched
trial.

As a motivating example, we consider a hypothetical CRT for HIV prevention
and treatment. Suppose there are n = 30 communities in the trial. In intervention
communities, HIV testing is regularly offered and all individuals testing HIV+ are
immediately eligible for antiretroviral therapy (ART) with enhanced services for
initiation, adherence and retention in care. In control communities, all individuals
testing HIV+ are offered ART according to the current standard of care. The primary
hypothesis is that the universal “test-and-treat” strategy will reduce the cumulative
incidence of HIV over the trial duration. For the purposes of discussion, we focus on
the community-level data. Thereby, our results are equally applicable to clustered
and nonclustered data structures.

12.1 The Causal Model and Causal Parameters

Consider the following data generating process for a randomized trial with two arms.
First, the study units are selected. While some trials obtain a simple random sam-
ple from a well-defined target population, in other studies there may not be a clear
target population from which units were sampled and about which we wish to make
inferences. In the SEARCH trial, for example, 32 communities were selected from
Western Uganda (Mbarara region), Eastern Uganda (Tororo region) and the South-
ern Nyanza Province in Kenya by first performing ethnographic mapping on 54
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candidate communities meeting the inclusion criteria (e.g. community size, health
care infrastructure and accessibility by a maintained transportation route), and then
selecting the 16 pairs best matched on a range of characteristics (e.g. region, occu-
pational mix and migration index) (Balzer et al. 2015). After selection of the study
units, additional covariates are often measured. In our running example, additional
covariates collected could include male circumcision coverage, measures of HIV
prevalence and measures of community-level HIV RNA viral load. Throughout the
baseline covariates are denoted W.

Next, the intervention is randomized to the study units. Equal allocation of the
intervention can be guaranteed by randomly assigning the intervention to n/2 units
and the control to remaining units or by randomizing within matched pairs. For
ease of exposition, we present the causal model for the simple scenario, where the
intervention is completely randomized, but our results are general. (Extensions to
pair-matched trials are given in Sect. 12.4.) Let A be a binary variable, reflecting
the assigned level of the intervention. For our hypothetical CRT, A equals one if
the community was assigned to the treatment (universal test-and-treat) and equals
zero if the community was assigned to the control (standard of care). At the end of
follow-up, the outcome Y is measured. For our trial, Y is the cumulative incidence
of HIV over the relevant time period. The observed data for a given study unit are
then

0=WA,Y).

Suppose we observe n i.i.d. copies of O with some distribution Py. Recall the sub-
script O denotes the true distribution of the observed data. We note that for estima-
tion and inference of the sample and conditional average treatment effects, we can
weaken the i.i.d. assumption by conditioning on the vector of baseline covariates
(Wi, Wa,, ..., W,) (Balzer et al. 2015).

The following structural causal model describes this data generating process
(Pearl 1995, 2009a). Each component of the observed data is assumed to be a de-
terministic function of its parents (variables that may influence its value) and unob-
servable background factors:

W = fw(Uw) (12.1)
A =1(U,y <0.5)
Y = fy(W,A, Uy)

where the set of background factors U = (Uy, Uy, Uy) have some joint distribution
Py. By design, the random error determining the intervention assignment U, is
independent from the unmeasured factors contributing the baseline covariates Uy
and the outcome Uy:

Uy 1 (Uw, Uy).

Specifically, Uy is independently drawn from a Uniform(0,1). This causal model
M implies the statistical model for the set of possible distributions of the observed
data O. In a randomized trial, the statistical model M is semiparametric.
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Through interventions on the structural causal model, we can generate the coun-
terfactual outcome Y, which is the outcome if possibly contrary-to-fact the unit was
assigned A = a:

W = fw(Uw)
A=a
Y, = fr(W,a, Uy).

In this framework, the counterfactual outcomes Y, are random variables. For our
running example, Y, is the counterfactual cumulative incidence of HIV if possibly
contrary-to-fact the community had been assigned treatment level A = a.

The distribution of the counterfactuals can then be used to define the causal pa-
rameter of interest. Often, the target of inference is the population average treatment
effect:

PATE = E[Y; - Y.

This is the expected difference in the counterfactual outcomes for underlying target
population from which the units were sampled. From the structural causal model, we
see that the expectation is over the measured factors W and unmeasured factors Uy,
which determine the counterfactual outcomes for the population. In other words, the
true value of the PATE does not depend on the sampled values of W or Uy. For our
hypothetical trial, the PATE would be the difference in the expected counterfactual
cumulative incidence of HIV if possibly contrary-to-fact all communities in some
hypothetical target population implemented the test-and-treat strategy, and expected
counterfactual cumulative incidence of HIV if possibly contrary-to-fact all commu-
nities in that hypothetical target population continued with the standard of care.

An alternative causal parameter is the sample average treatment effect, which
was first proposed in Neyman (1923):

n

1
SATE = — Yii— Yol
nZ[l, 0.]

i=1

This is simply the intervention effect for the n study units. The SATE is a data-
adaptive parameter; its value depends on the units included in the study. For re-
cent work on estimation and inference of other data-adaptive parameters, we refer
the reader to Chap.9. The SATE remains interpretable if there is no clear super-
population from which the study units were selected. In our running example, the
SATE is the average difference in the counterfactual cumulative incidence of HIV
under the test-and-treat strategy and under the standard of care for the n study com-
munities.

In a CRT, targeting the sample effect may have several advantages over targeting
the population effect. First, there may not be a single real world (as opposed to hypo-
thetical) target population from which the study units were sampled or about which
we wish to make inferences. While appropriate analytic approaches can reduce



180 L. B. Balzer et al.

concerns over systematic sampling, the interpretation and policy relevance of the
resulting PATE estimate would be unclear. In contrast, targeting the SATE allows us
to rigorously estimate the intervention effect in a clearly defined, real world popu-
lation consisting of all the residents of the study communities. The resulting SATE
estimate does not rely on any assumptions about the sampling mechanism, has a
clear interpretation, and is generally more precise than an estimate of the PATE. As
discussed below, estimators of the sample effect are at least as powerful as those of
the population effect and expected to be more powerful when there is effect modifi-
cation (Rubin 1990; Imbens 2004; Imai 2008).

Clearly, however, it remains of significant policy interest to transport any effect
found in a CRT to new populations and settings. However, alternative real world tar-
get populations are likely to differ from the current setting in a number of ways that
will likely impact the magnitude of the effect. As a result, neither the SATE nor the
PATE will apply directly to these new settings. Thus, a desire for generalizability
does not constitute an argument for favoring the population parameter over the sam-
ple parameter. Instead, the generalization (or transport) of the intervention effect to
settings beyond the current sample is best addressed as a distinct research question,
making full use of the modern toolbox available (e.g. Cole and Stuart 2010; Stuart
et al. 2011; Bareinboim and Pearl 2013; Hartman et al. 2015).

12.2 Identifiability

To identify the above causal effects, we must write them as some function of the ob-
served data distribution Py (Imbens 2004; van der Laan and Rose 2011). Under the
randomization and positivity assumptions, we can identify the mean counterfactual
outcome within strata of covariates (Rosenbaum and Rubin 1983b; Robins 1986):

E[Y W] = E[YJJA = a, W] = Eo[Y|A = a, W]

where the right-most expression is now in terms of the observed data distribution Py.
Briefly, the first equality holds under the randomization assumption, which states
that the counterfactual outcome is independent of the exposure, given the measured
covariates: A 1L Y,|W. This is equivalent to the no unmeasured confounders as-
sumption (Rosenbaum and Rubin 1983b). The positivity assumption states that the
exposure level a occurs with a positive probability within all possible strata of co-
variates. Both assumptions hold by design in a randomized trial. As a well known
result, the PATE is identified as

PP (Po) = Eo|Eo(Y|A = 1, W) — Eg(Y|A = 0, W)

= Eo[Q_()(l, W) - Q_O(O’ W)]
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where Qg(Y|A, W) = E(Y|A, W) denotes the conditional mean outcome, given the
exposure and covariates. This statistical estimand is also called the g-computation
identifiability result (Robins 1986). For our running example, ¥*(Py) is the dif-
ference in expected cumulative HIV incidence, given the treatment and measured
covariates, and the expected cumulative HIV incidence, given the control and mea-
sured covariates, averaged (standardized) with respect to the covariate distribution
in the hypothetical target population. As with the causal parameter, there is one true
value ¥”(P,) for the population. In a randomized trial, conditioning on the covari-
ates W is not needed for identifiability, but will often provide efficiency gains during
estimation (e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982; Tsiatis et al.
2008; Moore and van der Laan 2009b; Rosenblum and van der Laan 2010b; Euro-
pean Medicines Agency 2015).

In contrast, the SATE is not identifiable—in finite samples, we cannot strictly
write the causal parameter as a function of the observed data distribution Py.
(Asymptotically, the SATE is identifiable, because the empirical mean converges
to the expectation and thereby the sample effect converges to the population effect.)
To elaborate, we can use the structural causal model (Eq. (12.1)) to rewrite the sam-
ple effect as

n

1
SATE = = S [Yy, - Yo,
nZ[l, 0.]

i=1

1 n
= 3 Fr(Wi, 1,Uy) = fr(Wi,0, Uy)
n i=1

l n
= D ElN = Yol Uy
i=1

The second equality is from the definition of counterfactuals as interventions on the
causal model. The final equality is the conditional average treatment effect (CATE),
given the measured baseline covariates as well as the unmeasured factors. The con-
ditional effect was first proposed in Abadie and Imbens (2002) and is the average
difference in the expected counterfactual outcomes, treating the measured covariates
of the study units as fixed: CATE= 1 ¥ E[Y;; — Y0,i|W,-]. This representation of
the SATE suggests that if we had access to all pre-intervention covariates impacting
the outcome (i.e. {W, Uy}), then we could apply the results for estimation and infer-
ence for the conditional parameter, as detailed in Balzer et al. (2015). In reality, we
only measure a subset of these covariates (i.e., W) and only this subset is available
for estimation and inference. Therefore, the SATE is not formally identifiable in fi-
nite samples. Nonetheless, as detailed below, a TMLE for the population effect will
be consistent and asymptotically linear for the sample effect, and the corresponding
variance estimator will be asymptotically conservative.
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12.3 Estimation and Inference

There are many well-established algorithms for estimation of the population pa-
rameter Y% (Py). Examples include IPW, simple substitution estimators, A-IPW and
TMLE (e.g., Horvitz and Thompson 1952; Rosenbaum and Rubin 1983b; Shen et al.
2014; Robins 1986; Snowden et al. 2011; Robins et al. 1994; van der Laan and
Robins 2003; van der Laan and Rubin 2006; van der Laan and Rose 2011). In a ran-
domized trial, the unadjusted difference in the average outcomes among the treated
units and the average outcome among the control units provides a simple and unbi-
ased estimate of the PATE. Adjusting for measured covariates, however, will gener-
ally increase efficiency and study power (e.g., Fisher 1932; Cochran 1957; Cox and
McCullagh 1982; Tsiatis et al. 2008; Moore and van der Laan 2009b; Rosenblum
and van der Laan 2010b; Shen et al. 2014; European Medicines Agency 2015).

For example, we can obtain a more precise estimator of the PATE by (1) regress-
ing the outcome Y on the exposure A and covariates W, (2) using the estimated
coefficients to obtain the predicted outcomes for all units under the exposure and
control, and (3) then taking the average difference in the predicted outcomes. For a
large class of general linear models, there is no risk of bias if the “working” model
for the outcome regression is misspecified (Rosenblum and van der Laan 2010b).
This algorithm is called parametric g-computation (Robins 1986) in observational
studies and also called analysis of covariance (ANCOVA) (Cochran 1957) in the
special case of a continuous outcome and a linear model without interactions. Alter-
natively, we can obtain a more precise estimator of ¥¥(Py) by estimating the known
exposure mechanism to capture chance imbalances in the covariate distribution be-
tween treatment groups (e.g., van der Laan and Robins 2003; Moore and van der
Laan 2009b; Shen et al. 2014). In our running example, the true conditional prob-
ability of being assigned to the test-and-treat intervention is Po(A = 1|W) = 0.5.
However, with limited numbers of clusters, there is likely to be variation in the
baseline covariates across the treatment arms.

We focus our discussion on TMLE, which incorporates estimation of both the
outcome regression (the conditional mean outcome given the exposure and covari-
ates) and the propensity score (the conditional probability of receiving the exposure
given the covariates, Rosenbaum and Rubin 1983b). In general, TMLE is a double
robust estimator; it will be consistent if either outcome regression or the propensity
score is consistently estimated. If both functions are consistently estimated at a fast
enough rate and there is sufficient variability in the propensity score, the estimator
is also asymptotically efficient in that it attains the lowest possible variance among a
large class of regular, asymptotically linear estimators. TMLE is also a substitution
(plug-in) estimator, which provides stability in the context of sparsity (Gruber and
van der Laan 2010b; Balzer et al. 2016a). Finally, TMLE makes use of state-of-the-
art machine learning and therefore avoids the parametric assumptions commonly
made in other algorithms. In other words, TMLE does not place any unwarranted
assumptions on the structure of the data and respects the semiparametric statistical
model.
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12.3.1 TMLE for the Population Effect

For the population parameter ¥*(P), a TMLE can be implemented as follows.

e Step 1. Initial Estimation: First, we obtain an initial estimator of the outcome re-
gression Qn(A, W). For example, the outcome Y can be regressed on the exposure
A and covariates W according to a parametric “working” model (Rosenblum
and van der Laan 2010b). Alternatively, we could use an a priori specified
data-adaptive procedure, such as super learner. The initial estimator is denoted
On(A, W).

o Step 2. Targeting: Second, we update the initial estimator of the outcome regres-
sion 9, (A, W) by incorporating information in the propensity score go(A|W) =
Po(A|W). Informally, this “targeting” step helps to remove some of the residual
imbalance in the baseline covariate distributions across treatment groups. More
formally, this targeting step serves to obtain the optimal bias-variance tradeoft
for ¥ (Py) and to solve the efficient score equation (Hahn 1998). Briefly, this
targeting step is implemented as follows.

— We calculate the clever covariate based on the known or estimated exposure
mechanism g,(A|W) = P, (A|W):

IA=1) IA=0)
g(1IW) g, (0|W) )

H,(A, W) =

To estimate the propensity score, we could run logistic regression of the ex-
posure A on the covariates W or use more data-adaptive methods.

— For a continuous and unbounded outcome, we run linear regression of the
outcome Y on the covariate H,(A, W) with the initial estimator as offset (i.e.
we suppress the intercept and set the coefficient on the initial estimator equal
to 1). We plug in the estimated coefficient ¢, to yield the targeted update:
0,(A, W) = Ou(Y|A, W) + &,H, (A, W).

— For a binary or a bounded continuous outcome (e.g. a proportion),! we run
logistic regression of the outcome Y on the covariate H,(A, W) with the
logit(-) = log[-/(1 — -)] of the initial estimator as offset. We plug in the es-
timated coefficient €, to yield the targeted update:

O:(A, W) = logit " {logit[ Q.(A, W)] + &,H,(A, W)}.

1 Logistic fluctuation can also be used for a continuous outcome that is bounded in [a, b] by first
applying the following transformation to the outcome: Y* = (¥ — a)/(b — a). Use of logistic re-
gression over linear regression can provide stability under data sparsity and/or with rare outcomes
(e.g., Gruber and van der Laan 2010b).
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o Step 3. Parameter Estimation: Finally, we obtain a point estimate by substituting
the targeted estimates into the parameter mapping:

vp = -3 (030w - G0.w)
i=1

where P, denotes the empirical distribution, placing mass 1/n on each obser-
vation O; and Q_;‘, (A;, W;) denotes the targeted estimator of the conditional mean
outcome. The sample mean is the nonparametric maximum likelihood estimator
of the marginal distribution of the baseline covariates Py(W).

If the initial estimator for Qg(A, W) is based on a working parametric regression
with an intercept and a main term for the exposure and if the exposure mechanism is
treated as known (i.e., not estimated), then the updating step can be skipped (Moore
and van der Laan 2009b; Rosenblum and van der Laan 2010b). Further precision,
however, can be attained by using a data-adaptive algorithm for initial estimation
of the outcome regression Qy(A, W) and/or by estimating the exposure mechanism
go(A|W) (van der Laan and Robins 2003). See Chap. 13 for further details on data-
adaptive estimation in CRTs.

Under standard regularity conditions, this TMLE is a consistent and asymptoti-
cally linear estimator of the population parameter (van der Laan and Rubin 2006;
van der Laan and Rose 2011):

1 n
V() = VP (Po) = = > DP(0) +0p(1/ ).

i=1

In words, the estimator minus the truth can be written as an empirical mean of
an influence curve D”(0) and a second-order term going to 0 in probability. The
influence curve is given by

D”(0) = Dy(0) + Dy(0)
IaA=1) IA=0)

Dy(0) = -

10 (@mW> 20(0[W)

Dw(0) = Quo(1, W) = 0us(0, W) — ¥(Py)

(Y - Qoo(A, W))

where Q.. (A, W) denotes the limit of the TMLE Q7 (A, W) and we are assuming the
propensity score is known or consistently estimated, as will always be true when the
treatment A is randomized. The first term of the influence curve Dy is the weighted
residuals (i.e., the weighted deviations between the observed outcome and the limit
of the predicted outcome). The second term Dy is deviation between the limit of
the estimated strata-specific association and the marginal association.

The standardized estimator is asymptotically normal with variance given by the
variance of its influence curve D*(0), divided by sample size n (van der Laan and
Rubin 2006; van der Laan and Rose 2011). Under consistent estimation of the out-
come regression (i.e., when Q. (A, W) = Qy(A, W)), the TMLE will be asymp-
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totically efficient and achieve the lowest possible variance among a large class of
estimators of the population effect. In other words, its influence curve will equal the
efficient influence curve, and the TMLE will achieve the efficiency bound of Hahn
(1998). Thereby, improved estimation of the outcome regression leads to more pre-
cise estimators of the population effect. In finite samples, the variance of the TMLE
is well-approximated by the sample variance of the estimated influence curve scaled
by sample size:

2p _ b3 [pro)]

g, 7

where

D(0) = ({455 — 24 ) (Y = 05(A, W) + Q5(1, W) = 030, W) = P(Py).

12.3.2 TMLE for the Sample Effect

For a randomized trial, Neyman (1923) proposed estimating the SATE with the un-
adjusted estimator:

Sl = DY 3L LA = 0
SLIA =1 T IA=0)

Tn,unadj(Pn) =

Conditional on the vector of counterfactual outcomes Yy = {Y,; :i=1,...,n, a=
0, 1}, the difference-in-means estimator is unbiased but inefficient. To the best of
our knowledge, Imbens (2004) was the first to discuss an efficient estimator (i.e.
a regular, asymptotically linear estimator, whose influence curve equals the effi-
cient influence curve) of the sample effect. He proved that an efficient estimator
for the PATE was unbiased for the SATE, given the vector of baseline covariates
W = (Wy,...,W,) and the set of counterfactual outcomes Y,. We now extend
these results to TMLE. Specifically, we allow the estimator of outcome regression
0Oo(A, W) to converge to a possibly misspecified limit, incorporate estimation of the
known propensity score, and suggest an alternate method for variance estimation.
In Sect. 12.4, we further extend these results to a pair-matched trial.

