Hl John T. Sample
| | Kevin Shaw
‘ ‘ _' Shengru Tu
O o —_— ¢ Mahdi Abdelguerfi
Editors

Geospatial
Services and
Applications
for the Internet

@ Springer

Geospatial Services and
Applications for the Internet

Geospatial Services and
Applications for the Internet

Edited by

John T. Sample

Kevin Shaw

Naval Research Laboratory
Stennis Space Center, MS, USA

Shengru Tu

Mahdi Abdelguerfi
Dept. of Computer Science
University of New Orleans, LA, USA

@ Springer

Editors

John T. Sample

Naval Research Laboratory

1005 Balch Blvd.

Stennis Space Center, MS 39529
John.sample @nrlssc.navy.mil

Shengru Tu

Dept. of Computer Science
2000 Lakeshore Drive
New Orleans, LA 70148
shengru@cs.uno.edu

Kevin Shaw

Naval Research Laboratory

1005 Balch Blvd.

Stennis Space Center, MS 39529
shaw @nrlssc.navy.mil

Mahdi Abdelguerfi

Dept. of Computer Science
2000 Lakeshore Drive
New Orleans, LA 70148
mahdi @cs.uno.edu

Library of Congress Control Number: 2008931303

ISBN-13: 978-0-387-74673-9
e-ISBN-13: 978-0-387-74674-6

© 2008 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper
987654321

springer.com

Contents

LASt OFf FIGUIES ..ottt sne e e IX
LSt OF TabIES ...c.eieiieieieieeee ettt X1
Preface XV
Chapter 1: Hierarchical Infrastructure for Internet Mapping Services........... 1
1 INErOAUCHION ...ttt 2

2 Internet Mapping SEIVICEScc.eeverrieierrieriereereeseesrestesseesesseessessaessenssenes 3

3 DITECE SEIVET ACCESS .vveniniiieiieieetieiesiesteete sttt sttt st ettt ebe et ebeenes 4

3.1 Pure Client-Server DeSign.......c.cccvecueruieiieniieiesieie et see e seeennes 4

3.2 Memory-Based Caching in the Clientccccevieeieniincieneecienieeeeeenee. 5

3.3 Internal Spatial Data StruCtUreS.........ceecverueerierieieeieieeiere e eee e 6

4 Utilizing AUXIHAry SEIVELSc.ccverviiieriieieiieiesteeteeeesaeeeesseeseeseessesnesseesnens 8

4.1 STAtIC PrOXY .cviiveiieeiesiieieeiieieettete ettt se e sae e e s e seessesssensensnenes 8

4.2 DYNAMIC PIOXY ..vviivieiieiieiieiestteieeit ettt sae e sae e seeesessaessessaenseas 10

4.3 Implementation Details...........cccvevieieriieiienieienieie et 10

5 Building Combined SOIUtIONSccecveeieriirieiieienieeieeeeese e 13

5.1 Modular Design and Chaining..............cceeeereeriereenierienenieseereseennens 13

6 EVAlUALION ..ottt 15

6.1 Comparison with Raster-Based Visualization............ccccceevvervenreerennnne 16

6.2 Typical Usage Scenarios
6.3 Performance Comparisons for Deployments Utilizing Auxiliary

SEIVETS ..utiiiiiiee ettt ettt ettt e et e e et e e e tv e e eeateeesabaeeesabeeesaseeesasaeaestseeenasseesasaaaans 25
6.4 Comparison with the Tile Method............cceeeverieciininciinieiecieeeeee 26
7 Conclusions and Future Research..............cccoeeviiiiiiniiiiiciieeieecieeeee, 28
RETETENCES.eviieiiiceieeee et ettt ettt e re et ere e 29

Chapter 2: Case Study: Geospatial Processing Services for Web-based

Hydrological Applications 31
1 INErOAUCHION ... 31
2 Hydrological MOdEIS.........ccoveeiirieiiiieieeieceee et 33
3 Overview of Available Geospatial Services and Applications for
Hydrological MOdEIS.........cceviiieriieieiieiecieieeeeete e 33
4 System Architecture and Software Components of the Geoportal
APPLICALIONeeiiiieiieetieie ettt sttt e te et e e e saesteessesseessesseensesseenseensenes 36
5 Geospatial ProCeSSING SCIVICES......uervirierreriereeriereeresresressesseesesseensenns 40
6 Conclusions and 1essons 1€arntccceceeevenerineneneninieneneeeenes 43

RETETENCES ...ttt e e e enaeeas 46

VI

Chapter 3: An Application Framework for Rapid Development for Web-

based GIS: GinisWeb 49
1 INEOAUCHION ... e 50
2 Architecture of overall Web GIS ..., 52

2.1 Use-case model of the overall Systemcccccoceeverieninienceienenne 52
2.2 Non-functional requIremMents...........cceeeevereerrereesreeeenreeeesreeeeereenns 53
2.3 Functions and structure of Ginis Web GIS application.................... 54
2.4 Structure of Web-enabled GIS node.........c.ccooevieiiiieninenieieee 55
2.5 Development model of the GinisWeb framework..............c.cv.n...e. 56
3 GinisWeb model of a geoinformation SYStem...........cccceeevereeiieneeseenneene 57
4 Structure and basic elements of XML language GADL......................... 63
5 Case study: A Web GIS for an electric power supply company............. 68
6 CONCIUSION -ttt sttt sttt seens 69
RETEIONCES ... ittt 71

Chapter 4: Geospatial Web Services: Bridging the Gap Between OGC and

Web Services 73
I INEOAUCEION ...ttt et 74
1.1 Related WOTK.....oouooiiiieiiie e 74
1.2 OGC SCIVICES ettt ettt ettt ettt sb et ee et e see s 75
1.3 WED SEIVICES ..ottt ettt 76

2 Interoperability....c.ceoiiieriiiieeee e 77
3 Implementation Issues to CONSIAETcouerierieriinieiiieeee e 78
3.1 OGC tO WED SEIVICES ..euveveeiieieieieieieieieteeeie et eee e eae e 78
3.2 Data Handling.......cccooveviiiiniiieiiceeeeeeeeee e e 79
3.3 Functional Mapping........cccceeeeruerienienieniieeesieetene et 83
3.4 MEAALA ..ottt 85

4 W3C 0 OGC ...ttt se et ae e eaea 88
4.1 Service Specific Implementationsccceceveenirienineneneneeeeene 90
4.2 Driver-Based Mappingccocevieiiirenineeseeiee e 91

5 CONCIUSION .ttt e st e e e 91
RETEIENCES ...ttt 92

Chapter 5: The Design, Implementation and Operation of the JPL OnEarth

WMS Server 95
1. OnEarth DeSi@N......coeeiiiiiiiiieieiieeeee e 97

2. OnEarth WMS Server........cccociviviiiiinininiciecieeeeereeeeee e 99

3. Pre-Tiled WMS and KMLccccooviiininininiencicieceeeeeeeeeeee e 103

4. KML — WMS harmonizationccccoeeerenenienienieneennereeeeeeeeeeeeenene 106

5. Image AccesS LaYer.....ccouevuiiiiiieiiieieeee et 106

5.1 Storage file fOrmat........c.coeoeiieiirieiieie e 107

5.2 Virtual Image SEeTVETcceiiiiiirieiieieeiieeetec et 108

5.3 Composite IMAZE TAACT.ecueeiereieiieiiiriieie ettt 110

6. Concluding remarksooeeverieiiiiieeeieeee et 110

Chapter 6: Data Integration for Querying Geospatial Sources........ 113
I INtrOdUCHION. ..ottt 114
2 Data Heterogeneities.cooeruieruirieriieienieeie sttt 115
3 Ontology Creation........c.ecuieieruieniieiieniieierie ettt sttt st 117
4 Ontology AlIGNIMENT.......cooiiiiiiiiieiieieteeeee e e 118
5 QUETY PrOCESSING ...covieiiiiiiiiriieieitee ettt 124
6 USer INtErTacesc..eoveueieiiieieiciccceceee e 130

6.1 Visual Ontology ALINment............ccooeriinieienieniinieneeeeee e 130
6.2 Web-based Query Interfaceoceoveeeeeiriiinciiecccseeee e 131
7 Related WOTK ..oooviiiiiicicccce e 132
8 CONCIUSIONS ...ttt st 134
RETEIENCEScuveiiiiieieteee et 135

Chapter 7: Translating Vernacular Terms into Geographical Locations.... 139

I INtrOdUCHION ...ttt e 139
2 BacKEIoundcoouiiuieiiiieiieec e 141
2.1 Geographical Gazetteers........co.eeruerierierieniieieniieie ettt 142
2.2 Related APProaches.........cceovvveeeiiieieiieeieseeeeeeeee e 143

3 Statistical Text-Mining Approachccccooeevenenineninieeeeeee 145

4 Experimental implementationcoeeverierinieninieneee e 148
4.1 Text-Mining Software Frameworkc.ccoocoiveiiiininiiniieee 149
4.2 Knowledge Set PersiStence.cocvevvereeriireenenienenieneeeniceieeieeiene 152
4.3 Application INtegration...........cecevieiireeneneeneiieeeeseee e 152
4.4 Experimental TESULILScc.ecvevviiiiriieiieieeie ettt 154

5 Concluding Remarks.........ccooiiieiiiiiniiie e 154
RETEIENCES ..c.iniiiiniiicccccce e 156
Chapter 8: Personalizing Location-Aware Applications 159
I INtrOdUCHION ..c.euiiiieicicccccetcete ettt 160
2 LIterature REVIEWcc.ccueviiriiiiiiiieieieicecieetctee et 161
2.1 Implicit interest iNdICALOTScevvirieriirieniieieeeeteee e 162
2.2 USEr MOAEIING ..ot 164
2.3 PersonaliZation..........coecevveuerieirieiniinieiinieicntecseesre et 165
2.4 PIIVACY ..ttt ettt et 166

3 APPIOACH ... 166
3.1 Experimental Evaluationccccccevieiiiieniicieiieeereeeeere e 168

4 System Implementation...........ccoeererienirienieeee et 170
5 Target Market Personalizationcccceveeieiieienienenieieeeeseee e 171
5.1 GTOUP CONLEXLS ...eeeurieerreiieniieetiesteereesteesseessreenseessreeseesssessseessseenseens 172

6 Dataset Dependencycoeeuieieriieierieieneee et 173
T FUtUIe WOTK ..ottt 175

RETFEICINCES ...t eaaaee s 175

List

1.1.
1.2.

1.3.
1.4.
L.5.

1.6.

2.1.
2.2.

2.3.
2.4.
2.5.
2.6.

3.1.
3.2
3.3.
3.4.

3.5

3.6.
3.7.

3.8.

3.10.
3.11.
3.12.
3.13.
3.14.

3.15.

of Figures

Individual spatial data layers PMR quadtrees and the shared priority queue
based on the time of [ast VIEWING.ccevoieriiiiiiieecieeeeeee e 6
Emergency response service deployed a mobile unit in support of the
0] 0T ;1 10) 1 1RSI 9
DyNamic PrOXYcceeiieieiieieieeieeteee ettt 11
SAND Internet Browser and proxies chained together.............ccccecenneee. 14
Comparison of a bitmap (MapServer) approach with the vector-based
SAND approach for remote spatial data visualization.cccceeeeenneene. 23
Performance comparison of various operations for MapServer and the
SAND Internet Browser using the auxiliary server deployment method. 27
Geoportal architecture and its COMPONENtS..........ccevueeeeereeereereeierieieeneans 36
Geoportal interface for basin boundary and network of precipitation
SEALIOTIS ..ttt ettt ettt ettt ettt ettt e 38
Geoportal interface for basin boundary and elevation zones................... 39
Snow Coverage Area calculation WPS..........occoiiiiiiiiiiieeee 42
Image Processing WPS ... 43
Elevation zones calculation............ceeoirierierieieniec e 44
Schematic view of proposed Web GIS architecture.cccceceevvecrnne. 52
UML diagram that represents the use-case model of the overall system.. 53

Structure of Web GIS application built using the GinisWeb framework. 54

Structure of Web-enabled GIS node built using the GinisWeb framework
.. 55
. Design motif of the GinisWeb frameworkcccoooiiiiiiiiniineiines 56
Development model of a Web GIS based on the GinisWeb framework... 56
UML collaboration diagrams that illustrate connections and communication
between components in a map retrieval scenario (a); and a query
eXxecution SCeNArio (D). ..c..eiveeviiiriieiiecie et 58
UML class diagram that represent the GinisWeb model of a geoinformation
) £111 o PP SRPRRR 59
Detailed UML diagram of a class GLSAPD «..eevereereereenienieieeieneeeeeene 59
Detailed UML diagram of a class Layer ...occecevveeeereecieneeieseeieeeeans 60
Detailed UML diagram of classes related to FeatureLayer............ 61
Detailed UML diagram of class related to FeatureService 62
Detailed UML diagram of classes related to Coverage layers........... 63
XML schema diagram showing the structure of a GinisWebApp XML
CLEIMENL ...t 64
XML Schema diagram showing the structure of a FeatureLayer

XML EIEIMENT ...ttt e eae e eeaae e eraeeeenes 65

3.16.

3.17.

3.18.

3.19.

4.1.

4.2.

4.3.

4.4
45.

5.1
5.2
5.3.
5.4.
5.5.

6.1
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

7.1.
7.2.

7.3.

8. 1.

XML Schema diagram showing the structure of a
FeatureWebInterfaces XML elementcccocoeoinenininenenennne. 66

Sample GADL segments describing a feature layer Countries from a
Web GIS application perspective (a); and corresponding Web-enabled
GIS PErspectiVe (D)...ceveeueeeririinienieriiieeeeeteeetetee et 67
Sample screen shot from the GinisED Editor desktop GIS application
for capturing, maintaining and analysing an electric power supply
TIEEWOTK. ..ttt ettt ettt ettt et 69
Sample screen shot of the GinisED Web Viewer of an electric power
SUPPLY NEEWOTK. ..ottt 70
The OGC Service Capabilities Document includes metadata for the
provided service: WCS, WES, or WMS. ..., 76
Service Translation reduces communication complexity, but clients must
interact with both services in order to receive data.ccccccecererenennene 80
Service Wrapping incurs greater communication overhead, but simplifies
the client tasking.........cocevirireririninereeereeeeeeeee e 81
. Example methods for converting bounding box to single point queries .. 89
Driver-based interoperabilityccccoccverereneneniinenieicieeceeeeeeeene 91
. OnEarth System Diagramccccoevevieiriiiininienenneneneeene e 97
RASCHAL, the storage system of the OnEarth WMS server 98
Examples of OnEarth image processing capabilities..........cccccceecerenne. 102
Detail of the file format used for storage, the US DEM case................. 108
The WMS Global Mosaic, pan-sharpened pseudocolorc..c..c..... 109
. Local XML land use data SOUICES..........cccerueuereeerieinueiniceeeeeeeenenene 116
An example of local RDFS ontologiescccceceevevveninencncncnenencnnes 119
An example of mapping between two land use taxonomies................... 120
A fragment of the agreement file as represented in RDFS. 123
The QueryRewriting algorithm............ccoecveiirieiiniee e 125
The QueryExpand algorithmc.coeeeririreeirieieeeeeeee e 126
The ConstantMapping algorithm.cccccecverrinennenneneeeeen, 129
The ontology alignment interface.cecveverieieriecenieeeeee e, 131
A Web-based user query interface.ocvevereereeieneesieseeeseee e 132
Some entries extracted from a California gazetteer.........c..cocceveveruennenne. 142
Overview of the knowledge set creation process, where locations found in
a gazetteer are used to query the Web and obtain descriptions. 145
Overview of using the knowledge set to determine the location name that
corresponds to a Vernacular term........ccceeverererenenenenenenieneneeneennene 146
An impression of a section of New York City, showing lodging and

dININg FACIIILIES . .e.veveeireitiriereeee et 160

XI

8.2. User interface for experiments: Dataset of burial tombs in Tarquinia,
TEALY . et 168
8.3. Dataset distribution eXamples.ccccvvevrieieriieienriereeeee et 174

List of Tables

1.1

1.2.

1.3.

1.4.

1.5.

1.6.

6.1.

6.2

6.3.

7.1.

8.1.

. Properties of various network connection (i.e., “hookup”) methods 18
Performance comparison of MapServer, the SAND Internet Browser,
and the Tile Method for fine scroll............ccoooeeoeiieiinieiiniee 19
Performance comparison of MapServer, the SAND Internet Browser,
and the tile method for zZoom-in.cccceceevivvinicninincncncnicnne 20
Performance comparison of MapServer, the SAND Internet Browser
and the tile method for zoom OUf........cccocevviririniniinincicnene 21
Performance comparison of MapServer, the SAND Internet Browser, and
the tile method for fast scroll (global panning)cccceeeeeee. 21
Performance comparison of various operations for MapServer and the
SAND Internet Browser using the auxiliary server
deployment method.coocoeiiiieiiieeeeeee 26
Semantic heterogeneity resulted from different encodings of land use data
... 117
. Element-level transformationcoeeereveeienienienininneeinincneeeneneens 118

Mappings between local XML schema D; and local RDFS ontology O,
... 119

Some examples of responses by the Web service when queried for
vernacular terms within Berkeley, California, USA. 154

Average exXperiment reSUILS..........ccovverierierieiineee e 169

Preface

The use of geospatial technologies has become ubiquitous since the leading Inter-
net vendors delivered a number of popular map Web sites. Today, businesses are
either migrating location-aware capabilities into their information systems, or ex-
panding existing Geospatial Information Systems (GIS) into enterprise-wide solu-
tions. For example, GIS has been an essential component of the workflow and de-
cision support system of some Homeland Security programs. GIS experts have
been pursuing a number of vastly large pilot geospatial systems such as the Global
Earth Observation System of Systems (GEOSS), and the Federated Earth Obser-
vation Missions (FedEO) Pilot programs.

As enterprise information systems are evolving toward service-oriented archi-
tecture (SOA), geospatial technologies have also been evolving along the same di-
rection. The SOA has been best fulfilled by the Web service technology for gen-
eral purposes, and the OGC Web Services Common (OWS) Specification for
geospatial information systems. The service-oriented approach enhances GIS with
programmable, automatic interactions between the data resources and the client
applications across the Internet. Consequently, a new category of services can be
added to GIS: business process services including work-flow realization and loca-
tion-aware decision-making assistance. In addition to the three traditional catego-
ries of GIS services namely the data services, data transformation services, and
catalog/registry services, the business process service is a significant new cate-
gory.

In this book, we have gathered a coherent collection of techniques and method-
ologies for the development of geospatial information systems in the Internet era.
This manuscript is to appeal to the researchers and practitioners who are either
geospatial information service providers or developers of the client components
that utilize geospatial information. The nine chapters of this manuscript are di-
vided into two parts which address the challenges coming from two key areas,
namely service-oriented architectural design and implementation, and intelligent
spatial query processing.

Part 1 — System Design and Implementation

A central concern of any geospatial services over the Internet is scalability and the
user-perspective of performance, which requires an integrated design at each of
the levels in the data delivery across the servers and the clients. In Chapter 1,
Brabec and Samet’s hierarchical infrastructure for Internet mapping services pays
a special attention to the approaches based on transmission of vector data. Com-
pared to the current popular image-only (raster-based) approach, their vector-

XVI

based approach can significantly enrich the basis of a foreseeable wave of intelli-
gent geospatial applications because vector data would make it possible for client-
side widgets to support intelligent manipulation of spatial data. This is a system-
atic study of architectures for delivering map data including the “direct server ac-
cess” and “adding auxiliary servers” as well as a hybrid approach. Each of them is
further broken down into sub-categories depending on the use of memory and
caching techniques. Every design choice is justified by experiments using real
world data; the experiments are clearly explained with adequate details.

In Chapter 2, Diaz, Granell and Gould present a case study of the design and
implementation of a concrete Web-based geospatial information system for hydro-
logical applications. This is an example illustrating what is possible with some of
the Web service technologies. For example, the system allows the hydrologists to
interact directly with the underlying hydrological model; it allows the expert users
to load their own datasets for an area of interest. The latest OGC Web Processing
Service (WPS) specification is applied to the design and implementation of the
system, which experimented the three-method approach (getCapabilites, de-
scribeProcess, and execute methods) in a customized WPS client-side API
along with Java servlets and JSPs. An interesting feature of this chapter is the use
of Google Maps API in the client-side applications. It is invaluable for this case
study to point out that, after numerous standards have been established, it is still
difficult to achieve interoperability by just relying on the existing standards be-
cause vendor implementations of a standard often differ from one another.

Realizing the complexity and difficulties in building Web-based GIS applica-
tions, Milosavljevic, Dordevic-Kajan and Stoimenov have developed, in Chapter
3, an application framework called “GinisWeb.” The goal of this framework is to
assist in the rapid development of Web GIS applications and to facilitate the ac-
cess and sharing of geospatial data through OGC Web standards such as WMS
and WFS. A difference between the GinisWeb applications and the purely stan-
dard-based GIS applications, such as the hydrological applications presented by
Diaz’s team in Chapter 2, lies in the approach to encoding of application descrip-
tions including the metadata of geospatial datasets, data organization, data layers
and data services (acquiring, storing and querying). The GinisWeb framework
uses a ‘“homemade” XML language — Ginis Application Definition Language
(GADL). Such a technical choice led to a more concise application description
and easier deployment because the basic data unit in GADL is layer. In doing so,
the GinisWeb framework shifts away from the OGC WPS standard. However,
even for the reader who may prefer to follow the standards strictly, this chapter is
a worthy reading because it presents a series of technical choices in system design
(with a rich set of UML diagrams) that are typical and critical in GIS design.

Interoperability has been the primary priority of OGC’s efforts. The OGC In-
teroperability Program has been advocating integration between OGC services and
W3C SOAP-based services for years. The simple conversion method is an early
approach in which each of the required operations (such as GetCapabilities
and GetMap) of a WMS service was directly wrapped in a SOAP-based service.

XVII

The connectivity issue was addressed; any SOAP-based service client program
can call the wrapped services. However, the client program will not be able to use
the map service unless it is as capable as a WMS client because the actual infor-
mation about the map layers have to be retrieved through the GetCapabili-
ties operation defined in WMS. In Chapter 4, the approach to the automation of
mapping OGC services to SOAP-based services exposes all the map layers of the
WMS service in multiple searchable service descriptions — WSDL, and achieves
the full-scale access from the W3C service to the original OGC services. Not only
can ordinary service client programs (without WMS capability) retrieve any layer
provided by the WMS service, but the client programs will also be able to assem-
ble any combination of layers from multiple WMS services.

In Chapter 5, Pleasea presents a field report of one of such systems — the
OnEarth WMS server at the Jet Propulsion Laboratory (JPL). This system is de-
signed to provide fast access via WMS and the Keyhole Markup Language (KML)
to very large sets of satellite imagery. It utilizes a cluster of systems to break the
processing work up. The author describes the Web and image processing pipeline
and provides a detailed description of the software and hardware configuration
behind this fast and highly available system. The current status and development
history are described. A number of technical choices made over the eight years of
the system history can serve as lessons learned from the large-scale geospatial sys-
tem.

Part 2 — Intelligent Spatial Query Processing

As enterprise information systems are integrated into regional applications, geo-
spatial information naturally takes the role as the convergence platform. Early ef-
forts in fulfilling data integration and interoperability often paid more attention to
syntactic heterogeneity and connectivity issues such as message formats. More
recent research and development efforts start addressing more difficult problems
such as semantic heterogeneity. In Chapter 6, Cruz and Xiao present a systematic
approach to geospatial query processing over semantically heterogeneous data
sources based on a set of ontology alignment algorithms. Their approach was for
a specific application — the land usage system, in which the data resources col-
lected by different counties (in Wisconsin) and agents differ from each other in
many ways. Cruz and Xiao carried out instance-level mappings over the taxon-
omy-like ontologies about land usage consisting of the subClassOf relationship
only, and the mappings over the schema-like ontologies which are associated with
the structures of the local resources. Driven by the complexity existing in the real-
world data resources, they developed a set of automatic query rewriting methods
to support query processing that are involved in distributed, heterogeneous sources
in either the global-to-local or local-to-global mode.

XVIII

Concentrating on a very specific problem — mapping vernacular terms to loca-
tion coordinates, Adeva presents a statistical text mining technique in Chapter 7.
Being independent of languages and grammars is an advantage of this technique,
which can also map the location terms that are often-used but not included in ver-
nacular collections. This technique depends on a prior-built knowledge set which
is the coordinates and the descriptions of all the locations within a geographical
area, in which the words are weighted using statistics. The information in the
knowledge set is based on external information such as gazetteer, encyclopedias or
information from the Web. The knowledge set is transformed into a reduced, tra-
ditional vector space model. For a static vernacular term set, the knowledge needs
to be built once only. After it is built, the mapping process is a computationally
light operation. A weak spot of this technique lies in the mapping accuracy which
is subject to the granularity of the locations provided by the gazetteer.

A personalized processing can improve the suitability of query answers. This
can be considered a “stretching” extension of query processing. In Chapter 8,
Aoidh, Bertolotto and Wilson present a methodology for personalizing location-
aware services based on the implicit measures of user interactions with digital
maps — the mouse movements. The effectiveness of this approach is measured us-
ing three metrics, namely the rank accuracy (the accuracy of the ranks assigned to
the objects by the algorithm compared to the ranks given by the user in survey),
the absolute preference (an ordered rank list showing the level of interaction asso-
ciated with every objects of interest in the 0 to 100 scale), and the relative prefer-
ence (the ratio of the score difference between two adjacent objects in the com-
puted rank list). With the dataset used in the evaluation, the experimental results
show that the mouse movement analysis over spatial data is a technique for accu-
rately inferring users’ interests. This is an innovative approach that could prepare
for a better display of spatial query for individual users. This chapter exemplifies
an effort to attract more attention from the human-computer interaction commu-
nity toward GIS applications such as digital maps.

We called upon many experts in the fields to assist with the reviewing process
of the submitted chapters. We would like to extend our thanks to them for their
rigorous reviews which improved many chapters in this manuscript. Special
thanks to Fangfang Liu for her assistance with the formatting of this manuscript.

Chapter 1: Hierarchical Infrastructure for
Internet Mapping Services

*
Frantisek Brabec and Hanan Samet

Department of Computer Science
University of Maryland
College Park, Maryland 20742, USA

brabec@cs.umd.edu and hjs@cs.umd.edu

Abstract For years, the access to Internet-based public mapping services pro-
vided by vendors such as MapQuest or MapsOnUs has changed little. The map-
ping service would generate maps of the viewed areas in raster format and transfer
them in the form of images embedded in Web pages to remote users. This ap-
proach is suboptimal for users who plan to explore a given area in more detail as
the same data may be sent to the users repeatedly. In mid 2005, Google Maps and
MS Virtual Earth improved upon this approach by dividing the images into
smaller tiles which allows many of them to be reused in subsequent panning. This
increases performance of such mapping systems substantially. In both cases, how-
ever, the client only has access to data converted in its raster format which pre-
vents it from querying or re-processing the data locally. We investigate this oppor-
tunity for further improvement in providing the client with map data in vector
format so that it can perform some operations locally without accessing the server.
We focus on finding strategies for distributing of work between the server, clients,
and possibly other entities introduced into the model for query evaluation and data
management. We address issues of scalability for clients that have only limited
access to system resources (e.g., a Java applet). We compare performance of the
vector-based system with raster-based systems, both traditional (e.g., MapQuest)
and tiled methods (e.g., Google Maps) for a set of common basic operations con-
sisting of fine and fast scrolling and zooming (both in and out).

* The support of the National Science Foundation under Grants EIA-00-91474, CCEF-
0515241, and IIS-0713501; Microsoft Research; and the University of Maryland General Re-
search Board is gratefully acknowledged.

1 Introduction

Technological advances in recent years have opened ways for easier creation of
spatial data. Vast amounts of data are collected daily by both governmental insti-
tutions (e.g., USGS, NASA) and commercial entities (e.g., IKONOS) for a wide
range of scientific applications (e.g., [18]).

The motivation is the increased popularity and affordability across the spectrum
of collection methods, ranging from personal GPS units to satellite systems. Many
collection methods such as satellite systems produce data in raster format. Often,
such raster data is analyzed by researchers directly, while at other times such data
is used to produce a final dataset in vector format. With rapidly increasing data
supplies, more applications for the data are being developed that interest a wider
consumer base. The increasing popularity of spatial data viewers and query tools
with end users introduces a requirement for methods to allow these users to access
this data for viewing and querying instantly and without much effort. Our work
focuses on providing remote access to vector-based spatial data, rather than raster
data.

Traditionally, common spatial databases and Geographic Information Systems
(GIS) such as ESRI’s Arclnfo are designed to be stand-alone products. The spatial
database is kept on the same computer or local area network from which it is visu-
alized and queried. There are, however, many applications where a more distrib-
uted approach is desirable. In these cases, the database is maintained in one loca-
tion, while users need to work with it from possibly distant places over the
network (e.g., the public Internet). A common approach for providing access to
remote spatial databases adopted by numerous Web-based mapping service ven-
dors (e.g., MapQuest [8]) performs all the operations on the server side, and then
transfers only bitmaps that represent results of user queries and commands. Al-
though this solution only requires minimal hardware and software resources on the
client site, the resulting product is severely limited in the available functionality
and response time (each user action results in a new bitmap being transferred to
the client). Naturally, the drawbacks of this traditional approach have been identi-
fied and work has started to improve the performance of remote spatial access us-
ing both raster [1] and vector [19] approaches. Similar issues were addressed in a
component-based Web GIS [12] tool by adding a spatial caching framework.

Providing efficient data flow between a given spatial server and individual cli-
ents is not the only problem that needs addressing. In many scenarios, data origi-
nates from multiple providers and the information they offer needs to be aggre-
gated before being presented to the end user. Similarly, multiple spatial servers
may be involved for redundancy or load balancing. Such topics have been ex-
plored in other work, when the providers’ hosting environment remains stable [20]
and for more dynamic peer-to-peer arrangements [11].

In our research, we explore new ways of allowing visualization of both spatial
and nonspatial data stored in a central server database on a simple client connected

to this server by a possibly slow and unreliable connection. We develop a new
vector-based client-server approach as a response to some of these drawbacks of
traditional solutions. Our system aims to partition the workload between the client
and the server in such a manner that the user’s experience with the system is in-
teractive, with minimal delay between the user action and appropriate response.
We consider scenarios where bringing in auxiliary servers would improve the per-
formance of the system. The design works around potential bottlenecks for the in-
formation transfer such as the limited network bandwidth or resources available
on the client computer. To support multiple concurrent clients, limited resources
on the server must also be considered. We will see that the performance of our
vector approach is comparable and at times better than the latest raster-based
methods.

The rest of the chapter is organized as follows. Section 2 reviews existing
commonly used methods for remotely accessing spatial databases. Section 3 dis-
cusses our architecture based on pure client-server approach. Given a client that
communicates directly to a server, we examine different deployment options and
describe several methods that improve the performance that can be achieved in
this environment. Section 4 extends the basic client-server approach by adding
auxiliary servers. Such servers can be used as temporary data storage between the
client and the server. We present typical deployment scenarios when this would be
beneficial, as well as present methods for using this arrangement to further speed
up its performance. Section 5 combines all the different design options and speed-
up methods together, performs evaluations, and discusses how to choose the opti-
mal deployment method for given specific usage scenarios. Section 6 shows re-
sults of experiments comparing performance of our method and existing estab-
lished raster-based remote access methods. Finally, Section 7 draws some
conclusions and proposes topics for further research.

2 Internet Mapping Services

Many vendors that provide access to maps over the Web utilize an approach
where server-generated bitmaps are sent to the Web browser client for viewing.
The typical example of providers of such services are vendors such as MapQuest
[8] for street maps based on addresses; or TopoZone [7] for topographical maps.
Their approach is simple, the server receives a location description (e.g., a street
address, name of a place, etc), it queries its spatial database, retrieves a map, con-
verts it into a bitmap image and sends it back to the user (their browser). The map
retrieved from the spatial database may be in vector (MapQuest) or raster (Topo-
Zone) format. In either case, it gets rasterized or subsampled respectively before
sending the data over the network to user’s browser.

This approach requires very little support from the client site, typically just a
Web-browser equipped computer or network appliance. The drawback of this so-

lution is that it quickly reaches its usability limitations when more serious work is
attempted. Such poorly supported operations include even basic zooming in or out
or panning not to mention running queries. In particular, actions such as zooming
or panning are very cumbersome with performance bordering unacceptable for
many users as the response time is determined by the amount of data that needs to
be transferred every time a new view is requested. Other operations such as query-
ing the database beyond displaying all objects within a certain rectangle are not
supported at all.

An interesting enhanced raster-based design has recently been presented by
Google [1] and Microsoft [3]. Similar to MapQuest, Google Maps and Microsoft
Virtual Earth (and its predecessor TerraServer [10]) services are raster-based as is
also NASA’s World Wind [5] which besides working with NASA’s own data it
also makes use of data from TerraServer. However, these services do not send a
single image covering the whole viewable area every time there is a need for an
update. Instead, the viewable map is divided into a grid of smaller image cells.
When a panning operation is executed, there is no need to download a new image
that represents the whole viewable area. Only cells covering the area that just be-
came visible need to be downloaded, others are reused by simply moving them on
the screen.

As an alternative to these raster-based systems, we consider the SAND
Internet Browser [17] — a Java application that represents the client piece of our
vector-based client-server solution for facilitation of remote access to spatial data-
bases.

3 Direct Server Access

Traditionally, a client-server computing paradigm only involves two computers —
the client and the server (obviously ignoring computers and devices in between the
two that simply route or shape the traffic between them, such as routers, firewalls,
etc). We examine such a scenario as well as scenarios that involve other auxiliary
servers.

3.1 Pure Client-Server Design

The simplest and most common design for the client-server architecture makes in-
dividual tasks such as data management, image rendering, and query evaluation
the responsibility of either the client or the server. When the spatial database ap-
plication is implemented in this manner, the server handles all the data manage-
ment and query evaluation. The client only facilitates data visualization while
maintaining connectivity to the server. In this scenario, the client simply translates

user input into queries and transmits them to the server. It can also receive data
sent by the server and visualize it. There is no data storage or processing on the
client beyond these basic functions. Note that this design corresponds to the way
in which many popular Web-based mapping services such as MapQuest operate.

This approach’s advantage is that most users can utilize the service with the re-
sources that they already have — that is, a networked machine with a Web
browser. Users do not need to install or set up any additional hardware or soft-
ware. However, this approach’s main drawback is that clients need to com-
municate with the server each time users request even the simplest opera-
tion. This can slow down users experience significantly if the network throughput
and latency are a limiting factor or if the server is heavily loaded.

3.2 Memory-Based Caching in the Client

The first method that improves upon the basic design is one where the client util-
izes some of its own main memory to store (cache) some of the data in the central
database. This allows the client in some cases to rely on its own data repository to
handle some of the user’s requests thus cutting back on the network utilization and
improving the system’s responsiveness. Naturally, the spatial data stored on the
client must be spatially indexed for fast access. Note that in this approach it is no
longer possible to use the standard Web browser as a mere image viewer. In par-
ticular, custom code needs to be loaded onto the client to facilitate the operations
to be performed there. The Java environment has emerged in the past years as a
platform of choice for most types of lightweight cross-platform applications. The
maximum amount of data to be stored on the client to optimize the overall per-
formance depends on the client’s available resources. The rationale for this design
is for the client to fetch the requested data via fast memory-only operations when-
ever possible. This is more efficient than retrieving the same data over the network
from the central server.

Operations performed by the mapping system are primarily client-driven, i.e.,
any operation performed on either the client or the server is in response to some
user-generated input. To minimize the amount of data that needs to be transferred
from the server to the client in response to each event on the client side, various
techniques were developed and implemented in the form of the SAND Internet
Browser. To keep the amount of traffic between the client and the server low, we
cache some data on the client in case the user requests another operation on data in
the same area. We store the data in their original vector format rather than the re-
sulting bitmaps so that the client is able to generate new views and process some
types of queries locally without having to request additional data from the server.

3.3 Internal Spatial Data Structures

The spatial data is stored on the client using a PMR quadtree [13] spatial data
structure. This structure subdivides the plane into quadrants such that if an object
is inserted into a certain quadrant, then if the quadrant already contains more than
a predefined threshold of other objects, then the quadrant is split into its four chil-
dren once and only once and the objects are reinserted into the children. Thus, the
objects are always stored in the leaf nodes of this quadtree. We establish and
maintain the maximum amount of data that can be cached on the client in order
not to overwhelm or crash the client platform. Each leaf node of the PMR quad-
tree also contains a time stamp indicating when it was accessed (displayed) last.
Together with the PMR quadtree containing the spatial data, we also maintain
pointers to all of the PMR quadtree leaf nodes using a variant of a binary heap
data structure. The key for this tree is the time stamp stored in the PMR quadtree

leaf nodes. This is shown in Figure 1.1.
Rivers

Al ob Ao dhe)

PMR Tree | | PMR Tree /

Priorjty Queue

older L Timestamp [> newer

Figure 1. 1 Individual spatial data layers are stored in separate PMR quadtrees. A
priority queue shared by all of them maintains ordering of all the PMR leaves for all the
PMR quadtrees based on the time of their last viewing.

This structure enables quick insertions, deletions and locating the pointer repre-
senting the PMR node with the oldest time stamp. This arrangement facilitates our
caching mechanism. When we need to make more memory available for addi-
tional data, we use the least-recently-used (LRU) caching mechanism to delete

as many PMR leaf nodes linked from the top of the binary heap data struc-
ture as necessary. If all four children of some internal PMR quadtree node are re-
moved, then the quadtree automatically collapses and the internal node becomes
an empty leaf node. A flag in each node indicates whether the node represents an
area that is actually empty (valid node) or whether the node is empty because its
elements are not available in the memory (e.g., page fault, invalid node).

Note that using this mechanism, the entire quadrant has to be contained in the
memory for its node to be valid. This may be too inefficient as if we continuously
work with only part of the quadrant and have no need to load the rest of the quad-
rant, then the node would never be marked as valid and the data from the part in
which we are interested would be reloaded over and over. To prevent this, we add
another field in each node indicating which part of it is actually valid. Thus, if we
loaded data for only part of the quadrant, we mark the quadrant as valid but indi-
cate which part of it is actually valid (i.e., the intersection of the quadrant and the
query window). The next time we need to access data from this quadrant, if
the area that we need falls completely within the valid area of the node, then we
do not need to load any additional data. If the area that we need is not fully en-
closed by the valid area, then we load the missing part and increase the valid area
of the node accordingly.

A typical dataset would contain several tables representing different layers of
the map. While each layer is stored in a separate PMR quadtree, there is only a
single binary heap data structure for all the layers combined. This way, when a
user stops working with one of the layers, its data will be automatically and
gradually removed from the cache and will be replaced with the data needed cur-
rently.

As the user explores the content of the database using a graphical viewer, s/he
is basically retrieving all the objects stored in the database that overlap the current
viewing window. When the content of the spatial structure overlapping a certain
query object needs to be drawn, a tree traversal is performed to find all the objects
in the PMR quadtree that overlap the query object. At times, we find that the in-
ternal nodes are “invalid” which means that either they were not loaded yet or they
were previously removed by the memory management process when they were
not used for some time. In such a case, the data needs to be reloaded.

The algorithm contains two steps. In the first step, the system finds out what
areas need to be loaded from the server and builds a collection of rectangles that
represent this area.

In the second step, the algorithm takes the list of rectangles returned by the first
step and loads all the data from the server that lie within the area defined by this
collection of rectangles. Next, for each rectangle loaded, it adjusts the corre-
sponding PMR node status.

Now, when we need to display all data that overlaps a given window w, we can
look at not just the valid/invalid identifier of each PMR node that overlaps w, but
instead we can also check the validSubarea field of the invalid nodes. If the inter-
section of the window w with the PMR block is fully contained in the node’s

validSubarea, then we know that all the necessary data for this window query is
already in the database, even if the PMR node is not loaded fully. When the draw-
ing function is called, it already knows that all the data is already loaded in the
memory and it simply steps through the overlapping PMR nodes and displays
their contents.

An obvious limitation of the memory-only approach is the maximum amount of
space that can be utilized for local data storage. This approach is the only one
available when the client runs on a platform that has no secondary memory (e.g.,
disks) available. Such an environment is usually present on smaller handheld de-
vices or on Java applet-based viewers. Various SQL-based DBMSs exist for many
platforms that can be used to facilitate local caching using available disk space.

4 Utilizing Auxiliary Servers

Development of Internet technologies has introduced various methods for utiliza-
tion of additional servers to improve performance for end users who connect to
external servers. One of the first and most popular methods is caching. Caching
can be implemented directly within the end user’s browser, or it can also be im-
plemented within the user’s network, on the gateway (proxy) between the network
and the outside Internet. In the latter case, the same cache can be shared among
several users.

Obviously, the rationale for introducing these proxy servers between the client
and the Internet is that the responsiveness of the proxy server with respect to the
end user’s browser is much higher than if the data was requested directly from the
original host. This is due to the higher network speed between the client and the
proxy server compared to the network speed between the client and the original
host. Another factor can possibly be the lower load and higher responsiveness of
the proxy server since it only handles traffic for a few users and therefore can
process requests more efficiently.

An example deployment of a proxy server is an emergency situation illustrated
in Figure 1.2. There, multiple first responders equipped with handheld devices link
with a mobile communication van or similar vehicle. This vehicle is equipped
with a wireless router as well as with satellite or similar communication technol-
ogy and facilitates connectivity with the central computing facilities.

4.1 Static Proxy

In some cases, the main spatial server provider and the individual users of this da-
tabase are from within the same organization or these organizations collaborate
closely. If this is the case and the spatial data is rather static (i.e., updates in the

database are not performed frequently), it may be feasible to execute a one-time
step of copying all the spatial data stored in the main spatial database onto
the auxiliary database running on the proxy server. In such a scenario, the auxil-
iary database needs to be preloaded with the spatial data from the central SAND
server when the system is being installed as well as possibly periodically after
that!. The frequency would depend on how often the data on the central server
changes. This approach is especially effective if updates on the central spatial
server are performed in regular intervals rather than dynamically. For instance, a
new data set may be released once a month or once a year instead of applying par-
tial updates continuously.

One connection handles
< . communication required by
>~ alltheclients

~

Mobile
Response
Unit

' Thin Client

. Pé
Wireless
4 Application

) Link 7
Central Spatial Server 4

Individual Responders

Figure 1. 2. Emergency response service deployed a mobile unit (e.g., a mobile van) in
support of the operations. This unit can cover the area with a fast wireless network
access and provide a proxy service for spatial operations. Individual responders can
utilize the applications on their mobile devices more efficiently.

! This arrangement is similar to setting up a mirror server. The difference is that a mirror server
is typically a copy of the primary server and can provide any functionality that the primary server
does. In this case, the proxy only stores spatial data of the background map and facilitates window

queries. The central server is still used to evaluate complex custom queries as initiated by the user.

10

Since the complete valid map resides on the proxy server, there is no need for
the client to ever connect to the central spatial server for window queries. There is
also no need for the proxy server to talk to the spatial server, to receive updates or
for any other reason. Therefore, the only traffic generated by this scheme involves
the SAND Internet Browser clients communicating with both the central spatial
server (e.g., SAND server) and the auxiliary proxy server.

4.2 Dynamic Proxy

In other cases, the amount of data stored on the central server would over- whelm
even a normal server-level machine. Or, the data on the central server gets updated
continuously and any information stored on the server may potentially be valid for
only a short period of time. In such scenarios, preloading the proxy server with all
the spatial data from the main spatial server is not possible and/or useful. For this
situation, we have developed a design that involves deploying the proxy server
with no data preloaded on it. As the individual clients start working with the data,
they still go directly to the central spatial server to get results for custom queries
and to the proxy server to get results of window queries. This time however, the
necessary data may or may not be available on the proxy server. If the data is
available, it is sent back to the client immediately. If the data is not available, then
the proxy connects to the central spatial server, retrieves the necessary data and
stores it in its database. Once this is finished, the proxy server evaluates the win-
dow query locally. As the data was just loaded, the server retrieves all the data
successfully and sends it back to the client. The layout of this scenario is illus-
trated in Figure 1.3.

Since the dynamic proxy loads the data from the central spatial server on as-
needed basis, it is not a problem if some data is not available locally. The proxy
can utilize this to drop data when necessary, e.g., to keep the amount of data
stored locally under a prescribed limit or to ensure that the data served is not older
than a certain predetermined age. This approach can be used as described if the
data on the server does not change (e.g., a street map). If the data on the server is
updated frequently, then the server needs to notify its clients that a certain part of
the database was updated. In response, the clients drop the corresponding data
from their cache and will reload it the next time a user requests it.

4.3 Implementation Details

The SAND Internet Browser running on clients is implemented in Java and its
connection with the external servers is facilitated via Java Database Connectors
(JDBC) modules provided by the respective database vendors.

11

Spatial Data
_— A Provider .\7 7/
_ —~— - Spatial
Sgatlal Data ~ Database | _
onsumer N — g
2N @
\ @
Server | 8
S \ Engine 2
= w
O s ¢
©
=

\
(N
Client Query o~ O -
L lmenj\elTra 5
‘ Data l/O. Processing .)
API
o M E/’fﬂ?
L . X :

Management |
f | Background ||
|1 Map API
o"fjg; Server API Proxy Server
\ g
I

= — o e
Visualization |/L [_ Client AP AN Proxy AN Spatia!
Modue ﬁw | V| Engine /| Database ’

\ Display J L -~/

Figure 1. 3. Dynamic Proxy — The proxy server is installed with no data on it initially.
It connects to the central spatial server and if a request comes from a client for data not
available locally, the proxy retrieves the data from the central server, caches it locally,
and sends it back to the client.

The SAND Proxy, the implementation of the proxy server outlined in
general above, is a combination of two modules. The first one is an off-the-shelf
SQL database? responsible for storage of spatial data storage used in handling of
window queries. Note however, that the SQL database does not have any informa-
tion regarding what data it contains compared to the content of the main spatial
server. This is the responsibility of the second module, it maintains information
about which parts of the SQL database are currently valid (i.e., which parts fully
mirror the content of the central SAND database). Additionally, it facilitates
communication the clients and, in case of the dynamic proxy, with the SAND
server that performs the role of the central spatial database.

The second module in essence implements a second database which maintains
the information about which area of the “world” that is stored in the central data-

2 The SAND Internet Browser system has been used with MySQL [4] and PostgreSQL [9] but
other SQL databases could also be plugged in.

12

base is covered in the local SQL database. The SAND Proxy utilizes the Region
Quadtree (e.g., [14, 15,16]) data structure to manage this information. The prob-
lem of determining which areas of the world are represented in the SQL database
translates into evaluating window queries on this data structure. The Region Quad-
tree allows the SAND Proxy to identify quickly and efficiently which part of the
main database is available through the local SQL database.

When the proxy server is first started, the auxiliary SQL database is empty and
the region quadtree is correspondingly all *white’. As the clients start connecting
and requesting spatial data, the proxy server initially forwards these requests
to the central spatial data server as it does not store the required information
locally yet. Once the data arrives over the network back to the proxy server, the
Java code in the application layer fetches the data from the communication layer
and inserts it into the database through its JDBC connection. Once the data is
stored in the database, it means that the gaps in the coverage are filled. At this
point, the local database can be queried directly and the result is then returned
back to the respective SAND Internet Browser clients.

For any query window R, some data overlapping the window may already be
available locally and some may not be. Therefore, for every window query R, we
first test whether the data overlapping R is available locally in full by re-
cursively traversing the region quadtree. If all the data for R is fully avail-
able, then no download from the central server is needed. The local database
can be used to fetch all the overlapping objects and the resulting data stream can
be sent back to the client. If the region quadtree reports that some data overlapping
R is missing in the local database, then a download of all the data overlapping R in
its entirety is requested from the server. While it will re-load some data that are al-
ready present locally, the benefit is that the overhead is much smaller, as only a
single window query is submitted to the central server. Any would-be duplicates
are ignored by the SQL databases as the data table structure is set up to enforce
uniqueness of individual objects stored. This ensures that we do not store dupli-
cate entries in the cache. The decision to aggregate multiple smaller queries into a
single larger one is one of the aspects of our design.

After the data overlapping R is loaded from the server, the region quadtree is
updated to mark R as fully loaded. This is done through top-to-bottom insertion
into the region quadtree — that is, by recursively visiting all overlapping nodes,
marking them as covered if they are fully overlapped. Or, in case of a partial
overlap and unless the maximum depth was reached, the node is subdivided
into four children and the same operation is performed recursively. If there is still
just partial overlap of R and leaf node N when the algorithm reaches the maximum
allowed decomposition level, then we mark the node as covered. This ensures that
any subsequent window query that is simply a result of a lateral movement (i.e., a
scroll operation) along the same axis as the window edge that intersects N won’t
report missing data due to the same N and cause another download request to the
central server. Of course, the drawback is that the region tree reports N as avail-
able in the SQL database while part of the data overlapping N is in fact

13

missing. In reality, this area is very small (a fraction of the node on the region
quadtree maximum depth level) and will typically be loaded before the data is
needed — once the window R moves such that it overlaps N in full. This is be-
cause N’s empty neighbors will trigger download of data overlapping R thus fill-
ing the gap in N’s coverage as well.

This approach guarantees that the proxy is always able to provide the
data requested by the client, while efficiently caching the data for future
use. While this approach as described, assumes the auxiliary database has enough
resources to store all data that flows through the proxy, it is not a requirement. If
the availability of sufficient resources cannot be guaranteed, the same method
used in Section 3.2 that allows for a limited amount of storage space can be ap-
plied here as well.

5 Building Combined Solutions

This section describes how the individual building blocks presented previously
can be combined together to build a complete spatial database visualization solu-
tion. Results of experiments are given that provide guidelines for selection of ap-
propriate designs given specific deployment scenarios.

5.1 Modular Design and Chaining

While different host types may be used to cache spatial data, their functionality is
similar. Their goal is to store the data that have passed through up to their efficient
capacity. The individual proxy modules can be stacked on top of each other,
where the node closest to the actual displaying client has the smallest capacity and
usually stores a subset of data of its successor in the chain. The farther up in the
chain that we go from the client, the more data and processing power the node
within the chain has.

This is because when a client requires a certain data range and cannot find this
information locally, it sends the request to the next cache/proxy node.If the data is
available there, then it is served. If it’s not available there, then the cache/proxy
requests the same data farther up the chain. This process repeats until the data is
reached, in the worst case in the main spatial data server. Once the data is reached,
it is sent back the same way the requests came, i.e., all caches/proxies on the way
between the client and the successful data repository will get the chance to store
the data as well. Since the layers closer to the client have typically smaller capac-
ity, they would usually have to drop some of the data first and thus end up storing
subsets of data available on the proxy. This proxy hierarchy is outlined in Figure
1.4. Of course, what data can be expected to be stored on the proxy becomes less

14

clear once the proxy serves multiple clients. In such a case, the proxy may get
overwhelmed by requests from another client in such a way that it is forced
to drop all data loaded for our client. In this case, our client may still hold some
data while the proxy no longer does.

N
SAND Internet m Y
Browser \ SAND Internet N
N Browser \
S ~ . \
& TR N
N e S A &
™ WS v
— NV N v
r ~ 5
\ L]
\ \v w
L&l \ \ \
\ : Al
[ge!W!l!dIEw gg!&li!!do,' | ‘ml\hndm\ c— |
Wﬁ | Memory Based | Disk Based V| | DiskBased D E A ‘
W'—i Cache 4,[’ - Cache g ke Cache Um u
L b, J / \ ‘ ! !
SAND Internet e —
Browser , ﬁ I f e | Spatial Disk Based
/ j.-a J / : J ; Database
R e / B]
ﬁ — RS / / S |
N] , /
) / /
SAND Internet 7 ’
Browser Ve /
s QW ¥
Department e gl / Spatial Data
- s .
- Organization /7 Provider

Figure 1. 4. SAND Internet Browser and proxies chained together

Regardless of the type of platform managing the data, the data is always stored
in a spatial data structure (e.g., some variant of a quadtree). The main data server
runs a full-blown spatially-enabled DBMS. The proxies and clients however only
perform a subset of operations of a normal DBMS in order to support the limited
functionality required by this layered system of caches/proxies.

This layered system is only used for base map visualization. It is not used to
evaluate queries. The common interface for nodes participating in the stacked
caching system turns out to be very simple:

implements: getArea(Rectangle area)
requires: getArea(Rectangle area)

This means that each participant in the infrastructure must be able to
perform a remote procedure call (RPC) representing a window query on its parent
within the hierarchy (where the parent means the node closer to the main server).

15

It also needs to provide a window query interface, i.e., allow nodes closer to the
client to submit window queries (RPCs) to it.

Above, we have shown that individual computing platforms can be linked to-
gether to create a chain of caching proxies that link the client’s visualization mod-
ule with the central spatial database. Not all computers within this chain need to
employ the same caching method. They only need to implement the above inter-
face. The actual implementation can vary depending on the hardware parameters
of that platform as well as other factors. However, even within each computer, the
individual caching methods do not need to be used in an isolated fashion. The
caching concept can be generalized to involve an arbitrary number of caching lay-
ers that can be stacked on top of each other in the order of the speed with which
they are able to serve the content. Many times, the speed of delivery is inversely
proportional to the volume of data any given layer can store efficiently or at all.
For instance, access to data stored in primary memory is fast but the storage ca-
pacity is limited. On the other hand, a disk-based memory has substantially larger
capacity but access to the data is slower.

Note that accessing the central data server can be considered to be within the
framework of such a layer as well, and it would be the last and slowest layer;
however, it always succeeds (never generates a page fault). So we see that it does
not matter whether the data served by any given layer is stored locally or in a re-
mote location. Thus, this concept allows us to generalize the caching into multi-
server setups, or even to a peer-to-peer environment. All the client needs to know
is in which order it should turn to individual data providing layers. Note that the
border between data cache and data server is fuzzy as individual clients can share
caches on servers closer to them than the original server, in which case such
caches would actually serve as sort of proxies in such environment.

6 Evaluation

Our research explores the impact of various types of techniques for chaining dif-
ferent caching layers together on the performance of the solution. We investigated
different scenarios and suggest ideal combinations of caching based on the types
of devices used, usage model (e.g., number of users looking at the same data),
network speed, and other factors.

Specifically, we have designed and implemented the following caching meth-
ods and investigated properties of the SAND system created by chaining them in
various combinations:

* Client

1. direct access — client communicates directly with main spatial server
with no local caching

16

2. local caching — client caches data in its memory
* Proxy

1. pre-loaded data — the local SQL database is pre-loaded with all spatial
data from the server

2. dynamically-loaded data — the local SQL database is loaded dynami-
cally based on the requests coming from the clients

The behavior of the whole system depends on a number of factors, many out-
side our reach (e.g., the network latency, number of concurrent users, or
even the exact implementation of the garbage-collection algorithm in the underly-
ing operating system or virtual machine, etc.). This also makes a rigorous
comparison with other existing systems that aim to serve the same goal (e.g.,
MapQuest) difficult as we are not able to run performance tests of both systems in
identical environments. Therefore, the nature of the SAND system and a
MapQuest-type system makes their comparison difficult. Of course, we have tried
to minimize the impact of external factors. This is achieved by utilizing the
same hardware and software platforms for both systems, the same network-
ing environment as well as identical data sets, queries or sequences of que-
ries. In addition, the parameters of the server platform, the networking environ-
ment, and the type of datasets and queries that were run on them were chosen to
be typical for the types of deployments that we suggest would benefit from this
system.

The goal of this evaluation is not necessarily to determine that one approach is
better in every scenario. Instead, we aim to identify what approach is the best one
for different methods of deployments and provide the system administrator and
user with guidelines for selecting a solution best suitable for their specific needs.
Besides comparing vector-based SAND Internet Browser against a bitmap solu-
tion, we also deployed SAND in several different ways utilizing its modularity as
described in Section 5.1.

6.1 Comparison with Raster-Based Visualization

For our performance evaluation, we used TIGER datasets from the U.S. Census,
specifically the street maps for states in the Mid-Atlantic region. This includes all
the roads and streets in Virginia, Maryland, District of Columbia, New Jersey, and
Pennsylvania. There are over 7,500,000 entries in this combined dataset. Each en-
try corresponds to a single line segment, where each actual street may be repre-
sented by one or more line segments in the map. The total size of the data stored in
the format distributed by U.S. Census is over 700MB.

17

Our performance testing aims to compare different methods of deploying
SAND’s vector-based approach to remote mapping with the bitmap based ap-
proach employed by such popular systems such as MapQuest. In order to run both
systems in the same environment, we chose MapServer [2] to represent the
bitmap approach. This allows us to deploy both systems on the same hardware,
using the same operating system and within the same networking environment.
This also enabled us to minimize performance differences caused by factors that
are not directly related to the design of spatial data management.

6.2 Typical Usage Scenarios

A user of a mapping or GIS system frequently performs the following operations
while navigating the map:

* Zoom in — view an area of interest in more detail.

* Fast Scroll — move the viewable area to the left and to the right, or up and
down by large increments. In our scenario, the map moves by one half of the
window size, i.e., there is 50% overlap between the old and new views.

* Fine Scroll — move the viewable area to the left and to the right or up and
down by small increments, perhaps only by a fraction of the window width or
height. In our scenario, the map moves by 10% of the window size, i.e., there
is 90% overlap between the old and new views.

* Zoom out — view a larger area of the map within the viewable window.

We expect (and confirm our expectations by running experiments) that the cost
of each visualization operation (zoom, pan) for the MapServer approach will be
approximately constant given a constant data density (i.e., the number of objects
to be visualized for a fixed view area size) and viewable area size. If the number
of elements within the viewable area remains the same, then the cost of the
spatial query and the cost of subsequent rendering and bitmap transfer remains the
same as well. Thus we see that when the number of objects visible as a result of a
visualization operation remains the same, the cost of updating remains constant as
well. Given a server platform, the MapServer system responsiveness will depend
on the network speed and latency. The situation for the SAND Internet Browser is
different. There, the system takes a more complex approach when processing
visualization requests and the response time depends on the nature of the request
as well as on the history of similar requests preceding this one.

As mentioned above, we have selected several typical operations that users of
a mapping system or GIS would perform most often while navigating
around the map. These operations include zooming in and out and pan-
ning/scrolling. First, we compare MapServer with the standard SAND Internet
Browser setup that only involves the central data server and the SAND Internet

18

Browser client. Later we also compare MapServer with a deployment of the
SAND Internet Browser in an environment where data cannot be stored locally.
We conclude with a comparison of the estimated performance of the tile method
as typified by Google Maps in the same environment in which both MapServer
and the SAND Internet Browser were deployed.

For the SAND Internet Browser, we measure the execution time in two scenar-
ios:

* The data to be visualized as a result of the user’s operation is already
cached on the system.

* The data to be visualized as a result of the user’s operation is not yet
cached on the system and has to be loaded dynamically from the server.

For MapServer, the bitmap is always downloaded from the server for each new
operation.

To measure performance across various deployment scenarios (here rep-
resented by different properties of the network connection), we emulate net-
working environments that correspond to several typical methods of achieving
connectivity (i.e., “hookup”) on mobile devices as well as fixed workstations. Ta-
ble 1.1 describes these connections.

Table 1. 1. Properties of various network connection (i.e., “hookup”) methods

Connectivity (i.e., “hookup’) methods
Hookup Bandwidth (kB/sec) Delay (sec)
Modem 7 0.3
Broadband 183 0.2
Satellite 62 1
LAN 1,250 0.002

To emulate standard usage scenarios, all TCP/IP parameters of the networking
layer were left at their default values even though for some types of con-
nectivity adjustments of these parameters may improve the overall through-
put.

To emulate different networking properties in our test environment, we have
utilized NIST Net [6], a general-purpose tool for emulating performance charac-
teristics in IP networks. We have configured NIST Net using networking parame-
ters typical for individual connectivity methods (Table 1.1) to measure the per-
formance of the SAND system in different deployment scenarios.

19

For the pure client-server environment (i.e., no auxiliary servers), the perform-
ance was tested for the following three basic client-server architecture states.
First, the cached SAND Internet Browser state refers to a scenario where
the SAND Internet Browser provides local caching and the data to be displayed as
a response to the sequence of scroll operations is already available in the client’s
memory. Second, the direct SAND Internet Browser state refers to a scenario
where the client does not cache data locally and downloads all the data from its
server. This represents the pure client-server setup where the client communicates
directly with the central server. Finally, the dynamic SAND Internet Browser state
refers to a scenario where the client provides local caching but the necessary
data is not available in the local cache yet.

Results of a performance comparison of MapServer with the SAND Internet
Browser for fine scrolling can be seen in Table 1.2. During a sequence of fine-
scroll operations, the previous window overlaps of the next window 90% of the
window area. This means that the SAND Internet Browser can use a fast
bitmap copy operation to transfer the part that can be reused to an other location of
the screen and it needs to rasterize only 10% of the window using vector data
stored either locally or downloaded from the server. We see that the performance
in case of cached data is essentially the same across all hookup methods.
This is because all data is cached and no data needs to be transferred across the
network. Slight differences are due to operations performed by unrelated back-
ground processes (e.g., Java VM garbage collection). Also note that while the di-
rect approach does not use any caching and loads all data from its upstream pro-
vider all the time, its data management overhead is lower. Hence, for faster types
of network connections the direct method tends to perform better, while the
cached methods is typically better for slower connection methods.

Table 1. 2. Performance comparison of MapServer, the SAND Internet Browser, and
the Tile Method (e.g., Google Maps) for fine scroll. The table indicates the time in
seconds to perform 20 subsequent fine-scroll operations.

Fine scrolling/I.ocal Panning

Cashed Noncached
Hookup SAND Internet Browser Map | Est. Tile

Cashed | Direct | Dynamic | Server | Method
Modem 6.6 124 80 179 18
Broadband 6 20 38 52 5
Satellite 5 81 85 181 18
LAN 5 10 33 18 2

Results of a performance comparison of MapServer with the SAND Internet
Browser for zooming in can be seen in Table 1.3. The starting viewable window

20

showed 25,000 line segments and each zoom-in operation doubled the map scale,
i.e., both the x and y coordinate ranges were halved. Thus, the area before the
zoom-in operation is four times as large as the area displayed after the zoom-in
operation. We measured the time it took to execute five subsequent consecutive
zoom-in operations with the last view showing only dozens of line segments.

Note that the viewable area resulting from the zoom-in operation is always a
subset of the viewable area that existed prior to the zoom-in operation.
Thus, for the caching SAND Internet Browser, the data to be displayed after any
zoom-in operation will always be available in the cache. Here we assume that the
client uses the same data set on all the zoom levels involved. In practice,
zooming in may require the client to display data from additional data layers
which may not be available in the cache yet.

Table 1. 3. Performance comparison of MapServer, the SAND Internet Browser,
and the tile method (e.g., Google Maps) for zoom-in. The table indicates the time in
seconds to perform five subsequent zoom-in operations. The results for the dynamic
SAND Internet Browser method are not applicable (N/A) since the data will always be
cached from the previous operation (assuming all zoom levels retrieve data from the same
dataset).

Zoom In

Cashed Noncached
Hookup SAND Internet Browser Map Est. Tile

Cashed | Direct | Dynamic | Server | Method
Modem 0.5 10 N/A 44 44
Broadband 0.8 3 N/A 12 12
Satellite 0.5 10 N/A 44 44
LAN 0.8 1 N/A 5 5

Results of a performance comparison of MapServer and the SAND Internet
Browser for the zoom-out operation can be seen in Table 1.4. This query
test is essentially a reverse of the zoom-in operation with a single important dis-
tinction in the caching SAND Internet Browser. In particular, while each zoom-in
operation can expect to have all the necessary data cached from the previous
step, in the zoom-out operation this is not necessarily the case. Consider a scenario
when the user moves around in a zoomed-in (e.g., street) level and then tries to
zoom out (e.g., to city level). As the viewable area grows, not all the data ob-
jects that overlap this area are necessarily cached.

For the zoom-out operation, the starting viewable window showed a large de-
tail containing only a few dozens of line segments. Each zoom-out operation ex-
pands both the x and y coordinate ranges twice. Thus, the displayed area before

21

the zoom-out operation is four times smaller than the displayed area showing after
the zoom-out operation. We measured the time it took to execute five subsequent
zoom-out operations, the last view was showing about 25,000 line segments. We
considered both scenarios outlined above for the SAND Internet Browser. One
scenario captures the situation where the data to be shown after the zoom-out op-
eration is already in the cache (i.e., the zoom-out operation was preceded by a
zoom-in operation without any panning operations in between). The other scenario
explores a situation when the data to be shown after the zoom-out operation is not
in the cache and has to be fetched from the spatial server.

Table 1. 4. Performance comparison of MapServer, the SAND Internet Browser
and the tile method (e.g., Google Maps) for zoom out. The table indicates the time
in seconds it took to perform five subsequent zoom-out operations.

Zoom Out

Cashed Noncached
Hookup SAND Internet Browser Map | Est. Tile

Cashed | Direct | Dynamic | Server | Method
Modem 1.8 26 48 45 45
Broadband 1.6 5 22 12 12
Satellite 3.2 17 36 45 45
LAN 2.3 2 20 5 5

Table 1. 5. Performance comparison of MapServer, the SAND Internet Browser, and
the tile method (e.g., Google Maps) for fast scroll (global panning). The table indicates
the time in seconds to perform 20 subsequent fast-scroll operations.

Fast Scrolling/Global Panning
Cashed Noncached
Hookup SAND Internet Browser Map | Est. Tile
Cashed | Direct | Dynamic | Server | Method
Modem 3.9 108 109 161 80
Broadband 3.9 19 54 44 22
Satellite 3.9 80 104 165 82
LAN 3.8 9 48 14 7

Table 1.5 shows the results of a performance comparison between MapServer
and the SAND Internet Browser for global panning. Unlike in the Local Pan-
ning/Fine Scrolling scenario evaluated above, in the global panning operation, a

22

large portion of the post-panning viewable area does not overlap the prepanning
viewable area. This means that the SAND Internet Browser must load a large por-
tion of the new viewable area from the locally cached data or from the central spa-
tial server. Given this realization, we again measure the performance of the SAND
Internet Browser for two distinct scenarios:

* The data to be visualized as a result of the user’s operation is already
cached on the system.

* The data to be visualized as a result of the user’s operation is not yet
cached on the system and has to be loaded dynamically from the server.

MapServer, as always, generates a new bitmap on the server and pushes it onto
the client. Each view was showing about 25,000 line segments during this panning
operation. As we can see, each of the tests performed above repeats the same op-
eration under the same conditions. This provides us with a comparison of each
possible operation under given conditions (in terms of network parameters) sepa-
rately. While in a real life deployment the network parameters will likely remain
fixed during each session, the sequence of operations will probably be a combina-
tion of the available operations. In other words, the user will probably not use
solely the fine-scroll or the zoom operations, instead they would typically do some
scrolling, then zoom in, scroll some more, zoom out, etc. The typical sequence
structure and duration of such a session depends on the nature of the scenario. Re-
viewing a larger area for certain properties may involve much scrolling and a
minimum of zooming. Investigation of multiple separate locations may involve
more zooming in and out with a minimum amount of panning.

The user will rarely work under conditions when the spatial data is either fully
cached all the time or not cached at all in any step. Depending on the ex-
act usage patterns, the user can expect to benefit from the caching for some
portion of his or her operations. The success rate of the caching mechanism
will depend on numerous factors. The first is the time at which the operation is
executed. The cache will be empty right after the start-up of the client application.
So the user can expect to be fetching data from the server for most such operations
initially. Thus, the initial performance of the caching SAND Internet Browser
will appear close to what we have shown above under the non-cached data
columns (i.e., direct or dynamic). Once the cache is filled with data, the success
rate will depend on the extent to which the user’s spatial operations are localized.
If the user visualizes information directly within the same limited area (e.g., fine
scroll or zoom in), then most of the operations will use the cached data. In such a
scenario, the performance will be close to what we have shown above in the
cached data column. Most of the time the sequence of operations generated by the
user will trigger a mixture of cached and non-cached data retrievals. Thus, we can
consider our cached and non-cached results as the extreme cases of what a user
may expect and a typical experience lies somewhere in between.

23

MapServer vs. SAND - fine scroll

80
60
20 SAND dynamic
0 SAND direct

n SAND cached
\1‘066

Time (sec)

il

e 3
e ot
Cag

o0

o

(a)

MapServer vs. SAND - fast scroll

o
k)
Q
£
E
MapServer
SAND dynamic
SAND direct
SAND cached

\Jx'\\\

(®)

Figure 1. 5. Comparison of a bitmap (MapServer) approach with the vector-based SAND
approach for remote spatial data visualization. Assuming all zoom levels retrieve data
from the same dataset, note that the SAND dynamic scenario for the zoom-in operation is
not applicable as all data is already cached from the previous view (denoted by ‘X’).

24

MapServer vs. SAND - zoom in

MapServer

SAND dynamic (X)
SAND direct
SAND cached

-

Time (sec)

0\
o e :
o e S
o mo’a‘i\"ar\ A

(©

MapServer vs. SAND - zoom out

0
L)
Q
E
S
MapServer
SAND dynamic
SAND direct
2 SAND cached
o AN
R
o
(d)

Figure 1.5. (continued)

Figures 1.5a—1.5d display Tables 1.2—1.5 graphically. The figures show that in
most deployment scenarios, network environments, and usage patterns, the user
can expect to have a substantially better experience when using the SAND Internet
Browser than when using a pure bitmap system.

25

6.3 Performance Comparisons for Deployments Utilizing
Auxiliary Servers

In the previous section we compared the SAND Internet Browser-based system
that involved a caching and non-caching client and a central spatial server with a
bitmap based system represented by MapServer. Here, we evaluate a scenario
outlined in Section 4 where a small footprint wireless-capable handheld de-
vices (e.g., smart/cell phones, PDAs and other similar devices) not capable of
storing data locally can be used within the SAND Internet Browser-based ar-
chitecture. Note that the bitmap approach is still valid as the client does not store
any data locally and thus this method is still applicable even on these mobile de-
vices.

We examine three different deployment scenarios. The first scenario involves
the static proxy (section 4.1) and the state is termed preloaded. The remaining two
scenarios involve the dynamic proxy (section 4.2). The first of the two assumes
that the user just started the application so that no cached data is available
yet. We call this state clean. Since the proxy server can provide its services to
multiple users, we also assume that this user is the first one to request this particu-
lar data. The second dynamic proxy scenario assumes that the same data was al-
ready accessed before (by this or another user), and thus it is already available on
the proxy server. This state is termed cached.

Using the auxiliary server deployment example from section 4 where first re-
sponders use handheld devices to communicate with the central facilities via a
mobile van, we see that the communication link consists of two parts.The first link
connects the devices and the mobile van, while the second link connects the van
with the central facilities. We presume that in emergency scenarios such as these,
the connectivity between the handheld devices and the van is faster than the con-
nectivity between the van and the central facility. Based on the assumptions for
such an emergency response deployment, we assume that the mobile teams will be
able to connect to the central facilities over a satellite link. Locally, the connection
between the individual response team members will be wireless (e.g., WLAN
802.11b/g). This emulation is again facilitated by using the NIST Net tool.

Table 1.6 shows the results for different usage scenarios that involve auxiliary
servers. The client to auxiliary server link is of a wireless LAN type. The link be-
tween the auxiliary server and the central spatial server is a satellite connection.
Figure 1.6 shows the performance of a system that utilizes auxiliary servers. As
we see, MapServer performs better when compared to the SAND Internet Browser
on a freshly installed system where no data has been pushed through the infra-
structure yet (labeled “clean” in the figure) and the proxy server cache is still
empty. This is because of the additional overhead of copying the necessary data
from the central server, a step that MapServer completely bypasses. Once the
cache is loaded with data, we see that the SAND Internet Browser performs
at least as well as, and, most of the time, significantly better than MapServer. If

26

the auxiliary server is preloaded with the data, then the improvement in the per-
formance of the SAND Internet Browser over MapServer is even more pro-
nounced. Note that for the zoom-out operation, the preloaded approach is substan-
tially faster than the cached approach. While there is no network traffic in either
case, the cached method has extra overhead (e.g., before sending the data to the
client it first needs to verify if any additional data needs to be downloaded from
the central server).

Table 1. 6 Performance comparison of various operations for MapServer and the
SAND Internet Browser using the auxiliary server deployment method. The scroll
operation values represent the time (in seconds) it took the system to process 20
subsequent scroll operations. The values associated with the zoom operations indicate the
number of seconds it took the system to process five consecutive zoom operations. The
result for the zoom-in operation in the dynamic SAND Internet Browser method is not
applicable (N/A) since the data will always be cached from the previous operation
(assuming all zoom levels retrieve data from the same dataset).

Auxiliary Server-based Deployment
Proxy SAND Internet Browser
Operation | MapS i
P apServer Preloaded Dynamic
clean | cached
Fast Scroll 165 19 568 52
Fine Scroll 181 29 520 75
Zoom In 44 2 N/A 12
Zoom Out 45 6 58 48

6.4 Comparison with the Tile Method

The tile method, another bitmap-based method providing an alternative to the
MapQuest-type bitmap approach, was described in Section 2. While we cannot
run formal experiments comparing Google Maps or MS Virtual Earth with the
SAND Internet Browser directly, we can estimate what their performance would
be within the same environment in which MapServer and the SAND Internet
Browser were deployed. Assuming that the cost of generating the tiles on the
server is negligible, the determinative factor for the cost is the amount of data sent
from the server to the client. Since the tile method allows for tile reuse, only the
newly visible areas will trigger further download.

When all the necessary data is fully cached from the previous steps, the re-
sponse times for the SAND Internet Browser and the tile method are essentially
instantaneous. For the tile method, the browser simply needs to redisplay the
cached tile images which takes no time. Similarly, the SAND Internet Browser

27

also just needs to render and display the cached vector data, done by retrieval and
rasterization, which also only takes a fraction of a second (e.g., Table 1.2 once
the execution time is divided by 20, the number of scroll operations, to yield
the time per fine-scroll operation). Hence, for scenarios where data is fully locally
cached, we consider the performance of the tile method and the SAND Internet
Browser to be comparable.

i ———

|

]

|
L=

fine scroll

fast scroll
zoom out

F

Time (sec)

zoom in

Figure 1. 6. Performance comparison of various operations for MapServer and the
SAND Internet Browser using the auxiliary server deployment method. Note that the
non-cached (clean) scenario for the zoom-in operation is inapplicable.

Comparing the tile method with MapServer, we find that as the fast-scroll op-
eration reuses 50% of the visible area, the tile method would be twice as fast as
MapServer (see Table 1.5. The fine-scroll operation reuses 90% of the area, so the
tile applications would be about ten times faster than MapServer (see Table 1.2).
Both tables indicate the time in seconds it took to perform 20 subsequent scroll
operations. Using the tile method, zoom in/out (if offering the view for the first
time and thus not using cached data) would take as long as MapServer as the
specific bitmaps are not yet available on the client and thus they have to be loaded
from the server in full—that is, they must be reused. Therefore, MapServer results
for zoom in/out shown in Tables 1.3 and 1.4 also apply as estimated results of the
tile method.

Comparing the tile method with the SAND Internet Browser we find that for
fine scrolling (see Table 1.2) the tile method would be faster than the
SAND Internet Browser when the data is not already cached (i.e., direct and dy-

28

namic). For fast scrolling (see Table 1.5), the tile method would still be slightly
faster or perform comparably when the data is not already cached (i.e., direct).
The dynamic case is slower in the SAND Internet Browser due to overhead in set-
ting up the caching such as traversing the PMR quadtree, etc. The rationale for the
comparable behavior for fast scrolling is that, overall, there is a fixed per-update
overhead involved in requesting, handling and storing the data which is higher
for the SAND Internet Browser due to the vector format of the data. This overhead
is amortized over larger downloads for fast scrolling, thereby making the two
methods comparable, while this is not so for fine scrolling, where the overhead
makes the performance of the SAND Internet Browser worse than the tile method.

For zoom in/out, the SAND Internet Browser would be considerably faster than
the tile method (Tables 1.3 and 1.4). However, in typical deployments, different
zoom levels would be displayed with different levels of detail. For instance, when
performing a sequence of zoom-in operations, we may need to load more data af-
ter some of the steps, even when using the SAND Internet Browser. The advan-
tage of the SAND Internet Browser is maximized when users work with the same
level of detail while zooming in and out.

Overall, we expect the tile-based approach to perform similarly to the
SAND Internet Browser in many actual usage scenarios. The tile method’s draw-
back is that all of the work is concentrated on the server so as the number
of clients connecting to a server rises, performance decreases more rapidly than
for the SAND Internet Browser where the client is responsible for more work.
Also, the tile method does not allow for development of more sophisticated clients
that would execute more operations locally. While for the SAND Internet
Browser, the client stores the vector data and can thus perform many operations
(such as window or nearest neighbor operations);for the tile method, the client
only has access to the bitmap tiles, which do not provide data for such localized
operations. So, we see that the SAND Internet Browser is a better platform for de-
veloping smarter, more independent client applications.

7 Conclusions and Future Research

We presented a new vector-based system for remote access to spatial databases
that could be used where the traditional raster-based approaches do not work too
well. We compared the performance of a bitmap raster-based system with the vec-
tor-based SAND Internet Browser system. Our experiments allow us to suggest
the best type of a remote spatial data visualization tool for a given deployment
scenario.

We have developed a modular design for the infrastructure that facilitates re-
mote spatial data access. We applied it to realize several specific types of the
SAND Internet Browser system deployment. The best-performing deployment
depends on the environment in which the system is to be used. Generally,

29

the system can either be deployed so that the clients communicate directly with
the central spatial server. Alternatively, in situations where the client runs on a
thin platform or where the service is shared among several co-located clients, an
auxiliary server could be used to improve the overall solution’s performance.

Future research directions include investigating methods for caching frequently
used data in the form of bitmap tiles instead of vectors. While these tiles would
only be usable in given views (in terms of zoom factor and layers displayed), they
would also allow skipping of repeated rasterization steps. The result would be
a hybrid between the SAND Internet Browser and the tile method used by Google
Maps and Microsoft Virtual Earth.

References

—_

. Google Maps. http://maps.google.com.

2. MapServer — open source development environment for constructing spatially enabled Inter-
net-Web applications. http://mapserver.gis.umn.edu.

3. MSN Virtual Earth. http://virtualearth.msn.com.

4. MySQL — the world’s most popular open source database. http://www.mysql.com.

5. NASA World Wind. http://worldwind.arc.nasa.gov.

6. NIST Net — National Institute of Standards and Technology network emulation pack- age.

http://snad.ncsl.nist.gov/itg/nistnet.

7. TopoZone — the Web’s topographic map. http://www.topozone.com.

8. MapQuest: Consumer-focused interactive mapping site on the Web.
http://www. mapquest.com, 2002.

9. PostgreSQL — the world’s most advanced open source database, 2004.
http://www.postgresql.org/about/.

10. T. Barclay, J. Gray, and D. Slutz. Microsoft TerraServer: a spatial data warehouse.In Pro-
ceedings of the ACM SIGMOD Conference, W. Chen, J. Naughton, and P. A. Bernstein, eds.,
pages 307-318, Dallas, May 2000.

11. A. Harwood and E. Tanin. Hashing spatial content over peer-to-peer networks. In
Australian Telecommunications, Networks and Applications Conference, pages 1-5,
Melbourne, Australia, December 2003.

12. Y. Luo, X. Wang, and Z. Xu. Component-based WebGIS and its spatial cache framework.
In Lecture Notes in Computer Science 3129, pages 186—-196. Springer-Verlag, Berlin,
Germany, January 2004.

13. R. C. Nelson and H. Samet. A population analysis for hierarchical data structures. In
Proceedings of the ACM SIGMOD Conference, San Francisco, May 1987.

14. H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS. Addison-Wesley, Reading, MA, 1990.

15. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

16. H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan-
Kaufmann, San Francisco, CA, 2005.

17. H. Samet, H. Alborzi, F. Brabec, C. Esperanca, G. R. Hjaltason, F. Morgan, and E.
Tanin. Use of the SAND spatial browser for digital government applications. Communica-
tions of the ACM, 46(1):63—66, January 2003.

30

18. E. Stolte, C. von Praun, G. Alonso, and T. Gross. Scientific data repositories: designing for a
moving target. In Proceedings of the ACM SIGMOD Conference, pages 349-360, San Diego,
CA, June 2003.

19. C. Yap, K. Been, and Z. Du. Responsive thinwire visualization: Application to large geo-
graphic datasets. In Proc. 14th Ann. Symp., Electronic Imaging 2002. IS&T/SPIE, 2002. 19-
25 Jan, 2002, San Jose, California.

20. R. Zimmermann, W.-S. Ku, and W.-C. Chu. Efficient query routing in distributed spatial da-
tabases. In Proceedings of the 12th ACM International Workshop on Advances in Geo-
graphic Information Systems, 1. F. Cruz and D. Pfoser, eds., pages 176-183, Washing-
ton, DC, November 2004.

Chapter 2: Case Study: Geospatial Processing
Services for Web-based Hydrological
Applications

Laura Diaz, Carlos Granell, Michael Gould

Centre for Interactive Visualization
Department of Information Systems
Universitat Jaume 1

Castellon, Spain

Abstract River discharge is an important issue to be monitored because of its
significant influence on environmental systems, on human lives for water resource
exploitation, and hazards related to floods and landslides. In this context, we have
designed and developed a Web-based Geoportal for hydrological applications that
integrates geospatial processing services and Web mapping viewers to provide an
interactive and user-friendly interface to hydrological modeling experts and scien-
tists. The server side provides hydrological model logic through a library of dis-
tributed geospatial processing services that prepares and presents all geospatial
data —satellite imagery, cartography, digital elevation models, and sensor meas-
urements— necessary for running the hydrological (river runoff) model .The Geo-
portal’s client side facilitates catalogue service searching for appropriate geospa-
tial data, interacts with the geoprocessing services according to the hydrological
model parameters, and displays the results into a Web mapping viewer by using
the Google Map API to provide quick feedback to scientists about the status and
behaviour of the hydrological model. This chapter provides an overview of the
proposed Geoportal by integrating standards both for geospatial processing ser-
vices and for geospatial data visualization. We emphasize the challenges and prob-
lems encountered during implementation regarding the interoperability of different
geospatial standards and components.

1 Introduction

Geospatial Web services —-Web services that serve and process geospatial informa-
tion for a wide range of territory-based applications have evolved to become inter-

32

operable pieces used to build modular and distributed GIS applications over Inter-
net [18]. They have become key components of Spatial Data Infrastructures (SDI)
[15], helping support some the most common requirements of scientific users of
information systems such as discovery, access, process and visualization of geo-
spatial datasets.

Scientists traditionally have been major consumers and collectors of huge
amounts of data. As in the case of the field of hydrology, they have different needs
than geospatial information users from the more cartographic side of the Geo-
graphic Information Systems (GIS) field. However they have in common the need
to gain remote access (without huge downloads) to large quantities of data, and
also to process them remotely using on-line services. Following the e-Science phi-
losophy of connecting scientific research (science) [6], our aim here is to connect
scientists to their data, resources, models, and services what is also an important
challenge for SDI. Indeed such infrastructures are beginning to facilitate access to
distributed, heterogeneous geospatial data through a set of policies, common rules,
and standards that together help improve interoperability [17]. Traditional discov-
ery and visualization-based SDI is evolving to a more service-based vision in
which geospatial Web services are used not only to access geospatial data, but also
to transform them and process them, often in geospatial service chains [1][12].

The recently-published INSPIRE Directive? aims to harmonize spatial informa-
tion across Europe and to improve geospatial data services according to common
principles. Our goal here is to help hydrologists —and scientists in general inter-
ested in geospatial information— in approaching to INSPIRE philosophy to more
efficiently meet their requirements. Hydrologists provide their knowledge and ex-
pertise, and SDI researchers play an active role to provide proper geospatial proc-
essing services, components and applications to facilitate connecting such hy-
drologists with their data and models within an interoperable architecture. In this
way, the cooperation between data providers and users is fostered as proposed by
the “.

This chapter presents the design and implementation of a concrete Web-based
Geoportal for hydrological applications that integrates geospatial processing ser-
vices and Web mapping viewers like Google Maps to provide an interactive and
user-friendly interface to run hydrological models. Our experience in distributing
data and processing in the field of hydrology may be extrapolated to other special-
ized application fields like flooding, forest fires, urban and geological modeling,
making then the SDI and the INSPIRE initiatives available to a broader audience.

The remainder of this chapter is structured as follows. Section 2 presents an in-
troduction to hydrological models. Section 3 gives a brief state of the art of the
geospatial services and applications for hydrological models. The description of
the Geoportal application is the subject of the Section 4 that reviews the system
architecture and the underlying open source components and technologies used for

3 http://inspire.jrc.it/
4 http://www.gmes.info/

33

implementation. Section 5 describes the set of geospatial processing services and
how are integrated into the Geoportal. Some lessons learnt with respect to user in-
terface issues and the integration and interoperability of geospatial processing ser-
vices together with the some conclusions are discussed in Section 6.

2 Hydrological Models

River discharge is an important issue to be monitored because of its significant in-
fluence on environmental systems, on human lives for water resource exploitation,
and hazards related to floods and landslides. In this sense, hydrological models
have gained more attention because they provide a physical representation of the
hydrological processes occurring in a given basin. The application of these models
together with current technologies make possible to monitor and forecast river
discharge in a better way. The first task for supporting such monitoring applica-
tions is to identify the people who would use the software. Often data providers,
who own the data necessary, and scientists, experts in hydrological models, differ
in goals and objectives, leading to a lack of collaboration among them.

The AWARE project® is a multidisciplinary project carried out by a team of
hydrologists, remote sensing specialists, and information system researchers [19].
Its aim is to put together data providers, experts and scientists by developing a
user-friendly Web-based prototype that permits not only expert users (hydrologists
and other scientists) but also other types of end users and data providers (such as
water policy makers, water supply and hydropower companies, irrigation consor-
tia, public authorities) to run concrete hydrological models. This implies usability
requirements in our system design leading to an easy-to-use prototype that fea-
tures intuitive interfaces and wizards assisting non-experts with both the complex
tasks of such models and interpreting the results. Since expert users often are more
comfortable directly handling and analyzing data, and feel that data provided
should be accurately investigated by them, the Geoportal should be flexible
enough to serve both experts and novice users. Furthermore, the design of the
Geoportal should take into account usability, utility and flexibility requirements.

3 Overview of Available Geospatial Services and Applications
for Hydrological Models

Several Web-based hydrological applications are publicly available on the Inter-
net. Most of them are built around a Web mapping service in which several data
sets are visualized by applying transparently hydrological model routines. How-

3 http://www.aware-eu.info/

34

ever, it is important to highlight some general differences between these Web so-
lutions and our Geoportal. Firstly, our solution allows expert users to interact di-
rectly with the underlying hydrological model. A hydrological model normally in-
volves heterogeneous datasets but also several model parameters and variables
that must be calibrated. In our application expert users may try several model con-
figurations until the results are acceptable for them. Secondly, in contrast to other
applications that use static datasets, expert users should load specific datasets of
interest for the area of study. Actually many expert users own the local data neces-
sary to run the model and so the first choice is to allow users to feed the model
with the local data they possess. Since a goal of the AWARE project is to be com-
pliant with the INSPIRE initiative, the Geoportal allows other non-expert users to
discover and access geospatial data via SDI catalogue services [17]. For instance
any user might be interested in searching catalogues for appropriate satellite im-
agery for the study basin (geographic constraint) and during the snowmelt station
(temporal constraint). Finally, another key aspect is that our application is built on
distributed geospatial processing services as we detail in the following sections.
This aspect meets nicely with the term service-oriented science [6], which refers
to scientific research structured as distributed networks of interoperating services.
Next we sketch some Web solutions for hydrological applications to provide an
overview of current Web-based hydrological applications before describing our
Geoportal application in the following sections.

The National Water Information System (NWIS®) for the U.S. provides Web-
based access to hydrological data to the public and organizations. Basically,
NWIS is a data distribution site where users can search and visualize static water
data (already embedded in the system), making it impossible to load user data dif-
ferent from those stored in the system. The U.S. Geological Survey (USGS) also
offers StreamStat’, a Web-based tool that allows users to obtain stream flow statis-
tics, drainage-basin characteristics, and other information for user-selected sites.
StreamStats users can choose locations of interest from an interactive map and ob-
tain stream flow information for these locations.

A relevant tool is BASINS® —Better Assessment Science Integrating Point &
Nonpoint Sources from the U.S. Environmental Protection Agency (EPA)—, which
is a complete hydrological application for performing watershed-based studied us-
ing hydrological models similar to one used in our Geoportal. This application
runs on an open source GIS called MapWindow®, making it more attractive to
open source community, yet it is a desktop application that implies that all func-
tionalities and modeling tools are integrated in the application and then performed
locally.

® http://waterdata.usgs.gov/nwis/

7 http://water.usgs.gov/osw/streamstats/

8 http://www.epa.gov/waterscience/basins/
? http://www.mapwindow.com/

35

The IJEDI WebCenter for Hydroinformatics [23] is an online application to
identify drought-vulnerable regions. The authors propose a combination of data
mining techniques to characterize the behaviour of water basins and classify them
according to the drought index. Although the goals of IJEDI and our application
are slightly different, both deal with multiple kinds of data that have to be inte-
grated and also provide a friendly user interface to be used by non-experts and ex-
perts users indistinctly. However, it is important to note that geoprocessing capa-
bilities are not present in the IJEDI application in terms of distributed geospatial
services just as our application does.

None of the previous applications execute hydrological models by using dis-
tributed geospatial processing services. Certain types of applications demand a
distributed approach for multiple reasons such as efficiency and reliability. For
example, Web applications for spatial visualization often fully rely on the server
to receive the data and visualize them, however some store data on the client side
(cache) to handle them locally and improve the response time of data visualization
[3]. In our context expert users also try to process large quantities of data remotely
using on-line services rather than downloading the required data and processing
them locally [8]. Indeed transferring large amounts of data from servers to clients
can slow down the whole process, due to network problems or if the server is
heavily loaded. Some efforts to define interfaces to access and process multiple
kinds of geospatial data remotely are carried out by the Open Geospatial Consor-
tium (OGC). Some basic interfaces (WMS, WFS, etc.) have been already applied
to create Web applications [2][4], yet these are shown to be insufficient to suit the
specific processing and modeling requirements of hydrological applications.
However, the recent OGC Web Processing Service (WPS) specification version
1.0 [21] provides interfaces for interacting with geospatial services by either creat-
ing them from scratch or wrapping existing off-line services as Web services. In
short, WPS offers three methods to provide the functionality of a certain geospa-
tial processing service by first using the getCapabilities method, common in other
OGC services, in order to know the available service methods. The WPS defines
input and output parameters in a very detailed way by providing a describeProcess
method. Finally, the execute method actually invokes the geospatial processing
service with concrete input parameters and returns the results. Here then we pro-
pose a Web application that takes advantage of the distributed processing capabili-
ties for performing hydrological models. Similar approaches using WPS services
have been taken in [7][11][24], though with some differences regarding our ap-
proach as explained in the next section.

This brief overview shows some relevant Web applications for hydrological
models pointing out that no Web applications using distributed processing are pre-
sent in the field of hydrology. The next section details the architecture of our Geo-
portal application that supports distributed geospatial processing services.

36

4 System Architecture and Software Components of the
Geoportal Application

The software components and the system architecture of the Geoportal application
are illustrated in Figure 2.1. The architecture follows a middleware approach
composed of three layers. The presentation layer contains the software compo-
nents used for the user interface (top Figure 2.1). Different servers and distributed
geospatial processing services form the middleware layer (centre Figure 2.1)
whereas geospatial data and database systems take place in the data layer (bottom
Figure 2.1). Here we focus mainly on the components involved in the presentation
and middleware layers, describing briefly the data layer. It is important to note
that the Geoportal has been built entirely with open source components and tech-
nology.

..

b

L

Execute . Geoportal WPS Client API
0 & geoprocessing services) (web forms + map viewer + ——
N i v .

using WPS Client APT catalogue client) GMLZKML

Presentation
layer

N
£

HTTP

S
Google
Web server Web server Server

Serviet/JSP GI,,_ [
"n“'l)\nﬂr 1

container v

T UMN
Input & output data (embbeded) S(?;lteat\j‘:esrp bugizzzrl‘flglc
Input data (GML reference)

OGC WPS interface #— — — — — f

=

-« 2

i

2

W

Middleware layer

Geoprocessing services
implementation

Dalastore

SHP + GML

Data layer

+
PostgreSQL

Fig. 2. 1. Geoportal architecture and its components

The presentation layer provides the Geoportal user interface, which permits ex-
pert users to select and perform a hydrological model for a concrete basin of
study. All users are validated and authenticated when logging in the Geoportal.
This feature refers to the possibility to permanently store the current user session
in a database. We use for the Geoportal the open source database system Post-

37

greSQL! to validate users and to store the result of calibrations successfully com-
pleted. A user may perform multiple calibrations for the same basin and decide
later which one to choose to forecast the basin discharge (the actual goal of the
hydrological model).

The user interface of the Geoportal is composed of multiple Web forms (like
wizards) implemented using Apache Struts!!, an open source framework for build-
ing Web applications. These Web forms communicate with a set of Java servlets
and Java Server Pages (JSP) to offer jointly the Geoportal business logic. The
former rely on Apache HTTP Server'? and the latter on Apache Tomcat's. Both
servers are integrated using HTTP connectors, which forward internally Apache
HTTP Server requests to Apache Tomcat, enabling then the execution of Java
servlets through the Apache Server port.