The TMLE for the population parameter ¥%(Py), presented in Sect. 12.3.1, also
serves as an estimator of the SATE. The implementation is identical. Under typical
regularity conditions, the TMLE minus the sample effect behaves as an empirical
mean of an influence curve depending on nonidentifiable quantities, and a second-
order term going to zero in probability:

1 n
V,(P) = SATE = — 5 DS(U;,0) + 0p(1/ Vi)
i=1
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where

D3(U;,0;) = D°(0y) - D" (U, 0))
D(0y) = Dy(0;) - Eo[Dy(0)|W] (12.2)
D" (U;,0) = Y1, - Yo — [Qo(1, W;) — 00(0, W))] (12.3)

(see Theorem 1 of Balzer et al. 2016¢). The first component DC is the influence
curve for the TMLE of the conditional parameter ¥YC(Py) = 1/n Z?ZI[QO(I, w;) —
00(0, W))], which corresponds to the conditional average treatment effect (CATE)
under the necessary identifiability assumptions (Balzer et al. 2015). This term de-
pends on the true outcome regression Qg(A, W). Specifically, the conditional expec-
tation of the Dy component, given the baseline covariates, equals the deviation be-
tween the true conditional means and the limits of the estimated conditional means:

Eo[Dy(0)|W] = [Qo(1, W) = 0o(0, W)] = [Qeo(1, W) = Qe (0, W)].

Under consistent estimation of the outcome regression (i.e. when Q. (A, W) =
Qo(A, W)), this term is zero. The second component D” is a function of the un-
observed factors U = (Uy, Ua, Uy) and the observed data O = (W, A, Y). This non-
identifiable term captures the deviations between the unit-specific treatment effect
and expected effect within covariate strata:

D" (U, 0;) = Yy — Yo, — [Qo(1, Wi) = Q(0, W))]
=Y, - Yo, — [EY1,IW) — E(Yo,IW))]
= Y1 = Yo, — E[Y1; — You|Wi].

In the last line, the expectation is over the unmeasured factors Uy that determine the
counterfactual outcomes. This term will be zero if there is no variability in the treat-
ment effect across units with the same values of the measured covariates. We also
note that there is no contribution to the influence curve DS from estimation of the
covariate distribution, which is considered fixed. In other words, there is no Dy
component to the influence curve.

As a result, the standardized estimator of the SATE is consistent and asymptoti-
cally normal with mean zero and variance given by the limit of

Var[DS(U, 0)] = Var[D€(0)] + Var[D” (U, 0)] - 2Cov[D€(0), D" (U, 0)]
= Var[DC(0)] - Var|[D* (U, 0)]

(see Theorem 2 of Balzer et al. 2016¢). Since the variance of the nonidentifiable
D7 component must be greater than or equal to zero, the asymptotic variance of
the TMLE as an estimator of the sample effect will always be less than or equal to
the asymptotic variance of the same estimator of the conditional effect. They will
only have the same precision when there is no variability in the unit-level treatment
effect within strata of measured covariates (i.e. when Var[D’ (U, 0)] = 0). In many
settings, however, there will be heterogeneity in the effect, and the TMLE for the
SATE will be more precise. Even if the treatment effect is constant within covariate
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strata, the TMLE for the sample effect (or the conditional effect) will always be at
least as precise as the same TMLE for the population effect. They will only have the
same efficiency bound when (1) the outcome regression is consistently estimated,
(2) there is no variability in the treatment effect across strata of measured covariates
(i.e. when Var[Dw(0)] = 0), and (3) there is no variability in the treatment effect
within strata of measured covariates. In many settings, there will be effect modifi-
cation, and focusing on estimation of the SATE will yield the most precision and
power.

We can conservatively approximate the influence curve for the TMLE of the
sample effect as

A =1)  IA =0)
gn(IWy)  gu(= OIW))

Thereby, we obtain an asymptotically conservative variance estimator with the sam-
ple variance of the weighted residuals scaled by sample size n:

D;(0)) = Dy,(0) = ( )(Yi - 0,(AL, W) (12.4)

SRS v ()

g, m

As for the PATE, adjusting for predictive baseline covariates can substantially im-
prove power for the SATE by reducing variability in the estimator. Unlike the
PATE, however, adjusting for predictive baseline covariates can provide an addi-
tional power gain for the SATE by resulting in a less conservative variance estima-
tor. Furthermore, this variance estimator is easy to implement as the relevant pieces
are known or already estimated. As a result, this may provide an attractive alter-
native to the matching estimator of the variance, proposed by Abadie and Imbens
(2002) and discussed in Imbens (2004). We note that the bootstrap is inappropriate
as the SATE changes with each sample. Fisher’s permutation distribution is also not
appropriate, because it is testing the strong null hypothesis of no treatment effect
(Y1; = Yo, Vi) (Fisher 1935), whereas our interest is in the weak null hypothesis of
no average treatment effect.

12.4 Extensions to Pair-Matched Trials

Now consider a pair-matched CRT. In our running example, suppose N candidate
communities satisfying the study’s inclusion criteria were identified. Of these, the
best n/2 matched pairs were chosen according to similarity on the baseline co-
variates of the candidate units. This “adaptive pair-matching” scheme is detailed
in Balzer et al. (2015) and also called “nonbipartite matching” and “optimal mul-
tivariate matching” in other contexts (Greevy et al. 2004; Zhang and Small 2009;
Lu et al. 2011). To the best of our understanding, this pair-matching scheme was
been implemented in several CRTS, including the Mwanza trial for HIV prevention
(Grosskurth et al. 1995), the PRISM trial for postpartum depression prevention
(Watson et al. 2004), the SPACE study for physical activity promotion (Toftager
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et al. 2011) and the SEARCH trial for HIV prevention and treatment (Balzer et al.
2015). This study design creates a dependence in the data. Specifically, the con-
struction of the matched pairs is a function of the covariates of all candidate sites.
As a result, the observed data cannot be treated as » i.i.d. observations nor as n/2
i.i.d. paired observations, as current practice sometimes assumes (e.g., Hayes and
Moulton 2009; Klar and Donner 1997; Freedman et al. 1997; Campbell et al. 2007).
However, once the baseline covariates of the study units are considered to be fixed,
we recover n/2 conditionally independent units:

0;=(0,1,0p) = (Wi, Aj1,Yj1),(Wp,Ap, Y)))
where the index j = 1,...,n/2 denotes the partitioning of the candidate study
communities {1,..., N} into matched pairs according to their baseline covariates

(Wi,..., Wy).

Previously, Imai (2008) generalized Neyman’s analysis of the unadjusted esti-
mator for the sample effect in a pair-matched trial. The unadjusted estimator, as the
average of the pairwise differences in outcomes, is unbiased but inefficient. For an
adaptive pair-matched trial, van der Laan et al. (2013a) detailed the use TMLE for
the population effect, and Balzer et al. (2015) for the conditional effect. To the best
of our knowledge, Balzer et al. (2016c) were the first to consider using a locally
efficient estimator for the sample effect in a pair-matched trial.

The TMLE for the population effect, presented in Sect. 12.3.1, also estimates the
sample effect in a pair-matched trial. As before, the TMLE minus the SATE can
be written as an empirical mean of a paired influence curve depending on noniden-
tifiable quantities, and a second-order term going to zero in probability:

n/2
V(P — SATE = ,Zl DS(0;,0,) + op(1/ \n/2)

where
D%(U;,0;) = D°(0;) - D”(U,,0;)
- 1
B0 = 5|D°O) + D°0,)|
- = 1
D7 (0,.0)) = E[waﬂ, 0.1)+ D" (Up, 0,-2)]

(Theorem 3 in Balzer et al. 2016c). The first component D€(0) is the influence
curve for the TMLE of the conditional parameter ¥C(Py) = 1/n 2y Oo(1,W)) —
00(0, W;) in a trial with pair-matching (Balzer et al. 2015). In words, D€(0;) is the
average of the pairwise DC(0;) components, as defined in Eq. (12.2). The second
component D” (U, 0) is a nonidentifiable function of the pair’s unobserved factors
U = (Uj1, Uj) and observed factors O; = (O;1, O ). Specifically, D” (U}, 0,) is the
average of the pairwise D” (U;, O;) components, as defined in Eq. (12.3). As before,
there is no contribution from estimation of the covariate distribution Py(W), which
is considered fixed.
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As a consequence, the standardized estimator of the SATE in a pair-matched trial
is consistent and asymptotically normal with mean zero and variance given by the
limit of

Var[D5(U;, 0;)] = Var[D¢(0;)] - Var[D" (T}, 0)]

(Theorem 4 in Balzer et al. 2016¢). As before, the variance of the nonidentifiable
D7 component must be greater than or equal to zero. Therefore, in a pair-matched
trial the asymptotic variance of the TMLE as an estimator of the sample effect will
always be less than or equal to the asymptotic variance of the same estimator of
the conditional effect. Furthermore, by treating the covariate distribution as fixed,
the TMLE for the sample (or conditional) effect will always be as or more precise
than the TMLE of the population effect in a pair-matched trial. We also briefly note
that there is often an additional efficiency gain due to pair-matching. The SATE
will be estimated with more precision in a pair-matched trial when the deviations
between the true and estimated outcome regressions are positively correlated within
matched pairs and/or when the deviations between the treatment effect for a unit and
the treatment effect within covariate strata are positively correlated within matched
pairs.

We can conservatively approximate the influence curve for the TMLE of the
SATE in a pair-matched trial as

D3(0)) = 1[D3(0)) + D3(0p)]

where DS (0;) is defined in Eq. (12.4). Thereby, we obtain an asymptotically conser-
vative variance estimator with the sample variance of the estimated paired influence
curve, divided by sample size n/2:

L2 [pSga T
D oA
25 = 72 Lj ln/z J
If we order the observations within matched pairs, such that the first corresponds
to the unit randomized to the intervention (A;; = 1) and the second to the control
(Aj» = 0) and do not estimate the propensity score Po(A) = 0.5, it follows that

D50y = (Yj1 = 0;(1, W) = (Y2 — 0,(0, Wp)).

In this case, we can represent the variance estimator as the sample variance of the
difference in residuals within matched pairs, divided by /2. This variance estimator
will be consistent if there is no heterogeneity in the treatment effect within strata of
measured covariates (i.e. if the variance of the D¥ component is zero) and if the
outcome regression Qy(A, W) is consistently estimated. Under the same conditions,
the TMLE will be efficient (i.e. achieve the lowest possible variance among a large
class of regular, asymptotically linear estimators). Otherwise, the TMLE will not
be efficient and the variance estimator will be conservative (biased upwards). As
before, adjusting for predictive baseline covariates can substantially improve power
in two ways: (1) by reducing variability in the estimator, and (2) by resulting in a
less conservative variance estimator.
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12.5 Simulation

We present the following simulation study to (1) further illustrate the differences
between the causal parameters, (2) demonstrate implementation of the TMLE, and
(3) understand the impact of the parameter specification on the estimator’s precision
and attained power. We focus on a randomized trial to illustrate the potential gains in
efficiency with pair-matching during the design and adjustment during the analysis.
All simulations were carried out in R (R Development Core Team 2016). Full R
code is available in Balzer et al. (2016c¢).

Consider the following data generating process for unit i = {1,...,n}. First, we
generated the background error Uy; by drawing from a standard normal distribu-
tion. Then we generated five baseline covariates from a multivariate normal with
means 0 and standard deviation 1. The correlation between the first two covariates
(W1;, W2;) was 0, and the correlation between the last three (W3;, W4,, W5,) was
0.65. The exposure A; was randomized such that there were equal numbers of in-
tervention and control units. Recall A; is a binary indicator, equaling 1 if the unit is
randomized to the intervention and 0 if the unit is randomized to the control. For a
trial without matching, the intervention was randomly assigned to n/2 units and the
control to the remaining units. For a trial with matching, we applied the nonbipartite
matching algorithm nbpMatch (Beck et al. 2016) to pair units on {W1, W4, W5}.
The outcome Y; was generated as Y; = logit‘l[Ai +0.75W1; +0.75W2; + 1.25W3; +
Uy; +0.75A;W1; — 0.5A;W2; — A;Uy;]/5. We also generated the counterfactual out-
comes Y, ; by intervening to set A; = a. For sample sizes of n = {30, 50}, this data
generating process was repeated 5000 times. The true value of the SATE was cal-
culated as the average difference in the counterfactual outcomes for each sample,
and the true value of the PATE was calculated by averaging the difference in the
counterfactual outcomes over a population of 500,000 units. In this population, the
correlations between the observed outcome Y and the baseline covariates were weak
to moderate: 0.5 for W1, 0.2 for W2, 0.6 for W3, 0.4 for W4 and 0.4 for W5.

We compared the performance of the unadjusted estimator to the TMLE with
two methods for initial estimation of the outcome regression. Specifically, we esti-
mated Qy(A, W) with logistic regression, including as main terms the exposure A,
the covariate W1 and an interaction A*W1. We also estimated Qy(A, W) using super
learner with a library that consisted of all possible logistic regressions with terms
for the exposure A, a single covariate and their interaction. The unadjusted estimator
can be considered as a special case of the TMLE, where 0,(A, W) = E,(Y]A). In-
ference was based on the estimated influence curve and the Student’s #-distribution.
We constructed Wald-type 95% confidence intervals and tested the null hypothesis
of no average effect.

Results. Table 12.1 gives a summary of the parameter values across the 5000 simu-
lated trials. Recall the true value of the SATE depends on the units included in the
study, whereas there is one true value of the PATE for the population. The sample
effect ranged from 0.17% to 5.94% with a mean of 2.97%. The population effect
was constant at 2.98%. As expected, the variability in the SATE decreased with
increasing sample size.
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Table 12.2 illustrates the performance of the estimators. Specifically, we give the
bias as the average deviation between the point estimate and (sample-specific) true
value, the standard deviation as the square root of the variance of an estimator for
its target, and the MSE. We also show the relative MSE (rMSE) as the MSE of a
given estimator divided by the MSE of the unadjusted estimator of the population
effect in trial without matching. The attained power, which is the proportion of times
the false null hypothesis was rejected, and the 95% confidence interval coverage are
also included.

As expected, all estimators were unbiased. In randomized trials, there is no risk of
bias due to misspecification of the regression model for Qy(A, W) (e.g., Tsiatis et al.
2008; Moore and van der Laan 2009b; Rosenblum and van der Laan 2010b). Also
asexpected, the precision of the estimators improved with increasing sample size and

Table 12.1 Summary of the causal parameters (in %) over 5000 simulations of size n = {30, 50}

SATE PATE
min ave max var |min ave max var

n=30 0.17 2.97 594 6.5E-3|2.98 2.98 2.98 0
n=50 0.18 2.96 5.14 4.2E-3|2.98 2.98 2.98 0

Table 12.2 Summary of estimator performance over 5000 simulations

Target and design Estimator |Bias Std. Dev. MSE ~ rMSE Power Coverage

Sample size n = 30
PATE and not matched Unadj 23E-4 22E-2 4.8E-4 1.00 027 095
TMLE 6.8E-4 19E-2 3.6E-4 075 036 094
TMLE+SL |29E-4 1.6E-2 2.6E-4 0.55 048 093
SATE and not matched Unadj 3.1E-4 2.0E-2 42E-4 088 027 0.96
TMLE 75E-4 1.7E-2 3.0E-4 0.63 0.39 095
TMLE+SL |3.7TE-4 14E-2 2.0E-4 042 052 095
SATE and matched Unadj 54E-5 15E-2 22E-4 046 037 098
TMLE 37E-4 14E-2 2.1E-4 043 044 097
TMLE+SL | 1.3E-4 1.1E-2 1.3E-4 027 0.58 0.97

Sample size n = 50

PATE and not matched Unadj -13E-4 1.7E-2 3.0E-4 1.00 041 094
TMLE 1.1IE-4 15E-2 22E-4 075 053 094
TMLE+SL | -3.1E-6 1.2E-2 1.6E-4 0.53 0.68 0.94

SATE and not matched Unadj 48E-5 1.6E-2 25E-4 0.86 041 0.96
TMLE 29E-4 13E-2 1.8E-4 0.60 055 0.96
TMLE+SL [ 1.8E-4 1.1IE-2 1.1IE-4 038 0.70 0.97

SATE and matched Unadj -1.8E-4 1.1IE-2 1.1E-4 038 059 098
TMLE -1.6E-4 1.0E-2 1.1E-4 036 0.66 0.97
TMLE+SL | -5.7E-5 8.2E-3 6.7E-5 0.23 0.81 0.98

The rows denote target parameter, the study design, and the estimator: unadjusted, TMLE with
logistic regression, and TMLE with super learner (“TMLE+SL”)
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with adjustment (e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982; Tsiatis
et al. 2008; Moore and van der Laan 2009b; Rosenblum and van der Laan 2010b).
Consider, for example, estimation of the population effect in a trial with n = 30
units and without matching. The standard error was 2.2*1072 for the unadjusted
estimator and 1.9*1072 after adjusting for a single covariate. Incorporating data-
adaptive estimation of the conditional mean Qy(A, W) through super learner further
reduced the standard error to 1.6*1072. Also as expected, precision increased with
pair-matching (Imai et al. 2009; van der Laan et al. 2013a; Balzer et al. 2015).
For the SATE, the standard error of the unadjusted estimator in the trial without
matching was 1.38 times higher with n = 30 units and 1.49 times higher with n = 50
units than its pair-matched counterpart.

For all estimation algorithms and sample sizes, the impact of the target parame-
ter specification on precision and power was substantial. As predicted by theory, the
highest variance was seen with the unadjusted estimator of the PATE. With n = 50
units, the MSE of this estimator for the PATE was 2.62 times that of the TMLE with
super learner for the SATE in a trial without matching and 4.42 times that of the
TMLE with super learner for the SATE in a trial with matching. In the finite sample
simulations, the impact of having an asymptotically conservative variance estimator
on inference for sample effect was notable. In most settings, the standard deviation
of an estimator of the SATE was over-estimated, and the confidence interval cover-
age was greater than or equal to the nominal rate of 95%. Despite the conservative
variance estimator, the TMLE for the sample effect achieved higher power than
the same TMLE for the population effect. With n = 30 units, the attained power
for the TMLE with super learner was 48% for the population effect, 52% for the
sample effect without matching and 58% for the sample effect after pair-matching.
With n = 50 units, the attained power for the TMLE with super learner was 68%
for the population effect, 70% for the sample effect without matching and 81% for
the sample effect after pair-matching Notably, the power was the same for the unad-
justed estimator of the two parameters in the trials without matching. The power of
the unadjusted estimator did not vary, because the estimated Dy (O) component of
influence curve and thereby its variance were zero:

En(Y|A =D- En(Y|A =0) - y/n,unadj(Pn) =0

where E,(Y|A) denotes the treatment-specific mean. Thus, using the unadjusted es-
timator sacrificed any potential gains in power by specifying the SATE as the target
of inference. In contrast, the TMLE using super learner was able to obtain a better fit
of the outcome regression Qg(A, W) and a less conservative variance estimator. As
aresult, this TMLE was able to achieve the most power. We note that in small trials
(e.g. n < 30) such as early phase clinical trials or cluster randomized trials, obtaining
a precise estimate of Qy(A, W) is likely to be challenging. In practice, many base-
line covariates are predictive of the outcome, but adjusting for too many covariates
can result in over-fitting. Chapter 13 discusses a procedure using cross-validation to
data adaptively select from a pre-specified library the optimal adjustment set.
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12.6 Discussion

The SATE is an interesting and possibly under-utilized causal parameter. In CRTs,
the candidate units are often systematically selected to satisfy the study’s inclusion
criteria. Often, a matching algorithm is applied to select the best n/2 matched pairs
(Balzer et al. 2015). As a result, the observed data often do not arise from taking
a simple random sample from some hypothetical target population of clusters or
matched pairs of clusters. In this setting, the SATE, in contrast to the PATE, remains
a readily interpretable quantity that can be rigorously estimated without further as-
sumptions on the sampling mechanism. While generalizability of the study findings
and their transport to new settings remains of substantial policy interest, neither the
SATE nor the PATE directly addresses this goal; these new settings are likely to
differ in important ways from both the current sample and any hypothetical target
population from which it was drawn. Instead, generalizability and transportability
can be approached as distinct research questions, requiring their own identification
results and corresponding optimal estimators (Cole and Stuart 2010; Stuart et al.
2011; Bareinboim and Pearl 2013; Schochet 2013; Hartman et al. 2015). Finally,
the sample effect will be estimated with at least as much precision and power as the
conditional or population effects.
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views of the NIH.