A combination of Java servlets and JSP form the Geoportal business logic in
the middleware. They perform a great range of functions such as guiding users
through the Web forms to search available data in catalogues, data preparation and
collection, data modeling, calibration of model parameters, and interpretation of
results. Other common Web-based functionalities such as user authentication are
also implemented as Java servlets. If some geospatial processing routine is neces-
sary when a Web form is filled out, the Geoportal is able to invoke the corre-
sponding geospatial processing service through the WPS Client API component. The
WPS Client API is a self-developed, key component, because it enables the commu-
nication between the presentation and middleware layers, facilitating connection,
access and combination of distributed WPS services. It transforms user requests
from the presentation layer into OGC WPS requests addressed to a concrete geo-
spatial processing service. Once results are returned, it transforms responses to be
properly delivered to the presentation layer (users). In particular, the WPS Client
API is developed in a modular way being easily extended to support next versions
of the OGC WPS specification. At this moment it supports connectivity to OGC
WPS version 0.4 because version 1.0 is, at the time of this writing, still pending
approval. Like in the OGC WPS specification, it provides support for the data
types specified by OGC such as simple data types and GML (version 2.x). Also,
the client API provides a simple caching method for each requested WPS that is
invoked for the first time, caching the responses of the invoked getCapabilities
and describeProcess requests. Because a process may be invoked several times,
this caching increases processing speed when the same process of a WPS is re-
quested again.

Another key component embedded in the user interface is a Web mapping cli-
ent or map viewer [16]. In our case we use Google Maps API [10] because it pro-
vides a friendly, interactive user interface for novice users. It offers good perform-

10 http://www.postgresql.org/
1 http://struts.apache.org/

12 http://httpd.apache.org/

13 http://tomcat.apache.org/

38

ance for rendering spatial data, and already incorporates high resolution satellite
imagery and other interesting spatial data (for example road network layer in hy-
brid and map views), very useful to provide context for hydrological applications.

Figures 2.2 and 2.3 show the Geoportal user interface in different steps for the
calibration phase of one of the hydrological models. Both figures refer to the
Mallero river basin (319 km?), in the Italian Alps, which is one of the AWARE
project test basins. In Figure 2.3, users can check the distribution of precipitation
sensors according to the basin boundary. The term mashup is currently gaining
momentum in describing integrated heterogeneous Web data [9][13] and it is also
crucial for our application. Google Maps is a key to our service mashup because it
transparently combines both remote data such as the base image and local data
such as the basin boundary and the network of precipitation sensors. In addition,
users may also click on each red pushpin to get more detailed information such as
the location, elevation and name of the corresponding precipitation sensor.

& KWARE Gooportal = SRM Mode! Calibration = Elevation Zones Creation - Mozilla Firefox =&
Bl Edt Wew Heoy foolmas Teos tsb

& - 00 G O upestelie do.vj.esigeapertadevationZonsssrmt_t.do BT e T —— e p—

I3 Econcrizt.com I3 Bancaia (1 Portal Tommadends & PP ® L)l ® Dicienories Gosde 0 AUMRE ® Edpse & CORDIS B Srues B AWARE Dero

Selected for
basin?

Sensor Lng Lat Eley

<9 AllaBraccia 983549 4622589 1717.40002 ool
% Piazzo Cavalll 9,87160 46.25010 1677.60099
. curla 9.85234 4527571 1011.63000 selec

</ Laghi di

Shaee 9.82701 4624854 1655.63000 select/unselect

<4 Ganda di
Lanzada

Q.BAI95 46.27205 OEI.FI00Z clect
35S, Giuseppe 0.82007 4630733 141744995 -
Franscia 9.61324 4620278 1537.85094
3 Spriana 9.86336 46.21677 703.33002
35 Yal Torreggio 9.B3663 46,23754 1363.01097 <o
Campo Moro 9.92748 45,30582 1951.33001

 Funivia
Barning

9.86401 4628156 2038.53003
- Alps Entova 9.63309 4632148 183816003 -
| dlpe dellorp 9.76307 4532152 1968.57995 <
5. Alpe Costa §.8873L 46.21488 1571.04004 :uloc

501 Tarre 5.

Haria 9.85354 4623557 756.37000

H 9 999 9 99999 9 € 999

Fig. 2. 2. Geoportal interface for basin boundary and network of precipitation stations

39

{& AWARE Geoportal > SRM Model Calibration ~ Elevation Zones Creation - Wozilla Firefox
Ha Edt Vew Hetory Bxhnaks Tods Help -
& - @ G L repsatette. s i 2.do [=[8)] [Glr|z=00: |

[IE:nmﬂ‘mm h‘ana;u || Portal Temnociencia # CfP 3 UN ® Cictionaries ® Google % AWARE O Edipse ® CORDIS ® Struts % AWARE Demo

f ele

0 2lev on zZ)
ation of the elev

ones (2.2)
generated

ation zone

Elevation Min Max Legend
zones elevation elevation color

EZ 1 290 1400
EZ2 1400 2000
EZ 3 2000 2800
EZ 4 2800 4020

Fig. 2. 3. Geoportal interface for basin boundary and elevation zones

The table of precipitation sensors listed in Figure 2.3 displays a calculated col-
umn (fourth) as a result of invoking a WPS service. As mentioned previously, the
middleware layer consists of a library of geospatial processing services. At this
point, it is necessary to describe how information flows when executing such WPS
services. Suppose the example of calculating the elevation given a sensor location
(a pair of coordinates) and a DEM (Digital Elevation Model) file for the basin.
When the geospatial processing service is required, the application interacts with
this service via the WPS Client API that builds appropriate XML-based queries ac-
cording to the method invoked. Once reported details of the input and output pa-
rameters of that process, the WPS Client API has two possibilities (see Figure 2.1) to
built the execute query: either input data can be embedded in the query itself or
can be passed by reference specifying a valid URL to remotely fetch such data.
So, sensor location values are embedded in the very XML request while the DEM
file is referenced by indicating its URL. The same is applicable to (huge) GML
data when are used in a service. In this case, GML data can also come from query-
ing a WFS as occurs in our Geoportal (see Figure 2.1). Both tasks of embedding
GML data in WPS execute queries and extracting them from WPS execute re-
sponses are performed by the WPS Client API using XSLT transformations. Finally,
when results are forwarded to the presentation layer, the Geoportal transforms the

40

GML data into KML!" data (Keyhole Markup Language) —a simple XML lan-
guage tightly connected with Google Earth— to be loaded in Google Maps by us-
ing again XSLT transformations (GML2KML component in Figure 2.1). Further-
more, we use GML format for processing tasks but KML for data visualization.

Figure 2.3 visualizes the elevation zones generated for the basin. Details of the
tasks involved in the hydrological model are out of the scope of this chapter, yet
notice that huge amounts of KML data are rendered both with good performance
and transparency. This example will be thoroughly examined in the next section.

In summary, all of the geospatial processing services implemented perform
both basic, general geoprocessing routines and particular to our case study re-
quirements. Next section details how these WPS services have been designed and
implemented in our Geoportal application.

5 Geospatial processing services

In order to provide useful geospatial processing services that suit the concrete re-
quirements of hydrological models, we have identified basic functions shared
among the analysis tasks. The ultimate goal is to create a library of geospatial
processing services in which customized and elaborated functions rely on other
much more simple, atomic and well-tested functions. In this way, the reuse of geo-
spatial processing services is fostered because the process of creating new com-
plex geospatial processing services is made possible by mainly reusing already
available geospatial processing services from shared libraries [5].

Our design strategy begins by identifying the atomic functions required for the
use case. Then we consider a suitable basic geospatial processing service as one
which performs a basic function, can be easily tested and is domain-independent
enough to be applicable to other contexts. Some examples are geospatial process-
ing services concerned with topological relations such as intersect with, within,
crosses, contains, etc., as well as methods for calculating geospatial proximity or
distances among geospatial objects and spatial operations like buffer, area and
volume. On the other hand, customized geospatial processing services can be de-
fined as those built on basic geospatial processing services to create more elabo-
rated, customized, and domain-dependent. This kind of services normally per-
forms a specific task in a certain domain which cannot be applicable to other
contexts. In this sense, they are similar to the concept of opaque or aggregate ser-
vice chaining defined by OGC as one approach for Web service chaining [1].

Once identified the services, they are grouped into modules with similar func-
tionality. Transforming them into executable WPS is straightforward: each module
is a geospatial processing service (WPS) whereas each function either basic or
customized is implemented as a process served by the WPS describeProcess inter-

14 http://code.google.com/apis/kml/documentation/

41

face. Table 1 shows the WPS library with the available processes. Only Elevation-
ZoneCalculation and SnowCoverAreaCalculation are customized processes.
Table 2. 1. List of WPS services in the Geoportal. Bold denotes processes already
working in the Geoportal

WPS module Concrete geospatial processing services
Topology WPS Area, Intersect, Union, Contains, Buffer, MaxExtent
ImageProcessing WPS Slicing, SlicingRanges, Vectorize, CoordinateElevation, Sta-

tionsElevation, HypsometricElevation, ElevationZoneCalcu-
lation, SnowCoverAreaCalculation

Chart WPS DepletionCurvesPlot, DischargePlot
CoordinatesTransformation TransCoordGMLPoint, TransCoordPoint, TransCoordPoint7P
WPS

DataFormat WPS TransSHPEPSG, TransSHPtoGML

For the implementation of the WPS library we have chosen the OGC WPS
specification implementation [21] from the 52° North Open Source Initiative',
which is an open source platform developed in Java. By using this framework,
which provides us with the WPS interface to connect to, we have implemented the
algorithms required for the processes listed in Table 1.

To illustrate one basic process we can see how the Area process within the To-
pology WPS works. First, the Geoportal connects through the WPS Client API to the
Topology WPS. Then, when the describeProcess interface is requested, a Java ob-
ject WPSProcess (internal class in the WPS Client API) is instantiated containing in-
formation of the process demanded. In this case, this object will specify that the
Area process requires a geometry figure like a Polygon Collection in GML format.
The Geoportal thus sends a execute request through the WPS Client API with the ba-
sin polygons in GML format, and gets an execute response from the Area process
containing a real number specifying the basin area. Again, the WPS Client API ex-
tracts this value and forwards it to the Geoportal.

Figure 4 illustrates how a customized geospatial processing service is imple-
mented as a chain of basic WPS controlled by the customized process itself. Each
basic process is performed as explained previously yet in this case only the final
result (step 8) is forward to the presentation layer. In particular, the SnowCover-
AreaCalculation process in Figure 2.4 is composed of a sequence of four basic proc-
esses: Vectorize, SHP2GML, Intersect, and Area.

Figure 5 shows the ImageProcessing WPS and how it is integrated in the system
architecture (see Figure 2.1). This WPS offers processes related to raster image
operations like slicing or classifying, where each image cell is classified into cate-
gories according to a threshold or a range and a concrete image band. Also it pro-
vides a Vectorize process that creates vector data as a set of GML polygons repre-

15 http://52north.org/

42

senting the previous classified image. This WPS allows users to extract and proc-
ess needed information along the model execution without being continuously
managing the DEM file, whose size is sometimes too large to work efficiently.

HOUN m -
a= B User Request - AWARE Geoportal

V' WY
SCA Percentage CalculationWP$ Request
P
ﬂ || SCACalculation

CustomizedWPS

DataConversion\WPS

B e

ImageProcessingWWPS

ectorize

Fig. 2. 4. Snow Coverage Area calculation WPS

Another example is the geospatial processing service for creating the elevation
zones (see results in Figure 2.3). To implement this complex task we have de-
signed the customized ElevationZonesCalculation process belonging to ImageProcessing
WPS module. Given a DEM file and an elevation range as inputs, this customized
process classifies, vectorizes and extracts the polygons in GML format corre-
sponding to the elevation zones. Figure 2.6 shows graphically the steps performs
within the ElevationZonesCalculation process. Firstly, scientists search for DEM data
for the study basin in available catalogue services. Once DEM references are
found, the Geoportal invokes the ImageProcessing WPS service via the WPS Client
API. This service uses internally a few open source libraries such as JAI'® (Java
Advanced Imaging API) for the image processing, JTS'? (Java Topology Suite),
GeoTools!® for the geometric model, edge detector open source software to vector-
ize the images, and the GML parser integrated in the 52° North WPS implementa-
tion to generate and return GML format. We have tested with the ElevationZoneCal-

16 http://java.sun.com/javase/technologies/desktop/media/
17 http://www.vividsolutions.com/jts/
18 http://geotools.codehaus.org/

43

culation service implementation that interoperability and integration of all of these
open source components are possible, though encountering some problems as dis-
cussed in the next section.

Discovery Service N

Mﬁ%] -| Apacfhe Server |

l Tomcat Sérvlet Container |

e

~ i
i

s i | GML ParserfGenerator|

~ Il

S i
L

ImageProcessing WPS
| Elevationzones |

/ 7 N\ JA
JTS
Slicing Vectorize Geotool

OGC WPS Implementation: 52North

Fig. 2. 5. Image Processing WPS

6 Conclusions and lessons learnt

We have presented a Web-based application that guides expert users in running
hydrological models by processing data within a set of distributed geospatial proc-
essing services. We have also tested that complex functionality can be processed
by connecting to simple, distributed and basic services which can be reusable in
other different scenarios. The use of standards is crucial to implement such an ap-
plication, making it possible in principle the interoperability among all the com-
ponents involved. In addition the Geoportal has been built on top of an open SDI
infrastructure, taking advantage of its benefits and leading to interoperable open
software architecture for hydrological applications. We have also shown how it is
technically possible that SDI can be used to solve real issues in a more flexible
and scalable manner than ad-hoc and stand-alone applications [20]. A pending is-
sue in our work is to provide suitable search mechanisms to find efficiently dis-
tributed data and services. In SDI context, these search mechanisms are tradition-

44

ally catalogue services in which metadata records are essential to describe data
and services [22]. However, we find that service metadata need still further re-
search, especially for discovery of WPS services.

ElevationZoneCailculation
= Inputs (EPSG:4326)

String imageurl ’

b ImageProcessingWPS

int max

String bbox ElevationZones Process
= Output

Polygon Cellection in GML format ‘// //’

<:> Slicing Process |Vectorizing Process
|
: -~

1
* 7

Fig. 2. 6. Elevation zones calculation

Although theoretically the use of standards should be sufficient to achieve in-
teroperability, we found that each vendor implementation differ from each other.
Some decisions taken with regards to specific vendor implementations have had a
great influence in the target application, making it difficult to reach interoperabil-
ity at programmatically level (in practice). Some lessons to keep in mind about
data integration would be that simple, structured data (e.g. KML) is easier to man-
age and process than powerful but complex data (e.g. GML) which is more sensi-
tive to failure when processing information. It is assumed that GML has great ad-
vantages as a language to integrate disparate formats and to serve data through
services [14]. For instance GML documents permit representing complex spatial
models by nesting geographic features in a XML way. Yet we have experienced
more difficulties handling GML data rather than KML data. In some cases where
data complexity is not a system requirement, KML may be a valid, efficient
mechanism for exchanging and visualization geospatial data.

Extracting information from huge GML documents has been revealed as an
important issue. Processing a GML document may become sometimes challenging
due to low performance when working with huge data sets. Beyond text overhead
and verbosity inherent in GML (and XML in general), this limitation is caused by

45

the latency produced in data transfers between servers and clients. In our particu-
lar case, one way to overcome partly this limitation has been to work with refer-
enced data rather than the GML data themselves. When different basic WPS ser-
vices and customized WPS (chains) are called, we make reference to the GML
data which are only transferred when they are really needed for processing or for
visualization purposes.

Other important issue when working with GML is connecting GML data cre-
ated by different vendor’s services. Schemas created by different OGC services
implementations are not completely valid, so they cannot be validated by most of
the XML readers and then they cannot be parsed by most of the open source GML
parsers [14]. Each application creates their own schemas that work normally only
within its particular context. We performed extensive research on GML and GML
schema, ending with a valid GML to produce basins and elevation zones. The
flexibility and extensibility of GML can be then seen as a weak point at practice
level when talking about interoperability. It has been a difficult task to generate
GML data according to the needed schemas that were successfully parsed by all
the GML parsers and generators used in the Geoportal. For example, it was rela-
tively easy to generate a simple subset of GML that was accepted by components
involved in the Geoportal like 52° North WPS Implementation and the GeoTools
library. The compatibility problems arose when we tried to use standard and com-
plete GML files together with other GML produced by other software compo-
nents, in order to be transparently used by our WPS services. It was not possible,
to our best knowledge, to find a general, valid schema able to be used for every
GML files generated by the different software tools and technologies used in the
Geoportal.

Integrating different open source libraries implies sometimes a high develop-
ment complexity, because quite often on-going projects are not very stable and
one becomes part of the testing team, facing development bugs which have to be
solved. This is even more accentuated when the project belongs to a recent re-
search technology, which is the case of our Geoportal implementation. The OGC
WPS specification seems at the moment to be sufficiently mature to be imple-
mented as we found using the 52° North WPS Implementation. However it is still
in experimental phase.

Finally, we encountered problems in the implementation of the Geoportal user
interface due to multiple projection systems. Google Map viewer uses a common
geographic projection that refers to WGS84 (EPSG code 4326) as a pair of coor-
dinates (longitude, latitude), yet geospatial data are given and processed, normally
in hydrological applications, in distinct projection systems. For this reason, coor-
dinate transformation services are necessary in the Geoportal, however, it will in-
crease the response time to the user.

A first observation derived from our experience in this project, which coincides
with conclusions in previously referenced work, is that the approach based on dis-
tributed geoprocessing services leads to a collection of reusable geospatial proc-
essing services, available for other users in the case that they are well-documented

46

and registered in open catalogues. This is possible in principle because WPS geo-
spatial processing services do not work with pre-established datasets but rather
they preserve a loosely-coupled relationship between data and processing capabili-
ties (algorithms), making it possible to chain them to other geospatial Web ser-
vices such as WMS and WCS. One of the problems being partially addressed in
the Geoportal application is when a geospatial processing service exchanges and
processes large amount of data, which still needs further research for the geospa-
tial community.

Acknowledgments: This work has been partially supported by the AWARE project SST4-2004-
012257 co-funded by the EU and the GMES initiative. Institut Cartografic de Catalunya (ICC)
assisted in the design of the Geoportal.

References

1. Alameh N (2003) Chaining Geographic Information Web Services. IEEE Internet Computing
7(5):22-29

2. Anderson G, Moreno-Sanchez R (2003) Building Web-Based Spatial Information Solutions
around Open Specifications and Open Source Software. Transactions in GIS 7 (4): 447466

3. Brabec F, Samet H (2007) Client-Based Spatial Browsing on the World Wide Web. IEEE
Internet Computing 11(1): 52-59

4. Caldeweyher D, Zhang J, Pham B (2006) OpenCIS-Open Source GIS-based Web community
information system. International Journal of Geographical Information Science 20: 885-898

5. Diaz L, Costa S, Granell C, Gould M (2007) Migrating geoprocessing routines to Web ser-
vices for water resource management applications. In Proceedings of 10th AGILE Confer-
ence on Geographic Information Science (AGILE 2007), Aalborg (Denmark)

6. Foster I (2005) Service-Oriented Science. Science 308: 814-017

7. Friis-Christensen A, Bernard L, Kanellopoulos I, Nogueras-Iso J, Peedell S, Schade S,
Thorne C (2006) Building service oriented applications on top of a spatial data infrastructure
— a forest fire assessment example. In Proceedings of 9th AGILE Conference on Geographic
Information Science (AGILE 2006), Visegrad (Hungary)

8. Granell C, Diaz L, Gould M (2007) Managing Earth Observation data with distributed geo-
processing services. In Proceedings of the International Geoscience and Remote Sensing
Symposium (IGARSS 2007), Barcelona (Spain)

9. Jhingran A (2006) Enterprise information mashups: integrating information, simply. In Pro-
ceedings of the 32nd international Conference on Very Large Data Bases. VLDB Endow-
ment, 3-4.

10.Jones MT (2007) Google's Geospatial Organizing Principle. IEEE Computer Graphics and
Applications 27(4): 8-13

11.Kiehle C (2006) Business logic for geoprocessing of distributed geodata. Computers & Geo-
sciences 32: 1746-1757

12.Lemmens R, Wytzisk A, de By R, Granell C, Gould M, van Oosterom P (2006) Integrating
Semantic and Syntactic Description to Chain Geographic Services. IEEE Internet Computing
10(5): 42-52

13.Liu X, Hui Y; Sun W; Liang H (2007) Towards Service Composition Based on Mashup. In
Proceedings of 2007 IEEE Congress on Services, 332-339

14.Lu C-T, Dos Santos R, Sripada L, Kou Y (2007) Advances in GML for Geospatial Applica-
tions. Geolnformatica 11(1): 131-157

47

15.Masser I (2005) GIS Worlds; Creating Spatial Data Infrastructures. ESRI Press, Redlands,
CA

16. Mitchell T (2005) Web Mapping Illustrated. O’Reilly Media, Sebastopol, CA

17. Nogueras-Iso J, Zarazaga-Soria J, Muro-Medrano P (2005) Geographic Information Metadata
for Spatial Data Infrastructures — Resources, Interoperability and Information Retrieval.
Springer, Berlin

18.Peng Z-R, Tsou MH (2003) Internet GIS: Distributed Geographic Information Services for
the Internet and Wireless Networks. Wiley, Hoboken, NJ

19.Rampini A, de Michele A, Lehning M, Bloschl G, Brilly M, Llados A, Sapio F, Gould M
(2006) AWARE: A tool for monitoring and forecasting Available Water Resource in moun-
tain environment. Geophysical Research Abstracts 8(10780)

20. Scholten M, Klamma R, Kiehle C (2006) Evaluating Performance in Spatial Data Infrastruc-
tures for Geoprocessing. IEEE Internet Computing 10(5): 34-40

21.Schudt P (ed) (2007) OpenGIS Web Processing Service Version 1.0.0, Open Geospatial Con-
sortium. Available at http://www.opengeospatial.org/standards/wps

22.Smits PC, Friis-Christensen A (2007) Resource Discovery in a European Spatial Data Infra-
structure. IEEE Transactions on Knowledge and Data Engineering 19 (1): 85-95

23.Soh L-K, Zhang J, Samal A (2006) A Task-Based Approach to User Interface Design for a
Web-Based Hydrologic Information Systems. Transactions in GIS 10 (3): 417449

24.Yuan Y., Cheng Q. (2007) Integrating Web-GIS and Hydrological Model: a Case Study with
Google Maps and IHACRES in the Oak Ridges Moraine area, Southern Ontario, Canada. In
Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS
2007). Barcelona (Spain), July 2007 (in press).

Chapter 3: An Application Framework for
Rapid Development for Web-based GIS:
GinisWeb

Aleksandar Milosavljevié

Faculty of Electronic Engineering
Aleksandra Medvedeva 14, 18000 Ni§, Serbia

alexm@elfak.ni.ac.yu

Slobodanka Dordevié-Kajan and Leonid Stoimenov

Department of Computer Science
Faculty of Electronic Engineering

University of Ni§

Abstract This chapter presents GinisWeb, an application framework designed to
enable rapid development of standards based Web GIS. A Web GIS, as a whole, is
considered through a client/server model. Web GIS application that enables access
to shared geodata is in the role of a client. Geodata capturing, storing, maintaining
and sharing through standardized Web interfaces is the responsibility of a Web
GIS server side, named Web-enabled GIS. Since both client and server side oper-
ate on the same set of geodata, the design of the framework relied on a definition
of a unique GinisWeb geoinformation model. Rapid development is based on an
explicit description of application domain that can be used by the framework. To
cope with these descriptions, design of the framework included specification of an
XML language named Ginis Application Definition Language (GADL). A devel-
opment of a new Web GIS application, supporting desktop GIS application, and
Web GIS services (as a part of Web-enabled GIS) using GinisWeb framework,
rely on the use of configurable application components produced by the frame-
work and GADL encoded descriptions of the concrete application domain. Finally,
to evaluate and present results obtained by this work, this chapter includes a case
study concerning implementation of a Web GIS for an electric power supply com-

pany.

50

1 Introduction

A geographic information system or geoinformation system (GIS) is a special type
of computer-based information system, tailored to store, process, and manipulate
geospatial data [20]. The ability of GIS to handle and process both location and at-
tribute data, distinguishes GIS from other information systems. It also establishes
GIS as a technology that is important for a wide variety of applications [2]. Tradi-
tionally, geographic information systems were built as monolithic and platform-
dependent applications [19], but, with the development of the Internet and the
World Wide Web, GIS has evolved and adapted to this new environment [14].
2001). The “Web GIS” became a synonym for Web information systems that pro-
vide the functions of geographic information systems on the Web through HTTP
and HTML [13].

GIS applications built for the Web environment usually provide functions for
map displaying and navigation, as well as functions for querying geodata using
both spatial and non-spatial criteria. It is obvious that these functions can cover
only GIS functionality of displaying, analyses and integration of geospatial data
[15]. For capturing, storing and manipulating geospatial data more traditional ap-
plication environments are still needed.

A Web GIS, considered as a whole, relies on a client/server model, where cli-
ent (Web GIS application) provides access to geodata, while one or more servers
provide their sharing. The sharing of geospatial data for Web presentation pur-
poses can be done by the extension of existing traditional GISs with a set of “Web
interfaces”. This kind of extension forms a Web GIS server side that we named
Web-enabled GIS. In order to build a model of a Web GIS that is open for con-
necting to a variety of different geodata sources, commonly acceptable standards
for implementation of these Web interfaces are needed [9]. Currently, Open Geo-
spatial Consortium'®, as an international industrial consortium with an aim of de-
veloping publicly available standards in the field of GIS, has several implementa-
tion specifications that standardize this field. Our functional needs for Web
interfaces were met by two of these specifications. The first is Web Map Service
(WMS) Implementation Specification [7] that describes a Web service interface for
custom maps retrieval, while the second is Web Feature Service (WFS) Implemen-
tation Specification [16] which describes a Web service interface for querying and
retrieval of geospatial entities using both spatial and non-spatial criteria.

To enable rapid development of a class of Web GISs with the same functional-
ity over different geodata sources we relied on the development of an application
framework named GinisWeb. Framework is a generic term for a powerful object-
oriented reuse technique that typically emphasizes the reuse of design patterns and
architectures [6]. There are two common definitions of an application framework
[5]. The first defines an application framework as a reusable design of the entire,

19 Official Web page: http://www.opengeospatial.org

51

or part of a system represented by a set of abstract classes and the way their in-
stances interact, while the second states that an application framework is the skele-
ton of an application that can be customized by an application developer. These
definitions are complementary, not conflicting, since the former describes frame-
work from the design perspective, whereas the latter describes it from the func-
tional viewpoint. The primary benefits of object-oriented application frameworks
stem from the modularity, reusability, extensibility, and inversion of control they
provide to developers [5].

Another framework based approach for rapid development of Web GIS appli-
cations is presented in [18]. The presented WebGD framework relies on ArcIMS
for providing interactive map images and on ArcSDE for managing spatial data,
unlike ours which can be utilized for the development of both client and server
side of Web GIS, the presented WebGD framework. WebGD includes a set of
ASP.NET custom server controls that provide user interface elements such as a
map, a layer list, and a toolbar. Applications developed with WebGD allow users
to insert, update, delete, and query data with a map interface displayed by Web
browsers.

GinisWeb framework described in this chapter produces configurable applica-
tion components required for the implementation of the overall Web GIS [10]. For
their configuration we need explicit descriptions of a concrete application domain
in terms of geodata types and sources. To cope with these descriptions the frame-
work design included specification of an XML language named GADL.

Similar approach for applying XML technologies to increase the efficacy in the
GIS application development is presented in [8]. The authors applied XML tech-
nologies to improve the robustness of geological and geophysical applications as
well as to increase the efficacy of the application development process. Unlike our
approach that is based on a framework capable of “understanding” GADL XML
descriptions, their approach relies on an XML to C++ binder to automatically gen-
erate C++ code for data containers, as well as on parsing, validation, and data ob-
ject serialization. Data describing, like in our approach, is done using XML
schema. The major benefit from our, framework based approach is that the devel-
opment of a new Web GIS (with standard functionalities) requires only changes in
GADL descriptions leaving application components and code intact.

The chapter is structured as follows: in the second part, we describe architec-
ture of an overall Web GIS system in short, identify subsystems, analyze use-
cases, specify non-functional requirements, functions and structure of a Web GIS
application and Web-enabled GIS, and introduce a developmental model of Web
GIS using GinisWeb framework. The third part of this chapter is dedicated to
GinisWeb model of a geoinformation system that is the base for implementation of
all components of the suggested overall Web GIS. The fourth part gives introduc-
tion to the structure and basic elements of an XML language GADL, while the
fifth part presents a case study concerning the implementation of Web GIS for a
power supply company. Finally, in the conclusion, the achieved results are sum-
marized.

52

2 Architecture of overall Web GIS

To identify subsystems of overall Web GIS we started from a general assumption
that geoinformation related to some area cannot be captured, stored and main-
tained in a single organizational unit GIS. Some of this information can have mu-
tual and public importance, so it should be shared and accessible over the Web.

WebGIS WebGIS . WebGIS
application application application
Internet (HTTP protocol) >
Web-enabled Web-enabled Web-enabled
GIS GIS GIS

Geodata Geodata Geodata
store store store

Fig. 3. 1. Schematic view of proposed Web GIS architecture.

A subsystem that enables access to geoinformation over the Web is Web GIS
application, while the sharing of geoinformation is done by extending traditional
GISs with WMS and WFS Web interfaces (Web-enabled GIS). The interrelation
among components that correspond to subsystems is illustrated in Fig. 3.1. The re-
liance on standards for implementation of interfaces of a Web-enabled GIS, allows
Web GIS applications to provide content from several GIS nodes. This also im-
plies that one GIS node can serve several Web GIS applications. The term GIS
node is used to signify an instance of Web-enabled GIS subsystem.

2.1 Use-case model of the overall system

The proposed Web GIS is used by at least three classes of users: Authorized GIS
users, Web users and Web GIS administrators. UML diagram showing their asso-
ciation with the use-cases is given in Fig. 3.2. Authorized personnel have access to
all functions of their local desktop GIS applications which include: map viewing,
feature inserting, editing, deleting and querying. Web users are the most general
class with the least functionality at their disposal. In order to view maps and query
features, they access the system through Web GIS application. Finally, the admin-

53

istrator is responsible for defining contents that will be available to Web users. For
those purposes, administrator must define the layer hierarchy and characteristics
through which geoinformation will be presented, and also assign adequate WMS
and/or WFS services to the layers.

O

View maps
(from Web-enabled GIS)

View maps
(frum WebGIS Portal)

Web User
Insert Query
(from Web-enabled GIS) (from WebGIS Portal)
Delete ‘ “\O
Authurszed GIS WebGIS
f Web-enabled GIS y .
tieour el E0) User Administrator™, Define layer hierarchy
O (from WebGIS Portal)
Edit
(from Web-enabled GIS)
Query Remove service Assign service to a layer
(from Web-enabled GIS) (from WebGIS Portal) (from WebGIS Portal)

Fig. 3. 2. UML diagram that represents the use-case model of the overall system.

2.2 Non-functional requirements

The most important non-functional requirements for the system that is being pro-
posed are code and component reusability, extensibility and openness.

Reusability is achieved through the designed GinisWeb application framework.
The framework, through component reusability, and using XML description,
should enable development of a class of Web GIS applications and Web-enabled
GISs with the same functionality over different domains and data sources. Using it
on a code level, it also enables the building of more specialized GIS applications
that can easily be ported to the Web.

Extensibility of the system means that a variety of WMS/WFS enabled GISs
can be connected to a Web GIS application. Assigning this geoservices to a Web
GIS application is done using XML descriptions, too.

A demand for openness imposes the use of interfaces and exchange of data by
commonly accepted standards. This requirement is met using OGC standards
(WMS and WFS) for Web services interfaces and data interchange. Although

54

GinisWeb framework offers full support for building an overall Web GIS, it also
allows the use of third parity OGC WMS and WFS compliant servers.

2.3 Functions and structure of Ginis Web GIS application

Ginis Web GIS application enables Internet users to access geoinformation using a
Web browser as a client. Functions realized by the application are:

e Basic GIS functionality (panning, zooming, map layers selection).

e Map viewing by combining raster images gathered from several Web Map
Servers (information integration on a display level).

e Interface for querying geographic features and viewing their non-spatial attrib-
utes.

e Query execution on several Web Feature Services (information integration on a
query level).

General structure of the Ginis Web GIS is shown in Fig. 3.3. As it can be seen,
Web browser is a client, while the HTML content is generated by the Web appli-
cation. By means of layer hierarchy through which geoinformation is presented,
the Web GIS application content is specified using GADL description. Each layer
specified in that description has reference to an instance of WMS and/or WFS ser-
vice.

) e T
GADL | wrs | [wrs | [wms |- wms|
description 7 S iy Y 1y
LML |
< ‘:L/L’ ~7 EE-'I;EEQ
Web application 42
7 ¥ A

Query processing =5 Web
browser

GML processing (thin client)

Fig. 3. 3. Structure of Web GIS application built using the GinisWeb framework.

Composing a map using georeferenced raster images gathered from several
WMSs is done on a Web browser, while the Web application is in charge of creat-
ing a HTML page with corresponding image requests toward map servers. The
implementation of feature querying met a more complicated interface of WFS, so
the Web application has a more significant role. This implies generation of HTML
pages with user interface for specifying search criteria, accepting queries defined

55

in that manner, their processing and the composition of valid WFS requests. Since
WES response is, in general, encoded in GML, the Web application must process
the received GML documents and then generate an appropriate HTML page with
query results.

2.4 Structure of Web-enabled GIS node

As it was already stated, a GIS node represents an instance of a Web-enabled GIS.
Based on open standards, the suggested architecture does not impose any concrete
structure and implementation of a GIS node, as long as OGC WMS and WEFS are
used as Web interfaces. Nevertheless, one of the main goals considering research
presented in this chapter is definition and implementation of a framework, flexible
enough to allow building of GIS nodes, too.

(Web-enabled GIS node N ST

‘ ‘
WMS
extension

GeoDatabase

Web Server

GADL

description

WFS
Desktop GIS extension
Application
__ R

Fig. 3. 4. Structure of Web-enabled GIS node built using the GinisWeb framework

Our suggestion for a structure of Web-enabled GIS relies on using standard
components such as a geodatabase for storing geodata and a desktop GIS applica-
tion for geodata capturing and manipulation. Web interfaces are built using spe-
cialized Web server extended with WMS and WEFS service implementations. For
automatic configuration of these reusable components explicit descriptions of a
GIS application domain are used. The encoding of these descriptions is done by
using XML language GADL in a way similar to Web GIS application. The struc-
ture of a Web-enabled GIS node that can be built using the GinisWeb framework
is shown in Fig. 3.4.

56

2.5 Development model of the GinisWeb framework

The design of the GinisWeb framework relies on an assumption that Web GIS ap-
plication, desktop GIS application, and services that represent Web interfaces to
geoinformation are just different interfaces against the unique structure of geoin-
formation and geoprocessing methods. That unique structure is recognized and
represented in GinisWeb model of geoinformation system (Fig. 3.5).

GinisWeb
framework

XML

language

GADL
geodata
sharing

Fig. 3. 5. Design motif of the GinisWeb framework

implements realizes

core of

Model of
geoinformation

GinisWeb
framework

defines

1L

T

1

1

Lo e 5 M- language deiﬁﬁ?&?ﬁ'ﬁ of
GADL an application

Fig. 3. 6. Development model of a Web GIS based on the GinisWeb framework

Elements and structure of geoinformation system encapsulated in GinisWeb
model represent the core for implementation of GinisWeb framework and the basis
for specification of the XML language GADL (Fig. 3.5). Configurable application
components produced by the first and configured by the latter, lead to a concrete
overall Web GIS (illustrated in Fig. 3.6).

57

Connections and communication between components that construct Web GIS
are illustrated using UML collaboration diagrams in Fig. 3.7. The diagram objects
WebApp, WMS, WES, and WinApp correspond to application components pro-
duced by the framework. These objects are related to GinisWeb framework inter-
face classes that will be described in the next section. GADL objects represent
XML documents that describe Web GIS application and Web-enabled GIS. All
four application components have appropriate GADL description. Finally, GeoDB
and Web browser objects represent geodata store and Web GIS client, respec-
tively. The first scenario (Fig. 3.7a) shows the flow of communication between
components in performing map displaying task, while the second (Fig. 3.7b) de-
picts query execution process. It is obvious that execution of a query is a more
complicated task because WebApp is responsible for generating query interface,
translating query into a WES request, processing the retrieved GML, and generat-
ing an HTML page displaying results. In a map displaying task WebApp has only
the responsibility to generate HTML code with adequate WMS request(s) as im-
age source(s), so that Web browser can directly compose a map using image(s)
retrieved from WMS(s).

3 GinisWeb model of a geoinformation system

GinisWeb model of a geoinformation system defines organization of geodata and
geoprocessing methods used in GinisWeb GIS applications. The model is unique
and it is used as a core for implementation of GinisWeb framework that produces
all GIS application components needed by the suggested overall Web GIS (see
Fig. 3.6).

The definition of the GinisWeb model of a geoinformation system was based
on OGC reference model [1] and qualified with some elements stated through
WMS [7], WFS [17], GML [3], and Filter Encoding [17] specifications. GML is
OGC standard for XML based encoding of data about geographic features. Geo-
graphic feature is described with its spatial (geometries) and non-spatial attributes.
WEFS, as another OGC standard, use GML for encoding of query results, while for
encoding of query request it uses OGC Filter Encoding Specification. When WES
is requested to describe some feature type it uses XML Schema Definition Lan-
guage (W3C standard) to encode that description. While WFS operates on fea-
tures, i.e. feature types, WMS operates on layers that compose a geographic map.
That is why our GinisWeb geoinformation model has class Layer as a basic data
organization unit, while features and feature types are introduced through Fea-
turelayer specialization. Feature layers can be both queries using WFS and
displayed using WMS interface, while other types of layers (general class Cov—
erage) can only be displayed using WMS interface. The model is presented
through UML class diagram shown in Fig. 3.8.

58

2: load def
—

6: load data

2: load def

: WebA GADL
3: retrieve query mlar;z:c/a

/ 5: submit WFS query

1: query feature layer.

2

9: retrieve results 8: retrieve GML

\

6: load def

4: submit query - WFS — GADL

Fig. 3. 7. UML collaboration diagrams that illustrate connections and communication
between components in a map retrieval scenario (a); and a query execution scenario (b).

WinApp, WMS, WFS, and WebApp classes represent interfaces for the imple-
mentation of configurable application components of an overall Web GIS. These
classes are derived from the GisApp class that encapsulates basic functionality
of a GIS application. The GisApp class represents specialization of a class
Layer, the central class of this model responsible for defining a general map
layer type. This necessarily means that an application inherits all the functions de-
fined in a layer context. The detailed UML diagram of a class GisApp is shown
in Fig. 3.9. The method Login enables logging in and initialization of an applica-
tion. Upon successful logging, username and password are stored for further use in
an instance of the UserInfo class. Attribute bbox, represented as an association
with BBox class, holds boundaries of an area that is currently being displayed
within a map. Association with a class Geometry through selectedGeom at-
tribute indicates currently selected geometry of some feature. A reference to a cur-
rently selected layer is contained within attribute activeLayer. If an active
layer is a feature layer, then attribute activeGeom refers to a definition of ge-
ometry that is currently active for insertion. The other methods declared in a
GisApp class are inherited from a class Layer with definitions that correspond
to GIS application needs.

59

Metadata

#metadata 2

0.n

WinApp WMS WFS WebApp

#child

0..n

#parenL. | Layer

0.1

.n
V4 N FeatureLayer Image |#image ImageSet [fimageset ImageMultiSet
e £ o l—l
! : ! |, : "Emem’“! i L 11.n 1l: 11.n 1
e—e— #type| 1
+definition
twis g 1 0.1y +wms FeatureTypeDef +atmhulql AttributeDef
[wrsconnestor | [wmsconnector | o —
I 1 | 1 0.n| #instance 1 A
L 1 1 1
> Feature 1
#feature *tgeomalry. GeometryDef
+featureMember, 1 o.n I:I

FeatureCollection

#attribute

0.. #geometry

n 0..n
Aftribute Geometry |

Fig. 3. 8. UML class diagram that represent the GinisWeb model of a geoinformation

system
GisApp o Userlinfo
ﬁ +username : String
+Login{username : String, password : String) : Boclean 1 | *password : String
+<<virtual>> Create(xml|Element : XmIElement) : Boolean

+=<yirtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)

+=<yirtual>> Select(bbox : BBox, rect : Rect, x : Integer, y : Integer) : Geometry %
+=<=virtual>> Query(q : Query, result : FeatureCollection) : Boolean -
+<<yirtual>> LoadFeatures(bbox : BBox) : Boolean 1
+<<virtual>> InsertFeature(f : Fealure) : Boolean

+<<virtual>> DeleteFeature(fid : String) : Boclean *selectedGeom Saomey
+=<yirtual>> SaveFeature(f : Feature) : Boolean 0.1

+activeGeom-y 0..1

GeometryDef

Fig. 3. 9. Detailed UML diagram of a class GisApp

The presented model is characterized by the organization of geoinformation
into hierarchy of layers (see class Layer in Fig. 3.8). Hierarchical organization of
layers enables the aggregation and classification of features according to certain
criteria. Functions that a layer transmits to its sublayers are display and search.
This means that if a layer is included in a display of a map, or a query is submitted
on it, all of its sublayers will be shown, i.e., searched as well.

The role of a basic layer class (Layer) is to define all function interfaces, im-
plement hierarchical organization, and maintain metadata. To represent different
types of geoinformation we use the following Layer derived classes: Feature-
Layer, Coverage, Image, ImageSet, ImageMultiSet, Grid, WebMap,

60

and DXFMap. The detailed UML diagram of a class Layer is shown in Fig. 3.10.
Virtual methods declared in the class represent interfaces toward operations
implemented in certain subclasses. Methods Select, Query, LoadFeatures,
InsertFeature, DeleteFeature, and SaveFeature are implemented in
the FeatureLayer class, while methods Draw, and CalcBBox have their
specific implementations in all classes derived from Layer. A layer hierarchy
and concrete layer instances are configured by GADL description using virtual
method Create. Method QueryMetadata is used to search metadata
associated with a layer subtree. A layer contains metadata through a set of
Metadata instances. Class Name is used in the model for the naming of layer,
feature attributes, and geometries. It defines attributes’ name and title, where
the first represents internal, and the second displays the name of an item.
Accessing a layer instance by name or title is possible using methods
GetLayerByName and GetLayerByTitle.

Layer
+type : Integer = LT_LAYER Metadata
#visible : Boolean = true +key : String
#canSelect : Boolean = true +value : String
#canlnsert : Boolean = false

#canDelete : Boolean = false
#canEdit : Boolean = false #metadata ‘| 0..n
1

+<<virtual>> Create(xmlElement : XmlElement) : Boolean
+<<virtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)
+<<virtual>> Select(bbox : BBox, rect : Rect, x : Integer, y : Integer) : Geometry +name
+<<virtual>> Query(q : Query, result : FeatureCollection) : Boolean
+QueryMetadata(query : String, result : Layer(]) : Boolean
+<<virtual>> LoadFeatures(bbox : BBox) : Boolean 1
+<<virtual>> InsertFeature(f : Feature) : Boolean Name
+<<virtual>> DeleteFeature(fid : String) : Boolean
+<<virtual>> SaveFealture(f : Feature) : Boolean
+<<virtual>> CalcBBox() : BBox
+GelLayerByName(name : String) : Layer
+GelLayerByTitle(title : String) : Layer

+name : String
+itle : String

Fig. 3. 10. Detailed UML diagram of a class Layer

Class FeatureLayer defines the layer that holds a collection of features of a
certain type (see Fig. 3.11). It contains definition of a feature type (class Fea-
tureTypeDef) through a specification of a set of non-spatial attributes (class
AttributeDef) and spatial attributes, i.e. geometries (class GeometryDef)
contained by features of that type. A definition of geometry is specified through
attributes of a GeometryDef class. Creating the corresponding Geometry ob-
ject by using an adequate segment of GADL description is done within Create
method. A definition of feature non-spatial attributes is more complex and re-
quires additional specifications of value type, default value, and optional value
constraints. A set of concrete feature instances of a type are represented by Fea-
ture class that holds geodata for the layer through Attribute and Geometry
classes.

FeatureLayer

+=<<yirtual>> Create(xmlElement : Xm|Element) : Boolean

+<<yirtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)

+<<virtual>> Select(bbox : BBox, rect : Rect, x : Integer. y : Integer) : Geometry
+<<virtual>> Query(q : Query, result : FeatureCollection) : Boolean
+<<yirtual>> LoadFeatures(bbox : BBox) : Boolean

+<<virual>> InsertFeature(f : Feature) : Boolean

+=<virtual>> DeleteFeature(f : Feature) : Boolean

+<<virtual>> SaveFeature(f : Feature) : Boolean

+<<virtual>> CalcBBox() : BBox

~+definition|

61

sypa | 1 1.n
1.
#instance | 0.n
0.n
Feature

i ; String

+Feature(ftype : FeatureLayer, fservice : FeatureService)
+GetFID() : String

+SetFID{fid : String)

+GetType() : FeatureLayer

+Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)

+Select{bbox : BBox, rect : Rect, x : Integer, y : Integer) : Geometry
+CalcBBox() : BBox 1
+LoadDescription() : Boolean
+SavaDescription() : Boolean
+LoadGeometries() : Boolean
+SaveGeometries() : Boolean
+Delete() : Boolean

Fig. 3. 11.

#service

Hgeomelry

#feature

GeometryDef
" " -name : Name
9e0melY | type : Integer = GT_POLYGONE
1 -required : Boolean = false
1 1 0.n | -readOnly : Boolean = true
Feature TypeDef
1 +Create(xmlElement : XmlElement) : Boolean
! AtiributeDef

+name : Name

+raquired : Boolean = false
+readOnly : Boolean = true
+default : String

+valueType : Integer = VT_STRING
+rangaType : Integer = RT_NONE
+min : Double

+max : Double

+selection : String[]

0.n

+attribute

+Create(xmlElement : XmlElement) : Boolean

Geametry

definition : GeometryDef
-geomPoints : Coor(]

+Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)

#DrawLine(bbax : BBax, rect : Rect, bitmap : Bitmap)

#DrawFill(bbox : BBox, rect : Rect, bitmap : Bitmap)

#DrawSymbol(bbox : BBox, rect : Rect, bitmap : Bitmap)
#DrawGeomPoints{bbox : BBox, rect : Rect, bitmap : Bitmap)
+IsPointinGeom(bbox : BBox, rect : Rect, x : Integer, y : Integer) : Boolean
+CalcBBox() : BBox

Attribute
~definition : AttributeDef
-value : String

#atribulg 4 Getvalue() : String

+SatValue(v : String) : Boolean

Detailed UML diagram of classes related to FeatureLayer

A set of services related to a FeatureLayer is represented by an abstract
FeatureService class (see Fig. 3.12). Concept of feature service is used to
provide and optionally enable storing of features. Methods declared in Feature-
Service enable the following set of activities:

loading of geographic features of a certain type (method LoadFeatures),

[]

e cxecution of queries on features of a certain type (method Query),

e inserting a new feature (method InsertFeature),

o deleting a feature (method DeleteFeature),

¢ loading and saving feature attributes (methods LoadFeatureDescription
and SaveFeatureDescription),

[]

SaveGeometry).

loading and saving feature geometries (methods LoadGeometry and

62

FeatureService
-caninsert : Boolean
-canDelete : Boolean
-canEdit : Boolean
NameConvertor
+<<static>> Ci :) : FeatureService

-nameTable : String[}[2]

+<<yirtual>> CanlnsertFeature() : Boolean ypeTable - StinglI2)

+<<yirtual>> CanDeleteFeature() : Boolean
+<=yirual>> CanSaveFeatureDescription() : Boolean
+<<virtual>> CanSaveGeometry() : Boolean 0.1
+<<virtual>> LoadFeatures(ft : FeatureLayer, bbox : BBox) : Boolean "
+<<yirtual>> InsertFeature(f : Feature) : Boolean

+<=virual>> DeleteFeature(f : Feature) : Boolean

+<<virtual>> LoadFeatureDescription(f : Feature) : Boolean

#nameConvertor

+Ci it) : Boolean
+ConvertName(s : String) : String
+DeConvertName(s : String) : String
+ConverfType(s : String) : String
+DeConvertType(s : String) : String

+<<yirtual>> SaveFeatureDescription(f : Feature) : Boolean 2

+<<yirtual>> LoadGeomatry(g : Geometry) : Boolean +Hilter

+<<virtual>> SaveGeometry(g : Geometry) : Boolean Filter

+<<yirtual>> Query(ft : FeatureLayer, q : Query, result : FeatureCollection) : Boolean \ 0.1 -

FeatureDatabase Featt

-gannactionSiring : String -connectionTimeout : Integer

+Create(xmlElement : XmIElement) : Boolean +Create(xmiElement : XmlElement) : Boolean

+<<virtlual>> CaninsertFeature() : Boolean +=<virtual>> CaninsertFeature() : Boolean

+<<virtual>> CanDeleteFeature() : Boolean +<<virtual>> CanDeleteFeature() : Boolean

+<<virtual>> CanSaveF eatureDescription() : Boolean +<<virtual>> CanSaveFeatureDescription() : Boolean

+<=virtual>> CanSaveGeometry() : Boolean +<<yirtual>> CanSaveGeometry() : Boolean

+<=<virtual>> LoadFeatures(ft : FeatureLayer, bbox : BBox) : Boolean +<<virtual>> LoadFeatures(ft : FeatureLayer, bbox : BBax) : Boolean

+<<virtual>> InsertFeature(f : Feature) : Boolean +<<yvirtual>> LoadFeatureDescription(f : Feature) : Boolean

+<<virtual>> DeleteFeature(f : Feature) : Boolean +=<=virtual>> LoadGeometry(g : Geometry) : Boolean

+<<virtual>> LoadFeatureDescription(f : Feature) : Boolean +<<virtual>> Query(ft : FeatureLayer, q : Query, result : FeatureCollection) : Boolean

+<=virual>> SaveFeatureDescription(f : Feature) : Boolean

+<<virtual>> LoadGeometry(g : Geometry) : Boolean

+<<yirtual>> SaveGeomeiry(g : Geometry) : Boclean rwis i 1 +wms y 0.1

+<<virtual>> Query(ft : FeatureLayer, q : Query, result : FeatursCollection) : Boolean WFSConnector WMSConnector
+uri : String +uri : String
+version : Byte[3] +version : Byte{3]
+maxFeatures : Integer = -1 +style : String

+requestPrefix : String

+requestSufix : String
+maxBBox : BBox

Fig. 3. 12. Detailed UML diagram of class related to FeatureService

Class Coverage, together with its specializations, defines a type of a layer
containing geodata that cover some area (see Fig. 3.13). Classes Image, Image-
Set, and ImageMultiSet are used for the display of georeferenced raster im-
ages. Methodology for creating such images from scanned paper maps is de-
scribed in [12]. The purpose of a class Grid is visualization of different
geographic grids, while class WebMap defines a layer that acts as an interface to-
ward OGC Web Map Service compliant.

An extensibility of a suggested model consists of an ability to further specialize
hierarchy of a Layer and/or FeatureService classes. The only condition that
newly derived classes must respect is the predefined interface for operations de-
fined on layers, i.e., feature services.

GADL and GinisWeb geoinformation are mutually associated. GADL, as an
XML language, describes GIS applications using elements that correspond to
classes defined in the model. On the other hand, automatic configuration of appli-
cation components implemented by GinisWeb framework (based on the geoinfor-
mation model) requires description of an application domain that is encoded using
GADL. For configuration of instances, all classes defined by the model possess
virtual method Create that as an input parameter receives reference to a corre-
sponding XML element from a GADL description.

63

Grid Image
-gridType : Integer = GT_GEO -bbox : BBox
-dimension : Double = 0.0 -location : String
+<<virtual>> Create(xml|Element : XmIElement) : Boolean +<<virtual>> Create(xmiElement : XmlIElement) : Boolean
+<<virtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap) +<<virtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)
#DrawGeo(bbox : BBox, rect : Rect, bitmap : Bitmap) +<<virtual>> CalcBBox() : BBox
#DrawGK(bbox : BBox, rect : Rect, bitmap : Bitmap) #Loadlmage() : Image
1.n ‘' #image
1
Coverage ImageSet
+<<virtual>> Create(xmiElement : XmlIElement) : Boolean <]_ +<<virtual>> Create(xmiElement : XmlIElement) : Boolean
+<<virtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap) +<<vyirtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)
+<<virtual>> CalcBBox() : BBox +<<virtual>> CalcBBox() : BBox
7\ 4 i.n ‘| #imageSet
\ 1
ImageMultiSet
WebMap +<<virtual>> Create(xm|Element : Xm|Element) : Boolean
-uri : String +<<virtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)
-version : Byte[3] +<<virtual>> CalcBBox() : BBox
-layer : String[] #GetAppropriatelmageSet(bbox : BBox, rect : Rect) : ImageSet
-style : String[]
-requestPrefix : String
-requestSuffix : String DXFMap
-maxBBox : BBox -location : String

-connectionTimeout : Integer

+<<vyirtual>> Create(xmlElement : XmIElement) : Boolean

+<<virtual>> Create(xml|Element : XmIElement) : Boolean +<<yirtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap)
+<<virtual>> Draw(bbox : BBox, rect : Rect, bitmap : Bitmap) +<<vyirtual>> CalcBBox() : BBox
+<<virtual>> CalcBBox() : BBox #LoadDXF(bbox : BBox) : Drawing

Fig. 3. 13. Detailed UML diagram of classes related to Coverage layers

4 Structure and basic elements of XML language GADL

Ginis Application Definition Language (GADL) is an XML language that is used
for encoding an explicit description of a (Web)GIS application domain that is be-
ing built using GinisWeb framework. For the specification of GADL we used
XML Schema Definition Language [4], so the definition of the language is an
XML schema document®.

XML language GADL is introduced to enable application describing, so new
applications can be quickly developed. Unlike GML that is used to encode geo-
data, GADL is primarily used to encode data about geodata. GADL description of
some GIS application, in essence, defines hierarchy and characteristics of layers,
as well as corresponding feature services that are used as connectors to geodata
sources. Web application that implements Ginis Web GIS represents, regarding to
GADL description, a special case where sources of geodata are limited to WMS
and WFS servers.

GADL schema specifies two separate root elements for describing Web-
enabled GIS node (element GinisApp), and Web GIS application (element

20 Complete GADL specification can be found at: http://gislab.elfak.ni.ac.yu/alexm/ginisweb.

64

GinisWebApp). The diagram that illustrates structure of GinisWebApp ele-
ment is shown in Fig. 3.14.

GinisWebApp element is defined as an extension of the basic type used for
describing layers - LayerBaseType. This complex type defines name, initial
visibility, display style (attributes), as well as optional multilingual titles (element
Title), access privileges (element Privilegies), and metadata related to the
layer (element Metadata). Besides these inherited attributes and elements,
GinisWebApp element further defines an attribute for specifying a spatial refer-
ence system (attribute srs) and top level layers (element Layers). Layers are
defined using elements analogue to classes from the GinisWeb model of a geoin-
formation system: Layer, Featurelayer, Coverage, Image, ImageSet,
ImageMultiSet, Grid, WebMap, and DXFMap. GADL description of a Ginis
Web GIS application limits possible layers to aggregate layers (WebLayer ele-
ment), searchable feature layers (FeaturelLayer element), and map layers
(WebMap element).

LayerBaseType (extension)

B atributes

[
\
\
\
\
\
\

3 sttributes

[cmawebapn

Fig. 3. 14. XML schema diagram showing the structure of a GinisWebApp XML
element

65

| LayerBaseType (extension)

| attributes

FeatureLayer [} (~—
|
|
'

S

: X Y,
:,.,: Services E—@B—fremuesuvice

1.0

FeatureDatabase i
—]

1.0

FeatureWeblnterface
—?l
1.0
FeatureLayer

L-1 SubLayers &

“B
=
1.0

Fig. 3. 15. XML Schema diagram showing the structure of a FeatureLayer XML
element

The detailed description of the structure of elements used for defining different
types of layers is beyond the scope of this chapter. For the purpose of this GADL
overview, the structure of FeatureLayer element will be described (Fig. 3.15).
Featurelayer is selected for its complexity and the fact that it can be con-
tained by both Web-enabled and Web GIS descriptions.

Element FeatureLayer describes the layer containing features of specific
type. Besides basic characteristics inherited from the previously mentioned
LayerBaseType, this element can also contain Definition, Services and
SubLayers elements. Definition element is used for describing non-spatial
and geometric attributes that determine feature type, while Services element is
used for describing services that provide and enable storing geographic features.
The content of a SubLayers element in this case is reduced to a Feature-
Layer element only. The relation between super and sub feature type is similar to
the relation between super and sub classes in an object-oriented paradigm. It
means that sub feature type inherits all attributes and services defined for a parent
feature type.

Different types of feature services can be defined substituting abstract element
featureService with the following elements: FeatureDatabase (de-
scribes connection to a geodatabase) and FeatureWebInterfaces (describes
connection to WFS and/or WMS servers). FeatureDatabase service is typi-
cally used with Web-enabled GIS descriptions, while alternate FeatureWebIn-
terface is used with Web GIS application descriptions. To complete this over-

66

view we will briefly describe the structure of a FeatureWebInterface ele-
ment (Fig. 3.16).

rfe-\tuleSeluiceType (extension) —I
attributes |

|
[Fertr Hebimertace & |

+-4"Version |

Fig. 3. 16. XML Schema diagram showing the structure of a FeatureWebInterfaces
XML element

As defined in GADL, the basic complex type that copes with description of
feature services is featureServiceType element. Through its attributes in-
sert, edit and delete it allows us to define the use level of a service. Op-
tionally, description of a service can specify conversion of names between an ap-
plication and a service (NameConvertor element), and a filter for features that
should be retrieved (imported element ogc: Filter). Elements specific to Fea-
tureWebInterface are WFS and WMS. These elements are used for specifying
parameters needed to enable successful connection to corresponding OGC ser-
vices.

Finally, at the end of this overview we give two GADL examples (Fig. 3.17)
concerning descriptions of a feature layer Countries. The type of features con-
tained by the layer is defined with a single polygonal geometry named Area, and

67

three non-spatial attributes: Name (string), Population (integer) and Capital
(string). The first example (Fig. 3.17a) represents a segment extracted from some
Web GIS application GADL description, while the second (Fig. 3.17b) can be a
part of corresponding Web-enabled GIS description. The main difference between
these two descriptions is the definition of a service. In the first case, the service is
defined using FeatureWebInterface element that contains WFS and WMS
elements specifying parameters needed for connecting with appropriate OGC
compliant servers. As opposed to this, in the second example we have a geodata-
base playing the role of a more powerful feature service that additionally enables
insertion, editing and deleting. The difference between these two examples is also
present on the level of details used for defining the geometry and attributes of the
feature type. In the second example the Geometry and Attribute elements
are enriched with read-only and required flags, default values and valid value
ranges. This additional information is used by a desktop GIS application responsi-
ble for Web GIS content creation and maintenance.

<FeatureLayer name="Countries" visible="true">
<Definition>
<Geometry name="Area" type="Polygon"/>
<Attribute name="Name" type="String">

<FeatureLayer name="Countries"
visible="true"
defaultStyle="BlueFill">
<Privilegies edit="true"

<Attribute name="Population” type="Integer"/> insert="true"
<Attribute name="Capital" type="String"/> delete="true"/>
</Definition> <Definition>
<Services> <Geometryname="Area" type="Polygon"
<FeatureWeblnterface> readonly="false"
<WFS> required="true"/>

<URI>http://somehost.com/wfs/</URI>
<Version>1.0.0</Version>

</WFS>

<WMS>
<URi>http://somehost.com/wms/</URI>
<Version>1.1.0</Version>
<RequestPrefix>

<Attribute name="Name" type="String"
readonly="false"
required="true"
default="?"/>
<Attribute name="Popuiation” type="integer®
readonly="false"
required="false">

?VERSION=1.1.0&REQUEST=GetMap <Range min="0"
&SRS=EPSG:4326& max="1000000000"/>

</RequestPrefix> <[Attribute>

<RequestSuffix> <Attribute name="Capital" type="String"
& TRANSPARENT=TRUE&FORMAT=image/png readonly="false"

</RequestSuffix> required="false"/>

<gml:Box> </Definition>
<gml:coordinates>-180,-90 180,90</gml:coordinates> <Services>

</gml:Box> <FeatureDatabase insert="true"

<FeaturelnfoPrefix> edit="true"
?VERSION=1.1.0&REQUES T=GetFeaturelnfo delete="true">
&:SRS=EPSG:4326&amo: <ConnectionStrina>

Fig. 3. 17. Sample GADL segments describing a feature layer Countries from a Web GIS
application perspective (a); and corresponding Web-enabled GIS perspective (b).

68

5 Case study: A Web GIS for an electric power supply
company

The GinisWeb application framework has been successfully used for the develop-
ment of several demo Web GIS applications?'. Nevertheless, the case study pre-
sented in this chapter concerns its most complex application — the support of de-
velopment of a GIS for capturing, maintaining and analysing an electric power
supply network. This system has been built for the Serbian power supply company
“Jugoistok™.

When the project was started in 2005, the primary concern was the develop-
ment of a desktop GIS that would enable digitalizing a power supply network
based on a set of legacy paper maps. This resulted in an application named
GinisED Editor and corresponding geodatabase. Later, in parallel with a process
of digitalizing the network, the application has been extended with various func-
tions related to certain domain specific analyses. Eventually, the need to widen
data availability emerged. Our solution was the introduction of GinisED Web
Viewer, a Web GIS application that enables network viewing and some basic
searches on network features.

The development of both, desktop (network editor) and Web (network viewer)
GIS applications were based on GinisWeb application framework. In the first case
the framework had to be extended to support network features whose geometry is
implicitly contained in a graph [11]. Besides extension of a model of geoinforma-
tion system, the development of a desktop GIS application also included imple-
mentation of a variety of domain specific functionalities originally not supported
by the framework. On the other hand, development of a thin Web GIS network
viewer relied completely on a solution presented in this chapter, i.e., it required
only writing of an appropriate GADL description. The sample screen shots of the
GinisED Editor and the GinisED Web Viewer displaying map of an approximate
area are shown in Fig. 3.18 and Fig. 3.19, respectively.

The presented case study shows that GinisWeb framework can be effectively
(re)used on a lower, application framework level to speedup the development of
specialized Web-enabled GIS applications, and on a higher, configurable compo-
nent level to enable rapid development of a typical Web GIS application. The con-
cept of hierarchical organization of layers through which geoinformation is pre-
sented enabled different levels of details in these two applications. Several layer
subtrees in the editor application were successfully replaced with only the root
layer in the viewer application. It resulted in a more simplified view at geoinfor-
mation in the application intended for a wider audience.

21 Some demo Web GIS applications can be found at: http:/gislab.elfak.ni.ac.yu/alexm/ginisweb.

69

(@ Ginso M=%

Aplkacia Prkaz Alati Objekti Naponskinivai Pomoc

koo @t & a <[el -
DN LS 2 .
f~ I | [izbor siieva %
} k e = OE GinsED ~
M [E] Nedoumice (|
I Transtomtosska stanica
= @G Prkiucci

/][Kablovski ciman
)@ Slobodno stojeci kabl oman
A6 Memo razvadni oman
][] ledvoieri merri aiman
][Razvodna kutga
A Krovninosac
[Zidni nosac
] [B] Monafazni prikliscak
A E Trofami prkfucak
= R Stubovi
/] [E] Armirano bet, ugaoni stub
(][] Armirano bet. noseci stub
(/][] Drveni stub
[Stub za ulicno svetlo
@A Celicri shub U
][Celiori stub CR
@ Anker
& Podupirsc
LB Svetifka
< AR Kablovi
/] Kablovska spoinica
[Samonasivi kabl
B Samonasivikabl snop
] [B] Wadzemni vod
][Podzemri vod
B Telekomurikacioni vod
L] Uzemfienie
= A Kanslizacia
/][Kablovski siementi
][] Kablovske cevi
) Kablovske sahte
][E Kablovska kanslzaciia
= ()] Fizicki obiekii
/)@ Gradevine sl
Povezi trafo stanicu sa TIS-cm [% 757442545 V: 4799660,60 | Lat: 43° 20 17.644" N Long: 21° 55 04.725°E | 1:500 Y

Fig. 3. 18. Sample screen shot from the GinisED Editor desktop GIS application for
capturing, maintaining and analysing an electric power supply network.

6 Conclusion

This chapter introduces GinisWeb framework, a tool for a rapid development of an
overall Web GIS. Rapid development is based on the use of configurable applica-
tion components produced by the framework and on explicit XML descriptions of
an application domain for their configuration.

Configurable application components of desktop GIS application, WMS, WEFS,
and Web application of a Web GIS are seen as different interfaces to a unique set
of geodata and geoprocessing methods represented by GinisWeb model of geoin-
formation system. The model of geoinformation system represents the core for
implementation of GinisWeb framework and the basis for specification of XML
language GADL. In essence, GADL description of a domain defines layer hierar-
chy through which geodata is organized and corresponding services used for con-
necting with sources of geodata. GADL description of a Web GIS application is a
special case where layer geodata sources have to be WMS and/or WFS compliant
Servers.

70

(7 GinisED Web - Windows Internet Explorer I ’ I — e = x|
@c_: + [] http:Jfiocahostfwebf [v][#+][x ar L~

W 4 | @oiiseD web

Naziy PPO0-A 4¥120
Tip i presek voda Alc 2x16

A Opis

Ispravan Da

MNaponski niva 0,4 KV

DuZina kabla 33.16 m

Trafo reon BORSKA 11
Izvod broj 4

Aktivan Da

Podzemni vod [95113

Naziv PPOO-A 4X120
Tip i presek voda Alc 2x16

Opis

Ispravan Da

MNaponski niva 0,4 KV
DuZina kabla 33.16 m

Trafa reon BORSKA 11
Izvod braj

1,000 (DXF)

OsveZi mapu

Fig. 3. 19. Sample screen shot of the GinisED Web Viewer of an electric power supply
network.

The concept of configurable application components and XML descriptions for
Web GIS development enables a high-level of reusability and extensibility, while
openness is achieved through the adoption of widely accepted standards for com-
munication between components. Lower levels of reusability are achieved through
an application framework that allows us to introduce new types of geodata and
widen geodata accessibility specializing Layer and FeatureService class
hierarchy.

Acknowledgments This research was partially supported by the project “Geographic Informa-
tion System for capturing, maintaining and analyzing of an electric power supply network”,
funded by Ministry of Science and Environment Protection, Republic of Serbia, and power sup-
ply company “Jugoistok”, Serbia, Ni§, Contract No. TR-6217A.

71

References

1. Buehler K (ed), OpenGIS Reference Model (Ver. 0.1.2), document 03-040, Open Geo-
spatial Consortium, http://orm.opengeospatial.org, 2003.

2. Chang K, Introduction to Geographic Information Systems, Third Edition. McGraw-Hill,
New York, NY, 2005.

3. Cox S, Cuthbert A, Lake R, Martell R (eds), OpenGIS Geography Markup Language
Implementation Specification (Ver. 2.1.2), document 02-069, Open Geospatial Consor-
tium, http://www.opengeospatial.org/standards/gml, 2002.

4. Fallside DC, Walmsley P (eds), XML Schema Part 0: Primer Second Edition, World
Wide Web Consortium, 2004,
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

5. Fayad M, Johnson R, Schmidt D, Building Application Frameworks: Object-Oriented Foun-
dation of Framework Design. John Wiley & Sons, New York, NY, 1999.

6. Kobryn C, Modelling Components and Frameworks with UML. Communications of the
ACM, Vol. 43, No. 10, pp 31-38, 2000.

7. La Beaujardiere J (ed), Web Map Service Implementation Specification (Ver. 1.1.1),
document 01-068r3, Open Geospatial Consortium, 2002,
http://www.opengeospatial.org/standards/wms

8. Mello UT, Xu L, Using XML to improve the productivity and robustness in application de-
velopment in geosciences. Computers & Geosciences, vol 32, issue 10, pp 1646-1653, 2006.

9. Milosavljevi¢ A, Pordevi¢-Kajan S, Stoimenov L, An Architecture for Open and Scalable
WebGIS. Proceedings of the 8th AGILE Conference on GIScience, Estoril, Portugal, May
26-28, pp 629-634, 2005.

10. Milosavljevi¢ A, Stoimenov L, Implementation Model of Ginis framework for Web-based
GIS. ETRAN '05, Budva, Montenegro, Jun 5-10, pp 35-38, 2005.

11. Milosavljevi¢ A, Stoimenov L, Stojanovi¢ D, Dimitrijevi¢ A, Geoinformation model of a GIS
for capturing, maintaining and analysing of an electric power supply network. YU INFO '06,
Kopaonik, Serbia, March 6-10, 2006.

12 Ranci¢ D, Dordevi¢-Kajan S, MapEdit: solution to continuous raster map creation. Com-
puters & Geosciences, vol 29, issue 2, pp 115-122, 2003.

13. Shanzhen Y, Lizhu Z, Chunxiao X, Qilun L, Yong Z, Semantic and Interoperable WebGIS.
Proceedings of the Second International Conference on Web Information Systems Engineer-
ing, Kyoto, Japan, vol 2, pp 42-47, 2001.

14. Shekhar S, Vatsavai RR, Sahay N, Lime S, WMS and GML based Interoperable Web Map-
ping System. Proceedings of the 9th ACM international symposium on Advances in geo-
graphic information systems, Atlanta, Georgia, USA, pp 106-111, 2001.

15.Soomro TR, Zheng K, Pan Y, Html and Multimedia Web GIS. Proceedings of the 3rd Inter-
national Conference on Computational Intelligence and Multimedia Applications, September
23-26, pp 371-382, 1999.

16.Vretanos PA (ed), Filter Encoding Implementation Specification (Ver. 1.0.0), document
02-059, Open Geospatial Consortium, 2001,
http://www.opengeospatial.org/standards/filter

17.Vretanos PA (ed), Web Feature Service Implementation Specification (Ver. 1.0.0),
document 02-058, Open Geospatial Consortium, 2002,
http://www.opengeospatial.org/standards/wfs

18. Wangmutitakul P; Minoura T, Maki A, WebGD: A Framework for Web-Based GIS/Database
Applications. Journal of Object Technology, vol 3, no 4, Special issue: TOOLS USA 2003,
pp 209-225, 2004.

19. Wong SH, Swartz SL, Sarkar D, A Middleware Architecture for Open and Interoperable
GISs. IEEE MultiMedia, vol 9, issue 2, pp 62-76, 2002.

72

20. Worboys M, Duckham M, GIS: A Computing Perspective. Second Edition. CRC Press, Boca
Raton, FL, 2004.

Chapter 4: Geospatial Web Services: Bridging
the Gap between OGC and Web Services

Elias Ioup, Bruce Lin, John Sample, Kevin Shaw

Naval Research Laboratory
Mapping, Charting, and Geodesy
Stennis Space Center, MS

Andry Rabemanantsoa, Jean Reimbold

University of New Orleans
Department of Computer Science

New Orleans, LA

Abstract This chapter highlights the differences between Web Services defined
by the World Wide Web Consortium (W3C) and the Open Geospatial Consortium
(OGC). Several techniques for mapping or translating between W3C services and
OGC services are reviewed. The challenges lie in integrating the services and cli-
ents which utilize these differing standards. Bridging the gap between these two
standards requires not only translating the interfaces but also mapping functional-
ity.

This chapter presents techniques for mapping and dividing OGC service capa-
bilities into multiple SOAP services that better fit the W3C Service paradigm. A
single OGC Service is split into multiple W3C Services, each representing a single
geospatial data set. This mapping approach better reveals the functionality of the
service and allows services to be composed as individual units. The individual
services also provide improved geospatial metadata support for service discovery.
Converting SOAP services into OGC services is a more difficult task. Included in
this chapter is a discussion of the Naval Research Laboratory's Geographic Infor-
mation Database (GIDB) Portal system and its approach to this problem.

74

1 Introduction

Web Services are software systems designed to facilitate machine-to-machine in-
teraction over a network. While any system created to support this goal can be
classified as a Web Service, the term usually refers to the standards for XML
communication defined by the World Wide Web Consortium (W3C). One stan-
dard, the Simple Object Access Protocol (SOAP), defines client-server communi-
cation using existing Web transports. The Web Service Description Language
(WSDL) is another W3C standard used to describe the interface of a SOAP-
compliant service. W3C Services are an attractive option for service developers
and providers because they are general enough to be used in any application do-
main and are broadly supported by the technical community.

Despite the benefits of W3C Services, the geospatial services community has
developed independent specifications for geospatial data exchange. The specifica-
tions of these services are maintained by the Open Geospatial Consortium (OGC).
Unlike a W3C Web Service, each OGC standard is designed to handle a specific
type of data. Additionally, OGC services are widely supported by GIS applica-
tions which allow off-the-shelf use by ordinary GIS wusers. The service
query/response protocols are standardized and service functions are fixed across
all service instances. These features make OGC Services simpler to implement
and consume than W3C Services.

Web Services and OGC Services are independently developed standards and
are not directly compatible. Establishing interoperability between W3C Web Ser-
vices and OGC Web services would benefit both communities. Web Service-
based applications will benefit when able to access the data provided by OGC
Services. Similarly, there are numerous non-GIS Web Services that contain loca-
tion-aware data which could be integrated into an OGC client application. Differ-
ences between the two standards make interoperability difficult, but bridging this
gap makes geospatial knowledge ubiquitously available to a much larger commu-
nity of applications.

1.1 Related Work

There have been several efforts to resolve the incompatibilities between W3C and
OGC Services. In “Wrapping OGC HTTP-GET and -POST Services with SOAP -
Discussion Paper,” the authors present an XML Schema for representing key-
value pairs in XML [1]. Key-value pairs are the primary query mechanism for
OGC services and are used either through HTTP-GET or HTTP-POST. Once
wrapped in XML Schema defined XML, they can be conveyed through SOAP
calls. Responses from OGC services are often binary (for example: a JPEG image)
and so they are also wrapped in XML via MTOM.

75

Additionally, in “OWS 1.2 SOAP Experiment Report OpenGIS Discussion Pa-
per,” the authors describe their approach to providing interoperability between
OGC Services and W3C services [2]. Specifically, they develop WSDL docu-
ments and SOAP services that mirror the functionality of the OGC Services:
WMS, WFS, and WCS. They propose a standardized set of WSDL's to be used by
anyone following this approach. This allows for SOAP interoperability, but it re-
quires service providers to provide duplicate endpoints to the same service.

Both of these approaches solve the basic problem of wrapping or translating the
query mechanisms, but they do not address all the key differences between OGC
and W3C Services. Namely, OGC services are based on a two step process: get-
ting the server's capabilities and then getting, putting, or modifying the data. Thus,
with these approaches, a W3C Service user has to use three steps: getting the
WSDL, getting the server's capabilities and then getting/putting/modifying the
data. Also, a UDDI based search for the OGC based WSDL would not reveal the
important capabilities of the server. As part of this chapter, we propose a method
for resolving these issues.

1.2 OGC Services

OGC Services are popular among the geospatial community because they are de-
signed to describe geospatial data and services. The standards are easy to imple-
ment and use, especially on the client side. As a result, geospatial services are
rarely implemented with non-OGC standards.

The OGC includes standards for a large number of geospatial services. The
most commonly used are the Web Mapping Service (WMS), the Web Feature
Service (WFS), and the Web Coverage Service (WCS) [3, 4, 5]. WMS serves
map layer images, WFS serves vector data encoded in Geographic Markup Lan-
guage (GML), and WCS serves gridded data in multiple file formats such as Geo-
TIFF. The OGC continuously develops standards for geospatial services which
have not yet gained wide acceptance.

The OGC standards are similar to Web Services in their reliance on HTTP for
transport and XML to express service descriptions, requests, and in certain in-
stances, data. Each OGC Service is a separate standard. While each standard has
similarities, they are not compatible. Each service defines different request pa-
rameters, has different request types, and returns different data types.

The service description, or Capabilities Document, provides detailed geospatial
metadata about the service in a standardized way. For example, this document de-
fines the representation of the spatial bounds as well as the spatial reference sys-
tem of the service.

76

Capabilities File

’ Service Description ‘

Capability
’ Requests ‘
| Exceptions | WFS Metadata ‘
’ Metadata } < {WCS Metadata ‘

WMS Metadata |

Fig. 4. 1. The OGC Service Capabilities Document includes metadata for the provided
service: WCS, WES, or WMS.

Possibly the most important feature of OGC Services is the uniformity of ser-
vice functionality.

All services that implement a particular OGC standard will provide the same
functionality. For example, every WMS server must provide a GetCapabili-
ties function to retrieve its service description. A WMS server must also expose
a GetMap function to retrieve a particular data layer. A standards-compliant cli-
ent will be able to retrieve data from any OGC Service type by implementing sup-
port for these predefined functions. As a result, a completely general client can re-
trieve data from any OGC Service.

The main disadvantage of the OGC standards is their limitation to the geospa-
tial community. Each standard provides a specific type of geospatial data or ser-
vice. A general-purpose service not strictly providing geospatial data will be dis-
couraged from using any OGC standard even though its data is associated with
location context.

1.3 Web Services

The Web Service standards created by the W3C are widely used in many applica-
tion areas, especially business-to-business network communication. Web Services
use SOAP as the messaging method [6]. The SOAP standard expresses messages
in XML and uses HTTP as platform-neutral transport. Every W3C Web Service
provides a Web Service Description Language (WSDL) document that defines its

77

functionality [7]. The WSDL lists each function definition of the SOAP service,
the input parameters, and output types. The SOAP and WSDL standards form the
basis for W3C Web Services.

The generality of Web Services allows them to wrap any kind of task, such as
performing a database search. The service's functionality is exposed to any con-
sumer independent of any programming language. As a consequence, two Web
Services may describe identical input parameters and return types, but have com-
pletely different functionality. In this case, each WSDL document does not in-
clude any metadata that distinguishes between the two services. Other than ser-
vice names and parameter types, all information on functionality must be provided
externally to the service.

Many tools exist which simplify the use of Web Services. Web Service tools
can automatically create application code to interface with a given WSDL or
SOAP service, or create a WSDL from a particular program object. The Web Ser-
vice registry standard, Universal Description, Discovery and Integration (UDDI)
is widely supported and therefore useful in locating existing Web Services. The
OGC equivalent is in limited use, requiring ad hoc solutions to locate available
services.

Beyond the fundamental standards, Web Service extensions define new capa-
bilities for usability and security. For example, WS-Security and WS-Reliability
extend SOAP for services where sensitivity of data or high-availability is required
[8, 9].

2 Interoperability

Interoperability between OGC standards and Web Service standards is important
to the continued growth and availability of geospatial services.

While geospatial services are usually implemented with the OGC standards,
most other services are not. Many existing Web Services are not geared toward
geospatial data, though their data often includes a location component. Without a
standard interface or the metadata necessary to access it, a developer must gather
this knowledge from the Web Service's WSDL and adapt the client software to
this interface. Geospatial applications which already have embedded OGC clients
would benefit from access to this data.

On the other hand, there are many applications which have already integrated
Web Service clients. These applications may not be solely focused on geospatial
functionality, but they would benefit by integrating additional geospatial data or
functionality provided by an OGC Service.

The additional tools, functionality, and extensions that exist for Web Services
may be desired or even required for use with OGC Services. For example, there
may be a requirement that all services used by an application implement the func-
tionality of the WS-Security standard. Unless an OGC Service can be integrated

78

into a Web Service, it will be prohibited from the system. In another scenario, an
OGC Service may need to be included in a UDDI registry, which would be impos-
sible without some Web Service interface.

Integrating Web Services-based geospatial data with standard OGC clients is
greatly useful for standard GIS analysis applications. An OGC interface provides
any OGC-compliant client access to the geospatial portion of the data. Without
OGC interoperability a client would have to be specifically created for the Web
Service. The generality of OGC clients precludes this requirement.

If a Web Service provides geospatial data there may be a drive to simply con-
vert it into an OGC Service, allowing a much wider array of geospatial applica-
tions access to the data. However, in many cases a Web Service may not be ex-
clusively dedicated to geospatial data. Instead, the geospatial data is one
component of a larger data set. Location is such an important component of many
application domains that many currently available Web Services contain geospa-
tial data which is not being exploited by the users. These Web Services already
provide important application functionality which cannot be removed simply to
extend support for geospatial data. The better solution is to enable interoperabil-
ity: integrating an OGC Service to provide proper geospatial support while leaving
the original Web Service unaffected.

3 Implementation Issues to Consider

Supporting interoperability between W3C Web Services and OGC Services is
non-trivial. In fact, providing an OGC Service interface to a Web Service and
providing a Web Service interface to an OGC Service are two different and com-
plicated problems. The underlying issue is the predefined functionality inherent to
the OGC Service standards and the lack of any predefined functionality in the
Web Service standards. Bridging the gap between these two standards requires
not only translating the interfaces but also mapping functionality.

3.1 OGC to Web Services

Providing a W3C Web Services interface to OGC Services is an easier task in
supporting interoperability. We focus on a solution that uses as a Web Service
Wrapper around an OGC Service. This wrapper provides all the functionality of
the OGC Service but with a standard W3C Web Service interface.

Data handling is an important issue to resolve between the Web Service wrap-
per and OGC Service. Web Services use XML as the primary method of commu-
nication. All non-string data types must be handled via special means. OGC Ser-
vices use a variety of data types not limited to XML. The three most common

79

OGC Services all request data using URL-encoded parameters in the HTTP re-
quest or in XML. Both methods translate easily into the Web Service messaging
model inside a simple wrapper. The difficulty arises in creating the response mes-
sage. Each of the three OGC standards returns different data types. Though WFS
uses XML, WMS and WCS use binary types which must be specially managed for
inclusion in SOAP messages.

Another important consideration for the OGC to Web Service translation is the
mapping of functionality. Web Services specify different requests as functions
which are specified in the WSDL. OGC Services have one request to perform op-
erations (getting/modifying/sending data and other requests for metadata (capabili-
ties document/type definitions). The operations of an OGC Service are provided
through one "function": GetMap for WMS, GetFeature for WFS, GetCov-
erage for WCS. The precise dataset provided by an OGC Service is hidden
within the Capabilities Document. There is no method of determining what data a
service provides without calling the GetCapabilities function. How do we provide
access to the functionality of the OGC Service through the Web Service, while
also creating a usable Web Service that follows best practices?

Metadata is one of the most important parts of the OGC Service standards.
Each standard requires geospatial metadata be added to the Capabilities Docu-
ment. This metadata is crucial to its effective use by a client application. How-
ever, no standard for geospatial metadata exists for Web Services. The Web Ser-
vice WSDL provides metadata in addition to function definitions. Removing the
metadata from the Web Service would remove much of its usefulness. As a result,
it is important to create an effective method of including metadata inside the
WSDL.

3.2 Data Handling

Service Translation

The simplest method of data handling between the OGC and W3C services is to
only return string data types from the Web Service. Obviously, this presents a
problem for OGC Services that return images or binary files. One solution is to
require that the client retrieves binary data from the OGC Service directly. The
Web Service interprets the clients request and returns a URL-encoded request for
the OGC Service. We call this method “Service Translation” because there is no
direct communication between the Web Service and the OGC Service.

Service Translation works by creating a translation Web Service which is de-
signed to create request URLs for OGC Services from a SOAP request. The client
creates the SOAP request for data and sends it to the Web Service. The Web Ser-

80

vice parses the request and creates an equivalent OGC Service request and en-
codes it into a URL. Then the URL is returned to the client in the SOAP response.
The client must then use the URL to retrieve the data directly from the OGC Ser-
vice.

Client W3C Web Service OGC Service

SOAP request —

SOAP Response

OGC Request URL

OGC Request —»

-— Data

Fig. 4. 2. Service Translation reduces communication complexity, but clients must
interact with both services in order to receive data.

The primary benefit of the Service Translation is that the Web Service does not
have to manage messages containing binary data. Removing this functionality
from the Web Service reduces the cost and complexity of communication. The
Web Service does not have to act as a proxy for the OGC Service's data, removing
the associated computational and network costs. However, the reduction in com-
plexity and load on the Web Service are pushed to the client side. With Service
Translation, the client must manage communication with both the Web Service
and the OGC Service. While the client need not know the details of requesting
data from an OGC Service, it still must make a second data request. Fundamen-
tally, this is antithetical to the operation of Web Services. The goal of an OGC
Service to Web Service mapping would be to remove as much complexity as pos-
sible from the client, a goal which loose coupling does not achieve.

In this type of system, a portion of the communication takes place outside of
the Web Service framework. Thus, if Web Service specific extensions, such as
WS-Security, are required for access, the translation prevents access to the service.
The value of Web Services comes from operating within the Web Service frame-
work and exploiting the functionality it provides. Bypassing this framework
greatly diminishes this benefit.

81

This last disadvantage is the main reason we did not use this method in our in-
teroperability system.

Service Wrapping

Service Wrapping is necessary to completely wrap an OGC Service with a Web
Service. In this method, the data of the OGC Service is retrieved by the Web Ser-
vice and then returned to the client. Service Wrapping will increase the load on
the Web Service system and introduce complexities; however, it is in most cases
the appropriate method of creating a Web Service interface to an OGC Service.
Using a service wrapper will make all interaction with the client completely Web
Service based. Thus, any specific Web Service requirements, such as use of WS-
Security or WS-Reliability, will be possible. Clients for the Web Service can be
made easily with existing tools and the system will mesh well in an existing Web
Services infrastructure. Because wrapping meets the goal of completely hiding the
OGC Service from the client and allows the use of all Web Service extensions, we
chose to focus our work on this method.

Client W3C Web Service OGC Service

I I
I I
L—1 SOAP Request —>:
|
|

I
I
I
I
I
—— OGC Request [—
I
I
I
]

~4—— Data [———

SOAP Response

Data

Fig. 4. 3. Service Wrapping incurs greater communication overhead, but simplifies the
client tasking.

Service Wrapping requires that the Web Service be able to include binary data
in its messages, specifically the response from a WMS or WCS server. The prob-
lem of including binary data with a SOAP response is not unique to geospatial
service interoperability; thus there are some existing solutions for this problem.

82

However, none of these solutions provide the ease of access to data made possible
by accessing the OGC Service directly.

Two methods that return data from a Web Service are available. The first is to
encode the binary data in a string and return it within the XML. Base-64 encoding
allows any binary data to be representing using only ASCII characters. The Web
Service encodes the binary data from the OGC Service using base-64 encoding
and returns it to the client. The client then must decode the base-64 data before
using it. The main benefit to base-64 encoding of binary data is that the resultant
string can be easily embedded inside the SOAP response. Any Web Service
framework will be able to handle base-64 encoded binary data since it is function-
ally no different than standard string data. The problem with base-64 encoded
data is that it is 33% larger than the original binary file. For large binary files of-
ten returned from OGC Services (such as large map images or GeoTIFFs) the in-
crease in size will be significant. Encoding and decoding the base-64 messages
will be computationally costly, especially if the service is high volume. The de-
coding task may have to be manually performed on the client side. While not dif-
ficult, it would be preferable to have the binary file available in its original form
immediately, and delegate the binary data handling to the Web Services frame-
work. Certain frameworks will automatically decode base-64 data, but this is not
a designated standard [10].

Rather than encode the binary data as a string, it would be better to transmit the
unmodified data. Since binary data cannot be embedded inside the XML docu-
ment, the optimal solution is to attach it to the document and reference that at-
tachment from within. SOAP with Attachments (SwA) is one method of sending
binary data with a SOAP message [11]. This method attaches data in the MIME
format common in email. The attached binary file is then referenced from within
the SOAP XML message. SwA allows binary data to be included unmodified
with the XML while still maintaining a reference to it from within the actual
XML. We dismissed SWA as a potential solution for two primary reasons. First,
an entire SOAP message must be scanned to retrieve attachments because MIME
uses text strings to delineate boundaries between parts. Second, using MIME pre-
cludes using Web Services extensions such as WS-Security, because MIME can-
not be represented as an XML Infoset [12].

The problems of SwA led to the creation of the second method we used called
Message Transmission Optimization Mechanism (MTOM) [13]. MTOM uses the
XML Binary Optimized Packaging (XOP) standard to include binary data in a file.
All binary data is encoded using base-64 and included in the XML file. MTOM
will package that XML document within an XOP package. All base-64 encoded
data is removed from the XML and optimized, i.e. converted back to its original
binary form. The binary data is still attached using MIME but within an XML
Infoset that allows Web Services extensions such as WS-Security, which must
compute signatures on the XML string data, to function properly. Using MIME al-
lows MTOM to be backwards compatible with SOAP with attachments. MTOM
retains compatibility with the Web Services model because of the temporary state

83

where the data is base-64 encoded. At that point all data is in string representation
and usable by any extension or tool which requires compatibility with the Web
Services model. However, the transmission size is not inflated because the data is
transmitted in the original binary format. The base-64 encoding of MTOM is also
not a mandatory process; a client can access the original binary data from the mes-
sage rather than having to base-64 decode it from a proper SOAP message.
MTOM is a compromise which allows string-only representations of binary data
without ever transferring the expanded form of the data. The main disadvantage of
MTOM is that is must be supported by the Web Services framework to be fully
successful. Because MTOM is a relatively recent standard there are Web Services
frameworks which will not fully support it.

Our Web Service interface to OGC Services uses both base-64 encoding and
MTOM as binary messaging methods. While base-64 encoding is not optimal, it
will be supported by any Web Services system. The encoding and decoding pro-
cedure is well known and easily implemented. MTOM is too new a standard to en-
force its usage. However, the reduction in transmission size is useful for our sys-
tem which is geared toward heavy usage. As a result, we implement both methods
of binary messaging in different functions, allowing the client to choose the
method appropriate for their application.

3.3 Functional Mapping

Web Services and OGC Services have a fundamentally different design. Web Ser-
vices are designed to have a flexible set of functions which are described in the
WSDL for the service. OGC Services have a static set of functions but a flexible
set of data. The data is described in the Capabilities Document for the service.
There are two different ways to map functionality between OGC Services and the
Web Service wrapper, each useful in different contexts.

In the first method the WSDL of the Web Service lists the static function set of
the OGC Services. For example, the WMS specification defines a GetCapa-
bilities and GetMap function, leading the Web Service wrapper to have cor-
responding GetCapabilities and GetMap functions. The client would be
required to call the Web Service version of the GetCapabilities function to
fetch the metadata for the service and then call the GetMap function with the ap-
propriate parameters. This is the method used Ionic Software by the OGC Inter-
operability Program [2]. This method is appealing because it precisely matches
the process of receiving data from an OGC Service. Direct mapping is useful be-
cause it allows the same WSDL specifications to be used for all OGC Services of
the same type. It also allows the use of a Web Service interface which is com-
pletely generic. Any provider of an OGC Service can plug-in a Web Service in-
terface following this model without any code or WSDL modification. The direct
mapping also allows OGC Services to be added to UDDI registries while still re-

84

taining the essential properties of the original OGC Service as done in OGC Inter-
operability Experiments [14]. However, directly mapping functionality does not
match the Web Services model. For a Web Service, all functionality should be re-
vealed within the WSDL. By directly mapping OGC Service functions into Web
Service functions all the important information about what the service actually
does is hidden. For this reason, we use an alternative method to creating inter-
faces that better follow the Web Service model.

Instead of a direct map between OGC Service and W3C Service functionality,
we create a mapping between OGC Service data and W3C Service functionality.
Rather than exposing a function, such as GetMap, the actual data layers are ex-
posed, for example a layer such as "satellite imagery." The data layers can be ex-
posed in two different ways. The first maps data layers of a single OGC Service
into functions in a new W3C Service. The organization of the original OGC Ser-
vice is left intact and the relationships between the data layers are still apparent.

The second method maps each data layer into a separate service. This method
creates a large number of simple, atomic services. No relationships or organiza-
tion implied by the original OGC Service exists within these separate services.
With this approach, each new

W3C Service will have its own GetMap which returns the data from that par-
ticular layer. Each new service will implement a W3C Service port type contain-
ing a GetMap function and can be easily composed into W3C Service orchestra-
tions with a Business Process Execution Language (BPEL) engine.

We chose the latter method of transforming OGC Layers into individual W3C
Services. To accomplish this, we created a tool which automatically transforms an
OGC Service into many W3C Services. First, a parser ingests the OGC Service
capabilities document and determines the available layers. For each layer, the tool
creates a WSDL that contains a GetMap function. This function will be used to
retrieve the map data from the W3C Service. The inputs of the GetMap function
are the same as the original OGC Service function except for the layer name
which is hard-coded to the W3C Service. Existing automated tools (WSDL2Java)
are used to create the W3C Service program code from the WSDL. The tool modi-
fies this code to use an OGC Service wrapper library which performs the actual
request translation and forwarding to the OGC Service. This system is completely
automated, allowing the new W3C Services to be created without any interven-
tion. The process is similar for the alternate method of creating one W3C Service
with many functions except that only one WSDL is made with a function for each
data layer. Metadata for each new service can be provided by an additional Get -
Capabilities function which forwards a portion of the OGC Service capabili-
ties document; however, we use an alternate method discussed in a later section.