Chapter 13

Data-Adaptive Estimation in Cluster
Randomized Trials
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In randomized trials, adjustment for measured covariates during the analysis can re-
duce variance and increase power. To avoid misleading inference, the analysis plan
must be pre-specified. However, it is often unclear a priori which baseline covariates
(if any) should be included in the analysis. This results in an important challenge:
the need to learn from the data to realize precision gains, but to do so in pre-specified
and rigorous way to maintain valid statistical inference. This challenge is especially
prominent in cluster randomized trials (CRTs), which often have limited numbers
of independent units (e.g., communities, clinics or schools) and many potential ad-
justment variables.
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In this chapter, we discuss a rigorous procedure to data adaptively select the
adjustment set, which maximizes the efficiency of the analysis. Specifically,
we use cross-validation to select from a pre-specified library the candidate
TMLE that minimizes the estimated variance. For further gains in precision,
we also propose a collaborative procedure for estimating the known expo-
sure mechanism. Our small sample simulations demonstrate the promise of
the methodology to maximize study power, while maintaining nominal con-
fidence interval coverage. We show how our procedure can be tailored to the
scientific question (intervention effect for the study sample vs. for the target
population) and study design (pair-matched or not). This chapter is adapted
from Balzer et al. (2016b).

The objective of a randomized trial is to evaluate the effect of an intervention on
the outcome of interest. In this setting, the difference in the average outcomes among
the treated units and the average outcomes among the control units provides a simple
and unbiased estimator of the intervention effect. Adjusting for measured covariates
during the analysis can substantially reduce the estimator’s variance and thereby in-
crease study power (e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982;
Tsiatis et al. 2008; Moore and van der Laan 2009b). Nonetheless, recommendations
on how and when to adjust in randomized trials have been conflicting (ICH Har-
monised Tripartite Guideline 1998; Pocock et al. 2002; Hayes and Moulton 2009;
Austin et al. 2010; Kahn et al. 2014; Campbell 2014; European Medicines Agency
2015). The advice seems to depend on the study design, the unit of randomization,
the application and the sample size. As a result, many researchers are left wondering
how to adjust for baseline covariates, if at all.

Let n be the number of study units (e.g., communities or schools). Consider a
trial where the treatment is randomly allocated to 7/2 units and the remaining units
are assigned to the control. There is a rich literature on locally efficient estimation
in this setting (e.g., Tsiatis et al. 2008; Zhang et al. 2008; Rubin and van der Laan
2008; Moore and van der Laan 2009b; Shen et al. 2014). For example, parametric
regression can be used to obtain an unbiased and more precise estimate of the in-
tervention effect. Briefly, the outcome is regressed on the exposure and covariates
according to a working model. Following Rosenblum and van der Laan (2010b), we
use “working” to emphasize that the regression function need not be and often is
not correctly specified. This working model can include interaction terms and can
be linear or nonlinear. The estimated coefficients are then used to obtain the pre-
dicted outcomes for all units under the treatment and the control. The difference or
ratio of the average of the predicted outcomes provides an estimate of the interven-
tion effect. For observational studies, this algorithm is sometimes referred to as the
parametric g-computation (Robins 1986).

For continuous outcomes and linear working models without interaction terms,
this procedure is known as analysis of covariance (ANCOVA) (Cochran 1957), and
the coefficient for the exposure is equal to the estimate of the intervention effect.
For binary outcomes, Moore and van der Laan (2009b) detailed the potential gains
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in precision from adjustment via logistic regression for estimating the treatment ef-
fect on the absolute or relative scale (i.e., risk difference, risk ratio or odds ratio).
Furthermore, the authors showed that parametric maximum likelihood estimation
was equivalent to TMLE in this setting. As a result, the asymptotic properties of
the TMLE, including double robustness and asymptotic linearity, hold even if the
working model for outcome regression is misspecified. Furthermore, this approach
is locally efficient in that the TMLE will achieve the lowest possible variance among
a large class of estimators if the working model is correctly specified. Rosenblum
and van der Laan (2010b) expanded these results for a large class of general linear
models. Indeed, the parametric MLE and TMLE can be considered special cases
of the double robust estimators of Scharfstein et al. (1999) and semiparametric ap-
proaches of Tsiatis et al. (2008) and Zhang et al. (2008). For a recent and detailed
review of these estimation approaches, we refer the reader to Colantuoni and Rosen-
blum (2015).

Now consider a pair-matched trial, where the intervention is randomly allocated
within the n/2 matched pairs. The proposed estimation strategies have been more
limited in this setting. Indeed, the perceived “analytical limitation” of pair-matched
trials have led some researchers to shy away from this design (Klar and Donner
1997; Imbens 2011; Campbell 2014). As with a completely randomized trial, the
unadjusted difference in treatment-specific means provides an unbiased but ineffi-
cient estimate of the intervention effect. To include covariates in the analysis and to
potentially increase power, Hayes and Moulton (2009) suggested regressing the out-
come on the covariates (but not on the exposure) and then contrasting the observed
versus predicted outcomes within matched pairs. Alternatively, TMLE can provide
an unbiased and locally efficient approach in pair-matched trials (van der Laan et al.
2013a; Balzer et al. 2015, 2016c). Specifically, the algorithm can be implemented
as if the trial were completely randomized: (1) fit a working model for the mean
outcome, given the exposure and covariates, (2) obtain predicted outcomes for all
units under the treatment and control, and (3) contrast the average of the predicted
outcomes on the relevant scale. Inference, however, must respect the pair-matching
scheme.

A common challenge to both designs is the selection of covariates for inclusion
in the analysis. Many variables are measured prior to implementation of the inter-
vention, and it is difficult to a priori specify an appropriate working model. For a
completely randomized trial, covariate adjustment will lead to gains in precision if
(a) the covariates are predictive of the outcome and (b) the covariates are imbalanced
between treatment groups (e.g., Moore et al. 2011). Balance is guaranteed as sample
size goes to infinity, but rarely seen in practice. Analogously in a pair-matched trial,
covariate adjustment will improve precision if there is an imbalance on predictive
covariates after matching.

Limited sample sizes pose an additional challenge to covariate selection. A re-
cent review of randomized clinical trials reported that the median number of par-
ticipants was 58 with an interquartile range of 27-161 (Califf et al. 2012). Like-
wise, a recent review of CRTs reported that the median number of clusters was 31
with an interquartile range of 13—60 (Selvaraj and Prasad 2013). In small trials,
adjusting for too many covariates can lead to overfitting and inflated Type I error
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rates (e.g., Moore et al. 2011; Shen et al. 2014; Balzer et al. 2015). Finally, ad hoc
selection of the adjustment set leads to concerns that researchers will go on a “fish-
ing expedition” to find the covariates resulting in the most power and again risking
inflation of Type I error rates (e.g., Pocock et al. 2002; Tsiatis et al. 2008; Olken
2015; Rose 2015).

In summary, covariate adjustment in randomized trials can provide meaning-
ful improvements in precision and thereby statistical power. To avoid misleading
statistical inference, the working model, including the adjustment variables, must
be specified a priori. In practice, sample size often limits the size of the adjustment
set, and best set is unclear before the trial’s conclusion. In this chapter, we apply
the principle of empirical efficiency maximization to data adaptively select from a
pre-specified library the candidate TMLE, which minimizes variance and thereby
maximizes the precision of the analysis (Rubin and van der Laan 2008). We mod-
ify this strategy for pair-matched trials. We collaboratively estimate the exposure
mechanism for additional gains in precision (van der Laan and Gruber 2010). We
also generalize the results for estimation and inference to both the population and
sample average treatment effects (Neyman 1923; Balzer et al. 2016c¢). Finite sample
simulations demonstrate the practical performance with limited numbers of inde-
pendent units, as is common in early phase clinical trials and in CRTs.

13.1 Motivating Example and Causal Parameters

As a motivating example, we consider a community randomized trial to estimate the
effect of immediate ART on HIV incidence. Suppose trial is being conducted in 30
communities and extensive covariates were measured at baseline. Further suppose,
a subset of these characteristics was used to create the 15 best matched pairs of com-
munities (Balzer et al. 2015). The primary outcome is the cumulative incidence of
HIV over the relevant time period. The observed data for a given study community
can be denoted O = (W, A, Y) where W represents the vector of baseline covariates,
A represents the intervention assignment, and Y denotes the outcome. Specifically,
W includes region, HIV prevalence, male circumcision coverage and community-
level HIV RNA viral load; A is a binary indicator equalling one if the community
was randomized to the treatment and zero if the community was randomized to the
control; and Y is the estimated cumulative HIV incidence. We focus on estimation
and inference for the population average treatment effect

PATE = E[Y; - Y| (13.1)

and the sample average treatment effect (SATE):

n

1
SATE:— Y,‘—Y,' 132
n;[ 1i = Yol (13.2)

We refer the reader to Chap. 12 for a detailed discussion of these causal parameters.
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13.2 Targeted Estimation in a Randomized Trial
Without Matching

In this section, we consider a randomized trial without pair-matching. We assume
the observed data consist of n independent, identically distributed (i.i.d.) copies of
O = (W, A, Y) with some true, but unknown distribution Py, which factorizes as

po(0) = po(w)polalw) po(yla, w).

We do not make any assumptions about the common covariate distribution Po(W)
or about the common conditional distribution of the outcome, given the intervention
and covariates Py(Y|A, W). By design, the intervention A is randomized with proba-
bility 0.5. Therefore, the exposure mechanism is known: Po(A = 1|W) = go(1|W) =
0.5. The statistical model M, describing the set of possible observed data distribu-
tions, is semiparametric.

As discussed in the introduction, there are many algorithms available for unbi-
ased and locally efficient estimation of the population effect in a randomized trial
(e.g., Tsiatis et al. 2008; Zhang et al. 2008; Rubin and van der Laan 2008; Moore and
van der Laan 2009b; Shen et al. 2014). Throughout, our focus is on TMLE. A TMLE
for the population effect (Eq. (13.1)) also serves as a consistent and asymptotically
linear estimator of the sample effect (Eq. (13.2)). We refer the reader to Chap. 12 for
the detailed algorithm. Briefly, the algorithm is implemented as follows.

e Step 1: Initial estimation of the conditional mean outcome, given the exposure
and covariates Qy(A, W).

e Step 2: Targeting the initial estimator O, (A, W) with information in the known
or estimated exposure mechanism g,(A|W) = P,(A|W). Let Q%(A, W) denote the
targeted estimator of Qg(A, W).

e Step 3: Parameter estimation by taking the average difference in targeted esti-
mates under intervention and control: ¥,(P,) = 1/n Y1, Oi(1, W;) — Q5(0, W)).

Under standard regularity conditions, the TMLE is an asymptotically linear estima-
tor of both the population and sample effects (Balzer et al. 2016¢). The estimator
minus the true effect can be written as an empirical mean of an influence curve and
a second-order term going to 0 in probability. As a result, the standardized estima-
tor is asymptotically normal with variance well-approximated by the variance of its
influence curve, divided by sample size n.

The influence curve for the TMLE of the population effect (PATE) is given by

P x _ (IA=D 1(A=0) Ak
D7 (g0, 0, @) = (5w = o) (¥ = Qo jin (4 W)
+ O i (LW) = Q5 (0, W) — ¥(Py)

n,lim

where Q_Z im(A, W) denotes the limit of the targeted estimator of the conditional

mean function Qg(A, W) and where we are assuming the exposure mechanism



200 L. B. Balzer et al.

go(A|W) is known or consistently estimated, as will always be true in a random-
ized trial (van der Laan and Rose 2011). A plug-in estimator of this influence curve
is given by

DY (g1, O)(0) = (2450 = J0=0) (¥ — O3(A, W)
+0,(1,W) = 0,0, W) -y, (13.3)
where ; denotes the point estimate. In finite samples, the variance of the TMLE for

the PATE is well-approximated by the sample variance of this estimated influence
curve, scaled by sample size:

Sy LA 00
n = n .

The influence curve for the TMLE of the sample effect (SATE) relies on non-
identifiable quantities, specifically the counterfactual outcomes Y, ; and Yy ; (Balzer
et al. 2016¢). Nonetheless, a conservative plug-in estimator of its influence curve is
obtained by ignoring these nonidentifiable quantities:

S A% _ [ I(A=1) I(A=0) A%
D3 (8n O3)(0) = (3535 — 24 ) (¥ = 03(A4, W)). (13.4)

In finite samples, the variance of the TMLE for the SATE is conservatively approx-
imated by the sample variance of this estimated influence curve, scaled by sample
size:
s 13 DS (8w OO
o = .

n

n

Comparing Eqs. (13.3) and (13.4), we see that for the SATE there is no variance
contribution from the covariate distribution, which is considered fixed. As a result,
the sample effect will often be estimated with more precision than the population
effect (Neyman 1923; Rubin 1990; Imbens 2004). Indeed, the TMLE for the PATE
and the TMLE for the SATE will only have the same efficiency bound if the condi-
tional mean Qy(A, W) is consistently estimated and if there is no variability in the
intervention effect across units (Balzer et al. 2016¢). In many settings, there will be
effect heterogeneity, and specifying the SATE as the target of inference can yield
more power, especially in large trials. In small trials, however, the gains in precision
from targeting the SATE can be attenuated, because this influence curve-based
variance estimator is conservative (biased upwards).

Adaptive Pre-specified Approach for Step 1: Initial Estimation. Consider again
our hypothetical trial for HIV prevention and treatment. Recall that the outcome
Y is cumulative incidence of HIV and bounded between O and 1. The first step
of the TMLE algorithm is to obtain an initial estimator of the expected outcome,
given the exposure and measured covariates Qy(A, W). Suppose that as a working
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model, we consider running logistic regression' of the outcome Y on the treatment
A and covariates W. It is unclear a priori which covariates should be included in the
working model and in what form. For example, baseline HIV prevalence is a known
predictor of the outcome and may be imbalanced between the treatment and control
groups. Therefore, as initial estimator of Qy(A, W), we could consider a logistic
regression working model with an intercept and main terms for the treatment and
HIV prevalence. Likewise, there might be substantial heterogeneity in the treatment
effect by region and allowing for an interaction between region and the intervention
may reduce the variance of the TMLE. Including all the covariates and the relevant
interactions in the working model is likely to result in overfitting and misleading
inference. To facilitate selection between candidate initial estimators and thereby
candidate TMLEs, we propose the following cross-validation selector.

First, we propose a library of candidate working models for initial estimation
of the conditional mean outcome Qy(A, W). This library should be pre-specified in
the protocol or the analysis plan. A possible library could consist of the following
logistic regression working models:

logit[ Q“(A, W)] = By + B1A
logit[Q(A, W)] = By + B1A + B, W1
logit[Q(A, W)] = Bo + B1A + Bo W2 + B3A X W2

where, for example, W1 denotes baseline prevalence and W2 denotes region. Of
course, there are many more candidate algorithms, and we are considering this sim-
ple set for pedagogic purposes. We also note that the first working model corre-
sponds to the unadjusted estimator.

Second, we need to pre-specify a loss function to measure the performance of the
candidate estimators. Following the principle of empirical efficiency maximization
(Rubin and van der Laan 2008), we propose using the squared influence curve of the
TMLE for the parameter of interest. The expectation of this loss function, called the
“risk", is then the asymptotic variance of the TMLE. Thereby, our goal is to select
the candidate estimator that maximizes precision. If the target of inference is the
population effect, our loss function is

L7(20, 0)(0) = {D" (30, O)(O)}’ (13.5)

where we are not estimating the known exposure mechanism go(A|W) = 0.5. Since
the true influence curve of the TMLE for the sample effect relies on nonidentifiable
quantities, our loss function for the SATE is the estimated influence curve-squared:

L5(g0, 0)(0) = {D3 (g0, DO} (13.6)

! Logistic regression naturally respects the bounds on this continuous outcome. Prior work has
suggested that use of the logistic regression over linear regression can provide stability when there
are positivity violations or the outcome is rare (Gruber and van der Laan 2010b).
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where again we are not estimating the known exposure mechanism go(A|W) = 0.5.
In this case, the loss function for the SATE corresponds to the L2 squared error loss
function: £5(go, Q) = (Y — Q(A, W))Z.

Next, we need to pre-specify our cross-validation scheme, used to generate an
estimate of the risk for each of the candidate estimators. For generality, we present
V-fold cross-validation, where the data are randomly split into V partitions, called
“folds”, of size ~ n/V. To respect the limited sample sizes common in early
phase clinical trials and in CRTs, leave-one-out cross-validation is often appropri-
ate. Leave-one-out cross-validation corresponds with V = n-fold cross-validation,
where each fold corresponds to one observation. The cross-validation procedure for
initial estimation of the conditional mean Qy(A, W) can be implemented as follows.

(A) Foreachfoldv ={l1,...,V}in turn,

(a) Set the observation(s) in fold v to be the validation set and the remaining
observations to be the training set.

(b) Fit each algorithm for estimating Qy(A, W) using only data in the training
set. For the above library, we would run logistic regression of the outcome
Y on the exposure A and covariates W, according to the working model.
Denote the initial regression fits as 0'”(4, W), O”(A, W) and 0\”(A, W),
respectively.

(c) For each algorithm, use the estimated fit to predict the outcome(s) for the
observation(s) in the validation set under the treatment and the control. For
the first algorithm, for example, we would have O (1, W) and 0'“ (0, Wy)
for observation Oy in the validation set.

(d) For each algorithm, evaluate the loss function for the observation(s) in the
validation set by plugging in the algorithm-specific predictions. For exam-
ple, if our target of inference were the SATE, we would have for the first
algorithm

IA=1) (A =0) 2

goIW)  go(01Wy)

LSQm,Q$5«h>=[( )(n-—kaAbwa»
for observation Oy in the validation set. The exposure mechanism is known:
go(1lW) = 0.5.

(e) For each algorithm, obtain an estimate of the risk by averaging the esti-
mated losses across the observations in validation set v. If our target of
inference were the SATE, we would have for the first algorithm

. 1 -
Risk® = — " £5(go, 0%)(Ok)
y kev
where n, denotes the number of observations in validation set v.

(B) For each algorithm, average the estimated risks across the V folds.
(C) Select the algorithm with the smallest cross-validated risk. This is the algorithm
yielding the smallest cross-validated variance estimate.
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The selected working model is then used for initial estimation of the condi-
tional mean outcome Qy(A, W) in Step 1 of the TMLE algorithm, described above
(Sect. 13.2). Specifically, we would re-fit the selected algorithm using all the data
0,(A, W). Since the exposure mechanism was treated as known and our library was
limited to simple parametric working models with a main term for the exposure and
an intercept, the updating step (Step 2) can be skipped. In other words, the cho-
sen estimator is already targeted Q,(A, W) = Q(A, W) and can be used for Step 3
parameter estimation.