As an example consider an OGC Service with three map layers: "RoadMap,"
"Satellitelmagery," and "HybridMap." Our automated tool will find the three lay-
ers and create three separate WSDL files. The three WSDL documents will de-
scribe three new W3C Services: "RoadMapService," "SatellitelmageryService,"
and "HybridMapService". Each of these services will have a GetMap function

85

with input parameters of geographic bounds, image size, etc. The WSDL docu-
ments will be used to create program code for the W3C Services. The code for the
GetMap function is modified to use the OGC Service wrapper which will provide
the actual responses to W3C Service requests. In the case of the "RoadMapSer-
vice" all requests will be turned into WMS URLs with the 1ayername parameter
set to "RoadMap." All other parameters are contained in the W3C request and are
encoded into the URL. The URL will retrieve an image which is then sent back
through the W3C Service either base64-encoded or using MTOM. The newly
created WSDL, auto-generated service code, and OGC Service wrapper library
can then be deployed and used via any standard W3C Service mechanism.

3.4 Metadata

Metadata is important to the proper usage of any OGC Service. The Capabilities
Document of an OGC Service contains the list of data sets available from the ser-
vice as well as the geospatial parameters over which the data is defined. A par-
ticular map may only be available over a small portion of the globe. It may also
be available in multiple spatial reference systems. Knowing these parameters is
necessary to determine whether a certain piece of data is useful for a particular ap-
plication. While the metadata specification is standardized in the OGC Service
Capabilities Document, there is no standard method of providing it from a Web
Service.

The Web Service can provide access to the Capabilities Document of the OGC
Service. Any client may then use the data as if it had been obtained directly from
the OGC Service. But the Capabilities document does not serve as the primary
description document for Web Services. As such, all Web Service functionality
based upon the use of WSDLs will be missing vital information about the OGC
Service. Moving metadata into the WSDL will provide Web Service-based tools
and services with full information about a wrapped OGC Service.

The problem is that a WSDL normally does not contain metadata beyond the
functions provided by the service and the parameter/return types of those func-
tions. WSDLs are extensible. The metadata for the OGC Service can be included
in the WSDL, but not in a standard way. While there are a limitless number of
ways to encode metadata in a WSDL there are a few goals that should be met.

The first is that the metadata should not interfere with the proper usage of the
WSDL. Any tools which do not use the metadata should not be affected nega-
tively by it. Secondly, metadata methods should support all OGC Service meta-
data and be consistent between different service specifications. And finally, the
metadata encoding method should allow for simple validation of parameters using
existing XML tools.

Our method for providing metadata encodes it inside the extensible portions of
the WSDL. Extensible information is only allowed in certain portions of the

86

WSDL. We include it inside the <service> element. The limits on the input
parameters are encoded using an XML Schema definition with the XML Schema
<restriction> element. Each input parameter is given a schema type which
then has restrictions specified. For example, we can specify that the latitude of the
request must be between 30 and 40 degrees or that the width of the return image
must be less than 1000 pixels. The use of XML Schema to define capabilities pro-
vides a simple method of checking input parameters to the service. The input pa-
rameters can be validated against the restriction schema using a standard XML
validation tool.

We add the metadata specifications for the response to its schema. Metadata
elements are then placed within the response element in the WSDL. For example,
the function may only return JPEG images. To signify this we add a format ele-
ment with the string "jpg" to the response element. A client can parse these meta-
data parameters to determine the capabilities of the Web Service. Our method
meets the three goals for encoding metadata in a WSDL. Information is only
placed in the extensible portions of the WSDL, thereby not interfering with usage
of the WSDL with any Web Service tool. The XML schema can encode all input
restrictions defined in OGC Services and also allow simple validation of input pa-
rameters.

This method allows us to capture the information from a GetCapabilities
document in the service WSDL. By encoding metadata in the WSDL, we preserve
the OGC two-step process of getting a service’s capabilities and then executing
the service. Consider the following example of a layer defined in a WMS capabili-
ties document.

<Layer>
<Name>RoadMap</Name>
<Title>Road Map</Title>
<SRS>EPSG:4326</SRS>
<LatLonBoundingBox SRS="EPSG:4326"
minx="-180.0" miny="-90.0"
maxx="180.0" maxy="90.0"/>
<BoundingBox SRS="EPSG:4326"
minx="-180.0" miny="-90.0"
maxx="180.0" maxy="90.0"/>
</Layer>

The following XML Schema snippet defines an element “RoadMapRequest”
and encodes restrictions on the values of the input parameters. These elements
represent the definition of the input parameters to a SOAP service and would be
encoded in the WSDL or a referenced schema document.

<xsd:element name="RoadMapRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="bbox"

87

type="geotypes:BoundingBox" />
<xsd:element name="size"
type="geotypes:Size"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="BoundingBox">
<xsd:sequence>
<xsd:element name="latMin" type="xsd:double"/>
<xsd:element name="latMax" type="xsd:double"/>
<xsd:element name="1lngMin" type="xsd:double"/>
<xsd:element name="lngMax" type="xsd:double"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="specification">
<xsd:complexType>
<xsd:all>
<xsd:element name="latMin"
type="1latRestriction" minOccurs="0"/>
<xsd:element name="latMax"
type="1latRestriction" minOccurs="0"/>
<xsd:element name="lngMin"
type="1lngRestriction" minOccurs="0"/>
<xsd:element name="lngMax"
type="1lngRestriction" minOccurs="0"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:simpleType name="latRestriction">
<xsd:restriction base="xsd:double">
<xsd:minInclusive value="-90.0"/>
<xsd:maxInclusive value="90.0"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="lngRestriction">
<xsd:restriction base="xsd:double">
<xsd:minInclusive value="-180.0"/>
<xsd:maxInclusive value="180.0"/>
</xsd:restriction>
</xsd:simpleType>

An alternate solution would be to use WS-MetadataExchange. This would al-
low metadata about the service to be encoded as WS-Policy documents. While this
adds a third step back to the process, it does follow a W3C standard methodology
[15].

88

4 W3C to OGC

There are instances in which one would want to convert W3C Services to OGC
Services. Most GIS applications (both Web-based and desktop-based) have built-
in capabilities for handling OGC services, specifically WMS, WCS and WFS.
Therefore GIS users can access those services with no need for code generation
(automatic or manual). However, because of the generality of W3C Services no
GIS applications have built-in capabilities for automatically ingesting those ser-
vices. Thus it is desirable to consider how to provide an OGC Service interface to
a geospatial Web Service.

W3C services are more general than OGC services, thus representing W3C
services as OGC services can require a reduction or change of the functionality of
the original W3C service. For example, consider the elevation data service pro-
vided by the United States Geological Survey (USGS). It is a typical W3C service
with a WSDL and SOAP endpoints. The service is available at
http://gisdata.usgs.net/ XML WebServices/TNM_Elevation_Service.php.

The service provides the “getElevation” service defined by this XML Schema
snippet:

<s:element name="getElevation">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1"
name="X Value" type="s:string" />
<s:element minOccurs="0" maxOccurs="1"
name="Y Value" type="s:string" />
<s:element minOccurs="0" maxOccurs="1"
name="Elevation Units" type="s:string" />
<s:element minOccurs="0" maxOccurs="1"
name="Source Layer" type="s:string" />
<s:element minOccurs="0" maxOccurs="1"
name="Elevation Only" type="s:string" />
</s:sequence>
</s:complexType>
</s:element>

The function takes latitude and longitude coordinates as required parameters
and returns the elevation at that location. Contrast this to typical OGC service calls
which take a bounding box for the spatial component of the query. OGC users
provide a bounding box which must be converted into one or more points for use
with the USGS service. There are several ways to perform this conversion. The
following figure illustrates three methods. First, we can simply use the center
point of the box for our Web service query. Second, we can use the corners. Or fi-
nally, we can generate an evenly spaced grid of points in the box.

89

% %

Fig. 4. 4. Example methods for converting bounding box to single point queries

The response format varies. For WMS we could return an image with eleva-
tion labels drawn at the points and for WFS we could return a GML document
containing point features.

This example is provided to illustrate that the types of challenges in converting
a general W3C service to an OGC service. Decisions are required about how to
reduce or alter the W3C services functionality to fit the OGC framework. While it
may be possible to generate a wrapper tool which can automatically convert any
W3C service to an OGC services, its unlikely to suit the requirements of all or
even most users. A certain amount of manual implementation will be necessary.

Two existing Web Services further exemplify this problem. ESRI's ArcWeb
(http://www.arcwebservices.com) provides access to maps from a Web Service.
The functionality for retrieving maps described in the WSDL is similar to that in
the OGC Web Mapping Service; only a simple conversion of parameters would be
required in an OGC WMS wrapper for the ESRI service. Conversely, Microsoft's
TerraServer (http://terraserver.microsoft.com) provides access to maps from a
Web Service with completely different functionality from the OGC Web Services.
Their TerraService provides access to maps precut into tiles with a fixed number-
ing scheme. Maps cannot be retrieved using arbitrary geographic coordinates or

90

image sizes. Providing a WMS interface to this service would take considerably
more work.

The significant difference between the functional interfaces to these two ser-
vices exemplifies the necessity for manual implementation of OGC interfaces to
Web Services. The lack of any common metadata scheme for either of these Web
Services further reinforces this point.

4.1 Service Specific Implementations

A service-specific implementation in certain cases may be the only method of
providing an OGC Service interface to a Web Service. Without any other preexist-
ing framework for providing an interface to services, this is the only method of
creating an OGC Service wrapper to a Web Service. Creating a service specific
wrapper requires two elements: providing the appropriate metadata for the OGC
Service and mapping functionality between the Web Service and the mandated
OGC Service functions. Because the Web Service has no predefined functionality
but the OGC Service does, mapping functionality and metadata is not automatic.

For a service specific implementation the Capabilities document of the OGC
Service must be created manually. A geospatial Web Service does not have any
predefined metadata specification; each service may present a different set of
metadata and different methods of encoding it. Metadata may be encoded inside
an extended WSDL format, provided by a service function, provided externally to
the service, or not at all. Manual construction of the Capabilities document re-
quires combining these various sources of metadata. In certain cases the imple-
menter may have to manually determine metadata not already provided by the
Web Service to complete the OGC Service standard.

Each OGC Service standard must have all functions implemented as well. If
the Web Service has functions with the same parameters and return types this only
requires a simple wrapper that converts the OGC Service request to the SOAP re-
quest. A WMS will often fall into this scenario. The service requires only a few
parameters such as geographic bounding rectangle and image size which are usu-
ally provided by any map image service. In contrast, WFS requires that data be
provided using Geographic Markup Language (GML). If the Web Service does
not provide access to vector data using GML a WFS wrapper must convert from
the native Web Service format into GML. In many cases these service specific
wrappers will be difficult and time consuming to create. Since no standard for
geospatial Web Services exists, each OGC Service wrapper will be unique, mak-
ing this process extremely costly to perform for a large number of Web Services.

91

4.2 Driver-Based Mapping

There is no method of automatically mapping a geospatial Web Service into an
OGC Service. However, it is possible to improve upon the service-specific im-
plementation in instances where many different Web Services mapped to OGC
Services. Instead of implementing a completely new solution for each Web Ser-
vice, the portion of the wrapper which outputs an OGC Service can be standard-
ized. The OGC Service output obtains the geospatial data from an intermediate
format internal to the system. To provide access to a new Web Service, a driver is
created which maps the Web Service to the intermediate format. The drivers are
much simpler to implement than an entire wrapper for each Web Service. This
method reduces the time to provide interoperability to many Web Services.

Web Service 1 Thick Client
Web Service2 — | o GIDB
O M —————— Thin Client
£ Portal
. /_ D \
OGC Clients

Fig. 4. 5. Driver-based interoperability

The Naval Research Laboratory's Geographic Information Database (GIDB)
Portal system is an example of driver-based interoperability. We created the GIDB
Portal to allow input from a variety of geospatial data sources, including Web Ser-
vices. Each type of data source uses a driver designed to translate the data from
remote source into the GIDB data model. The data sources in the GIDB data
model are served out using a variety of interfaces. Raster data sources are served
out as WMS layers and vector data sources are served as WFS layers. The GIDB
data model contains all information necessary to automatically create a Capabili-
ties Document for the OGC Service and to perform OGC Service queries for data.

5 Conclusion

The methods presented here provide the ability to unite OGC Services and Web
Services. With the interfaces we have created, the extensive array of Web Service
standards, tools, and extensions can be used with OGC Services. As the develop-
ment of Web Services and the surrounding technologies continues to grow, the

92

importance of providing a Web Service interface to OGC Service grows too. Our
system provides a flexible system for providing this access while maintaining the
important capabilities that are so desirable from OGC Services. By mapping data
from the OGC Service to functionality in the Web Service we ensured that the ca-
pabilities of the OGC Service were fully described in the WSDL. On the other
hand, our driver-based GIDB Portal is the simplest method of providing an OGC
Service interface to a Web Service. While still a manual process, the driver-based
system removes most implementation cost by reusing the system components that
manage the data model and output data in OGC Service and other formats [16].

The task of creating interoperability between these two standards is difficult
because of their respective strengths. The flexibility of Web Services standards
and the strictness of OGC Service standards make interoperability difficult. How-
ever, this is likely to change over time. The OGC sees the need for Web Service
interfaces to its standards and has led them to call for WSDL documents of their
services. The lack of metadata in WSDL documents is not limited to geospatial
applications. As a result, the W3C has created an annotation standard which will
improve support for metadata inclusion and ontology support. The drive for stan-
dards in geospatial services will continue because the visibility of geospatial ser-
vices has increased substantially over the last few years and with the improved
standards will come better interoperability.

Acknowledgments The authors would like to thank the Naval Research Laboratory’s Base Pro-
gram, Program Element No. 0602435N for sponsoring this research.

References

1. Riidiger Gartman and Bastian Schiffer. Wrapping OGC HTTP-GET/POST Services with
SOAP. OpenGIS Discussion Paper, http://www.opengeospatial.org/standards/dp, January
2008.

2. Jerome Sonnet and Charles Savage. OWS 1.2 SOAP Experiment Report. OpenGIS Discus-
sion Paper, http://portal.opengeospatial.org/files/?artifact id=1337, January 2003.

3. Jeff de la Beaujardiere. OGC Web Map Service Interface. OGC Implementation Specifica-
tion, http://portal.opengeospatial.org/files/?artifact id=4756, January 2004.

4. Pangiotis A. Vretanos. Web Feature Service Implementation Specification. OGC Implemen-
tation Specification, http://portal.opengeospatial.org/files/?artifact id=8339, May 2005.

5. Arliss Whiteside and John D. Evans. Web Coverage Service (WCS) Implementation Specifi-
cation. OGC ImplementationSpecification, https://portal.opengeospatial.org/files/?artifact
id=18153, December 2006.

6. Nilo Mitra and Yves Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition). W3C Rec-
ommendation, http://www.w3.org/TR/soap12-part0, April 2007.

7. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. W3C Note, http://www.w3.org/TR/wsdl, March
2001.

93

8. Anthony Nadalin, Chris Kaler, Phillip Hallam-Baker, and Ronald Monzillo. Web Services
Security: SOAP Message Security 1.0. OASIS Standard, http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-soap-message-security-1.0.pdf, March 2004.

9. Doug Davis, Anish Karmarkar, Gilbert Pilz, Steve Winkler, and Umit Yalcinalp. Web Ser-
vices Reliable Messaging (WS-ReliableMessaging) Version 1.1. OASIS Standard,
http://docs.oasis-open.org/ws- rx/wsrm/200702/wsrm-1.1-spec-0s-01.html, June 2007.

10. A. Ng, P. Greenfield, and S. Chen. A Study of the Impact of Compression and Binary Encod-
ing on SOAP Performance. Proceedings of the Sixth Australasian Workshop on Software and
System Architectures (AWSA2005), pages 4656.

11.John J. Barton, Satish Thatte, and Henrik Frystyk Nielsen. SOAP Messages with Attach-
ments. W3C Recommendation, http://www.w3.0org/TR/2000/NOTE-SOAP-attachments-
20001211, December 2000.

12. Matt Powell. Web Services, Opaque Data, and the Attachments Problem. MSDN Web Ser-
vices Technical Article, http://msdn2.microsoft.com/en-us/library/ms996462.aspx, June
2004.

13. Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herve Ruellan. SOAP Message
Transmission Optimization Mechanism. W3C Recommendation,
http://www.w3.org/TR/soap12-mtom/, January 2005.

14.Josh Lieberman, Lou Reich, and Peter Vretanos. OWS1.2 UDDI Experiment. OpenGIS In-
teroperability Report, http://portal.opengeospatial.org/files/?artifact id=1317, January 2003.

15.Keith Ballinger, Don Box, Francisco Curbera, Steve Graham, Canyang Keving Liu, Brad
Lovering, Anthony Nadalin, Mark Nottingham, David Orchard, Claus von Riegen, Jeffrey
Schlimmer, John Shewchuk, Greg Truty, and Sanjiva Weerawarana. Web Services Metadata
Exchange (WS-MedatdataExchange), http://xml.coverpages.org/WS-MetadataExchange.pdf,
February 2004.

16.J.T. Sample, R. Ladner, L. Shulman, E. Ioup, F. Petry, E. Warner, K. Shaw, and F.P.
McCreedy. Enhancing the US Navys GIDB Portal with Web Services. IEEE Internet Com-
puting, 10(5):5360, 2006.

Chapter S: The Design, Implementation and
Operation of the JPL OnEarth WMS Server

Lucian Plesea

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109, USA

Abstract The JPL OnEarth WMS server is a high performance WMS server of-
fering public access to very large NASA earth imagery datasets, many of which
have been created in conjunction with the server itself. This chapter provides de-
scription of the server implementation design and details of various components is
provided, along with examples of how the components interact in actual use. The
OnEarth server, in continuous service since mid 2000, has encouraged the devel-
opment of a large number of client applications and has been an example of the
benefits of interoperable GIS Web services.

As opposed to most WMS implementations, the OnEarth server only handles
raster data, having no support for vector or point data. It is however a feature rich,
scalable and fast implementation for WMS access to raster data, including support
for OGC Styled Layer Descriptor (SLD). Most of the server performance is the
result of the image processing pipeline implementation, which can use multiple
CPUs while processing a single request, operates in memory and does not use any
external temporary files. In addition to the main server binary, a tiled WMS and
KML super-overlay is implemented as an apache module, offering a major boost
in speed and availability to applications that can use pre-generated tiles. This
component was proven capable of sustaining load exceeding two hundred WMS
requests per second without overloading, while reducing the response time from a
second or more to a few milliseconds. The WMS server also supports the concept
of virtual image dataset, in which slave servers running on remote computers can
be used instead of a local image dataset.

96

Web Map Service (WMS) is an Open Geospatial Consortium (OGC) standard pro-
tocol used for requesting and producing maps on the Internet, one of the main
components of a suite of GIS interoperability standards. The WMS interaction be-
tween the client and the server is based on HTTP, with the client submitting re-
quests in the form of Uniform Resource Locators (URLs)* which contain stan-
dardized parameters specifying the details of the operation requested, using either
the POST or the GET method. Three operations are defined in the current WMS
standard: a request for service-level metadata GetCapabilities; the actual request
for a map GetMap; and an inquiry about a point on a map GetFeaturelnfo. While
the implementation of the GetFeatureInfo operation is optional, the GetCapabili-
ties and GetMap operations are mandatory for the server. If specific map charac-
teristics such as projection and format are supported by both a client and a server,
these two standard operations are sufficient for an independent mapping client ap-
plication to access the map. While the WMS standard offers many other capabili-
ties, the simplicity of achieving basic WMS functionality contributed to the rapid
success and proliferation of WMS, making it one of the most common Internet
services, and making interoperable Internet based GIS applications a reality.

The JPL OnEarth WMS server, online at http://onearth.jpl.nasa.gov/, is one of
the best known examples of a large scale implementation of a Web Map Service
Server, providing GIS applications with easy access to a large collection of im-
agery and elevation data. The OnEarth WMS server became operational in early
2000 under the name of MapUS, enabling public access to one of the largest satel-
lite images composites available at the time, a multi-spectral Landsat mosaic of
the continental United States.

A precursor of the WMS protocol was used initially, making this server a con-
tributor to many of the early OGC standardization activities. From this initial
form, the OnEarth server data holdings and capabilities have continually in-
creased. It is currently offering open WMS access to some of the largest mapping
datasets available on the Internet. Many of these datasets have been prepared in
conjunction with the server itself, with the explicit purpose of providing resources
for the WMS and GIS user community by providing a data and feature rich WMS
server.

While heavily utilized by many applications, the server complex itself has
never transitioned into a stable operational status. Its main purpose is still limited
to providing a rapid development platform and acting as a technology demonstra-
tor. Secondary goals for the OnEarth server are to increase the awareness and the
availability of NASA imagery data, acting in concordance with the NASA Mis-
sion Statement, “To understand and protect our home planet ... To inspire the next
generation ... as only NASA can”

22 Uniform Resource Locator: IETF RFC 2396

97

1. OnEarth Design

The OnEarth server design and its various software and hardware components will
be explored in further detail, helped by a few examples illustrative of the server
operations.

Unlike most WMS server packages, the OnEarth software is specifically tar-
geted at handling large raster datasets, having very limited capabilities for vector
or point data. For raster data however, it is a very flexible and feature rich yet
scalable and high performance implementation of the WMS protocol. In addition
to WMS, the OnEarth server also supports most of the OGC Style Layer Descrip-
tor” (SLD) elements applicable to raster data and has support for high perform-
ance tiled WMS and native KML support. The SLD support greatly expands the
WMS map representation options available to users, while the tiled WMS and
KML capabilities makes it possible to support many concomitant users of interac-
tive mapping applications. Both the software and hardware configuration of the
OnEarth server have been developed in-house at JPL. The server development is
driven either by specific user requests or as needed by new datasets.

*Relative size is not significant *External Tiled WMS builds caches
«Only data flow is represented *Read-ahead prediction based on log

Fig. 5. 1. OnEarth System Diagram

The OnEarth hardware is represented by a heterogeneous collection of com-
puters linked together by a gigabit Ethernet switch. The computers themselves are
a dozen x86 Linux machines and a couple of medium size SGI IRIX servers. The
Linux machines are mostly used for storage, ten of them forming a 40TB storage

23 SLD Style Layer Descriptor, An OGC standard for specifying map presenta-
tions details. http://www.opengeospatial.org/standards/sld

98

system named RASCHAL (Raid Again Storage from Commodity Hardware And
Linux), one being an input-output node and the last one providing storage for a
large file download server.

The main OnEarth WMS server is hosted on an eight CPU SGI Origin 300
server; a smaller four CPU SGI Onyx machine is used for daily production of new
images, while a third Origin machine with eight CPUs is used for large dataset de-
velopment.

RASCHAL System Diagram

P

" o
/ T
" v s [

@S 2Tb RAID Unit i . @ Gigabit Ethernet
) Switch Matrix .
ﬁ Linux Storage Node @ Host Connection

Fig. 5. 2. RASCHAL, the storage system of the OnEarth WMS server

The OnEarth WMS server software is itself an assembly of interconnected
modules. The core WMS functionality is provided by a single C++ application,
which operates as a CGI (Common Gateway Interface) service under an APACHE
Web server. This application deals with the WMS request parsing and does most
of the image processing required. The performance of this server module on the
current hardware platform peaks at approximately ten WMS requests for the
global _mosaic layer per second, while having an average latency of about one
second. As detailed later on, a global mosaic layer request triggers a complex
processing chain on the server, requiring the cooperation of multiple computers.
Requests for other layers are easier to handle so the server performance is slightly
better. The efficiency and scalability of the WMS server application is the result
of the processing model, which employs an in-memory, pipelined and multiproc-
essing application running on the SGI server. Since the WMS server spends most
of the run time doing image processing, the server would not significantly benefit
from using fast-CGI or any tighter integration with apache. It would actually

99

make the implementation more complicated, introducing significant memory
management and multiprocessing issues.

In addition to this main server, a fast access, tiled WMS and KML server is
present, implemented as an apache module and serving pre-generated image tiles
for specific client applications, without invoking the main WMS server. This
module has proven capable of serving in excess of two hundred WMS tile requests
per second while generating a minimal computational load, at the same time re-
ducing the WMS response latency from about a second to a few milliseconds. It is
limited only by the disk seek time and available network bandwidth. The KML
support is itself tightly integrated with the tiled WMS implementation, automati-
cally generating KML super overlay wrappers for all of the tiled WMS datasets.

The WMS server application also supports the concept of a virtual dataset, ac-
cessed via an Image Access Layer (IAL) subsystem. This system is capable of
treating a remotely running IAL server the same as a local image file. In the cur-
rent server configuration, this feature allows for preliminary image processing op-
erations to be done by the storage computers which actually have the data stored
on local disks, a configuration which simplifies the server application while at the
same time eliminating some of the computational load from the main server.

Since the OnEarth WMS server has been in operation for a considerable
amount of time with minimal interruptions in service, and is offering reasonable
access to a rich and interesting set of data, a number of client applications have
adopted the WMS protocol in general, and the OnEarth WMS server in particular,
as an on-line source of geographical data. In the interoperability area, it is impor-
tant to note that by choice the OnEarth WMS server development is not tightly
coupled with any particular WMS client application, trying to be a general pur-
pose mapping service provider.

2. OnEarth WMS Server

As described above, the core of the OnEarth WMS server is represented by a self
contained CGI WMS application. This application has evolved significantly dur-
ing the server existence, in a continuous effort to improve the performance and to
add new features. The first implementation of the server was based on the MIT
OrthoServer* code, which implements the Web Map Testbed protocol, a precur-
sor of the WMS. This implementation used a combination of PERL and shell
scripts for WMS request handling together with a few custom binary utilities for
the map image processing.

24 MITOrthoServer, http://ortho.mit.edu/orthoserver/

100

In conjunction with the creation of the WMS Global Mosaic®’, the OnEarth
server code was completely rewritten and updated to support the WMS 1.1.1 and
SLD 1.0 standards. The server code is written in C++, combining the system con-
figuration and WMS protocol implementation with an image processing and for-
matting module. The current WMS component was written by Richard Schreyer
from UCSB, during a summer student assignment at JPL. It makes use of lib-
CGI* for the CGI functionality and Xerces-C*’ for the XML and DOM* capabili-
ties. It implements all the required and many of the optional features of the WMS
1.1.1 and SLD 1.0 standards. This code was intended to function as a stateless
CGI application, being instantiated for each and every WMS request, which
makes the start-up and configuration time a significant concern. To reduce this
overhead, the WMS server uses a single XML configuration file which contains
all the information about the datasets being served and the externally visible server
capabilities. The file structure is closely patterned after the WMS capabilities
format, with additions that encapsulate local configuration items such as the local
data files; capabilities for each layer and definition of predefined styles. The style
description for each WMS layer also follows the SLD 1.0 format, again with a few
extensions for the server configuration. This implementation choice reduces the
server complexity, since the same code is used to configure both the system de-
fined and the user styles.

The configuration file is read for every request and parsed into the correspond-
ing DOM tree, making changes to the configuration instantly active. The WMS
server supports both the HTTP POST and the HTTP GET mechanism, a feature of
the underlying 1ibCGI implementation. After the initialization and internal con-
figuration, the WMS request itself is analyzed, and a GetCapabilities request sim-
ply retrieves the content of one of the configuration DOM tree nodes. If the re-
quest is a GetMap operation, the WMS parameters are checked against the
configuration DOM tree and translated into a sequence of image processing re-
quests, one such request for each requested layer, based on the internal server con-
figuration. If a user SLD is requested, the respective style is parsed and merged
into the server DOM tree, effectively becoming part of the configuration for the
duration of this specific request.

The image layer processing requests are then passed to the image processing
component of the WMS server binary via a list of arguments. This mechanism
makes it easy to extend the image processing capabilities of the server without
having to modify the WMS interface code. The extensions can be handled by

25 WMS Global Mosaic, Landsat 7 multispectral mosaic,
http://onearth.jpl.nasa.gov/WMS_GM.html

26 1ibCGI: A CGI interface library written in C, http://libcgi.sourceforge.net/

27 Xerces-C: A validating XML parser written in C++, http://xerces.apache.org/xerces-c/

28 DOM: Document Object Model, an interface that allows an application to access and up-
date the content, structure and style of XML documents, http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001/

101

adding extra parameters in the server configuration file for a specific layer or
style, parameters which are transferred to the image processing stage which is re-
sponsible for the interpretation. In the case of a WMS request that contains more
than one layer, multiple instantiations of the map image are active at the same
time, the results being combined using transparency blending.

If at any phase of the execution before the data processing an error is detected,
the execution is interrupted and a relevant XML error message is sent back to the
client instead of the expected image. Since the server was meant to encourage cli-
ent development, the error detection is extensive, with the error messages being as
accurate as possible in describing the cause of the errors and sometimes even sug-
gesting the possible fixes.

The image processing component was independently developed as a stand-
alone, geolocation aware image extraction and processing utility. It is still used as
an independent application for data preparation. This component uses a multiple
resolution, geolocated dataset representation as input, and is capable of sub-
setting, scaling, as well as having available a rich set of image processing opera-
tions. This application is based on the SGI Image Vision Library”, which pro-
vides an extensible object oriented, multiprocessing framework for image process-
ing.

This toolkit uses a demand-pull data flow model, in which a sequence of image
operators is built by the application, with the processing itself is done only in re-
sponse to an explicit output data request. This image output request propagates
backwards in the processing chain until it can be satisfied. The processing itself is
being done in arbitrary sized image regions; multiple processing tasks can be ac-
tive at the same time in a multiprocessor environment. The OnEarth WMS server
was designed to operate solely in memory, without the use of any temporary disk
file. The multiprocessing synchronization and memory management required by
this type of operating model is provided by the core framework. In addition to the
processing capabilities available in the Image Vision Library, new image opera-
tors such as geolocation support and image storage, as well as data access facilities
were custom implemented for the OnEarth WMS server. Multiple instantiations
of the WMS image processing stage can co-exist, as is the case for a multiple layer
WMS request. The final compositing of the output maps is done at the top WMS
server level, followed by the final encoding of the resulting map image into the
requested image format. As a continuation of the in-memory data-pull execution
model, for complex and large WMS requests in a streamable output format such as
JPEG or PNG, the sending of the first part of the formatted output image can start
even before the image processing is complete, greatly reducing request latencies.
The server can also generate GeoTIFF formatted map images, but since this for-
mat can not be streamed a temporary local file is used, making these type of re-
quests somewhat slower.

29 SGI ImageVision Library: C/C++ SGI toolkit for creating, processing and displaying im-
ages, http://www.sgi.com/products/software/imagevision

102

Progressive Overlays

Shadmg/ Colorization

Multispectral Band Selection, Reprojection

Fig. 5. 3. Examples of OnEarth image processing capabilities

The multiprocessing capabilities of the image processing framework and the ef-
ficient use of large memory space provided by SGI IRIX workstations are the
most significant contributors to the OnEarth server performance. While the cur-
rent server hardware is relatively modest, with only eight 600MHz CPUs and
eight GB of memory, the server does scale to much larger configuration. This was
demonstrated during the creation of the WMS Global Mosaic®’, when a similar
code used multiple 32 CPU clusters with 16GB memory each, with very good ef-
ficiency. Indeed, in most cases the same data processing framework used by the
WMS server is also used for the data preparation, making the integration of new
data or features into the existing server relatively simple.

Even on the available modest hardware the performance is impressive, with la-
tencies in the order of a second while handling about ten requests per second.
Since a server overload can have serious consequences, a dynamic load limiting
mechanism is built into the server. This mechanism attempts to keep the server
utilization below a preset level by generating overload errors as replies to WMS
requests as soon as the maximum server utilization level is reached. The overload
condition is evaluated for each incoming request, the response to overload being
very rapid.

30 Remote Sensing and Supercomputing, A Match Made OnEarth: SGI User Group Meet-
ing, 24™ — 27" May 2004, keynote, Lucian Plesea, JPL

103

3. Pre-Tiled WMS and KML

One of the noticeable drawbacks of WMS is the amount of server side data proc-
essing required, the visible symptoms being large latencies and easily overloaded
servers. While the OnEarth WMS server architecture is scalable and has a very
low latency, the popularity of this service affected the server from the very begin-
ning, overload being a common occurrence. For example, in just a few days after
the test release of the WMS Global Mosaic became available on-line, attempts to
download very large areas using the WMS protocol were already noticeable. For
a short while, these attempts were managed by automatic blocking of the
download clients or hosts.

However, the public release of the NASA WorldWind?', which used the
OnEarth server as the data source for both the WMS Global Mosaic and the
SRTM elevation, drastically changed the server use pattern. Very rapidly the
server computation load increased far above sustainable levels with request
sources widely distributed across the Internet. The server was overwhelmed and
access had to be restricted. At the peak, more than four million WMS requests
were denied and logged each day, about forty times more than the server was ca-
pable of sustaining. Since resources for a hardware upgrade were not available, a
software solution was the only possibility.

The requests from an interactive WMS map browser such as WorldWind fol-
low a specific access pattern, programmed into the client application. The request
are thus predictable, the required map images can be cached or created ahead of
request time and then served from an existing database, eliminating the need for
on-demand image processing. A WMS tiling system was implemented to handle
this type of load. This OnEarth WMS tiling system implementation went through
a few iterations, the current system being in the form of an apache server module.
It was intended from the start to complement, not to replace the full WMS server.
As such it is completely transparent to the client application. The tiled GetMap
requests are indistinguishable from the regular WMS requests, making the two
systems completely interchangeable. There is only one desired difference, the ex-
tremely rapid response of the tiled WMS and the absence of server overload er-
rors.

Since becoming operational a couple of years ago, a number of such tiled
WMS datasets have been added to the server for use in different client applica-
tions. Certain datasets such as the MODIS daily images are directly created in the
tiled format, becoming simultaneously available to both the tiled and the normal
WMS servers. This feature was enabled by making the tiled WMS storage format
one of the underlying source image formats supported by the normal WMS server
application, thus eliminating the need to duplicate the data and further integrating
the tiled and the processing WMS capabilities.

3INASA WorldWind, A NASA open source virtual planet application.

104

The tiled WMS module itself is designed to operate as fast and efficient as pos-
sible. It uses features provided by the apache APR* library, and it was tested un-
der many UNIX operating systems. This module is also using a single configura-
tion file read during the apache server start-up, but as opposed to the WMS server,
the tiled WMS module is a long running process, serving many tiled WMS re-
quests. The incoming WMS requests are tested against the complete set of avail-
able tiled WMS patterns. To further reduce execution time, the test is done using
pre-compiled regular expression patterns that contain the WMS parameters with
the exception of the bounding box values. If a match is found, further checks are
done to ensure that the resolution, size and location do match one of the available
tile patterns, and the exact tile is selected. A request that does not pass these tests
is ignored, with the apache server attempting the normal execution process, possi-
bly invoking the full WMS server.

For a request that does match an existing tile, two sets of file open, seek and
read operations are all that is required to retrieve the map image data and send it to
the requestor. Since a single file is usually used to store the data for an entire
layer, including multiple resolutions, the file open and file seek operations further
benefit from the operating system caching. Furthermore, the OnEarth apache
server runs in the worker multiprocessing model, under which multiple threads
can responds to a very large number of requests, greatly reducing the server over-
head. The WMS tiled module operating in this configuration has been able to
handle in excess of twenty million requests per day, being essentially limited by
the seek time of the media that stores the tile cache data. Very little CPU load is
generated by this tiled WMS module, leaving most of the CPU cycles available for
the full WMS server implementation. In an ad-hoc test due to hardware reloca-
tion, a laptop running the Linux version of this module and accessing the tiled data
located on a remote NFS volume was able to provide tiled WMS service for a few
days, with more than a million requests per day and without noticeable perform-
ance degradation when compared with the main server.

This tiled WMS server is already providing high performance service to many
client applications, proving that no new data transfer mechanism other than WMS
is needed. The only feature still lacking from the WMS standard is a method to
expose such exiting tile patterns. This feature would simplify and automate the
use of this service by client applications. To this purpose, a prototype tiling exten-
sion to the WMS protocol was implemented® on the OnEarth WMS server. This
implementation adds a new operation type to the WMS protocol GetTileService,
which is used to obtaining from the server information about the tiling capabili-
ties. It is meant to be used in conjunction with the exiting WMS Capabilities, and
as such it does not duplicate nor expand the layer or style metadata. The response
to this request is simply an XML encapsulated list of the available WMS request

32 Apache Portable Runtime: A set of libraries that provide a predictable and consistent in-
terface to underlying platform-specific implementations.
33 OnEarth Tiled WMS prototype: http://onearth.jpl.nasa.gov/tiled.html

105

patterns formatted as a URL, with the bounding box values being those for the
top-left tile for each cached resolution. This mechanism provides a very simple
way to expose the tiling, and can support any combination of WMS parameters,
including layers, projections and SLD use. A client can simply ignore most of the
parameters while still obtaining the information needed to request the tile images
described by a certain pattern. A more sophisticated client can parse the pattern
parameters in reference with the WMS server Capabilities metadata to further un-
derstand the nature of the map services and present this information to the user.

When different access patterns can be used to request the same exact data tiles,
they are grouped together under a single TilePattern tag. The ability to deal with
aliased requests was needed by OnEarth as a result of the multiple versions of
WorldWind, where the developers modified the WMS data requests, adding, re-
moving or reordering WMS parameters while still requesting the exact same map
data. A hierarchical structure of tile patterns is used to further organize the tile
patterns, the ones grouped under the innermost TiledGroup tag referring to differ-
ent resolutions of the same map, while higher level TiledGroup tags are meant to
be used by datasets related in some way, information meant to be presented to the
user. A Pad parameter defined for a tile pattern allows for tile overlap, a feature
useful in certain graphic applications. This tiled WMS model does not impose any
tile size or alignment, and does not dictate a specific resolution sequence. While
only recently implemented, a few issues with this mechanism are already known.
For example, a mechanism for parameter substitution is needed to eliminate bur-
densome repetitions, for example the case of the Blue Marble Next Generation™
dataset, which is offered in thirty six different styles, everything else being identi-
cal. Another example is the case of the tiled daily MODIS images, where the ar-
gument to the time WMS parameter is variable and determines the exact data to be
served. Yet another known problem is the required precision of the coordinate
values. While a real GIS client should have no problem providing the required
precision, a simple image browser might not be so capable. One possible solution
would be to add WMS tiling support for the map native coordinate system CR:1,
where the coordinates are pixel locations in the base resolution. This alternative
capability makes the coordinate location an integer value in all cases, and further
exposes the raw map image details to the client.

To further improve the OnEarth server performance, a tile access predictor ana-
lyzes the Web access log in real time and if a tiled request is identified, it can issue
system read commands for the surrounding tiles. If such a prediction is successful,
a later tile request will already be in the system memory, making the response
time even shorter by eliminating the disk latency.

34 BMNG: http://www.nasa.gov/vision/earth/features/blue_marble.html

106

4. KML — WMS harmonization

The KML format is an XML encapsulation of geographical data which is used by
Google Earth. Due to the popularity and availability of the Google Earth®® appli-
cation, this format is quickly becoming prevalent in the Internet mapping arena.
While Google Earth natively supports an extremely limited set of the WMS stan-
dard, the Super Overlay mechanism introduced in the KML 2.1 version represents
a very flexible extension mechanism for requesting map data, since the image data
request can be any URL, including a WMS GetMap URL. Using the Super Over-
lay features, it is possible to provide KML wrappers for a set of tiled WMS re-
quests. Furthermore, the URL requests for KML can themselves be WMS re-
quests. This lead to the implementation of the KML to tiled WMS SuperOverlay
translator which is currently integrated in the tiled WMS module itself, since all
the data required for generation of the KML file is already available from the tiled
WMS configuration file. When a KML WMS request is detected, a special han-
dler routine converts the request to the matching WMS image request, and tests
the existence of that specific WMS request within the tiled datasets. If a match is
found, a KML file is assembled, containing the WMS request for image data, and
if a higher resolution level of the specific WMS pattern exist, further requests for
KML tiles, which will match the underlying WMS image tiles. Since all the data
required for this operation already exists in the memory of the tiled WMS module,
no disk access and no system calls are required for generating the KML wrappers,
leading to a very efficient operation. Using this mechanism, all of the already
available OnEarth tiled WMS datasets have become instantly available in
GoogleEarth. The performance of the combined KML and Tiled WMS server is
indeed very good, being faster than the static file implementation of KML Su-
perOverlays since no KML files need to be read from disk and the WMS image
tiles are also very efficiently handled. Furthermore, the mechanism described
above harmonizes the WMS protocol with KML, effectively transforming
GoogleEarth into a fully featured WMS client, without requiring any changes in
Google Earth itself.

5. Image Access Layer

The WMS server itself is built on top of a flexible image data access layer, which
itself is derived from the SGI Image Vision Library. This data access layer pro-
vides uniform access to image data, presenting it to the WMS server itself as a
three dimensional, multi-resolution and possibly multi-spectral georeferenced im-
age data, hiding the exact storage details from the server. A number of custom

35 Google Earth: http:/earth.google.com/

107

image data readers have been implemented for this data access layer, the main
ones being:

1. An indexed and tiled file format that can support extremely large images.

2. A client-server data reader that allows the use of a server residing on a dif-
ferent machine as a data source.

3. A composite image reader that allows the use of a collection of image tiles
as a single large image.

It is easier to understand the role of these loaders by providing a few examples
of their use in the OnEarth server environment.

5.1 Storage file format

The main data storage format is a tiled, multi-resolution and multispectral raster
data storage format that is used extensively for the production of large datasets. In
this format, data is organized in tiles of uniform size, each tile being read and writ-
ten as a unit. The data tiles are stored concatenated in a single file, a second index
file being used to organize and keep track of the location of each tile within the
whole image space. Each tile data can be compressed using either lossless or
lossy algorithms, with raw, JPEG (JFIF), abbreviated JPEG, zlib and bz2 being
supported, together with a few unique optimizations for high byte count data
types. A null index entry is used to symbolize non-existing data, providing ex-
plicit support for empty areas and providing efficient support for sparse datasets.
Since the data and the index files can be specified separately, multiple index files
can exist for a single data file, allowing different versions of a dataset to share the
common areas.

The storage of the US elevation dataset can serve as an example of this feature.
The data itself is stored as monochrome tiles of 16 bit integer values lossless com-
pressed using zlib after a multiple byte optimization step. The value of each 16 bit
signed integer is the elevation of a specific location expressed in meters. The
same data file is used with a second index file, interpreted as a three value per
pixel Hue-Saturation-Value (HSV) color image, where the Hue tiles are the eleva-
tion tiles for the specific location while all the Saturation and all the Value indices
point to two constant value tiles, one for saturation and one for value. The end re-
sult in this case a color coded elevation image, an image of constant brightness
and saturation, the hue of each point depending on the elevation of that specific
location. In this way, the us_elevation and the us_colordem layers use the same
data file with very different results, the only difference being the way the data is
interpreted at the data access level and without any explicit support for this feature
in the WMS server code itself.

108

Index File 1 Data File Index File 2

Offset Size Offset Size

Example of file storing
elevation, one data file at center

and two different index files. Right index uses the same data
Left index represent a single ' file for a HSV representation,
band image, with out of order using only two extra tiles with
and empty pages. constant content

Fig. 5. 4. Detail of the file format used for storage, the US DEM case. The data file can
be used with two different index files, being read either as elevation or as a color coded
elevation.

5.2 Virtual Image Server

The dataset for which the current version of the server was explicitly designed is
the WMS Global Mosaic, a full resolution, multispectral Landsat 7 mosaic of the
GeoCover 2000 dataset, which covers most of the earth land mass.

The WMS Global Mosaic dataset contains nine spectral bands at different spa-
tial resolutions. The highest resolution band is the panchromatic band, with a na-
tive resolution of half of an arc-second, or 2,592,000 by 1,296,000 pixels for the
whole globe. The three visual bands and the three near infrared bands composites
have a one second resolution, or 1,296,000 by 648,000 pixels. The last two bands
are represented by the high and low gain thermal infrared, at two arc-second per
pixel, or 648,000 by 324,000 pixels. When stored using the indexed and tiled
format described above, with lossless compressed tiles and at the base resolution,
the storage amount required is about 1.7 Terabyte. Over-sampling all the bands to
the highest resolution and storing the result would increase the amount of raw data
from 2.625 times the size of the panchromatic band to 9 times the size of the pan-
chromatic band. This situation is handled by the OnEarth WMS server with the
help of a virtual image server. This custom image server has direct access to three
image files containing the WMS Global Mosaic bands stored in each of the three

109

native resolutions. The server presents these data as a set of nine bands at uniform
sampling of half arc-second. It does this by over-sampling the lower resolution
bands as required. The operation of this server is completely transparent to the
WMS server which in this case uses a network image reader to access this server
instead of a local file reader. For example, when a WMS request for the
global mosaic layer using the visual style is received, the remote image reader is
invoked. This loader opens a small local configuration file which contains the in-
formation needed to connect to the remote image server. To achieve better per-
formance, four independent instantiation of the global mosaic image server exist,
on two separate Linux storage units. Each unit has two server processes using a
single local copy of all the bands of the WMS Global Mosaic dataset. This con-
figuration was chosen based on the existing hardware, various other configura-
tions being possible, with either more server hosts or server processes.

Fig. 5. 5. The WMS Global Mosaic, pan-sharpened pseudocolor

One of the available image servers is randomly selected and will be used for all
the data used for producing the map image of this layer for this request. Once a
connection is made, the data needed for this request is decomposed into a set of
image tiles that mirror the existing storage tiles of the panchromatic band. For
each such tile, four separate band requests are made to the image server, one for
the panchromatic band and three for the each of the visual bands. If the requested
resolution is half an arc-second, the one arc-second visual bands tiles that cover
the requested area are read, decompressed and over-sampled to half an arc-second
and the correct part of the resulting area is sent back as a response. This mecha-
nism transfers some of the IO and computational load from the machine hosting
the WMS server to the storage units that have direct access to the data, making it
possible to process multiple WMS requests simultaneously without overloading
the main server. The duplication of the global mosaic data not only represents a

110

safety feature, but makes it possible to disconnect and operate on one copy while
the WMS server continues to function using the other set.

The WMS Global Mosaic layers and styles are really virtual images, generated
for each and every request and have never been stored as color images on the
server. The common Landsat 7 pan-sharpening operation, which combines the
higher resolution from the panchromatic band and the color information from the
lower resolution bands is also available, being done by the WMS server image
processing component.

5.3 Composite image reader.

This feature was mentioned when the tiled WMS was described, and simply con-
sists in a reader that follows the structure of the indexed and tiled file format, but
each individual tile is a fully formed image on itself, either JPEG or PNG. This
format results in less efficient storage compared with the direct compression
methods used by the index format, but presents two distinct advantages. These
image collections can be treated as a single image, being possible to operate on
this image collection with the same software tools and procedures used for any
other file, including the full WMS server. It is also possible to read an individual
tile and send it as a response to a WMS request without having to decode the im-
age itself, feature which forms the basis of the fast-access tiled WMS module. For
example, the daily MODIS composites available on OnEarth are directly created
in this format using JPEG (JFIF) tiles. These files are usable immediately, as tiled
WMS caches, and they are also available as a fully featured layer under the full
OnEarth WMS.

6. Concluding remarks

Designing, building and improving the OnEarth WMS has been overall a great
experience. The user feedback received is usually very positive, and in many
cases it provides the only impulse to continue supporting or to add certain features
of the OnEarth server. The reality is that due to very limited resources and the
fact that the server is just a prototype and a development platform, many features
and capabilities simply can not be made available.

Many of the features which are available on the OnEarth server are the result of
a research effort to increase support for planetary GIS, the OnMars and OnMoon
WMS servers being the concrete results of this effort.

One exciting project which is nearing completion at the time of this writing is
the addition of a global and continuously updating image of the earth, built from
the data collected daily by the NASA MODIS instruments. This image, at a reso-

111

lution of 250m per pixel (about one sixth of a mile) would allow the continuous
observation and exploration of the whole earth by anyone, the type of amazing ap-
plications made possible by the Internet.

It is very rewarding to see the varied and innovative ways in which the OnEarth
services are used, and the increasing success of the interoperable GIS application
model. The potential and realized impact of the OnEarth server have indeed been
recognized by NASA, the OnEarth server complex and the various technologies
described here have been the recipients of multiple NASA Space Act Awards.

Acknowledgments The research described in this (publication or paper) was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The OnEarth server is the result of a long
chain of projects and technologies, funded by various NASA projects and by JPL research
and development. NASA Geospatial Interoperability Office sponsored the creation of the
WMS Global Mosaic and the original implementation of the OnEarth WMS server. NASA
ESTO-CT sponsored many of the image access, system and file storage technologies and
the high performance computing aspects of the server. NASA AIST program sponsored de-
velopment of planetary GIS, which resulted in the tiled WMS and KML implementation
now used by OnEarth.

Chapter 6: Data Integration for Querying
Geospatial Sources*

Isabel F. Cruz and Huiyong Xiao

Department of Computer Science
University of Illinois at Chicago

{ifc | hxiao}@cs.uic.edu

Abstract Geospatial data management is fundamental for many applications in-
cluding land use planning and transportation and is critical in emergency man-
agement. However, geospatial data are distributed, complex, and heterogeneous
due to being independently developed by various levels of government and
the private sector. Until now, the formulation of expressive queries on geo-
spatial data, which contrast with simple keyword-based queries, requires both
user expertise and a great deal of manual intervention to determine the mappings
between concepts in potentially dozens of data sources.

In this chapter, we describe an ontology-based approach to the problem of
data integration, specifically focusing on the issue of query processing in a hetero-
geneous setting. Our contributions include a mechanism for metadata representa-
tion, an ontology alignment process, and a sound query rewriting algorithm for an-
swering queries across distributed geospatial data sources. We demonstrate the
practical impact of our approach in land use applications, which are exemplary of
the extreme heterogeneity of data. We are leveraging current and emerging Se-
mantic Web standards and tools for modeling, storing, and processing data. Our
contribution to geospatial data integration is significant because new data sources
can be added with relatively little effort, thus allowing for data manipulation and
querying to extend seamlessly to the new data sources.

* This research was partially supported by the National Science Foundation under Awards
ITR 1IS-0326284 and 1IS-0513553

114

1 Introduction

Years of autonomic and uncoordinated development of classification schemes by
government organizations and the private sector pose enormous challenges in in-
tegrating geospatial data. In this chapter, our focus is on the integration of geospa-
tial data that is created by the different counties and municipalities in the state of
Wisconsin and stored locally by the counties and municipalities. Among the
available geospatial data, we have concentrated on land use data. We have worked
with the Wisconsin local government within the scope of WLIS (Wisconsin Land
Information System) and the National Science Foundation under their Digital
Government and Information Integration programs. Data heterogeneity in the land
use data domain has been hindering the cooperation among the local governments
to achieve comprehensive land use planning across the borders of the different ju-
risdictions [33].

We propose an ontology-based approach to enable integration and interopera-
bility of the local data sources. In our work we deal with two kinds of ontologies:
an axiomatized set of concepts and relationship types and a taxonomy of enti-
ties[17]. We call the first kind schema-like ontologies, because they are associated
with the structure or schema of the local sources. The second kind model the enti-
ties (instance names) that describe land usage (for example, agricultural, commer-
cial, or residential), where the only type of relationship is that of subconcept (or
subclass) (for example, single family residences and multiple family residences are
two subconcepts of residential), and are called taxonomy-like ontologies in our
discussion.

The ontologies that we use to represent the structure of the local data sources,
which we call local ontologies, belong to the first type and can be obtained from
the source schemas through a schema transformation process. The second type of
ontologies are the land use ontologies, which are part of the local ontologies; they
represent land use taxonomies that classify land parcels in the local data sources
according to their usage. In addition, our approach uses a global or domain ontol-
ogy that models the domain associated with the task at hand and enables media-
tion across the local data sources. The global ontology contains a global land use
ontology that describes the land use domain.

The key to our approach lies in establishing mappings between the concepts of
the global ontology and the concepts of the local ontologies, a process called
alignment. Using those mappings, a single query can then be expressed in terms of
the concepts of the global ontology (or of a local ontology) and be automatically
rewritten and posed against the other ontologies. We focus on database-style que-
ries as opposed to simpler and less expressive keyword-based queries.

Query processing can be performed in two ways: global-to-local and local-to-
local. In the former case, we rewrite a query posed on the global ontology into
subqueries over the local sources (the global ontology acts as a uniform query in-

115

terface of the integration system). In the latter case, we translate a query posed on
a geospatial source to a query on any other geospatial source.

In this chapter, we consider the alignment process of the local land use ontol-
ogy with the global land use ontology and propose an ontology alignment algo-
rithm based on a set of deduction rules, which can be performed automatically
when certain pre-conditions are established. We propose a sound query rewriting
algorithm. The algorithm can compute a contained rewriting of a query in both
global-to-local and local-to-local querying. Query containment ensures that all the
answers retrieved by executing the rewriting are a subset of the answer to the
original query, thus guaranteeing precise query answering across distributed data
sources [23].

The rest of the chapter is organized as follows. The data heterogeneity issues in
land use management are discussed in Section 2. The ontology creation process is
described in Section 3. In Section 4, we focus on an automatic algorithm for on-
tology alignment. Query answering is presented in Section 5. In Section 6, we de-
scribe briefly the user interfaces that support ontology alignment and query proc-
essing. We summarize related work in Section 7. Finally, we draw conclusions
and outline directions for future research in Section 8.

2 Data Heterogeneities

In this section, we describe in detail the kinds of heterogeneities that we
encounter when integrating data from the local geospatial sources. In these
sources, data is stored in XML format. Figure 6.1 shows two fragments of land
parcel data, including their DTD (on the left-hand side) and an XML fragment (on
the right-hand side), which respectively exist in the local systems of Eau Claire
County and Madison County. As we can observe, even though the local XML
sources present different structures and naming conventions, they share a common
domain with closely related meanings (or semantics), thus being ideal candidates
for an integration system.

The previous examples display syntactic homogeneity in that they both use
XML but have different structures, therefore displaying schematic heterogeneity.
They may also encode their instances or values in different ways, thus displaying
semantic heterogeneity, in the sense that the same values may represent different
meanings and that different values may have the same meaning [32]. Our discus-
sion elaborates further on both kinds of heterogeneities. In the example shown in
Figure 6.1, we see that the two source schemas overlap on most elements and both
have the same nesting depth. However, the elements of the land use codes are rep-
resented differently in the two schemas: the schema S, uses four elements (broad,
lu1, lu2, and lu3), whereas S, uses a single element (land_use). Furthermore, the
values of such land use codes (in the XML instances) are encoded in different
ways, namely characters for S; and numbers for S,.

116

Land use codes in WLIS stand for land use types (or categories) and include,
for example, agriculture, commerce, industry, institutions and residences. Besides
using different names in different local source schemas, such land use codes have
different classification schemes associated with them, thus resulting in semantic
heterogeneities across the local source schemas. This is illustrated by Table 6.1,
where there are four element names (Lucode, Tag, Lu1 and Land_use) from
four different classification schemas. The descriptions in the table show that dif-
ferent values represent closely related land use types.

<?xml encoding="ISO-8859-1"?> <LandUse>

<I[ELEMENT LandUse (LandParcel)> <LandParcel>

<IELEMENT LandParcel (AREA, BROAD, LU1, <AREA>1704995.587470</AREA>
LU2, LU3, ..., JurisType, JurisName)> <BROAD>A</BROAD>

<IELEMENT AREA (#PCDATA)> <LU1>AF</LU1>
<I[ELEMENT BROAD (#PCDATA) ...

<I[ELEMENT LU1 (#PCDATA)> <JurisType>County</JurisType>
...... <JurisName>EauClaire</JurisName>
<IELEMENT JurisType (#PCDATA)> </LandParcel>

<IELEMENT JurisName (#PCDATA)> ...
</LandUse>

a) Local XML data source S; of Eau Claire County.

<?xml encoding="ISO-8859-1"?> <LandUse>

<I[ELEMENT LandUse (LandParcel)> <LandParcel>

<IELEMENT LandParcel (AREA, LAND USE, <AREA>1007908.5</AREA>
PARCEL ID, ..., JurisType, JurisName)> <LAND USE>9100</LAND USE>
<I[ELEMENT AREA (#PCDATA)> <PARCEL ID>246710</PARCEL ID>
<IELEMENT LAND USE (#PCDATA> ...
<I[ELEMENT PARCEL ID (#PCDATA)> <JurisType>County</JurisType>
______ <JurisName>Madison</JurisName>
<IELEMENT JurisType (#PCDATA)> </LandParcel>

<I[ELEMENT JurisName (#PCDATA)> ...
</LandUse>

b) Local XML data source S, of the City of Madison.

Fig. 6. 1. Local XML land use data sources. In the data source S;, BROAD and LU1
define the land use code, with BROAD as the first level and LU1 as a child level of
BROAD. In the data source S, , LAND_USE specifies the land use code. In both sources,
the elements JurisType and JurisName contain the jurisdiction type and name,
respectively.

117

In our approach, a local ontology is generated for each local XML source that
represents its schema. In addition, a global or domain ontology is defined to act as
an integrated view and a uniform access interface to the distributed data sources.
Every local ontology is mapped to this global ontology, by establishing the corre-
spondences of their elements and attributes, which results in an alignment on the
local names. In addition to this schema level reconciliation, it is also necessary to
have a global land use taxonomy, to which the local land use taxonomies are
mapped, so as to achieve a common understanding of the semantics of the land
use codes in the local sources. All ontologies are represented using RDF and
RDFS.

3 Ontology Creation

The first step of the integration of XML geospatial data sources is the trans-
formation from the XML source schema and data to an RDFS ontology and to
RDF data. This transformation encompasses the following steps:

Element-level transformation This transformation defines the basic classes and
properties of the local RDFS ontology according to the transformation corre-
spondences shown in Table 6.2, with the structural relationships between the
elements not being considered for the time being. No new RDF metadata
need be defined here because rdfs: Class and rdfs: Property are sufficient
to express classes and properties. For instance, to transform the DTD of S,

Table 6. 1. Semantic heterogeneity resulted from different encodings of land use data

Local Source Element Name Land Use Description
Type Value
DaneCounty RPC Lucode 91 Cropland Pasture
Racine County Tag 811 Cropland
(SEWRPC) 815 Pasture & Other Agriculture
Eau Claire County Lul AA General Agriculture
City of Madison Land use 8110 Farms

in Figure 6.1, we define two classes: LandUse and LandParcel for the elements
with the same name. The other elements become properties of LandParcel, be-
cause they are simple-type subelements.

Structure-level transformation This transformation encodes the nesting struc-
ture of the XML schema into the local RDFS ontology [11]. In particu-

118

lar, nesting may occur between two complex-type elements or between a
complex-type element and its child (as a simple-typed element). Following the
element-level transformation, the nesting structure in the former case cor-
responds to a class-to-class relationship between two RDFS classes, which are
connected by the property rdfx: contained. In the latter case, the XML nest-
ing structure corresponds to the class-to-literal relationship in the local ontol-
ogy, with the class and the literal connected by the corresponding property.
Table 6.3 lists the correspondences between the XML elements and the
classes or properties in the local RDFS ontology.

Table 6. 2. Element-level transformation

XML Schema concepts |RDF Schema concepts
Attribute Property

Simple-type element IProperty

Complex-type element Class

As an example, Figure 6.2 shows the local ontologies (represented as graphs
where nodes are classes and edges are properties) transformed from the XML
schemas in Figure 6.1. The land use taxonomies are transformed into a hierarchy
of classes and incorporated as part of the local ontologies, rooted from Lan-
dUseTag and LandUseType, respectively.

4 Ontology Alignment

The ontology alignment process takes as input a local ontology and the global
ontology and produces the class and property correspondences between them. We
must consider two cases, which correspond to the schema and taxonomy compo-
nents in the global ontology and local ontologies (see Figure 6.2): 1) schema-level
mapping between the schema parts of two ontologies, where a concept (or
arole) of one ontology is mapped to a concept (or a role) of another ontology, and
2) instance-level mapping, where two corresponding concepts use two different
classification schemes for their instances, that is, land use codes with different un-
derlying taxonomies in WLIS.

Ontology alignment is in general a challenging task, with its degree of diffi-
culty depending on the types of ontologies being considered [30]. In our frame-
work we have two kinds of ontologies and therefore two kinds of mappings, in-
stance-level mappings and schema-level mappings. The former applies to two
taxonomy-like ontologies consisting of only subClassOf relationships and the
latter to two schema-like ontologies containing various properties and relation-
ships (schema-level mappings). Next, we describe in detail the instance-level

119

mappings and give an example with both schema-level and instance-level map-
pings.

[orea |
rdfx:contained rdfx:contained ‘
Hjuﬁmpe operty
H J R
jurisType rdfsirange
_
rdfs:domain
— P
rdfs:subClassOf

a) Local RDFS ontology O, for local source S, b) Local RDFS ontology O, for local source S,

Fig. 6. 2. An example of local RDFS ontologies

Table 6. 3 Mappings between local XML schema D, and local RDFS ontology O,

XPath expressions in D, RDF expressions in O,
/LandUse LandUse
/LandUse/LandParcel LandParcel
/LandUse/LandParcel/AREA LandParcel.area
/LandUse/LandParcel/BROAD LandParcel.broad
/LandUse/LandParcel/LU1 LandParcel.lul
/LandUse/LandParcel/JurisType LandParcel.jurisType
/LandUse/LandParcel/JurisName LandParcel.jurisName

Mapping types Figure 6.3 shows a fragment of two concrete land use tax-
onomies: the one on the left hand side is from the local ontology O, in
Eau Claire County (as depicted in Figure 6.2) and the one on the right hand side is
from the global ontology G.

The two taxonomies are respectively rooted from LandUseTag and from
LandUseCode. A node in each taxonomy represents a class of land use, where
the lable contains its description and the code (in parenthesis). The dashed lines
represent the mappings that are established based on the semantics of the classes.
We consider the following types in ontology mappings:

Semantic relationships Considering a set-theoretic semantics, the mapping be-
tween two classes A and B (seen as two sets of instances) can be classified into
five categories: superclass, subclass, equivalent, approximate (or overlapping),

120

and disjoint, respectively, A 2 B,A S B,A=B,(ANB#) A (A-B+# 9)
AB-A+#2)adANB=0.

Cardinality Class correspondences are established pairwise between two ontologies
(producing one-to-one mappings). However, it is possible that a class from one ontology
is mapped to multiple classes from the other ontology, in a many-to-one mapping
and that multiple classes are mapped to a single class, in a one-fo-many mapping.
To express such mappings we consider the union of the classes to which a single class
(in the other ontology) maps. For example, given two mappings A = B and A = C,
we have that A=B U C.

LandUseTag e == = am m o o a a o o - ———————— — = ———— - LandUseCode

- =23 -
[(Agricultural (A) Jom e e e e e ———— —————— o i o e Agricultural (9)
Al b |
&) Cropland/pasture (AC) Jrm == == == == o= = o= m—mm——————
rdfs:subClassOf Non-pasture (AN) —————— EE :)-- ==
—————— Residential (R) jom mm = e e o e e i o o e e o o e e o e o “denti
ontology mapping (el - - Residential (1)
S = P . vty =0
Singie Family Residences (RS) jm e mmm il _ _ _ b
Non-mobile Home Parks (RSP))— —_——
T
Duplexes (RD) == mm e m mcac e a- Two Family (113)
c
(Tiees) - ——————e e e -
Triplexes (RT) p == ==w(Muliple Famiy (115)
¢ Multiple Family Tmm=———T
Dwellings having 4 - Seasonal Residential (190)
units or more (RM c
o ma = = o= == == g #{ Other Residential (199)
I={ Parking Lots (RZ) Jm o == === =" ——
S E__=-227 _
acant residential parcels (RV) "“E' Ly Commercial (2)
- = ——
Home Occupations (RO))=~ _ === = === Industriai (3)
_—-”-. —--"'-'
Commercial (C) - — 5 = =={ Communication (4)
- =
e - .
Industrial (1) == e ___?_.-.- Transportation (5)
.--—:::-—-'-——'-]
Public/Institutional (P) L1 T — Institutional/Governmental (6)
a) Land use taxonomy in local ontology O, b) Land use taxonomy in global ontology G

Fig. 6. 3. An example of mapping between two land use taxonomies. The labels over the

edges represent mappings types, followed (in between parentheses) by the deduction

rule(s) that can be applied, if any.
Coverage We distinguish two types of mappings: filly covered and partially covered. Let
C and C' be two classes to be mapped, such that C,, ..., C,, are subclasses of C, and
C,...,C'", are subclasses of C". We say that C (resp. C') is fully covered if for each child C;
€ {C,, ..., Gy} (resp. for each child C'; &f (1, ..., C",}) there is a non-empty subset of
{ C', ..., C" ,} to which C; is mapped (respectively there is a non-empty subset of
{C\, ..., C,} to which C’; is mapped).

121

Deduction process In our approach, the ontology mapping process is performed us-
ing an inference process based on deduction rules. In the case that the deduction rules do
not apply, then manual intervention by the user is needed.

This semi-automatic ontology mapping process follows two principles: (1)
The deduction of the mapping between two nodes (from both taxonomies being
mapped) is determined by the mappings between their children. In other words, the
mapping between two ontologies are performed in a level-wise fashion, driven by the
deduction rules that are defined based on the mapping semantics. (2) The user inter-
vention is needed in two cases: when the mapping between two nodes has insufficient
information to determine its type (for example, when some of the children of one
node have not been mapped) or when there is conflicting information (for example,
that a node is both a superset and a subset of the corresponding node).

We make the complete-partition assumption: for any class C in the taxonomy,
its subclasses Cj, ..., C, form a complete partition of the class, that is, C = C;
U... U C,. For instance, in the global taxonomy depicted in Figure 6.3, the two chil-
dren Pasture (91) and Other (99) of the Agricultural (9) class form a complete parti-
tion of Agricultural (9), since Other (99) includes all agricultural lands that are not
used for pasture.

We consider the following deduction rules:

Definition 1 (Deduction rules). Let C and C' be two fully covered classes, and
Cy, ... Choand C' 4, ..., C', be the subclasses of C and C', respectively. Then, the
mapping between C and C' can be obtained according to the following rules:

1) C = C', if for each C; € C, C; is mapped to some k-element subset C of
{C, ..., Cy NI <k<n'), such that C; = U ;11 CI“ .

2) C & C", if for each C; € C, C; is mapped to some k-element subset c’ of
{Clh o Cuf (1k<n') suchthat Ci= |)" ¢ or G <)) C;

3) C =2 C', if for each C; € C, C; is mapped to some k-element subset Cc’ of
{CY,....,C}(1<k<n'), such that C; =U571C1" orC; =2 U :‘;1 C," .

The deduction rules in Definition 1 can be proved to be sound and complete by an
induction on the set-theoretic semantics of each rule, under the completepartition as-
sumption and the assumption that the user-defined mappings are semantically correct.

The above rules assume a full mapping between C and C'. However, they still
hold for the case of a partial mapping, provided that we define the following supple-
mental rule: 4) Suppose that a class C is partially covered by C' and that S is the subset of
subclasses of C that are not mapped to any children of C'. Then, we create a temporary and
empty subclass of C', and add a superclass mapping from each class in S to

In Figure 6.3, the symbols and numbers (in between parentheses) over the dashed
lines (i.e., the class correspondences) indicate the mapping type and the adopted in-

122

ference rule(s), respectively. For example, “S (2,4)” over the mapping between the class
Residential (R) and Residential (1) means that Residential (R) is a superclass of Resi-
dential (1), which is computed by rules 2 and 4. The application of rule 4 is due to the
fact that SeasonalResidential (190) is unmapped, thus making Residential(1)
partially covered.

Mapping representation The ontology mappings that result from matching the
ontologies are stored in a file, called the agreement file. We use RDFS to express such
mappings. Owing to the multiple inheritance feature of RDFS classes, the RDF prop-
erty rdfs: subClassOf can be used in representing the three different kinds of map-
ping that may relate two classes 4 and B, namely A 2 B,, A 2 B, and A =B, in
the taxonomy-like components of the two ontologies. For example, the first case is
represented by the following RDFS segment:

<rdfs:Class rdf:about="A">
<rdfs:subClassOf rdf:Class="B"/>
</rdfs:Class>

The second kind (A 2 B), will be represented in the same way, by considering B
S A. Finally, the third kind of mapping (A = B) will be represented simultaneously
by the two different ways in which A 2 B and A & B are represented.

Regarding the mappings between the schema-like components of the two ontologies,
in addition to relationships between classes, relationships between properties need to be
expressed, namely superproperty, subproperty, or equivalent (property) mappings. Similarly
to the previously described use of rdfs: subClassOf to represent class mappings,
we can use the RDF property rdfs : subPropertyOf to represent these property map-
pings. Figure 6.4 shows a fragment of the RDFS representation of the mappings be-
tween the global ontology G and the local ontology O,, which include the mappings
between the schema-like and the taxonomy-like components of the ontologies.

123

e
rdfs:domain
[(Propert g

ToRarly rdfs:subClassOf

rdfs:range mapping

/juris-_f-y-pe
‘
N=/
lul
\\|”:2// Spx luCode
U2 [fe o o - - - —— -
WG fmm—————

a) Local ontology O, for local source S, b) Global ontology G
<IDOCTYPE rdf:RDF [<IENTITY G "ur:ontologies-advis-lab:globaontology#">
<IENTITYO1"urn:ontologiesadvislab:localontology-1#">
<IENTITY 02 "urn: ontologies-advis-lab:local-ontology-2#"> 1>
<rdfs:Class rdf :about="&G;LandParcel">
<rdfs:subClassOf rdf :Class="&01;LandParcel"/>
</rdf s :Class>
<rdfs:Class rdf :about="&01;LandParcel">
<rdfs :subClassOf rdf :Class="&G; LandParcel"/>
<rdfs:subClassOf rdf :Class="&G;Land"/>
</rdf s :Class>
<rdf :Property rdf :about="&01 ;lu2">
<rdfs:domain rdf :Class="&01;LandParcel"/>
<rdfs:rangerdf :Class="rdfs:Literal"/>
<rdfs:subPropertyOfrdf :Property="&G;luCode"/>
</rdf :Property>
<rdfs :Class rdf :about="&01 ;RT">
<rdfs :subClassOf rdf :Class="&G;115"/>
</rdf s :Class>
<rdfs :Class rdf :about="&01 ;RM">
<rdfs :subClassOf rdf :Class="&G; 115"/>
</rdfs :Class>

Fig. 6. 4. A fragment of the agreement file as represented in RDFS. Local ontology O,
uses a hierarchical land use code containing four properties: broad, lu1, lu2, and lu3, such that
lu1 is a subclass of broad, Iu2 is a subclass of lu1, and so on. In contrast, the local ontology
O, only has one property, luCode, for land use coding. The mappings between the two
ontologies are as follows: broad, lu1, lu2, and lu3 are respectively mapped to luCode, as a
broader class (i.e., superclass), an equivalent class, a narrower class (i.e., subclass), and
another narrower class.

124

5 Query Processing

A query such as “Where are all the multiple family land parcels in Wisconsin? ”’ cannot be
currently answered without manual rewriting this query for each of the dozens of
local data sources. In this section, we describe how such queries can be automati-
cally rewritten by our integrated system, using the agreement files that are gener-
ated by the alignment process.

The above query, if posed over the global ontology, can be expressed by the follow-
ing RQL [7] expression:

SELECT a,b,c
FROM {$x}xyCoordinates{a}, {$x}oounding{b}, {$x}jurisName{c}, {$x}state{d},
{$x}luCode{e}

WHERE d ="Wisconsin" and e ="115"

In the FROM clause, we use basic schema path expressions composed of the property
name (e.g., bounding) and data variables (e.g., $x) or class variables (e.g., a). The
properties XyCoordinates and bounding stand for the geographical coordinates and
boundaries of the land parcel, respectively. The other properties were already dis-
cussed and shown in Figures 6.1 and 6.4. In what follows, we focus on a particular
subset of RQL, namely conjunctive ROL (c-RQL), which is of the following form:
ans(x) :— Ry (x1), ..., R, (Xp)., where x © x; U ... U x, are variables or constants,
and R{(x;) (i € [1..n]) is either a class predicate C(x) or a property predicate P(x, y).
As usual, ans(x) is the head of the query, denoted heady, and R;(Xy), ..., R,(x,) is
the body of the query, denoted body,. For instance, the RQL query on multiple
family land parcels can be expressed in c-RQL as follows:

ans(a, b, c) :— xyCoordinates(x, a), bounding(x, b), jurisName(x, c),
state(x, "Wisconsin"), luCode(x, "115").

Query processing across the whole system can be performed in two directions:
global-to-local and local-to-local. We propose a query rewriting algorithm, Que-
ryRewriting, which can be used in both cases. Query rewriting can be seen as a
function Q= AQ, M), where Q is the query to be rewritten, called source query, M is
the set of ontology mappings, and Q' is the resulting query, called target query. The al-
gorithm is shown in Figure 6.5.

In the global-to-local case, the source query Q is posed on the global ontology
G ,M is the set of mappings from G to every local ontology O;,..., O,, and the tar-
get query Q' is the union of multiple subqueries over Oy, ..., O,. In the local-to-local
case, Q is a local query posed on a local ontology O; (i € [l..n]), M is the set of
mappings from O; to one or more local ontologies O;(j € [1. .n] and j # i), and O’

125

is the union of multiple subqueries over all O,. In the latter case, M is, in fact, a set
of compositions of the mappings from O; to G with those from G to O;.

The QueryRewriting algorithm consists of four main steps: 1) source query ex-
pansion using the source ontology constraints, 2) schema-level mapping where the ex-
panded source query is rewritten into an intermediate target query using schema-level
mappings, 3) intermediate target query expansion using the target ontology constraints, and
4) instance-level mapping where the expanded intermediate target query is rewritten
using instance-level mappings to obtain the final target query. In what follows, we
cover the overall query processing by describing the three key components of the four
main steps listed above: query expansion, schema-level mapping, and instance-level
mapping. Finally, we discuss some of our assumptions and prove the correctness of the
query rewriting algorithm.

Algorithm QueryRewriting (Q, M)

Input: a conjunctive query Q over ontology O; the mappings M between
ontologies O and O'

Output: a union Q of conjunctive queries Q' over O'

head ¢ = heady; bodyq = null;
Q* = QueryExpand(Q, }’), where }_ is the set of constraints over O;
Let @ be bodyqs;
Let M be the part of schema-level mappings in M;
For each R(x) of ¢
For each ¥ €M,

Let R'(x") be the result of applying §/ on R(x);

bodyq =R'(x')/\ bodyq;
Q' = QueryExpand(Q', }"), where }"' is the set of constraints over O';
10 Let M, be the part of instance-level mappings in M;
11 Q = ConstantMapping(Q', M,);
12 Return Q;

O 0 N O W A W N~

Fig. 6. 5 The QueryRewriting algorithm

Query expansion In the above description of the QueryRewriting algorithm,
both the source query O and the intermediate target query Q'are expanded using the
ontology constraints, respectively in Lines 2 and 9. This query expansion process,
as described by the QueryExpand function of Figure 6.6, uses the strategy of ap-
plying the ontology constraints to “chase” the query, similarly to the chase algo-
rithm that is used in relational databases to compute dependency implications or op-

126

timize queries [1]. In relational databases, a database constraint can be represented as a
tgd (tuple generating dependency) in the form Vx 3y @ (x) — w(x, y), where ¢ and

y are conjunctions of atoms. In an ontology setting, we consider three kinds of con-
straints, namely, subclass, subproperty, and typing constraints, all of which can be rep-
resented as a fgd. Specifically, the tgd V'x C; (x) — C, (x) corresponds to a subclass
constraint C; & C,; the 1gd VxVy Py (x,y) = P, (%, y) corresponds to a subprop-
erty constraint Py & Py, and the tgd VxVy P (x,y) = A(x) (resp. VxVyP (x,y)
— B(y)) corresponds to a typing constraint that the instances of x (resp.y) are of
type 4 (resp. B).

Similarly to the chase algorithm, QueryExpand is a non-deterministic process
that terminates, provided that the dependencies are acyclic (we assume no constraints
suchas A © B, B & C, and C & A in an ontology) and the applications of de-
pendencies do not introduce new variables into the query (since all the three con-
straints: subclass, subproperty, and typing do not contain the existence quantifier).
Under these conditions, given a conjunctive query Q and constraints 2’ over an ontol-
ogy O, it has also been proved that the algorithm QueryExpand has the resulting query
Q'= QueryExpand (Q, 2) equivalent to O, denoted Q= Q' [1]. This means that the
answers to both queries are the same over all the ontology instances that satisfy
the constraints. As an example, let us take the preceding query on multiple family
land parcels, and denote it by Q.

Algorithm QueryExpand (Q, 2)
Input: a conjunctive query Q over ontology O; the constraints 2 over O.
Output: The query Q after the expansion.

1 Repeat
2 Let @ be bodyy;
3 Let v : R (x)— Ry(x) be any dependency in 2
4 Ifthere exists a homomorphism / from R, (x) to ¢ , but not from
Ry(x) /N Ry(x) to @, then
Extend & to a new homomorphism 4’ from R(x) /| Ry(x) to ¢ ;

5
6 Add /'(Ry(x)) into body;
7 Else exit repeat;

8 End repeat

Fig. 6. 6. The QueryExpand algorithm

As specified on the global ontology G, all the properties (e.g., XyCoordinates)
referred in Q belong to the class LandParcel, thus leading to the corresponding
typing constraints. Such constraints can be represented by a fgd of the form

Vx Vy P (x, y) = A(x) (e.g., Vx Vy xyCoordinates(x, y) — LandParcel(x)). By
applying them to O, we obtain the following expansion of Q-

127

ans(a, b, ¢) :— xyCoordinates(x, a), bounding(x, b), jurisName(x, c),
state(x, "Wisconsin"), luCode(x, "115"), LandParcel(x).

Furthermore, given that the LandParcel class is a subclass of Land in G, the
corresponding tgd (e.g., Vx LandParcel(x) — Land(x)) of such constraint is still
applicable to the above query. The final resulting expansion Q" of Q is as follows:

ans(a, b, c¢) :— xyCoordinates(x, a), bounding(x, b), jurisName(x, c),
state(x, "Wisconsin"), luCode(x, "115"), LandParcel(x), Land(x).

Schema-level mapping The key to query rewriting lies in Lines 4 to 7 of the
QueryRewriting algorithm, which maps the expanded source query Q" to a new
query Q' over the target ontology, based on the set of schema-level mappings in M.
Similarly to the ontology constraints used by QueryExpand, ontology mappings
can be treated as constraints specified over the source and the target ontologies. There-
fore, we express ontology mappings in a tgd. However, the use of these mappings
is different from the use of ontology constraints for query expansion, as explained
in what follows.

Consider two ontologies O; and O,. Given the tgd v : Vx R; (x) = R, (x),
if y represents an ontology constraint constraint R; & R, , where R, , R, € Oy,
and R, (x) is part of the query’s body, then y is applicable to the query, and R, (x)
should be added to the query. This query expansion, as described by the QueryEx-
pand function, will not bring false positives to the query’s answer, since the instances
that satisfy w are in O;. In comparison, if y is an ontology mapping R; & R,,
where R; € O; and R, € O,, then this constraint implies a potential data transfer
from O; to O,. In this sense, y: Vx R; (x) = R, (x) is not applicable to queries
containing R, (like in the ontology constraint case), but is applicable to those con-
taining R,. This happens because a query retrieving instances of R, is also retrieving
instances of R;, given the semantics of .

Therefore, the application of a dependency y: R, (x) — Ry (x) to a query Q,
as Line 7 of QueryRewriting indicates, is performed by taking the converse v~ of v
(i.e., Ry (x) = R, (x)), followed by the operations specified in Lines 4 and 5 of
QueryExpand. The resulting R(x) (in Line 8 of QueryRewriting) is then
N'(Ry(x)) as in Line 6 of QueryExpand. The following shows the result of map-
ping Q" (the expanded source query) to a query Q' on the local ontology O, ac-
cording to the mapping M as presented in Figure 6.4:

ans(a, b, ¢) :— xyCoordinates(x, a), boundingBox(x, b), jurisName(x, c),
state(x, "Wisconsin"), lul (x, "115"), LandParcel(x).

If we compare Q' to the previous two queries (Q and Q°) obtained in the query
rewriting process, we notice that Land(x) was first added into Q' by the query
expansion step, and then it disappeared after the schema-level query mapping. In real-
ity, the LandParcel(x) in Q" is different from LandParcel(x) in Q':the former is

128

against the global ontology G, whereas the latter is against the local ontology O,, as
shown in Figure 6.4. Therefore, the disappearance of LandParcel(x) from Q' is due to
the mapping from LandParcel(x) and Land(x) on G to LandParcel(x) on O;.

Instance-level mapping Both the QueryExpand function and the query mapping
process are performed at the schema level. In comparison, the rewriting of the
constants that are referred to in the query is based on the instance-level mappings be-
tween two ontologies, particularly the mappings between two land use taxonomies.
We describe next the instance rewriting process of Figure 6.7.

In this case, we have ¢ = {"Wisconsin", "115"}. From the mapping between G
and O; shown in Figure 6.3, it follows that RTS 115 and RM < 115. Therefore,
from Lines 3 to 9, we have that A; = {"Wisconsin"} and A, = {"RT", "RM"}.
Now that we have two vectors of constants (c' in the algorithm): {"Wisconsin",
"RT"} and {"Wisconsin", "RM"}, we obtain the union of the following two que-
ries (see Lines 10 to 13).

ans(a, b, ¢) .— xyCoordinates(x, a), boundingBox(x, b), jurisName(x, c),
state(x, "Wisconsin"), lul (x, "RT"), LandParcel(x).

ans(a, b, ¢) :—xyCoordinates(x, a), boundingBox(x, b), jurisName(x, c),
state(x, "Wisconsin"), lul (x, "RM"), LandParcel(x).

Discussion We have assumed that the schema-level mapping M between two ontolo-
gies is a full mapping, that is, all relation atoms (including classes and properties)
in the body of the query need to have been mapped to some atom in the other on-
tology, with the mapping type being = or =Under this assumption, we can prove
the soundness of the QueryRewriting algorithm on its computation of a rewriting
(i.e., target query) & contained in the source query O, denoted ¢ < Q. A proof

sketch follows.

Let O be the expanded source query, O be the intermediate target query, Q"
be the expanded intermediate target query. Given that Q =Q", 0'= Q' and Q"=
O[1] , it suffices to prove that O'C Q. Suppose that 7 is an instance in the answer to
Q' ie,t € 0'(0), where O is the local ontology instance. Then ¢ makes every
predicate R(x) in body,- true. According to Lines 5 to 8 of the QueryRewriting algo-
rithm, every predicate S(x) in bodyy-+ is also made true by . This means that ¢ Q"
(G), where G is the global ontologyError! Bookmark not defined. instance, there-
fore 0' C Q" . We note that we obtain a contained rewriting, instead of a maximally
contained rewriting [23].This is actually due to our preference for high precision
rather than for high recall, which we discuss below.

129

Algorithm ConstantMapping (Q, M) '

Input: a conjunctive query Q over ontology O with constants ¢y, ..., ¢, from
O; the instance level mappings M between ontologies O and O.

Output: a union Q of conjunctive queries Q' with constants from O’

1 9=9;

2 c=(C1y---5Cn);

3 For each ¢, withi € [1..n]

4 Ai={};

5 Let C be the class stapding for ¢;; ’

6 For cach C ODC or C=C in M

7 Ai=4; U{c), where ¢ is the constant represented by C;
8 If there isno C DO C or C = C in M then
9 A; ={c};

10 For eachc €A, x ... x A,

11 0'=0Q;

12 Substitute ¢ in Q' with ¢’

13 $=9UQ ;

Fig. 6. 7. The ConstantMapping algorithm.

There are two important steps involved in the local-to-local query rewriting:
query conversion and mapping composition. The query conversion deals with the conver-
sion of a query (e.g., in XPath) native to the local system to a query (in c-RQL)
on the local ontology. However, c-RQL can only represent a particular class of
XML queries that have the same expressive power as c-RQL. Therefore we only
consider such XPath queries. The other step has to do with the transitivity of the
mappings. That is, the composition of two equivalent mappings yields an equiva-
lent mapping. The composition of two subclass mappings (or one subclass and one
equivalent mappings) results in a subclass mapping. In the same way, the composition
of two superclass mappings (or one superclass and one equivalent mappings) re-
sults in a superclass mapping. We do not consider any other mapping composi-
tions.

The last issue we discuss relates to the trade-off between the precision and re-
call of the query processing. Currently, the the query rewriting algorithm only uses
mappings that guarantee the correctness of the query. For instance, given a query Q:
{x|A(x)}, our query rewriting algorithm only rewrites Q to {x|B(x)} in two cases:
A = Bor A = B. This ensures that we will not return to the user instances that do not
belong to 4. But we may miss some instances of B that are also instances of 4 and
should be included in the answer to O, thus lowering recall. An alternative is to allow the
approximate semantic relationship and to assign a score between [0..1] to every map-
ping based on the similarity of the mapped classes or properties. Thus, query rewriting
can calculate an estimated precision of the target query. In practice, different scenarios
impose different requirements on the mappings. For example, an eCommerce appli-

130

cation involving purchase orders requires a very precise and complete translation of a
query, whereas a search engine usually does not require an exact transformation [8].

6 User Interfaces

In this section, we briefly describe the two user interfaces that assist respec-
tively in ontology alignment (and in particular instance-level mapping) and in query
processing.

6.1 Visual Ontology Alignment

The AgreementMaker is a visual software tool that is used to create the mappings
between the global ontology and each local ontology and to generate the agreement
documents [9]. With this tool, users load two ontologies side-by-side and display
each one as a tree of concepts as shown in Figure 6.8. The global ontology is dis-
played on the left hand side and the local (target) ontology is displayed on the right
hand side. Concept (or class) names are displayed in rectangular nodes on the onto-
logical trees.

The AgreementMaker implements a /ybrid ontology matching process [28], by
combining several matching methods to determine the schema-level and instance-level
mappings between both ontologies.

The first two criteria are the rule-based deduction and the user interaction, as
discussed in Section 4. User interventions are necessary when deductions are not
applicable. Users map concepts manually based on their knowledge of the domain
represented by the ontologies. The particular mappings that are established depend on
the perceived semantic relationships among concepts. The deduction process automates
the creation of new mappings based on existing mappings, provided that the pre-
conditions for a particular deduction are satisfied. The degree of automation depends
on the graph topologies and on the degree of similarity between the ontologies [10]. In
the case where the topologies differ substantially and deduction cannot be used, the
burden on users to perform mappings manually increases [25].

In addition to the previous criteria, the tool also provides matching by definition,
which matches the name and the description of the concepts. The procedure consults a dic-
tionary (e.g., WordNet*¢) and returns a semantic relationship (e.g., iypernym, hyponym,
or synonym) between both concepts and a similarity score ranging from 0 to 100. The
shortcoming of this matching criterion is that two concepts can have the same name
and the same description, but they could be semantically mismatched because they oc-

36 http://wordnet.princeton.edu/

131

cur in different contexts. To address this problem our tool considers the paths
leading to the concepts [10].

£ Agreement Maker T =18 %]

Hle Edit View Help

S — — -
el — — 1000 —o(Fesisenia) o
= R B O T
Superset m
m A—#{ Communicationtililes =
Exacl L
Real Estale et)
F—
—ﬁ—i__ﬁ 100.0 7 ‘*’-{m insurante and real estate senvices)
— 1
—{Business Senices)} 10 7 —— (Parsonalsenices |
— C——— " (e e)
T BRI X e i
D e)
- 1go—" 1|
— E—— e
| e 1000 Sl | o——
ST — —
m_,- - |—&{Wholesale and Retall Trade
—@{Transportation __} |—{Wholesale trage
{Institutional |—{Retail Trade - building , materials hardware anf farm equigment
®{ Park and Open spaces |—{(Retail Trade - general merchangise)
e |
T T | Ie ~]
4] IND
Definition Layer Settings Mapping Layers Agreement Document
Similarity Threshold Value 95 |v| Run Mapping by Definition [Show Detaits | v | View Agreement Document
| RunMapping by Context Show Details |~
Maximum Relations per Concept - By [I |
[R i tide petaits |~
[] Consult Dictionary
Manual Mapping Layer Show Details "

Fig. 6. 8. The ontology alignment interface.

The tool supports a fourth matching step, matching by consolidation, whereby us-
ers provide a ranking of the matching criteria. In this way, wherever there are conflict-
ing results for the matchings, the highest ranked criterion will take precedence.

6.2 Web-based Query Interface

The prototype of a Web-based visual query interface has been implemented for brows-
ing different types of land usage in a geospatial area that can span several local data
sources. This interface serves as a proof-of-concept for the interoperability of heteroge-
neous geospatial data based on the query rewriting algorithm discussed in Section 5.

Figure 6.9 shows the land use map of the city of Madison where parcels are
highlighted with colors indicating their associated land use categories. In particular,
the user initiates a query by selecting a State, County, and City, which is then rep-
resented by a c-RQL query on the global ontology. The global query is rewritten into

132

subqueries over the local data sources. The results are integrated and visualized in the
form of a land use map, which is superimposed on satellite images obtained from
Google Map.?’

7 Related Work

We discuss related work in the three main topics considered in this chapter: on-
tology alignment, query processing, and geospatial data integration. While in each
category there is work related to our own, there is no work that spans the three
main topics that form the basis of our approach.

=10l x|

:—d‘ - >'_ - gse;d)31 | 5 it fwewew.cs.uic ok ~advis/WLIS findi. bt | @
WLIS Web based Query Interface

==

[Satellite Hybrid

LEGEND
[restoenTiaL
[inousTRIAL
[nsmrumionar
[commerciaL
PARKS & OPEN
SPACES
[acricuLTure
[JwansporTATION
[_JunoeveLopeo Lans

[Jomer

FAD | Help | 1T

Cantact Us | Tamns Of Use.
SE008 ADVIS, Dapartment OF Computar Sclance. Univatity OF Hiinols A Chicage

% & A 2@ ol

Fig. 6. 9. A Web-based user query interface.

Ontology alignment The problem of ontology alignment has received much at-
tention recently [30]. A large effort has been devoted to techniques that enable the
automatic (or semi-automatic) alignment of concepts across ontologies [15]. Existing

37 http://maps.google.com

133

alignment approaches make use of one or more ontology alignment (or matching) tech-
niques belonging to the following three categories:

Element-level At the element level, matching can use various similarity measures
based, for example, on names of elements or their textual descriptions. A normal-
ized numerical value is calculated for each of the matching candidates, and the
best one is selected [4, 6, 26].

Structure-level The structure-level information that can be used by the matching
process include the graph or taxonomy underlying the schema or ontology. Graphs
are used as contextual information to map pairs of elements and the taxonomy can
provide the matching process with more semantics [24, 25]. An example of semantic-
level matching determines the similarity of two concepts based on the similarities
of their ancestors [29]. In our approach, we consider the semantic similarity of

the concepts’ children, instead.
Instance-level Instance-level matching uses the actual contents (or instances) of the
schema or ontology elements [12,21].

Although we have two types of ontologies to align, namely the schema-like ontologies
and the taxonomy-like ontologies, in this chapter we have mainly concentrated on the
alignment of the latter type. Taxonomy-like ontologies use only the subconcept (or
subclass) relationships between two entities, therefore they lend themselves well to
the use of structure-level methods. However, element-level and instance-level ap-
proaches can be used in conjunction with our structure-level methods. In fact, our
prototype makes use of element-level alignment as described in Section 6.

Related systems to ours include Clio[20], COMA++ [3], and Falcon-AO [22]. The
first two place a strong emphasis on the user interface, like we do, while the last
two share with our approach their support for structure-level automatic matching
methods.

Query processing When mappings are defined as (relational) views, query processing
is often referred in the literature as view-based query answering or rewriting [19].
However, few view-based query processing algorithms address the issue of query
rewriting over ontologies involving the specific kinds of issues involved, which
we must take into account [31].

Schema and ontology-based query processing techniques have been proposed both for
centralized [2, 27, 34] and for peer-to-peer architectures [5, 13, 16]. While
most of these approaches focus on XML or relational query languages to per-
form the query rewriting, we use RQL because of our choice of metadata and data
representation.

Our ontology-based query rewriting algorithm is similar to the compute WTA algo-
rithm proposed by Calvanese ef al. for query reformulation [5] as both assume consis-
tent ontology mappings. However, we allow for the transformation of the values that
are contained in the query based on the instance-level ontology mappings. In this way,
we can address semantic heterogeneity, which occurs in the land use codes.

134

Another related approach considers constraint-based query processing in the Clio
system [34]. It focuses on schema mapping and data transformation between nested
(XML) schemas and relational databases by taking advantage of the schema se-
mantics to generate consistent translations from source to target and by considering
the constraints and structure of the target schema.

Geospatial data integration Information integration methodology from the data-
base community has been applied to spatial information systems. For example, the
MIX framework offers a meditation approach for integrating heterogeneous
sources containing spatial data types (e.g., vector graphics, maps) and associated data
(e.g., text, tables, figures, images) [18], which supports a wide range of spatial applica-
tions. The system architecture comprises three layers: a foundation layer consisting of
databases and wrappers, a mediation layer supporting query and result exchange among
the wrapped sources, and an application/user interface layer. In the foundation layer,
the data model is exported from the sources in the form of an XML DTD. In the
case of spatial information, for example, the wrapper constructs the DTD by using
the associated catalog information. The wrappers support scripts that execute complex
queries as a combination of several primitive queries. As compared to our ap-
proach, semantic relationships are supported, for example in the form of spatial
predicates such as within (regionli,region2), but there is not an overall “semantic
graph” that would support, for example, the alignment of spatial attributes.