13.3 Targeted Estimation in a Randomized Trial with Matching

Recall the pair-matching scheme for our hypothetical community randomized trial.
First, the potential study units were selected. Then a matching algorithm was applied
to the baseline covariates of candidate units to create the best 15 matched pairs. The
intervention was randomized within the resulting pairs, and the outcome measured
with longitudinal follow-up. This pair-matching scheme is considered to be adap-
tive, because the resulting matched pairs are a function of the baseline covariates
of all the candidate units (van der Laan et al. 2013a; Balzer et al. 2015, 2016c¢).
This design has also been called “nonbipartite matching” and “optimal multivariate
matching” (Greevy et al. 2004; Zhang and Small 2009; Lu et al. 2011).

The adaptive design creates a dependence in the data. Since the construction of
the matched pairs is a function of the baseline covariates of all n study units, the
observed data do not consist of n/2 i.i.d. paired observations, as current practice
sometimes assumes (e.g., Klar and Donner 1997; Freedman et al. 1997; Campbell
et al. 2007; Hayes and Moulton 2009). Instead, we have n dependent copies of
O = (W,A,Y). Nonetheless, there remains substantial conditional independence in
the data. Mainly, once we consider the baseline covariates of the study units as fixed,
we recover n/2 conditionally independent units:

0;=(0,1,0p) = (Wi, Aj,Yj1),(Wp,Ap, Y)))

where the index j = 1,...,n/2 denotes the partitioning of the candidate units
{1,...n} into matched pairs according to similarity in their baseline covariates
(W1, ..., W,). Throughout subscripts j1 and ;2 index the observations within
matched pair j. The conditional distribution of the observed data, given the baseline
covariates of the study units, factorizes as

n/2
Po(O1,...,0,\Wy,. ... W,) = l_[PO(Ajl,AﬂlW],---,Wn) X Po(Yj1lAj1, Wir)
j=1
XPo(Yj2lAjp, W)
n/2
= [ [05 % Po¥julAs, Win) x Po(YplA o, W)n),

J=1
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where the second line follows from randomization of the intervention within
matched pairs. For estimation and inference of the population effect (PATE), we
need to assume that each community’s baseline covariates W; are independently
drawn from some common distribution Py(W). For estimation and inference of
the sample effect (SATE), this assumption on the covariate distribution can be
weakened (Balzer et al. 2016c).

Despite the dependence in the data, a TMLE for the population or sample effect
can be implemented by ignoring the pair-matched design (van der Laan et al. 2013a;
Balzer et al. 2016c¢). In other words, a point estimate is obtained by following the
procedure outlined in Sect. 13.2. In Step 1, we obtain an initial estimator of the
conditional mean outcome with an a priori-specified parametric working model or
with a more data-adaptive method (as detailed below). In Step 2, we target the initial
estimator by using information in the known or estimated exposure mechanism.
Finally in Step 3, we obtain the predicted outcomes for all observations under the
treatment and the control, and then take the sample average of the difference in these
targeted predictions.

In a trial with adaptive pair-matching, the TMLE is an asymptotically normal es-
timator of both the population and sample effects (van der Laan et al. 2013a; Balzer
et al. 2016c). For the PATE, we could estimate its variance with the sample variance
of the estimated influence curve in the nonmatched trial %Z,’Ll[Df(gn, Q,*;)(O,')]2
divided by n. This variance estimator, however, ignores any gains in precision from
pair-matching and will be conservative under reasonable assumptions. A less con-
servative variance estimator is obtained by accounting for the potential correlations
of the residuals within matched pairs:

Pn(D(0)) = 75 T (Vi = OpAj, Wi ) (Yo = Op(Ap, W) (13.7)
(van der Laan et al. 2013a). In finite samples, we recommend estimating of the
variance of the TMLE for the population effect under pair-matching with

s2p _ 1 Ziet D7 (e, OO0 = 20,(0;)(O;)

n

In a pair-matched trial, the TMLE minus the sample effect (SATE) behaves as
an empirical mean of an influence curve, depending on nonidentifiable quantities
(Balzer et al. 2016¢). Nonetheless, a conservative plug-in estimator of its influence
curve is given by

D3 (g0, 02)(0)) = D3 (g, 0:)(01) + D5 (g, 02)(O012)

where Df (gn» Q,’;)(O) is the estimated influence curve for observation O in the non-
matched trial (Eq. (13.4)). In finite samples, we conservatively estimate the variance
of the TMLE for the sample effect with the sample variance of the estimated (paired)
influence curve divided by n/2:

— n/2 ~j=1
O_i,S J
I’l/2

LS [DS(g,, 0)(O)]
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Adaptive Pre-specified Approach for Step 1: Initial Estimation. By balancing
intervention groups with respect to baseline determinants of the outcome, pair-
matching increases the efficiency of the study (e.g., Imai et al. 2009; van der Laan
etal. 2013a; Balzer et al. 2015, 2016c¢). Nonetheless, residual imbalance on the base-
line predictors often remains, and adjusting for these covariates during the analysis
can further increase efficiency. In our running example, suppose the matched pairs
were created before baseline HIV prevalence was measured. As a result, there is
likely to be variation across the pairs in baseline prevalence, a known driver of HIV
incidence. Adjusting for baseline prevalence during the analysis is likely to increase
power via two mechanisms: (1) reducing the variance of the TMLE for the point
estimate, and (2) resulting in a less conservative variance estimator. Unfortunately,
it is unclear a priori whether adjusting for prevalence will yield more power than
adjusting for other covariates, such as male circumcision coverage or measures of
community-level HIV RNA viral load. With only n/2 = 15 (conditionally) indepen-
dent units, we are limited as to the size of the adjustment set. Adjusting for too many
covariates can result in over-fitting. As before, we want to data adaptively select the
candidate TMLE (i.e. working regression model), which maximizes the empirical
efficiency.

The data-adaptive procedure for initial estimation of the conditional mean out-
come Qy(A, W) for a nonmatched trial can be modified for a pair-matched trial.
As before, we need to pre-specify our library of candidate estimators, our measure
of performance, and the cross-validation scheme. We can use the same library of
candidate working models for initial estimation of the conditional mean outcome
0Oo(A, W). To measure performance, however, we want to use as risk the estimated
variance of the TMLE under pair-matching. To elaborate, consider the loss function
for the sample effect in a nonmatched trial. Minimizing the sum of squared residuals
(Eq. (13.6)) targets the conditional mean outcome Qy(A, W). As a result, the algo-
rithm could select a working model adjusting for a covariate that is highly predictive
of the outcome but on which we matched perfectly. In our running example, sup-
pose communities were paired within region, because HIV incidence is expected to
be highly heterogeneous across regions. Therefore, minimizing the empirical vari-
ance of Dn‘s (go, Q) might lead to selection of the candidate TMLE with main terms
for the intervention and region. This selection would not improve the precision of
the analysis over the unadjusted algorithm. (We already “controlled” for region in
the design.) Instead, we want to select the candidate TMLE maximizing precision
for the parameter of interest in a pair-matched trial. Thereby, our loss function for
the PATE is

L"(g0,0)(0)) = H{D% (g0, Q)(Ojl)}2 + 3{D¥ (g0, Q)(sz)}2
=2(Yj1 - OAj, WD) (Yo — O(Ajp, W), (13.8)

and our loss function for the SATE is
£5(30, 0)(0)) = {D5 (g0, 0;)(0)). (13.9)

Again, we are treating the exposure mechanism as known: go(A|W) = 0.5.
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Finally, in the cross-validation scheme, the pair should be treated as the unit of
(conditional) independence. In other words, when the data are split into V-folds,
the pairing should be preserved. In small trials, leave-one-pair-out cross-validation
will often be appropriate. With these modifications, we can implement the cross-
validation scheme, outlined in Sect. 13.2, to data adaptively select the candidate
working model, which minimizes the estimated variance of the TMLE in a pair-
matched trial. As before, the selected working model would then be refit using all
the data and used to estimate outcomes for all observations under the treatment and
control. The average difference in the predicted outcomes would provide an estimate
of the intervention effect.

13.4 Collaborative Estimation of the Exposure Mechanism

Even though the intervention A is randomized with balanced allocation, estimating
the known exposure mechanism go(A|W) = 0.5 can increase the precision of the
analysis (van der Laan and Robins 2003). As before, we want to respect the study
design (i.e., pair-matched or not) as well as adjust for a covariate only if its inclusion
improves the empirical efficiency. For example, we will generally not want to adjust
for a covariate that is imbalanced between the intervention groups (i.e., predictive
of A) but not predictive of the outcome. Likewise, if a given covariate (e.g. W1)
was included in the working model for conditional mean outcome Qy(A, W), further
adjusting for this covariate when estimating the exposure mechanism may not in-
crease precision. To this end, we incorporate C-TMLE approach into our algorithm
(see Chap. 10).

Adaptive Pre-specified Approach for Step 2: Targeting. First, we propose a li-
brary of candidate estimators of the exposure mechanism go(A|W). As before, this
library should be pre-specified in the protocol or analysis plan. A possible library
could consist of the following logistic regression working models:

logit[g'“)(W)] = Bo
logit[g”(W)] = By + BiW1
logit[g)(W)] = Bo + Bi1 W2

where, for example, W1 is baseline prevalence and W2 is male circumcision cover-
age. Each algorithm would yield a different update to a given initial estimator of the
conditional mean outcome Q,(A, W), selected by the data-adaptive procedure for
Step 1 for trials without matching and for trials with matching. In other words, each
candidate estimator of go(A|W) results in a different targeted estimator Q7 (A, W).
We also note that the first working model corresponds to the unadjusted estimator.
To choose between candidate algorithms, we need to pre-specify a measure of
performance. As before, we propose using as risk the estimated asymptotic variance
of the TMLE, appropriate for the study design (i.e. pair-matched or not) and the
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scientific question (i.e. population or sample effect). Therefore, our loss functions
are

e Without matching and for the PATE: £¥(g, 9,) as in (13.5)

e Without matching and for the SATE: £5(g, 0,) as in (13.6)

e With matching and for the PATE: L_(P(g, 0,) as in (13.8)

e With matching and for the SATE: s (g, 0,) asin (13.9)

where g denotes a candidate estimator of the exposure mechanism and 9, denotes
our selected initial estimator of the outcome regression.

Finally, we need to pre-specify our cross-validation scheme, used to obtain an
honest measure of risk and to reduce the potential for over-fitting. As before, we
present V-fold cross-validation, where the data are partitioned into V folds of size
~ n/V. If matching was used, the partitioning should preserve the pairs. The cross-
validation selector for collaborative estimation of the exposure mechanism can be
implemented as follows.

(A) Foreachfoldv ={l1,...,V}in turn,

(a) Set the observation(s) in fold v to be the validation set and the remaining
observations to be the training set.

(b) Fit the initial estimator of the outcome regression 0,,(A, W) using only data
in the training set.

(c) Fit each algorithm for estimating the exposure mechanism using only data
in the training set. For the above library, we would run logistic regression
of the exposure A on the covariates W, according to the working model.
Denote the estimated exposure mechanisms as g,(f )(A|W), g(nb) (A|W) and
S (AIW), respectively.

(d) For each algorithm, use the estimated fit of the exposure mechanism to
target the initial estimator 0,(A, W). Denote the targeted regression fits
as 0\ (A, W), O (A, W) and 0'”*(A, W), where the superscript corre-
sponds to the algorithm used to estimate the exposure mechanism.

(e) For each algorithm, obtain targeted predictions of the outcome(s) for the
observation(s) in the validation set under the treatment and the control.
With the first algorithm for fitting the exposure mechanism, for example,
we would have 0" (1, W) and 0'“**(0, W,) for observation Oy in the val-
idation set.

(f) For each algorithm, evaluate the loss function for the observation(s) in the
validation set by plugging in the algorithm-specific predictions. For exam-
ple, if our target of inference were the SATE in a nonmatched trial, we
would have for the first algorithm

A, = 1) (A = 0) 2

g2W) gL 0wy

L3, 0 (0p) = [( )(Yk — QD% (A, W)

for observation Oy, in the validation set.
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(g) For each algorithm, obtain an estimate of the risk by averaging the esti-
mated losses across the observations in validation set v. If our target of
inference were the SATE in a nonmatched trial, we would have for the first
algorithm for estimating the exposure mechanism

. a 1 a) Hla),*
Riski® = — L5, 0000

V kev
where n, denotes the number of observations in validation set v.

(B) For each algorithm, average the estimated risks across the V folds.
(C) Select the algorithm with the smallest cross-validated risk. This is the algorithm
yielding the smallest cross-validated variance estimate.

The chosen estimator is then used for targeting in Step 2 of the TMLE algorithm.

In this scheme, we are treating the initial estimator of the outcome regression
0,(A, W) as fixed and proposing a second round of cross-validation to select the fit
of the exposure mechanism. An alternative would be to build a library of candidate
TMLE:s indexed by choice of initial estimator of outcome regression and estimator
of exposure mechanism, and select among this library using the cross-validated vari-
ance of the influence curve as the measure of performance. In cluster randomized
trials, we recommend the double cross-validation approach to embrace the collabo-
rative principle for estimating the exposure mechanism and to avoid over-fitting.
We only want estimate go(A|W) if it further improves efficiency beyond adjust-
ment when estimating Qg(A, W). The double cross-validation approach estimates
the exposure mechanism go(A|W) in response to the fit of the outcome regression
0Oo(A, W). For example, we could restrict the library for go(A|W) in response to
the selection for Qg(A, W): if a given covariate was selected for estimation of the
outcome regression, then remove the corresponding algorithm from the library for
the exposure mechanism. Finally, the double cross-validation approach allows us to
consider a large set of possible candidate TMLEs: all possible combinations of esti-
mators for Qg(A, W) and estimators for go(A|W). In trials with many (conditionally)
independent units, we could consider the single cross-validation approach, which
corresponds to the discrete super learner, or a full super learner approach with loss
function as the squared influence curve.

13.5 Obtaining Inference

In summary, we have proposed the following data-adaptive C-TMLE to maximize
the precision and power of a randomized trial.

e Step 1. Initial estimation of the conditional mean outcome with the working
model 0,(A, W), which was data adaptively selected to maximize the empirical
efficiency of the analysis for a nonmatched trial and for a matched trial.
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e Step 2. Targeting the initial estimator Q,(A, W) using the estimated exposure
mechanism g, (A|W), which was data adaptively selected to further maximize the
empirical efficiency of the analysis.

e Step 3. Obtaining a point estimate by averaging the difference in the targeted
predictions:

- R -
V(03 = ~ D 10,1 W) = 0,(0. W),
i=1

We now need a variance estimator that accounts for the selection process. For
this, we propose using a cross-validated variance estimator. As before, the data are
split into validation and training sets, respecting the unit of (conditional) indepen-
dence. The selected TMLE is fit using the data in the training set and used to estimate
the influence curve? for the observation(s) in the validation set. The sample variance
of the cross-validated estimate of the influence curve can then be used for hypoth-
esis testing and the construction of Wald-type confidence intervals. We note that a
cross-validated estimate of the influence curve was already calculated to evaluate the
performance of the candidate estimators. Therefore, this step does not require any
extra calculations; we already have an estimate of the cross-validated variance from
our selection procedure. We also note that for small libraries (e.g., two candidate
TMLE:s), simulations support the use of the standard, as opposed to cross-validated,
variance estimator for inference (Balzer et al. 2016b).

13.6 Small Sample Simulations

We present the following simulation studies to demonstrate (1) implementation of
the proposed methodology, (2) the potential gains in precision and power from data-
adaptive estimation of the conditional mean outcome, (3) the additional gains in
precision and power from collaborative estimation of the exposure mechanism, and
(4) maintenance of nominal confidence interval coverage. All simulations were con-
ducted in R (R Development Core Team 2016). Full R code is provided in Balzer
et al. (2016b).

13.6.1 Study 1

For each unit i = {1,...,n}, we generated the nine baseline covariates by drawing
from a multivariate normal with mean O and variance 1. The correlation between
the first three covariates {W1, W2, W3} and between the second three covariates

2 For the TMLE of the population effect in a pair-matched trial, we also need a cross-validated
estimate of the correction term p, (Eq. (13.7)). This term is a function of the residuals, which can
be estimated for each pair in the validation set based on targeted estimator Q,’;(A, W), fit with the
training set.
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{W4, W5, W6} was 0.5, while the correlation between the remaining covariates
{W7, W8, W9} was 0. The exposure A was randomized such that the treatment al-
location was balanced overall. For the nonmatched trial, we randomly assigned the
intervention to n/2 units and the control to the remaining n/2 units. For the pair-
matched trial, we used the nonbipartite matching algorithm nbpMat ch to pair units
on covariates {W1,..., W6} (Beck et al. 2016), and the exposure A was randomized
within the resulting matched pairs. Recall A is a binary indicator, equalling 1 if the
unit was assigned the treatment and O if the unit was assigned the control. For each
unit, the outcome Y was then generated as ¥ = 0.4A + 0.25(W1 + W2+ W4 + W5 +
Uy)+0.25A(W1 + Uy), where Uy was drawn from a standard normal. We also gen-
erated the counterfactual outcomes Y; and Y, by intervening to set A = a. To reflect
the limited sample sizes common in early phase clinical trials and in CRTs, we se-
lected a sample size of n = 40. This resulted in n/2 = 20 conditionally independent
units in the pair-matched trial.

For each study design (nonmatched or matched), this data generating process was
repeated 2500 times. Recall that the sample effect (Eq.(13.2)) is a data-adaptive
parameter; its value changes with each new selection of units. Thereby, for each
repetition, the SATE was calculated as the sample average of the difference in the
counterfactual outcomes. The SATE ranged from 0.22 to 0.59 with a mean of 0.40.
In contrast, the population effect (Eq. (13.1)) is constant and was calculated by av-
eraging the difference in the counterfactual outcomes over a population of 900,000
units. The true value of the PATE was 0.40.

We compared the performance of the unadjusted estimator to TMLE with var-
ious approaches to covariate adjustment. Specifically, we implemented the TMLE
algorithm, where the initial estimation of the conditional mean outcome Qo(A, W)
was based on a linear working model with main terms for the intervention A and the
irrelevant covariate W9 and where the exposure mechanism was treated as known:
8o(A|W) = 0.5. This approach was equivalent to standard MLE and represented the
unfortunate scenario where the researcher pre-specified adjustment for a covariate
that was not predictive of the outcome.

We also implemented a TMLE with the data-adaptive approach for Step 1 initial
estimation of the conditional mean outcome. Our library consisted of ten working
linear regression models, each with an intercept, a main term for the exposure A
and a main term for one baseline covariate: {0, W1,..., W9}, where 0 corresponds
to the unadjusted estimator. Our measure of performance (i.e. our risk function) was
the estimated asymptotic variance of the TMLE, appropriate for the target parame-
ter and study design. We chose the candidate working model based on leave-one-out
cross-validation for the nonmatched trial and leave-one-pair-out cross-validation for
the matched trial. We also implemented C-TMLE which couples the data-adaptive
approach for Step 1 initial estimation of the conditional mean outcome with the data-
adaptive approach for Step 2 targeting. For the latter, our library of candidates to es-
timate the exposure mechanism consisted of ten working logistic regression models,
each with an intercept and a main term for one baseline covariate: {0, W1,..., W9}.
The same loss function and cross-validation scheme were used for C-TMLE.
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For the unadjusted estimator and the MLE, inference was based on the estimated
influence curve. For the data-adaptive TMLEs, inference was based on the cross-
validated estimate of the influence curve (Sect. 13.5). We assumed the standardized
estimator followed the Student’s ¢-distribution with n — 2 = 38 degrees of freedom
for the nonmatched trial and with n/2 — 1 = 19 degrees of freedom for the matched
trial.