VirGIS is a more recent approach for mediation of geographical information
systems [14]. It differs from MIX in that it adopts newer standards such as GML
(Geography Markup Language) for data modeling and WFS (Web Feature Servers)
to perform communications (e.g., queries) with clients. It supports mappings between
attributes or classes but no semantic overall framework is presented.

8 Conclusions

In this chapter, we focused on data integration and interoperability across dis-
tributed geospatial data sources. To illustrate the impact of our approach we
showed practical examples that are derived from land use applications.

We propose an ontology-based approach to achieve the integration and inter-
operability of the distributed geospatial data sources by solving both schematic
and semantic heterogeneities. Two different kinds of mappings are established between
the global ontology (which describes the domain) and each local ontology (which de-
scribes each data source): schema mappings between the schema of both ontologies
and instance mappings between the (land use) taxonomies of both ontologies.

We have discussed two modes of query processing in our system, global-tolocal
and local-to-local (or peer-to-peer). Query rewriting in both modes uses the previously
established mappings. We propose a c-RQL (conjunctive RQL) query rewriting

135

algorithm, such that the resulting target query is contained in the source query,
thus providing sound answers to the source query.
Future work will focus on:

— Ontology alignment, and in particular the deduction-based method. Currently,
we make some assumptions on the topology of the ontologies. Without such as-
sumptions, we may need to consider the combination of our bottom-up deduc-
tion process with top-down reasoning on mappings (e.g., [29]).

— Query rewriting, so as to take into account “approximate’” mappings. In this case,
precision and recall of query answering will depend on the similarity of the
underlying mappings, thus making the ability to determine mapping similarities a
critical task.

Acknowledgments We would like to thank Nancy Wiegand and Steve Ventura, from the
Land Information & Computer Graphics Facility at the University of Wisconsin-Madison,
and the members of WLIS for discussions on land use and other scenarios related to geospatial
data integration. We would also like to thank Sujan Bathala, Nalin Makar, Afsheen Rajendran,
and William Sunna for their help with the design and implementation of the user interfaces.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Querying XML Sources Using an Ontol-

ogy-Based Mediator. In Confederated International Conferences DOA, CooplS and

ODBASE, volume 2519 of Lecture Notes in Computer Science, pages 429-448. Springer,

2002.

3. D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and Ontology Matching with
COMA++. In ACM SIGMOD International Conference on Management of Data, pages 906—
908, 2005.

4. S. Bergamaschi, S. Castano, and M. Vincini. Semantic Integration of Semistructured and Struc-
tured Data Sources. SIGMOD Record, 28(1):54-59, 1999.

5. D. Calvanese, G. D. Giacomo, D.Lembo, M. Lenzerini, and R. Rosati. What to Ask to a
Peer: Ontology-based Query Reformulation. In International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages 469-478, 2004.

6. S. Castano, V. D. Antonellis, and S. D. C. di Vimercati. Global Viewing of Heterogeneous Data
Sources. IEEE Transactions on Knowledge and Data Engineering, 13(2):277-297, 2001.

7. V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis, A. Magkanaraki, D.
Plexousakis, G. Serfiotis, and V. Tannen. The ICS-FORTH SWIM: A Powerful Semantic
Web Integration Middleware. In International Workshop on Semantic Web and Databases
(SWDB), pages 381-393, 2003.

8. V. Cross. Uncertainty in the Automation of Ontology Matching. In International Symposium on Un-
certainty Modeling and Analysis (ISUMA), pages 135-140,2003.

9. L F. Cruz, W. Sunna, and A. Chaudhry. Semi-Automatic Ontology Alignmentfor Geospatial
Data Integration. In International Conference on Geographic Information Science (GIS-
cience), volume 3234 of Lecture Notes in Computer Science, pages 5 1-66. Springer, 2004.

1

136

10.1. F. Cruz, W. G. Sunna, and K. Ayloo. Concept Level Matching of Geospatial Ontologies. In

GIS Planet International Conference and Exhibition on Geographic Information, 2005.

11.1. F. Cruz, H. Xiao, and F. Hsu. An Ontology-based Framework for Semantic Interoperability
between XML Sources. In International Database Applications and Engineering Symposium
(IDEAS), pages 217-226, July 2004.

12.A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy. Learning to Map between On-
tologies on the Semantic Web. In International World Wide Web Conference (WWW), pages
662-673, 2002.

13.M. Ehrig, C. Tempich, J. Broekstra, F. van Harmelen, M. Sabou, R. Siebes, S. Staab, and
H. Stuckenschmidt. SWAP - Ontology-based Knowledge Management with Peer-to-Peer Tech-
nology. In German Workshop on Ontology-based Knowledge Management (WOW), 2003.

14.M. Essid, F.-M. Colonna, O.Boucelma, and A. Bétari. Querying Mediated Geographic Data
Sources. In International Conféerence on Extending Database Technology (EDBT), volume 3896 of Lecture Notes
in Computer Science, pages 1176—1181. Springer, 2006.

15.J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt, O. Svab, V. Svatek, W.
R. van Hage, and M. Yatskevich. First Results of the Ontology Evaluation Initiative 2007. In
Second ISWC International Workshop on Ontology Matching. CEUR-WS, 2007.

16. E. Franconi, G. M. Kuper, A. Lopatenko, and 1. Zaihrayeu. A Distributed Algorithm for Robust
Data Sharing and Updates in P2P Database Networks. In Current Trends in Database Technology -
EDBT 2004 Workshops, Lecture Notes in Computer Science, pages 446—455. Springer, 2004.

17. T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisi-
tion, 5(2): 199-220, 1993.

18. A. Gupta, R. Marciano, I.Zaslavsky, and C. K. Baru. Integrating GIS and Imagery Through
XML-Based Information Mediation. In International Workshop on Integrated Spatial Data-
bases (ISD), Selected Papers, volume 1737 of Lecture Notes in Computer Science, pages
211-234. Springer, 1999.

19.A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal,10(4):270—
294, 2001.

20.M. A. Hernandez, R. J. Miller, and L. M. Haas. Clio: A Semi-Automatic Tool For Schema
Mapping (demo). In ACM SIGMOD International Conference on Management of Data, page
607,2001.

21.R. Ichise, H. Takeda, and S. Honiden. Rule Induction for Concept Hierarchy Alignment. In ZJCAI
Workshop on Ontologies and Information Sharing, 2001.

22.N. Jian, W.Hu, G. Cheng, and Y. Qu. Falcon-AO: Aligning Ontologies with Falcon. In K- CAP
2005 Workshop on Integrating Ontologies. CEUR Workshop Proceedings 156, 2005.

23. M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM SIGMODSIGACT-SIGART Sym-
posium on Principles of Database Systems (PODS), pages 233-246, 2002.

24.8S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph Matching
Algorithm and Its Application to Schema Matching. In [EEE International Conférence on Data Engi-
neering (ICDE), pages 117-128,2002.

25.N. F. Noy and M. A. Musen. Anchor-PROMPT: Using Non-local Context for Semantic Match-
ing. In LJCAI Workshop on Ontologies and Information Sharing, 2001.

26.L.Palopoli, D. Sacca, and D. Ursino. An Automatic Techniques for DetectingType Conflicts
in Database Schemes. In International Conference on Information and Knowledge Manage-
ment (CIKM), pages 306-313, 1998.

27.M. Peim, E. Franconi, N. W. Paton, and C. A. Goble. Query Processing with Description
Logic Ontologies Over Object-Wrapped Databases.In International Conference on Scientific
and Statistical Database Management (SSDBM), pages 27-36, 2002.

28.E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching.
VLDB Journal, 10(4):334-350, 2001.

29. M.A. Rodriguez and M. J. Egenhofer. Determining Semantic Similarity among Entity Classes
from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering, 15(2) :442—
456, 2003.

137

30. P. Shvaiko and J. Euzenat. A Survey of Schema-Based Matching Approaches. In Journal on Data
Semantics 1V, volume 3730 of Lecture Notes in Computer Science, pages 146—171. Springer, 2005.

31.H. Stuckenschmidt. Query Processing on the Semantic Web. Kiinstliche Intelligenz (KI),
17(3):22-26, 2003.

32. H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hiibner.
Ontology-Based Integration of Information - A Survey of Existing Approaches. In ZLJCAI Work-
shop on Ontologies and Information Sharing, 2001.

33. M.Wiegand, D. Patterson, N. Zhou, S. Ventura, and L.F. Cruz. Querying Heterogeneous Land Use
Data: Problems and Potential. In National Conference for Digital Government Research (dg. o),
pages 115-121, 2002.

34.C.Yu and L. Popa. Constraint-Based XML Query Rewriting For Data Integration. In ACM
SIGMOD International Conference on Management of Data, pages 371-382, 2004.

Chapter 7: Translating Vernacular Terms into
Geographical Locations

Juan José Garcia Adeva

Department of Languages and Computer Systems
Faculty of Computer Science

University of the Basque Country

Donostia — San Sebastian, Spain

jjga@ehu.es

Abstract. Vernacular terms are often used by people when referring to geo-
graphical location names. Being able to determine the canonical geographical
form of a location from its various other forms and in particular from its vernacu-
lar expression would extend the number of queries that can be successfully an-
swered by Web-based mapping applications. There are two basic scenarios when
dealing with this type of vernacular geography: i) when there is a known list of
vernacular geographical names to translate, so that it is possible to find their de-
scriptions (e.g. in the Web) and use them to infer the canonical name, and ii) no
information about vernacular names exists or is known beforehand until query
time. This chapter focuses on the latter situation and introduces an approach based
on statistical text-mining techniques coupled with a knowledge set, which is a
compilation of information retrieved from the Web describing all the known loca-
tions within a geographical area (e.g. city, state, country). Translating a vernacular
term consists of finding the partition of the knowledge set where this vernacular
term occurs and has the highest relevance. This approach is simpler than other ex-
isting methods while offering promising results and other advantages such as be-
ing language independent. Its experimental implementation consists of a Web ser-
vice that can be used by any SOAP-enabled application.

1 Introduction

People use different types of geographical languages to describe locations. When
searching for known public places (e.g. 25 Pitt street in Sydney, Australia) they
use formal or standard vocabularies. A different scenario is when people use

140

private location names (e.g. the pub), only meaningful within a group of related
people. An additional way of referring to a place is using vernacular terms, which
is the subject of this work. This usually happens when people communicate in
relation to a particular region or cultural group. Examples include “downtown” (in
the USA) or “CBD” (in New Zealand or Australia) to allude to the centre of a city,
and “the coathanger” as a synonym of the Sydney Bridge. Another instance is “the
strip” to point out a particular section of Sunset Boulevard in Los Angeles,
California.

This is somewhat related to what is called vague spatial concepts, encompass-
ing spatial relations or regions [24] (e.g. near, to the south, US Midwest, etc.)
where there are neither precise boundaries nor exact criteria for membership. In
consequence, people’s perspective of the concept rarely translates into the digital
definition stored in the mapping system. An industry exists around this problem,
where companies like Urban Mapping?® are selling their user-generated expertise
to major mapping engines. Other community-oriented approaches such as Wiki-
Mapia* benefit from volunteers submitting their own boundary definitions of a
concept.

However, this work is primarily focused on the particular case where the geo-
metric footprint [17] of the vernacular term has the same granularity and extent as
the canonical location defined in the mapping system. There is some work in this
area [6, 5], which relies on already known vernacular terms and computational
linguistics techniques such as word sense disambiguation to perform resolution of
term ambiguity. For this, an ontology in the geographical domain (e.g. a subset of
WordNet* or a geospatial ontology such as GML*' and SPIRIT) is used [19, 20, 10]
to extract synonymy and meronymy relationships between terms. This ontology is
envisioned as an extension to traditional gazetteers. The new terms are then used
for ontology-based query expansion [12], where the new terms are added to the
user’s query. Unfortunately, these approaches are not enough in the proposed sce-
nario because many (if not most) of the vernacular terms in question are unknown
to any geographical ontology.

Despite of the importance and user demand of properly dealing with unseen
vernacular names in the geographical context [34], attention is seldom paid to this
type of geographical vocabulary due to the difficulty of translating the vernacular
terms into their corresponding standard forms. This task is even more difficult to
tackle when the vernacular term to translate is not known until query time, as op-
posed to having a prepared list of possible terms that can be processed offline. In

38 http://urbanmapping.com
39 http://wikimapia.org
40 http://wordnet.princeton.edu

41 http://opengis.net/gml/

141

fact, popular Web-based mapping systems, such as Yahoo! Maps** and Google
Maps,* do not support this type of geography at the moment.

This work introduces a Web service that provides the standard location of a
given vernacular term using a statistical text mining approach. The focus of this
method is on both simplicity and language independence.

The structure of this chapter is as follows. Section 2 starts with some back-
ground information that mentions some related work. Next, Section 3 describes
the approach based on statistical text mining methods. Section 4 covers the techni-
cal details about an experimental implementation, which can be utilised by other
applications through a Web service, and some sample results. The chapter con-
cludes with some remarks about the work and a few ideas for future work in Sec-
tion

In the context of determining georeferences in text documents, Woodruff and
Plaunt [36] reported that “although benchmarking is a daunting task, evaluation is
extremely signii—cant. Consequently, future work should include the development
of a benchmark”. More than a decade after this statement, no such benchmark has
materialised. Similarly, in our context of vernacular geography, because a stan-
dard set of vernacular terms for benchmarking does not exist, it is impossible to
perform an exhaustive evaluation on the accuracy of the results. The absence of
concensus in regards to an evaluation benchmark contributes to a somewhat un-
principled system development procedure, where there is no consensus about what
knowledge contributes most to the task and hence applying heuristics whose util-
ity is unknown, leading to a potential waste of resources.

5.

2 Background

Because they are profusely used in Geographic Information Systems (GIS) in
general and this work in particular, I describe what a geographical gazetteer is. I
also mention some related work that exists for determining the area or the location
that corresponds to a vernacular geographical term. The approach is usually based
on finding a text description of the vernacular term and then analysing it in order
to extract the standard locations that it describes.

42 http://maps.yahoo.com
43 http://maps.google.com

142

2.1 Geographical Gazetteers

236863 University of California-Berkeley school Alameda 37.86972 -122.25778
1654172 Berkeley Tennis Club locale Alameda 37.85917 -122.24056
1675999 Berkeley Yacht Club locale Alameda 37.865 -122.31111
1656763 Sproul Plaza park Alameda 37.86972 -122.25806
1656769 Tolman Hall building Alameda 37.87417 -122.26306
1703690 Berkeley Station locale Alameda 37.87111 -122.26722

Fig. 7. 1. Some entries extracted from a California gazetteer. The actual gazetteer contains
additional information fields such as the population and other coordinate formats.

A gazetteer is a dictionary of geographical references that supplies information
about place names [18]. The types of places usually are schools, universities,
churches, parks, stations, ports, airports, towns, cities, rivers, mountains, etc. Ex-
amples of information about these place names that can be found include the
postal code, population, size, province, coordinate, etc.

Gazetteers are produced by governmental institutions as well as companies in
the form of plain text files or relational databases. There is a large number of both
public and commercial gazetteers. For example:

* The World Gazetteer* is a public gazetteer that provides the country,
province, population, coordinates, and rank among all towns within the
country of a given city.

* The Global Discovery Gazetteer is a commercial gazetteer from Europa
technologies.® It currently contains 707,000 unique worldwide locations
including urban sprawls, mountains, airports, ports, roads, railways, rivers,
and lakes.

* The Gazetteer of Australia 4 is government supported and provides
information on the location and spelling of 315,500 geographical names
across Australia.

* The public gazetteer provided by the Geographic Names Information
System (GNIS)* is the one used in this work, more precisely, the concise
version for California, that lists information about major physical and
cultural features throughout this state. There is an additional version with
historical features.

Most gazetteers are provided in the form of a text file with a large number of
entries, each one of them describing a location. Fig. 7.1 shows a few entries that
correspond to an actual gazetteer of California. The first column indicates the
postal code, to be followed by the location name, the location type (such as

44 http://www.world-gazetteer.com
45 http://www.europa-tech.com
46 http://www.ga.gov.au/map/names/

47 http://geonames.usgs.gov

143

school, park, hospital, forest, airport, mine, etc.), the county name, the latitude,
and the longitude. This gazetteer of California carries some 105,000 locations di-
vided into 63 types for the whole state of California, USA. For example, around
600 of them correspond to the county of Alameda (where Berkeley is), of which
nearly 100 are about Berkeley.

Unfortunately, traditional gazetteers are quite simple and suffer from some
limitations. One of them is that they do not contain spatial or semantic relation-
ships between locations. Finding information like synonyms, hyponyms, related,
or neighbouring locations of a source location would be a very valuable feature for
vernacular geography and other related problems but not currently available in
regular gazetteers.

2.2 Related Approaches

There is a popular trend based on computational linguistics techniques for
toponym resolution. This task consists of determining the correct geographical
location of a textual place name given several possible mappings [22]. For
example, there are cities called York in countries like the UK, Germany, Australia,
Canada, Greenland, and the United States. While humans are very good at
determining from context which is the intended referent, this task is not a simple
one to be performed automatically [21] and it bears some resemblance to word
sense disambiguation with two main steps [22]: i) obtain candidate referents for a
toponym and ii) select the most likely candidate.

Some of the techniques employed in toponym resolution are interesting for
vernacular geography, in particular those using approaches based on place name
extraction [29, 27, 14, 25]. In order to determine the correct context of the
toponym, a list of place names are extracted from unstructured texts describing the
toponym. This extraction task is also known as geoparsing in this particular con-
text or named entity recognition in general. In turn, named entity recognition and
part-of-speech tagging (where the entities are linguistic elements of a lexical tax-
onomy) are the two main types of information extraction tasks [1]. A typical in-
formation extraction application analyses text documents and presents the user
with the specific information from them that the user is interested in. Information
extraction has some similarities with text mining in regards to its blurry definition.
Different authors have used different definitions, sometimes contradictory.
Chen [8] considers that text mining “performs various searching functions, lin-
guistic analysis and categorizations”, therefore including information retrieval
within text mining. Other researchers [23, 3] also consider information retrieval a
text mining functionality. However, Hearst, who proposed a definition for text
mining for the first time [16], explicitly excludes information retrieval and infor-
mation extraction as part of text mining or as a particular functionality or task
within it. The latter point of view has gained strength in the last years, when the

144

research community in information extraction has grown considerably. It is impor-
tant to bear these definitions in mind to understand where the work described fits.

There is some work [35, 28, 2, 26] that employs location names extraction in
order to resolve vernacular terms. When a vernacular name has to be mapped into
one or more corresponding standard location names, the vernacular term is used to
search and retrieve some text (e.g. Web pages) that describes it. One or more well-
known standard location names contained in this description are extracted, and
then used to delimit the geographical area or position of the vernacular term. The
level of granularity (e.g. city, street) of these extracted geographical references
will constrain the geographical footprint of the eventually determined region [17].

There are three main techniques for extracting standard location names from
text:

1. Internal methods where the text is analysed without relying on external
resources. This approach can be based on either a deductive or an
inductive method. In the first case, a model of the language and its
grammar has to be built, which usually results in a very long and costly
process both to develop and maintain. In the second method, the entities
are automatically extracted after an algorithm was previously trained.
Models using Hidden Markov and Maximum Entropy are the most
common. Although these models have proven successful, they must be
trained and optimised for each language and type of text supported, with
extensive adaptation required to incorporate new languages.

2. External methods that rely on an external resources, usually a gazetteer.
The advantage of this approach is that there is no need for previously
training the system and its response time is better than when using the
internal approach mentioned above. Its main disadvantage is its rigidity as
only references stored in the gazetteer using the same (or very close)
spelling can be extracted from the text. To increase the most probably
needed flexibility of matching terms in the gazetteer that do not
correspond textually but do semantically (e.g. aly for alley, av or avn for
avenue, etc.), the language model that corresponds to each geographical or
cultural region has to be encoded. Although feasible, this is an extremely
tedious and complex task.

3. Hybrid methods that combine both internal and external resources.

Each one of these two approaches should usually be capable of offering fairly
good accuracy when mapping a vernacular term into its the geographical area.
However, their implementation, although attainable, would require a significant
programming effort for each country and language supported. Another limitation
to be considered for these techniques is the availability of high-quality Web
resources that precisely describe the vernacular terms.

145
3 Statistical Text-Mining Approach

The approach presented in this work is based on statistical text mining. It has the
noteworthy advantage of being language and grammar independent, as opposed to
the computational linguistics approach described before, which depends heavily
on the language model. Furthermore, this approach would be cheaper
computationally speaking in most circumstances. An additional minor advantage
of this approach is that it should find the coordinate of not only vernacular terms,
but also many unknown standard location names (those not registered in the
system or under a different name). However, its main disadvantage might be that
the accuracy obtained depends on the granularity of the locations provided by the
gazetteer, because the vernacular terms are eventually mapped into these standard
geographical locations.

Y
Google Search
Web Service
i i A | A
- ' web I
| ——L i pages queries P
I e S s A ~——

| Patiion |e——==._ | TextMining | standard
~ | § 7] System locations ette

|
|
N

Fig. 7. 2. Overview of the knowledge set creation process, where locations found in a
gazetteer are used to query the Web and obtain descriptions.

This technique relies on a knowledge set built from external resources. This
knowledge set is a compilation of information describing all the locations, within
a geographical area (e.g. city, state, country), for which their coordinates are
known. Generating this knowledge set is an automatic and one-time process to be
completed before the system is ready for use. Building it consists of traversing a
list of location names from the gazetteer of the targeted geographical region. Each
location name (or entry) in the gazetteer is used to search and retrieve descriptions

146

about that location itself from different sources such as encyclopaedias or the
Web. Through the tuning of the search queries plus some additional filtering of the
results, only text content that describes the corresponding location will hopefully
be retrieved and used to build the knowledge set. All the compiled text documents
describing a particular standard location name are combined and used to define the
knowledge set partition that corresponds to a particular standard location name.
Fig. 7.2 shows a graphical overview of this knowledge set creation process.

—1 :‘—l tefm T
y —

Text Mining standard !
Svstem locations Gazetteer

|
......... s |
, L
[Web N —

Knowledge Set i partitio

_______;;_______
il

WALGUVT

GIS

Fig. 7. 3. Overview of using the knowledge set to determine the location name that
corresponds to a vernacular term. The location coordinate is obtained from the gazetteer.

After the whole knowledge set for a particular geographical region is built, it is
then transformed using the traditional vector space model (VSM) [33]. This is an
algebraic model that represents natural language documents and queries in a high-
dimensional space, where each dimension of the space corresponds to a word in
the document collection. According to this model, for each of the partitions
describing an individual location a feature vector in this space is generated.

A large dimension of the feature vectors may affect the effectiveness of the
model [7]. Consequently, high dimensionality is mainly avoided through a feature
selection process. Feature selection is performed on a dictionary of terms T pro-
vided by the preprocessing stage. A new sub-dictionary 7' is created where T'cT

147

T -|T
and |T'|<<|T]. The reduction factor value is expressed by & = % Each

term f, € I’ is weighted using a function that captures the degree of correlation

with ¢;. A number of terms with the highest weight are used to generate 7" and
hence to represent the documents from this point on. There are many term evalua-
tion functions studied in the literature [32], many of them from the fields of in-
formation theory and statistics. Some of the most common include term fre-
quency, document frequency, inverse document frequency, information gain,
mutual information, and x*.

For weighting words in this vsM, the tf/idf function (term frequency vs inverse
document frequency) was selected. The term frequency in the given document of-
fers a measure of the relevance of the term within a document. The document fre-
quency is a measure of the global relevance of the term within a collection of
documents.

There are several implementations of the function tf/idf. The one used on this
work uses a collection of documents D with length |D|, so that D = {d,....dp}.
Each document d} is expressed by a collection of terms with length ||, such as d;
= {t1,....tig}. Therefore the tf/idf value for a particular term # in a document d; of
D is given by

tf/idf(t,,d , D) = tf(z,,d)-log, idf(,, D) =

14,] o, 12 1)
max{tf(tl,dj),...,tf(t‘d“,dj)} 2|D3ti ’

where [ti| is the number of times that the term ti occurs in the document dj
(which is normalised using the maximum term frequency found in dj), |D] is the

d D>t the number of documents where ti ap-

number of documents in D, an
pears.

There are other alternative term weighting approaches to tf/idf such as Robert-
son/Sparck Jones [30] or OKAPI [31]. Nonetheless, because these methods are usu-
ally variations on the way the frequency functions tf and idf are combined, using
other term relevance function other than tf/idf should only produce minimal dif-
ferences on the results.

Once this model has been built, mapping a vernacular term into its most related
standard location is a fast and computationally cheap operation. To do so, the fea-
ture vector with the highest weight in the dimension that corresponds to the ver-
nacular term is selected, so that the corresponding standard location name and co-
ordinate from the gazetteer can be offered as response. In cases where the vector
space model does not have a dimension corresponding to the vernacular term, the
mapping is not possible and it can be considered a failure.

148

Fig. 7.3 offers a graphical representation of this process while a more detailed
description can be found in Algorithm 1. It is interesting to note that although this
work is only aiming at providing one location as the answer, a number of them
could easily be selected instead, hence providing an area as the answer.

Algorithm 1 map(vernacular_ferm)

Require: vernacular_ierm
Ensure: feature vectors[]

fv < create_fv(vernacular term)

: maz weights[] < 0

: location <=0

: for all f € feoturevectors]] do

weights[] = [- fv

if weights] > maz_weights]] then
maz_weights|| = weighta||
location < f

end if

: end for

: return location

0oL Wy

—
-

4 Experimental implementation

This implementation currently supports the area of Berkeley in California, USA.
The gazetteer for California was imported from its tabular text-based format into a
relational database based on PostgreSQL.*. The database is designed so that each
geographical region (e.g. state, country) is stored in a database table.

Building the knowledge set is based on performing Web searches. For this pur-
pose, I chose the Google Search service* that provides Web search capabilities to
applications through a Web service. Previous registration in order to obtain a free
license key is required. Each license key allows up to 1,000 automated queries per
day. This limitation is one of the reasons for limiting this implementation to a
fairly restricted area. Other similar services include Yahoo! Search®® and MSN
Search. Each gazetteer entry that covers the supported area is used to perform two
Web searches. The first search targets all the Web while the rest are limited to ar-
ticles within online encyclopedias like the popular Wikipedia®' or Wikitravel.3?
Moreover, the search is performed using either referential phrases or searches

48 http://www.postgresqgl.org

49 http://code.google.com/apis/ajaxsearch/web.html
50 http://developer.yahoo.com/search/

51 http://wikipedia.org

52 http://wikitravel.org

149

likely to return pages which are meaningful. A referential phrase attempts to cap-
ture geographic relationships. For example, i) containment or inclusion can be rep-
resented by a referential phrase such as “4 is a town in B” where B is the vernacu-
lar location name and A is a possible candidate standard location, ii) equivalence
can be detected by referential phrases like “A4 [also known as | also called | nick-
named] B”.

A number of the top search results (typically 20) are retrieved, filtered to re-
duce the noise (e.g. removal of listing sections), converted into plain text, and
stored in the document repository offered by Pimiento, which will be described in
Section 4.2

For example, the following queries would be issued to search for Web pages
describing the University of California in Berkeley:

"University of California" Berkeley ~California

"University of California * also known as" Berkeley ~California

"University of California" Berkeley ~California site:en.wikipedia.org

"University of California * also known as" Berkeley ~California

site:en.wikipedia.org

"University of California" Berkeley ~California site:wikitravel.org

"University of California * also known as" Berkeley ~California
site:wikitravel.org

The operator * means any word in that position and ~ indicates that synonyms
of the given word should be included in the results. In this example, issuing
Californiaissimilarto California OR CA.

Some of the Web pages obtained with the examples above are not very useful
(e.g. the university home page) but the Wikipedia article is very useful. It de-
scribes the existence of elements in the campus such as a bell-tower known as
Campanile, although its official name is the Sather Tower. Although campanile is
a term that could appear in other documents not directly related to the University
(e.g. Town Hall as indeed happens), the most relevant occurs in the partition of the
knowledge set that describes the University of California in Berkeley.

4.1 Text-Mining Software Framework

The implementation of the approach is based on our own text-mining object-
oriented application framework called Pimiento [13].

150

This software component was written using Java Standard Edition (J2SE) and
aimed at providing developers with the primary benefits of application frame-
works, such as modularity, reusability, extensibility, and inversion of control [11].
The extensibility of the framework is based on a black-box approach, where the
framework defines interfaces for new components that can be plugged into the
framework through object composition. Black-box frameworks are usually struc-
tured using object composition and delegation rather than inheritance, as opposed
to white-box frameworks, which are tightly related to the framework’s inheritance
hierarchies. In consequence, black-box frameworks are often easier to use and ex-
tend than white-box ones. In order to achieve effective reuse, the framework de-
veloper must identify those aspects of the target applications that vary from one
application to the next, typically called hot-spots, and allow explicitly for their
variations to be instantiated in applications. In some cases, the hot-spot variations
are known by the framework developer, so concrete classes can be provided. Ap-
plication development then becomes a simple matter of selecting the appropriate
concrete classes for the application.

The framework offers the following functionalities in several languages (Eng-
lish, German, French, Spanish, and Basque):

* The text categorization functionality includes several learning algorithms
such as Naive Bayes (multinomial and complement), Rocchio, optimal
Rocchio, and k-Nearest Neighbour. These algorithms can also be used as
the base binary learners for ensembles using the decomposition methods
one-to-all, pairwise coupling, and error-correcting output codes. Apart
from the regular languages supported, a language-neutral preprocessor,
based on n-grams, is provided for other languages. It includes novel
methods for multilingual text categorization, where documents in multiple
languages can be found within the same corpus sharing categories. There is
also complete evaluation of results including the -category-specific

measures TP;, FP;, FN,, m;, p;, F and the averaged measures 7, p", F;# ,

™, pM, EM , as well as partitioning of the testing space using n-fold cross-
validation.

* The language identification functionality is based on computing and
comparing language profiles using character n-gram frequencies. A n-gram
is a chunk of contiguous characters from a word. The number of n-grams
that can be obtained from a word of length w is w+1. These n-grams are
used to create a dictionary with the 400 most frequent words ranked by
frequency. Therefore, for each supported language, a profile p; € P =
{p1,....ppp} 1s generated. These language profiles are compared to the
profile of a document whose language has to be identified, choosing the
language that corresponds to the closest. Comparing two language profiles

consists of calculating , where G; is the set of n-

151

grams in p; and g, the n-gram of p; ranked in k-th position. The function

K(g.,p;) returns the rank of g in p;. If g ¢ p; then a very high value is used
so that K(g,p;) >> |G|

Similarity analysis consists of applying several similarity functions based
on distance measures such as Hamming, Euclidean

Y2 (w(s,) ~w(y,)*). Manhattan (3" | w(x,) = w(y,)). and

I
s
Minkowski ((Z!O| X, =Y, |/1);) to assess the degree of resemblance

between two text documents. The documents to compare are previously
converted into feature vectors using one of the available weighting
methods, including term existence, term frequency, or their combination
term frequency/inverse document frequency (tf/idf).

The clustering functionality currently on includes the k-means algorithm,
which is well known in the literature. This algorithm defines clusters of
documents by their corresponding centroid (i.e. centre of mass of the
members). A number of iterations are performed where documents are
assigned to their closest cluster based on the distance to its centroid. After
this, the centroid are calculated again to include the new documents. This
algorithms has the weakness often creating singleton clusters for outliers.
We applied the method described in [15] to avoid these situations. The
distances are measured reusing the similarity functions of the similarity
analysis functionality, described above.

The summarization functionality uses a sentence extraction approach,
influenced by [9], that uses the following three statistical measures to
determine the relevance of sentences: i) because summaries with long
sentences are better than those with short sentences, we define L as the
measure of the sum of sentence lengths (in number of words), where

n
L(T) = Zi_0| s, |, ii) because summaries containing sentences found at

the beginning of a paragraph are better summaries, the measure P is
1
defined by P(T) = Zn 0T and iii) because sentences with high
=l+n

word overlapping probably offer the same information, hence entering
redundancy into the summary, the measure O is based on the individual
term frequencies combined with their inverse sentence frequency

. In
these measures, S is the text to summarise, with S = {sy, s1,..., 5,} being
the set of sentences that compose it, s; = {to, t1,..., #;} the set of terms in

sentence s;, n the number of sentences, and |s;| the number of terms in
sentence s;. Sentences corresponding to questions are not taken into
consideration for the summary. These three measures L, P, and O are

152

combined as a weighted sum Q(S)=a.-L(S)+B-P(S)+y-O(S) that provides an
overall score of summarization quality. While this approach is much
simpler than other state of the art, linguistic approaches, it offers good
results, while being language independent, and computationally very cheap.

4.2 Knowledge Set Persistence

The storage infrastructure for the knowledge set is based on a repository for
unstructured text called Lenteja. Although Lenteja is an independent software
component that can be used in other applications and systems, it was developed to
as Pimiento’s text document repository.

A Lenteja repository can use three types of storage for the unstructured text:
1) a relational database, 2) a document-oriented (i.e. XML) database, and 3) a file
system. If the relational database is chosen, any database system with an appropri-
ate JDBC driver can be used, although at this moment we primarily use Post-
greSQL. In the case of XML databases, we currently support eXist, an open source
native XML database. For this project, the relational database was chosen due to
the retrieved text documents being completely unstructured.

The repository is organised by collections that contain an unlimited number of
documents and collections. Each document can be stored in two different formats:
1) plain text and 2) the OASIS OpenDocument standard [4]. The latter is useful for
keeping as much of the original format as possible (e.g. paragraphs and headings)
so that these documents can be queried using the XQuery language or modified
with the XUpdate language. Each document of collection can be associated with
an unlimited amount of metadata. For example, this can be useful for a text cate-
gorization functionality to express the categories that the document belongs to.

Lenteja can currently import and export the following document types: PDF,
RTF, HTML, Microsoft Word, OpenOffice 1.x, and OpenOffice 2.x.

Applications using Lenteja can use its object-oriented application interface in
case they are written in the same language as Lenteja (i.e. Java). For other scenar-
ios, Lenteja currently offers a Web service. Further interoperability mechanism
could be added in the future, such as Sun’s RMI.

4.3 Application Integration

Web services can be explained as Web sites whose users are software programs
instead of humans. The World Wide Web Consortium’s (W3C) Web Services
Activity* created an extension of XML called SOAP. It is used to specify how these

53 http://w3.0rg/2002/ws

153

programs involved can send and receive parameters to and from remote
applications. The interface of the Web service is described with the Web Services
Definition Language (WSDL). This allows clients and services to automatically
bind. Web services play a major role in a Service-Oriented Architecture (SOA).

The reason for selecting Web services as the network communication mecha-
nism is because Web services encapsulate complexity while allowing the distribu-
tion of load and the improvement of scalability. These are common requirements
for integrating text-mining techniques into real-world applications. A Web service
has three main properties extracted from the above definition: i) its interface con-
tract is platform-independent, ii) it can be dynamically located and invoked, and
iil) is self-contained, so that it maintains its own state.

A notable aspect is that due to Web services being self-describing, the client
application does not need to know anything about the service except for the format
and content of request and response messages. The definition of the message for-
mat travels with the message. No external metadata repositories or code genera-
tion tools are required.

Using Web services for integration with client applications also presents some
limitations and challenges. Sending large collections of documents can present an
important performance and scalability issue in scenarios where the network is not
controlled or there is only low bandwidth available. This is because the SOAP
transport protocol contributes to a high bandwidth usage and processing time (due
to the various levels of XML parsing and validation). Securing a Web service re-
quires additional efforts, not only in providing access control in this inherently
stateless protocol, but also in avoiding attacks such as denial of service to the
server, forged client requests, and interception of messages. In order to avoid in-
teroperability problems between SOAP implementations, only simple types should
be used in parameters. This requires an object oriented API to be transformed into
its procedural form.

The particular SOAP implementation selected for this project was Apache
Axis,** which is an open source library based on either Java or C++. One of the in-
teresting features of this software system is its capability to automatically generate
the Web service interface in WSDL format using a Java interface.

The application interface is very simple, with just one method called map that
requires four arguments: vernacular term, city, state, and country. The response by
the Web service is an XML message that contains the latitude, the longitude, and an
informative message. In case of an error, both the latitude and the longitude are set
to zero and the message contains details about the problem.

54 http://ws.apache.org/axis/

154

4.4 Experimental results

Table 1 illustrates some examples of query/response that correspond to the
area of Berkeley, California, USA. Each query is a vernacular term with its city,
state, and country that were sent to the Web service. The response includes the
name of the location that contains, or relates to, the vernacular term along with the
latitude and longitude in decimal degrees. In the cases shown in Table 7.1 the
results were correct and helpful.

Table 7. 1. Some examples of responses by the Web service when queried for
vernacular terms within Berkeley, California, USA.

Query Response

Latitude Longitude Location Name
Shoreline 37.85528 -122.33778 Pier
Downtown 37.87111 -122.26722 Berkeley Station
Amphitheater 37.88528 -122.26167 Rose Garden
Breakwater 37.86806 -122.31528 Berkeley Marina
Cupola 37.86944 -122.2725 City Hall
Spire 37.86944 -122.2725 City Hall

In the context of determining georeferences in text documents, Woodruff and
Plaunt [36] reported that “although benchmarking is a daunting task, evaluation is
extremely signii—cant. Consequently, future work should include the development
of a benchmark”. More than a decade after this statement, no such benchmark has
materialised. Similarly, in our context of vernacular geography, because a stan-
dard set of vernacular terms for benchmarking does not exist, it is impossible to
perform an exhaustive evaluation on the accuracy of the results. The absence of
concensus in regards to an evaluation benchmark contributes to a somewhat un-
principled system development procedure, where there is no consensus about what
knowledge contributes most to the task and hence applying heuristics whose util-
ity is unknown, leading to a potential waste of resources.

5 Concluding Remarks

Geographical mapping systems have become very popular thanks to their ubiquity
on the Web. Most of the major Internet companies offer free access to their Web-
based mapping applications. However, many people that use these systems are not

155

necessarily familiar with the standard geographical terms and thus try to search for
vernacular terms that are unknown to the mapping system.

This work offers an approach based on statistical text mining methods and eas-
ily available search engines that makes it possible to augment and enrich the
available standard geographical vocabulary in order to map these vernacular
terms. An experimental implementation of this approach has been implemented,
limited to a small geographical region, which is accessible through a Web service.
The results obtained by this tool provide an exact location that contains, or is re-
lated to, the vernacular term sought. Because of the lack of standard benchmarks
available, it was not possible at this time to provide a formal or more extensive
evaluation of the system.

Regarding future work, it would be desirable to look into scalability and per-
formance issues when much larger areas are covered (e.g. whole states or coun-
tries). A related problem is with gazetteers and their coverage of only parts of the
world (e.g. nations or regions), but those few gazetteers that cover the whole
world have a much less detailed coverage than those covering less extensive areas.
The ADL community> proposes exchanging data between gazetteers to overcome
these limitations through the ADL Gazetteer Content Standard and the ADL Gazet-
teer Service Protocol.

This prototype built performs mapping of vernacular with geometric footprints
of the same granularity places defined in the gazetteer. It would be possible to en-
able mapping of vernacular regions in addition or instead, by identifying not only
one but several partition of the knowledge set where this vernacular term occurs
with a relevance higher than a certain threshold value. However, there are some
subtle details like what threshold value to select, how many locations should form
the boundary of the region, and how to estimate whether the vernacular term
should map into a single location or region. These decisions should be investi-
gated further.

It might also be beneficial to form a committee in charge of producing a stan-
dard benchmark. It could be made up by a set of vernacular terms and their corre-
sponding standard geographical locations or areas. This standard benchmark
would be very useful to the research community working on this topic.

Acknowledgments Some of this work was done while the author was at the University of
Sydney in Australia. The author thanks the anonymous reviewers for their valuable com-
ments on the manuscript.

55 http://www.alexandria.ucsb.edu/gazetteer/

156

References

1. D. Appelt. An introduction to information extraction. Artificial Intelligence Communications,
12(3):161172, 1999.

2. Avi Arampatzis, Marc J. van Kreveld, Iris Reinbacher, Christopher B. Jones, Subodh Vaid,
Paul Clough, Hideo Joho, and Mark Sanderson. Web-based delineation of imprecise regions.
Journal of Computers, Environments and Urban Systems, 30(4):436-459, 2006.

3. Michael W. Berry. Survey of Text Mining. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2004.

4. Michael Brauer, Patrick Durusau, Gary Edwards, David Faure, Tom Magliery, and Daniel
Vogelheim. Open document format for office applications (OpenDocument) v1.0. Technical
report, OASIS Standard, 2005.

5. Davide Buscaldi, Paolo Rosso, and Emilio Sanchis. Wordnet as a geographical information
resource. In Proceedings of Third International Wordnet Conference, 2005.

6. Davide Buscaldi, Paolo Rosso, and Emilio Sanchis. A wordnet-based query expansion
method for geographical information. In Cross-Language Evaluation Forum in CLEF, 2005.

7. Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, and Prabhakar Raghavan. Scalable fea-
ture selection, classification and signature generation for organizing large text databases into
hierarchical topic taxonomies. The VLDB Journal, 7(3):163—178, 1998.

8. Hsinchun Chen. Knowledge Management Systems: A Text Mining Perspective. University of
Arizona, Tucson, Arizona, 2001.

9. H.P. Edmundson. New methods in automatic extracting. Journal of the ACM, 16(2):264—
285, April 1969.

10. Max J. Egenhofer. Toward the semantic geospatial Web. In Proceedings of the 10th ACM in-
ternational symposium on Advances in geographic information systems, pages 1-4, New
York, NY, USA, 2002. ACM Press.

11. Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks. Commu-
nications of the ACM, 40(10):32-38, 1997.

12. Gaihua Fu, Christopher Jones, and Alia Abdelmoty. Ontology-based spatial query expansion
in information retrieval. In ODBASE: OTM Confederated International Conferences, volume
3761. Springer Berlin, Heidelberg, November 2005.

13.J. J. Garcia Adeva and R. C. Mining Text with Pimiento. IEEE Internet Computing, 10(4):27
- 35, 2006.

14.Claire Grover, Harry Halpin, Ewan Klein, Jochen L. Leidner, Stephen Potter, Sebastian
Riedel, Sally Scrutchin, and Richard Tobin. A framework for text mining services. In
Simon J. Cox, editor, Proceedings of the UK e-Science Programme All Hands Meeting 2004,
pages 878-885, Nottingham, UK, 2004. 31st August-3rd September.

15.Ville Hautamiki, Svetlana Cherednichenko, Ismo Kirkkdinen, Tomi Kinnunen, and Pasi
Frénti. Improving k-means by outlier removal. In SCIA, pages 978-987, 2005.

16. Marti A. Hearst. Untangling text data mining. In Proceedings of the 37th conference on As-
sociation for Computational Linguistics, pages 3—10, College Park, Maryland, 1999. Associa-
tion for Computational Linguistics.

17.Linda L. Hill. Core elements of digital gazetteers: Placenames, categories, and footprints. In
ECDL ’00: Proceedings of the 4th European Conference on Research and Advanced Tech-
nology for Digital Libraries, pages 280-290, London, UK, 2000. Springer-Verlag.

18.L.L. Hill, J. Frew, and Q. Zheng. Geographic names - the implementation of a gazetteer in a
georeferenced digital library. D-Lib Magazine, 5(1), 1999.

157

19. Christopher B. Jones, Harith Alani, and Douglas Tudhope. Geographical information re-
trieval with ontologies of place. In Conference On Spatial Information Theory, COSIT’01,
2001.

20. Christopher B. Jones, R. Purves, A.Ruas, M. Sanderson, M. Sester, M. van Kreveld, and
R. Weibel. Spatial information retrieval and geographical ontologies an overview of the spirit
project. In SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 387-388, New York, NY, USA,
2002. ACM.

21.Jochen L. Leidner. Towards a reference corpus for automatic toponym resolution evaluation.
In Workshop on Geographic Information Retrieval held at SIGIR-2004, 2004.

22.Jochen L. Leidner. Toponym resolution: A first large-scale comparative evaluation, 2006.

23.Thomas W. Miller. Data and Text Mining: A Business Applications Approach. Prentice Hall,
2004.

24.Daniel R. Montello, Michael F. Goodchild, Jonathon Gottsegen, and Peter Fohl. Where’s
downtown?: Behavioral methods for determining referents of vague spatial queries. Spatial
Cognition and Computation., 2/3(1):185-204, 2003.

25.M. Nissim, C. Matheson, and J. Reid. Recognising geographical entities in Scottish historical
documents. In Proceedings of the Workshop on Geographic Information Retrieval at SIGIR
2004, 2004.

26.Robert C. Pasley, Paul D. Clough, and Mark Sanderson. Geo-tagging for imprecise regions of
different sizes. In GIR ’07: Proceedings of the 4th ACM workshop on Geographical informa-
tion retrieval, pages 77-82, New York, NY, USA, 2007. ACM.

27.Bruno Pouliquen, Ralf Steinberger, Camelia Ignat, and Tom De Groeve. Geographical infor-
mation recognition and visualization in texts written in various languages. In Proceedings of
the 2004 ACM symposium on Applied computing, pages 1051-1058, New York, NY, USA,
2004. ACM Press.

28.R. Purves, P. Clough, and H. Joho. Identifying imprecise regions for geographic information
retrieval using the Web. In Proceedings of the GIS RESEARCH UK 13th Annual Confer-
ence, 2005.

29.E. Rauch, M. Bukatin, and K. Baker. A confidence-based framework for disambiguating
geographic terms. In A. Kornai and B. Sundheim, editors, HLT-NAACL 2003 Workshop
Analysis of Geographic References, Edmontonand Albertaand Canada, 2003. Association for
Computational Linguistics.

30. Stephen E. Robertson and Karen Sparck Jones. Relevance weighting of search terms. Docu-
ment retrieval systems, pages 143—-160, 1988.

31.Stephen E. Robertson and S. Walker. Okapi/keenbow at TREC-8. In Proceedings of the
eighth Text REtrieval Conference, pages 151-161, 1999.

32.M. Rogati and Y. Yang. High-performing feature selection for text classification. In Proceed-
ings of the eleventh international conference on Information and knowledge management,
pages 659—661, New York, NY, USA, 2002. ACM Press.

33.Gerard Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley, Reading, Pennsylvania, 1989.

34. M. Sanderson and J. Kohler. Analyzing Geographic Queries. University of Sheffield, 2004.

35.T. Waters and A.J. Evans. Tools for Web-based gis mapping of a fuzzy vernacular geogra-
phy. In Proceedings of the 7th International Conference on GeoComputation., 2003.