Results. Table 13.1 illustrates the performance of the estimators over the 2500 sim-
ulated data sets. Specifically, we show the MSE, the relative MSE (rMSE), the av-
erage standard error estimate &, the attained power and the 95% confidence interval
coverage. As expected, matching improved efficiency. The MSE of the unadjusted
estimator, for example, was over two times larger in the nonmatched trial than in
the pair-matched trial. Furthermore, for the pair-matched trial, targeting the sample
effect, as opposed to the population effect, resulted in substantial gains in attained
power: 36% with the unadjusted estimator for the PATE and 53% with the same
estimator for the SATE. For the trial without matching, targeting the sample param-
eter increased efficiency (smaller MSE), but did not directly translate into increased
power due to the conservative variance estimator for the SATE.

Table 13.1 Summary of estimator performance for Simulation 1

PATE SATE

MSE MSE & Power Cover. | MSE MSE & Power Cover.
Non-matched
Unadj 6.8E-2 1.00 0.25 034 094 |64E-2 1.06 025 034 094
MLE 6.9E-2 098 025 035 094 |[6.5E-2 1.04 025 035 094
TMLE 45E-2 149 020 048 094 |42E-2 1.62 020 048 0.95
C-TMLE 43E-2 157 020 048 095 |40E-2 1.70 020 048 0.96
Matched
Unadj 32E-2 2.10 022 036 099 ([29E-2 231 0.18 053 097
MLE 34E-2 201 0.22 037 098 |3.1E-2 2.19 0.18 0.53 0.96
TMLE 2.6E-2 2.64 0.19 0.51 098 |23E-2 293 0.16 0.65 0.96
C-TMLE 2.5E-2 271 0.18 053 098 |22E-2 3.03 0.15 0.67 0.96

The rows denote the study design and the estimator: unadjusted, MLE adjusting for W9, TMLE
with data-adaptive selection of the initial estimator, and C-TMLE with data-adaptive selection.
Columns denote estimator performance: MSE as the bias? plus the variance; rtMSE as the MSE
of the unadjusted estimator for the PATE in a nonmatched trial divided by the MSE of another
estimator; & as the average standard error estimate; power; and coverage

In all scenarios, the MSE of the MLE, adjusting for the irrelevant covariate W9,
was worse than the other estimators. This demonstrates the potential peril of rely-
ing on one pre-specified adjustment variable. Indeed, the TMLE with data-adaptive
selection of the initial estimator of Qy(A, W) improved precision over the unad-
justed estimator and the MLE. Collaborative estimation of the exposure mechanism
go(A|W) led to further gains in precision. Consider, for example, estimation of the
PATE in a trial without matching. The MSE of the unadjusted estimator was 1.49
times larger than the TMLE and 1.57 times larger than the C-TMLE. The attained
power was 34%, 48% and 48%, respectively. As a second example, consider the
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attained power to detect that the SATE was different from zero in the pair-matched
trial. We would have 53% power with the unadjusted estimator and with the MLE,
adjusting for the irrelevant covariate W9. By incorporating the cross-validation se-
lector for initial estimation of Qy(A, W), the TMLE achieved 65% power. By further
incorporating collaborative estimation of the exposure mechanism go(A|W), the C-
TMLE achieved 67% power.

Overall, the greatest efficiency was achieved with C-TMLE for the SATE in the
pair-matched trial. Indeed, the MSE of the unadjusted estimator for the population
parameter in the trial without matching was three times larger than the MSE of the
C-TMLE for the sample effect in the pair-matched trial. Throughout, the confidence
interval coverage was maintained near or above the nominal rate of 95%.

13.6.2 Study 2

For the second simulation study, we increased the complexity of the data-generating
process and reduced the sample size to n = 30. As before, we generated nine
baseline covariates from a multivariate normal with mean O, variance 1 and the
same correlation structure. We also generated a binary variable R, equalling 1
with probability 0.5 and equalling —1 with probability 0.5. The final covariate Z
was generated as a function of these baseline covariates and random noise Uj:
Z = Rxlogit™ (W1 + W4 + W7 +0.5U), where Uz was drawn independently from
a standard normal. As before, the intervention A was randomized with balanced al-
location. For the pair-matched trial, we used the nonbipartite matching algorithm
nbpMatch to explore two matching sets (Beck et al. 2016). In the first, units were
matched on R, a baseline covariate strongly impacting Z. In the second, units were
matched on {R, W2, W5, W8}. For each unit, the outcome Y was then generated as

Table 13.2 Simulation 2: covariate/outcome relationships; adaptive pair-matching schemes

Correlation 0.5 Correlation 0.5 Correlation O
R wWI W2 W3 W4 W5 W6 WIi W8 W9 Z
Parents of covariate Z v v v v
Parents of the outcome Y v v v v
Matching set 1 v
Matching set 2 v v v v

Y = logit™'[0.75A4 + 0.5(W2 + W5 + W8) + 1.5Z + 0.25Uy + 0.75A(W2 — W5) +
0.5AZ]/7.5, where Uy was drawn from a standard normal. Thereby, the outcome
was a continuous variable bounded in [0, 1] (e.g. a proportion). We also generated
the counterfactual outcomes Y| and Y, by intervening to set A = a. For each study
design, this data generating process was repeated 2500 times. The SATE and PATE
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were calculated as before. The SATE ranged from 0.2% to 3.3% with a mean of
1.6%. The true value of the PATE was 1.6%. Table 13.2 depicts the relationship be-
tween the baseline covariates and the outcome as well as the adaptive pair-matching
schemes.

We compared the same algorithms: the unadjusted estimator, the MLE adjusting
for the irrelevant covariate W9, the TMLE with data-adaptive estimation of the
conditional mean outcome, and the C-TMLE pairing data-adaptive estimation of
the conditional mean outcome with data-adaptive targeting. Our library for initial
estimation of the conditional mean outcome Qy(A, W) consisted of 12 working
logistic regression models, each with an intercept and a main term for the exposure
A and a main term for one candidate adjustment variable {0, R, W1, ..., W9, Z}. Our
library for collaborative estimation of the exposure mechanism gy(A|W) included
12 working logistic regression models, each with an intercept and a main term for
one candidate adjustment variable: {0, R, W1,...,W9,Z}. We used the same mea-
sure of performance and cross-validation scheme. As before, inference was based
on the estimated influence curve for the unadjusted estimator and the MLE and
on the cross-validated estimate of the influence curve for the TMLEs (Sect. 13.5).
We assumed the standardized estimator followed the Student’s #-distribution with
n — 2 = 28 degrees of freedom for the nonmatched trial and with n/2 — 1 = 14
degrees of freedom for the matched trial.

Results. The results for the second simulation study are given in Table 13.3 and
largely echoed the above findings. Pair-matching, even on a single covariate (i.e.,
match set 1), improved the precision of the analysis. Targeting the sample effect
instead of the population effect further improved efficiency. Incorporating data-
adaptive selection of the working model for initial estimation of Qy(A, W) yielded
even greater precision, and the most efficient analysis was with C-TMLE. Indeed,
the MSE of the unadjusted estimator for the PATE in the nonmatched trial was
nearly 4.5 times higher than the MSE of the C-TMLE for the SATE when match-
ing on predictive covariates (i.e., match set 2). This resulted in 29% more power to
detect the intervention effect.

For these simulations, there was a notable impact of parameter specification on
estimator performance. We first focus on the estimation of the PATE and then on
estimation of the SATE. When the population effect was the target of inference,
the gains in attained power from pair-matching were attenuated despite the gains in
MSE. This was likely due to the slight underestimation of the standard error in the
nonmatched trial and overestimation in the pair-matched trial. Indeed, the 95% con-
fidence interval coverage in the nonmatched trial was slightly less than nominal (93—
94%), while the coverage when matching well (i.e., match set 2) approached 100%.
For this set of simulations, the correction factor p, (Eq.(13.7)) used in variance es-
timation for the pair-matched design was approximately 0. As a result, the variance
estimator in the pair-matched trial was quite conservative, and the cross-validation
selection scheme was more optimized for the nonmatched trial. The logistic regres-
sion model adjusting for R was selected for initial estimation of Qy(4, W) in 10%
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Table 13.3 Summary of estimator performance for Simulation 2

PATE SATE
MSE tMSE &  Power Cover.| MSE t™MSE & Power Cover.

Non-matched

Unadj 1.8E-4 1.00 0.013 024 094 |1.6E-4 1.12 0.013 024 095
MLE 1.8E-4 095 0.012 025 093 |1.7E-4 1.06 0.012 025 094
TMLE 1.2E-4 150 0.010 033 094 |9.8E-5 1.79 0.010 0.33 0.96
C-TMLE 1.IE-4 154 0.010 034 093 |9.5E-5 1.85 0.010 0.34 0.96
Match set 1

Unadj 1.IE-4 154 0.012 021 098 |9.2E-5 1.90 0.011 0.28 0.97
MLE 1.2E-4 148 0.012 023 097 |9.7E-5 1.81 0.011 029 0.97
TMLE 92E-5 191 0.010 0.31 097 |6.9E-5 2.52 0.009 040 0.96

C-TMLE 9.0E-5 195 0.010 0.33 096 |6.9E-5 2.53 0.008 044 0095
Match set 2

Unadj 6.5E-5 2.70 0.011 0.17 099 [4.6E-5 3.79 0.009 037 098
MLE 73E-5 241 0.011 020 099 |54E-5 327 0.009 0.37 0.98
TMLE 53E-5 3.30 0.009 028 099 [3.8E-5 4.66 0.008 047 098

C-TMLE 53E-5 328 0.009 032 099 |39E-5 4.44 0.007 053 0.97

The rows denote the study design and the estimator: unadjusted, MLE adjusting for W9, TMLE
with data-adaptive selection of the initial estimator, and C-TMLE with data-adaptive selection.
Columns denote estimator performance: MSE as the bias” plus the variance; rMSE as the MSE
of the unadjusted estimator for the PATE in a nonmatched trial divided by the MSE of another
estimator; & as the average standard error estimate; power; and coverage

of the studies without matching and in 7% of the studies when matching well on
R (i.e., match set 1). Furthermore, when matching on several covariates (i.e., match
set 2), the selection of working models for Qy(A, W) was very similar to the selec-
tion in the nonmatched trial.

In contrast, when estimating the SATE, smaller MSE translated to greater at-
tained power, while maintaining nominal, if not conservative, confidence interval
coverage. For example, the attained power of the TMLE was 33% in the non-
matched trial, 40% when matching on a single covariate and 47% when matching
on several covariates. Likewise, the attained power of the C-TMLE was 34% in the
nonmatched trial, 44% in the trial pair-matching on a single covariate and 53% in
trial matching on several covariates. The working model adjusting for R was se-
lected for initial estimation of Qg(A, W) in 10% of the studies without matching and
only in 2% of the studies when matching well on R (i.e., match set 1). In the latter,
more weight was given to other predictive baseline covariates, such as W2 and Z.

13.7 Discussion

This chapter builds on the rich history of covariate adjustment in randomized trials
(e.g., Fisher 1932; Cochran 1957; Cox and McCullagh 1982; Tsiatis et al. 2008;
Zhang et al. 2008; Moore et al. 2011; Yuan et al. 2012; Shen et al. 2014; Colantuoni
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and Rosenblum 2015). In particular, Rubin and van der Laan (2008) proposed the
principle of empirical efficiency maximization as a strategy to select the estimator of
conditional mean outcome Qy(A, W) that minimized the empirical variance of the
estimated efficient influence curve. Their procedure, however, relied on solving a
weighted nonlinear least squares problem. Our approach only requires researchers
to take the sample variance.

Recent developments in C-TMLE proposed collaborative estimation of the ex-
posure mechanism to achieve the greatest bias reduction in the targeting step of
TMLE in a observational study. In randomized trials, there is no risk of bias from
regression model misspecification (Rosenblum and van der Laan 2010b). Thereby,
the collaborative approach, implemented here, serves only to increase precision by
estimating the known exposure mechanism. This chapter generalizes this scheme
for estimation and inference of both the population and sample average treatment
effects in randomized trials with and without pair-matching. Therefore, our proce-
dure dispels the common concern of “analytical limitation” to pair-matched trials
(e.g., Klar and Donner 1997; Imbens 2011; Campbell 2014). Since the step-by-step
algorithm (including the library definition) is pre-specified, there is no risk of bias
or misleading inference from ad hoc analytic decisions. Furthermore, including the
unadjusted estimator as a candidate obviates the need for guidelines on whether or
not to adjust (e.g., Moore et al. 2011; Colantuoni and Rosenblum 2015). Finally,
our procedure is tailored to the scientific question (population vs. sample effect) and
study design (with or without pair-matching). Decisions about whether to adjust and
how to adjust are made with a rigorous and principled approach, removing some of
the “human art” from statistics.

Acknowledgements Research reported in this chapter was supported by Divi-
sion of AIDS, NIAID of the National Institutes of Health under award numbers
RO1-AI074345, R37-A1051164, UM1AI069502 and U01AI099959. The content is
solely the responsibility of the authors and does not necessarily represent the official
views of the NIH.
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Chapter 14
Stochastic Treatment Regimes

Ivan Diaz and Mark J. van der Laan

Standard statistical methods to study causality define a set of treatment-specific
counterfactual outcomes as the outcomes observed in a hypothetical world in which
a given treatment strategy is applied to all individuals. For example, if treatment has
two possible values, one may define the causal effect as a comparison between the
expectation of the counterfactual outcomes under regimes that assign each treatment
level with probability one. Regimes of this type are often referred to as szatic. An-
other interesting type of regimes assign an individual’s treatment level as a function
of the individual’s measured history. Regimes like this have been called dynamic,
since they can vary according to observed pre-treatment characteristics of the indi-
vidual. Static and dynamic regimes have often been called deterministic, because
they are completely determined by variables measured before treatment.

Though they are ubiquitous in applied research, deterministic regimes do not pro-
vide an appropriate framework to tackle causality questions concerning phenomena
that are not subject to direct intervention. For example, in public health research, re-
alistic regimes often fail to put the treatment variable into a deterministic state (e.g.,
it is unrealistic to set an individuals exercise regime according to a deterministic
function), or are the result of implementing policies that target stochastic changes
in the behavior of a population (e.g., the use of mass media messages advertising
condom use is deterministic at the community level but stochastic at the individ-
ual level, because each individual will decide to adopt or not treatment depending
upon exogenous factors). In addition, causal effects for deterministic regimes may
be unidentifiable because the regime of interest is not supported in the observed
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data (e.g., health problems are expected to prevent certain portions of the popula-
tion from higher levels of physical activity). This poses a problem for interpretation
of the causal effects based on deterministic regimes, because the estimated effects
correspond to regimes that cannot be implemented in practice.

In this chapter, we consider a generalization of dynamic regimes in which the
assigned treatment is also allowed to depend on the natural value of treat-
ment (i.e., the treatment value observed under no intervention). Because the
treatment level assigned under this regime cannot be determined until the nat-
ural value of treatment is observed, we have called these regimes stochastic.
Other names found in the literature include stochastic policies, random in-
terventions, randomized dynamic strategies, modified treatment policies, etc.
Stochastic regimes are allowed to depend on the natural value of treatment,
and can therefore always be defined to be relevant and realistic.

To illustrate this, consider the following two examples:

Example 14.1. Tager et al. (1998) carried out a study with the main goal of assess-
ing the effect of leisure-time physical activity (LTPA) on mortality in the elderly. In
principle, one could consider a set of hypothetical worlds corresponding to deter-
ministic regimes on LTPA, for example setting the LTPA level deterministically to
each of it possible values. Though conceivable in principle, counterfactual outcomes
defined in this way are unsatisfactory because one could not possibly implement a
regime that sets an individual’s physical activity level deterministically. As a so-
lution, consider a regime that assigns treatment as a function of the natural value
of treatment. For example, an individual whose current physical activity level is a
may be assigned a + & under the regime. More realistically, this regime may be
assigned only to individuals for whom it is feasible, where feasibility may be deter-
mined according to other covariates, such as health status and the current physical
activity level. A regime of this type is more realistic than any deterministic regime
and, arguably, may be implemented in the real world. The definition, identification,
and estimation of a causal effect defined in this way was first developed by Diaz and
van der Laan (2012) and further considered by Haneuse and Rotnitzky (2013).

Example 14.2. Mann et al. (2010) carried out a study analyzing the causal effect of
air pollution levels on respiratory symptoms in children with asthma (Fresno Asth-
matic Children’s Environment Study, FACES). A central aim of the study is to in-
vestigate the effect of NO, air concentrations on wheezing in asthmatic children. In
particular, it may be of interest to assess the effect of a regime that reduces NO, air
concentrations in the right tail of the NO, distribution. An example of such a regime
would be to enforce NO; levels below a certain threshold. Under this regime, com-
pliant units, those below the selected threshold, may have no incentive to reduce
their pollution levels and thus may remain unchanged under the regime. Units above
the threshold are likely to reduce their pollution levels only to achieve the threshold
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and be in compliance with the policy, but may not have any incentive to carry out
additional reductions. Causal inference methods to assess the effect of this type of
regime were developed by Diaz and van der Laan (2013a).

In addition to aiding in defining more meaningful target causal parameters,
stochastic treatment regimes provide a more tractable estimation framework for
continuous exposures. Parameters such as causal dose-response curves are hard to
estimate in the nonparametric model because they are not pathwise differentiable
(e.g., they have an infinite efficiency bound). Other methods, such as those based
in categorization of the continuous treatment, fail to use the continuous nature of
the treatment and thus are not adequate to answer questions regarding interventions.
Stochastic treatment regimes can also be used to tackle common problems, such as
identification and estimation of the natural direct effect (NDE), community inter-
ventions, individualized treatment regimes, and intention to treat rules.

14.1 Data, Notation, and Parameter of Interest

Let A denote a treatment variable, let ¥ denote a continuous or binary outcome,
and let W denote a vector of observed pre-treatment covariates. Let O = (W, A, Y)
represent a random variable with distribution Py, and let Oy, ..., O, denote a sample
of n i.i.d. observations of O. We assume Py, € M, where M is the nonparametric
model defined as all continuous densities on O with respect to a dominating measure
v. Let py denote the corresponding probability density function. Then,

Po(0) = po(y | a,w)po(a | w)po(w).

We denote go(a | w) = pola | w), Qp(a,w) = Eo(Y | A = a,W = w), and
gwo(w) = po(w), as well as Pf = f f(0)dP(o) for a given function f(o) and a
general distribution function P € M. We use P, to denote the empirical distribution
of 0y,...,0,.