36. Allison Gyle Woodruff and Christian Plaunt. Gipsy: automated geographic indexing of text
documents. J. Am. Soc. Inf. Sci., 45(9):645-655, 1994.

Chapter 8: Personalizing Location-Aware
Applications

Eoin Mac Aoidh', Michela Bertolotto', David C. Wilson®

"'School of Computer Science and Informatics, University College Dublin.

{eoin.macaoidh, michela.bertolotto} @ ucd.ie

? Department of Software and Information Systems, University of North Carolina at
Charlotte.

davils@uncc.edu

Abstract. The knowledge of a client’s interests and preferences are invaluable in-
formation from a business perspective. Knowledge about a specific client allows
the business to tailor their product or service to best suit the client’s needs, leading
to a healthy relationship between both parties. In addition, knowledge of potential
client’s interests allow businesses to maximize returns and reduce costs by direct-
ing their advertising at the correct target audience. In the spatial domain, knowl-
edge of a client’s interests and preferences can be obtained through information on
the user’s map browsing habits. Our system offers users a map browsing interface
and monitors their interactions as they browse the map. Experiments show that the
analysis of individual user’s interactions reveals implicit interests in specific map
areas and particular features. Further analysis leads to the identification of trends
and gives rise to inferences as to the user’s context. Contextual information about
the user allows us to construct a user interest model and gives us the opportunity
to apply personalization techniques, targeting the advertising of suitable products
and services at potential clients with specific interests. In this chapter we survey
personalization techniques in the field of GIS and present a flexible framework for
location-aware business applications to implicitly infer user’s interests with spatial
data from their mouse interactions. Our methodology and some experimental re-
sults are also described in detail.

160

1 Introduction

Detailed information about the target audience, and indeed the ability to distin-
guish a member of the target audience from an uninterested member of the public
is essential for an effective business marketing strategy. An effective audience-
aware marketing strategy will achieve a greater return on its investment. This pro-
vides our motivation to glean as much information on users’ contexts as possible
while they browse a spatial dataset. Businesses providing tools handling geo-
graphic data have had little opportunity to glean this kind of marketing informa-
tion in an implicit manner to date. In contrast to vendors in other domains, such as
Amazon.com or Google.com, both of whom monitor user interactions to infer
their implicit interests, recommending CDs and books in the case of Amazon, and
providing adverts for relevant products in the case of Google. In the location-
aware business domain, such information on the target audience has had to be ob-
tained explicitly, by surveying system users with questionnaires. Potential clients
can find questionnaires irritating and time consuming, which leads to poor com-
pletion rates and insufficient, hurried answers. We employ implicit information
collection methods (which have a 100% completion rate) to unobtrusively profile
system users.

™ -
- \YM\

Fig. 8. 1. An impression of a section of New York City, showing lodging and dining
facilities. The image on the left shows too many hotels, and too many restaurants; an
example of information overload. The image on the right shows how a personalised map
might look; showing only budget hotels, and reasonably priced eateries, which are more
suited to the user’s profile, reducing information overload by eliminating irrelevant
expensive hotels and restaurants.

In addition to using profiles of system users for marketing purposes, the informa-
tion has an important secondary utility, it can also be applied to reduce information
overload, making the user’s experience with the system as intuitive and as productive

161

as possible. It also paves the way for returning users building an affinity with the sys-
tem. Information overload happens as a result of the availability of too much data.
Figure 8.1 provides an example of spatial information overload. Viewing a map with
an application such as Google Earth [1], with the available “lodging and dining facili-
ties” information displayed in a region such as New York provides far more informa-
tion than any one user could possibly take in. Without employing some method to fil-
ter out less relevant data, or a means of ranking the data, the user must sift through
large swathes of data in the hope of finding the information he requires.

Information concerning user interests and preferences is collected by the system
through implicit methods. It is then used to generate a user interest model. This user
interest model is updated on a session by session basis. Thus a profile is maintained for
each user which reflects his interests as they change over time. Personalization meth-
ods are employed to customise the system to suit the needs of individuals. Products
and services suited to the user can be advertised on the interface, increasing his expo-
sure to relevant products and services. Furthermore, the spatial information composing
the map can be tailored to the individual, cutting out extraneous detail and even rec-
ommending relevant detail; reducing information overload and improving the user’s
overall experience. Our approach to collecting implicit information about user’s inter-
ests involves the logging of user’s actions as they interact with the system. In particu-
lar we focus on mouse movements and clicks. The movement and click information is
processed by an interest determining algorithm which we have developed. The algo-
rithm computes an ordered list of every object in the map, based on its relevance to the
user for a given session. By maintaining an average of the lists from each session for a
particular user, we produce an up-to-date interest model that reflects his changing in-
terests over time.

This chapter surveys user modeling and personalization techniques in the field of
GIS in section 2. Section 3 outlines our flexible framework approach for location-
aware business applications to implicitly infer user’s spatial interests from their mouse
movements and describes a series of experiments and results validating our methodol-
ogy. Section 4 briefly describes the system’s implementation. Section 5 addresses per-
sonalization to suit the target market. Section 6 discusses the extent of our approach.
Plans for future work are presented in section 7.

2 Literature Review

In this section we review research literature items that address some of the issues
of concern to our work. The three main tenets of our work are implicit interest in-
dicators, user modeling and personalization. Most of the techniques used in these
three areas remain underdeveloped in the spatial domain, thus much of the litera-
ture covered in this section pertains to non-spatial Web data. We review this work
and comment on its applications in the spatial domain. Spatial data is more com-
plicated than standard pictures and text on a Web page because it presents another

162

problem dimension. The location, shape, scale and relationship among geographi-
cal objects are as important as the objects themselves in the perception of spatial
data. User modeling and personalization inherently require the collection of in-
formation about users, thus we also briefly consider literature documenting the
privacy ethics of user modeling.

2.1 Implicit interest indicators

There are two categories of interest indicators; implicit and explicit. Explicit inter-
est indication requires the client to state his interests to the vendor through an ex-
plicit means such as completing a questionnaire or applying ratings to items
shown to him. This can be irritating and time consuming as it means the client
must deviate from his original task. As a result, many clients may avoid such
tasks, leaving the vendor clueless as to his interests. Implicit interest indicators on
the other hand avoid this problem. The client is uninterrupted. Information is col-
lected based on his actions, and his interests are inferred from these actions.

Claypool et al. [2] discuss implicit interest indicators in detail. Techniques range
from keyword extraction from documents, to event logging, such as book marking
Web pages, mouse movements, and key-strokes. These events all give a significant in-
dication of interest. For instance, if a client is to bookmark a Web page there is a rea-
sonably high chance that the Web page is of interest to the user. Similarly, if the user
clicks on a number of Web links all pertaining to the same subject area, then there is a
high chance that the subject area is of interest. Implicit techniques have the advantage
of always gathering information without the client having to sacrifice any of his time,
or deviate from his task at hand, while explicit techniques are entirely at the mercy of
the client. If the client decides not to participate, the vendor gets no information on the
client’s interests. The shortcoming of implicit techniques is that some indicators are
weaker than others, and may be less reliable than a client explicitly stating an interest
in something, thus indicator combinations are more desirable than single indicators.

Our approach to gathering implicit interests is founded on a combination of mouse
movements, mouse clicks and map browsing actions. A significant amount of work
has been carried out in measuring mouse movements as indicators of interest, [3, 4, 2,
5] are examples of such work. The Cheese system [3] records the position of the
mouse in relation to Web pages displayed on the screen. Observation of users showed
that when pages have lists of information (in text format) 30% of the time, the mouse
is employed as a pointer to read along the items in the list. The authors’ study also
found that some users rest their mouse in white space for fear of accidentally clicking
on a link. As an experiment, volunteers were asked to purchase a CD of their choice on
Amazon.com using the Cheese system. By analysing their mouse movements as they
completed their task, it was possible to infer their second choice of CD to an accuracy
of 75%.

Curious Browser’s experiments [2] have shown that mouse tracking helped to dis-

163

tinguish a user’s amount of interest in a page at a basic level. A more precise degree of
interest, and the ability to rank pages in the order of interest was found to be impossi-
ble to calculate. Significantly, the authors recorded only the overall amount of time
spent moving the mouse, and the number of mouse clicks. The location of the mouse
and related clicks was not recorded.

MouseTrack [5] is a Web logging system that tracks mouse movements on Web-
sites. It records all movements and clicks. It is a visualisation tool for Web developers
to get a visual depiction of how users interact with their site. To this extent there are no
statistical results published to date, however the graphical results show strong evidence
to suggest that a user’s mouse movements are largely in the area of the page that is of
interest to him. Movements and clicks cluster around menu bars and the most popular
links on a page. Furthermore, it is possible to distinguish between the arbitrary move-
ments around the page, and the smooth horizontal movements associated with reading
lines of text.

Results from the aforementioned mouse-tracking systems all show that it is possible
to determine a user’s interests to varying degrees of success, depending on the depth of
analysis, and number of factors taken into account. On a superficial level, simply pro-
ducing a heat-map visualisation of mouse movements, clicks, and dwell time give a
reasonably good indication of the navigational patterns through such Web sites, and
the areas of the screen that are interacted with most by the system users. We modify
the techniques used by these systems in order to apply them to spatial data. To the best
of our knowledge, no work has been documented to date regarding the correlation be-
tween a user’s mouse movements and interests with spatial data.

Mouse tracking is en-vogue, as it is functions as a poor man’s version of eyetrack-
ing. Eye tracking hardware is expensive, and difficult to calibrate, making it impracti-
cal for use in most situations. Despite its expense, it has been shown to be extremely
effective in determining a person’s focus of attention. Gaze position and thought proc-
essing have a close correlation, as shown by [6, 7]. Indeed the relationship between
thought processing and eye movements has been extended to include mouse move-
ments. Experiments carried out by [8, 6] show that eye movements can be correlated
with mouse movements. Different correlations were established between different
groups of people by [6], based on the manner in which they use the mouse, ranging
from an almost perfect mapping between eye and mouse movements, to users who use
only their eyes until they have identified their target before moving their mouse at all.
Even at this very loosely correlated level of eye and mouse movements, the correlation
between thoughts and movements is still evident. Once again, all research in this area
has only been carried out with non-spatial data to the best of our knowledge.

We wish to make our techniques readily available for use by any location-aware
application, thus we base our work on the link between thought processing and mouse
movements as an implicit interest indicator under the assumption that it also holds for
spatial data. By basing our work on mouse movements, rather than eye tracking, our
framework is more widely applicable. The value of the information gleaned form
mouse movements is strengthened by combining it with information acquired from
other interactions linked to thought processing such as mouse clicks and map naviga-

164

tional actions.

2.2 User Modeling

Regardless of the approach used to determine a client’s interests, the next chal-
lenge presented is how to use the acquired information. The approach we adopt is
to produce a user interest model. This allows for data pertaining to a particular cli-
ent, taken from multiple sessions to be merged to produce a detailed, continuously
updated model of the individual. It is these interest models that subsequently pro-
vide the required information to personalise the application content for each indi-
vidual client.

The construction of an interest model requires the analysis of the interaction data
captured by a system; it must be interpreted to determine the patterns of interest indi-
cated in the data. A number of techniques have been developed for the mining of inter-
action data, predominantly for Web sites. Srivastava et al. [9] and Cooley et al. [10]
discuss three clearly defined phases in discovering the usage patterns from Web data;
data preprocessing, pattern discovery, and pattern analysis. Other publications of note,
such as Mobasher et al. [11-13], also pertain to Web data. Some of the techniques ap-
plied by the authors are not applicable to spatial data, as it has a different structure
with respect to the Web data used by such systems. For instance techniques involving
Web links, the use of key words, and the use of cookies are not applicable to a loca-
tion-aware, spatial application. The core concepts of pattern discovery and user model
construction for Web data however provide a detailed and established framework to
follow and extend. Extensions provided by our framework include provisions for con-
cepts such as map scale, physical distance between objects, and interaction with point,
line and polygon objects.

The CoMPASS system [14] develops user models based on implicit interaction
with spatial data. The interest indicators used however are feature-based. The maps
provided by COMPASS are vector maps, which mean features can be added to the map
as transparent layers which overlap to make up the map. COMPASS uses the turning
on and off of these layers, in conjunction with map browsing behaviour as implicit in-
dicators of interest. Our framework also provides support for vector map features be-
ing turned on/off, and in addition uses mouse movements and browsing behaviour as
its main source of interest indicators. COMPASS’s user interest models are also main-
tained and updated over multiple sessions. In addition to maintaining interest models
on an individual basis however, we explore the notion of comparing the interest mod-
els against each other, and using techniques such as case based reasoning and regres-
sion analysis (discussed in section 5) to identify clients with similar interests. This will
allow for the establishment of discrete groups of users based on their contexts.

165

2.3 Personalization

Application personalization involves tailoring the application to suit a particular
user or group of users. The development of adaptive, or personalised systems,
which dynamically adapt to the user, make the user’s goal easier to achieve. Many
of the systems previously mentioned in the implicit interest indicators and user
modeling sections perform Web-personalization. In addition to these systems, per-
sonalization functionality has also been documented by a number of research pro-
jects in the spatial domain, including [14-16]. Many of these systems are mobile-
based systems.

Location-aware business applications can be personalised both in terms of the data-
set offered to the user, and in terms of the interface within which the data is presented.
Deep Map [15] and CRUMPET [16] are mobile systems for spatial data. They provide
city tours whose content can be personalised for an individual; however they use ex-
plicit methods to collect the individual’s preferences. The COMPASS system [14] per-
sonalises the spatial dataset returned to the individual through implicit information col-
lection techniques: User interactions in the form of standard GIS map operations, (pan,
zoom etc.) are recorded and used to develop user profiles. We build on such an im-
plicit profiling approach by introducing the analysis of mouse movement data (loca-
tion, duration, direction etc. of movements) to improve the accuracy of implicit user
profiling. In addition we also explore the notion of interface personalization by adapt-
ing the layout of the interface to suit individual users.

The notion of interface personalization is more widely exploited on mobile systems
than desktop systems. Applications on mobile devices have very limited screen space,
and as a result must adapt innovative displays. As many mobile applications involve
the use of geospatial data, much of the research involves designing map interfaces. Ni-
vala and Sarjakoski [17] detail the contexts which should be considered when design-
ing an adaptive map interface for a mobile device. The contexts include location, sys-
tem, purpose of use, time, physical surrounds, navigation history and cultural and
social orientation. The interface should be adapted to best suit these contexts. DBHab-
its is a non-spatial system [18] providing an adaptive user interface which discovers
the tasks a user performs by observing his behaviour. The tasks are then made avail-
able to the user as macro scripts to improve the ease of future interactions. The authors
address both individually adaptive interfaces and group adaptive interfaces, to suit par-
ticular kinds of users that can be contextually grouped together. Observing user behav-
iour to identify the tasks being performed is a pertinent technique to our framework.
Not only can the appropriate tools be given priority on the interface, but product adver-
tisements can also be assigned to the most effective areas on the interface in response
to the user’s interface behaviour. Anderson et al. [19] also developed a non-spatial per-
sonalised interface for mobile systems. Their system is designed to re-format Web
pages to suit the display of a mobile device. User preferences and device characteris-
tics are taken into account to provide the most intuitive display of Web-based informa-
tion to the user.

166

2.4 Privacy

While personalization may provide an improved experience to the user and pro-
vide valuable information to the vendor about his target audience, it is worth bear-
ing in mind that privacy is a major concern for most computer users. Kobsa et al.
published a number of papers addressing privacy ethics in Web-based personal-
ised systems. Wang and Kobsa [20] completed analysis which reveals that “82-
95% of people have refused to give personal information to a Web site at one time
or another.” and “6-40% of users always supply fictitious information to a Web
site when asked to register.” These statements apply mainly to the collection of
explicit preferences. They cast doubt over the integrity of explicitly collected in-
formation. It would be difficult, and counter-intuitive to give false information by
means of implicit actions. Implicit indicators have a big advantage over explicit
techniques in this regard.

According to Kobsa et al, [20, 21] personalised systems are also subject to legal
constraints since they collect personal data. A European directive [22] states that
“Value-added (e.g. personalised) services based on traffic or location data require the
anonomization of such data or the user’s consent.” This clause clearly requires the
user’s consent for any personalization based on interaction logs if the user can be iden-
tified. A German law [23] specifies that “Usage data must be erased immediately after
each session” These laws apply only if the individuals are identifiable. The framework
proposed in this chapter does not require individuals to be identifiable. An anonymous,
but unique tag that can be used across multiple sessions is all that is required. The link-
ing of this tag to a concretely identifiable individual is not a necessary part of the
framework.

3 Approach

We present our approach to ascertaining the user’s interests based on his interac-
tions followed by a description of experiments involving a real dataset in this sec-
tion. The foundation of our assessment of a user’s interests is based on his mouse
movements. Our bottom line is that an examination of when and where the user
rested his mouse will reveal his interests. We provide additional support for the
concepts of panning, zooming, re-centering and adding/removing layers of fea-
tures to/from the map, all of which change both the displayed content and/or the
scale of the map. The application framework supports vector maps, which consist
of transparent layers of features overlaid on one another. For example a user visit-
ing a city for a weekend could add the layers ‘Hotels’ and ‘Museums’ to the map,
while removing the layers ‘Houses for sale’ and ‘Grocery stores’. The notion sup-
ported here is that adding a layer to the map indicates an interest in its content, and
removing a layer indicates a disinterest. All of these actions constitute indications

167

of implicit interest. We use mouse movements as the primary indicator and
strengthen their impact by cross-referencing the other indicators (pan, zoom, re-
center, layer removal/addition). The notion of a ‘frame’ is used to describe the
view of the map the user gets. Each pan, zoom and re-center action constitutes the
production of a new frame. A session is usually composed of multiple frames.

The following formula provides the means to order all of the objects compris-
ing the map (in a particular frame) by importance to the user in question. Features
which the user removed from the map (by removing the layer) are not considered
in this formula.

*

D,0 D, L Dum

n
(ZObchore: - - - - et — -
5 Dist(ObjP(0)) Dist(ObjP(1)) Dist(ObjP{n))

To calculate the score of an object of interest, Obyj, in a specific frame of a specific
session, the distance between Obj and each mouse dwelling point, pt, within the frame
is calculated as Dist(Obj Pt). The dwelling time of the mouse at pt, D,,, is divided by
Dist(Obj Pt). Each of these fractions are added together for a particular object to give
it a score based on all of the mouse movements within the frame. The score for Obj is
then weighted by the score of the frame, F. The score of the frame is a function of the
time spent viewing the frame, its scale, and the number of features present in the
frame. A frame with 30 features, viewed at a small scale is less likely to contain a dis-
cernable specific interest for the user than a frame where the user zoomed in consid-
erably to create a frame with only 5 features. The frame with 5 features would achieve
a greater frame score in this case.

By dividing the dwell time of the mouse at Pt(i) by Dist(Obj Pt), a measure of
Pt(i)’s importance in the context of the session is obtained. Using this method, dwell-
ing points furthest from Obj will receive the lowest scores. Additionally, a longer
dwell time will give a greater value for the numerator, D,,(i), allocating higher scores
to points where the mouse rested for a longer duration.

This basic formula is computed for each object in the frame. A session (usually
containing multiple frames) requires the exercise to be repeated for each frame. As
some objects appear in more than one frame, their scores are added for each frame
they appear in, giving a final object score for each object in the map. An object’s score
is indicative of the amount of interaction associated with it during a session. The level
of interaction generally reflects the user’s level of interest in the object, thus the ob-
jects are ranked according to this score. The highest ranking objects are those of most
interest to the user. These inferred interests constitute the information used to create a
user interest model.

168

3.1 Experimental Evaluation

The validity of our approach has been assessed by conducting a series of experi-
ments with a real dataset. The dataset in question consists of 80 point data objects
(point landmarks) covering an area of approximately 8km?. The points correspond
to ancient burial tombs in the region of Tarquinia in Italy. A screenshot of the in-
terface provided for the experiments with this dataset is shown in Figure 8.2. Ex-
periment volunteers were required to carry out a set of pre-defined tasks, such as
“find Tomb X, which dates to the 10th Century B.C. and compare the objects
found in it to the objects found in any tomb from 20B.C.” Such information about
the tombs and their contents is available by clicking on a tomb. Users wrote the
answers to their tasks on an answer sheet. Each of the pre-defined tasks was com-
pleted by at least three different users to allow for analysis of the same task as
completed by various users. Users’ interaction styles vary from person to person.
This technique allowed us to find a more average interaction technique. In total,
we collected data for 74 complete tasks. Our analysis consisted of comparing the
ordered list of objects of interest for a user produced by our algorithm to the tombs
named on their answer sheet.

£ User:Ecin Session no: 215 1o x|

Eﬁg|—mm = TR

This tlamb, N. 4401, is believed to date to 1250- 1320 ADIt was
discovered in 1888.The fomb contains threa bodies, two females and

¢ amale

b & T The status of the bodles is unknown,

T * The lavout of the tomb is indicated by the following diagram:

by
- T

% L

It consists of one large chamber, and three smaller chambers
extending one frorm the rear, and one from each ofthe wo sides. This
f iz one of the earliesttombs buitt o this layout. Itis modelled on a tomb
from the same era king to the north west, named N_ 6071 This layout
can he faound in @ number of lombs from the same era some distance
i the south east

Findings from the tomb include a decorated stone wheel and some
cutting implements.

Lat, Lon (42.251133,11.771438) Caccla al Cervo

Fig. 8. 2. User interface for experiments: Dataset of burial tombs in Tarquinia, Italy. The
user clicks on a tomb on the map (left) to view the associated information (right).

Before presenting the average results of our experiments, we present three met-
rics developed for evaluation purposes. In order to judge the performance of the
algorithm, its accuracy is considered in three areas; Rank Accuracy (RA), Relative
Preference (RP) and Absolute Preference (AP).

Rank Accuracy is defined as the accuracy of the rank assigned to the objects in
a user’s answer. For instance, if a user specifies three objects on his answer sheet,

169

we would expect the algorithm to rank the same three objects given in the user’s
answer as #1, #2 and #3. If only two of his objects are returned in the top three,
then the RA is 66.66%. RA is not concerned with the order of the objects, merely
the percentage of them present in the top ranking objects. Essentially RA indicates
how accurately the algorithm inferred the user’s interests. Relative Preference, RP,
is a metric to judge a user’s preference for one object in the ranked list over his
preference for the following object, based on the object score as computed by the
algorithm. It is a measure of the degree of change in preference. For example if
object X has a score of 60 and the next highest ranked object, object Y, has
a score of 40, RP is computed as (20/60)*100. The degree of change is 33.3%. In
other words we can say that the user had a Relative Preference of 33.3% for object
X over object Y. The closer the object scores are together, the smaller the RP, thus
the less confident we can be that the user had a preference for one object over an-
other. RP is a key metric for distinguishing objects which were of interest to the
user from objects which were not of interest. A sudden increase in the RP value
represents the divide between objects of interest from those not of interest.

Absolute Preference, AP, is a means of determining the level of interaction as-
sociated with any object in an ordered list of interests. It constitutes a mapping of
all object scores in the list to a scale of 0 to 100. The object at 0 is ranked lowest,
and received the least amount of attention, while the object at 100 is ranked high-
est, and received the most attention from the user. While RP tells us the degree of
preference for one object over another, AP gives an insight into why one object
was considered to be preferable to another. It gives an indication as to the quantity
of interaction (clicks and/or movements) that was focused around a particular ob-
ject in the context of all the interactions for all the objects in a particular session.

Table 8.1 shows the average results over all 74 tasks recorded during the ex-
periments. Results for movements alone are shown on the first line; the second
line shows the results for a combination of clicks and movements. By combining
the indicators, the results are strengthened. Significantly, over all 74 tasks, the sys-
tem was able to correctly infer the users’ interests in 72% of cases based on mouse
movements alone. By including information from mouse clicks, the accuracy of
determining users’ interests rose to 94%.

Table 8. 1. Average experiment results

RA RP AP
mouse movements only 72.30 % 48.97 % 55.89
mouse movements and clicks 94.26 % 85.60 % 57.65

The RP figure taken from each task to calculate the average is the RP of the
lowest ranked object given on the users answer sheet. In other words, it reflects
the percentage change between the lowest scoring object of interest to the user and

170

all other objects in the map. RP is an important metric to distinguish the fall off in
interest, indicating items which are not of interest to the user. By including mouse
clicks as an indicator the RP was accentuated from 49% to 86% The AP figure
taken from each task to calculate the average is the AP of the lowest ranked object
given on the users answer sheet. It indicates the amount of interaction that was fo-
cused around that particular object, in the context of all the interactions in the ses-
sion. It is a metric more useful for examination in individual circumstances than as
an average figure.

The average results obtained in this evaluation are encouraging. The results
show that mouse movement analysis over spatial data is an accurate technique for
inferring users’ interests with this particular dataset. (We discuss the characteris-
tics of this technique in relation to other spatial datasets in section 5) It is also ap-
parent from these results that combining implicit interest indicators (i.e. combina-
tion of movements and clicks) strengthens the accuracy of inferences made.

4 System Implementation

We describe the configuration of the system used to implement the framework in
our experimental scenario in this section. The system is configured to be inde-
pendent of the dataset used. A full description of the system is available in [24].
The user interface and its functionality are based on OpenMap [25]; an open-
source Java based mapping toolkit provided by BBN Technologies. We modify
this toolkit to suit our application. The interface produced for the dataset used in
the experiments described in the preceding section is shown in Figure 8.2. Interac-
tions are recorded by a transparent interactions layer on the interface.

The spatial datasets are stored remotely in an Oracle 9i Spatial database and are
loaded to the interface at the beginning of a session. Upon session termination, the
interaction information recorded during the session is transmitted to the database.
All data is transmitted and received between components via standard database
connections using JDBC, a Java Database Connectivity API for SQL-based opera-
tions. Oracle 9i Spatial allows for the execution of complex spatial queries to de-
termine the features that were visible on the user’s screen at any point during his
session. This information is required for the execution of the interest determining
algorithm.

The algorithm produces an ordered list of the user’s interests for the session.
This list is maintained in the database, and is updated after each subsequent ses-
sion completed by the same user. By updating the list of interests after each ses-
sion, the lists keep up to date with the user’s interests as they change over time.
These up-to-date lists are the user interest models. The user interest models con-
tain the information needed to personalise the application.

171

5 Target Market Personalization

In this section, we discuss the application of user interest models for location
aware personalization to suit the target market. Initially we take the vendors point
of view, and consider the application of the user interest model to improve market-
ing. Then we assess the merits of personalization from a client’s point of view, of-
fering a reduction in information overload, and the advertisement of relevant
products.

The framework supports two forms of personalization; dataset and interface.
Both forms of personalization rely on the interest models generated by monitoring
users as they interact with the system. The interest models reflect the best way to
filter the dataset. Items in the model with a low score (and items with similar char-
acteristics) can be removed from a personalised dataset, while items with similar
characteristics to those items with high scores can be recommended to the user
and included in the dataset. Interface personalization can include anything from
making certain features appear more prominent (colour and size) to personalizing
the arrangement of the tools available on the interface to advertising products on
the interface.

From a vendor’s point of view, profiling the clients of his system allows him to
develop an idea of his target audience. The contents of any advertisements he
wishes to display can be compared to the interest models of the user, to find the
products and services best matching the client’s needs. The placement of the ad-
vertisements can be decided based on the areas of the interface that receive the
most attention, which may vary from user to user, depending on the arrangement
of the interface. Priority can be given to certain aspects of the dataset which the
vendor may wish to promote in tandem with his advertisements. For instance if the
vendor wishes to advertise ‘Hotel Yorba’, in addition to placing an advertisement
on the interface, he could highlight the ‘Hotel Yorba’ at the same time on the map
by increasing the size of the icon and changing the colour slightly to distinguish it
from the other hotels in the dataset.

Clients enjoy an improved interaction experience, as information overload is
reduced. This is increasingly important with larger datasets. By way of example,
Figure 8.1 shows a screen-shot of the Google Earth application [1] showing all of
the ‘lodging and dining’ facilities available in a small area of New York City. The
number of facilities shown could be greatly reduced if it was known that the user
was a budget tourist looking for budget accommodation and had no interest in ex-
pensive hotels. Unfortunately, some users may find personalization irritating. Es-
pecially in instances where they must interact with the system in a way drastically
different to their usual interaction characteristics. For instance, if a parent, accus-
tomed to expensive hotels was to research budget hostels for his teenage daughter,
this would cause a sudden dramatic change in the information collected for his
profile. It is necessary as a result, to provide the option to opt out of user profiling

172

and personalization to the client. Indeed many of the privacy laws also require that
this option be made available.

5.1 Group Contexts

The interest models produced by the framework outlined in this chapter are cre-
ated on an individual basis. They can be used as building blocks to create group
models. There are many further extensions possible to the basic user models pro-
duced here. By comparing models against each other, patterns could be discovered
in clients’ contexts. An example of such a pattern might be that clients who show
an interest in designer clothing retail stores will also show an interest in exclusive
nightclub venues. If a vendor can identify certain patterns in map browsing behav-
iour then he may be able to predict items which will be of interest to the client
based on how other clients with similar interests behaved. Two techniques suited
to this kind of pattern analysis are Case Based Reasoning (CBR) and regression
analysis. Both of these techniques involve finding patterns in the existing models,
and extrapolating from the patterns what interests may develop in the future. For
these techniques to work, there must be an existing set of models to work from.
The larger the set of models, the more accurate pattern analysis can be. Without
any models to work from, these techniques cannot be applied. This is known as
‘the cold start problem’ [26].

The cold start problem is also evident when a new user interacts with the sys-
tem for the first time. Generating an interface and dataset dynamically from their
user profile is a problem, as their profile has not yet been developed. As a solution
to this problem we propose the grouping of users into collaborative ‘families’ of
users. Examples of such families are; a tourist family, a surveyor family and a stu-
dent family, each family with different information needs and defining character-
istics. The family model is a representation of the typical settings that suit the av-
erage member of the model. When a new user wishes to interact with the system,
the interface suited to his particular user family could be initially presented to the
user, however this still leaves the problem of assigning the user to a family. It
could be done explicitly, requesting users to provide the seed by selecting the fam-
ily into which they best fit.

Alternatively this task could also be performed implicitly. It is difficult to glean
detailed contextual information on an implicit basis, however, we identified mild
contextual information based on user’s mouse movements during the experiments
described in section 3. Cox and Silva [6] identified three distinct categories of
mouse-user during eye-tracking experiments conducted with non-spatial data. 1)
Mouse On Side (MOS) where users left their mouse to the side of the menu while
their eyes located the target, once the target was located the mouse was moved to
the target. 2) Mouse Hovering Target (MHT) Where users hovered their mouse
over the target while their eyes scanned the remainder of the menu, and 3) Mouse

173

With Eyes (MWE) which is characterised by the user’s mouse closely following
the user’s eye movements. Though we do not make use of eye-tracking software,
our experiments revealed user categories with parallel traits to the groups identi-
fied by Cox and Silva. By producing heat maps of users’ interactions, we identi-
fied two distinct kinds of user. 1) Lazy mouse users, who only move and click the
mouse when absolutely necessary. 2) Fast and frequent mouse users, who make
exhaustive use of the mouse, moving it constantly, and clicking impatiently on
everything in sight.

More often than not, lazy mouse users corresponded to experienced, efficient
users who took less time to complete their task. Fast and frequent mouse users
identified themselves as “inexperienced with spatial data” on the experiment’s
questionnaire. They took more time to complete their tasks often returning repeat-
edly to areas of the map to double check things. These contexts are not very de-
finitive at present, however there are definite trends evident. With further research
and experiments specifically designed to examine these trends, we feel that they
could be exploited to glean useful contextual information and assign users to vari-
ous user families based on their interaction.

6 Dataset Dependency

The accuracy and efficiency of our interest determining method is inherently de-
pendent on the dataset. Given a different distribution of data and/or a dataset con-
taining a mix of different data types, the results of our method may be af-
fected positively or negatively. Figure 8.3 shows a number of different data
distribution possibilities. Our original experiments for analysis of the interest de-
termining algorithm described in this chapter were conducted with a real dataset.
This dataset is roughly represented by the first section of Figure 8.3. The results of
the algorithm were very promising with this dataset, which consisted of a rela-
tively even spread of points, covering an area of approximately 8 km?. A second
real dataset has recently been acquired (roughly represented by the second section
of Figure 8.3), consisting of points, lines and polygons, covering a much larger
area, almost 7,000 km”. The distribution of the data is also less evenly spread.
Much of the point data such as hotels and shops are focused around a central busi-
ness district, the road network also converges towards the centre of the most popu-
lated area and becomes sparse in the hinterland.

By exploring new datasets with varying data distributions we intend to evaluate
our method more thoroughly, determine its strengths and weaknesses, in order
make it more robust. A problem that we immediately envisage arising with an un-
even spread of data using our current method is outlying points (Such as a scenic
viewing area, far from any other points of interest in surrounding towns for in-
stance). Such outlying points could be assigned either too high or too low an ob-
ject score (indicating their importance to the user), due to their separation from the

174

other evenly spread clusters of data. Another problem that could arise is how best
to modify our existing method to estimate a user’s interest in line and polygon ob-
jects such as roads and parks. In the case of a road, is it best to pick the centroid of
the line, or the point on the line closest to the mouse resting point, or a series of
points in the line? Polygons give rise to similar questions.

Scale: 8km

Fig. 8. 3. Dataset distribution examples: (From left to right) An illustration of the
distribution of the dataset used in the experiments. An illustration of the dataset
containing points lines and polygons for the next experiment (note the uneven
distribution). Two example datasets which could be used to test the dependence of the
algorithm on the spread of data.

A new set of experiments will ascertain the difference made to algorithm per-
formance by the distribution and type of data used. The final two sections of Fig-
ure 8.3 show two example representations of different data distribution scenarios.
A number of such datasets will be generated, containing mixes of points, lines and
polygons. It is a certainty that the algorithm’s performance will be affected by the
spread and type of the data, however the spread of spatial data is not a new prob-
lem in the field of geospatial services. Spatial indexing is an example of an area of
research affected by the same problem. Various different types of indexing sys-
tems have been developed for use depending on the spread of the available data.
Similarly, We envisage modifications to our algorithm to be necessary given dif-
ferent spreads of data. For example, datasets consisting of a number of clusters
such as those illustrated in the final section of Figure 8.3 might be better evaluated
as a series of five individual datasets based on the minimum bounding box of each
of the clusters before combining the results to give a set of final scores for the im-
portance of each individual point of interest, rather than taking the entire dataset as
one. Another modification might be the separation of each dataset into points,
lines and polygons, using different rules to assess each individual datatype before
combining the results.

175

7 Future Work

We have demonstrated that the framework developed for interpreting user’s inter-
ests based on their implicit interactions with spatial data is effective in this in-
stance. The framework is independent of the dataset. Further extensions to the in-
terest determining algorithm are likely to be necessary when datasets
incorporating lines and polygons as map features are introduced. An evaluation of
how the spread of data affects the performance of the algorithm is also necessary.
While the current research focuses on a desktop framework, initial research on
the development of a mobile framework has commenced. Data transfer is more
complicated between a mobile device and a remote server, which is necessary to
house the Oracle Spatial database. Screen size is also very restricted. Mobile de-
vices do not generally make use of a mouse; they use a stylus instead, however
such devices can also include GPS receivers. Stylus use discloses less information
than mouse use, as they are not in constant contact with the screen. Their use is
analogous to only using the mouse when necessary and removing one’s hands
from the mouse as soon as it is in the desired location. The introduction of GPS
positioning may counter this reduction in access to interaction information. It
would be possible to consider the physical location of the user in relation to the
data he is viewing as an indicator of interest, under the assumption that he has a
greater interest in the things nearer to him than those that are far away. There are
many different avenues to explore regarding future work, each of them offering
the opportunity to improve the accuracy of interests inferred for users, which be-
comes increasingly important as the quantity of geographic information becomes
more prolific. Better interest interfering techniques will lead to more accurate per-
sonalization, improving the experience of both consumer and vendor alike.

References

1. Google earth. http://earth.google.com/, 2007.

2. M. Claypool, P. Le, M. Waseda, and D. Brown. Implicit Interest Indicators. In Proceedings
of the International Conference on Intelligent User Interfaces (IUI’01), pages 33-40, Santa
Fe, New Mexico, USA, 2001. ACM.

3. F. Mueller and A. Lockerd. Cheese: Tracking Mouse Movement Activity on Websites a Tool
for User Modeling. In Proceedings of the Conference on Human Factors in Computing Sys-
tem (CHI’2002), pages 279-280, Seattle, Washington, 2002. ACM.

4. R. Atterer, M. Wnuk, and A. Schmidt. Knowing the Users Every Move - User Activity
Tracking for Website Usability Evaluation and Implicit Interaction. In Proceedings of the
15th international conference on World Wide Web, pages 203-212, Edinburgh, Scotland,
2006. ACM.

5. E. Arroyo, T. Selker, and W. Wei. Usability Tool for Analysis of Web Design Using Mouse
Tracks. In Conference on Human Factors in Computing Systems CHI’06 Extended Abstracts
on Human Factors in Computing Systems, pages 484489, Quebec, Canada, 2006. ACM.

176

6. A.L. Cox and M.M. Silva. The Role of Mouse Movements in Interactive Search. In Proceed-
ings of the 28th Annual CogSci Conference, pages 1156-1162, Vancouver, Canada, July 26-
29 2006.

7. B. Pan, H. Hembrooke, G. Gay, L. Granka, M. Feusner, and J. Newman. The Determinants
of Web Page Viewing Behavior: An Eye Tracking Study. In 2004 symposium on Eye track-
ing research and applications. ETRA, pages 147-154, San Antonio, Texas, 2004.

8. M.C. Chen, J.R Anderson, and M.H Sohn. What Can a Mouse Cursor Tell Us More? Corre-
lation of Eye/Mouse Movements on Web Browsing. In Conference on Human Factors in
Computing Systems CHI ’01, pages 281-282, Seattle, Washington, 2001. ACM.

9. J. Strivastrava, R.T. Cooley, M. Deshpande, and P-N.Tan. Web Usage Minng: Dis-
covery and Applications of Usage Patterns From Web Data. In SIGKDD Explorations 1(2),
pages 12-23. ACM, January 2000.

10. R. Cooley, B. Mobasher, and J. Strivastrava. Data Preparation for Mining World Wide Web
Browsing Patterns. In Knowledge and Information Systems 1(1), page 532, 1999.

11. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective Personalization Based on Asso-
ciation Rule Discovery From Web Usage Data. In Web Information and Data Management,
Atlanta, Georgia, USA, November 9-11 2001. ACM.

12. B. Mobasher, H. Dai, T. Luo, Y. Sun, and J. Zhu. Integrating Web Usage and Content Min-
ing for More Effective Personalization. In Proceedings of the First International Conference
on Electronic Commerce and Web Technologies, pages 165-176, September 4-6 2000.

13. B. Mobasher, R. Cooley, and J. Srivastava. Automatic Personalization Based on Web Usage
Mining. In Communications of the ACM, volume 43, pages 142-151, August 2000.

14. D. Wilson, J. Doyle, J. Weakliam, M. Bertolotto, and D. Lynch. Personalized Maps in Mul-
timodal GIS. International Journal of Web Emerging Technology 3(2):196-216, 2007.

15. R. Malaka and A. Zipf. Deep Map: Challenging IT Research in the Framework of a Tourist
Information System. In S. Klein and D. Bubhalis, editors, Information and Communication
Technologies in Tourism, pages 15-27. Springer, 2000.

16. A. Zipf. User-adaptive Maps for Location Based Services (LBS) for Tourism. In Proceed-
ings of the 9th International Conference for Information and Communication Technologies in
Tourism, pages 329-338, Innsbruck, Austria, 2002.

17. A Nivala and L.T. Sarjakoski. Need for Context-Aware Topographic Maps in Mobile
Devices. In Proceedings of the 9th Scandinavian Research Conference on Geographic In-
formation Science ScanGIS2003, pages 15-29, Espoo, Finland, June 4-6 2003.

Index

A

AP o, 170, 171

Application framework.............. 150
Black boXccovevieriieiiennns 150
Extensibility.......ccccoecveeenennee. 150
Inversion of control................ 150
Modularitycccoeeeevveeenenee. 150
Reusabilitycccoeveevveenennee. 150
White boX.....ccovveveeriieieennnns 150

auxiliary server 25,27,29

AWARE............... 33, 34, 38, 46, 47
B

Benchmark.................. 141, 154, 155
C

Case Based Reasoning (CBR) ... 173
Computational linguistics ...140, 143

D

Data Heterogeneities 115
Database.........cccceeceveenencennen. 142
PostgreSQL........ccceeneeeee. 148, 152
XMLt 152
XQUETY.oiiieiieeeieee e 152
XUpdate......coveeeeeeeeeeeenee. 152
deduction rule........................... 120
Document format
HTML ..ot 152
Microsoft Word...........cc........ 152
OpenOffice.......cccoeevereerennnns 152
PDF .o, 152
RTF oo, 152
XMLt 152
Document repository........... 149, 152
Dynamic Proxyccccceeeeuee. 10, 11
E
Explicit interest indication......... 163

F
Feature selection............cccceueuueee. 146
G
Gazetteer............. 141, 145, 148, 155
ADL ..ot 155
Gazetteer of Australia............. 142
Geographic Names Information
N 1S) 10 142
Global Discovery.................... 142
World Gazetteer 142
geodatabase 55,65, 67, 68
geographical context................... 140
geometric footprint............. 140, 155
Geoparsingc.ceceeereeerenrennennes 143
Geoportal........ 31, 34,37, 38,42, 46
Ginis Application Definition
Language (GADL).c........ 49
GinisWeb framework........ 54,57, 68

Global Monitoring for Environment
and Security (GMES) initiative 32
global ontology 114, 118, 122, 130

global-to-local 114,115, 124

GMES ... 46

GML....... 37,41,42,55,71, 89, 134

Google Earth 40, 106, 162, 173

Google Maps API.........ccccoenueueen 37

GPS..o 2,176
1

implicit interest indicator... 162, 163,
164, 166, 171

INSPIRE......ccoeieiieriene 32,34

instance-level mapping . 118, 125, 128,
130

interface personalization............. 166
J

Java.....ooiiii 153
Interface........ccoeceveencincnnnee 153

RMI. .ot 152
K

k-means algorithm 151

Knowledge set145, 148, 149, 155
Persistenceccccceeeeeeeuenene 152
L

Lenteja ..c.ccooeevienieniinienieccnee, 152

local ontology114, 122, 128, 134

location-aware business application
.. 160, 162
M

Mapping representation.......... 122

Mapping system.................. 140, 155
Google Maps.......ccccevveceennennee. 141
Web based...........cc........ 141, 155
Yahoo Maps......cccceceveeuenncnne. 141

MapQuest.................. 1,5,16, 17,26

Message Transmission Optimization
Mechanism (MTOM)................ 82

Microsoft Virtual Earth............. 4,29
N

Named entity recognition 143
Yy

OGC.....ccecunee. 35,37,73,75, 96,97

Ontology
Geographical..........cccoeceneeee. 140
GML ..ot 140
WordNetccooveiieieieeee 140

ontology alignment.....113, 130, 132

ontology-based approach...113, 114,
134

Open Geospatial Consortium.35, 47,
50,71, 73,74, 96

OpenMapcccoocveeiveeniiienenne. 171
P

Pimiento..........cccooeeveeennnn.n. 149, 152

PMR quadtree...........coeonue... 6,7,28

proxy server..§8, 9, 10, 11, 12, 25, 26

0
query expansion ... 125, 127, 140, 156
Query expansion..........ce.ceceeenen. 140

query processing. 113, 115, 125, 130,
133, 134

query rewriting.... 113, 115, 124, 129,
134

R
RA ..o, 71,98, 170, 171, 177
Rank Accuracy.......cccceeveeeneennen. 170
raster-based design...........cccoenenen. 4
Relative Preference 170
RP.cooiiin 15,117,170, 171
S

SAND Internet Browser....4, 11, 16,
19, 20, 21

SAND Proxy ..ceeeeevvveeneenieeneennnenn 12

SAND Server.......ccceevveeeeeennnen.. 9,12

schema-level mapping118, 125, 127,
128

schema-like ontologies114, 118, 133

N1D) [N 32,34,43
Search enginecccceeveveneene. 155
(€007 (R 148
MSN e 148
semantic heterogeneity....... 115, 133
Simple Object Access Protocol
(SOAP) ..ot 74
SOA .. 153
SOAP...cccooiieiiiiinns 139, 152, 160
SOAP with Attachments (SwA)... 82
StAtiC PrOXY .oeverveererreerenreeeesenenees 25
statistical text mining 141, 155
syntactic homogeneity 115
T

taxonomy-like ontologies.. 114, 118,
133

Term relevance................... 147, 155
TerraServer........ccccccoeeunne... 4,29, 89
Text Mminingccceeevevveecverreennnns 141

Application framework.......... 149
Methodsccecveveeeeneninnenne. 155
Statistical......ccccceeeeveevinininnns 145
Technique.......cccceveevirenenee. 153
tile method 18, 20, 21, 26, 27, 28, 29
TOPONYM ..o 143
TOPOZONe......cocvvveeeeeeeeeenne 3,29
U
user interest model.....160, 162, 165,
169, 172
Vv
vector approach.........c.ccecceeeeienncne 3
Vector space model.................... 146

vernacular term ..139, 140, 141, 145,
147, 154, 155

Vernacular term .140, 141, 145, 153,
154, 155

179

w
W3C e 152
WCS......... 46, 75,76, 79, 81, 88, 92
Web GIS................. 2,49, 52,68,71
Web Map Service (WMS) 50, 96
Web Processing Service......... 35,47
Web service...... 31, 88, 95, 139, 141,

148

Apache AXIScoeovevecieiene 153
Web Service Description Language

(WSDL)...oovivieeririncnienne 74,76
Wikipedia.......ccoccveveernenne. 148, 149
Wikitravel.......coccovevevenencnennenn 148
Word sense disambiguation 140, 143
WPS..orrc 35,41, 42
WSDL....ooiiiriniinenenccreneene 153

X

	150752_1_En_FM1_OnlinePDF.pdf
	150752_1_En_1_Chapter_OnlinePDF.pdf
	150752_1_En_2_Chapter_OnlinePDF.pdf
	150752_1_En_3_Chapter_OnlinePDF.pdf
	150752_1_En_4_Chapter_OnlinePDF.pdf
	150752_1_En_5_Chapter_OnlinePDF.pdf
	150752_1_En_6_Chapter_OnlinePDF.pdf
	150752_1_En_7_Chapter_OnlinePDF.pdf
	150752_1_En_8_Chapter_OnlinePDF.pdf
	150752_1_En_BM1_OnlinePDF.pdf