We assume the following nonparametric structural equation model (NPSEM):

W= fwUw); A= fa(W,Ua); Y = fy(A, W, Uy). (14.1)

This set of equations represents a mechanistic model that is assumed to generate
the observed data O, and it encodes several assumptions. First, there is an implicit
temporal ordering: Y is assumed to occur after A and W, and A is assumed to occur
after W. Second, each variable is assumed to be generated as deterministic function
of the observed variables that precede it, plus an exogenous variable, denoted by U.
Each exogenous variable is assumed to contain all unobserved causes of the corre-
sponding observed variable. We assume the following independence condition on
the exogenous variables:

Up 1L Uy. (14.2)
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This assumption plays a crucial role to achieve the identification result of the causal
effect of A on Y from the observed data distribution, described in Sect. 14.1.1. The
set of allowed directed acyclic graphs (DAG) implied by this assumption is given
in Fig. 14.1.

The causal effect of A on Y is defined as follows. Consider a hypothetical mod-
ification to NPSEM (14.1) in which the equation corresponding to A is removed,
and A is set equal to a hypothetical regime d(A, W). Regime d depends on the treat-

Uw _ Uw
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Fig. 14.1 Set of allowed directed acyclic graphs. Dashed lines represents correlations, solid arrows
represent causal relations

ment level that would be assigned in the absence of the regime, A, as well as the
covariates W. In our illustrative examples, these regimes may be defined as follows.

Example 14.1 (Continued). Let the distribution of A conditional on W = w be sup-
ported in the interval (/(w), u(w)). That is, the maximum possible amount of physical
activity for an individual with covariates W = w is u(w). Then one could define

. (14.3)
a if a > u(w) — 6,

daw) = {a+6 ifa <u(w)—46
where § some pre-specified amount of physical activity, for example 2 h per week.
Under this regime, individuals for whom it is feasible are required to perform 6 more
units of physical activity. Interesting modifications to this regime may be obtained
by allowing ¢ to be a function of w, therefore allowing the researcher to specify
a different increase in physical activity as a function of covariates such as health
status, age, etc.

Diaz and van der Laan (2012) interpret this stochastic treatment regimes in terms
of a change in the probabilistic mechanism used to assign exposure level. Haneuse
and Rotnitzky (2013) point out that such interpretation may be undesirable, arguing
as follows. Consider a new distribution for physical activity in which treatment is
assigned according to a location-shifted version of the pre-intervention distribution.
If stochastic regimes are interpreted as changing the treatment assignment mecha-
nism for a location-shifted distribution, an individual with a physical activity level
of 30 min may receive a treatment level of 10 min under the new regime. This may
be problematic as such intervention could reduce the physical activity level at the
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individual level. We note, however, that the population distribution of the exposure
is the same under both interventions, and thus they lead to exactly the same coun-
terfactual distributions. As a result, the interpretation adopted is inconsequential for
the definition, identification, and estimation of the causal effect.

Example 14.2 (Continued). An interesting regime may be given by d(a,w) = al(a <
0) + dl(a > 9), where I(x) is the indicator function that equals one if x is true and
zero otherwise. Under this regime, all localities are required to have a pollution level
of at most d.

We define casual quantities in terms of the distribution of the outcome variables
in a hypothetical world in which the stochastic regime is assigned instead of the
natural value of treatment. In NPSEM (14.1), this counterfactual outcome is defined
as Yyaw = fr(d(A, W), W, Uy).

14.1.1 Identification

The next step in the causal inference road map is identification of the causal pa-
rameter. Identification is necessary because the counterfactual variable Yy w) is
generally not observed. Thus, estimation of the expectation E(Y44,w)) is possible
only if it can be expressed as a function of the distribution Py of the observed data.
This is achieved as follows. Using the law of iterated expectations, we can write

E(Yyaw) = f f EY g | A = a, W = w)gola | wigwo(w)dv(a, w),
acA JweW

where A and W are the support of the distributions of A and W, respectively.
NPSEM (14.1) and assumption (14.2) imply

1. Yd(a,w) 1 A|W,and
2. Yiy@aw = Y in the event A = d(a, w).

Thus, the expectation E(Yy4,w)) is identified by
EXqaw)) = f f E(Ygaw | A =d(a,w), W =w)go(a | wgwow)dv(a, w)
aeA JweW

= f f » EY | A =d(a,w), W =w)go(a | wgwo(w)dv(a, w)
acA Jwe
= Ep,{Q(d(A, W), W)}. (14.4)

We define the parameter of interest as a mapping ¥ : M — R that takes an element
P in a statistical model M and maps it to a real number ¥ (P). The true value of the
parameter is given by the mapping evaluated at the true distribution Py € M, and is
denoted by ¥y = ¥(Py). The statistical parameter of interest is then given by

¥(P) = Ep{Q(d(A, W), W)}, (14.5)
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where O denotes the conditional expectation of Y corresponding to the distribu-
tion P. Note that this parameter depends only on Q = (0, g, qw). Therefore, in an
abuse of notation, we will use the expressions ¥ (Q) and ¥ (P) interchangeably.

14.1.2 Positivity Assumption

In the identification result derived above, we implicitly assumed that a € A(w)
implies d(a, w) € A(w), for all w in ‘W, where A(w) denotes the support of A con-
ditional on W = w. This assumption is often referred to as the positivity assumption,
and it ensures that the regime under consideration is supported in the observed data.
Without this assumption, the integrals in Eq. (14.4) could be not well defined, since
the conditioning set in E(Ygw) | A = d(a,w), W = w) may be empty. Arguably,
this assumption is much more easy to attain than the assumption required for static
regimes, which states that all treatment levels considered by the regime have a posi-
tive probability in the support of W. In particular, a stochastic regime can always be
defined such that positivity holds, which is precisely what we have done in (14.3).

A regime that does not satisfy positivity also poses a problem for interpretability
of the resulting causal effect, since it does not occur naturally in the population.
For illustration, consider Example 27.1. Assume w represents the covariate profile
of individuals with coronary heart disease (CHD), and that some individuals with
CHD have a natural value of treatment equal to the maximum physical activity level
a recommended for their condition. Assume also that all other individuals diagnosed
with CHD have LTPA values below the maximum recommended. In this case, the
regime d(a, w) = a + 2 does not satisfy positivity, and therefore its effect cannot be
estimated. This regime would also be of little interest since it would be unrealistic
to enforce it on individuals with CHD.

14.2 Optimality Theory for Stochastic Regimes

In the remainder of this chapter we pursue the development of locally efficient,
y/n-consistent estimators for ¥(P), focusing on Example 14.1. It is not possible to
construct +/n-consistent estimators of ¥(P) in Example 14.2 if d(a,w) = al(a <
0) + 6l(a > ¢). This is because the parameter is not pathwise differentiable, and
therefore it is not possible to construct a y/n-consistent estimator. The reason for
this can be explained intuitively by looking at the parameter definition

¥(P) = E{Q(d(A, W), W)}

= E{Q(AI(A < 6) + SI(A > 6), W)}
= E{Q(A, W)I(A < &)} + E{O(S5, WI(A > 5)}.
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The term E{Q(S5, W)I(A > &)} in this expression involves estimation of the causal
effect of a static intervention setting the continuous exposure to A = ¢. Efficient
estimation theory is not available for estimation of such parameters in the non-
parametric model (Bickel et al. 1997b), since all possible gradients of the pathwise
derivative would necessarily need to include a Dirac delta function at 6. An alter-
native approach to overcome this issue is to redefine the regime d(a, w) so that the
parameter becomes pathwise differentiable. Such approach is taken by Diaz and
van der Laan (2013a); the interested reader is encouraged to consult the original
research article.

In the remainder of this chapter we will assume piecewise smooth invertibility of
d(a,w). That is, for each w € W, we assume that the interval 7 (w) = (I(w,), u(w))
may be partitioned into subintervals 7 ;(w) : j = 1,...,J(w) such that d(a, w) is
equal to some d;(a,w) in I j(w) and d;(-, w) has inverse function A(-, w) with deriva-
tive A’(-, w). This assumption was first introduced by Haneuse and Rotnitzky (2013),
and is necessary to establish the efficient influence function (EIF) given below in
Lemma 14.1.

The EIF is a key element in semiparametric efficient estimation, since it defines
the linear approximation of any efficient and regular asymptotically linear estimator.
As a result, its variance is the asymptotic efficiency bound for all regular asymptot-
ically linear estimators (Bickel et al. 1997b).

Lemma 14.1 (Efficient Influence Function). The EIF of (14.5) is given by
D(P)(0) = H(a, w)ly — Oa, w)} + O(d(a,w),w) — ¥(P), (14.6)

where
J(w)

H(a,w) = Zl{hj(a, w) € Ij(w)}‘w
j=1

W(a,w).
galwy -/
Lemma 14.1 is a generalization of a result proved by Diaz and van der Laan (2012).
We also use the alternative notation H(g)(a, w) to stress the dependence of H on g.

Example 14.1 (Continued). Using the piecewise smooth invertibility of d(a, w) de-
fined in (14.3), the covariate H is found to be equal to

Hiaw) = I(a < uw) 2291 1 s uow) - 5).
gola | w)

Note that, for an individual i such that A; € [u(W;) — 6, u(W;)), H is equal to

go(A; =06 | W)
H(A, Wy = 802 Z01 %)
go(A; | W)

The presence of two terms in this covariate indicates that such observation repre-
sents two different types of observations under the stochastic regime. The first term
appears because the outcome Y; represents the outcome under the stochastic regime
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for all observations j such that W; = W; and A; = A; — 6. The second term appears
because the outcome for observation A; is its own outcome under the stochastic
regime.

The following lemma provides a result establishing the double robustness of es-
timators that solve the EIF estimating equation.

Lemma 14.2 (Unbiased Estimating Equation and Double Robustness). Ler
D(O | O, g, ) be the estimating function implied by the EIF D(P)(O):

D(O | Q.8 0) = H(Z)A, WY — O(A, W)} + Q(d(A, W), W) = yr,

We have that Ep,D(O | Q,g,%0) = O if either g is such that H(g) = H(go), or
0 = Oo.

The previous lemma provides some intuition into the double robustness of estima-
tors based on the EIF. If either go or Oy are known, it is possible to construct an unbi-
ased estimating equation. Then, under the conditions outlined in Chap. 5 of van der
Vaart (1998), the estimator can be shown to be consistent and asymptotically nor-
mal. Because Qg and gy are generally unknown, it is not possible to plug in their
values in D to obtain an unbiased estimating equation. Instead, estimator of these
quantities must be used. This poses additional challenges in the construction of an
estimator for g, in particular regarding its asymptotic distribution. In the following
section we develop the theory required to obtain a doubly robust, locally efficient
estimator of ¢, focusing on a targeted minimum loss based estimators (TMLE).
TML estimators, as we will see, can be shown to be doubly robust in the sense that
they are consistent if either gy or Qg can be estimated consistently. In addition, they
are efficient and asymptotically normal if both of these parameters are consistently
estimated with certain convergence rates.

14.3 Targeted Minimum Loss-Based Estimation

The EIF D given above plays a central role in the definition of the TMLE. We start
by considering its decomposition as D = Dy + D4 w, where

Dy(Q,8)(0) = H(g)(A, W)(Y - O(A, W)

denotes the projection of the EIF D on the tangent space of the model M corre-
sponding to po(y | a,w). Here, D4 w denotes the remainder term, which could be
further decomposed into terms D4 and Dy, corresponding to the projections on the
tangent spaces of go(a | w) and gw,o(w), respectively.

A standard TMLE, as originally defined for pathwise differentiable parameters
by van der Laan and Rubin (2006), would proceed by computing initial estimators
of Oy, g0, and gwo. These estimators would then be updated using Dy, Dy, and
Dy, respectively, in a way such that the EIF estimating function is zero when com-
puted at the updated estimates. Achieving a solution of the EIF estimating equation
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guarantees, under regularity assumptions, that the estimator enjoys optimality prop-
erties such as double robustness and local efficiency. TML estimators defined in this
way generally require iteratively optimizing a loss function for the likelihood of the
observed data, which may increase programming efforts and require more compu-
tational time and power. The reader interested in the construction of standard TML
estimators for Example 14.1 is encouraged to consult Diaz and van der Laan (2012).

In this chapter we take a different approach to define a TMLE of the target param-
eter ¥, where we focus exclusively on solving the component of the EIF estimating
equation corresponding to Dy. We will see that this leads to an estimator that does
not require iteration, and yet leads to the same asymptotic optimality properties
of the standard TMLE of Diaz and van der Laan (2012). Haneuse and Rotnitzky
(2013) constructed a similar estimator focusing on parametric models for Q, and
go- Because parametric models are often misspecified, these estimators are gener-
ally inconsistent and can jeopardize the validity of conclusions extracted from an
otherwise carefully well planned and executed study.

Assume without loss of generality that Y is supported in {0, 1} or (0, 1). TMLE
of Y is performed in the following steps:

1. Initial estimators. Obtain initial estimators g, and O, of go and Q. In general,
the functional form of gy and Qg will be unknown to the researcher. Since con-
sistent estimation of these quantities is key to achieve asymptotic efficiency of
¥, we advocate for the use of data-adaptive predictive methods that allow flexi-
bility in the specification of these functional forms. We discuss this issue further
in Sect. 14.4 below.

2. Compute auxiliary covariate. For each subject i, compute the auxiliary covariate

JW)
gn(hj(A, W) | W))
H,(A;, W;) = HA; € I;(Wy} h(A;, W)).
; ! gn(Ai | Wi) I

3. Solve estimating equations. Estimate the parameter € in the logistic regression
model
logitQe ,(a, w) = logitQ,(a, w) + eH,(a, w), (14.7)

by fitting a standard logistic regression model of Y; on H,(A;, W;), with no inter-
cept and with offset logitQ,(A;, W;). Alternatively, fit the model

logitQ. .(a, w) = logitQ,(a, w) + €

with weights H,(A;, W;). In either case, denote the estimate of € by ¢,.
4. Update initial estimator and compute 1-TMLE. Update the initial estimator as
Ox(a,w) = Ope, (a,w), and define the 1-TMLE as

I -,
Vo= 21 OF (d(A;, W), W),
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14.3.1 Asymptotic Distribution of TMLE

A key property of the TML estimator defined above is that, by virtue of the logistic
regression model (14.7), the TMLE satisfies P,,Dy(Q_,’{,gn) = 0. To simplify the
notation, let us denote Qg(a,w) = Q(d(a,w),w). Straightforward algebra shows
that, for any Qy,

PyQq — o = —PoDy(Q. g) + R(P, Py),
where

R(P, Py) = - f{H(g) — H(go)HQ — Qo)dPy. (14.8)
Applying this to Q*, and adding and subtracting i,,, we obtain
Yn = Y0 = (P — Po)Dy(Q}. 8n) — (Pu — P0)Q, + R(P*, Py),

where R(P*, Py) denotes (14.8) with O replaced by Q7 and g replaced by g,. This
now gives

U = o = (P = POD(Qy. 8n) + R(P*, Po).
Provided that

1. D(Q_,f, gn) converges to D(Py) in L,(Py) norm, and

2. the size of the class of functions considered for estimation of Q, and g, is
bounded (technically, there exists a Donsker class # of functions of o so that
D(Q_;, gn) € ¥ with probability tending to one),

results from empirical process theory (e.g., theorem 19.24 of van der Vaart 1998)
allow us to conclude that

Y — Yo = (P, — Po)D(Py) + R(P*, Py).
In addition, if
R(P*, Py) = op(1/ V), (14.9)

we obtain that i, — g = (P, —Po)D(Py)+0p(1/ +/n). Thus, the central limit theorem
can be used to establish

Vi = ) = N, V(D(Py))).

This implies, in particular, that ¢, is a v/n-consistent estimator of i, it is asymptot-
ically normal, and it is locally efficient. Wald-type confidence intervals may be now
obtained as ¥, + 7,07,/ \n, where

2_1 Y 2cO* .
70 5 D080

is an estimator of V(D(Py)). Alternatively, the bootstrap may be used to obtain an

estimator 2.
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14.4 Initial Estimators

The condition that R(P, Py) converges to zero in the sense of (14.9) is necessary to
obtain the consistency, asymptotic normality, and local efficiency of the TMLE 4.
Condition (14.9) would be trivially satisfied if gg and Qy where known to belong
to a parametric family of functions, and were estimated using maximum likelihood
or some other type of M-estimator. When working with high-dimensional obser-
vational data, it has been long recognized that parametric models can seldom be
correctly specified, except in rare and often trivial cases. Model misspecification
would then lead to a violation of condition (14.9), which, from the arguments of the
previous section, would result in inconsistent estimators of . Because they would
invalidate the result of a well designed and executed study, we discourage the use of
estimators based on parametric models, except in cases in which their correctness
can be established from subject-matter scientific knowledge.

As an alternative, methods developed in the field of statistical learning can be
used to estimate Qg and go. Because statistical learning methods are concerned with
finding estimates that resemble the true data generating functions as closely as pos-
sible, they are more likely to yield consistent estimators, in contrast to parametric
models. We encourage the use of ensemble learners, which are capable of exploit-
ing the advantages of a library of candidate estimation algorithms simultaneously.
In particular, super learning, discussed in Chap. 3, is a technique whose optimal
properties have been demonstrated theoretically and empirically. Super learning of
a conditional expectation such as Q has been extensively discussed, for example, in
the references included in Chap. 3 of this book as well as Chap. 3 of Targeted Learn-
ing (2011). In the remainder of this section we discuss the problem of estimating
the conditional probability density function go(a | w) for a continuous variable A.
This problem has received considerably less attention from the statistical learning
research community.

14.4.1 Super Learning for a Conditional Density

If A is continuous, the conditional density gop may be defined as the minimizer of
the negative log-likelihood loss function. That is go = arg minser R(f, po), where ¥
is the space of all nonnegative functions of (a, w) satisfying f f(a,w)da = 1, and
R(f) = - f log f(a, w)dPy(0). An estimator g is seen here as an algorithm that takes
a training sample 7 C {O; : i = 1,...,n} as an input, and outputs an estimated
function g, (a, w).

We use cross-validation to construct an estimate R, (g,x) of the risk R(g,x) as
follows. Let V', ...,V, denote a random partition of the index set {1, ...,n} into J
validation sets of approximately the same size. Thatis, V; C {1,...,n}; U?: V=
{1,...,n};and V;NV; = 0. In addition, for each j, the associated training sample is
givenby 7; = {1,...,n}\V;. Denote by g7 the estimated density function obtained
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by training the algorithm using only data in the sample 7 ;. The cross-validated risk
of an estimated density g, is defined as

J

1 1
Rn n) = —7 —_— 1 nT Ai, Wi . 14.10
(8= =7 2, 7 2, loggur(An W) (14.10)
j=1 i€V;
Consider now a finite collection £ = {g,x : k = 1,..., K,} of candidate estimators

for go. We call this collection a library. We define the stacked predictor as a convex
combination of the predictors in the library:

K,
gnala|w) = Z @ gnia|w),
k=1

and estimate the weights @ as the minimizer of the cross-validated risk & =
arg min R, (g, ), subject to Z,’i @ = 1. The final estimator is then defined as g, 4.

14.4.2 Construction of the Library

Consider a partition of the range of A into k bins defined by a sequence of values
Bo < -+ < Br. Consider a candidate for estimation of go(a | w) given by

&ManozPmAe%*ﬁ”“Vzwlﬂnm43a<m. (14.11)
t — Pt-1

Here Pr denotes an estimator of the true probability Pro(A € [Bi-1,8:) | W = w)
obtained through a hazard specification and the use of an estimator for the expec-
tation of a binary variable in a repeated measures dataset as follows. Consider the
following factorization

Pr(A € [Bi-1,B)IW = w) = Pr(A € [Bi-1,B)IA = Bi-1, W = w)X
-1

1_[{1 ~ Pr(A € [Bj-1,B)IA = Bj-1, W = w)}.

j=1
The likelihood for model (14.11) is proportional to
n n |1
[ [Preai e Br.powy = [ [|] [{1 - Preas € B0, 8)1A: = Bt W} | x
i=1 =1

i=1 Lj
Pr(Ai € [ﬁl—lvﬁt)lAi Zﬁl—l» Wi)»
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which corresponds to the likelihood for the expectation of the binary variable I(A; €
[8j-1,8;)) in a repeated measures data set in which the observation of subject i is
repeated k times, conditional on the event A; > §;_;.

Thus, each candidate estimator for g¢ is indexed by two choices: the sequence
of values By < -+ < B, and the algorithm for estimating the probabilities Pry(A; €
[B:-1,8)IA; = Bi—1, W;). The latter is simply a conditional probability, and therefore
any standard prediction algorithm may be used as a candidate. In the remainder of
this section we focus on the selection of the location and number of bins, implied
by the choice of 8; values.

Denby and Mallows (2009) describe the histogram as a graphical descriptive tool
in which the location of the bins can be characterized by considering a set of parallel
lines cutting the graph of the empirical cumulative distribution function (ECDF).
Specifically, given a number of bins k, the equal-area histogram can be regarded
as a tool in which the ECDF graph is cut by k + 1 equally spaced lines parallel to
the x axis. The usual equal-bin-width histogram corresponds to drawing the same
lines parallel to the y axis. In both cases, the location of the cutoff points for the
bins is defined by the x values of the points in which the lines cut the ECDF. As
pointed out by the authors, the equal-area histogram is able to discover spikes in the
density, but it oversmooths in the tails and is not able to show individual outliers.
On the other hand, the equal-bin-width histogram oversmooths in regions of high
density and does not respond well to spikes in the data, but is a very useful tool for
identifying outliers and describing the tails of the density.

As an alternative to find a compromise between these two approaches, the authors
propose a new histogram in which the ECDF is cut by lines x + ¢y = bh, b =
1,...,k+1; where c and & are parameters defining the slope and the distance between
lines, respectively. The parameter / identifies the number of bins k. The authors note
that ¢ = 0 gives the usual histogram, whereas ¢ — oo corresponds to the equal-area
histogram.

Thus, we can define a library of candidate estimators for the conditional density
in terms of (14.11) by defining values of the vector 8 through different choices
of ¢ and k, and considering a library for estimation of conditional probabilities.
Specifically, the library is given by the Cartesian product

L={ct,.ocm ) X Akiy o k) X (Pr1, .. Pro ),

where the first is a set of m, candidate values for c, the second is a set of m; candi-
date values for k, and the third is a set of mp candidates for the probability estimation
algorithm. The use of this approach will result in estimators that are able to identify
regions of high density as well as provide a good description of the tails and outliers
of the density. The inclusion of various probability estimators allows the algorithm
to find possible nonlinearities and higher-order interactions in the data. This pro-
posed library may be augmented by considering any other estimator. For example,
there may be expert knowledge leading to believe that a normal distribution (or any
other distribution) with linear conditional expectation could fit the data. A candidate
algorithm that estimates such a density using maximum likelihood may be added to
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the library. This algorithm was first proposed by Diaz and van der Laan (2011),
the reader interested in more details and applications is encouraged to consult the
original research article.

14.5 Notes and Further Reading

The contents of this chapter are based on previous work by Diaz and van der Laan
(2011, 2012); Diaz and van der Laan (2013a). We have also included here some
improvements proposed by Haneuse and Rotnitzky (2013). The reader interested in
applications to real data and further discussion is encouraged to consult the original
research articles. The reader interested in further discussion of the general theory of
stochastic interventions is referred to Robins et al. (2004); Korb et al. (2004); Eber-
hardt and Scheines (2006); Pearl (2009b) and Dawid and Didelez (2010), among
others.

As we briefly mentioned in the introduction of this chapter, stochastic regimes
may also be used to tackle standard causal inference problems. For example, van der
Laan (2014a) discusses the use of stochastic regimes to define and estimate causal
effects in causal networks. Sapp et al. (2014) present an application of stochastic
regimes to estimation of variable importance measures with interval-censored out-
comes. Applications of stochastic interventions to causal inference under mediation
may be found in Naimi et al. (2014) and Zheng and van der Laan (2012a). The
latter authors present an important result showing that, in the case of the natural
direct effect (NDE), using a stochastic intervention approach may result in weaker
identifiability conditions. Therefore, adopting a stochastic regime interpretation of
the NDE may be desirable as the estimated parameter represents a causal effect
in a larger causal model, in comparison with the standard approach (van der Laan
et al. 2014). Further discussions and other applications may be found in Young et al.
(2014) and van der Laan et al. (2014).



Chapter 15
LTMLE with Clustering

Mireille E. Schnitzer, Mark J. van der Laan, Erica E. M. Moodie,
and Robert W. Platt

Breastfeeding is considered best practice in early infant feeding, and is recom-
mended by most major health organizations. However, due to the impossibility of
directly allocating breastfeeding as a randomized intervention, no direct experimen-
tal evidence is available. The PROmotion of Breastfeeding Intervention Trial (PRO-
BIT) was a cluster-randomized trial that sought to evaluate the effect of a hospital
program that encouraged and supported breastfeeding, thereby producing indirect
evidence of its protective effect on infant infections and hospitalizations.

In this chapter, we use causal inference techniques to estimate the effect of dif-
ferent durations of breastfeeding (a longitudinal exposure) on the number of
periods of hospitalization throughout the first year after birth. Because hospi-
talizations may also affect the continuation of breastfeeding, we consider them
a time-varying confounder. We demonstrate two g-computation approaches
and an implementation of LTMLE that take into account an outcome that
is partially determined by time-varying confounders and the clustering that
arises from the nature of the study design.

M. E. Schnitzer (I<)

Faculté de pharmacie, Université de Montréal, #2236, Pavillon Jean-Coutu 2940, chemin de la
Polytechnique, Montreal, QC H3C 3J7, Canada

e-mail: mireille.schnitzer @umontreal.ca

M. J. van der Laan

Division of Biostatistics and Department of Statistics, University of California, Berkeley,
101 Haviland Hall, #7358, Berkeley, CA 94720, USA

e-mail: laan @berkeley.edu

E. E. M. Moodie - R. W. Platt

Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Purvis
Hall, 1020 Pine Ave West, Montreal, QC H3A 1A2, Canada

e-mail: erica.moodie @mcgill.ca; robert.platt@mcgill.ca

© Springer International Publishing AG 2018 233
M.J. van der Laan, S. Rose, Targeted Learning in Data Science,
Springer Series in Statistics, https://doi.org/10.1007/978-3-319-65304-4_15


mailto:mireille.schnitzer@umontreal.ca
mailto:laan@berkeley.edu
mailto:erica.moodie@mcgill.ca
mailto:robert.platt@mcgill.ca
https://doi.org/10.1007/978-3-319-65304-4_15

234 M. E. Schnitzer et al.

15.1 The PROBIT Study

The PROBIT study was held in the country of Belarus from June 1996 to December
1997 (Kramer et al. 2001, 2002). In this study, maternal hospitals and their cor-
responding polyclinics were randomized to receive lactation management training,
which emphasizes ways to encourage longer durations of exclusive breastfeeding. In
order to optimize efficiency, the randomization occurred between 17 pairs of hospi-
tals matched on region, rural versus urban status, number of deliveries per year, and
breastfeeding initiation rates upon discharge. However, due to two hospital with-
drawals and one case of record falsification, only 31 clusters completed the study
and the complete paired structure was lost. Within the hospital clusters, recruitment
was limited to pregnant women who intended to breastfeed their child. In particular,
the study enrolled healthy, full-term, singleton breastfed infants weighing >2500 g.
Baseline data included maternal demographic, educational, and smoking informa-
tion, details about previous pregnancies, and infant information (sex, birth weight,
gestational age, and Apgar score; Finster and Wood 2005). Follow-up visits oc-
curred throughout the year post-birth at 1, 2, 3, 6, 9, and 12 months. At these visits,
extensive information on infant feeding, growth, illnesses, and hospitalizations was
collected. Within the 31 clusters, a total of 17,044 mother-infant pairs participated in
the study and had recorded data. Necessary baseline data was missing for eight sub-
jects, bringing the sample size to 17,036 mother-infant pairs. Table 15.1 describes
the baseline characteristics adjusted for in the analysis.

The initial analyses (Kramer et al. 2001) found a significant effect of the en-
couragement trial on gastrointestinal infections, the primary outcome. In subsequent
work, we carried out a causal analysis of the effect of breastfeeding duration on the
number of gastrointestinal infections throughout the year (Schnitzer et al. 2014). In
this chapter, we investigate the effect of breastfeeding duration on infant hospital-
izations. In particular, we are interested in knowing whether the number of hospital-
izations would decrease with longer durations of breastfeeding. Because the survey
only collected information on whether an infant was hospitalized between visits, the
outcome of interest at 12 months is the number of intervals recording a hospitaliza-
tion.

15.1.1 Observed Data

Corresponding with the PROBIT, we consider longitudinal data, taken from each
mother-infant pair (defined as the subject), of the form

O=(Ly,C1,L1,A1,Co, Ly, ..., Lx_1,Ak-1,Ck, Y),

where subscripts indicate at which time point the measurement was taken. L rep-
resents all measured baseline covariates including hospital center, C; represents
whether a visit did not occur, L, represents time varying covariates, A, is an indicator
for the exposure level (taking value 1 if the infant is breastfed throughout the ¢ in-
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Table 15.1 Characteristics at baseline of the 17,044 mother-infant pairs in the PROBIT dataset

Characteristic Summary  N. missing
Numeric variables Median IQR?
Age of mother (years) 23 (21,27)
N. previous children 0 0,1)
Gestational age (months) 40  (39,40)
Infant weight (kg) 34 (3.2,3.7)
Infant height (cm) 52 (50,53)
Apgar score? 9 (8,9) 5
Head circumference (cm) 35  (34,36) 3
Binary variables N. %
Smoked during pregnancy 389 2.28
History of allergy 750 4.40
Male child 8827 52
Cesarean 1974 12
Mother’s Education 2
Some high school 663 4
High school 5497 32
Some university 8568 50
University 2316 14

Geographic region
East Belarus, urban 5615 33

East Belarus, rural 2706 16
‘West Belarus, urban 4380 26
‘West Belarus, rural 4343 25

2IQR: inter-quartile range

"The Apgar score is an assessment of newborn health (range 1-10) where 8+ is vigorous, 5-7 is
mildly depressed and 4- is severely depressed (Finster and Wood 2005). A range of 5-10 was
observed in PROBIT due to entry restrictions on weight and health at baseline. Table and caption
reproduced from Schnitzer et al. (2014)

terval), and Y is the outcome of interest measured at the Kth time point. Figure 15.1
represents the order of the measurements collected at time . We will use X, to denote
the history of X up to and including X, for any time dependent variable.

In the PROBIT, there were K = 6 follow-up visits. Y is defined as the number
of time periods over the first year in which the child had at least one hospitalization
and therefore takes integer values between zero and six. The scientific question of
interest involves the effect of breastfeeding measured over time {A;; 1 <7 < 5}onY.
L, is whether or not an infant was hospitalized in the time period (t— 1, t). Therefore,
if we take Lg to be an indicator for at least one hospitalization between times five and
six, ¥ = 216:1 L,. At the beginning of the study, all mothers attempted breastfeeding
so that we could define Ay = 1 for all subjects. In addition, since we only retained
the subset with complete baseline data, we can define Cy = 0 (denoting uncensored
at baseline) for all subjects.

Once a subject missed a visit (or the needed information was not collected at a
visit), we artificially censored them for all future visits. This did not greatly reduce
the available data as item missingness was uncommon. Table 15.2 gives the number
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Fig. 15.1 Time ordering of the variables in the PROBIT study. At each follow-up time point,
breastfeeding status (A,) and hospitalization over the past interval (L,;) were noted. Censoring oc-
curring at time ¢ (C; = 1) indicates that later breastfeeding and infection status were not observed

Table 15.2 Censoring, number of hospitalizations and mothers still breastfeeding by time point

Time point 1 2 3 4 5 6
Month 1 2 3 6 9 12
N. censored 156 81 73 148 139 797

Cumulative N. 156 237 310 458 597 1394
Cumulative % 0.9 1.4 1.8 27 35 82

N. hospitalized 626 640 646 1265 1163 887
N. breastfeeding 15,392 13,128 10,765 6893 4717 -

of censored, hospitalized, and breastfeeding subjects at each time point. Note that
we did not report the number breastfeeding at time point 6 (month 12) because we
do not incorporate this information in the analysis. The total number of intervals
with hospitalizations observed for never-censored patients was 4785.

15.1.2 Causal Assumptions

In order to proceed in defining counterfactuals, we require the assumptions of no
interference and sequential positivity.

e No interference: The potential outcomes of one subject are not dependent on
the exposures of others. In our context, this corresponds with the assumption
that one infant’s breastfeeding does not impact another infant’s probability of
hospitalization given the second infant’s breastfeeding status.
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e Sequential positivity: For every possible history L,_; with A,_; = 1, the probabil-
ity of either continuing or stopping breastfeeding at time ¢ must be greater than
zero for all subjects. Because we do not consider regimes where breastfeeding is
stopped and restarted, we do not require positivity for A, when A,_; = 0. We also
must have that for every possible history A,_;, L,_; the probability of censoring
at time ¢ is less than one.

For the PROBIT, the assumption of no interference requires that the breastfeeding
status of one mother does not influence the outcome of another’s child. We believe
this to be very plausible because mothers spent short periods of time in the hos-
pital which limited their interaction. Regarding positivity, in our estimation of the
probabilities of continuing or ceasing breastfeeding conditional on previous con-
tinued breastfeeding (see Sect. 15.3.1), we did not observe any values approaching
zero. In addition, the probabilities of censoring were quite low for all values of the
coefficients, suggesting that positivity is not a concern here.

Let a = (aj,az,...,ax-1) denote a fixed breastfeeding regimen. For in-
stance, breastfeeding past the first time period, then stopping before the sec-
ond would be written as (1,0,0,...,0). Because breastfeeding is approximately
monotone, we will only consider monotone longitudinal exposures; that is, we
compare the relative effects of different stopping times of breastfeeding. Also let
a, = (ay,...,a,) be the component of the fixed regimen up until time point ¢.

In order to define the causal parameter of interest, we consider a hospital level
intervention that imposes a specific duration of breastfeeding on each subject. We
can then define the counterfactual variable L?;t > 0 as the observation L, that an
individual would have had if they had followed the assigned breastfeeding reg-
imen @_; and remained uncensored. Similarly, Y? is the counterfactual number
of hospitalizations that would have been observed under breastfeeding regimen
a = as. The individual counterfactual data corresponding to this intervention is
0 = (Lo, LY, L5,..., L% |, Y%). The target of inference is the marginal mean coun-
terfactual outcome, denoted zjfg = E(Y"). Equivalently, we estimate the mean num-
ber of periods hospitalized had all infants been exposed to various breastfeeding
stopping times.

In order for this causal parameter to be estimable, we also require sequential
consistency and sequential exchangeability (Robins 2000).

o Sequential Consistency: The consistency assumption in the longitudinal set-
ting is that L = L, when A,.; = &, ;. Equivalently, we observe the se-
quence of counterfactual variables defined under the treatment regimen actually
observed.

e Sequential Exchangeability: This assumption is the independence of the counter-
factual intermediate variables and the most recent intervention nodes (exposure
and censoring) conditional on the past, L?1A, 1,C;, | L,-1,A;-2,C-y = O for
t=1,...,K+1 (where A_, is taken to be a null variable and removed).

Sequential consistency assumes that we observe the potential outcome that would
have been observed under the intervention of assigning a duration of breastfeed-
ing. This assumes that the specific time within the interval that breastfeeding is
ceased does not impact the counterfactual. One might alternatively assume that the
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assignment leaves the exact stopping time within the interval up to the subject, but
this perspective requires additional exchangeability requirements (VanderWeele and
Hernan 2013).

For the assumption of sequential exchangeability described above, we must as-
sume that all baseline and time dependent confounders of both breastfeeding and
censoring have been adjusted for in L,. Specifically, we assume that L, is sufficient
to control for confounding of breastfeeding A, and that censoring C, is ignorable
given L,_;. In Fig. 15.1 we see that censoring at a visit is not allowed to depend
on recent hospitalizations. While this is unrealistic, the low percentage of censor-
ing suggests that the violation may not greatly impact the analysis. Overall, while
the exchangeability assumption is not verifiable and generally difficult to fully be-
lieve, we argue in Schnitzer et al. (2014) that this assumption is strengthened by
controlling for an indicator of cluster.

15.1.3 Model and Parameter

In order to define the model for the observed and counterfactual data, we assume
that in a population where patients are clustered into hospital centers, we observe
randomly drawn hospitals from some large population. Let O,,; denote the observa-
tion vector for patient i in hospital cluster m. We define the mth hospital’s observed
data as O, = (Ow;;i € Z,) where Z, represents the set of subjects belonging to
hospital m. We suppose that the cluster observations O, are identically and inde-
pendently drawn with probability distribution Pf. Let O° ~ Pg denote this random
variable. The probability distribution P{ of O° is a member of some model space
M¢. The marginal probability distribution Py of a randomly selected patient in a
randomly selected hospital cluster corresponds to a mixture probability distribution.
This marginal distribution Py can be written as a function of the cluster distribu-
tion such that Py = Po(P). We place all model restrictions directly on the marginal
model space M, of which the true Py is a member. We then restrict the model space
for the cluster-specific probability distributions M® = {P{ : Py € M] to satisfy the
constraints placed on the marginal model space M.

At the marginal level, we assume that the true distribution function of O can be
factorized according to the time ordering for an individual as

K
Po=[ [ Qo (i1 €Ay, L) Qo (Lo) X

t=1

Qo
K-1 K

[ [Goaa 1 L, Codi) [ [ Goc(Cil At Ly, Cit)

t=1 t=1

Go
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where Q) is the joint conditional distribution of the L, variables. Qo ,,t =1,...,K
are the distributions of each L,, conditional on the information prior to L;, and Qg r,
is the distribution of the baseline covariates. Similarly, Gy is the conditional distri-
bution of the exposure and censoring variables that can be decomposed into the dis-
tributions at each time point, denoted Go4,,t =1,...,K -1 and Goc,,t=1,...,K.
The model M is nonparametric up to restrictions on the treat and censoring distri-
bution Gy.

Under the causal assumptions described above, the parameter of interest § can
be identified with the usual g-formula applied to the distribution Py. Suppose we
fix the assigned exposure regimen to a for all subjects (so that the A; are no longer
random) and fix that all subjects are fully observed (so that C; = 0 for¢t = 1,..., K).
We then define the marginal counterfactual distribution function Qg corresponding
to this static intervention a. The g-formula for this counterfactual distribution is
given by

K
0L = [ Qi1 Ci=0,A 1 =1, L )Qos(Lo).  (15.1)
t=1

The target parameter of interest, specifically the marginal mean under a fixed breast-
feeding regimen a, can then be described as

Wi = P(Py(P5)) = P(Po) = P(05) = Egn(Y"),

where the expectation is taken under the true counterfactual data generating func-
tion QF.

In Sects. 15.2 and 15.3 we proceed with estimation of the target parameter as
though the subject level data across hospitals are all independent and identically
distributed with probability distribution Py in model M and treating the target pa-
rameter as a function of Py. We then establish in Sect. 15.4 the asymptotic linearity
of this i.i.d. LTMLE respecting that only the clusters are i.i.d., and provide formal
inference. We conjecture that this i.i.d. type LTMLE is in fact asymptotically effi-
cient for our model M€, assuming consistent estimation of the nuisance parameters,
but this is not formally established in this chapter.

15.2 Two Parametrizations of the g-Formula

The above g-formula (15.1) can be directly used to estimate 1,08 if we treat all sub-
jects as identically and independently distributed. This is done by using the subject
level data to estimate each of the quantities in the formula, producing predictions
of the potential outcome for each subject, and averaging over all subjects to esti-
mate the expectation. This is called the g-computation approach (Robins 1986). In
settings where the time dependent variables are binary, the g-formula can be simpli-
fied to
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Yo = f Z Z EY|Ck=0,Ak =a,Lg =Ilk-)x  (152)
Loy=0y =0

Pr(Lg_1 = lg-1 | Cx-1 = 0,Ag_n = dg—2, Lg—2 = Ix_2) X
<o Pr(Ly =1, | C1 = 0)Qo,r,(Lo)dLy.

For estimation using g-computation, we must estimate the conditional mean of Y
and the conditional probabilities for L, = 1,/ = 1,..., K, although no estimation
method is prespecified for any of these quantities. We then calculate a prediction of
each conditional expectation and probability in Eq. (15.2) for each subject, i. The
Qo.1, can be estimated using the empirical density so that Q) ;,(Lo;) = 1/n for each
subject (with baseline variables L¢;). Then, the predicted values for the conditional
expectation and probabilities are combined according to Eq. (15.2), where the inte-
gral is replaced by summation over all subjects, i.

15.2.1 g-Computation for the PROBIT

The g-computation algorithm must be slightly modified when the outcome of inter-
est is a longitudinal count outcome. This is because a component of the outcome
is deterministic (not random) when conditioning on the information available from
prior time points. Specifically, since Y = Lg + Zle L;, if we condition on Ls only
L is random. Hence, we note that E(Y | C¢ = 0,45 = as,Ls) = E(Lg | Cs =
0,As = as, Ls) + Zle L,. Therefore we must only model L to obtain predictions of
the conditional expectation of the outcome used in the g-computation algorithm.

Notably, when the dimension of L, increases or when L, contains noncategorical
variables, the decomposition of the g-formula (15.1) is increasingly complicated.
Sampling methods may be required for estimation and the computational burden
will increase exponentially in the number of time points. The following section de-
scribes an alternative factorization that allows for computational time that is linear
in the number of time points and can handle higher dimensional L, without added
complications.

15.2.2 Sequential g-Computation

An alternative decomposition of the counterfactual data distribution, leading to a
different g-formula was introduced by Bang and Robins (2005), as also discussed in
Chap. 3 and 4 of this book. To understand this decomposition, first note that under
the Law of Iterated Expectations, we have that E(Y?) = E(E(Y® | L% ). If we
repeatedly apply this principle, we have that

E(Y") = E(E(...E(EY* | L% ) I L ) | ... | Lo)).
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Now, due to the sequential exchangeability of Ax and Cg, we can also write E(Y?) =
E{E(Y" | Cx = 0,Ax_; = ag-1,L%_))}. By consistency (we observe ¥ = Y when
Cx = 0and Ax_; = akg—; and that L, = L when A,_; = a,-1), E(Y") = E{E(Y |
Cx = 0,Ag_; = ax_1,Lg_1)}, which is estimable from the data. If we similarly
apply the sequential exchangeability and consistency at all time points in the nested
expectations, we observe that the target parameter can be expressed as a sequence
of estimable expectations given by van der Laan and Gruber (2012)

Q_t(l_‘t—l) =EY|C = O,At—l = at—l,l_at—l),t =K,...,2 (15.3)

and O(Ly) = E(Q, | Ly). The overbar in O,(L,_;) denotes a mean. Note that we
will generally write Q; = Q;(L,_;) as shorthand throughout the document. The key
observation (and an essential exercise for all interested readers) is that O, = E(Q,41 |
C,=0,A,_, =a,y,L._;) which applies to all t = 1, ..., K if we define Ox = Y and
Ay = ag = 1 always.

g-Computation can be applied to this g-formula as well. The algorithm is then as
follows:
Fort=K,...,1,

1. Fit a model for O; = E(Qy41 | C; = 0,A,_; = @,_1, L,_1) by taking the previously
estimated O, ;11 as an outcome in a regression. This model may be fit taking
all uncensored subjects (C; = 0) who were treated according to the regimen of
interest up to time t — 1 (A,_; = @,_y).

2. Use the above model fit to estimate Qn,, for all subjects with C,_; = 0.

Take the empirical mean of Q,; over all subjects. This is the sequential g-
computation estimate for E(Y%).

15.2.3 Sequential g-Computation for the PROBIT

The sequential g-computation estimator can also be modified to take into account
the longitudinal count outcome of interest, although it is less straight-forward.

e In the first step (¢ = 6), we estimate

5
Q6 = E(Y | C6 =0,As = as,Ls) = E(Ls | C¢ = 0,As = as, Ls) + ZL1~
=1

Therefore, it is only necessary to fit a model for the random component, defined
as 01,1 = E(Lg | Cx = 0,As = as, Ls). We obtain predictions of Qy,; for every
subject with Cs = 0.

e In the next step (¢ = 5), using the predictions of Qg 1, from the previous step, we
estimate

Qs = E(Q6 | Cs =0,A4 = au, Ly) =

4
E(Qrq1 | Cs =0,Aq = as, Ls) + E(Ls | C5 = 0,A4 = ag, Ls) + ZLt-

t=1
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Table 15.3 Decomposition of Q; for the g-computation of the PROBIT longitudinal count outcome

Nested Decomposition (extraction of deterministic Condition
expectation counts and separated modeling)

of Y

Q_(, = QLs' + L5 + L4 + Lg + L2 + L] Pa(Y)
Os = Qo+ O+ Lu + L3 + Ly + L Pa(Ls)
on = O3+ Qo+ 0ra+ Ly + L + L Pa(Ly)
03 = Orea + Q13 + Qo + Qi + Ly + Ly Pa(Ls)
> = Ores + Qs + On3 + Qo + O + Ly Pa(Ly)
O = QL6 + Orss + Qra + O3 + O + Q11 Pa(Ly)

We denote Or» = E(Qpq1 | Cs = 0,Aq = as, Ly) and Qp1 = E(Ls | Cs = 0,A4 =
s, Ly). We obtain predictions of Qy» and Qy,; for every subject with C4 = 0.

This process is repeated for t = 4,3,2,1 with 7 — # models to be fit at each step.
In general, defining Qr,0 = L, we estimate Orx = E(Qri—1 | Crgs1 = 0,A,4 =
G, L;_y)forallt =6,...,1andk = 1,...,t. This can be proved for any number of
time points by induction. At the final step, we calculate 0,1 = Y0, 0,1, for every
subject, and take the empirical mean of this quantity over all subjects to obtain the
sequential g-computation estimate of E(Y?). This decomposition is summarized in
Table 15.3.

15.2.4 g-Computation Assumptions

In addition to the causal assumptions, all versions of g-computation require consis-
tent estimation of the relevant components of Qy conditional on a set of covariates
satisfying sequential exchangeability. Inconsistent estimation of these components
may produce finite and asymptotic bias in the estimation of E(¥?). Models for the
estimation of Qp components are not prespecified in these algorithms and are in-
evitably left up to the discretion of the user.

In the case of a longitudinal count outcome, decomposing the random and de-
terministic components of the Qy functions can improve estimation. However, this
will also increase computational complexity (fitting K X (K +1)/2 versus K models).
When compared through the simulation study presented in Schnitzer et al. (2014),
the standard sequential g-computation estimator produced 12% estimation bias and
95% confidence intervals with 43% coverage when all confounders were included
in the models. The improved sequential g-computation presented in Sect. 15.2.3,
produced 0% estimation bias and 93% coverage for the same simulated datasets.
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15.3 LTMLE for a Saturated Marginal Structural Model

Although sequential g-computation is computationally efficient and feasible for
large numbers of time points and time dependent confounders, it relies on correct
parametric specification of a large number of models. The extension to LTMLE
allows for semiparametric efficient estimation, good performance using nonpara-
metric methods for the estimation of the necessary model components (Porter et al.
2011), and double robustness. In the longitudinal setting, double robustness implies
consistency when either the Q,;t = K, ..., 1 models are correctly specified or when
the models for treatment (see Sect. 15.3.1) are correctly specified.

15.3.1 Construction of Weights

Let 2,(L;_1),t = 2,..., K be the probability associated with obtaining a given his-
tory of breastfeeding a up until time 7 — 1, and no censoring up until time point ¢,
conditional on the observed history L,_;. Specifically, let

8(Li—1) = Pr(Cy = 0| Lo) X [T} {Pr(C = 0 Axcy = a1, Gy = 0, Liy) X
Pr(Ag-1 = ay-1 | Agp = gz, Choy = 0, L))

fort = 2,..., K. Further, let g;(Lg) = Pr(Cy = 0 | Ly) be the probability of being
uncensored at the first time point, conditional on baseline covariates, L.

One can directly use these exposure and censoring probabilities as weights in or-
der to estimate E(Y?) using inverse probability weighting (IPW). Letting g, x(Lx—1)
denote the estimated values of gx(Lx_;) for each individual and I(-) be an indicator
function for a logical statement, the IPW estimator can be defined as the empirical
solution for zﬁi pw Of the estimating equation P, D;py = 0 where

a I(Ax_1=a,Cx=0
Dipw(0) = (Y = Y ) FATZEEZ0),

15.3.2 Efficient Influence Function

van der Laan and Gruber (2012) demonstrated how the IPW influence function can
be projected onto the nonparametric tangent space in order to obtain the efficient
influence function (EIF), D*(0), used in LTMLE. The EIF can be written as the
sum of the components

D;(0) = Foe = (0 (L) = QlLicy)) forr=K.....2,

D;(0) = Z9=2(0x(Ly1) - 01(Ly)), and

Dy(0) = (Q1(Lo) — ).
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Following an LTMLE procedure that ignores the clustered nature of the data
will produce estimates that solve the efficient estimating equation P,D; = 0. In
Sect. 15.4 we revisit the EIF and show how clustering alters variance estimation.

15.3.3 LTMLE

In order to produce a LTMLE that has D*(O) as its influence function, each Q_,,,,; t=

K, ...

,2 used in the sequential g-computation is sequentially updated. Chapter 4

and van der Laan and Gruber (2012) give more insight into how these updates are
derived. As described in Schnitzer et al. (2014), given a fixed regimen a, the general
procedure is as follows.

e Using models for censoring and exposure, calculate the probabilities of following
the regimen g, ;(L;_) for each subject, as described in Sect. 15.3.1.

e Set Q,7 = Y. (If Y is not binary, it should be rescaled to [0,1] using the true
bounds; Gruber and van der Laan 2010b.)
Then, fort=6,...,1,

Fit a model for E(Q,.s+1 | C; = 0,A,_1 = @,_1, L,_1). Using this model, predict
the conditional outcome for all subjects with C;_; = 0 and let this vector be
denoted Q,,;.

Construct the covariate H,(C, A;_1,L,_1) = I(C; = 0,A,_1 = @-1)/8n:(Li-1).
Update the expectation by running a no-intercept logistic regression with out-
come Q_n,,ﬂ, the fit logit(Q,.,) as an offset, and the covariate H, as the unique
covariate. Let & be the estimated coefficient of H,.

Update the fit of Q; by setting

erl,t(o) = expit {logit(Qn,t) + 5%13,_1)}

to obtain a predicted value of ), for all subjects with C,_; = 0.
As a result of the update using the logistic regression on outcome Q:l +1 With

the covariate H,, this step sets P, D;, , = 0 where

I(Az—l =a,1,C; =0)
gn,t(zlt—l)

D; (0) = (0)1:1(0) = 0, (0)),
corresponding with the component D;(O) of the EIF.

At the final step, note that the model for 0, is fit using only subjects with
Cy = 0. The resulting fit Qn,l is only conditional on Ly and is estimated for all
subjects.

e We take the mean of Q_,ll1 over all subjects. (If necessary, transform the mean
back to the original scale.) This is the LTMLE for the estimation of /.
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Overall, this algorithm effectively solves the estimating equation P,D;, = 0 where
D:(0) is the EIF with the estimated treatment probabilities g,,(L,-;) and updated
outcome expectations Q_},’,(O).

15.3.4 LTMLE for the PROBIT

The particularities of a longitudinal count outcome can be integrated into the
LTMLE procedure as well using a reparametrization of the sequential g-formula.
In the first step (t = 6) for the estimation of Qg, we note that

Y= Qs=(Y=-) L)-EY =) L|Co=0As =as,Ls)

r<6 r<6

=L¢— E(L¢ | C¢ = 0,As = as, Ls).

Given an initial fit of E(Ls | C¢ = 0,As = as, Ls), we update this fit using the
covariate Hg with respect to the outcome Lg. As in the previous algorithm, this
successfully sets P,D; . = 0 where

I(As = as,Ceq = 0)
gn,6(£5)

Fort = 5,...,2,define O; = E(Y = ¥, .1 L, | Coy = 0,4, = @3, Li5).
For t = 1, define O; = Q1 = E(Y | Ly). If we take Q¢ = Y — L, note that
01— 0, =0, — 0O, forallt =6,..., 1. Therefore, if we have an initial fit for 0,,
we can update it using the covariate H, with respect to the outcome which is a fit of
0,1 obtained through a previous iteration of the LTMLE algorithm. This procedure
will solve the empirical EIF equation, P,D}, = 0.

The full algorithm is as follows.

D, (0) = (Y = 0, 4(0)).

e Fort = 6, fit amodel for Qg = E(L¢ | Cs = 0, As = as, Ls). Produce a prediction
for all subjects with Cs = 0 and denote these fits as an.

e Update Q0,6 using a logistic regression with covariate Hy against outcome L.
Denote the updated fit 0 .
Fort=5,...,1:

— Fit a model for E(Q,y; | C; = 0,A,_; = a,_1,L,) using QN:WI from the
previous step as an outcome. Obtain a prediction for all subjects with C,_; = 0.
Fit a second model for E(L; | C;, = 0,A,_; = @,;_1, L,_1). Obtain a prediction for
all subjects with C;_; = 0. The sum of these two predictions is denoted Q,w.

— Scale Q,, to (0,1) by dividing by 7 — ¢, the maximum possible value. Update
Q... using a logistic regression with covariate H;. Produce a prediction of the
updated fit for all subjects with C,_; = 0, multiply by 7 — 7 to rescale, and

denote this as Q) .
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e The last step produces an estimate of Q,11 , for all subjects. The mean of Q}Zl is
the LTMLE estimate for wg using the modified sequential decomposition.

15.4 Variance Estimation and Clustering

We did not assume that the individuals are statistically independent but instead we
only assumed that the clusters are independent and identically distributed. Therefore
the unit is the hospital so that the variance estimator of the TMLE presented above
needs to take into account the statistical dependence of individuals within a clus-
ter. If clustering is ignored, true variability will be underestimated as the clustered
individuals will be falsely considered independently distributed.

15.4.1 Distinction Between Clustering and Interference

The concept of clustering might be confused with interference, which is often as-
sumed not to exist in causal analysis (Rubin 1980; Hudgens and Halloran 2008).
Interference means that the potential outcomes of one subject are not dependent on
the exposures of others. In our context, this corresponds with the assumption that
one infant’s breastfeeding does not impact another infant’s probability of hospital-
ization given the second infant’s breastfeeding status.

In contrast, clustering is a violation of the assumption that the individual level
data (O,,; : m,i) are independently and identically sampled. Within clusters, the
observed data (including exposures and outcomes) may be correlated. However, in
the absence of interference, this is assumed to arise due to population similarities
within clusters that contrast the differences between clusters. In some settings (such
as when the outcome is an infectious disease), interference within clusters (such as
hospital centers or communities) may be plausible. However, we do not believe it to
be so in the PROBIT example.

15.4.2 Estimation with the EIF

With sufficient clusters, we can reasonably use the (efficient) influence function for
variance estimation while accounting for a finite set of known clusters. Let D*(O;)
represent the value of the EIF for subject i. Let the M clusters be described as
Zn,m=1,..., M where Z,, represents the set of subjects belonging to cluster m. Let
the LTML-estimator for parameter 4//8 be denoted /?. Even though there is depen-
dence, our i.i.d. LTMLE described above should still behave as an asymptotically
linear estimator with influence curve D*(O) as sample size increases. Therefore, we
will still have
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1,
z;;mo,-)

1M
=-2,2,D0),

m=1i€Z,,

where we reindexed the units according to cluster membership. Then by multiplying
and dividing by M we have

vi-vi =~ ZZD(O)—

m 1iez,

Due to the independence between clusters, we can consider cluster to be the ex-
perimental unit with EIF equal to ;.7 D*(O,»)%. Therefore, the variance of the
estimator can be approximated by the variance of the cluster-specific EIF when M
is sufficiently large.

To estimate the variance, we have

, 1 <
Var(y) ~ Var(- Z D*(0)

= —Var(ZZD (O; ))

m=1 i€z,

We note that E(D*(0O;)) = 0 by the definition of influence function, so that
Var(D*(0;)) = E(D*(0,)?). In addition, Var(D*(0)xD*(0;)) = E(D*(0;)xD*(0;))
for two same-cluster units i and j. Therefore, the above equals

> Z D EWD"(0)x DO # )+ EDODHIG = j)

m=11i,jeZ,

where I(-) is an indicator for the logical statement argument. If we assume that the
influence function covariance between subjects within the same cluster is a cluster-
specific constant p,, = E(D*(0;) X D*(0))),i # j,iand j € Z,, and that the within-
cluster variance for each subject 02, = E(D*(0,)%),i € Z, is also constant within
clusters, the above simplifies to

- Z N (R — l)pm + I’ZmO'm

m=1

where n,, is the number of subjects within cluster m. The values of p,, and o2, can
be estimated empirically as the covariances and variances of the EIF within each
cluster, respectively.
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15.4.3 Simulation Study

In order to observe the importance of accounting for clustering, a simulation study
was performed. Data were generated as a simplified version of the PROBIT dataset,
similar to the simulation study performed in Schnitzer et al. (2014). Five hundred
subjects were generated in each of 31 clusters, resulting in n = 15,500. The base-
line covariates Ly = {W, U} were generated as independent Gaussian variables with
cluster-specific means drawn from separate Gaussian distributions. The time depen-
dent variables (Cy, L1, A, Ca, Ly, A, C3, L3) were generated independently for each
subject conditional on the subject’s recent history and baseline variables. Binary
variables A,,t = 1,2 indicate continued breastfeeding, Cy,t = 1,2, 3 are censoring
indicators, and L,,¢# = 1,2,3 indicate a hospitalization during the preceding time
interval. The outcome ¥ = Y.> | L, is a count variable. The baseline variable U is
a pure risk factor of hospitalization and did not otherwise affect censoring or expo-
sure.

To correspond with the associations observed in the real PROBIT data, breast-
feeding was specifically made to be less likely to continue when hospitalization
was indicated at the current time point. Censoring was less likely if breastfeeding
continued at the previous time point and more likely i